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Many books can be had on the subject of electric circuits. Some are elementary, requiring
little mathematical skills, while others require a considerable knowledge of calculus.

This book can be considered a compromise, in that it uses no calculus but does make
considerable use of algebra. This includes ordinary algebra and also the special algebras of
logic and matrices. All are carefully explained in the text, along with interesting and
important applications.

The manner in which the book is used will depend of course upon the individual. Some
will wish to start on page 1 and continue on consecutively from that point. Others might
want to pick and choose. For instance, on a first reading some might prefer to postpone
study of Chapter 11 and jump directly from Chapter 10 to Chapters 12 and 13.

At any rate, I hope that you, as an individual, will find the book interesting and, in the
long run, a valuable contribution to your professional advancement.

K. W. JENKINS
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Electric Charge and
Electric Field.

Potential Difference

1.1 Electrification and Electric Charge
It is an experimental fact that a glass rod, after being briskly rubbed with a silk cloth, has
the ability to attract bits of paper, straw, and other light objects to it. A glass rod in such a
condition is said to be electrified or charged, and to contain a kind of ‘‘electric fluid’’ we’ll
call electric charge.

Glass is not the only substance that can be electrified by friction (rubbing), as almost all
substances have this property to a greater or less degree.

If a body is not electrified it is said to be in an electrically neutral condition. Thus, a
glass rod that has not been rubbed by a cloth is in an electrically neutral condition.

Suppose we have a glass rod equipped with a rubber handle, as in Fig. 1. Let us suppose
the glass rod has been charged by some means, as by rubbing with a silk cloth.

We will find that as long as we hold the assembly by the rubber handle the rod will stay
electrified, that is, will continue to ‘‘hold its charge’’ for a long period of time. This is because

1

Fig. 1
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the rubber handle is a good electrical INSULATOR, meaning that it does not allow the
charge on the rod to leak off through it to the neutral earth.

Thus, an electrical ‘‘insulator’’ is any substance that offers great opposition to the
movement or flow of electric charge through it. Rubber, porcelain, and dry wood are
examples of good insulating materials.

On the other hand, almost all metals offer very little opposition to the movement or flow
of electric charge through them, and are said to be good CONDUCTORS of electric
charge. Silver, copper, and aluminum, for example, are examples of very good conductors
of electric charge.

Of course, there is no such thing as a ‘‘perfect’’ insulator or conductor. A perfect
insulator would allow no movement of charge through it, while a perfect conductor
would offer no opposition to the flow of charge through it. For many practical purposes,
however, substances like rubber, stone, quartz, and so on, can be considered to be perfect
insulators, while substances like silver, copper, and gold can be considered to be perfect
conductors of electric charge.

Now suppose, in Fig. 1, that the glass rod is replaced by a charged copper rod. If we
hold the assembly by means of the rubber handle only, the copper rod will of course
continue to hold its charge. If, however, the charged rod is touched to a metal stake driven
a foot or so into the earth (down to where the soil is moist), tests will then show that the
copper rod has lost its electric charge. The explanation is that the charge carried by the rod
was ‘‘drained off’’ into the earth through the metal stake, thus putting the rod back into its
original uncharged, neutral condition.

It should be pointed out that the earth is such a huge body that we are not able to
change its state of charge to any noticeable degree; hence we will consider the earth to be,
overall, an electrically neutral body at all times.

Since we mentioned ‘‘moist earth’’ above, it should be mentioned that chemically pure
water is a poor conductor. However, most ordinary tap water contains traces of metallic
salts, and so on, so that such water is a fairly good conductor of charge. This brings up the
point that, when making an electrical connection to the earth, we should go deep enough
to get into moist soil; thus, a metal pipe driven only a short distance into dry soil would
not be effective in conducting electric charge to and from the earth.

As mentioned before, all substances can be electrified by friction (rubbing). We have
already found that a glass rod becomes highly electrified when rubbed briskly with a silk
cloth. In the same way, we find that a hard rubber rod becomes electrified when rubbed
with a piece of cat’s fur. Such a rubber rod, when electrified, will attract to it bits of paper
and straw just as does an electrified glass rod. Experiment, however, shows there is some
kind of fundamental difference between the charge that appears on the glass rod and the
charge that appears on the rubber rod. To investigate further, let us denote glass and
rubber rods as shown below.

We can now perform an experiment that will demonstrate that there are TWO KINDS
of electric charge, one of which we will call ‘‘positive’’ and the other ‘‘negative.’’ The
procedure is as follows.

Let us charge two glass rods by rubbing with silk cloth, and two hard rubber rods by
rubbing with cat’s fur. Let us suppose the rods are then suspended from the ceiling by
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means of dry silk strings. The dry strings are insulators which will prevent the charges
from leaking off the rods, and yet will allow the rods to swing freely. We now observe the
three experimental results shown in Fig. 2.

Since both glass rods were charged by the same means (rubbing with silk cloth), it
follows that both glass rods carry the same type of charge. Likewise, since both rubber
rods were charged by the same means (rubbing with cat’s fur), it follows that both rubber
rods carry the same type of charge.

It follows, then, that if a glass rod carried the same kind of charge as a rubber rod, then
a glass rod and a rubber rod would repel each other, but experiment C shows they attract
each other. Therefore the type of charge on the glass rod must be different from the type of
charge on the rubber rod.

So far, then, experiments A, B, and C show there are at least TWO different
kinds of electric charge. The kind appearing on the glass rod is called POSI-
TIVE electric charge, and the kind appearing on the rubber rod is called
NEGATIVE electric charge.

Now consider the following. As mentioned before, all substances can be charged by
friction to a greater or less degree. Let us charge, by identical means, two rods both made
of the same substance ‘‘x,’’ which can be any material we wish to test. Since both rods are
made of the same material, and both are charged by the same means, it follows that both
rods will carry the same kind of charge. Experiment then shows that any two such rods
that carry the same kind of charge will always REPEL each other. Such experiments
establish the general rule that LIKE CHARGES ALWAYS REPEL EACH OTHER.

We next make a series of experiments to see what reaction there is between a charged
rod of any material x and charged rods of glass and hard rubber. Here is what we find.

1. If a charged rod of any substance x repels a charged rod of glass, it will attract a
charged rod of rubber; hence in this case the rod of substance x carries the same
kind of charge as the glass rod, which is ‘‘positive’’ charge.

2. If, on the other hand, a charged rod of any substance x attracts a charged rod of
glass, it will repel a charged rod of rubber; hence in this case the rod of substance x
carries the same kind of charge as the rubber rod, which is ‘‘negative’’ charge.

CHAPTER 1 Electric Charge and Electric Field 3
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Hence we can now summarize that

As far as we can determine by experiment there are TWO KINDS of electric
charge. For reference purposes, the type that appears on a glass rod rubbed
with silk cloth is POSITIVE charge, and the type that appears on a hard
rubber rod rubbed with cat’s fur is NEGATIVE charge. Experiment verifies
the general rule that LIKE CHARGES REPEL EACH OTHER and
UNLIKE CHARGES ATTRACT EACH OTHER.

It should be pointed out that an electrically neutral body contains EQUAL
AMOUNTS of positive and negative charges. If, however, some of the negative charge
is removed from the body, then that body is left with more positive charge than negative
charge, and therefore becomes a positively charged body. Or, if some of the positive charge
is removed from a body, the body is left with an excess of negative charge and therefore
becomes a negatively charged body.

Of course, if positive charge is added to a neutral body, then that body becomes a
‘‘positively charged body.’’ Or, if negative charge is added to a neutral body, that body
then becomes a ‘‘negatively charged body.’’

It should also be mentioned that, while electric charge can be transferred from one
body to another, it can never be destroyed; this is a basic law of nature, and is known as
THE PRINCIPLE OF CONSERVATION OF ELECTRIC CHARGE.

Let us next discuss induced electrical charges. Suppose we have a round ball of con-
ducting material (aluminum, for instance), resting on a dry insulating stand, as shown in
Fig. 3, where it’s assumed the aluminum ball is in an electrically neutral state.

Let us now bring a positively charged glass rod up near to (but not touching) the
aluminum ball, as in Fig. 4. Remember that the ball is electrically neutral, that is, it
contains equal amounts of positive and negative charge.

Now, since LIKE CHARGES REPEL and UNLIKE CHARGES ATTRACT, we will
find that a portion of the positive charge in the ball will be repelled over to the right-side of
the ball, and a portion of the negative charge in the ball will be attracted over to the left-
side of the ball. This action will result in a concentration of positive charge on the right-side
of the ball and a concentration of negative charge on the left-hand side of the ball, as
illustrated in Fig. 4.

The concentrations of positive and negative charges on the ball in Fig. 4 are examples
of induced electric charges. Thus, an ‘‘induced’’ charge is a concentration of positive or
negative charge on a region of a body, due to the nearness of a charged body. In the
experiment of Fig. 4 we are allowed to bring the glass rod as close to the aluminum ball as
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we wish, as long as the rod does not touch the ball. Of course, the closer we bring the
charged glass rod to the ball, the greater is the degree of separation of the charges in the
ball.

It should be noted that, in Fig. 4, the ball considered as a whole is still an electrically
neutral body, even though there is localized separation of charges on the ball. If we were to
completely withdraw the charged glass rod, the separated charges on the ball would come
back together again, restoring the ball to the condition it was in Fig. 3.

Now suppose the charged glass rod, in Fig. 4, is allowed to touch the ball for a moment
and then is pulled away, out of the vicinity of the ball. To understand what would happen
in this case, remember that the ball, considered as a whole, is electrically neutral before it is
touched by the rod. The glass rod, however, is not neutral; it carries more positive charge
than negative charge.

Hence, when the rod touches the ball, part of the excess positive charge, on the rod, will
flow over to the ball. Then, when the rod is pulled away, part of the excess charge will
remain on the ball and part will remain on the rod. Just what proportion passes over to the
ball, and what proportion remains on the rod, depends on several factors, such as relative
areas of rod and ball, and so on. We can summarize what has been said about Figs. 3 and
4 so far, as follows.

In Fig. 3 we start off with an insulated, electrically neutral metal ball, that
is, the ball contains equal amounts of positive and negative charges.

In Fig. 4, a positively charged rod is brought near the ball. If the charged
rod is now withdrawn from the vicinity of the ball without touching it, then
the ball returns to the original condition of Fig. 3. While the charged rod is
near the ball, induced charges appear on the ball, as indicated in Fig. 4.

If, however, the rod touches the ball, and then is withdrawn from the
vicinity of the ball, then the ball remains permanently charged. (Actually,
since there’s no such thing as a perfect insulator, the charge will very slowly
leak off to the neutral earth through the insulating stand.)

Thus we see that one way to charge an insulated body, such as the ball of Fig. 3, is to
momentarily touch it with a charged body, such as the charged rod of Fig. 4.

Let’s continue now with the idea of charge and movement of charge. We know that an
electrically neutral body contains equal amounts of positive and negative charges. Sup-
pose, now, that we wish an electrically neutral body to become positively charged. We can
accomplish this by either adding positive charge to the body, or removing negative charge
from the body.

Either way, the body, which was neutral to begin with, ends up a positively charged
body. It is important to notice that, from an external, mathematical standpoint, it makes
no difference whether we assume that positive charge flows into the body or negative
charge flows out of the body.

At this point we might digress just a moment to say a word about ‘‘electrons.’’ Very
briefly, electrons are tiny charges of negative electric charge. The flow of charge, in a
metallic conductor, such as a copper wire, is known to actually be a flow of negative
charges (electrons). But electrons are not the only carriers of moving electric charge;
positive charge carriers, in the form of positive ‘‘ions,’’ are also important charge carriers,
especially in liquids and gases.

To continue, suppose we want an electrically neutral body to become negatively
charged. We can accomplish this by either adding negative charge to the body, or removing
positive charge from the body.
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Either way, the body, which was neutral to begin with, ends up as a negatively charged
body. Again, it is important to note that, as far as the final result is concerned in any such
single experiment, it makes no difference whether we assume that negative charge flows
into the body or positive charge flows out of the body. However, in order that our
mathematical equations be consistent, and that our notation always mean the same
thing, we must select one standard procedure and then stick with that procedure or con-
vention.

Hence, except for any special cases where we might say otherwise, let us now agree to
use the following conventions when dealing with charged bodies and movement of charge.

1. A positively charged body is one having an EXCESS of positive charge.

2. A negatively charged body is one having a DEFICIENCY of positive
charge.

3. Only POSITIVE CHARGE is free to move or flow.

As a first illustration of these conventions, consider the insulated, positively charged
body A in Fig. 5. Notice that the switch (SW) is ‘‘open,’’ which prevents any movement of
charge along the copper wire.

If the switch is now closed, as in Fig. 6, positive charge commences to flow from body A
to the neural earth as shown by the arrow in Fig. 6. Charge continues to flow until body A
becomes electrically neutral with respect to the earth, at which time charge then ceases to
flow.

Or, consider the insulated negatively charged body B in Fig. 7. If the switch is now
closed (Fig. 8), positive charge commences to flow from the earth to the body B as shown
by the arrow in the figure. Charge continues to flow until body B becomes electrically
neutral, at which time charge ceases to flow. It should be remembered that the earth is an
electrically neutral body containing, for all practical purposes, an unlimited supply of
equal positive and negative charges.

CHAPTER 1 Electric Charge and Electric Field6
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As another example, consider Fig. 9, which shows a body A positively charged and a
body B negatively charged, both bodies being insulated from the earth in this example.

For discussion purposes, suppose body A contains an excess of 100 units of positive
charge and body B contains a deficiency of 20 units of positive charge. Notice that the two
bodies together have a combined excess positive charge of 80 units.

If the switch is now closed, positive charge will flow from body A to body B until both
bodies have an excess of positive charge. Thus, assuming A and B to be identical alumi-
num balls, charge will cease to flow through the copper wire when both balls have an
excess positive charge of 40 units each.

As a final example, consider bodies A and B in Fig. 10. We’ll assume they are identical
aluminum balls.

Notice that both bodies are shown as negatively charged; that is, both bodies have a
deficiency of positive charge. Just for discussion purposes, let’s assume that

body A has a deficiency of 80 units of positive charge,

body B has a deficiency of 30 units of positive charge.

Note that the two bodies have a combined total deficiency of 110 units of positive
charge.*

What happens when the switch in Fig. 10 is closed? To answer this, we must keep in
mind that a negatively charged body simply does not have enough positive charge to
completely neutralize the negative charge. For practical purposes, however, any large
material body, such as a copper penny, a glass rod, and so on, has an inexhaustible or
unlimited supply of both positive and negative charges (see footnote). All we can do is
merely upset the balance of charge, positive or negative, either side of the neutral charge
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* It may be helpful to understand that from a practical standpoint it is impossible for us to drain anywhere near all
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condition of a body. Therefore, when the switch in Fig. 10 is closed, positive charge flows from
body B to body A until each body has an equal deficiency of 55 units of positive charge.

There are no problems here, but this section should be read and reread until you have
all the facts firmly in mind.*

1.2 Coulomb’s Law and the Unit of Charge
We have learned that two types of electric charge exist, one type being called positive and
the other negative. If a body contains equal amounts of both types it is said to be in an
electrically neutral condition. If it contains more positive charge than negative charge it is
said to be positively charged, or if it contains more negative than positive charge it is said
to be a negatively charged body.

The amount or quantity of excess electric charge carried by a body is denoted by �q or
�Q, the sign used depending on whether the excess charge is positive or negative. We
recall that bodies carrying excess amounts of like charge REPEL each other, while bodies
carrying excess amounts of unlike charge ATTRACT each other.

What is called an ELECTRIC FIELD always exists in the three-dimensional space
surrounding an electric charge or group of electric charges. If the charges are at rest (that
is, are ‘‘stationary’’ or ‘‘static’’ relative to our frame of reference), they are called electro-
static charges, and the fields produced by such charges at rest are called electrostatic fields.
The behavior of charges at rest, that is, electrostatic charges, and the fields produced by
them, is the subject of this and the next two sections.

The UNIT AMOUNT of electric charge is called the coulomb (‘‘KOO lohm’’), in honor
of the French physicist Charles Coulomb. Coulomb, who published the results of his
experiments in 1785, showed that the FORCE OF ATTRACTION OR REPULSION
between two quantities of electric charge, q1 and q2, is directly proportional to the product
of the two charges and inversely proportional to the square of the distance between them.
This is known as ‘‘Coulomb’s law,’’ which takes the mathematical form

F ¼ k

K

q1q2

r2
ð1Þ

where F is the magnitude of the force of attraction or repulsion between the two charges q1

and q2, and r is the distance between them.{ The meaning of the constants k and K will be
explained in the following discussion, but first let us discuss the meaning of, and the
restrictions placed on, eq. (1).

In eq. (1), it is assumed that q1 and q2 are ‘‘point charges,’’ that is, that the charges q1

and q2 are concentrated on bodies whose dimensions are very small compared with the
distance r between them. Consider, for instance, the two charged spheres in Fig. 11.

For instance, if the spheres in Fig. 11 are 0.1 inches in diameter and are separated a
distance of, say, 10 inches, they would, for all practical purposes, behave as two point
charges for which r ¼ 10 inches.
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You may recall that Newton’s third law states that to every force there is an equal but
oppositely directed force. Thus the forces acting on the above point charges have equal
magnitudes (given by eq. (1)), but point in opposite directions along the straight line drawn
through the two charges. This is illustrated in Fig. 12, for the case of two like charges
(which repel each other) and twounlike charges (which attract each other). We’ve considered
force acting to the right to be ‘‘positive’’ and force acting to the left to be ‘‘negative.’’

Let’s next discuss the meanings of the constants k and K in eq. (1). We begin by
pointing out that the value of the force of attraction or repulsion between two charges
depends not only on the values of the charges themselves and the distance between them,
but also upon the medium that surrounds the charges. For instance, the force action
between two charges immersed in say mineral oil (just as an example) is considerably
different from what it would be if the same two charges were the same distance apart in air.

The medium surrounding the charges is called the DIELECTRIC, and the effect of the
dielectric is taken into account, in eq. (1), by means of the dielectric constant K, the value
of K depending upon the type of dielectric the charges are immersed in. The dielectric
constant K is defined as the ratio of the force in vacuum to the force in the given dielectric.
K is thus a dimensionless constant (the ratio of one force to another force), and is given the
arbitrary value K ¼ 1 for vacuum (also, K ¼ 1 for air dielectric, for all practical purposes).
Thus, for vacuum or air dielectric eq. (1) becomes

F ¼ kq1q2=r
2 ð2Þ

Next, the value of k above will depend upon the units that we choose to measure force,
distance, and charge. Since we’ll use the more practical engineering meter-kilogram-second
(mks) system,* force will be measured in newtons, distance in meters, and charge in
coulombs.

For these units we find that k is approximately equal to 9 � 109, and thus, for mks
units, eq. (2) becomes

F ¼ ð9 � 109Þq1q2

r2
ð3Þ

where F ¼ force in newtons, the qs are electric charges in coulombs, r ¼ distance in meters.
Let us set q1 ¼ q2 ¼ 1, and r ¼ 1, in the above; doing this gives a force F of

F ¼ 9 � 109 newtons ¼ 1million tons; approx:

Thus, in Fig. 11, if q1 were a positive charge of 1 coulomb and q2 a negative charge of
1 coulomb, and r ¼ 1meter, the force of attraction between the two charges would be
approximately 1 million tons. From this, it’s apparent that it’s impossible, in the real
world, to have large separated concentrations of electric charges. Here we emphasize
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the word ‘‘separated.’’ An ordinary copper penny, for example, contains about 130,000
coulombs of positive charge and 130,000 coulombs of negative charge, but the charges are
not separated but are ‘‘mixed together’’ uniformly throughout the penny. Hence the penny
is, overall, an electrically neutral body, with zero net force acting upon it.

Problem 1
Calculate the force of attraction between two unlike charges of 6 microcoulombs*
each, separated a distance of one-fourth of a meter in air. Answer in pounds.

1.3 Electric Field Strength
In section 1.2 we pointed out that an ‘‘electric field of force’’ always exists in the three-
dimensional space surrounding an electric charge or group of charges. If the charges are at
rest they are called ‘‘electrostatic charges’’ and the fields produced by such charges are
called ‘‘electrostatic fields.’’

Electrostatic fields are represented graphically by imaginary ‘‘lines of electric force’’ or
‘‘field lines.’’ A field line is any path, in the field, along which a small positive ‘‘test charge’’
would naturally be propelled if it were free to move in the field.

The simplest configuration of ‘‘field lines’’ exists in the space around a single isolated
charge, such as around a positive charge þq, as illustrated in Fig. 13. In the figure, the
charge þq is assumed to be present on a small spherical surface. Figure 13 is thus a cross-
sectional view in the three-dimensional space including the central charge þq.

Also shown in Fig. 13 is a very small positive test charge, as mentioned above, and
denoted by ‘‘q0’’ (q sub zero) in the figure. In this particular case the test charge q0 would
experience a force of repulsion away from the central positive charge þq, and therefore the
‘‘direction arrowheads’’ on the field lines point outward, as shown.

* See note 3 in Appendix.
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In dealing with electrostatic fields, the small test charge q0 is understood to always be a
positive charge. Thus, if the central charge in Fig. 13 were a negative charge �q, the
positive test charge q0 would experience a force of attraction instead of repulsion, and
the arrowheads on the field lines would point inward toward the central charge �q, and
would end or ‘‘terminate’’ on the spherical surface in Fig. 13.

In connection with the last statement we have the following point to make. Since the
direction of the field lines is defined as the direction in which a positive test charge would
move, or tend to move, it follows that electrostatic lines of force go from positively charged
bodies to negatively charged bodies; that is, electrostatic lines of force originate on positively
charged bodies and terminate on negatively charged bodies. In Fig. 13 we cannot, of course,
show the outward-going lines as terminating on a negative charge, because Fig. 13 illustrates
the hypothetical case of a single isolated charge a very great distance fromanyother charge or
charges. This fact, of the lines originating on positive surfaces and terminating on negative
surfaces, will be evident later, when we sketch the field of closely spaced charges.

Next, the STRENGTH of an electric field at any point in the field is defined in terms of
the force that a very small positive test charge would experience if placed at the point in
question. Since force is a vector quantity* field strength is also a vector quantity.

To be specific, the ELECTRIC FIELD STRENGTH at any point is denoted by �EE and
is defined as the ratio of the force in newtons to the charge in coulombs carried by a very
small positive test charge placed at the point in question. Thus the concise definition of
‘‘electric field strength’’ at a point is

�EE ¼ �FF=q0 ð4Þ
where �FF is the force in newtons experienced by a very small positive test charge of q0

coulombs when placed at the point. We can imagine that the test charge q0 is allowed to
become vanishingly small, so that its presence in the field does not in any way affect the
charge distribution on the bodies that are producing the field.

Equation (4) shows that electric field strength is measured in newtons per coulomb
which, as we’ll show in the next section, is the same as ‘‘volts per meter.’’

With the preceding in mind, the equation for the field strength at any point in the
electric field of an isolated charge q (Fig. 13) can be found as follows. First, in eq. (3) set
q1 ¼ q, q2 ¼ q0, k ¼ 9 � 109 and let us define that �uu is a unit vector (a vector of magnitude
1, having the same direction as the force vector �FF that acts on q0). Taking these steps, eq.
(3) becomes, for Fig. 13,

�FF ¼ k�uuqq0=r
2 ð5Þ

From eq. (4), however, �FF ¼ q0
�EE, and thus, substituting q0

�EE in place of �FF in eq. (5), we
have that the field strength at any point in the field of an isolated charge of q coulombs
(Fig. 13) is equal to

�EE ¼ k�uuq=r2 ð6Þ
where k ¼ 9 � 109.

If more than one charge acts on the test charge q0 we then have that

�EE ¼ �EE1 þ �EE2 þ �EE3 þ � � � ð7Þ
showing that the total resultant field strength �EE at a point is the vector sum of the field
strengths due to the individual charges, the effect of each charge being considered by itself
as if the others were absent.{

CHAPTER 1 Electric Charge and Electric Field 11

* See note 4 in Appendix.

{ This illustrates the very important ‘‘principle of superposition.’’



It should be mentioned that in pictorial sketches of electric fields, the relative strength
of field is indicated by the density of the lines of force. Thus, in regions of high values of
field strength the lines are drawn closer together, while in regions of lower strength they are
drawn farther apart. In Fig. 13, for example, the closer we get to the charge q, the greater is
the field strength, a fact which is shown by the increased density of the lines as we move
closer to the charge q. This is also illustrated in Fig. 14, which is a cross-sectional
diagram of the field in the 3-dimensional space surrounding two charges equal in mag-
nitude but opposite in sign.

Problem 2
On the x; y coordinate plane (letting x and y be distance in meters) it is given that a
positive charge of 3microcoulombs is concentrated at the origin, and a negative
charge of �2 microcoulombs is concentrated on the x axis at the point x ¼ 24.
Find the magnitude and direction of the field strength, relative to the x axis, at
the point (15, 6). Air or vacuum dielectric assumed.*

(Answer: 228.917=�11:8278 newtons/coulomb)

1.4 Potential Difference; the Volt
In section 1.3 we found that the electrostatic field is a vector field, the ‘‘field strength’’ at
any point in the field being denoted by �EE, where the vector �EE is measured in ‘‘newtons per
coulomb’’ (newtons/coulomb). Note that ‘‘field strength’’ is a measurement at any parti-
cular POINT in the electric field.

* If the reader is not familiar with trigonometry, just postpone doing this problem until pp. 76–85 and eq. (110) in

Chap. 5 have been read.
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The same electric field can also be expressed in terms of a scalar quantity called
POTENTIAL DIFFERENCE, which is a measurement involving any TWO POINTS
of interest in the field.

The measurement of ‘‘potential difference’’ is based upon the fact that energy must be
expended, that is, WORK must be done in order to move a positive charge q against an
electric field. After such movement ceases, and the charge q has been pushed to a new
point in the field, we find that all the work done is now stored in the electric field, and we
might say that the charge q possesses ‘‘potential energy of position.’’ The situation is very
much like raising, say, a 10-pound iron ball up to a point p against the force of gravity. At
the end of the movement, all the work done is stored in the gravitational field of the earth–
ball system, or, if you wish, in the ball as ‘‘potential energy of position.’’

In this regard, it should be noted that the electrostatic field (and also the gravitational
field) is a ‘‘friction-free’’ system. That is energy (work) can be stored in the field, but no
losses due to friction occur in moving a charge q through the field. Thus the work done in
moving a charge q from a point p1 to a point p2 is the same regardless of the path taken in
going from p1 to p2.

With the foregoing in mind, we now define that the potential difference between two
given points in an electrostatic field is equal to the work per unit charge required to move
positive charge from the one point to the other point against the field.

Let us denote potential difference by V . In the mks system, work is measured in joules
and charge is measured in coulombs. Hence in the mks system potential difference is the
ratio of joules to coulombs which is given the special name ‘‘volts,’’ in honor of the early
Italian physicist Alessandro Volta.

Thus, if W is the work in joules required to move q coulombs of charge between two
points in an electric field, then, by definition, the potential difference between the two
points is

pot: diff : ¼ V ¼ W

q
¼ joules per coulomb ¼ volts ð8Þ

Since work and charge are both scalar quantities* it follows that potential difference,
W=q, is also a scalar quantity.

Thus we now have two ways to specify the measurement of an electrostatic field. The
first way is in terms of a vector quantity �EE, the ‘‘field strength’’ at any particular point in
the field. The second way is in terms of the scalar quantity V , the ‘‘potential difference’’
between any two points of interest in the field. It is potential difference that we will deal
with most often in our work.

Let us close this section with a few more words about ‘‘field strength,’’ the magnitude of
which is denoted by E. From section 1.3 we recall that E is basically measured in newtons
per coulomb. Also in section 1.3 we mentioned that ‘‘newtons per coulomb’’ is the same
as ‘‘volts per meter.’’ To show that this is true, manipulate the ‘‘units’’ like algebraic
quantities, as follows, in which we recall that work (joules) ¼ force times distance (newtons
times meters),

E ¼ newtons

coulombs
¼ newtons � meters

coulombs � meters
¼ joules

coulombs

� �
1

meters
¼ volts

meters

¼ volts per meter

* This is because no sense of direction is involved in finding the sum of different amounts of work (energy); for

instance, 10 joules þ 20 joules ¼ 30 joules. Electric charge is likewise a scalar quantity.
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Thus, if we wish, field strength can also be expressed in ‘‘volts per meter,’’ which is
dimensionally (that is, in terms of fundamental units) equal to ‘‘newtons per coulomb.’’

Problem 3
The product ‘‘qV ’’ is in what units?

Problem 4
What is the potential difference between two points if 2.65 joules of work is done in
moving 0.0078 coulombs of charge between the two points?

Problem 5
Let �EEa and �EEb denote the field strength at two different points, a and b, in an electric
field. If the values of �EEa and �EEb are given, would this information alone be sufficient
to allow the calculation of the potential difference V between the two points?
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Electric Current.
Ohm’s Law. Basic Circuit

Configurations

2.1 Electric Current
Electric charge in motion is called ‘‘electric current’’; that is, ELECTRIC CURRENT
is simply ELECTRIC CHARGE IN MOTION. The concept of electric current is impor-
tant because it is through the medium of electric current that practical use is made of the
phenomenon of electricity.

Let us look again at Figs. 5 and 6 in Chap. 1. In Fig. 6, when the switch is closed the
excess charge which flows to the earth through the copper wire constitutes an electric
charge flowing in the wire. This ‘‘electric current’’ continues to flow until body A becomes
electrically neutral, at which time the current ceases.

Electric current is measured in terms of the RATE OF FLOW of electric charge; thus,
since charge is measured in coulombs and time is measured in seconds, we have the definition

Electric current is measured in coulombs per second which is given the special
name amperes.

Electric current is represented by the letter i.

i ¼ current in AMPERES ¼ COULOMBS PER SECOND

The ampere, named in honor of the French physicist Ampère, is pronounced ‘‘AM
peer’’ in English-speaking countries.

Let us now consider a cross section of a copper wire, or other conductor, through
which electric current is flowing, as in Fig. 15. Let the current be flowing from left to right,
as suggested by the lines with the arrowheads.

15
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If the wire in Fig. 15 is carrying a current of one ampere it means that electric charge is
flowing across the area A at the rate of one coulomb per second. That is, one coulomb of
charge passes through the area A every second.

Actually, the above statement is basically for the case where a STEADY, constant
current of 1 ampere is flowing in the wire. If the current is not steady, but changes with
time, that is, changes from instant to instant, then we must use the ‘‘delta’’ notation, thus,

�q

�t
¼ i ð9Þ

In the above, �q denotes a small amount of charge that passes through area A in a
small interval of time �t. Thus eq. (9) gives the average current over an interval of time
�t; the smaller �t is, the smaller is �q, and the closer eq. (9) comes to being ‘‘instanta-
neous’’ or ‘‘exact’’ current at a time t.*

Let us now continue, with a discussion of some details concerning electric charge and
current.

Imagine that you are viewing a large cone-shaped pile of sand from a distance of say
several hundred feet. Viewed from such a distance, the pile of sand appears to be a
continuous substance, because you are not close enough to see the individual grains or
particles that sand is actually made of.

Of course, as you approach the pile, and come right up to it, you begin to see that sand
is not a continuous substance, but is actually composed of discrete (separate) particles or
grains.

The same principle of ‘‘graininess’’ applies to all matter, be it gaseous, liquid, or solid,
except that the ‘‘grains’’ are extremely small particles called atoms and molecules.

For instance, the water we see in a cup is not a ‘‘continuous’’ substance, but is com-
posed of a vast number of tiny ‘‘molecules’’ of water. A single molecule of water is far too
small to be seen under the most powerful microscope, but their existence has been proved
by indirect means. We know that a single drop of water is composed of billions upon
billions of individual water molecules. Water, as you know, is a compound of hydrogen
and oxygen, each molecule of water being composed of two atoms of hydrogen and one
atom of oxygen, the atoms being bound together by electrostatic forces.

All atoms and molecules are themselves composed of electrons, protons, and neutrons,
as follows.

Electrons are tiny, basic units of negative electric charge; ALL electrons carry the same
amount of negative charge which is often denoted by ‘‘e’’ where, approximately,

e ¼ ð1:602Þ10�19 coulomb of negative charge

Protons are the tiny, basic units of positive electric charge; ALL protons carry the same
amount of positive charge, which has the same magnitude as that of the electron but of
opposite sign. The proton, however, has considerably more mass than the electron, the
mass of the proton being about 1845 times that of the electron.
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The neutron is also one of the basic building blocks of which atoms are composed.
Neutrons have the same mass as protons, but are electrically neutral particles.

Since electrons and protons carry the same magnitude of charge, but of opposite sign, it
follows that an electrically neutral atom or molecule has equal numbers of electrons and
protons.

We thus conceive that atoms of all materials are composed of electrons, protons, and
neutrons. The relatively massive protons and neutrons are concentrated in the form of a
‘‘nucleus’’ in the center of the atom, while the electrons revolve or vibrate in different
orbits or ‘‘energy levels’’ around the nucleus.

In the atoms of some substances, the electrons in the outer orbits, farther from the
nucleus, are only loosely bound to the nucleus, and such atoms can readily gain or lose
electrons. If a normally neutral atom or molecule has gained or lost electrons, it is said to
be an ion (‘‘eye on’’), being a ‘‘positive ion’’ if it has lost electrons and a ‘‘negative ion’’ if it
has gained electrons.

It is not, however, our intention or need to go into details of atomic structure here. All
we wish to do, right now, is to point out that what we call ‘‘electric current’’ can be a flow
of electrons, ions, or a combination of electrons and ions, depending on the substance we’re
dealing with.

In the case of metals, the electric current is largely a flow of ‘‘free electrons’’ that have
become detached from the atoms of the metal. Thus, good conductors, such as silver and
copper, are materials in which the electrons are easily detached from the atoms of the
substance.

On the other hand, a poor conductor (good insulator) is a substance, such as rubber or
porcelain, in which the electrons are tightly bound to the atoms and molecules and hence
are not available for current flow.

In the cases of liquids and gases, the current flow is mainly by means of ions, which can
be either positive or negative, or a combination of ions and electrons.

The foregoing naturally brings up the question of the direction in which electric current
‘‘actually’’ flows in a conductor. To answer that question we begin with a discussion of
how we can detect the passage of electric current through a conductor.

First, as you would expect, it requires an expenditure of energy, that is, work has to be
done to force the passage of electric charge through a conductor. This energy must, of
course, come from some kind of source capable of doing work.

You might ask, ‘‘What happens to the work that is supplied to force electric charge to
flow in a conductor?’’ The answer is that it may be transformed into mechanical energy (by
means of a motor), or into radiant energy (as from a light bulb), or into chemical energy (in
the formation of a battery), and so on, but at least a portion of the work will always be
transformed into heat energy in the conductor, and this will of course cause the tempera-
ture of the conductor to rise. The point to be made here is simply that one way of detecting
the passage of electric current through a conductor is to sense any rise in temperature of
the conductor.

In addition to the temperature effect, we also find that electric current always estab-
lishes a magnetic field around any conductor through which it is flowing. This is a fact of
very great importance, and one we will investigate in detail later on. Right now, however,
we merely wish to point out that another way of detecting the passage of electric current
through a conductor is to detect the presence of a magnetic field around the conductor.

Now consider the following. Imagine we have a long piece of rubber tubing, and we are
told that the tube contains a conductor of electricity throughout its length. However, we
cannot see inside the tube, and so we do not know whether it contains a solid metallic
conductor (such as a copper wire), or some kind of a liquid or paste conductor (a dilute
solution of any kind of acid, for instance).
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If the tube contains a metal conductor, like a copper wire, the current will consist of a
flow of electrons; but if the tube contains, instead, a liquid conductor of some type the
current may consist of a flow of positive ions.

Now suppose we detect that the tube is getting hot, and also that a compass needle
shows the presence of a magnetic field around the tube. These external effects tell us that
an electric current is flowing in the conductor inside the tube. But we cannot, from these
two external tests, tell whether the current is a flow of electrons or a flow of positive ions.

Since, in a given situation, electrons and positive ions flow in opposite directions, it
follows that these two external tests (temperature and compass needle) will not tell us
what the actual direction of current flow is. This means that, in the mathematical analysis
of electric networks, it will not be necessary to take into account whether a given current is
a flow of positive charge or negative charge, because the useful external effects are the
same in either case. Hence, for the purposes of analysis, we can just as well assume that all
currents consist of a flow of positive charge; therefore, for the sake of simplicity it will
hereafter be assumed in this book that all currents consist of a flow of POSITIVE charge.*

Problem 6
1 coulomb of negative charge contains how many electrons?

Problem 7
If 9 million electrons cross area A in Fig. 15 in 0.1 microsecond, what is the average
current in amperes during that time?

2.2 Electromotive Force
We must keep in mind that energy has to be expended, that is, WORK must be done, to
force the carriers of electric charge to move in a conductor. With this in mind, we begin
this section with a simple but very basic discussion, starting with Fig. 16.

In Fig. 16 we have two metal plates, the ‘‘top’’ plate being positively charged and the
‘‘bottom’’ plate negatively charged, as shown. A small positive test charge, if placed
between the two plates, would experience a downward force, showing that an electric
field exists in the region between the two plates.

We must remember that work had to be done to separate the positive and negative
charges, and that the work, so done, is now stored as potential energy in the electric field

CHAPTER 2 Electric Current. Ohm’s Law18

* Sometimes referred to as the flow of ‘‘conventional current.’’

Fig. 16



between the plates. A certain potential difference, expressed in terms of V volts, exists
between the two plates.

Let us now close the switch in Fig. 16. When this is done, there will be a brief,
momentary flow of charge through the light bulb, the flow continuing until both plates
are electrically neutral—that is, until the potential difference between them is reduced to
zero.

In this action the light bulb will emit a brief flash of light, showing that the energy
stored in the electric field is being converted into heat energy and radiant energy in the
form of visible light.

Let us now suppose, in Fig. 16, that we are not satisfied with just a brief flash of light,
but wish the light to burn continuously and uniformly.

To do this, we must maintain a constant rate of flow of charge of ‘‘q’’ coulombs per
second through the bulb; that is, we must maintain a constant current of ‘‘i’’ amperes in the
bulb. This, however, can be done only if we CONTINUOUSLY SUPPLY THE WORK
REQUIRED TO MOVE THE POSITIVE CHARGES FROM THE NEGATIVE
PLATE TO THE POSITIVE PLATE, against the internal field that exists between the
positive and negative plates. This is illustrated in Fig. 17, in which just a ‘‘side view’’ of the
positive and negative plates is shown.

In Fig. 17, the symbol � represents a few of the vast number of basic positive charges
that, circulating around the circuit, constitute the current of i amperes. In the figure the
‘‘circuit’’ consists of the positive and negative metal plates, the electric field between them,
the switch, the light bulb, and the connecting wires.

The situation is similar to that in which a mechanical pump forces water to flow
through pipes connected to some kind of ‘‘water motor,’’ which is a device having a
rotor capable of converting the kinetic energy of the moving water into mechanical energy;
such a ‘‘water circuit’’ is shown in Fig. 18, in which the water is being pumped around in
the clockwise sense.

In the ‘‘water circuit’’ of Fig. 18, it should be understood that the pump, pipes, and
motor are completely full of water; that is, the water is ‘‘continuous’’ at all points in the
circuit. It then follows that ‘‘p’’ gallons of water flows through every cross-section of the
circuit every second. Thus, if p ¼ 2, this means that, all around the circuit, water is simul-
taneously flowing across all cross-sections (such as at a, b, and c in the figure, for example)
at the rate of 2 gallons per second. This simply means that the rate of flow of water is the
same all around the circuit.

Let us now return to Fig. 17. It should first be noted that (like the flow of water in Fig.
18) the same amount of charge, q coulombs/second, flows through all cross-sections in the
circuit. Hence, like the rate of flow of water in Fig. 18, it follows that at any given instant
the current ‘‘i’’ is the same all around the circuit.

CHAPTER 2 Electric Current. Ohm’s Law 19

Fig. 17



Next, in Fig. 17, let us consider the charges � as they move from the negative plate
‘‘upward’’ toward the positive plate. Notice that the charges, while they are between the
two plates, experience a force of repulsion due to the positive plate and a force of attraction
due to the negative plate. Thus the charges between the plates experience a force of
repulsion/attraction, due to the field between the plates, that tends to force them ‘‘down-
ward’’ toward the negative plate. In order to overcome this force, and move the charges
‘‘upward’’ against the field toward the positive plate, energy must be expended, that is,
WORK must be done on the charges. Only if this is done will it be possible to maintain the
useful current i shown in Fig. 17, flowing from the positive plate, through the light bulb, to
the negative plate.

Any device capable of exerting force on electric charges, and thus being able to do work
on such charges and move them against an electric field, is called an ‘‘electric pump’’ or
electric generator. An electric generator exerts what is called electromotive force (abbre-
viated ‘‘emf’’) on the charges it is ‘‘pushing through it,’’ and is thus said to be a ‘‘seat’’ or
‘‘source’’ of ‘‘electromotive force’’ (emf).

It should be understood, of course, that a source of emf (an electric generator) does not
‘‘create’’ charge; it simply supplies the energy necessary to move the charges through it. A
source of emf is thus like a water pump; the pump does not create water, but simply
imparts kinetic energy to the water it is forcing through it.

There are two principal, practical types of electric generator. The first type is the
battery, which depends for its operation upon the conversion of chemical energy
into electrical energy. The second type of generator depends upon the phenomenon of
‘‘electromagnetic induction,’’ in which mechanical energy is converted into electrical
energy. We will make a detailed study of electromagnetic induction later on, but for
the time being we’ll assume our sources of emf to be batteries. This will have no effect
on basic circuit theory, because that is independent of the manner in which the emf’s are
generated.

As already mentioned, a ‘‘battery’’ is a source of electromotive force in which chemical
energy can be converted into electrical energy.

All batteries consist of individual ‘‘cells,’’ in which each cell consists of a ‘‘positive
electrode’’ and a ‘‘negative electrode,’’ the two electrodes (also called ‘‘poles’’) being
separated by a chemical compound called the ‘‘electrolyte,’’ which can be in the form of
a liquid or a paste.

For instance, the common ‘‘dry cell’’ consists of carbon and zinc electrodes, or poles,
separated by a paste-type of electrolyte made of sawdust saturated with a solution of
ammonium chloride. The carbon electrode is the ‘‘positive pole’’ and the zinc electrode
is the ‘‘negative pole.’’ The potential difference between the two poles is approximately
1.5 volts for a cell in good condition, when delivering current to an external load.
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Basically, in a battery, the electric charges in the atoms and molecules have potential
energy of position, due to certain electrostatic binding forces present. When the battery
delivers current to an external load, chemical reactions occur in the battery in which the
atoms and molecules are rearranged, and in the rearrangement the potential energy of the
charges is reduced, being transformed into the kinetic energy required to move the charges
against the internal field of the battery.

There are, as you may know, a number of different types of cell, each type having
certain advantages and disadvantages. All cells, however, produce a relatively low value of
potential difference between their electrodes, ranging in value from 1.2 to 2.2 volts,
approximately. In order to obtain higher potential differences, which are often required
in practical applications, it is generally necessary to connect two or more cells together to
form a battery of cells, as illustrated in Figs. 19 and 20.

Figure 19 is the symbol used, when drawing ‘‘schematic’’ circuit diagrams, to indicate
the presence of a single cell. Notice that the longer horizontal line represents the positive
electrode and the shorter horizontal line represents the negative electrode.

As mentioned above, in order to provide higher potential differences it is necessary to
‘‘stack’’ or ‘‘series-connect’’ a number of cells to form a ‘‘battery.’’ This is indicated
schematically in Fig. 20, where ‘‘a’’ is the negative terminal of the battery and ‘‘b’’ is the
positive terminal; together, a and b are the positive and negative output terminals of the
battery. Note that, going from a to b through the battery, the positive electrode of each
cell connects to the negative electrode of the next cell. If ‘‘n’’ such cells are thus series-
connected to form a battery, the potential difference between the battery output terminals
will be n times the potential difference of a single cell. In Fig. 20, V is the potential
difference between the output terminals a and b. Since potential difference is measured
in volts, it is customary to call V the ‘‘battery voltage.’’

2.3 Electrical Resistance. Ohm’s Law. Power
Let us now return to Fig. 17 and replace the two charged plates with a battery of V volts.
Since the battery is a source of constant emf, it will be able to maintain a constant current
of I amperes* flowing in the circuit, as in Fig. 21. (For reasons discussed in section 2.1, we
will always assume current to consist of a flow of positive charges which flow out of the
positive terminal of the battery, for the same reason that they flow out of the positive plate
in Fig. 17.)
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* Both ‘‘i’’ and ‘‘I ’’ are used to represent electric current. i generally designates current that changes from instant to

instant, while I designates a constant value of current. Thus in Figs. 21 and 22 the current would have a constant

value of I amperes for given, fixed values of V and R.



In Fig. 21, the tungsten filament of the light bulb offers a considerable amount of
opposition, or what is called ELECTRICAL RESISTANCE, to the passage of electric
current through it. Because of the high resistance of the filament, the battery voltage V
must be relatively high in order to produce the amount of current I required to heat the
filament to incandescence. On the other hand, the copper wires used to connect the battery
to the bulb have very little resistance; as a matter of fact, in almost all cases we can
disregard the very small resistance of the wires used to connect the various parts of the
circuit together, and assume that, for practical purposes, the connecting wires have zero
resistance to the passage of current through them. We will always assume this to be the
case, unless otherwise stated.

The amount of electrical resistance is denoted by R, and in electrical diagrams the
presence of resistance is represented by the symbol . Using this symbol, we have
redrawn Fig. 21 as Fig. 22, in which R denotes the ‘‘electrical resistance’’ of the tungsten
filament in the light bulb.

We have already learned that substances that offer little resistance to the passage of cur-
rent are called ‘‘conductors,’’ while those that offer great resistance are called ‘‘insulators.’’

There are, of course, many grades of conductors (and insulators). Take, for example,
two metals such as copper and tungsten. Both are classified as ‘‘conductors,’’ but a copper
wire is a better conductor than a tungsten wire of the same length and diameter; that is, the
copper wire offers less resistance to the flow of current than does the tungsten wire.

Of course, a number of things determine which materials will be used as a conductor in
a given case. In the design of an electric toaster, for instance, the heating element might
consist of wire made of ‘‘Nichrome,’’ which is a metal alloy having about 60 times the
resistance of the same amount of copper wire. On the other hand, the ‘‘line cord’’ that
connects the toaster to the wall plug will make use of low-resistance copper wire. (We
should also remember that it will be necessary to make use of different insulating materials,
such as mica, plastic, and rubber, in the construction of the toaster.)

The first comprehensive investigation into the nature and measurement of electrical
resistance was made by the German physicist Ohm (as in ‘‘home’’) around the year 1826.
After a lengthy series of experiments Ohm was able to report that

The current in a conductor is directly proportional to the potential difference
between the terminals of the conductor, and inversely proportional to the
resistance of the conductor.

The above constitutes what is called OHM’S LAW. If we let

V ¼ potential difference (emf) applied to the conductor,

I ¼ current in the conductor,

R ¼ resistance of the conductor,
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then the algebraic form of Ohm’s law becomes

I ¼ kV

R
ð10Þ

in which ‘‘k’’ is a constant of proportionality. Equation (10) says that current I is directly
proportional to potential difference V and inversely proportional to resistance R. That is, the
greater V the greater is I , and the greater R the less is I .

The unit of resistance is called the ohm; we define that a conductor has 1 ohm of
resistance if 1 ampere of current flows when a potential difference of 1 volt is applied to
the conductor. Thus, if V ¼ 1 and R ¼ 1, then by definition I ¼ 1, and eq. (10) becomes,
1 ¼ kð1Þ=ð1Þ, which can be true only if k ¼ 1. Therefore, if we express V in volts, I in
amperes, and R in ohms, then eq. (10) becomes the basic OHM’S LAW

I ¼ V

R
ð11Þ

which states that amperes is equal to volts divided by ohms. It follows that Ohm’s law can
also be written in either of the forms

R ¼ V=I ð12Þ
and

V ¼ RI ð13Þ
Equation (12) says that ohms is equal to volts divided by amperes, while eq. (13) makes

the equivalent statement that volts equals ohms times amperes. Equations (11), (12),
and (13) are basic to electrical and electronic engineering, and should be committed to
memory.

Now let’s consider the POWER developed by the battery in Fig. 22. To do this, let us
begin with a brief review of some basic concepts, as follows.

First, we have the idea of ‘‘energy,’’ which is measured in terms of capacity to do work,
which is measured in joules. In mechanics, when a force of F newtons acts through a
distance of L meters, the agency supplying the force does an amount of work, W , equal to
FL joules, that is, W ¼ FL.

It is important, now, to notice that there is no time requirement in the definition
W ¼ FL. Thus, suppose in a certain case that ‘‘FL joules of work’’ must be done. Such
a simple requirement is satisfied regardless of whether the work is done in 1 minute or in
10 minutes.

Actually, however, in plain language we know that a ‘‘more powerful’’ source of energy
is required to do the work in 1minute than in 10 minutes. For example, a small boy might,
with the aid of a system of pulleys, raise a 100-pound weight 1 foot off the floor in, say,
60 seconds. An adult, however, might, without having to use pulleys, be able to do the
same thing in, say, 6 seconds. The same amount of work (100 foot-pounds) is done in both
cases, but the adult, while working, is delivering energy to the system 10 times as fast as the
boy is capable of doing.

Thus, the time rate of doing work is important in practical engineering. In the
mks system ‘‘time rate of doing work’’ is expressed in joules per second, which is given
the special name watts, in honor of the early engineer James Watt. Thus we have the
definition

time rate of doing work ¼ joules per second ¼ watts ð14Þ
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Now let ‘‘P’’ denote the power developed by the battery in Fig. 22. We wish to show
that the power, P watts, is equal to the battery voltage times the current I; that is, we wish
to show that P ¼ VI .

To do this, we make use of the basic definitions, volts ¼ joules per coulomb and
current ¼ coulombs per second, and then manipulate the units as if they were ordinary
algebraic quantities, thus

VI ¼ joules

coulombs

coulombs

seconds
¼ joules

seconds
¼ joules per second ¼ watts; thus;

P ¼ VI ð15Þ

which says that the power in watts produced by a battery of V volts when delivering a
current of I amperes is equal to VI ; that is, power in watts is equal to volts times amperes.

In Fig. 22, the power VI , produced by the battery, is delivered, by means of connecting
copper wires, to the ‘‘load resistance’’ R. If R is, for example, the filament of a light bulb,
then the power supplied to R will be converted into heat energy and into radiant energy in
the form of visible light.

Or, if R is an electric motor, the majority of the battery output will, hopefully, be
converted into useful mechanical energy, with the relatively small balance being lost in the
form of heat energy.

The power output of the battery, given by eq. (15), is of course the same as the power
delivered to and ‘‘consumed by’’ the load resistance R. We can therefore use eqs. (11) and
(13) to write equations for the power delivered to a resistance of R ohms, as follows.

First, using eq. (11), eq. (15) becomes P ¼ VðV=RÞ, so that

P ¼ V2

R
ð16Þ

Or, using eq. (13), eq. (15) becomes P ¼ ðRIÞI , so that

P ¼ I2R ð17Þ
Equations (11) through (17) should all be committed to memory, because they are of

such fundamental importance. For our convenience, they are summarized below, where V
is potential difference in volts, I is current in amperes, R is resistance in ohms, and power is
in watts.

OHM’S LAW: V ¼ RI I ¼ V=R R ¼ V=I

POWER: P ¼ VI P ¼ I2R P ¼ V2=R

Problem 8
In Fig. 22, if V ¼ 48 volts and R ¼ 6 ohms, what current will flow?

Problem 9
In Problem 8, find the power output of the battery using eqs. (15), (16), and (17).

Problem 10
If the power input to a 75-ohm resistance is known to be 18watts, what current is
flowing?
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2.4 Some Notes on Temperature Effects
In devices such as electric heaters, irons, and toasters, the basic purpose is simply to develop
a required amount of heat in the resistance wire used in such devices.

In most applications, however, especially in electronics, resistance is not used in a
circuit to develop heat, but is used for other purposes. The heat developed in resistance
is, therefore, in most applications an undesired effect. The principal reasons why this is true
are as follows.

1. The resistance of a given length of a given type of wire depends, to some extent,
upon the temperature of the wire. Thus, as the temperature of a wire increases, due
to increased heat input, its resistance also tends to increase, and this is generally an
undesirable effect.

2. Excessive heat generation adversely affects the operation of other components in a
circuit, and tends to cause physical deterioration of the resistor* itself.

Let us discuss items (1) and (2) in more detail. To begin, it should be pointed out that
the four principal factors that determine the resistance of a wire conductor are

(a) the length L of the wire,

(b) the cross-sectional area A of the wire,

(c) the material of which the wire is made,

(d) the temperature T of the wire.

Let us deal with the first three items first. Experiment proves that the resistance R of a
wire conductor is directly proportional to the length L and inversely proportional to the
cross-sectional area A, a fact we show mathematically by writing

R ¼ �
L

A
ð18Þ

where R is the resistance in ohms, L is the length in meters, A is the cross-sectional area in
square meters, and where the proportional constant � (the Greek letter ‘‘rho’’) is called the
resistivity (‘‘ree sis TIV ity’’), whose value depends upon the material the wire is made of
and the temperature T of the wire. Note that, from eq. (18), we have

� ¼ RA

L
¼ ðohmsÞðmetersÞ2

ðmetersÞ ¼ ðohmsÞðmetersÞ

thus showing that resistivity � has the dimensions ‘‘ohms times meters,’’ or ‘‘ohm � m,’’ as
it is usually written.

As mentioned above, the value of � depends on the kind of metal the wire is made of,
and the temperature T of the wire. It is found that the resistivity of metals increases
linearly with temperature over a wide range of temperature, and this fact is expressed in
the form

� ¼ �0½1 þ �0ðT � T0Þ� ð19Þ
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where

� ¼ resistivity of the given metal at any temperature T8C,

�0 ¼ resistivity of the given metal at the standard reference temperature of
T0 ¼ 208C,

�0 ¼ the ‘‘temperature coefficient of resistance’’ of the metal at 208C.

The values of �0 and �0 (‘‘alpha sub zero’’) have been found experimentally, a short
table of values being given below.

Let us next consider the power rating of a resistor, using, as a convenient example, a
100-ohm resistor.

Suppose, for example, that we are dealing with an application in which the resistor
must carry a current of, say, 0.8 amperes. Then, by eq. (17), the power input to the resistor
will be P ¼ I2R ¼ 64watts, which is 64 joules of work per second. Since 1 calorie
¼ 4.186 joules,* we have 64=4:186 ¼ 15:289 calories of heat will be developed in the resistor
each second. We thus have a problem in heat transfer, because if the heat generated in the
resistor is not transferred away fast enough the temperature of the resistor will continue to
rise until it is destroyed.

The ability of a resistor to dissipate heat depends greatly upon the amount of exposed
surface area the resistor has. Thus, resistors that must dissipate relatively large amounts of
heat must be made physically larger than resistors that must dissipate only a relatively
small amount of heat. The amount of heat that a given resistor can safely dissipate also
depends, of course, on the temperature of the surrounding (ambient) air, and whether the
flow of air is by natural convection or is driven by a fan or blower.

Resistors can be purchased in values of resistance from less than 1 ohm to several
megohms (‘‘1 megohm’’ being 1 million ohms), and in power rating from 1

4 watt to several
hundred watts.

When specifying the ‘‘power rating’’ of a resistor, the manufacturer will also state the
maximum temperature of ambient air for which the rating is valid. For example, a man-
ufacturer might state that the power rating of a certain resistor is ‘‘5 watts at 308C ambi-
ent,’’ and an equipment designer must keep this in mind.

Resistors that must dissipate more than 2 or 3watts are generally of the wire-wound
type, consisting of resistance wire, of low temperature coefficient, wound on a ceramic tube.
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�0 (ohm � m) �0 (per 8C)

Silver (1.59)10�8 (3.75)10�3

Copper (1.75)10�8 (3.80)10�3

Aluminum (2.83)10�8 (4.03)10�3

Tungsten (5.50)10�8 (4.70)10�3

Constantan (49.0)10�8 (0.01)10�3

Note 1: ‘‘Constantan’’ is an alloy of 45% nickel and 55%

copper having, as the table shows, a high value of resistivity

and a very low value of temperature coefficient.

Note 2: In some wire tables a unit of length called the ‘‘mil’’ is

used, where 1 mil¼ 0.001 inch. A ‘‘circular mil’’ is defined as the

area of a circle 1 mil in diameter.

* See note 2 in Appendix.



Lower wattage resistors are most usually of the ‘‘carbon’’ type, in which the resistance is
formed from a compressed mixture of carbon with a suitable binder, and then encapsu-
lated in a plastic case. In order to better visualize their construction and appearance,
several resistors are sketched below in approximately their actual physical size.

Above is an example of appearance of a 50-ohm, 100-watt, wire-wound resistor, where
the symbol ‘‘�’’ is the capital ‘‘omega’’ and is read ‘‘ohms.’’ In the above type, the
resistance wire is wound on the ceramic tube, after which the unit is enameled and baked.

Problem 11
If a 25-ohm resistor is carrying a current of 1.86 amperes, how many calories of heat
must it be able to dissipate every second?

Problem 12
Noting that 8C ¼ ð5=9Þð8F � 32Þ, calculate the resistance of 450 feet of round alu-
minum wire of 1/2 inch diameter at 868F. (Answer: 0.03188 ohms)

Problem 13
A certain length of copper wire is found to have 2.625 ohms of resistance at 308C.
What will be its resistance at 408C? (Answer: 2.721 ohms)

Problem 14
The heating element of a heater is to be made to have 35 ohms of resistance at an
operating temperature of 5658C. If Constantan resistance wire of diameter 1milli-
meter (one-thousandth of a meter) is available, how many feet should be cut from a
spool of wire at 208C? Assume L and A are independent of temperature.

(Answer: 183.056 feet)

2.5 The Series Circuit
A SERIES CIRCUIT or ‘‘series-connected circuit’’ is a circuit having JUST ONE
CURRENT PATH. Thus, Fig. 23 is an example of a ‘‘series circuit’’ in which a
battery of constant potential difference V volts, and three resistances, are all connected
‘‘in series.’’
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Since a series circuit has just one current path, it follows that all the components in
a series circuit CARRY THE SAME CURRENT I, a fact evident from inspection of
Fig. 23.

As explained in section 2.1, the current I is assumed to be a flow of positive charge, and
thus flows out of the positive terminal of the battery and around through the external
circuit, reentering the battery at the negative terminal. This is indicated by the arrows
in Fig. 23.

In a series circuit, the TOTAL resistance, RT, that the battery sees is equal to the SUM
of the individual resistances. Thus, in the particular case of Fig. 23 the battery sees a total
resistance, RT ¼ R1 þ R2 þ R3, while in the general case of ‘‘n’’ resistances connected in
series the battery sees a total resistance of

RT ¼ R1 þ R2 þ R3 þ � � � þ Rn ð20Þ

By Ohm’s law, eq. (11), it follows that the current I in a series circuit is equal to

I ¼ V

RT

¼ V

R1 þ R2 þ � � � þ Rn

ð21Þ

In the above, we’re assuming the resistances of the copper connecting wires to be
negligibly small in comparison with RT, and this will be normally true in practical circuit
work. (If such is not the case, then, in Fig. 23 for example, a fourth resistance would be
added in series in the diagram, equal to the resistance of the connecting wires; but this will
seldom be necessary.)

We have seen that a battery is a device capable of moving electric charge against the
internal electric field that exists between its positive and negative terminals. As explained
in section 2.2, a battery can do this because it is able to convert chemical energy into
electrical energy. A battery is thus referred to as a generator, and is classified as an
ACTIVE device, because it is a source of electrical energy.

Resistance, on the other hand, consumes electrical energy, removing it from the circuit
in the form of heat. Since resistance does not produce or generate electrical energy, it is a
non-active or PASSIVE type of circuit element.

A resistor, being a passive device, has no internal electric field until it is connected to a
battery. When this is done, an internal electric field appears between the terminals of the
resistor, a potential difference exists between the terminals, and current begins to flow.

The potential difference between the terminals of a resistor is called the VOLTAGE
DROP across the resistor, and, by eq. (13), is equal to the current I times the resistance R;
that is, the ‘‘voltage drop’’ across a resistance of R ohms carrying a current of I amperes is
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IR volts. Note that, from eq. (21), we have the three relationships

V ¼ IRT ð22Þ
V ¼ IðR1 þ R2 þ � � � þ RnÞ ð23Þ
V ¼ IR1 þ IR2 þ � � � þ IRn ð24Þ

where V is the battery voltage, or ‘‘applied voltage’’ as it is generally called. From inspec-
tion of eq. (24) we have the important fact that

In a series circuit, the applied voltage is equal to the sum of the voltage drops.

It should be pointed out that the voltage drop across a resistor is always from plus to
minus in the direction of the current flow, a fact illustrated in Fig. 24.

It should be noted, in Fig. 24, that the battery voltage is from minus to plus in the
direction of the current; thus the battery voltage is exactly opposite to the sum of the voltage
drops across the resistors, which corresponds, in the electric circuit, to Newton’s third
law in mechanics, that is, an applied force is always balanced by an equal and opposite
force.

Let us next consider the power relations in a series circuit. First, by eqs. (15), (16), and
(17), a battery of V volts delivers a total power output of P watts given by any of the
relationships

P ¼ VI ¼ V2=RT ¼ I2RT ð25Þ
where RT and I are given by eqs. (20) and (21). Since power is a scalar quantity, it follows
that the total power P is equal to the sum of the powers developed in the individual
resistors, that is,

P ¼ P1 þ P2 þ P3 þ � � � þ Pn ð26Þ
where the individual powers are found by applying eqs. (15), (16), and (17) to each
individual resistor, using the voltage drop associated with each resistor.

To be more specific, let Rx be the value of any one of a number of resistors in series,
such as in Figs. 23 and 24. If Vx is the voltage drop across Rx, then Px, the power input to
Rx, is

Px ¼ IVx ðby eq: ð15ÞÞ
Px ¼ V2

x=Rx ðby eq: ð16ÞÞ
Px ¼ I2Rx ðby eq: ð17ÞÞ
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Since the voltage drop across a resistor is the current times the resistance (by eq. (13)), we
have that the voltage drop across a series resistor Rx is equal to

Vx ¼ IRx

and since, from eq. (21)

I ¼ V=RT

we have that

Vx ¼ VðRx=RTÞ ð27Þ
which is the value of Vx to be used in any of the above equations for Px. RT is the sum of
all the series resistances, including Rx, and V is the applied battery voltage.

Let us now conclude this section with a discussion of several topics of importance in all
circuit work, beginning with the voltmeter and the ammeter.

As the names imply, a ‘‘voltmeter’’ is an instrument for measuring voltage and an
‘‘ammeter’’ is an instrument for measuring ‘‘amperes,’’ that is, current. It is not our
purpose, at this time, to explain the inner workings of these devices, but only to describe
how they are connected in a circuit to measure voltage or current.

A voltmeter is used to measure the voltage (potential difference) between any two
points in a circuit, such as in the two figures below, where *V is the voltmeter.

In the left-hand figure the voltmeter is connected to read the voltage drop across R2

only, while in the right-hand figure it reads the sum of the voltage drops across R2 and R3.
It should be pointed out that a voltmeter is constructed to have a very high internal

resistance, so that it will have negligible effect on any circuit it is connected to.
On the other hand, an ‘‘ammeter,’’ since it measures current, must be connected in

series in the circuit, as in the figure below, where*I is the ammeter.

Since an ammeter is connected directly in the current path, an ammeter must be con-
structed to have a very LOW internal resistance, so that it will offer negligible resistance to
the current flowing through it, and thus not cause any change in the current it is put in to
measure.

Another point to be mentioned is that all practical sources of emf, including batteries,
have internal resistance to a greater or less degree. For a battery, the internal resistance can
be denoted by Rb and is included in the symbol for the battery, as shown in Fig. 25, where
‘‘þ’’ and ‘‘�’’ are the external positive and negative terminals of the battery.

Internal resistance is undesirable in a battery or other typeof generator for several reasons.
First of all, when the battery delivers current there is an internal power loss in the

battery, equal to I2Rb, which not only lowers the efficiency of the battery but may
cause it to overheat and thus shorten its life.
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Secondly, if the battery is delivering a current I , the presence of Rb causes an internal
voltage drop in the battery, equal to IRb, which subtracts from the useful voltage output of
the battery, as explained in connection with Fig. 26, where x and y are the external
terminals of the battery.

Notice that the voltage drop across the internal resistance opposes or ‘‘bucks’’ the
internal voltage generated by the battery, thereby reducing the useful voltage available at
the battery terminals. This effect is proportional to the current I , so that the more current
we attempt to make the battery produce, the lower is the output voltage available at the
battery terminals. This is an undesirable effect because, ideally, we would like the battery
voltage to remain constant, and not be affected by changes in current.

It follows, therefore, that a battery or other type of generator that must produce large
values of current must be constructed to have very low internal resistance. If this is not
done, the output voltage of the battery will vary widely with changes in output current,
and the battery will be said to have ‘‘poor voltage regulation.’’

In our work here, we’ll assume the batteries to have negligibly small values of
internal resistance. In cases where this cannot be assumed, the internal resistance of the
battery will be added in series with the battery, and its effect included in calculations of
current.

The last point we wish to make is that circuits in which the direction of current flow
does not change are called DIRECT-CURRENT or ‘‘dc’’ circuits. Since the direction of
current flow through a battery does not change (unless it is being ‘‘recharged’’), a battery is
an example of a dc generator, and thus the battery circuits in this and the next few sections
are examples of dc circuits. Later in our work we’ll take up the important case where the
polarity of the generator periodically reverses, providing what is called alternating or ‘‘ac’’
circuits.

Problem 15
In Fig. 27, a battery of constant 48 volts is applied to five series-connected resistors,
as shown, the resistance values being in ohms.

(a) What is the reading of meter M1?

(b) What is the reading of meter M2?

(c) Power output of the battery is watts?
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Problem 16
In Fig. 27, calculate the power input to each resistor, then verify that eq. (26) gives
the same answer as found in part (c) above.

2.6 The Parallel Circuit
A PARALLEL circuit is one in which the battery current divides into a number of ‘‘par-
allel paths.’’ This is shown in Fig. 28, in which a battery, of constant emf V volts, delivers a
current of I amperes to a load consisting of any number of n resistances connected ‘‘in
parallel.’’

The currents in the individual resistances are called the ‘‘branch currents,’’ and the
battery current I is often called the ‘‘line current.’’ From inspection of Fig. 28 we see that,
in a parallel circuit, the battery current I is equal to the sum of the branch currents, that is, in
Fig. 28,

I ¼ I1 þ I2 þ I3 þ � � � þ In ð28Þ
Next, from Fig. 28 we see that the battery voltage V is applied equally to all n resistances;

that is, the same voltage V is applied to all the parallel branches. Hence, by Ohm’s law (eq.
(11)), the individual branch currents in Fig. 28 have the values

I1 ¼ V=R1; I2 ¼ V=R2; . . . ; In ¼ V=Rn ð29Þ
Upon substituting these values into the right-hand side of eq. (28) we have

I ¼ V
1

R1

þ 1

R2

þ 1

R3

þ � � � þ 1

Rn

� �
ð30Þ
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Now let RT be the total resistance as seen by the battery in Fig. 28. Then, by Ohm’s law,
it has to be true that

I ¼ V

RT

ð31Þ

Since the left-hand sides of the last two equations are equal, the two right-hand sides
are also equal. Setting the two right-hand sides equal, then canceling the Vs, gives

1

RT

¼ 1

R1

þ 1

R2

þ 1

R3

þ � � � þ 1

Rn

ð32Þ

where RT is the total effective resistance seen by the battery. In words, eq. (32) says that

If n resistances are connected in parallel, in the manner of Fig. 28, the
reciprocal of the total resistance is equal to the sum of the reciprocals of
the individual resistances.

The power input to each resistance in the parallel-connected circuit of Fig. 28 is (by eqs.
(15), (16), (17)) found by any of the formulas

Pn ¼ VIn ¼ V2=Rn ¼ I2
nRn ð33Þ

where V is the battery voltage, and In is the current in resistor Rn. The total power output P
of the battery is given by eqs. (25) and (26), where I is the battery current and where, now,
RT is found by means of eq. (32). The following example will be helpful.

Example
In Fig. 29, the battery voltage is V ¼ 65 volts, and the values of the resistances, in

ohms, are 38, 17, and 27, as shown.

In Fig. 29 we wish to find the following values:

(a) total resistance seen by the battery,

(b) current measured by the ammeters shown in the figure,

(c) power output of the battery,

(d) power input to each resistor.
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Solutions
(a) Note that the three resistors are connected in parallel. Hence the

resistance RT seen by the generator (battery) is, by eq. (32),

1

RT

¼ 1

38
þ 1

17
þ 1

27
¼ 0:122 176 reciprocal ohms;

thus RT ¼ 1=0:122176 ¼ 8:18489 ohms, answer.
(b) I ¼ battery current ¼ 65=RT ¼ 65=8:18489 ¼ 7:94146 amperes, answer.

I1 ¼ 65=R1 ¼ 65=38 ¼ 1:710526 amperes, answer.
I2 ¼ 65=R2 ¼ 65=17 ¼ 3:823529 amperes, answer.
I3 ¼ 65=R3 ¼ 65=27 ¼ 2:407407 amperes, answer.

(c) P ¼ VI ¼ ð65Þð7:94146Þ ¼ 516:195 watts, answer.
(d) P1 ¼ VI1 ¼ 65ð1:710526Þ ¼ 111:185 watts, answer.

P2 ¼ VI2 ¼ 65ð3:823529Þ ¼ 248:529 watts, answer.
P3 ¼ VI3 ¼ 65ð2:407407Þ ¼ 156:482 watts, answer.

You should verify using your calculator, that the answers to parts (c) and (d)
satisfy eq. (26).

Note: For the special case of two resistors in parallel, as in Fig. 30, eq. (32) gives the
value 1=RT ¼ 1=R1 þ 1=R2 which, after combining the two fractions together over the
common denominator R1R2, then inverting both sides, becomes

RT ¼ R1R2

R1 þ R2

ð34Þ

Thus, the resistance seen looking into terminals a, b in Fig. 30 is given by eq. (34),
being equal to the ‘‘product of the two resistors, over their sum.’’ The combination of
two resistors in parallel occurs so often in practical work that eq. (34) should be
memorized.

Another special case sometimes encountered is that where the n resistors in Fig. 28 all
have the same value of R ohms. In that case, eq. (32) becomes 1=RT ¼ n=R, which, after
inverting both sides, becomes

RT ¼ R

n
ð35Þ

Thus, in Fig. 28, if the n parallel resistances all have the same value of R ohms, then the
battery sees a total resistance of R=n ohms.

Problem 17
A battery having a constant terminal voltage of 18 volts is applied to five parallel-
connected resistance loads, as shown below. Resistance values in ohms.
Find the following:

(a) resistance seen by battery,

(b) battery current,
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(c) power output of battery,

(d) current in each resistor (check to see that eq. (28) is satisfied),

(e) power in each resistor (check to see that eq. (26) is satisfied).

Problem 18
A battery of constant voltage 15 volts is connected to two parallel-connected resistor
loads of 25 ohms and 38 ohms. Find battery current and battery power.

Problem 19
A battery of constant 12 volts is applied to sixteen 25-ohm resistors connected in
parallel. Find (a) battery current, (b) current in each resistor, (c) battery power
output, (d) power delivered to each resistor.

2.7 Series-Parallel Circuits
Series-parallel circuits, also called ‘‘networks,’’ consist of individual groups of series and
parallel resistors. Such circuits, as long as they consist only of individual groups of series
and parallel resistances, can always be reduced to a single equivalent resistance. Consider,
as an example, the series-parallel circuit shown in Fig. 31, in which we wish to find the
battery current I . It is given that the battery voltage is constant 45 volts, and the resistance
values are in ohms.

Solution
First, by eq. (35), the two parallel 10-ohm resistors can be replaced with an equivalent
single 5-ohm resistor, and the three parallel 12-ohm resistors can be replaced with a single
4-ohm resistor. When this is done, Fig. 31 becomes the simple series circuit shown in Fig.
32 (where ‘‘45 V’’ is read as ‘‘45 volts’’).
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Since the circuit of Fig. 32 is now a purely series circuit (section 2.5) we have that the
original circuit of Fig. 31 reduces to a single equivalent resistance of 15 ohms, as shown in Fig.
33. Hence, by Ohm’s law, eq. (11), the battery current I is equal to

I ¼ V=RT ¼ 45=15 ¼ 3 amperes; answer:

Problem 20
A battery of constant 36 volts is connected to the series-parallel circuit in Fig. 34.
Resistance values are in ohms.

In the figure, let it be required to find:

(a) battery current I ,

(b) power output of battery,

(c) current in 6-ohm resistor.

Problem 21
A battery of constant 24 volts is applied to the series-parallel network shown below.
Resistance values in ohms. Find the battery current. (Answer: 2.97497 amps)
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Problem 22
Given the series-parallel network as follows, resistance values in ohms, find:

(a) potential of point x with respect to ground,

(b) potential of point y with respect to ground.

Problem 23
What value of resistance must be connected in parallel with a 36-ohm resistor if the
parallel combination is to be equivalent to a single 20-ohm resistor?
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Determinants and
Simultaneous Equations

3.1 Introduction to Determinants
The purpose of this chapter is to prepare us for future work in the writing and solution of
network equations. We’ll find that network analysis produces systems of simultaneous
equations, and such systems are most conveniently handled by making use of what are
called determinants.

The study of determinants is not basically difficult, but it will call for close attention to
details on your part. The results, however, will be well worth the time and effort you put
into it. Let us begin with some definitions, as follows.

A ‘‘determinant’’ is a square array of numbers, or letters used to represent numbers,
placed between two vertical bars. The numbers or letters are arranged in horizontal rows
and vertical columns. An example of what a determinant looks like is shown in Fig. 35.

Notice that the rows are numbered from the top down, and the columns from left to
right.
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Each number or letter in a determinant is called an element of the determinant. Since a
determinant is always a square array of elements, the number of rows is always the same as the
number of columns. Note that all rows and columns have the same number of elements.

A determinant is classified according to the number of rows (or columns) it has. The
determinant in Fig. 35 is thus a ‘‘fourth-order’’ determinant, because it has four rows (and
also, of course, four columns).

A determinant has a value equal to a single number. For instance, later on we’ll be able
to show that for the determinant of Fig. 35, D ¼ 312.

The location of an element in a determinant will always be specified by giving FIRST
the number of the ROW and THEN the number of the COLUMN it is located in.

For example, the location of the element �4 in Fig. 35 would be given as (4,1), meaning
it is located at the intersection of the fourth row and the first column. As another example,
the location of the element ‘‘6’’ would be specified as (3,4), meaning at the intersection of
the third row and the fourth column.

Many of our discussions will be easier to follow if we represent the elements
of a determinant by a letter with subscripts. The system of notation used is illustrated by
the fourth-order determinant of Fig. 36. This figure illustrates how subscripts are used to
identify the location of the elements in a determinant.

Notice that the subscript used with each element denotes first the ROW and then the
COLUMN in which the element appears. This convention, of giving first the row and then
the column, is always used. For example, the notation a23 denotes the element at the
intersection of the second row and the third column (the notation a23 can be read as
‘‘a, two, three’’). When it is deemed necessary, the row and column numbers can be
separated by a comma, as, for example, a16;11.

Problem 24
(a) How many elements in a seventh-order determinant?

(b) Using a with subscript, identify the element at the intersection of the fifth row
and third column of a determinant of order five or higher.

(c) What is the difference between a1;11 and a11;1?

3.2 The Second-Order Determinant
By definition, a ‘‘second-order determinant’’ has two rows and two columns, and thus four
elements. Using the standard notation of section 3.1, the general form of the second-order
determinant is shown in Fig. 37.
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The second-order determinant is the basic determinant; later on we’ll find that all
determinants, regardless of order, can be expressed in terms of second-order determinants.

So far we’ve not given any meaning to the set of symbols in Fig. 37; that is, we’ve
not defined what a determinant is to mean. For reasons that will become apparent
to us later on, the value, D, of a second-order determinant is now defined to be as
follows,

The value of a second-order determinant is defined as being equal to the
product a11a22 minus the product a12a21.

Thus, by definition, Fig. 37 has the value

ð36Þ

In eq. (36) we used the two arrows to show the two multiplications, but such arrows are
not, of course, normally shown.

Note that there is no ‘‘proof ’’ of anything required here, because we are simply defining
what a second-order determinant is. Later on you’ll find out why it’s convenient to define
the meaning in this way.

We should also mention that there are no restrictions on what the numbers, represented
by the letters, can be. Thus the elements of a determinant can be real numbers or complex
numbers, or any combination of such numbers.

Example
Find the value of the determinant

4 3

2 5

����
����

Solution
This is a second-order determinant, and thus by eq. (36) we have,

ð4Þð5Þ � ð3Þð2Þ ¼ 20 � 6 ¼ 14; answer:

Find the values of the second-order determinants in problems 25 through 29.

Problem 25

(a)
6 2

4 2

����
���� ¼ (b) 3

1 �2

4 2

����
���� ¼

Problem 26

4 �2

�3 6

����
����þ 1 �1

2 �3

����
����þ �4 �2

3 �1

����
���� ¼
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Problem 27

5 10

6 4

����
����

4 4

7 5

����
����
¼

Problem 28

5x y

�y 2xy

����
���� ¼

Problem 29

ðxþ 2Þ ðx� 5Þ
4 ð2 � xÞ

����
���� ¼

3.3 Minors and Cofactors. Value of any
Nth-order Determinant

Let ‘‘N’’ be the order of any determinant, where N is any whole number greater than 1.
Thus, if N ¼ 2 we have a second-order determinant, if N ¼ 3 we have a third-order
determinant, and so on. An Nth-order determinant refers to a determinant of any order
whatever, and is just the algebraic way of saying that we are talking about a determinant
of any order in general.

Every element of a determinant has what is called the minor of that element. To find the
MINOR of any element, strike out the row and column in which the element is located. The
determinant that remains is defined to be the minor of that element. This is illustrated in
the following example.

Example
Given the determinant

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������

In accordance with the above definitions, write the minors of the elements a21; a33,

and a22.

Solutions

Minor of a21 is

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
������� ¼

a12 a13

a32 a33

����
���� answer:
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Minor of a33 is

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
������� ¼

a11 a12

a21 a22

����
���� answer:

Minor of a22 is

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
������� ¼

a11 a13

a31 a33

����
���� answer:

Now, in any Nth-order determinant, let aij denote the element at the intersection of any
ith row and jth column (‘‘eye-th row and jay-th column’’), as illustrated in Fig. 38.

As already defined, if we strike out the ith row and jth column, the determinant that
remains is called the minor determinant of the element aij . Let us denote the minor of aij by
Mij, that is, let

Mij ¼ the minor determinant of element aij:

Now let Aij denote what we’ll call the cofactor of element aij. The ‘‘cofactor’’ is defined
as

cofactor of aij ¼ Aij ¼ ð�1ÞiþjMij ð37Þ
The ‘‘cofactor’’ of aij is thus equal to the ‘‘minor’’ of aij multiplied by either þ1 or �1,

depending upon whether the sum, i þ j, is an even or odd number, because ð�1Þiþj ¼ þ1 if
i þ j is even, but ð�1Þiþj ¼ �1 if i þ j is odd.

The value of any Nth-order determinant is now defined in terms of the cofactors of any
row or column, as follows.

1. Select any row or any column of the determinant.
2. Multiply each element in that row (or column) by its cofactor.
3. The value of the determinant is the sum of the N products found in this

way. Only one row, or one column, is used in this procedure.

You might think, offhand, that the above-defined procedure might conflict with the
basic definition of eq. (36). This is not the case, however, because the end result of the
above procedure is always the sum of a number of second-order determinants, the value of
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each such second-order determinant then being found by eq. (36). This will be illustrated
in the following three examples, in which you’ll notice that, in each case, the final answer is
the sum of several second-order determinants.

Example 1
Find the value of the third-order determinant

3 2 5

6 1 2

4 �2 3

�������
�������

Solution
We’ll use the three steps above, as follows.

1. We can select any row or any column we wish.* Let’s suppose we decide to
use the elements of the first row in this solution. Note that here the
elements of the first row are a11 ¼ 3; a12 ¼ 2, and a13 ¼ 5.

2. In this step we are to multiply each of the three elements in the first row by
the cofactor of the element. Doing this, making use of eq. (37), gives the
following three products:

a11A11 ¼ a11ð�1Þ2M11 ¼ a11M11 ¼ 3
1 2

�2 3

�����
�����

a12A12 ¼ a12ð�1Þ3M12 ¼ �a12M12 ¼ �2
6 2

4 3

�����
�����

a13A13 ¼ a13ð�1Þ4M13 ¼ a13M13 ¼ 5
6 1

4 �2

�����
�����

3. By step 3, letting D be the value of the determinant, we have,

D ¼ 3
1 2

�2 3

����
����� 2

6 2

4 3

����
����þ 5

6 1

4 �2

����
����

Now, by eq. 36,

D ¼ 3ð3 þ 4Þ � 2ð18 � 8Þ þ 5ð�12 � 4Þ ¼ �79; answer:

Example 2
Rework example 1, this time using the second column, instead of the first row.

Solution
We’ll follow the three steps as in example 1, as follows.

1. The elements of the second column are (for the determinant of example 1)

a12 ¼ 2; a22 ¼ 1; a32 ¼ �2

CHAPTER 3 Determinants and Equations 43

* The value, D, of a given determinant of any order is the same regardless of the row or column we decide to use.
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the same value

D ¼ a11a22a33 � a11a23a32 þ a12a23a31 � a12a21a33 þ a13a21a32 � a13a22a31

in every case. The same principle applies to determinants of any order.



2. Same procedure as in example 1, except now we use the elements of the
second column, as follows.

a12A12 ¼ a12ð�1Þ3M12 ¼ �a12M12 ¼ �2
6 2

4 3

�����
�����

a22A22 ¼ a22ð�1Þ4M22 ¼ a22M22 ¼
3 5

4 3

�����
�����

a32A32 ¼ a32ð�1Þ5M32 ¼ �a32M32 ¼ �ð�2Þ
3 5

6 2

�����
�����

3. By step 3, letting D be the value of the determinant, we have

D ¼ �2
6 2

4 3

����
����þ 3 5

4 3

����
����þ 2

3 5

6 2

����
����

and now, by eq. (36),

D ¼ �2ð18 � 8Þ þ ð9 � 20Þ þ 2ð6 � 30Þ ¼ �79; same answer as in example 1:

Example 3
Find the value of the fourth-order determinant

4 3 1 3

2 1 4 2

6 0 0 5

1 3 7 2

���������

���������
Solution

Let us carry out the usual three-step solution, as follows.

1. In this particular case the easiest thing to do is to make use of the third
row; this is because there are two zeros in the third row. We’ll find that the
presence of the zeros will considerably reduce the work required to get the
solution. Note that the elements of the third row are

a31 ¼ 6 a32 ¼ 0 a33 ¼ 0 a34 ¼ 5

2.

a31A31 ¼ a31ð�1Þ4M31 ¼ a31M31 ¼ 6

3 1 3

1 4 2

3 7 2

��������

��������
a32A32 ¼ 0

a33A33 ¼ 0

a34A34 ¼ a34ð�1Þ7M34 ¼ �a34M34 ¼ �5

4 3 1

2 1 4

1 3 7

��������

��������
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3. By step 3, letting D be the value of the determinant, we have

D ¼ 6

3 1 3

1 4 2

3 7 2

�������
�������� 5

4 3 1

2 1 4

1 3 7

�������
�������

We thus now have to find the values of the two third-order determinants above.
The results are shown below, in which both determinants have been expanded
in terms of the elements of the first column.

D1 ¼ 6 3
4 2

7 2

����
����� 1 3

7 2

����
����þ 3

1 3

4 2

����
����

 !
¼ ð6Þð�29Þ ¼ �174 ¼ value of first

determinant:

D2 ¼ �5 4
1 4

3 7

����
����� 2

3 1

3 7

����
����þ 3 1

1 4

����
����

 !
¼ ð�5Þð�45Þ ¼ 225 ¼

value of
second

determinant:

The value of the given fourth-order determinant is, therefore,

D ¼ D1 þD2 ¼ �174 þ 225 ¼ þ51; final answer:

Problem 30
Find the value of the following determinant, by expanding in terms of the elements
of the first column.

3 6 1

�5 7 �4

1 �2 3

�������
�������

Problem 31
Repeat problem 30, this time expanding in terms of the elements of the third row
(answer must be same as that in problem 30).

Problem 32
Find the value of the determinant

6 1 0

2 4 0

�3 5 �4

�������
�������

Problem 33*
Find the value of the determinant

2 2 5 �4

1 0 2 2

�3 �1 3 0

�1 0 6 3

���������

���������
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Problem 34
Find the value of the determinant

1 3 2 5

6 1 �3 2

4 �2 0 5

0 0 0 �5

���������

���������

3.4 Some Important Properties of
Determinants

There are some very useful properties of determinants that we should be familiar with. It
won’t be necessary that we stop, here, to give a formal proof of each property, but we’ll
explain the meaning of each one in detail.

To begin, let us state that the properties we’ll study in this section are true for
determinants of any order. Furthermore, any statement we will make about rows will
also apply to columns, and vice versa. We’ll also, when necessary, make use of the fact
that the value D of a determinant is the same regardless of which rows or columns we
happen to make use of in the process of finding the value of D; this was pointed out in
section 3.3.

As we found in section 3.3, the value D of a determinant is equal to the sum of a
number of terms, each term being a product of several different elements of the determi-
nant. The first property of determinants (property 1) that we now wish to consider con-
cerns the number and nature of such terms. We’ll proceed in steps, as follows.

As already defined, an Nth-order determinant is a square array of N2 elements
arranged in an equal number of N rows and N columns. A determinant is equal to a
single value, which we’ll generally denote by D.

In section 3.2 we learned that the second-order determinant is the basic or ‘‘prototype’’
determinant, its structure and value being defined by eq. (36).

In section 3.3 we learned that any Nth-order determinant can be ‘‘expanded’’ in terms
of the ‘‘minor’’ determinants of any row or column. Each such minor determinant can
then be expanded in terms of its minor determinants, until finally, continuing on in this
way, the original Nth-order determinant will be found to be equal to a sum of a number of
SECOND-ORDER determinants, the value of each such second-order determinant being
found by eq. (36). With this in mind, let us see what we can discover about the number and
the nature of the terms whose sum equals the value D of the determinant.

To do this, let us begin with the third-order determinant ðN ¼ 3Þ, shown in Fig. 39.
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Now expand Fig. 39 in terms of, say, the elements of the first row; thus

D3 ¼ a11

a22 a23

a32 a33

����
����� a12

a21 a23

a31 a33

����
����þ a13

a21 a22

a31 a32

����
����

and hence, by the basic eq. (36) we have that

D3 ¼ a11a22a33 � a11a23a32 � a12a21a33 þ a12a23a31 þ a13a21a32 � a13a22a31 ð38Þ
Inspection of eq. (38) shows that the value of a third-order determinant is equal to the

sum of 6 terms, each term being the product of 3 elements. Note that each term has as
factors one element, and only one, from each row and each column. For example, in the
term ‘‘a12a23a31,’’

element a12 is in row 1 and column 2;

element a23 is in row 2 and column 3;

element a31 is in row 3 and column 1;

that is, every row and every column is represented once, and only once, in every term, as
inspection of the subscripts in eq. (38) will show.

To continue, let us next consider a fourth-order determinant ðN ¼ 4Þ such as is shown
in Fig. 40.

Now expand Fig. 40 in terms of the minors of, say, the first row, thus,

D4 ¼ a11

a22 a23 a24

a32 a33 a34

a42 a43 a44

��������

��������� a12

a21 a23 a24

a31 a33 a34

a41 a43 a44

��������

��������þ a13

a21 a22 a24

a31 a32 a34

a41 a42 a44

��������

��������
� a14

a21 a22 a23

a31 a32 a33

a41 a42 a43

��������

�������� ð39Þ

Now, fromour study ofFig. 39weknow that a third-order determinant is equal to the sum
of 6 terms; since eq. (39) (which applies to Fig. 40) is the sum of four such third-order
determinants, it follows that the value of a fourth-order determinant is equal to the sum of
4 � 6 ¼ 24 terms, each term consisting of the product of 4 elements. Again, every row and
every column is represented just once, and only once, in each of the 24 terms (as examples,
a11a22a33a44; a12a23a31a44; a13a22a34a41, and so on).
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Now consider a fifth-order determinant ðN ¼ 5Þ, and suppose the determinant is
expanded in terms of the minors of any row or column we might choose. This will produce
five fourth-order determinants, and since we know that each fourth-order determinant is
equal to 24 terms, it follows that a fifth-order determinant is equal to the sum of
24 � 5 ¼ 120 terms, each term consisting of the product of 5 elements. (Again, every row
and every column will be represented just once in every one of the 120 terms.)

Next, the expansion of a sixth-order determinant will consist of the sum of
120 � 6 ¼ 720 terms (each term the product of 6 elements), the expansion of a seventh-
order determinant will consist of the sum of 720 � 7 ¼ 5040 terms (each term the product
of 7 elements), and so on and on in this manner.

In the above you may have noticed that 6 ¼ 1 � 2 � 3, 24 ¼ 1 � 2 � 3 � 4, 120 ¼
1 � 2 � 3 � 4 � 5, and so on. Thus, defining the ‘‘factorial’’ notation, N! ¼ 1 � 2 � 3 � 4 . . .N,
we can summarize:

Property 1. The expansion of an Nth-order determinant consists of the sum
of N! terms, each term the product of N elements, each term having as
factors one element, and only one, from each row and each column.

As you can appreciate, finding the value of a high-order determinant using only paper
and pencil would, practically speaking, be almost impossible. For example, the expansion
of a tenth-order determinant would consist of 10! ¼ 3,628,800 terms, with 10 multiplica-
tions required to calculate the value of each term. Fortunately, however, this kind of work
is exactly what the digital computer is extremely good at, doing millions of such calcula-
tions per second. Thus the solution of problems involving higher-order determinants is
entirely practical.

Next, suppose the elements of any row or any column are all equal to zero; in such a
case, ‘‘property 2’’ states:

Property 2. If all the elements of any row or any column are equal to zero,
the value of the determinant is equal to zero.

By property 1, every term in the expansion of such a determinant would contain zero as
a factor, and thus the value of the determinant would be zero. Next we have

Property 3. If any two rows or any two columns of a determinant are
interchanged, the new determinant is equal in magnitude but opposite in
sign to the original determinant.

As an aid to understanding why property 3 is true, let us use the 3rd-order determinant
of Fig. 39 and eq. (38) as an example, and, for convenience, let us rewrite eq. (38) in the
form

D3 ¼ ða11a22a33 þ a12a23a31 þ a13a21a32Þ � ða11a23a32 þ a12a21a33 þ a13a22a31Þ

Now, in Fig. 39, let us interchange, say, rows 1 and 3. In the last equation for D3, above,
this is done by changing, in the subscripts, row 1 to row 3 and row 3 to row 1, to get

D3 ¼ ða31a22a13 þ a32a23a11 þ a33a21a12Þ � ða31a23a12 þ a32a21a13 þ a33a22a11Þ
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Note that the second value for D3 has the same magnitude as the first, but opposite sign.
Continuing in this manner, we find that the N! terms in the expansion of any Nth-order
determinant always divide into two separate ‘‘plus and minus’’ groups, both groups having
the same number of terms. If, now, any two rows, or any two columns, of the given
determinant are interchanged, the same two groups of terms appear, but with opposite
signs, in the new determinant. Next we have

Property 4. If any two rows, or any two columns, of a determinant are
identical, the value of the determinant is zero.

Let D be the value of a determinant having two identical rows. Now interchange the
two rows; since they are identical rows, this does not change the value of D. However, by
property 3, interchanging the two rows must produce �D; that is, we would have to have
D ¼ �D, which can only be true if D ¼ 0. Now consider

Property 5. If ‘‘m’’ is a factor of every element in any row or any column,
then m may be removed from the elements of that row or column and
placed in front of the determinant as a multiplier of the entire determinant.

Suppose that m is a factor of every element in a certain row or column of a determinant.
By property 1, every term in the expansion of the determinant will contain m as a factor;
but this produces the same result as first removing m, then expanding the determinant, and
then multiplying the result by m. To illustrate,

ma11 a12 a13

ma21 a22 a23

ma31 a32 a33

�������
������� ¼ m

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������

From this we see that property 5 gives us the rule that ‘‘to multiply a determinant by a
factor m, multiply every element of any one row or one column by m.’’

Let us next take up property 6, which is stated as follows:

Property 6. If every element of any row or any column is the sum of two
terms, then the determinant can be written as the sum of two determinants.

Using the following third-order determinant as an example, property 6 states that

ða11 þ AÞ a12 a13

ða21 þ BÞ a22 a23

ða31 þ CÞ a32 a33

�������
������� ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������þ

A a12 a13

B a22 a23

C a32 a33

�������
�������

Note that in the original determinant (the left-hand side of the equation) each of the
elements of the first column consists of the sum of two quantities. Each of these two
quantities then appears separately as the first columns of the two determinants on the
right-hand side of the equation.

The above equation, for the case of a 3rd-order determinant, can be verified by actually
expanding the original determinant in terms of the elements of the first column. The
extension to the case of any Nth-order determinant is then apparent. Next we have our
final property, which is very useful:

CHAPTER 3 Determinants and Equations 49



Property 7. The value of a determinant is not changed if, to each element of
any row, we add the corresponding element of any other row multiplied by
the same number.

As usual, the statement applies to columns as well as rows.
To illustrate the meaning of property 7, let’s begin with what we’ll call the ‘‘original’’

determinant, shown on the left-hand side of eq. (40) (Fig. 41).

ð40Þ

In eq. (40), the right-hand side is the result of adding, to each element of the first
column, the corresponding element of the third column multiplied by m.* We can show
that the two sides of eq. (40) are equal as follows.

First apply, to the right-hand side, property 6 and then property 5; if we do this, the
right-hand side becomes

a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������þm

a13 a12 a13

a23 a22 a23

a33 a32 a33

�������
�������

Notice, now, that the second determinant above has two identical columns, and is thus
equal to zero by property 4, proving that the two sides of eq. (40) are equal.

Property 7 can sometimes be used to greatly reduce the amount of work needed to find
the value of a given determinant. This is accomplished by using property 7 to transform a
given determinant into an equivalent determinant having more zeros as elements than the
given determinant has. The following example will illustrate the procedure.

Example
Given the determinant

D ¼
5 1 �2

3 2 1

2 �4 3

�������
�������

(a) Find the value of D by expanding, in the usual way, the determinant in terms of,

say, the elements of the second column.

Solution

D ¼ � 3 1

2 3

����
����þ 2

5 �2

2 3

����
����þ 4

5 �2

3 1

����
����

¼ �ð9 � 2Þ þ 2ð15 þ 4Þ þ 4ð5 þ 6Þ ¼ �7 þ 38 þ 44 ¼ 75; answer:
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(b) Going back to the given determinant, find D by making use of property 7.

Solution

One way is as follows. To each element of row 2 add the corresponding
element of row 1 multiplied by �2. Next, to each element of row 3 add the
corresponding element of row 1 multiplied by 4; thus,

D ¼
5 1 �2

3 � 10 2 � 2 1 þ 4

2 þ 20 �4 þ 4 3 � 8

�������
������� ¼

5 1 �2

�7 0 5

22 0 �5

�������
�������

Notice now that all the elements in column 2 except one are zeros; this makes it
easy to expand the determinant in terms of the elements of column 2, thus,

D ¼ � �7 5

22 �5

����
���� ¼ �ð35 � 110Þ ¼ 75; answer; as before:

Problem 35
Given that

D ¼
6 �3 5

24 �16 120

�12 1 25

�������
�������

use property 5 as an aid in finding the value of D.

Problem 36
Find the value of

3 6 �10 7

1 0 5 �14

�8 0 20 14

2 0 �15 14

���������

���������
Problem 37
In a determinant, if the elements of any given row (or column) are added to, or
subtracted from, the corresponding elements of any other row (or column), is the
value of the determinant changed? (The given row or column remains, of course,
unchanged in its original position.)

Problem 38
By inspection, verify that

3 �1 2 6

4 3 0 8

1 �4 4 2

6 7 5 12

���������

���������
¼ 0
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Problem 39
Verify that

2 0 �1 5 0

0 �1 0 2 4

�1 3 2 0 �1

3 �2 0 �1 �1

�2 4 �3 2 0

�����������

�����������
¼ 596

3.5 Determinant Solution of Linear
Simultaneous Equations

A linear or ‘‘first degree’’ equation is one in which the unknowns are all raised to the first
power. Let us take, as an example, the general form of a linear equation in three
unknowns; thus,

axþ byþ cz ¼ k ð41Þ
where x, y, z denote the values of three unknown quantities, with a, b, c being the
corresponding constant coefficients of the unknowns, and k denoting a single constant
term on the right-hand side.

In our problems the value of the constants will be known, and we will be required to
find the values of the unknown quantities.

As a general principle we know that the more complicated a problem is, the greater is
the amount of information needed to solve the problem. For the case of linear simultaneous
equations, this simply means that the greater the number of unknown values that must be
found, the greater is the number of equations that will be required to find the values. This
can be stated as follows.

A problem involving linear equations in n unknowns requires, in general, n
independent equations for its solution.*

Thus, if a problem involves linear equations in two unknowns, then two equations are
required to find a solution; or, if a problem involves linear equations in three unknowns,
then three equations are required to find a solution; and so on.

With the above in mind, we now wish to introduce a general procedure that can be used
to find the solution to any system of n simultaneous linear equations.

To do this, let us take, as an example, the solving of a set of three simultaneous linear
equations, in which we’ll denote the values of the three unknowns by x, y, and z. Doing
this will clearly show why the procedure is correct, and why it is valid for any set of n such
equations. We proceed as follows.

Let the three simultaneous equations be designated as eq. (42), in which a through i
represent constant coefficients and where P, Q, and R are constant terms on the right-hand
sides of the equations, as shown. (To reduce the writing time we’ll not use the usual
‘‘double-subscript’’ notation in this discussion.)

CHAPTER 3 Determinants and Equations52

* Two equations are ‘‘independent’’ if neither one can be derived from the other. As a simple example, xþ y ¼ 10

and 2xþ 2y ¼ 20 are not independent, because the second one was derived from the first by multiplying it by 2.



The first step, in using determinants to solve a system of simultaneous linear equations,
is to set up a determinant formed from the coefficients of the unknowns, as shown in eq. (43).

axþ byþ cz ¼ P

dxþ eyþ fz ¼ Q

gxþ hyþ iz ¼ R

9>=
>; ð42Þ

D ¼
a b c

d e f

g h i

�������
������� ð43Þ

Here we’re following the custom of using the Greek capital letter delta, D, to denote the
determinant formed from the coefficients of the unknowns.

Now multiply both sides of eq. (43) by x. Doing this, making use of property 5, we have
that

xD ¼
ax b c

dx e f

gx h i

�������
������� ð44Þ

Now apply property 7 to eq. (44) as follows. To each element of column 1 add the
corresponding element of column 2 multiplied by y, so that eq. (44) becomes

xD ¼
ðaxþ byÞ b c

ðdxþ eyÞ e f

ðgxþ hyÞ h i

�������
������� ð45Þ

Now apply property 7 to eq. (45) as follows. To each element of column 1 add the
corresponding element of column 3 multiplied by z, so that eq. (45) becomes

xD ¼
ðaxþ byþ czÞ b c

ðdxþ eyþ fzÞ e f

ðgxþ hyþ izÞ h i

�������
������� ð46Þ

Now, in the above, compare each element in column 1 with the original three simulta-
neous equations of eq. (42). Doing this shows that the elements of column 1 in eq. (46) can
be replaced by the constants P, Q, and R. Doing this, then dividing both sides
by D, we have that the value of x is equal to

x ¼

P b c

Q e f

R h i

������
������

D
ð47Þ

where D is the determinant formed from the coefficients of the unknowns, eq. (43).
Next, a formula for the value of y can be found as follows. First, multiply both sides of

eq. (43) by y, then make use of property 5; thus,

yD ¼
a by c

d ey f

g hy i

������
������ ð48Þ
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Now apply property 7, as follows. First, to each element of column 2 add the corre-
sponding element of column 1 multiplied by x. Next, to each element of column 2 add the
corresponding element of column 3 multiplied by z. Doing this, eq. (48) becomes

yD ¼
a ðaxþ byþ czÞ c

d ðdxþ eyþ fzÞ f

g ðgxþ hyþ izÞ i

������
������ ð49Þ

Now, in the above, compare each element of column 2 with the original three simulta-
neous equations of eq. (42). Doing this shows that the elements of column 2 in eq. (49) can
be replaced by the constants P, Q, and R. Doing this, then dividing both sides by D, we have
that the value of y is equal to

y ¼

a P c

d Q f

g R i

������
������

D
ð50Þ

where, as usual, D is the determinant formed from the coefficients of the unknowns (eq. (43)).
Next, using the same steps as those used to derive eqs. (47) and (50), we find that the

value of z is equal to

z ¼

a b P

d e Q

g h R

������
������

D
ð51Þ

Thus the values of the three unknowns, x, y, and z, in eq. (42) can be found by direct use of
eqs. (47), (50), and (51). It’s also clear that the procedure used to derive these equations canbe
repeated for any number of such simultaneous equations. Thus we can now set down the
RULE for solving any set of n simultaneous linear equations in n unknowns, known as
‘‘Cramer’s rule,’’ as follows.

Step 1. Write down the n equations neatly, in the standard form, as in
eq. (42).

Step 2. Form a determinant using the coefficients of the unknowns as
the elements. Let D be the value of this determinant, as in
eq. (43).

Step 3. Select the unknown to be solved for. Now go to the determinant
found in step 2 and form a new determinant by replacing the
coefficients of the desired unknown with the constant terms on the
right-hand sides of the equations. Call the value of this new
determinant D 0 (delta prime).

Step 4. The value of the unknown is then equal to D 0 divided by D, that is,
D 0=D.*

The following problems are to be worked by applying, step-by-step, the above four-step
rule.
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Problem 40
Find the values of x and y that satisfy the two simultaneous equations

5xþ 2y ¼ �7

�3xþ 4y ¼ 25

Problem 41
Solve the following set of simultaneous linear equations for the unknown values
of x, y, and z.

xþ yþ z ¼ 6

xþ y� z ¼ 0

x� 2y� z ¼ 3

Problem 42
Same instructions as for problem 41.

xþ yþ z ¼ 4

3xþ 4y� 2z ¼ �2

�4y� 5z ¼ 1

Problem 43
Same instructions as for problem 41, now for w, x, y, and z, as follows.

wþ xþ yþ z ¼ �4

3w� 2xþ 4yþ 4z ¼ 0

�2wþ 5xþ 7y ¼ �12

3xþ 2y� 3z ¼ 5

3.6 Systems of Homogeneous Linear Equations
There is an important class of systems of simultaneous linear equations in which the
constant terms are all equal to zero. The general form of such a system of n linear
equations in n unknown values can be indicated as follows.

Let x1; x2; x3; . . . ; xn denote the unknown values, and let us denote the constant coeffi-
cients by as with subscripts, giving first the row, then the column; thus,

a11x1 þ a12x2 þ � � � þ a1nxn ¼ 0

a21x1 þ a22x2 þ � � � þ a2nxn ¼ 0

..

. ..
. ..

. ..
.

an1x1 þ an2x2 þ � � � þ annxn ¼ 0

9>>>>=
>>>>;

ð52Þ

The term ‘‘linear homogeneous’’ is a suitable name for such a system because the xs are
all raised to the same first power and the constant terms all have the same value of zero.
Let us now consider how the unknown values of the xs can be found in such a case (the
values of the constant ‘‘a’’ coefficients being given).
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First of all, direct inspection of eq. (52) shows that one solution is that all the xs have the
same value of zero, that is, that x1 ¼ x2 ¼ � � � ¼ xn ¼ 0. Our problem, however, is to find
the really important values of x, in addition to the obvious, ‘‘trivial,’’ answer of zero.

To do this, let us apply the four steps of Cramer’s rule. Doing this, we have no trouble
with steps 1 and 2, but we find that a difficulty arises with step 3, because of the fact that the
constant terms on the right-hand side are all equal to zero. To illustrate the problem, and
show what is required to get a solution, let us work through the example of eq. (42) for the
special case of P, Q, and R all equal to zero; thus,

axþ byþ cz ¼ 0

dxþ eyþ fz ¼ 0

gxþ hyþ iz ¼ 0

9>=
>; ð53Þ

Now look back to the solutions we originally obtained for eq. (42). Notice that the
value of D (eq. (43)) will remain unchanged, because D does not involve the values of P, Q,
and R. Thus the value of D for eq. (53) will be the same as that given by eq. (43).

But now look back at the values of x, y, and z, given by eqs. (47), (50), and (51), for the
case of eq. (42). Note that now, for the homogeneous case of eq. (53), the equations will
each contain a column of zeros, and thus, by property 2 of section 3.4, give the trivial value
of zero for x, y, and z, as shown below.

x ¼

0 b c

0 e f

0 h i

�������
�������

D
¼ 0; y ¼

a 0 c

d 0 f

g 0 i

�������
�������

D
¼ 0; z ¼

a b 0

d e 0

g h 0

�������
�������

D
¼ 0

Thus the difficulty is that, for the homogeneous case of eq. (53), step 3 of Cramer’s rule
gives the trivial answer that x ¼ y ¼ z ¼ 0. One way, however, of resolving the difficulty is
to convert the above expressions into the indeterminate form 0/0,* which can then, hope-
fully, be manipulated to yield non-zero values of the unknowns. To convert the above
equations into the 0/0 form we see that D must be equal to zero; thus we have that

A system of n homogeneous linear equations in n unknowns can have non-
zero solutions if and only if the determinant of the coefficients vanishes, that
is, only if D ¼ 0.

To continue with the example of eq. (53), this means that D, which is given by eq. (43),
must be equal to zero; thus, expanding eq. (43) in terms of the elements of row 1, we must
have that

D ¼ a
e f

h i

����
����þ b

�d f

�g i

����
����þ c

d e

g h

����
���� ¼ 0 ð54Þ
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IF and only if eq. (54) is satisfied, can the system of eq. (53) have solutions other than
the trivial x ¼ y ¼ z ¼ 0. Now compare eq. (54) with the equation axþ byþ cz ¼ 0 from
eq. (53); the comparison shows that if eq. (54) is satisfied, then eq. (53) is satisfied for the
non-trivial values

x ¼ e f

h i

����
����; y ¼ �d f

�g i

����
����; z ¼ d e

g h

����
���� ð55Þ

The procedure can be extended to homogeneous linear systems of any order.

Problem 44
Given the homogeneous linear system

3x� 2y� 5z ¼ 0

x� y� z ¼ 0

2x� y� 4z ¼ 0

Does the system possess non-trivial solutions? If so, find such a solution.

Problem 45
Given the homogeneous linear system

4x� 18y� 7z ¼ 0

2x� 4pyþ pz ¼ 0

pxþ 3yþ 5z ¼ 0

where p is constant, find the values of p for which the system has non-trivial solu-
tions, and find such a solution.
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Basic Network Laws and
Theorems

4.1 Introduction
In this chapter we continue with the work we began in Chap. 2.

While the fundamental procedures of Chap. 2 are very useful they can, in some cases,
become quite awkward to use. Also, there are some types of networks that cannot be sepa-
rated into purely series and parallel groups of resistors, and in such cases the procedures
cannot be used. The so-called ‘‘bridge networks’’ are of this type.

It is therefore necessary that we have available a more general method of circuit
analysis than that used in Chap. 2. Fortunately such a procedure exists, resting upon
what are generally called Kirchhoff’s current and voltage laws (usually pronounced as
‘‘KIRK off’’), which are the subject of this chapter.

4.2 Kirchhoff’s Current Law
Kirchhoff’s ‘‘current law’’ is based upon the fact that at any connecting point in a
network the sum of the currents flowing toward the point is equal to the sum of the
currents flowing away from the point. The law is illustrated in the examples in Figs. 42
and 43, where the arrows show the directions in which it is given that the currents are
flowing. (The number alongside each arrow is the amount of current associated with that
arrow.)

The example of Fig. 42 shows that if a current of 8 amperes is flowing toward a
connecting point ‘‘p,’’ then it is true that 8 amperes has to be flowing away from p. In
the same way, Fig. 43 shows that if 11 amperes is flowing toward connection point p, then
11 amperes has to be flowing away from p.
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Any connecting point, such as p in the above figures, is called a node* (as in ‘‘load’’),
and the relationship at a node, or ‘‘nodal point,’’ is summarized in Kirchhoff’s current law:

The sum of the currents flowing TO a node point equals the sum of the
currents flowing FROM that point.

The currents flowing into and out of a node point are called ‘‘branch currents.’’ Thus,
in Fig. 42 the branch currents are 6, 2, and 8 amperes.

There is an important point to be made in regard to branch currents, which is explained
with the aid of Figs. 44 and 45, in which the branch currents are denoted by I1, I2, and I3,
as follows.

In Fig. 44 note that separate notation is used to denote the value of each of the three
branch currents. However, by Kirchhoff’s current law, I3 ¼ I1 þ I2, and thus, as shown in
Fig. 45, we need to use only two current designations. In other words, if we know any two
of the three currents in Fig. 44, we can then find the third current. In the same way, if there
are, say, four branch currents entering and leaving a node point, and if we know any three
of the currents, we can then find the fourth current, and so on.

It is important to note that Kirchhoff’s current law can also be stated in terms of the
‘‘algebraic sum’’ of the currents at a junction or nodal point. This can be understood by
referring to Fig. 44, as follows.

In Fig: 44: I1 þ I2 ¼ I3

thus: I1 þ I2 � I3 ¼ 0 ð56Þ
Equation 56 can also be arrived at by requiring that all current values at a junction

point be put on one side of the current equation, and then requiring that currents flowing
TO the point be listed as ‘‘positive’’ currents and currents flowing AWAY from the point
be listed as ‘‘negative’’ currents. If this rule is understood to always apply, then
Kirchhoff’s current law can be stated in the form

The algebraic sum of the currents at a node (junction point) is equal to zero.
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4.3 Kirchhoff’s Voltage Law
Note: before commencing this section you might wish to first review the meanings of the
terms ‘‘active device’’ and ‘‘passive device’’ from section 2.5.

Consider, now, two points x and y. If we say that x is at a HIGHER VOLTAGE
than y, we will mean that x is POSITIVE with respect to y.

Thus, going from a point y ‘‘up’’ to a more positive point x constitutes a RISE in
voltage, while going from a point x ‘‘down’’ to a less positive point y constitutes a DROP
in voltage.

In other words, going from minus to plus is a voltage rise, whereas going from plus to
minus is a voltage drop.

We’ve already learned that the voltage drop across a resistor of R ohms carrying a
current of I amperes is RI volts (eq. (13), Chap. 2), and that the polarity of the voltage drop
across a resistor is always PLUS TO MINUS in the direction of the current, as in Fig. 46.

Thus, if we go through a resistor in the same direction as the current we go from ‘‘plus to
minus,’’ which is a voltage drop of RI volts. But if we go through a resistor against the
current flow we go from ‘‘minus to plus,’’ which is a voltage rise of RI volts.

We likewise experience a voltage rise if we go through a battery from minus to plus, and
a voltage drop if we go through a battery from plus to minus. All the foregoing facts can be
summarized as follows.

Moving through any circuit element, active or passive, from NEGATIVE
TO POSITIVE is a VOLTAGE RISE, while moving from POSITIVE TO
NEGATIVE is a VOLTAGE DROP. It should be remembered that the
voltage across a resistance is always positive to negative in the direction of the
current, as illustrated in Fig. 46.

Common sense tells us that if we go completely around a closed path in a circuit the
sum of the voltage rises must equal the sum of the voltage drops in the path; that is, there
can be no voltage ‘‘left over’’ in a closed path.

In network terminology any closed path is called a loop, and using this term the above
fact, concerning voltage drops and rises, is summarized in Kirchhoff’s voltage law:

If we go in a specified direction completely around any loop (closed path) in
any circuit, the sum of the voltage drops equals the sum of the voltage rises in
the loop.

By ‘‘specified direction’’ we mean clockwise (cw) or counterclockwise (ccw). We can
choose either direction but, having made a choice, we must keep that direction throughout
the working of a given problem.

Let us now illustrate, with the aid of Fig. 47, how the foregoing definitions are actually
applied. Note that Fig. 47 consists of two resistances and two batteries, all in series. Let
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us assume the current I is flowing in the cw sense around the loop, in which case the
polarities (þ and �) appear across the resistances as shown.

Let us now write the equation for Fig. 47 in accordance with Kirchhoff’s voltage law. To
do this, we start at any point, such as A, and move completely around the circuit (we will
assume in the cw sense here), listing the ‘‘voltage drops’’ and the ‘‘voltage rises’’ as we go. (In
doing this, remember that we have defined that going from ‘‘minus to plus’’ constitutes a
RISE in voltage and going from ‘‘plus to minus’’ constitutes a DROP in voltage.) Thus, if we
agree to list all ‘‘voltage drops’’ on the left-hand sides of our equations and all the ‘‘voltage
rises’’ on the right-hand sides, the Kirchhoff voltage equation for Fig. 47 is

R1I þ V2 þ R2I ¼ V1

Note that V2 appears as a voltage drop, because we go through that battery from plus
to minus (þ to �). Or, putting all the battery voltages on the right-hand side, the above
equation becomes

R1I þ R2I ¼ V1 � V2 ð57Þ

hence I ¼ V1 � V2

R1 þ R2

Notice that if V1 is greater than V2 the current I will be positive, which means that the
current does flow in the cw sense, as assumed in Fig. 47.

Note, however, that if V2 is greater than V1 then I will be negative, which means that
the current I actually flows in the ccw sense, opposite to the direction assumed in Fig. 47.
This will be true in general in all our work; thus, a negative value of current will mean that
the current actually flows in a sense or direction opposite to what we assumed when we
drew the current arrows in the circuit diagram.

Problem 46
In Fig. 48, the resistance values are in ohms and the battery emf’s are in volts. Let
the cw sense be the direction of positive current, as shown. Find I .
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4.4 The Method of Loop Currents
With all the foregoing in mind, let us now take up a widely used procedure in network
analysis called the method of ‘‘loop currents.’’ The principle is explained with the aid of
Figs. 49 and 50.

In Fig. 49 we use the familiar method of showing a separate current arrow in each
branch of the network. Note that the current flowing in the middle resistance is ðI1 þ I2Þ,
in accordance with Figs. 44 and 45.

Notice, however, as shown in Fig. 50, that as far as circuit analysis is concerned we can
assume that current I1 flows only around the left-hand loop, and that current I2 flows only
around the right-hand loop; the current in the middle resistance is ðI1 þ I2Þ, just as in Fig.
49, and this fact is the basis of the loop-current method of network analysis.

The three steps in using the ‘‘loop current’’ method will now be summarized, followed
by an example worked through in detail.

Step I. Draw and label the current flowing around each loop (closed path)
in the network, with arrowhead indicating the direction the current
is assumed to flow around the loop in each case. We must be sure
not to ‘‘miss’’ any battery or resistor; that is, they must be all
traversed by at least one loop current.

It makes no difference whether a current is assumed to flow cw or
ccw, but, once labeled, the direction must not be changed during the
working of the problem. If the assumed direction of current flow is
opposite to the actual direction, the algebra will tell us this by
producing a negative value for the particular current in question.

Step II. Write the voltage equation around each of the n loops of the
network, thus generating n linear equations in n unknown currents.
In writing the voltage equations around a loop, select any
convenient ‘‘starting point’’ in the loop and go completely around
the loop, returning to the starting point for that loop. In writing
these equations we will, for the sake of uniformity, always adhere
to the following rules, to put our equations in the form of eq. (57).

The voltages across resistors will be of the form ‘‘�IR,’’ and
will always be written on the left-hand side of the equations. They
will be written ‘‘þIR’’ if we go through the resistor in the direction
of the current, but ‘‘�IR’’ if in a direction opposite to that of the
current.
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All battery voltages will be written on the right-hand sides of
the equations, and will be considered positive if we go through a
battery from minus to plus, but negative if we go through the
battery from plus to minus.

Step III. Solve the n equations, found in step II, for the required values of
current. Since the equations are linear (of the first degree in I), it
will generally be most convenient to use the method of
determinants.

Example
Given: the network of Fig. 51, in which the three loop currents are all assumed to flow

in the cw sense, as shown. The resistance values are in ohms. The PROBLEM is to

find the potential Va with respect to ground. (The ‘‘ground’’ or ‘‘earth’’ symbol was

used before, in problem 22, Chap. 2, and has no particular significance here, but is

just used as a convenient reference point for the network voltages.)

Solution

Step I. In this problem, in order to use all the circuit elements, we must
use three loop currents, which have been chosen as shown in the
figure.

Step II. In accordance with the rules laid down, the three loop voltage
equations are, from left to right in the figure (tracing around
each loop in the direction indicated by the arrowhead), as
follows:

¢rst loop: 11I1 � 6I2 þ 0I3 ¼ 24

second loop: � 6I1 þ 13I2 � 4I3 ¼ �18

third loop: 0I1 � 4I2 þ 13I3 ¼ 6

In the above, we wrote 0I1 and 0I3 merely to keep the equations
‘‘lined up’’ in a convenient manner.

Step III. In this problem we are asked to find the voltage drop across the
9-ohm resistor, that is, the value of ‘‘9I3’’; hence, in this problem, we
must find the value of I3. The first step in doing this is to find the
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value ‘‘D’’ of the denominator determinant, which is the determinant formed
from the coefficients of the unknowns; thus,

D ¼
11 �6 0

�6 13 �4

0 �4 13

�������
�������

which, upon expanding in terms of the minors of the first column (and
factoring the determinants where possible) is equal to

D ¼ 11
13 �4

�4 13

����
����� 12

3 0

2 13

����
���� ¼ 1215

To find the value of I3 we use the same determinant as above, except now
the coefficients of I3 are replaced by the constant terms on the right-hand sides of
the network equation found in step II. The value of I3 is then equal to

I3 ¼

11 �6 24

�6 13 �18

0 �4 6

�������
�������

D
¼

6

11 �6 4

�6 13 �3

0 �4 1

�������
�������

1215
¼ ð6Þð71Þ

1215
¼ 0:35062 amperes; approx:

and therefore

Va ¼ 9I3 ¼ 3:15556 volts; answer

Problem 47
In Fig. 52, the symbol ‘‘�’’ is the capital Greek letter omega, which is often used to
denote ‘‘ohms.’’ Using the method of loop currents, find the current in the 7-ohm
resistance. (Answer: 1.24138 amperes)

Problem 48
In the ‘‘bridge-type’’ network in Fig. 53, the resistance values are in ohms. Find the
voltage drop across the 4-ohm resistance. (Answer: 1.8462 volts)
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Problem 49
In Fig. 54, find the potential at point ‘‘a’’ with respect to ground. Resistance values
are in ohms. (Answer: 8.98294 volts)

Problem 50
This problem is included here as an example of the very important PRINCIPLE OF
SUPERPOSITION, which we first met in section 1.3 (eq. (7)). As applied to electric
networks, the principle of superposition can be stated as follows.

In a network composed of linear* elements and several generators, the current at
any point in the network is the sum of the currents due to EACH GENERATOR
CONSIDERED SEPARATELY, the other generators being replaced by their inter-
nal resistances. In our applications here, we’ll assume the generators (batteries) to
have zero internal resistance.

In problem 47, Fig. 52, we found the current in the 7-ohm resistor to be, to five
decimal places, equal to 1.24138 amperes. Verify this answer by applying the prin-
ciple of superposition to Fig. 52.

Problem 51
Explain why all actual resistances are ‘‘non-linear’’ to some degree.

Problem 52
In Fig. 53, suppose it is desired to replace the 3-ohm resistor with a resistor of R
ohms, such that the current through the 4-ohm resistor will be zero. What must be
the value of R? (Answer: R ¼ 0:5 ohm)
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4.5 Conductance. Millman’s Theorem
In certain types of network it is more convenient to work with the RECIPROCAL of
resistance instead of directly with resistance itself. The reciprocal of resistance is called
conductance, and is denoted by ‘‘G.’’ Hence, by definition,

G ¼ 1

R
¼ 1=R ð58Þ

Thus ‘‘conductance’’ is measured in units of ‘‘reciprocal ohms,’’ called mhos (‘‘mho’’ is
‘‘ohm’’ spelled backward). The term siemen is also used for reciprocal ohms and is the SI
unit of electrical conductance. As eq. (58) shows, HIGH RESISTANCE means LOW
CONDUCTANCE, and vice versa; for example,

if R ¼ 1000 ohms then G ¼ 1=1000 ¼ 0:001 mho;

or if R ¼ 0:001 ohm then G ¼ 1=0:001 ¼ 1000 mhos:

Thus the basic Ohm’s law, I ¼ V=R, becomes, in terms of conductance,

I ¼ GV ð59Þ
showing that ‘‘amperes equals mhos times volts.’’

Next consider POWER, P. In section 2.3 we found that P ¼ V2=R, and thus

P ¼ GV2 watts ð60Þ
Conductance is especially convenient to use when dealing with purely parallel net-

works, as the following will show.
In section 2.6 (eq. (32)), we found that the total resistance RT of n parallel-connected

resistances is found by means of the relationship

1

RT

¼ 1

R1

þ 1

R2

þ 1

R3

þ � � � þ 1

Rn

which is not especially easy to use. Note, however, that by the definition of eq. (58) we
have that the total conductance of n parallel-connected resistances is equal to the simple
sum of the individual conductances; thus

GT ¼ G1 þ G2 þ G3 þ � � � þ Gn ð61Þ
The use of conductance is especially helpful in dealing with parallel networks in which

each branch is composed of a conductance in series with a battery, as in Fig. 55.
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In Fig. 55 let the values of the conductances and battery voltages be given, and let the
object be to find a formula for calculating the output voltage Vo with respect to the
‘‘ground line.’’ This can be done as follows.

First, it should be understood that no current flows ‘‘out of the circuit’’ at the point
labeled Vo; that is, the voltage Vo looks, to the right, into an ‘‘open circuit.’’ (An open
circuit has ‘‘infinitely great resistance,’’ that is, ‘‘zero conductance.’’)

Next, note that the upper horizontal line (which is at the potential Vo with respect to
ground) is a ‘‘node’’ or ‘‘junction point’’ into which all the currents, I1, I2, and so on, flow.
Hence, to satisfy Kirchhoff’s current law, the ALGEBRAIC SUM of all these currents has
to be zero; thus

I1 þ I2 þ I3 þ � � � þ In ¼ 0 ð62Þ

Note that this can be true in general only if both negative and positive currents exist;
that is, some of the currents in Fig. 55 will have to flow ‘‘downward’’ instead of ‘‘upward.’’

Now consider any one of the n parallel branches in Fig. 55; let us take, as an example,
branch number 1 (that is, the branch to the far left side in Fig. 55). Now denote by VG1 the
voltage drop across the conductance G1. Since Vo is equal to the battery voltage minus the
voltage drop across G1, we have that

V1 � VG1 ¼ Vo

thus,

VG1 ¼ V1 � Vo

then multiplying through by G1 gives:

G1VG1 ¼ G1V1 � G1Vo

But, by eq. (59), G1VG1 ¼ I1 ¼ the current in branch 1, and thus the last equation
becomes

I1 ¼ G1V1 � G1Vo

next, in the same way,

I2 ¼ G2V2 � G2Vo

and so on

..

. ..
.

In ¼ GnVn � GnVo

Now note that, by eq. (62), the sum of all the right-hand sides is equal to zero; that is,

ðG1V1 þ G2V2 þ � � � þ GnVnÞ � ðG1 þ G2 þ � � � þ GnÞVo ¼ 0

and thus we have the desired result,

Vo ¼ G1V1 þ G2V2 þ � � � þ GnVn

G1 þ G2 þ � � � þ Gn

ð63Þ

Equation (63), which applies to the particular network of Fig. 55, is called Millman’s
Theorem, and is helpful in, for example, the study of transistor amplifier circuits and in
other applications also. (If some of the branches do not contain batteries, the battery
voltages for those branches are entered as ‘‘zero’’ in eq. (63).)
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Problem 53
In Fig. 56, the circuit values are given in ohms and volts. Find Vo with respect to
ground.

Problem 54
In Fig. 56, suppose the 12-volt battery were to be reversed in polarity (turned
‘‘upside down’’), everything else remaining unchanged. Find Vo.

(Answer: 2.84534 V)

4.6 Thevenin’s Theorem
All practical sources of electrical energy (generators) have internal resistance, as was
pointed out in section 2.5. The general case is illustrated in Fig. 57.

In the figure, Rg denotes the internal resistance of the generator. We are here represent-
ing the generator by the battery symbol, but the generator can, of course, be any kind of
source of direct-current (dc) voltage.

Note that RL is an external load resistance that can be connected to the generator
terminals, a and b, by closing the switch.

Also in the figure,Vg is the total generated voltage developed by the generator, whileVo is
the voltage appearing at the generator terminals ab and VL is the voltage across the load
resistance. IL is the current that flows when the switch is closed.

If the switch is open, then Vo ¼ Vg (because no current flows with the switch open, and
thus there is no voltage drop across Rg), and of course VL ¼ 0 with the switch open.

This points out the fact that to find the total generated voltage, Vg, we must measure the
voltage at the generator terminals under open-circuited conditions, that is, with the load RL
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disconnected from the generator. Also, to find Rg, the internal resistance of the generator,
we must likewise measure the resistance between terminals ab with the load disconnected,
that is, under ‘‘open-circuited’’ conditions, with all batteries (generators) being replaced
with their internal resistances.

When the switch is closed, current IL flows, producing a voltage drop across Rg, the
internal resistance of the generator, thus causing the terminal voltage Vo to change in
value. ðVo ¼ VL when the switch is closed.)

With the above in mind, let ‘‘ab’’ be two terminals coming out of any network com-
posed of generators and resistances, as indicated by the box in Fig. 58.

In regard to Fig. 58, THEVENIN’S THEOREM (generally pronounced ‘‘THEV eh
nin’’ in the United States) says that, as far as the voltage and current in any external load
resistance, RL, is concerned:

The entire network, inside the box, can be replaced by a single
generator whose generated voltage is equal to the open-circuit voltage
appearing between a and b, and whose internal resistance is equal to the
resistance seen looking back into the open-circuited terminals, with all
generators removed and replaced with resistances equal to their internal
resistances.

Now compare Fig. 58 with Fig. 57; Thevenin’s theorem says that, whatever the actual
network may be inside the box in Fig. 58, it can be replaced, as far as external results are
concerned, by the equivalent single generator of Fig. 57, in which the values of Vg and Rg

are determined by making two open-circuit measurements at terminals a and b, that is,
with RL disconnected.

Any such equivalent generator (Fig. 57) thus consists of a CONSTANT-VOLTAGE
generator (generating a constant Vg volts) in series with a resistance of Rg ohms.

Thevenin’s theorem is especially helpful when we desire to investigate changes in
VL and IL when only the load resistance RL is changed. This can be illustrated as
follows.

Problem 55
In Fig. 56, suppose it is proposed to connect a load resistance of RL ¼ 2 ohms in
parallel with the 10-ohm resistance. By making use of Thevenin’s theorem,* find the
current that would flow in the 2-ohm resistance. Repeat for RL ¼ 3 ohms and
RL ¼ 4 ohms.
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Problem 56
In Fig. 59, the resistance values are in ohms. Replace the network to the left of
terminals a, b with the equivalent Thevenin generator.

(Answer: Vg ¼ 32:143 V, Rg ¼ 4:179 ohms)

4.7 Norton’s Theorem
Another widely used network theorem, called NORTON’S THEOREM, makes use of a
theoretical, but very useful, device called a CONSTANT-CURRENT GENERATOR. As
the name says, a ‘‘constant-current generator’’ is a theoretical generator that delivers the
SAME CONSTANT CURRENT TO ALL FINITE LOAD RESISTANCES it is con-
nected to.

To understand what such a theoretical generator would have to be like, suppose, just
for the sake of discussion, that, back in Fig. 57, the generated voltage of the generator was
100 billion volts and that Rg, the internal resistance of the generator, was, let us say, 10
billion ohms. Then the generator would deliver an output current IL equal to

IL ¼ Vg

Rg þ RL

¼ 1011

1010 þ RL

amperes ð64Þ

Now suppose the generator terminals a, b are ‘‘shorted together’’ (making RL ¼ 0). For
this ‘‘short-circuit’’ condition of RL ¼ 0, the generator delivers a current of

IL ¼ 1011

1010
¼ 10 amperes

Now suppose the short-circuit is removed, and a load resistance of ten-thousand ohms is
connected between terminals a, b. Then the current delivered by the generator will be, by
eq. (64),

IL ¼ 1011

1010 þ 104
¼ 1011

104ð106 þ 1Þ ¼
10,000,000

1,000,001
¼ 9:99999 amperes, approx:

Now suppose the load resistance is increased to say one million ohms. Then the current
delivered by the generator is

IL ¼ 1011

1010 þ 106
¼ 1011

106ð104 þ 1Þ ¼
100,000

10,001
¼ 9:99900 amperes, approx:
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Notice that our generator delivers an almost constant current of 10 amperes, regardless
of whether it works into a load of zero ohms or one million ohms. We thus see that a true
constant-current generator is a theoretical device having infinitely great generated voltage
but infinitely great internal resistance, the ratio of the two being equal to a finite constant
current.

The symbol for a constant-current generator is shown below, where ‘‘I ’’ is the value of
the constant current, the arrow designating the direction of ‘‘positive current.’’

Let us now return to the two-terminal network inside the box of Fig. 58, to which a
load resistance RL can be connected, and take up the details of Norton’s theorem.

Norton’s theorem is expressed in terms of the short-circuit current delivered by the
network, and in terms of conductances instead of resistances. This makes Norton’s the-
orem especially useful in the study of parallel circuits. The statement of Norton’s theorem
is as follows, after which we’ll give the proof of the statement.

The current in any load conductance GL, when connected to two terminals
of a network, is the same as if GL were connected to a constant-current
generator whose constant current is equal to the current that flows between
the two terminals when they are short-circuited together, this constant-cur-
rent generator then being put in parallel with a conductance equal to the
conductance seen looking back into the open-circuited terminals of the
network. (In this last step, all generators are removed and replaced with
conductances equal to their internal conductances.)

Norton’s theorem is summarized graphically in Fig. 60, where Isc is the short-circuit
current that flows from the network when terminals a, b are ‘‘shorted’’ together. Gg is the
conductance seen looking back into the network with the terminals open-circuited, that is,
with the switch open. Gg is the reciprocal of Rg in Thevenin’s theorem.

The truth of Norton’s theorem can be shown as follows. Let any two-terminal network
be inside the box of Fig. 58. We know that, as far as the external load resistance RL is
concerned, the network inside the box can be replaced with the Thevenin equivalent
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generator of Fig. 57, where, by inspection of Fig. 57, we have

IL ¼ Vg

Rg þ RL

ð65Þ

Now put a short-circuit (a copper wire) between terminals a, b in Fig. 57. The short-
circuit current flowing between the terminals is then (since RL ¼ 0 for this condition)

Isc ¼
Vg

Rg

Now put this value of Vg, Vg ¼ IscRg, into eq. (65), then multiply both sides by RL.
Since RLIL ¼ the voltage across the load ¼ VL, we get

VL ¼ Isc

�
RgRL

Rg þ RL

�

Now multiply the numerator and denominator of the last fraction by 1=RgRL. Then, by
the definition of conductance (eq. (58)), the last equation becomes

VL ¼ Isc
Gg þ GL

ð66Þ

We now know that eq. (66) is the correct equation for the voltage VL appearing across
the load.

With this in mind, turn now to the proposed equivalent circuit of Fig. 60. Remembering
that conductances in parallel add together like resistances in series (eq. (61)), and also
remembering the basic relation, I ¼ GV (eq. (59)), we have, for Fig. 60, Isc ¼
ðGg þ GLÞVL, so that

VL ¼ Isc
Gg þ GL

Since the last equation is the same as eq. (66), it follows that Figs. 57 and 60 produce
completely equal results as far as any external load is concerned, and therefore either can be
used.
TO SUMMARIZE:

Any two-terminal network consisting of generators and linear* bilateral* resistances
can be replaced as far as an external load connected to the two terminals is concerned by
either a Thevenin generator (Fig. 57) or a Norton generator (Fig. 60). If the external load
consists of multiple parallel branches, it will generally be more convenient to use the
Norton generator.

Problem 57
In Fig. 60, let IL denote the value of the current that would flow in the load con-
ductance GL if the switch were closed. Now, by making use of the basic relationship
I ¼ GV (eq. (59)), show that

IL ¼ GLIsc
Gg þ GL

ð67Þ
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Problem 58

(a) Going back to Fig. 59 in section 4.6, replace the network to the left of term-
inals a, b with the equivalent Norton generator.

(b) In Fig. 59, suppose RL ¼ 10 ohms. Show that the Thevenin and Norton gen-
erators produce the same external load current, IL ¼ 2:267 amperes, to three
decimal places in each case.

Problem 59
In Fig. 60, if Isc ¼ 6:155 amperes and Gg ¼ 0:109 mho, draw the Thevenin equivalent
generator.

4.8 The Method of Node Voltages
The method of ‘‘node voltages’’ is a procedure for network analysis based upon Kirch-
hoff’s current law (section 4.2). The procedure is as follows.

We begin by selecting one of the nodes in the network to be the reference node. The
unknown voltages, at the other nodes in the network, are to be found relative to the ‘‘zero
voltage’’ at the reference node.

Thus, in the ‘‘node method’’ of network analysis the NODE VOLTAGES ARE THE
UNKNOWNS, instead of the currents as in the loop method. If a network has N nodes,
then N � 1 node voltages will be present (because one of the N nodes is selected to be the
‘‘reference node,’’ which is then taken to be at ‘‘zero reference potential’’).

We begin our discussion with Fig. 61, which shows a resistance of R ohms connected
between two node points a and b. Let us assume a current of I amperes flowing through R
from node a to node b, as shown.

In Fig. 61, g is the reference node. It will always be understood, unless definitely stated
otherwise, that all node voltages in a network are given relative to the reference node, which
is taken as being at zero voltage, that is, Vg ¼ 0. Thus, in Fig. 61, the node voltages Va and
Vb are measured with respect to the reference node g.

In practical work it is often necessary, or at least desirable, to connect one side of a
circuit to ‘‘earth’’ or ‘‘ground’’ by connection, for example, to an underground water pipe.
This may be done to insure the safety of personnel, or to minimize noise pickup, and so on.
Often, however, we’ll use the ground symbol as a convenient symbol to designate the
reference node, even though it may not actually be connected to an earth ground.

In Fig. 61 we are assuming that current is flowing from left to right, from node a to
node b, as shown. This indicates that node a is POSITIVE with respect to node b, because
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conventional current* flows from a point of higher potential to a point of lower potential,
that is, from positive to negative.

For example, if Va ¼ þ100 volts and Vb ¼ þ70 volts (both measured with respect to g),
then node a would be 30 volts positive with respect to node b, so that current would flow
from node a to node b, as in Fig. 61.

Since, by Ohm’s law, current equals voltage divided by resistance ðI ¼ V=RÞ, the
situation in Fig. 61 is stated algebraically by writing

I ¼ Va � Vb

R
ð68Þ

In applying the method of node voltages to a network we first designate the ‘‘reference
node,’’ which we’ll generally do by use of the ‘‘ground’’ symbol as mentioned above. We
then label the unknown voltages, at the different nodes, as Va, Vb, Vc, and so on, all
voltages being with respect to the ‘‘zero voltage’’ at the reference node. We next draw and
label the ‘‘current arrows’’ I1, I2, I3, and so on, at each node (see Fig. 44, section 4.2), and
then write the current equation at each node (see eq. (56), section 4.2). Now, in each
current equation, replace each current by its equivalent in terms of eq. (68); doing this
gives us the required equations in terms of the unknown node voltages. If the battery
voltages and resistance values are known, the resulting linear simultaneous equations can
then be solved to find the node voltages.

Example
In Fig. 62, resistance values are in ohms. Using the node-voltage procedure find, to

the third decimal place, Vb and Vc. Use the current arrows as given in the figure, or

redraw them any way you wish.

Solution

First, for the node at Vb:

I1 � I2 � I3 ¼ 0 ðAÞ

and, for the node at Vc:

I3 � I4 þ I5 ¼ 0 ðBÞ
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Next, by inspection we see that Va ¼ 20 volts and Vd ¼ 12 volts; thus, applying
eq. (68), we have

I1 ¼
20 � Vb

6
I3 ¼

Vb � Vc

2
I5 ¼

12 � Vc

3

I2 ¼ Vb=4 I4 ¼ Vc=5

Now, upon substituting these values into equations (A) and (B), you should
find that

11Vb � 6Vc ¼ 40

�15Vb þ 31Vc ¼ 120

and thus the answers are

Vb ¼ 7:809 V and Vc ¼ 7:649 V

Problem 60
In Fig. 63, use the node-voltage procedure to find the voltages at nodes 1 and 2.
Resistance values are in ohms.
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Sinusoidal Waves.
rms Value. As Vector
Quantities

5.1 Introduction
So far in our work we’ve dealt only with currents and voltages whose senses of direction
and polarity never change. Such currents and voltages are called DIRECT currents and
DIRECT voltages.

Thus, since the polarity of a battery does not change, we say that a battery is a source of
‘‘direct’’ voltage, producing a flow of ‘‘direct’’ current. The abbreviation ‘‘dc’’ is com-
monly used to identify such quantities; thus we have ‘‘dc voltage,’’ ‘‘dc current,’’ ‘‘dc
power,’’ and so on.

There is, however, another class of voltages and currents whose senses of both direction
and polarity continually ALTERNATE with time, plus to minus, minus to plus, and so on,
endlessly. The term ‘‘alternating’’ is used to denote such a voltage or current, and the
abbreviation ‘‘ac’’ is used to denote such quantities. Thus we have ‘‘ac voltage,’’ ‘‘ac
current,’’ ‘‘ac power,’’ and so on.

Offhand, a person might expect that the algebra of ‘‘ac circuits’’ would be considerably
different, and more difficult, than the algebra of ‘‘dc circuits.’’ It is, of course, true that ac
calculations can differ greatly from dc calculations. But such differences can be concisely
expressed mathematically, and, when this is done, we’ll find that the form of the alge-
braic statements (Kirchhoff’s laws, loop currents, and so on) that we learned in dc work
will carry over directly into our ac work. Let us now begin the study of this most inter-
esting and useful subject.
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5.2 The Sinusoidal Functions and the
Tangent Function

Fundamental to the study of ‘‘alternating currents’’ are the SINUSOIDAL functions, the
term ‘‘sinusoidal’’ (‘‘sign u SOID al’’) denoting either the SINE function or the COSINE
function. The ‘‘sine’’ and ‘‘cosine’’ are simple but remarkable functions, having properties
unlike any others in the entire realm of mathematics.

We’ll find that the two functions (sine and cosine) can be said to have identical ‘‘wave-
forms,’’ the only difference being that the two are ‘‘shifted’’ with respect to each other on
the horizontal or time axis. As a matter of fact, a person viewing a ‘‘sinusoidal’’ waveform
on an oscilloscope, and having no other information, could not say whether the waveform
represented a ‘‘sine’’ or a ‘‘cosine’’ function. Let us now proceed with some definitions.

We first meet the sine and cosine in the study of plane trigonometry, in connection with
the geometry of a RIGHT TRIANGLE, using the terminology of Fig. 64.

In the triangle, the side h, opposite the 908 angle, is called the hypotenuse, as usual in a
right triangle. We’ll call the angle � (theta) the ‘‘reference angle’’; then the side opposite � is
called the OPPOSITE side and the side adjacent to � is called the ADJACENT side, as
shown. Remember that we always have a RIGHT triangle, so that one angle always
remains fixed at 908. Note that we’ve denoted the third angle by � (phi or ‘‘fee’’). Since
the three angles of a plane triangle must add up to 180 degrees, it follows that � ¼ 90 � �
degrees.

An important fact concerning Fig. 64 (or any triangle, for that matter) can be understood
as follows. Imagine thatwe looked atFig. 64 through amagnifying glass having amagnifying
power of ‘‘k’’ times. Doing this would change the apparent SIZE of the triangle (each of the
three sides would be multiplied by k), but it would not change the SHAPE of the triangle in
any way; that is, it would not change the ANGLES in any way. This will serve to illustrate
the important fact that

In Fig. 64 the RATIO of any one side to either of the other two sides
depends not upon the SIZE of the triangle but only upon the ANGLE �.
(The angle � is automatically known if the reference angle � is given,
because � ¼ 90 � �.)

In the study of alternating currents we deal mainly with three different ratios of the sides
of a right triangle. In terms of an angle �, the three ratios are called the SINE (‘‘sign’’) of
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the angle �, the COSINE (‘‘KOH sign’’) of the angle �, and the TANGENT of the angle �.
Then,

The expression sine of � is abbreviated sin � and read as ‘‘sine of theta,’’

The expression cosine of � is abbreviated cos � and read as ‘‘cosine of theta,’’

The expression tangent of � is abbreviated tan � and read as ‘‘tangent of theta.’’

Referring now to the ‘‘standard reference triangle’’ of Fig. 64, the above expressions are
defined to mean that (and these definitions should be committed to memory)

sin � ¼ opposite side

hypotenuse
¼ b

h

cos � ¼ adjacent side

hypotenuse
¼ a

h

tan � ¼ opposite side

adjacent side
¼ b

a

that is, in Fig. 64:

sin � ¼ b=h ð69Þ
cos � ¼ a=h ð70Þ
tan � ¼ b=a ð71Þ

The quantities sin �, cos �, and tan � are the three principal ‘‘trigonometric functions.’’
The values of the functions depend only upon the angle �. In our work the angle � will
generally be regarded as the ‘‘independent variable.’’ As mentioned previously, ‘‘sin �’’
and ‘‘cos �’’ are referred to as the sinusoidal functions.

Now let us see how the values of sin �, cos �, and tan � vary as � varies from � ¼ 08 to
� ¼ 908. To help us to do this, we’ve used our calculator to fill out a short four-place ‘‘table of
values’’ as follows (which you can verify on your own calculator).

A discussion of the table follows, in which it will be helpful to refer to Fig. 65.
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�8 sin � cos � tan � �8 sin � cos � tan �

0 0.0000 1.0000 0.0000 35 0.5736 0.8192 0.7002

1 0.0175 0.9999 0.0175 40 0.6428 0.7660 0.8391

2 0.0349 0.9994 0.0349 45 0.7071 0.7071 1.0000

3 0.0523 0.9986 0.0524 50 0.7660 0.6428 1.1918

4 0.0698 0.9976 0.0699 55 0.8192 0.5736 1.4281

5 0.0872 0.9962 0.0875 60 0.8660 0.5000 1.7321

6 0.1045 0.9945 0.1051 65 0.9063 0.4226 2.1445

8 0.1392 0.9903 0.1405 70 0.9397 0.3420 2.7475

10 0.1737 0.9848 0.1763 75 0.9659 0.2588 3.7321

15 0.2588 0.9659 0.2680 80 0.9848 0.1737 5.6713

20 0.3420 0.9397 0.3640 85 0.9962 0.0872 11.4301

25 0.4226 0.9063 0.4663 88 0.9994 0.0349 28.6363

30 0.5000 0.8660 0.5774 90 1.0000 0.0000 ‘‘1’’



Let us begin our discussion of the foregoing table for the special cases of � ¼ 08 and
� ¼ 908, by making use of eqs. (69), (70), and (71), and Fig. 65, as follows.

First, for � ¼ 08 we have

sin � ¼ b=h ¼ 0=h ¼ 0; that is; sin 08 ¼ 0

cos � ¼ a=h ¼ h=h ¼ 1; that is; cos 08 ¼ 1

tan � ¼ b=a ¼ 0=h ¼ 0; that is; tan 08 ¼ 0

9>=
>; see table

Next, for � ¼ 908 we have

sin � ¼ b=h ¼ h=h ¼ 1; that is; sin 908 ¼ 1

cos � ¼ a=h ¼ 0=h ¼ 0; that is; cos 908 ¼ 0

tan � ¼ b=a ¼ h=0 ¼ 1; that is; tan 908 ¼ 1

9>=
>; see table

Let us now discuss, in more detail, the statement that ‘‘tan 908 ¼ 1.’’ To begin, note
that, as Fig. 65 shows, as � comes CLOSER AND CLOSER to the value of 90 degrees the
ratio b=a becomes GREATER AND GREATER in value. Mathematically we can say
that, as � becomes ‘‘vanishingly close’’ to the limiting value of 90 degrees, the value of the
ration b=a ‘‘increases without bound,’’ that is, becomes INFINITELY GREAT. The
mathematical expression to indicate this situation is written as

lim
�!908

½tan �� ! 1 ð72Þ

which can be read as ‘‘the tangent of � becomes infinitely great as � approaches the limiting
value of 90 degrees.’’

It should be noted that ‘‘infinity’’ is not a specific number, but is greater than any
number you name, however large. Since infinity is not a specific number, we say that
tan � is undefined for � ¼ 908. It is thus not correct to say that tan 908 ‘‘equals’’ infinity,
because infinity is not a specific value; in this case eq. (72) is really the proper statement to
use. Nevertheless, it is common practice to abbreviate eq. (72) by simply writing that
‘‘tan 908 ¼ 1.’’

At this point we might mention, just briefly, how the values of sin �, cos �, and tan �,
listed in the foregoing ‘‘table of values,’’ were originally found.

Originally, such tables were created by drawing, as carefully as possible, right triangles
for different values of �. Then, upon measuring the lengths of the sides as accurately as
possible, the true values of the ratios b=h, a=h, b=a could be approximately determined for
specific values of �.
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Fig. 65. Here we are holding h constant in length, as the angle h is allowed to have any value from 0
degrees to 90 degrees. As the angle h changes, the length of the sides a and b change, but h
remains constant in length.



Later on, in the early part of the 18th century, following the invention of the calculus,
the values could be directly calculated to as many decimal places as desired by the use of
infinite series.

Problem 61
Using only the fact that an ‘‘equilateral’’ triangle has three equal sides and three
equal angles, find the values of sin 608, cos 608, sin 308, and cos 308.

Problem 62
From inspection of the right triangle of Fig. 64, write the relationship between sin �
and cos � in terms of � only.

Problem 63
In angular measurement, ‘‘one degree’’ is equal to ‘‘60 minutes’’ (written 18 ¼ 60 0). If
it is given that sin 62838 0 ¼ 0:88808, the cosine of what angle is also equal to the
same value, 0.88808?

Problem 64
As used in mathematics, ‘‘identity’’ denotes a relationship that is true for all values of
an unknown quantity, while ‘‘equation’’ denotes a relationship that is true for only a
limited number of values of the unknown. For example, 5ðx� 2Þ ¼ 5x� 10 is an
‘‘identity’’ because it is true for all values of x, but 5ðx� 2Þ ¼ 0 is an ‘‘equation’’
because it is true only for the value x ¼ 2. Now, making use of the right triangle of
Fig. 65 and eqs. (69), (70), (71), show that the following are valid ‘‘trigonometric
identities’’:

ðaÞ* sin2 �þ cos2 � ¼ 1 ðbÞ sin �

cos �
¼ tan �

5.3 Graphics. Extension beyond 90 Degrees,
Positive and Negative

If the values of a function are plotted as points on graph paper, and the points connected
together, a curve called the ‘‘graphical representation’’ of the function is produced. In this
section we’ll draw and investigate the graphical representations (that is, the ‘‘curves’’) of
the three functions, sin �, cos �, and tan �. Let us thus now plot, using rectangular coordi-
nates, the three equations

y ¼ sin � y ¼ cos � y ¼ tan �

putting the dependent variable y on the vertical axis and the independent variable (the
angle � in degrees) on the horizontal axis. We’ll find that we can conveniently show the
curves of sin � and cos � in the same figure, while using a separate figure to show the curve
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* sin2 � ¼ ðsin �Þ2, which is read as the ‘‘sine squared of theta’’ or as the ‘‘square of the sine of theta.’’ It should be

carefully noted that ðsin �Þ2 ¼ sin2 � has an entirely different meaning from sin �2, which is the ‘‘sine of the

quantity theta squared.’’ Also, if we mean to write sin2 �, we must be careful not to drop the exponent down

too far and write ‘‘sin 2�,’’ because this would mean the ‘‘sine of two times theta.’’



of tan �. Doing this, upon making use of the ‘‘table of values’’ given in section 5.2,
produces Figs. 66 and 67.

In regard to Fig. 66 first, notice that ‘‘sin �’’ has the value zero for � ¼ 0, rising to the
maximum value of 1 for � ¼ 908. Then note that ‘‘cos �’’ is just the opposite, having the
maximum value of 1 at zero degrees, decreasing to the value zero for � ¼ 908.

Next, Fig. 67 depicts, graphically, the behavior of ‘‘tan �’’ as the angle � increases from
� ¼ 08 to � ¼ 908. Note that tan � has the value zero for � ¼ 08, then relatively slowly
increases to the value 1 for � ¼ 458, thereafter increasing in value faster and faster, finally
becoming ‘‘infinitely great’’ in value as � approaches 90 degrees (eq. (72)). The function
tan � is simply ‘‘not defined’’ for � ¼ 908, as was discussed in section 5.2.

So far we’ve defined the functions sin �, cos �, and tan � only for angles having values
from � ¼ 08 to � ¼ 908. Actually, however, the functions are defined for ALL POSITIVE
AND NEGATIVE VALUES of the angle �, from ‘‘minus infinity’’ to ‘‘plus infinity.’’ This
is done as follows.

In Fig. 68, the line OB (‘‘oh, bee’’) is held fixed in position, and is called the reference
line, or sometimes the ‘‘initial line.’’ Next, we think of the line OA (‘‘oh, aye’’) as free to
rotate around the point O, thus generating the angle theta, �. The line OA is sometimes
called the ‘‘generating line’’ or, more often, the radius vector.

The generating line or ‘‘radius vector,’’ OA, is free to revolve in either the clockwise
(cw) or the counterclockwise (ccw) sense. It has, by general agreement, been decided to call
the COUNTERCLOCKWISE sense the POSITIVE sense of rotation. Therefore the oppo-
site sense, the CLOCKWISE direction or sense, is the NEGATIVE sense of rotation. These
facts are illustrated in Figs. 69 and 70.

Thus, if OA rotates in the POSITIVE direction (ccw), it generates a POSITIVE angle,
but if it rotates in the negative direction (cw), it generates a negative angle.
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Any given position of the radius vector OA can be expressed in terms of either a
positive angle or a negative angle. An example of this is shown in Fig. 71, wherein the
position of OA is the same in both cases.

As you can see in Fig. 71, OA ends up in the SAME POSITION whether we rotate it
through a positive angle of 120 degrees or a negative angle of ‘‘minus 240’’ degrees. It thus
follows that the POSITION of a radius vector OA is not changed if the angle � is increased
by any plus or minus integral multiple of 360 degrees; thus, in the example of Fig. 71, the
position of OA is not changed if

� ¼ 1208� ð360nÞ8
where n is any integer (whole number).

In section 5.2, the functions sin �, cos �, tan �, were defined only for values of � lying in
the interval from 08 to 908. In this section, however, we’ve just been discussing values of �
outside the range of 08 to 908, and this naturally brings up the question, ‘‘How are the
functions sin �, cos �, tan � to be handled if the angle � lies outside the range of zero degrees
to 90 degrees?’’. For example, what meaning is to be given to terms such as sin 1208,
cos 3558, tan 4858, and so on? In order to give meaning to such terms, the following system
has been adopted, and is in universal use today.

We make use of the standard x and y rectangular coordinate system, with the four
quadrants numbered as shown in Fig. 72. We then let the angle � be generated by rotating
the radius vector around the origin, as shown in Fig. 73. It should be emphasized that the
four quadrants will always be numbered and referred to as shown in Fig. 72.

Next, in Fig. 73, A represents the LENGTH of the radius vector, it being defined that A
is always given as a POSITIVE value. The reference line, from which all angles will be
measured, will be the positive side of the x-axis. Positive angles are generated by rotating A
in the ccw sense, and negative angles are generated when A is rotated in the cw sense (as in
Figs. 69 and 70 above).

Now, with all the above in mind, the procedure for finding the values of the trigono-
metric functions of ANY ANGLE � is as follows.

Begin by drawing a line from the tip of the radius vector perpendicular to the x-axis. Be
careful to note that this line is always drawn from the tip of the radius vector to the x-axis,
regardless of what quadrant the radius vector might be in. Drawing this perpendicular line
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will produce a RIGHT TRIANGLE having an angle �, where � will always be the angle
between A and the x-axis. This is illustrated in Fig. 74 for the case where the independent
variable (the angle �) has a value such that A falls in the second quadrant.

Let us call � the ‘‘subsidiary’’ angle. Note that, regardless of the quadrant that A falls
in, � itself will always be a simple angle in the range of 08 to 908, which we’ll define to
always be a positive angle. Notice, however, that the ‘‘x values’’ and ‘‘y values’’ can be
either positive or negative, depending upon the particular quadrant that A falls in (which,
in turn, depends upon the value of the angle �).

This combination, of positive values of � from � ¼ 08 to � ¼ 908 and the positive and
negative x and y values, is now utilized to define the values of sin �, cos �, and tan �, for any
positive or negative value of � of any magnitude. This is done as follows.

To begin, inspection of Fig. 74 shows that

if A falls in the FIRST quadrant, x and y are BOTH POSITIVE,

if A falls in the SECOND quadrant, x is NEGATIVE and y is POSITIVE,

if A falls in the THIRD quadrant, x and y are BOTH NEGATIVE,

if A falls in the FOURTH quadrant, x is POSITIVE and y is NEGATIVE.

Next, given that A, the length of the radius vector, is always to be taken as positive,
and also, recalling the basic definitions of the trigonometric functions from section 5.2,
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we now define that

sin � ¼ � sin� ¼ y

A
ð73Þ

cos � ¼ � cos� ¼ x

A
ð74Þ

tan � ¼ � tan� ¼ y

x
ð75Þ

where � is a positive or negative angle of any value, and where � is the subsidiary angle as
previously described.

Since the signs of x and y depend upon the quadrant that A falls in, it follows that the
signs (þ or �) of the functions sin �, cos �, and tan � will also depend upon the quadrant
that A falls in. This is illustrated in Figs. 75 through 78. The relations between the func-
tions follow from these figures and from eqs. (73), (74), and (75), and are so important that
they should all be committed to memory.

Before we leave this section there are some relationships, between the trigonometric
functions for þ� and ��, that should be derived. This can be done with aid of Figs. 79
and 80.
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From Fig. 79: thus:

sin � ¼ y=A

sinð��Þ ¼ �y=A

�
sinð��Þ ¼ � sin �

cos � ¼ x=A

cosð��Þ ¼ x=A

�
cosð��Þ ¼ cos �

tan � ¼ y=x

tanð��Þ ¼ �y=x

�
tanð��Þ ¼ � tan �

From Fig. 80: thus:

sin � ¼ y=A

sinð��Þ ¼ �y=A

�
sinð��Þ ¼ � sin �

cos � ¼ �x=A

cosð��Þ ¼ �x=A

�
cosð��Þ ¼ cos �

tan � ¼ y=� x ¼ �y=x

tanð��Þ ¼ �y=� x ¼ y=x

�
tanð��Þ ¼ � tan �

To summarize:

sinð��Þ ¼ � sin � ð76Þ
cosð��Þ ¼ cos � ð77Þ
tanð��Þ ¼ � tan � ð78Þ

Problem 65
Find the value of each of the following by making use only of the ‘‘table of values’’
given in section 5.2. (All angles are in degrees.)

(a) cos 115 ¼ (c) tan 155 ¼ (e) cos 95 ¼ (g) sin 285 ¼
(b) sinð�35Þ ¼ (d) sin 255 ¼ (f) tanð�285Þ ¼ (h) sinð�188Þ ¼

Thus, with aid of Figs. 75 through 78, the original ‘‘table of values,’’ given in section
5.2, can now be extended to cover the full range of values from � ¼ 08 to � ¼ 3608. A very
short form of such a table follows, which let us now examine.

To do this, let us apply, to the following table of values, the same graphical procedure
that we used at the beginning of this section. That is, let us now apply to the table the
SAME PROCEDURE that gave us Figs. 66 and 67.

The results of doing this are shown in Figs. 81 and 82. Figure 81 shows, graphically, the
behavior of the two ‘‘sinusoidal’’ functions, y ¼ sin � and y ¼ cos �, over the complete
range from � ¼ 08 to � ¼ 3608. Figure 82 shows the behavior of y ¼ tan � over the same
range of values of �. A brief discussion follows.

Consider Fig. 81 first. As the figure shows, the sinusoidal functions, sin � and cos �,
have a maximum value of 1 and a minimum value of �1. Note that the two waves
are displaced from each other by 90 degrees; this is summarized by saying that the two
waves are ‘‘90 degrees out of phase.’’ Other than that, the two waveshapes are exactly the
same.

CHAPTER 5 Sinusoidal Waves. rms Value 85



The following facts concerning sin � and cos � (which are evident from inspection of
Fig. 81) should be noted:

sin � ¼ 0 for � ¼ 08, 1808, and 3608,

sin � ¼ 1 for � ¼ 908, and sin � ¼ �1 for � ¼ 2708;

cos � ¼ 0 for � ¼ 908 and � ¼ 2708,

cos � ¼ 1 for � ¼ 08 and 3608, and cos � ¼ �1 for � ¼ 1808.

Now consider the function y ¼ tan �. From the above ‘‘table of values’’ we see that
tan � becomes ‘‘infinitely great’’ for � equal to either 908 or 2708, and this condition is
indicated in Fig. 82. The meaning of ‘‘infinitely great’’ was discussed in section 5.2 in
connection with eq. (72). In Fig. 82, note that ‘‘tan �’’ can become infinitely great in either
the ‘‘positive’’ sense or the ‘‘negative’’ sense as � approaches the value of either 908 or 2708.
Thus, if � approaches the value of 908 from the left side of 908, then tan � becomes
infinitely great in the ‘‘positive’’ sense, as shown in Fig. 82. If, however, � approaches
the value of 908 from the right side of 908, then tan � becomes infinitely great in the
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�8 sin � cos � tan � �8 sin � cos � tan �

0 0.0000 1.0000 0.0000 195 �0.2588 �0.9659 0.2680

15 0.2588 0.9659 0.2680 210 �0.5000 �0.8660 0.5774

30 0.5000 0.8660 0.5774 225 �0.7071 �0.7071 1.0000

45 0.7071 0.7071 1.0000 240 �0.8660 �0.5000 1.7321

60 0.8660 0.5000 1.7321 255 �0.9659 �0.2588 3.7321

75 0.9659 0.2588 3.7321 270 �1.0000 0.0000 1
90 1.0000 0.0000 1 285 �0.9659 0.2588 �3.7321

105 0.9659 �0.2588 �3.7321 300 �0.8660 0.5000 �1.7321

120 0.8660 �0.5000 �1.7321 315 �0.7071 0.7071 �1.0000

135 0.7071 �0.7071 �1.0000 330 �0.5000 0.8660 �0.5774

150 0.5000 �0.8660 �0.5774 345 �0.2588 0.9659 �0.2680

165 0.2588 �0.9659 �0.2680 360 0.0000 1.0000 0.0000

180 0.0000 �1.0000 0.0000

Fig. 81 Fig. 82



‘‘negative’’ sense, as shown in Fig. 82. The function tan � is not defined for � ¼ 908 or 2708,
and is said to be ‘‘discontinuous’’ for these values of �.

As previously mentioned, sin � and cos � are defined for all positive and negative angles
of any magnitude. (Likewise for tan �, except for values of � for which tan � becomes
infinitely great.)

To understand this, let us return briefly to Fig. 68, in which the radius vector OA can be
in any given position, to which corresponds a given angle �, with corresponding specific
values of sin �, cos �, and tan �.

Now note that if the radius vector OA makes any number of full revolutions of
360 degrees each, it simply returns to its original given position, thus reproducing the
original values of sin �, cos �, and tan �. Thus, if any given angle � is increased or
decreased by any integral multiple of 360 degrees the values of sin �, cos �, and tan � are
unchanged; that is, the ‘‘new’’ values are the same as the ‘‘old’’ values. The mathematical
statement is

sin �8 ¼ sinð�� 360nÞ8 ð79Þ
cos �8 ¼ cosð�� 360nÞ8 ð80Þ

where n is any integer (whole number).
The trigonometric functions are thus said to be PERIODIC or ‘‘repetitive’’

functions, because, for any given value of �, the values of the functions are repeated
over and over, endlessly, for each value of �� 360n degrees, as stated in eqs. (79) and
(80). This is illustrated in Fig. 83, which shows a few ‘‘cycles’’ of the graph or curve of
the function y ¼ A sin �. Note that, since the maximum value of sin � is 1 (Fig. 81),
it follows that the constant A is the maximum or ‘‘peak’’ value of the sine wave in
Fig. 83.

In the figure, � represents any value of angle we might select, and y1 is the value of y for
that particular value of �. Notice that the same value, y1, appears for every angle of
�� 360n, as shown.

Problem 66
Letting � and � denote two angles of a right triangle, show that the following two
identities are true (angles in degrees):

sin � ¼ cosð90 � �Þ
cos � ¼ sinð90 � �Þ
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5.4 Choice of Waveform. Frequency.
The Radian

In section 5.1 we defined the general difference between direct current and alternating
current (‘‘dc’’ and ‘‘ac’’).

Here, in the study of alternating currents in this book, let us now emphasize that,
from now on, it will always be understood that we are talking about, and dealing with,
SINUSOIDAL waves of voltage and current. There are a number of reasons why this is the
practical thing to do.

First of all, it is highly desirable that the voltages and currents in large commercial
power systems be as nearly sinusoidal as possible. This is because large generators, motors,
transformers, and so on, operate much more smoothly and efficiently when sinusoidal
voltages and currents are used, than when any other type of waveform is used.

As another example, in radio and television broadcasting the high-frequency ‘‘carrier’’
wave is sinusoidal in form. This is necessary to prevent excessive interference between
stations. Also, sinusoidal waves are widely used in the testing and evaluation of electronic
amplifiers, automatic control systems, and other electromechanical devices. Finally, and
fortunately, the mathematical work is greatly reduced if sinusoidal waves are assumed.
This is because of certain special characteristics possessed only by sinusoidal functions.*

With the foregoing in mind, let us return to Fig. 83, in which the independent variable
is the angle �, in degrees, and let us now bring time, t, into the picture.

To do this, let us think of the curve of Fig. 83 as being generated by a rotating ‘‘radius
vector’’ of length A, as in Figs. 75 through 78. If A makes f REVOLUTIONS PER
SECOND, then f is called the FREQUENCY of the wave, which is stated as so many
CYCLES PER SECOND; hence, since each revolution of A generates 360 degrees, it
follows that

360ft ¼ the total angle, �, in degrees, generated in any total time of ‘‘t’’ seconds.

Thus, the equation for a sine wave of voltage v volts, having a frequency of f cycles per
second (hertz),{ can be written in the form

v ¼ V sin 360ft8 ð81Þ

where v ¼ instantaneous voltage at any time t seconds from t ¼ 0, V ¼ maximum (peak)
value of voltage, and f ¼ frequency in Hz (cycles/second).

In eq. (81) we can think of the instantaneous voltage, v, as being generated by a rotating
radius vector of V volts. In this regard, since f is the number of revolutions per second,
and since each revolution produces an advance of 360 degrees, it follows that

360f ¼ degrees advanced by the radius vector V per second,

and for this reason ‘‘360f ’’ is sometimes called the ‘‘angular velocity’’ of the sine wave.
Let us now introduce a new term into our technical vocabulary, as follows.
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* With respect to the variable �, the RATE OF CHANGE of sin � is equal to the VALUE of cos �, and the rate of

change of cos � is equal to the value of � sin �. The sine and cosine are the only periodic functions in all of

mathematics that have such a uniquely useful property. We need not, however, dwell on this point at this time.

{ The official term for ‘‘cycles per second’’ is ‘‘hertz’’ (abbreviated ‘‘Hz’’), in honor of the great experimental

physicist Heinrich Hertz.



So far in our work we’ve always measured angles in units of ‘‘degrees,’’ a full circle
being divided into 360 equal ‘‘degrees,’’ as you know. There is, however, another unit of
angular measurement called the ‘‘radian’’ that we should be familiar with. The ‘‘radian’’ is
simply a unit of angular measurement, like the degree, but use of radians, instead of
degrees, has certain advantages in theoretical work.

The radian unit of angular measurement is defined in references to a circle, just as the
degree is. The radian will now be defined with the aid of Fig. 84.

In Fig. 84, let ‘‘O’’ denote the center of any circle of radius r, let ‘‘a’’ denote the ‘‘length
of the arc’’ of the circle cut off by the two radii, and let ‘‘�’’ denote the ANGLE ‘‘sub-
tended’’ by the arc a, as shown. Then the angle in RADIANS is defined to be equal to the
ratio of the arc length to the radius, that is,

� ¼ angle in radians ¼ arc length

radius
¼ a

r

The ratio a=r does not, of course, depend upon the size of a particular circle we might
draw, but only upon the value of the angle �; that is, a is always directly proportional to r.
Thus, using the standard notation of Fig. 84, we have the basic definition that the angle �,
in radians, is equal to

� ¼ a

r
ð82Þ

Figure 84 and eq. (82) should be committed to memory. Next, the relationship between
RADIANS and DEGREES can be found by considering a FULL CIRCLE, as follows.

In a full circle we have a ¼ circumference of circle ¼ 2�r; hence, by eq. 82, there are
2�r=r ¼ 2� radians in a full circle. Since there are also 360 degrees in a full circle, we have
that the ratio of radians to degrees is 2� to 360 or � to 180, thus giving us the important
relationship

radians

degrees
¼ �

180
ð83Þ

which should also be committed to memory. From eq. 83 we thus have the following two
conversion formulas

radians ¼
�

�

180

�
ðdegreesÞ ð84Þ

degrees ¼
�

180

�

�
ðradiansÞ ð85Þ

Note that for 1 radian eq. (85) gives the value, degrees ¼ ð180=�Þð1Þ ¼ 57.295 78, that is,
one radian equals 57.295 78 degrees ¼ 57817 045 00. Thus the ‘‘radian’’ is a much larger unit of
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angular measurement than the ‘‘degree.’’ In any case, the conversion from one to the other is
easily done with the aid of eqs. (84) and (85) and a calculator: for example, to convert 240
degrees to radians we use eq. (84); thus,

radians ¼ ð�=180Þð240Þ ¼ 4:188 79, answer:

As previously mentioned, the radian is generally used in theoretical work instead of the
degree. This fact leads us now to make the following IMPORTANT NOTE:

From now on, unless the ‘‘degree’’ symbol is shown, all angles will be under-
stood to be in radians.

Let us, therefore, now write eq. (81) in terms of radians instead of degrees; to do this, all
we need do is substitute the total angle, 360ft degrees, into eq. (84); thus,

ð�=180Þð360ftÞ ¼ 2�ft ¼ total radians

and therefore eq. (81) becomes, in terms of radian measurement of angles,

v ¼ V sin 2�ft ð86Þ
in which the ‘‘angular velocity’’ of the wave (see discussion following eq. (81)) is now 2�f
radians per second.

We now have one final change in notation to make, as follows. It is universal practice to
represent the quantity ‘‘2�f ’’ by the small Greek letter ‘‘omega,’’ written ‘‘!’’; thus it will
always be understood that

! ¼ 2�f ¼ angular velocity of radius vector in radians per second

and thus, t seconds after starting at t ¼ 0, the radius vector V will have covered a total
‘‘angular distance’’ of !t radians, and thus eq. (86) now takes the standard form

v ¼ V sin!t ð87Þ
where v and V have the meanings defined in connection with eq. (81), and where ! ¼ 2�f ,
where f is the frequency in cycles per second (Hz). A corresponding sine wave of current
will of course have the same basic form

i ¼ I sin!t ð88Þ
where now i is the instantaneous current and I is the maximum (peak) value of current.

For the next part of our discussion, let us begin by returning to the ‘‘table of values’’
listed in section 5.3. Note that the table covers the range of angular values from � ¼ 08 to
� ¼ 3608. What we now wish to do is to write the same table (omitting a few values here
and there) in terms of radians instead of degrees. This can be done as follows. First,
making use of eq. (84), you can verify that

08 ¼ 0 rad: 1208 ¼ 2�=3 rad: 2108 ¼ 7�=6 rad: 3008 ¼ 5�=3 rad:

308 ¼ �=6 rad: 1358 ¼ 3�=4 rad: 2258 ¼ 5�=4 rad: 3158 ¼ 7�=4 rad:

458 ¼ �=4 rad: 1508 ¼ 5�=6 rad: 2408 ¼ 4�=3 rad: 3308 ¼ 11�=6 rad:

608 ¼ �=3 rad: 1808 ¼ � rad: 2708 ¼ 3�=2 rad: 3608 ¼ 2� rad:

908 ¼ �=2 rad:
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Let us now refer back to the table of values in section 5.3. Now, in that table, replace �
with !t and degrees with their equivalent values from the above chart. This gives us the
following table of values in terms of radians.

We have previously (Figs. 81 and 82) sketched the curves of sin �, cos �, and tan � versus
the angle � in degrees. Now, in Fig. 85, we’ve used the table immediately above to sketch a
couple of cycles of the functions, y ¼ A sin!t and y ¼ A cos!t, versus the angle !t in
radians.

In Fig. 85, the constant A denotes the maximum (peak) value of the sine and cosine
functions. The independent variable is time t, in seconds, and, as always, ! ¼ 2�f , where f
is constant frequency in cycles per second (Hz).

Also, in the figure, note that for !t ¼ 0 the cosine function has the maximum value A,
while at the same time the sine function has the value zero. Later in time, however,
when !t ¼ �=2, we see that the value of the cosine has fallen to zero, while the sine has
risen to the maximum value of A. Thus, since the sine reaches its peak value at a later
time than the cosine, we say that the sine function ‘‘lags’’ the cosine by �=2 radians (90
degrees). This is, of course, the same as saying that the cosine ‘‘leads’’ the sine by �=2
radians (908).

As we know, the sinusoidal functions are PERIODIC functions, having a period of 2�
radians. Any interval of 2� radians (3608) constitutes ONE CYCLE of a sinusoidal wave.
In Fig. 85, for example, we indicate one particular cycle, in the interval from !t ¼ 0 to
!t ¼ 2�.
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!t sin!t cos!t tan!t !t sin!t cos!t tan!t

0 0.0000 1.0000 0.0000 7�=6 �0.5000 �0.8660 0.5774

�=6 0.5000 0.8660 0.5774 5�=4 �0.7071 �0.7071 1.0000

�=4 0.7071 0.7071 1.0000 4�=3 �0.8660 �0.5000 1.7321

�=3 0.8660 0.5000 1.7321 3�=2 �1.0000 0.0000 1
�=2 1.0000 0.0000 1 5�=3 �0.8660 0.5000 �1.7321

2�=3 0.8660 �0.5000 �1.7321 7�=4 �0.7071 0.7071 �1.0000

3�=4 0.7071 �0.7071 �1.0000 11�=6 �0.5000 0.8660 �0.5774

5�=6 0.5000 �0.8660 �0.5774 2� 0.0000 1.0000 0.0000

� 0.0000 �1.0000 0.0000

Fig. 85



For any given value of !t, the value of a sinusoidal function is repeated over and over
for each value of !t� 2�n, where n is any integer. Thus (corresponding to eqs. 79 and 80)
we have that

sin!t ¼ sinð!t� 2�nÞ ð89Þ
cos!t ¼ cosð!t� 2�nÞ ð90Þ

where n is any integer.
Let us next find the relationship between the ‘‘time of one cycle’’ and the frequency f of

a sinusoid.
The easiest way to do this is to make use of the particular cycle that begins at !t ¼ 0 in

Fig. 85 (which we’ve labeled ‘‘one cycle’’ in the figure). If we let ‘‘large T ’’ denote the
TIME OF ONE CYCLE, then, at the end of this particular cycle, when t ¼ T , we see from
the figure that !T ¼ 2�, that is, 2�fT ¼ 2�, from which we get the desired relationship

fT ¼ 1 ð91Þ

in which f is frequency in cycles per second (Hz) and T is the time of one cycle in seconds.
We now conclude this section with a discussion of ‘‘phase shift’’ and ‘‘phase angle’’ as

used in connection with sinusoidal waves.
We can begin by pointing out that the term ‘‘phase,’’ as used in electrical engineering,

refers in general to an ‘‘angular’’ relationship of some kind. As applied to sinusoidal waves,
the terms ‘‘phase shift’’ and ‘‘phase angle’’ refer to the amount of ANGULAR DISPLACE-
MENTof suchwaves; for instance, thismight be the angular displacementwith respect to the
origin of the coordinate axes, or the angular displacement of one wave with respect to
another wave of the same frequency.

For example, in the preceding discussion of Fig. 85 we noted that the cosine curve
‘‘leads’’ the sine curve by �=2 radians or 908. In phase terminology we could say that the
‘‘phase angle’’ between the cosine and sine functions is �=2 radians, or that the cosine has a
‘‘phase shift,’’ or is ‘‘phase shifted,’’ in the amount of þ�=2 radians with respect to the sine.

The phase angle between two sinusoidal waves of the same frequency is measured
between any two successive, corresponding, points of the two waves. For instance, this
can be the ‘‘angular distance,’’ in radians or degrees, between two successive ‘‘peak values’’
of the waves, or the angular distance between the points at which the curves are rising in
the positive sense as they cross the horizontal axis. This is illustrated in Fig. 86, in
which the phase angle, 458, is the angle between two such consecutive ‘‘crossover’’ points,
as shown. In this case, curve A can be said to ‘‘lead’’ curve B by 45 degrees, because A
reaches its peak positive value 458 before B (as mentioned in the discussion of Fig. 85).

There is an item of interest in connection with Fig. 86 that should be mentioned. In
the figure, the phase angle of 458 (�=4 radians) is angular displacement between the
two waves themselves, as shown. The point we wish to make, however, is that this
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information alone does not permit us to write the equations of the two waves, even if
their peak values are given. This is because the location of the origin of the axes,
relative to the waves, is not shown in the figure.

To illustrate this, suppose the peak value of A is 10 and the peak value of B is 7, and
suppose it is given that curve A passes through the origin (in the manner of the sine wave in
Fig. 85). With this information the equations of the two waves can now be written thus (in
radians):

for A: y ¼ 10 sin!t ð92Þ
for B: y ¼ 7 sinð!t� �=4Þ ð93Þ

Equation (93) is the mathematical way of showing that sinusoid B ‘‘lags’’ sinusoid A by
�=4 radians (458).

Another point to be emphasized is that the curves A and B in Fig. 86 represent two
sinusoidal functions having the SAME FREQUENCY. If two sinusoidal functions do not
have the same frequency, then no fixed phase relationship exists between the two func-
tions, and the term ‘‘phase shift’’ would have little meaning. This is illustrated in Fig. 87, in
which A and B denote curves of two sinusoids having unequal frequencies.

Problem 67
Given that v ¼ 100 sin 180 000t8, find

(a) frequency in hertz,

(b) value of v at the instant t ¼ 0:15 second.

Problem 68
If ! ¼ 533 850 for a certain sine wave, find the time of one cycle in microseconds.

Problem 69
In Fig. 87, which wave, A or B, represents the higher frequency?

5.5 Power; rms Value of a Sine Wave of
Voltage or Current

In section 2.3 we showed that in a dc (direct-current) circuit, the power P in watts,
expended in a resistance of R ohms, is given by any of the formulas

P ¼ VI ; P ¼ V2=R; P ¼ I2R

where V is dc voltage and I is dc current.
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Now let’s consider the problem of how to calculate power in an ALTERNATING
CURRENT (ac) circuit.

We at once see that there is a problem here, because the power in an ac circuit is not
constant but changes from instant to instant throughout the cycle, because the voltage and
current are both continually changing during the cycle.

This difficulty is resolved by defining that by ‘‘power’’ in an ac circuit we will always
mean the AVERAGE POWER in the circuit. This definition leads to what is called the
‘‘effective’’ or ‘‘rms’’ value of an ac voltage or current. The development proceeds as
follows.

To begin, let us make the following slight change in notation. In eqs. (87) and (88) we
used V and I to denote the peak values of sine waves of voltage and current. Let us now,
for convenience later on, change that notation and, hereafter, always denote peak values
by Vp and Ip, instead of by plain V and I . Upon making this change in notation, eqs. (87)
and (88) become

v ¼ Vp sin!t ð94Þ
i ¼ Ip sin!t ð95Þ

In the above equations, v and i denote instantaneous voltage and current at any time t
seconds after we start ‘‘positive time’’ at t ¼ 0. It then follows, from the basic considera-
tions used to derive eq. (15) in Chap. 2, that instantaneous power, p, is equal to instanta-
neous voltage times instantaneous current, that is

p ¼ vi ð96Þ
or, in terms of a load resistance of R ohms, eq. (96) can be written in the forms

p ¼ v2=R and p ¼ i2R:

But, as already mentioned, we are not interested in ‘‘instantaneous’’ power; instead, we
are interested in finding the AVERAGE POWER obtained over ONE COMPLETE
CYCLE of the sine waves of eqs. (94) and (95). (The average power over any one complete
cycle is the same for all cycles, and is the average power as long as the waves continue to
exist.)*

To continue, let us now substitute, into eq. (96), the values of v and i from eqs. (94) and
(95). Doing this, we have that the instantaneous power p in an ac circuit is equal to

p ¼ VpIpðsin!tÞ2 ¼ VpIp sin2 !t ð97Þ
in which we’ll assume that the peak values, Vp and Ip, will remain constant in any given
problem. From eq. (87), the angle !t is in radians.

We recall that the function sin!t goes through one complete cycle in the period from
!t ¼ 0 to !t ¼ 2� (Fig. 85). Our problem, therefore, now is to find the AVERAGE
VALUE of eq. (97) when the voltage and current waves, v and i (eqs. (94) and (95)),
go through one complete cycle from !t ¼ 0 to !t ¼ 2�. One way this can be done is to
make use of the trigonometric identity

sin2 � ¼ 1

2
ð1 � cos 2�Þ ð98Þ{
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This could be compared to an automobile moving at a constant speed; if the speed is measured for a period of,

say, 1 minute, the same speed is measured for all intervals of 1 minute, and is the speed for the entire trip.

{ See note 6 in Appendix.



Now set � ¼ !t in eq. (98), then substitute the right-hand side into eq. (97) in place of
sin2 !t. Doing this, eq. (97) becomes

p ¼ VpIp
2

� VpIp
2

cos 2!t ð99Þ

Now examine the right-hand side of eq. (99). The average value of the first term is
VpIp=2, because it has the same constant value for the entire interval from !t ¼ 0 to
! ¼ 2�. (If an automobile maintains a constant speed of 60 mph over a period of time,
the average speed over the period is 60 mph.)

Note, however, that the average value of the second term is zero over the same interval
from !t ¼ 0 to !t ¼ 2�. To understand why this is true, let us take a moment out to review
the basic meaning of ‘‘average value,’’ as follows.

Let y1; y2; y3; . . . ; yn denote n different values of a variable y, measured over a certain
range of values of whatever independent variable determines the values of y. Note that
some of the values of y may be positive in value, and others negative in value. The
‘‘average value of y,’’ over the particular interval chosen, is then defined to be equal to
the algebraic sum of all the n values, divided by n, that is

average value of y ¼ Y ¼ y1 þ y2 þ y3 þ � � � þ yn
n

ð100Þ

Note that if the algebraic sum of the numerator values is zero the average value of y is
zero, and this is exactly what happens in the case of the second term on the right-hand side
of eq. (99). This is true because, in any number of complete cycles of a sinusoidal wave,
there are as many positive values as negative values. Thus we have determined that the
average value of eq. (99) (and also of eq. (97)) is equal to VpIp=2; that is, letting P denote
average power produced in eqs. (99) and (97), we have that

P ¼ VpIp
2

¼ Vpffiffiffi
2

p � Ipffiffiffi
2

p ð101Þ

where the ‘‘dot’’ means ‘‘times,’’ and where Vp and Ip are the maximum (peak) values of
an applied sinusoidal voltage and the resulting sinusoidal current.

Let us now denote the two quantities on the right-hand side of eq. (101) by V and I ,
without subscripts, thus

V ¼ Vp=
ffiffiffi
2

p
¼ 0:7071Vp ð102Þ

I ¼ Ip
ffiffiffi
2

p
¼ 0:7071Ip ð103Þ

The quantities represented by V and I above are called the ‘‘effective’’ values or the
‘‘rms’’ values* of sinusoidal voltages and currents of peak values Vp and Ip. Note that,
using this notation, eq. (101) takes the form

P ¼ VI ð104Þ
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follows. First, instantaneous power, p, is proportional to the square of instantaneous current, i2, as shown

following eq. (96). Thus, over a period of time, AVERAGE POWER, P, is proportional to the average value

of i2, which, for n consecutive samples, let us denote by I2; thus

I2 ¼ i21 þ i22 þ i23 þ � � � þ i2n
n

Thus I , as derived here, is the ‘‘square root of mean square’’ or rms value of current. Hence ‘‘rms’’ and ‘‘effective’’

have the same meaning, being the value of current or voltage used to calculate average power.



You’ll recall that ‘‘power’’ is expressed in ‘‘watts’’ in electric circuit calculations (see eq.
(15) in Chap. 2). The above equation states that the AVERAGE POWER P produced in a
resistance of R ohms is equal to the RMS VOLTAGE TIMES THE RMS CURRENT.

If we now apply the foregoing procedure to the equations p ¼ v2=R and p ¼ i2R, we
find that

P ¼ V2=R ð105Þ
and

P ¼ I2R ð106Þ
and, comparing eqs. (106) and (104), we see that I2R ¼ VI , and thus we have OHM’S
LAW for the sinusoidal ‘‘ac’’ case:

I ¼ V

R
ð107Þ

In eqs. (104) through (106), P is average power in watts, V and I are rms values of
voltage and current, and R is load resistance in ohms.

It is important to note that eqs. (104) through (107), for the ac circuit, have exactly the
same form, and are subject to the same algebraic manipulation, as the equations for dc
circuits summarized following eq. (17) in section 2.3. This procedure can be used because,
in ac circuit work, we are normally not interested in knowing instantaneous values of
power, voltage, and current (given by eqs. (94) and (95) in the sinusoidal case), but only
in average power and rms values of voltage and current, which are not functions of time.

Problem 70
Are eqs. (104) through (107) basically true for non-sinusoidal periodic waveforms of
voltage and current, as well as sinusoidal?

Problem 71
It is given that ac voltmeters and ammeters are normally calibrated to read rms
values. If the meter readings are 120 volts and 8.5 amperes, find the following values
(sinusoidal conditions will always be assumed, unless definitely stated otherwise):

(a) average power input to the circuit,

(b) peak power input to the circuit.

5.6 Sinusoidal Voltages and Currents as
Vectors

A generator of dc voltage is usually represented by the battery symbol, Fig. 88, while an ac
generator is usually represented by the ‘‘slip rings’’ symbol of Fig. 89.*

In the dc case of Fig. 88, the polarity DOES NOT CHANGE WITH TIME; thus, in
Fig. 88, one of the battery terminals will always be POSITIVE with respect to the other
terminal. The situation can be indicated either by the use of ‘‘þ’’ and ‘‘�’’ signs or by
means of a ‘‘voltage arrow’’ placed alongside, with the understanding that the ‘‘head’’ of
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the arrow is POSITIVE with respect to the ‘‘tail,’’ as shown. That is, a voltage arrow will
always point FROM THE NEGATIVE TERMINAL TO THE POSITIVE TERMINAL
of a generator.

It’s obviously not necessary to show both polarity marks and voltage arrow, and thus
generally, from now on, we’ll use only voltage arrows, having the meaning just described
above.

In our work with dc circuits, in Chap. 4, we found that it is absolutely necessary to
indicate the POLARITIES of the dc generators in a network. The importance of this
requirement is illustrated in the simple circuits shown in Fig. 90, in which batteries repre-
sent dc generators with polarities indicated by voltage arrows as shown. (The Greek letter
�, capital ‘‘omega,’’ denotes resistance in ohms.)

Notice that the two circuits give completely different values of current; this is because in
the left-hand diagram the two dc generators are connected so as to OPPOSE each other,
while in the right-hand diagram they are connected so as to AID each other. This can be
understood by tracing around both circuits in the clockwise sense, remembering that going
through a generator ‘‘with’’ the voltage arrow represents a rise in potential, while going
through ‘‘against’’ the arrow represents a decrease in potential. The situation in Fig. 90 is
represented graphically in ‘‘vector diagram’’ form below.

The above example illustrates the fact that two dc generators in the same circuit will
either totally AID each other or totally OPPOSE each other, with no ‘‘in between’’
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conditions possible. Thus, the voltages produced by two dc generators cannot be 458
apart, or 658 apart, or 1258 apart, and so on. Likewise, the ‘‘phase angle’’ of the ‘‘voltage
drops’’ across two resistances in a dc network can have only the relative value of 08 or
1808.

Now, however, consider the case of two series-connected AC GENERATORS of the
same frequency. Here it’s possible to have two generators in which the phase angle
between their voltage waves can be ANY POSITIVE OR NEGATIVE ANGLE
FROM 08 TO 3608. Likewise, the voltage drop across a circuit component can have
different phase angles relative to the voltage drops across other circuit elements and
generator voltages. Thus, unlike dc circuit analysis, in ac work we must take the factor
of PHASE into account. For this reason the algebra of ac circuits is more complicated, in
its inner details, than the algebra of dc circuits. Broadly speaking, however, we’ll find that
many of the basic procedures we learned in dc analysis will carry over directly to ac work.

With the above in mind, let us now turn our attention to the case where the voltage
sources are AC GENERATORS instead of dc generators. We begin our discussion with
Fig. 91, using the ac generator symbol of Fig. 89 with voltage arrows as previously
mentioned. The circles labeled V1, V2, and V represent ac voltmeters, with I being an ac
ammeter. It is given that ac meters are always calibrated to read rms values, unless
definitely stated otherwise on the face of the meter. Let us now make a careful study of
Fig. 91.

Note, first, that the independent variable here is time t. The function ‘‘sin!t’’ is, as we
know, a ‘‘periodic’’ function of time, being alternatively positive and negative for equal
time periods.*

In Fig. 91, v1 and v2 denote instantaneous values of voltage of two sine waves OF THE
SAME FREQUENCY, with Vp1 and Vp2 being the ‘‘peak’’ values of the two waves.

Note that v1 ¼ 0 when t ¼ 0; hence the lower sine wave passes through the origin of the
axes, with the upper sine wave ‘‘leading’’ the lower wave by a radians (see discussion of
‘‘phase angle’’ in section 5.4). Inspection of Fig. 91 shows that

vcd ¼ v1 þ v2 ¼ Vp1 sin!tþ Vp2 sinð!tþ aÞ ð108Þ
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where vcd ¼ instantaneous voltage between terminals c and d, at any time t seconds
after t ¼ 0.

The voltage arrows, as used in the ‘‘instantaneous’’ picture of Fig. 91, have their usual
meaning; in this case the arrows simply denote what the generator polarities would be
during the times when the functions sin!t and sinð!tþ aÞ are positive in value. The
arrows would thus point ‘‘downward’’ during the times when sin!t and sinð!tþ aÞ are
negative in value.

The current arrow denotes the direction of flow of ‘‘positive’’ current, that is, the direction
the current is assumed to flow during the times that sinð!tþ bÞ is positive in value.

It should be noted that (108) is a simple addition of instantaneous voltages, and is not a
vector relationship as it stands. Actually, however, in most practical work we are inter-
ested only in rms values of voltage and current, and not in instantaneous values. If we
make use of this practical fact, it is possible to put the rms information contained in eq.
(108) into a form to which vector methods can be applied; this extremely useful concept
can be developed as follows.

As pointed out in section 5.3, it’s often convenient to represent the instantaneous values
of a sinusoidal voltage or current as being generated by a rotating ‘‘radius vector’’ (also
called a ‘‘phasor’’), as illustrated in Fig. 92.

In Fig. 92, note that it is not correct to write that Vp ¼ Vp cos!tþ Vp sin!t, because
the horizontal and vertical components must be added together at right angles to give Vp.
Thus Vp in Fig. 92 can be regarded as being an instantaneous VECTOR quantity, having
horizontal and vertical components as shown. It therefore follows that eq. (108) can be
represented as being generated by TWO such rotating ‘‘phasors,’’ as illustrated in Fig. 93.
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Figure 93 is thus an instantaneous ‘‘picture’’ of eq. (108) at any time t seconds after
t ¼ 0. Note, however, that the phase angle a is not a function of time, but remains constant
in value at all times. (It must be emphasized again that this is true only if v1 and v2 are
waves of the SAME FREQUENCY.) Thus, as far as the relationship between the phase
angle a and the constant peak values of the phasors are concerned, we can disregard the
rotary motion in Fig. 93 and show only the constant vector relationship between the
magnitudes of the phasors and the phase angle a, as in Fig. 94.

In Fig. 94, let us now multiplyVp1 andVp2 by 0.7071; this converts the peak voltages into
rms voltages, giving us Fig. 95, inwhichV1 andV2 are given to be rms values of voltage. Since
we’ll normally be interested only in rms values of voltage and current, let us agree that, from
now on, all such vector diagrams will represent rms values of voltage and current, as in the
voltage case of Fig. 95.

In Fig. 95, V1 is the rms value of the sine wave, Vp1 sin!t, which passes through the
origin of the axes (as mentioned just prior to eq. (108)). Thus, in Fig. 95, it is reasonable to
select V1 to be the ‘‘reference vector,’’ taken to be at an angle of ‘‘zero degrees,’’ the angles
of all other vectors being given relative to the reference vector V1.*

In Fig. 95, the total RESULTANT rms voltage, which let us denote by V , is equal to the
vector sum of V1 and V2; geometrically, V is equal to the diagonal of the parallelogram
formed with V1 and V2 as the two sides. This is shown in Fig. 96, in which h is the angle
between the resultant vector V and the reference vector V1.

Algebraically, one way of finding the magnitude and phase angle ofV in Fig. 96, given the
magnitudes of V1 and V2 and the phase angle a, is to first resolve V1 and V2 into their
individual HORIZONTAL AND VERTICAL COMPONENTS; then the

horizontal component of V ¼ sum of horizontal components of V1 and V2

vertical component of V ¼ sum of vertical components of V1 and V2

Fig. 94 Fig. 95

Fig. 96

* If you wish to study a review of vectors, see note 4 in Appendix.
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The above rule is correct because the horizontal components all lie along the same
straight line, and the vertical components also all lie along a straight line (perpendicular to
the line containing the horizontal components).

Hence, upon using the above procedure, we now have the horizontal and vertical
components of the resultant vector V , which let us denote by Vh and Vv respectively.
Thus, using this notation, Fig. 96 becomes Fig. 97.

Since Fig. 97 is a right triangle, the complete description of the resultant vector V , in
both magnitude and phase angle, is given by the equations

jV j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

h þ V2
v

q
ð109Þ

h ¼ arctanðVv=VhÞ ð110Þ*

In the same way, the resultant vector, V , of THREE or more vectors is equal to the
vector sum of the horizontal components and the vertical components of the individual
vectors.

Example 1
As previously mentioned, ac voltmeters and ammeters read MAGNITUDE OF RMS

voltage and current. Going back to Fig. 91, suppose the two series-connected

voltmeter readings are V1 ¼ 58 volts, V2 ¼ 112 volts, and suppose it is also known

that V1 and V2 are 65 degrees out of phase. (It is understood, as always, that we’re

dealing with sinusoidal waves of the same frequency.)

(a) Taking V1 to be the reference vector, with V2 leading by 658, find the magnitude

and phase angle of the vector sum, V , of V1 and V2.

(b) What would be the reading of voltmeter ‘‘V’’ in the figure?

Solution

(a) First, the values of the horizontal and vertical components are as follows.
For V1, Vh ¼ 58 volts and Vv ¼ 0 volts. Next, for V2,
Vh ¼ 112 cos 658 ¼ 47:333 volts, and Vv ¼ 112 sin 658 ¼ 101:507 volts.

Fig. 97

* In Fig. 97, by definition, tan h ¼ Vv=Vh; eq. (110) simply says that h is the ANGLE whose tangent is equal to Vv

divided by Vh. For example, since

tan 608 ¼ 1:7321

we have the inverse statement that

608 ¼ arctan 1:7321
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Hence the horizontal component of V is 58 þ 47:333 ¼ 105:333 volts,
and the vertical component of V is 101.507 volts. Thus,

by eq. (109), jV j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
21 398:71

p ¼ 146:283 volts, approx., and
by eq. (110), h ¼ arctanð101:507=105:333Þ ¼ arctan 0:963 68 ¼ 43:948.

The above answers can be combined together in the convenient ‘‘polar’’
form, thus

�VV ¼ 146:283=43:948

in which �VV denotes that V is a vector quantity, which can be read as
‘‘vector V .’’ Thus the above answer can be read as ‘‘V is a vector quantity
of magnitude 146.283 at angle of 43.94 degrees.’’

(b) 146.283 volts, answer, because ac meters read the magnitude of rms values.

Let us next consider certain details about theCURRENTandPOWER that are produced
by ac generators working into a purely RESISTIVE load. We begin our discussion with Fig.
98, in which a single ac generator, of peak voltageVp, produces an ac current of peak value
Ip amperes in a load resistance of R ohms, as shown.

Let us now SUPPOSE that a phase shift of � radians exists between the current wave and
the voltagewave, as shown in the figure.Aswe can see from the figure, the generator voltage v
is at all times equal to the voltage drop acrossR, which is equal toRi byOhm’s law.Thus at all
times

v ¼ Ri

Vp sin!t ¼ RIp sinð!tþ �Þ
The above equation is true for all values of time, including t ¼ 0, andupon setting t ¼ 0we

have that (since sin 0 ¼ 0)

0 ¼ RIp sin�

which can be true only if � ¼ 0, which shows that there is ZERO PHASE SHIFT between
the voltage and current waves in a purely resistive circuit. This fact is shown in phasor
diagrams, for the case of Fig. 98, in Fig. 99, in which Fig. 99A and B are combined in the
single diagram of Fig. 99C.

Fig. 98

Fig. 99A Fig. 99B Fig. 99C
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With the foregoing in mind, let us return to Fig. 91, and also to Fig. 93, which is the
phasor diagram for Fig. 91.

In Fig. 91 we indicate a current i ¼ Ip sinð!tþ bÞ; but notice that we do not show the
phasor for this current in Fig. 93. Our object now, therefore, is to add, to the phasor
diagram of Fig. 93, phasors that will account for the CURRENT, i ¼ Ip sinð!tþ bÞ, that
flows in Fig. 91. This can be done by calling upon the extremely useful ‘‘principle of
superposition’’ (problem 50, section 4.4) as follows.

By the principle of superposition, the total effect of the two generators in Fig. 91 is the
same as if each generator acted separately, producing its own separate component of
current, the vector sum of the two components of current being equal to the total current.

Since, in Fig. 91, the load is a pure resistance of R ohms, we know that each of the two
current components will be in phase with the generator voltage that produces it. Thus, if
we let Ip1 and Ip2 be the peak values of currents produced separately by generator voltages
Vp1 and Vp2, then Fig. 93 can be redrawn to include the CURRENT PHASORS Ip1 and
Ip2, as shown in Fig. 100.

Now let us multiply the magnitudes of all four vectors in Fig. 100 by 0.7071; this will
not change the angle a in any way, but the lengths (magnitudes) of the vectors will now
represent rms values instead of peak values. Let us denote the rms values of voltage by V1

and V2 (as we do in Figs. 95 and 96), and then let I1 and I2 denote the rms currents
produced by the rms voltages V1 and V2.

Now let V denote the vector sum of the rms voltages V1 and V2, as shown in Fig. 96.
Then let I denote the vector sum of the rms currents I1 and I2; it then follows that the
resultant rms vector I lies in the same direction as the resultant rms voltage vector V,* as
shown in Fig. 101. (Fig. 101 is thus the same as Fig. 96 except the current vectors have
been added and the figure increased in size somewhat.)

Fig. 100

* There must be ‘‘zero phase shift’’ between V and the current I it produces in a purely resistive circuit, as

emphasized in Fig. 99.

Fig. 101
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Figure 101 is thus the COMPLETE VECTOR DIAGRAM for the purely resistive circuit
of Fig. 91, in which the lengths of the vectors represent constant rms values of voltage and
current. Note that V is the vector sum of generator voltages V1 and V2, while I is the vector
sum of generator currents I1 and I2. Since Fig. 91 is a resistive circuit, note that I1 is in phase
with V1, I2 is in phase with V2, and the overall resultant current I is in phase with the overall
resultant voltageV (all as shown in themanner ofFig. 99C).Weagain emphasize thatFig. 101
does not represent an instantaneous ‘‘time’’ relationship, but depicts the constant phase
relationships of the vectors representing the various constant rms values of current and
voltage.

Also, comparison of Figs. 101 and 91 shows that the constant angle b, originally used in
Fig. 91, is really the same as the angle h in Fig. 101; that is, h is the constant angle between
the current wave i and the reference voltage wave v1 in Fig. 91.

Relationships expressed in ‘‘vector diagram’’ form, such as in Fig. 101, are, of course,
also expressible in ‘‘algebraic’’ form, using either the ‘‘bar’’ or ‘‘polar’’ notation (see
example 1).

For example, Fig. 101 shows graphically that the total resultant rms voltage �VV , appear-
ing between terminals c and d in Fig. 91, is equal to the vector sum of voltages �VV1 and �VV2;
this fact can be expressed algebraically by writing that, in Fig. 101, the general statement
can be made that

�VV ¼ �VV1 þ �VV2

or as

V=h ¼ V1=0 þ V2=a

in which the angles deboted by h and a will be expressed in either degrees or radians. In the
last equation, �VV1 is taken to be the reference vector at ‘‘zero degrees or radians,’’ with the
total resultant voltage having a magnitude of V volts at an angle h relative to the �VV1

vector.
In any given case, the value of a resultant vector, �VV ¼ V=�, is equal to the vector sum of

all the horizontal and vertical components of all the individual vectors involved, as
explained in example 1.

The above statements made concerning voltages apply, of course, to currents; thus

�II ¼ �II1 þ �II2 þ �II3 þ � � �

where �II is the overall resultant current, equal to the vector sum of all the component
vector currents �II1, �II2, �II3, and so on, the magnitudes of all currents being in rms amperes, as
usual.

Next, the basic OHM’S LAW, first stated for the dc case in section 2.3, now becomes,
for the ac case, the vector relationship

�II ¼
�VV

R
ð111Þ

where �II ¼ rms vector current, �VV ¼ applied rms vector voltage, and R is resistance in
ohms. R is a scalar quantity, there being no sense of direction associated with resistance.

It should be noted that eq. (111) applies to a circuit, such as Fig. 91, in which a number
of different generators, all of the same frequency but having various phase relations with
respect to one another, are applied to a common load resistance of R ohms. (Equation
(107) in section 5.5 can be written in the simpler form I ¼ V=R, because just one generator
of voltage V is being considered in the discussion of this equation.)
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Problem 72
Three series-connected ac generators, all of the same frequency, having rms vector
voltages of �VV1, �VV2, �VV3, work into a load resistance of R ¼ 25 ohms, as shown in
Fig. 102.

It is given that, in rms volts,

�VV1 ¼ 65=08 �VV2 ¼ 90=608 �VV3 ¼ 75=1508

(a) Using the given values, write the value of the output voltage �VV in ‘‘polar’’ form.

(b) An ac voltmeter placed across R would read rms volts.

(c) For the given values, write the value of the current �II in polar form. An ac
ammeter, placed in series with R, would read rms amperes.

(d) In the figure, is the current �II ‘‘in phase’’ with the resultant output voltage �VV?

(e) In the figure, is the current �II in phase with any of the generator voltages?

5.7 Power Calculations
Let us begin by returning briefly to eqs. (94), (95), (96), and (97) in section 5.5.

First of all, eqs. (94) and (95) show that, in that section, we dealt ONLY with the case
in which the ‘‘current wave’’ (eq. (95)) is exactly IN PHASE with the ‘‘voltage wave’’ (eq.
(94)). Hence eq. (97), and therefore also eq. (104),

P ¼ VI watts

are true ONLY if the current wave is exactly IN PHASE with the voltage wave. Likewise,
eqs. (105), (106), (107) are true only for the same condition. Hence, in this simple case we
often don’t bother to denote the rms vector values by �VV and �II , but just write V and I ; thus,
in section 5.5 we wrote I ¼ V=R (eq. (107)), and so on.

Now, however, let us consider the case where the voltage and current waves are NOT
exactly in phase with each other; to indicate this, let us now write eqs. (94) and (95) as

v ¼ Vp sin!t ð112Þ
i ¼ Ip sinð!t� �Þ ð113Þ

Fig. 102
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which is the algebraic way of showing that the current wave ‘‘lags’’ the voltage wave by �
radians (!t is the angular amount in radians).

Thus, for this condition, the original eq. (97) now becomes

p ¼ VpIpðsin!tÞ sinð!t� �Þ ð114Þ
At this point it will be helpful to make use of the trigonometric identity*

sinðxþ yÞ ¼ sin x cos yþ cos x sin y

which, upon setting x ¼ !t and y ¼ ��, and then making use of the identities
cosð�hÞ ¼ cos h and sinð�hÞ ¼ � sin h (eqs. (77) and (76) in section 5.3), becomes

sinð!t� �Þ ¼ sin!t cos �� cos!t sin �

in which � is a constant phase angle between the voltage and current waves (and thus cos �
and sin � are also constant quantities in any given case). Now substitute the above identity
for sinð!t� �Þ into eq. (114); doing this, eq. (114) becomes

p ¼ VpIp½sin2 !t cos �� sin!t cos!t sin �� ð115Þ
Now, making use of eq. (98) in section 5.5, we have

sin2 !t ¼ 1
2 ð1 � cos 2!tÞ

and, upon making this substitution into eq. (115), you should find that

p ¼ VpIp½ 1
2 cos �� 1

2 cos 2!t cos �� sin!t cos!t sin �� ð116Þ
in which p is ‘‘instantaneous’’ power. But, as explained in section 5.5, we are not interested
in instantaneous power; instead, we are interested in finding the AVERAGE POWER
produced by the generator voltage, v ¼ Vp sin!t, over ONE COMPLETE CYCLE, such
as from !t ¼ 0 to !t ¼ 2�. Hence our discussion, from this point on, exactly parallels the
discussion following eq. (99), and leads to the conclusion that the AVERAGE POWER P
produced in eq. (116) is equal to

P ¼ VpIp
2

cos � ¼ Vpffiffiffi
2

p Ipffiffiffi
2

p cos �

which, you’ll notice, is the same as eq. (101) in section 5.5 EXCEPT that now we have the
constant multiplier ‘‘cos �.’’ Thus, using the definitions of eqs. (102) and (103), we have
that

P ¼ VI cos � watts ð117Þ

where P is average power in watts, V and I are rms values of voltage and current, and � is
the phase angle between the sinusoidal voltage and current waves. It makes no difference,
of course, whether the current wave ‘‘leads’’ or ‘‘lags’’ the voltage wave, because
cosð��Þ ¼ cos �.

Equation (117) says that the scalar quantity ‘‘power’’ is equal to the product of the
magnitudes of the rms values �VV and �II and the cosine of the phase angle between �VV and �II .
This can be shown in connection with the vector diagram for �VV and �II as shown in Fig. 103.

Thus the statement is made that POWER in an ac circuit is equal to the magnitude of
voltage times the magnitude of the component of current that is ‘‘in phase’’ with the
voltage vector.

* See note 7 in Appendix.
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Equation (117) gives power in terms of V and I , that is, in terms of the magnitudes
of the rms values of voltage and current and the angle � between the �VV and �II vectors.

Now suppose that V and I are the rms values of voltage across, and current through, a
pure resistance of R ohms; in that case � ¼ 0 (see discussion for Fig. 98) and, since
cos 0 ¼ 1, eq. (117) becomes, if V is the voltage across and I the current through, a
resistance of R ohms,

P ¼ VI ð118Þ
or, since V ¼ RI ,

P ¼ I2R ð119Þ
or, since I ¼ V=R,

P ¼ V2=R ð120Þ
where, as before, P is the average power in watts.

Before going on let us pause, just briefly, to comment on vector diagram notation. In a
vector diagram the lengths of the vectors represent the magnitudes of the rms values of
voltage and current, and the ‘‘phase angles’’ are represented graphically by actually draw-
ing the vectors at the specified angles with respect to each other and to the reference vector.

Thus, in the vector diagram of Fig. 103, V and I (not �VV and �II) denote the MAGNI-
TUDES of the rms values of the vector voltage �VV and the vector current �II , while the phase
shift is shown directly on the diagram by drawing the vector lengths at the required angle �
with respect to a reference vector or reference line. (The notation is further illustrated in
Fig. 101.)

Problem 73
This is a continuation of problem 72, Fig. 102, using all the same values as given in
that problem.

(a) The power produced in the 25-ohm resistive load is watts.

(b) The power produced by each individual generator in Fig. 102 is as follows:

power produced by generator of voltage V1 is watts,
power produced by generator of voltage V2 is watts,
power produced by generator of voltage V3 is watts.

(c) The sum of the three answers found in part (b) must be equal to the answer
found in part (a); check to see that your answers satisfy this requirement.

(d) Make a freehand sketch of the vector diagram showing the relationships in
Fig. 102. Show and label the generator voltages, the output voltage, the
current, and the various phase angles involved.

Fig. 103. P ¼ VI cos h.
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NOTE OF CAUTION
The ‘‘principle of superposition’’ states that, in a network composed of linear bilateral
elements and several generators, the total CURRENT at any point in the network is equal
to the sum of the currents due to each generator considered separately, the other gen-
erators being replaced by their internal resistances.*

The principle of superposition, however, cannot, in general, be applied in the same way
to POWER calculations as it is in current calculations. This is because power is propor-
tional to the SQUARE of current, P ¼ I2R. Thus the total power produced in a resistance
R, due to the presence of several different components of current in R, is not equal to the
sum of the powers due to each current component considered separately as if the other
components were absent. (This assumes all generators have the same frequency.)

For example, suppose a total current I is equal to the sum of two separate current
components I1 and I2; that is, I ¼ I1 þ I2. The total power PT produced in R is equal to

PT ¼ I2R ¼ ðI1 þ I2Þ2R
thus

PT ¼ I2
1Rþ I2

2Rþ 2I1I2R ð121Þ
Note that IF the principle of superposition applied to power calculations the above

answer would be PT ¼ I2
1Rþ I2

2R, which, however, is not the same as the correct answer
given by eq. (121). Hence the total current must be used when making power calculations.
Thus in problem 73 total current of 4.957 amperes (4.957 A) is used in the power calcula-
tions.

5.8 Application of Loop Currents
The method of ‘‘loop currents,’’ introduced in section 4.4, applies to ac networks as well as
dc networks. All we need do is properly label the ac network, then apply the rules laid
down in that section.

To illustrate the procedure, let us now work through the solution of an ac network
problem using the loop current method. In doing this, we’ll go into much more detail than
a person normally would in working such a problem; we do this, of course, to emphasize
the fundamental ideas involved.

Thus, for purposes of basic explanation, let us begin with our example network
expressed in terms of the fundamental variable time, t, as shown in Fig. 104, in which
resistance values are in ohms. The voltages and currents are sinusoidal, as always, with the
voltage and current arrows having the meanings described in the discussion following eq.
(108).

In the figure, note that only the (peak) generator voltages, including their polarity
arrows and their phase angles, and the resistance values are given. The unknowns are
thus the ‘‘peak values,’’ Ip1 and Ip2, of the current waves and their corresponding phase
angles a and b, and the peak value Vp of the output voltage wave vo and its phase angle c.{
All phase angles are to be stated with reference to the voltage wave, 43 sin!t, which, since
it passes through the origin of the horizontal time axis, will be said to have ‘‘zero’’ phase

* See problem 50 and also the footnote in section 4.7.

{ Angle c, in this case, will be equal to angle b ðc ¼ bÞ because, as pointed out following Fig. 98, there is zero phase

shift between the voltage across, and the current through, a resistance of R ohms.
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shift. (Since the angular amount !t is in radians, the phase angles a, b, c, as they appear in
the figure, must also be expressed in radians.)

In the figure, let the voltage appearing across the 12-ohm resistor be the ‘‘output
voltage’’ of the network. Thus vo is the instantaneous value of the output voltage. As
time continues to increase, vo continually swings back and forth, sinusoidally, between
the positive and negative peak values Vp and �Vp.

Now let the basic PROBLEM be to FIND THE MAGNITUDE OF THE RMS
VOLTAGE that would appear across the 12-ohm load resistor (this being the value of
voltage that would be read by an ac voltmeter connected across the 12-ohm resistance).

To solve the above problem by the method of loop currents, let us begin by returning to
the ‘‘three-step’’ procedure outlined in section 4.4.

The three-step rule, as given in Chap. 4, was applied to dc circuits; it should be
emphasized, however, that the rules apply AT ANY AND ALL INSTANTS OF TIME
in any network. This is true because Kirchhoff’s current and voltage laws (sections 4.2 and
4.3) are, and must be, satisfied at any and all instants of time in any network.

Now, in regard to our problem here and the above-mentioned ‘‘three steps,’’ notice that
we automatically satisfied ‘‘step I’’ when we drew and labeled the ‘‘current arrows’’ in
Fig. 104.

Next, ‘‘step II’’ defines the rules to be used in writing the VOLTAGE EQUA-
TIONS around each of the n loops in a network (n ¼ 2 in Fig. 104). The same rules,
given in the original statement of step II in section 4.4, will also apply to the ac circuit
of Fig. 104 except that now the ‘‘plus and minus’’ battery polarity marks will be replaced
by voltage arrows associated with each ac generator (see Fig. 89). Thus the original state-
ment of step II would now, for the alternating-current (ac) case, be stated as follows.

All generator voltages will be written on the right-hand sides of the equations, and will
be considered positive if we go through a generator with the voltage arrow, but negative if
we go through the generator against the voltage arrow. The original statement about
‘‘voltage drops’’ across resistors will remain unchanged.

Thus, applying these step II rules to the ac network of Fig. 104, we have the following
two voltage equations, which are valid at all instants of time, first around the left-hand
loop (eq. (122)), then around the right-hand loop (eq. (123)).

18Ip1 sinð!tþ aÞ � 8Ip2 sinð!tþ bÞ ¼ 43 sin!t� 36 sinð!tþ 5�=6Þ ð122Þ

� 8Ip1 sinð!tþ aÞ þ 20Ip2 sinð!tþ bÞ ¼ 36 sinð!tþ 5�=6Þ � 64 sinð!tþ �=3Þ ð123Þ

Fig. 104
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In the above equations the constant GIVEN values are, first, the resistance values in
ohms (on the left-hand sides of the equations) and, second, the peak sinusoidal generator
voltages and their phase angles (on the right-hand sides of the equations). The constant
UNKNOWN values are the peak values of the sinusoidal current waves and their phase
angles a and b. Note that the INDEPENDENT VARIABLE is time, t; the equations are
thus instantaneous relationships, valid for all values of time, from t ¼ 0 to any value
whatever.

Hence (in the manner of Figs. 92 and 93) each term in the equations can be represented
by a ‘‘phasor,’’ all phasors rotating at the same ‘‘angular speed’’ of ! radians per second.
Thus the total angle generated by a phasor in t seconds is !t radians, or, if a phase angle a
must be taken into account, !tþ a radians (such as is illustrated in Fig. 93). It should be
noted that although phasors are simply ‘‘rotating line segments’’ they can, nevertheless, be
extremely helpful in understanding and visualizing the behavior of sinusoidal waves of
voltage and current in ac networks.

Now, at this point in our work, we suggest that, before going on, the student should
carefully REVIEW ALL THE DISCUSSIONS given in connection with eq. (108) and
Figs. 92 through 97, including eqs. 109 and 110.

In conducting the above-proposed review, the reader may have noticed that we made
use of two very important properties possessed by sinusoidal waves of the same frequency.
Both properties concern the nature of the sum of two (or more) such waves. The properties
were applied in section 5.6, perhaps without sufficient emphasis and explanation; let us,
therefore, take the time now to briefly discuss them in more detail, beginning with the first
property, which can be stated as follows:

The SUM of two or more sinusoidal waves of the same frequency is equal to
A SINGLE SINUSOIDAL WAVE of the same frequency.

Thus, if A sin!t is one sine wave and B sinð!tþ aÞ is another sine wave (where
! ¼ 2�f , in which frequency f has the same value in both waves), the foregoing statement
says that

A sin!tþ B sinð!tþ aÞ ¼ C sinð!tþ bÞ ð124Þ

whereA,B, andC are peak values and a and b are phase angles.Aproof of eq. (124) is given in
the Appendix.* It follows that the sum of any number of such waves is also equal to a single
sinusoidal wave (because any two can be combined into a single wave, which can then be
combined with a third into a single wave, and so on).

The second property of sinusoidal waves that we wish to emphasize is the fact that the
‘‘peak’’ values, and also the ‘‘rms’’ values, of different sinusoidal waves (all of the same
frequency) can be added together vectorially AS IF THEY WERE ORDINARY VEC-
TOR QUANTITIES (see Figs. 92 through 101, and the discussions given with these
figures). Property two can thus be summarized in the statement:{

The rms value of the SUM of two or more sinusoidal waves of the SAME
FREQUENCY is equal to the vector sum of the rms values of the individual
sinusoids.

* See note 9 in Appendix.

{ See note 10 in Appendix.
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In the above, the MAGNITUDE of each vector quantity represents the MAGNI-
TUDE OF THE RMS VALUE of the corresponding voltage or current wave, while the
ANGLE of the vector represents the relative PHASE SHIFT of the sinusoidal wave. (For
a note on ‘‘vector diagram’’ notation, see paragraph just prior to problem 73.)

Let us now apply the foregoing to Fig. 104, in which the PROBLEM is to ‘‘find the
magnitude of the rms voltage across the 12-ohm resistor.’’ Again, in doing this we’ll go
into much more detail than a person normally would for a problem such as this; we do
this, of course, for the purpose of explanation.

Let us begin with the time-dependent eqs. (122) and (123), in which the terms can be
thought of as being generated by rotating voltage and current phasors, all rotating at
the same angular speed of ! rad/sec. Since, however, we’re not interested in finding
‘‘instantaneous’’ values we can disregard the rotary motion of the phasors and concentrate
on just the constant unknown peak values, Ip1 and Ip2, and the constant phase angles a and
b. Doing this eliminates the variable time and transforms eqs. (122) and (123) into the
vector equations

18Ip1=a� 8Ip2=b ¼ 43=0 � 36=5�=6 ð124aÞ
�8Ip1=aþ 20Ip2=b ¼ 36=5�=6 � 64=�=3 ð125Þ

in which the phase angles are in radians. As previously mentioned, in practical engineering
work we normally use ‘‘rms’’ values of voltage and current instead of ‘‘peak’’ values. (This
is reasonable, because rms values must be used in all the equations for calculating average
POWER in ac circuits.)

Hereafter, therefore, we’ll write our equations in terms of rms values instead of peak
values; in terms of notation we’ll indicate this by dropping the subscript ‘‘p’’ (which
indicates ‘‘peak’’). Thus, since Ip1 and Ip2 represent peak magnitudes of current, then,
dropping the p’s, I1 and I2 would represent rms magnitudes of the currents. Thus, using eq.
(103), we have that

Ip1 ¼ 1:4142I1 and Ip2 ¼ 1:4142I2

Let us therefore make the above substitutions into eqs. (124a) and (125); doing this,
and also converting the phase angles to degrees (eq. (85)), allows us to rewrite eqs. (124a)
and (125) as

25:456I1=a� 11:314I2=b ¼ 43=08� 36=1508 ð126Þ
�11:314I1=aþ 28:284I2=b ¼ 36=1508� 64=608 ð127Þ

in which the peak voltage 43=08 is the reference vector, with peak voltages on the left-hand
sides of the equations all being expressed in terms of rms currents I1 and I2. Next, as an aid
in understanding the details which follow, let us adopt the notation below, which we’ll
lump together as ‘‘eq. (128)’’; thus

I1=a ¼ �II1 43=08 ¼ �VV1 64=608 ¼ �VV3

I2=b ¼ �II2 36=1508 ¼ �VV2

)
ð128Þ

in which, for convenience in this case only, we’re using �VV1, �VV2, and �VV3, to denote peak
values of voltage. Now make all the above substitutions into eqs. (126) and (127); doing
this gives the following set of simultaneous equations:

25:456�II1 � 11:314�II2 ¼ �VV1 � �VV2 ð129Þ
�11:314�II1 þ 28:284�II2 ¼ �VV2 � �VV3 ð130Þ

CHAPTER 5 Sinusoidal Waves. rms Value 111



in which �II1 and �II2 are unknown rms vector currents and �VV1, �VV2, �VV3 are known (given) peak
values of the given generator voltages.

At this point let us pause to note that the original Fig. 104, which is expressed in terms
of the fundamental independent variable time, can now be redrawn in terms of the vector
quantities of eqs. (129) and (130), as in Fig. 105.

In the figure, �II2 is the vector rms current through the 12-ohm resistor; hence, �VVo is the
vector rms output voltage, and therefore, by Ohm’s law,

magnitude of rms output voltage ¼ j �VVoj ¼ 12j�II2j ð131Þ
Thus, to find the required ANSWER to our problem (find the voltmeter reading across

the 12-ohm resistance), all we now need to do is to solve eqs. (129) and (130) for �II2. The
details of the solution of these equations for �II2 by determinants are as follows, using the
standard procedure of section 3.5.

�II2 ¼

���� 25:456 ð �VV1 � �VV2Þ
�11:314 ð �VV2 � �VV3Þ

�������� 25:456 � 11:314

�11:314 28:284

����
¼ 11:314 �VV1 þ 14:142 �VV2 � 25:456 �VV3

591:991
ð132Þ

The next step is to find the SUM OF THE VECTOR QUANTITIES in the numerator
of the fraction to the right above.

This can be done by recalling that the horizontal component Vh and the vertical
component Vv of the resultant sum of a number of vectors is equal, respectively, to the
sum of the horizontal components and the sum of the vertical components of the indivi-
dual vectors (see discussion with Figs. 96 and 97). Making use of this fact, and eqs. (109)
and (110) (and (128)), we have, for the case of eq. (132) (note angle in 3rd gradient),

11:314 �VV1 þ 14:142 �VV2 � 25:456 �VV3 ¼ 1388:719=236:388

hence

j�II2j ¼
1388:719

591:991
¼ 2:346 amperes

thus

j �VVoj ¼ ð12Þð2:346Þ ¼ 28:150 volts; answer:

Fig. 105
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Some comments regarding the foregoing problem are as follows.
Note that we began with Fig. 104, to which eqs. (122) and (123) apply, these being

expressed in terms of the independent variable time, t.
Then, by requiring that only rms values need be calculated, we were able to eliminate the

variable time, thus producing Fig. 105 and the corresponding vector eqs. (129) and (130).
(It should be mentioned that an experienced engineer would not generally bother with Fig.
104 at all, but would start directly with Fig. 105 and eqs. (129) and (130).)

We might also comment once again on the sense of direction given to the voltage and
current arrows in a network.

In Fig. 104, for example, 43 sin!t was chosen to be the REFERENCE VOLTAGE
WAVEFORM, with a ‘‘voltage arrow’’ drawn beside the generator. The arrow is drawn
with the meaning of Fig. 89, denoting the polarity ‘‘� to þ’’ during the times that 43 sin!t
is positive in value. Next in Fig. 104 consider, for example, the voltage waveform having
the peak value of 64 volts. It is GIVEN in the problem that this voltage waveform leads the
reference voltage wave by �=3 radians in the sense ‘‘� to þ’’ indicated by the voltage
arrow given alongside the generator.

Next, the CURRENT ARROWS define the sense in which ‘‘positive currents’’ flow in a
network. In our work we’ll usually draw all the current arrows around the loops in the
same sense (let us say all clockwise), because this will tend to produce voltage equations
that are somewhat more symmetrical in form. When a ‘‘negative current,’’ �I sinð!tþ aÞ,
occurs in a solution, it means that that particular current wave actually flows in a counter-
clockwise sense during the times that I sinð!tþ aÞ is positive in value.

Problem 74
In Fig. 105, find the magnitude of �VVo if it had been given that the voltage arrow for
�VV3 should point from left to right instead of from right to left.

(Answer: j �VVoj ¼ 37:992 volts)
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Algebra of Complex
Numbers

In this chapter we study the ‘‘algebra of complex numbers.’’ This is a subject of great
usefulness in all branches of engineering, being especially important in electrical and
electronic engineering. We’ll find that the algebra is not difficult and is, in itself, a most
interesting study.

6.1 Imaginary Numbers
Let us begin with a bit of history. For a long time only ordinary positive and negative
numbers were used, and the rules for working with these numbers were laid down and
firmly established.

Later, positive and negative exponents were invented, and fitted into the established
rules of mathematics. New rules for working with exponents had to be laid down, and
these rules had to be in harmony with other rules previously established.

Then the ‘‘square root’’ of a positive number was defined. Thus, if the ‘‘square root of
y’’ is equal to ‘‘x,’’ this is denoted by the symbolffiffiffi

y
p ¼ x

which is defined to mean that

y ¼ x2

It was immediately noticed that the square root of a positive number must have TWO
different values, equal in magnitude but opposite in sign. This had to be true because of a
previous rule that had been laid down and established; this was the rule that the product of
TWO POSITIVE NUMBERS or TWO NEGATIVE NUMBERS is always a POSITIVE
number. Thus it had to be written that, for example,ffiffiffi

1
p

¼ �1
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because

1 ¼ ðþ1Þ2
and

1 ¼ ð�1Þ2

This naturally brought up the question, ‘‘Does the square root of a NEGATIVE
number have a meaning?’’. What, for example, is the square root of minus 1? Thus, if we
let x denote the value of the ‘‘square root of minus 1’’ we must write thatffiffiffiffiffiffiffi

�1
p

¼ x

which, by definition, means that

�1 ¼ x2

Notice that x cannot be equal to +1 and it cannot be equal to �1, because neither of
these numbers when squared is equal to �1. It was therefore understandably stated, by the
early investigators, that the ‘‘square root of a negative number does not exist.’’

As time passed, however, it became clear that a fully unified system of algebra was not
possible unless the square roots of negative numbers were accepted as truly being a new
kind of number. Such numbers are called ‘‘imaginary’’ numbers, the name simply reflecting
the historical fact that they were originally thought not to exist.

Thus we now have two sets of numbers, one being the set of ordinary positive and
negative ‘‘real’’ numbers, the other being the set of positive and negative ‘‘imaginary’’
numbers.

In the set of real numbers each individual number is composed of a certain number of
digits arranged in a certain sequence, producing a unique number, different from any
other. Thus we have the positive real numbers, 0, 1, 2, 3, . . . 25, 26, 27, . . . , and so on,
endlessly. Then, for each positive real number there is a corresponding NEGATIVE real
number of the same magnitude.

In the real number system the number ‘‘1’’ is the basic unit of measure or value. Thus
any other real number can be regarded as a multiple of 1; the number 23, for example, is
equal to ‘‘23 times the value represented by the basic unit 1.’’ We also note that

1� 1 ¼ 12 ¼ 1

Exactly the same procedure is used to denote the value of an imaginary number, except
that now the basic IMAGINARY UNIT of value will be denoted by the letter ‘‘j,’’ which is
defined to be equal to the SQUARE ROOT OF MINUS ONE; that is, by definition,

basic IMAGINARY UNIT ¼ j ¼
ffiffiffiffiffiffiffi
�1

p
ð133Þ

Now let us see WHY the above definition makes sense. To do this, let us consider,
again, the previously discussed equation

x2 ¼ �1 ð134Þ
Note that this equation has no solution in the real number system, because the SQUARE

of any positive or negative real number is a POSITIVE real number. Thus x cannot be
equal to either of the real numbers +1 or �1, because their square is equal to +1, and +1
is, of course, not equal to �1. Thus there is no real value of x that ‘‘satisfies’’ the require-
ment of eq. (134). A solution can, however, be obtained in terms of imaginary numbers, as
follows.
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By the definition of eq. (133)

j ¼
ffiffiffiffiffiffiffi
�1

p

Squaring to remove the radical sign

j 2 ¼ �1

Hence, setting x ¼ j in eq. (134) gives the true identity, �1 ¼ �1, thus proving that
x ¼ j ¼ ffiffiffiffiffiffiffi�1

p
is a valid solution to eq. (134). This result is possible because we have

accepted the existence of imaginary numbers and the basic definition of eq. (133).
Thus we have found that x ¼ j is a valid solution to eq. (134); it is important, however,

to note that x ¼ �j is also a valid solution to eq. (134). Thus, setting x ¼ �j in eq. (134)
gives

x2 ¼ ð�jÞ2 ¼ ð�1Þ2j 2 ¼ j 2 ¼ �1

which again gives the true identity, �1 ¼ �1. Thus eq. (134) has TWO solutions (two
‘‘roots’’), x ¼ j and x ¼ �j. This is, of course, to be expected, because eq. (134) is a
‘‘second degree’’ algebraic equation. Thus to ‘‘find the value of x’’ in eq. (134) the proce-
dure is to ‘‘take the square root of both sides,’’ thus getting

x ¼ �
ffiffiffiffiffiffiffi
�1

p
¼ �j

Since j denotes the unit imaginary value, the general value of an imaginary number is
indicated by writing ‘‘aj,’’ where a can be any positive or negative real number. The real
coefficient a thus expresses the value of the imaginary number relative to the basic ima-
ginary unit j. Thus we have imaginary numbers such as 8j, 150j, and so on. It should also
be mentioned that the product aj is ‘‘commutative,’’ that is, that aj ¼ ja.

We should also note that for each POSITIVE imaginary number there is a correspond-
ing NEGATIVE imaginary number; thus, corresponding to 25j there exists �25j, and so
on.

Since ‘‘1’’ is the unit value in the real number system, and ‘‘j’’ is the unit value in the
imaginary number system, it’s interesting to make the comparison that

1 � 1 ¼ 12 ¼ 1

and

j � j ¼ j 2 ¼ �1

Thus j squared is equal to minus one, a fact that we are of course already aware of, and
one that we will often make use of in our future work.

Now let us continue on, and discover some very useful and surprising facts about
imaginary numbers. To begin, we already know that

j ¼
ffiffiffiffiffiffiffi
�1

p
ð135Þ

j 2 ¼ �1 ð136Þ

Let us remember that when ‘‘equal base numbers’’ are multiplied together the exponent
of the product is equal to the sum of the exponents of the individual factors, that is

axay ¼ axþy
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Remembering the above fact, and also keeping eq. (136) in mind, we can now show that
since j3 ¼ j 2j ¼ �j, we have

j3 ¼ �j ð137Þ

Next, since j4 ¼ j 2j 2 ¼ ð�1Þð�1Þ ¼ þ1, we have

j4 ¼ þ1 ð138Þ
To continue:

j5 ¼ j4j ¼ j ðbecause j4 ¼ 1Þ
j6 ¼ j5j ¼ jj ¼ j 2 ¼ �1 ðbecause j5 ¼ jÞ
j7 ¼ j6j ¼ �j ðbecause j6 ¼ �1Þ
j8 ¼ j7j ¼ �jj ¼ �j 2 ¼ þ1 ðbecause j7 ¼ �jÞ

Let us now bring together all of the foregoing equations; thus

j1 ¼ j

j2 ¼ �1

j3 ¼ �j

j4 ¼ þ1

j5 ¼ j

j6 ¼ �1

j7 ¼ �j

j8 ¼ þ1

and so on, endlessly.
Thus we see that the POWERS of the imaginary unit j consist of ONLY THE FOUR

DIFFERENT VALUES, j, �1, �j, þ1, and these four values are repeated over and over,
in regular sequence, as shown above. Hence, basically all we need to remember are the first
four relationships, thus

j ¼ j

j2 ¼ �1

j3 ¼ �j

j4 ¼ þ1

Example 1
Remembering that

ffiffiffiffiffiffi
ab

p ¼ ffiffiffi
a

p ffiffiffi
b

p
, write each of the following in terms of the imaginary

unit.

ðaÞ ffiffiffiffiffiffiffiffiffi�36
p ðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�25x6

p
ðcÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�85y�2

p
Solutions

(a)
ffiffiffiffiffiffiffiffiffi�36

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�1Þð36Þp ¼ ffiffiffiffiffiffiffi�1
p ffiffiffiffiffi

36
p ¼ �j6, answer.

(b)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�25x6

p
¼ ffiffiffiffiffiffiffi�1

p ffiffiffiffiffi
25

p ffiffiffiffiffi
x6

p
¼ �j5x3, answer.

In getting the above answer we made use of fractional exponents and the
basic relationship, ðxaÞb ¼ xab; thus,

ffiffiffiffiffi
x6

p
¼ ðx6Þ1=2 ¼ x3.

(c)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�85y�2

p
¼ �jð9:2196Þðy�2Þ1=2 ¼ �j 9:2196 y�1, answer, or

¼ �j 9:2196=y, answer.

Example 2
Simplify each of the following.

ðaÞ j20 ðbÞ � 10j47 ðcÞ 1

j
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Solutions

(a) The four possible values of the powers of j repeat themselves over and
over, endlessly, in the order j;�1;�j; 1; since 4 goes into 20 exactly five
times, it follows that

j20 ¼ j4 ¼ 1; answer:

(b) Since 4 goes into 47 ‘‘11 times with 3 left over,’’ we have that

�10 j47 ¼ �10 j3 ¼ �10ð�jÞ ¼ 10j; answer:

(c) Multiply the numerator and denominator by j; thus

j

jj
¼ j

j 2
¼ j

�1
¼ �j; answer:

Thus we have the very useful fact that

1

j
¼ �j ð139Þ

The fact that ‘‘one over j is equal to minus j ’’ is used so often that it should be
committed to memory.

Problem 75
Express each of the following in terms of the imaginary unit j.

ðaÞ
ffiffiffiffiffiffiffiffiffiffiffi
�144

p
ðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�100x4 y�10

q
ðcÞ �x2

4y2z4

 !1=2

Problem 76
Simplify each of the following as much as possible (the dot means ‘‘times’’).

ðaÞ � j � j 2 ðdÞ � j342 ðfÞ 1

j34

ðbÞ j5 � j8 ðeÞ 1

j3
ðgÞ j�17

ðcÞ j31

Problem 77
Solve the following for the unknown values of x.

ðaÞ x2 þ 16 ¼ 0 ðcÞ 6x2 þ 94:8 ¼ 0

ðbÞ x2 � 900 ¼ 0
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6.2 Complex Numbers. Addition and
Multiplication

We begin with the definition that a ‘‘complex number’’ is the algebraic SUM of a REAL
number and an IMAGINARY number. Thus complex numbers have the general form

aþ jb

where a is the real part and jb is the imaginary part of the complex number, with a and b
both being real numbers. In working with complex numbers it’s customary to write the
real part first; thus we generally write aþ jb, instead of jbþ a.

The first rule, in the algebra of complex numbers, concerns the SUM of two or more
such numbers, and can be stated in the following way.

REAL PART OF SUM¼ SUM OF THE REAL PARTS of the numbers
IMAGINARY PART OF SUM

¼ SUM OF THE IMAGINARY PARTS of the numbers

Example
Find the sum of the complex numbers (6þ j3), (10� j7), and (�4þ j9).

Solution

ð6 þ 10 � 4Þ þ jð3 � 7 þ 9Þ ¼ 12 þ j5; answer:

Next, the PRODUCT of two complex numbers is found in exactly the same way as in
the ordinary algebra of real numbers, except we must remember that j 2 ¼ �1.

Example 1
Find the product of the two complex numbers (5þ j3) and (2� j5).

Solution
Using the ordinary ‘‘four-step rule’’ for multiplying two binomials, we have

ð5 þ j3Þ ð2 � j5Þ ¼ 10 � j25 þ j6 þ 15

¼ ð10 þ 15Þ þ jð�25 þ 6Þ
¼ 25 � j19; answer:

Example 2
Find the value of jð6þ jÞ ð3� j4Þ.

Solution
Here we have to multiply three quantities together, the three quantities being

1. the unit imaginary number j

2. the complex number (6 þ j)

3. the complex number (3 � j4)
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The procedure in such a case is to FIRST find the product of ANY TWO of
the three factors, then multiply that result by the remaining factor. In the above
case let’s first multiply factors (1) and (2) together, giving jð6 þ jÞ ¼ ð�1 þ j6Þ,
which we must now multiply by factor (3), thus getting

ð�1 þ j6Þ ð3 � j4Þ ¼ �3 þ j4 þ j18 þ 24

¼ 21 þ j22; answer:

Problem 78

ð6 þ j5Þ � ð8 þ j4Þ þ ð4 � j3Þ ¼
Problem 79

j5 � 7 þ j3 þ 1 � j10 � j 24 þ 3 þ 10j100 ¼
Problem 80

ð2 � j3Þ ð6 � jÞ ¼
Problem 81

ð1 þ jÞ ð1 þ j2Þ ð�3 þ j5Þ ¼
Problem 82
Given that a; b; c, and d are real numbers, ðaþ jbÞ ðcþ jdÞ ¼

Problem 83

ð6 þ j12Þ2 ¼
Problem 84

ð1 þ jÞ5 ¼

6.3 Conjugates and Division of Complex
Numbers

Two complex numbers that differ ONLY IN THE SIGNS OF THEIR IMAGIN-
ARY PARTS are called ‘‘conjugate complex numbers.’’

Thus (aþ jb) and (a� jb) are conjugate complex numbers, each being the ‘‘conjugate’’
of the other.

The important fact that we are concerned with here is that the PRODUCT of two
conjugate complex numbers is always a POSITIVE REAL NUMBER; thus

ðaþ jbÞ ða� jbÞ ¼ a2 þ b2 ð140Þ
which you should verify by direct multiplication.

The relationship of eq. (140) is especially useful in finding the quotient of two complex
numbers; this can be illustrated with the aid of eq. (141) below:

cþ jd

aþ jb
¼ Aþ jB ð141Þ

in which all the letters (except j) represent positive or negative real numbers.
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Eq. (141) says that the quotient of two complex numbers, cþ jd divided by aþ jb, is
equal to a SINGLE COMPLEX NUMBER, which we show as Aþ jB in eq. (141).
The PROBLEM is, given the complex numbers cþ jd and aþ jb, find the values of
A and B in eq. (141). Fortunately, this can be done by multiplying the numerator and
denominator of the fraction by the CONJUGATE OF THE DENOMINATOR. To
show why this is true, let us apply the rule to the fraction on the left-hand side of
eq. (141); doing this, and making use of eq. (140), we find that eq. (141) becomes (on
the left-hand side)

ðcþ jdÞ ða� jbÞ
a2 þ b2

¼ ðacþ bdÞ þ jðad � bcÞ
a2 þ b2

Notice that now the common denominator, a2 þ b2, is a positive real number, which
therefore allows us to separate the fraction into its real and imaginary parts; thus

acþ bd

a2 þ b2
þ j

ad � bc

a2 þ b2
¼ Aþ jB

hence showing that multiplying the numerator and denominator by the conjugate of the
denominator does convert a given fraction into the form Aþ jB. Furthermore, in the
above example we see that, by inspection,*

A ¼ acþ bd

a2 þ b2
and B ¼ ad � bc

a2 þ b2

Example
Find the value of the quotient

5� j4

2� j3
.

Solution
By ‘‘find the value of’’ we mean ‘‘resolve the fraction into its real and
imaginary parts.’’ To do this we multiply the numerator and denominator by
the ‘‘conjugate of the denominator’’; thus

ð5 � j4Þ ð2 þ j3Þ
22 þ 32

¼ 10 þ j15 � j8 þ 12

13
¼ 22

13
þ j7

13
¼ 1:6923 þ j 0:5385; answer:

The above procedure can be referred to as ‘‘rationalizing’’ the fraction, which enables
us to simplify the ratio of two complex numbers into the form of a single complex number.

Problem 85
Find the values of each of the following:

ðaÞ 3 þ j4

1 þ j
ðbÞ 14 � j25

j5

Problem 86
Find the value of

ð4 þ jÞ ð2 � jÞ
ð1 þ jÞ ð3 � j2Þ
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Problem 87
Simplify the expression

j12

ð1 þ jÞ4 ðAnswer: � j3Þ

To close this section, suppose a complex number is equal to zero; that is, suppose

aþ jb ¼ 0 þ j0 ¼ 0

Since two complex numbers can be equal only if the real parts are equal and
the imaginary parts are equal, it follows that the above can be true only if a ¼ 0 and
b ¼ 0; that is:

A complex number can be equal to zero only if the real and imaginary parts
are BOTH equal to zero.

6.4 Graphical Representation of Complex
Numbers

We are familiar with the fact that real numbers can be represented as POINTS ON A
STRAIGHT LINE. This is illustrated in Fig. 106, in which X 0X (line X prime, X) repre-
sents such a line. The point ‘‘0,’’ called the ‘‘origin,’’ represents the number zero.

As shown, all POSITIVE real numbers are represented as points to the RIGHT of the
origin, while all NEGATIVE real numbers are represented by points to the LEFT of the
origin.

We accept the statement that TO EVERY REAL NUMBER there corresponds ONE
AND ONLY ONE POINT on line X 0X . We accept the reciprocal statement that TO
EVERY POINT on line X 0X there corresponds ONE AND ONLY ONE real number.

Fig. 106 is called the AXIS OF REAL NUMBERS, or simply the ‘‘axis of reals.’’
Now consider the corresponding representation of imaginary numbers. As we know,

imaginary numbers have the form jb, where j is the imaginary unit (eq. (133)) and where b
can be any positive or negative real number.

From the description of Fig. 106 it follows that the same idea can be applied to
imaginary numbers; that is, IMAGINARY NUMBERS can also be represented as points
on a straight line.

This is illustrated in Fig. 107, in which Y 0Y (line Y prime, Y), is the AXIS OF
IMAGINARY NUMBERS (or ‘‘axis of imaginaries’’), in the same way that Fig. 106 is
the ‘‘axis of reals.’’
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Thus we can present EVERY REAL NUMBER as a point on the straight line of
Fig. 106, and EVERY IMAGINARY NUMBER as a point on the straight line of
Fig. 107.

But now consider the graphical representation of COMPLEX NUMBERS, aþ jb.
Take, for example, any two complex numbers, such as 2 þ j2 and 2 þ j3. Note that
there is NO POINT on a straight line that can exclusively represent both of these numbers.
Thus the infinite number of different complex numbers cannot possibly be represented by
points on a one-dimensional straight line.

Instead, to graphically represent complex numbers a two-dimensional PLANE SUR-
FACE is required. This requirement is met by positioning the ‘‘axis of imaginaries’’ perpen-
dicular to the ‘‘axis of reals’’, the two axes intersecting at their common ‘‘0,’’ thus creating
the COMPLEX NUMBER PLANE, as shown in Fig. 108.

Note that all negative and positive REAL numbers are represented by points on the
‘‘real’’ or x-axis (X 0;X), with all negative and positive IMAGINARY numbers represented
by points on the ‘‘imaginary’’ or y-axis (Y 0;Y), while ALL COMPLEX NUMBERS are
represented by points on the plane, such as the general complex number (aþ jb), as
illustrated in the figure.

Thus, to locate the point that represents a given complex number aþ jb, we locate the
real part a on the x-axis, then locate the imaginary part b on the y-axis; the desired point is
at the intersection of the horizontal and vertical lines drawn from b and a, as shown in the
figure.

Thus each real, imaginary, and complex number is represented by a single unique point
on the complex plane of Fig. 108.

Problem 88
In section 6.3 we saw that two complex numbers are equal only if their real parts
are equal and their imaginary parts are equal. Is this fact evident from inspection of
Fig. 108?
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Thus far in our work we’ve written complex numbers in what is called the RECTAN-
GULAR form, that is, in the form ‘‘aþ jb.’’

It is also possible, and often highly desirable, to write complex numbers in what is
called the POLAR or TRIGONOMETRIC form. In this form, a complex number is
expressed in terms of magnitude, A, and angle, �. The relationship between the ‘‘rectan-
gular’’ and ‘‘polar’’ form of a complex number can be derived from inspection of Fig. 109.

Thus, in the figure,

aþ jb ¼ A cos �þ j sin �ð Þ ð142Þ

the right-hand side being the equivalent ‘‘trigonometric’’ form of aþ jb.’’
The length A is called the ‘‘modulus’’ or ‘‘absolute’’ value of the complex number, and

is always taken to be a POSITIVE value. The angle � (theta) is called the ‘‘amplitude’’ of
the complex number, with positive angles measured in the ccw (counterclockwise) sense.
From inspection of Fig. 109,

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð143Þ

tan � ¼ b

a

� ¼ arctanðb=aÞ

9>=
>; ð144Þ

Complex numbers in the trigonometric form are often written in the abbreviated form
A=�, which is called the ‘‘polar’’ form.* Hence the rectangular, trigonometric, and polar
forms all denote the same thing, a complex number; thus

aþ jb ¼ Aðcos �þ j sin �Þ ¼ A=� ð145Þ
In the following two problems round all calculator values off to 3 decimal places.

Problem 89
Write the following complex numbers in trigonometric form.

(a) 2:3 � j3:5 þ 5:8 þ j13:9 (b)
7 � j2

4 þ j9
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Problem 90
Write the following complex numbers in rectangular form, aþ jb.

(a) 90=1668 (b) 400=�1268 (c) 17=458� 22=2658

6.5 Exponential Form of a Complex Number
In this section we introduce the ‘‘exponential’’ (‘‘expo NEN shal’’) form of a complex
number. We do this because certain operations can be greatly simplified if the complex
numbers are written in this form.

It is necessary, however, in order to give a proper explanation of the ORIGIN of the
exponential form, that we make use of certain procedures from more advanced mathe-
matics. In our explanations we’ll state the facts as clearly as we can, so that you can
understand, in a good general way, the origin of the exponential form. It is important
that we do this, because it will give you added confidence in handling complex numbers in
this form, which, as you’ll be pleased to find, is not at all hard to do. Let us proceed as
follows.

The ‘‘ratio of the circumference of a circle to the diameter’’ is certainly one of the best
known, and most used, numbers in mathematics. It is a constant ratio, universally repre-
sented by the Greek letter � (pi), being an irrational number* having the approximate
value � ¼ 3:141 592 65: : : .

Another number, equal in importance to �, also exists. This number is denoted by the
Greek letter � (epsilon) and, like �, is an irrational number, having the approximate value
� ¼ 2:718 281 828 459: : : . The number represented by � arises in the study of the ‘‘loga-
rithmic function’’ and, for a very specific reason, is defined to be equal to

� ¼ lim
n!1 1 þ 1

n

� �n

¼ 2:718 28 : : : ð146Þ

Using your calculator, you can verify, for example, the following approximate values of
� (rounded off to five decimal places):

n ¼ 10 � ¼ ð1:1Þ10 ¼ 2:593 74

n ¼ 100 � ¼ ð1:01Þ100 ¼ 2:704 81

n ¼ 1000 � ¼ ð1:001Þ1000 ¼ 2:716 92

n ¼ 10 000 � ¼ ð1:0001Þ10 000 ¼ 2:718 15

Thus, as n becomes infinitely great � does not become infinitely great, but becomes an
infinite string of non-repeating decimals, having a limiting value of something less than
2.72.

As mentioned above, the number � arises in the study of the logarithmic function. In
regard to ‘‘logarithms,’’ any system of logarithms has a ‘‘base number,’’ which let us
denote by b. Now let y be any positive number; the ‘‘logarithm of y’’ is then defined to
be the POWER that the base number b must be raised to, to equal y. That is, the statement
that

logb y ¼ x ð147Þ
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means that

y ¼ bx ð148Þ
(where ‘‘logb y’’ is read as ‘‘the logarithm of y to the base b’’).

The reason the foregoing is important is that the expression in eq. (146) appears at a
critical point in the development of the logarithmic and exponential functions in the
calculus. It is found that the formulas of the calculus, in regard to logarithmic and
exponential work, are much simplifed if � is used as the base number. Hence, in advanced
mathematics, it is always understood that � is the logarithmic base number; thus, for this
case eq. (148) becomes

y ¼ �x ð149Þ
which is the fundamental form of the ‘‘exponential function’’ as it appears in advanced
mathematics.

Next, eq. (149) can be written in the equivalent form of a power series in x;* thus

�x ¼ 1 þ xþ x2

2!
þ x3

3!
þ x4

4!
þ x5

5!
þ � � � þ xn

n!
þ � � � ð150Þ

in which the exclamation mark ‘‘!’’ denotes the PRODUCT of all the positive integers from
1 to n inclusive; thus

n! ¼ 1 � 2 � 3 � 4 � � � � � n
hence, 2! ¼ 1 � 2 ¼ 2, 3! ¼ 1 � 2 � 3 ¼ 6, 4! ¼ 1 � 2 � 3 � 4 ¼ 24, and so on. The symbol ! can
be read as ‘‘factorial’’; thus we have ‘‘2 factorial,’’ ‘‘3 factorial,’’ and so on.

In the study of power series it is shown that the series form of eq. (150) is a valid
representation of �x for all positive and negative values of the variable x.

Next, the sine and cosine functions can also be expressed in the power series form. Thus the
following relationships are valid for all positive and negative values of x:

sin x ¼ x� x3

3!
þ x5

5!
� x7

7!
þ � � � ð151Þ

cos x ¼ 1 � x2

2!
þ x4

4!
� x6

6!
þ � � � ð152Þ

which, it should be noted, are valid in the above form only if angle x is measured in
radians. (The series become awkward to write for x in degrees.) These are said to be
‘‘alternating’’ series, because the terms are alternately positive and negative in sign, as
you can see.

Now let us return to eq. (150) and boldly take the step of replacing ‘‘x’’ with ‘‘jx.’’
Assuming this is permissible (which it is), and upon taking careful note of the values of the
‘‘powers of j’’ from section 6.1, you should find that eq. (150) becomes

� jx ¼ 1 � x2

2!
þ x4

4!
� x6

6!
þ � � �

 !
þ j x� x3

3!
þ x5

5!
� x7

7!
þ � � �

 !

Now compare the last equation with eqs. (151) and (152); doing this, we see that

� jx ¼ cos xþ j sin x ð153Þ
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which is called EULER’S FORMULA (pronounced ‘‘oiler’’). This is one of the most
important relationships in all of mathematics and the engineering sciences.*

In eq. (153) let us replace x with �x; doing this, and remembering that cosð�xÞ ¼ cos x
and that sinð�xÞ ¼ � sin x, we have the additional relationship

��jx ¼ cos x� j sin x ð154Þ

Equations (153) and (154) are valid for all positive and negative values of the variable
x. The left-hand sides of the equations are the ‘‘exponential forms’’ of the complex num-
bers on the right-hand sides.

Now let us return to Fig. 109 and eq. (142) in section 6.4. Comparison of eqs. (142) and
(153), writing � in place of x in eq. (153), shows that

aþ jb ¼ A� j� ð155Þ
Thus the complex number aþ jb of Fig. 109 can also be represented in the form A� j�,

where A is the MAGNITUDE of the complex number and � is the ANGLE of A on the
complex plane.

Hence it is possible to represent a complex number in any of the following FOUR
EQUIVALENT WAYS:

rectangular form: aþ jb ð156Þ
polar form: A=� ð157Þ

trigonometric form: Aðcos �þ j sin �Þ ð158Þ
exponential form: A� j� ð159Þ

in which the MAGNITUDE A and ANGLE � are given by eqs. (143) and (144) in
section 6.4.{

Each of the four forms (eqs. (156) through (159)) has certain advantages and dis-
advantages, depending upon the type of operation (addition, subtraction, multiplication,
or division) that is to be performed. Let us first take up the case of ADDITION AND
SUBTRACTION as follows.

In section 6.2 we showed that the real and imaginary parts of the SUM OR
DIFFERENCE of two or more complex numbers is, respectively, equal to the sum
or difference of the REAL PARTS of the numbers and the sum or difference of the
IMAGINARY PARTS of the numbers. Hence, in order to carry out the operation of
addition or subtraction, the real and imaginary part of each complex number must be
available separately; it thus follows that, to find the sum or difference of complex numbers,
the numbers must first be expressed in the form of either equation (156) or (158).

Problem 91
Find the algebraic sum of the following complex numbers (answer in the rectangular
form of eq. (156)).

16=368� 22=3158þ ð9:15 � j6:88Þ ¼
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In several of the following problems we are asked to convert the rectangular form,
aþ jb, into the polar or exponential form; in doing this some caution is called for, as
follows.

The conversion of aþ jb into the polar or exponential form requires the use of eqs.
(143) and (144). While there is no difficulty in using eq. (143), care must be taken when
using eq. (144), that is, in finding the correct value of the angle � by using the equation
� ¼ arctanðb=aÞ. This is because, for a given complex number aþ jb, the correct value of �
depends upon the QUADRANT in the complex plane that the point representing aþ jb
falls in. This is illustrated in Fig. 110, in which h is the angle given by eq. (144) using the
magnitude of b=a only; that is

h ¼ arctan jb=aj

Problem 92
Express each of the following complex numbers in exponential form.

ðaÞ 3 þ j4 ðcÞ �3 � j4

ðbÞ �3 þ j4 ðdÞ 3 � j4

Verify, by direct use of eq. (153), that your answers are correct.

Problem 93
Write the answer to the following sum in exponential form.

14� j1128 þ 8� j288 þ 19��j1558 ¼

6.6 Operations in the Exponential and Polar
Forms. De Moivre’s Theorem

We have found that the algebraic ADDITION of complex numbers must be carried out in
the ‘‘aþ jb’’ (rectangular) form. This is because, in addition, the REAL PARTS and the
IMAGINARY PARTS of the numbers must be separately added together to get the final
resultant sum of the numbers (section 6.2).
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It thus follows that complex numbers CANNOT BE DIRECTLY ADDED
TOGETHER IN THE EXPONENTIAL FORM, because the real and imaginary parts
are not shown separately in the exponential form (see problem 93).

However, while the exponential form is not suited to the addition and subtraction
operation, it is very definitely suited to the MULTIPLICATION AND DIVISION opera-
tions. This is because in multiplication and division we can make use of the BASIC LAWS
OF EXPONENTS, as the following will show.

Consider any two complex numbers

aþ jb ¼ A� jp

cþ jd ¼ B� jq

where A and B are the magnitudes of the numbers and p and q are the angular ‘‘ampli-
tudes’’ of the numbers (eqs. (143) and (144), and Fig. 109).

Now let us consider the PRODUCT of the above two complex numbers. First, in the
‘‘rectangular’’ form we have (section 6.2)

ðaþ jbÞðcþ jdÞ ¼ ðac� bdÞ þ jðad þ bcÞ ð160Þ
Now consider the same multiplication if the two numbers are expressed in ‘‘exponen-

tial’’ form. Remembering that in multiplication EXPONENTS ARE ADDED, we have
the result

ðA� jp� B� jq
� � ¼ AB� jðpþqÞ ð161Þ

Thus, if complex numbers are expressed in EXPONENTIAL FORM, the PRO-
DUCT of the numbers is a complex number whose MAGNITUDE IS THE PRODUCT
OF THE MAGNITUDES and whose ANGLE is the SUM OF THE ANGLES of the
individual numbers.

Comparison of eqs. (160) and (161) shows that multiplication in the exponential form is
generally easier than multiplication in the rectangular form. Furthermore, the use of the
exponential form can often simplify the mathematical work involved in theoretical inves-
tigations.

Now let us consider the DIVISION or ‘‘quotient’’ of the same two complex numbers.
First, in the ‘‘rectangular’’ form we have (section 6.3)

aþ jb

cþ jd
¼ ðacþ bdÞ � jðad � bcÞ

c2 þ d2
ð162Þ

Now consider the same division if the two numbers are expressed in ‘‘exponential’’
form. Remembering that in division the exponent of the denominator is SUBTRACTED
from the exponent of the numerator, we have the result

A� jp

B� jq
¼ A

B

� �
� jðp�qÞ ð163Þ

Thus, if two complex numbers are expressed in exponential form, the QUOTIENT
of the two numbers is a complex number whose MAGNITUDE is equal to the QUOTI-
ENT OF THE TWO MAGNITUDES and whose ANGLE is equal to the angle of the
numerator MINUS the angle of the denominator.

Comparison of eqs. (162) and (163) shows that division in the exponential form is
generally easier than division in the rectangular form. Again, the use of the exponential
form can often simplify the mathematical work involved in theoretical investigations.
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It follows that the same information contained in eqs. (161) and (163) can also be
expressed in POLAR form; thus

product: ðA=pÞðB=qÞ ¼ AB=pþ q ð164Þ

quotient:
A=p

B=q
¼ A

B
=p� q ð165Þ

It follows that eqs. (161) and (164) extend on to cover any number of factors; thus, for
the case of three factors we take the product of the first two times the third, and so on for
any number of factors.

Problem 94
Write, in rectangular form, the product of the three complex numbers

3� j1128; 4��j628; and 7� j1658

Problem 95
Write the product ð4=198Þð3=398Þ in rectangular form.

Problem 96
Making use of eq. (159) and the laws of exponents, raise the complex number
ð2 þ j3Þ to the sixth power. Answer in rectangular form.

Problem 97

15� j628

36� j858
¼ ðanswer in rectangular formÞ

Problem 98

16=1028� 9=3908
7=758

¼ ðanswer in rectangular formÞ

Now, to continue, let us begin by writing down Euler’s formula (eq. (153)) thus

� j� ¼ cos �þ j sin � ð‘‘A’’Þ
Or, replacing � with n�, it is also true that

� jn� ¼ cos n�þ j sin n� ð‘‘B’’Þ
Now raise both sides of (‘‘A’’) to the power n; noting that ð� j�Þn ¼ � jn�, we have

� jn� ¼ ðcos �þ j sin �Þn ð‘‘C’’Þ
Since the right-hand sides of (‘‘B’’) and (‘‘C’’) are both equal to the same thing, they are

equal to each other, and thus we have the important result that

cos �þ j sin �ð Þn ¼ cos n�þ j sin n� ð166Þ
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which is called De Moivre’s Theorem (‘‘dah MWAH vrah’’).* The theorem is true for all
positive and negative, integral and fractional, values of n.

Problem 99
Two complex numbers are EQUAL only if their REAL PARTS are equal and their
IMAGINARY PARTS are equal (see problem 88). Using this fact and De Moivre’s
theorem, find

(a) a trigonometric identity for cos 2x,

(b) a trigonometric identity for sin 2x.

Problem 100
Find the value of 2ðcos 488þ j sin 488Þ raised to the fifth power.

Problem 101
Find the value of

1

4ðcos 178þ j sin 178Þ3 :

Problem 102
Making use of eq. (161), and using the same procedure as in problem 99, find

(a) the trigonometric identity for cosðxþ yÞ,
(b) the trigonometric identity for sinðxþ yÞ.

6.7 Powers and Roots of Complex Numbers
A complex number can be written in the rectangular form using the notation of either eq.
(156) or eq. (158); thus

ðaþ jbÞ ¼ Aðcos �þ j sin �Þ ð167Þ
in which the MAGNITUDE A and ANGLE � are given by eqs. (143) and (144) in section
6.4. Now let us raise both sides of the last equation to a power n; thus

ðaþ jbÞn ¼ Anðcos �þ j sin �Þn

which, by virtue of eq. (166), can also be written in the form

ðaþ jbÞn ¼ Anðcos n�þ j sin n�Þ ð168Þ

As in the case of eq. (166), eq. (168) is valid for all positive and negative, integral and
fractional, values of n. Let us, however, first consider the case where n is any positive or
negative INTEGER (whole number). The following two problems will illustrate the pro-
cedure for the case where n is a positive or negative integer.

Problem 103
Using eq. (168), show that ð3 � j2Þ7 ¼ �4449:06 þ j6553:97, approximately.
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Problem 104
Using eq. (168), show that

6000

ð3 þ j4Þ5 ¼ �0:1457 þ j1:9144; approximately:

Now (in preparation for finding the root of a complex number) let us be reminded that
the sine and cosine are PERIODIC functions having a period of 360 degrees (2� radians).
This is expressed (in degrees) by eqs. (79) and (80), in section 5.3; thus

sin �8 ¼ sinð�� 360kÞ8 ð169Þ
cos �8 ¼ cosð�� 360kÞ8 ð170Þ

where k ¼ 0; 1; 2; 3; . . . ; that is, where k is any positive INTEGER. If � is measured in
radians the corresponding equations are

sin � ¼ sinð�� 2�kÞ ð171Þ
cos � ¼ cosð�� 2�kÞ ð172Þ

Since k is an INTEGER* the above equations are true for all values of k; this is because
if � is increased or decreased by any INTEGRAL MULTIPLE of 3608 (or 2� radians), the
angle simply returns to its original position, as illustrated in Fig. 111.

Thus, since k is an INTEGER,

cos �8 ¼ cosð�þ 360kÞ8 ð173Þ{
and

sin �8 ¼ sinð�þ 360kÞ8 ð174Þ
and hence eq. (167) can be written in the form

ðaþ jbÞ ¼ A cosð�þ 360kÞ8þ j sinð�þ 360kÞ8½ � ð175Þ
Now let ‘‘n’’ be any given positive INTEGER, and let us, using De Moivre’s theorem,

raise both sides of the last equation to the ‘‘1=n’’ power; thus,

ðaþ jbÞ1=n ¼ A1=n cos
�

n
þ 360

k

n

� �
8þ j sin

�

n
þ 360

k

n

� �
8

� 	
ð176Þ
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* k is a positive INTEGER, k ¼ 0; 1; 2; 3; . . . ; in all our work in this section.

{ From inspection of Fig. 111, note that ð�� 360kÞ8 ¼ ð�þ 360kÞ8, because k is an integer.



It is important, now, to note that for all values of k less than n the quantity k=n is not
equal to an integer, but is, instead, equal to a fraction of value less than 1. Thus, for all
values of k less than n it is not true that

sin
�

n
¼ sin

�

n
þ 360

k

n

� �
8

and thus we have that

A complex number, aþ jb, has n roots, given by eq. (176), for all values of k
less than n, that is, for k ¼ 0; 1; 2; 3; . . . ; ðn� 1Þ.*

Thus, in this section we’ve found that ðaþ jbÞ raised to a positive or negative INTE-
GRAL power has just one value, given by eq. (168).

On the other hand, the ‘‘n th root’’ of ðaþ jbÞ—that is, ðaþ jbÞ raised to the 1=n
power—consists of n distinct values, given by eq. (176).

It should be noted that ‘‘inverse operations’’ tend to produce multiple answers, in the
manner of eq. (176). For example, while 42 gives the single answer 16, note thatffiffiffi

4
p

¼ þ2 and � 2

or note that

tan 458 ¼ 1:000

but

arctan 1:000 ¼ 458; 2258; 4058; 5858; and so on:

In regard to eq. (176), it might be thought that such an equation, while interesting
theoretically, would have little practical value. Actually, however, the equation has numer-
ous engineering applications; it is, for example, central in the study of broad-band cas-
caded amplifier stages.

Problem 105
Find the four fourth roots of ð3 þ j7Þ. Show, on the complex plane, the points
representing the four roots.

From our work in the foregoing problem, the procedure for finding the values (roots)
of the complex expression ðaþ jbÞ1=n can be summarized as follows.

The GIVEN VALUES will be the values of a, b, and n. The first step, then, is to
calculate the magnitude A and angle � of the complex number ðaþ jbÞ, which is done
by means of the formulas

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
¼ ða2 þ b2Þ1=2 ð177Þ

� ¼ arctanðb=aÞ ð178Þ

In eq. (177), the magnitude A is always taken to be a positive, real number. In finding
the value of � in eq. (178), we must take into account the quadrant that the point a, b lies in
(see Fig. 110).
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As was pointed out in problem 105, the roots all have the same magnitude, A1=n, which,
by eq. (177), is equal to

A1=n ¼ ða2 þ b2Þ1=2n ð179Þ

Since the value of � is known (by eq. (178)), and since n is a given value, we can now
find the value of �=n, which must now be substituted into eq. (176). We also know the n
different values of k, k ¼ 0; 1; 2; . . . ; ðn� 1Þ, which we must now substitute, in succession,
into eq. (176). Doing this gives us the ‘‘n roots’’ of ðaþ jbÞ1=n.

Problem 106
Find the fifth roots of the complex number ð19 � j33Þ. For convenience, round off all
numbers to two decimal places. Answers in polar and rectangular form.

Problem 107
Find the ‘‘cube roots of unity’’; that is, find the values of ð1Þ1=3.

6.8 Complex Numbers as Vectors
Quantities that obey the PARALLELOGRAM LAW of addition and subtraction are said
to be VECTOR quantities (see note 4 in the Appendix). Hence, by this definition, COM-
PLEX NUMBERS can be regarded as vector quantities, because complex numbers are
basically added and subtracted in accordance with the parallelogram law. This can be
shown as follows.

Let A and B be two complex numbers, such as are illustrated geometrically in Figs. 112
and 113.

Let R be the SUM of the above two complex numbers; algebraically, from section 6.2,
R is equal to

R ¼ ðaþ cÞ þ jðbþ dÞ ð180Þ

Careful inspection of the above will show that R, the SUM of the two complex numbers
A and B (given by eq. (180)), can be found geometrically by drawing B ‘‘off the end of A,’’
as is done in Fig. 114.
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By the basic eq. (180), we know that the sum of A and B is a complex number R, having
a magnitude and angle equal to

jRj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ cÞ2 þ ðbþ dÞ2

q
� ¼ arctanðbþ dÞ=ðaþ cÞ

and we see that the value represented by the line R in Fig. 114 exactly fits this requirement;
thus R in Fig. 114 does represent the sum of A and B. Next, comparing Figs. 114 and 115,
we see, in Fig. 115, that the sum R is also equal to the diagonal of the parallelogram formed
with A and B as sides; thus, the sum R can be found, geometrically, by applying the
PARALLELOGRAM LAW of addition. Hence complex numbers can be regarded as
being vector quantities. We will make much use of this fact in our future work.
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Inductance and
Capacitance

7.1 Introduction
Electric circuits consist of connections of ‘‘active’’ and ‘‘passive’’ devices (section 2.5). An
active device is a source of energy in a circuit; a battery, for example, is an active device. An
active device is also called a ‘‘generator.’’ As explained in section 2.2, a generator possesses
what is called electromotive force (emf), which is measured in volts, denoted by V or v.

The passive elements in electric circuits are of three types, called RESISTANCE,
INDUCTANCE, and CAPACITANCE.

Of these three, only resistance, R, consumes electrical energy, that is, removes electrical
energy from the circuit by converting it into some other form of energy, such as heat energy
or mechanical energy. The other two passive elements, inductance and capacitance, do not
consume energy but only STORE ENERGY momentarily, in magnetic or electric fields,
and then return it to the circuit.

We have already met the resistance parameter R in Chap. 2. We learned that resistance
is measured in ‘‘ohms,’’ and that the ‘‘voltage drop’’ or ‘‘counter emf ’’ developed across a
resistor of R ohms by a current of I amperes is V ¼ RI volts. The polarity of the voltage
drop across R is always ‘‘plus to minus’’ in the direction of the current flow through R.
The rate at which energy is dissipated in a resistance of R ohms carrying a current of I
amperes is W ¼ RI2 watts (joules per second).

Resistance can be in the form of an actual ‘‘physical’’ electrical resistance, such as the
resistance wire in a toaster, or it can be in the form of an equivalent ‘‘dynamic’’ resistance,
such as the mechanical load on a motor or the vibrating cone of a loudspeaker.

In the case of the toaster wire, the electrical energy is converted directly into heat energy
in the circuit itself, and the wire, which is part of the physical circuit, is seen to get ‘‘red
hot.’’
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In the case of a ‘‘dynamic’’ resistance load, such as a motor driving a drill press, for
example, most of the heat energy does not appear directly in the electrical circuit itself, but
instead appears in the material being drilled. Or perhaps the motor lifts a load of bricks up
to the top of a tower; in this case, most of the electrical energy is not converted into heat
energy but, instead, remains stored in the load of bricks in the form of ‘‘potential energy of
position.’’ Of course, as far as the generator is concerned, the effect is the same in any case;
all the generator ‘‘knows’’ is that it ‘‘sees’’ a resistance load of R ohms.

It should be noted that resistance is sometimes present as an undesirable, but unavoid-
able, side effect in a circuit. On the other hand, resistance is often a necessary part of some
electronic circuits, and so is purposely put into the circuit. Such resistances, called ‘‘resis-
tors,’’ can be purchased in resistance values ranging from a small fraction of an ohm to
many millions of ohms (megohms). This was discussed in section 2.4.

Now that we are familiar with the ‘‘resistance parameter,’’ the next step is to gain an
equal understanding of the ‘‘inductance’’ and ‘‘capacitance’’ parameters. Let us begin with
inductance, after which we’ll take up capacitance. Since INDUCTANCE is associated
with MAGNETIC fields, we begin with some basic details concerning the magnetic field.

7.2 Introduction to Magnetism
We are all familiar with what is called a ‘‘permanent magnet.’’ A permanent magnet is
simply a piece of steel having the ability to attract to it other pieces of steel and iron. Such
a magnet is called ‘‘permanent’’ because it is capable of retaining its attractive ability for
many years.

Of course, not all steels can be permanently magnetized. This is indeed fortunate,
because the operation of many important electrical devices, such as transformers, depends
upon the use of a steel that cannot be permanently magnetized. This type of steel (silicon
steel) can be in a highly magnetized condition at one instant of time and then, almost
instantly, lose all of its magnetization when the magnetizing force is removed.

A permanent magnet produces a ‘‘magnetic field,’’ which exists in the three-dimen-
sional space surrounding the magnet. We can suppose that a magnetic field consists of
‘‘lines of magnetic force’’ in the space surrounding the magnet. It should be noted that this
is the same concept that was used to describe ‘‘lines of ELECTRIC force’’ in section 1.3
(Figs. 13 and 14).

The ‘‘direction’’ of a magnetic field, at any point in the field, is defined according to the
direction that a ‘‘compass needle’’ would point if placed at that point in the field. As you
know, a compass needle has a ‘‘north pole’’ and a ‘‘south pole,’’ the north pole customa-
rily being painted lightly, while the south pole is unpainted, as in the sketch below.

Let us define that the direction of a magnetic field, at any point in the field, is the
direction in which the north pole of a small ‘‘test compass’’ would point if placed in the
field at that point. Thus, in Fig. 116A, the direction of the field is from right to left, while
in Fig. 116B the direction is from left to right.

In these figures, note that the ‘‘lines of magnetic force’’ are drawn closer together near
the bottom of the figures than at the top; this is simply the graphical way of showing that
the strength of the magnetic field is (in this case) greater in the region toward the bottom
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than near the top. (The same method was used in connection with the electric fields of
Figs. 13 and 14 in Chapter 1.)

In this section we’ve considered the source of magnetic fields to be permanent magnets.
More importantly, however, magnetic fields are also associated with electric currents, a
phenomenon referred to as ‘‘electromagnetism,’’ which we introduce in the following
section.

7.3 Electromagnetism
In the year 1820 the Danish physicist Oersted discovered the phenomenon of electromag-
netism, that is, that A MAGNETIC FIELD EXISTS AROUND ANY CONDUCTOR
CARRYING AN ELECTRIC CURRENT. Experimentation with a compass needle
showed that the field existed at all points along a conductor, in the form of concentric
circles around the conductor, as illustrated in Fig. 117. The arrow alongside the i indicates
the direction of the current flow in the conductor.

In the figure, it should be understood that a similar plane can be drawn at every point
along the conductor (we show just one such plane in the figure).

The closer we get to the wire conductor, the stronger is the magnetic effect. This fact is
shown by drawing the lines of magnetic force closer together near the wire, and farther
and farther apart as we move away from the wire, as shown in the figure.
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In Fig. 117, the direction of the current i is given to be ‘‘upward’’ in the conductor,
thus producing the magnetic field as shown. If, however, in the figure, the direction of
the current i were reversed, the direction of the magnetic field would also be reversed;
that is, the direction of the magnetic field depends upon the direction of current flow.
The direction of the magnetic field can be found by using the ‘‘right-hand rule,’’ as
follows.

Grasp the conductor with the RIGHT HAND, with the thumb pointing in
the direction of conventional current flow. The fingers then curl around the
conductor in the direction of the magnetic field produced by the current.

Note that the relationships shown in Fig. 117 are drawn in accordance with the right-
hand rule. (Also note the compass alignment in the given field.)

It should be remembered that ‘‘lines of magnetic force’’ are imaginary lines that we
draw to indicate the relative magnitude and direction of a magnetic field. Even though
such lines are imaginary, they are very useful to us in visualizing and describing magnetic
fields. The lines are also spoken of as lines of magnetic FLUX. Regions where the magnetic
force is strong are said to be regions having a high density of ‘‘magnetic flux.’’ Thus, in our
discussion, the terms ‘‘lines of magnetic force’’ and ‘‘lines of magnetic flux’’ will be used
interchangeably.

The magnetic effect produced by a current flowing in a wire can be increased by
forming the wire into a circular COIL, as illustrated in Fig. 118. Let us suppose the coil
consists of N turns of wire, wound on a cardboard tube, with a and b denoting the length
and diameter of the coil, as shown. Let a current of i amperes be flowing in the coil, in the
sense shown in the figure.

First, in Fig. 118, note that the FLUX DENSITY inside the coil is greater, and more
uniform, than it is at points outside the coil. Also note that not all of the generated flux
passes through the entire interior of the coil; such lines are referred to as ‘‘leakage flux;’’
the lines labeled c represent such leakage flux. This effect can be reduced by winding the
turns closer together.

In the figure, note that NORTH AND SOUTH MAGNETIC POLES exist at the ends
of the coil. The nature of such poles (north or south) depends upon the direction of the
current, and can be conveniently found by using the following ‘‘right-hand rule’’:
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If the fingers of the right hand curl around the coil in the direction of the
current, the thumb points to the north pole.

Note that Fig. 118 is drawn in accordance with the above right-hand rule. Also note the
compass alignment in the figure (‘‘unlike poles attract each other’’).

The arrangement of Fig. 118 constitutes an ‘‘electromagnet.’’ If the current i were
reduced to zero ði ¼ 0Þ, the magnetic field would vanish.

It is important to emphasize that WORK must be done to create the magnetic field of
Fig. 118. The work, so done, then remains stored in the magnetic field as ‘‘energy of the
magnetic field.’’ If, later on, the current is reduced to zero, the magnetic field ‘‘collapses’’
and the stored energy is returned to the circuit. Thus, since positive or negative work must
be done, it is impossible to instantly change the state of a magnetic field (just as it is
impossible to instantly change the state of motion of a physical body).

7.4 Self-Inductance
All conductors possess what is called ‘‘self-inductance.’’ This is true regardless of whether
the conductor is in the form of a straight wire, as in Fig. 117, or in the form of a coil of
wire, as in Fig. 118 (although the effect is much greater in the case of the coiled form of
Fig. 118 than in the straight wire of Fig. 117).

To understand the meaning of self-inductance, let us begin with the PRINCIPLE OF
ELECTROMAGNETIC INDUCTION, discovered by Michael Faraday in 1831 (and, at
almost the same time, by Joseph Henry in America). This famous principle states that

A CHANGING magnetic field generates an electromotive force.

Notice that we emphasize the word CHANGING; if the magnetic field in a region of
space is constant, that is, not changing, then NO electromotive force is generated or
‘‘induced’’ in that region of space.

But, as we have just learned in section 7.3, a MAGNETIC FIELD is generated by, and
always accompanies, any ELECTRIC CURRENT. Thus a CHANGING ELECTRIC
CURRENT generates a CHANGING MAGNETIC FIELD and therefore, by Faraday’s
principle, it follows that

A changing electric current in a circuit induces an electromotive force in
that same circuit.

This is the phenomenon of SELF-INDUCTANCE, mentioned at the beginning of this
section. Actually, in practical work the term INDUCTANCE is usually used instead of the
longer term ‘‘self-inductance.’’ Thus, when we speak of the ‘‘inductance’’ of a coil, it will
be understood that we mean ‘‘self-inductance.’’

It must be emphasized that inductance is a basic and very important component in
electric circuit design. In practical work, required amounts of inductance are added to a
circuit in the form of ‘‘inductance coils,’’ called ‘‘inductors,’’ as in Fig. 118. The greater the
number of turns of wire, the greater is the amount of inductance possessed by such a coil.
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If an extremely large amount of inductance is required, the wires are wound on an ‘‘iron
core.’’

Next, the nature of the ‘‘self-induced voltage’’ that appears in an inductance coil can be
summarized as follows.

A self-induced voltage always appears at the terminals of an inductor coil
whenever a CHANGE in the amount of current flowing in the coil occurs.
The POLARITY of the self-induced voltage is always such as to OPPOSE
THE CHANGE IN CURRENT in the coil.*

With the above in mind, let us now consider the following three possibilities concerning
the state of the current i flowing in an inductor coil:

(a) a CONSTANT CURRENT is flowing in the coil;

(b) the current i is INCREASING in value;

(c) the current i is DECREASING in value.

A discussion of the above three cases, (a), (b), and (c), follows, in which the symbol
represents an inductor coil.

(a) If there is NO CHANGE in the value of the current, then there is no change in the
magnetic field and thus, by Faraday’s principle, there is NO self-induced voltage
induced into the coil. The energy stored in the magnetic field of the coil remains
constant, and zero voltage appears between the terminals of the coil.

(b) Let it be given that a current i is flowing in an inductor coil in the direction of the
arrow in Fig. 119, and let it be given that the current is increasing in value.

In the figure, v is the self-induced voltage appearing between the coil terminals
due to the increasing current. Note that the POLARITY of v is such that it
OPPOSES the increasing current (this is in accordance with the principle stated
above).

Thus, in this case v is like the voltage drop across a resistance of R ohms
(section 2.5), EXCEPT that now energy is not taken from the circuit but is, instead,
being stored in the magnetic field of the coil.

(c) Now let it be given that a current i is flowing in an inductor coil in the direction of
the arrow in Fig. 120 (the same direction as in Fig. 119), and let it be given that the
current is DECREASING in value.
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Now notice that the direction of the self-induced voltage is the same as the
direction of the current (the opposite of the situation in Fig. 119). This action
satisfies the basic law that a self-induced voltage ALWAYS OPPOSES ANY
CHANGE IN THE CURRENT THAT IS PRODUCING THE VOLTAGE
(in Fig. 120 the current is attempting to decrease). This happens because, as the
current in the coil begins to decrease, the ‘‘collapsing’’ magnetic field momentarily
acts as a generator, thus returning the energy, stored in the magnetic field of the
coil, back into the circuit.

As the figures show, the POLARITY MARKS (‘‘þ’’ and ‘‘�’’) at the ends of the coil
depend (for a given direction of current) upon whether the current is increasing or
decreasing in value. If the current is constant, then no self-induced emf appears across the
coil.

7.5 The Unit of Inductance
It is a CHANGING MAGNETIC FIELD, produced by a CHANGING ELECTRIC
CURRENT, that produces a self-induced voltage.

The amount of self-induced voltage produced depends upon HOW FAST the magnetic
field is changing, and thus upon HOW FAST THE CURRENT IS CHANGING. This can
be summarized in the statement that

The MAGNITUDE of self-induced voltage in a coil is proportional to the
RATE OF CHANGE OF CURRENT in the coil.

Thus the amount of self-induced voltage produced by a current does not depend
upon the amount of current flowing, but only upon the RATE OF CHANGE OF
THE CURRENT, that is, upon how fast the current is changing. Now consider the
following.

Mathematically, the rate of change of current with respect to time is denoted by the
symbol*

di

dt
¼ rate of change of current

with respect to time
¼ amperes per second ¼ amp=sec

In the foregoing discussion it was pointed out that the ratio of the self-induced voltage v
to the rate of change of current i has a constant value; the mathematical form of this
statement is

v ¼ k
di

dt

in which the value of the constant k depends upon the particular coil we are dealing with;
that is, upon such things as the number of turns of wire, the spacing between the turns, the
type of material the coil is wound on, and so on. Thus the value of the constant k depends
upon the physical characteristics of the coil itself, and for this reason the constant k is
called the INDUCTANCE of the coil (or, more fully, ‘‘self inductance,’’ as mentioned in
section 7.4).
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The inductance of a coil is almost universally denoted by ‘‘L.’’ Upon using L instead of
k, the above equation becomes

v ¼ L
di

dt
ð181Þ

thus,

L ¼ v

di=dt
ð182Þ

showing that the INDUCTANCE, L, of a given coil is equal to the constant ratio of the
induced voltage v to the RATE OF CHANGE of current producing v. The unit of induc-
tance is called the HENRY, in honor of Joseph Henry; thus, if 1 volt were induced when
the current was changing at the rate of 1 ampere per second, the inductance of that
particular coil would be ‘‘1 henry.’’

A very great range of values of inductance is encountered in practical work, from
millionths of a henry (microhenrys) to hundreds of henrys. The conversion formulas are

microhenrys ¼ henrys � 106

henrys ¼ microhenrys � 10�6

Inductors can be broadly classified as being of either the ‘‘air core’’ type or the ‘‘iron
core’’ type. In this regard, let us return briefly to the coil of Fig. 118, which, let us assume,
is composed of a certain number of turns of wire, and in which, let us also assume, a
constant current of I amperes is flowing.

The current I is the magnetizing force that produces the magnetic field, producing the
‘‘magnetic flux’’ that ‘‘links’’ the turns of the coil. The amount of such flux produced by a
given amount of current I (in the given coil of Fig. 118) depends upon the type of material
inside the cardboard tube the coil is wound on. In Fig. 118, if only air is inside the tube we
have an ‘‘air core’’ type of inductor, in which the current I produces a certain amount of
magnetic flux.

Now, in Fig. 118, suppose a rod composed of a compound or alloy of iron is inserted
into the tube. We now have an ‘‘iron core’’ type of inductor, and we find that the amount
of magnetic flux produced by the current I is greatly increased over the corresponding ‘‘air
core’’ case. Thus, in applications requiring a large amount of inductance an ‘‘iron core’’
type of inductor is required.

In schematic diagrams, an ‘‘iron core’’ inductor is indicated by drawing a few parallel
lines alongside the inductor symbol, as shown below.

As mentioned above, the inductance of iron-core coils is much greater than that of air-
core coils. Thus, while the inductance of an air-core coil is only a very small fraction of a
henry, the inductance of an iron-core coil can be well in excess of 1 henry.

As a final comment, it should be noted that the current in an inductor coil cannot be
INSTANTLY changed from one value to another value; that is, time is required to either
increase or decrease the amount of current, flowing in an inductor coil, from one value to
another value. This is related to the fact that time is required to change the amount of
energy stored in the magnetic field of a coil.*
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Problem 108
The inductance of a certain coil is 0.62 henrys. Find the magnitude of the self-
induced voltage during a 1-second time interval in which

(a) the current increases linearly from 1 ampere to 3 amperes,

(b) the current increases linearly from 28 amperes to 30 amperes.

Problem 109
Suppose, in problem 108, that the self-induced voltage is 5.52 volts at a certain
instant of time. How fast is the current changing at that particular instant?

Problem 110
Suppose the current in a certain coil is increasing at the rate of 76 amp/sec at a
certain instant of time. If the self-induced voltage is 0.048 volts at that instant, find
the inductance of the coil in microhenrys.

7.6 Capacitors and Capacitance
We have learned that an INDUCTOR is a passive electrical circuit device that utilizes a
magnetic field. A CAPACITOR, on the other hand, is a passive electrical circuit device
that utilizes an electric field instead of a magnetic field.

Physically, a ‘‘capacitor’’ consists of two conducting surfaces called the PLATES,
which are separated by an electrical insulating material called the DIELECTRIC.

In electrical drawings, capacitors are indicated by either of the symbols shown below,
where the vertical lines represent the two ‘‘plates’’ of the capacitor and the horizontal lines
represent the wires used to connect the capacitor to the rest of the circuit.

Usually the symbol using the curved line, on the right, is preferred, because the one on
the left is the same as the symbol used to denote a set of relay contacts.

Capacitors have the ability to store electric charge, the amount of such charge depend-
ing upon the amount of voltage between the plates and a quantity called the CAPACI-
TANCE of the capacitor, which we’ll define a little later on.

The physical construction of a capacitor depends upon the amount of ‘‘capacitance’’
required, the amount of voltage that will appear between the plates, and the type of circuit
it is to be used in. For example, in very-high-frequency work a simple arrangement of
parallel aluminum or copper plates separated by air dielectric might be used, as in Fig.
121, where s is the separation between the plates.
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When a potential difference exists between the plates of a capacitor electrical energy is
stored in the electric field between the plates, the amount of such stored energy being

1. directly proportional to the plate area A,

2. inversely proportional to the distance s between the plates,

3. directly proportional to the ‘‘dielectric constant K ’’ of the material between the
plates,

4. directly proportional to the square of the potential difference between the plates.

A brief discussion of these four items follows, beginning with the plate area A and the
plate separation s.

From (1) and (2) it follows that, to get maximum energy storage, the plate area A
should be large and the plate separation s should be small. To meet these requirements,
practical capacitors are often made of alternate strips of aluminum foil and paper dielec-
tric, as illustrated in the ‘‘side view’’ in the figure to the left below, where the dashed lines
represent the edges of the strips of paper dielectric.

After the layers of aluminum foil and paper are in place, the whole assembly is then
rolled tightly into the form of a cylinder, thus producing a capacitor having large plate
area and small plate separation. Wire leads are then soldered to the aluminum plates, after
which the unit is enclosed in a protective cardboard cover. The required technical infor-
mation is then printed on the cover, producing a finished capacitor of the form shown in
the figure to the right, above. Such capacitors are convenient to use and have a large
amount of capacitance, relatively, in comparison with the amount of space they occupy.

Next, concerning item (3), the dielectric constant K of a material is defined as the ratio
of the capacitance of a capacitor with the material between the plates to the capacitance
with vacuum between the plates, where K ¼ 1 for vacuum (also, K ¼ 1 for air, for all
practical purposes). In the definition of K , it’s assumed that the dielectric material com-
pletely fills the space between the plates.

Finally, in connection with item (4) we have the problem of ‘‘voltage breakdown’’ of
the dielectric material, which limits the amount of potential difference (volts) that can be
safely applied between the plates of a given capacitor. Let us define that the DIELEC-
TRIC STRENGTH of a material is the maximum value of ELECTRIC FIELD
STRENGTH that the material can withstand without breaking down and permitting
the passage of current. From the definition of ‘‘electric field strength’’ (volts per meter),
it follows that the field strength, E, between the plates of a capacitor is equal to the potential
difference in volts, divided by the plate separation in meters; that is

E ¼ v=s volts per meter ð183Þ

where v is the potential difference in volts between the plates, and s is the plate separation
in meters.

For example, suppose v ¼ 100 volts. If s ¼ 0:01 meter (1 centimeter), then E ¼
100=0:01 ¼ 10,000 volts per meter, but if s ¼ 0:001 meter (1 millimeter), then E ¼
100=0:001 ¼ 100,000 volts per meter, and so on. Equation (183) is simply a numerical
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way of expressing the fact that the smaller the separation between the plates, the greater is
the tendency for a given voltage v to cause breakdown of the dielectric material between
the plates.

Thus, when choosing capacitor dielectric material, the values of the dielectric constant
K and the maximum permissible value of E must both be taken into account. A table of
values for a few dielectric materials is given below, where small k stands for ‘‘kilo’’ (mean-
ing ‘‘thousand’’). Thus, 2 kV ¼ 2 kilovolts ¼ 2000 volts, and ‘‘kV=mm’’ means ‘‘kilovolts
per millimeter’’ (1 millimeter ¼ 0.001 meter).

Problem 111
If, in Fig. 121, the plate separation is 0.00065 meters and the dielectric material is dry
air, what is the maximum voltage that should be applied to the capacitor?

In the discussion prior to Fig. 121, the term ‘‘capacitance’’ was introduced as being a
measure of the ability of a capacitor to store electric charge. In this regard, let us suppose a
current of i amperes is flowing into, and out of, a certain capacitor in the direction shown
in Fig. 122.

Since we have agreed to regard ‘‘electric current’’ as a ‘‘flow of positive electric charge,’’
it follows that, in Fig. 122, an excess of positive charge is accumulating on the left-hand
plate, with a corresponding deficiency of positive charge on the right-hand plate.

You will recall that electric charge is denoted by q and is measured in ‘‘coulombs.’’
The situation in Fig. 122 is that positive charge, accumulating on the left-hand plate, repels
an equal amount of positive charge out of the right-hand plate, leaving the right-hand
plate negatively charged. Thus if, at any instant of time, one plate of a capacitor has a
charge of þq coulombs, the other plate has an equal but opposite charge of �q coulombs.

We should of course note that, while the same current i flows into a capacitor as flows
out, no current actually flows through the dielectric material between the plates.* What
happens is that, as the current continues to flow, ENERGY is being stored in the electric
field between the plates, with a POTENTIAL DIFFERENCE building up between the two
plates. In Fig. 122, for example, as the current continues to flow in the direction shown, a
potential difference of v volts, having the polarity as shown, builds up across the capacitor.

With the foregoing in mind, let us return to the term ‘‘capacitance’’ which, as pre-
viously stated, is to be a measure of the ability of a capacitor to ‘‘store electric charge.’’
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Dielectric Maximum allowable E
Material constant K (kV/mm)

dry air 1.0 3.0

paraffined paper 2.5 150

plastic film 6 to 12 10 to 50

mica 6.5 175

Fig. 122

* For convenience, however, we do sometimes speak of the current ‘‘through’’ a capacitor.



In this regard, it’s apparent that, for any given capacitor, the amount of stored charge
depends first upon the amount of voltage, v, and second upon items (1), (2), and (3), listed
following Fig. 121, that is, upon the physical construction of the capacitor in question. All
these factors are taken into account by defining that the ‘‘CAPACITANCE of a capaci-
tor’’ is equal to the ratio of the magnitude of the stored charge to the potential difference
between the plates; thus, by definition,

C ¼ q

v
ð184Þ

where q ¼ magnitude of charge, in coulombs, stored on either plate, v ¼ potential differ-
ence, in volts, between the plates, C ¼ ‘‘capacitance’’ of the capacitor, in FARADS (for
Michael Faraday).

Capacitance is thus measured in ‘‘coulombs per volt,’’ which is called ‘‘farads.’’ The
farad is a very large unit of capacitance; in almost all practical work we deal with ‘‘micro-
farads’’ (millionths of a farad) and ‘‘picofarads’’ (millionths of a microfarad). Letting ‘‘F’’
denote farads, ‘‘mF’’* (or sometimes ‘‘mfd’’) microfarads, and ‘‘pF’’ picofarads, the con-
version factors are

F � 106 ¼ mF ðand thusÞ; F ¼ mF � 10�6

F � 1012 ¼ pF F ¼ pF � 10�12

mF � 106 ¼ pF mF ¼ pF � 10�6

Problem 112
If a dc voltage of 290 volts is applied to a capacitor having 0.015 mF of capacitance,
what magnitude of charge is stored on either plate?

We have noted that ENERGY is stored in the electric field between the plates of a
capacitor. A formula, giving the amount of such energy, can be found as follows.

To begin, let us recall that, basically, the ‘‘potential difference’’ in volts between the two
plates is equal to the work, W , in joules, required to move one coulomb of charge against
the field from the negative plate to the positive plate. Thus ‘‘volts’’ is basically equal to
‘‘joules divided by coulombs,’’ v ¼ W=q.

Now suppose we have a capacitor with zero volts potential difference between the two
plates, and then suppose we begin to move very small amounts of positive charge from one
plate to the other plate. Suppose we continue to do this until we have transferred a total of
q coulombs of charge, thus producing a potential difference of v volts between the plates.

Doing the above is equivalent to moving an average amount of charge of q=2 coulombs
through a potential difference of v volts, and thus the total work done is (from above,
work ¼ volts � coulombs)

W ¼ vðq=2Þ ¼ vq=2 joules

which, since there are no losses due to friction, is now all stored as POTENTIAL
ENERGY in the electric field between the plates of the capacitor. Or, by eq. (184), writing
‘‘Cv’’ in place of ‘‘q,’’ the above equation becomes

W ¼ 1
2Cv

2 ð185Þ
where C ¼ capacitance of the capacitor, in farads, v ¼ potential difference in volts
between the two plates, and W ¼ energy, in joules, stored in the electric field.
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It is important to note that the amount of energy stored is proportional to the capa-
citance C and the square of the voltage v. Further notes, regarding resistance and capa-
citance, appear in the Appendix.*

7.7 Capacitors in Series and in Parallel
In practical work it is sometimes necessary to use both series and parallel connections of
capacitors, Let us first investigate the series connection with the aid of Figs. 123 and 124.
In Fig. 123, the C’s denote the capacitance, in farads, of each of the individual series-
connected capacitors.

In Fig. 124, CT denotes the capacitance of a single capacitor that would have the same
capacitance as the series connection of the n individual capacitors in Fig. 123. This means
that theoretically, for purposes of analysis, the n series-connected capacitors of Fig. 123
can be replaced with the single equivalent capacitor of CT farads of Fig. 124.

A formula for finding the value of CT can be found by making use of the fact that the
magnitude of charge is the same on both plates of a capacitor. This is because an amount of
positive charge, flowing into one plate, repels the same amount of positive charge out of
the other plate (see discussion following Fig. 122).

With this in mind, consider Fig. 123. When the switch is closed, a charge q flows into
the left-hand plate of C1, thus forcing the same amount of charge out of the right-hand
plate of C1 into the left-hand plate of C2. This forces the same amount of charge out of the
right-hand plate of C2 into the left-hand plate of the next capacitor, and so on down the
line, with the result that all the series-connected capacitors in Fig. 123 have the same
magnitude of charge of q coulombs on their plates. Note that this satisfies the basic
requirement that, at all times, charge flowing out of the positive terminal of the battery
must be equal to the charge flowing into the negative terminal.

With the above in mind, now make use of the equation v ¼ q=C (eq. (184)). Using this
equation, and remembering that all capacitors in Fig. 123 have the same charge q, we have,
for Fig. 123,

V1 ¼ q=C1 ðwhere V1 ¼ voltage on capacitor C1Þ
V2 ¼ q=C2 ðwhere V2 ¼ voltage on capacitor C2Þ

..

. ..
.

Vn ¼ q=Cn ðwhere Vn ¼ voltage on capacitor CnÞ
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Since the sum of the left-hand sides of the above equations is equal to the sum of the
right-hand sides, we have that

V1 þ V2 þ � � � þ Vn ¼ qð1=C1 þ 1=C2 þ � � � þ 1=CnÞ
Or, since V1 þ V2 þ � � � þ Vn ¼ the battery voltage V , the last equation becomes

V ¼ q
1

C1

þ 1

C2

þ � � � þ 1

Cn

� �
ð186Þ

Now let us apply the same battery voltage V to the equivalent capacitance CT in Fig.
124. Since CT is to be equivalent to the circuit of Fig. 123, it must carry the same charge q,
and hence, by eq. (184), it must be true that

V ¼ q

CT

ð187Þ

Since the left-hand sides of the last two equations are equal, their right-hand sides are
also equal, and upon making use of this fact we get the desired relationship

1

CT

¼ 1

C1

þ 1

C2

þ � � � þ 1

Cn

ð188Þ

Or, if we wish, we can invert both sides of the last equation and write that

CT ¼ 1

1=C1 þ 1=C2 þ � � � þ 1=Cn

ð189Þ

Thus either equation, (188) or (189), allows us to calculate the equivalent capacitance,
CT, of a series connection of n capacitors, where C1;C2; . . . ;Cn are the capacitances of the
individual capacitors.

When using series capacitors we must be able to calculate the voltage that will appear
across each capacitor when the series string is connected to a battery of V volts, as in Fig.
123. This is important, because excessively high voltage across one of the capacitors could
cause ‘‘voltage breakdown’’ of that capacitor, with subsequent failure of the whole series
string. A formula that will allow us to calculate such a voltage can be found as follows.

Let Cx be the capacitance of any one of the series capacitors in Fig. 123, and let Vx be
the voltage on that capacitor. Then, from the general equation q ¼ Cv, we have that, for
this capacitor,

q ¼ CxVx

but also, by eq. (187),

q ¼ VCT

where V is the battery voltage. From inspection of the above two equations we see that

CxVx ¼ VCT

giving us the important result

Vx ¼ V
CT

Cx

ð190Þ

Next, let us consider the problem of finding the equivalent capacitance of a parallel
connection of n capacitors. Such a parallel connection is shown in Fig. 125, with the
equivalent single capacitor of capacitance CT shown in Fig. 126.
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In Fig. 125 it’s evident that the total charge q delivered by the battery is the sum of the
charges delivered to the individual capacitors, which is (making use of eq. (184)) equal to

q ¼ VðC1 þ C2 þ � � � þ CnÞ
The same charge in Fig. 126 is

q ¼ VCT

Comparison of this equation with the preceding equation shows that

CT ¼ C1 þ C2 þ � � � þ Cn ð191Þ
Equation (191) is thus the formula for calculating the equivalent capacitance of a

PARALLEL connection of n individual capacitors.

Problem 113
Given four capacitors, of capacitances 0.09 mF, 0.17 mF, 0.12 mF, and 0.55 mF,

(a) Find the equivalent capacitance if the four are connected in series.

(b) Find the equivalent capacitance if the four are connected in parallel.

Problem 114
A dc voltage of 450 volts is applied to three series-connected capacitors having
capacitances of 0.15 mF, 0.06 mF, and 0.48 mF. Is it theoretically sufficient, in this
case, to specify that all three capacitors have a voltage rating of at least 300 volts?

Problem 115
In problem 114, find the total amount of energy stored in the three capacitors.
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Reactance and
Impedance. Algebra of

ac Networks

In this chapter we begin the study of the algebra of networks containing INDUCTANCE
AND CAPACITANCE for SINUSOIDAL applied voltages. (The reasons why sinusoidal
waves are so important are noted in the introduction to section 5.4.)

8.1 Inductive Reactance. Impedance
We begin with the basic case of inductance in series with resistance, to which a sine wave of
peak voltage Vp is applied, as in Fig. 127.

In Fig. 127, L is inductance in henrys, and R is resistance in ohms. Also in the figure, v
and i denote instantaneous values of voltage and current, with the voltage and current
arrows having their usual meaning.*
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In Fig. 127 the independent variable is time, t, in which t ¼ 0 at the instant the sine
wave of voltage is first applied to the circuit. Analysis shows, and experiment verifies, that
the resulting current consists of the SUM OF TWO TERMS, one term being the TRAN-
SIENT component of the current and the other term being the STEADY-STATE com-
ponent of the current. As a matter of fact, analysis shows and experiment verifies that the
current in Fig. 127 has the mathematical form

i ¼ I0�
�Rt=L|fflfflfflffl{zfflfflfflffl}

‘‘transient’’
component

þ Ip sinð!t� �Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
‘‘steady-state’’

component

ð192Þ

In the equation, note, first, that the transient component is a NEGATIVE EXPONEN-
TIAL FUNCTION OF TIME which rapidly decreases in value as time increases (see Fig.
18-A in note 13 in the Appendix). Thus the ‘‘transient’’ component vanishes very quickly,
leaving only the permanent, sinusoidal, ‘‘steady-state’’ component.

As a matter of fact, in much practical work the effect of the transient component can be
completely ignored; that is, only the PERMANENT SINUSOIDAL STEADY-STATE
RESPONSE is of interest in most practical work. Let us therefore examine, in more detail,
the steady-state component in eq. (192).*

First, taking the applied voltage, Vp sin!t, as the ‘‘reference wave,’’ notice that the
steady-state current wave is also a sine wave, but one that LAGS the reference voltage
wave by � radians (!t is in radians). (At this point it should be noted that the current will
ALWAYS ‘‘lag’’ the voltage in an ‘‘inductive’’ circuit; this fact will be made evident in the
discussion which follows.)

To begin, let us suppose, in eq. (192), that the transient component of current has died
out, so that only the final STEADY-STATE SINUSOIDAL CURRENT remains. It is
this ‘‘sinusoidal steady-state condition,’’ for Fig. 127, that we now wish to study in detail.

To begin, note that there are two ‘‘voltage drops’’ in Fig. 127, one across R, the other
across L. These two voltage drops are depicted graphically, with respect to the current
wave, in Fig. 128, where Ip is the peak value of the sinusoidal current.

First, as you know, the wave of voltage drop across a pure resistance of R ohms is
exactly ‘‘in phase’’ with the wave of current through the resistance, a fact indicated
graphically in Fig. 128.

Next, in the figure, note that the wave of voltage drop, the counter-emf, across
the inductor LEADS the current wave through the inductor by 90 degrees. This is in
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accordance with the basic principles outlined in section 7.4, in which we learned that the
voltage induced in an inductor depends NOT upon the AMOUNT of current but only
upon the RATE OF CHANGE of the current. In the case of the above figure, note that the
RATE OF CHANGE of the current i is MAXIMUM when i ¼ 0 and ZERO when i ¼ Ip.
This is the natural phenomenon that causes the voltage across an inductor of zero resistance
to lead the inductor current by 908. Thus, in the sinusoidal steady state, where (by eq. (192))
i ¼ Ip sinð!t� �Þ, the voltage drop across L, vL, at any instant will be of the form

vL ¼ VL sinð!t� �þ 908Þ ð193Þ
because vL leads Ip sinð!t� �Þ by 90 degrees. Note that VL (capital V, sub L) denotes the
PEAK VOLTAGE DROP ACROSS L.

Next, let’s consider the VOLTAGE EQUATION for Fig. 127 in the sinusoidal steady
state. Such an equation must show that at all instants of time the sum of the voltage drops
across R and L is equal to the applied generator voltage. The equation can be arrived at as
follows.

First, the instantaneous voltage drop across R is vR ¼ Ri ¼ RIp sinð!t� �Þ, in which
we see that the PEAK VOLTAGE DROP ACROSS R is RIp.

Next, VL, the PEAK VOLTAGE DROP ACROSS L, depends, first of all, upon the
magnitude of the MAXIMUM RATE OF CHANGE OF CURRENT, which occurs only
at times where i ¼ 0. This fact can be seen from examination of Fig. 128, in which it can be
seen that the current curve is steepest (maximum ‘‘amperes per second’’), when i ¼ 0.
Now, if we carefully inspect Fig. 128 we will see that the MAGNITUDE OF THE
STEEPNESS of the current at i ¼ 0 increases if (1) the PEAK VALUE of current, Ip, is
increased, and (2) if the FREQUENCY, !, is increased (for example, note the effect, on
degree of steepness, if the number of current waves in Fig. 128 were doubled). These
points, plus the fact that the peak value VL is also proportional to the value of L itself,
leads us, correctly, to the conclusion that the PEAK VALUE OF THE VOLTAGE
DROP ACROSS L is VL ¼ !LIp, and upon substituting this value into eq. (193), and
remembering that the peak voltage drop across R is RIp, we have that the SINUSOIDAL
STEADY-STATE VOLTAGE EQUATION for Fig. 127 is

Vp sin!t ¼ RIp sinð!t� �Þ þ !LIp sinð!t� �þ 908Þ ð194Þ
where � ¼ phase angle of current with respect to the reference generator voltage.

In the above equation the quantity ‘‘!L’’ is measured in ohms* and is called INDUC-
TIVE REACTANCE. ‘‘Inductive reactance’’ is denoted by XL; thus, XL ¼ !L ¼ 2�fL
ohms; thus, by Ohm’s law, XLIp ¼ !LIp ¼ peak voltage drop across the inductor, as
shown in eq. (194).

Now, as pointed out in connection with Figs. 93 through 95 in section 5.6, the three
rotating voltage components in eq. (194) can be regarded as three stationary vector com-
ponents, as shown in Fig. 129, where V is now the rms generator voltage, taken as being the
reference vector, and I is the rms current vector. Note that RI, the rms voltage drop across
the resistance R, is ‘‘in phase’’ with the current vector I, while !LI , the rms voltage drop
across the inductor, leads the current vector I by 90 degrees.

In the figure, note that, in accordance with the basic Kirchhoff voltage law, the vector
sum of the two voltage drops RI and !LI is equal to the applied reference voltage V. Or,
using the ‘‘overscore’’ or ‘‘bar’’ notation to indicate ‘‘vector quantity’’ (note 4 in the
Appendix), the algebraic statement for Fig. 129 is

R�II þ !Lð�II þ 908Þ ¼ �VV ð195Þ
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where the notation !Lð�II þ 908) is used to indicate that the voltage drop across the induc-
tor leads the current by 90 degrees.

We learned, in section 6.8, that COMPLEX NUMBERS obey the same parallelo-
gram law as do vector quantities. Hence, as far as ALGEBRAIC OPERATIONS are
concerned, we can regard �VV and �II , in eq. (195), as being complex numbers of the forms
�VV ¼ V 0 þ jV 00 and �II ¼ I 0 þ jI 00, where the ‘‘primes’’ indicate the ‘‘real’’ and ‘‘imaginary’’
parts of �VV and �II . However, before applying this concept to eq. (195), it should be noted
that multiplying a complex number by ‘‘j’’ has the SOLE EFFECT of rotating the complex
number through an angle of +90 degrees; thus, if �ZZ is a complex number, then j �ZZ has the
same magnitude as �ZZ but is rotated through þ908.*

Hence, in eq. (195), let �II and �VV be represented as complex numbers in the complex
plane; thus, to indicate that the angular position of !L�II is to be increased by 90 degrees, all
we need do is write j!L�II in place of !Lð�II þ 908); thus

R�II þ j!L�II ¼ �VV ð196Þ
and thus, upon solving for �II , we have

�II ¼
�VV

Rþ j!L
ð197Þ

in which �II is the rms vector in the BASIC SERIES ‘‘RL’’ CIRCUIT of Fig. 127, where �VV
is the applied sinusoidal voltage vector. In our work we’ll generally take �VV to be the
‘‘reference’’ vector, in which case �VV ¼ V=08 ¼ V , a real number (the magnitude of �VV).

In the above equation, the denominator is called the IMPEDANCE of the circuit,
which, for the case of Fig. 127, is a measure of the combined effect of the resistance R
and the inductive reactance !L:

Impedance is denoted by ‘‘ �ZZ’’; thus, the ‘‘impedance’’ of the basic series RL circuit of
Fig. 127 is

�ZZ ¼ Rþ j!L ð198Þ
showing that ‘‘impedance’’ is a complex number; thus eq. (197) becomes

�II ¼
�VV
�ZZ

ð199Þ

which is OHM’s LAW, in complex form, for the sinusoidal steady-state condition.

CHAPTER 8 Reactance and Impedance154

Fig. 129

* See note 16 in Appendix.



In regard to the above, we will sometimes wish to deal only with the magnitudes of the
complex numbers. To do this, all we need remember is that*

(a) the MAGNITUDE of the PRODUCT of complex numbers is equal to the
PRODUCTS OF THE MAGNITUDES, and

(b) the MAGNITUDE of the QUOTIENT of two complex numbers is equal to the
QUOTIENT OF THE TWO MAGNITUDES.

Hence, applying these rules to eq. (199) we have that

j�II j ¼ j �VV j
j �ZZj and j�II j j �ZZj ¼ j �VV j ð200Þ

Next, the vector diagram representation for �ZZ ¼ Rþ j!L (eq. (198)) is shown in Fig. 130.

Comparison of Fig. 130 with Fig. 129 shows that ‘‘�’’ in Fig. 130, is the phase angle
between the voltage and current vectors shown in Fig. 129. Figure 130 is spoken of as an
‘‘impedance triangle’’ and shows, for the series RL circuit of Fig. 127, that

�ZZ ¼ j �ZZj=� ð201Þ
where, from Fig. 130,

j �ZZj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ !2L2

p
ð202Þ

and

� ¼ arctan
!L

R
ðlaggingÞ ð203Þ

Problem 116
In the series RL circuit of Fig. 127, let the sinusoidal reference voltage be 115 volts
rms, the resistance be 28 ohms, and the inductance be 0.12 henry. If the frequency is
60 Hz, find

(a) magnitude of rms current, (Answer: 2.1615 amperes)
(b) phase angle of current, (Answer: 58.2458 lagging)
(c) reading of voltmeter placed across L.

8.2 RL Networks
In section 8.1 we introduced the basic series ‘‘RL’’ circuit of Fig. 127, to which is applied a
sinusoidal voltage of V volts rms. We found that, by writing the combined effects of R and
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L in the form of a complex number, �ZZ ¼ Rþ j!L (called the ‘‘impedance’’), then applying
the ‘‘algebra of complex numbers,’’ we were able to find the magnitude and phase angle of
the rms current flowing in the circuit.

Actually, the procedure of section 8.1 is not limited to the simple series circuit of Fig.
127 but applies, as well, to ANY type of series, parallel, or series-parallel connection of R
and L components. The procedure is as follows.

First, in drawing circuit diagrams, let us, for convenience, agree to represent the series
impedance, �ZZ ¼ Rþ j!L, by the single symbol ‘‘ ,’’ which we’ll label �ZZ, as shown
below,

where �ZZ ¼ Rþ j!L.
For the case where L ¼ 0, the symbol then represents the real number R (a pure

resistance) or, if R ¼ 0, the symbol then represents the imaginary number j!L (a pure
inductive reactance).

The simplest case consists of a series connection of n such impedances, as shown in
Fig. 131.

In such a case the generator sees a total impedance, �ZZT, equal to the sum of all the
impedances; thus, by Ohm’s law (eq. (199)) we have, for Fig. 131, that

�II ¼
�VV
�ZZT

¼
�VV

�ZZ1 þ �ZZ2 þ � � � þ �ZZn

ð204Þ

in which each impedance has the general form �ZZ ¼ Rþ j!L. Or, by the law of ‘‘addition
of complex numbers’’ (section 6.2), the above equation can also be written in the form

�II ¼
�VV
�ZZT

¼
�VV

ðR1 þ R2 þ � � � þ RnÞ þ j!ðL1 þ L2 þ � � � þ LnÞ
ð205Þ

Problem 117
A certain series circuit consists of three resistances of 8, 10, and 12 ohms, and two
inductor coils of 12 and 25 millihenrys (mH), where 1 mH=0.001 henry. If the
applied sinusoidal reference voltage is 95 volts rms, and ! ¼ 2�f ¼ 1000 radians/
second, find

(a) magnitude of rms current,
(b) phase angle of current,
(c) voltage drop across the 25 mH coil.
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Next consider the case of a purely PARALLEL network, as shown in Fig. 132.
Now let �IIT ¼ generator current ¼ �II1 þ �II2 þ � � � þ �IIn, and �ZZT ¼ total impedance seen by

the generator.
By Ohm’s law:

�IIT ¼
�VV
�ZZT

¼ �II1 þ �II2 þ � � � þ �IIn ð206Þ

Or, since the same voltage �VV is applied to all the branches, eq. (206) becomes, again by
Ohm’s law,

�VV
�ZZT

¼
�VV
�ZZ1

þ
�VV
�ZZ2

þ � � � þ
�VV
�ZZn

that is,

�VV
1
�ZZT

� �
¼ �VV

1
�ZZ1

þ 1
�ZZ2

þ � � � þ 1
�ZZn

� �
thus,

1
�ZZT

¼ 1
�ZZ1

þ 1
�ZZ2

þ � � � þ 1
�ZZn

ð207Þ

Thus, in words, eq. (207) shows that ‘‘in a purely PARALLEL network, the RECI-
PROCAL of the total impedance seen by the generator is equal to the SUM OF THE
RECIPROCALS of the impedances of the individual branches.’’ Or, inverting both sides of
eq. (207), we have the equivalent result that

�ZZT ¼ 1

1= �ZZ1 þ 1= �ZZ2 þ � � � þ 1= �ZZn

ð208Þ

In words, eq. 208 says that, in a PARALLEL circuit, the total impedance seen by the
generator is equal to the RECIPROCAL of the SUM OF THE RECIPROCALS of the
individual impedances.

If (as often happens in practical work) the network consists of just two parallel impe-
dances, then eq. (207) becomes

1
�ZZT

¼ 1
�ZZ1

þ 1
�ZZ2

which (after multiplying both sides by �ZZ1
�ZZ2 and then inverting) gives the special formula

�ZZT ¼
�ZZ1

�ZZ2

�ZZ1 þ �ZZ2

ð209Þ

for the impedance looking into a parallel connection of two impedances.
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In using the foregoing equations, all we need do is write each impedance in the form of
a complex number Rþ j!L, and then apply the algebra of complex numbers, remember-
ing j2 ¼ �1.

Problem 118
In Fig. 133, the resistance and inductance values are in ohms and henrys.

Given that the applied reference voltage �VV is 60 volts rms, and that ! ¼ 2�f ¼ 100
rad/sec, find*

(a) impedance �ZZT seen by generator,

(b) generator current �IIT,

(c) phase angle � between generator voltage and generator current,

(d) �II1 ¼
(e) �II2 ¼
(f ) �II3 ¼
(g) verify that the sum of the answers to (d), (e), (f ) equals the answer to (b).

(h) using �VV ¼ V=08 ¼ 60 volts rms as the reference vector, make a rough sketch of
the vector diagram showing the answers to (d) through (g).

Problem 119
The load on a generator of V=08 volts rms consists of a resistance of R ohms in
parallel with a coil of inductance L henrys, as shown in Fig. 134.

Using eq. (209), write the equation for the generator current �IIT. Write the final
answer in the rectangular form I 0 þ jI 00.
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Let us pause here, just a moment, to again point out the close correspondence between
the procedures used in dc circuit analysis and steady-state ac circuit analysis.

Consider, for example, eqs. (32) and (34) in section 2.6; note that, to convert these two
equations to the ‘‘ac’’ case (eqs. (207) and (209)), all we need do is replace the Rs with �ZZs
(in which �ZZ ¼ Rþ j!L) and apply the ‘‘algebra of complex numbers,’’ remembering that
j2 ¼ �1.

In the same way, the treatment of series-parallel ac networks exactly parallels the
treatment of dc networks in section 2.7, with the Rs replaced by �ZZs.

Likewise, the basic dc procedure of ‘‘loop current’’ analysis, explained in section 4.4,
applies also to ac circuit analysis, remembering, of course, that j2 ¼ �1. In this regard,
consider the example of Fig. 135, containing two ac generators of known voltages �VV1 and
�VV2 and three unknown ‘‘loop currents,’’ as shown.

All the quantities in Fig. 135 denote complex numbers representing both the rms vector
values of voltage and current and the passive network components (the �ZZs).

In this regard, using eq. (158) in Chap. 6, the two generator voltages can be put in the
complex ‘‘rectangular’’ form; thus

�VV1 ¼ V1=08 ¼ V1ðcos 0 þ j sin 0Þ ¼ V1ð1 þ j0Þ ¼ V1

and

�VV2 ¼ V2=�8 ¼ V2ðcos �þ j sin �Þ ¼ V 0
2 þ jV 00

2

In the example of Fig. 135, let us assume that the voltages and impedances are given,
and that the problem is to find the unknown values of the currents. In doing this, the
voltage and current arrows shown in the figure are used in conjunction with KIRCH-
HOFF’s VOLTAGE LAW, following the same basic procedure outlined for dc networks in
section 4.4, except now we’re dealing with complex (vector) quantities instead of scalar
quantities. Also, the VOLTAGE DROPS will now be of the form � �ZZ�II instead of �RI as
in the dc case. Thus, upon applying the rules of section 4.4, we have that the equations for
the ac network of Fig. 135 are

ð �ZZ1 þ �ZZ2Þ �II1 � �ZZ2
�II2 þ 0 �II3 ¼ V1

� �ZZ2
�II1 þ ð �ZZ2 þ �ZZ3 þ �ZZ4Þ �II2 � �ZZ4

�II3 ¼ 0

0 �II1 �ZZ4
�II2 þ ð �ZZ4 þ �ZZ5Þ �II3 ¼ � �VV2

In regard to Fig. 135, it should be noted that the value of voltage �VV2 must be given with
respect to the ‘‘reference voltage’’ �VV1 ¼ V1=08. Fundamentally, this is done by remember-
ing that the voltages are sinusoidal waves of the same frequency, the wave of V2 being �
degrees ‘‘out of phase’’ with V1. (See discussion given with eq. (108) in section 5.6.)

Lastly, to solve the resulting simultaneous equations for any particular value of current
it will generally be easiest to use the method of determinants.
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Problem 120
Repeat problem 118 for the value of generator current, this time using the method of
loop currents.

8.3 Capacitive Reactance. RC Networks
We begin with the basic case of a capacitor in series with a resistance, to which a sine wave
of peak voltage Vp is applied, as in Fig. 136.

In the figure, C is a capacitor of C farads and R is resistance in ohms. Also (as in Fig.
127) v and i denote instantaneous values of voltage and current. Again, as in Fig. 127, we’ll
be interested only in the permanent SINUSOIDAL STEADY STATE. In this case, the
author feels that it’s best not to get sidetracked by too many details; hence, let’s commence
by stating (without bothering about details to begin with) that, corresponding with eq.
(194) in section 8.1, the steady-state VOLTAGE EQUATION for Fig. 136 is

Vp sin!t ¼ RIp sinð!tþ �Þ þ 1

!C

� �
Ip sinð!tþ �� 908Þ

voltage drop voltage drop across C
across R

ð210Þ

in which the applied voltage, Vp sin!t, is taken as the ‘‘reference wave.’’ Now let’s com-
pare eq. (210) with eq. (194), as follows. ð� ¼ phase angle of current, with respect to
Vp sin!t, in both equations.)

Note, first, that the angular quantities � and 908 have OPPOSITE SIGNS from what
they have in eq. (194). This is due to the fact that the CURRENT in a capacitor LEADS
THE VOLTAGE across the capacitor by 908. This happens because FIRST, the amount
of electric charge q stored in a capacitor is proportional to capacitor voltage (q ¼ vC), and
SECOND, capacitor current is the rate of flow of charge (coulombs per second). Now
consider the following.

In Fig. 128 (section 8.1), suppose the voltage drop were across a capacitor instead of an
inductor. Then, since q ¼ vC, the curve of charge q would be drawn exactly ‘‘in phase’’
with the voltage curve. If these changes were made in Fig. 128 it would then be apparent
that the curve of the ‘‘rate of change of q’’ (the current) would ‘‘lead’’ the curve of voltage
drop by 908.

Thus, in Fig. 136 we have that the current LEADS the voltage drop across C by 908 but
is, as always, IN PHASE with the voltage drop across R. It thus follows that the current
wave will lead the applied voltage wave by some intermediate angle �, where � will be an
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angle between 08 and 908. The actual value of � will depend upon the relative values of R,
C, and ! in any given case.

Next, from inspection of eq. (210),

RIp ¼ peak voltage drop across R

and

ð1=!CÞIp ¼ peak voltage drop across C

Now recall, from section 5.8, that the peak value of the SUM of two sinusoidal waves
of the same frequency is equal to the vector sum of the peak values of the individual
sinusoids. Thus, the relationships of the peak values of the voltages in eq. (210) can be
stated in the vector polar form,

Vp=08 ¼ RIp=�8þ ð1=!CÞIp=ð�� 90Þ8 ð211Þ
which shows that, geometrically, the two peak voltages on the right-hand side can be
considered to be the adjacent and opposite sides of a right-angled triangle having Vp as
the hypotenuse with � the angle between RIp and Vp (as will be shown later in connection
with Fig. 138). Thus, we have that the steady-state PEAK CURRENT is equal to

Ip ¼ Vp=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð1=!CÞ2

q
ð212Þ

where also

� ¼ arctanð1=!RCÞ ð213Þ
Next, in Fig. 136 the voltage drop across R is, as always, in phase with the current; thus,
since the peak voltage drop across R is equal to RIp, and since the current LEADS the
applied voltage Vp by an angle �, we have the vector diagram as in Fig. 137.

Next, returning to eq. (210), the quantity 1=!C is called CAPACITIVE REACTANCE
and is measured in ohms.* Capacitive reactance is denoted by XC; thus, XC ¼
1=!C ¼ 1=2�fC ohms.

Hence, by Ohm’s law, XCIp ¼ ð1=!CÞIp ¼ peak voltage drop across the capacitor,
which let us next consider as follows.

By the basic Kirchhoff voltage law, the vector sum of the voltage across R, RIp, and the
voltage across the capacitor, ð1=!CÞIp, must be equal to the applied voltage vector Vp. This
requirement, and the required relationship between R and 1=!C in eq. (212), will be
satisfied only if the voltage drop across the capacitor, ð1=!CÞIp, lags the current vector
Ip by 908, as shown in Fig. 138.

Now, in Fig. 138, multiply all the vector magnitudes by 0.7071, thus converting the
peak values to rms values. Doing this, and using the usual ‘‘bar’’ notation to denote vector
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quantities, we have (all rms values)

�VV ¼ applied voltage; the reference vector

�II ¼ current vector

R�II ¼ vector voltage drop across R

�jð1=!CÞ�II ¼ vector voltage drop across capacitor C*

Thus, by Kirchhoff’s voltage law, the basic vector equation for the series resistive-
capacitive circuit of Fig. 136 is

R�II � jð1=!CÞ�II ¼ �VV ð214Þ

or, since �j ¼ 1

j
;

R�II þ ð1=j!CÞ�II ¼ �VV ð215Þ
and thus

�II ¼
�VV

R� jð1=!CÞ ¼
�VV

Rþ 1

j!C

ð216Þ

Equation (216) is the sinusoidal steady-state vector equation for the basic series ‘‘RC’’
circuit of Fig. 136, the vectors being represented by complex numbers on the complex
plane. In our work we’ll generally take �VV to be the ‘‘reference’’ vector, in which case
�VV ¼ V=08 ¼ V þ j0 ¼ V, a real number on the real axis of the complex plane.

In eq. (216) the denominator is called the IMPEDANCE of the circuit, which for the
case of Fig. 136 is a measure of the combined effect of the resistance R and the capacitive
reactance 1=!C. As mentioned in connection with eq. (198), ‘‘impedance’’ is a complex
number, denoted by �ZZ, and thus, by eq. (216), the impedance of the basic series RC circuit
of Fig. 136 can be expressed in either of the forms

�ZZ ¼ R� jð1=!CÞ ¼ Rþ 1=j!C ð217Þ
Thus eq. (216) becomes

�II ¼
�VV
�ZZ

ð218Þ
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which, as we’ve already seen in connection with eq. (199), is Ohm’s law in complex
notation for the sinusoidal steady-state condition in Fig. 136.

As we see from eq. (217), 1=!C is at right angles to R in the complex plane; hence the
MAGNITUDE of the impedance in Fig. 136 is equal to

j �ZZj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð1=!CÞ2

q
ð219Þ

Thus, in terms of magnitude, eq. (218) becomes, by eq. (200),

j�II j ¼ j �VV j
j �ZZj ¼

j �VV jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð1=!CÞ2

q ð220Þ

Equations (217) and (219) can be expressed in the form of the ‘‘impedance triangle’’
shown in Fig. 139.

Comparison of the above with Fig. 138 shows that � in the above figure is the phase
angle between the voltage and current vectors shown in Fig. 138, where

tan� ¼ ð1=!CÞ=R
thus

� ¼ arctanð1=!RCÞ ð221Þ
the current LEADING the applied voltage in a capacitive circuit.

Problem 121
In the series circuit of Fig. 136, let the sinusoidal reference voltage be 95 volts rms,
the capacitance be 0.5 �F (microfarad), and the resistance 100 ohms. If the frequency
is 4000 Hz, find

(a) magnitude of rms current,

(b) phase angle of current,

(c) reading of voltmeter placed across R,

(d) reading of voltmeter placed across C,

(e) vector sum of the voltages in (c) and (d).

The foregoing applies to ANY type of series, parallel, or series-parallel connection of R
and C components. In doing this, the series circuit of Fig. 136 is the basic building block,
represented by the single symbol ‘‘ ,’’ which we’ll label �ZZ, as shown below.

where �ZZ ¼ R� j

!C
¼ Rþ 1

j!C
ðas in eq: ð217ÞÞ
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In the above, either expression for �ZZ can be used, but we’ll more often use the form
�ZZ ¼ R� j=!C ¼ R� jXC, where XC ¼ 1=!C.

If, in a given case, ONLY RESISTANCE is present, then �ZZ ¼ R, a real number; or, if
ONLY CAPACITANCE is present, then �ZZ ¼ �j=!C ¼ 1=j!C, an imaginary number.

The simplest case consists of a series connection of n such impedances (see Fig. 131). In
such a case the current is given by eq. (204) in section 8.2, in which each impedance now
has the general form �ZZ ¼ R� j=!C (or Rþ 1=j!C). Hence, for the case of capacitance
(instead of inductance), eq. (205) in section 8.2 would become

�IIT ¼
�VV
�ZZT

¼
�VV

ðR1 þ R2 þ � � � þ RnÞ �
j

!

1

C1

þ 1

C2

þ � � � þ 1

Cn

� � ð222Þ

where, to summarize the notation, �VV and �II are vector volts and amperes (being repre-
sented as complex numbers), R and C are in ohms and farads, and ! ¼ 2�f is frequency in
radians per second ( f being frequency in cycles per second).

Problem 122
A certain series circuit consists of two resistances, both of 18 ohms, and three
capacitors, each of 0.12 �F. If the applied sinusoidal reference voltage is 75 volts
rms and ! ¼ 500,000 rad/sec, find

(a) magnitude of rms current,

(b) phase angle of current,

(c) magnitude of voltage drop across each capacitor.

Now consider the case of a purely PARALLEL connection of n such impedances (see
Fig. 132). In this case the total impedance �ZZT seen by the generator is given by eq. (207) or
(208), each individual impedance now having the general form �ZZ ¼ R� j=!C ¼
Rþ 1=j!C. (For the special case of two impedances in parallel, eqs. (207) and (208) reduce
to the convenient form of eq. (209).) After �ZZT is found, the value of the total (generator)
current �IIT is then, by Ohm’s law, equal to

�IIT ¼
�VV
�ZZT

Problem 123
In Fig. 140, the reference generator voltage is 60 volts rms, as shown. If the fre-
quency is 100,000 rad/sec, find

(a) magnitude of generator current,

(b) phase angle of current �IIT.

The symbol � (capital ‘‘omega’’) denotes ‘‘ohms.’’
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8.4 The General RLC Network. Admittance
In practical work we often encounter networks containing not only resistance but also
both inductive and capacitive reactances.

To find the ‘‘sinusoidal-steady-state’’ response of such a network, we simply replace the
inductors and capacitors with the imaginary quantities, jXL ¼ j!L and �jXC ¼
�j=!C ¼ 1=j!C, where ! ¼ 2�f radians per second. If the network is complicated we’ll
generally use the method of ‘‘loop currents,’’ applying the Kirchhoff voltage and current
laws and the algebra of complex numbers, as discussed in connection with Fig. 135.

Problem 124
In the series circuit of Fig. 141, the R, L, and C values are in ohms, microhenrys, and
microfarads. Given that f ¼ 28 kHz (kilohertz), find the vector voltage at point ‘‘a’’
with respect to ground.*

(Answer (in polar coord.), �VVa ¼ 22:43=143:958 volts)

Problem 125
In Fig. 142, the R, L, and C values are in ohms, microhenrys, and microfarads. As
always, the generator voltage is in rms vector volts. Given that ! ¼ 106 radians/
second, find the vector voltage at point ‘‘y’’ with respect to ground.

(Answer (in polar coord.), �VVy ¼ 6:19221=�26:5668 volts)

Problem 126
Making use of the work already done in problem 125, find, in Fig. 142, the vector
voltage at point ‘‘x’’ with respect to ground.
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Problem 127
Here we wish to apply the fundamental principle of Thevenin’s theorem (section 4.6)
to the circuit of Fig. 143, in which we’ll assume the internal resistance of the gen-
erator is either negligibly small or is included in the resistance R. Find the voltage �VV 0

and internal impedance �ZZ 0 of the equivalent Thevenin generator, as indicated in Fig.
144. (Final answers in terms of R, C, and !.)

Problem 128
In Fig. 145, the values are in ohms, microfarads, and microhenrys. If ! ¼ 107 rad/
sec, find (a) vector voltage at point x with respect to ground, (b) voltmeter reading at
point x with respect to ground.

Problem 129
Making use of the work already done in problem 128, find, in Fig. 145, the voltmeter
reading at point ‘‘y’’ with respect to ground. (Answer: 3.5355 V, approx.)

It is sometimes advantageous to write the network equations in terms of the Kirchhoff
CURRENT LAW instead of the voltage law. This involves the method of ‘‘node vol-
tages,’’ discussed in section 4.8, for dc circuits. For ac circuits, the current law states that
the VECTOR sum of the rms currents flowing to a node (junction) point is equal to the
vector sum of the currents flowing away from the point.

The procedure for ac circuits is basically the same as for the dc case illustrated in Fig.
61 in Chapter 4, except that for the ac case the voltages and currents are rms vector values
of sinusoidal currents and voltages. Thus, for an ac case, Fig. 61 might be such as is
illustrated in Fig. 146.

In Fig. 146,

�II ¼
�VVa � �VVb

�ZZ
ð223Þ

where �II1 þ �II2 ¼ �II ¼ �II3 þ �II4 þ �II5.
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Problem 130
In Fig. 147, the values of the circuit components are given in ohms, microhenrys, and
microfarads, the frequency being 100,000 radians/second. Using the Kirchhoff
current law with eq. (223), find, with respect to ground, the unknown voltages at
nodes ‘‘x’’ and ‘‘y.’’

Note: The ‘‘current arrows,’’ which represent the rms vector values of the unknown
currents, need not be drawn in the same directions as shown in Fig. 147. However,
once selected, the directions must not be changed during the working of a given
problem. The arrows insure that each current equation, written at each node point, is
consistent with the current equations written at the other nodes.

Problem 131
Find the reading of an ac voltmeter connected between points x and y in Fig. 147.

In section 4.5 we found that it’s sometimes an advantage, in certain types of dc net-
work, to work with the RECIPROCAL of resistance instead of directly with resistance.
We called the reciprocal of resistance ‘‘conductance,’’ which we denoted by G; that is,
G ¼ 1=R. Conductance is thus measured in ‘‘reciprocal ohms,’’ which we called ‘‘mhos.’’

In the same way, it’s sometimes an advantage, in certain types of ac network, to work
with the reciprocal of IMPEDANCE instead of directly with impedance.

The reciprocal of impedance is called ‘‘admittance,’’ which is denoted by ‘‘ �YY ’’; that is,
�YY ¼ 1= �ZZ. Since �ZZ is, in general, a complex number, it follows that �YY is also, in general, a
complex number. Since impedance is measured in ohms, admittance, �YY ¼ 1= �ZZ, is mea-
sured in reciprocal ohms or mhos.

As we found in section 4.5, it is especially convenient to work in terms of conductance
when dealing with purely PARALLEL dc networks in the form of Fig. 55 in Chap. 4. In
such a case, the output voltage V0 is given by eq. (63), which is ‘‘Millman’s theorem’’ for
dc networks in the form of Fig. 55. For the steady-state ac case, Fig. 55 becomes Fig. 148.

In the figure, note that there is just one unknown node voltage, �VV0. Hence the VECTOR
sum of all the currents flowing to this single point must be zero; that is, in Fig. 148

�II1 þ �II2 þ �II3 þ � � � þ �IIn ¼ 0 ð224Þ
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Equation (224) corresponds to the dc case of eq. (62) for Fig. 55 in section 4.5. If we
now apply to Fig. 148 the same basic procedure and steps as we applied to Fig. 55, we get
the ac equivalent of eq. (63), thus

�VVo ¼
�YY1

�VV1 þ �YY2
�VV2 þ � � � þ �YYn

�VVn

�YY1 þ �YY2 þ � � � þ �YYn

ð225Þ

which is Millman’s theorem for the ac case of Fig. 148, where �YY ¼ 1= �ZZ. As examples,

�ZZ ¼ �jXC
�ZZ ¼ jXL

�ZZ ¼ R� jXC
�ZZ ¼ Rþ jXL

�YY ¼ 1

�jXC

�YY ¼ 1

jXL

�YY ¼ 1

R� jXC

¼ Rþ jXC

R2 þ X2
C

�YY ¼ 1

Rþ jXL

¼ R� jXL

R2 þ X2
L

�YY ¼ j=XC ¼ j!C �YY ¼ �j=XL ¼ �j=!L

ðXL ¼ !L;XC ¼ 1=!CÞ

Problem 132
In Fig. 149, the values of the network components are given in ohms, microhenrys,
and microfarads. The frequency is 100,000 rad/sec. Find the ac voltmeter reading
between point ‘‘a’’ and ground. (We’ve numbered the branches from left to right, 1
through 5, as shown.) Use Millman’s theorem.

CHAPTER 8 Reactance and Impedance168

Fig. 148

Fig. 149



8.5 Real and Apparent Power. Power Factor
Electrical POWER is the RATE at which energy is being expended in a circuit, and is
measured in WATTS.

In section 5.5 we found that the AVERAGE POWER, P, produced in a purely RESIS-
TIVE ac circuit is equal to

P ¼ VI watts ð226Þ
where V and I are the rms values of voltage and current.

It must be understood, however, that eq. (226) is correct only if the load is a pure
RESISTANCE of R ohms. This is because in a purely resistive circuit the current and
voltage waves are completely IN PHASE with each other, so that the current never
reverses direction before the voltage does, and vice versa. If the current wave is not
completely in phase with the voltage wave, then the average power P is less than the
value given by eq. (226) and is then given by eq. (117) in Chap. 5, which is repeated
below as eq. (227) (using � instead of �); thus

P ¼ VI cos� watts ð227Þ*
in which � is the PHASE ANGLE between the current and voltage waves, where V and
I are the magnitudes of the rms values. The situation is represented in vector form in
Fig. 150.

In the figure, note that ‘‘I cos �’’ is the component of �II that is IN PHASE WITH THE
VOLTAGE �VV , and thus, in accordance with eq. (227), we see that TRUE POWER P, is
equal to the voltage V times the component of current that is IN PHASE with �VV . Thus we
have the important fact that, in alternating-current work.

TRUE POWER is equal to the RMS VOLTAGE times the rms component
of current that is IN PHASE with the voltage.

Consider first the case of an ideal inductor or capacitor.{ In either case, the voltage
drop across, and the current through, are 908 out of phase, and thus the true power
expended in an ideal reactor would be zero, since by eq. (227)

P ¼ VI cos 908 ¼ 0
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does have appreciable resistance, such resistance can be taken into account by assuming an equal resistance to be

in series with an ideal coil or capacitor.



This is because inductors and capacitors store energy in their magnetic and electric
fields during one-half of the cycle, then return the stored energy to the circuit during the
other half of the cycle. Thus an ideal inductor or capacitor would be a totally lossless
(wattless) device (see section 7.1). The difference in the instantaneous power relationships
in a pure resistance and in a pure reactance, such as a capacitor, is illustrated graphically in
Figs. 151 and 152 and the following discussion.

In the figures v ¼ instantaneous voltage, i ¼ instantaneous current, thus p ¼ vi ¼
instantaneous power.

FIRST consider Fig. 151. Here v is the voltage applied to a pure resistance of R ohms.
From the figure, note that the direction of the current is always the same as the direction of
the voltage. Thus, in Fig. 151 we have that

from 08 to 1808, p ¼ ðþvÞðþiÞ ¼ þp, that is, ‘‘positive’’ power,
from 1808 to 3608, p ¼ ð�vÞð�iÞ ¼ þp, that is, ‘‘positive’’ power.

Thus, in this case the generator at all times delivers power to the resistance R. By eq.
(227), the power is equal to P ¼ VI cos 08 ¼ VI watts.

Next consider Fig. 152. Here v is a sinusoidal generator voltage applied to a pure
capacitance. Note that the direction of the current is not always the same as the direction
of the voltage; thus, in Fig. 152 we have that

from 08 to 908, p ¼ ðþvÞðþiÞ ¼ þp, that is, ‘‘positive’’ power,
from 908 to 1808, p ¼ ðþvÞð�iÞ ¼ �p, that is, ‘‘negative’’ power,
from 1808 to 2708, p ¼ ð�vÞð�iÞ ¼ þp, that is, ‘‘positive’’ power,
from 2708 to 3608, p ¼ ð�vÞðþiÞ ¼ �p, that is, ‘‘negative’’ power.

Thus, in this theoretically ideal case (zero resistance), the net power output of
the generator is zero; half the time the generator is storing energy in the capacitor,
while during the other half the capacitor discharges, tending to run the generator as a
motor.

Now consider a non-ideal case, having both resistance and reactance, such as the series
RC circuit shown in Fig. 153 where, let’s assume, the current leads the voltage by, say, 458,
as shown in Fig. 154.
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Since we’re dealing with alternating current, the generator voltage arrow in Fig. 153
alternately points ‘‘up’’ and ‘‘down’’ as the generator alternates in polarity, the arrow
always pointing from the negative terminal of the generator to its positive terminal.
‘‘Positive’’ power is produced by the generator when the current flows through the gen-
erator in the direction of the generator voltage arrow. ‘‘Negative’’ power is produced when
current flows through the generator ‘‘against’’ the generator voltage arrow, thus momen-
tarily running the generator as a motor. This is similar to working with a storage battery;
the battery produces power when current flows out of the positive terminal of the battery,
but the battery absorbs energy (becomes the load) when current flows into the positive
terminal (while the battery is being recharged).

For the situation in Fig. 154, note that most of the time the current flows through the
generator in the same sense as the generator voltage, so that in this case ð� ¼ 458) positive
power exceeds negative power. Thus, in this particular case, the true or ‘‘positive’’ power
output of the generator is, by eq. (227), equal to

P ¼ VI cos 458 ¼ 0:7071 VI

The above discussion of the capacitive circuit of Fig. 153 also applies, of course, to
inductive-type loads. In the inductive case energy is stored in the magnetic field of the
inductor coil, the magnetic field of the coil alternately being ‘‘charged’’ and ‘‘discharged’’;
the inductive action causes the current to ‘‘lag’’ the applied voltage instead of ‘‘leading’’ as
in the capacitive case illustrated in Fig. 154.

Another point to mention is as follows. Inspection of Figs. 151, 152, and 154 shows
that instantaneous POWER in an ac circuit always pulsates sinusoidally at a frequency
equal to twice the frequency of the applied voltage. This is an important factor that must
be taken into account in certain practical design problems.

Another point of importance concerns the quantity cos �, which we’ve called the circuit
‘‘power factor’’ (see eq. (227)). The power factor, cos �, can also be expressed in terms of
impedance and power, as follows.

In direct-current (dc) work, power, P, is given by the simple relationship P ¼ VI . In the
ac case, however, average power is given by eq. (227), which let us rewrite as eq. (228), thus

P ¼ VI cos� ð228Þ
where � is the phase angle between the current and voltage waves, and V and I are
magnitudes of rms values of voltage and current. Thus, in the ac case, the product VI
may or may not be equal to the ‘‘true power’’ P. For this reason it’s appropriate to call the
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product VI the ‘‘apparent power,’’ because it must be multiplied by the ‘‘power factor,’’
cos �, to get the ‘‘true power’’ P. This can be expressed by writing eq. (228) in the form

ðtrue powerÞ ¼ ðapparent powerÞðcos �Þ
that is,

Pt ¼ Pa cos � ¼ VI cos� ð229Þ
where Pt ¼ true power, and Pa ¼ apparent power ¼ VI .

Now recall that in an ac circuit ENERGY is actually expended ONLY in the RESIS-
TIVE component of the circuit impedance. Thus TRUE POWER, in an ac circuit, is
always equal to the ‘‘square of the rms current, times the resistance R’’; that is

Pt ¼ I2R

hence eq. (229) becomes

I2R ¼ VI cos� ð230Þ
It is also true that V ¼ IZ (eq. (200)), and thus, substituting this value of V in eq. (230),

we have the important fact that

cos� ¼ R=Z ð231Þ
where R is the circuit resistance and Z is the magnitude of the circuit impedance (as can
also be seen from inspection of Figs. 130 and 139). Hence another expression for the
‘‘power factor’’ is R/Z, and thus eq. (229) is extended to the form

Pt ¼ VI cos� ¼ VIðR=ZÞ ð232Þ
To continue the discussion, let us first redraw Fig. 130 as Fig. 155, where !L ¼ X and

j �ZZj ¼ Z.

Next, multiply all three sides of the triangle in Fig. 155 by the square of the magnitude
of the rms current, I2. Doing this preserves the angle �, and Fig. 155 becomes Fig. 156
where, from our work above, I2R ¼ Pt and (since V ¼ IZ) VI ¼ I2Z ¼ Pa, as shown in
Fig. 157.

The meaning of Px is as follows. Since reactance, X, is measured in ohms, it follows that
I2X is measured in watts; that is, I2X represents what is called ‘‘reactive’’ power. Thus Px

represents power that does not represent energy that is transformed into heat, light, or
mechanical energy, but only energy that is momentarily stored in electric and/or magnetic
fields and then returned to the source. From inspection of Fig. 157, note that

P2
a ¼ P2

t þ P2
x ð233Þ

To summarize, the ‘‘true power’’ Pt in an ac circuit is given by eq. (228), in which cos �
is the ‘‘power factor,’’ where

cos� ¼ R=Z ¼ Pt=Pa ð234Þ
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It should be noted that the above conclusions are valid for any configuration of series,
parallel, or series-parallel network. Thus, if a generator of �VV volts delivers a current of �II
amperes into a certain network, and if the generator sees an impedance �ZZ ¼ Rþ jX ohms
looking into the network, then the true power produced by the generator is equal to
Pt ¼ VI cos�, where cos � ¼ R=Z.

Problem 133
In problem 116, find (a) the apparent power, (b) the true power, (c) the reactive
power.

Problem 134
In problem 119 (Fig. 134), find the true power produced by the generator if V ¼ 28
volts, R ¼ 12 ohms, and !L ¼ 16 ohms. (Answer: 65.333 W, approx.)

Problem 135
In Fig. 158, the circuit values are in ohms and henrys, the generator voltage being 32
V rms, as shown. Given that ! ¼ 1000 rad/sec, find the true power produced by the
generator. (Answer: 226.98 W, approx.)

Problem 136
Rework problem 135, this time using the method of ‘‘loop currents.’’ Remembering
that the power delivered to a pure resistance of R ohms is always equal to the
‘‘square of the magnitude of the rms current, times R’’ ðP ¼ I2RÞ, find

(a) power delivered to the 2-ohm resistance,

(b) power delivered to the 4-ohm resistance,

(c) check to verify that the sum of the answers in (a) and (b) is the same as the
answer found in problem 135.

Problem 137
Find (a) the apparent power, (b) the true power, produced by the generator in
problem 124 (Fig. 141).

Problem 138
Find the true power produced by the generator in Fig. 142, making use of the value
of �II1 found in problem 126.

Problem 139
In Fig. 142, find (a) power to the 15-ohm resistance, (b) power to the 10-ohm resistance.
Verify that the sum of (a) and (b) is the same as the answer found in problem 138.
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8.6 Series Resonance
The subject of this section is the basic series RLC circuit of Fig. 159. A brief review of the
meaning of the symbols in Fig. 159 follows.

First, V and I denote rms values of sinusoidal voltage and current of the same fre-
quency, with � being the phase angle of the current wave with respect to the reference
voltage wave.

However (from section 5.6), rms values of sinusoidal waves of the same frequency can
be manipulated as if they were vector quantities, and thus we write �VV and �II . Then, since
complex numbers can also be manipulated as if they were vector quantities, we can write
and manipulate sinusoidal voltages and currents in the forms �VV ¼ V 0 þ jV 00 and
�II ¼ I 0 þ jI 00, where V 0 and I 0 are the real components and V 00 and I 00 are the imaginary
components of �VV and �II .

Next, in linear circuits* it is a fact that if the applied voltages are sinusoidal, then the
currents are also sinusoidal, and the voltage drops across the passive R, L, and C compo-
nents are also sinusoidal.{ In regard to the voltage drops, remember that the voltage drop
across resistance is ‘‘in phase’’ with the current, and, in the steady-state, the voltage drop
across an inductor ‘leads’’ the current by 908 and the voltage drop across a capacitor
‘‘lags’’ the current by 908. Thus we have that

R�II ¼ vector voltage drop across a resistance of R ohms;

j!L�II ¼ jXL
�II ¼ vector voltage drop across an inductor of L henrys;

�jð1=!CÞ�II ¼ �jXC
�II ¼ vector voltage drop across a capacitor of C farads;

where the �j factors shift the voltage vectors XL
�II and XC

�II the required �908 with respect
to �II .

In Fig. 159 the circuit impedance is �ZZ ¼ Rþ jðXL � XCÞ, and thus, by Ohm’s law, the
current �II is equal to

�II ¼
�VV
�ZZ
¼

�VV

Rþ jðXL � XCÞ
ð235Þ
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where XL ¼ !L is the ‘‘inductive reactance’’ and XC ¼ 1=!C is the ‘‘capacitive reactance,’’
and where, since �VV is taken as the reference vector, we can write that

�VV ¼ V=08 ¼ V

In magnitude,

j�II j ¼ Vffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðXL � XCÞ2

q ð236Þ

Now, in Fig. 159, let the rms value of the applied reference voltage be held constant at V
volts. Also, for the time being, let us hold the values of L and C constant (at any particular
values we might be interested in). Let us, however, be able to CHANGE THE FRE-
QUENCY, !, of the applied voltage V at will; in other words, let the FREQUENCY
be the VARIABLE, with everything else, for the time being, held constant.

With this in mind, let’s pause a moment to manipulate eq. (235) a bit, as follows
ð �VV ¼ V)

�II ¼ V

Rþ jðXL � XCÞ
¼ V½R� jðXL � XCÞ�

R2 þ ðXL � XCÞ2
¼ V

D
½Rþ jðXC � XLÞ�

where D ¼ R2 þ ðXL � XCÞ2 (thus D is always a positive number). Hence the PHASE
ANGLE � of the current vector �II with respect to the reference voltage V is

� ¼ arctan
ðXC � XLÞ

R
ð237Þ

Thus, if Fig. 159 is an inductive circuit ðXL > XC), then ðXC � XLÞ has a negative value
and thus � is a negative angle, showing that the current ‘‘lags’’ the voltage in an inductive
circuit. Or, if in Fig. 159 the circuit is capacitive ðXC > XLÞ, then ðXC � XLÞ has a positive
value and thus � is a positive angle, showing that the current ‘‘leads’’ the voltage in a
capacitive circuit.

Now consider the condition called SERIES RESONANCE, which is the condition
where XL ¼ XC, that is, where ðXL � XCÞ ¼ 0. We immediately see (by direct inspection
of eqs. (235) and (236)) that at ‘‘series resonance’’ the generator in Fig. 159 sees a pure
resistance of R ohms, the current at resonance thus being in phase with V, having the
maximum value of I ¼ V=R amp.

The FREQUENCY at which XL ¼ XC is called the ‘‘resonant frequency’’ and is
denoted by !0 if we’re dealing in ‘‘radians/second,’’ or f0 if we’re using ‘‘cycles/second’’
(hertz). !0 and f0 can be read as ‘‘omega sub zero’’ and ‘‘f sub zero.’’

Thus the condition for ‘‘series resonance’’ is that !0L ¼ 1=!0C, from which we have
that

!0 ¼
1ffiffiffiffiffiffiffi
LC

p radians=sec ð238Þ

or

f0 ¼
1

2�
ffiffiffiffiffiffiffi
LC

p cycles=sec ðHzÞ ð239Þ

where L is inductance in henrys and C is capacitance in farads.
As we found above, the current in a series circuit has its MAXIMUM VALUE of

I ¼ V=R amperes at resonance. The key to the behavior of the series circuit is contained
in the denominator of eqs. (235) and (236). We see that the denominator has its least value
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at resonance, because ONLY at resonance is it true that ðXL � XCÞ ¼ 0. Note that the
greater the deviation of the frequency away from the resonant frequency, the greater is the
magnitude of (XL � XCÞ, thus the greater is the magnitude of the denominator and the less
is the magnitude of current. The result is illustrated graphically in Fig. 160, the general
form of a plot of eq. (236), where XL ¼ !L and XC ¼ 1=!C.

Let us now summarize some facts about the basic series circuit of Fig. 159. To begin, let
X denote the ‘‘net reactance’’ in Fig. 159 where, from inspection of eqs. (235) and (236), we
see that

X ¼ ðXL � XCÞ ¼ !L� 1

!C

� �
showing that inductive and capacitive reactances tend to cancel each other out in a series
circuit. This is because their voltage drops are 180 degrees out of phase with each other,
being equal to þjXL

�II and �jXC
�II . Thus, in Fig. 159, if !L is less than 1=!C (below

resonance), the generator sees a capacitive circuit, but if !L is greater than 1=!C (above
resonance), the generator sees an inductive circuit. Of course, if XL ¼ XC (the condition of
resonance, ! ¼ !0Þ, the generator sees a pure resistance. These three possible conditions
are illustrated in Figs. 161, 162, and 163.

A vector diagram for Fig. 159 for the condition of resonance, ! ¼ !0, is given in Fig.
164, where V is generator voltage and I0 is current at resonance ðI0 ¼ V=RÞ.

Note that the voltage drops across L and C are equal in magnitude but 1808 out of
phase with each other. Note, also, that the magnitudes of the voltage drops across L and C
can be MANY TIMES GREATER than the generator voltage V. This is possible because
at resonance VL and VC exactly cancel each other out, leaving only the voltage drop RI0 in
the circuit (V ¼ RI0Þ:
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Now suppose the frequency were to become (for example) GREATER than the reso-
nant frequency ð! > !0Þ. In this case the current �II would LAG the generator voltage by
some angle � (eq. (237)), as shown in Fig. 165. (For convenience, Figs. 164 and 165 are not
drawn to the same scale.) A brief discussion follows.

Since we are no longer at resonance (here we’re assuming a frequency above reso-
nance), the magnitude of �II would now be less than I0 (by eq. (236), and seen in Fig.
160). The voltage drops VL and VC will still be at right angles to the current vector �II and
will still be 1808 out of phase with each other, but now VL will be greater than VC, and
thus VL and VC will no longer completely cancel each other out, but, instead, a net voltage
drop of ðVL � VCÞ will appear between L and C, as shown in Fig. 165. The vector sum of
the voltage ðVL � VCÞ and the voltage drop RI across the resistance R must and will be
equal to the generator voltage V as shown in the figure.

For frequencies below resonance XC will be greater than XL, and the current �II will lead
the generator voltage V. The ‘‘net voltage drop’’ between C and L will be ðVC � VLÞ, and
the vector sum of this voltage and the voltage drop RI across the resistance R must again
be equal to the generator voltage V.
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Problem 140
Find the resonant frequency of a series circuit in which L ¼ 4 microhenrys,
C ¼ 0:0025 microfarads, and R ¼ 0:65 ohm.

Problem 141
In a certain series RLC circuit, L ¼ 400 microhenrys. Find the value of C if the
circuit must resonate at 500 kilohertz (500 kHz). (Answer: 253.3 pF (picofarads))

Problem 142
If, in Fig. 159, L ¼ 1 microhenry, C ¼ 0:0025 microfarad, R ¼ 5 ohms, and if the
generator voltage is 20 volts rms, find the following values:

(a) power output of generator at the resonant frequency,

(b) voltage drop across C at resonance.

If, now, the generator frequency is made equal to 107 rad/sec (all else unchanged),
find

(c) magnitude of voltage drop across C,

(d) phase angle � of current vector with respect to generator voltage,

(e) power output of generator.

Practically speaking, the phenomenon of ‘‘series resonance’’ is especially important
because it can be used to select or ‘‘tune in’’ a desired signal, while rejecting all others.
To investigate this most interesting and useful matter, let us begin with Fig. 166, in which a
generator of reference voltage �VV ¼ V=08 ¼ V is applied to a series RLC circuit, as shown.

The value of the current �II is (from eq. (235)) equal to

�II ¼ V

R 1 þ jðXL � XCÞ
R

� 	 ¼ V

R

1

1 þ j

R
!L� 1

!C

� � ð240Þ

It is important, now, that we somehow get the resonant frequency !0 into eq. (240). This
is an interesting exercise in algebraic manipulation, and can be done by first writing eq.
(240) in the form

�II ¼ V

R

1

1 þ j!0L

R!0L
!L� 1

!C

� � ð241Þ
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Equation (241) is, of course, the same as eq. (240), because !0L=!0L ¼ 1. The next step
is not so obvious, but after some study we realize that eq. (241) can also be written in the
form

�II ¼ V

R

1

1 þ J
!0L

R

� �
!

!0

� !0

!

� � ð242Þ

which is true because multiplying by 1=!0L is the same as multiplying by !0C (because
1=!0L ¼ !0C). Next, it is universal practice to represent the ratio of the reactance of the
coil at resonance to the circuit resistance by ‘‘Q’’; that is

!0L

R
¼ Q ð243Þ

thus eq. (242) becomes

�II ¼ V

R

1

1 þ jQ
!

!0

� !0

!

� � ð244Þ

Now, in the following discussion, let it be given that, while the amplitude of the gen-
erator voltage will always remain constant at V volts, its frequency ! can be set to any
value we might be interested in. Also, let the ‘‘output voltage’’ of the system be the voltage
drop across the capacitor, �VVC, as shown in Fig. 166. Then, since

voltage drop across C ¼ ðcurrentÞðreactance of CÞ ¼ �IIð�j=!CÞ
we have, using the value of �II from eq. (244), that for Fig. 166 eq. (244) becomes

�VVC

V
¼

�j

R!C

1 þ jQ
!

!0

� !0

!

� � ð245Þ

Let us now work on the numerator in the above, as follows:

�j

�
1

R!C

�
¼ �j

�
!0

!R!0C

�
¼ �j

�
!0

!

��
1

R!0C

�
¼ �j

�
!0

!

�
Q

in which we made use of the fact that
1

!0C
¼ !0L, then applied the definition of eq. (243);

thus eq. (245) becomes

�VVC

V
¼

�jQ

�
!0

!

�
1 þ jQ

�
!

!0

� !0

!

� ð246Þ

Equation (246) is said to be in ‘‘dimensionless’’ form, because it requires only the ratios
of like quantities and is thus valid for all systems of measurement. The equation is also
said to be in ‘‘normalized’’ form, because it gives the value of VC relative to the reference
voltage V.

As previously mentioned, series resonance is of great practical importance because it can
be used to select or ‘‘tune in’’ a signal of any desired frequency while rejecting all others. Thus
we are especially interested in the behavior of eq. (246) IN THE IMMEDIATE VICINITY
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OF THE RESONANT FREQUENCY !0. To aid in the study of eq. (246) in the close
vicinity of !0, let us define that

d ¼ !

!0

ð247Þ

that is, ‘‘d ’’ is the ratio of ANY FREQUENCY !, to the RESONANT FRE-
QUENCY !0. Then eq. (246) becomes

�VVC

V
¼

�j
Q

d

1 þ jQ d � 1

d

� � ¼ �jQ

d þ jQðd2 � 1Þ

In magnitude,

�VVC

V

����
���� ¼ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2 þQ2ðd2 � 1Þ2
q ðd ¼ !=!0Þ ð248Þ

Problem 143
Letting A ¼ j �VVC=V j, fill in the following table of values for Fig. 166. (Round final
calculator values off to two decimal places.)

Use the results to sketch approximate curves of A versus d, for Q ¼ 10 and Q ¼ 20.

8.7 Parallel Resonance
In this section we propose to analyze the parallel RLC network of Fig. 167, where �ZZp is the
‘‘input impedance’’ to the network, that is, the impedance a generator would see if con-
nected to terminals a, b.

The circuit of Fig. 167 is important because it finds wide use as a ‘‘tuned load’’ at higher
frequencies, in both receiver and transmitter work.

Note that resistance is assumed to exist only in the inductive branch of the circuit. This
is because inductors (coils), being wound of wire, inherently have much more power loss*
than capacitors (it being easy to obtain practically lossless capacitors).
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d A, for Q ¼ 10 A, for Q ¼ 20 d A, for Q ¼ 10 A, for Q ¼ 20

0.80 1.01

0.85 1.03

0.90 1.05

0.93 1.07

0.95 1.10

0.97 1.15

0.99 1.20

1.00

* The resistanceR in Fig. 167 is the sum of the actual resistance of the coil itself and any resistance ‘‘coupled’’ intoL

due to transformer action (when L is the primary of a transformer).



Now, applying the standard procedure for two impedances in parallel (product of the
two, over the sum), we have that, in Fig. 167,

�ZZp ¼ �jXCðRþ jXLÞ
Rþ jðXL � XCÞ

ð249Þ

Now ‘‘rationalize’’ the above fraction; that is, multiply the numerator and denominator
by R� jðXL � XCÞ. Doing this, then setting XL ¼ !L and XC ¼ 1=!C, you can verify that
eq. (249) becomes

�ZZp ¼ 1

R2 þ !L� 1

!C

� �2

R

!2C2
þ j �!2L2

!C
þ !L

!2C2
� R2

!C

 !" #
ð250Þ

We now obviously have a considerably more complicated condition than we had for the
series case of section 8.6. Let us therefore try to put eq. (250) in a somewhat better form,
especially in regard to the quantity ð!L� 1=!CÞ. In an effort to do this, let us first write
the imaginary component, inside the brackets, in the equivalent form

j

�
� !2L2!C

!2C2
þ !LC

!2C2C
� R2!C

!2C2

�
¼ j

!C

!2C2

�
� !2L2 þ L

C
� R2

�

Thus, 1=!2C2 now factors out of the entire quantity inside the brackets in eq. (250);
doing this, and remembering the algebraic fact that, A2B2 ¼ ðABÞ2, you can verify that eq.
(250) becomes

�ZZp ¼ R

R2!2C2 þ ð!2LC � 1Þ2 þ j

!C �!2L2 þ L

C
� R2

� �
R2!2C2 þ ð!2LC � 1Þ2 ð251Þ

To continue, let us now DEFINE that the ‘‘resonant frequency,’’ for the parallel case of
Fig. 167, is the frequency at which �ZZp becomes a PURE RESISTANCE. Let us denote
the resonant frequency by ‘‘!0’’; then, by definition, !0 is the frequency at which the
imaginary or ‘‘reactive’’ component of eq. (251) becomes equal to zero. Note that this
requirement will be satisfied if the numerator of the imaginary part of eq. (251) is equal to
zero; that is, if

!C ¼ 0

or if

�!2L2 þ L

C
� R2

� �
¼ 0
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The first possibility, !0C ¼ 0, is true only if ! ¼ 0 or if C ¼ 0, and hence is of no
practical importance. However, setting ! ¼ !0 in the second possibility gives, as you can
verify, the meaningful, correct answer

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� R2

L2

s
ð252Þ

in which only the positive value of the square root is to be taken (because ‘‘negative
frequency’’ does not exist in the real world).

Now let ! 0 (‘‘omega prime’’) be the frequency at which the reactances of the coil and
capacitor are equal; that is, let ! 0 be the frequency at which !L ¼ 1=!C. Thus,
! 0L ¼ 1=! 0C; hence

! 02 ¼ 1=LC

and, putting this value in place of 1=LC, eq. (252) becomes

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
! 02 � R2

L2

s
ð253Þ

Thus, as eq. (253) shows, in the parallel circuit of Fig. 167 the frequency at which �ZZp is
a pure resistance is not the same as the frequency at which XL ¼ XC.* Thus !0 ¼ ! 0 only
for the theoretically ideal case of R ¼ 0.

We have defined that the ‘‘resonant frequency’’ for the parallel case is the frequency,
!0, for which �ZZp in Fig. 167 becomes a pure resistance, which let us now denote by ‘‘R0.’’
Hence, if we set ! ¼ !0 in eq. (251), the imaginary part vanishes and �ZZp becomes equal to
R0; thus

R0 ¼
R

R2!2
0C

2 þ ð!2
0LC � 1Þ2

Now, in the above equation, replace !0 with the right-hand side of eq. (252); doing this,
you can verify the important fact that

R0 ¼
L

RC
ohms ð254Þ

where R0 is the pure resistance a generator sees looking into terminals a, b in Fig. 167, if
the generator is operating at the frequency defined by eq. (252). From inspection of eq.
(254), note that the smaller the value of R, the larger is the value of R0; this is one reason
why Fig. 167 is especially useful in certain practical applications (as will be commented on
in the solution to the following problem).

Problem 144
In Fig. 167, suppose L ¼ 100 microhenrys, C ¼ 100 picofarads (100 pF), and R ¼ 50
ohms. What value of �ZZp would a generator, operating at a frequency given by eq.
(252), see if connected to terminals a, b?

To continue our study of Fig. 167, it will be instructive to deal with the dimensionless
ratio of the general value of �ZZp (given by eq. (251)) to its value at resonance, R0 (given by
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eq. (254)). Thus, upon multiplying both sides of eq. (251) by 1=R0, we have that

�ZZp

R0

¼
R

R0

� j
!C

R0

!2L2 � L

C
þ R2

� �
R2!2C2 þ ð!2LC � 1Þ2 ð255Þ

Actually, the above equation can be expressed in much better form if certain practical
approximations are made. To show how this can be done, let us first denote the ratio of the
coil reactance at resonance to its resistance by ‘‘Q’’; thus

!0L

R
¼ Q ð256Þ

Next square both sides of eq. (252), thus getting

!2
0 þ

R2

L2
¼ 1

LC
ð257Þ

But note that

R2

L2
¼ !2

0R
2

!2
0L

2
¼ !2

0

R

!0L

� �2

¼ !2
0=Q

2

and upon making this substitution into eq. (257) we have that

!2
0 1 þ 1

Q2

� �
¼ 1

LC
ð258Þ

At this point it should be noted that all of the foregoing equations concerning Fig. 167,
are exact equations; that is, no simplifying assumptions have been made. Let us now,
however, take into account the fact that in most practical applications of Fig. 167 the value
of Q, as defined by eq. (256), will be EQUAL TO OR GREATER THAN 10; that is, in
most practical work it will be true that Q � 10.

Let us therefore base the rest of our discussion of Fig. 167 on the assumption that Q
will be equal to or greater than 10. Thus, for practical purposes we can write that

1 þ 1

Q2
¼ 1

and hence, for practical purposes, eq. (258) becomes

!2
0 ¼

1

LC
ð259Þ

thus

!0L ¼ 1=!0C ð260Þ
showing that, for practical purposes, in Fig. 167 it can be taken that XL ¼ XC at the same
frequency, !0, that �ZZp ¼ R0.

Our goal, now, is to express eq. (255) in dimensionless form (similar to eqs. (246) and
(248) in section 8.6), making use of the assumption that ð1 þ 1=Q2Þ ¼ 1. To do this
requires a certain amount of trial and error; let us suppose, after a few trials, we try
writing the denominator of eq. (255) in the form

R2!2
0ð!=!0Þ2C2 þ ½ð!=!0Þ2!2

0LC � 1�2 ð261Þ
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Now let (see eq. (247) in section 8.6)

d ¼ !

!0

ð262Þ

Using this notation, and also noting, by eq. (259), that !2
0LC ¼ 1, eq. (261) becomes

R2d2ð!0CÞ2 þ ðd2 � 1Þ2 ð263Þ
Next, by eq. (260), !0C ¼ 1=!0L, and using this relationship, and also the definition of

eq. (256), we can now write eq. (255) with a new, dimensionless denominator; thus

�ZZp

R0

¼
R

R0

� j
!C

R0

!2L2 � L

C
þ R2

� �
d2

Q2
þ ðd2 � 1Þ2

ð264Þ

Now let us work on the numerator on the right-hand side of the above equation, as
follows. First, making use of eqs. (254), (260), and (256), we have that

R

R0

¼ R2C

L
¼ R2!0C

!0L
¼ R

!0L

� �2

¼ 1

Q2
ð265Þ

Next note that the quantity inside the parentheses in the imaginary part of eq. (264) can
be written as

!2L2 � L

C
þ R2

� �
¼ !2!2

0L
2

!2
0

� !0L

!0C
þ !2

0L
2

Q2

¼ ð!0LÞ2ðd2 � 1 þ 1=Q2Þ ð266Þ
where we used the relationships !0L ¼ 1=!0C and R ¼ !0L=Q. Thus, substituting the
results of eqs. (265) and (266) into eq. (264), we have that

�ZZp

R0

¼
1

Q2
� jð!CÞð!0LÞ2

R0

d2 � 1 þ 1

Q2

� �
d2

Q2
þ ðd2 � 1Þ2

ð267Þ

Now, for the last step (remembering that !0L ¼ 1=!0C), note that

ð!CÞð!0LÞ2
R0

¼ ð!CÞð!0LÞ2RC
L

¼ !ð!0CÞð!0LÞ2Rð!0CÞ
!0ð!0LÞ

¼ !

!0

R

!0L
¼ d

Q

and upon making this substitution into eq. (267), then multiplying the numerator and
denominator by Q2, we get the final desired result

�ZZp

R0

¼ 1 � jdQðd2 � 1 þ 1=Q2Þ
d2 þQ2ðd2 � 1Þ2 ð268Þ

also, therefore,

�ZZp

R0

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ d2Q2ðd2 � 1 þ 1=Q2Þ2

q
d2 þQ2ðd2 � 1Þ2 ð269Þ
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Problem 145
Letting A ¼ j �ZZp=R0j, fill in the following table of values for Fig. 167, for Q ¼ 20
(round off calculator values to two decimal places). Sketch the curve of A versus d.

Problem 146
This problem (and problems 147 and 148) deals with Fig. 167 and, specifically, with
the circuit of Fig. 168, in which V=08 ¼ V ¼ 90 volts rms, the sinusoidal reference
voltage of the generator, and �IIg is the generator current, as shown. The values of C,
L, and R are in microfarads, microhenrys, and ohms.

(a) Find the APPROXIMATE value of !0 based upon eq. (259).

(b) Find the EXACT value of !0 based upon eq. (252). For practical purposes, will
it be reasonable to use the approximate equations in the case of Fig. 168?

Problem 147
At the resonant frequency !0 in Fig. 168, find

(a) load seen by generator,

(b) generator current,

(c) power output of generator,

(d) capacitor current,

(e) inductor current,

(f ) Q of circuit,

(g) power to R, from answer to (e). Check with answer to (c).

Problem 148
In Fig. 168, suppose the generator frequency is changed to the value ! ¼ ð1:05Þ106

radians/second, the values of V, C, L, and R remaining unchanged. Find, approxi-
mately, the following values:
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d A d A d A d A

0.80 0.95 1.01 1.10

0.85 0.97 1.03 1.15

0.90 0.99 1.05 1.20

0.93 1.00 1.07

Fig. 168



(a) value of �IIg, the generator current, (Answer: 0:025972 þ j0:037122 amp.)

(b) phase angle of �IIg relative to generator voltage, (Answer: 55:0228)

(c) power output of generator. (Answer: 2.338 watts)

In closing, it should be noted that the conditions of series and parallel resonance
both have important practical applications. As we have found, SERIES resonance is
characterized by the condition of LOW RESISTANCE AND HIGH CURRENT,
while in PARALLEL resonance we have the condition of HIGH RESISTANCE AND
LOW CURRENT.
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Impedance
Transformation.
Electric Filters

In this chapter we’ll consider impedance-matching by means of ‘‘L’’ sections and also by
means of ‘‘T’’ and ‘‘pi’’ networks. We then define the decibel, and take up the algebra of
some basic low-pass and high-pass filter networks.

9.1 Impedance Transformation.
The ‘‘L’’ Section

In practical work it is often necessary that a given generator work into a certain specific
value of load impedance. Often, however, the actual load impedance will be fixed at a
value different from the value we desire the generator to see. In such a case, the actual load
impedance can be transformed into the desired value by inserting an IMPEDANCE
TRANSFORMING NETWORK between the generator and the load. This is illustrated,
in a general way, in Fig. 169, where the internal impedance of the generator and the load
impedance are taken to be pure resistances, Rg and R, as shown.

The impedance-transforming network is assumed to be inside the box, and to be con-
nected to generator and load by means of four leads, as shown. The terminals labeled 1, 1
are the INPUT TERMINALS or ‘‘input leads’’ to the network, and those labeled 2, 2 are
the OUTPUT TERMINALS or ‘‘output leads’’ that connect to the load resistance R.

The network inside the box may be of the ‘‘L,’’ ‘‘T,’’ or ‘‘pi’’ (�), type, or it may consist
of a single coupled-circuit transformer. Each has certain advantages and disadvantages,
and the type used, in any given case, will depend upon the particular problem being dealt
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with. In our work we’ll assume the passive elements, inside the box, to be composed of
PURE REACTANCES only, so that no energy will be lost in the impedance-matching
network itself.

We begin with the ‘‘L’’ type of matching network, which consists of the L� C arrange-
ment shown inside the box outlined by the dashed lines in Fig. 170.

Note that the capacitor and inductor form an ‘‘upside-down L,’’ from which the net-
work gets its name. Next note that the network to the right of terminals (1, 1) in Fig. 170 is
exactly the same as the network looking into terminals (a, b) in Fig. 167 in section 8.7.
Therefore, from our study of Fig. 167, the resonant frequency, !0, looking into terminals
(1, 1) is given by eq. (252); thus

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� R2

L2

s
rad=sec ð270Þ

Also, therefore, at the resonant frequency, the value of Rin in Fig. 170 is the same as the
value of R0 given by eq. (254); thus, at resonance,

Rin ¼ L

RC
ohms ð271Þ

Thus, at resonance, the ‘‘L’’ network of Fig. 170 is capable of transforming a given
value of load resistance R into a different value of resistance, Rin, as seen looking into
terminals (1, 1).*

Next, from eq. (271), we have that, at resonance, L ¼ RinRC, and C ¼ L=RinR, and
upon substituting these values of C and L successively into eq. (270), you should find that
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the values L and C, at resonance, in Fig. 170, are equal to

L ¼ R

!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rin

R
� 1

r
henrys ð272Þ

C ¼ 1

!0Rin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rin

R
� 1

r
farads ð273Þ

Note, however, that the last two equations are valid only if Rin > R, because, if this is
not true, the quantity under the square root signs will be negative, which would call for
imaginary values of L and C. This case (where Rin < R) can, however, be handled by
making use of the ‘‘reverse L’’ network shown in Fig. 171.

The equations for the ‘‘reverse L’’ network are as follows. First, the resonant frequency
!0 (the frequency at which the impedance, looking into terminals (1, 1), is a pure resis-
tance) is equal to

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� 1

R2C2

r
rad=sec ð274Þ

Next, the value of the pure resistance, looking into terminals (1, 1), at the resonant
frequency, is equal to

Rin ¼ L

RC
ohms ð275Þ

Thus, from the above equation, we have that, at resonance, L ¼ RinRC and
C ¼ L=RinR. Upon substituting these values of C and L into eq. (274), you should find
that the values of L and C, at resonance, in Fig. 171, are equal to

L ¼ Rin

!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

Rin

� 1

s
henrys ð276Þ

C ¼ 1

!0R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

Rin

� 1

s
farads ð277Þ

To summarize, the principal advantage of the L and reverse L is simplicity, since only
one capacitor and one coil are needed. It must be remembered that, strictly speaking, the
generator sees a pure resistance only at the one frequency selected, but, practically speak-
ing, also for a narrow band of frequencies centered at the resonant frequency, the range of
frequencies depending upon the effective Q of the circuit.
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Also, depending upon the frequency of operation and upon the values of R and Rin, the
values of L and C may come out to be inconveniently large or small, from a practical
standpoint. Hence, in some cases it will be necessary or desirable to go to a somewhat
more complicated network, such as a ‘‘T’’ or ‘‘pi’’ (�) type.

Problem 149
The matching networks of Figs. 170 and 171 are both referred to, in general terms, as
‘‘L-type’’ networks. If the constants of such a network are known to be
R ¼ 135 ohms, L ¼ 28:5 mH,* and C ¼ 0:0036 mF, find the resonant frequency of
the network. (Answer: 2.348 megahertz)

Problem 150
A load resistance of 16 ohms is to be transformed into 75 ohms by means of an
L-type network. If the resonant frequency is to be 106 rad/sec, find the required
values of C and L.

Problem 151
A load resistance of 125 ohms is to be transformed into 85 ohms by means of an
L-type network. If the resonant frequency is to be 360 kHz (kilohertz), find the
required values of C and L.

Problem 152
Following the same line of reasoning as in section 8.7, prove that eq. (274) is true.

Problem 153
Prove that eq. (275) is correct.

Problem 154
Derive eqs. (276) and (277).

9.2 The ‘‘T’’ and ‘‘Pi’’ Equivalent Networks
It is often helpful, in the analysis of complicated networks, to replace an actual network
with a simpler network that is the EQUIVALENT of the actual network.

A second network is said to be equivalent to a first network if, when the first is replaced
by the second, there is NO CHANGE in the values of the voltages and currents appearing
AT THE INPUT AND OUTPUT TERMINALS) (1, 1) and (2, 2). Consider now, Figs.
172 and 173.

Let the box in Fig. 172 contain the actual network, which can be any linear, bilateral
network we might be interested in. (For ‘‘linear’’ and ‘‘bilateral,’’ see footnote in section
4.7).

Let �VVg be the generated voltage of the generator, �ZZg be the internal impedance of the
generator, and �ZZL, be the external load impedance. Also let �VV1, �II1, �VV2, and �II2 be the
voltages and currents at the input and output terminals of the actual network, as shown in
Fig. 172. Since we’re dealing with sinusoidal steady-state analysis, these voltages and
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currents will be expressed, as usual, in the form of COMPLEX NUMBERS, each such
number requiring the specification of TWO SEPARATE VALUES, the ‘‘magnitude,’’ and
the ‘‘phase angle.’’

Now, in Fig. 172, let us remove the actual network and replace it with the proposed
EQUIVALENT NETWORK inside the box in Fig. 173. If the network inside the box in
Fig. 173 is a true equivalent network, there will be, at the operating frequency, NO
CHANGE in either magnitude or phase angle in any of the four complex numbers �VV1,
�II1, �VV2, or �II2.

Let us now consider what the circuit of an ‘‘equivalent network’’ would have to be like.
We begin with the reasonable assumption that the equivalent network should be as simple
as possible. The simplest form of an equivalent network can then be arrived at as follows.

First, we have the fact that a complex number is composed of two independent parts,
the magnitude and the phase angle. Since we are dealing here with four complex numbers
( �VV1, �II1, �VV2, �II2), it follows that there are eight separate quantities (four magnitudes and four
phase angles) involved in setting up an equivalent network. Note, however, from Fig. 172,
that by Ohm’s law

�VV2 ¼ �II2 �ZZL

and thus, if the external load impedance �ZZL is taken into account, the four complex
quantities become

�VV1; �II1; �II2 �ZZL; and �II2

Thus only six of the quantities (three magnitudes and three phase angles) need be
determined for the network itself, the other two (one magnitude and one phase angle)
being supplied by the known value of the load impedance �ZZL. Hence the simplest equiva-
lent network need have only three independent, adjustable impedances. Some thought will
show that there are only two ways that three such impedances can be arranged, one
arrangement being called the ‘‘T’’ network, the other being called the ‘‘pi’’ (�), as in
Figs. 174 and 175.

Notes: In all our discussions of T and pi networks we’ll use the same standard notation
shown in Figs. 174 and 175. Also, in these figures, each �ZZ can represent any simple series,
parallel, or series-parallel connection of impedances.

Now let us take up the problem of how to find the values of the impedances in the
equivalent networks above, beginning with the T network.
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The values of the three unknown impedances in Fig. 174 have to be found by making
either impedance calculations or actual measurements at the terminals of the actual net-
work it is desired to replace. Since we must find the values of THREE unknown impe-
dances, we must make at least three different, independent measurements on the actual
network. The most convenient measurements to make are called the OPEN-CIRCUIT
measurements and the SHORT-CIRCUIT measurements—these measurements are made
on the actual network, as follows.

First, disconnect the generator and the load impedance �ZZL from the actual network. Then
make the following measurements or calculations at the terminals of the actual network.

�ZZ1O ¼ impedance looking into terminals 1,1 with terminals 2,2 OPEN-CIRCUITED.

�ZZ1S ¼ impedance looking into terminals 1,1 with terminals 2,2 SHORT-CIRCUITED.

�ZZ2O ¼ impedance looking into terminals 2,2 with terminals 1,1 OPEN-CIRCUITED.

�ZZ2S ¼ impedance looking into terminals 2,2 with terminals 1,1 SHORT-CIRCUITED.

The relationship of the above measurements (which, remember, are to be made on the
actual network) to the values of the three elements of the hypothetical ‘‘equivalent T
network’’ can be found with the aid of Fig. 176.

Referring to Fig. 176, note that operation of the switches will provide us with the
following information:

Switch #1 Switch #2

open open �ZZ1O ¼ �ZZ1 þ �ZZ3 ð278Þ

open closed �ZZ1S ¼ �ZZ1 þ
�ZZ2

�ZZ3

�ZZ2 þ �ZZ3

ð279Þ

open open �ZZ2O ¼ �ZZ2 þ �ZZ3 ð280Þ

closed open �ZZ2S ¼ �ZZ2 þ
�ZZ1

�ZZ3

�ZZ1 þ �ZZ3

ð281Þ
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Now subtract eq. (279) from (278): �ZZ1O � �ZZ1S ¼ �ZZ3 �
�ZZ2

�ZZ3

�ZZ2 þ �ZZ3

. Now multiply both

sides of this equation by ð �ZZ2 þ �ZZ3), then make use of eq. (280); this should give you

�ZZ3 ¼ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ2Oð �ZZ1O � �ZZ1SÞ

q
in which, as is shown, it’s customary to use just the positive value of the square root.
Thus, making use of this equation and also eqs. (280) and (278), we get the following
relationships

�ZZ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ2Oð �ZZ1O � �ZZ1SÞ

q
ð282Þ

�ZZ2 ¼ �ZZ2O � �ZZ3 ð283Þ
�ZZ1 ¼ �ZZ1O � �ZZ3 ð284Þ

These are the three equations required to convert any actual four-terminal network into
an EQUIVALENT T NETWORK. Note that the values of �ZZ1O, �ZZ1S, and �ZZ2O are found
by making three calculations or measurements at the terminals of the ACTUAL NET-
WORK.

It should be understood that if the three equations are used to calculate definite values
of R, L, and C at a given frequency, then the T network, so found, is equivalent to the
actual network only at that one frequency. Practically speaking, however, such an equiva-
lent network can satisfactorily replace the actual network over a band of frequencies
usually extending a few percent above and below the ‘‘center frequency.’’

Now let’s turn our attention to the equivalent ‘‘pi’’ network of Fig. 175. The equations
for finding the values of an equivalent pi network are found in the same general way as
those for the equivalent T network, and are as follows:

�ZZA ¼
�ZZ 0

�ZZ2O � �ZZ 00 ð285Þ

�ZZB ¼ �ZZ 0= �ZZ 00 ð286Þ

�ZZC ¼
�ZZ 0

�ZZ1O � �ZZ 00 ð287Þ

where ‘‘Z prime’’ and ‘‘Z double prime’’ have the following values:

�ZZ 0 ¼ �ZZ2O
�ZZ1S ð288Þ

�ZZ 00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ2Oð �ZZ1O � �ZZ1SÞ

q
ð289Þ

where �ZZ1O through �ZZ2S are found in the same way as for the equivalent T, as defined just
prior to Fig. 176. In this regard, let us now replace the T network in Fig. 176 with the pi
network of Fig. 175. Upon doing this, operation of the two switches will now produce the
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following results, as you should verify:

Switch #1 Switch #2

open open �ZZ1O ¼
�ZZAð �ZZB þ �ZZCÞ
�ZZA þ �ZZB þ �ZZC

ð290Þ

open closed �ZZ1S ¼
�ZZA

�ZZB

�ZZA þ �ZZB

ð291Þ

open open �ZZ2O ¼
�ZZCð �ZZA þ �ZZBÞ
�ZZA þ �ZZB þ �ZZC

ð292Þ

closed open �ZZ2S ¼
�ZZB

�ZZC

�ZZB þ �ZZC

ð293Þ

Now, as an exercise in algebraic manipulation, let’s verify that the values of �ZZA and �ZZB

given by eqs. (285) and (286) are correct; one way to do this is as follows.
First, by eq. (291),

�ZZB ¼
�ZZA

�ZZ1S

�ZZA � �ZZ1S

ð294Þ

Next, using the relationships found in the above switching table, we have that

�ZZ1S
�ZZ2O ¼

�ZZA
�ZZB

�ZZC

�ZZA þ �ZZB þ �ZZC

ð295Þ

Next, again making use of the relationships in the switching table, you can verify that

�ZZ2Oð �ZZ1O � �ZZ1SÞ ¼
�ZZ2

A
�ZZ2

C

ð �ZZA þ �ZZB þ �ZZCÞ2
ð296Þ

Now invert both sides of the last equation, then take the square root of both sides, then
multiply, respectively, the left-hand and right-hand sides of the result by the left-hand and
right-hand sides of eq. (295); doing this, you should find that

�ZZ1S
�ZZ2Offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ZZ2Oð �ZZ1O � �ZZ1SÞ
p ¼ �ZZB ¼

�ZZ 0

�ZZ 00

thus verifying that eq. (286) is correct. Now, in the above, substitute the right-hand side of
eq. (294), in place of �ZZB, then solve for �ZZA to verify that eq. (285) is also correct.

Next, the values of �ZZA and �ZZB (from eqs. (285) and (286)) can be substituted into, for
example, eq. (292), the result then being solved for the value of �ZZC, which will prove that
eq. (287) is correct.

The above results can be summarized in the statement that any linear, bilateral net-
work, containing no internal generators, can be represented, at a single frequency, by a T
or pi network.

Problem 155
The network in Fig. 177 is composed of pure resistances having values in ohms, as
shown. Find the equivalent T network. Is the answer valid at all frequencies?
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Problem 156
In Fig. 178, it is given that C ¼ 2�F and L ¼ 150�H, the resistance values being in
ohms, as shown.

Draw the diagram of the equivalent T network, showing the required values of
inductance, capacitance, and resistance, for operation at 105 radians/second.

Problem 157
Draw the T network equivalent of the purely resistive ‘‘bridge-type’’ network shown
in Fig. 179. Resistance values are in ohms.

Problem 158
Suppose the following measurements are made on a certain network at a particular
frequency of interest:

�ZZ1O ¼ 18 þ j12 ohms;

�ZZ1S ¼ 8 þ j18 ohms;

�ZZ2O ¼ 20 � j12 ohms:

CHAPTER 9 Impedance Transformation 195

Fig. 177

Fig. 178

Fig. 179



Find the values of the equivalent pi representation of the network, at the fre-
quency of interest.

9.3 Conversion of Pi to T and T to Pi
In practical work it’s sometimes helpful to convert a given ‘‘pi’’ network into an equivalent
‘‘T’’ network, or to convert a given T network into an equivalent pi network. This can be
done as follows, in which we’ll continue to use the standard notation of Figs. 174 and 175.

In section 9.2 we defined the quantities �ZZ1O, �ZZ1S, �ZZ2O, and �ZZ2S as being the values of
external measurements made at the input and output terminals of a network. It follows
that if two networks are to be equivalent, then the values of these external measurements
must be the same for both networks. Algebraically, this means that the right-hand side of
eq. (278) must be equal to the right-hand side of eq. (290), the right-hand side of eq. (279)
must be equal to the right-hand side of eq. (291), the right-hand side of eq. (280) must be
equal to the right-hand side of eq. (292), and likewise for eqs. (281) and (293); thus the
following system of equations must be satisfied:

�ZZ1 þ �ZZ3 ¼
�ZZAð �ZZB þ �ZZCÞ
�ZZA þ �ZZB þ �ZZC

ð297Þ

�ZZ1 þ
�ZZ2

�ZZ3

�ZZ2 þ �ZZ3

¼
�ZZA

�ZZB

�ZZA þ �ZZB

ð298Þ

�ZZ2 þ �ZZ3 ¼
ð �ZZA þ �ZZBÞ �ZZC

�ZZA þ �ZZB þ �ZZC

ð299Þ

�ZZ2 þ
�ZZ1

�ZZ3

�ZZ1 þ �ZZ3

¼
�ZZB

�ZZC

�ZZB þ �ZZC

ð300Þ

Equations (297) through (300) express the relationships that must always exist between
two equivalent T and pi networks. Making use of these relationships, we can derive
equations that will allow us to convert from one type of network to the other.

Suppose, for example, that �ZZA, �ZZB, and �ZZC are known, and we wish to find the equa-
tions for calculating the equivalent T network. After several false starts, we find that the
following procedure will work.

First, subtract eq. (298) from eq. (297) to get

�ZZ3 �
�ZZ2

�ZZ3

�ZZ2 þ �ZZ3

¼
�ZZAð �ZZB þ �ZZCÞ
�ZZA þ �ZZB þ �ZZC

�
�ZZA

�ZZB

�ZZA þ �ZZB

or, after putting the left side over its common denominator and the right side over its
common denominator, we have

�ZZ2
3

�ZZ2 þ �ZZ3

¼
�ZZ2

A
�ZZC

ð �ZZA þ �ZZB þ �ZZCÞð �ZZA þ �ZZBÞ
We’ve so far made use of eqs. (297) and (298); we can now make use of eq. (299), as

follows. Multiply both sides of the last equation by ‘‘ �ZZ2 þ �ZZ3,’’ then replace �ZZ2 þ �ZZ3 by
the right-hand side of eq. (299). Doing this, then solving for �ZZ3, you should find that

�ZZ3 ¼
�ZZA

�ZZC

�ZZA þ �ZZB þ �ZZC

ð301Þ
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which allows us to find the value of �ZZ3. Equation (301) is thus the first of the three
equations we require; equations for finding the values of �ZZ1 and �ZZ2 can now be found
as follows.

Substitute, into the left-hand side of eq. (297), the value of �ZZ3 just found in eq. (301);
doing this gives us the value of �ZZ1; thus

�ZZ1 ¼
�ZZA

�ZZB

�ZZA þ �ZZB þ �ZZC

ð302Þ

which is the second of the three equations we require. Next, substitute the value of �ZZ3,
from eq. (301), into the left-hand side of eq. (299) to get

�ZZ2 ¼
�ZZB

�ZZC

�ZZA þ �ZZB þ �ZZC

ð303Þ

which is the third and final equation that we require. Thus eqs. (301), (302), and (303) are
the three equations needed to convert a given pi network into an equivalent T network.
Again, it must be noted that, if the three equations are used to calculate definite values of
R, L, and C at a specific frequency, then the T network, thus found, is equivalent to the
given pi network only at that specific frequency (see discussion following eq. (284) in
section 9.2).

Now consider the opposite problem; that is, suppose we must convert a given T network
into its equivalent pi network. In such a case it can be shown that the required three
equations are as follows:

�ZZA ¼
�ZZ1

�ZZ2 þ �ZZ1
�ZZ3 þ �ZZ2

�ZZ3

�ZZ2

ð304Þ

�ZZB ¼
�ZZ1

�ZZ2 þ �ZZ1
�ZZ3 þ �ZZ2

�ZZ3

�ZZ3

ð305Þ

�ZZC ¼
�ZZ1

�ZZ2 þ �ZZ1
�ZZ3 þ �ZZ2

�ZZ3

�ZZ1

ð306Þ

Problem 159
Have a try at proving that eqs. (304), (305), and (306) are correct.

Problem 160
Given the pi network of Fig. 180, find the R, L, and C values for the equivalent T
network for operation at 500 kilohertz (‘‘�’’ denotes ‘‘ohms’’).

Problem 161
The T network of Fig. 181 is composed of pure reactances having the values as
shown for the frequency of operation. Find the values of the reactances required
for the equivalent pi network.
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9.4 Impedance Transformation by T and Pi
Networks

In section 9.1 we studied the use of the ‘‘L’’ network as an impedance-transforming device.
At the conclusion of that section we mentioned that it will often be necessary to use a T or
a pi network in place of the simpler L network. This is especially true in certain applica-
tions where the suppression of harmonic frequencies* is important, such as in the output
stage of a radio transmitter.

With this in mind, let us now look into the possibility of using a T or a pi network as an
impedance-changing device; this can be done with the aid of Fig. 182 for the T case.

In this section we’ll assume the actual load to be a pure resistance of R ohms, as shown
in the figure. We will also assume that we wish to see a pure resistance of Rin ohms looking
into the input terminals (1, 1) as shown in the figure. This requirement can be stated
mathematically for Fig. 182 by noting that, looking to the right into terminals (1, 1), we
see that �ZZ1 is in series with the combination of �ZZ3 in parallel with �ZZ2 þ R; thus, looking
into terminals (1, 1) we have that

Rin ¼ �ZZ1 þ
ð �ZZ2 þ RÞ �ZZ3

�ZZ2 þ �ZZ3 þ R
ð307Þ

Or, upon multiplying both sides of the above equation by ( �ZZ2 þ �ZZ3 þ R), you should
verify that

RRin þ Rinð �ZZ2 þ �ZZ3Þ ¼ �ZZ1
�ZZ2 þ �ZZ1

�ZZ3 þ �ZZ2
�ZZ3 þ Rð �ZZ1 þ �ZZ3Þ ð308Þ
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Since we desire that no energy be lost in the T network itself, it follows that the three
elements of the network will have to be composed of pure reactances only. As a first
possibility, suppose we made all three elements of the T network inductive reactances
(coils), as in the figure below.

In such a case it’s apparent that we could never see a pure resistance looking into (1, 1)
because there is no capacitance present to cancel out the inductive reactance.

In the same way, if all three elements were capacitors we could not possibly see a pure
resistance looking into terminals (1, 1). Thus, for the particular conditions of this section,
the T network will have to contain both inductive reactance and capacitive reactance—
only then can there be a total cancellation of reactances, making it possible to see a pure
resistance, Rin, when looking into terminals (1, 1). Thus we must have either two inductors
and one capacitor, or two capacitors and one inductor, as shown in Figs. 183 and 184.

In Fig. 183 note that Z1 ¼ jX1, Z2 ¼ jX2, Z3 ¼ �jX3, while, in Fig. 184, Z1 ¼ �jX1,
Z2 ¼ �jX2, Z3 ¼ jX3. Putting these values into eq. (108) we have, for Fig. 183:

RRin þ jRinðX2 � X3Þ ¼ ð�X1X2 þ X1X3 þ X2X3Þ þ jRðX1 � X3Þ

for Fig. 184:

RRin þ jRinð�X2 þ X3Þ ¼ ð�X1X2 þ X1X3 þ X2X3Þ þ jRð�X1 þ X3Þ

Recall that two complex numbers can be equal only if the two real parts are equal and
the two imaginary parts are equal; hence, inspection of the last two equations shows that
for both Figs. 183 and 184:

RRin ¼ ð�X1X2 þ X1X3 þ X2X3Þ ð309Þ
for Fig. 183:

RinðX2 � X3Þ ¼ RðX1 � X3Þ ð310Þ
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for Fig. 184:

Rinð�X2 þ X3Þ ¼ Rð�X1 þ X3Þ ð311Þ
In a practical problem the value of the actual load resistance R (Fig. 182) and the

desired value of Rin would be known. This would leave us with three unknown reactances
and, for either of the above two figures, just two simultaneous equations. In such a case we
could select any reasonable value for one of the three reactances, say X3, and then use the
two equations to calculate the required values of the other two reactances.

Actually, however, in most practical work a ‘‘balanced T’’ (or ‘‘balanced pi’’ if we’re
using a pi network) network would be used. A ‘‘balanced’’ network is one in which the
magnitudes of the three reactances are all equal in value; thus, setting X1 ¼ X2 ¼ X3 ¼ X
in eq. (309), we find that, for a balanced T network, the common magnitude of reactance,
for either Fig. 183 or Fig. 184, is equal to

X ¼
ffiffiffiffiffiffiffiffiffiffi
RRin

p
ð312Þ

In addition to the balanced T network, the ‘‘balanced pi’’ network, shown in Fig. 185,
finds wide use as the output stage of a radio transmitter.

In terms of standard pi-network notation (Fig. 175 in section 9.2) we have, for the
balanced pi network of Fig. 185,

�ZZA ¼ �jX ; �ZZB ¼ jX ; �ZZC ¼ �jX

We can, if we wish, convert the above pi network into an equivalent T network, thus

by eq: ð302Þ; �ZZ1 ¼
ð�jXÞðjXÞ

�jX
¼ jX

by eq: ð303Þ; �ZZ2 ¼
ð jXÞð�jXÞ

�jX
¼ jX

by eq: ð301Þ; �ZZ3 ¼
ð�jXÞð�jXÞ

�jX
¼ �jX

We can now make use of the equations for the T network, and thus, setting
X1 ¼ X2 ¼ X3 ¼ X in eq. (309), we have, for the balanced pi network of Fig. 185, that

X ¼
ffiffiffiffiffiffiffiffiffiffi
RRin

p
ð313Þ

as for the balanced T network (eq. (312)).

Problem 162
A generator, having an internal resistance of 36 ohms, generates, on open circuit, 90
volts rms at a frequency of 175 kHz (kilohertz). It is necessary that the generator

CHAPTER 9 Impedance Transformation200

Fig. 185



deliver maximum power to a load resistance of 115 ohms.* It is desired to use, as an
impedance-matching device, a balanced T network of the type shown in Fig. 183.
Find the following:

(a) values of L and C required,
(b) generator current,
(c) voltage at input terminals of the T network,
(d) load current and load voltage.

Problem 163
T and pi networks are widely used in the output stages of radio transmitters, one
purpose being to transform a given load resistance into a more suitable value of
resistance, the other purpose being to reduce the transmission of undesired harmonic
energy. The following will illustrate this feature.

A generator, having 36 ohms of internal resistance, generates 100 volts rms at a
frequency of 300,000 radians per second, and 20 volts at the third harmonic fre-
quency of 900,000 rad/sec.

It is desired to deliver maximum possible power to a 100-ohm load at the funda-
mental frequency of 300,000 rad/sec and, in addition, to reduce the percentage of the
undesired third harmonic voltage appearing across the 100-ohm load. To do this, it
is proposed to use a balanced pi network of the form of Fig. 185. Assuming the
‘‘principle of superposition’’ applies, find

(a) values of L and C required, (Answer: 200 mH, 0.0555 mF)
(b) magnitude of the desired fundamental-frequency voltage across the 100-ohm

load, (Answer: 83.34 volts)
(c) magnitude of the undesired third-harmonic voltage across the 100-ohm load.

(Answer: 1.305 volts)

9.5 Frequency Response. The Basic RC and RL
Filter Circuits

In this section we introduce the important concept of the ‘‘sinusoidal steady-state
FREQUENCY RESPONSE’’ of linear{ electrical networks.

To find the steady-state ‘‘frequency response’’ of a given system, we feed into the system
a sine wave of constant amplitude (constant peak value, and thus constant rms value), but
whose frequency can be adjusted to any value we desire. Since the system is linear, the
output wave will be a pure sinusoid of the same frequency as the input wave, but will have,
in general, a different amplitude and phase from the input signal. This is illustrated in
Fig. 186.
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* It is a fact that if the internal resistance Rg of a generator is FIXED in value, but the load resistance RL is

ADJUSTABLE in value, then MAXIMUM POWER will be produced in the load resistance when the load

resistance is made EQUAL to the fixed internal resistance of the generator, that is, when, RL ¼ Rg.

It should be noted, however, that, for this condition (RL ¼ Rg) half the total power produced is dissipated

internally in the generator. Hence this condition is generally used only in low-power applications, where the heat

produced in the generator can be carried away fast enough to prevent the generator from being destroyed by

overheating.

{ Note that ‘‘frequency’’ is not connected with the property of ‘‘linearity’’ (see first footnote in section 8.6).



In Fig. 186,

A ¼ peak value (amplitude) of the input sine wave. The value of A is held constant,
while we are free to vary the frequency in any way we wish.

B ¼ amplitude of output signal. Generally speaking, the value of B will vary with
frequency, depending upon the network or system inside the box.

� ¼ the phase angle or ‘‘phase shift’’ of the output sinusoid relative to the input sine
wave. The angle � is basically in radians (!t ¼ radians) and can be either positive
or negative, depending on the nature of the network inside the box.

The sinusoidal waveforms associated with Fig. 186 are illustrated in Figs. 187 and 188.

Note 1: The output wave in Fig. 188 happens to be shown as ‘‘lagging’’ the input wave by
� radians; hence, in this case, the equation shown on the output side of Fig. 186 would be
written as vo ¼ B sinð!t� �Þ.
Note 2: The ratio B=A is the VOLTAGE GAIN of the system (or voltage loss, if B < A).

It should be noted, however, that it’s often more important to specify the POWER
GAIN of a system instead of the voltage gain. The power gain, P, of a system is defined as
the ratio of the output power to the input power (output watts to input watts); thus

P ¼ Pout

Pin

ð314Þ

Actually, however, it’s generally more meaningful to deal with the logarithm of P
instead of directly with P (this is because of certain characteristics of human response
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Fig. 187. INPUT sine wave in Fig. 186. Fig. 188. OUTPUT sine wave in Fig. 186.



to changes in power levels). The unit most often used to measure power ratios is called the
decibel (abbreviated ‘‘dB’’), and is defined by the equation

dB ¼ 10 logP ð315Þ

where ‘‘logP’’ is the logarithm of P to the base 10.*

Problem 164
(a) If the input power to an amplifier system is 8 watts and the output power is 16

watts, find the power gain in decibels.
(b) If the input power to a network is 1.65 watts and the output power is 0.26 watt,

express the loss in decibels.
(c) If the input power to a system is 0.75 watt, and the system is known to have a

power gain of 18 decibels, find the output power.

To continue, let’s next consider the condition of FREQUENCY DISTORTION or
‘‘frequency discrimination.’’

To begin, frequency distortion (or ‘‘discrimination’’) is produced by the unequal treat-
ment of the different frequency components (harmonics) in a given signal. Frequency dis-
tortion is thus produced by the presence of L or C, or both, in a circuit; this is because XL

and XC are both functions of frequency (!L and 1=!C).
Thus, suppose a certain non-sinusoidal signal wave is applied to the input terminals of

a network containing inductance L. Since the value of XL is different for each harmonic
component, it follows that the relative values of the different harmonic frequencies appear-
ing at the output side of the network will be different from their relative values at the input
side of the network, and thus the output signal will not have exactly the same waveshape
as the input signal. Thus the output wave will be distorted to some extent, relative to the
given input signal wave.

It should be noted that ‘‘frequency discrimination’’ is sometimes an undesirable con-
dition and sometimes a necessary condition. Thus, while such discrimination is undesirable
in, say, an audio amplifier system, it is a necessary condition in the operation of frequency
‘‘filter’’ networks.

To complete the above discussion, it should be noted that there are really two factors to
be considered when evaluating the effect of frequency distortion. The first concerns the
amount of AMPLITUDE distortion produced, and the second concerns what is called
TIME-DELAY or PHASE distortion.

Thus, the various harmonic frequencies at the input side of a system have certain
amplitudes and time relationships with one another, and if either the relative amplitudes
or the relative time relationships change, the resultant waveshape at the output side of the
system will not be exactly the same as the input waveshape.{

The presence of frequency distortion can be found experimentally by applying a con-
stant-amplitude sine wave to the input side of a system and measuring the resulting ampli-
tude and phase angle at the output side as the frequency of the input sine wave is slowly
varied over any desired frequency range (keeping the amplitude of the input sine wave
constant). The output amplitudes and phase angles, thus found, are then plotted on graph
paper. Actually, in most practical work, only the variations in output amplitudes are
recorded and plotted, since if a system has acceptable amplitude response it will generally
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* See note 19 in Appendix.

{ See note 20 in Appendix.



also have acceptable phase response. A typical frequency response curve, showing decibel
gain versus frequency, drawn on semi-log paper,* is shown in Fig. 189.

With the foregoing in mind, let’s now apply the algebra of sinusoidal steady-state
circuit analysis to some basic circuits, as follows.

CASE I: BASIC LOW-PASS RC NETWORK
This is a series RC circuit in which the output voltage appears across the capacitor, as
shown in Fig. 190.

In the figure, since R and C remain constant in value, and since the reactance of C
decreases with increasing frequency, it follows that as the FREQUENCY INCREASES
the OUTPUT VOLTAGE ACROSS C DECREASES; in other words, the higher the
frequency, the lower is the output voltage (we are, of course, assuming the amplitude of
�VVi remains constant as the frequency increases). Thus the circuit of Fig. 190 discriminates
against the higher frequencies, and is therefore called a ‘‘low-pass’’ type of network.

In Fig. 190 let the input voltage be the reference vector; thus �VVi ¼ Vi=08 ¼ Vi. Then, in
the figure, let us denote the ratio of �VVo to Vi by ‘‘ �GG’’ ( �GG ¼ �VVo=Vi), which we’ll call the
‘‘gain’’ of the circuit.

We now wish to find the manner in which �GG varies in magnitude and phase as the
frequency of Vi changes (the amplitude of Vi always remaining constant). To do this we
first note that, by Ohm’s law, in Fig. 190,

�II ¼ Vi

R� jXC
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* See note 21 in Appendix.
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thus, again by Ohm’s law,

�VVo ¼ �IIð�jXCÞ ¼
Við�jXCÞ
R� jXC

Now, dividing both sides by Vi and noting that �jXC ¼ �j

!C
¼ 1

j!C
, you should find

that

�GG ¼ 1

1 þ j!RC
ð316Þ

where �GG is the SINUSOIDAL STEADY-STATE VOLTAGE GAIN of the basic RC low-
pass filter of Fig. 190, where ! is any frequency in radians per second (! ¼ 2�f ).

In eq. (316), let us regard the product RC as having a constant value in any given case,
with the variable being the frequency !. We now wish to develop certain important
relationships that exist between �GG and !. This can be done in an interesting way algeb-
raically, as follows.

Let us begin by creating, by definition, the equation

RC ¼ 1=!1 ð317Þ
where, since RC is constant, the frequency !1 is also constant. It is permissible to write
such an equation, because the unit of measurement for both RC and 1=! is ‘‘seconds’’ (eq.
(91) in Chap. 5, and note 14 in the Appendix). Thus, replacing RC with the right-hand side
of eq. (317), eq. (316) becomes

�GG ¼ 1

1 þ jð!=!1Þ
ð318Þ

The advantage of eq. (318) over (316) is that we no longer have to work with actual
absolute values of ! (such as ! ¼ 508 rad/sec or ! ¼ 10,750 rad/sec, and so on), but only
with the simple ratio of ! to !1; the frequency is now said to be ‘‘normalized’’ with respect
to the reference frequency !1.

Eq. (318) contains all the information, concerning both the amplitude and phase
response, of the network of Fig. 190. Let us first investigate the amplitude response, as
follows.

The AMPLITUDE response is determined by the MAGNITUDE of eq. (318); thus the
amplitude response of Fig. 190 is equal to

j �GGj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ ð!=!1Þ2

q ¼ ½1 þ ð!=!1Þ2��1=2 ð319Þ

Now, as noted in note 19 in the Appendix, because �GG is a voltage ratio, the decibel
relationship would be written

dB ¼ 20 log j �GGj ð320Þ
and thus, using the value of j �GGj from eq. (319) and remembering that logAn ¼ n logA, eq.
(320) gives the value

dB ¼ �10 log½1 þ ð!=!1Þ2� ð321Þ
The minus sign appears because the ‘‘voltage gain’’ in Fig. 190 is less than 1 for all

values of ! greater than zero, and the logarithm of a number less than 1 is negative.
The procedure now is to plot eq. (321) on semilog paper, putting decibel gain on the

linear vertical axis and the frequency ratio !=!1 on the logarithmic horizontal axis.
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To draw the curve, we first calculate a ‘‘table of values’’ of decibel gain for various
values of the independent variable !=!1. Thus, the following table was obtained by using
eq. (321) to calculate dB gain for each of the following given values of !=!1.

Plotting decibel gain versus frequency ratio, we get the curve shown in Fig. 191.

Remember that negative decibel gain means signal attenuation; that is, the output
voltage is less than the input voltage. Figure 191 shows that Fig. 190 is a low-pass net-
work, because the higher the frequency !, the greater is the attenuation of the output
signal relative to the constant amplitude input signal.

This is an appropriate time to introduce another term, called the HALF-POWER
frequency, that is widely used in the evaluation of the frequency response of networks
and systems. The definition is as follows.

A ‘‘half-power’’ frequency is a frequency at which the OUTPUT POWER of a network
is reduced to ONE HALF its maximum value under the condition of constant amplitude
of input signal. Thus, setting P ¼ 1=2 ¼ 0:5 in eq. (315), we have that

dB ¼ 10 log 0:5 ¼ �3 decibels; very nearly

showing that a half-power frequency is a frequency at which the power gain of a network is
down 3 decibels from its maximum or reference power. Note that, for the PARTICULAR
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!=!1 dB gain !=!1 dB gain !=!1 dB gain

0.2 �0.17 2.0 �6.99 10 �20.04

0.4 �0.65 4.0 �12.31 20 �26.03

0.6 �1.34 6.0 �15.68 30 �29.55

0.8 �2.15 8.0 �18.13 40 �32.04

1.0 �3.01 50 �33.98

Fig. 191



CASE of the low-pass RC circuit of Fig. 190, upon setting !=!1 ¼ 1 in eq. (321), we
have that

dB ¼ �10 log 2 ¼ �3 decibels

hence the half-power frequency for Fig. 190 is at !=!1 ¼ 1, that is, for ! ¼ !1 ¼ 1=RC
(making use of eq. (317)).

Problem 165
Suppose, in Fig. 190, that C ¼ 0:05 mF. Find the required value of R if the half-
power frequency is to be 7.2 kHz.

Problem 166
In problem 165, at what frequency, in kHz, will the power gain be �6 decibels?

So far we’ve concentrated our attention on the amplitude response of Fig. 190 (given by
eq. (319)). Let us now complete our work with an examination of the PHASE response of
the network. To do this, we can begin with the basic relationship

�VVo ¼ �GGVi ð322Þ
where Vi is the reference input rms voltage. Thus, by eq. (318),

�VVo ¼ Vi

1 þ jð!=!1Þ
¼ Vi

1 þ jh
ð323Þ

where, for convenience, we’ve temporarily set (!=!1Þ ¼ h. Now let’s ‘‘rationalize’’ the last
fraction; that is, let us multiply the numerator and denominator by the ‘‘conjugate’’ of the
denominator, (1 � jh),* so that eq. (323) becomes

�VVo ¼ 1

1 þ h2
þ j

�h

1 þ h2

� 	
Vi ¼ ðAþ jBÞVi ð324Þ

where

A ¼ 1=ð1 þ h2Þ
and

B ¼ �h=ð1 þ h2Þ
Equation (324) shows that componentA is IN PHASE with the reference vectorVi, while

componentBLEADSVi by 90 degrees, the vector sum ofA andB being IN PHASE with the
output voltage vector �VVo, as shown in Fig. 192, in which � (phi or ‘‘fee’’) is the PHASE
ANGLE (phase shift) between the output voltage �VVo and the input reference vector Vi.
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* Doing this will show, separately, the real and imaginary components of �VVo.

Fig. 192. Here, tan/ ¼ opp=adj ¼ B=A;
thus, / ¼ arctan (B/A).

Fig. 193. Here, tan/ ¼ opp=adj ¼ �h; thus,
/ ¼ arctan (�h); that is,
/ ¼ arctan (�x=x1).



If, now, in Fig. 192 we replace A and B with their values defined in connection with eq.
(324) then Fig. 192 becomes Fig. 193, which shows that the output voltage vector �VVo

LAGS the input reference voltage by the angular amount of

� ¼ arctanð�!=!1Þ ¼ �arctanð!=!1Þ ð325Þ
Your calculator, applied to the above equation, should produce the following table of

values.

Inspection of the table brings out the following facts concerning the PHASE-SHIFT
characteristics of the basic low-pass network of Fig. 190.

1. The phase angle � is negative, meaning that the output voltage LAGS the input
voltage. For this reason, Fig. 190 is called a ‘‘lag’’ network in control system
terminology.

2. It has been shown that, if a network is to produce no phase distortion, � must be
proportional to !; that is, the ratio of � to ! must be constant, �=! ¼ k (note 20 in
the Appendix). The above table of values shows that this requirement is very nearly
satisfied, in the case of Fig. 190, for low frequencies. To see that this is true, let us set
!1 ¼ 1 and, using the above table of values, construct the following table, where �
is in degrees and the ratio �=! is rounded off to the nearest whole number.

The table plainly shows that, for practical purposes, the ratio �=! is constant for all low
frequencies, up to ! ¼ 0:04; that is, since we’re using !1 ¼ 1 here, up to the value of
!=!1 ¼ 0:04. Actually, for most practical purposes, we can say that �=! is constant up
to the value !=!1 ¼ 1; that is, to ! ¼ !1, where !1 is the half-power frequency. Thus our
CONCLUSIONS regarding Fig. 190 can be summarized as follows.

Figure 190 is a low-pass network having, for practical purposes, no amplitude or phase
discrimination for frequencies LESS than the half-power frequency, but increasing amounts
of such discrimination as the frequency increases beyond the half-power frequency.
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!=!1 �8 !=!1 �8 !=!1 �8

0.01 �0.6 0.2 �11.3 4 �76.0

0.02 �1.2 0.4 �21.8 6 �80.5

0.04 �2.3 0.6 �31.0 8 �82.9

0.06 �3.4 0.8 �38.7 10 �84.3

0.08 �4.6 1.0 �45.0 50 �88.9

0.10 �5.7 2.0 �63.4 100 �89.4

� ! �=! � ! �=!

�0.6 0.01 �60 �31.0 0.60 �52

�1.2 0.02 �60 �38.7 0.80 �48

�2.3 0.04 �58 �45.0 1.00 �45

�3.4 0.06 �57 �63.4 2.00 �32

�4.6 0.08 �58 �76.0 4.00 �19

�5.7 0.10 �57 �80.5 6.00 �13

�11.3 0.20 �57 �84.3 10.00 �8

�21.8 0.40 �55 �88.9 50.00 �2



Problem 167
In Fig. 190, given that R ¼ 10,000 ohms and C ¼ 0:25 mF, if �VVi ¼ Vi ¼ 10 volts rms,
find the amplitude and phase of the output voltage �VVo if (a) the frequency is 30 Hz,
(b) the frequency is increased to 300 Hz.

Problem 168
In the above problem (same values of R and C), suppose an ideal square wave of
voltage, having a steady frequency of 30 square waves per second, is applied to the
input. Explain why the output voltage waveform will not also be an ideal square
wave.

CASE II: BASIC HIGH-PASS RC NETWORK
This is a series RC circuit in which the output voltage appears across the resistor R, as
shown in Fig. 194.

In the figure, it is given that the AMPLITUDE of the reference input signal,
�VVi ¼ Vi=08 ¼ Vi, is to remain constant, while the FREQUENCY is allowed to increase
from a very low value to progressively higher values. From the figure, note that as the
frequency of Vi increases the reactance of C decreases, and thus as the FREQUENCY
INCREASES the OUTPUT VOLTAGE ACROSS R INCREASES; in other words, the
higher the frequency, the higher is the output voltage. Thus the circuit of Fig. 194 dis-
criminates against the lower frequencies and is therefore a ‘‘high-pass’’ type of network.
The algebra for Fig. 194 parallels that for Fig. 190, as follows.

First, by Ohm’s law,

�VVo ¼ R�II ¼ RVi

R� jXC

Now set �jXC ¼ 1=j!C; doing this, then multiplying the numerator and denominator
by j!C, we have

�VVo

Vi

¼ �GG ¼ j!RC

1 þ j!RC
ð326Þ

which corresponds to eq. (316). Now, again setting RC ¼ 1=!1, as in eq. (317), the last
equation becomes

�GG ¼ jð!=!1Þ
1 þ jð!=!1Þ

¼ jh

1 þ jh
ð327Þ

where h ¼ ð!=!1Þ.

CHAPTER 9 Impedance Transformation 209

Fig. 194



Equation (327) contains all the information concerning both the amplitude and phase
response of the network of Fig. 194. We’ll first investigate the amplitude response, as
follows.

The AMPLITUDE response is determined by the MAGNITUDE of eq. (327); thus,
recalling that if A and B are complex numbers, jA=Bj ¼ jAj=jBj, we have that

j �GGj ¼ hffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ h2

p ¼ hð1 þ h2Þ�1=2 ð328Þ

which corresponds to eq. (319). Now, to express the amplitude response in decibels, let us,
in the manner of eq. (320), write that

dB ¼ 20 log½hð1 þ h2Þ�1=2�
Now make use of the fact that logXY ¼ logX þ logY ,* and that log Xn ¼ n logX .{

Doing this, the last equation becomes

dB ¼ 20 logð!=!1Þ � 10 log½1 þ ð!=!1Þ2� ð329Þ
which expresses the ratio of �VVo=Vi in Fig. 194 in terms of decibels. Using your calculator,
you can quickly verify that the following table of values is correct for eq. (329).

A plot of the above data gives Fig. 195, the curve of dB gain versus frequency ratio.
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* See note 22 in Appendix.

{ See eq. (9-A) in note 19 in Appendix.

!=!1 dB gain !=!1 dB gain !=!1 dB gain

0.02 �34.0 0.2 �14.2 2.0 �0.97

0.04 �28.0 0.4 �8.6 4.0 �0.26

0.06 �24.5 0.6 �5.8 6.0 �0.12

0.08 �22.0 0.8 �4.1 8.0 �0.07

0.10 �20.0 1.0 �3.0 10.0 �0.04

Fig. 195



Figure 195 verifies that the circuit of Fig. 194 is a high-pass network because the higher
the frequency, the less is the attenuation of the input signal as it appears at the output
terminals.

In the discussion following Fig. 191 the term ‘‘half-power frequency’’ was introduced as
being the frequency at which the power gain of a network is down 3 decibels from its
maximum or reference value. Note, now, that setting ! ¼ !1 in eq. (329) gives the value

dB ¼ 20 log 1 � 10 log 2 ¼ �3 decibels

showing that the value of ! at the half-power frequency in Fig. 194 is ! ¼ !1 ¼ 1=RC (by
eq. (317)).

Problem 169
Suppose, in Fig. 194, that R ¼ 1200 ohms. Find the required value of C if the half-
power frequency is to be 2.2 kHz.

Problem 170
(a) In problem 169, at what frequency, in hertz, will the power gain be �6 decibels?

(Answer: 1274 Hz)
(b) At what frequency will the power gain be �2 decibels? (Answer: 2877 Hz)

Next, to investigate the PHASE RESPONSE of Fig. 194 we’ll basically repeat the
procedure for Fig. 190, as follows. First, by eq. (322), �VVo ¼ �GGVi, which, after rationalizing
the value of �GG given by eq. (327), becomes

�VVo ¼ h2

1 þ h2
þ j

h

1 þ h2

" #
Vi ¼ ðAþ jBÞVi ð330Þ

showing that �VVo is the vector sum of the voltage drops AVi and jBVi, as shown in Fig. 196.

For convenience in the above, let d ¼ ð1 þ h2). Then, by inspection, we have

tan� ¼ B=A ¼ ðh=dÞ=ðh2=dÞ ¼ 1=h

hence,

� ¼ arctanð1=hÞ
or, since h ¼ !=!1 and !1 ¼ 1=RC,

� ¼ arctanð!1=!Þ ¼ arctanð1=!RCÞ ð331Þ
or, since !1 ¼ 1=RC is constant (in any given case), let us, for convenience here, set
!1 ¼ 1. Then eq. (331) becomes

� ¼ arctanð1=!Þ ð332Þ
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We have said, correctly, that if a network produces phase shift, then, in order that there
be zero phase-shift distortion, the phase shift must be proportional to frequency !. Inves-
tigation of eq. (332) shows, however, that phase shift is not proportional to frequency,
neither at low frequencies nor at high frequencies. Offhand, this would seem to mean that
the high-pass filter of Fig. 194 would produce an unacceptable amount of phase distortion,
even at the desired higher frequencies.

The point to notice, however, is that for high frequencies the phase shift approaches zero
degrees, and thus the time delay approaches zero as we go to the higher frequencies (eq.
(13-A), note 20, Appendix). Thus the criterion for zero phase-shift distortion is that either
the network should produce a negligibly small amount of phase shift or, if a sizeable
amount of phase shift is produced, then such phase shift must be proportional to fre-
quency.

CASES III AND IV: BASIC LOW-PASS AND HIGH-PASS
RL FILTERS
The two basic filters are shown in Figs. 197 and 198.

In the figures, R is resistance in ohms and L is inductance in henrys, so that XL ¼ !L is
the inductive reactance in ohms. We’ll take �VVi to be the input voltage reference vector and
write that �VVi ¼ Vi=08 ¼ Vi. The amplitude of �VVi is to remain fixed in value while we allow
its frequency ! to increase slowly from a very low value to a very high value. The vector
output voltage is denoted by �VVo, as shown. As previously, we’ll let �GG denote the ratio of
output to input voltage, �GG ¼ �VVo=Vi.

The operation of both circuits depends upon the fact that the value of the reactance !L,
increases as the frequency increases, and thus (since Vi is constant) the voltage drop across
R decreases as the frequency increases. Thus, in Fig. 197 the higher the frequency the lower
the value of �VVo, while in Fig. 198 the higher the frequency the greater the value of �VVo.

Note that, in both cases, we have, by Ohm’s law, that

�II ¼ Vi

Rþ j!L
ð333Þ

and upon making use of this fact we find, for the LOW-PASS case of Fig. 197, that

j �GGj ¼ Rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð!LÞ2

q ð334Þ

and

� ¼ �arctanð!L=RÞ ð335Þ
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and for the HIGH-PASS case of Fig. 198, that

j �GGj ¼ !Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð!LÞ2

q ð336Þ

and

� ¼ arctanðR=!LÞ ð337Þ

Problem 171
Prove that eqs. (334) and (335) are correct.

Problem 172
Prove that eqs. (336) and (337) are correct.

Problem 173
Show that the ‘‘half-power’’ frequency in Fig. 197 is R=L radians/second.

9.6 The Symmetrical T Network.
Characteristic Impedance

The RC and RL filters of section 9.5 have the advantage of simplicity, but they have
the two disadvantages of having high loss of signal power and poor frequency response
characteristics. This is illustrated in Fig. 199, which shows the general form of the curve of
the relative magnitude of �GG versus frequency for the basic RC and RL networks of Figs.
190 and 197 in section 9.5. As already defined, j �GGj ¼ j �VVo=Vij, and !0 is the half-power
frequency, that is, the frequency at which the voltage ratio j �GGj is reduced to 70.7% of its
maximum value* (here the maximum value of j �GGj is at ! ¼ 0).
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Fig. 199

* From section 9.5, a ‘‘half-power’’ frequency is a frequency at which the output power of a network is reduced to

one-half its maximum value, being equivalent to �3 decibels. Or, in terms of VOLTAGE RATIO, by eq. (320),

dB ¼ 20 log 0:707 ¼ �3 decibels.



Inspection of the figure shows that j �VVoj ¼ Vi for ! ¼ 0; that is, j �VVo=Vij ¼ 1 for ! ¼ 0.
Then, as ! is increased in value (Vi always remaining constant), the output j �VVoj decreases
in value until the ‘‘end of the passband’’ is reached, which is generally taken to be the
frequency at which j �VVo=Vij ¼ 0:707; this is the frequency at which the output is ‘‘down 3
decibels’’ from its maximum value.

Next, as ! is further increased in value, we enter the ‘‘transition band,’’ as shown in the
figure. The high-frequency end of the transition band can be taken as the frequency at
which j �VVo=Vij ¼ 0:1, as shown above, which is the frequency at which the output is ‘‘down
20 decibels’’ from its maximum value. Beyond the transition band we enter the ‘‘stop-
band,’’ as shown. We assume that, for practical purposes, the output of the filter can be
considered to be negligibly small for all frequencies in the stopband.

We must remember that a ‘‘low-pass’’ filter is used in applications where it is desired to
pass all signal components below a specified frequency and reject all components above
that frequency. It therefore follows that the width of the transition band is especially
critical, and should be as narrow as possible so as to prevent, as much as possible, the
passage of unwanted higher frequency components through the filter.

As you would expect, it’s possible to design low-pass filters having frequency response
curves GREATLY SUPERIOR to those of the simple RC and RL filters illustrated in Fig.
199. To do this requires the use of both inductance and capacitance (L and C), arranged in
various ways, making use of the phenomenon of series and parallel resonance. One such
arrangement is known as the ‘‘constant-k’’ type of filter, and is the subject of the next two
sections. Before getting into these sections, however, we must first take up the ‘‘symme-
trical T’’ network, as follows.

Let us begin by referring back to the standard ‘‘T’’ network notation of Fig. 174 in
section 9.2. Let us then define that a ‘‘symmetrical’’ T network is a T network in which
Z1 ¼ Z2. Thus, Fig. 174 could be redrawn to represent a symmetrical T as shown in
Fig. 200.

Actually, however, the notation of Fig. 200 is not used in the SPECIAL CASE of the
symmetrical T network; instead, it has become the custom to denote each of the series
elements by �ZZ1=2 and the shunt element by �ZZ2, as shown in Fig. 201. This will cause no
difficulties so long as we remember that the special notation in Fig. 201 is to be used
ONLY for the case of the symmetrical T network.

In Fig. 201, terminals (1, 1) are given to be the INPUT terminals and (2, 2) the OUT-
PUT terminals. Now suppose a load impedance �ZZL is connected to the output terminals in
Fig. 201; doing this will cause a certain value of INPUT IMPEDANCE, �ZZin, to appear at
the input terminals as shown in Fig. 202.

Note that, looking into terminals (1, 1) in Fig. 202, we see a series-parallel circuit
consisting of �ZZ1=2 in series with the parallel combination of �ZZ2 and ( �ZZ1=2 þ �ZZL). Thus
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the input impedance seen looking into terminals (1, 1) in Fig. 202 is

�ZZin ¼
�ZZ1

2
þ

�ZZ2

�ZZ1

2
þ �ZZL

� �
�ZZ2 þ

�ZZ1

2
þ �ZZL

ð338Þ

Now suppose that �ZZ1 and �ZZ2 are chosen to have the particular values that will make the
INPUT IMPEDANCE EQUAL TO THE LOAD IMPEDANCE. To find the required
values of �ZZ1 and �ZZ2 needed to accomplish this, all we need do is replace �ZZin with �ZZL in eq.
(338) and then solve for �ZZL. In doing this, however, it has become customary to replace
both �ZZin and �ZZL with the single symbol ‘‘ �ZZ0’’ ; thus, setting �ZZin ¼ �ZZL ¼ �ZZ0 in eq. (338) we
have that

�ZZ0 ¼
�ZZ1

2
þ

�ZZ2

�ZZ1

2
þ �ZZ0

� �
�ZZ2 þ

�ZZ1

2
þ �ZZ0

ð339Þ

Thus, for the SPECIAL CONDITION represented by eq. (339), �ZZin ¼ �ZZL ¼ �ZZ0, Fig.
202 becomes Fig. 203.

Having the above condition (input impedance equal to load impedance) has important
advantages that we’ll point out later on. To be able to produce this condition, however, we
must find the relationship that must exist between �ZZ0 and the two impedances �ZZ1 and �ZZ2,
which can be done by solving eq. (339) for �ZZ0, as follows.

First, multiplying both sides of eq. (339) by the denominator of the right-hand fraction
puts the equation in the form

Z0 Z2 þ
Z1

2
þ Z0

� �
¼ Z1

2
Z2 þ

Z1

2
þ Z0

� �
þ Z2

Z1

2
þ Z0

� �
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Now multiplying as indicated, then collecting like terms, you should find that

�ZZ2
0 ¼ �ZZ1

�ZZ2 þ
�ZZ2

1

4

thus we have

�ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ1

�ZZ2 þ �ZZ2
1=4

q
ð340Þ

The impedance �ZZ0 given by eq. (340) is called the ‘‘characteristic impedance’’ of a
symmetrical T network. Or, if such a network already exists, the value of �ZZ0 can be
found experimentally by making ‘‘open circuit’’ and ‘‘short circuit’’ measurements, as
indicated in Figs. 204 and 205.

In Fig. 204, �ZZp ¼ impedance looking into (1, 1) with (2, 2) OPEN-CIRCUITED,
whereas in Fig. 205, �ZZs ¼ impedance looking into (1, 1) with (2, 2) SHORT-CIRCUITED.

By inspection, note that

�ZZp ¼ �ZZ1=2 þ �ZZ2

and

�ZZs ¼
�ZZ1

2
þ

�ZZ1
�ZZ2=2

�ZZ1=2 þ �ZZ2

¼ Z1

2
þ

�ZZ1
�ZZ2

�ZZ1 þ 2 �ZZ2

Now, using these values of �ZZp and �ZZs, a careful multiplication will show that

�ZZp
�ZZs ¼

�ZZ2
1

4
þ �ZZ1

�ZZ2

hence, upon making use of the relationship given just prior to eq. (340), we have that

�ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
�ZZp

�ZZs

q
ð341Þ

Equation (341) is important because it provides a way to find, by actual laboratory
measurement, the characteristic impedance of a network known to be of the symmetrical T
form.

In using eqs. (340) and (341) we must remember that the addition and subtraction of
complex numbers can be performed only in the rectangular form. On the other hand, to
raise a complex number to a fractional power the number must be expressed in the ‘‘tri-
gonometric,’’ ‘‘polar,’’ or ‘‘exponential’’ form (sections 6.6 and 6.7).

Problem 174
Find the characteristic impedance of a low-pass symmetrical T network in which

�ZZ1 ¼ 2 þ j5 and �ZZ2 ¼ 4 � j3: ðAnswer: ð4:68 þ j2:03Þ ohms; approx:Þ
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Problem 175
If the open-circuit and short-circuit measurements on a certain symmetrical T net-
work give magnitudes of 15 and 25 ohms and angular displacements of 35 and �75
degrees, find the characteristic impedance of the network.

In the foregoing discussion we should remember that the value of an impedance �ZZ
(assuming given values of R, L, and C) depends upon the value of the frequency !. Thus
the value of �ZZ0 given by eq. (340) depends upon the value of !, and is different for each
value of !.

The difference between Figs. 202 and 203 is that Fig. 203 is for the particular case for
which

�ZZL ¼ �ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ1

�ZZ2 þ �ZZ2
1=4

q
which can be exactly true, in general, for only one frequency, because �ZZL and �ZZ0 will be
represented by different mathematical equations. This effect will be considered later on in
our treatment of the constant-k filter.

Problem 176
In Fig. 206, the values are in henrys, farads, and ohms. Find the frequency, in rad/
sec, at which Zin ¼ 2 ohms. (Answer: 173.21 rad/sec)

Let us continue with the symmetrical T of Fig. 203, which depicts the particular con-
dition in which �ZZin ¼ �ZZL ¼ �ZZ0. As we know, eq. (340) applies to this condition and, in
addition to eq. (340), several other useful relationships exist. As an aid in finding these
relations let us begin by redrawing Fig. 203 as Fig. 207.

By Kirchhoff’s voltage law, the sum of the voltage drops AROUND ANY CLOSED
PATH IN A NETWORK is equal to the sum of the generator voltages in that path. Thus,
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in Fig. 207, around the closed path abcda we have that

�VV1 ¼ �ZZ1
�II1=2 þ �ZZ1

�II2=2 þ �ZZ0
�II2

or, since �VV1 ¼ �II1 �ZZ0;

�ZZ0
�II1 ¼ �ZZ1

�II1=2 þ �ZZ1
�II2=2 þ �ZZ0

�II2

from which we have the important relationship

�II1
�II2
¼

�ZZ0 þ
�ZZ1

2

�ZZ0 �
�ZZ1

2

ð342Þ

Problem 177
Find the ratio of �II1 to �II2 in Fig. 206 for the frequency at which �ZZin ¼ 2 ohms.

(Answer: �0:500 þ j0:866Þ

As you can see from the above, eq. (342) was derived for the particular frequency for
which �ZZin ¼ �ZZL ¼ �ZZ0. For any frequency in general, eq. (342) becomes

�II1
�II2
¼

�ZZL þ �ZZ1=2
�ZZin � �ZZ1=2

ð343Þ

in which �ZZL will be a given load impedance and �ZZin can be found by eq. (338).

Problem 178
Derive eq. (343), using the same procedure as in deriving eq. (342).

Problem 179
In Fig. 206, find �II1=�II2 for ! ¼ 200 rad/sec. (Answer: �1 þ jÞ

Problem 180
If the T network in problem 174 is terminated in its characteristic impedance, find
the magnitude and phase angle of �II1 relative to �II2.

It’s important to note, here, that the equation for the current ratio can also be written
in the following form, in which �ZZL denotes ANY VALUE of load impedance:

�II1
�II2
¼ 1 þ

�ZZ1

2 �ZZ2

þ
�ZZL

�ZZ2

ð344Þ*

Or, setting �ZZL ¼ �ZZ0, then making use of eq. (340), and noting that

1
�ZZ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ1Z2 þ

�ZZ2
1

4

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ1

�ZZ2

þ
�ZZ2

1

4 �ZZ2
2

s

eq. (344) becomes, for the special case in which �ZZL ¼ �ZZ0,

�II1
�II2
¼ 1 þ

�ZZ1

2 �ZZ2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ZZ1

�ZZ2

þ
�ZZ1

2 �ZZ2

� 	2
s

ð345Þ
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You’ll note that the last four equations give the value of the CURRENT ratio �II1=�II2. If,
however, we wish to work in terms of VOLTAGE ratio, this can be done by noting that
�VV1 ¼ �II1 �ZZin and �VV2 ¼ �II2 �ZZL; hence for any value of �ZZL,

�VV1

�VV2

¼
�ZZin

�ZZL

�II1
�II2

ð346Þ

or, for �ZZin ¼ �ZZL ¼ �ZZ0;

�VV1

�VV2

¼
�II1
�II2

ð347Þ

Thus, as eq. (347) shows, at the particular frequency for which a symmetrical T net-
work is terminated in its characteristic impedance, the voltage ratio is EQUAL to the
current ratio.

9.7 Low-Pass Constant-k Filter
In this section we study a form of symmetrical T network in which �ZZ1 and �ZZ2 will be given
to be PURE REACTANCES of opposite sign, where (using the terminology of Fig. 202)

�ZZ1 ¼ jXL ¼ j!L and �ZZ2 ¼ �jXC ¼ 1=j!C

and where the network is terminated in a ‘‘pure resistance’’ of �ZZL ¼ RL, as shown in
Fig. 208.

Note that at VERY LOW frequencies XL is VERY LOW while XC is VERY GREAT,
so that �VV2 is practically equal to �VV1 at such frequencies ( �VV2 is actually EQUAL to �VV1 at
! ¼ 0).

On the other hand, at very HIGH frequencies XL is VERY GREAT and XC is very
LOW, so that �VV2 is practically equal to zero at such frequencies. Thus, in just a general
way, we see that Fig. 208 constitutes a ‘‘low-pass’’ type of network. Such a general
observation is, of course, not sufficient for engineering purposes; to get specific informa-
tion let us now apply the algebra of complex numbers to Fig. 208, as follows (using the
notation of Fig. 202).

From note 23 in the Appendix,

�II2 ¼
�VV1

�ZZ2

D
¼

�VV1
�ZZ2

�ZZ2
1

4
þ �ZZ1

�ZZ2 þ
�ZZ1

2
þ �ZZ2

� �
�ZZL
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hence, by Ohm’s law,

�VV2 ¼ �II2 �ZZL ¼
�VV1

�ZZ2
�ZZL

�ZZ2
1

4
þ �ZZ1

�ZZ2 þ
�ZZ1

2
þ �ZZ2

� �
�ZZL

Now make the substitutions �ZZ1 ¼ jXL, �ZZ2 ¼ �jXC, and �ZZL ¼ RL; upon doing this, then
multiplying the numerator and denominator by j, you should find that (taking
�VV1 ¼ V1=08 ¼ V1 as reference vector),

�VV2

V1

¼ XCRL

XC � XL

2

� �
RL þ jXL XC � XL

4

� �
Now, on the right-hand of the above equation, multiply the numerator and denomi-

nator by 1=XCRL; doing this, then making the substitutions XL ¼ !L and XC ¼ 1=!C,
you should find that

�VV2

V1

¼ 1

1 � !2LC

2

 !
þ j

!L

RL

1 � !2LC

4

 ! ð348Þ

At this point let’s pause and try to decide upon a reasonable value for RL in Fig. 208.
To do this, let us begin by noting that at ZERO frequency ð! ¼ 0Þ Fig. 208 would become

Thus, for ! ¼ 0 the generator would see a pure resistance of RL ohms, with �VV2= �VV1 ¼ 1
and with zero phase shift between �VV2 and �VV1, which would be the desired condition here
because Fig. 208 is to be a low-pass filter passing, as uniformly as possible, all frequencies
from ! ¼ 0 to whatever the cut-off frequency is to be. With this in mind, and upon setting
�ZZ1 ¼ j!L and �ZZ2 ¼ 1=j!C in eq. (340), we have that the CHARACTERISTIC IMPE-
DANCE of the T-network in Fig. 208 is equal to

�ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

C
� !2L2

4

s
ð349Þ

We have agreed, however, that the generator will see the actual value of RL for ! ¼ 0;
thus, upon setting ! ¼ 0 in eq. 349 we have that

�ZZ0 ¼ RL ¼
ffiffiffiffi
L

C

r
ð350Þ

which is the resistance the generator will see only at ! ¼ 0, and is thus the actual value of
RL that will be used in Fig. 208.
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Problem 181
Suppose, in Fig. 208, that the inductance of each coil is 800 microhenrys and that
C ¼ 0:04 microfarads.

(a) What value of RL should be used?
(b) At what frequency will the characteristic impedance be equal to zero?
(c) What value of impedance will the generator see at the frequency at which

Z0 ¼ 0?
(d) Why doesn’t the generator see zero impedance in part (c)?

Thus, since
1

RL

¼
ffiffiffiffi
C

L

r
, we have that

!L

RL

¼ !L

ffiffiffiffi
C

L

r
¼ !

ffiffiffiffiffiffiffiffiffi
L2C

L

r
¼ !

ffiffiffiffiffiffiffi
LC

p

hence eq. (348) becomes

�VV2

V1

¼ 1

ð1 � !2LC=2Þ þ j!
ffiffiffiffiffiffiffi
LC

p ð1 � !2LC=4Þ ð351Þ

which has the form

�VV2

V1

¼ 1

Aþ jB

In the above the variable is frequency, ! radians/second, in which ! denotes ANY
FREQUENCY in general. It will be helpful, however, in understanding what eq. (351)
says, if the equation is written in terms of the ratio of ! to some PARTICULAR VALUE
of ! that we’ll denote by !0. In doing this, !0 can be any particular value we choose, but in
the case of eq. (351) one convenient way would be to set

!2
0 ¼

4

LC

that is,

LC ¼ 4

!2
0

ð352Þ

and if you now substitute the above value of LC into eq. (351) you should find that

�VV2

V1

¼ 1

½1 � 2ð!=!0Þ2� þ j2ð!=!0Þ½1 � ð!=!0Þ2�
ð353Þ

so that the ratio �VV2=V1 is now expressed in terms of the value of ! relative to the fixed
value !0 ¼ 2=

ffiffiffiffiffiffiffi
LC

p
, and we say that the equation is ‘‘normalized’’ relative to !0. The

advantage of doing this is that now we can investigate eq. (351) in general terms without
having to carry along the values of L and C. As a further step let us make the substitution

h ¼ ð!=!0Þ ð354Þ
thus eq. (352) becomes

�VV2

V1

¼ 1

ð1 � 2h2Þ þ j2hð1 � h2Þ ¼
1

Aþ jB
ð355Þ
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Now let it be given that we wish to investigate only the manner in which the magnitude
of �VV2=V1 varies with h; in which case you can verify that eq. (355) becomes���� �VV2

V1

���� ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 4ðh6 � h4Þ

p ð356Þ

thus, ���� �VV2

V1

���� ¼ ½1 þ 4ðh6 � h4Þ��1=2 ð357Þ

which in terms of decibels becomes (see eqs. (319), (320), and (321))

dB ¼ �10 log½1 þ 4ðh6 � h4Þ� ð358Þ
Now, using your calculator, you can verify that the following ‘‘table of values’’ is

correct for eq. (358), in which we’ve rounded off dB values to two decimal places.

A plot of the above results on semi-log paper is given in Fig. 209, with a brief discussion
following.

Thus the gain of the low-pass network of Fig. 208 is practically constant from h ¼ 0 to
h ¼ 0:3; then, as h increases, the gain rises to a maximum value of 3.87 dB for h ¼ 0:8, after
which the gain rapidly decreases as h increases in value. The rise in gain from h ¼ 0:3 to
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h dB h dB

0.1 0.00 1.0 0.00

0.2 0.03 1.2 �6.67

0.4 0.39 1.4 �11.97

0.6 1.75 1.6 �16.22

0.8 3.87 1.8 �19.73

0.9 3.00 2.0 �22.86

2.2 �25.57

Fig. 209



h ¼ 1:0 is due to a resonant condition that comes into play between L and C, the effect
peaking, very approximately, at h ¼ 0:8. Then, as h increases in value beyond h ¼ 1:0, the
condition of resonance is lost and the gain begins to rapidly decrease. It is thus the
presence of both inductance and capacitance, L and C, having the possibility of resonance,
that causes the curve of Fig. 209 to be so much improved over the simple curve of Fig. 191.

As inspection of Fig. 209 shows that the gain falls off rapidly for values of h greater
than 1, and for that reason h ¼ 1 is sometimes taken to be the ‘‘cut-off’’ condition for Fig.
208. Since h ¼ !=!0, it follows that h ¼ 1 when ! ¼ !0; thus the cut-off frequency, !c, can
be taken to be equal to !0 and hence, by eq. (352),

!c ¼
2ffiffiffiffiffiffiffi
LC

p ð359Þ

Lastly, we should mention that the term ‘‘constant-k’’ is applied to Fig. 208 because the
values of �ZZ1 and �ZZ2 are such that their product has a constant value, independent of
frequency; thus

�ZZ1
�ZZ2 ¼ ðj!LÞð1=j!CÞ ¼ L=C

Problem 182
In Fig. 208, suppose C ¼ 0:015 mF. If a cut-off frequency of 100,000 Hz is desired,
what must be the inductance of each coil? (Answer: 337.7 mH)

Problem 183
Using eq. (355), show that the phase shift of �VV2 with respect to V1 is equal to

� ¼ �arctan½2hð1 � h2Þ=ð1 � 2h2Þ�

9.8 High-Pass Constant-k Filter
Here again we study a form of symmetrical T network in which �ZZ1 and �ZZ2 are pure
reactances of opposite sign where, using the terminology of Fig. 202,

�ZZ1 ¼ �jXC ¼ �j=!C and �ZZ2 ¼ jXL ¼ j!L

and where the network is terminated in a pure resistance of �ZZL ¼ RL ohms, as shown in
Fig. 210.

Note that at very LOW frequencies the reactances of the series capacitors are very
HIGH and the reactance of the shunt inductor is very LOW, so that �VV2 is very LOW at
such frequencies. On the other hand, at very HIGH frequencies the reactances of the series
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capacitors are very LOW and the reactance of the shunt inductor is very HIGH, so that �VV2

is nearly EQUAL to �VV1 at such frequencies. Thus (in just a general way) we see that Fig.
210 constitutes a ‘‘high-pass’’ type of filter. But now let us get down to specific details.

To do this, we begin by noting that the two equations following Fig. 208 apply equally
well to Fig. 210; thus, if you will now substitute into the second equation following Fig.
208 the values

�ZZ1 ¼ �j=!C and �ZZ2 ¼ j!L ðand �ZZL ¼ RLÞ
and then, after doing this, multiply the numerator and denominator by �j=!LRL, you
should find that

�VV2

V1

¼ 1

1 � 1

2!2LC

� �
þ j

1

!LRL

1

4!2C2
� L

C

� � ð360Þ

Now let’s pause and try to decide upon a reasonable value for RL. To do this, we note
that at very HIGH frequencies Fig. 210 would, for all practical purposes, become as
shown in Fig. 211.

Thus, for very HIGH values of ! the generator would see a pure resistance of RL ohms,
in which �VV2=V1 ¼ 1, with zero phase shift between �VV2 and V1. This would be the desired
condition here, because Fig. 210 is to be a HIGH-PASS filter.

With this in mind, and upon setting �ZZ1 ¼ �j=!C and �ZZ2 ¼ j!L in eq. (340), we have
that the ‘‘characteristic impedance’’ of the T-network of Fig. 210 is equal to

�ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

C
� 1

4!2C2

r
in which, as you’ll note, the value of the term 1=4!2C2 decreases rapidly in value as !
increases; thus, at the preferred HIGH frequencies the value of �ZZ0 becomes, for practical
purposes, equal to

ffiffiffiffiffiffiffiffiffiffi
L=C

p
ohms. It thus makes sense to let

�ZZ0 ¼ RL ¼
ffiffiffiffi
L

C

r
ð361Þ

because this will cause Fig. 210 to become equal to the desired condition of Fig. 211 at
high frequencies. Next, let us try to express eq. (360) in terms of a dimensionless ratio
!=!0, as we did for the case of the low-pass filter (eq. (353)). To do this, let us begin by
noting that the imaginary term in the denominator of eq. (360) can be written as

j

!LCRL

1

4!2C
� L

� �
¼ j

!C

1

RL

1

4!2LC
� 1

� �

¼ j

!
ffiffiffiffiffiffiffi
LC

p 1

4!2LC
� 1

� �
ð362Þ
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because, by eq. (361),

j

!C

1

RL

¼ j

!

ffiffiffiffiffiffiffiffiffi
C

LC2

r
¼ j

!
ffiffiffiffiffiffiffi
LC

p

Thus, upon substituting the j term (eq. (362)) into eq. (360), we have the desired form

�VV2

V1

¼ 1

1 � 1

2!2LC

� �
þ j

1

!
ffiffiffiffiffiffiffi
LC

p 1

4!2LC
� 1

� � ð363Þ

The above form is especially useful because it can readily be expressed in terms of the
ratio of any frequency ! to a fixed reference frequency !0. This can be done by defining
that the reference frequency be equal to

!0 ¼
1

2
ffiffiffiffiffiffiffi
LC

p ð364Þ

Thus,
ffiffiffiffiffiffiffi
LC

p ¼ 1=2!0 and LC ¼ 1=4!2
0, and upon making these substitutions into eq.

(363), then making the substitution

h ¼ !=!0 ð365Þ
(that is, !0=! ¼ 1=hÞ, and then multiplying the numerator and denominator by h3, you
should find that eq. (363) becomes

�VV2

V1

¼ h3

hðh2 � 2Þ þ j2ð1 � h2Þ ð366Þ

If, now, we wish to investigate only the manner in which the magnitude of �VV2=V1 varies
with frequency, then eq. (366) becomes

�VV2

V1

����
���� ¼ h3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2ðh2 � 2Þ2 þ 4ð1 � h2Þ2
q ¼ h3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 þ ðh6 � 4h2Þ
p

or, since 1=
ffiffiffiffi
X

p ¼ 1=X1=2 ¼ X�1=2, we can write the above in the form

�VV2

V1

����
���� ¼ h3½4 þ ðh6 � 4h2Þ��1=2

or, in decibels (see notes 19 and 22 in the Appendix and eqs. (319), (320), and (321)), the
above equation becomes

dB ¼ 60 log h� 10 log½4 þ ðh6 � 4h2Þ� ð367Þ
Using your calculator, you can verify that the following ‘‘table of values’’ is correct for

eq. (367), in which we’ve rounded off the dB values to two decimal places.
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h dB h dB h dB

0.2 �47.78 1.2 3.87 1.8 1.33

0.4 �29.15 1.3 3.68 1.9 1.09

0.6 �17.47 1.4 3.10 2.0 0.90

0.8 �8.13 1.5 2.51 2.5 0.39

1.0 0.00 1.6 2.02 3.0 0.20

1.1 2.79 1.7 1.63 4.0 0.06



A plot of the above results on semi-log paper is given in Fig. 212, with brief discussion
following.

Note that gain decreases rapidly for values of h less than 1; hence, if we wish, h ¼ 1 can
be taken to be the cut-off condition for Fig. 210. Thus, if !c is the cut-off frequency, then
!c=!0 ¼ 1; that is, !c ¼ !0. Hence, by eq. (364)

!c ¼
1

2
ffiffiffiffiffiffiffi
LC

p rad=sec

or

fc ¼
1

4�
ffiffiffiffiffiffiffi
LC

p hertz
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Magnetic Coupling.
Transformers.

Three-Phase Systems

In this chapter we continue the study of the sinusoidal steady-state analysis of networks.
This will include the theory and calculation of magnetically coupled circuits (transformers)
and three-phase power calculations, with an introduction to the theory of ‘‘symmetrical
components’’ as applied to three-phase circuits. These are all interesting applications of
the algebra of the complex plane to the electric circuit.

10.1 Introduction to Magnetic Coupling;
the Transformer

We begin with the suggestion that a careful rereading of sections 7.2 through 7.5 should be
made at this time.

Suppose we have a coil of inductance L henrys, carrying a current of i amperes. If the
coil current changes, then the amount of magnetic flux produced by the current also
changes, thus causing, as we know, a self-induced voltage to appear in the coil.

Now suppose a second coil is brought up close to the first coil. Then some of the lines of
flux, generated by the current in the first coil, will link with some of the turns of the second
coil. It thus follows that a changing current in the first coil will produce a changing amount
of flux in the second coil, thereby causing a voltage to be induced into the second coil. This is
the principle of ELECTROMAGNETIC COUPLING between two coils, and is the basis
of the highly important ‘‘electrical transformer.’’

A ‘‘transformer’’ thus consists of two coils placed relatively close together, so that at
least part of the flux generated by each coil also links with the other coil. We call one of the
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coils the PRIMARY COIL and the other the SECONDARY COIL. We’ll usually let L1

be the inductance of the primary coil, and L2 be the inductance of the secondary coil.
In the case of transformers designed to operate at the ‘‘power line’’ frequency of 60 Hz,

the two coils are wound on what is called an ‘‘iron core,’’ which is constructed of thin
sheets of silicon steel stacked and bolted together to form an assembly such as is illustrated
in Fig. 213. The primary and secondary coils can be wound on opposite ‘‘legs’’ of the iron
core, as shown in Fig. 214. The coils must be wound using insulated wire, to prevent
adjacent turns from ‘‘shorting’’ together and to prevent the coils from making electrical
contact with the iron core. On electrical diagrams, a transformer of this type is represented
by the symbol shown in Fig. 215. The vertical lines drawn between L1 and L2 in Fig. 215
tell us that the coils are wound on an iron core.

The iron core thus serves a double purpose: it serves as a rigid coil form on which the
primary and secondary coils are wound, and, since it is a ferromagnetic material, it allows
a relatively small current to generate a large amount of magnetic flux. Transformers using
iron cores are used mainly in power system work (60 Hz) and in audio frequency work
(20 Hz to 16,000 Hz). At the very high frequencies used in radio, television, and radar, for
example, transformer coils often consist of only a few turns of wire, wound on a ceramic or
plastic tube. Since no ferromagnetic material is used, they are often referred to as ‘‘air
core’’ transformers. The schematic symbol used to represent this type of transformer is the
same as that shown in Fig. 215, except that no vertical lines are drawn between the
primary and secondary coils.

The transformer is a most useful device, used to change voltage levels, match impe-
dances, separate ac and dc currents and voltages, and so on. Let us begin our analysis with
Fig. 216, which shows a transformer ‘‘T’’ in which i1 and i2 are the primary and secondary
currents flowing at any instant of time t.

In the following discussion we’ll make use of the ‘‘principle of superposition,’’ that is,
that the COMBINED EFFECT of both currents in Fig. 216 is equal to the SUM OF THE
EFFECTS of each current considered separately, as if the other current were absent.
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Fig. 213 Fig. 214 Fig. 215

Fig. 216. L1 ¼ inductance of primary coil;
L2 ¼ inductance of secondary coil.



With this in mind, let us, in Fig. 216, begin by disregarding the effect of current i2 and
considering only the effect of current i1; to do this, let us (as in section 7.5) use the notation

di1
dt

¼ rate of change of primary current

and

v2 ¼ voltage induced into L2 due to changing primary current

Notice that we now have exactly the same situation that we had in section 7.5, that is,
we are dealing with an induced voltage caused by a changing current. Thus the mathematical
description of the situation will have exactly the same form as eq. (181) in that section,
except that now, since we’re dealing with the ratio of current change in one coil to the
voltage induced in a second coil, we’ll write ‘‘M’’ instead of ‘‘L’’ to signify this; thus

v2 ¼ M
di1
dt

ð368Þ

in which M is measured in henrys and is called the MUTUAL INDUCTANCE between
the two coils.

Or, if we disregard the effect of i1 and consider only the effect of i2, the preceding
equation would become

v1 ¼ M
di2
dt

ð369Þ

where di2=dt ¼ rate of change of secondary current, and v1 ¼ voltage induced into pri-
mary coil L1 due to changing secondary current.

In the above, it’s important to note that the same value of mutual inductance M is used
in both equations. This is a significant fact that can be proved to be true, both theoretically
and by direct experiment.

The value of the mutual inductance M, for a given transformer, depends upon the
following factors.

1. The self-inductances of the primary and secondary coils, that is, the values of L1

and L2.

2. The presence or absence of ferromagnetic material.

3. The spacing between the two coils; the farther apart they are, the less is the mutual
inductance.

4. The orientation of L1 with respect to L2; for example, the mutual inductance if the
two coils are at right angles to each other (as shown below) would be very small as
compared to what it would be for the orientation of Fig. 216.

Another transformer parameter, called the COEFFICIENT OF COUPLING, denoted
by ‘‘k,’’ is widely used in practical work. It is defined as follows (where, as usual, ‘‘induc-
tance’’ means ‘‘self-inductance’’). In a transformer, let

L1 ¼ inductance of the primary coil,

L2 ¼ inductance of the secondary coil,

M ¼ mutual inductance of the transformer.
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Then the ‘‘coefficient of coupling’’ k between the two coils is defined by the equation

k ¼ Mffiffiffiffiffiffiffiffiffiffiffi
L1L2

p ð370Þ

thus,

M ¼ k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
ð371Þ

The ‘‘coefficient of coupling’’ is a measure of the closeness of coupling that exists
between the primary and secondary coils. k has a maximum possible value of 1; this
value, k ¼ 1, represents a theoretical case where ALL the flux generated by the primary
current links ALL the turns of the secondary coil, and ALL the flux generated by the
secondary current links ALL the turns of the primary coil. This situation can never be
completely realized in any actual transformer because, for practical reasons, the coils
cannot be constructed and positioned so that ALL the flux generated in one coil will
link with every turn of the other coil.

Hence, k is always less than 1 for an actual transformer. The value of k will usually run
from 1 to 10% for ‘‘air core’’ transformers and up to 99.5% for high-quality iron-cored
transformers. The ‘‘best’’ value of k will depend upon the particular application we are
interested in; for air-core transformers, used at very high frequencies, the best value of k is
usually from 1 to 10%, while for iron-cored transformers, used at lower frequencies, the
value of k should usually be as close to 100% as possible.

Problem 184
Suppose a transformer has a primary coil of inductance 0.9 henry, a secondary coil
of inductance 15 henrys, and coefficient of coupling 85%. What voltage is induced
into the secondary coil if the primary current is

(a) a steady current of 25 amperes,

(b) changing at a rate of 25 amperes per second?

Problem 185
(a) Show that, for any given transformer, the SAME RATE OF CHANGE OF

CURRENT, IN EITHER COIL, INDUCES EQUAL VOLTAGE IN THE
OTHER COIL.

(b) As applied to problem 184, this says that if the secondary current were changing
at the rate of 25 amperes/second, this would induce a voltage of 78.0775 volts
in the primary coil. Verify, by calculation, that this would be true.

10.2 Dot-Marked Terminals. Induced Voltage
Drops

Networks containing transformers are solved using the same procedures as always, except
that if transformers are present we must take into account the voltage drops represented
by eqs. (368) and (369).

It is important that the correct signs be used with these equations. To insure that the
correct signs are used, each transformer in the network must be marked with what are
called POLARITY DOTS. Two such dots are required for each transformer, one being
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placed at one of the terminals on the primary side and the other at one of the terminals on
the secondary side. The dots are used to indicate the sense in which the primary and
secondary coils are wound with respect to each other; the dots are placed so that

Currents flowing into the dot-marked terminals produce
magnetic flux in the same direction in the magnetic path.

This is illustrated in Figs. 217 and 218 below, where we’re using ‘‘coil forms’’ so that we
can more easily see the senses in which the coils are wound. Note that the primary coils are
wound in the same sense in both figures, but the secondary coils are wound in opposite
senses in the two figures.

Now, using the right-hand rule (with fingers curled in the direction of current flow, the
thumb points in the direction of magnetic flux), you can verify that in both figures currents
flowing into the dot-marked terminals produce magnetic flux � in the same direction in the
magnetic path. This means that current flowing into either dot-marked terminal has
the SAME EFFECT MAGNETICALLY as current flowing into the other dot-marked
terminal.

With this in mind, let us redraw Fig. 216 as Fig. 219, in which we’ll assume that the
winding senses are such that the ‘‘dot markings’’ are correct as shown.

In Fig. 219, let i1 and i2 denote instantaneous values of primary and secondary current
which, when flowing in the directions shown, will be considered to be ‘‘positive’’ values of
current.

Next, note that there are three inductance values to be considered; thus

L1 ¼ self-inductance of primary coil,

L2 ¼ self-inductance of secondary coil,

M ¼ mutual inductance between primary and secondary coils.

Now notice that there are FOUR VOLTAGE DROPS present in Fig. 219, as follows.
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Voltage drops in primary coil

L1

di1
dt

¼ voltage drop due to changing primary current ðsection 7:5Þ

M
di2
dt

¼ voltage drop due to changing secondary current ðeq: ð369ÞÞ

8>><
>>:

Voltage drops in secondary coil

L2

di1
dt

¼ voltage drop due to changing secondary current ðsection 7:5Þ

M
di2
dt

¼ voltage drop due to changing primary current ðeq: ð368ÞÞ

8><
>:

Now let

vpri ¼ instantaneous voltage drop in primary coil, and

vsec ¼ instantaneous voltage drop in secondary coil, and thus

vpri ¼ L1

di1
dt

þM
di2
dt

ð372Þ

vsec ¼ M
di1
dt

þ L2

di2
dt

ð373Þ

in which all positive signs are used because of the way that i1 and i2 are associated with the
dot-marked terminals in Fig. 219 (i2 has the same effect, magnetically, as i1, and vice versa).

Now assume the sinusoidal steady-state condition, so that the instantaneous currents are
given by the equations

i1 ¼ Ip1 sinð!t� �1Þ ð374Þ
i2 ¼ Ip2 sinð!t� �2Þ ð375Þ

where Ip1 and Ip2 are peak (maximum) values of current, and �1 and �2 are the current
phase angles with respect to the sinusoidal generator voltage. Then the maximum RATES
OF CHANGE of the currents are equal to the maximum values of di1=dt and di2=dt (see
discussion in connection with eq. (194) in Chap. 8); thus

di1
dt

� 	
max

¼ !Ip1 and
di2
dt

� 	
max

¼ !Ip2

and thus, by the basic eq. (181) in Chap. 7, the PEAK VALUES of the FOUR SINU-
SOIDAL SELF-INDUCED VOLTAGES are

!L1Ip1 !MIp2 !MIp1 !L2Ip2

and since, in the sinusoidal steady state, an induced voltage always leads the inducing
current rent by 90 degrees, eqs. (372) and (373) become, for the sinusoidal steady-state case,

vpri ¼ !L1Ip1 sinð!t� �1 þ 908Þ þ !MIp2 sinð!t� �2 þ 908Þ ð376Þ
vsec ¼ !MIp1 sinð!t� �1 þ 908Þ þ !L2Ip2 sinð!t� �2 þ 908Þ ð377Þ

Note: Although we’ve written ��1 and ��2, these angles can be either positive or nega-
tive, depending upon the particular circuit the transformer is connected into.

Now, as we know (see discussion following eq. (194) in Chap. 8), the four rotating
voltage components in the above two equations can be regarded as four stationary vector
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components. In doing this, we’ll use ‘‘rms’’ values of voltage and current instead of ‘‘peak’’
values, and thus, letting

�VVpri ¼ rms vector value of induced voltage appearing in PRIMARY coil, and

�VVsec ¼ rms vector value of induced voltage appearing in SECONDARY coil,

in the primary coil,

�VVpri ¼ !L1ð�II1 þ 908Þ þ !Mð�II2 þ 908Þ
in the secondary coil,

�VVsec ¼ !Mð�II1 þ 908Þ þ !L2ð�II2 þ 908Þ
where notation of the form Xð�II þ 908Þ is used to denote that a vector voltage drop X �II
leads the current vector �II by 908. However, since we’re representing vector quantities by
complex numbers, all we need to do, to rotate a vector through 908, is to multiply the
vector by j (as discussed in connection with eq. (196) in Chap. 8). Thus the preceding two
equations become

�VVpri ¼ j!L1
�II1 þ j!M �II2 ð378Þ

�VVsec ¼ j!M �II1 þ j!L2
�II2 ð379Þ

in which !L1 and !L2 are the inductive reactances of the primary and secondary coils,
each considered separately (as if they were not part of the transformer), and where the
quantity !M is measured in ohms and called the ‘‘mutual reactance.’’

Equations (378) and (379) are expressions connecting the four inductive voltage drops
present in a transformer. We’ll make use of these equations in section 10.3, to derive the
basic equations for the sinusoidal steady-state analysis of coupled circuits.

Before going on to the next section, however, there are some more points we should
mention regarding the ‘‘polarity dots’’ associated with a transformer.

First, it should be noted that, in some simple problems involving only a single trans-
former, in which we need to find only the magnitude of the secondary current, it will not be
necessary to be concerned about polarity dots at all. In such a case we can simply assume
that the primary and secondary currents flow into like-marked terminals.

However, in more complicated cases, in which, for example, we have two or more
transformers having a common secondary current, then we must take the ‘‘dot-marks’’
into account. This can be a problem, as it may not be possible to actually see the senses in
which the primary and secondary coils of a transformer are wound (because the windings
may be covered with a strong tape, used both to insulate the windings and to keep them
firmly in place). If the manufacturer has not dot-marked such a transformer, this can be
done by experimental means, by the user, in several ways. One such way is explained with
the aid of Figs. 220 and 221, as follows, in which V is a constant value of ac voltage and I
is the reading of an ac ammeter.
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Note that in the test setup the primary and secondary coils are connected in series in
both figures, and hence, in each figure, the primary current is equal to the secondary
current. Now, in the figures, let the arrows denote the direction of current at a particular
moment. Notice that the direction of the primary current is the same in both figures, but
the secondary current flows in opposite directions. This means that in one of the figures the
mutual magnetic effects of the primary and secondary currents will be ADDITIVE, while
in the other figure they will be SUBTRACTIVE. Since the total reactance seen by the
generator is greater in the additive case than in the subtractive case, it follows that the
ammeter will read a smaller value of current in the additive case than in the subtractive
case. With these points in mind, the actual test procedure is as follows.

First, to one of the primary leads attach a tag having a ‘‘dot,’’ then attach tags to the
secondary leads, one labeled ‘‘a’’ and the other ‘‘b,’’ so that we have the condition shown
in the figures. Now apply the ac voltage V first to the setup of Fig. 220, and then to that of
Fig. 221. Upon doing this, suppose it is found that I1 is smaller than I2; this would mean
that current flowing into the ‘‘b’’ terminal has the same effect, magnetically, as current
flowing into the dot-marked terminal, and thus terminal b should be marked with a dot. Or,
if the opposite is found to be true (I2 less than I1), then terminal ‘‘a’’ would be marked with
a dot.

10.3 Sinusoidal Analysis of Magnetically
Coupled Circuits

As we know, sinusoidal rms values of voltages and currents of the same frequency can be
regarded as vector quantities, and thus can be represented and manipulated in the form of
complex numbers.

With this in mind, let a sinusoidal voltage of �VV volts rms be applied to the basic
transformer-coupled circuit of Fig. 222, thus producing primary and secondary currents
of �II1 and �II2 amperes rms, as shown. We now wish to derive formulas that will, given the
circuit constants, enable us to calculate the values of �II1 and �II2.

In Fig. 222, L1 is the inductance of the primary coil considered by itself, L2 is the
inductance of the secondary coil considered by itself, and M is the mutual inductance
between the two coils. Also, �ZZa ¼ partial impedance of primary circuit. This includes any
internal impedance of the generator and any resistance L1 may have, but does not include
the inductive reactance !L1 of the primary coil, as can be seen from Fig. 222. Similarly,
�ZZb ¼ partial impedance of secondary circuit, including any resistance the secondary coil
may have. Thus �ZZb includes everything around the secondary loop except the inductive
reactance !L2 of the secondary coil.
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Let us now write the voltage equations for Fig. 222, beginning with the voltage equa-
tion around the PRIMARY circuit. To do this, note that there are three voltage drops
around the primary loop, the first being �ZZa

�II1, with the other two being induced voltage
drops given by eq. (378). Since the vector sum of these three voltage drops is equal to the
applied voltage �VV , the voltage equation around the primary loop is

ð �ZZa þ j!L1Þ�II1 þ j!M �II2 ¼ �VV ð380Þ
Next, there are likewise three voltage drops around the SECONDARY loop, one being

�ZZb
�II2, the other two being induced voltage drops given by eq. (379). Since there is no

independent generator included in the secondary loop, the vector sum of these three
drops has to be equal to zero, and thus the voltage equation around the secondary loop is

j!M �II1 þ ð �ZZb þ j!L2Þ�II2 ¼ 0 ð381Þ
Now let

�ZZ1 ¼ �ZZa þ j!L1 ð382Þ
�ZZ2 ¼ �ZZb þ j!L2 ð383Þ

where it should be very carefully noted that �ZZ1 ¼ the total series impedance AROUND
THE COMPLETE PRIMARY CIRCUIT, considered by itself, just as if the secondary
circuit did not exist; similarly, �ZZ2 ¼ the total series impedance AROUND THE COM-
PLETE SECONDARY CIRCUIT, considered by itself, just as if the primary circuit did
not exist.

Now, in eqs. (380) and (381), replace the coefficients of the unknown currents with the
left-hand sides of eqs. (382) and (383). If we do this, eqs. (380) and (381) become our
FUNDAMENTAL EQUATIONS FOR THE BASIC TRANSFORMER-COUPLED
CIRCUIT OF FIG. 222; thus

�ZZ1
�II1 þ j!M �II2 ¼ �VV ð384Þ

j!M �II1 þ Z2
�II2 ¼ 0 ð385Þ

We can now solve the above two equations for the primary current �II1 as follows:

�II1 ¼

�VV

0

j!M
�ZZ2

����
����

�ZZ1

j!M

j!M
�ZZ2

����
����
¼

�VV �ZZ2

�ZZ1
�ZZ2 þ !2M2

Or, upon dividing the numerator and denominator of the last fraction by �ZZ2, the
equation for the PRIMARY CURRENT takes the form

�II1 ¼
�VV

�ZZ1 þ
!2M2

�ZZ2

ð386Þ

Note that the denominator in the above equation is the total impedance seen by the
generator in Fig. 222. Hence, since �ZZ1 is the impedance of the primary circuit considered
by itself, it follows that the second term in the denominator is the impedance ‘‘coupled’’ or
‘‘reflected’’ from the secondary circuit into the primary circuit. Thus, letting �ZZref denote this
‘‘reflected impedance,’’ we have

�ZZref ¼
!2M2

�ZZ2

ð387Þ
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where �ZZref ¼ impedance coupled or ‘‘reflected’’ into the primary circuit from the secondary
circuit (note that �ZZref appears in series with the primary coil); and �ZZ2 ¼ total series impe-
dance of the secondary circuit, considered by itself, as defined following eq. (383).

Hence, as far as the generator is concerned, Fig. 222 can be redrawn as in Fig. 223.

Thus, from Fig. 223,

�II1 ¼
�VV

�ZZ1 þ �ZZref

ð388Þ

Another useful relationship is found by solving eq. (385) for I2; thus

�II2 ¼
�j!M �II1

�ZZ2

ð389Þ

Problem 186
In Fig. 222 both current arrows are drawn in the clockwise sense. What change, if
any, would appear in eq. (389) if

(a) both arrows were drawn in the counterclockwise sense?

(b) if the �II1 arrow remained in the cw sense but the �II2 arrow were drawn in the ccw
sense?

Problem 187
In Fig. 224, the primary and secondary coils have equal inductances of 45 milli-
henrys. (Any resistance the coils may have is included in the 5-ohm and 2-ohm
resistance values.) Find the magnitude of generator current, given that the frequency
is 200 rad/sec. (Answer: 5.249 amperes)

(See ‘‘discussion note’’ given with the solution to the above problem.)

Problem 188
In Fig. 225, a generator of zero internal impedance produces 28 volts at 400,000 rad/
sec. The primary and secondary coils have equal inductances of 60 microhenrys.
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Find,

(a) magnitude of generator current, (Answer: 6.030 amperes)

(b) magnitude of current in secondary coil. (Answer: 6.000 amperes)

Problem 189
In Fig. 226, the generator frequency is 100,000/2� hertz (Hz), the values of the circuit
parameters being in ohms, microhenrys, and microfarads. It is also given that
L1 ¼ 120 mH and L2 ¼ 200 mH.

(a) Find the magnitude of generator current. (Answer: 10.966 amperes)

(b) Find the magnitude of secondary current. (Answer: 7.292 amperes)

Parts (c) through (e), which follow, will serve as a review of some important points
concerning the calculation of POWER, as developed in section 8.5.

(c) Using only the details found in part (a) and the principle developed in con-
nection with Fig. 150, find the TRUE POWER produced by the generator in
Fig. 226.

(d) Repeat part (c), now making use only of eq. (228) and Fig. 155.

(e) Repeat part (c), now making use of the fact that the power produced in a pure
resistance is equal to the ‘‘square of the magnitude of current, times resis-
tance.’’

In problems 187, 188, and 189 it should be noted that we did not need to ‘‘dot-mark’’
the transformers in order to find the required answers. This is because our analysis was
based upon Fig. 222, which led to the basic pair of eqs. (384) and (385). Let us consider this
in more detail, as follows.

Suppose, in Fig. 222, that the position of the dots on the secondary side had been
reversed (everything else remaining the same). In that case eqs. (384) and (385) would
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have read

�ZZ1
�II1 � j!M �II2 ¼ �VV

�j!M �II1 þ Z2
�II2 ¼ 0

which, you’ll notice, will give the same value of �II1 as given by eq. (386) (and the same value
of reflected impedance as given by eq. (387)). As a matter of fact, changing the position of
the dots in Fig. 222 would only have the effect of changing the phase angle of the second-
ary current by 180 degrees (the same as changing the direction of �II2, as discussed in
problem 186).

It must be emphasized, however, that in some types of circuit it is necessary to take the
placement of the dots into account. These are cases in which the primary and secondary
currents are not totally separated, as in Fig. 222, but, instead, share a common circuit
element. In such cases we must be careful to assign the proper algebraic sign to all mutually
induced voltages of the form �j!M �II . This is illustrated in the following problems.

Problem 190
Figures 227 and 228 depict two circuits that are identical in all respects EXCEPT for
the placement of the reference dots. Write the equation for the current �II for (a) Fig.
227, (b) Fig. 228.

Problem 191
In Fig. 229, the generator produces �VV ¼ 50=08 volts at a frequency of 12,500 rad/sec.
It is given that L1 ¼ 0:0020 henry and L2 ¼ 0:0045 henry, the resistance values being
in ohms. Find the magnitude of voltage �VVo relative to ground.

(Answer: 23.54 V)
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Problem 192
Rework problem 191 with everything remaining the same EXCEPT let it be given
that the secondary winding is now wound in the opposite sense from that assumed in
Fig. 229. (Answer: 26.94 V)

Problem 193
In problem 191 show that �VVo ¼ 23:54=�64:298.

Problem 194
In problem 192 show that �VVo ¼ 26:94=�19:858.

10.4 The ‘‘T’’ Equivalent of a Transformer
In the analysis of transformer-coupled circuits it’s often helpful to replace a transformer
with its T-NETWORK EQUIVALENT. This can be done as follows, beginning with
Fig. 230.

In the figure,

R1 ¼ resistance of the primary coil,

R2 ¼ resistance of the secondary coil,

L1 ¼ inductance of the primary coil,

L2 ¼ inductance of the secondary coil,

M ¼ mutual inductance between L1 and L2.

The conversion of a network into its T equivalent is done by using the procedure of
section 9.2. Thus, for Fig. 230, we begin with the following relationships:

�ZZ1O ¼ R1 þ jX1

(because, with terminals 2, 2 open, the secondary circuit has no effect when we look into
terminals 1, 1);

�ZZ2O ¼ R2 þ jX2

(because, with terminals 1, 1 open, the primary circuit has no effect when we look into
terminals 2, 2)

�ZZ1S ¼ R1 þ jX1 þ
!2M2

R2 þ jX2

(here, looking into 1, 1 with 2, 2 shorted, we’re making use of eq. (387)).
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Now, upon substituting the above values into eq. (282), you should find that

�ZZ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�!2M2

p
¼ j!M ¼ jXm ð390Þ*

Then, by eq. (283)

�ZZ2 ¼ �ZZ2O � �ZZ3 ¼ R2 þ jX2 � jXm

thus,

�ZZ2 ¼ R2 þ j!ðL2 �MÞ ð391Þ
and, by eq. (284)

�ZZ1 ¼ �ZZ1O � �ZZ3 ¼ R1 þ jX1 � jXm

thus,

�ZZ1 ¼ R1 þ j!ðL1 �MÞ ð392Þ
Hence, by equations (390) through (392), we have that the T EQUIVALENT of the

transformer of Fig. 230 is as shown in Fig. 231.

Thus, while Figs. 230 and 231 are very different in appearance, they are equal in
performance as far as alternating current (ac) is concerned, at a given frequency.

Problem 195
Laboratory measurements on a certain transformer show that the primary winding
has 14 ohms of resistance and 0.09 henry of inductance, while the secondary winding
has 4 ohms of resistance and 0.04 henry of inductance. The coefficient of coupling is
found to be 30%. Draw and label the ‘‘T equivalent’’ of the transformer, giving the
correct values of resistance and inductance.

Problem 196
Let a generator, producing 100 volts rms at a frequency of 500 radians/second, be
connected to the primary terminals of the transformer in the preceding problem. The
generator has negligible internal impedance. Now let a load of 2 ohms be connected
to the secondary terminals. Making use of the T equivalent for the transformer
found in the preceding problem, find the magnitude of the voltage across the
2-ohm load. (Answer: 1.961 volts)

Problem 197
Rework problem 196, this time using the basic coupled circuit formulas derived in
section 10.3.
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In closing, it should be noted that, in Fig. 231, the value of either (L1 �M) or (L2 �M)
may come out to have a negative value. In such a case Fig. 231 is still, for purposes of
analysis, a perfectly valid representation of the transformer, even though ‘‘negative induc-
tance’’ does not physically exist. Thus, even though such an equivalent T could not be
physically constructed, it would still be a perfectly valid representation of the actual
transformer at a given frequency.

10.5 The Band-Pass Double-Tuned Transformer
THE TRANSMISSION OF INFORMATION THROUGH SPACE, that is, by ‘‘wire-
less,’’ is accomplished by impressing the information upon a ‘‘carrier wave’’ whose fre-
quency is much higher than the highest frequency present in the information to be
transmitted.

The process of transferring information onto a high-frequency carrier wave is called
‘‘modulation,’’ and the carrier wave is said to be ‘‘modulated’’ by the information.

An unmodulated carrier wave consists of a SINGLE-FREQUENCY sinusoidal wave
occupying just ONE POINT in the frequency spectrum. However, when a carrier wave is
modulated new frequencies, above and below the carrier frequency, are created. These new
frequencies are called ‘‘side-band’’ frequencies, and appear as a cluster of frequencies with
the carrier frequency in the center.* It is for this reason that a circuit designed to handle a
modulated carrier wave must be a BAND-PASS type of network. One network that is
useful in this regard is the double-tuned transformer, which let us now investigate with the
aid of Fig. 232.

To begin, the component labeled FET is a solid-state device called a ‘‘field-effect’’
transistor. The INPUT signal voltage is denoted by Vi, which we’ll take as the reference
vector. The OUTPUT voltage is denoted by �VVt; thus the VOLTAGE GAIN of the stage is

�GG ¼ �VVt=Vi ð393Þ

A field-effect transistor has very high internal gain but very high internal resistance, and
is therefore a CONSTANT-CURRENT type of generator (section 4.7). Thus the output
current of a FET, for given Vi, remains very nearly constant as the value of the load
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impedance changes; this is true for all values of load impedances normally encountered in
practical work. In Fig. 232 the constant-current output of the FET has the value gmVi,
where gm is a constant transistor parameter, called the ‘‘transconductance,’’ whose value
depends upon the particular transistor being used.

One way to begin the analysis of Fig. 232 is to convert the constant-current generator
into an equivalent constant-voltage generator; one convenient way to do this is to start
with Fig. 233.

In Fig. 233, note that we’ve detached the constant-current generator and the capacitor
of C farads from the primary side of Fig. 232. We now wish to convert Fig. 233 into an
equivalent constant-voltage generator; this can be done by making use of Thevenin’s
theorem (section 4.6) as follows.

First, in Fig. 233, note that the open-circuit voltage between terminals (a, b) is equal to
the current gmVi times the reactance of the capacitor C; thus the voltage of the equivalent
generator is equal to �jgmViXC, as shown in Fig. 234.

Next, the internal impedance of the equivalent generator is equal to the impedance seen
looking into terminals (a, b) in Fig. 233 with the FET replaced by its internal impedance.
Since a FET has an extremely high internal resistance or impedance, it follows that the
impedance, looking into terminals (a, b) in Fig. 233 is merely equal to the reactance of
capacitor C, that is, �jXC. Thus, by Thevenin’s theorem, Fig. 234 is the constant-voltage
equivalent of Fig. 233.

Next let’s consider the case of parallel R and L, as shown in Fig. 235.

Our object now is to convert the parallel circuit of Fig. 235 into an approximately
equivalent series circuit. To do this, we begin by noting that the input impedance looking
into terminals (a, b) in Fig. 235 is equal to (product of the two, over the sum)

�ZZp ¼ jRXL

Rþ jXL

¼ jRXLðR� jXLÞ
R2 þ X2

L

¼ RX2
L þ jR2XL

R2 þ X2
L

ð394Þ
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In the PARTICULAR APPLICATION HERE, however, the above equation can, for
practical purposes, be considerably simplified.

To do this, we must look back to Fig. 232 and note that L and C here constitute a
PARALLEL resonant circuit with XL ¼ XC at the carrier frequency (the center frequency
of the passband).

As we found in section 8.7, the input impedance to a parallel circuit is high at and near the
resonant frequency, even though the individual reactance values, XL and XC, will have quite
low values at the same frequencies. At the same time, the value of the shunt resistanceRmust
bemuch higher than eitherXL orXC, in order to preventR from ‘‘swamping out’’ the effect of
the high-impedance parallel LC circuit at resonance, which would, among other things,
cause the gain of the stage to be excessively low at and near the resonant frequency.

Thus, in practice, the value of R2 will be much greater than the value of either X2
L or X2

C,
and hence, for practical purposes, the denominator of eq. 394 can be written as R2 instead
of R2 þ X2

L; thus eq. 394 becomes,

�ZZp ¼ RX2
L þ jR2XL

R2
¼ X2

L

R
þ jXL ð395Þ

that is,
�ZZp ¼ rþ jXL ð396Þ

where r ¼ X2
L=R.

Note that eq. (396) represents a resistance of r ohms in series with the reactance jXL.
Thus the parallel circuit of Fig. 235 can be replaced by the series circuit of Fig. 236.

With all the foregoing in mind, note that the original circuit of Fig. 232 can now be
drawn in the form of Fig. 237. In this figure, r can include any resistance the primary and
secondary windings may have.

Now, for the final step, replace the transformer with its T equivalent (Fig. 231). Doing
this, and also adding the two loop currents �II1 and �II2, Fig. 237 becomes Fig. 238.

We now wish to find the value of �GG in eq. (393). Since, by inspection of Fig. 238,
�VVt ¼ ð�jXCÞ�II2, eq. (393) becomes

�GG ¼ �jXC
�II2=Vi ð397Þ

Thus, to find �GG we must find the value of �II2. To do this, let us begin by writing the two
loop-voltage equations for Fig. 238, which, as you can verify, are

½rþ jðXL � XCÞ��II1 � jXm
�II2 ¼ �jgmViXC ð398Þ

�jXm
�II1 þ ½rþ jðXL � XCÞ��II2 ¼ 0 ð399Þ
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One way to solve the above two equations for �II2 is to use the method of determinants.
To do this, as you’ll recall, the first step is to find the value of D (delta), where D, here, is
the value of the determinant formed from the coefficients of the two unknown currents,
which, as you should verify, gives the value

D ¼ r2 þ X2
m � ðXL � XCÞ2 þ j2rðXL � XCÞ

and thus, continuing with determinant procedure, we have

�II2 ¼
gmViXmXC

D

and hence, by eq. (397),

�GG ¼ �jgmXmX
2
C

D
¼ �jgmXmX

2
C

r2 þ X2
m � ðXL � XCÞ2 þ j2rðXL � XCÞ

ð400Þ

The difficulty now is that it’s hard to ‘‘get a handle’’ on eq. (400), to see what it really
means. Let us therefore work on the equation and try to get it in a different form, better
suited to our needs. This can be done by a combination of algebraic manipulation and
making use of certain relationships that are known to exist in practical applications of Fig.
232. One such procedure is as follows.

We begin by defining that, in our work here, the ‘‘resonant’’ frequency will be the
frequency at which XL ¼ XC.

In regard to Fig. 232, since the primary and secondary circuits separately consist of
equal parallel values of R, L, and C, it follows that the primary and secondary circuits
will separately have the same value of resonant frequency, which we’ll denote by ‘‘!0’’
radians/second. (Our equations will appear less cluttered up if we use ‘‘rad/sec’’ instead of
‘‘cycles/sec,’’ where, as always, ! ¼ 2pf .) Thus, to begin, we define that, in Fig. 232, the
resonant frequency is defined by the equation

!0L ¼ 1

!0C
ð401Þ

For frequencies other than the resonant frequency we write ‘‘!’’ instead of ‘‘!0.’’ Thus,
XL ¼ !L and XC ¼ 1=!C will denote reactance values at any frequency !, while the
notations X0L ¼ !0L and X0C ¼ 1=!0C will denote reactance values at the resonant fre-
quency.

Next, after a certain amount of trial and error, we find that the following algebraic
manipulations produce some very useful relationships. Let us begin by writing

XL � XC ¼ !L� 1

!C
¼ !!0L

!0

� !0

!!0C

CHAPTER 10 Magnetic Coupling. Transformers244

Fig. 238



and thus, by eq. (401), we have that

ðXL � XCÞ ¼ !0L

�
!

!0

� !0

!

�
ð402Þ

Next note that

!

!0

� !0

!
¼ !2 � !2

0

!0!
¼ !� !0

!0

� ��
!þ !0

!

�
ð403Þ

In the above equation let

d ¼ !� !0

!0

ð404Þ

in which !� !0 is the frequency difference between any frequency ! and the resonant
frequency !0, as illustrated in the figure below.

Thus, in eq. (404) we see that d is the FRACTIONAL DEVIATION FROM RESO-
NANCE for any given frequency !. (For instance, if ! ¼ 1:02!0, then d ¼ 0:02; that is, !
is two percent greater than !0.)

In our work here, !0 will be the frequency of the ‘‘carrier wave,’’ while ! will be the
highest side-band frequency of importance in the modulated wave. Thus, to satisfactorily
amplify a given modulated wave, the circuit of Fig. 232 should pass all frequencies in the
range !0 � !.

Returning now to eqs. (402) through (404), we see that

ðXL � XCÞ ¼ !0Ld

�
!þ !0

!

�
or, since (by eq. (404)) ! ¼ d!0 þ !0, the above equation becomes

ðXL � XCÞ ¼ !0Ld
d þ 2

d þ 1

� �
ð405Þ

At this point let’s pause to consider what actual values of d we might expect to
encounter in practical work. In doing this, it should be noted that the double-tuned circuit
of Fig. 232 is especially suited for use as an ‘‘intermediate frequency’’ (IF) amplifier in AM
and FM receivers. In this regard consider, for example, the standard broadcast-band FM
receiver. Here f0 (the IF) is generally selected to be 10,700 kHz (10.7MHz), with side bands
extending to 100 kHz either side of f0. Thus in this case the value of d is, by eq. (404),*
equal to

d ¼ ð10,800 � 10,700Þ=10,700 ¼ 0:01, approx:

This illustrates that the value of d will normally be very much less than 1, and thus in
practical engineering work eq. (405) can be written as

ðXL � XCÞ ¼ 2!0Ld ð406Þ
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Now, going back to eq. (400), replace (XL � XC) with the right-hand side of the above
equation. Next, in eq. (400), set Xm ¼ !M ¼ k!L (by eq. (371)) and also set XC ¼ 1=!C.
Doing this, eq. (400) becomes

�GG ¼ �jgmkL=!C
2

r2 þ k2!2L2 � 4!2
0L

2d2 þ j4r!0Ld
ð407Þ

Next, what is called the ‘‘Q’’ factor of an inductor coil is universally defined as the ratio
of the REACTANCE of the coil to its RESISTANCE. If the coil appears in a resonant
circuit, then we’ll define the Q in terms of the resonant frequency of the circuit; thus

Q ¼ !0L

r
ð408Þ

where r is the total resistance in series with the coil, including any resistance the coil
windings may have.

One reason it’s convenient to work in terms of Q is because it’s easy to find both the
inductance of a coil and its Q by use of a standard piece of laboratory equipment called a
‘‘Q-meter.’’

Let us therefore write our equations in terms of Q; thus, noting that r ¼ !0L=Q, eq.
(407) becomes

�GG ¼ �jgmkL=!C
2

!2
0L

2

Q2
þ k2!2L2 � 4!2

0L
2d2 þ j4!2

0L
2d

Q

ð409Þ

We next might note that the second term in the denominator of the above equation can
be written as

k2!2L2 ¼ k2!2!2
0L

2=!2
0 ¼ k2!2

0L
2

�
!

!0

�2

and, upon making this change, note that !2
0L

2 factors from the denominator. Doing this,
then multiplying the numerator and denominator by Q2, eq. (409) becomes

�GG ¼ �jgmLkQ
2=!C2

!2
0L

2½1 þ k2Q2ð!=!0Þ2 � 4Q2d2 þ j4Qd� ð410Þ

Now multiply the denominator by 1=!2
0L

2 and the numerator by !2
0C

2 (which is per-
missible, because, by eq. (401), 1=!0L ¼ !0C). Doing this, eq. (410) becomes

�GG ¼ �jgm!0LQ
2ð!0=!Þk

1 þ k2Q2ð!=!0Þ2 � 4Q2d2 þ j4Qd
ð411Þ

At this point let’s pause to consider some relationships that are known to exist in
practical applications of Fig. 232. To make the first point, note that, by eq. (404),

!

!0

¼ 1 þ d

and therefore (see discussion following eq. (405)) it follows that, for almost all practical
applications, it’s perfectly permissible to write that (!=!0Þ ¼ ð!0=!Þ ¼ 1; hence, for prac-
tical purposes eq. (411) becomes

�GG ¼ �jgm!0LkQ
2

1 þ k2Q2 � 4d2Q2 þ j4dQ
ð412Þ
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In the above it might seem, at first glance, that the entire denominator could be reduced
to 1, since, in practical work, d and k are both very much less than 1. This, however, will
not be the case because in practical work Q will generally be much greater than 1 (a value
of Q ¼ 100 is entirely possible). Thus products of the forms ‘‘dQ’’ and ‘‘kQ’’ can have
significant values, and hence must not be dropped from the denominator.

In the above equation the voltage gain �GG is expressed in complex form. However, in
most work it will be sufficient to know only how the magnitude of �GG varies with frequency.
With this in mind, let us write eq. (412) in the form

j �GGj ¼ G ¼ ðgm!0LÞ
kQ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 þ k2Q2 � 4d2Q2Þ2 þ 16d2Q2

q ð413Þ

In the above, remember that d is the ‘‘fractional deviation of any frequency ! from the
resonant frequency !0’’ (thus d ¼ 0 for ! ¼ !0). What we now wish to investigate is how
the value of k affects the way in which G varies relative to the value of d. That is, how the
value of k affects the shape of the curve of G versus d.

As an illustration of how G varies with d, let’s first consider a specific value, after which
we’ll point out some practical, general conclusions regarding Fig. 232.

Let us take, as our example, the case for Q ¼ 50 (a reasonable value). Then, for this
value of Q (and omitting the constant multiplier gm!0L), eq. (413) becomes

G ¼ 2500kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ 2500k2 � 10,000d2Þ2 þ 40,000d2

q ð414Þ

in which we’ll take d as the independent variable and k, the coefficient of coupling, as a
parameter whose effect we wish to investigate.

In regard to k, it should be noted that what is called ‘‘critical coupling’’ is defined as
being equal to 1=Q. Thus, if ‘‘kc’’ denotes critical coupling, we have that kc ¼ 1=Q. Hence,
in the present example we have that kc ¼ 1=50 ¼ 0:02 ¼ 2%.

In the above example it will be interesting to plot the curves of G versus d for several
different values of the parameter k; let us select the values k ¼ 0:01, k ¼ kc ¼ 0:02, k ¼ 0:03.
To do this, we successively substitute into eq. (414) the chosen values of k, with the results
shown in the table below, with final calculator values rounded to one decimal place.

The above results are plotted in Figs. 239 and 240, in which d, on the horizontal axis, is
understood to be multiplied by 10�2.

In regard to the above, let’s return to Fig. 232 and first suppose that the two coils are
physically far apart, so that only very ‘‘loose coupling’’ exists between the coils. As we
would expect, the voltage gain would be quite low in such a case. This would, for example,
be the condition for the case of k ¼ 0:01 in Fig. 239.
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Value of G Value of G Value of G
d for k ¼ 0:01 for k ¼ 0:02 for k ¼ 0:03

0.000 20.0 25.0 23.1

�0.005 17.7 24.8 23.7

�0.010 12.4 22.4 24.9

�0.020 5.2 11.2 18.4

�0.030 2.6 5.4 9.0

�0.040 1.5 3.1 5.0



Now, in order to increase the gain, we would naturally move the two coils closer to
each other, thus increasing the value of k. However, as we continue to move the coils
closer and closer together, a seemingly peculiar effect takes place, as follows.

At first, as the value of k increases, the value of the gain at resonance also increases, as
we would expect. This trend, however, continues only until we reach the condition of
CRITICAL COUPLING, at which point the gain at resonance has reached its maximum
possible value; this would be the condition for the example case of k ¼ kc ¼ 0:02 in Fig. 239.
If, now, the value of k is increased BEYOND the value of kc, we find that the gain at the
normal center frequency decreases, while the ‘‘gain versus frequency’’ curve begins to
show TWO SEPARATE RESONANT PEAKS, one below d ¼ 0 and one above d ¼ 0;
an example of this condition is illustrated for the case of k ¼ 0:03 in Fig. 240. In this state
the circuit is said to be ‘‘overcoupled.’’ We thus find that, as the value of k increases (beyond
the value of kc), the gain at d ¼ 0 continues to decreasewhile the separation between the two
high peaks continues to increase. Hence for large values of k the ‘‘G versus d’’ curve would
become highly distorted, so that the circuit of Fig. 232 would become useless.

Having said this, however, it should be noted that the use of a relatively SMALL
AMOUNT of overcoupling (as in Fig. 240) can be used as a practical way to produce a
relatively good type of ‘‘band-pass’’ circuit.

In regard to the last statement, compare the curves for k ¼ 0:02 and k ¼ 0:03 in Figs.
239 and 240. Note that, compared with k ¼ 0:02, the somewhat overcoupled case of
k ¼ 0:03 produces (for most practical purposes) a nearly flat-topped gain curve from
approximately d ¼ �1 to d ¼ þ1. Also note that the gain falls off quite rapidly for
frequencies beyond the region of the two peaks. Hence, by a proper choice of k, Fig.
232 can be made to serve as a reasonably good band-pass type of circuit.

This makes the circuit of Fig. 232 especially useful as an amplifier of high-frequency
modulated carrier waves. This is because such a circuit will pass, with almost uniform gain,
both the carrier wave and the necessary side-bands either side of the carrier, while effec-
tively discriminating against possible nearby interfering signals.

In closing, the explanation, in words, for the existence of a double-peaked gain curve
can be summarized, very briefly, as follows.

Taking Fig. 240 as an example, consider, first, the condition of the circuit in the
neighborhood of d ¼ �1. Since the frequency here is less than !0, it follows that XC is
greater than XL in both the primary and secondary circuits. Hence the reactance reflected
into the primary coil is inductive in nature,* and in an amount sufficient to increase the
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inductive reactance of the primary coil to a point where it resonates with the primary
capacitor at a frequency less than !0. This causes increased voltage to appear across the
primary load, and ultimately across the output capacitor on the secondary side at a
frequency less than !0.

Now consider the circuit in the neighborhood of d ¼ þ1. Since the frequency here is
greater than !0, it follows that XL is greater than XC in both the primary and secondary
circuits. Hence the reactance reflected into the primary coil is capacitive in nature, and in
an amount sufficient to decrease the inductive reactance of the primary coil to a point
where it resonates with the primary capacitor at a frequency greater than !0. This again
causes increased voltage to appear across the primary load, and ultimately across the
output capacitor on the secondary side at a frequency greater than !0.

Lastly, consider the condition for d ¼ 0 in Fig. 240. Here the frequency is !0, which is
actually the basic resonant frequency of the circuit. This is because !0 is the only frequency
at which the primary and secondary circuits are simultaneously resonant.

We have discovered, however, that for larger values of k or M the gain at !0 can be less
than the gain at the other two resonant frequencies above and below !0. To see why this
can be true recall, from eq. (387), that

�ZZref ¼ !2M2= �ZZ2

where �ZZ2 is the series impedance of the secondary circuit considered by itself. Since �ZZ2 has
its minimum value at resonance ( �ZZ2 ¼ r at !0), it follows that a comparatively large value
of resistance can be reflected into the primary coil at resonance, so that the primary
current, for larger values of M, could be less at !0 than at the other two resonant
frequencies. Thus the voltage induced into the secondary circuit at !0 could be less than
at the other two resonant frequencies, causing a reduced value of secondary current, with
the final result of reduced voltage drop across the output capacitor.

Problem 198
Suppose two coils are wound in the same sense on a cylindrical coil form, as in Fig.
241. Let it be given that an instrument for the measurement of inductance is avail-
able, and that the coils have been found to have inductances of L1 and L2 henrys, as
shown.

In the above, it’s also possible to find the value of the coefficient of coupling k by
making two additional inductance measurements. The first measurement is made
with the coils connected so that their magnetic fields AID each other, and the second
is made with the coils connected so that their magnetic fields OPPOSE each other; let
us denote these results by Laid and Lopp.

Find, now, the equation for k in terms of all of the above measurements. (Note: in
doing this, it will be convenient to imagine that a generator of V volts is applied to
each of the two different conditions.)
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10.6 The Ideal Iron-Core Transformer
In the following we’ll be dealing, as usual, with rms sinusoidal voltages and currents.

In order for a transformer to operate effectively, the primary current must be able to
induce an ADEQUATE MAGNITUDE OF VOLTAGE into the secondary coil. Thus, if
�II1 is the primary current, then (see eq. (379)) the magnitude of voltage induced into the
secondary coil is equal to

V2 ¼ !MI1

or, by eq. (371),

V2 ¼ !k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
I1 ð415Þ

Fundamentally, the magnitude of V2 is proportional to the RATE OF CHANGE of
primary current and, for a given situation, the rate of change of primary current increases
as the frequency increases. (See discussion following Fig. 128 in section 8.1.) Thus, at the
higher frequencies (let us say above the audio range), it’s not difficult to obtain an ade-
quate value of V2. Let us, therefore, now consider the situation at the low frequencies such
as, for example, at the power-line frequency of 60 Hz.

Inspection of eq. (415) shows that, in order to produce an adequate value of V2, we
could take one or more of the following steps:

1. increase the primary current I1;

2. increase the value of the coefficient of coupling k;

3. increase the inductances of the primary and secondary coils.

Possibility (1) must be avoided if at all possible, one reason being to prevent excessive
power loss in the primary coil.

Next, concerning possibility (2), we should strive to make the value of the coefficient of
coupling, k, as close as possible to its maximum theoretical value of 1. This is done by
winding the primary and secondary coils as close together as possible.

Finally, and this is where the iron core comes into the picture, we must utilize
possibility (3) and make the inductances of the primary and secondary coils as large as
possible.

From a practical standpoint, however, it would be difficult to get the large inductance
values required for operation at low frequencies without using an iron core. This is
because, in order to get the large number of flux linkages required for large L, we
would have to use very large coils containing perhaps many hundreds of turns of wire,
which would, in itself, introduce other problems and practical difficulties.

These difficulties are avoided by winding the primary and secondary coils on a com-
mon, closed ‘‘iron core,’’ as illustrated in Fig. 242.

The ‘‘iron core’’ of Fig. 242 is actually constructed of thin sheets or ‘‘laminations’’ of
silicon steel bolted tightly together. (The laminated construction greatly reduces energy
losses generated in the iron core by the rapidly changing magnetic flux.) In electrical
diagrams, the presence of an iron core is indicated by drawing several vertical lines
between the primary and secondary coils, as shown in Fig. 243. The use of the iron
core with its high value of permeability allows the production of a large amount of flux
with only a relatively few turns of wire. Hence, we can greatly reduce the number of turns
and still have enough flux linkages to produce the large values of L1 and L2 required for
operation at the low frequencies.

CHAPTER 10 Magnetic Coupling. Transformers250



With these points in mind, the IDEAL IRON-CORE TRANSFORMER is defined as a
theoretical transformer having the following characteristics.

(a) ZERO ENERGY LOSSES, which means that the primary and secondary coils
have zero resistance, and no energy loss in the iron core.

(b) UNITY COEFFICIENT OF COUPLING, that is, k ¼ 1; hence,
M ¼ k

ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p ¼ ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
.

(c) The inductive reactances X1 and X2 of the primary and secondary coils are ‘‘infi-
nitely great’’ in value, but, for any given transformer, the RATIO of X1 to X2 is a
constant finite number a; thus

a ¼ X1=X2

Now let a finite load impedance of �ZZL ¼ Rþ jX ohms be connected to the output
terminals of an ‘‘ideal’’ transformer, as in Fig. 244.

Thus we have

!L1 ¼ X1 ¼ inductive reactance of primary coil

!L2 ¼ X2 ¼ inductive reactance of secondary coil

!M ¼ !
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!L1!L2

p
¼

ffiffiffiffiffiffiffiffiffiffiffi
X1X2

p
Hence, by eq. (387) in section 10.3, the impedance �ZZin seen looking into terminals (1, 1)

in Fig. 244 is equal to

�ZZin ¼ jX1 þ
X1X2

Rþ jðX2 þ XÞ ¼ jaX2 þ
aX2

2

Rþ jðX2 þ XÞ ðsince X1 ¼ aX2Þ
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Now, upon rationalizing and collecting like terms, you should find that the above
relationship becomes

�ZZin ¼ aR
X2

2

R2 þ ðX2 þ XÞ2
" #

þ ja
R2X2 þ XX2

2 þ X2X2

R2 þ ðX2 þ XÞ2
" #

ð416Þ

Now, in accordance with condition (C), we allow X2 to become infinitely great in value.
Doing this, and holding everything else constant, notice that both the real and imaginary
parts of eq. (416) take the form ‘‘infinity over infinity,’’ 1=1. Since ‘‘infinitely great’’ is
not a specific value, 1=1 is said to be an ‘‘indeterminant’’ form.

This, however, does not mean that a definite, specific answer can never be found in such
a case. If an answer does exist, it can sometimes be found by first merely changing the form
of the given expression and then allowing the variable to become infinitely great. This is
true for the case of eq. (416) as follows.

First divide the numerators and denominators in both of the fractions by X2
2 . Doing

this, and noting that, algebraically,

ðX2 þ XÞ2=X2
2 ¼ ð1 þ X=X2Þ2

eq. (416) becomes

�ZZin ¼ aR
1

R2=X2
2 þ ð1 þ X=X2Þ2

" #
þ ja

R2=X2 þ X þ X2=X2

R2=X2
2 þ ð1 þ X=X2Þ2

" #

Now let X2 become infinitely great, X2 ! 1. When this happens, note that 1=X2

approaches the value zero, that is,

when X2 ! 1; then 1=X2 ! 0

and therefore (remembering that R and X , in Fig. 244, have only finite values) we see that,
for the IDEAL CASE of infinitely great X2, �ZZin becomes equal to

�ZZin ¼ aðRþ jXÞ ¼ a �ZZL ð417Þ
Since a is a real number, eq. (417) shows that the ideal transformer is an impedance-
matching device that changes only the MAGNITUDE of the load impedance; that is, the
phase angle of �ZZin is the same as the phase angle of �ZZL.

While it’s impossible, of course, to build a true ideal transformer, a well-designed iron-
core transformer will come very close to being ideal at low frequencies. For example, a high-
quality audio transformer, designed for use in the amplifier of a high-fidelity sound system,
may well have both an efficiency and a coefficient of coupling in excess of 99%. So, in many
cases an actual transformer can be considered to be ideal, for practical engineering purposes.

Let’s continue now, first with a brief mention of what is called the ‘‘magnetizing
current’’ of an iron-core transformer.

In doing this, we’ll refer to Fig. 244 and assume that, for practical purposes, the
transformer can be considered to be ‘‘ideal.’’ As we have seen, this means that the values
of the reactances X1 and X2 must be very great. Since the primary and secondary coils are
to have only relatively small numbers of turns of wire, this means that, to satisfy the
requirement of large values of X1 and X2, the iron core must possess a very high value
of relative permeability.*
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Now suppose, in Fig. 244, that a sinusoidal voltage of V reference volts is applied to the
input terminals with the secondary side open-circuited. Then �ZZin ¼ jX1, and the input
current that flows in this condition is called the transformer ‘‘magnetizing current,’’
which we’ll denote as �IIm. By Ohm’s law,

�IIm ¼ V=jX1 ¼ �jðV=X1Þ
showing that, since X1 is very large, the magnetizing current of a high-quality iron-core
transformer is a VERY SMALL CURRENT, LAGGING THE APPLIED VOLTAGE V
BY 90 DEGREES. Recall that true power P in an ac circuit is, by eq. (227) of Chap. 8,
equal to P ¼ VI cos �, where � is the phase angle between V and I . Since for the above
condition � ¼ 908, and since cos 908 ¼ 0, we see that the magnetizing current consumes
NO ENERGY, and is thus spoken of as the ‘‘wattless magnetizing current.’’

In this regard, let us note that in a high-quality iron-core transformer the amount of
magnetic flux in the iron core, and the amount of magnetizing current, both remain very
nearly constant in value, independent of the amount of load current drawn by ZL. This is
because when alternating current flows in the secondary winding it tends to oppose or
‘‘buck’’ the alternating flux produced in the core by the primary current (this is in accor-
dance with Lenz’s law, section 7.4). This reduction of alternating flux causes a lower
counter emf to be induced into the primary coil, which at once allows more current to
flow into the coil, bringing the flux back up to its previous level.

To continue on, let us note that the important eq. (417) is expressed in terms of the
constant a, defined as

a ¼ X1

X2

¼ !L1

!L2

¼ L1

L2

which shows that eq. (417) is basically expressed in terms of the ratio of the inductances of
the primary and secondary coils.

Actually, however, in practical work (dealing with iron-core transformers only) it’s
much more convenient to deal with TURNS RATIO than inductance ratio. The turns
ratio T of a transformer is defined as

T ¼ number of turns of wire on primary coil

number of turns of wire on secondary coil
¼ N1

N2

It thus follows that, in order to express eq. (417) in terms of turns ratio we must know
the relationship that exists between the inductance L of a coil and the number of turns N the
coil has. Fortunately, for the ideal case of k ¼ 100% it is known that the INDUCTANCE
of an ideal coil is proportional to the SQUARE of the number of turns, that is,

L ¼ k 0N2

where k 0 is a constant of proportionality.* Thus, since the two similarly constructed coils
of Fig. 244 would have the same value of k 0, it would be true that

L1 ¼ k 0N2
1 and L2 ¼ k 0N2

2

and hence, upon substituting these values in the above equation for a, we have that

a ¼ N2
1=N

2
2 ¼ ðN1=N2Þ2 ¼ T2
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and thus eq. (417) can be written in the more practical form

�ZZin ¼ T2ðRþ jXÞ ¼ T2 �ZZL ð418Þ
where T is the ratio of PRIMARY TURNS TO SECONDARY TURNS.

Another important fact can be deduced as follows. Since k ¼ 100% in the ideal case,
this means that the same value of flux, created by the magnetizing current, links every turn
of the transformer. Hence the ‘‘volts induced per turn’’ is the same on both the primary
and secondary sides. Thus, if V1 is the voltage across the N1 primary turns and V2 is the
voltage across the N2 secondary turns, then

V1

N1

¼ V2

N2

that is,

V1

V2

¼ N1

N2

¼ T ð419Þ

showing that, in an ideal transformer, the VOLTAGE RATIO is equal to the TURNS
RATIO.

It is also true that the ‘‘power input’’ and the ‘‘power output’’ of any type of transfor-
mer are equal to Pin ¼ V1I1 cos�1 and Pout ¼ V2I2 cos�2. In an ideal transformer, how-
ever, �1 ¼ �2 and hence, in an ideal transformer,

V1I1 ¼ V2I2

that is,

V1

V2

¼ I2
I1

ð420Þ

Problem 199
A load impedance of (3 � j5) ohms is connected to the secondary terminals of an
ideal transformer of turns ratio 4 to 1, primary to secondary. A constant value of 240
volts rms is applied to the primary terminals. Find the following:

(a) impedance seen looking into primary terminals,
(b) secondary current,
(c) power to load.

Problem 200
A transformer has a primary inductance of L1 henrys and a secondary inductance of
L2 henrys, with coefficient of coupling k. Assuming negligible winding resistance,
show that, if the secondary terminals are shorted together, the impedance seen
looking into the primary terminals would be equal to

�ZZin ¼ j!L1ð1 � k2Þ ohms

Problem 201
An iron-core power transformer has primary inductance of 4 henrys and secondary
inductance of 3 henrys, with 99.5% coefficient of coupling. The windings have
negligible resistance. If the transformer is connected to a 120 volt, 60 Hz power
line, how much line current would theoretically flow if the secondary terminals
were accidentally shorted together?
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10.7 The Three-Phase Power System.
Introduction

Let us begin with the ordinary single-generator, two-wire, ac circuit of Fig. 245.

We’ll refer to this as a ‘‘single-phase’’ circuit, in which the basic equations for current
and power are

�II ¼ �VV= �ZZL and P ¼ VI cos�

where V and I denote the magnitudes of the rms vector quantities �VV and �II , and where � is
the phase angle between the �VV and �II vectors.

The single-phase circuit of Fig. 245 is, of course, very basic and much used in low-
power applications. It is, however, not well-suited for the generation and transmission of
large amounts of power, nor for the operation of large industrial-type ac motors. Thus,
instead of the simple single-phase circuit of Fig. 245, almost all commercial electric power
is generated and transmitted using what is called the ‘‘three-phase’’ system.*

There are important reasons for this. One is that the overall generation and transmis-
sion efficiency of three-phase systems is considerably higher than that of single-phase
systems.

Another reason (as we’ll show later on) is the fact that the INSTANTANEOUS
POWER in a balanced three-phase system is constant, which is completely unlike the
pulsating form of power in a single-phase system. This is an important advantage in the
operation of high-horsepower ac motors. Also, in regard to the much-used single-phase
system of Fig. 245, there are three such single-phase circuits available in a three-phase
circuit.

Three-phase power is produced by a ‘‘three-phase generator,’’ which can basically be
described as follows.

A three-phase generator fundamentally consists of three separate but identical
SINGLE-PHASE GENERATORS rigidly attached to a common shaft. The three gen-
erators produce EQUAL MAGNITUDES OF RMS VOLTAGE of the same frequency,
but the three sets of windings are positioned on the shaft so that there is a PHASE
DISPLACEMENT OF 120 DEGREES between the three single-phase voltage waves.
The three separate generators are then connected together to form ONE COMPLETE,
SYMMETRICAL, SINUSOIDAL THREE-PHASE GENERATOR.

In regard to the last statement, let us note that the three component generators will be
connected together to form either a ‘‘Y-connected’’ generator or ‘‘D-connected’’ (delta-
connected) generator. These two basic generator connections are shown in Figs. 246 and
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247, in which �VVa, �VVb, and �VVc are the three single-phase voltages which, from now on, will
be called the PHASE VOLTAGES.

In the above, A, B, and C denote the OUTPUT TERMINALS of the three-phase
generators. These three terminals will be connected, by means of a three-wire transmission
line, to a three-phase load. A three-phase system is thus basically a three-wire system,
driven by three interconnected single-phase generators of the same frequency and same
rms voltage but with phase differences of 120 degrees. A three-phase generator satisfying
these conditions is said to be a BALANCED generator.

10.8 Y-Connected Generator; Phase and Line
Voltages

In all of our work we’ll assume a Y-connected type of generator, since this is normally the
connection used in three-phase power generation, and we’ll assume the generator to be
completely ‘‘balanced,’’ unless specifically stated otherwise. (The load impedance, how-
ever, can be of either the Y-type or the D-type.)

This is illustrated in Fig. 248, in which a balanced Y-connected generator is connected
to a balanced three-phase load. (The load is said to be ‘‘balanced’’ because all three
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impedances are given to have the same value of �ZZ ohms.) In the figure we’ve used, for the
purpose of comparison, both the standard ‘‘arrow’’ notation and the ‘‘double-subscript’’
notation to denote the positive direction of the rms voltage and current vectors relative to
some particular ‘‘reference vector.’’*

In this section we wish to find the relationships between the PHASE VOLTAGES
and the LINE VOLTAGES, the ‘‘line voltage’’ being the voltage between any two output
lines (shown as �VVAB, �VVBC, and �VVCA in the figure).

With this in mind, let us concentrate our attention on the generator end of the figure,
paying special attention to the subscript notation, in which SMALL subscript letters
denote PHASE voltages and LARGE subscript letters denote LINE voltages.

Let us take the junction point ‘‘n’’ as the common ‘‘reference point’’ in the system. The
three individual vector phase voltages are then given with respect to the point n. Thus, if
we take the phase voltage �VVna to be the ‘‘reference vector,’’ then let us agree that, by
definition, we have

�VVna ¼ Vna=08 �VVnb ¼ Vnb=�1208 �VVnc ¼ Vnc=�2408 ð421Þ
where

Vna ¼ Vnb ¼ Vnc ¼ Vp

because it is given that the phase voltages all have EQUAL MAGNITUDES. Thus the
relationships in eq. (421) can be written as

�VVna ¼ Vp=08 �VVnb ¼ Vp=�1208 �VVnc ¼ Vp=�2408 ð422Þ
where Vp is the MAGNITUDE of the phase voltages.

Now, in the figure, imagine the junction point n to be the origin of the complex plane,
and that Vna lies on the positive x-axis. Then the quantities in eq. (422) could be written in
the complex rectangular form Vpðcos �þ j sin �Þ; thus, using degrees, and remembering
that cosð��Þ ¼ cos � and sinð��Þ ¼ � sin �,

�VVna ¼ Vpðcos 0 þ j sin 0Þ ¼ Vp ð423Þ
�VVnb ¼ Vp½cosð�120Þ þ j sinð�120Þ�

¼ Vpðcos 120 � j sin 120Þ ¼ ð�0:5 � j0:8660ÞVp ð424Þ
�VVnc ¼ Vp½cosð�240Þ þ j sinð�240Þ�

¼ Vpðcos 240 � j sin 240Þ ¼ ð�0:5 þ j0:8660ÞVp ð425Þ
Let us now look VERY CAREFULLY at Fig. 248, beginning with the two lines A and

B, shown again in Fig. 249.
In Fig. 249, note that �VVAB is the voltage drop from line A to line B. If, now, we choose

to start at A and trace around the loop in the cw sense (following the usual rule of setting
the vector sum of the voltage drops equal to the vector sum of the generator voltages), we
have that

�VVAB ¼ � �VVnb þ �VVna

Then, upon making use of eqs. (424) and (423), you should find that

�VVAB ¼ ð1:5 þ j0:8660ÞVp ð426Þ
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or

�VVAB ¼ 1:732Vp=308 ð427Þ
in which let us note that 1:732 ¼ ffiffiffi

3
p

:*
Next, let’s consider the loop formed by lines B and C, as shown in Fig. 250.
Note that �VVBC is the voltage drop from line B to line C, as shown. If, now, we start at B

and trace around the loop in the ccw sense, we have that

�VVBC ¼ � �VVnc þ �VVnb

and thus, upon making use of eqs. (425) and (424), we find that

�VVBC ¼ �j1:732Vp ð428Þ
or

�VVBC ¼ 1:732Vp=2708 ð429Þ
Lastly, let’s consider the loop formed by lines C and A, as shown in Fig. 251.

Note that �VVCA is the voltage drop from line C to line A; if, now, we start at C and trace
around the loop in the cw sense, we have that

�VVCA ¼ � �VVna þ �VVnc

and hence, upon making use of eqs. (423) and (425), we have that

�VVCA ¼ ð�1:5 þ j0:8660ÞVp ð430Þ
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or (VCA being in the 2nd quadrant)

�VVCA ¼ 1:732Vp=1508 ð431Þ
Now let us summarize what our algebraic work has revealed about the Y-

connected generator of Fig. 248. To begin, let’s bring together the equations for the three
LINE VOLTAGES; thus

by eq: ð427Þ: �VVAB ¼ 1:732Vp=308 ð432Þ
by eq: ð429Þ: �VVBC ¼ 1:732Vp=2708 ð433Þ
by eq: ð431Þ: �VVCA ¼ 1:732Vp=1508 ð434Þ

The first point we wish to note is that inspection of the above three equations shows
that the magnitude of LINE VOLTAGE produced by a balanced Y-connected generator
is equal to 1.732 times the magnitude of the PHASE VOLTAGE; that is

VL ¼ 1:732Vp ð435Þ
where VL is the magnitude of the line voltage; thus

j �VVABj ¼ j �VVBCj ¼ j �VVCAj ¼ VL ð436Þ
The second thing we wish to find is the complete VECTOR DIAGRAM showing the

relationships among the various voltages in Fig. 248. In doing this, let us remember that
the phase voltage �VVna is the reference vector in Fig. 248.

Let us therefore begin with the vector diagram for the PHASE VOLTAGES, which is
the vector diagram representation of eq. (421), as shown in Fig. 252.

Now, to complete our diagram, all we need do is add the LINE VOLTAGE vectors to
Fig. 252. This can be done by noting the following facts.

First, by eq. (432), �VVAB ‘‘leads’’ the reference vector �VVna by 308.
Next, noting that =2708 ¼ =�908, eq. (433) shows that �VVBC ‘‘lags’’ �VVna by 908.
Lastly, noting that =1508 ¼ =�2108, eq. (434) shows that �VVCA ‘‘lags’’ �VVna by 2108.
Combining these facts with Fig. 252 gives the COMPLETE voltage vector diagram for

Fig. 248, as shown in Fig. 253.

Thus, as Fig. 253 shows, in a balanced Y-connected generator the line-voltage vectors
‘‘lead’’ the phase-voltage vectors by 30 degrees.
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Let us note that the transmission of large blocks of power requires that transmission-line
voltage be as high as possible. This is necessary to prevent excessive power loss in the line.
Thus, commercial power-line voltages in the order of 120,000 volts rms are commonly used.

For several reasons, however, it’s not practical to build power generators having such
high output voltages. Thus, in the generation of large amounts of power, the generator will
not usually be connected directly to the outgoing transmission line (as shown in Fig. 248).
Instead, a relatively low value of generator voltage is used, which is then ‘‘stepped up’’ by a
three-phase transformer to the desired high voltage for the transmission line. This is
illustrated in Fig. 254, in which a balanced Y-connected generator is coupled to a trans-
mission line through a ‘‘delta-to-Y’’ (�–Y) step-up transformer.

In Fig. 254, A 0, B 0, and C 0 denote the three wires of the outgoing transmission line.
Actually, in diagrams such as the above, in which operation is at 60 Hz, it’s understood
that it will be necessary to use iron-core transformers. Hence, in practical drawings the
iron-core symbol is omitted, and the above �–Y transformer would be drawn as shown in
Fig. 255.

In Figs. 254 and 255, note that the full generator output (the line voltage) is applied to
each of the three �-connected primary coils. This voltage, after being stepped up by each
individual transformer, then becomes the ‘‘phase voltage’’ on the Y-connected secondary
side.

Problem 202
Given that there is no external load on the �-connected generator of Fig. 247,
explain why there is no current flow around the closed-loop circuit formed by the
three generators.
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Problem 203
(a) In Fig. 248, find the phase voltage if the line voltage is 3300 volts.

(b) Suppose, in Fig. 254, that the transmission-line voltage is required to be 66,000
volts. If each of the three transformers has a turns ratio of 1-to-12
(primary turns to secondary turns), what value of generator phase voltage is
required?

10.9 Current and Power in Balanced
Three-Phase Loads

Here we take up the case in which a balanced Y-connected generator feeds a BALANCED
three-phase load of �ZZ ohms per phase, taking, first, the case of a balanced Y-connected
load. Let us begin by redrawing Fig. 248, now adding some additional notation, as shown
in Fig. 256.

It’s apparent, by inspection, that the above can be a totally symmetrical, balanced
system only if the generator phase voltages are equal to the corresponding voltage drops
in the load; that is, only if

�VVna ¼ �VVn 0a 0 �VVnb ¼ �VVn 0b 0 �VVnc ¼ �VVn 0c 0

Also, in the figure, the three ‘‘line currents’’ are denoted by �IIcc 0 , �IIaa 0 , and �IIbb 0 as shown.
Also note, from direct inspection of the figure, that the three line currents are actually
equal to the ‘‘phase currents’’ (this is true only for a balanced Y-connected load). Since
we’re dealing with a balanced system, it follows that the line currents (and also the phase
currents in this case) all have equal magnitudes; that is

j�IIcc 0 j ¼ j�IIaa 0 j ¼ j�IIbb 0 j ¼ IL ¼ Ip ð437Þ

Next, the POWER, P, produced in the above balanced Y-connected load can be found
as follows. First, as before, let Vp be the equal magnitudes of the three phase voltages.
Then, since Vp and Ip denote the magnitudes of the rms voltages and currents in each of the
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three load impedances, it follows (from section 8.5) that the POWER Pp produced in each
of the three impedances is equal to

Pp ¼ VpIp cos� ð438Þ
and thus the TOTAL POWER PT produced in all three impedances in Fig. 256 is equal to

PT ¼ 3VpIp cos� ð439Þ
where cos� is the same ‘‘power factor’’ of each of the three equal impedances. Or since, by
eq. 435,

Vp ¼ VL=
ffiffiffi
3

p

and also since,

Ip ¼ IL

eq. (439) can also be written as

PT ¼
ffiffiffi
3

p
VLIL cos� ð440Þ

which gives the total power produced in the balanced Y-connected system of Fig. 256 in
terms of line voltage and line current.

Problem 204
In Fig. 256, suppose the generator phase voltage is 330 volts and �ZZ ¼ 15 þ j9 ohms.
Find the total power output of the generator. (Answer: 16,014.03 watts)

Problem 205
In problem 204, show that the line currents lag the line voltages by approximately
618.

Next, suppose the load in Fig. 256 were delta-connected instead of Y-connected. In such
a case the situation at the load-end of the line would be as shown in Fig. 257, where �VVAB,
�VVBC, and VCA denote the three line voltages (as in Fig. 248). Also, let us denote the three
line currents by �IIA, �IIB, and �IIC, as shown.

Let �IIAB, �IIBC, and �IICA denote the three phase currents. Also let �VVAB be the reference
vector, and let � be the phase angle between the phase voltages and phase currents, as
shown in Fig. 258.
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Now, in regard to Fig. 257, the power PER PHASE is equal to

Pp ¼ VpIp cos�

hence,

TOTAL POWER ¼ PT ¼ 3VpIp cos� ð441Þ
as in eq. (439), where Vp and Ip are the magnitudes of the phase voltages and phase
currents and cos� is the ‘‘power factor’’ of each of the three equal impedances �ZZ.

Inspection of Fig. 257 shows, however, that the line voltage is EQUAL to the phase
voltage in a �-connected load. Thus eq. (441) can be written as

PT ¼ 3VLIp cos� ð442Þ
where VL is the magnitude of line voltage. In the equation, however, we’d like also to have
the current expressed in terms of line current; this can be done as follows.

Consider (for example) junction point A in Fig. 257; by Kirchhoff’s current law, the
current equation at A is equal to

�IIA þ �IICA � �IIAB ¼ 0

thus,

�IIA ¼ �IIAB � �IICA ð443Þ
Now, for simplicity, let’s consider �IIAB as the reference vector (this will have no effect on

the relative magnitudes of the phase and line currents). Then, since �IICA lags �IIAB by 2408,
and since the phase currents all have equal magnitudes, eq. (443) becomes (angles in
degrees)

�IIA ¼ ðIp=0 � Ip=�240Þ ¼ ðIp=0 � Ip=120Þ
¼ ðcos 0 þ j sin 0 � cos 120 � j sin 120ÞIp

thus,

�IIA ¼ ð1:5 � j0:8660ÞIp
or since, from inspection of Fig. 257,

jIAj ¼ jILj
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the last equation becomes

jIAj ¼ IL ¼
ffiffiffi
3

p
Ip

hence, in magnitudes,

Ip ¼ IL=
ffiffiffi
3

p

thus eq. 442 becomes

PT ¼
ffiffiffi
3

p
VLIL cos� ð444Þ

where

jIAj ¼ jIBj ¼ jICj ¼ IL

Thus, comparison of eqs. (440) and (444) shows that PT is calculated the same way for
either a Y-connected or a �-connected load.

In the above, be reminded that VL and IL are the rms values of line voltage and line
current, and thus PT is the total average power produced in a balanced three-phase load.

In section 10.7 we mentioned that the total INSTANTANEOUS POWER in a
balanced three-phase system is constant. This interesting and important fact can be proved
as follows. In Fig. 257, let va, vb, and vc denote the instantaneous values of the three
sinusoidal line voltages; then, letting V 0 denote the three equal peak voltages, the instan-
taneous values of the three voltage waves are

va ¼ V 0 sin!t

vb ¼ V 0 sinð!t� 1208Þ*
vc ¼ V 0 sinð!t� 2408Þ ¼ V 0 sinð!tþ 1208Þ

Then, since the above voltages work into identical loads, the corresponding instanta-
neous currents would be, letting I 0 denote the three equal peak currents,

ia ¼ I 0 sinð!tþ �Þ
ib ¼ I 0 sinð!tþ �� 1208Þ
ic ¼ I 0 sinð!tþ �þ 1208Þ

where � is the phase angle between the voltage and current waves. Then the total
INSTANTANEOUS POWER p is equal to

p ¼ vaia þ vbib þ vcic

which, upon making the above substitutions, becomes

p ¼ V 0I 0ððsin!tÞ sinð!tþ �Þ þ ½sinð!t� 1208Þ� sinð!tþ �� 1208Þ
þ ½sinð!tþ 1208Þ� sinð!tþ �þ 1208ÞÞ

Note that the above result seemingly says that p is a function of time t, that is, that p
varies from instant-to-instant, thus contradicting the statement we made that p remains
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constant, independent of time. If, however, you have the patience to carefully apply the
following trigonometrical identities

sin x sin y ¼ 1
2 ½cosðx� yÞ � cosðxþ yÞ� ðnote 25 in AppendixÞ

and

cosðxþ yÞ ¼ cos x cos y� sin x sin y ðnote 6 in AppendixÞ
to the foregoing equation for p, you’ll find that the expression actually reduces to

p ¼ 1:5V 0I 0 cos� ð445Þ
which, since V 0, I 0, and � are all constants in any given case, shows that p is also constant
in any given case in any balanced three-phase system.

Problem 206
Show that p, in eq. (445), is EQUAL to PT in eqs. (440) and (444).

10.10 The Unbalanced Case; Symmetrical
Components

Let us begin by observing that a SINGLE plane vector is defined in terms of two inde-
pendent variables, its MAGNITUDE and its ANGULAR POSITION relative to an
agreed-upon reference axis.

The independent variables are also referred to as ‘‘degrees of freedom’’; thus, a single
plane vector is said to have ‘‘two degrees of freedom.’’ Such a vector, �AA ¼ A=h, is illu-
strated in Fig. 259, where A and h are the two degrees of freedom. (As always, ‘‘positive
angles’’ are measured in the ccw direction from the reference axis.)

Next consider a balanced set of three plane vectors. As we know, this is any set of three
vectors having EQUAL MAGNITUDES and EQUAL PHASE DISPLACEMENTS.

Now let �AA1, �BB1, and �CC1 be such a balanced set, in which the equal phase displacement is
1208, and let us take �AA1 as the ‘‘reference vector,’’ displaced an angle h from the reference
axis, as illustrated in Fig. 260, where j �AA1j ¼ j �BB1j ¼ j �CC1j ¼ A1 ¼ B1 ¼ C1:

We are already familiar with the fact that the vector sum of such a balanced set of
vectors is equal to zero.

In this regard, note that a balanced set of plane vectors has just TWO degrees of
freedom, these being the common magnitudes of the vectors and the angular displacement
h of the reference vector from the reference axis. Thus the common magnitude,
A1 ¼ B1 ¼ C1, and the reference angle h are the ‘‘two degrees of freedom’’ in Fig. 260.
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Next, in Fig. 260, assuming the diagram to be drawn on the complex plane, note that*

�BB1 ¼ �AA1�
j120 and �CC1 ¼ �AA1�

j240

where ‘‘120’’ and ‘‘240’’ are understood to be angles in degrees{ (1208 and 2408), and
thus that general form of the algebraic equation for the balanced case of Fig. 260 can be
written as

�AA1 þ �AA1�
j120 þ �AA1�

j240 ¼ 0 ð446Þ
the right-hand side reflecting the fact that the vector sum of such a balanced set of vectors
is zero.

Now consider an unbalanced set of three plane vectors �AA, �BB, and �CC, such as is illustrated
in Fig. 261, in which let

�SS ¼ �AAþ �BBþ �CC ð447Þ
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* Let �VV ¼ V� ja be a vector quantity on the complex plane. Now multiply �VV by � jb, thus

�VV� jb ¼ V� ja� jb ¼ V� jðaþbÞ

showing that multiplying a vector �VV by � jb rotates �VV through the angle b but does not change the magnitude of �VV .

{ See footnote in connection with eq. (159) in Chap. 6.
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where �SS is the vector sum of the three vectors, in which �SS MAY or MAY NOT be equal to
zero, depending upon the particular circumstances. It follows that such an unbalanced set
of three vectors will, in general, have SIX degrees of freedom (two for each of the indi-
vidual vectors).

As you would expect, unbalanced conditions sometimes do occur in practical three-
phase work. Fortunately, the solution of such problems can be expedited by means of
what is called ‘‘symmetrical components.’’ This is an algebraic procedure based upon
the fact an UNBALANCED set of three vectors can be expressed as the sum of
THREE BALANCED SETS of three vectors each. The procedure is important because
it allows the solution of a more difficult unbalanced problem in terms of the superposition
of three easier balanced problems. In this regard, let us remark that the procedure is not
only of great practical value but is also an interesting example of the application of the
algebra of the complex plane to electric circuit problems. Let us begin our explanations as
follows.

First, we’ve seen that a balanced set of plane vectors possesses just two degrees of
freedom, while an unbalanced set of three plane vectors possesses, in general, six degrees of
freedom.

Now, in regard to physical systems, it is a fundamental fact that the number of degrees
of freedom must remain the same in any valid equivalent description of a system. It thus
follows that it will, in general, require the sum of three balanced sets to replace one
unbalanced set. OUR PROBLEM, therefore, is to find three balanced sets that are vecto-
rially equivalent to A GIVEN UNBALANCED SET of three vectors.

In the method of symmetrical components the problem is solved by resolving the given
unbalanced set into three balanced sets called the ‘‘positive sequence’’ set, the ‘‘negative
sequence’’ set, and the ‘‘zero sequence’’ set. Let us first consider the positive sequence and
negative sequence sets, which we’ll define in connection with Figs. 262 and 263.

In the figures, note that both of the sets are balanced, meaning that �AA1, �BB1, �CC1 have
equal magnitudes, also �AA2, �BB2, �CC2 have equal magnitudes, with the phase displacements
between vectors being 1208 in both sets.

As usual, the vectors can represent either rms values of sinusoidal voltages and currents
or impedances. The vectors themselves, in any given case, always remain fixed in position,
with ‘‘positive angles’’ measured in the ccw sense, as shown in the figures. Note that both
sets are specified relative to the same common origin and reference line.
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In the figures, note that the positive sequence set is identified by the subscript ‘‘1,’’ while
the negative sequence set is identified by the subscript ‘‘2.’’ We’ll use this method of
identification IN ALL OF THE WORK that follows.

Since both sets are balanced, it follows that the vector sum in each case is zero; that is

�SS1 ¼ �AA1 þ �BB1 þ �CC1 ¼ 0

�SS2 ¼ �AA2 þ �BB2 þ �CC2 ¼ 0

)
ð448Þ

Next, in regard to Figs. 262 and 263, the term ‘‘sequence’’ refers to the order in which
the letters appear in the diagram in the ccw sense, as follows.

If (in going around the diagram in the ccw sense) the order of the letters is ‘‘ABC’’ we
are said to have a ‘‘positive sequence’’ of vectors, but if the order is ‘‘ACB’’ we have a
‘‘negative sequence.’’ Thus, in accordance with this definition, Fig. 262 is a positive
sequence of vectors and Fig. 263 is a negative sequence set. The concept of ‘‘sequence’’
is important for the following reason.

First note that, by eq (448), the SUM of the two sequences can be written in the form

�SS1 þ �SS2 ¼ ð �AA1 þ �AA2Þ þ ð �BB1 þ �BB2Þ þ ð �CC1 þ �CC2Þ ð449Þ
in which the left-hand side is the sum of two BALANCED sets of three vectors each, and
(as we’ll show in problem 208) the right-hand side represents an UNBALANCED set of
three vectors; thus eq. (449) shows that it’s possible to represent an unbalanced set of three
vectors (the right-hand side) as the sum of two balanced sets of three vectors each. This is
the basic principle behind the method of ‘‘symmetrical components.’’ The following two
problems will clarify this point.

Problem 207
Let �AA1, �BB1, �CC1 and �AA 0

1, �BB 0
1, �CC 0

1 be two sets of ‘‘positive sequence’’ vectors (note the
‘‘1’’ subscripts). Using eqs. (446) and (449), show that the vector sum of the two sets
is equivalent to a single balanced set of three vectors.

Problem 208
Let �AA1, �BB1, �CC1 be a positive sequence set of vectors, and �AA2, �CC2, �BB2 be a negative
sequence set. Show that the vector sum of the two sets is a single unbalanced set of
three vectors.

The above two problems show that an unbalanced set of three vectors can be repre-
sented as the sum of two balanced sets of three vectors each ONLY if one of the sets is a
positive sequence set and the other a negative sequence set, where ‘‘positive sequence’’ and
‘‘negative sequence’’ are defined in connection with Figs. 262 and 263 where, algebraically,

�BB1 ¼ �AA1�
j120 and �BB2 ¼ �AA2�

j240

�CC1 ¼ �AA1�
j240 and �CC2 ¼ �AA2�

j120

To bring out another important point let us begin by writing eq. (449) in the form

�AA1 þ �AA2 ¼ �AA 0

�BB1 þ �BB2 ¼ �BB 0

�CC1 þ �CC2 ¼ �CC 0

9>=
>; ð450Þ

in which �AA 0, �BB 0, and �CC 0 are the three components of the unbalanced set of vectors.
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We must not conclude from the foregoing, however, that ALL unbalanced sets of three
vectors can be expressed as the sum of just two balanced sets of vectors (one positive
sequence set and one negative sequence set). This is because inspection of eqs. (448) and
(449) shows that eq. (450) is valid only if

�AA 0 þ �BB 0 þ �CC 0 ¼ 0

that is, only if the sum of the vectors in the unbalanced set is equal to zero, a condition
which MAY or MAY NOT be true in practical work. This indicates that a more general
form of eq. (450) is needed, to cover cases in which the sum of the unbalanced vectors is
not equal to zero. In this regard, a more general form of eq. (450) can be arrived at by
thinking in terms of, ‘‘degrees of freedom,’’ as follows.

We recall that, in general, an unbalanced set of three vectors, such as in Fig. 261, has
‘‘six degrees of freedom.’’ So far, however, in Figs. 262 and 263 we have only four degrees
of freedom. Hence, in addition to Figs. 262 and 263 we must, in order to include the most
general unbalanced condition, add one more set of three balanced vectors to bring the
degrees of freedom up to six.

This is done by defining what is called a ‘‘zero sequence’’ set of vectors which consists of
three IDENTICAL vectors, meaning that the three vectors all have the same magnitude of
amplitude at the same angle k with respect to the reference axis, as shown in Fig. 264.

Thus a ‘‘zero sequence’’ set of three vectors has ‘‘two degrees of freedom’’ and, using
the subscript ‘‘0,’’ is defined by writing that

�AA0 ¼ �BB0 ¼ �CC0 ð451Þ
Now, while a zero-sequence set of vectors is a balanced set (in accordance with the

definition following Fig. 259), note that the vector sum is NOT zero (as it is when the
vectors are 1208 apart); instead, for a zero-sequence set we have that

�AA0 þ �BB0 þ �CC0 ¼ 3 �AA0 ¼ 3 �BB0 ¼ 3 �CC0 ð452Þ
Thus, in the three equations that comprise eq. (450), we now add �AA0 to both sides of the

first equation, �BB0 to both sides of the second equation, and �CC0 to both sides of the third
equation. Then, letting �AA 0 þ �AA0 ¼ �AA, and so on, eq. (450) becomes

�AA1 þ �AA2 þ �AA0 ¼ �AA

�BB1 þ �BB2 þ �BB0 ¼ �BB

�CC1 þ �CC2 þ �CC0 ¼ �CC

9>=
>; ð453Þ

where �AA, �BB, and �CC, without subscripts, represent three components of an equivalent
unbalanced set of three vectors having the required six degrees of freedom. Thus we’ve
now expressed an unbalanced set of vectors, �AA, �BB, �CC, in terms of the components of three
balanced sets of vectors.

Now suppose the components of an unbalanced set are known, and we wish to find the
values of the three equivalent balanced sets. That is, let the PROBLEM be: GIVEN the
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values of an unbalanced set, �AA, �BB, and �CC, find the values of the components of the three
balanced sets whose vector sum is equal to the given unbalanced set.

This would seem, offhand, to be a most difficult problem, but fortunately, because of
the symmetry of balanced sets, it turns out not to be so hard after all. Let us proceed as
follows.

First, carefully note, again, the set of equations given just prior to eq. (450); doing this,
and also keeping eq. (451) in mind, note that eq. (453) becomes (using degrees)

�AA1 þ �AA2 þ �AA0 ¼ �AA

�AA1�
j120 þ �AA2�

j240 þ �AA0 ¼ �BB

�AA1�
j240 þ �AA2�

j120 þ �AA0 ¼ �CC

Now, for convenience, let

�aa ¼ � j120 ð454Þ*
then, also{

�aa2 ¼ � j240

and hence the foregoing three equations can be written in the easier-to-handle forms

�AA1 þ �AA2 þ �AA0 ¼ �AA ð455Þ
�aa �AA1 þ �aa2 �AA2 þ �AA0 ¼ �BB ð456Þ
�aa2 �AA1 þ �aa �AA2 þ �AA0 ¼ �CC ð457Þ

Note that we now have three simultaneous equations in three unknowns, �AA1, �AA2, and
�AA0, the values of which can be found in several ways, including the method of elimination.
Let us, however, use the more straightforward method of determinants, as follows.

You’ll recall that the first step in the procedure is to find the value of the determinant
‘‘formed from the coefficients of the unknowns’’ which, as you should now verify from
inspection of the above three equations, is equal to

D ¼
1 1 1

�aa �aa2 1

�aa2 �aa 1

�������
������� ¼ ��aað�aa3 � 3�aaþ 2Þ

Or, since �aa ¼ � j120, then �aa3 ¼ � j360 ¼ 1, the above reduces to

D ¼ 3�aað�aa� 1Þ ð458Þ
To continue on, in our solution of eqs. (455) through (457), let us next find the value of

�AA1; thus

�AA1 ¼

�AA 1 1

�BB �aa2 1

�CC �aa 1

�������
�������

D
¼

�AAð�aa2 � �aaÞ � �BBð1 � �aaÞ þ �CCð1 � �aa2Þ
3�aað�aa� 1Þ
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thus

�AA1 ¼ 1
3 ½ �AAþ �aa�1 �BB� ð1 þ �aa�1Þ �CC�

Note, however, since

�aa ¼ � j120; then �aa�1 ¼ � j120 ¼ � j240 ¼ �aa2 ð�1208 ¼ þ2408Þ
thus

�AA1 ¼ 1
3 ½ �AAþ �aa2 �BB� ð1 þ �aa2Þ �CC� ð459Þ

then, since

�ð1 þ �aa2Þ ¼ �ð1 þ � j240Þ ¼ �ð1 þ cos 240 þ j sin 240Þ
¼ �0:5 þ j0:8660 ¼ � j120 ¼ �aa

eq. (459) becomes

�AA1 ¼ 1
3 ð �AAþ �aa2 �BBþ �aa �CCÞ ð460Þ

hence

�BB1 ¼ �aa �AA1 ð461Þ
and

�CC1 ¼ �aa2 �AA1 ð462Þ
the above three equations being the required components of the POSITIVE SEQUENCE
set of vectors of Fig. 262.

Next, if you very carefully again apply the same procedures to eqs. (455) through (457),
you should find that first

�AA2 ¼ 1
3 ð �AAþ �aa �BBþ �aa2 �CCÞ ð463Þ

then

�BB2 ¼ �aa2 �AA2 ð464Þ
and

�CC2 ¼ �aa �AA2 ð465Þ
these being the components of the NEGATIVE SEQUENCE vectors of Fig. 263.

All that remains now is to find the value of �AA0, which can easily be done as follows. Let
us, in eqs. (455) through (457), add up all the vectors BY COLUMNS; doing this, and
noting that the first and second columns are both balanced vectors, we have that

0 þ 0 þ 3 �AA0 ¼ �AAþ �BBþ �CC

and thus

�AA0 ¼ �BB0 ¼ �CC0 ¼ 1
3 ð �AAþ �BBþ �CCÞ ð466Þ

which are the three equal components of the ZERO SEQUENCE set of Fig. 264.
Thus, GIVEN the components �AA, �BB, �CC, of an UNBALANCED set of three plane

vectors, eqs. (460) through (466) allow us to find the three balanced sets of vectors equiva-
lent to the given unbalanced set.
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Problem 209
Given the following unbalanced set of three plane vectors (in the same ccw sense of �AA
to �BB to �CC as in Fig. 261)

�SS ¼ 15=08þ 9=1008þ 24=2158

show that the given unbalanced set can be expressed as the sum of the following
three sets of balanced vectors:

positive sequence: �SS1 ¼ 15:701ð��j16:301 þ � j103:699 þ � j223:699Þ
negative sequence: �SS2 ¼ 6:365ð� j71:639 þ � j311:639 þ � j191:639Þ

zero sequence: �SS0 ¼ 7:920� j218:233

10.11 Some Examples of Unbalanced
Three-Phase Calculations
In a COMPLETELY BALANCED three-phase system the three line voltages have equal
magnitudes, displaced from each other by 1208, and the three load impedances have equal
values of �ZZ ohms.

If these conditions do not exist, the three-phase system is said to be UNBALANCED.
Thus, any one of the following three conditions of unbalance may be encountered.

1. The line voltages are unequal, either in magnitudes, or phase angles, or both.

2. The three load impedances are not all equal.

3. A combination of (1) and (2) is present.

To solve such problems by the method of symmetrical components, the basic procedure
is to first resolve the unbalanced system into the sum of three balanced systems, then
separately find the solution to each of the balanced systems. The final answer is then
the SUM OF THE SEPARATE SOLUTIONS, in accordance with the principle of super-
position (as in problem 50, Chap. 4, for example). (This assumes that, for practical
purposes, the circuit is a ‘‘linear’’ system; see footnote in section 8.6.)

The following problems, in which Y-connected generators will feed Y-connected loads,
will serve to illustrate the basic procedures.

Such problems can be worked either in terms of ‘‘line voltage’’ or ‘‘phase voltage,’’ but
in the problems here we’ve elected to specify phase voltages instead of line voltages (the
relationships between the two were developed in section 10.8 and are summarized in Fig.
253, which shows the relation between phase and line voltages in a balanced Y-connected
generator).

Problem 210
In Fig. 265, a zero-sequence voltage of �VV0 volts is applied, through a three-wire line,
to a Y-connected load as shown.

Explain, from inspection of the figure, why no zero-sequence current can flow in
any such three-wire Y-connected load.

CHAPTER 10 Magnetic Coupling. Transformers272



Problem 211
An unbalanced Y-connected three-phase generator is connected, by means of a
three-wire line, to a balanced Y-connected resistive load of 12 ohms per phase. It
is given that the generator phase voltages are, in volts, equal to

�AA ¼ 90=08 �BB ¼ 72=1208 �CC ¼ 54=2408

in the same ccw sense �AA to �BB to �CC as in Fig. 261, with �AA the reference voltage. This is
shown in schematic diagram form in Fig. 266.

Using the method of symmetrical components, show that the magnitudes of the
line currents, in amperes, are equal to

j�IIAj ¼ 6:764 ðanswerÞ j�IIBj ¼ 6:062 ðanswerÞ j�IICj ¼ 5:268 ðanswerÞ

Problem 212
Let us, in problem 211 (Fig. 266), denote the line voltages by �VVab, �VVbc, and �VVca. Show
that, in volts, j �VVabj ¼ 140:58 j �VVbcj ¼ 109:49 j �VVcaj ¼ 126:00:

Problem 213
One formula for calculating average power is P ¼ RI2, where I is magnitude of rms
current. Using this formula, find the total power P produced by the generator in
problem 211.
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Problem 214
It can be shown that the true average sinusoidal power output P of a generator is
equal to the REAL PART (r.p.) of the PRODUCT of the generator voltage �VV and
the CONJUGATE of the generator current �II , that is

P ¼ r:p:½ �VV ��II�II � ð467Þ*
where ��II�II (‘‘double overscore’’) denotes the conjugate of �II . Verify that the use of eq.
(467) gives the same answer as found in problem 213.

The preceding problems dealt with Fig. 266, which is a case in which an
UNBALANCED GENERATOR feeds a BALANCED LOAD. Now let us consider
the opposite case, in which a BALANCED GENERATOR feeds an UNBALANCED
LOAD, as illustrated in Fig. 267, where voltage �VV is the reference phase voltage with
reference to the junction point ‘‘O.’’ Also, �VVN is the voltage at the load junction point, also
with respect to the point O.

Keep in mind that �VVN denotes the voltage drop from the junction point in the load to the
junction point at O. Therefore, since the generator voltage is equal to the sum of the voltage
drops in any closed path, we have the following three voltage equations in Fig. 267:

V ¼ �ZZA
�IIA þ �VVN

�aaV ¼ �ZZB
�IIB þ �VVN

�aa2V ¼ �ZZC
�IIC þ �VVN

Here we’re dealing with the general case of unequal load impedances; thus the three line
(and phase) currents will, in general, be unequal, and hence can be resolved into the sum of
positive and negative sequences; thus

�IIA ¼ �IIA1 þ �IIA2

�IIB ¼ �IIB1 þ �IIB2

�IIC ¼ �IIC1 þ �IIC2
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which, upon making use of eqs. (461), (462), (464), and (465), can also be written as

�IIA ¼ �IIA1 þ �IIA2

�IIB ¼ �aa�IIA1 þ �aa2 �IIA2

�IIC ¼ �aa2 �IIA1 þ �aa�IIA2

and thus, upon substituting these values of �IIA, �IIB, and �IIC into the first set of equations
following Fig. 267, you should find that

�ZZA
�IIA1 þ �ZZA

�IIA2 þ �VVN ¼ V ð468Þ

�aa �ZZB
�IIA1 þ �aa2 �ZZB

�IIA2 þ �VVN ¼ �aaV ð469Þ

�aa2 �ZZC
�IIA1 þ �aa �ZZC

�IIA2 þ �VVN ¼ �aa2V ð470Þ

Problem 215
Here you are asked to complete the foregoing discussion concerning Fig. 267 as
follows. Making use of eqs. (460) and (463), and the fact that, by Kirchhoff’s current
law, �IIA þ �IIB þ �IIC ¼ 0, show that the values of the line currents in Fig. 267 are given
by the equations

�IIA ¼ 1:732ð �YYA
�YYC�

j30 þ �YYA
�YYB�

�j30ÞV
�YYA þ �YYB þ �YYC

ð471Þ

�IIB ¼ 1:732ð �YYB
�YYC�

j90 � �YYA
�YYB�

�j30ÞV
�YYA þ �YYB þ �YYC

ð472Þ

�IIC ¼ �1:732ð �YYA
�YYC�

j30 þ �YYB
�YYC�

j90ÞV
�YYA þ �YYB þ �YYC

ð473Þ

where, in terms of the admittances

�YYA ¼ 1= �ZZA
�YYB ¼ 1= �ZZB

�YYC ¼ 1= �ZZC

in which the ‘‘reciprocal ohms’’ are called ‘‘mhos.’’

Problem 216
In Fig. 267 let V ¼ 125 volts, �ZZA ¼ ð3 þ j4Þ ohms, �ZZB ¼ 8 ohms, and �ZZC ¼ 5 ohms.
Using symmetrical components, verify that the magnitudes of the line currents, in
amperes, are equal to

j�IIAj ¼ 25:99 j�IIBj ¼ 22:85 j�IICj ¼ 17:37

Problem 217
In three-phase work we often deal in terms of ‘‘line voltage’’ instead of ‘‘phase
voltage.’’ Thus, in Fig. 267, suppose that the reference voltage is taken to be the
line voltage, �VVAB ¼ VAB=08 ¼ VAB, this being the voltage from the center wire to the
top wire in the diagram.

What changes would be required to express eqs. (471) through (473) in terms of
line voltage instead of phase voltage?
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It should be noted that the three-phase problems we’ve solved here, using the method
of symmetrical components, could also have been solved by the ordinary method of loop
currents. It should, however, also be noted that other types of three-phase problems exist
in which application of the method of symmetrical components provides the only practical
way of obtaining exact and rigorous solutions.
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Matrix Algebra.
Two-Port Networks

Here we take up the subject of ‘‘matrix algebra,’’ which has important applications in the
study of electric networks. It should be noted, however, that matrix algebra finds wide use
in many fields of endeavor, from economics to computer graphics, for example. Your time
will therefore be well spent in mastering this interesting and useful subject.

11.1 Introduction to Matrix Algebra
Let us begin by defining that a matrix (‘‘MAY triks’’) is a rectangular array of elements,
the elements being arranged in a definite order in horizontal rows and vertical
columns.

The location of any element in a matrix is always specified by giving first the ROW and
then the COLUMN that the element is located in. Thus, using subscripts, a notation such
as a23 denotes the element at the intersection of the second row and the third column (a
symbol such as a23 can be read as ‘‘a, two, three’’). When it is deemed necessary, the row
and column subscripts are separated by a comma (for example, a16;11).

A matrix is usually identified as such by enclosure in square brackets. Figure 268 is an
example of a ‘‘3 by 4’’ matrix, meaning it has 3 rows and 4 columns.
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In the above, note that the subscripts used with each element denote first the row and
then the column in which the element appears. This convention, of giving first the row
number and then the column number, is always used.

A matrix having m rows and n columns is said to be an ‘‘m by n’’ matrix. An m by n
matrix therefore consists of mn elements. Thus, the ‘‘3 by 4’’ matrix above consists of a
total of 12 elements.

The presence of an m by n matrix is often denoted by the symbol ðm� nÞ, where the
cross is read as ‘‘by.’’ Figure 268 represents a ð3 � 4Þ matrix.

A matrix consisting of only a single row of elements is called a ‘‘row matrix,’’ while
a matrix consisting of only a single column of elements is called a ‘‘column matrix.’’
Thus Fig. 269 is an example of a ‘‘1 by 3’’ row matrix and Fig. 270 is a ‘‘3 by 1’’ column
matrix.

A matrix having the same number of rows as columns, that is, an ‘‘m by m’’ matrix, is
called a SQUARE matrix. The general example of a ð3 � 3Þ square matrix is shown below
in Fig. 271.

You will recall, from Chap. 3, that a determinant is also a square array of elements. Let
us emphasize, however, that a square matrix and a determinant are two entirely different
things. A matrix, including a square matrix, is simply an ordered array of elements; it is a
mathematical symbol and, taken as a whole entity, it has no numerical value. A determi-
nant, on the other hand, represents a single number or value, which can be found by
expanding the determinant according to the rules laid down in Chap. 3. It is true that,
in certain circumstances, a determinant is formed from a square matrix, but this is a result
of a special operation, as we’ll learn later on.

The ‘‘main diagonal’’ of a square matrix consists of all the elements lying on the
diagonal line drawn from the upper left-hand element down to the lower right-hand
element. Thus the ‘‘main diagonal’’ of the 3 by 3 square matrix above consists of the
elements a11, a22, and a33.

If the elements in the main diagonal of a square matrix are all ones, (all ‘‘1’’s), and all
the other elements are zeros, the square matrix is then called a unit or identity matrix.
Figure 272 is a ‘‘unit matrix’’ of order 5.

The unit matrix, which may of course be of any order n (n ¼ 5 in the above), is usually
denoted by the symbol I, and will be useful in some of our later work.
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Consider next the general matrix of m rows and n columns, that is, the general ‘‘m by n’’
matrix. The standard notation associated with the general ðm� nÞ matrix is shown in
Fig. 273.

In the above, note that aij denotes the general element of the matrix at the intersection
of any ith row and jth column (‘‘eye-th’’ row and ‘‘jay-th’’ column).

With the foregoing in mind, we’re now free to define some of the operations of matrix
algebra. We begin as follows, where it should be noted that the plural of matrix is
‘‘matrices’’ (‘‘MAY trah seez’’).

Let A and B denote two matrices. We define that two such matrices can be equal, that
is, A ¼ B, only if

(a) A and B have the same number of m rows and the same number of n columns; that
is, only if both are ðm� nÞ matrices, and

(b) all corresponding elements of A and B are equal.

For example, if A and B are both ð2 � 3Þ matrices, thus,

A ¼ a11 a12 a13

a21 a22 a23

� 	
and B ¼ b11 b12 b13

b21 b22 b23

� 	

then A ¼ B only if a11 ¼ b11, a12 ¼ b12, . . . ; a23 ¼ b23.
Next, two matrices can be added or subtracted only if they have the same number of m

rows and the same number of n columns. If this requirement is met, then we define that the
sum or difference of two matrices is obtained by adding or subtracting corresponding pairs
of elements in the two matrices. For example, the sum or difference of the two ð2 � 3Þ
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matrices given above is equal to

Aþ B ¼
ða11 þ b11Þ ða12 þ b12Þ ða13 þ b13Þ
ða21 þ b21Þ ða22 þ b22Þ ða23 þ b23Þ

" #

A� B ¼
ða11 � b11Þ ða12 � b12Þ ða13 � b13Þ
ða21 � b21Þ ða22 � b22Þ ða23 � b23Þ

" #

Since, for example, ða11 þ b11Þ ¼ ðb11 þ a11Þ, it follows, from inspection of the above,
that the addition and subtraction of matrices can be done in any order we wish—that is,
matrix addition and subtraction are commutative operations; thus

Aþ B ¼ Bþ A
and

A� B ¼ �Bþ A

Suppose, now, that the above two matrices happened to be EQUAL matrices, A ¼ B.
By the definition of equality already laid down, this means that a11 ¼ b11, a12 ¼ b12, and so
on. Therefore, if A ¼ B, the sum of A and B at the top of the page becomes

Aþ B ¼ 2A ¼ 2a11 2a12 2a13

2a21 2a22 2a23

� 	
Likewise, if we were dealing with the sum of say three equal matrices, then all the above

‘‘2’’ coefficients would be ‘‘3’’ coefficients, and so on, for the sum of any number of equal
matrices. Therefore, to be consistent, we must define that a constant times a matrix is
obtained by multiplying EVERY ELEMENT of the matrix by the constant.

Thus, if k is any constant, and A is (for example) a 2 � 3 matrix, then k times A is
equal to

and so on, in the same way, for the product of k and any matrix. (Note that this rule is
different from that for determinants, in which a constant k multiplies only the elements of
any one row or any one column of the determinant.)

Problem 218
A ‘‘5 � 9’’ matrix is a rectangular array of elements arranged in

rows and columns. The notation a4;6 denotes the ele-
ment at the intersection of four and six. A ‘‘unit
matrix’’ is always a matrix. If A is a 6 � 5 matrix, and if A ¼ B,
then B is a matrix.

Problem 219
If A is a 3 � 4 matrix and B is a 4 � 3 matrix, does the sum Aþ B exist?

Problem 220

If A ¼ 3 2 �4

1 �7 5

� 	
and B ¼ 0 2 1

1 2 4

� 	
; then; Aþ B ¼
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Problem 221

0 4

3 �2

� 	
� 2 �3

1 2

� 	
¼

Problem 222

ðaÞ
6 2 �1

4 0 0

3 0 5

2
664

3
775þ

2 �2 �3

4 �3 0

1 1 �6

2
664

3
775 ¼

ðbÞ
1 3

4 �6

" #
þ

2 �9

3 6

" #
�

7 �4

0 10

" #
¼

Problem 223
Given that

3a 2b c

4e 5f 2g

� 	
¼ 18 �6 4

20 15 �12

� 	

what values do the letters represent?

11.2 Product of Two Matrices
Let us now define the matrix product AB, that is, ‘‘matrix A times matrix B.’’ First of all
we’ll find that, in matrix multiplication, the ORDER in which the factors are written is
important. Thus, in general, the matrix products AB and BA will NOT be equal. The
reason for the seemingly peculiar way that matrix multiplication is defined will become
clear to us later on in our work.

The first requirement, in the definition of matrix multiplication, is that

A matrix product, in the order AB, exists only if the number of columns
of the first matrix A is equal to the number of rows of the second
matrix B.

Thus if A is an ðm� nÞ matrix and B is an ðn� pÞ matrix, then the
product of the two in the order AB does exist, because A has n columns
and B has the same number of n rows. If this requirement is not satisfied,
then the product in the order AB cannot be taken.

Any two such matrices, in which the number of columns of A is equal to the number of
rows of B, are said to be conformable in the order AB. Thus the matrix product AB exists
only of A and B are ‘‘conformable matrices’’ in the order AB.

If A and B are two matrices conformable in the order AB, then the product AB is itself a
matrix C, whose elements are found according to the following rule:
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If AB ¼ C, the element cij, at the intersection of the i th row and the j th
column of C, is equal to the sum of the products of corresponding pairs of the
elements of the i th row of A and the j th column of B.

The above definition can be expressed as a general formula as follows.
Let A be an ðm� nÞ and B an ðn� pÞ matrix. Note that A has n columns and B has n

rows, so that the product in the order AB ¼ C does exist. The procedure for finding
the value of any element cij in the product C as stated in the above rule, is illustrated in
Fig. 275.

It follows from the definition and from inspection of Fig. 275 that the SUM OF THE
PRODUCTS OF CORRESPONDING PAIRS of the i th row of A and the j th column of
B gives

cij ¼ ai1b1j þ ai2b2j þ � � � þ ainbnj ð474Þ

Since A is an ‘‘m by n’’ matrix we have that i ¼ 1; 2; 3; . . . ;m, and since B is an ‘‘n by p’’
matrix we have that j ¼ 1; 2; 3; . . . ; p, and therefore the product matrix C will consist of m
rows and p columns of elements; that is

If A is an ðm� nÞ matrix and B is an ðn� pÞ matrix, the product AB is an
ðm� pÞ matrix C, as illustrated in Fig. 276.
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The first step in finding the above product, AB ¼ C, is to note the values of m, n, and
p, for the given problem. The second step is then to calculate the value of each of the
elements in the matrix C, which is done by making use of eq. (474). Consider now the
following.

Example
Find the matrix product AB ¼ C if

A ¼
2 3

4 2

�1 5

2
64

3
75 and B ¼ 2 �3

4 1

� 	

Solution

Since the first factor A has 2 columns and the second factor B has 2 rows, a
product in the order AB does exist. Note that since A is a ð3 � 2Þ matrix and B
is a ð2 � 2Þ matrix, the product C will be a ð3 � 2Þ matrix; that is, C will have 3
rows and 2 columns of elements. Hence the solution, AB ¼ C, is the form

2 3

4 2

�1 5

2
64

3
75 2 �3

4 1

� 	
¼

c11 c12

c21 c22

c31 c32

2
64

3
75

Let us begin by finding the value of element c11. By definition, c11 is equal to the sum of
the products of corresponding pairs or row 1 of A and column 1 of B, and hence

c11 ¼ ð2Þð2Þ þ ð3Þð4Þ ¼ 16

Let us next find the value of element c21. By definition, this is equal to the sum of the
products of corresponding pairs of row 2 of A and column 1 of B, and hence

c21 ¼ ð4Þð2Þ þ ð2Þð4Þ ¼ 16

In the same way, the value of c31 is the sum of the products of corresponding pairs of
row 3 of A and column 1 of B; thus

c31 ¼ ð�1Þð2Þ þ ð5Þð4Þ ¼ 18

We’ve now found the values of the elements of the first column of C; the next step is to
find the values of the elements of the second column of C, beginning with element c12.
Again, by definition, the value of c12 is equal to the sum of the products of corresponding
pairs of row 1 of A and column 2 of B, and hence

c12 ¼ ð2Þð�3Þ þ ð3Þð1Þ ¼ �3

Next, the value of c22 is the sum of the products of corresponding pairs of row 2 of A
and column 2 of B; thus

c22 ¼ ð4Þð�3Þ þ ð2Þð1Þ ¼ �10

Finally, in the same way, the value of element c32 is the sum of the products by pairs of
row 3 of A and column 2 of B, and hence

c32 ¼ ð�1Þð�3Þ þ ð5Þð1Þ ¼ 8
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and thus we have

2 3

4 2

�1 5

2
64

3
75 2 �3

4 1

� 	
¼

16 �3

16 �10

18 8

2
64

3
75 ðAnswerÞ

In the above answer, note, for example, that we cannot factor a ‘‘2’’ out of the first
column; such ‘‘factoring out’’ can be done only if a number factors out of all the elements
of a matrix, as discussed at the end of section 11.1.

Important Note: Suppose, for example, that A is a ‘‘3 by 2’’ matrix and B is a ‘‘2 by 4’’
matrix. Then the product of the two can be taken in the order AB because the first factor A
has 2 columns and the second factor B has 2 rows; that is, in this case

A3;2B2;4 ¼ C3;4

But notice that multiplication in the order BA cannot be done, because if we attempt the
product BA we have

B2;4A3;2

where now the first factor B has 4 columns and the second factor A has 3 rows, and so they
are not conformable in the order BA. This illustrates the fact that, in general,

Matrix multiplication is not commutative; that is, in general, AB does not
equal BA.

This is true even if A and B are conformable in both AB and BA form, as the following
example illustrates.

Let

A ¼ 3 2

1 4

� 	
and B ¼ 2 5

3 1

� 	

Note that the products AB and BA both exist, because the number of columns of the
first factor equals the number of rows of the second factor regardless of whether we write
AB or BA. But note that

AB ¼ 3 2

1 4

� 	
2 5

3 1

� 	
¼ ð6 þ 6Þ ð15 þ 2Þ

ð2 þ 12Þ ð5 þ 4Þ
� 	

¼ 12 17

14 9

� 	

whereas

BA ¼ 2 5

3 1

� 	
3 2

1 4

� 	
¼ ð6 þ 5Þ ð4 þ 20Þ

ð9 þ 1Þ ð6 þ 4Þ
� 	

¼ 11 24

10 10

� 	

which, since the answers are not equal, shows that in general AB and BA do not
represent equal matrix products, even if A and B are conformable in either order of multi-
plication.
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Problem 224
Find matrix C, given that

2 4

6 �4

� 	
12

8

� 	
¼ C

Problem 225
Given

A ¼ 2 1 �2

3 0 4

� 	
and B ¼

2 �1

3 4

�5 2

2
64

3
75

find the matrix product AB ¼ C

Problem 226
Find C, where

0 2

0 4

6 1

2
64

3
75 1 1

6 0

� 	
þ 2 �3

�3 5

� 	
þ 4 �2

3 6

� 	� �
¼ C

Problem 227
Find C, if

1 2

3 �4

� 	
0 2

4 6

� 	 �7 6 0

�2 1 4

� 	
¼ C

Problem 228
Find the matrix product

1 2 �2 3

0 0 6 1

0 0 7 2

4 2 �5 10

2
6664

3
7775

6

�2

0

9

2
6664

3
7775 ¼ C

Problem 229
Find the matrix C, where

1 1 4

0 �3 2

9 6 �5

2
64

3
75

2

¼ C

Problem 230
If

A ¼
2 0 1 �3

1 2 0 4

3 2 �6 1

2
64

3
75 and B ¼

1 �2

3 0

2 5

�6 1

2
6664

3
7775

find the matrix product AB.
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11.3 The Inverse of a Square Matrix
Let us now consider the important case where two sets of unknowns, which we’ll denote
by xs and ys, are related by means of n simultaneous linear equations. Let us take, as
an example, the case for n ¼ 3, as shown below, where the as are constant coefficients.
Note that the subscript of each a coefficient gives the location, row, and column of that
particular a.

a11x1 þ a12x2 þ a13x3 ¼ y1

a21x1 þ a22x2 þ a23x3 ¼ y2

a31x1 þ a32x2 þ a33x3 ¼ y3

9>=
>; ð475Þ

Now notice, as a result of the definition of multiplication of matrices laid down in
section 11.2, that the above set of equations can be written in the form of a matrix product;
thus

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75 x1

x2

x3

2
64

3
75 ¼

y1

y2

y3

2
64

3
75 ð476Þ

or, in abbreviated form

½A�½X� ¼ ½Y�
or, more simply, we may merely write

AX ¼ Y ð477Þ
where, in eq. (477), A represents the square matrix formed from the constant ‘‘a’’
coefficients, and X and Y represent the column matrices formed from the values of the
unknowns in eq. (476).

Now suppose we wish to have the X matrix alone, by itself, on the left-hand side of eq.
(477). To indicate this we change matrix (477) into the form

X ¼ A�1Y ð478Þ
where the matrix A�1 is called the INVERSE of the square matrix A, or simply as ‘‘the
inverse of matrix A,’’ since only a square matrix can have an inverse.

Let us now find the actual form that A�1 must have in order to legitimately transform
(477) into (478). To do this, let us go back and solve the given set of simultaneous
equations, eq. (475), for the x values, using the standard procedure of determinants
from Chap. 3. Doing this, we have

x1 ¼

y1 a12 a13

y2 a22 a23

y3 a32 a33

�������
�������

D
; x2 ¼

a11 y1 a13

a21 y2 a23

a31 y3 a33

�������
�������

D
; x3 ¼

a11 a12 y1

a21 a22 y2

a31 a32 y3

�������
�������

D

where, as usual, D (delta) is the value of the determinant formed from the constant a
coefficients.

Now recall, from Chap. 3, that the value of any determinant of order 3 or more can be
found by expanding the determinant in terms of the minors of any row or any column of
the determinant. Since we have to deal with determinants when finding the inverse matrix,
let us review, just briefly, some details from Chap. 3.

CHAPTER 11 Matrix Algebra. Networks286



A determinant of order n is a square array of elements having n rows and n columns,
there thus being n elements in each row and each column. Now let aij denote the element at
the intersection of the i th row and j th column. If we then strike out the row and column in
which aij appears, the determinant that remains is of order n� 1 and is called the minor
determinant of element aij .

In Chap. 3 we showed that the value of a determinant is equal to the sum of the
products of the elements of any row or column and their corresponding minor deter-
minants, each such product being multiplied by ð�1Þiþj. Thus, if we expand the third-
order determinant in the last expression for x1 above, using minors of the first column, we
have that

x1 ¼ y1

a22 a23

a32 a33

����
����� y2

a12 a13

a32 a33

����
����þ y3

a12 a13

a22 a23

����
����

� �
1

D

Likewise, if we expand the third-order determinant in the last expression for x2, in
terms of the minors of the second column, we have that

x2 ¼ �y1

a21 a23

a31 a33

����
����þ y2

a11 a13

a31 a33

����
����� y3

a11 a13

a21 a23

����
����

� �
1

D

and lastly, if we expand the third-order determinant in the last expression for x3, in terms
of the minors of the third column, we have that

x3 ¼ y1

a21 a22

a31 a32

����
����� y2

a11 a12

a31 a32

����
����þ y3

a11 a12

a21 a22

����
����

� �
1

D

Now, in the last three equations above, let us denote the value of each second-order
minor determinant, including the sign factor ð�1Þiþj, by the notation Aij , where i and j are
the numbers of the row and column struck out to form the minor determinant.* Using this
notation, the last three equations above become

x1 ¼
A11

D
y1 þ

A21

D
y2 þ

A31

D
y3

x2 ¼
A12

D
y1 þ

A22

D
y2 þ

A32

D
y3

x3 ¼
A13

D
y1 þ

A23

D
y2 þ

A33

D
y3

which in matrix notation becomes

x1

x2

x3

2
64

3
75 ¼ 1

D

A11 A21 A31

A12 A22 A32

A13 A23 A33

2
64

3
75 y1

y2

y3

2
64

3
75 ð479Þ

Equation (479) above is the inverse form of eqs. (476) and (477); that is, (479) is of the
form

X ¼ A�1Y ð480Þ
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where X and Y are the x and y column matrices. Comparison of eqs. (479) and (480)
shows that A�1, the INVERSE OF THE SQUARE MATRIX A of eqs. (476) and (477),
is equal to

A�1 ¼ 1

D

A11 A21 A31

A12 A22 A32

A13 A23 A33

2
64

3
75 ð481Þ

where D ¼ value of the determinant formed from the constant a coefficients of the original
three simultaneous linear equations (eq. (475)), and where Aij ¼ value of the cofactor
formed by deleting the row and column of element aij in the original determinant formed
from the a coefficients. It should be understood that all subscripts, everywhere, refer to the
i th row and j th column of the original simultaneous equations (475). Thus, in (481), A21 is
actually the cofactor of a21 in the second row and first column in the original eq. (475), even
though A21 appears in the first row, second column position in (481). The procedure will
be clear from the discussion that follows eq. (482) below.

It’s apparent that the foregoing work can be extended to finding the inverse of any nth
order square matrix A. Thus, given any square matrix A of order n, as in eq. (482) below,

A ¼

a11 a12 a13 � � � a1n

a21 a22 a23 � � � a2n

a31 a32 a33 � � � a3n

..

. ..
. ..

. ..
.

an1 an2 an3 � � � ann

2
66666664

3
77777775

ð482Þ

The procedure for finding the inverse matrix A�1, necessary to satisfy the relationships

AX ¼ Y

X ¼ A�1Y

can be summarized in the following steps.

Step 1

Find D, the value of the nth-order determinant formed from the elements of the
given square matrix A of eq. (482).

Step 2

Replace each element in the given matrix A by its cofactor to get a matrix
which we’ll call A0 (‘‘A sub zero’’); thus

A0 ¼

A11 A12 A13 � � � A1n

A21 A22 A23 � � � A2n

..

. ..
. ..

. ..
.

An1 An2 An3 � � � Ann

2
66664

3
77775 ð483Þ

Now interchange the rows and columns in (483) (that is, let the first row become the first
column, the second row become the second column, and so on)* and then multiply by 1/D.
The result is the inverse matrix A�1 of the given matrix A; that is, the matrix capable of
transforming eq. (477) into (478).
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Example

Given the matrix A ¼
2 1 �4

1 5 3

�2 0 1

2
64

3
75; find A�1

Solution

Step 1

Note that A is a square matrix of order 3. Putting the matrix in the form of a
third-order determinant we have (where, for convenience, we’ve expanded the
determinant in terms of the minors of the second column)

D ¼
2 1 �4

1 5 3

�2 0 1

�������
������� ¼ � 1 3

�2 1

����
����þ 5

2 �4

�2 1

����
���� ¼ �37

Step 2

From the definition of ‘‘cofactor’’ (see first footnote in this section) and then
from eq. (483) above, we have that the value of A0 is

A0 ¼

þ 5 3

0 1

����
���� � 1 3

�2 1

����
���� þ 1 5

�2 0

����
����

� 1 �4

0 1

����
���� þ 2 �4

�2 1

����
���� � 2 1

�2 0

����
����

þ 1 �4

5 3

����
���� � 2 �4

1 3

����
���� þ 2 1

1 5

����
����

2
666666664

3
777777775
¼

5 �7 10

�1 �6 �2

23 �10 9

2
64

3
75

Now interchange the rows and columns in the last matrix; that is, let the first row become
the first column, the second row become the second column, and so on (that is, take the
‘‘transpose’’ of A0, as described below eq. (483)). Thus, upon switching corresponding
rows and columns in this manner, and remembering to multiply the whole by 1=D, we have

A�1 ¼ � 1

37

5 �1 23

�7 �6 �10

10 �2 9

2
64

3
75 ð final answerÞ

Note: since �1=37 ¼ ð�1Þð1=37Þ, we can, if we wish, change �1=37 to 1=37, provided we
multiply every element in the matrix by �1, in accordance with the discussion given at
the end of section 11.1. We can likewise move the ‘‘1=37’’ factor inside the matrix,
provided we multiply every element in the matrix by 1=37.

It is important to note that if D ¼ 0, then 1=D has the indeterminant form 1=0; thus
the inverse matrix A�1 can exist only if the determinant of matrix A is not zero. This leads
to the definition that a non-singular matrix is a square matrix whose determinant value �
is not zero. All other matrices are called singular matrices. Thus, only a ‘‘non-singular’’
matrix has an inverse.

We give, without proof at this time, the following two relationships involving the
inverse operation

ðA�1Þ�1 ¼ A ð484Þ
ðABÞ�1 ¼ B�1A�1 ð485Þ
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It’s apparent that finding the inverse of a matrix of higher order, using only paper and
pencil, is a really time-consuming operation. Fortunately, however, this is exactly the type
of work that the digital computer is exceedingly good at. Digital computer programs are
available for finding the inverse of any nth order matrix, a fact largely responsible for
the increased use of matrix methods in engineering and scientific work.

Your problems here are as follows.

Problem 231
Find the inverse of the third-order matrix

2 0 4

5 6 0

�3 �1 2

2
64

3
75

Problem 232
When finding the inverse of a ‘‘2 � 2’’ matrix, it should be noted that the ‘‘minor’’ of
each element is a ‘‘1 � 1’’ determinant. For example, if

A ¼ a b

c d

� 	

the ‘‘minor’’ of element b is found, in the usual way, by striking out the row and
column in which b appears; thus

Mb ¼
a b

c d

����
���� ¼ c

so that the ‘‘cofactor’’ of element b is Ab ¼ ð�1Þ1þ2Mb ¼ �c. With this in mind, find
the inverse of the 2 � 2 matrix

4 �7

3 �5

� 	

Problem 233
Given that

A ¼

2 4 0 �2

3 0 6 0

0 2 0 1

0 �5 0 3

2
6664

3
7775; find A�1

Problem 234
Find the inverse of the matrix

8 0 �1

0 2 3

�6 4 3

2
64

3
75

CHAPTER 11 Matrix Algebra. Networks290



Problem 235
Suppose one set of variables, x; y; z, is related to another set, r; s; t, by the three
simultaneous linear equations

3x� 4yþ z ¼ r

�2xþ y� 5z ¼ s ðset 1Þ
4xþ 6y� 2z ¼ t

It follows that it is also possible to express set 1 in the equivalent form

arþ bsþ ct ¼ x

drþ esþ ft ¼ y ðset 2Þ
grþ hsþ it ¼ z

provided, of course, that the constant coefficients, a through i, are given the correct
values. Problem: first express set 1 in matrix form in the manner of eq. (476), and
then, by use of the inverse operation, find the values of a through i that will permit
the second set of equations to be written in place of the first set.

11.4 Some Properties of the Unit Matrix
The ‘‘unit’’ or ‘‘identity matrix,’’ denoted by I, is any square matrix in which all elements
of the main diagonal are equal to 1, all other elements being equal to zero. (See Fig. 272 as
an example.)

Let us now state that the PRODUCT of any square matrix A, of order n, and a unit
matrix of the same order n, is equal to the matrix A; that is, AI ¼ A. The truth of this
statement will be clear from a study of the following example, in which a square third-
order matrix A multiplies a third-order unit matrix. Thus, using the procedure of matrix
multiplication as defined in section 11.2, you should verify that the following multiplica-
tion is correct.

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75 1 0 0

0 1 0

0 0 1

2
64

3
75 ¼

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
64

3
75

that is,

AI ¼ A

From the above it’s clear that if A is ANY square matrix of order n, and if I is a unit
matrix of the same order n, then AI ¼ A. Now reverse the order of multiplication in the
above example; doing this, and again keeping the definition of matrix multiplication in
mind, you will find it is also true that IA ¼ A. Thus, if A is a square matrix of order n and I
is a unit matrix of the same order n, then A and I are commutative in multiplication, and
we have the useful relationship

AI ¼ IA ¼ A ð486Þ
Thus the unit matrix behaves, in matrix multiplication, much like the number 1 does in

ordinary algebraic multiplication. Another useful relationship can be found as follows.
Let us begin with the matrix equation

AX ¼ Y
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Multiply both sides by A�1:

A�1AX ¼ A�1Y ð487Þ
From eq. (480) we know that

X ¼ A�1Y

From eq. (486), X ¼ IX, and hence

IX ¼ A�1Y ð488Þ
Comparison of eqs. (487) and (488) shows that A�1A ¼ I; likewise, AA�1 ¼ I, and we

thus have the useful fact that the product of a matrix A and its inverse equals a unit matrix
I; that is,

AA�1 ¼ A�1A ¼ I ð489Þ

Problem 236
If we have found the inverse of a given matrix A, then eq. (489) can be used to check
the correctness of our work. This is true because, if our work is correct, it has to be
true that AA�1 ¼ I, as eq. (489) states. In the example in section 11.3 we found that if

A ¼
2 1 �4

1 5 3

�2 0 1

2
64

3
75

then

A�1 ¼ � 1

37

5 �1 23

�7 �6 �10

10 �2 9

2
64

3
75

Your problem here is to double-check the above result by verifying, by actual multi-
plication, that eq. (489) is satisfied.

11.5 Algebraic Operations. Transpose of a
Matrix

We have found that, in general, matrix multiplication is not commutative; that is, in
general, AB does not equal BA (eqs. (486) and (489) are exceptions to this general rule).
Other than the restriction on multiplication, however, most of the other rules of ordinary
algebra do also apply to matrix algebra, as follows.

First, as pointed out in section 11.1, matrix addition is commutative; that is,
Aþ B ¼ Bþ A. Also, of course, A� B ¼ �Bþ A.

Second, matrix multiplication is distributive with respect to addition; that is,
AðBþ CÞ ¼ ABþ AC.

Third, matrix multiplication is associative; that is, ðABÞC ¼ AðBCÞ.
Next, with regard to matrix equations, we may add or subtract the same matrix from

both sides of such equations without upsetting the equality of the two sides; for example, if
A ¼ B, then, Aþ C ¼ Bþ C. (This assumes, of course, that the matrices all have the same
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number of m rows and the same number of n columns, as laid down in the requirement for
matrix addition in section 11.1.)

We may also multiply both sides of a matrix equation by the same matrix; thus, if
B ¼ C, then AB ¼ AC, provided, of course, that A is conformable with B and C, and that
the order of multiplication is the same on both sides of the equation.

Let us next define that the TRANSPOSE of any given matrix A is another matrix At,*
in which the rows of A are written as the columns of At; that is, the first row of A is the first
column of At, the second row of A is the second column of At, and so on. For example, if

A ¼
3 �1 0 9

2 4 �7 6

5 8 �3 1

2
64

3
75

then

At ¼

3 2 5

�1 4 8

0 �7 �3

9 6 1

2
6664

3
7775

Various relationships exist between a matrix and its transpose. The following are the
most important ones that you should be aware of.

ðAtÞt ¼ A ð490Þ
ðAþ BÞt ¼ At þ Bt ð491Þ

ðABÞt ¼ BtAt (‘‘reversal rule’’) ð492Þ
detA ¼ detAt ð493Þ

Note that A can only be a square matrix in eq. (493), because a determinant is defined
as a square array of elements.

Problem 237
(a) If

A ¼ 4 �4

3 2

� 	
; then At ¼

(b) If

A ¼

6 9 �1 4

0 2 1 3

4 5 9 �2

0 7 0 8

2
6664

3
7775; then At ¼

Problem 238
Verify that eq. (491) is true for the following two given matrices:

A ¼ 3 �3

�7 6

� 	
and B ¼ 5 2

4 �3

� 	
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Problem 239
Verify that eq. (492) is true for the given two matrices:

A ¼
2 �4

0 6

�7 3

2
64

3
75 and B ¼ 3 0 3

2 �1 9

� 	

11.6 Matrix Equations for the Two-Port
Network

Let us imagine that we have any kind of linear bilateral network, either active or passive
(meaning that it may contain generators, as well as passive elements of R, L, and C),
enclosed in a box with a pair of INPUT TERMINALS (1, 1) and a pair of OUTPUT
TERMINALS (2, 2), brought out as illustrated in Fig. 277.

In the above, each pair of terminals is called a ‘‘port’’; thus Fig. 277 represents the
general form of a TWO-PORT network, with the ‘‘input port’’ on the left and the ‘‘output
port’’ on the right. It’s also correct to speak of Fig. 277 as a ‘‘four-terminal’’ network.

In all of our work here with such figures, it will be understood that the inputs and
outputs are steady-state sinusoidal waves of voltage and current. The letters V , I , and Z
that will appear in the equations, will, as usual, denote the complex numbers representing
these quantities.*

In working with two-port block diagrams, such as Fig. 277, we make use of four measur-
able external quantities, these being the four quantities V1, I1, V2, and I2, as shown in the
figure.

You’ll recall that, in network analysis, the first step is to draw voltage and current arrows
to indicate the chosen ‘‘positive reference directions’’ in the network. Once chosen, the
directions of the arrows must not, of course, be changed during the investigation of the
network. You’ll also recall that, in writing network equations, generator voltages are put
on one side of the equations with voltage drops on the other side, the signs of the quantities
being determined by the sense in which the arrows are traversed (eqs. (122) and (123) in section
5.8 illustrate this detail). Let us now emphasize that, in the case of two-port block diagrams, it
is standard practice to always draw the voltage and current arrows in the directions shown in
Fig. 277. The practical application of the notation will be taken up later on, as we progress.

Let us assume that we do not know what is actually inside the box in Fig. 277, except
that it is linear and bilateral in nature. Our PROBLEM is to find an EQUIVALENT
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NETWORK for the unknown contents of the box, GIVEN only the four measurable
external quantities shown in Fig. 277.

To do this, we must first write suitable equations for the contents of the box, in terms of
the four measurable external quantities shown in Fig. 277. This can be done as follows.

In Fig. 277 we can, for example, choose any two of the four external quantities to be
independent variables, leaving the other two as dependent variables (two independent
variables will require two simultaneous equations). For example, if we choose I1 and I2
to be the independent variables, the two equations will be of the form

V1 ¼ z11I1 þ z12I2 ð494Þ
V2 ¼ z21I1 þ z22I2 ð495Þ

where the zs are constant coefficients whose values are to be found by actual measurement
on any given two-port. Inspection shows that the z coefficients are impedances, and so
are measured in ohms. For this reason, eqs. (494) and (495) are said to represent the
IMPEDANCE form of an equivalent circuit for the contents of the box in Fig. 277. In
matrix form the equations become

V1

V2

� 	
¼ z11 z12

z21 z22

� 	
I1

I2

� 	
ð496Þ

Note that the double subscripts used with the constant z coefficients, are purposely
written, in the two equations (494) and (495), so that they give the proper location, row
and column, in the matrix of eq. (496). The above matrix equation is often written in the
abbreviated form

½V� ¼ ½z�½I� ð497Þ
or even more simply as V ¼ zI, if it is understood in the discussions that V and I represent
the column matrices of eq. (496), and where

z ¼ ½z� ¼ z11 z12

z21 z22

� 	

this being the ‘‘impedance matrix’’ for the equivalent network.
Now let’s pause here, briefly, to discuss how the values of the foregoing z coefficients

can be found experimentally in the laboratory. Remember that we do not necessarily know
what is actually inside the box in Fig. 277; all we can do, in the laboratory, is measure the
EXTERNAL values of V1, V2, I1, and I2.

Take, for example, the coefficient z11. To find the value of z11 for a given two-port, we
apply a known voltage V1 to terminals ð1; 1Þ in Fig. 277, and measure the value of current
I1 with the output terminals ð2; 2Þ open-circuited. For this condition I2 ¼ 0, and therefore,
setting I2 ¼ 0 in eq. (494), we have

z11 ¼
V1

I1 ðI2¼0Þ
ð498Þ

which defines the experimental procedure for finding the value of z11.
Next suppose we wish to find, by experimental means, the value of, say, z12. To do this

we can apply any convenient voltage to terminals ð2; 2Þ in Fig. 277 and measure the value
of the current I2 with terminals ð1; 1Þ open-circuited. This condition makes I1 ¼ 0 and,
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putting I1 ¼ 0 in eq. (494), we have that

z12 ¼
V1

I2 ðI1¼0Þ
ð499Þ

which thus provides an experimental procedure for finding the value of z12. In the same
manner, making use of eq. (495), expressions can be found that will allow us to find the
values of z21 and z22 by experiment in the laboratory.

In regard to the above, we must remember that, except for purely resistive circuits,
impedance is a complex number of the form z ¼ rþ jx, and likewise the resulting currents
will be complex numbers of the form I ¼ Ia þ jIb. For this reason, experimental determi-
nation of the true values of the coefficients requires precision measuring equipment and
adequate skill and understanding on the part of the experimenter.

Next recall that admittance, which is denoted by y, is the reciprocal of impedance,
y ¼ 1=z. Thus I ¼ V=z ¼ yV , and the equations describing the behavior of the unknown
network inside the box can also be written in the ADMITTANCE form, thus

I1 ¼ y11V1 þ y12V2 ð500Þ
I2 ¼ y21V1 þ y22V2 ð501Þ

or, in matrix form,

I1

I2

� 	
¼ y11 y12

y21 y22

� 	
V1

V2

� 	
ð502Þ

or, more simply,

½I� ¼ ½y�½V� ð503Þ
where

½y� ¼ y11 y12

y21 y22

� 	
is the ‘‘admittance matrix’’ for the equivalent network.

Another useful relationship can be found as follows. From eq. (497) we have

½z�½I� ¼ ½V�
and hence (by section 11.3)

½I� ¼ ½z��1½V�
Comparison of the last equation with eq. (503) shows that

½y� ¼ ½z��1 ð504Þ
that is, the admittance matrix is the inverse of the impedance matrix (and vice versa, the
impedance matrix is the inverse of the admittance matrix).

Equations for the experimental determination of the values of the y coefficients can be
found in the same general way as for the z coefficients. For example, if we apply a known
voltage V1 to terminals ð1; 1Þ in Fig. 277 and measure I1 with terminals ð2; 2Þ short-
circuited, for which V2 ¼ 0, solution of eq. (500) gives

y11 ¼
I1
V1ðV2¼0Þ

ð505Þ

which thus defines an experimental procedure for finding the value of y11.
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Another very useful description of the contents of the box is in terms of the ‘‘hybrid’’ or
‘‘h’’ parameters. In this system I1 and V2 are taken as the independent variables, and the
simultaneous equations for the equivalent network are written in the form

V1 ¼ h11I1 þ h12V2 ð506Þ
I2 ¼ h21I1 þ h22V2 ð507Þ

or, in matrix form,

V1

I2

� 	
¼ h11 h12

h21 h22

� 	
I1

V2

� 	
ð508Þ

Note that eq. (506) says that ‘‘V1 ¼ volts ¼ volts þ volts,’’ and thus, by Ohm’s law, we
see that h11 has the dimension of ohms, while h12 is simply a dimensionless ratio. Likewise,
eq. (507) says that ‘‘I2 ¼ amperes ¼ amperes þ amperes,’’ and thus, by Ohm’s law, we see
that h21 is a dimensionless ratio while h22 has the dimension of ‘‘reciprocal ohms’’; that is,
h22 has the dimension of 1=ohms ¼ mhos:

In regard to the above, it should be mentioned that the following notation is also often
used with the h parameters:

h11 ¼ hi ¼ input impedance in ohms;

h12 ¼ hr ¼ reverse voltage feedback factor;

h21 ¼ hf ¼ forward current transfer ratio,

h22 ¼ ho ¼ output admittance in mhos.

It should also be noted here that the h parameters (and also the y parameters) find
especially wide use in practical work involving transistors. One reason for this is that it is
relatively easy to find the values of these parameters by direct experiment in the labora-
tory. From eq. (508) note that the ‘‘h-parameter matrix’’ for the equivalent circuit is

½h� ¼ h11 h12

h21 h22

� 	
So far we’ve listed three pairs of simultaneous equations that can be used to describe

the network inside the box in Fig. 277. Thus, eqs. (494) and (495) constitute the impedance
or ‘‘z’’ form of the equations, eqs. (500) and (501) the admittance or ‘‘y’’ form, and eqs.
(506) and (507) the hybrid or ‘‘h’’ form.

It’s also possible to write three more pairs of such equations. Of these three, the two
pairs of principal interest are written in terms of what are generally called the ‘‘g’’ and ‘‘a’’
parameters, as follows, beginning with the g parameters.

I1 ¼ g11V1 þ g12I2 ð509Þ
V2 ¼ g21V1 þ g22I2 ð510Þ

and hence, in matrix form,

I1

V2

� 	
¼ g11 g12

g21 g22

� 	
V1

I2

� 	
ð511Þ
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Lastly, the a parameters are defined by the equations

V1 ¼ a11V2 � a12I2 ð512Þ*
I1 ¼ a21V2 � a22I2 ð513Þ*

or, in matrix form,

V1

I1

� 	
¼ a11 a12

a21 a22

� 	
V2

�I2

� 	
ð514Þ*

The equations show that the g and a coefficients are hybrid-type parameters; some are
measured in units of impedance z, some in units of admittance y, and some are ratios of
like quantities and thus dimensionless.

Problem 240
Keeping in mind that only like quantities can be added together or set equal to each
other, and using the basic relationships i ¼ v=z ¼ yv and v ¼ iz ¼ i=y, find the
dimensions of each of the g and a coefficients.

Problem 241
Write a relationship that can be used to experimentally find the value of the y22

coefficient. Repeat for the g21 coefficient.

Problem 242
Solve eq. (514) for

V2

I2

� 	

Problem 243
If A is a square matrix of order n, and if c is a constant coefficient, show that

½cA��1 ¼ 1

c
A�1

(In the above, you may find it convenient to refer to eqs. (482) and (483).)

Problem 244
Express the value of each of the four impedance parameters in terms of the admit-
tance parameters.

Problem 245
For a certain two-port operating at 30 megahertz (30 MHz), it is found that the
values of the admittance parameters are, in mhos, equal to

y11 ¼ 5ð4 þ j3Þ10�3 y12 ¼ �ð2 þ jÞ10�3

y21 ¼ 10ð4 � j9Þ10�3 y22 ¼ jð6Þ10�3

Making use of the results of problem 244, find the value of each of the four z
parameters at the same frequency.
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11.7 Continuing Discussion of the Two-Port
Network

In the preceding section we were introduced to five different network parameters, denoted
by z; y; h; g, and a.

Let us here emphasize that the values of these parameters depend only upon the parti-
cular network INSIDE THE BOX in Fig. 277. In other words, the values of the parameters
are independent of any external connections that might be made to input and output
terminals shown in Fig. 277. This is because the parameters are defined in terms of
open-circuit and short-circuit values of voltage and current (and thus the parameter values
would not be affected by any external connections that might be made to the input and
output terminals).

Our object now is threefold, as follows. FIRST, we need to explain why some of the
parameters may have ‘‘negative’’ values. SECONDLY, we’ll derive an ‘‘equivalent circuit’’
in terms of the h parameters, since these parameters are much used in practical work.
THIRD, we’ll find the current that would flow into an external load impedance of ZL

ohms if connected to terminals ð2; 2Þ in Fig. 277.
Let us begin with the first item above. The reason that some of the parameters may be

negative is because of the particular directions that have been universally adopted for the
voltage and current arrows in Fig. 277.

As you know, ‘‘voltage and current arrows’’ indicate what we choose to call the ‘‘posi-
tive directions’’ of the voltages and currents in any given network.

The showing of such arrows would not generally be important if we always dealt only
with simple series circuits. It is, however, definitely necessary to show the arrows when
dealing with multiple-loop networks. This is true because in a multi-loop network each
voltage and current, in any loop, affects the values of voltage and current in any other
loop. Thus the several simultaneous equations that describe a given network cannot be
written independently of each other; that is, the various ‘‘loop equations’’ must be written
in an orderly manner, each equation taking into account the mutual effects of all the other
loops. One way to insure that this is done is to first assign, by means of arrows, the chosen
‘‘positive directions’’ in the network, and then strictly adhere to these arrows when writing
the simultaneous equations for the network.

Now let’s get back to the explanation of why, in a given case, some of the two-port
parameters may have negative values. In doing this we’ll take as examples the h-para-
meters, as this will have the dual advantage of introducing these important practical
parameters.

Therefore, from inspection of the defining eqs. (506) and (507), you can verify that the
values of the short-circuit and open-circuit h-parameters are given as follows.

h11 ¼
V1

I1 ðV2¼0Þ
¼ short-circuit input impedance (ohms) ð515Þ

h12 ¼
V1

V2ðI1¼0Þ
¼ open-circuit reverse-voltage feedback factor ð516Þ

h21 ¼
I2
I1ðV2¼0Þ

¼ short-circuit forward current gain ð517Þ

h22 ¼
I2
V2ðI1¼0Þ

¼ open-circuit output admittance (mhos) ð518Þ
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Note that h12 is the ratio of ‘‘volts to volts’’ and h21 is the ratio of ‘‘amperes to amperes’’
and hence are equal to pure numbers, and are thus said to be ‘‘dimensionless’’ quantities.

Now, to illustrate why a parameter may carry a negative sign, let us suppose that the
network inside the box in Fig. 277 happens to be a T network, as shown in Fig. 278, in which
(for simplicity in making our point here) the elements all have equal values of R ohms.

Now let us note, again, that eqs. (515) through (518) are defined for the two different
conditions of V2 ¼ 0 and I1 ¼ 0; with this in mind, consider Figs. 279 and 280. In these two
figures, note that the voltage and current arrows are all drawn in the ‘‘positive sense’’ as
defined in accordance with Fig. 277.

But also note that, although the T network itself is the same in both figures, the values
of the voltages and currents will be completely different in the two figures. Therefore, just
for this discussion, let us denote the values in Fig. 280 by I 0

1 , I
0
2 , V

0
1, and V 0

2, as shown.
Then the equations will be, for the given arrow directions,

for Fig: 279:
2RI1 þ RI2 ¼ V1

RI1 þ 2RI2 ¼ 0

� �
ðcase of V2 ¼ 0Þ

for Fig: 280:
I 0
2 ¼ V 0

2=2R

V 0
1 ¼ RI 0

2 ¼ V 0
2=2

� �
ðcase of I 0

1 ¼ 0Þ
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Now, upon making use of the above relationships and eqs. (515) through (518), you
should find that

h11 ¼
V1

I1
¼ 3R=2 h21 ¼

I2
I1

¼ �1=2

h12 ¼
V 0

1

V 0
2

¼ 1=2 h22 ¼
I 0
2

V 0
2

¼ 1=2R

Thus, for the network of Fig. 278, h21 has a negative value. This happens because of the
particular definitions of the ‘‘positive senses’’ laid down in Fig. 277.

To show this, suppose, in Fig. 279, that the positive sense of both I1 and I2 had been
given to be in the clockwise sense. In that case, note that the equations for Fig. 279 would
be

2RI1 � RI2 ¼ V1

�RI1 þ 2RI2 ¼ 0

in which case

h21 ¼
I2
I1

¼
R

2 V1

�1 0

����
����

R
V1 �1

0 2

����
����
¼ þ1=2

illustrating how the sign of a parameter can depend upon the positive senses originally
chosen in Fig. 277.

Let us be reminded that our procedures are based upon the fact that sinusoidal voltages
and currents can be represented as complex numbers and manipulated as vectors on the
complex plane. Thus the vector diagram for the purely resistive circuit of Fig. 279, taking
V1 as the reference vector, would have the form

in which the lengths of the vectors represent the magnitudes of the rms values of the
voltages and currents. In this particular case the diagram shows that I2 is 180 degrees
out of phase with respect to V1 (and also I1, since I1 is in phase with V1 in this case). This
fact is shown algebraically by eq. (517); thus

I2 ¼ h21I1 ¼ �I1=2

Lastly, the h-parameter equations for the network inside the box in Fig. 278 are, by eqs.
(506) and (507), equal to

V1 ¼ ð3R=2ÞI1 þ ð1=2ÞV2

I2 ¼ �ð1=2ÞI1 þ ð1=2RÞV2

The following problem is another example of how the contents of the box in Fig. 277
determine the sign of a parameter.

Problem 246
Let the T-network of Fig. 278 be replaced with the transformer-coupled circuits
shown in Figs. 281 and 282. In both figures the outputs are short-circuited (making
V2 ¼ 0), with reference ‘‘grounds’’ as shown.
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Note that the ONLY DIFFERENCE between the two figures is in the placement
of the transformer ‘‘polarity dots.’’ Also note that, in both figures, the positive sense
of I1 is given to be in the cw sense while the positive sense of I2 is given to be in the
ccw sense.

With these given details in mind, and upon referring back to eq. (385) in section
10.3, find the values of h21, first for Fig. 281 and then for Fig. 282.

Now let’s go on to the second item we set out to explore, which concerns an ‘‘equivalent
network’’ for a two-port, given the h-parameters of the two-port.

Let us begin by noting that any network that satisfies the DEFINING EQUATIONS,
(506) and (507), can be considered to be an ‘‘equivalent h-parameter network’’ for the
general two-port of Fig. 277. (For convenience here we’ve repeated eqs. (506) and (507)
below.)

V1 ¼ h11I1 þ h12V2 ð506Þ
I2 ¼ h21I1 þ h22V2 ð507Þ

With the above in mind, we’ll now show that Fig. 283 is a true, valid ‘‘equivalent h-
parameter network’’ for a general two-port.

Note that the network has both a dependent voltage generator* and a dependent
current generator. Inspection of the network shows that the voltage equation around
the left-hand loop is

h11I1 ¼ �h12V2 þ V1
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Fig. 283. h-parameter equivalent network.

* A ‘‘dependent’’ generator is one whose output is dependent upon the value of a voltage or a current at another

location in the network. (For example, the voltage of the left-hand generator in Fig. 283 is dependent upon the

value of voltage V2.)



and the sum of the currents on the right-hand side is

I2 ¼ h21I1 þ h22V2

which are eqs. (506) and (507), thus proving that Fig. 283 is a valid h-parameter equivalent
network for the general two-port configuration of Fig. 277.

Lastly, in regard to the third item, the answer simply is that the value of an output
current I2 (that would flow in a passive load impedance of ZL ohms) would depend upon
the values of the h-parameters which, in turn, would depend upon the particular network
inside the box in Fig. 277. Thus we must here postpone any calculation of I2 until the signs
and magnitudes of the h-parameters are known in each individual situation.

11.8 Matrix Conversion Chart for the Two-Port
Network

So far we’ve emphasized the practical importance of the h-parameters. While it is true that
the h-parameters are probably the most widely used, it’s also true that in some cases it’s
more convenient to work with one of the other parameters, that is, the z, y, g, or a. Also,
manufacturers’ data sheets may sometimes be given in terms of a parameter other than the
h. Hence, given any one of the five parameters, it’s necessary to be able to find the
corresponding values of any one of the other four. This can be done as follows.

In section 11.6 we wrote the equations for the equivalent networks in matrix form,
which, for convenience here, we’ve summarized below:

in z parameters:

V1

V2

� 	
¼ z11 z12

z21 z22

� 	
I1

I2

� 	
ð519Þ

in y parameters:

I1

I2

� 	
¼ y11 y12

y21 y22

� 	
V1

V2

� 	
ð520Þ

in h parameters:

V1

I2

� 	
¼ h11 h12

h21 h22

� 	
I1

V2

� 	
ð521Þ

in g parameters:

I1

V2

� 	
¼ g11 g12

g21 g22

� 	
V1

I2

� 	
ð522Þ

in a parameters:

V1

I1

� 	
¼ a11 a12

a21 a22

� 	
V2

�I2

� 	
ð523Þ

Since, for any given case, these equations all represent the same network inside the box
of Fig. 277, it follows that definite relationships must exist among the z, y, h, g, and a
parameters.

Thus, in the ‘‘z’’ matrix of eq. (519) it must be possible to express the z quantities in
terms of, say, the g parameters. Or, in the ‘‘h’’ matrix of eq. (521), it must be possible to
express the h quantities in terms of, say, the a parameters, and so on.
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This can be done, and the relationships can be shown in the form of a matrix conversion
chart.

The explanation of the chart is as follows.
First we have the basic parameter matrices; thus

½z� ¼ z11 z12

z21 z22

� 	
; ½y� ¼ y11 y12

y21 y22

� 	
and so on, for eqs. (521) through (523).

Next, ‘‘d ’’ indicates the determinant value of a basic matrix; thus

dz ¼ det½z� ¼
z11 z12

z21 z22

�����
����� ¼ z11z22 � z12z21

dy ¼ det½y� ¼
y11 y12

y21 y22

�����
����� ¼ y11y22 � y12y21

and so on, in the same way,

dh ¼ det½h� ¼ h11h22 � h12h21

dg ¼ det½g� ¼ g11g22 � g12g21

da ¼ det½a� ¼ a11a22 � a12a21
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Matrix conversion chart

½z� ¼ z11 z12

z21 z22

� 	
¼

y22

dy

�y12

dy

�y21

dy

y11

dy

2
664

3
775 ¼

dh

h22

h12

h22

�h21

h22

1

h22

2
6664

3
7775 ¼

1

g11

�g12

g11

g21

g11

dg

g11

2
6664

3
7775 ¼

a11

a21

da

a21

1

a21

a22

a21

2
6664

3
7775

½y� ¼
z22

dz

�z12

dz
�z21

dz

z11

dz

2
64

3
75 ¼ y11 y12

y21 y22

� 	
¼

1

h11

�h12

h11

h21

h11

dh

h11

2
6664

3
7775 ¼

dg

g22

g12

g22

�g21

g22

1

g22

2
6664

3
7775 ¼

a22

a12

�da

a12

�1

a12

a11

a12

2
6664

3
7775

½h� ¼
dz

z22

z12

z22

�z21

z22

1

z22

2
6664

3
7775 ¼

1

y11

�y12

y11

y21

y11

dy

y11

2
6664

3
7775 ¼ h11 h12

h21 h22

� 	
¼

g22

dg

�g12

dg

�g21

dg

g11

dg

2
664

3
775 ¼

a12

a22

da

a22

�1

a22

a21

a22

2
6664

3
7775

½g� ¼

1

z11

�z12

z11

z21

z11

dz

z11

2
6664

3
7775 ¼

dy

y22

y12

y22

�y21

y22

1

y22

2
6664

3
7775 ¼

h22

dh

�h12

dh

�h21

dh

h11

dh

2
664

3
775 ¼ g11 g12

g21 g22

� 	
¼

a21

a11

�da

a11

1

a11

a12

a11

2
6664

3
7775

½a� ¼
z11

z21

dz

z21

1

z21

z22

z21

2
6664

3
7775 ¼

�y22

y21

�1

y21

�dy

y21

�y11

y21

2
6664

3
7775 ¼

�dh

h21

�h11

h21

�h22

h21

�1

h21

2
6664

3
7775 ¼

1

g21

g22

g21

g11

g21

dg

g21

2
6664

3
7775 ¼ a11 a12

a21 a22

� 	



The chart is useful because it allows us to find the value of any parameter in terms of
any other parameter. For example, suppose, in a certain case, that we wish to work in
terms of, say, the z parameters, but are given only the values of, say, the h parameters.
From the definition of equal matrices in section 11.1, inspection of the chart then shows
that values of the z parameters are calculated from corresponding values of the h para-
meters by means of the formulas

z11 ¼ dh=h22; z12 ¼ h12=h22; z21 ¼ �h21=h22; z22 ¼ 1=h22

You may be interested in learning how the various entries listed in the chart were
arrived at. This was done by making use of the basic equations summarized in eqs.
(519) through (523). For example, let’s begin with, say, the basic eq. (521); thus

h11 h12

h21 h22

� 	
I1

V2

� 	
¼ V1

I2

� 	

which becomes, after multiplying both sides by the inverse matrix ½h��1,

I1

V2

� 	
¼ h11 h12

h21 h22

� 	�1 V1

I2

� 	

and comparison of this last equation with eq. (522) shows that

g11 g12

g21 g22

" #
¼

h11 h12

h21 h22

" #�1

½g� ¼ ½h��1

ð524Þ

Now find the inverse of the 2 � 2 h-parameter matrix as indicated. (In connection with
finding the inverse of the 2 � 2 matrix, you may wish to review problem 232 in section
11.3.) Doing this, you should find that

½g� ¼ g11 g12

g21 g22

� 	
¼

h22

dh

�h12

dh

�h21

dh

h11

dh

2
664

3
775 ð525Þ

Equation (525) verifies that the g-matrix ½g� can be written in terms of the h-parameters
in the form shown in the chart. From the condition required for equal matrices given in
section 11.1, inspection of eq. (525) shows that h-parameters can be converted into equiva-
lent g-parameters by means of the formulas

g11 ¼ h22=dh g12 ¼ �h12=dh g21 ¼ �h21=dh g22 ¼ h11=dh

Problem 247
Suppose the h-parameter values for an unknown network inside the box in Fig. 277
are found to be

h11 ¼ 850 ohms h12 ¼ ð8Þ10�3

h21 ¼ 26 h22 ¼ ð4Þ10�4 mhos

Using the matrix conversion chart, find the equivalent values of the g parameters.
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Problem 248
Making use of the defining eqs. (494) and (495), and (506) and (507), prove that the
values of the z-parameters in terms of the h-parameters, as given in the first row of
the conversion chart, are correct.

Problem 249
Convert the following g-parameter values into equivalent z-parameter values:

g11 ¼ 0:068 mhos g12 ¼ �0:073

g21 ¼ �228 g22 ¼ 8755 ohms

Problem 250
Prove that ½h� ¼ ½g��1 by making use of eqs. (508) and (511) and section 11.3.

Problem 251
Convert the h-parameter values in problem 247 into equivalent z-parameter values.

11.9 Matrix Operations for Interconnected
Two-Ports

In circuit design work it’s often possible to consider a complex system as being composed
of an interconnection of separate, individual two-ports. This approach can greatly simplify
the work, because it is usually much easier to deal with each such ‘‘building block’’
individually, and then connect them together to form the whole, than it is to deal with
the whole complex system as a single unit.

There are five basic ways of interconnecting individual two-ports to form a single
equivalent two-port. These five configurations are known as the SERIES, the
PARALLEL, the SERIES-PARALLEL, the PARALLEL-SERIES, and the CASCADE
connections. We take up each of the five modes in this section, beginning with the series
connection. The parameter (z, y, h, g, or a) that will be used in any given case will depend
upon the type of connection (series, parallel, and so on).

SERIES CONNECTION OF TWO-PORTS
Two two-port networks, ‘‘a’’ and ‘‘b,’’ are said to be connected in series if the two input
circuits are in series and the two output circuits are in series. The basic series connection of
two-ports is thus as shown in Fig. 284.

In Fig. 284 note that V1 and V2 are the input and output voltages for the overall
composite network. It follows that V1 will divide between the two series-connected inputs
and V2 will divide between the two series-connected outputs, as shown.

Let us now apply the z-form of eqs. (494) and (495), to the individual networks a and
b in the figure. Let subscript ‘‘a’’ apply to network a and subscript ‘‘b’’ apply to network b.
In the figure, note that the same current I1 flows through both inputs and the same
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current I2 flows through both outputs; thus, from eqs. (494) and (495) we have eqs. (526)
and (527):

for network ‘‘a’’

V1a ¼ z11aI1 þ z12aI2

V2a ¼ z21aI1 þ z22aI2

that is;
V1a

V2a

� 	
¼

z11a z12a

z21a z22a

" #
I1

I2

" #
8>>>>><
>>>>>:

ð526Þ
ð527Þ

ð528Þ

for network ‘‘b’’

V1b ¼ z11bI1 þ z12bI2

V2b ¼ z21bI1 þ z22bI2

that is;
V1b

V2b

� 	
¼ z11b z12b

z21b z22b

� 	
I1
I2

� 	
8>>>><
>>>>:

ð529Þ
ð530Þ

ð531Þ

Now write down the sum of eqs. (526) and (529) and also the sum of eqs. (527) and
(530). Doing this, and noting, from Fig. 284, that V1a þ V1b ¼ V1, and also that
V2a þ V2b ¼ V2, we find, for the composite network consisting of two series-connected
two-ports, that

V1 ¼ ðz11a þ z11bÞI1 þ ðz12a þ z12bÞI2 ð532Þ
V2 ¼ ðz21a þ z21bÞI1 þ ðz22a þ z22bÞI2 ð533Þ

or, in matrix form,

V1

V2

� 	
¼ ðz11a þ z11bÞ ðz12a þ z12bÞ

ðz21a þ z21bÞ ðz22a þ z22bÞ
� 	

I1

I2

� 	
ð534Þ

Equations (532), (533), and (534) show that series-connected two-ports can be replaced
with a single equivalent two-port whose z parameters are the sum of the corresponding z-
parameters of the individual two-ports. This fact can be summarized by writing, for series-
connected two-ports:

½z� ¼ ½za� þ ½zb� ð535Þ
where ½za� and ½zb� are the impedance matrices of the individual series two-ports in eqs.
(528) and (531), and where ½z� is the impedance matrix of the single equivalent two-port,
which appears in eq. (534). Note that (in accordance with the rule for addition of matrices
laid down in section 11.1) the sum of the two impedance matrices in eqs. (528) and (531)
does produce the impedance matrix of eq. (534), which is what eq. (535) says. It should
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also be apparent from the preceding work that any number n of series two-ports can be
replaced by a single equivalent two-port whose impedance matrix is equal to the sum of the
impedance matrices of the n individual two-ports.

If the values of the z-parameters are not known in a given case but other parameter
values are known, the values of the z-parameters can then be found by use of the conver-
sion chart in section 11.8. For example, suppose the h-parameter values are known but the
z-parameter values are unknown, inspection of the conversion chart shows that the
required z-parameter values can be found, given the h-values, by means of the formulas

z11 ¼ dh=h22; z12 ¼ h12=h22; z21 ¼ �h21=h22; z22 ¼ 1=h22

PARALLEL CONNECTION OF TWO-PORTS
Two two-port networks, a and b, are connected in parallel if the input lines are connected
in parallel and the output lines are connected in parallel. The basic parallel connection of
two-ports is therefore as shown in Fig. 285.

First, for the above parallel connection, note that both networks have the same input
voltage V1 and the same output voltage V2. Next, regarding currents, inspection of Fig.
285 shows that, for the parallel connection,

I1 ¼ I1a þ I1b and I2 ¼ I2a þ I2b

or, in matrix form,

I1

I2

� 	
¼ I1a þ I1b

I2a þ I2b

� 	
¼ I1a

I2a

� 	
þ I1b

I2b

� 	

which, upon applying eq. (520) to each of the two right-hand matrices, can be written as

I1

I2

� 	
¼ y11a y12a

y21a y22a

� 	
V1

V2

� 	
þ y11b y12b

y21b y22b

� 	
V1

V2

� 	

and therefore

I1

I2

� 	
¼ ðy11a þ y11bÞ ðy12a þ y12bÞ

ðy21a þ y21bÞ ðy22a þ y22bÞ
� 	

V1

V2

� 	
ð536Þ

Equation (536) shows that parallel-connected two-ports can be replaced, for analysis,
with a single equivalent two-port whose y-parameters are equal to the sum of the corre-
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sponding y parameters of the individual two-ports. This fact is summarized by writing that,
for parallel-connected two-ports,

½y� ¼ ½ya� þ ½yb� ð537Þ
where ½ya� and ½yb� are the admittance matrices of the individual parallel two-ports in the
equation at the top of the page, and where ½y� is the admittance matrix of the single
equivalent two-port which appears in eq. (536). Note that, in accordance with the rule
for the addition of matrices, the sum of the two admittance matrices in the equation at the
top of the page does produce the admittance matrix of eq. (536), which is what eq. (537)
says. It’s also apparent that any number n of parallel two-ports can, for purposes of
analysis, be replaced by a single equivalent two-port whose admittance matrix is equal
to the sum of the admittance matrices of the n individual two-ports.

If, in a given case, the values of the y-parameters are not known but the values of
another set of parameters are known, then the values of the y-parameters can be found by
inspection of the conversion chart of section 11.8. For example, if the values of, say, the g
parameters are known, then inspection of the chart shows that

y11 ¼ dg=g22; y12 ¼ g12=g22; y21 ¼ �g21=g22; y22 ¼ 1=g22

SERIES-PARALLEL AND PARALLEL-SERIES CONNECTIONS OF
TWO-PORTS
In the series-parallel connection the two networks are connected in series on the input side
and in parallel on the output side. This is illustrated in Fig. 286.

As will be shown in one of your practice problems, the series-parallel combination of
Fig. 286 can be replaced, for purposes of analysis, by a single equivalent two-port net-
work having h-parameters equal to the sums of the corresponding h-parameters of the
individual two-ports. Thus (where subscript e denotes the h-parameters of the equivalent
two-port)

h11e ¼ h11a þ h11b h21e ¼ h21a þ h21b

h12e ¼ h12a þ h12b h22e ¼ h22a þ h22b

or, expressed in matrix notation,

½he� ¼ ½ha� þ ½hb�
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where ½ha� and ½hb� are the h-parameter matrices of the individual series-parallel two-ports,
and where ½he� is the h-parameter matrix of the equivalent two-port. It’s also apparent that
the above remarks apply to any number n of series-parallel connected two-ports.

Next, in the parallel-series connection of two-port networks, the two networks a and b
are connected in parallel on the input side and in series on the output side, as illustrated in
Fig. 287.

It can be shown that the parallel-series connection of two-ports can be replaced, for
purposes of analysis, by a single equivalent two-port having g-parameters equal to the sums
of the corresponding g-parameters of the individual two-ports; thus,

g11e ¼ g11a þ g11b g21e ¼ g21a þ g21b

g12e ¼ g12a þ g12b g22e ¼ g22a þ g22b

where ‘‘e’’ denotes the g-parameters of the equivalent two-port. These remarks apply to
any number n of parallel-series-connected two-ports.

CASCADE CONNECTION OF TWO-PORTS
By definition, two-port networks are said to be connected in ‘‘cascade’’ if the output of the
first is the input to the second, the output of the second is the input to the third, and so on.
As an example, a cascade connection of three two-ports is shown in Fig. 288, in which
we’re using, for each stage, the standard notation of Fig. 277. Note that V1 and I1 are the
input voltage and current to the cascade, and we’re assuming the cascade is terminated in a
load impedance of ZL ohms.

In terms of the standard notation of Fig. 277, note that the negative of the output
current of each network equals the input current to the next network; that is, from
inspection of Fig. 288,

�I2 ¼ I3 �I4 ¼ I5 �I6 ¼ I7
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and also, from inspection of the figure,

V2 ¼ V3; V4 ¼ V5; V6 ¼ V7

and so on, for any number of cascaded networks.
When two-ports are connected in cascade, it’s convenient to use the ‘‘a’’ parameters, in

which the output current of each network is written with the minus sign, that is, as a
negative current, in the form of eq. (514) in section 11.6. Thus, letting V1 and I1 denote
input voltage and current and V2 and I2 denote output voltage and current, the matrix
equation for each individual network in a cascade of two-port networks will be, using a
parameters from eq. (514),

V1

I1

� 	
¼ ½a� V2

�I2

� 	
where

½a� ¼ a11 a12

a21 a22

� 	
Referring to Fig. 288 we therefore have, starting at the left (the input end of the

cascade), that the matrix equation for the first network is

V1

I1

� 	
¼ ½a1�

V2

�I2

� 	
¼ ½a1�

V3

I3

� 	
ð538Þ

and then, since

V3

I3

� 	
¼ ½a2�

V4

�I4

� 	
¼ ½a2�

V5

I5

� 	
eq. (538) becomes

V1

I1

� 	
¼ ½a1�½a2�

V5

I5

� 	
ð539Þ

and then, since

V5

I5

� 	
¼ ½a3�

V6

�I6

� 	
¼ ½a3�

V7

I7

� 	
eq. (539) becomes

V1

I1

� 	
¼ ½a1�½a2�½a3�

V7

I7

� 	
ð540Þ

which is the final matrix equation for the 3-network two-port cascade of Fig. 288.
It’s clear that the foregoing procedure can be continued for any number of two-ports in

cascade. Thus, if n two-ports are connected in cascade, and if V1 and I1 are the input
voltage and current to the cascade and Vo and Io are the final output voltage and current,
then eq. (540) extends to the general form

V1

I1

� 	
¼ ½a1�½a2�½a3� � � � ½an�

Vo

Io

� 	
ð541Þ

that is

V1

I1

� 	
¼ ½A� Vo

Io

� 	
ð542Þ
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where ½A� is the overall network matrix for n two-ports in cascade. We have thus deduced
the important fact that

The overall network matrix for two-port networks in cascade is equal to the
PRODUCT of the matrices of the individual two-ports if a parameter
values are used.

Let us note that the final signs of the currents and voltages in Fig. 288 will depend, in
any given case, upon the networks inside the boxes (see ‘‘third item’’ discussion in final
paragraph of section 11.7).

Problem 252
Prove that the two two-ports in Fig. 286 can be replaced by a single equivalent two-
port whose h-parameters are equal to the sums of the corresponding h-parameters of
the individual two-ports.

Problem 253
If three individual two-port networks are connected in parallel, express the para-
meters of the single equivalent two-port in terms of the z-parameters of the indivi-
dual two-ports.

Problem 254
Two identical two-ports are connected in cascade. Write the matrix expression for
the single equivalent two-port in terms of h-parameters.

Problem 255
In problem 254, show that the value of the input current I1, in terms of the h-
parameters, is equal to

I1 ¼
½1 þ h11h22 þ ð1 þ dhÞh22VL�V1

ð1 þ dhÞh11 þ ½ðdhÞ2 þ h11h22�ZL

Problem 256
Find the expression for the inverse matrix, ½h��1, if the answer to problem 254 is
written in the form

Vo

Io

� 	
¼ ½h� V1

I1

� 	

11.10 Notes Regarding the Interconnection
Formulas
In the preceding work dealing with the interconnection of two-ports, we’ve assumed that
each two-port operates in the normal ‘‘balanced’’ mode, meaning that both input term-
inals carry the same current I1 and both output terminals carry the same current I2, as
shown in Fig. 289. If we have a situation in which this condition is not true, then we do not
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have the normal two-port network defined by Fig. 277, and the equations we’ve developed
for interconnected two-ports are not valid.

To understand how such current imbalances can occur, consider the series connection
of two two-port networks, a and b, shown in Fig. 290, in which we’ll concentrate our
attention on the input and output currents of network a.

In Fig. 290, depending upon the type of networks that blocks a and b represent, it is
possible that an unwanted loop current I3 can flow in the interconnection, as shown.

If this happens, inspection of the figure shows that, in general, the current at terminal 1
will not be equal to the current at terminal 1 0. In such a case, network a is no longer a
normal balanced two-port, and the two-port equations previously derived will not be
valid.

Therefore, the condition that the previously derived formulas for series-connected two-
ports be valid is that no circulating current can exist between the networks, that is, that
I3 ¼ 0 in Fig. 290.

Fortunately, a simple test can be applied to determine whether the basic equation (534),
found in section 11.9, is valid for a given series connection of two-ports. The test setup is
shown in Figs. 291 and 292.

The test is carried out as follows. The first step, shown in Fig. 291, is to connect the
inputs of the two networks in series, leaving the outputs open-circuited, as shown. Now
imagine a signal voltage Vs to be applied to the series-connected inputs, as shown. Then
eq. (534) is valid if, and only if, the voltage V is zero. The second step in the test is to apply
the test signal Vs to the series-connected outputs with the inputs open-circuited, as shown
in Fig. 292. Again, eq. (534) is valid only if V ¼ 0.

If the foregoing test shows that the two given two-ports will not satisfy the requirement
that V ¼ 0 for the series connection, they can sometimes be put into a different but
equivalent form, for which V will be zero.
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As an example of this, consider first Fig. 293, which shows the test setup of Fig. 291 for
a proposed series connection of two particular two-ports. In Fig. 293, note that V will not
be equal to zero, because of the voltage drop across R, and hence Eq. (534) will not apply
if the two networks are connected in series. If, however, we convert the top network into
its ‘‘T’’ equivalent (section 9.2), then Fig. 293 becomes Fig. 294, for which V does equal
zero. Hence, if Fig. 293 is put into the equivalent form of Fig. 294, then eq. (534) will be
valid for the series connection of the two networks.

It’s also possible that an unwanted loop current can flow in the parallel connection of
Fig. 285. The test setup to determine whether eq. (536) is valid for a parallel connection of
two two-port networks is shown in Figs. 295 and 296.

To apply the test we begin with Fig. 295, in which a signal voltage Vs is applied to the
parallel inputs, with the two outputs, previously connected in parallel, now disconnected
and with each short-circuited, as shown. The voltage V is now calculated or measured.
The operation is then repeated in the reverse direction, as shown in Fig. 296. Only if V ¼ 0
for both test conditions is eq. (536) valid for the parallel connection of the given two-ports.

If V does not equal zero in a given case, it may be possible to transform one, or both, of
the two-ports into an equivalent network for which V ¼ 0, in a manner such as was done
for the series connection of Fig. 293.

In the preceding discussions we’ve found that if a test setup shows V not equal to zero,
we must then try to change one or both of the networks into an equivalent form for which
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V will be equal to zero (that is, if we wish to be able to use the formulas found in section
11.9).

In case an equivalent network cannot be found for which V ¼ 0, it is always possible,
theoretically at least, to use one or more ideal transformers to insure that no undesired
circulating current can flow in a proposed interconnection. This is illustrated in Fig. 297
for the series connection, where T is assumed to be an ideal transformer with 1:1 turns
ratio.

In regard to the transformer T, the impedance seen between the primary terminals is the
same as the impedance seen looking into network a, because T is an ideal ‘‘1 to 1’’
transformer (section 10.6). Therefore, in Fig. 297, the input impedances to networks
a and b are connected in series as far as an ac signal is concerned. Also, since T is an
ideal 1:1 transformer, the same signal current I1 flows in both the primary and secondary
sides. The important point to see now, in Fig. 297, is that the transformer forces the
currents to be equal in both input terminals to network a, and hence no undesired loop
current I3 can flow, as might be possible in Fig. 290, depending upon the nature of net-
works a and b.

Transformer T in Fig. 297 must be as nearly ideal as possible. Whether or not this
requirement can be met in a practical case will depend upon such factors as frequency,
power level, cost, and limitations as to physical size.
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In closing, it should be noted that the problem of possible current imbalance does not
arise in the cascade connection of two-ports, Fig. 288. Thus eq. (541) applies without
reservation to the cascade connection.

11.11 Some Basic Applications of the
Formulas
Let us begin by finding a matrix expression for a single ‘‘shunt-connected’’ impedance Z,
which we can imagine to be the contents of the box of Fig. 277, as shown in Fig. 298.

In the figure we can, in principle, represent the contents of the box in terms of any one
of the five parameters z, y, h, g, or a, but here let us suppose we elect to use the z-
parameters. To do this we make use of the basic ‘‘z-parameter’’ equations, (494) and
(495) in section 11.6, as follows, in which, from direct inspection of Fig. 298, we see that

by eq: ð494Þ for I2 ¼ 0; z11 ¼ V1=I1 ¼ Z

by eq: ð495Þ for I2 ¼ 0; z21 ¼ V2=I1 ¼ V1=I1 ¼ Z

by eq: ð494Þ for I1 ¼ 0; z12 ¼ V1=I2 ¼ V2=I2 ¼ Z

by eq: ð495Þ for I1 ¼ 0; z22 ¼ V2=I2 ¼ Z

and thus, for the single shunt impedance Z of Fig. 298, eqs. (494) and (495) become

V1 ¼ ZI1 þ ZI2

V2 ¼ ZI1 þ ZI2

or, in matrix notation,

V1

V2

� 	
¼ Z Z

Z Z

� 	
I1

I2

� 	
Thus the matrix representation of a single shunt impedance Z, in the form of Fig. 298,

is given by

½Z� ¼ Z Z

Z Z

� 	
ð543Þ

Next, suppose the contents of the box in Fig. 277 consisted of a single ‘‘series-
connected’’ impedance Z, as in Fig. 299.
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Now, in conformity with the notation used in the figure, we have, upon applying Ohm’s
law,

viewed from terminals ð1; 1Þ : I1 ¼ ðV1 � V2Þ=Z ¼ V1=Z � V2=Z

viewed from terminals ð2; 2Þ : I2 ¼ ðV2 � V1Þ=Z ¼ V2=Z � V1=Z

Or, if we wish, since 1=Z ¼ Y ¼ the admittance of the series element, eqs. (500) and
(501) become, for Fig. 299,

I1 ¼ YV1 � YV2

I2 ¼ �YV1 þ YV2

or, in matrix notation,

I1

I2

� 	
¼ Y �Y

�Y Y

� 	
V1

V2

� 	
Thus the matrix representation of a single series impedance Z (or series admittance

Y ¼ 1=Z) is given by

½Y� ¼ Y �Y

�Y Y

� 	
ð544Þ

Next, let’s find the matrix representation for the case in which a transistor* is used with
an unbypassed emitter impedance of Z ohms, as shown in Fig. 300.

As Figs. 301 and 302 show, Fig. 300 can be considered to consist of two two-ports in series;
in Fig. 302 note that N2 denotes the single shunt impedanceZ and N1 denotes the transistor.
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From our work in section 11.9 concerning series-connected two-ports, we know that the
general matrix representation for Fig. 302 will be equal to the SUM of the matrix representa-
tions of N1 and N2. Thus, since we’ll be dealing with the sum of two matrices, and since the
matrix representation for N2 is in terms of impedance (eq. (543)), it follows that the matrix
representation for N1 (the transistor) must also be expressed in terms of impedance. There-
fore, uponmaking use of eq. (543) and the ‘‘impedance matrix’’ representation of a transistor
(note 30 in Appendix), we have that the matrix equation for Fig. 300 is

V1

V2

� 	
¼ ðZ11 þ ZÞ ðZ12 þ ZÞ

ðZ21 þ ZÞ ðZ22 þ ZÞ
� 	

I1

I2

� 	
ð545Þ

To continue with another example, let us find the matrix representation for a network
consisting of a transistor, in the CE mode, using a collector-to-base feedback impedance ofZ
ohms (or, if we wish, Y ¼ 1=Z mhos), as shown in Fig. 303.

Now, after some thought, we see that the feedback admittance Y can actually be
considered to be a two-port network in parallel with the two-port representation of the
transistor. This can be seen by redrawing Fig. 303 in the form of Fig. 304, in which we’ve
added a fictitious ground lead G, to show more clearly that Y can be considered to be a
two-port network in its own right.

Thus, in Fig. 304, the upper two-port network N1 is the feedback admittance Y , while
the lower two-port N2 is the transistor itself; as the figure shows, N1 is in parallel with N2.

Since the two two-ports are connected in parallel, the admittance matrix of the overall
equivalent two-port is the sum of the admittance matrices of the individual two-ports.
Hence, if Y11, Y12, Y21, and Y22 are the admittance parameters of the transistor, the matrix
equation for Fig. 303 is (making use of eq. (544))

I1

I2

� 	
¼ ðY11 þ YÞ ðY12 � YÞ

ðY21 � YÞ ðY22 þ YÞ
� 	

V1

V2

� 	
ð546Þ

Lastly, as another example, consider two impedances Z and Z 0, connected in the ‘‘L’’
configuration of Fig. 305.

As Fig. 306 shows, the L-network can be considered to be a cascade connection of
two two-ports in the manner of Fig. 288. Hence the transmission characteristics for the L-
network can be expressed in terms of the product of the a parameter matrices of the
individual networks 1 and 2; thus

V1

I1

� 	
¼ ½a1�½a2�

Vo

Io

� 	
ð547Þ

by eq. (541) in section 11.9.
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Now let us make use of the conversion chart in section 11.8 to write the above a-
parameter matrices in terms of Z and Z 0 (or Y and Y 0 if we wish). To do this, note
that, for network 1, which is the single shunt form of Fig. 298, we’ve already found that
(eq. (543))

½Z� ¼ Z Z

Z Z

� 	
¼ Z11 Z12

Z21 Z22

� 	
and thus, for the particular case of network 1, it is true that

Z11 ¼ Z12 ¼ Z21 ¼ Z22 ¼ Z; hence dZ ¼ Z2 � Z2 ¼ 0

and upon substituting these values into the fifth row of the conversion chart we have, for
network 1, that

½a1� ¼
1 0

1=Z 1

� 	
In a like manner for network 2 (which is of the single series form of Fig. (299)), we’ve

found that (eq. (544))

½Y 0� ¼ Y 0 �Y 0

�Y 0 Y 0

� 	
¼ Y11 Y12

Y21 Y22

� 	
and thus, for the particular case of network 2, it is true that

Y11 ¼ Y 0; Y12 ¼ �Y 0; Y21 ¼ �Y 0; Y22 ¼ Y 0; hence dY ¼ 0

and upon substituting these values into the fifth row of the conversion chart we have, for
network 2, that

½a2� ¼
1 1=Y 0

0 1

� 	
¼ 1 Z 0

0 1

� 	
Thus, substituting into eq. (547), we have that the transmission characteristics for the

L-network of Fig. 305 can be expressed in the matrix form

V1

I1

� 	
¼ 1 0

1=Z 1

� 	
1 Z 0

0 1

� 	
Vo

Io

� 	
that is,

V1

I1

� 	
¼ 1 Z 0

1=Z ð1 þ Z 0=ZÞ

� 	
Vo

Io

� 	
ð548Þ
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Now try the following problems. As you may note, some of the problems would be as
easy, or easier, to work without using matrices. But this is, of course, beside the point, as
our object here is to provide practice in thinking in terms of matrices.

Matrix algebra is a shorthand method of manipulating systems of simultaneous equa-
tions; its real value becomes evident in the analysis of complex networks represented by
such equations. It allows us to study systems of interconnected blocks of elements without
having to write out the mass of individual equations associated with the system. Digital
computer programs for solving matrix equations are available, and are used to provide
actual numerical answers if this is required.

Problem 257
For eq. (545) show that

I1 ¼
ðZ22 þ ZÞV1 � ðZ12 þ ZÞV2

dzþ ðZ11 þ Z22 � Z12 � Z21ÞZ
where dz ¼ Z11Z22 � Z12Z21

Problem 258
Write eq. (545) in terms of the h-parameters of the transistor.

Problem 259
Can eq. (504), in section 11.6, be applied directly to eq. (543)?

Problem 260
Solve eq. (548) for the matrix

Vo

Io

� 	

by taking the inverse of the coefficient matrix.

(Note: the above will be easy if you take advantage of the special formula for finding
the inverse of a 2 � 2 matrix given in the solution to problem 256.)

Next, in the basic Fig. 277, suppose a load impedance of ZL ohms is connected to the
output terminals, as in Fig. 307, and that the PROBLEM is to find the value of the output
load current IL.
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Problem 261
For the network of Fig. 307 inside the box, suppose it is found that

h11 ¼ 400 ohms h12 ¼ 0:100

h21 ¼ �20 h22 ¼ 0:002 mhos

Given that V1 ¼ 12 volts, find the value of load current if ZL ¼ RL ¼ 150 ohms.
(Answer: IL ¼ 0:2927 amps)

Problem 262
Rework problem 261, this time beginning with the matrix equation (514) in section
11.6.

Problem 263
Two identical transistors, operating in common-emitter mode, are connected in
cascade as shown in Fig. 308.

In the figure, let it be given that the transistor h-parameter values are

h11 ¼ 1000 ohms h12 ¼ 0:004

h21 ¼ 40 h22 ¼ 0:0005 mhos

If it is given that R ¼ 500 ohms and RL ¼ 900 ohms, find the output voltage VL if
the input voltage V1 is 0.001 volt. (Again, as in problem 262, let us begin with eq.
(514) in section 11.6.) (Answer: 0.3196 volts)

Problem 264
Write the set of simultaneous eqs. (455), (456), and (457), in Chap. 10, in the form of
a single matrix equation.

Problem 265
Note that the answer to problem 264 says that

A1

A2

A0

2
64

3
75 ¼

1 1 1

a a2 1

a2 a 1

2
64

3
75
�1

A

B

C

2
64

3
75

As an exercise in matrix manipulation, verify that the above expression does produce
eqs. (460), (463), and (466) in Chap. 10.

Our final example, which follows, will provide further practice in matrix manipulation
and will also bring to light an interesting fact concerning power in unbalanced three-phase
systems. In doing this we’ll freely make use of our previous work in three-phase theory
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in sections 10.7 through 10.11. Let us begin with the three-phase generator depicted in
Fig. 309.

In the figure, Va, Vb, and Vc represent the rms values of three unbalanced phase
voltages, with Ia, Ib, and Ic representing the rms values of the three corresponding
unbalanced phase currents (also the line currents here), as shown. In the work here we
wish to concentrate our attention on the POWER produced in the unbalanced condition,
ESPECIALLY in regard to expressing the power in terms of the SYMMETRICAL
COMPONENTS of the unbalanced system.

To begin, let PT denote the total ‘‘true power’’ produced by the above unbalanced
generator. From inspection of the figure it’s clear that PT is equal to the SUM OF THE
POWERS produced by the three individual phases of the generator; thus (see note 29 in
Appendix) in terms of the actual phase voltages and currents the value of PT is equal to the
‘‘sum of the real parts’’ (srp) in the expression

PT ¼ srp : Va
�IIa þ Vb

�IIb þ Vc
�IIc ð549Þ

in which the ‘‘overscore’’ in �IIa; �IIb; �IIc denotes the CONJUGATE of the quantity repre-
sented by the letter. (It’s understood that the Vs and Is are, in general, complex numbers.)

Note that eq. (549) is expressed in terms of the actual phase voltages and currents; but
we, however, wish to express the power in terms of the SYMMETRICAL COMPO-
NENTS of the phase voltages and currents. To do this, let us start by writing eq. (549)
in matrix notation; thus

PT ¼ srp : ½Va Vb Vc�
�IIa
�IIb
�IIc

2
64

3
75 ð550Þ

Let us now first work on the above current matrix, as follows. From inspection of Fig.
309 we have

Ia ¼ I1 þ I2 þ Io

Ib ¼ aI1 þ a2I2 þ Io

Ic ¼ a2I1 þ aI2 þ Io

Now take the CONJUGATES of the above equations. Remembering that the conju-
gate of the sum of a number of complex numbers is the sum of the conjugates and that the
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conjugate of the product of complex numbers is the product of the conjugates, and that the
conjugate of a is a2 and the conjugate of a2 is a, the above equations become

�IIa ¼ �II1 þ �II2 þ �IIo

�IIb ¼ a2 �II1 þ a�II2 þ �IIo

�IIc ¼ a�II1 þ a2 �II2 þ �IIo

Thus eq. (550) becomes

PT ¼ srp: ½Va Vb Vc�
1 1 1

a2 a 1

a a2 1

2
64

3
75

�II1
�II2
�IIo

2
64

3
75 ð551Þ

Now, in the above equation, since the ‘‘phase voltage matrix’’ is a ‘‘row matrix’’ it can
also be expressed as the TRANSPOSE of the corresponding ‘‘column matrix’’; doing this,
the above row matrix can be put into the following form

½Va Vb Vc� ¼
Va

Vb

Vc

2
64

3
75

t

¼
ðV1 þ V2 þ VoÞ

ðaV1 þ a2V2 þ VoÞ
ða2V1 þ aV2 þ VoÞ

2
64

3
75*

t

¼
1 1 1

a a2 1

a2 a 1

2
64

3
75 V1

V2

Vo

2
64

3
75

0
B@

1
CA

t

and thus, upon making use of the ‘‘reversal rule’’ (eq. (492)), we have that

½Va Vb Vc� ¼ ½V1 V2 Vo�
1 a a2

1 a2 a

1 1 1

2
64

3
75

Thus eq. (551) becomes

PT ¼ srp: ½V1 V2 Vo�
1 a a2

1 a2 a

1 1 1

2
64

3
75 1 1 1

a2 a 1

a a2 1

2
64

3
75

�II1
�II2
�IIo

2
64

3
75

which, since a3 ¼ 1, a4 ¼ a, and 1 þ aþ a2 ¼ 0, becomes

PT ¼ srp: ½V1 V2 Vo�
3 0 0

0 3 0

0 0 3

2
64

3
75

�II1
�II2
�IIo

2
64

3
75 ¼ 3½V1 V2 Vo�

�II1
�II2
�IIo

2
64

3
75

thus, finally,

PT ¼ srp: 3V1
�II1 þ 3V2

�II2 þ 3Vo
�IIo ð552Þ

The meaning of eq. (552) is as follows. In section 10.9 we found that the TOTAL
POWER produced in a balanced three-phase system is three times the power per phase
(eq. (438)). Equation (552) shows that the total power produced in an unbalanced
three-phase system is equal to the simple sum of the powers separately produced by the
positive-sequence, negative-sequence, and zero-sequence systems; that is, as far as power is
concerned, each system acts independently of the other two. Note that this is an un-
expected result, because the ‘‘principle of superposition’’ does not generally apply to
power calculations. (See ‘‘note of caution’’ following problem 73 in section 5.7.)
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Binary Arithmetic.
Switching Algebra

12.1 Analog and Digital Signals.
Binary Arithmetic

An ANALOG type of signal has in general a continuous range of amplitude values, such as
is illustrated in Fig. 310.

A DIGITAL signal, on the other hand, is an ordered sequence of discontinuous pulse-
type signals that can have only a limited number of different levels of amplitude. If only two
different levels are allowed, or can be detected, the digital signal is said to be a BINARY
(‘‘BY nary’’) type signal, the word ‘‘binary’’ meaning ‘‘two-valued.’’ The two different levels
of a binary signal can be said to represent the ‘‘on’’ and ‘‘off ’’ conditions of the signal, or the
‘‘presence or absence’’ of a pulse, and can be denoted by ‘‘1’’ and ‘‘0,’’ as in Fig. 311.

In Fig. 311 ‘‘T’’ is the measured time allotted to ‘‘one unit of information,’’ which is
called a ‘‘bit’’; thus, ‘‘9 bits of information’’ are represented in Fig. 311. The signal is said
to be ‘‘binary digital’’ because its two different states can be represented by the digits 1 and
0, as shown.

324

Fig. 310. Analog signal. Fig. 311. ‘‘Binary’’ digital signal.
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It is true that, in the real world, most signals originate in analog form; for instance, the
outputs of microphones, TV cameras, and most other sensing devices, are in analog form.
You might therefore very well ask ‘‘Of what use are digital-type signals; why use a digital
system at all?’’.

In answer to the question, one very important reason is that the internal operations of
DIGITAL COMPUTERS are handled in the form of binary digital signals. This is
because a digital computer uses integrated circuits containing thousands of transistors
operating in the binary ‘‘on or off’’ mode.

Another reason is that it is sometimes beneficial to first transform an analog signal into a
coded binary-type signal before it is fed into a transmission system or channel. This can
have a very good effect if the channel is noisy, because at the receiver it is then only
necessary to detect whether a pulse is PRESENT or NOT PRESENT. If this can be
done, the original analog signal can then be completely recovered from the binary
coded signal, even if the binary signal is mixed with so much noise that it would not be
possible to recover the signal if it were in analog form.*

In binary work, especially in regard to digital computers, it is necessary to be fluent in
‘‘binary arithmetic,’’ which let us introduce as follows.

A ‘‘digit’’ is a single symbol representing a whole, or integral, quantity. A ‘‘number’’ is
a quantity represented by a group of digits. The number of different digits a number system
uses is called the ‘‘base’’ or the radix, R, of the system. Thus the familiar decimal system
has the radix ‘‘ten,’’ using the ten digits 0 through 9.

In all practical number systems the value of a digit in a number depends not only on the
digit itself but also upon the position of the digit in the number. Consider, as an example,
the quantity represented by the decimal system number

2684:735

As you know, the number to the left of the ‘‘decimal point’’ is the whole or integral part
of the quantity, while the number to the right of the decimal point is the fractional part of
one unit. Note that the digits in the above decimal number have the following values:

the digit ‘‘2’’ has the value 2 � 103 ¼ 2000:

the digit ‘‘6’’ has the value 6 � 102 ¼ 600:

the digit ‘‘8’’ has the value 8 � 101 ¼ 80:

the digit ‘‘4’’ has the value 4 � 100 ¼ 4:

the digit ‘‘7’’ has the value 7 � 10�1 ¼ :7

the digit ‘‘3’’ has the value 3 � 10�2 ¼ :03

the digit ‘‘5’’ has the value 5 � 10�3 ¼ :005

Total value of the number ¼ 2684:735

As the above illustrates, in a decimal system number the value of any digit is equal to
the digit times 10n, where the value of n depends upon the position of the digit relative to
the decimal point.

In the above example, the radix has the value ‘‘10,’’ R ¼ 10. The same basic principle,
however, applies to ANY positional number system of radix R; thus, if any such number
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system has R different digits, the value of any number N in that system is equal to a sum of
the form

� � � þ dR3 þ dR2 þ dRþ d þ dR�1 þ dR�2 þ dR�3 þ � � � ð553Þ
where ‘‘d,’’ in any term, can be any of the R different digits in the system. For instance, the
decimal quantity 633.8, expressed in the form of eq. (553), is

6 � 102 þ 3 � 10 þ 3 þ 8 � 10�1 ¼ 600 þ 30 þ 3 þ 0:8

¼ 633:8

In everyday work, in business, engineering, and so on, amounts are expressed numeri-
cally in decimal system numbers, for which R ¼ 10, as we know. There’s no doubt that the
use of R ¼ 10 arose from the practice of counting with the aid of the ten fingers of the two
hands. But aside from this, there is nothing magical about the use of the decimal system.
The use of R ¼ 10 does, however, happen to be a good practical compromise between ‘‘too
large’’ a value of R and ‘‘too small’’ a value of R as far as direct use of numbers by human
beings is concerned. However, for doing arithmetic and storing data through the medium of
transistors or magnetic tape in a digital computer, the use of R ¼ 10 is not at all suitable;
the reason is that the transistors or the tape would have to be able to reliably sense 10
different levels of voltage or magnetization, a requirement that would call for complicated
circuitry. Instead of R ¼ 10, it’s much more practical, in digital computers, to use a two-
state BINARY system, because it’s easy to reliably drive a transistor into either the ‘‘on’’
or the ‘‘off’’ state, or to ‘‘magnetize’’ or ‘‘not magnetize’’ a spot on magnetic tape. For this
reason, the internal mathematical operations in a digital computer are performed using
BINARY arithmetic, the laws of which let us now consider.

The two-digit binary number system uses JUST THE FIRST TWO DIGITS of the
decimal system, ‘‘1’’ and ‘‘0.’’ Some examples of the appearance of binary numbers are

1101 111001010 1101:101

The first two numbers, above, are examples of whole binary numbers, while the third
consists of the whole part 1101, plus the fractional part 101; the dot separating the whole
part and the fractional part is called the ‘‘binary point,’’ which corresponds to the
‘‘decimal point’’ in the decimal system.

Now let’s consider the value represented by each of the above three binary numbers,
and let us express these values in terms of equivalent decimal numbers. To do this, first
note that in the binary system the number two is not represented by a single digit, just as in
the decimal system the value ten is not represented by a single digit.

To get the equivalent decimal system values of the above three examples, we will have
to use decimal numbers in eq. (553) which, for R ¼ 2, becomes

N ¼ � � � dð2Þ3 þ dð2Þ2 þ dð2Þ þ d þ dð2Þ�1 þ dð2Þ�2 þ � � � ð554Þ
where the digit d can have only the value 1 or 0. The decimal system equivalent values of
the three examples are, therefore,

1101 ¼ 1ð2Þ3 þ 1ð2Þ2 þ 0ð2Þ þ 1 ¼ 8 þ 4 þ 0 þ 1 ¼ 13; answer

111001010 ¼ 1ð2Þ8 þ 1ð2Þ7 þ 1ð2Þ6 þ 0ð2Þ5 þ 0ð2Þ4 þ 1ð2Þ3 þ 0ð2Þ2 þ 1ð2Þ þ 0

¼ 256 þ 128 þ 64 þ 0 þ 0 þ 8 þ 4 þ 2 þ 0 ¼ 462; answer

1101:101 ¼ 1ð2Þ3 þ 1ð2Þ2 þ 0ð2Þ þ 1 þ 1ð2Þ�1 þ 0ð2Þ�2 þ 1ð2Þ�3

¼ 8 þ 4 þ 0 þ 1 þ 1=2 þ 0 þ 1=8 ¼ 13:625; answer
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Setting d ¼ 1 in eq. (554), it will be seen that the equivalent decimal system values of the
binary 1 digits, relative to the binary point, are

binary digit: . . . 1 1 1 1 1 1
#
: 1 1 1 . . .

decimal value: 32 16 8 4 2 1 :5 :25 :125

You can now verify, and commit to memory if you wish, that, including zero, the first
16 binary numbers, with their decimal equivalents, are

0000 ¼ 0 0101 ¼ 5 1010 ¼ 10

0001 ¼ 1 0110 ¼ 6 1011 ¼ 11

0010 ¼ 2 0111 ¼ 7 1100 ¼ 12

0011 ¼ 3 1000 ¼ 8 1101 ¼ 13

0100 ¼ 4 1001 ¼ 9 1110 ¼ 14

1111 ¼ 15

Another important point we should be aware of is that, in any positional number
system of radix R, it’s very easy to multiply or divide by R raised to any positive or
negative integral power. For instance, to multiply or divide a decimal number by TEN
raised to any integral power n, all we need do is move the decimal point n places to the right
or left, as the case may be. In the same way, to multiply or divide a binary number by TWO
raised to any integral power n, all we need do is move the binary point n places to the right or
left as the case may be. The following table will make this clear.

Thus, while it’s easy to multiply or divide by any integral power of ten in the decimal
system, it’s equally easy to multiply or divide by any integral power of two in the binary
system. For instance, consider a binary number, N ¼ 101101; suppose, for example, that
we wish to multiply or divide N by say eight, which is 1000 in the binary system. Either
operation is very simply done, as follows,

101101 � 1000 ¼ 101101000 and
101101

1000
¼ 101:101

For the same values, the corresponding operations in the decimal system would be ‘‘45
times 8’’ and ‘‘45 divided by 8’’ which, of course, cannot be done by simply moving the
‘‘decimal point’’ to the right or the left.

As you can see from the above, expressing a given value in binary notation requires the
writing of many more digits than in decimal notation. Thus, while the binary system is
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admirably suited for internal use in a digital computer, it is not well suited for direct use by
human beings because it requires the writing down of so many digits to express even small
values. This bears out the statement made previously in regard to R ¼ 2 being the ideal
choice for internal computer operation, and R ¼ 10 being a good compromise for use by
human beings.

Now let’s consider the procedures for converting a decimal number into binary form
and vice versa. In stating the rules we’ll make use of the terms ‘‘most significant digit’’
(MSD) and ‘‘least significant digit’’ (LSD). The MSD is simply the digit having the most
value in a number, while the LSD is the digit having the least value in a number. Thus, in
the decimal number 28736, ‘‘2’’ is the MSD, ‘‘8’’ is the next-most significant digit, and so
on, until we reach ‘‘6,’’ which is the LSD. Or, in the binary number 110101, for example,
the 1 at the left-hand end is the MSD, while, going from left to right, we finally arrive at
the 1 at the right-hand end, which is the LSD. With this terminology in mind, the rules for
conversion from decimal to binary, and from binary to decimal, can be summarized as
follows.

DECIMAL-TO-BINARY CONVERSION
First, the following steps can be taken to convert a WHOLE decimal number into binary
form.

1. Divide the decimal number by 2; this produces a quotient plus a remainder of either
1 or 0. The remainder, 1 or 0, is the LSD in the equivalent binary number.

2. Divide the quotient found in step (1) by 2; this produces a second quotient plus a
remainder of 1 or 0. This remainder, 1 or 0, is the second least significant in the
binary number.

3. Continue on in this fashion, dividing each quotient by 2, until the quotient is equal
to zero plus the final remainder of 1 or 0, which is the MSD in the binary number.

Example 1
Convert the decimal number 105 to binary form.

Solution

105 divided by 2 ¼ 52; plus remainder 1; the LSD

52 divided by 2 ¼ 26; plus remainder 0; second LSD

26 divided by 2 ¼ 13; plus remainder 0; third LSD

13 divided by 2 ¼ 6; plus remainder 1; fourth LSD

6 divided by 2 ¼ 3; plus remainder 0; fifth LSD

3 divided by 2 ¼ 1; plus remainder 1; sixth LSD

1 divided by 2 ¼ 0; plus remainder 1; the MSD

Since positional numbers are always written from left to right, with the MSD at the left-
hand end, we have that

105 decimal ¼ 1101001 binary; answer

Next let us consider the conversion of a decimal fraction into its equivalent binary
fraction. Actually the procedure is very simple, but takes a lot of words to describe. Let
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us therefore first try to describe the procedure in words, and then, by means of an example,
show that the procedure is really very easy.

1. Begin by multiplying the given decimal fraction by 2; if the product is greater than 1
the binary fraction begins as 0.1, but if the product is less than 1 the binary fraction
begins as 0.0.

2. If the product found in step (1) is greater than 1, then subtract 1 from the product
and then multiply the result by 2; if the result is greater than 1, the binary fraction
is now of the form 0.11, but if less than 1 it is of the form 0.10. If, however, the
product found in step (1) is less than 1, then multiply it by 2; if the result is greater
than 1 the binary fraction is now of the form 0.01, but if less than 1 it is of the form
0.00. We continue on in this fashion to any degree of accuracy required.

Example 2
Convert the decimal fraction 0.403 into binary form.

Solution

Here, ‘‘multiply’’ and ‘‘subtract’’ are abbreviated as ‘‘mult’’ and ‘‘sub.’’

The given decimal fraction: 0:403 binary:

mult by 2: 0:806 0:0 because 0:806 < 1

mult by 2: 1:612 0:01 because 1:612 > 1

sub 1; then mult by 2: 1:224 0:011 because 1:224 > 1

sub 1; then mult by 2: 0:448 0:0110 because 0:448 < 1

mult by 2: 0:896 0:01100 because 0:896 < 1

mult by 2: 1:792 0:011001 because 1:792 > 1

sub 1; then mult by 2: 1:584 0:0110011 because 1:584 > 1

sub 1; then mult by 2: 1:168 0:01100111 because 1:168 > 1

sub 1; then mult by 2: 0:336 0:011001110 because 0:336 < 1

and so on, to whatever accuracy is required. To test the accuracy of the last result, above,
let us make use of eq. (554). Since we’re dealing entirely with a binary fraction, we need
only use the terms with negative exponents in eq. (554); doing this, we find that

0:011001110 ¼ 2�2 þ 2�3 þ 2�6 þ 2�7 þ 2�8 ¼ 0:40234 . . .

which may or may not be close enough to 0.403, depending upon accuracy requirements.
If you wish to continue with the above example, you can verify, for instance, that

0:0110011100101 ¼ 0:40295; which is of course closer to 0:403 than before:

Although such conversions are very time-consuming when done using pencil and paper,
they present no such difficulty when done internally in a digital computer; this is because
the computer can execute millions of such routine steps per second.

Also, in regard to decimal-to-binary conversion in general, it should be pointed out that
an integral decimal number always has an exact equivalent in the binary system, but a
decimal fraction may or may not have exact representation in the binary system. (How-
ever, the binary equivalent of a decimal fraction can always be determined to any desired
degree of accuracy.)
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BINARY-TO-DECIMAL CONVERSION
To convert an integral (whole) binary number to decimal form we move left to right
through the binary number, from the MSD to the LSD, as follows. Multiply the MSD
by 2, then add on the next digit. Multiply the result by 2, then add on the next digit.
Multiply this result by 2, then add on the next digit. Continue on until the last digit to the
right (the LSD) is included in the conversion.

Example 3
Convert the binary number 1101010 to decimal form.

Solution

Beginning at the left-hand end of the given binary number and using the above
procedure, we can chart the results as follows:

binary: 1 1 0 1 0 1 0

decimal: 2 3 6 13 26 53 106

Thus; 1101010 bi ¼ 106 dec; answer

Next, to convert a BINARY FRACTION into a DECIMAL FRACTION we move
through the binary fraction from right to left toward the ‘‘binary point’’ in the following
manner.

Divide the right-hand digit by 2, then add to this the next digit and divide the result by
2. Now add, to the last result, the next digit and divide the result by 2. Continue on in this
way until the binary point is reached.

Example 4
Convert the binary fraction 0.011011 to decimal form.

Solution

Beginning at the right-hand end, and following the above procedure, we can
chart the results as follows.

binary: :0 1 1 0 1 1

0:5

0:75

0:375

0:6875

0:84375

0:421875; thus 0:011011 bi ¼ 0:421875 dec; answer

CHECK : 0:011011 ¼ 2�2 þ 2�3 þ 2�5 þ 2�6 ¼ 1

4
þ 1

8
þ 1

32
þ 1

64
¼ 0:421875

Now let us continue on, and study the basic arithmetic (‘‘air ith MET ik’’) operations of
addition, subtraction, multiplication, and division in both the decimal and binary systems.
Let us begin with addition, first in the familiar decimal system, as follows.
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As we know, the decimal system employs the radix ‘‘ten,’’ making use of the ten digits
0; 1; 2; . . . ; 9. In the decimal system the number ‘‘ten’’ is denoted by ‘‘10.’’ Now, in regard
to the sum of any two of the ten digits, two possibilities arise; thus

1. the sum of the two digits is less than the radix ten, or

2. the sum of the two digits is equal to or greater than the radix ten.

In case (1) no difficulty arises; thus, 2 þ 5 ¼ 7, for example. In case (2), however, a
problem does arise in taking a sum such as ‘‘8 þ 8,’’ for example, because no single digit
exists in the decimal system to denote the quantity ‘‘sixteen.’’ Instead, to indicate in
number form the quantity ‘‘sixteen’’ we write ‘‘16,’’ in which the ‘‘1’’ now has the value
‘‘ten.’’ This is the ‘‘carry’’ operation that we are all familiar with in the decimal system;
if (in the decimal system) the sum of two digits is equal to or greater than the radix ten, we
write down the required digit in the units column and ‘‘carry the 1’’ to the left into the
‘‘tens column’’ where the 1 now has the value ten. If the numbers consist of more than
one digit we use the same procedure of ‘‘carrying a 1’’ into the next higher valued column;
for example

6 6 5 8
þ 9 6 2 6
1 6 2 8 4

Now consider the addition of two digits in the binary system. Here there are only two
possible two-digit sums, 1 þ 0 ¼ 1, and 1 þ 1 ¼ two. In the binary system, however, there
is no single digit to represent the value ‘‘two’’; hence we ‘‘carry a 1’’ into the ‘‘twos
column,’’ which is the next column to the left, and write the result of ‘‘1 þ 1’’ in the form

1

þ1

10

where the ‘‘1’’ in the ‘‘10’’ now represents the value ‘‘two.’’ Now consider, as an example,
the addition of the two binary numbers ‘‘1011’’ and ‘‘1101,’’ as indicated below to the left

��� ‘‘eights’’ column

��� ‘‘fours’’ column

��� ‘‘twos’’ column

��� ‘‘units’’ column

1 0 1 1 1 0 1 1 ‘‘11’’ dec

þ 1 1 0 1 þ 1 1 0 1 ‘‘13’’ dec

1 1 0 0 0 ‘‘24’’ dec

The procedure for performing the addition indicated to the left above is:

1. the sum of the digits in the units column is 1 þ 1 ¼ 10; hence we write down 0 and
carry 1 into the twos column,

2. the sum of the digits now in the twos column is 1 þ 1 ¼ 10; hence write down 0 and
carry a 1 into the fours column,

3. the sum of the digits now in the fours column is 1 þ 1 ¼ 10; hence we write 0 and
carry a 1 into the eights column,
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4. the sum of the digits now in the eights column is 1 þ 1 þ 1 ¼ ð1 þ 1Þ þ 1 ¼
10 þ 1 ¼ 11, hence we write down 1 and carry a 1 into the sixteens column, giving
the answer 11000, as shown to the right above with decimal equivalents alongside.

In the above we found the sum of just two binary numbers, but suppose the sum of, say,
one thousand such numbers must be found. In the internal circuitry of a digital computer,
this is most conveniently done by adding the binary numbers together two at a time until
the final sum is reached. As mentioned before, we must remember that a digital computer
can execute millions of such routine operations per second.

Next, let us consider the subtraction of one number from another number. Subtraction
makes use of the borrow operation, illustrated first in the following decimal-system
example.

PROBLEM SOLUTION

9 6 3 7 minuend 8 15 13 7

� 4 7 7 6 subtrahend � 4 7 7 6

difference 4 8 6 1 answer

Discussion. Beginning at the right-hand side in the PROBLEM we first have 7 � 6 ¼ 1,
which presents no difficulty because 7 is larger than 6. Continuing on, from right to left, we
next must subtract ‘‘7 from 3’’ (actually, 70 from 30), which does present a difficulty
because 3 is smaller than 7. To get around this difficulty we now, in the minuend, ‘‘borrow
a 1’’ from the 6, and transfer the borrowed 1 over to the 3; however, since a 1 in the third
column has ten times the value of a 1 in the second column, this effectively makes the 3
become 13, as shown in the SOLUTION. Since 13 is larger than 7 we now have
13 � 7 ¼ 6, as shown.

At this point we must not forget that the 6, in the third column, is now changed to 5
(because of the previous borrowing of the 1 from the 6). Therefore, continuing on in the
PROBLEM, we must now subtract ‘‘7 from 5,’’ which again presents a difficulty because 5
is smaller than 7. To get around this difficulty we now, in the minuend, ‘‘borrow a 1’’ from
the 9 and transfer the borrowed 1 to the 5, effectively making the 5 become 15, as shown in
the SOLUTION; thus we have 15 � 7 ¼ 8, as shown. Because of the borrowing of the 1,
the 9 becomes 8, as shown in the SOLUTION; hence the last step is to subtract 4 from 8,
giving the final answer 4861.

We must remember that the same basic arithmetic procedures apply to all positional
number systems, whatever the particular radix. Thus the ‘‘borrow’’ procedure, illustrated
above for the decimal system, is used in the same way to subtract one binary number from
another binary number, as the following example illustrates.

PROBLEM SOLUTION

1 0 1 1 0 1 minuend 0 10 1 0 10 1

� 0 1 1 0 1 1 subtrahend � 0 1 1 0 1 1

difference 0 1 0 0 1 0 answer

Discussion. Beginning at the right-hand side in the PROBLEM we have 1 � 1 ¼ 0, as
shown in the SOLUTION. Continuing on, from right to left in the PROBLEM, the
next step is to subtract ‘‘1 from 0,’’ which presents a difficulty because 0 is smaller than
1. To surmount this difficulty we now, in the minuend, ‘‘borrow a 1’’ from the third
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column and transfer it over to the second column in the minuend. In the binary system,
however, we must remember that the value of a 1 doubles each time we move one position
to the left; hence the 1 transferred from the third column effectively becomes two in the
second column, as shown by the ‘‘10’’ in the SOLUTION. We therefore have 10 � 1 ¼ 1,
as shown in the SOLUTION.

Next, referring to the SOLUTION, note that the transferral of the 1 has left ‘‘0’’ in the
third column of the minuend; therefore the next two steps in the subtraction present no
difficulty, because 0 � 0 ¼ 0 and 1 � 1 ¼ 0, as shown in the SOLUTION. However, in the
fifth column of the PROBLEM we again run into the difficulty of subtracting ‘‘1 from 0,’’
a difficulty we overcome by borrowing a 1 from the minuend in the sixth column; the
borrowed 1 effectively becomes 10 (two) in the minuend in the fifth column, as shown in
the SOLUTION. Thus in the fifth column we have 10 � 1 ¼ 1, giving the final answer
10010, as shown (in equivalent decimal notation, 45 � 27 ¼ 18).

In our work so far we’ve found that it’s generally easier, and less time-consuming, to do
addition than it is to do subtraction. This is true in both pencil and paper work and in
terms of digital computer circuitry requirements. It would therefore be an advantage if
subtraction could somehow be performed in a way that used only the addition operation.
Fortunately it is possible to do this by making use of what is called the ONE’s COMPLE-
MENT of a binary number; the basic procedure can most easily be developed by con-
sidering the subtraction of one whole binary number from another whole binary number,
as follows.

Let N be any whole binary number. Since R ¼ 2 for the binary system, and since N is to
be a whole number, eq. (553) will contain no negative exponents and will thus be of the
form

N ¼ d 2n þ � � � þ d 23 þ d 22 þ d 21 þ d 20 ð555Þ
in which the digit d is, in any individual term, equal to either 1 or 0. Note that, for
convenience, we’re expressing the value of the binary number N in terms of the decimal
digits 2, 3, and so on. In eq. (555) let n be called the order of the binary number N;
therefore, in accordance with the terminology of eq. (555), it should be noted that a binary
number of order n contains nþ 1 digits.

With the foregoing in mind, let us now define that, if N is a binary number of order n,
then

the 1’s complement of N ¼ ð2nþ1 �NÞ � 1 ð556Þ*
The reason the above definition is useful will become clear later on, but first let’s

investigate the 1’s complement of a binary number as defined above.
To do this, let N be a binary number of order n, and note that eq. (556) can also be

written as

N þ ð1’s comp of NÞ ¼ ð2nþ1 � 1Þ ð557Þ
Now remembering that, in binary notation,

20 ¼ 1 23 ¼ 1000

21 ¼ 10 24 ¼ 10000

22 ¼ 100 25 ¼ 100000
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and so on, we see that the binary number for 2n is 1 followed by n zeros, and hence the
binary number for 2nþ1 is 1 followed by nþ 1 zeros; thus

2nþ1 ¼ 1000 � � � 0000; ð‘‘nþ 1’’ zerosÞ
and therefore we have that

2nþ1 ! 1000 � � � 0000

subtract 1 ! �1

hence, ð2nþ1 � 1Þ ! 111 � � � 1111

Thus the quantity ð2nþ1 � 1Þ is always a string of ‘‘nþ 1’’ 1’s, and hence eq. (557) can
be written in the form

N þ ð1’s comp of NÞ ¼ 11111 . . . 1111

which can only be true if N and its 1’s complement are exact opposites* of each other in
regard to the positions of the 1’s and 0’s. Suppose, for example, that we wish to find the 1’s
complement of the binary number N ¼ 101101, which is of order n ¼ 5. By eq. (557), upon
transposing N, we have

ð2nþ1 � 1Þ ¼ 1 1 1 1 1 1

�N ¼ �1 0 1 1 0 1

thus, 1’s complement of N ¼ 0 1 0 0 1 0; answer

Thus it’s very easy to find the 1’s complement of a binary number N; all we need do is
change the 1’s to 0’s and the 0’s to 1’s. As another example,

if N ¼ 1 0 1 1 1 0 0 1 0

the 1’s complement of N ¼ 0 1 0 0 0 1 1 0 1

We previously stated that the 1’s complement is valuable because it allows subtraction
to be done through a process of addition. To see how this is possible, first solve eq. (557)
for N; thus

N ¼ 2nþ1 � 1 � ð1’s comp of NÞ
Now let Y be a binary number; then, using the above value of N, the difference, Y �N,

can be written in the form

Y �N ¼ ½Y þ ð1’s comp of NÞ� � 2nþ1 þ 1 ð558Þ
Equation (558) is the basic equation we wish to use in performing the subtraction

operation Y �N. In regard to eq. (558), it should be pointed out that, as we just learned,
it’s a simple matter to find the 1’s complement of a binary number; it’s easy to do this
using pencil and paper, and it’s also easily done electronically in the internal registers of a
digital computer. Also, in regard to the terms ‘‘�2nþ1 þ 1’’ in eq. (558), we’ll find that these
two terms can be basically handled together in one simple operation called the ‘‘end-
around carry.’’ Consider now the following examples.
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Example 5
Use eq. (558) to perform the binary subtraction

Y ¼ 1 1 0 0 1 ðdec 25Þ
�N ¼ �1 0 0 1 1 ðdec 19Þ

Solution

Y ¼ 1 1 0 0 1

ð1’s comp of NÞ ¼ þ 0 1 1 0 0

Y þ ð1’s comp of NÞ ¼ r 0 0 1 0 1 ¼ quantity in brackets in eq: ð558Þ

In this problem Y and N are of order n ¼ 4 (see discussion following eq. (555)). There-
fore the value of the ‘‘overflow 1’’ (the ‘‘1’’ circled above) is 25, and thus eq. (558) becomes,
for this problem

Y �N ¼ ½25 þ ð0 0 1 0 1Þ� � 25 þ 1

Thus the ‘‘overflow 1’’ cancels out, and all we need to do is add 1 to get the value of
Y �N. This operation is referred to as the ‘‘end-around carry’’ and for this problem can
be indicated as follows:

1 1 0 0 1

þ 0 1 1 0 0
r 0 0 1 0 1
j�������!��!þ1

0 0 1 1 0 ¼ six, final answer

Thus the ‘‘1’s complement of N’’ has allowed us to find the value of Y �N by use of the
ADDITION operation only.

Example 6
In example 5, Y and N are both of the same order, n ¼ 4, but this is not at all a

necessary requirement. For example, suppose the numbers in a certain digital

computer are all handled in eight-digit binary form, and suppose the value of Y � N is

to be found where, let us say,

Y ¼ 0 0 0 1 1 0 0 0 ð24Þ
N ¼ 0 0 0 0 0 0 1 1 ð 3Þ

As we can see, the answer is Y � N ¼ twenty-one; the procedure, using binary

numbers and the 1’s complement of N , is as follows:

Y ¼ 0 0 0 1 1 0 0 0

1’s comp of N ¼ þ1 1 1 1 1 1 0 0

r 0 0 0 1 0 1 0 0
j������������!���! þ1

0 0 0 1 0 1 0 1; answer ðdec: 21Þ
Again, we’ve found the difference, Y � N , by use of addition only.
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Example 7
If Y and N are not integers (whole numbers), exactly the same procedure is used, but

we must remember to ‘‘line up the binary points’’ just as we line up the decimal points

in decimal addition. For example, suppose we are to find Y � N where, let us say,

Y ¼ 1 1 0 1 : 0 1 1 0 ðdecimal 13:3750Þ
N ¼ 1 0 0 1 : 1 0 1 1 ðdecimal 9:6875Þ

Note that the answer in decimal notation is Y � N ¼ 13:3750� 9:6875 ¼ 3:6875.

To work out the problem let us use the 1’s complement of N in the usual way; thus

Y ¼ 1 1 0 1 : 0 1 1 0

1’s comp of N ¼ þ0 1 1 0 : 0 1 0 0

r 0 0 1 1 : 1 0 1 0
j����������������!���!þ1

0 0 1 1 : 1 0 1 1; answer ðdec: 3:6875Þ

Note: The above can also be worked in terms of whole numbers by first shifting the
binary point four places to the right and then multiplying by 0.0001; thus

Y ¼ 11010110 � 0:0001

1’s comp of N ¼ 01100100 � 0:0001

00111010 � 0:0001

þ1

00111011 � 0:0001¼ 0011:1011; as before

As you may have noticed, in the foregoing examples the magnitude of Y is greater than
the magnitude of N, and hence the values of Y �N are all positive numbers. If, however,
the magnitude of Y is less than the magnitude of N, then Y �N is a negative number.

A digital computer must, of course, be able to detect, store, and use both positive and
negative numbers. One way a computer can sense whether a difference Y �N is positive or
negative is to detect the presence or absence of the ‘‘overflow 1’’ when computing Y �N
by use of the 1’s complement of N. This is based upon the fact that if Y is greater than N
an overflow 1 will be generated, but if Y is less than N no overflow 1 will be generated. Thus,
if Y �N is found by use of the 1’s complement of N, then Y �N is a POSITIVE number
if an overflow 1 is produced, but is a NEGATIVE number if no overflow 1 is produced.

To illustrate this, let’s return to example 1 above, and this time let Y ¼ 10011 and
N ¼ 11001, so that the problem now becomes

Y ¼ 1 0 0 1 1 ðY ¼ 19 decÞ
�N ¼ �1 1 0 0 1 ðN ¼ 25 decÞ

Now using the 1’s complement of N in the usual way we find that

Y ¼ 1 0 0 1 1

1’s comp of N

Y þ 1’s comp of N

¼ þ
¼ 0

0 0 1 1 0

1 1 0 0 1
%

Note that no overflow 1 is produced, which tells the computer that Y is less than N, and
therefore that

(a) the answer to Y �N is a negative number whose magnitude is therefore found by
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(b) changing the minuend number to the 1’s complement form and adding; thus

1’s comp of Y ¼ 0 1 1 0 0

þN ¼ þ1 1 0 0 1
r 0 0 1 0 1
j������!�! þ1

0 0 1 1 0 ¼ magnitude of Y �N

The computer must now have some way of indicating that the answer, 00110, is a
negative value, ‘‘minus six,’’ and one way of doing this is to use a ‘‘sign digit’’ in the
following manner.

In the present example, the numbers in the computer are represented in five-digit binary
form, such as 11101, 00010, and so on. In this case an additional binary 1 or 0 could be
used in the sixth place as a SIGN DIGIT to indicate ‘‘plus’’ or ‘‘minus’’; thus, if ‘‘0’’
indicates ‘‘plus’’ and ‘‘1’’ indicates ‘‘minus’’ or negative, the answer to the foregoing
problem would be registered in the computer as 100110, indicating ‘‘minus six.’’ In the
same way, 000110 would indicate ‘‘positive six,’’ and so on. The ‘‘sign digit,’’ 1 or 0, is
generated when the computer processes the difference Y �N. Thus (assuming ‘‘0’’ and
‘‘1’’ to denote ‘‘plus’’ and ‘‘minus’’ respectively) if the computer senses, for example, that
an overflow 1 is not produced, this fact signals the computer to change Y to its 1’s
complement form, add N to it, and put a ‘‘1’’ in front of the magnitude value of
Y �N. On the other hand, if an overflow 1 is produced, this causes the computer to
put the digit ‘‘0’’ in front of the result, to show that Y �N is a positive quantity.

Problem 266
Convert 67 decimal to binary form.

Problem 267
Convert 383 decimal to binary form.

Problem 268
Convert 118.182 decimal to binary form (to 9 binary places).

Problem 269
Convert 1110101 binary to decimal form.

Problem 270
Convert 1001.01101 binary to decimal form.

Problem 271
Using binary addition, write the sums of the following binary numbers, with answers
in binary form.

ðaÞ 0 1 0 1 1 0 1 ðbÞ 1 0 1 1 ðcÞ 1 1 : 0 1 1

1 0 1 1 0 0 1 0 1 0 1 0 1 : 1 0 1

1 1 0 1
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Problem 272
Use ‘‘1’s complement’’ to perform the following binary subtractions.

ðaÞ 1 1 0 1 0 1 1 ð107 decÞ ðbÞ 1 0 0 1 1 1 1 ð79 decÞ
�1 0 0 1 1 1 1 � ð79 decÞ �1 1 0 1 0 1 1 � ð107 decÞ

12.2 Boolean or ‘‘Switching’’ Algebra.
Truth Tables

In this section we take up a specialized algebra first introduced in 1847 by the British
scientist and philosopher George Boole, and now called ‘‘Boolean algebra’’ in his honor.
The algebra was invented by Boole as a method of expressing and reducing statements in
logic. The algebra has also, however, been found to be especially useful in the study of
electrical switching network problems, and for that reason is often referred to as ‘‘switch-
ing algebra.’’ The algebra, as applied to the switching operation, can be introduced as
follows.

An electrical switch is a ‘‘binary’’ or ‘‘two-state’’ device, because it must always, at any
given time, be in one or the other of only two possible states; that is, it must be either
‘‘open’’ or ‘‘closed’’ (‘‘off’’ or ‘‘on’’).

With this in mind, let ‘‘1’’ denote the state of a switch in the closed or ‘‘on’’ condition,
and ‘‘0’’ denote the state of the switch in the open or ‘‘off’’ condition. Then if ‘‘A’’ denotes
the state of a switch, the variable A can have only two different values, A ¼ 0 and A ¼ 1,
respectively denoting the conditions of ‘‘open’’ and ‘‘closed,’’ as depicted in the two figures
below.

Now consider a switching network composed of any arrangement of switches. Let there
be an input line and an output line, denoted by ‘‘1’’ and ‘‘Z’’ respectively, as in Fig. 312.

In Fig. 312 the ‘‘1’ indicates that a signal (say ‘‘1 volt’’) is applied to the input line.
Remember that the network inside the box is given to consist only of an arrangement of
switches (including, of course, all necessary connecting wires).

In the figure Z will be either equal to Z ¼ 1 or Z ¼ 0 (1 volt or 0 volts), depending
upon whether the input signal is able to ‘‘get through’’ or ‘‘not get through’’ the
switching network. Whether Z ¼ 1 or Z ¼ 0 will depend upon the particular con-
figuration of switches inside the box, and upon the particular ‘‘on’’ or ‘‘off’’ state of
each switch.

Now, in regard to switching networks, let us begin with the basic two-switch network, in
which A will denote the state of one switch (A equals 1 or 0) and B will denote the state of
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the other switch (B equals 1 or 0). The two switches can be connected together in TWO
basic ways, either in series or in parallel, as indicated in Figs. 313 and 314.

Let’s first consider the SERIES connection of Fig. 313. Note that the input signal 1 can
‘‘get through’’ the network only if BOTH SWITCHES are in a closed state; that is, Z ¼ 1
only if A ¼ 1 and B ¼ 1. Note that if either switch, or both switches, are open, then Z ¼ 0.

Now consider the PARALLEL connection of Fig. 314. Note that the input signal 1 can
‘‘get through’’ the network if EITHER OR BOTH switches are closed; that is, Z ¼ 1 if
A ¼ 1 or B ¼ 1. Note that Z ¼ 0 only if both A ¼ 0 and B ¼ 0.

The foregoing facts concerning Figs. 313 and 314 can be neatly summarized in the form
of what are called truth tables. A ‘‘truth table’’ is simply a list of all possible relationships
among all the signals involved, presented in a convenient table form. Thus, in Figs. 313
and 314 there are three variables involved, A;B, and Z, and upon remembering the facts
just stated above about these figures, you can verify that the truth tables are as follows.

The above truth table for Fig. 313 defines what is called the ‘‘AND’’ operation, because
both A and B must be 1 in order to produce Z ¼ 1. The ‘‘and’’ operation is denoted by
‘‘�’’, which must not be read as ‘‘times’’ but instead must be read as and. Inspection of the
above table for Fig. 313 shows that the four basic ‘‘and’’ relationships are

1 � 1 ¼ 1 1 � 0 ¼ 0 0 � 1 ¼ 0 0 � 0 ¼ 0

We must emphasize again that ‘‘1 � 1’’ is not to be read as ‘‘one times one equals one’’
but as ‘‘one and one equals zero.’’ Likewise, 1 � 0 ¼ 0 is read as ‘‘one and zero equals
zero,’’ and so on. The basic ‘‘and’’ network is thus two switches in series, Fig. 313, and this
fact is stated in switching algebra notation by writing

A� B ¼ AB ¼ Z ð559Þ

which is read ‘‘A and B is equal to Z.’’ In writing equations we usually omit the ‘‘and’’
symbol ‘‘�’’ and just write AB, as shown in eq. (559), the expression AB again being read
‘‘A and B.’’
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It should be emphasized that eq. (559), A� B ¼ AB ¼ Z, is simply a shorthand way of
expressing the information contained in the truth table for Fig. 313. Equation (559) is
valid because we have defined that

ðaÞ A;B; and Z can have only the values 1 and 0; and that

ðbÞ 1 � 1 ¼ 1; 1 � 0 ¼ 0; 0 � 1 ¼ 0; 0 � 0 ¼ 0;

and with these rules agreed upon it’s clear that the ‘‘and’’ operation of eq. (559), AB ¼ Z,
does satisfy the truth table of Fig. 313 and thus represents the basic two-switch series
connection of the figure. Also, since it’s immaterial in what order switches are connected in
series, it follows that either of the Boolean products, AB or BA, produces the truth table
for Fig. 313. Thus Boolean ‘‘multiplication’’ is commutative, meaning that AB ¼ BA ¼ Z,
just as in ordinary algebra.

It’s also apparent that the foregoing extends to any number of series-connected switches;
for example, if A;B;C, and Z represent the 0 and 1 states of, say, three series-connected
switches, thus

it will be noted that the truth table for this series connection is

A B C Z A B C Z

1 1 1 1 0 1 1 0

1 1 0 0 0 1 0 0

1 0 1 0 0 0 1 0

1 0 0 0 0 0 0 0

which, given that 1 � 1 � 1 ¼ 1; 1 � 1 � 0 ¼ 0; 1 � 0 � 1 ¼ 0; . . . ; 0 � 0 � 0 ¼ 0, shows
that the above truth table is represented by the Boolean algebraic equation
A� B� C ¼ ABC ¼ Z, in which the Boolean product ABC is to be read as ‘‘A and B
and C.’’ Likewise for any Boolean ‘‘and’’ product, ABCD � � � ¼ Z, we have Z ¼ 1 only if
all the variables are equal to 1; otherwise Z ¼ 0.

Now let us continue, and examine Fig. 314 and its truth table. The truth table for Fig.
314 defines what is called the ‘‘OR operation,’’ because Z ¼ 1 not only if A and B are both
equal to 1, but also if either A or B is equal to 1, as inspection of the table shows. The truth
table for Fig. 314 is defined to be represented mathematically by the Boolean equation

Aþ B ¼ Z ð560Þ

in which the symbol þ does not mean ‘‘plus’’ in the usual sense but is now used to indicate
the ‘‘or’’ relationship between A and B. Thus the quantity ‘‘Aþ B’’ is to be read as A or B
and not as ‘‘A plus B.’’

Remember that Boolean variables, such as A;B;Z, and so on, can have only the two
values 1 and 0. With this in mind, and since eq. (560) is defined to represent the truth table
for Fig. 314, it follows that eq. (560) can have only the four possible states

1 þ 1 ¼ 1 0 þ 1 ¼ 1

1 þ 0 ¼ 1 0 þ 0 ¼ 0

in which we must remember that a Boolean relationship such as ‘‘1 þ 1 ¼ 1’’ is to be read
as ‘‘1 or 1 equals 1’’ and not as 1 ‘‘plus’’ 1 equals 1.
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We thus have that eq. (560) is the Boolean algebra equation for the basic two-switch
parallel network of Fig. 314. Also, the fact that ‘‘A and B in parallel’’ is the same in all
respects as ‘‘B and A in parallel’’ is expressed mathematically by writing the Boolean
equation Aþ B ¼ Bþ A, meaning that Boolean ‘‘addition’’ is commutative ( just as we
found that Boolean ‘‘multiplication’’ is commutative, AB ¼ BA).

It’s also apparent that the foregoing extends to any number of parallel-connected
switches; for example, let A;B;C, and Z denote the 0 and 1 states of three parallel-
connected switches and their output; thus

Inspection of the figure shows that the truth table for this parallel connection is

A B C Z A B C Z

1 1 1 1 0 1 1 1

1 1 0 1 0 1 0 1

1 0 1 1 0 0 1 1

1 0 0 1 0 0 0 0

It is, however, defined that the ‘‘or’’ relationship, Aþ Bþ C, has the value 1 in all cases
except for the case 0 þ 0 þ 0, which has the value 0; thus the above truth table is repre-
sented by the Boolean equation, Aþ Bþ C ¼ Z (which is to be read as ‘‘A or B or C
equals Z’’). Likewise any number of parallel switches is represented by the Boolean equa-
tion Aþ Bþ C þDþ � � � ¼ Z, in which Z ¼ 0 only if all the variables, A;B;C;D, and so
on, are equal to zero; otherwise Z ¼ 1.

Let’s pause here, and summarize our work in the following points:

1. The Boolean variables, such as A;B;C; . . .Z, can have only the two
values 1 and 0.

2. The Boolean ‘‘and’’ operation is defined as the expression

ABC � � � ¼ Z ð561Þ
read as ‘‘A and B and C and . . . equals Z;’’ in which Z ¼ 1 only if all
the variables A;B;C; . . . are equal to 1; otherwise Z ¼ 0. The ‘‘and’’
operation, eq. (561), produces the truth table of a series connection of
switches in which the state of a switch is denoted by 1 or 0, depending
upon whether the switch is closed or open.

3. The Boolean ‘‘or’’ operation is defined as the expression

Aþ Bþ C þ � � � ¼ Z ð562Þ
which is read as ‘‘A or B or C or . . . equals Z;’’ in which Z ¼ 0 only if
all the variables, A;B;C; . . . are equal to 0; otherwise Z ¼ 1. The ‘‘or’’
operation, eq. (562), produces the truth table of a parallel connection of
switches in which the state of a switch, as in item (2), is denoted by 1 or
0, depending upon whether the switch is closed or open.
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Let us now see how Boolean algebra can help in the design and simplification of more
complicated switching networks.

First, a few remarks about the interpretation of Boolean variables in regard to switches.
In our work we’ve denoted the states of switches by the Boolean variables A;B;C, and so
on. Thus, if A denotes the state of a switch, we define that A ¼ 1 if the switch is closed and
A ¼ 0 if the switch is open.

We must remember, however, that the opening and closing of a switch is controlled by a
signal of some sort. For instance, if a transistor is being used as a switch, the ‘‘open’’ or
‘‘closed’’ state of the transistor is controlled by the signal applied to the base of the transistor.

Thus we can regard a Boolean variable, such as A, as denoting the presence or absence
of a controlling signal; we can say that the presence of a signal ðA ¼ 1Þ at a certain switch
causes the switch to be in the closed state, while the absence of the signal ðA ¼ 0Þ causes the
switch to be in the open state.

To continue, we’ve already found that Boolean algebra is commutative; that is,
AB ¼ BA and Aþ B ¼ Bþ A. Now we wish to show that Boolean algebra is also dis-
tributive; that is, AðBþ CÞ ¼ ABþ AC, just as in ordinary algebra. This can be done with
the aid of Figs. 315 and 316, in which the object, now, is to show that both networks yield
the same truth table. If this can be done, it will mean that the two networks are electrically
equivalent, and thus that their Boolean equations must be equivalent. Referring now to
the figures, the procedure is as follows.

Consider Fig. 315 first. As the figure shows, this is a series-parallel connection of
switches in which A is in series with the parallel ‘‘or’’ combination ‘‘B or C.’’ Thus the
network equation is AðBþ CÞ ¼ Z which is read as ‘‘A, and the quantity B or C, is equal
to Z.’’

Next consider Fig. 316. Here we have two series ‘‘and’’ connections, AB;AC, connected
in a parallel ‘‘or’’ configuration; hence the Boolean equation for the network is
ABþ AC ¼ Z, which is read as ‘‘A and B, or A and C, is equal to Z.’’

We now wish to prove that both networks obey exactly the same truth table. To do this,
we must find, by direct inspection of each network, the value of Z for all possible arrange-
ments of the 1 and 0 values of A;B, and C in each network. Applying this procedure to
Figs. 315 and 316 we find that

Truth table for Fig. 315: Truth table for Fig. 316:
A B C Z A B C Z A B C Z A B C Z
1 1 1 1 0 1 1 0 1 1 1 1 0 1 1 0
1 1 0 1 0 1 0 0 1 1 0 1 0 1 0 0
1 0 1 1 0 0 1 0 1 0 1 1 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

Note that the truth tables are identical; hence both networks perform exactly the same
switching function and thus their switching equations are equivalent, proving that
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AðBþ CÞ ¼ ABþ AC. Thus the ‘‘distributive’’ property of ordinary algebra applies also
to Boolean algebra.

The foregoing discussion not only shows that AðBþ CÞ ¼ ABþ AC but also demon-
strates an important application of Boolean algebra, as follows.

Suppose that, in the process of designing a certain piece of equipment, it is noted that
Fig. 316 will correctly perform a required switching operation. Note that Fig. 316 requires
four switches, two controlled by signal A and one each controlled by signals B and C. But
note that the Boolean relationship ABþ AC ¼ AðBþ CÞ immediately shows that the same
switching operation can be performed using just three switches (Fig. 315) instead of the
four required by Fig. 316. This is, of course, a simple example, but it does illustrate how
Boolean algebra can be used to find alternate switching networks that may be more
desirable than an originally proposed network.

To do this efficiently, however, we must be familiar with some of the more useful
theorems of the algebra. A table of such relationships is given below under the title
‘‘Theorems of Boolean algebra.’’ Let us now consider the table, item-by-item, as follows.

To begin, we’re already familiar with items (1), (2), (3), which simply state that the
Boolean ‘‘and’’ and ‘‘or’’ operations are ‘‘commutative’’ and ‘‘distributive,’’ just as in
ordinary algebra.

4. Next consider item (4). Letting ðAþ BÞ ¼ X , and applying item (3), the left-hand
side of item (4) becomes XðC þDÞ ¼ XC þ XD, and upon replacing X with
ðAþ BÞ and making use of item (3), we have AC þ BC þ ADþ BD, as stated.

The next six items, (5) through (10), follow directly from consideration of two switches
whose states are both controlled by the same signal A; thus

and with reference to these two figures, the truth of items (5) through (10) follows.

5. ‘‘A and A equals A,’’ because inspection shows that two such series-connected
switches are equivalent to a single switch A.

6. ‘‘A or A equals A,’’ because inspection shows that two such parallel-connected
switches are equivalent to a single switch A.

7. ‘‘A and 1 equals A,’’ because if one of two series switches is always closed (always
equal to 1) the network effectively consists of only one switch A.

8. ‘‘A and 0 equals 0,’’ because if one of two series switches is always open (always
equal to 0) the network is in the 0 state regardless of the state of the other switch.

9. ‘‘A or 1 equals 1,’’ because if one of two parallel switches is always closed the
network is always closed (always equal to 1).

10. ‘‘A or 0 equals A,’’ because if one of two parallel switches is always open the state
of the network depends only on the state A of the other switch.

11. Next consider item (11), which is read as ‘‘A, or A and B, equals A.’’ This can be
verified by use of items (3) and (9); thus

Aþ AB ¼ Að1 þ BÞ ¼ A
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Theorems of Boolean algebra

1. AB ¼ BA 11. Aþ AB ¼ A

2. Aþ B ¼ Bþ A 12. ðAþ BÞðAþ CÞ ¼ Aþ BC

3. AðBþ CÞ ¼ ABþ AC 13. A �AA ¼ 0

4. ðAþ BÞðC þDÞ ¼ AC þ ADþ BC þ BD 14. Aþ �AA ¼ 1

5. AA ¼ A 15. ��AA�AA ¼ A

6. Aþ A ¼ A 16. Aþ �AAB ¼ Aþ B

7. A � 1 ¼ A 17. Aþ B ¼ �AA �BB

8. A � 0 ¼ 0 18. �AAþ �BB ¼ AB

9. Aþ 1 ¼ 1

10. Aþ 0 ¼ A

12. Next consider item (12), which is read as ‘‘A or B, and A or C, equals A or B and
C.’’ To confirm this, let us first apply item (4) to the left-hand side of item (12):

ðAþ BÞðAþ CÞ ¼ AAþ AC þ ABþ BC

¼ Aþ AC þ ABþ BC; because AA ¼ A; by item ð5Þ
¼ Að1 þ C þ BÞ þ BC

¼ Aþ BC; because 1 þ Bþ C ¼ 1; by item ð9Þ
which establishes the correctness of item (12).

The rest of the items in the table, (13) through (18), involve what is called the not
operation, which is denoted by a bar placed over the variable, such as �AA (which is read as
‘‘not A’’) or AB (which is read as ‘‘not the quantity A and B’’), and so on.

The ‘‘not’’ symbol (the bar) reverses the 1 or 0 value of the Boolean expression it is placed
above; that is, �11 ¼ 0, and �00 ¼ 1. Thus

if A ¼ 1 then �AA ¼ 0;

or if A ¼ 0 then �AA ¼ 1;

or, as another example, if Aþ B ¼ 1, then Aþ B ¼ 0, and so on. Electronically, the ‘‘not’’
operation can be performed by a transistor connected in the common-emitter mode,
because the collector signal is 180� out of phase with the input base signal in such an
amplifier. Thus, if A is the input signal to the base, �AA is the signal at the collector, or if �AA is
applied to the base, A appears at the collector. We’ll discuss this in more detail later on.
Now let’s consider items (13) through (18), as follows.

13. The expression A �AA is read as ‘‘A and not A:’’ If A ¼ 1 we have A �AA ¼ 1 � 0 ¼ 0,
or if A ¼ 0 we have A �AA ¼ 0 � 1 ¼ 0. Hence, either way, A �AA ¼ 0. Electrically, the
‘‘and’’ expression A �AA represents two series switches in which, if the first switch is
closed, the second is open, and vice versa; thus the network is always open, that is,
always is in the ‘‘0’’ state.

14. Aþ �AA is read as ‘‘A or not A.’’ If A ¼ 1 we have 1 þ 0 ¼ 1, or if A ¼ 0 we have,
0 þ 1 ¼ 1. Note that the expression Aþ �AA represents two parallel switches in
which one or the other will always be closed, so that the network is always in
the ‘‘1’’ state.
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15. Here, ��AA�AA is read as ‘‘not, not A,’’ in which the second ‘‘not’’ undoes the first ‘‘not,’’
thus giving us back A, as would be expected. Thus if A ¼ 1 we have ��11�11 ¼ �00 ¼ 1, or
if A ¼ 0 we have ��00�00 ¼ �11 ¼ 0:

16. The relationship is read as ‘‘A, or the quantity not A and B,’’ equals ‘‘A or B.’’ Let
us begin with the right-hand side of item (16); thus

ðAþ BÞ ¼ ðAþ BÞðAþ �AAÞ; permissible by items ð14Þ and ð7Þ;
¼ Aþ ABþ �AAB; because AA ¼ A; and A �AA ¼ 0;

¼ Að1 þ BÞ þ �AAB;

¼ Aþ �AAB; because 1 þ B ¼ 1 by item ð9Þ: Thus ð16Þ is correct:

17. The relationship is read as ‘‘not the quantity A or B’’ equals ‘‘not A and not B.’’
The truth of a Boolean equation can be proved, or disproved, by showing that
both sides of the equation are equal for all possible ways in which 1 and 0 can be
assigned to the variables. This procedure produces a ‘‘truth table’’ for each side of
the equation, and the two truth tables must be identical in order for the equation
to be valid. In this work we make use of the basic ‘‘and’’ and ‘‘or’’ relationships,
which we know to be 1 � 1 ¼ 1; 1 � 0 ¼ 0; 0 � 1 ¼ 0; 0 � 0 ¼ 0; also,
1 þ 1 ¼ 1; 1 þ 0 ¼ 1; 0 þ 1 ¼ 1; 0 þ 0 ¼ 0. For item (17) the procedure gives the
following results (where ‘‘tt’’ stands for ‘‘truth table’’).

A B tt for Aþ B tt for �AA �BB

1 1 1 þ 1 ¼ �11 ¼ 0 �11 � �11 ¼ 0 � 0 ¼ 0

1 0 1 þ 0 ¼ �11 ¼ 0 �11 � �00 ¼ 0 � 1 ¼ 0

0 1 0 þ 1 ¼ �11 ¼ 0 �00 � �11 ¼ 1 � 0 ¼ 0

0 0 0 þ 0 ¼ �00 ¼ 1 �00 � �00 ¼ 1 � 1 ¼ 1

The table shows that Aþ B ¼ �AA �BB for all possible combinations of values of A and B,
thus proving that item (17) is correct.

18. The relationship is read as ‘‘not A or not B’’ is equal to ‘‘not the quantity A and
B.’’ Let’s now use the same ‘‘truth table’’ procedure as for item (17), as follows.

A B tt for �AAþ �BB tt for AB

1 1 �11 þ �11 ¼ 0 þ 0 ¼ 0 1 � 1 ¼ �11 ¼ 0

1 0 �11 þ �00 ¼ 0 þ 1 ¼ 1 1 � 0 ¼ �00 ¼ 1

0 1 �00 þ �11 ¼ 1 þ 0 ¼ 1 0 � 1 ¼ �00 ¼ 1

0 0 �00 þ �00 ¼ 1 þ 1 ¼ 1 0 � 0 ¼ �00 ¼ 1

The table shows that �AAþ �BB ¼ AB for all possible ways in which 1 and 0 can be assigned
to the variables A and B, thus proving that item (18) is valid. Consider now the following
three examples in the use of the table.

Example 8
Simplify the Boolean expression Aþ Aþ B.
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Solution
First make use of item (17), then item (9); thus

�AAþ �AA �BB ¼ �AAð1 þ �BBÞ ¼ �AA; answer

Note: In regard to the use of item (9) above, it should be understood that the expression
1 þ A ¼ 1, is true regardless of what Boolean expression A might actually represent; for
example, 1 þ ABCD ¼ 1, or, 1 þ Bþ C þD ¼ 1, and so on. We thus regard the expression
‘‘1 þ A ¼ 1’’ as the generic relationship, valid for whatever the actual form of A might be.
The same statement holds for the other relationships in the table; for example, the Boolean
relationship

ABþ C þD

has the basic form of item (18); and thus, by item (18), we have that

ABþ C þD ¼ ABðC þDÞ

Example 9
Simplify the Boolean expression ðAþ BÞC þ AB.

Solution
Using item (18), write the given expression in the form

ABC þ AB ¼ ABþ ABC ðthe ‘‘or’’ operation is commutativeÞ
to which now apply the generic form of item (16) to get ABþ C, answer.

It should be noted that the new expression, ABþ C, does exactly the same switching
job as the original expression but requires only one ‘‘and’’ and one ‘‘or’’ operation,
whereas the original expression requires two ‘‘and’’ operations, two ‘‘or’’ operations,
and two ‘‘not’’ (inverter) operations.

Example 10
Given Z ¼ ABC þ DðAþ B þ CÞ, find a simpler expression for Z .

Solution
First, by item (18), �AAþ �BBþ �CC ¼ ABþ �CC ¼ ABC, so that the given problem
now becomes

Z ¼ ABC þ ABCD

which is the generic form of item (16); and thus, Z ¼ ABC þD, answer, which
represents a considerably simpler switchingnetwork than the original expression.

Problem 273
Aþ Aþ Aþ Aþ Bþ Bþ B ¼

Problem 274
AAABBCCCC ¼

Problem 275
Aþ Bþ C þ ABC þ 1 ¼

Problem 276
Using the table of basic theorems, show that

Aþ Bþ C ¼ �AA �BB �CC
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Problem 277
Using the table of basic theorems, show that

�AAþ �BBþ �CC ¼ ABC

Note: In problems 278 through 284, which follow, simplify the given Boolean
equations. Try to minimize both the number of switching operations and the number
of ‘‘not’’ operations needed.

Problem 278
Z ¼ Aþ AB

Problem 279
Z ¼ AðABþ AB �CCÞ

Problem 280
Z ¼ AðAþ BÞðBþ CÞ

Problem 281
Z ¼ AC þ BC þ �BBC þ A �CC þ �BB �CC

Problem 282
Z ¼ Bþ �CC �DDðBþDÞ

Problem 283
Z ¼ ABC þ �AABC þ �AA �BB �CC

Problem 284
Z ¼ �AA �BB �CC �DDþ Aþ C þD

Problem 285
Write Aþ Aþ �BB in a form without ‘‘not’’ operations.

Problem 286
Write the equation Z ¼ A �BBC þ �AA �BBC þ A �BB �CC in a form that will require only one
‘‘not’’ operation.

12.3 Digital Logic Symbols and Networks
A digital LOGIC NETWORK is an arrangement of ‘‘and,’’ ‘‘or,’’ and ‘‘not’’ devices that
will always produce a required form of output signal for a given set of input binary
signals. For example, let A;B, and C denote the 0, 1 values of three binary signals, and
suppose it is necessary to generate the output signal, Z ¼ ABþ �CC. The logic net-
work needed to perform this particular operation is shown in block diagram form in
Fig. 317.

We’ll not concern ourselves presently with the physical details of what might be actu-
ally ‘‘inside’’ each of the above boxes.
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In Fig. 317 we’ve designated the function of each block with the words ‘‘AND,’’ ‘‘OR,’’
and ‘‘NOT.’’ Instead of words, however, certain symbolic forms have been universally
adopted to indicate these operations, as follows.

The above symbols should be committed to memory. In regard to the AND and OR
symbols, it should be understood that more than just two input lines can be used; for
instance, if, say, three binary signals, A;B, and C, are involved, this would be indicated by
using three input lines, thus

The triangular symbol by itself, , indicates ‘‘amplifier’’; it is the addition of

the small circle at the output side of the triangle that designates that the amplifier is used in
the NOT or ‘‘inverting’’ mode.

If the output of an AND network is passed through a NOT network, the result is NOT
AND (abbreviated NAND), illustrated below to the left.

The two-symbol NAND drawing (left above), is often expressed in a shortened form by
the simple addition of a small ‘‘not’’ circle at the output side of the AND symbol, as shown
to the right above.

In the same way, if the output of an OR network is passed through a NOT network, the
result is NOT OR (abbreviated NOR), illustrated to the left below, with the simplified
version shown in the figure on the right below.
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Now consider the following. Suppose we are given an array of input signals, in the form
of on-or-off pulses representing the binary digits 1 and 0, and suppose we must find a
switching network that will produce a desired result. In other words, the problem is, given
a truth table, FIND A DIGITAL SWITCHING NETWORK that will satisfy the given
truth table.

One procedure that can be used to find such required circuitry is to begin by writing
down the basic or ‘‘elemental’’ Boolean equation for the given truth table. The ‘‘elemental
equation’’ for a given truth table is a Boolean AND-OR relationship in which each AND
term contains all the variables. This means that, if, for example, ‘‘A’’ denotes one of the
variables, then either ‘‘A’’ or ‘‘not A’’ (A or �AA) must appear in each of the ‘‘and’’ terms of
the equation.

For instance, if we are dealing with, say, three binary input signals, denoted by A;B,
and C, then the elemental Boolean equation for a required switching system will be of the
AND-OR form.

Z ¼ ABC þ A �BBC þ AB �CC þ A �BB �CC þ �AABC þ � � � þ �AA �BB �CC

and likewise for any number of input variables, A;B;C;D; . . ., in which only those AND
terms that will produce an output signal will be used; that is, only those AND terms for which
Z ¼ 1 will be used. Consider the following two examples.

Example 11
Suppose three binary signals, denoted by A;B, and C, are to be switched in such a

way as to satisfy the truth table

A B C Z A B C Z

1 1 1 0 0 1 1 1

1 1 0 0 0 1 0 0

1 0 1 1 0 0 1 1

1 0 0 0 0 0 0 0

Write the elemental equation for the required switching network and simplify as much

as possible.

Solution
In accordance with the foregoing rule, inspection of the given truth table shows
that the elemental equation is

Z ¼ A �BBC þ �AABC þ �AA �BBC

Now, while the above elemental form will do the required switching, it has the dis-
advantage of requiring two NOT circuits, three AND circuits, and one OR circuit. An
equivalent but simpler circuit can, however, be found by applying the Boolean theorems to
the above elemental expression; let us begin by factoring out the C signal; thus

Z ¼ ðA �BBþ �AABþ �AA �BBÞC
hence

Z ¼ ðA �BBþ �AAÞC ¼ ð �AAþ A �BBÞC
because

�AABþ �AA �BB ¼ �AAðBþ �BBÞ ¼ �AA � 1 ¼ �AA; from the theorems:
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The last expression for Z can now be simplified further, as follows. By item (16),

Aþ �AAB ¼ Aþ B

therefore

�AAþ A �BB ¼ �AAþ �BB

because �AAþ A �BB has the same basic form as Aþ �AAB, with �AA written in place of A and �BB
written in place of B. Therefore the last expression for Z becomes

Z ¼ ð �AAþ �BBÞC ¼ ABC; by item ð18Þ; ð final answerÞ
which, using graphic block diagrams, is drawn as in Fig. 318.

Commentary. We must remember that the input signals, A;B, and C, are assumed to be in
the form of streams of on-or-off pulses, each pulse representing the value ‘‘1’’ or ‘‘0,’’
depending upon the presence or absence of the pulse (as illustrated in Fig. 311).

For instance, in Fig. 318 a portion of the streams of simultaneously applied pulses
might be as follows,

Time
���������������������������������������������!

A . . . 1 0 0 1 1 1 0 0 1 0 1 1 0 1 0 1 0 � � � !
B . . . 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 0 1 � � � !
C . . . 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 � � � !
Z . . . 0 0 0 r 0 0 r 0 0 r 0 0 0 0 r 0 0 � � � !

Hence the network of Fig. 318 delivers an output pulse ðZ ¼ 1Þ only for the input combi-
nations of 101, 011, and 001, thus satisfying the requirements of the truth table given with
this example. No pulse output appears at the output ðZ ¼ 0Þ for any other combination of
input 1’s and 0’s, as required by the truth table.

Example 12
Let A;B;C, and D represent four binary input signals that must be switched so as to

always fulfill the following truth table

A B C D Z A B C D Z A B C D Z A B C D Z

1 1 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 0

1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1 0 0

1 1 0 1 1 1 0 0 1 1 0 1 0 1 1 0 0 0 1 1

1 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0

Write the elemental equation for the truth table, then find a simplified equivalent.
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Solution

Let us apply the foregoing procedure to the given truth table. Doing this gives
the elemental equation

Z ¼ AB �CCDþ AB �CC �DDþ A �BB �CC �DDþ �AAB �CCDþ �AA �BB �CCD

The simplification of such AND-OR relationships is largely a trial-and-error proce-
dure, in which the first step is to try various factoring arrangements. We then try to apply,
to the factored equation, the basic Boolean theorems given earlier.

For the case of the Boolean relationships given above, we could, for example, begin by
factoring AB �CC out of terms 1 and 2, and �BB �CCD out of terms 3 and 5, thus giving us

Z ¼ AB �CCðDþ �DDÞ þ ðAþ �AAÞ �BB �CCDþ �AAB �CCD

hence,

Z ¼ AB �CC þ �BB �CCDþ �AAB �CCD; by items ð14Þ and ð7Þ;
then,

Z ¼ ðABþ �BBDþ �AABDÞ �CC
The next step would be to try to apply the theorems to the quantity inside the par-

entheses above, and this can be done. Instead of doing this now, however, let’s start again,
this time observing that �CCD factors out of all terms except the second, thus putting the
original expression for Z in the form

Z ¼ ½AðBþ �BBÞ þ �AAðBþ �BBÞ� �CCDþ AB �CC �DD

Z ¼ �CCDþ AB �CC �DD ¼ ðDþ �DDABÞ �CC

hence, by item (16),

Z ¼ ðDþ ABÞ �CC ¼ ðABþDÞ �CC ðfinal answerÞ
It thus appears that the second approach, in which we factored out �CCD, seems prefer-

able to the first approach. The final answer above represents, in Boolean algebra form, the
switching network shown in block diagram form in Fig. 319.

Now let’s turn our attention to an important network called the ‘‘full adder.’’ We have
already seen that the basic mathematical tool in a digital computer is addition; we found,
for example, that in binary arithmetic the subtraction operation can be performed by using
addition in conjunction with the 1’s complement. Multiplication and division are likewise
performed by use of addition; thus multiplication is accomplished by repeated additions,
while division is accomplished by repeated subtractions. Hence, since addition is such a
useful operation in digital computers, it’s fitting that we next take up the basic ‘‘full adder’’
network.
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To begin, consider any two binary numbers that are to be added together, and let A and
B be two binary digits of the same order, in the same column, such as is shown below:

1 1 A 0 1 1

þ 1 0 B 1 1 0

When adding any two digits such as A and B together, we must take into account not
only the sum of the two digits themselves but also the effects of any CARRY digits involved
in the operation. For instance, in the particular example above, a ‘‘1’’ would be carried
into the A;B column from the next lower order column to the right; there then may, or
may not, be a ‘‘1’’ carried into the next higher order column to the left, depending upon
the values of A and B.

Let us now define that a FULL ADDER is a network capable of producing the sum of
two binary numbers, including the handling of all ‘‘carry’’ digits that might arise in the
operation. This is illustrated in block diagram form in Fig. 320, where ‘‘fa’’ denotes a ‘‘full
adder’’ network.

In Fig. 320, A and B are binary digits, 1 or 0, of the same order; C ¼ binary 1 or 0,
carried ‘‘in’’ from the next lower order; S ¼ sum digit, 1 or 0, of same order; and
Co ¼ binary 1 or 0, carried ‘‘out’’ to the next higher order.

Remembering now the binary sums

1

1 1 1

þ0 þ1 þ1

1 10 11

, you can verify that the truth table
for the above full adder is

A B C S Co A B C S Co

1 1 1 1 1 0 1 1 0 1

1 1 0 0 1 0 1 0 1 0

1 0 1 0 1 0 0 1 1 0

1 0 0 1 0 0 0 0 0 0

The elemental equations for the sum digit S and the carry-out digit Co are, therefore,

S ¼ ABC þ A �BB �CC þ �AAB �CC þ �AA �BBC ð563Þ
Co ¼ ABC þ AB �CC þ A �BBC þ �AABC ð564Þ

Now, after considerable trial and error, we find that eq. (563) can be written in the
equivalent form

S ¼ ABC þ ðAþ Bþ CÞð �AA �BBþ �AA �CC þ �BB �CCÞ
a fact you can verify by multiplying as indicated and remembering that X �XX ¼ 0. Now,
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making use of items (17) and (18), the last expression can be written as

S ¼ ABC þ ðAþ Bþ CÞðAþ Bþ Aþ C þ Bþ CÞ
hence,

S ¼ ABC þ ðAþ Bþ CÞðAþ BÞðAþ CÞðBþ CÞ
therefore,

S ¼ ABC þ ðAþ Bþ CÞðABþ AC þ BCÞ ð565Þ
The form of eq. (565) is especially useful because, as we’ll next show, it will fit in nicely

with the generation of the carry-out digit Co. To show this, let us write eq. (564) in the
equivalent form

Co ¼ ABC þ ABC þ ABC þ AB �CC þ A �BBC þ �AABC

which is permissible because, in Boolean algebra, X þ X þ X þ � � � þ X ¼ X . Now com-
bine together terms 1 and 4, 3 and 5, and 2 and 6; thus

Co ¼ ABðC þ �CCÞ þ ACðBþ �BBÞ þ BCðAþ �AAÞ
hence,

Co ¼ ðABþ AC þ BCÞ
which, as you can see, fits in perfectly with eq. (565); thus the switching equations for the
FULL ADDER, Fig. 320, can be written as

S ¼ ABC þ ðAþ Bþ CÞðABþ AC þ BCÞ ð566Þ
Co ¼ ðABþ AC þ BCÞ ð567Þ

which, as you’ll note, requires only one inverse (‘‘not’’) operation, and no inversions of the
individual inputs. Thus the last two equations translate into Fig. 321, which shows in
block diagram form the details of the contents of the box in Fig. 320.
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In the foregoing full adder, A;B, and C represent three binary digits of the same order.
In each case the presence or absence of a pulse denotes 1 or 0 respectively. The network
delivers a sum digit S of the same order as A;B, and C, and a possible carry digit Co of the
next higher order. Note that, in order to get the sum of two binary numbers, such as, for
example,

1 0 1 1 0 1 1 0

þ 1 1 0 1 1 1 0 1

we must use a full adder for each two digits of the same order. This is illustrated in
Fig. 322, where ‘‘fa’’ stands for ‘‘full adder.’’

In the figure, the As denote the digits of one binary number and the Bs denote the
corresponding digits of another binary number. The digits of the lowest order (least value)
are denoted by A0 and B0, with S0 being the lowest-order sum digit.

In the above circuitry the sum and carry digits appear only during the ‘‘on time,’’ that
is, during the time during which the A and B pulses are on the input lines. After a given set
of A and B pulses is terminated, an ‘‘off time’’ is provided before a next set of A and B
pulses is applied to the input lines. During the ‘‘off time’’ all sum and carry digits are
zeros (because the As and Bs are all zeros during the off time). Therefore, during the
‘‘on time’’ the sum digits must be fed out of Fig. 322 into what is called an ‘‘accumulator’’
or ‘‘register,’’ which is a circuit capable of storing the total sum of all such sums
generated.

Problem 287
In the following, A;B;C, and D represent four binary input signals. Write the
Boolean expression for the signal appearing on each line in the diagram.
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Problem 288
Using Boolean algebra, find a simpler arrangement for the network of problem 287
consisting of just one ‘‘nor’’ and two ‘‘and’’ devices. Resketch the answer to problem
287 showing the new, but equivalent, network.

Problem 289
Two input binary signalsA andB are to be switched to satisfy the following truth table:

A B Z A B Z
0 0 1 1 0 1
0 1 0 1 1 1

Write the elemental equation, simplify, sketch a circuit to consist of one ‘‘or’’ and
one ‘‘nor’’ device.

Problem 290
A network must be devised that will cause two input binary signals A and B to satisfy
the following truth table:

A B Z A B Z
0 0 1 1 0 0
0 1 0 1 1 1

(a) Write the elemental equation that will satisfy the truth table.
(b) Sketch a network using one ‘‘nor’’ circuit and two ‘‘and’’ circuits that will satisfy

the truth table.

Problem 291
A network is required that will cause three input binary signals A;B;C to satisfy the
following truth table:

A B C Z A B C Z

0 0 0 1 1 0 0 0

0 0 1 0 1 0 1 1

0 1 0 0 1 1 0 0

0 1 1 0 1 1 1 1

(a) Write the elemental equation that will satisfy the table.
(b) Sketch a network using one ‘‘and’’ circuit, one ‘‘nor’’ circuit, and one ‘‘or’’

circuit that will satisfy the table.

Problem 292
Let A;B;C;D represent the states of four input binary signals that must be switched
so as to fulfill the following truth table:

A B C D Z A B C D Z A B C D Z A B C D Z

0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0

0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0

0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 1 1 0 1

0 0 1 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1
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(a) Write the elemental equation that will satisfy the table.
(b) Simplify the answer to part (a) to a form that requires ‘‘and’’ and ‘‘or’’ terms, but

just one ‘‘not’’ term.
(c) Using standard symbols, sketch the answer to part (b) in block diagram form.

Problem 293
Let A;B;C;D denote four input binary signals that must be switched to satisfy the
following truth table where, as usual, Z is the state of the output binary signal:

A B C D Z A B C D Z A B C D Z A B C D Z

0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 0 0 0

0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 0 1 0

0 0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 1 0 0

0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1

(a) Write the elemental equation that will satisfy the table.
(b) Simplify the answer to (a) into a form that requires only one ‘‘not’’ operation.
(c) Using standard symbols, sketch the answer to (b) in block diagram form.
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The Digital Processor.
Digital Filters

13.1 Bandwidth Requirements for Digital
Transmission. Sampling Theorem.

PAM and PCM
We have learned that in a digital system information is given, and transmitted, in the form
of short ‘‘rectangular-type’’ pulses of voltage or current, the presence or absence of a pulse
denoting ‘‘1’’ or ‘‘0’’ (as illustrated in Fig. 311 in Chap. 12).

It should be noted that the transmission of information in pulse form requires that the
equipment be able to uniformly amplify and pass a wide range of frequencies; that is, it
must possess a relatively WIDE BANDPASS characteristic. This is because a rectangular
pulse type of signal is composed of a large number of harmonic frequencies (note 18 in
Appendix). Consider now Figs. 323 and 324, in which T is the uniform amount of time
allotted to the appearance of each pulse, T having the same value in both figures.

Now imagine two streams of pulses, one composed of those of Fig. 323, the other
of Fig. 324. Then note that the frequency F of the fundamental component will be the
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same in both cases; thus

F ¼ 1=T ðeq: ð91Þ; Chap: 5Þ
because T is given to be the same in both cases (but the fundamental waves would not, in
general, have equal amplitudes; that is, they would not have equal ‘‘peak values’’).

The point, however, that we wish to emphasize here is that, for practical purposes, it
will require more higher-order harmonics of F to get a ‘‘sufficiently good’’ representation of
Fig. 323 than Fig. 324. This is because the ‘‘ideal’’ rectangular pulse of Fig. 323 has what
are called ‘‘points of discontinuity,’’ that is, times at which the voltage or current would
have to INSTANTLY jump from one value to a different value, which is, of course,
impossible in the real world. Another, but less severe, type of discontinuity would occur
if a voltage or current were required to instantly alter its ‘‘rate of change,’’ such as
instantly changing from, say, an increasing value to a decreasing value.

To get an ‘‘almost exact’’ representation of Fig. 323 would require the inclusion of a
large number of higher-order harmonics of the fundamental frequency; thus, to transmit a
nearly exact form of Fig. 323 through a system would require that the system have a
relatively WIDE BANDPASS characteristic.

On the other hand, note that the pulses depicted in Fig. 324 are relatively ‘‘smooth,’’
having virtually no points of discontinuity. Thus, pulses in the form of Fig. 324 could be
transmitted through a system having a considerably NARROWER BANDPASS than
that required for Fig. 323.

The point we wish to make is that, if the pulse train of Fig. 324 is ‘‘good enough’’ to do
the job (of representing 1’s and 0’s), then we need not try to make the train more closely
resemble the ideal case of Fig. 323.

The amount of circuit ‘‘bandwidth’’ required must especially be considered if the
information is to be transmitted by wireless; that is, if the information, in digital form,
is used to modulate a high-frequency ‘‘carrier wave.’’ This is because, in the case of a
modulated wave, the information is not actually contained in the carrier wave itself but,
instead, is contained in a cluster of ‘‘side-band’’ waves, with the carrier in the center of the
cluster (see Fig. 31-A, note 24 in Appendix).

For this reason the total bandwidth required to transmit a modulated wave depends
only upon the HIGHEST FREQUENCY COMPONENT present in the information
being transmitted. Thus, if fh is the highest frequency component of importance in the
information signal, then, if the carrier is amplitude-modulated (AM), it would require a
total bandwidth of 2fh to transmit the information without distortion. (For practical
purposes the same bandwidth requirement, 2fh, applies to a frequency-modulated carrier.)

In general, to prevent interference between stations transmitting on adjacent frequen-
cies, it’s necessary to limit the amount of bandwidth allocated to each station. This means
that we must decide what constitutes the ‘‘highest frequency of importance’’ in a given
case. This is, of course, an engineering judgement that must be tempered by the restriction
on maximum allowable bandwidth.

In the previous chapter we dealt with digital switching systems, and how such systems
can be used to make purely arithmetic calculations.

Let’s now consider another very important application of digital signals, in which
information in ANALOG FORM is converted into and transmitted in DIGITAL
FORM. (Then generally, at the end of the transmission system, the final step is to convert
the digital signal back into its original analog form.) Let us, at this point, simply state that
the reason for using such a system is that it makes it possible to GREATLY REDUCE
THE EFFECTS OF ALL TYPES OF NOISE.

The actual conversion of an analog signal into a corresponding digital signal is
accomplished by the process of SAMPLING the analog signal. The success of the system
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depends upon our ability to accurately reconstruct the original analog signal from its
sampled values at the receiving end of the system. The basic theory rests upon the funda-
mental and famous SAMPLING THEOREM, which states that, if vðtÞ denotes an
original analog signal, then

In order to recover an analog signal vðtÞ from equally spaced samples of
vðtÞ, the SAMPLING RATE must be somewhat greater than twice the
highest frequency component of significance in vðtÞ.

Note that the sampling rate must be ‘‘somewhat greater’’ than the highest significant
frequency component of vðtÞ. This is necessary, in practical work, to prevent possible
distortion of the recovered signal. For example, if the highest frequency component of
vðtÞ were, say, taken to be 3000 Hz, then vðtÞ would be sampled at a rate somewhat in
excess of 6000 Hz, say 6500 Hz in a practical application.

In order to fully satisfy the sampling theorem, the height of each sampling pulse would
have to represent the exact value of vðtÞ at the instant of sampling. It is, of course, not
possible to do this with 100% accuracy in a practical system; let us discuss this with the aid
of Figs. 325 and 326.

Let Fig. 325 show a portion of an analog signal voltage vðtÞ, where we’ll assume vðtÞ is
limited to values between 0 and 8 volts. The regular intervals of time on the horizontal axis
can represent seconds, milliseconds, or microseconds, as the case may be.

Now consider Fig. 326, which, let us assume, shows IDEAL SAMPLING of vðtÞ,
which means that the amplitude or height of each sampling pulse represents the exact
value of the corresponding amplitude of vðtÞ at that instant. In such a case it would be
theoretically possible to completely recover the original analog signal vðtÞ from the sample
pulses; this assumes, of course, that the basic requirement of the sampling theorem,
regarding sampling rate, is satisfied.

If the pulse samples in Fig. 326 are used to amplitude-modulate a high-frequency
carrier so as to be transmitted by wireless, we have what is called ‘‘pulse-amplitude
modulation,’’ abbreviated PAM.

The advantage of PAM is that it is ideally suited for use in what is called ‘‘time-
division-multiplex,’’ a system which allows several different signals to be sent together
over the same transmission system, using the same carrier frequency. The disadvantages of
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PAM are that it requires increased bandwidth with no basic reduction in the effect of noise
(in comparison with analog transmission). Another disadvantage is that a PAM system
must be free of amplitude distortion, a requirement that complicates the design of PAM
systems as compared with simple ‘‘present or not-present’’ pulse systems.

The just-mentioned shortcomings of PAM can be overcome by using what is called
‘‘pulse-code modulation,’’ abbreviated PCM. An outline of this remarkably effective
system is as follows, in which, as before, vðtÞ will denote the original ANALOG signal it is
desired to transmit in PCM form.

The first step in a PCM system is the same as in PAM; that is, the ANALOG signal
must be SAMPLED as in Figs. 325 and 326.

The second step in forming a PCM signal is to LIMIT THE NUMBER OF DIFFER-
ENT AMPLITUDES the sampling pulses can have. This is called ‘‘quantizing’’ the
sampled signal, and is accomplished by using a ‘‘quantizer’’ circuit at the output of the
sampling circuit. Thus, at the output of the quantizer the amplitude of each sample pulse
represents a RANGE of possible values of vðtÞ, instead of an unlimited number of ampli-
tudes as in Fig. 326. Only a quantized signal, which has an exact (integral) number of
different values, can be converted into a PCM signal.

In Fig. 326 it’s possible for a sample pulse to have ANY amplitude in the range from 0
to 8 volts. Now suppose the pulses of Fig. 326 are fed into a quantizer circuit that is
capable of sorting the pulse amplitudes into, let us say, 8 different ranges, in accordance
with the table to the left of Fig. 327. If we now redraw Fig. 326 in accordance with the
table, the result is Fig. 327.

Thus the amplitude of each sample pulse in Fig. 327 represents a RANGE of possible
values of vðtÞ, in accordance with the given table. Take, for example, time t ¼ 9 in Fig. 327.
According to Fig. 327, vðtÞ ¼ 3 volts at t ¼ 9; actually, however, inspection of the table
shows that the value of vðtÞ could be ANY VALUE in the range from 3 to 4 volts. This is,
of course, just an illustration, and we would generally require greater accuracy in our
work. We might, for example, require that the pulse amplitudes be broken down into, say,
32 different ranges (‘‘quantization levels’’) for greater accuracy. There is, however, always
some amount of ‘‘quantization error’’ produced. The amount of such error allowed
depends, of course, upon the particular application.

The third and final step is to ‘‘encode’’ the quantized PAM signal of Fig. 327 into a
PCM signal, which is a signal in which ONLY TWO DIFFERENT PULSE CONDI-
TIONS, ‘‘on or off’’ (‘‘1’’ or ‘‘0’’), have to be detected, regardless of the different pulse
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amplitudes actually present in Fig. 327. This is done by representing each quantized level
by a specified binary number, all pulses in the binary numbers having the same amplitude.
Thus, in PCM it will not be necessary to detect different pulse amplitudes, but only if a
pulse is ‘‘present’’ or ‘‘not present,’’ ‘‘1’’ or ‘‘0.’’ Let us take the case of Fig. 327 as an
example, as follows.

As stated above, in PCM each of the various amplitude levels in the quantized sampled
form of the analog signal is to be represented by a specific binary number. Since there are 8
different voltage levels possible, including zero, in Fig. 327, this will require the use of 8
binary numbers of 3 binary digits each; thus

Thus the information, contained in Fig. 327, is expressible as follows

The above information, in binary-coded form (PCM), can be basically represented (for
t ¼ 1 through t ¼ 6) as shown in Fig. 328.

The advantage of PCM is its great freedom from the effects of noise. This is because, in
order to extract the information from such a signal it is only necessary to determine
whether a pulse is PRESENT or NOT PRESENT; that is, it is not necessary to know
the exact amplitudes or shapes of the pulses. Thus, as long as the pulse amplitudes remain
reasonably larger than the noise, the binary numbers, which represent the amplitudes of
the sampled values of vðtÞ, can be recovered.
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0 000 4 100

1 001 5 101

2 010 6 110

3 011 7 111

Time, t Amplitude Coded form Time, t Amplitude Coded form

1 2 010 6 4 100

2 4 100 7 2 010

3 6 110 8 2 010

4 7 111 9 3 011

5 6 110 10 4 100
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It should be noted that the use of PCM to transmit information at a high rate
requires that the equipment have wide bandwidth. This is to be expected, because, as
we know, a wide bandwidth is required for the fast transmission of pulses through
networks.

Now let’s consider some of the algebra associated with PCM. To do this, it will be
helpful to begin with a block diagram of the circuitry required to generate a PCM signal.
Such a diagram is shown in Fig. 329, with explanation as follows.

First, in the figure, the ‘‘comparators’’ are special circuits that compare the amplitude
Vq of each incoming quantized pulse with a reference voltage of Vref volts, each of the
comparators (seven in this case) having a different value of Vref . The values of Vref increase
by equal amounts going from #1 through #7 in the figure.

For each comparator, whenever Vq exceeds the Vref for that comparator, the output
voltage for that comparator becomes and remains equal to ‘‘V volts’’ until the voltage of
the input pulse falls below the value of Vref for that comparator. The comparators are
designed so that their output voltages will all have the same value of V volts (whenever Vq

exceeds the Vref for each particular comparator). Thus, during the presence of an input
quantized pulse, the output of a given comparator is either 0 or V volts (but always 0 volts
during the times between input pulses).

Thus suppose (for example) that, in the preceding figure, a particular input pulse to the
bank of comparators has, say, an amplitude of 4 volts. In that case (given Fig. 327)
comparators #1 through #4 would all have equal outputs of ‘‘V volts,’’ while #5 through
#7 would have outputs of zero volts.

Thus, from the discussion following Fig. 327, the output of the encoder, for this parti-
cular pulse, would be the binary number ‘‘100’’; that is, every input pulse of amplitude
4 volts would appear, at the output of the encoder, as the binary number 100 (as depicted
in Fig. 328).

Again, the ADVANTAGE of this system is that, in this example, instead of having
to accurately detect 8 different amplitude levels, all we need now is to detect the
simple ‘‘present’’ or ‘‘not-present’’ condition of the pulses at the receiving end of the
system.

To summarize, for the case of Fig. 329 the INPUT to the ENCODER consists of
groups of equal-amplitude voltage pulses (from 0 to 7 pulses in each group), while the
OUTPUT consists of 8 binary numbers of 3 digits each (000 to 111). In Fig. 329 the binary
output digits are denoted by X1 (the ‘‘least significant digit’’), X2 (the ‘‘next more signifi-
cant digit’’), and X3 (the ‘‘most significant digit’’).
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Our PROBLEM now is to find the ‘‘inner details’’ of an encoder circuit capable of
converting the equal-amplitude input pulses into corresponding binary numbers in the
output of Fig. 329.

To do this, let us begin with the following ‘‘truth table,’’ in which Vq is the amplitude of
the quantized pulses being fed into the bank of comparators in Fig. 329. From inspection
of Fig. 329 we have that

The job of the encoder network is to convert the input signals A;B;C; . . .G into 3-digit
binary numbers, X3;X2;X1, in accordance with the above truth table. In this regard, let us
begin by writing an equation for X1, this being an equation giving all the conditions for
which X1 ¼ 1.

One way to do this is to begin with the basic ‘‘elemental’’ Boolean equation for X1. In
this particular case, however, it will be much easier to write the required equation from
direct inspection of the truth table, as follows.

From inspection of the table note that it is not always true that X1 ¼ 1 when A ¼ 1;
instead, note that it is always true that X1 ¼ 1 whenever

A �BB ¼ 1 or when C �DD ¼ 1 or when E �FF ¼ 1 or when G ¼ 1

thus the simplest possible equation for X1 is

X1 ¼ 1 ¼ A �BBþ C �DDþ E �FF þ G ð568Þ

Next, close inspection of the table shows that X2 will be equal to ‘‘1’’ if the relationship

X2 ¼ B �DDþ F ð569Þ

is satisfied. This is true because, as the table shows, X2 will be ‘‘1’’ when B �DD ¼ 1, regard-
less of the value of C. Also from the table, note that X2 ¼ 1 if F ¼ 1, regardless of the
value of G. Equation (569) shows how important it can be to make a close examination of
a truth table.

Lastly, the table reveals that X3 ¼ 1 whenever D ¼ 1, independent of the values of E;F ,
and G; hence our final equation is

X3 ¼ D ð570Þ

Thus, in Fig. 329, given the seven ‘‘1 or 0’’ input signals (A;B;C; . . . ;E;F ;G) to the
encoder, we’ve found that, to generate the required output PCM signal X3;X2;X1, the
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Vq A B C D E F G MSD X3 NMSD X2 LSD X1

0 0 0 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 1

2 1 1 0 0 0 0 0 0 1 0

3 1 1 1 0 0 0 0 0 1 1

4 1 1 1 1 0 0 0 1 0 0

5 1 1 1 1 1 0 0 1 0 1

6 1 1 1 1 1 1 0 1 1 0

7 1 1 1 1 1 1 1 1 1 1



circuitry of the encoder must be such that

X1 ¼ A �BBþ C �DDþ E �FF þ G

X2 ¼ B �DDþ F

X3 ¼ D

With these equations as a guide we readily find that Fig. 330 will correctly serve as an
encoder circuit to generate the required output signal X3;X2;X1.

Problem 294
In the above example, the quantized samples were restricted to 8 different voltage
levels (Vq ¼ 0 to Vq ¼ 7 volts) which the encoder circuit then transformed into 8
different binary numbers (000 to 111).

Now rework the example, this time assuming the quantized pulses were allowed 12
different voltage levels (Vq ¼ 0 to Vq ¼ 11 volts), which the encoder circuit would
then have to transform into twelve binary numbers of the form X4;X3;X2;X1. Your
PROBLEM is to (a) write the truth table for the encoder, then (b) write the four
simplest Boolean equations that would generate the required truth table.

13.2 Analog Signal in Sampled Form.
Unit Impulse Notation

Let vðtÞ denote the instantaneous continuous values of an analog signal. Then one way of
GRAPHICALLY representing the SAMPLED FORM of vðtÞ is shown in Fig. 331, where
T is the uniform amount of time between samples.
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Fig. 330



In the figure, each distance line, drawn from the horizontal axis, represents the value of
vðtÞ at that particular sampling instant. Thus

vð�2TÞ ¼ value of vðtÞ at t ¼ �2T

vð�TÞ ¼ value of vðtÞ at t ¼ �T

vð0Þ ¼ value of vðtÞ at t ¼ 0

vðTÞ ¼ value of vðtÞ at t ¼ T

vð2TÞ ¼ value of vðtÞ at t ¼ 2T

and so on, thus,

vðnTÞ ¼ value of vðtÞ at any nth sampling instant

Now let’s assume the analog signal starts at some time t ¼ 0, that is, vðtÞ ¼ 0 for t < 0.
For this condition, all the sample values to the left of the origin in the above figure are, of
course, equal to zero. Then the equation for vsðtÞ, the sampled form of vðtÞ, can be written
in terms of time-delayed unit impulses;* thus

vsðtÞ ¼ vð0Þ�ðtÞ þ vðTÞ�ðt� TÞ þ vð2TÞ�ðt� 2TÞ þ � � � þ vðnTÞ�ðt� nTÞ ð571Þ
where n is a positive integer including zero, n ¼ 0; 1; 2; 3; . . . .

Because of the unit impulse factors, vsðtÞ ¼ 0 at all times EXCEPT at the instants
t ¼ 0; t ¼ T ; t ¼ 2T , and so on, to t ¼ nT . At each such instant one of the terms in eq.
(571) will not be equal to zero; for example, at t ¼ 2T , all the terms in the equation are
equal to zero except the one term vð2TÞ�ðt� 2TÞ. The graphical representation of eq.
(571) at t ¼ 2T is shown below.

Immediately following the instant at t ¼ 2T , all terms in eq. (571) become and remain
equal to zero until the time t ¼ 3T , at which time only the term vð3TÞ�ðt� 3TÞ is not equal
to zero; the situation at t ¼ 3T is shown graphically in the following figure.
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* See note 31, then note 32, in Appendix.



Let us note, now, that eq. (571) can also be written using the convenient ‘‘sigma’’ or
‘‘summation’’ notation, thus

vsðtÞ ¼
Xn¼1

n¼0

vðnTÞ�ðt� nTÞ ð572Þ

in which the symbol
P

is the capital Greek letter ‘‘sigma.’’ The sigma notation is read as
‘‘the SUM of all such terms from n ¼ 0 to n equals infinity,’’ where here ‘‘infinity’’ means
that n, the number of terms, must be allowed to become infinitely great.

13.3 The z-Transform
Equation (572) is called a ‘‘time series,’’ because the independent variable is the real
quantity time, t.

It has been discovered, however, that the ALGEBRAIC WORK associated with the
manipulation of sampled analog signals is much simplified if the situation in Fig. 331 is
mathematically defined in terms of a COMPLEX VARIABLE z instead of the real variable
time. This is done as follows.

Let us begin by arbitrarily writing down the following infinite series, in which
vð0Þ; vðTÞ; vð2TÞ and so on are the actual sampled values of an analog signal, and
where z is the complex variable referred to above,

FðzÞ ¼ vð0Þ þ vðTÞz�1 þ vð2TÞz�2 þ � � � þ vðnTÞz�n

where

z ¼ A� j!T

in which A is a positive real constant, with the restriction that A be greater than 1 ðA > 1Þ.
Note that now the independent variable is sinusoidal FREQUENCY, ! ¼ 2�f ; thus we

are now said to be working in the ‘‘frequency domain’’ instead of the time domain. The
quantity FðzÞ above is called the ‘‘z-transform’’ of the sequence of samples. As always, T is
the constant time between samples.

Note now that the above can be neatly summarized by making use of the sigma
notation, thus

FðzÞ ¼
Xn¼1

n¼0

vðnTÞz�n ð573Þ

where z ¼ A� j!T and where A > 1.*
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* Basically the value of A, in the summation of a given vðnTÞ series, must be large enough so that, as n ! 1, A�n

decreases faster than the sum of the vðnTÞ series increases; this allows us to get a definite answer for FðzÞ, instead

of the indeterminate answer ‘‘infinitely great.’’



As always in our discussions it’s understood that � ¼ 2:71828 . . . (eq. (146) in Chap. 6).
If we wish to make use of Euler’s formula (also in Chap. 6) we can write that

z ¼ A� j!T ¼ Aðcos!T þ j sin!TÞ
which emphasizes the fact that z is a complex number. Thus the real time function of eq.
(572) is now being expressed in terms of a complex number z. The advantage is that the
algebraic operations, if conducted in the complex plane, are simpler than if we were
restricted to the use of real values only.

Next, let’s raise the given equation, z ¼ A� j!T , to the ‘‘�n power’’; thus

z�n ¼ A�n��j!nT

that is,

z�n ¼ 1

An ðcos!nT � j sin!nTÞ

in which n is a positive whole number (the number of terms in the series of eq. (573)).
Note, however, that in accordance with eq. (573) we must allow n to become ‘‘infinitely

great’’ (which we indicate by writing n ! 1). But A is a number greater than 1; thus ð1=AnÞ
becomes equal to zerowhen n becomes infinitely great. Hence inspection of the last equation
for z�n, above, shows that as n becomes infinitely great z�n becomes equal to zero; thus

lim
n!1 z�n ¼ 0 ð574Þ

which can be read as ‘‘The limiting value of z�n as n becomes infinitely great is zero,’’ or as
‘‘z�n becomes equal to zero if n becomes infinitely great.’’

A comparison of eqs. (572) and (573) shows that FðzÞ represents vsðtÞ in the complex
plane. This means that a given vsðtÞ can be manipulated algebraically in terms of z instead
of t, which is found to be a great advantage.

In practical applications we work in terms of vðnTÞ, the SEQUENCE OF SAMPLES
generated by the sampling of an analog signal.

Thus, suppose we wish to find the result of applying a given vðnTÞ to the input of a
particular digital logic network. To do this, we must first express vðnTÞ in terms of z, which
we do by substituting the given vðnTÞ into eq. (573). The expression for FðzÞ, thus found,
is called the z-transform of the sequence vðnTÞ.

Let us, therefore, begin by finding the z-transforms of some of the most-used forms of
vðnTÞ encountered in practical work.

The simplest vðnTÞ signal is called the ‘‘unit pulse,’’ which consists of just one sample of
unit amplitude at t ¼ 0, as illustrated in conventional form in Fig. 332.

We’ll denote the unit pulse by pðnTÞ. Note that pðnTÞ ¼ 1 for n ¼ 0, but pðnTÞ ¼ 0 for
all other n. Thus, in eq. (573), for the case of vðnTÞ ¼ pðnTÞ, we have vðnTÞ ¼ 1 for n ¼ 0
but vðnTÞ ¼ 0 for all other n. Thus, substituting these values into eq. (573), we have that

FðzÞ ¼ 1 ð575Þ
that is, the z-transform of the unit pulse is ‘‘1.’’
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Fig. 332. The unit pulse.



Note that, graphically, the sample values vðnTÞ are plotted against nT , where n is the
number of the sample counted from the n ¼ 0 reference.

Next let’s consider the very important ‘‘unit-step’’ sequence, in which all the samples
have unit amplitude; that is, vðnTÞ ¼ 1 for all values of nT , as shown in Fig. 333.

We’ll denote this ‘‘unit-step sequence’’ by UðnTÞ. Note that UðnTÞ ¼ 1 for all values of
n, including n ¼ 0. Thus, substituting vðnTÞ ¼ UðnTÞ ¼ 1 into eq. (573) for all values
of nT ðn ¼ 0; 1; 2; 3; . . . ; nÞ, we have that

FðzÞ ¼ 1 þ z�1 þ z�2 þ z�3 þ � � � þ z�n for n ! 1 ð576Þ
The above is a valid answer, but can be put in a non-series or ‘‘closed’’ form as follows.
First, multiply both sides of the equation by �z�1, then add the two equations together;

doing this will show that (see problem 295 below)

FðzÞ ¼
Xn¼1

n¼0

1 � z�nz�1

1 � z�1
¼
Xn¼1

n¼0

z� z�n

z� 1

(after multiplying numerator and denominator of the first fraction by z).
But note, by eq. (574), that z�n ! 0 as n becomes infinitely great. Thus the final fraction

above has the limiting value of z=ðz� 1Þ, and hence the z-transform of the unit-step
sequence is

FðzÞ ¼ z

z� 1
ð577Þ

Problem 295
Verify, to your satisfaction, that the suggested operation on eq. (576) does lead to the
final result of eq. (577).

Another useful DT sequence* is the linear rise of Fig. 334, where T is the constant time
between samples, as usual. The z-transform can be found as follows.

Note that Fig. 334 is the sampled form of the CT function vðtÞ ¼ t, so that here

vðnTÞ ¼ nT

as you can see from the figure. Thus, upon substituting nT in place of vðnTÞ in eq. (573) we
have that (remembering that T is constant)

FðzÞ ¼ T
Xn¼1

n¼0

nz�n ¼ Tðz�1 þ 2z�2 þ 3z�3 þ 4z�4 þ 5z�5 þ � � �Þ ð578Þ

The above infinite-series form of the answer can be put into closed form by carrying out
the following algebraic manipulations.
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Fig. 333

* Notations such as vðtÞ; xðtÞ, and so on denote continuous-time analog signals, while vðnTÞ;xðnTÞ, and so on

denote their sampled (‘‘discrete’’) form. For convenience we’ll often abbreviate ‘‘continuous time’’ as CT and

‘‘discrete time’’ as DT.



Let us suppose that, after some experimentation, we decide to try multiplying both
sides of eq. (578) by �z. Doing this, and noting that �zz�1 ¼ �z0 ¼ �1, eq. (578) becomes

�zFðzÞ ¼ Tð�1 � 2z�1 � 3z�2 � 4z�3 � 5z�4 � � � �Þ
Now take the algebraic sum of the above equation and eq. (578), thus getting

ð1 � zÞFðzÞ ¼ Tð�1 � z�1 � z�2 � z�3 � z�4 � � � �Þ
which, upon multiplying both sides by �1, becomes

ðz� 1ÞFðzÞ ¼ Tð1 þ z�1 þ z�2 þ z�3 þ z�4 þ � � �Þ
But note that, by eq. (576), the quantity inside the parentheses on the right-hand side is

equal to the z-transform of the unit-step sequence, which, by eq. (577) equals z=ðz� 1Þ.
Thus, making this substitution into the last equation and then solving for FðzÞ, you can
verify that the z-transform of the linear-rise sequence of Fig. 334 is equal to

FðzÞ ¼ Tz

ðz� 1Þ2 ð579Þ

Next consider the important continuous-time relationship vðtÞ ¼ ��bt, this being called
the ‘‘negative exponential function,’’ where b is a constant.

From Fig. 18-A (note 13 in Appendix), it follows that in discrete time the negative
exponential function would appear in sampled form as in Fig. 335.

Thus the CT function vðtÞ ¼ ��bt becomes the DT sequence vðnTÞ ¼ ��bnT , and upon
substituting this value into eq. (573) we have that

FðzÞ ¼
Xn¼1

n¼0

��bnTz�n ¼
Xn¼1

n¼0

ð�bTzÞ�n ð580Þ
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and thus

FðzÞ ¼ 1 þ ð�bTzÞ�1 þ ð�bTzÞ�2 þ � � � þ ð�bTzÞ�n
h i

for n ! 1

Now note that, since �bT is constant, the quantity inside the brackets has the same form
as eq. (576) which follows Fig. 333, except now we have ð�bTzÞ in place of z; hence, all we
need do is replace ‘‘z’’ with ‘‘�bTz’’ in eq. (577), and we have that the z-transform of the DT
negative exponential sequence is

FðzÞ ¼ �bTz

�bTz� 1
¼ z

z� ��bT
¼ z

z� k
ð581Þ

after multiplying numerator and denominator of the first fraction by ��bT , then letting
k ¼ ��bT .

All the foregoing results, plus several more, are summarized in Table 1.

Problem 296
This is an interesting and instructive example of the almost ‘‘magical’’ powers of
Euler’s formulas (eqs. (153) and (154) in Chap. 6).

Corresponding to the CT sinusoidal function vðtÞ ¼ cos!t, we have the DT
sequence vðnTÞ ¼ cos!nT . By making use of Euler’s formulas, and also eq. (580),
see if you can derive item (7) in the table.

To continue on, in our work it will sometimes be necessary to deal with ‘‘time-delayed’’
DT signals.
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Table 1. Some z-Transforms, n ¼ 0, 1, 2, 3, . . . , where k ¼ ��bT , b and T are constants

Number DT signal vðnTÞ z-transform of vðnTÞ ¼ FðzÞ*
1. unit pulse¼ pðnTÞ 1

2. unit step¼ UðnTÞ z

z� 1

3. exponential¼ ��bnT z

z� k

4. linear rise¼ nT
Tz

ðz� 1Þ2

5. product of (3) and (4)¼ nT��bnT kTz

ðz� kÞ2

6. sine¼ sin !nT
z sin!T

z2 � 2z cos!T þ 1

7. cosine¼ cos !nT
zðz� cos!TÞz

z2 � 2z cos!T þ 1

8. damped sine¼ ��bnT sin!nT
kðsin!TÞz

z2 � 2kðcos!TÞzþ k2

9. damped cosine¼ ��bnT cos!nT
zðz� k cos!TÞ

z2 � 2kðcos!TÞzþ k2

* We’ll use ‘‘Z’’ to indicate that the z-transform of a DT sequence is to be taken; thus, ZvðnTÞ ¼ FðzÞ, read as

‘‘the z-transform of a DT sequence vðnTÞ is equal to F of Z.’’



In this regard, recall that if vðtÞ is a CT signal, then vðt� TÞ is the same signal but
shifted T seconds to the right of vðtÞ on the time axis (note 31 in Appendix). Or, if we
substitute tþ T in place of t we have vðtþ TÞ, which is again the exact same form of signal
as vðtÞ but now shifted T seconds to the left of vðtÞ on the time axis.

In the same way, if vðnTÞ is a DT sequence, then vðnT � kTÞ denotes the same sequence
but shifted k sample periods to the right of vðnTÞ on the nT axis; that is, vðnT � kTÞ denotes
vðnTÞ delayed by k sample periods (delayed by kT seconds).

Likewise, vðnT þ kTÞ denotes the same DT sequence vðnTÞ, but now shifted k sample
periods to the left on the nT axis from vðnTÞ; that is, vðnT þ kTÞ starts kT seconds before
vðnTÞ starts.

Consider now a few examples.
In Fig. 332 pðnTÞ denotes a ‘‘unit pulse’’ for nT ¼ 0; thus, for example, pðnT � 3TÞ

denotes the same pulse but now shifted 3 sample periods to the right of nT ¼ 0 to nT ¼ 3,
as shown below.

Or, consider the ‘‘unit-step sequence’’ UðnTÞ, illustrated in Fig. 333. The notation
UðnT � 2TÞ would, for example, denote the same sequence as in Fig. 333 but shifted or
delayed 2 sample periods to the right; thus

As another example, the expression vðnTÞ ¼ pðnT � TÞ � pðnT � 3TÞ denotes an alge-
braic sum consisting of a positive unit pulse at nT ¼ 1 and a negative or ‘‘negative-going’’
pulse at nT ¼ 3; thus

As another example, the sum vðnTÞ ¼ UðnTÞ þ pðnT � TÞ � pðnT � 3TÞ � pðnT � 4TÞ
represents the modified unit-step sequence shown below,
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In the above example note that vðnTÞ ¼ 2 for nT ¼ 1, but vðnTÞ ¼ 0 for nT ¼ 3 and
nT ¼ 4, because at these particular sampling instants the positive and negative sample
values cancel each other out.

Problem 297
Show graphically the sequence represented by the DT equation

vðnTÞ ¼ UðnTÞ þUðnT � TÞ � 4UðnT � 2TÞ þUðnT � 3TÞ þUðnT � 4TÞ

Problem 298
Show graphically the sequence represented by the DT equation

vðnTÞ ¼ nT � ðnT � 3TÞ � 3UðnT � 7TÞ
where nT is the ‘‘linear-rise’’ sequence of Fig. 334.

Now that we’ve dealt with the graphical representation of vðnT � kTÞ in the ‘‘time
domain,’’ let’s next consider the corresponding effect in the ‘‘z domain.’’

To do this, let us begin by referring back to the time-domain expression of eq.
(572). Now suppose all of the sample values vðnTÞ remain unchanged but are merely
shifted kT seconds to the right; to indicate this, the ‘‘impulse factor’’ in eq. (572) would
become

�ðt� nT � kTÞ ¼ �½t� ðnþ kÞT �
which would indicate to us that, for the time-delayed case, n should be replaced by nþ k in
the z-domain expression of eq. (573). This is true, and upon substituting nþ k in place of
n, eq. (573) becomes, for the time-delayed case (where ‘‘del’’ stands for ‘‘delayed’’),

FðzÞdel ¼ z�k
Xn¼1

n¼0

vðnTÞz�n

because, by the laws of exponents, z�ðnþkÞ ¼ z�nz�k, and, because k and z are independent
of n, the factor z�k can be put outside, to the left, of the summation sign, as shown.

But note that the quantity to the right of z�k is, by eq. (573), equal to FðzÞ; thus the last
equation above shows that

FðzÞdel ¼ z�kFðzÞ ð582Þ
which says that if FðzÞ is the z-transform of a given DT sequence, then z�kFðzÞ is the z-
transform of the same sequence DELAYED BY k SAMPLE PERIODS.

In block diagrams of DT networks a delay is represented by a box labeled z�k, which
represents some kind of a device capable of producing a delay of k sample periods, as
illustrated in Fig. 336.

In the above, the actual contents of the box could, for example, consist of a series
connection of flip-flops, or perhaps an array of charge-coupled devices.

It will be a helpful reminder to conclude this section with a summary of certain alge-
braic operations that apply in the manipulation of z-transform equations. This is done in
Table 2, with discussion below.
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First, in the table, item (1) says that if FðzÞ is the z-transform of sequence vðnTÞ, and if
a is constant, then the z-transform of avðnTÞ is a times the z-transform of vðnTÞ.

Next, item (2) says that the z-transform of the sum of two or more sequences equals the
sum of the transforms of the individual sequences. This property applies here because we
are dealing with linear time-invariant conditions.

Next, item (3) can be established as follows. Since, by eq. (573),

ZvðnTÞ ¼
Xn¼1

n¼0

vðnTÞz�n ¼ FðzÞ

then,

ZanvðnTÞ ¼
Xn¼1

n¼0

anvðnTÞz�n ¼
Xn¼1

n¼0

vðnTÞðz=aÞ�n ¼ Fðz=aÞ

that is, if FðzÞ is the z-transform of a sequence vðnTÞ, and a is constant, then the z-
transform of anvðnTÞ is found by replacing z with z=a in the transform of vðnTÞ.

Problem 299
The notation UðtÞ denotes a continuous-time (CT) function called the ‘‘unit-step
function,’’ defined as equal to 1 for all positive time (including t ¼ 0) but equal to
zero for all negative time, as illustrated below.

Given that a CT function vðtÞ ¼ 3UðtÞ � 20t is being sampled 100 times per second,
what is the z-transform of vðnTÞ? (Answer: FðzÞ ¼ zð3z� 3:2Þ=ðz� 1Þ2Þ
Problem 300
Given vðnTÞ ¼ UðnTÞ þUðnT � TÞ þUðnT � 2TÞ, find FðzÞ.

Problem 301
Find FðzÞ for the vðnTÞ of problem 298.

13.4 The Inverse z-Transform
We have rightly said that the solution to a DT problem can be simplified if the mathe-
matical work is carried out in the z-domain. After a solution is obtained in the z-domain,
the final step is to ‘‘inverse transform’’ the answer back into the time domain. In this
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Table 2. Some Valid Operations in the z-Domain, where ZvðnTÞ ¼ FðzÞ
1. ZavðnTÞ ¼ aFðzÞ, where a is constant

2. Z½v1ðnTÞ þ v2ðnTÞ þ � � �� ¼ F1ðzÞ þ F2ðzÞ þ � � �
3. ZanvðnTÞ ¼ Fðz=aÞ, where a is constant

4. ZvðnT � kTÞ ¼ Zvðn� kÞT ¼ z�kFðzÞ, where vðn� kÞT ¼ 0 for n < k. This is the ‘‘time-
delay’’ theorem.



section we’ll consider how an answer in the z-domain can be inverse-transformed into the
time domain. We begin our discussion as follows.

Going back to eq. (573), we see that a function of z, say YðzÞ, can be expressed in the
basic form

YðzÞ ¼ yð0Þ þ yðTÞz�1 þ yð2TÞz�2 þ yð3TÞz�3 þ � � � þ yðnTÞz�n ð583Þ
where yð0Þ ¼ sampled value of yðtÞ at t ¼ 0, yðTÞ ¼ sampled value of yðtÞ at t ¼ T ,
yð2TÞ ¼ sampled value of yðtÞ at t ¼ 2T , and so on.

Then the corresponding answer to the above equation in the time domain is given by eq.
(571); thus (now writing ‘‘y’’ instead of ‘‘v’’)

ysðtÞ ¼ yð0Þ�ðtÞ þ yðTÞ�ðt� TÞ þ yð2TÞ�ðt� 2TÞ þ � � � þ yðnTÞ�ðt� nTÞ ð584Þ
It thus follows that if the answer to a DT problem comes out in the basic form of eq.

(583), then there is no difficulty in expressing the answer in the time domain, because the
sample values of yðtÞ, that is, yð0Þ; yðTÞ; yð2TÞ, and so on, required in eq. (584), appear
directly as the coefficients of the powers of z in eq. (583).

The practical difficulty, however, is that a solution in the z-domain does not generally
come out in the basic form of eq. (583); instead, the solution comes out in the form of the
ratio of two polynomials in z, in which case the required sample values of yðtÞ cannot be
found by simple inspection of the solution (as would be the case if the solution were
in the form of eq. (583). It is possible, however, to put YðzÞ directly into the form of
eq. (583) by the use of ALGEBRAIC LONG DIVISION,* as the following examples will
illustrate.

Example 1
Write the function Y ðzÞ ¼ z=ðz � 0:6) in the time domain, that is, in the form of eq.

(584).

Solution

The first step is to put the given YðzÞ into the form of eq. (583), which, as
mentioned above, can be done by using algebraic long division. For the given
YðzÞ the details are as follows.

1 þ 0:6z�1 þ 0:36z�2 þ 0:216z�3 þ 0:1296z�4 þ � � �
�����������������������������������������������

z� 0:6 j z���������� � zþ 0:6
��������

0:6

� 0:6 þ 0:36z�1

�������������
þ 0:36z�1

� 0:36z�1 þ 0:216z�2

�������������������
þ 0:216z�2

� 0:216z�2 þ 0:1296z�3

����������������������
þ 0:1296z�3
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We continue in this manner until the change in the values of the coefficients becomes as
small as we wish, at which point we terminate the series. In the above case, we can
continue on for several more terms until we have the good approximation that

z

z� 0:6
¼ 1 þ 0:6z�1 þ 0:36z�2 þ 0:216z�3 þ 0:1296z�4 þ 0:0778z�5 þ 0:0467z�6

which is now in the form of eq. (583), and thus, by direct comparison with (583), we see
that the actual sampled values of yðtÞ, at t ¼ 0;T ; 2T ; . . . ; 6T , are

yð0Þ ¼ 1:0 yð3TÞ ¼ 0:216 yð5TÞ ¼ 0:0778

yðTÞ ¼ 0:6 yð4TÞ ¼ 0:1296 yð6TÞ ¼ 0:0467

yð2TÞ ¼ 0:36

Now, putting these values into eq. (584), we have that the equation for the sampled
function in the time domain is

ysðtÞ ¼ �ðtÞ þ 0:6�ðt� TÞ þ 0:36�ðt� 2TÞ þ 0:216�ðt� 3TÞ þ 0:1296�ðt� 4TÞ
þ 0:0778�ðt� 5TÞ þ 0:0467�ðt� 6TÞ

We can now use the above to pictorially show the form of yðnTÞ versus nT in the
manner previously described. The result is shown in Fig. 337.

Example 2
Given

Y ðzÞ ¼ z

z2 � 1:9z þ 1

Find the first 8 sample values of yðtÞ; that is, yð0Þ; yðT Þ; yð2T Þ; . . . ; yð7T Þ.

Solution

We first put YðzÞ into the form of eq. (583) by using algebraic long division, as
follows, where, to save space, we’ve rounded off to two decimal places.
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Fig. 337. y(nT) versus nT, for
z

z� 0:6
.



z�1 þ 1:90z�2 þ 2:61z�3 þ 3:06z�4 þ 3:20z�5 þ 3:02z�6 þ 2:54z�7

����������������������������������������������������������
z2 � 1:9zþ 1 j z

� zþ 1:90 � z�1

����������������
þ 1:90 � z�1

� 1:90 þ 3:61z�1 � 1:90z�2

�����������������������
þ 2:61z�1 � 1:90z�2

� 2:61z�1 þ 4:96z�2 � 2:61z�3

��������������������������
þ 3:06z�2 � 2:61z�3

� 3:06z�2 þ 5:81z�3 � 3:06z�4

��������������������������
þ 3:20z�3 � 3:06z�4

� 3:20z�3 þ 6:08z�4 � 3:20z�5

��������������������������
þ 3:02z�4 � 3:20z�5

� 3:02z�4 þ 5:74z�5 � 3:02z�6

��������������������������
þ 2:54z�5 � 3:02z�6

from which we have that the first 7 terms of YðzÞ in series form are

YðzÞ ¼ z�1 þ 1:90z�2 þ 2:61z�3 þ 3:06z�4 þ 3:20z�5 þ 3:02z�6 þ 2:54z�7

Now, comparing the above answer with the basic eq. (583), noting that in
this case there is no yð0Þ term, we see that the sample values are

yð0Þ ¼ 0:00 yð3TÞ ¼ 2:61 yð6TÞ ¼ 3:02

yðTÞ ¼ 1:00 yð4TÞ ¼ 3:06 yð7TÞ ¼ 2:54

yð2TÞ ¼ 1:90 yð5TÞ ¼ 3:20

Figure 338 is the result of plotting these values versus nT . Fig. 338 thus
expresses the z-function z=ðz2 � 1:9zþ 1Þ in terms of time-domain sampled
values of yðtÞ. (It so happens that Fig. 338 is a portion of a sine wave in
sampled form.)
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As you might expect, long division is not the only way to convert a given z-transform
into the equivalent time-domain sampled form.

Another method, for example, makes use of ‘‘partial fractions,’’ which is a procedure
for writing a given fraction as the sum of a number of fractions in which the individual
fractions are each simpler than the original given fraction. The inverse of each such
simpler fraction can then be found by direct inspection of a table such as Table 1. The
advantage of the partial fraction method is that the answer comes out in exact or ‘‘closed’’
form, while the long-division procedure comes out in series or ‘‘open’’ form.

Problem 302
Given that

YðzÞ ¼ 1

z� 0:5

find, by means of long division, the time-domain values of yð0Þ, yðTÞ, yð2TÞ, yð3TÞ,
yð4TÞ, and yð5TÞ.

Problem 303
Given that

ZvsðtÞ ¼ FðzÞ ¼ z

z2 � 0:45

find, by long division, the values of vðnTÞ for n ¼ 0 through n ¼ 9.

13.5 The Discrete-Time Processor
The circuitry designed to manipulate DT signals is called a DT (discrete-time) processor,
or ‘‘digital processor’’ if you wish.

In dealing with such processors it’s common practice to associate the letter symbol x
with the input DT sequence and the letter y with the resulting output DT sequence. The
symbol (h) will be associated with the processor itself; that is, ðhÞ will describe the digital
circuitry needed to convert a given ‘‘x’’ input signal into a required ‘‘y’’ output signal.

Thus, if xðnTÞ denotes an input sequence and yðnTÞ the resulting output sequence, the
situation can be represented in block diagram form as shown in Fig. 339, where the box
with the ðhÞ notation contains the required digital circuitry.

(As a memory aid, note that ‘‘input to output’’ corresponds to the natural order of x to
y in the alphabet.)

In the above, the quantity ðhÞ is called the TRANSFER FUNCTION of the system,
and is defined as being equal to the RATIO of the OUTPUT sequence yðnTÞ to the
INPUT sequence xðnTÞ; thus

yðnTÞ
xðnTÞ ¼ ðhÞ ð585Þ
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that is,

yðnTÞ ¼ ðhÞxðnTÞ ð586Þ*
Internally, a processor basically consists of the interconnections of THREE DIFFER-

ENT TYPES or ‘‘blocks’’ of circuitry, these being ADDITION, MULTIPLICATION,
and TIME-DELAY blocks. (Note that we’ve not mentioned ‘‘subtraction’’ separately
because in binary operations subtraction can be performed by addition, as shown in
section 12.1.)

Our purpose now is to investigate the manner in which these different ‘‘boxes’’ or
‘‘blocks’’ can be interconnected to form a processor capable of producing a desired output.

In doing this, each of the three basic operations is represented by a different schematic
symbol as follows, beginning with the ‘‘addition’’ or ‘‘summer’’ symbol (Fig. 340).

The purpose of an ‘‘adder’’ is clear from Fig. 340, in which there could, of course, be
more than just two input lines. In the figure, it’s understood that the adder handles x1

independently of the presence of x2, and x2 independently of the presence of x1; that is, it’s
understood that the ‘‘principle of superposition’’ applies to Fig. 340 and hence, as far as
doing binary arithmetic is concerned, adders are ‘‘linear’’ devices.

Next, the block diagram symbol for MULTIPLICATION is shown in Fig. 341, in
which an input signal xðnTÞ is multiplied by a CONSTANT FACTOR a to produce an
output signal a times the input signal, as shown.

The third basic requirement is that sample TIME DELAY must be provided for in a
DT processor. Time delay is generated in multiples of T , where, as usual, T is the time
between samples. The block diagram symbol for time delay has already been given in Fig.
336, but is repeated here in Fig. 342, where k ¼ 1; 2; 3; . . . , depending upon the number of
sample periods a signal is to be delayed. (Note that whereas Fig. 336 is in the ‘‘z-domain,’’
Fig. 342 is in the ‘‘nT-domain’’; but it’s usual, in block diagrams, to use the same z�k

notation in both cases.)
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Fig. 340, in which case yðnTÞ ¼ x1ðnTÞ � x2ðnTÞ.
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The above delay operation is said to be ‘‘time-invariant,’’ because the BASIC INFOR-
MATION carried by the signal is not altered by the time delay. That is, even though the
output signal ‘‘lags’’ kT seconds behind the input signal, both signals still carry the same
basic information.

The basic reason why time delay is used in digital processors is because the present or
‘‘now’’ output, yðnTÞ, of a processor is generated NOT ONLY by the present or ‘‘now’’
value of the input sequence xðnTÞ but also by PAST VALUES of xðnTÞ and, in some
cases, by present and past values of the output sequence yðnTÞ.

We must remember that the job of a processor is to electronically carry out whatever
MATHEMATICAL OPERATION is specified by the transfer function ðhÞ in eq. (586). In
general, the required mathematical operation will be too complicated to allow a processor
to produce each ‘‘now’’ term of the output sequence, given only a single ‘‘now’’ value of
the input sequence. Thus, to do its job, a processor requires more information than just
each single ‘‘now’’ value. Fortunately, the additional information needed can be obtained
by making use of PAST VALUES of the input sequence and, in some cases, also the
present and past values of the output sequence. These things will be taken up in more
detail in the next section.

13.6 The Form of, and Basic Equations for,
a DT Processor

Electronic circuitry, both CT and DT, often makes use of FEEDBACK, which involves a
condition in which a portion of the system OUTPUT signal is fed back into the INPUT of
the system.

Such feedback, when properly used, can in some cases produce very beneficial results.
In regard to DT processors, those that do use feedback are said to be recursive, while those
that do not are non-recursive. Consider, now, examples of both types, beginning with
Fig. 343.

In the figure note, first of all, that the output signal yðnTÞ is not in any way ‘‘fed-back’’
into the system; thus Fig. 343 is an example of a non-recursive system.

Note also that the output sequence yðnTÞ is the sum of the present or ‘‘now’’ value
2xðnTÞ and two PAST values, 3xðnT � TÞ and 7xðnT � 2TÞ, which occurred T and 2T
sample times ago relative to the ‘‘now’’ time of nT seconds. (In the ‘‘time-delay boxes’’ the
exponent ‘‘�1’’ means ‘‘unit time delay,’’ that is, a time delay of T seconds.)
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In regard to interpreting a figure such as Fig. 343, we should note that, while a notation
such as xðnTÞ really denotes an entire SEQUENCE of values, n ¼ 0; 1; 2; 3; . . . , we can,
for convenience, think of vðnTÞ as denoting some particular sample value existing at a time
nT .

One more point to note is that Fig. 343 is classified as a ‘‘second-order’’ processor,
because it uses two delays.

Next, as a second example, consider Fig. 344. Note that the output sequence yðnTÞ is
fed back to the input adder after being delayed 1 sample period. Thus Fig. 344 is a simple
form of recursive DT processor (of ‘‘first order,’’ because only one delay is used).

Figures 343 and 344 are simple examples of DT processors and we need not, at this
point in our study, worry about how they are put to work. It is important, however, that
you understand the meaning of the notation.

In general, processors will consist of a combination of non-recursive and recursive
types; for example, the combination of Figs. 343 and 344 to make a single processor
gives Fig. 345, in which

yðnTÞ ¼ y 0ðnTÞ þ 10yðnT � TÞ

and thus

yðnTÞ ¼ 2xðnTÞ þ 3xðnT � TÞ þ 7xðnT � 2TÞ þ 10yðnT � TÞ
With the foregoing in mind, let’s agree now to adopt the notation illustrated in Fig. 346

for the general form of a DT processor. (There is a non-recursive part to the LEFT of
point R and a recursive part to the RIGHT of point R, where R is just a reference point.)

Note, first, that the value of the output at the point R (the output of the first adder) is

RðnTÞ ¼
Xk¼p

k¼0

bkxðnT � kTÞ
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Thus we have that the final output value of the processor is

yðnTÞ ¼
Xk¼p

k¼0

bkxðnT � kTÞ þ
Xk¼q

k¼1

akyðnT � kTÞ ð587Þ

or, written out in expanded form, eq. (587) becomes

yðnTÞ ¼ b0xðnTÞ þ b1xðnT � TÞ þ b2xðnT � 2TÞ þ � � � þ bpxðnT � pTÞ
þ a1yðnT � TÞ þ a2yðnT � 2TÞ þ � � � þ aqyðnT � qTÞ ð588Þ

Equations (587) and (588) are called ‘‘difference equations’’ because of the presence of
the ‘‘past history’’ forms having the difference notation ðnT � kTÞ.

Let us now operate on eqs. (587) and (588) in such a way as to express things in terms of
the z-transform. This can be done as follows.

First note that, in the above equations, yðnTÞ and xðnTÞ denote sampled values of yðtÞ
and xðtÞ for any particular value of n we might be interested in. However, to bring the z-
transform into the picture we must summate the values of yðnTÞ and xðnTÞ over the entire
range of n that there is, for n ¼ 0 to n ! 1 (in accordance with the basic definition of eq.
(573) in section 13.3). Therefore (so that we can apply eq. (573)) let us multiply both sides
of eq. (588) by z�n and then summate from n ¼ 0 to n ! 1; doing this, eq. (588) becomesX

yðnTÞz�n ¼ b0

X
xðnTÞz�n þ b1

X
xðnT � TÞz�n þ � � � þ bp

X
xðnT � pTÞz�n

þ a1

X
yðnT � TÞz�nþa2

X
yðnT � 2TÞz�nþ � � � þaq

X
yðnT�qTÞz�n

where all summations are understood to be from n ¼ 0 to n ¼ 1. Now note that (with
same summation from n ¼ 0 to n ¼ 1) by eq. (573)X

yðnTÞz�n ¼ YðzÞ

and by item (4), Table 2 X
yðnT � kTÞz�n ¼ YðzÞz�k
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and the same, of course, for xðnTÞ in place of yðnTÞ. Now apply the last two relations to
the preceding equation; doing this gives the relationship

YðzÞ ¼ b0XðzÞ þ b1XðzÞz�1 þ � � � þ bpXðzÞz�p

þ a1YðzÞz�1 þ a2YðzÞz�2 þ � � � þ aqYðzÞz�q

Now, on the right-hand side of the last equation, factor out XðzÞ and YðzÞ and then
solve for the ratio of OUTPUT TO INPUT, that is, YðzÞ=XðzÞ. Doing this, and using the
notation of eq. (585), you should find that

YðzÞ
XðzÞ ¼ HðzÞ ¼ b0 þ b1z

�1 þ b2z
�2 þ � � � þ bpz

�p

1 � ða1z
�1 þ a2z

�2 þ � � � þ aqz
�qÞ ð589Þ

Equations (588) and (589) are the basic digital processor equations, (588) being in the
‘‘time’’ or ‘‘nT ’’ domain and (589) in the z-domain. As we continue, we’ll gradually begin
to see how they can be applied.

As a final note, remember that the internal operations in a digital processor are per-
formed using binary arithmetic; that is, internally the information is manipulated in the
form of strings of 1’s and 0’s.

All pulses representing ‘‘1’’ have the same amplitude; a ‘‘multiplier’’ unit does not
multiply the actual amplitudes of the pulses; thus the output of the multiplier unit in
Fig. 341 is a binary number ‘‘a’’ times the binary number at the input to the unit. The
resulting effect is, of course, the same as if the actual amplitudes of the pulses had been
multiplied by a. It might seem as if such a procedure would be too time consuming, but we
must remember that a digital processor is capable of performing many many millions of
operations per second.

Problem 304
What is the basic equation for the transfer function, in the z-domain, for the pro-
cessor in Fig. 345?

Problem 305
Write the basic equation, in the z-domain, for the transfer function of a purely non-
recursive digital processor.

Problem 306
In the following, xðnTÞ and yðnTÞ denote, respectively, DT input and output
sequences of a DT processor in the time domain.

(a) yðnTÞ ¼ xðnTÞ þ 6xðnT � TÞ
(b) yðnTÞ ¼ 2xðnTÞ þ 5xðnT � TÞ þ 10xðnT � 2TÞ
(c) yðnTÞ ¼ 6xðnTÞ � 8xðnT � TÞ þ 7yðnT � TÞ
In each case, state whether the processor is a ‘‘non-recursive’’ or a ‘‘recursive’’
type.

Problem 307
Given that the output yðnTÞ of a certain processor with xðnTÞ input is

yðnTÞ ¼ 4xðnTÞ þ 7xðnT � TÞ � 5xðnT � 2TÞ þ 9xðnT � 3TÞ
(a) Sketch the block diagram of the circuit layout of the processor.
(b) For this processor, HðzÞ ¼
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Let’s conclude this section as follows. The ‘‘transfer function’’ of a DT processor has
already been defined for the ‘‘nT-domain’’ (eq. (586) in section 13.5). Now, in the z-
domain we have, by eq. (589), that

YðzÞ ¼ HðzÞXðzÞ ð590Þ
so that, correspondingly, HðzÞ is now the ‘‘transfer function’’ expressed in the z-domain
(instead of the nT-domain as in eq. (586)). Thus the block diagram form of Fig. 339 in
section 13.5 now becomes Fig. 347.

An interesting fact can be discovered as follows. Suppose the INPUT signal to a
processor is the UNIT PULSE pðnTÞ of Fig. 332. In such a case XðzÞ ¼ 1, because the
z-transform of the unit pulse is ‘‘1’’; and hence, for this particular case, eq. (590) becomes
YðzÞ ¼ HðzÞ.

The transfer function HðzÞ of a linear DT system is equal to the response of
the system to UNIT-PULSE INPUT. For this reason the terms ‘‘transfer
function,’’ ‘‘unit-pulse response,’’ and ‘‘pulse transfer function’’ are all used
interchangeably.

13.7 Stability and Instability. Poles and Zeros
It is possible for a recursive DT processor to become unstable under certain conditions.
The desired condition of ‘‘stability’’ and the undesired condition of ‘‘instability’’ can be
defined in general terms as follows.

Let a momentary signal, such as the ‘‘unit pulse’’ of Fig. 332, be applied to the input of a
recursive DT processor. If the OUTPUT of the processor ‘‘dies out’’ and becomes zero as
time increases, the processor is STABLE; if, however, the output does not become zero as
time increases, the processor is UNSTABLE.

Let us take, as an example to illustrate the basic possibilities, the simple recursive
processor shown in Fig. 348.

For brevity here we’ll denote the unit pulse by ‘‘1,’’ as shown in the figure. Note that the
above is the same as Fig. 344, except that now the input is given to be the unit pulse,
xðnTÞ ¼ pðnTÞ ¼ 1, and the multiplier constant is denoted by a. It is the VALUE OF
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THE MULTIPLIER a that determines whether the processor of Fig. 348 is stable or
unstable. The explanation is as follows.

First remember that, in this case, xðnTÞ ¼ 0 for all time EXCEPT at t ¼ 0, when
xðnTÞ ¼ 1. Thus the output at the instant t ¼ 0 is also 1.

Then, following this, after T seconds has elapsed, a time-delayed signal, (1)ðaÞ ¼ a,
arrives at the input to the adder; thus, at t ¼ T , the output is a.

Then, after another T seconds has elapsed, a time-delayed signal, now equal to
ðaÞðaÞ ¼ a2, arrives at the input to the adder, so that, at t ¼ 2T , the output is a2.

Then, after another T seconds has elapsed, a time-delayed signal, now equal to a3, is fed
back to the input to the adder, so that at t ¼ 3T the output is a3.

Continuing on in this way we see that, at any integral multiple of time T , t ¼ nT , the
output is equal to an; that is, in Fig. 348, yðnTÞ ¼ an. Thus the nature of the output
sequence in Fig. 348 depends upon the value of the multiplier constant a. Let us discuss
this in more detail, as follows.

First, note that our definition of ‘‘stability or instability,’’ as given above, could also be
stated in the following equivalent way.

Let a single unit pulse pðnTÞ be applied to the input of a (recursive) processor, and let
yðnTÞ denote the value of the output at any time nT seconds later.

Now let L denote the value that yðnTÞ would approach if n were allowed to become
‘‘infinitely great’’ (denoted by writing n ! 1, or loosely, for convenience, simply as
‘‘n ¼ 1’’).

We can then say that, in general, a processor is stable if L ¼ 0, but is unstable if L is not
equal to zero. Let us apply this principle to Fig. 348, where we’ve already found that

yðnTÞ ¼ an ð591Þ
Thus, applying the above rule to the particular processor of Fig. 348, we have that

lim
n¼1 yðnTÞ ¼ lim

n¼1 an ¼ L ð592Þ

It’s apparent that, in this case, the value of L will depend upon the value of the constant
multiplier a. As a matter of fact, after some thought we realize that we must consider three
separate possibilities for the value of a, these being the cases for a GREATER than 1, a
EQUAL to 1, and a LESS than 1. Let us consider each of the three cases as follows.

Case I. (a > 1): Here the values of the output samples, an, theoretically become ‘‘infi-
nitely great’’ for n ¼ 1. Thus in this case L is certainly not equal to zero, so that
Fig. 348 is unstable for a > 1. This is illustrated in Fig. 349.

Case II. (a ¼ 1): Since 1n ¼ 1 we have that L ¼ 1, and thus Fig. 348 is unstable for a ¼ 1,
as illustrated in Fig. 350.

Case III. (a < 1): The integral power of a number less than 1 is less than the given
number; for instance, if a ¼ 1=3, then a2 ¼ 1=9; a3 ¼ 1=27, and so on. Thus
for this case L becomes equal to zero ðL ¼ 0Þ as n becomes infinitely great;
hence Fig. 348 is stable for a < 1, as illustrated in Fig. 351.

In regard to Fig. 349, the output of an actual processor could not, of course, become
‘‘infinitely great’’; instead, in such a case the output would cease increasing and stall when
the maximum holding capacity of the digital circuits was exceeded.

Now let’s return to Fig. 348 and this time apply the z-transform. Let us begin by writing
down the nT-domain equation for the figure, which, since it’s given that xðnTÞ ¼ pðnTÞ, is

yðnTÞ ¼ pðnTÞ þ ayðnT � TÞ
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Now take the z-transform of the above equation. Doing this, and remembering that the
z-transform of the unit pulse is ‘‘1’’, we have

YðzÞ ¼ 1 þ aYðzÞz�1

thus,

YðzÞ ¼ 1

1 � az�1

or, upon multiplying numerator and denominator by z, we have

YðzÞ ¼ z

z� a
ð593Þ

Now consider the following. We’ve agreed to define the ‘‘stability or instability’’ of a
DT processor in terms of its response YðzÞ to unit pulse input.

For unit pulse input, however, it is true that YðzÞ ¼ HðzÞ, as was pointed out at the end
of section 13.6. Hence (always assuming unit pulse input) we can just as well write HðzÞ
instead of YðzÞ. With this understood, eq. (593) becomes

HðzÞ ¼ z

z� a
ð594Þ

The behavior of a DT processor is thus determined by the nature of its transfer function
HðzÞ. This is done by observing what are called the ‘‘zeros’’ and ‘‘poles’’ of HðzÞ for a
given processor. The zeros and poles of HðzÞ are defined in accordance with eq. (589) in
section 13.6, as follows.

To begin, let NðzÞ and DðzÞ denote the numerator and denominator of eq. (589); thus

HðzÞ ¼ NðzÞ
DðzÞ ð595Þ

We now define that a ZERO of HðzÞ is any value of z for which HðzÞ is equal to zero,
that is, for which HðzÞ ¼ 0.

Or, since HðzÞ ¼ 0 if NðzÞ ¼ 0, this is the same as saying that a ‘‘zero’’ of HðzÞ is any
value of z for which NðzÞ ¼ 0. Thus, by eq. (589), a zero of HðzÞ is any value of z that
satisfies the equation

b0 þ b1z
�1 þ b2z

�2 þ � � � þ bpz
�p ¼ 0

Or, if we wish, upon multiplying through by zp this becomes

b0z
p þ b1z

p�1 þ b2z
p�2 þ � � � þ bp ¼ 0 ð596Þ
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Equation (596) is the equation that must be solved to find the ‘‘zeros’’ of HðzÞ for a
proposed DT processor. Inspection of Fig. 346 shows that the b coefficients pertain to the
non-recursive portion of a DT processor, consisting of 1 þ p multipliers and p delays.

We next define that a POLE of HðzÞ is any value of z for which HðzÞ becomes
‘‘infinitely great,’’ that is, for HðzÞ ¼ 1.

Or, since HðzÞ becomes infinitely great when the denominator of eq. (589) becomes
equal to zero, this is the same as saying that a ‘‘pole’’ of HðzÞ is any value for which
DðzÞ ¼ 0. Thus, by eq. (589), a pole of HðzÞ is any value of z that satisfies the equation

1 � ða1z
�1 þ a2z

�2 þ � � � þ aqz
�qÞ ¼ 0

Or, if we wish, upon multiplying through by zq this becomes

zq � a1z
q�1 � a2z

q�2 � � � � � aq ¼ 0 ð597Þ

Equation 597 is the equation that must be solved to find the ‘‘poles’’ of HðzÞ for a
proposed DT processor. Inspection of Fig. 346 shows that the a coefficients pertain to the
recursive portion of a DT processor, consisting of q multipliers and delays.

In working with DT processors a knowledge of the locations of both the zeros and
poles of HðzÞ is very important, this being especially true for the locations of the POLES
of HðzÞ.

This is because it is the locations of the poles of H(z) that determines whether a
proposed processor will be stable or unstable. This is summarized in the famous dictum
that

A DT processor is STABLE only if ALL THE POLES of the transfer
function HðzÞ lie WITHIN THE UNIT CIRCLE on the complex z plane.

To gain some understanding of why this is true, note first that, as used here, the ‘‘unit
circle’’ on the z-plane is defined to be a circle of unit radius with center at the origin of the
complex plane.

That is, a unit circle is defined here to be a circle of radius r ¼ 1, center at origin of the
complex plane, the unit radius being at any variable angle � (theta), ‘‘positive’’ � being
measured in the counter-clockwise sense from the positive real axis. This is illustrated in
Figs. 352 and 353.
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As can be seen from the enlarged version in Fig. 353, the equation of the unit circle can
be written in either the ‘‘rectangular’’ or the ‘‘exponential’’ form; thus

z ¼ xþ jy ¼ ðcos �þ j sin �Þ ¼ � j� ð598Þ
Now consider the basic recursive equation, eq. (597). Note, carefully, that the notation

used in eq. (597) refers to the notation used in the recursive portion of Fig. 346.
Now consider the fundamental ‘‘first-order’’ processor of Fig. 348. With regard to eq.

(597), note that here q ¼ 1, with all the a coefficients equal to zero EXCEPT for a1; thus,
for Fig. 348, eq. (597) becomes

z� a1 ¼ 0

showing that a first-order recursive processor has just ONE POLE located at z ¼ a1.
However, as we already know, Fig. 348 is stable only if a1 is less than 1. Thus it is true
that a first-order recursive processor is stable only if the solution to eq. (597) lies within the
unit circle.

What we have just found, for the basic first-order recursive processor, can be extended
to ANY ORDER of such processors; that is, any recursive processor is stable only if all
the poles of its transfer function HðzÞ lie within the unit circle on the z-plane.

The poles of a given HðzÞ may be all real numbers, or all complex numbers, or a
combination of real and complex numbers. HOWEVER, it’s an important fact that
COMPLEX POLES can occur only in the form of CONJUGATE PAIRS of complex
numbers; thus, if cþ jd is a pole of HðzÞ, then c� jd is also a pole, and vice versa. By way
of an explanation, let’s first consider the case of a second-order recursive processor, as
follows.

For the second-order case, in eq. (597) we would have q ¼ 2, with all a coefficients
equal to zero EXCEPT for a1 and a2; thus, for a second-order recursive processor eq. (597)
becomes

z2 � a1z� a2 ¼ 0 ð599Þ
which, if we wish, can be put in the factored form

ðz� gÞðz� hÞ ¼ 0 ð600Þ
which, in this form, shows that a second-order recursive processor will have TWO POLES,
one at z ¼ g, the other at z ¼ h. If, now, we multiply as indicated in eq. (600), we have that

z2 � ðgþ hÞzþ gh ¼ 0

and upon comparing this last result with eq. (599) we see that

a1 ¼ ðgþ hÞ
a2 ¼ �gh

�
ð601Þ

Now, in an actual processor the a1 and a2 coefficients will always be real numbers.
However, even though a1 and a2 are themselves real numbers, the two poles, g and h, can
be either two real numbers or two CONJUGATE complex numbers. To show this, sup-
pose that g and h are two conjugate complex numbers, g ¼ cþ jd and h ¼ c� jd. Then, by
eq. (601), we have

a1 ¼ ðcþ jdÞ þ ðc� jdÞ ¼ 2c; a real number

and

a2 ¼ �ðcþ jdÞðc� jdÞ ¼ �ðc2 þ d 2Þ; a real number:
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Thus we have the important fact that a second-order recursive processor will always
possess TWO POLES, g and h, in which either

(a) g and h are both real numbers, or

(b) g and h are conjugate complex numbers.

However, regardless of whether we have case (a) or case (b) for a given processor, for
stability both poles must lie within the unit circle on the z-plane.

Now let’s consider a third-order recursive processor (meaning the use of three delays).
For this case q ¼ 3 in eq. (597), which thus, for this case, becomes

z3 � a1z
2 � a2z� a3 ¼ 0

which, theoretically, it’s always possible to factor into the form

ðz� f Þðz� gÞðz� hÞ ¼ 0

showing that a third-order recursive processor possesses THREE POLES, denoted here by
f , g, and h. Since complex poles can exist only in conjugate form it follows that the
possibilities for a third-order (recursive) processor are

(a) three real poles, or

(b) one real and one pair of conjugate poles.

Again, for stability it’s necessary that all three poles lie within the unit circle.
To continue on, it’s a fundamental fact that any algebraic equation of the form of eq.

(597), in which the highest power of the unknown, z, is an integer, q, can always be
factored into the form

ðz� h1Þðz� h2Þðz� h3Þ � � � ðz� hqÞ ¼ 0 ð602Þ

which clearly shows that any such equation has ‘‘q solutions’’* which we’re denoting here
by h1; h2; h3; . . . hq.

You may have noticed that, so far, we’ve not said much about eq. (596). As we already
know, solutions to eq. (596) are called ‘‘zeros’’ because these are the values of z for which
HðzÞ ¼ 0. For now, however, let us just note that certain procedures do exist that require
the use of both the zeros and the poles of a processor.

Problem 308
Write the equation for finding the poles of a fourth-order recursive processor and list
the possible combinations of real and complex poles that might exist.

Problem 309
Repeat problem 308 for a fifth-order (recursive) processor.

Note: The following problems will call for a certain amount of factoring. In some cases
this can be done by direct inspection, while in other cases you may wish to review the
‘‘standard quadratic formula’’ found in note 1 in the Appendix.
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Problem 310
Find the zeros and poles, given the transfer function

HðzÞ ¼ 4zþ 9

zðz� 9Þðz2 þ 5zþ 7Þ

Problem 311
The following are transfer functions for certain DT processors. Determine, in each
case, whether the processor is stable or unstable.

(a) HðzÞ ¼ z

ðz� 0:46Þðz� 0:22Þ

(b) HðzÞ ¼ z2

ðz� 0:61Þðz2 � 1:6zþ 0:48Þ

(c) HðzÞ ¼ z�1 � 1:2z�2

1 � 1:37z�1 þ 0:305z�2

13.8 Structure of DT Processors
Let us, for ready reference here, begin by redrawing Fig. 346 as Fig. 354, where, as before,
H1ðzÞ ¼ the non-recursive part of the network and H2ðzÞ ¼ the recursive part of the net-
work.

Figure 354 is generally referred to as the Direct Form I DT structure. Now, while Fig.
354 is the basic form of DT processor, it can be considerably simplified into what is called
the Direct Form II structure. To do this, note that in Fig. 354 the two divisions of the
network are really connected in series (‘‘cascade’’), and thus the basic network equation,
eq. (590) in section 13.6, can be written in either of the forms

YðzÞ ¼ ½H1ðzÞH2ðzÞ�XðzÞ ð603Þ
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or

YðzÞ ¼ ½H2ðzÞH1ðzÞ�XðzÞ ð604Þ
Thus it basically makes no difference whether we feed the input signal XðzÞ to the H1ðzÞ

section first, as in Fig. 354, or to the H2ðzÞ section first, as in Fig. 355.
Now note, in Fig. 355, that the signals at points 1A and 1B are equal; likewise, the

signals at points 2A and 2B are equal, and so on down the ladder of delays.
Thus Fig. 355 simplifies into Fig. 356, which is called the Direct Form II DT structure.

(Figure 356 happens to be drawn for the case where q is greater than p.)
Now let us verify that the transfer function for Fig. 356 is equal to the transfer function

for Fig. 354. That is, let us verify that HðzÞ for Fig. 356 is the same as eq. (589) in section
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13.6. To do this, let RðzÞ denote the signal at point R in Fig. 356; then inspection of the
figure shows that

RðzÞ ¼ XðzÞ þ a1RðzÞz�1 þ a2RðzÞz�2 þ � � � þ aqRðzÞz�q

that is,

RðzÞ ¼ XðzÞ þ ða1z
�1 þ a2z

�2 þ � � � þ aqz
�qÞRðzÞ

which, upon solving for XðzÞ, gives

RðzÞ½1 � ða1z
�1 þ a2z

�2 þ � � � þ aqz
�qÞ� ¼ XðzÞ ð605Þ

Next, from inspection of Fig. 356 we see that the output signal YðzÞ is equal to

YðzÞ ¼ b0RðzÞ þ b1RðzÞz�1 þ b2RðzÞz�2 þ � � � þ bpRðzÞz�p

that is,

YðzÞ ¼ ðb0 þ b1z
�1 þ b2z

�2 þ � � � þ bpz
�pÞRðzÞ

Now solve the last equation for RðzÞ, and substitute the result in place of RðzÞ in eq.
(605). Upon doing this, and then solving for the ratio YðzÞ=XðzÞ, you should find that, for
Fig. 356,

YðzÞ
XðzÞ ¼ HðzÞ ¼ b0 þ b1z

�1 þ � � � þ bpz
�p

1 � ða1z
�1 þ a2z

�2 þ � � � þ aqz
�qÞ ð606Þ

Note that this is exactly the same as eq. (589), in which the b multipliers are in the non-
recursive part of the network while the a multipliers are in the recursive or feedback part of
the network. It should be noted that the ‘‘Direct Form II’’ configuration requires the least
number of delays needed to perform a given processing task.

The Direct Forms I and II are basic to the construction of DT processors. It is found,
however, that practical difficulties sometimes arise if we attempt to do too much with just
one, single, high-order processor. (The ‘‘order’’ of a processor is the number of delays
required to make the processor accomplish its task.) Thus it’s often better to use a number
of lower-order processors, connected either in cascade or parallel, instead of a single high-
order processor. The procedure is based upon the assumed linearity of binary-type
circuits;* that is, on the assumption that if H1ðzÞ;H2ðzÞ; . . . ;HnðzÞ denote the n transfer
functions of n individual processors, then

HðzÞ ¼ H1ðzÞH2ðzÞ . . .HnðzÞ ¼ transfer function of the cascade ðseriesÞ
connection of the n processors

and

HðzÞ ¼ H1ðzÞ þH2ðzÞ þ � � � þHnðzÞ ¼ transfer function of the parallel
connection of the n processors

This is illustrated below in block diagram form for the case of n ¼ 2, that is, for the case
of two separate processors. We’re using the basic notation of eq. (590) in section 13.6.
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The same block diagram notation can, of course, be extended to any number of
cascaded or paralleled stages.

Problem 312
Write the equation

HðzÞ ¼ 2z3 þ 4z2 þ z

z3 � 5z2 þ 6zþ 9

in the form of eq. (606).

Problem 313
The individual unit pulse responses of three DT processors are as follows:

H1ðzÞ ¼
z

z� 0:2
H2ðzÞ ¼

z

z� 0:4
H3ðzÞ ¼

z

z2 � 0:8zþ 0:15

If the three processors are connected as in the block diagram below, find the unit
pulse response HðzÞ for the entire connection. Write final answer in form of eq. (606).

Problem 314
Repeat problem 313 if the same three processors
are connected in the configuration shown to
the right.

Problem 315
Suppose a single unit pulse of voltage pðnTÞ is applied to the input of the processor
of problem 313. Find the output of the network 3T seconds later.

(Answer: 1.25 volts)

Problem 316
Sketch the block diagram of the Direct Form II processor (Fig. 356) having the
transfer function

HðzÞ ¼ 2z3 þ 1:3z2 þ 0:9z

z3 � 2:2z2 � 1:5zþ 0:75
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Problem 317
Determine whether the following Direct Form II processor is stable or unstable.

Problem 318
Determine whether the
Direct Form II processor
to the right is stable or
unstable.

13.9 Digital Filters; The Basic Algebra
Signals can be, and are, studied in both the time domain and the frequency domain.

In the time domain we principally study the manner in which the amplitude and time
delay of a signal change with time.

In the frequency domain we study the amplitudes and phase shifts of the different
sinusoidal frequency components present in a signal (the ‘‘fundamental’’ and ‘‘harmo-
nics,’’ as outlined in note 18 in the Appendix). The result of such a study is summarized
in terms of the ‘‘frequency response characteristic’’ of a system.

An ‘‘electric FILTER’’ is a network designed to have a SPECIFIC FORM of frequency
response characteristic. Thus we have ‘‘low-pass’’ filters, ‘‘high-pass’’ filters, and so on.
You’ll recall that it’s convenient to display such results graphically, in the form of fre-
quency response curves.

By ‘‘frequency’’ it’s always understood that we mean the frequencies of the sinusoidal
component waves of a signal. As always, frequency in radians per second is denoted by
omega, !, while frequency in cycles per second (hertz) is denoted by f , in which, as you
know, ! ¼ 2�f .

In practical work it’s convenient to express results in terms of FREQUENCY of
SINUSOIDAL waves of voltage and current. Thus in the time domain we work with
the basic equations v ¼ sin!t and v ¼ cos!t.

We have found, however, that the ALGEBRAIC work can be greatly simplified if we
are not restricted to the use of real numbers only but are allowed to work in the total
‘‘complex plane’’ of all numbers. This is because the algebraic operations of multiplication,
division, roots, and powers are easier to express and carry out in the complex plane than in
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the ordinary x; y plane of real number pairs. (This is fundamentally true because complex
numbers can be expressed in EXPONENTIAL FORM to which the ‘‘laws of exponents’’
can be applied to simplify the foregoing mentioned algebraic operations.)

But now let us get on with the subject of ‘‘digital filters.’’ In the study of such filters
much use is made of the ‘‘unit circle in the complex plane.’’ Let us therefore begin by
returning briefly to Figs. 352 and 353 and eq. (598) in section 13.7. In that discussion
we show that the EQUATION of the unit circle IN THE COMPLEX PLANE is
given by

z ¼ � j� ¼ ðcos �þ j sin �Þ

which we can also regard as being the basic EQUATION of a SINUSOIDAL WAVE of
peak value 1 when expressed in complex numbers. Note that the real and imaginary parts
of the equation each separately represent sinusoidal waves if sketched on the ordinary x; y
plane of real numbers.

Now let us note that the meaning of ‘‘frequency response,’’ as applied to digital net-
works, is basically the same as that defined for analog networks,* except that in the digital
case the input test signal will be a SAMPLED sinusoidal wave instead of a continuous-
time sinusoidal wave as in the analog case.

In this regard consider Fig. 357, which shows, in block diagram form, the test setup
required to experimentally determine the frequency response of a digital filter (abbreviated
DF). Note that the setup uses both analog-to-digital (A/D) an digital-to-analog (D/A)
circuits.

Note that the actual input to the DF is a sampled sinusoidal wave of unit amplitude,
xðnTÞ ¼ sin!nT . Then note that, corresponding to xðnTÞ, the output of the DF is
yðnTÞ ¼ B sinð!nT þ �Þ, where B and � are both functions of frequency !. Thus the
frequency response of a DF is expressed in terms of the manner in which B and � vary
with the frequency !. (If we wish, B and � can be measured at the output of the D/A
circuit, as shown.) Consider now the following.

In eq. (573), section 13.3, the variable z is defined to be a complex quantity z ¼ A� j!T ,
where A is a real variable assumed to be always large enough to assure that the value of
FðzÞ does not become ‘‘infinitely great’’ as n ! 1.

Now consider the SPECIAL CASE that arises for the specific value A ¼ 1. For this
particular condition we have

z ¼ � j!T ¼ cos!T þ j sin!T

which is the equation, in the complex plane, for a purely SINUSOIDAL WAVE of UNIT
AMPLITUDE. Therefore the equation for a SAMPLED unit-amplitude sinusoidal wave
at the INPUT to the DF in Fig. 357 is

XðzÞ ¼ ðcos!nT þ j sin!nTÞ ¼ � j!nT ¼ zn
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which produces YðzÞ at the OUTPUT of the DF, a corresponding sampled sinusoidal
wave of amplitude B and phase angle �; thus

YðzÞ ¼ B� jð!nTþ�Þ ¼ ðB� j�Þð� j!nT Þ ¼ ðB� j�Þzn

in which we made use of the basic relationship �aþb ¼ �a�b. Thus, letting HðzÞ denote the
TRANSFER FUNCTION of the filter, we have that

HðzÞ ¼ YðzÞ=XðzÞ ¼ B� j� ð607Þ
from which we may infer, correctly, the IMPORTANT PRACTICAL RULE that

If HðzÞ is the transfer function of a DT processor, then, to find the steady-
state sinusoidal frequency response of the processor, simply set z ¼ � j!T in
HðzÞ.

Equation (607) thus gives the AMPLITUDE and PHASE ANGLE, B and �, of the
output sinusoidal wave produced by the input unit reference signal sin !t in the test setup of
Fig. 357.

In connection with the above procedures it’s convenient to use the following notation.
Let f ¼ input analog frequency (Hz), or 2�f ¼ ! ¼ input analog frequency (rad/sec);

now let fs ¼ constant ‘‘sampling frequency,’’ where (see eq. (91) in Chap. 5) fsT ¼ 1. Thus,

T ¼ 1

fs
¼ 2�

2�fs
¼ 2�

!s

hence,

!T ¼ !ð2�=!sÞ ¼ 2�r

where r ¼ ð!=!sÞ; that is, r ¼ ratio of analog frequency to fixed sampling frequency.
Thus we can, if we wish, state the foregoing rule as: ‘‘To find the sinusoidal frequency

response of a DT processor, set z ¼ � j2�r in HðzÞ, where r ¼ ð!=!sÞ.’’
In our work we’ll basically make use of eq. (606) in section 13.8. With this in mind, note

that if a processor is purely ‘‘non-recursive’’ (does not use feedback)* then all of the a
coefficients in eq. (606) are equal to zero, and thus, for a non-recursive case, eq. (606)
becomes

HðzÞ ¼ b0 þ b1z
�1 þ b2z

�2 þ � � � þ bpz
�p ð608Þ

As the equation shows, an actual calculation of HðzÞ will require finding the sum of a
number of complex numbers. We recall, however, that this will require that the numbers
first be put into the ‘‘rectangular’’ ðaþ jbÞ form; thus we’ll need to make use of the famous
Euler relationship

��j2�r ¼ ðcos 2�r� j sin 2�rÞ ð609Þ
Another important point to note is as follows. In Fig. 357 let !h denote the HIGHEST

FREQUENCY COMPONENT of importance present in the input analog signal. Then, in
order to satisfy the basic requirement of the ‘‘sampling theorem,’’ it has to be true that
!s ¼ 2!h; thus, for ! ¼ !h and !s ¼ 2!h, we have that

r ¼ ð!h=2!hÞ ¼ 0:5
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which means that, FOR A GIVEN SAMPLING FREQUENCY !s and variable analog
frequency !, the ratio r ¼ ð!=!sÞ should not exceed the value of r ¼ 0:5 ¼ 1=2. Thus the
FREQUENCY RESPONSE of a digital filter generally needs to be calculated only over
the range of r ¼ 0 to r ¼ 0:5.

Example
Show that the DT processor in Fig. 358 will serve as a ‘‘low-pass’’ filter.

Solution

Note that this is a non-recursive filter in which b0 ¼ 1:0 and b1 ¼ 1:0 (see left-
hand side of Fig. 354 in section 13.8). Thus, upon substituting these values into
eq. (608) we FIRST have that

HðzÞ ¼ 1:0 þ z�1

Next, since we wish to find the steady-state ‘‘sinusoidal frequency response’’ of the
given processor, we now make the substitution z ¼ � j2�r into the above HðzÞ. If we do this,
changing the notation HðzÞ to HðrÞ and making use of Euler’s formula, the above equa-
tion for HðzÞ becomes

HðrÞ ¼ 1:0 þ ��j2�r ¼ 1:0 þ cos 2�r� j sin 2�r ð610Þ
Thus HðrÞ is now in the rectangular form HðrÞ ¼ aþ jb ¼ jHðrÞj=�, where

jHðrÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð611Þ

and

� ¼ arctanðb=aÞ ð612Þ
where, in this particular case, we have a ¼ ð1:0 þ cos 2�rÞ and b ¼ � sin 2�r. Hence we
have, here, by eq. (611),

jHðrÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 þ cos 2�rÞ2 þ sin2 2�r

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 þ cos 2�rÞ

p
in which we made use of the identity sin2 xþ cos2 x ¼ 1 (from problem 64), and also, by
eq. (612),

� ¼ � arctan½sin 2�r=ð1 þ cos 2�rÞ�
because arctanð�xÞ ¼ � arctanx.

Note: Euler’s formula, in the form ��jx ¼ cos x� j sin x, is valid for x in radians, where
degrees¼ (radians)(180/�). Thus, if we wish to work in degrees, we would write sin 360r
and cos 360r.

It will be informative, now, to show graphically how jHðrÞj and � change with
changing values of r, for the case of Fig. 358.
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To do this we begin with the following ‘‘table of values’’ which, as you can verify, was
found by making use of the above formulas for jHðrÞj and �.

The above results are shown graphically in Figs. 359 and 360.

First, Fig. 359 shows that, while the circuit of Fig. 358 is a basic form of low-pass filter,
it is very broad in its action, not possessing the ‘‘sharp cutoff’’ characteristic we generally
would want such a filter to have. This is understandable, because Fig. 358 is the most basic
type of low-pass digital filter.

Next, Fig. 360 shows that the ratio of ‘‘phase shift to frequency’’ is constant, which
means that the non-recursive (FIR) filter of Fig. 358 has constant time delay and thus
produces no time-delay distortion (note 20 in Appendix). The fact that FIR filters have
constant time delay is an advantage in certain applications. Another advantage of FIR
filters is that they are always stable (because of the absence of feedback).

Thus our ALGEBRA has let us to the fact that the OUTPUT of Fig. 358 depends upon
the FREQUENCY ! of the ORIGINAL ANALOG SIGNAL; the details of WHY this
happens can be explained as follows. Let us begin by recalling, with the aid of Fig. 361, the
action of the UNIT DELAY circuit in Fig. 358.

In Fig. 361, A represents the sampled value of an analog signal at a time t, while B is the
same value as A but delayed T seconds from A, as shown.

Thus timewise, at tþ T , the output of the time delay unit is the ‘‘past value’’ of the
analog signal at time t.
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r jHðrÞj ��

0.0 2.00 0.00

0.1 1.90 �18.00

0.2 1.62 �36.00

0.3 1.18 �54.00

0.4 0.62 �72.00

0.5 0.00 �90.00*

* Direct substitution of r ¼ 1=2 into the equation for � gives � ¼ � arctanð0=0Þ, where 0/0 has, itself, an indeter-

minate value. If, however, using your calculator, you successively find the values of � for, say,

r ¼ 0:496; 0:497; 0:498, and so on, it will be apparent that � approaches the limiting value of �90� for r ¼ 1=2.

Fig. 359 Fig. 360



Thus, from inspection of Fig. 358, we see that the value of each OUTPUT SAMPLE is
the algebraic SUM of the ‘‘present’’ value of the input sample and the ‘‘past value’’ of the
previous sample.

With this in mind suppose, first, that the INPUT to Fig. 358 is the sampled form of a
relatively LOW FREQUENCY analog signal, such as is illustrated in Fig. 362 which
shows a portion of one cycle.

In Fig. 362 we label, for purposes of explanation, just TWO of the many samples that
would be fed into the circuit of Fig. 358. We’ve labeled the chosen samples ‘‘1’’ and ‘‘2,’’ as
shown. The two successive samples are the usual T seconds apart. (In the above, for the
indicated T , about 20 samples would be taken in each half cycle.) The point we wish to
make in connection with Fig. 362 is as follows.

Note that (in accordance with the discussion given with Fig. 361) when sample 2
appears at the INPUT to the circuit of Fig. 358 the algebraic SUM of samples 1 and 2
appears at the OUTPUT of the circuit. The important point to note is that the sum of
samples 1 and 2 is very closely twice the value of sample 2 alone*; this is because the
amplitude of a low-frequency signal changes slowly with time. This is the basic reason
why the output magnitude, in Fig. 359, is highest for low values of ! ðr ¼ !=!sÞ.

Now suppose the input to Fig. 358 is the sampled form of a relatively HIGH
FREQUENCY analog signal, such as is illustrated in Fig. 363 (same peak value, same
T , as in Fig. 362).

In Fig. 363 note that we cannot say that the algebraic sum of samples 1 and 2 is ‘‘very
closely’’ equal to twice the value of 2 alone (as we could for the low-frequency case of
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*As you can from Fig. 362, this is closely true for samples taken near the maximum value of the analog wave, while

increasingly less so for samples taken farther from the maximum.
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Fig. 362), and this effect is increasingly great between samples taken farther from the
maximum value. This is why the magnitude of the output decreases with increasing analog
frequency (Fig. 359), and it is due to the fact that the amplitude of the high-frequency
analog wave changes rapidly with time.

Now consider Fig. 364. The figure is based upon the requirements of the basic ‘‘sam-
pling theorem’’ (section 13.1), and illustrates the condition in which r has the maximum
allowable value of r ¼ 0:5. In this condition the HIGHEST ANALOG FREQUENCY
that can be sampled and allowed to enter a digital filter system is equal to ‘‘one-half the
sampling frequency’’ the system uses. Thus two samples per cycle must be taken of the
highest permitted frequency component of the analog signal; this is the condition shown in
Fig. 364. From the figure, note that the algebraic sum of samples 1 and 2 is always zero;
that is, the output of the filter of Fig. 358 is zero for the highest allowable frequency analog
signal (as we see in Fig. 359).

Problem 319
Rework the foregoing example for b0 ¼ 1:0 and b1 ¼ �1:0, as shown in Fig. 365.

Problem 320
Here we wish to sketch the magnitude of the frequency response curve of the follow-
ing low-pass digital filter.
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For the above, find the values of jHðrÞj for r ¼ 0; 0:1; 0:2; 0:3; 0:4; 0:5, then sketch the
curve of jHðrÞj versus r, from r ¼ 0 to r ¼ 0:5.

Problem 321
Digital filters can be of the band-pass and band-elimination types as well as the low-
pass and high-pass types. To illustrate this, consider Fig. 366, which is drawn in the
‘‘Direct Form II’’ configuration of Fig. 356 in section 13.8 (where, in this particular
case, a1 and b1 are both equal to zero).

(a) Show that the given filter is stable.

(b) Fill in the following table of values for the given values of r, then sketch the
curve of jHðrÞj versus r.
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r HðrÞ jHðrÞj
0.00

0.05

0.10

0.20

0.25

0.30

0.40

0.45

0.50



Appendix

Note 1. Some Basic Algebra
This item constitutes a very brief review of some basic rules and operations of algebra. We
begin with the notation used to denote multiplication, as follows. Let A and B represent
two numbers; then ‘‘A times B,’’ called the ‘‘product’’ of A and B, is, in algebra, denoted in
any of the following ways

A� B ¼ A � B ¼ AB

In the same way, if A, B, and C represent three numbers, then the product of the three
can be denoted in any of the following ways

A� B� C ¼ A � B � C ¼ ABC

In the above, A, B, and C are referred to as the ‘‘factors’’ of the product ABC. It should
be noted that multiplication is a ‘‘commutative’’ operation, which simply means that it
makes no difference in what order the factors of a product are written; that is

AB ¼ BA

Multiplication is also ‘‘associative,’’ which means that the product of three or more
numbers is the same in whatever way they may be grouped together; that is

ABC ¼ AðBCÞ ¼ ðABÞC
Lastly, multiplication is ‘‘distributive’’ with respect to addition, which is summarized in

the statement that

AðBþ CÞ ¼ ABþ AC

which is read as ‘‘A, times the quantity B plus C, is equal to A times B, plus A times C.’’
In regard to positive and negative numbers, the rules concerning MULTIPLICATION

are

the PRODUCT of two numbers having LIKE SIGNS is POSITIVE,

the PRODUCT of two numbers having UNLIKE SIGNS is NEGATIVE.
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The ‘‘absolute’’ or ‘‘numerical’’ value of a number is its value without regard to sign.
The absolute value of �A is A, which is shown symbolically by writing

j� Aj ¼ A

Thus j� 2j ¼ 2, which is read ‘‘the absolute value of minus 2 is 2.’’
If no sign is shown with a number, the number is understood to be positive; thus,

2 ¼ þ2, and so on.
In the addition of two numbers the following rules apply.

(a) To add two numbers having LIKE SIGNS, add their absolute values and prefix the
common sign. Thus, 2 þ 5 ¼ 7, �2 � 5 ¼ �7, and so on.

(b) To add two numbers having UNLIKE SIGNS, take the difference of their absolute
values and prefix to it the sign of the number having the larger absolute value. For
example, �2 þ 5 ¼ 3, and 2 � 5 ¼ �3.

To SUBTRACT one number from another, change the sign of the number to be taken
away and proceed as in addition. Thus, to subtract 5 (meaning þ5) from 2, we have
2 � 5 ¼ �3. Or, to subtract �5 from 2 we have 2 þ 5 ¼ 7, that is, 2 � ð�5Þ ¼ 7.

Next, if one number A is to be DIVIDED BY another number B, this is indicated
algebraically by the fractional form,

A

B
¼ A=B

which is read as ‘‘A over B,’’ meaning ‘‘A divided by B.’’ If we write
A

B
¼ C, this says that

‘‘A divided by B is equal to C,’’ in which the SIGN of the ‘‘quotient’’ C is POSITIVE if A
and B have LIKE SIGNS but NEGATIVE if A and B have UNLIKE SIGNS. Thus,
6=3 ¼ �6=� 3 ¼ 2, but, �6=3 ¼ 6=� 3 ¼ �2. In the expression A/B, A is called the
‘‘numerator’’ of the fraction and B is called the ‘‘denominator’’ of the fraction. The
value of a fraction is not changed if the numerator and denominator are both multiplied
or divided by the same quantity. In regard to the multiplication of fractions, the
PRODUCT of two fractions is equal to ‘‘the product of the two numerators over the
product of the two denominators’’; that is

A

B
� C
D

¼ AC

BD

In regard to an EQUATION, the equality of the two sides is preserved if the same
operation is applied to both sides of the equation. For instance, multiplying both sides of
the equation A=B ¼ C by B shows that A ¼ BC; thus, A=B ¼ C and A ¼ BC denote the
same relationship among the quantities A, B, and C.

Next we have the algebraic form Ba, in which ‘‘B’’ is called the base number and in
which the exponent ‘‘a’’ is the ‘‘power’’ to which B is to be raised. The exponent a can be
any positive or negative integer or fraction. If a is a positive integer (positive whole
number), then Ba is simply a shorthand notation for the number of times B is to be
multiplied by itself; thus, B2 ¼ BB, B3 ¼ BBB, and so on. Or, if a is an integer, then
B�a denotes the reciprocal of Ba; that is, B�a ¼ 1=Ba. Thus, B�1 ¼ 1=B, B�2 ¼ 1=BB,
B�3 ¼ 1=BBB, and so on.

If the exponent is a fraction 1/a, then B1=a is the ath (‘‘aye th’’), root of B. For instance,
if a ¼ 2, then B1=a ¼ B1=2, which is called the ‘‘square root’’ of B, which is also written
using the ‘‘radical sign’’, thus

B1=2 ¼
ffiffiffiffi
B

p
¼ C
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which is defined to mean that

B ¼ C2

Likewise, B1=3 is the ‘‘cube root’’ of B, which can be written in the form

B1=3 ¼ 3
ffiffiffiffi
B

p
¼ C

meaning that

B ¼ C 3

and so on. Thus ð16Þ1=2 ¼ ffiffiffiffiffi
16

p ¼ �4, because ð�4Þ2 ¼ 16, and ð8Þ1=3 ¼ 3
ffiffiffi
8

p ¼ 2, since
8 ¼ 23.

All of the foregoing operations with exponents can be summarized in the following
‘‘laws of exponents,’’ which are valid for all positive and negative integral and fractional
values of the exponents.

1. Ba � Bb ¼ Baþb (exponents add in multiplication)

2. Ba=Bb ¼ Ba�b (numerator exponent minus denominator exponent in division)

3. ðBaÞb ¼ Bab (B to power a, raised to power b)

4. ðB=CÞa ¼ Ba=Ca (fraction B/C raised to power a)

In the above, note that (1) and (2) apply for like base numbers only. To close our
discussion of exponents, suppose a ¼ 0 in law (1) above; for this case, using law (1), we
have that B0Bb ¼ B0þbBb, which can be true only if B0 ¼ 1. Thus it is defined that ‘‘B to the
zero power is one,’’ that is, B0 ¼ 1, where B has any finite value except zero (because no
value is assigned to the expression 00).

The ‘‘right triangle’’ is important in algebraic applications. Let us denote the sides of a
right triangle by a, b, and c, where side c, opposite the 908 angle, is the ‘‘hypotenuse,’’ as
shown below.

In any right triangle it is true that

c2 ¼ a2 þ b2 the ‘‘Pythagorean theorem’’

thus,

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
The ‘‘degree’’ of an algebraic equation is equal to the highest power of the unknown in

the equation. Thus, if a and b are known constant values, and x denotes the value of an
unknown quantity, the basic FIRST DEGREE or ‘‘linear’’ equation is of the form

axþ b ¼ 0

the solution of which is

x ¼ �b=a

Or, if a, b, and c are known constant values, with x denoting the value of an
unknown quantity, the basic SECOND DEGREE or ‘‘quadratic’’ equation is of the
general form

ax2 þ bxþ c ¼ 0

the solutions of which are

x ¼ 1

2a
ð�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p
Þ

Appendix 403



In closing this item, let us be reminded that DIVISION BY ZERO IS NOT
PERMITTED in algebra. The reason for this restriction can be shown as follows. Let
A, B, and C represent three numbers, thus

A

B
¼ C; meaning that A ¼ BC

If, however, B ¼ 0, then A ¼ 0 � C, which means that A ¼ 0 regardless of the value of

C; thus, setting B ¼ 0 leads to the expression
0

0
¼ C, which is meaningless, since C has no

definite value.

Note 2. Fundamental Units
The four fundamental quantities in the mks system are

LENGTH; l; measured in ‘‘meters’’ ðmÞ
MASS; m; measured in ‘‘kilograms’’ ðkgÞ
TIME; t; measured in ‘‘seconds’’ ðsÞ

ELECTRIC CHARGE; q; measured in ‘‘coulombs’’ ðCÞ

1 meter ¼ 39:37 inches

¼ 3:281 feet

1 kilometer ¼ 1000 meters

¼ 0:6214 miles

1 kilogram ¼ 1000 grams

¼ 2:205 pounds

In the mks system force is measured in NEWTONS, where

1 newton ¼ 0:2248 pounds of force

1 pound of force ¼ 4:448 newtons

In physics, ENERGY is measured in terms of the ability to do work; in the mks system
the basic unit of ‘‘energy’’ is the JOULE, where

1 joule ¼ 0:7376 foot-pounds of work

1 foot-pound of work ¼ 1:356 joules

We note that heat is a form of energy; thus, mechanical and electrical energy can be
transformed into heat, and heat can be transformed into mechanical and electrical energy.
Heat is measured in ‘‘calories’’, where

1 calorie ¼ 4:186 joules of work

¼ 3:0876 foot-pounds of work

To conclude, POWER is the time rate of doing work; the UNIT OF POWER in the
mks system is the watt, where
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1 watt ¼ 1 joule of work per second

¼ 0:7376 foot-pounds per second

1 horsepower ¼ 550 foot-pounds per second

¼ 745:7 watts

1 kilowatt ¼ 1000 watts

¼ 1:341 horsepower

Note 3. Prefix Nomenclature
The following prefixes are generally accepted as denoting powers of 10.

p ¼ pico ¼ 10�12 ð‘‘trillionth;’’ as in ‘‘picofarad’’Þ
n ¼ nano ¼ 10�9 ð‘‘billionth;’’ as in ‘‘nanosecond’’Þ
m ¼ micro ¼ 10�6 ð‘‘millionth;’’ as in ‘‘microcoulomb’’Þ
m ¼ milli ¼ 10�3 ð‘‘thousandth;’’ as in ‘‘milliampere’’Þ
k ¼ kilo ¼ 103 ð‘‘thousand;’’ as in ‘‘kilowatt’’Þ

M ¼ mega ¼ 106 ð‘‘million;’’ as in ‘‘megavolts’’Þ
G ¼ giga ¼ 109 ð‘‘billion;’’ as in ‘‘gigahertz’’Þ

Note 4. Vectors
A VECTOR quantity, as distinguished from ordinary ‘‘scalar’’ quantities, is a quantity
having both MAGNITUDE and a SENSE OF DIRECTION and which obeys the
PARALLELOGRAM LAW OF ADDITION (as will be discussed very shortly).

To show that a letter represents a vector quantity, we’ll generally write the letter with
an ‘‘overscore’’; thus, as examples,

�FF ; �vv; �EE

A vector quantity is represented geometrically by a ‘‘directed line segment,’’ which
is a straight line with an arrowhead at one end. The LENGTH of the line is made
proportional to the MAGNITUDE of the vector quantity, while the arrowhead shows
the DIRECTION or sense of the vector.

Thus, if �AA is a vector quantity, �AA is represented geometrically by drawing a straight line
(using any convenient scale such as, for example, 1 inch ¼ 10 pounds of force) and then
affixing an arrowhead to show the sense of direction, as shown in Fig. 1-A.
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Thus the magnitude of �AA is represented by the length of the straight line, while the
direction or sense is indicated by the arrowhead. The negative of vector �AA, which is
denoted algebraically by writing � �AA, is represented geometrically by the dashed line in
Fig. 1-A. Notice that � �AA has the same magnitude as �AA but is drawn in exactly the opposite
direction from �AA. In Fig. 1-A, the point O and the arrowhead are often called the ‘‘tail’’
and ‘‘head’’ of the vector.

Probably the most basic or ‘‘prototype’’ vector quantity is ‘‘displacement,’’ which
involves both distance or length, and direction.

To illustrate the vector nature of displacement, suppose, for example, that a person
starts at a point O, and walks 50 feet in a straight line to a point P. Suppose this person
then turns sharply and then walks, say, 75 feet to point Q. We now have two displacement
vectors, one scaled in length to represent a distance of 50 feet, the other 1.5 times as long to
represent a distance of 75 feet.

We now ask the question, ‘‘At the end of the above action, where is the person relative
to the starting position at O?’’. The answer, of course, depends not only on the magnitudes
of the two displacements, 50 and 75 feet, but also upon the directions associated with these
magnitudes. Since the directions are not given, we cannot, in this case, give a definite
answer to the question. However, one POSSIBLE location of the point Q relative to the
point O is illustrated in the figure below.

In this figure the vector �RR is called the vector sum of the two vectors of magnitudes 50
and 75; that is, the single vector �RR is mathematically and geometrically equivalent to the
combined effects of the two component vectors, so that �RR is called the ‘‘vector sum’’ of the
two component vectors.

From the figure, it’s apparent that ‘‘vector addition’’ is quite different from the ordinary
algebraic addition of scalar quantities. This can be investigated in more detail as follows.

Using the above figure, let �AA denote the displacement vector of magnitude 50, that is,
j �AAj ¼ 50, and let �BB denote the displacement vector of magnitude 75, j �BBj ¼ 75.

If we now let �RR be the combined effect (the ‘‘vector sum’’) of �AA and �BB, we then find by
direct experiment with displacements that the value of �RR can be found graphically by any of
the three equivalent procedures shown in Figs. 2-A, 3-A, and 4-A. Note that �RR has the
same magnitude and direction in all three figures.
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In the figures, the ‘‘vector quantities’’ all represent distances measured off at different
angles relative to some specific ‘‘reference line.’’

In the figures, let us suppose that the distance represented by �AA happens to lie exactly
along the reference line; that is, suppose that �AA is at an angle of zero degrees with respect to
the reference line; symbolically this can be shown by writing that

�AA ¼ j �AAj=08
Or, if �AA were measured (for example) at an angle of, say, 208 with respect to the

reference line, this would be shown by writing

�AA ¼ j �AAj=208

In Fig. 2-A, �BB is a distance, of magnitude j �BBj, measured from point P at an angle let us
denote by ‘‘b’’ degrees relative to the vector �AA, as shown in the figure. (We’re assuming
that �AA is at 08 relative to the reference line.) The resultant of these two measurements is a
distance of magnitude j �RRj at, let us say, an angle of ‘‘r’’ degrees relative to the reference
line. Algebraically, the whole operation can be expressed by writing that

j �AAj=08þ j �BBj=b8 ¼ j �RRj=r8
or, in a more abbreviated form, �AAþ �BB ¼ �RR, which says that vector �RR is equal to the sum of
vectors �AA and �BB.

Now, in regard to actually finding the value of �RR, where �RR ¼ �AAþ �BB, two procedures,
one graphical and the other mathematical, are available. Here we’ll mainly emphasize the
graphical procedure, as follows.

At the beginning of this discussion we defined that quantities are truly vector quantities
only if they obey the PARALLELOGRAM LAW OF ADDITION. This simply means
that, vectorially speaking, in order for �RR to be the true vector sum of �AA and �BB, �RR must be
equal to the DIAGONAL OF THE PARALLELOGRAM having �AA and �BB as opposite
sides of the parallelogram.

With this in mind, consider Fig. 2-A; we know, from actual experience, that displace-
ment �AA, plus displacement �BB, produces exactly the same final result as would the single
vector �RR. But study of Figs. 3-A and 4-A shows that �RR is equal to the diagonal of the
parallelogram having �AA and �BB as opposite sides; thus displacement is a true ‘‘vector’’
quantity.

To illustrate the above graphical procedure, consider Fig. 5-A, in which �AA and �BB are
given to be two vector quantities at an angle a, as shown. Let the problem be to find,
graphically, the ‘‘resultant’’ vector �RR, where �RR ¼ �AAþ �BB.

Since �AA and �BB are given to be vector quantities, the first step is to construct a paralle-
logram with �AA and �BB as opposite sides, as in Fig. 6-A. The diagonal of the parallelogram,
drawn from the junction of �AA and �BB, is the resultant of the two vectors �AA and �BB; that is, it
is the graphical solution of the equation �RR ¼ �AAþ �BB.
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In the foregoing discussion we’ve referred to displacement as the basic vector quantity.
A number of other quantities, such as force and velocity, are also vector quantities. Of
special interest to us, however, is the fact that ‘‘rms values’’ of alternating currents can be
treated as vector quantities.

If we have THREE vectors, we first find the resultant of any two, then combine that
resultant with the third vector to get the final resultant. We proceed in the same way to
find the sum of any number of vectors. In this way we can state that the rule for finding the
sum of n vectors by geometric means is as follows.

Keeping the directions of the vectors unchanged, move them by ‘‘transla-
tion’’ (that is, without rotation) until the tail of the second touches the head
of the first, the tail of the third touches the head of the second, and so on,
for all the n vectors.

The sum or ‘‘resultant’’ of the n vectors is the vector �RR, which is drawn
from the tail of the first vector to the head of the last nth vector.

The above rule is illustrated for the addition of four vector quantities, �AA; �BB; �CC; �DD, in
Fig. 7-A. This figure is thus the geometric solution to the vector equation
�AAþ �BBþ �CC þ �DD ¼ �RR, where the vectors are given to have the magnitudes and directions
as shown.

To geometrically find the difference of two vectors, �AA� �BB, we draw the vector � �BB in
accordance with Fig. 1-A, then combine it with vector �AA by means of the parallelogram
law in the usual way. This is illustrated in Fig. 8-A, which shows the geometric solution to
the vector equation �RR ¼ �AA� �BB.
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It is sometimes convenient to represent a given vector as being the sum of two or more
‘‘component’’ vectors. This is illustrated in Fig. 9-A, in which a given vector �AA is repre-
sented as being the vector sum of the two components �AA 0 and �AA 00 (A prime and A double
prime).

It’s especially useful, when finding the sum of a number of vectors, to express each
vector in terms of its HORIZONTAL AND VERTICAL COMPONENTS. To do this,
we place the ‘‘tails’’ of all the vectors at the origin O of the x, y plane, then resolve each
vector into horizontal components, all lying on the x-axis, and vertical components, all
lying on the y-axis. This is illustrated in Fig. 10-A for two given vectors �AA and �BB, with their
horizontal and vertical components denoted by the subscripts ‘‘h’’ and ‘‘v’’ respectively.

The above procedure applies to the problem of finding the resultant sum, �RR, of any
number of vectors. The advantage of the procedure is that the total HORIZONTAL
COMPONENT of �RR is the simple algebraic sum of all the horizontal components, and
the total VERTICAL COMPONENT of �RR is the simple algebraic sum of all the vertical
components.

Note 5. Increment (Delta) Notation
The symbol D is the Greek letter ‘‘delta.’’ A term such as ‘‘Dq’’ denotes an optionally
SMALL CHANGE in the value of a variable q, and is read as ‘‘delta q.’’ Note that Dq
does not mean ‘‘delta times q.’’
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Terms such as Dq and Dt are called ‘‘increments’’ of the variables q and t, and denote
small changes in the values of q and t. As used here, q denotes a total amount of electric
charge in coulombs, and t denotes a total amount of time in seconds, counted from some
optionally chosen time at which t ¼ 0.

Hence the ratio of the increments, Dq=Dt, is the AVERAGE ‘‘time rate of change’’ of q
in coulombs per second, which is given the name ‘‘amperes.’’

At a time tþ Dt the total charge is qþ Dq; thus, as Dt becomes smaller and smaller, Dq
also becomes smaller and smaller, and the ratio Dq=Dt comes closer and closer to being the
EXACT value of current, i, flowing at the beginning of the interval of time Dt, at time t.
This idea is expressed mathematically by writing that

lim
Dt!0

Dq
Dt

¼ i ¼ exact current at a time t

which says that ‘‘the limiting value of the ratio Dq=Dt, as Dt is allowed to approach zero as
a limit, is the exact value of current at a time t.’’ If the mathematical relationship between q
and time t is known, then, using the formulas of differential calculus, the value of current i
at any time t can be calculated. Mathematically, the above limit is denoted by the symbol
‘‘dq/dt,’’ which is read as ‘‘dee q, dee t.’’ Thus

dq

dt
¼ coulombs per second ¼ amperes

Note 6. Similar Triangles. Proof of Eq. (98)
Two triangles are called ‘‘similar’’ if their ANGLES are all equal. Thus the two right
triangles in Fig. 11-A are similar triangles.

By definition, if two triangles are similar their ‘‘corresponding angles’’ are equal (in Fig.
11-A the corresponding angles are 30 and 30, 60 and 60, and 90 and 90 degrees). The
‘‘corresponding sides’’ are A and A 0, B and B 0, and C and C 0, as shown. Note that the
ratio A=B is equal to the ratio A 0=B 0, the ratio A=C is equal to the ratio A 0=C 0, and so on.

In Fig. 11-A the two similar triangles are in a position such that their corresponding
sides are PARALLEL; thus, if the corresponding sides of two triangles can be shown to be
mutually PARALLEL, this establishes that the two are similar triangles.

Also, if two triangles are similar they can always be moved and rotated into a
position such that their corresponding sides are PERPENDICULAR, as illustrated in
Fig. 12-A. Thus, if the corresponding sides of two triangles can be shown to be
mutually PERPENDICULAR, this is sufficient to establish that the two are similar
triangles.
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Now, with the above facts in mind, let x and y be two adjacent angles, as in Fig. 13-A.

Now consider Fig. 14-A, in which it is given that

lines CA and DB are perpendicular to line OB,

line ED is perpendicular to line CA,

line CD is perpendicular to line OD.

In Fig. 14-A, consider the two triangles OBD and CED. Close inspection will show that
the corresponding sides of these two triangles are perpendicular and thus that they are
similar triangles, with angle x as shown. Hence, from direct inspection of Fig. 14-A we
have that

cosðxþ yÞ ¼ OA

OC
¼ OB � AB

OC
¼ OB

OC
� ED

OC
ðsince AB ¼ EDÞ

Then, since OB ¼ OD cos x and ED ¼ CD sin x, we have

cosðxþ yÞ ¼ OD

OC
cos x� CD

OC
sin x

But note that OD=OC ¼ cos y and CD=OC ¼ sin y; thus the preceding equation can
be written in the standard form

cosðxþ yÞ ¼ cos x cos y� sin x sin y

which, for the special case of y ¼ x, becomes

cos 2x ¼ cos2 x� sin2 x

Now make use of the identity sin2 xþ cos2 x ¼ 1 (from problem 64). Doing this, then
writing ‘‘�’’ in place of ‘‘x,’’ gives the required eq. (98).

Note 7. Identity for sin(x þ y)
From Fig. 14-A:

sinðxþ yÞ ¼ AC

OC
¼ CE þ AE

OC
¼ CE

OC
þ BD

OC
ðsince BD ¼ AEÞ
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Then, since, CE ¼ CD cos x and BD ¼ OD sin x, we have

sinðxþ yÞ ¼ CD

OC
cos xþ OD

OC
sin x

But note that CD=OC ¼ sin y and OD=OC ¼ cos y; thus the preceding equation can
be written in the standard form

sinðxþ yÞ ¼ sin x cos yþ cos x sin y

Note 8. Often-Used Greek Letters
The following are Greek letters most often used in engineering work.

a ¼ alpha � ¼ omega ðcapitalÞ
b ¼ beta ð‘‘BAY tah’’Þ y ¼ theta ð‘‘THAY tah’’Þ
� ¼ epsilon m ¼ mu

d ¼ delta ðsmallÞ p ¼ pi

� ¼ delta ðcapitalÞ f ¼ phi ð‘‘fee’’Þ
o ¼ omega ðsmallÞ

Note 9. Sinusoidal Waves of the Same
Frequency

Applying the identity found in note 7 to the left-hand side of eq. (124) gives the equality

A sin!tþ B sinð!tþ aÞ ¼ ðAþ B cos aÞ sin!tþ B sin a cos!t

Or, letting E and F denote the CONSTANT values Aþ B cos a and B sin a, the above
becomes

A sin!tþ B sinð!tþ aÞ ¼ E sin!tþ F cos!t

which can also be written in the form

A sin!tþ B sinð!tþ aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ F2

p Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ F2

p sin!tþ Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ F2

p cos!t

 !
ð1-AÞ

Now, letting � be a constant angle, construct the right triangle shown in Fig. 15-A.
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Note that
Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 þ F2
p ¼ cos� and

Fffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ F2

p ¼ sin�, and thus eq. (1-A) becomes

A sin!tþ B sinð!tþ aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ F2

p
ðsin!t cos�þ cos!t sin�Þ

Now apply the identity found in note 7 to the right-hand side above (setting x ¼ !t and
y ¼ �Þ to get the final result that

A sin!tþ B sinð!tþ aÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ F2

p
sinð!tþ �Þ ð2-AÞ

thus proving that the sum of two sinusoidal waves of the same frequency is equivalent to a
single sinusoidal wave of the same frequency.

Note 10. Sinusoidal Waves as Vectors
Let A and B denote the PEAK VALUES of two sine waves of the same frequency, with the
first wave ‘‘lagging’’ the second wave by a degrees. In deriving eq. (2-A) above for the same
two waves we algebraically showed that

peak value of the SUM of the two waves ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 þ F2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos a

p
(making use of the identity sin2 aþ cos2 a ¼ 1), and also, from inspection of Fig. 15-A,
that

PHASE ANGLE of resultant wave ¼ � ¼ arctan
F

E
¼ arctan

B sin a

Aþ B cos a

We now wish to show that the same results can be obtained graphically by using
the ‘‘phasor’’ representation of sine waves, and by assuming that phasors can be
treated as vector quantities; that is, that phasors ADD together in accordance with the
PARALLELOGRAM LAW of addition of vectors. To do this, let us begin with a
phasor diagram of the two waves, such as shown in Fig. 16-A.

Now let R be the VECTOR sum of A and B, as shown in Fig. 17-A. Then, upon
applying the Pythagorean theorem to the large right triangle, we have

R2 ¼ ðAþ B cos aÞ2 þ B2 sin2 a

hence, after applying the identity sin2 aþ cos2 a ¼ 1, we have that the MAGNITUDE
of the resultant vector R is

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 þ 2AB cos a

p
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Next, inspection of Fig. 17-A shows that the PHASE ANGLE of the resultant vector
R is

� ¼ arctan
B sin a

Aþ B cos a

Note that the above values of R and � are the same as the true values of peak voltage
and phase angle found by mathematical means in note 9. Thus it is correct to represent
peak values of sinusoidal waves of the same frequency as vector quantities, provided that
we are interested in knowing only the ‘‘peak values’’ of the waves.

Now suppose that the lengths of all the lines in Fig. 17-A were multiplied by 0.7071;
doing this would not change the SHAPE of the figure in any way, but now the lengths
would represent ‘‘rms’’ values instead of peak values. Thus the foregoing statement,
concerning the vector representation of peak values of sinusoidal waves, holds also for
the rms values of such waves.

Note 11. Rational and Irrational Numbers
Real numbers are classified as being either rational or irrational. Let us first consider the
‘‘rational’’ type, as follows.

A rational number is defined to be the ratio of two integers, that is, a rational number is
of the form a/b, where a and b are integers (whole numbers). Thus, 1/3, 8/9, 29/50 are
examples of rational numbers.

When expressed in DECIMAL form, rational numbers are always of the REPEATING
type; that is, the decimal form of a rational number always consists of a single number, or
a block of numbers, that is REPEATED OVER AND OVER, endlessly. As examples,

1

3
¼ 0:33333 � � � 4

11
¼ 0:36363636 � � � 1

5
¼ 0:200000 � � �

(in the last example, the answer is 0.2 followed by zero repeated over and over).
As an aid to understanding WHY the decimal form of a rational number is always of

the ‘‘repeating’’ type, let us convert the rational number 23/37 into decimal form. To do
this, let us use ordinary ‘‘long division’’ to divide 23 by 37, as follows.

0.6216
37j 23.000000 � � �
�22 2

80 (remainder of 8)
�74

60 (remainder of 6)
�37

230 (remainder of 23)
�222

8

which is the second time that the remainder 8 has appeared; hence the preceding three
results will be repeated, resulting in a remainder of 8 for the third time, and so on in this
manner, endlessly. Thus we have that

23

37
¼ 0:621 621 621 621 � � �
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In any such division ða=bÞ, there is only a certain number of possible remainders. As the
division operation proceeds, sooner or later there has to occur a repetition of a previous
remainder. At this point the process ‘‘starts over,’’ exactly duplicating the preceding cycle
of remainders, until it again returns to the repeated remainder, at which point the process
is again repeated, and so on, endlessly. Thus a ‘‘rational’’ number can be said to be an
‘‘orderly’’ type of number.

Now let us consider irrational numbers; an ‘‘irrational’’ number is defined as one which
cannot be expressed exactly as the quotient of two integers. An irrational number has no
such order as a ‘‘rational’’ number has. The difference between rational and irrational
numbers is simply that an irrational number involves an infinite number of decimal places
which are unordered, that is, not in the form of an endless repetition of a block of
numbers. In any case, an engineer, when manipulating numbers, need not concern himself
with the particular arrangement of the digits in the decimal fractions.

Note 12. The Concept of Power Series
As an example of a ‘‘power series in x,’’ consider the following. Let

Sn ¼ 1 þ xþ x2 þ x3 þ � � � þ xn�1 þ xn ð3-AÞ
where Sn denotes the SUM of the first nþ 1 terms of the series. Thus

for n ¼ 1; S1 ¼ 1 þ x;

for n ¼ 2; S2 ¼ 1 þ xþ x2;

for n ¼ 3; S3 ¼ 1 þ xþ x2 þ x3; and so on:

Now suppose that the number of terms in eq. (3-A) is allowed to ‘‘increase without
bound’’; that is, suppose that n is allowed to become INFINITELY GREAT ðn ! 1Þ.
For this case it’s clearly true that Sn, the sum of the nþ 1 terms, will also become infinitely
great if x is EQUAL TO OR GREATER THAN 1.

But suppose that the value of x is LESS THAN 1, that is, x < 1. In this case the result is
open to question because as n increases, the value of xn decreases (because x < 1). A
definite answer can be found, however, by taking the following steps. First, multiply
both sides of eq. (3-A) by x to get

xSn ¼ xþ x2 þ x3 þ � � � þ xn þ xnþ1

Now subtract the last equation from eq. (3-A); doing this, you should find that

Sn ¼
1 � xnþ1

1 � x
¼ 1

1 � x
� xnþ1

1 � x
ð4-AÞ

Now let the number of terms, n, increase without bound; that is, let n ! 1. Doing this,
and noting that if x is LESS THAN 1 then

lim
n!1 xnþ1 ¼ 0 ðfor x < 1Þ

we find that eq. (4-A) becomes

lim
n!1Sn ¼

1

1 � x
ðfor x < 1Þ
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Hence, if the number of terms n is allowed to increase without bound, Sn becomes equal to
1

1 � x
and thus eq. (3-A) can be written as

1

1 � x
¼ 1 þ xþ x2 þ x3 þ � � � þ xn ðfor x < 1Þ ð5-AÞ

which, it should be understood, is EXACTLY TRUE only in the limit as n becomes
infinitely great.

In the same way, the functions �x, sin x, and cos x can be represented by power series in
x. In these cases, however, the nature of the series is such that the series representation is
valid for ALL positive and negative values of the variable x.

Note 13. Series RL Circuit. L/R Time Constant
We must first note the nature of the ‘‘negative exponential function,’’ ��x ¼ 1=�x, where �
(epsilon) denotes the irrational number � ¼ 2:71828 . . . ; defined by eq. 146 in section 6.5.

In the discussion here, we’ll be interested only in the case where x is a positive real
number. Using your calculator, you can verify the values listed in the following ‘‘table of
values’’ (values of ��x rounded off to two decimal places). These values are plotted against
x in Fig. 18-A.

Now consider the basic series ‘‘RL’’ circuit, to which a constant voltage of V volts is
applied at the closing of a switch, as shown in Fig. 19-A.

In Fig. 19-A, L is inductance in henrys, R is resistance in ohms, and i is current in
amperes flowing any time t seconds after the switch is closed at t ¼ 0.

At t ¼ 0 the current i is zero, at which time the entire applied voltage V appears across
the coil L; then, as time increases, the current increases slowly toward the limiting value of
I ¼ V=R, as shown in Fig. 20-A. As this occurs, the voltage drop across L decreases, while
the voltage drop across R rises toward the limiting value of IR ¼ V volts.

The exact relationship between the current i and time t is given by the equation

i ¼ V

R
ð1 � ��Rt=LÞ ð6-AÞ

Note that when t ¼ 0, then i ¼ 0, as already mentioned, and as shown in Fig. 20-A.
Then, as time increases, the term ��Rt=L decreases exponentially toward the value zero (as
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x ��x x ��x

0.00 1.00 0.80 0.45

0.10 0.91 0.90 0.41

0.20 0.82 1.00 0.37

0.30 0.74 1.50 0.22

0.40 0.67 2.00 0.14

0.50 0.61 3.00 0.05

0.70 0.50 5.00 0.01
Fig. 18-A



in Fig. 18-A). Thus, as time t increases, the current i increases toward the limiting value of
i ¼ I ¼ V=R amperes, as shown in Fig. 20-A.

In Fig. 20-A, note that ‘‘time’’ is expressed in multiples of L/R. This can be done
because the ratio of henrys to ohms is time in seconds, as the following shows.

By eq. (181),

L ¼ v

di=dt
¼ volts

amp=sec
¼ volts � sec

amp

and, by Ohm’s law,

1

R
¼ amp

volts

hence,

L

R
¼ volts � sec

amp
� amp

volts
¼ seconds

The ratio of henrys to ohms, L/R, is called the ‘‘time constant’’ of the basic series circuit
of Fig. 19-A.

As Fig. 20-A shows, at the end of one time constant (L/R seconds) the current in Fig.
19-A will have risen to approximately 63% of its final value of I ¼ V=R amperes. (To
show this, set t ¼ L=R in eq. (6-A).)

Note 14. Series RC Circuit. RC Time Constant
Here we wish to emphasize that time is required to change the amount of energy stored in
the electric field of a capacitor. To illustrate this, consider the basic series ‘‘RC’’ circuit, to
which a constant voltage of V volts is applied at the closing of a switch, as shown in
Fig. 21-A. We wish to examine the manner in which the VOLTAGE ACROSS THE
CAPACITOR increases after the switch is closed.

In Fig. 21-A, R is resistance in ohms, C is capacitance in farads, and i is current in
amperes flowing at any time t seconds after the switch is closed. We’ll assume that initially
(at t ¼ 0) there is zero voltage across the capacitor.

We first note that, at the instant the switch is closed at t ¼ 0, the capacitor momentarily
behaves like a ‘‘short circuit’’; thus, at t ¼ 0 the current is equal to V/R amperes. Then, as
time increases and the capacitor begins to charge, the current i decreases exponentially, in
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the manner of Fig. 18-A, approaching the limiting value of zero. Thus, as time increases,
the voltage across the capacitor rises, in an exponential-type curve, toward the final limit-
ing value of V volts. Letting ‘‘vc’’ denote the voltage across the capacitor, the relationship
between vc and time t is shown graphically in Fig. 22-A, the equation of the curve being

vc ¼ Vð1 � ��t=RCÞ ð7-AÞ

Note that when t ¼ 0, then vc ¼ 0, as already mentioned and as shown in Fig. 22-A.
Then, as time increases, the term ��t=RC decreases exponentially toward the value zero (as
in Fig. 18-A). Thus, as t increases, the voltage vc increases toward the limiting value of V
volts, as shown in Fig. 22-A.

In Fig. 22-A, note that time is expressed in multiples of RC. This can be done because
the product ‘‘ohms times farads’’ is time in seconds, as the following shows.

First, by Ohm’s law,

R in ohms ¼ volts

amperes
¼ volts

coulombs=sec
¼ volts � seconds

coulombs

and then by eq. (184),

C in farads ¼ coulombs

volts

hence,

RC ¼ volts � seconds

coulombs
� coulombs

volts
¼ seconds

The product, ohms times farads, is called the ‘‘time constant’’ of the basic series circuit
of Fig. 21-A. As Fig. 22-A shows, at the end of one time constant (RC seconds) the voltage
across the capacitor has risen to 63% of its final value of V volts. (To show this, set t ¼ RC
in eq. (7-A).)

Note 15. xL is in Ohms
First, ! ¼ 2�f ¼ 2�=T , where T is time of one cycle (eq. (91), Chap. 5). Thus, since � is
simply the ratio of two lengths, we see that ! is basically measured in terms of 1=T , that is,
in ‘‘reciprocal seconds.’’
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Next, by eq. (181) of Chap. 7,

L ¼ volts

amperes=seconds
¼ volts � seconds

amperes

hence,

!L ¼ 1

seconds

volts � seconds

amperes
¼ volts

amperes
¼ ohms

Note 16. j�ZZ ¼ �ZZ Rotated through 90 Degrees
Let us make use of the exponential form of a complex number (section 6.5) as follows.

Let �ZZ be a complex number of magnitude A and angle �; thus

�ZZ ¼ A� j�

then

j �ZZ ¼ Aj� j�

But note that � j908 ¼ cos 908þ j sin 908 ¼ j; thus the preceding expression becomes

j �ZZ ¼ A� j908� j� ¼ A� jð�þ908Þ

showing that j �ZZ is equal to �ZZ rotated through 908.

Note 17. 1/xC is in Ohms
From note 15, ! is measured in reciprocal time, 1=T , while capacitance C is measured
in ‘‘coulombs per volt,’’ q=v (eq. (184) in Chap. 7). Thus 1=!C is basically measured in
units of

1

1

second

coulombs

volts

¼ volts

coulombs=second*
¼ volts

amperes
¼ ohms

Note 18. Harmonic Frequencies. Fourier Series
If any particular frequency, f, is taken to be a ‘‘fundamental’’ frequency, then any
INTEGRAL MULTIPLE of f is said to be a harmonic of f. Thus, 2f is the second
harmonic of f, 3f is the third harmonic of f, and so on, so that nf is any nth harmonic of
f, where n ¼ 1; 2; 3; . . . (for n ¼ 1 we have ‘‘fundamental’’ instead of ‘‘first harmonic’’).

Now suppose we have some kind of non-sinusoidal function which occupies the interval
from x ¼ 0 to x ¼ 2�, and which is exactly repeated, over and over, endlessly, for all
positive and negative intervals of 2�, as in Fig. 23-A.
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It is a fact that ANY such repeating function, as met in engineering, can, for purposes
of analysis, be considered to be composed of a FUNDAMENTAL sinusoidal wave plus, in
general, an infinite number of sinusoidal harmonics of the fundamental wave.*

This is a fact of great usefulness because it allows us, by the principle of superposition,
to apply the ordinary algebra of complex numbers to the analysis of networks to which
non-sinusoidal waves are applied.

In such a representation, each complete fundamental wave (which is the lowest fre-
quency component) covers a distance of 2� radians on the x-axis. Hence, in a distance
of 2� radians there will be two complete second harmonic waves, three complete third
harmonic waves, and so on.

Let us discuss, as an interesting example, the symmetrical ‘‘square wave’’ of Fig. 24-A.

Using a procedure called Fourier (‘‘foo ree AYE’’) analysis,{ it is found that the above
square wave can be represented by the following infinite series:

y ¼ 4

�
sin xþ 1

3
sin 3xþ 1

5
sin 5xþ 1

7
sin 7xþ � � �

� 	
ð8-AÞ

where sin x is the fundamental sinusoidal component, the angle x being in radians. The
equation shows that the square wave is composed of odd harmonics only ð3x; 5x; 7x, and
so on). Note that the higher the order of the harmonic, the lower is its amplitude. Also,
because of its symmetry and its position relative to the x-axis, the wave has no constant
term (no dc component).

If, now, you were to take the time to actually calculate a number of values of y, using
eq. (8-A),{ then plot the values of y versus x, you would get the result shown in Fig. 25-A,
for x ¼ 08 to x ¼ 3608, where degrees ¼ ðradians)(180/�) (section 5.4).
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It’s obvious that the sum of just the first four terms of the series doesn’t produce a very
good square wave. If, for example, we had taken the sum of the first eight terms of the
series (up to the 15th harmonic) the result would have been considerably improved.

Note 19. Logarithms. Decibels
LOGARITHMS are EXPONENTS. By definition, the LOGARITHM of a number is the
POWER to which a fixed number, called the base number, must be raised to, to equal the
number.

In theoretical work, the base number is taken to be the irrational number denoted by �
(section 6.5). In certain practical work, however, it’s more meaningful to use the number
ten as the base number.*

The OBJECT of this note is to show, in just a general way, why eq. (315) does make
sense in a practical way. To do this, let us begin with the previous definition that

If x is any positive number, then log x is the POWER that 10 has to be
raised to, to equal x; that is, by definition,

x ¼ 10log x

Note that x will always be greater than the exponent log x. To see this relationship
more clearly, consider first the table of values to the left of Fig. 26-A, in which the
calculator values of log x have been rounded off to two decimal places.
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We see that, as x increases in value, log x also increases in value. Note, however, that,
as x increases in value, the amount of CHANGE produced in log x depends not only upon
the amount of change in x but also upon the particular value of x; for example, from the
table we see, for equal unit increases in the value of x, that

log x increases

if x increases from by the amount of

x ¼ 1 to x ¼ 2 0:30

x ¼ 2 to x ¼ 3 0:18

x ¼ 3 to x ¼ 4 0:12

..

. ..
.

x ¼ 9 to x ¼ 10 0:05

and so on, showing that the greater the value of x, the slower is the rate of increase in the
value of log x with respect to x. This is evident from inspection of Fig. 26-A.

Let us now turn to the relationship between ACOUSTIC POWER (‘‘sound power’’)
and the sensation of LOUDNESS, as registered by the human ear.

It should be noted that the ear is capable of responding to an ENORMOUS RANGE
of acoustical power; for example, in the case of a full symphony orchestra, the sound
power produced during the loudest passages can be 10 million times the sound power
produced during the softest passages. The ear can handle such a tremendous range of
sound power because, as the power increases, the sensitivity of the ear automatically
decreases, so that the RATE OF INCREASE in the sensation of loudness decreases as
the power increases, in the same manner that the rate of increase in the value of log x
decreases as x increases, as shown in Fig. 26-A. Hence the effect that sound power has on
the ear for two different power levels is not proportional to the power ratio itself but,
instead, is approximately proportional to the LOGARITHM of the power ratio. It is this
fact that led to the definition of eq. (315), and is responsible for the statement that ‘‘the ear
hears logarithmically.’’

In closing this discussion, we should note that, for prescribed conditions, eq. (315) can
be written in terms of a VOLTAGE RATIO. To show this, we first need to prove that if x
is any positive number raised to a power n, then

log xn ¼ n log x ð9-AÞ
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The truth of eq. 9-A can be established as follows.

let log x ¼ y

meaning that x ¼ 10y

raise both sides to power n xn ¼ 10yn

by definition log xn ¼ yn

hence; since y ¼ log x log xn ¼ n log x

thus proving eq. (9-A).
Let us now make use of eq. (9-A) as follows. Recall that, in a purely resistive circuit,

POWER can be calculated by the equation V2=R. Thus, for two voltages, V1 and V2,
applied to a resistance of R ohms, the POWER RATIO is

P ¼ V2
1=R

V2
2=R

¼ ðV1=V2Þ2

and thus, substituting this value of P in eq. (315) then making use of eq. (9-A), eq. (315)
becomes

dB ¼ 20 logðV1=V2Þ ð10-AÞ
which, it should be noted, is true only if V1 and V2 are both applied to the same value of
resistance of R ohms. Actually, however, in practice eq. (10-A) is often applied in cases
where the two resistances are not equal; in such a case the results are not really in decibels
but in what we could call ‘‘logarithmic units.’’

Note 20. Phase (Time-Delay) Distortion
It’s been pointed out that frequency discrimination (frequency distortion) is produced
by the presence of AMPLITUDE DISTORTION and TIME-DELAY (PHASE)
DISTORTION.

First, in regard to ‘‘amplitude’’ distortion, it’s clear that no amplitude distortion can
occur if, in passing through a network, the amplitudes of all frequency components are
multiplied by a fixed constant value k; that is, if all frequency components are treated the
same, as far as amplitudes are concerned.

Let us, therefore, turn our attention to ‘‘time-delay distortion,’’ as follows. Since there
is energy storage associated with inductance and capacitance, it’s understandable that time
is required to change the state of energy level in these parameters. Because of this, a time
delay exists between the input and output waves of voltage and current in a network. If
such time delay is the same for all frequency components, then there is no distortion due to
time delay. This is illustrated in Figs. 27-A and 28-A, in which the INPUT signal, Fig.
27-A, consists of fundamental, second-harmonic, and fourth-harmonic waves, having
amplitudes and positions as shown, the independent variable being time, t.

Now let T denote the ‘‘time delay’’ between input and output waves, and suppose we
have the desired condition in which T is the same for all frequency components, which is the
condition illustrated in Fig. 28-A.

Comparison of the two figures makes clear that if there is no amplitude distortion, and
if the TIME DELAY is the SAME FOR ALL FREQUENCIES, then the output wave
will be delayed, relative to the input wave, by T seconds, but the basic WAVESHAPE of
the output wave will be the SAME as that of the input wave.
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As already noted, time-delay distortion is also called ‘‘phase’’ distortion. If we choose
to talk in terms of phase distortion, the two conditions for distortionless transmission
through a network are that (1) there be no amplitude distortion, and (2) a linear (first
degree) relationship exist between phase shift and order of harmonic in the output wave.
The meaning of this statement can be explained as follows.

We recall, from note 18, that any non-sinusoidal repetitive waveform can be expressed
as the sum of a fundamental sinusoidal wave and its harmonics, in which the amplitudes of
the harmonics decrease in a general way as the order of the harmonic increases. With this
in mind, let vi denote the instantaneous value of such a voltage waveform applied to the
INPUT of a network, and let the Fourier series for vi be of the form

vi ¼ a1 sin!tþ a2 sin 2!tþ � � � þ an sin n!tþ � � � ð11-AÞ
where a1 sin!t is the fundamental (lowest frequency) component, a2 sin 2!t is the second-
harmonic component, and so on, to any nth harmonic component of amplitude an and
frequency n!.

Now suppose, in passing through the network, that all the amplitudes are multiplied by
the same constant value k (thus no ‘‘amplitude’’ distortion), and that all the components
are delayed by the same amount of T seconds. In such a case, upon setting
ka1 ¼ b1; ka2 ¼ b2, and so on, and upon replacing t with ðt� T),* eq. (11-A) becomes
the OUTPUT VOLTAGE of the network

vo ¼ b1 sinð!t� !TÞ þ b2 sinð2!t� 2!TÞ þ � � � þ bn sinðn!t� n!TÞ þ � � � ð12-AÞ
Equation (12-A) is true for the ideal condition in which all frequency components are

delayed the same amount of time, T seconds, in passing through a network. Thus an sin n!t,
applied at the INPUT, appears at the OUTPUT as

bn sinðn!t� �nÞ ¼ bn sinðn!t� n!TÞ
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Fig. 28-A. OUTPUT wave.
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where �n ¼ ðn!ÞT ¼ PHASE SHIFT in radians, where ðn!Þ ¼ frequency; ðn ¼ 1; 2; 3; . . .).
Thus we have the ratio

�n

ðn!Þ ¼ T ð13-AÞ

which, since T is constant for all frequencies in the ideal case, shows that, in order to have
zero phase-shift distortion (constant time delay), the RATIO of PHASE SHIFT TO
FREQUENCY must have the same constant value T at all frequencies.

Note 21. Logarithmic Graph Paper
Ordinary ‘‘linear’’ graph paper is not generally suitable for plotting frequency response
curves. One reason is that detection by the ear of a CHANGE IN FREQUENCY,
f2 � f1, depends not only upon the value of f2 � f1 but also upon the values of f2 and f1
themselves.

Thus, for example, an increase in frequency from 50 Hz to 70 Hz produces a CHANGE
of 20 Hz which, as experience shows, would most definitely be detected by the ear. On the
other hand, a frequency change from 7000 Hz to 7020 Hz would also produce a change of
20 Hz which, however, as experience shows, the ear would scarcely detect, if at all. (The
ear would, however, readily detect, for example, a change from 7000 Hz to 8000 Hz.)
Hence, what is needed is a type of horizontal frequency axis in which EQUAL DIS-
TANCES represent larger and larger values of f2 � f1. To show that a ‘‘logarithmic’’
scale meets this requirement, let us examine the horizontal axis in Fig. 189, as follows.

In Fig. 189 notice, for example, that a frequency change from 50 to 70 Hz occupies a
distance of 0.2 inch, a frequency change from 500 to 700 Hz occupies the same distance of
0.2 inch, a frequency change from 5000 to 7000 Hz occupies the same distance of 0.2 inch,
and so on. Thus equal segments of distance on the axis have approximately EQUAL
EFFECTS as far as the ear is concerned.

It’s of interest to note that a ‘‘log’’ scale can be constructed using the formula

L ¼ K logN

where N ¼ any number from 1 to 10, L ¼ distance that the point representing N is to be
located from the point where N ¼ 1, and K ¼ scale factor, which determines the physical
size of the scale.

To illustrate, a log scale for N ¼ 1 to N ¼ 10, for a scale factor of K ¼ 4 inches, would
be constructed as follows (rounding calculator values to three decimal places):

for N ¼ 1; L ¼ 4 log 1 ¼ 0:000 for N ¼ 2; L ¼ 4 log 2 ¼ 1:204

for N ¼ 3; L ¼ 4 log 3 ¼ 1:905 for N ¼ 4; L ¼ 4 log 4 ¼ 2:408

for N ¼ 5; L ¼ 4 log 5 ¼ 2:796 for N ¼ 6; L ¼ 4 log 6 ¼ 3:113

for N ¼ 7; L ¼ 4 log 7 ¼ 3:380 for N ¼ 8; L ¼ 4 log 8 ¼ 3:612

for N ¼ 9; L ¼ 4 log 9 ¼ 3:817 for N ¼ 10; L ¼ 4 log 10 ¼ 4:000

The scale can be repeated as many times as needed, from N ¼ 10 to 100, N ¼ 100 to
1000, and so on, to as high a value of N as is needed.
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Note 22. Log XY ¼ Log X þ Log Y
Let

logX ¼ a and logY ¼ b

thus

X ¼ 10a and Y ¼ 10b

so that

XY ¼ 10a10b ¼ 10ðaþbÞ

By definition,

logXY ¼ ðaþ bÞ ¼ logX þ logY; as stated:

Note 23. Discussion of Eq. (344)
In terms of loop-current notation, the basic Fig. 202 becomes Fig. 29-A.

By inspection,

ð �ZZ1=2 þ �ZZ2Þ�II1 � �ZZ2
�II2 ¼ �VV1

� �ZZ2
�II1 þ ð �ZZ2 þ �ZZ1=2 þ �ZZLÞ�II2 ¼ 0

�II1 ¼

�VV1 � �ZZ2

0 ð �ZZ2 þ �ZZ1=2 þ �ZZLÞ

�����
�����

D
¼ ð �ZZ2 þ �ZZ1=2 þ �ZZLÞ �VV1=D

�II2 ¼

ð �ZZ1=2 þ �ZZ2Þ �VV1

� �ZZ2 0

�����
�����

D
¼ �ZZ2

�VV1=D

thus

1
�II2
¼ D

�ZZ2
�VV1

hence
�II1
�II2
¼

�ZZ2 þ �ZZ1=2 þ �ZZL

�ZZ2

¼ 1 þ
�ZZ1

2 �ZZ2

þ
�ZZL

�ZZ2

which is eq. (344).
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Note 24. Amplitude Modulation. Sidebands
Let us take ‘‘amplitude modulation’’ as an example. In amplitude modulation, the ampli-
tude of the high-frequency carrier wave is varied or ‘‘modulated’’ in accordance with
audio, video, or other type of signal information to be transmitted. The general principle
of amplitude modulation, AM, will be clear from a study of Fig. 30-A, which let us now
concentrate on, as follows.

To the left, in the figure, is shown a portion of an unmodulated high-frequency carrier
wave. (For convenience in drawing, the carrier is shown as a triangular wave, but it will
actually be a sinusoidal wave.) Note that the peak value of the unmodulated carrier wave
is denoted by Vc.

Now suppose the carrier is AMPLITUDE MODULATED by, say, a sinusoidal wave
of audio frequency voltage. The appearance of the resulting wave would then be such as
shown to the right in the figure. The dashed line connecting the peaks of the carrier wave is
called the ‘‘envelope’’ of the wave. For distortionless modulation the envelope must have
the same waveshape as the modulating voltage.

Now let Va be the peak value of the modulated component of the carrier, as indicated
in the figure. Then the ratio of Va to Vc is called the ‘‘modulation factor’’ and is denoted
by m; thus

Va

Vc

¼ m ð14-AÞ

In the discussion here we’ll assume a sinusoidal carrier wave and sinusoidal modulating
signal, and use the notation

!c ¼ carrier frequency in radians=second; and

!a ¼ frequency of modulating signal; rad=sec:

hence

vc ¼ Vc sin!ct ¼ instantaneous value of unmodulated carrier; and

va ¼ Va sin!at ¼ instantaneous value of modulation envelope

Appendix 427

Fig. 30-A



or, by eq. (14-A)

va ¼ mVc sin!at

After a detailed consideration of the above we come to the conclusion that the instan-
taneous value v of the resulting amplitude-modulated wave must be equal to

v ¼ Vcð1 þm sin!atÞ sin!ct

Note that this equation satisfies the requirement that if m ¼ 0 (the condition of no
modulation), then all that is left is the unmodulated carrier, Vc sin!ct. Next, upon multi-
plying as indicated, the equation becomes

v ¼ Vc sin!ctþmVc sin!ct sin!at

Now, in the trigonometrical identity for sin x sin y (see note 25), set x ¼ !ct and
y ¼ !at. Upon doing this, the last equation becomes the very important result that

v ¼ Vc sin!ctþ
mVc

2
cosð!c � !aÞt�

mVc

2
cosð!c þ !aÞt ð15-AÞ

The equation brings out the important fact that, when a high-frequency sinusoidal
carrier of frequency !c ¼ 2�fc is amplitude-modulated by a single sinusoidal signal of
frequency !a ¼ 2�fa the resulting amplitude-modulated wave is composed of three com-
ponent sinusoidal waves, thus

1. the CARRIER wave, of frequency !c ¼ 2�fc,

2. the LOWER SIDEBAND wave, of frequency (!c � !aÞ ¼ 2�ð fc � faÞ,
3. the UPPER SIDEBAND wave, of frequency ð!c þ !aÞ ¼ 2�ð fc þ faÞ.
For several practical reasons the carrier must be a high-frequency (‘‘radio-frequency’’)

wave, much higher in frequency than the frequency of the modulating signal; that is, fc
must be much higher than fa. Thus the sidebands ð fc � fa) are also high-frequency waves,
centered around the carrier wave. If the carrier is being modulated by a non-sinusoidal
wave, as would normally be the case, then a pair of sidebands exists for each harmonic of the
modulating wave. Thus the carrier wave is at the center of a cluster of high-frequency side-
band waves, as indicated in Fig. 31-A, in which Vc is the rms value of the carrier wave. A
brief but fundamental discussion follows the figure.

We should first explain that the term ‘‘baseband’’ spectrum refers to the original loca-
tion of the spectrum of a signal.

The baseband spectrum will normally extend from near f ¼ 0 to f ¼ fh, where fh is the
highest frequency component in the signal. The shape of a possible baseband spectrum is
illustrated in Fig. 31-A. The baseband of an audio signal, as produced by a microphone, is
generally taken to extend from approximately 16 Hz to approximately 16,000 Hz.
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In a simple telephone system, the voice signal is transmitted in its original
baseband form, over copper wires, from transmitter to receiver. Such a case does not
involve modulation.

If, however, the same voice signal is to be transmitted by wireless, then some kind of
modulation of a high-frequency carrier wave is required.

Regardless of the type of modulation used, the result is always the production of a band
of side-band frequencies, clustered symmetrically about the carrier. Since the original
signal information is contained in this band of frequencies, it’s desirable that the entire
band be passed through circuits having a reasonably good band-pass characteristic, such
as is illustrated in Fig. 240.

Note 25. Trigonometric Identity for
(sin x sin y)

First, by note 6:

cosðxþ yÞ ¼ cos x cos y� sin x sin y ðIÞ
In the above equation, replace y with �y; then, since (section 5.3) cosð�yÞ ¼ cos y and

sinð�yÞ ¼ � sin y, eq. (I) becomes

cosðx� yÞ ¼ cos x cos yþ sin x sin y

hence

� cosðx� yÞ ¼ � cos x cos y� sin x sin y ðIIÞ
Lastly, addition of eqs. (I) and (II) gives the identity we are after, thus

sin x sin y ¼ 1
2 ½cosðx� yÞ � cosðxþ yÞ�

Note 26. L Proportional to N2

Consider a coil of TWO TURNS in which each turn, considered by itself, has L henrys of
inductance. If there were NO COUPLING WHATEVER between the two turns the total
inductance Lt would simply be the sum of the inductances of the individual turns; thus

Lt ¼ Lþ L ¼ 2L ð16-AÞ
If, however, some amount of coupling does exist between the two turns, then, as we

found in problem 198, the total inductance would be equal to

Lt ¼ Lþ Lþ 2M

or, by eq. (371)

Lt ¼ Lþ Lþ 2kL

Hence, for the ideal case in which there is COMPLETE COUPLING between the two
turns (k ¼ 1), eq. (16-A) becomes

Lt ¼ Lþ Lþ 2L ð17-AÞ
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Now consider a coil of N turns in which each turn, considered by itself, has the same
inductance of L henrys. If there were NO COUPLING WHATEVER between any turn
and any other turn, the total inductance Lt would simply be the sum of the individual
inductances of the individual turns; thus

Lt ¼ Lþ Lþ Lþ Lþ � � � þ L ¼ NL ð18-AÞ
Now imagine an inductor coil of N turns, of L henrys each, in which 100%

COUPLING EXISTS BETWEEN EACH TURN AND ALL THE OTHER TURNS;
this would constitute a true ‘‘ideal’’ inductor and, in such a case, the amount of ‘‘2L’’
would have to be added to eq. (18-A) FOR EVERY POSSIBLE COMBINATION OF
TWO TURNS in the coil. Thus, for example, 2L would be added one time for N ¼ 2, three
times for N ¼ 3, six times for N ¼ 4, ten times for N ¼ 5, and so on; this is illustrated in
the figures below for N ¼ 2;N ¼ 3, and N ¼ 4.

Thus eq. (18-A) would become

for N ¼ 2; Lt ¼ Lþ Lþ Lþ 2L ¼ 4L ¼ ð2Þ2L
for N ¼ 3; Lt ¼ Lþ Lþ Lþ 2Lþ 2Lþ 2L ¼ 9L ¼ ð3Þ2L
for N ¼ 4; Lt ¼ Lþ Lþ Lþ Lþ 2Lþ 2Lþ 2Lþ 2Lþ 2Lþ 2L

¼ 16L ¼ ð4Þ2L
for N ¼ 5; Lt ¼ 5Lþ 10ð2LÞ ¼ 25L ¼ ð5Þ2L

and upon continuing on in this manner it soon becomes evident that an ideal inductor of N
turns has a total inductance of

Lt ¼ N2L ¼ kN2; as stated;

where L ¼ inductance/turn. (It should be mentioned that the above result can also be
derived by direct application of the formula for the combination of N things taken two
at a time.)

Note 27. Arrow and Double-Subscript Notation
Network equations are written in accordance with Kirchhoff ’s voltage and current
laws. The voltage law, for example, says that around any closed loop in a network the
‘‘algebraic sum’’ of the voltage drops and generator voltages must be equal to zero; thus

ðalgebraic sum of voltage dropsÞ þ ðalgebraic sum of generator voltagesÞ ¼ 0

so that a plus or a minus sign must be attached to each quantity in the equation for each
loop of a network. Actually, however, in writing network equations we’ll adhere to the
THREE RULES stated in section 4.4, and write that

ðalgebraic sum of voltage dropsÞ ¼ ðalgebraic sum of generator voltagesÞ
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in which we must remember that the signs are written in accordance with the rules given in
that section (except that now, in using vector algebra, we’ll write �ZZ; �VV , and �II instead of R,
V, and I—see discussion given with Fig. 135 in Chap. 8).

In regard to the above-mentioned signs, it should be noted that if a network contains
just one generator, then no serious problem exists. If, however, a network contains TWO
OR MORE GENERATORS then it is absolutely necessary that some method be used to
indicate the DIRECTIONS of the voltage vectors. One such method uses the ‘‘double-
subscript’’ notation, in which the positive sense of the vector quantity is denoted by the
order in which the subscripts are written. This is illustrated in the series circuit below (in
which, for comparison, the familiar ‘‘arrow’’ notation is also shown).

Thus the notation �VVab says there is an increase in vector voltage in going through that
particular generator in the direction from a to b, while �VVdc says there is an increase or rise
in voltage in going through that generator from d to c. (Note that the voltage ‘‘arrows’’ can
be used to give us the same information.) In regard to the current notation, �IIde says that
the vector current is positive in the direction of d to e.

Hence, using double-subscript notation, and with the previously-mentioned rules in
mind, the equation for the above figure can be written as (going around in the cw sense)

�IIde
�ZZ ¼ �VVab þ �VVbc � �VVdc

Note 28. Square Root of 3 in Three-Phase
Work

The factor
ffiffiffi
3

p
is prominent in three-phase work; our object here is to show how this comes

about. To do this, let us note that the factor first appears in eq. (424), because

sin 1208 ¼ sin 608 ¼
ffiffiffi
3

p
=2 ¼ 0:8660

a fact we can establish with the aid of the equilateral triangle shown below.
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For convenience, we’ve let the sides of the triangle be 2 units in length, as shown.
Hence, by the Pythagorean theorem,

x2 þ 1 ¼ 4

so that

x ¼
ffiffiffi
3

p

and therefore, by definition, we have

sin 1208 ¼ sin 608 ¼ x=2 ¼
ffiffiffi
3

p
=2 ¼ 0:8660

thus the factor
ffiffiffi
3

p
fundamentally appears in three-phase work.

Note 29. Proof of Eq. (467) (True Power)
Let

�VV ¼ V=a ¼ V� ja ¼ generator voltage

and let

�II ¼ I=b ¼ I� jb ¼ generator current

hence (a� bÞ ¼ angle between �VV and �II , and hence, by eq. (117) in Chap. 5,

P ¼ VI cosða� bÞ ¼ true power produced by the generator

Now note that

��II�II ¼ I=�b ¼ I��jb

and therefore

�VV ��II�II ¼ VI� ja��jb ¼ VI� jða�bÞ

hence

�VV ��II�II ¼ VI ½cosða� bÞ þ j sinða� bÞ�
showing that the REAL PART of the product �VV ��II�II is equal to the TRUE POWER
produced by the generator, as eq. (467) states.

Note 30. The Transistor as Amplifier
In general, in electronics, an ‘‘amplifier’’ is a circuit having an input signal and an output
signal, in which the output signal is a reasonably good replica of the input signal and in
which the POWER of the output signal is greater than the power of the input signal.

An amplifier basically consists of a SOURCE OF DC POWER, an OUTPUT LOAD
IMPEDANCE ZL, and a CONTROL DEVICE capable of controlling the instantaneous
output current of the dc power source. This is illustrated in block-diagram form in
Fig. 32-A.
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In the above, the input ac signal component Vi, on the left, controls, by means of the
‘‘control device,’’ the flow of power from the dc power source; thus the POWER of the
output ac signal component Vo across the output impedance ZL, can be greater than the
power of the input signal.

It should be noted that the total voltage across ZL actually consists of a dc component
plus an ac component; it is, however, the useful, information-carrying ac signal component
that we are interested in. Since, in our work, we deal with steady-state sinusoidal condi-
tions, it follows that, in the above, Vi and Vo denote rms values of sinusoidal voltages.

Let us here assume the control device to be a transistor. A transistor is a solid-state
control device having three terminals, called the base (B), the collector (C), and the emitter
(E), as shown in schematic form in Fig. 33-A.

In Fig. 34-A, a transistor is shown connected in what is called the common-emitter (CE)
mode. The designation ‘‘common-emitter’’ mode is appropriate because, as you can see,
the emitter is common to both the input and output circuits. It should be noted that in Fig.
34-A we’ve omitted all dc voltages and currents and show only the ac signal components
of voltage and current.

Inspection of Fig. 34-A shows that, as far as ac signal components are concerned, a
transistor can be considered to be a two-port network in the standard form of Fig. 277.
Hence, as we showed in section 11.6, the ‘‘impedance matrix’’ representation of a transis-
tor is of the form

½Z� ¼ Z11 Z12

Z21 Z22

� 	

Let us now examine, in more detail, the operation of the basic CE circuit. To do this
we’ll make use of Figs. 35-A and 36-A, in which we’ve taken the load impedance to be a
pure resistance of RL ohms, as shown. Our OBJECT now is to show that AC OUTPUT
VOLTAGE in a CE circuit with resistive load is 180 degrees out of phase with ac input
voltage.
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First let us agree, in Fig. 35-A, to take the emitter E as being the zero-voltage ‘‘reference
point’’ in the circuit.

Now consider some instant of time at which the input voltage v1 becomes MORE
POSITIVE with respect to E; this causes increased current i1 to flow into the base.

This, however (as a result of the fundamental physics of transistor action), causes an
increase of output current i2 to flow into the collector, as shown in the figure; this increase
of current through RL causes an increase in the voltage drop across RL, thus making the
collector become LESS POSITIVE with respect to the emiter. Thus, as v1 becomes MORE
POSITIVE, v2 becomes LESS POSITIVE.

On the other hand, as v1 becomes LESS POSITIVE (with respect to E), then i1 and i2
both decrease, thus causing the voltage drop across RL to decrease, thus causing the
collector voltage to become MORE POSITIVE with respect to E. Hence, as v1 become
LESS POSITIVE v2 becomes MORE POSITIVE.

The foregoing variations in voltages constitute the useful ac signal; thus, in terms of
sinusoidal waves, we have that the OUTPUT SIGNAL, produced by the transistor oper-
ating in the CE mode into a resistive load, is 1808 OUT OF PHASE WITH THE INPUT
SIGNAL.

As a last comment, note that, in Fig. 35-A, the required source of dc power is supplied
by a battery of Vdc volts. Thus there is present, at the collector of the transistor, a dc
component of voltage as well as the useful ac signal component. Hence the output of the
amplifier, at the collector, is usually then passed through a simple RC high-pass filter,
passing the ac component but not the zero-frequency dc component. The final result is
illustrated in Fig. 36-A, where v2 is the ac output signal (shown to be 1808 out of phase
with the input signal v1).

Note 31. Shifting Theorem
Here we wish to establish a relationship called the ‘‘shifting theorem,’’ which can be done
with the aid of Fig. 37-A.

In the figure, let t be time measured from the origin, as shown. Let curve A be a
portion of the curve of some function y ¼ f ðtÞ. Now let it be given that curves A and
B are identical except that curve B is shifted horizontally T units to the right of curve A,
as shown in the figure. That is, curve B lags T seconds behind curve A; notice that
curve A has the value y0 at t ¼ 0, but curve B does not reach that value until T seconds
later.
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Now let t 0 (‘‘t prime’’) be time measured from the instant t=T, as shown in the figure.
Thus t 0 ¼ 0 when t ¼ T . If we use t for time in curve A, and t 0 for time in curve B, then the
equations for curves A and B will be identical; thus

y ¼ f ðtÞ for curve A

y ¼ f ðt 0Þ for curve B

From the figure note that t ¼ T þ t 0, so that t 0 ¼ t� T . Using this relation, we can
write the equations of both curves in terms of t; thus

y ¼ f ðtÞ equation of curve A

y ¼ f ðt� TÞ equation of curve B

What we’ve tried to demonstrate here is called the ‘‘shifting theorem,’’ which can be
summarized as follows.

For any function f ðtÞ, the substitution of t� T in place of t has the effect of
shifting the curve of f ðtÞ horizontally T units to the right.

That is, the curve of f ðt� TÞ is exactly the same as the curve of f ðtÞ except that it is
shifted T units to the right, as illustrated in Fig. 37-A.

Note: If, in Fig. 37-A, curve B had been drawn to the left of curve A, then, t 0 ¼ tþ T ,
showing that substitution of ‘‘tþ T ’’ in place of ‘‘t’’ in f ðtÞ has the effect of shifting the
curve of f ðtÞT units to the left of its original position.

Note 32. Unit Impulse
Here we wish to introduce the very useful concept of ‘‘unit impulse.’’ Let us begin with
drawings A, B, and C in Fig. 38-A.

As illustrated, the particular form of pulse we’ll be interested in here will always have a
time duration of a seconds and a value equal to 1=a; thus, since, að1=aÞ ¼ 1, such a pulse
will always enclose unit area, as shown in the figure.
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Now, in C, let us allow a to approach zero as a limiting value ða ! 0Þ which, in turn,
will make the value of the pulse, 1=a, become ‘‘infinitely great’’ ð1=a ! 1), with the area
enclosed by the pulse always remaining equal to 1.

In words, we are hypothesizing, at t ¼ 0, the existence of a pulse of infinitely
great amplitude but vanishingly short time duration, the pulse always enclosing unit
area.

The hypothetical pulse so described is called a UNIT IMPULSE, and is denoted by
the symbol �ðtÞ, which can be read as ‘‘delta of t’’ (‘‘d’’ is the small Greek letter
‘‘delta’’).

Such a pulse cannot, of course, exist in the real physical world. It is, nevertheless, a very
useful mathematical device, for the following reasons.

First of all, very short, high-valued pulses of voltage and current do exist in the real
world, and such actual pulses, when applied to a network, have the same general effect
as would the application of a theoretical impulse to the network. In other words, the
theoretical analysis of a network to applied �ðtÞ yields results that will closely approximate
the actual results produced by the application of a very high, ‘‘sharp,’’ pulse to the net-
work.

A second reason lies in the fact that a function of time t can be expressed in terms of a
particular secondary variable ‘‘s,’’ where s is a complex number of the form s ¼ aþ j!.
This is important, because the work required in circuit analysis can often be greatly
reduced when carried out in terms of s instead of t. This is especially true if
we’re investigating the effect of applying an impulse type of signal to a network.
This is because it turns out that �ðtÞ is simply replaced by ‘‘1’’ when working in terms
of s, a fact that can considerably reduce the algebraic complications in impulse-type
problems.

Lastly, �ðtÞ is a convenient symbol to use in writing ‘‘sampling equations,’’ which let us
discuss in more detail, as follows.

First, it will be convenient to refer to �ðtÞ as an impulse of ‘‘unit strength.’’ Then the
notation ‘‘A�ðtÞ’’ will naturally be called an impulse of ‘‘strength A.’’ Hence, by note 31,
the notation A�ðt� nTÞ will denote an impulse of strength A ‘‘shifted nT units to the
right.’’

GRAPHICALLY, an impulse is represented by a vertical line with arrowhead, with
notation given alongside the line. Thus, graphically, the three impulse cases just mentioned
above would appear as illustrated in the following.
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Thus Fig. 331, in the main text, can be described in algebraic form by eq. (571) or in
graphical form as below, starting at t ¼ 0.

Note: Impulse ‘‘strength’’ is also called impulse ‘‘weight.’’ Thus the above sequence is
also referred to as a sequence of ‘‘weighted impulses.’’

In conclusion, let us note that it is not correct to write that �ðtÞ ¼ 1 for t ¼ 0, or that
�ðt� nTÞ ¼ 1 for t ¼ nT . All we say is that �ðtÞ ‘‘exists’’ only for t ¼ 0, and that �ðtÞ ¼ 0
for all other values of t. Thus ‘‘impulse notation,’’ as we’re using it here, is useful in the
mathematical description of impulse-type sampled signals.

The term ‘‘unit impulse’’ refers to the fact that �ðtÞ is defined to enclose ‘‘unit area’’ and
it is this conception that leads to very useful results when, in the calculus, the process of
integration is applied to the study of sampled signals. Right now, however, we’ll just view
�ðtÞ and �ðt� nTÞ as useful shorthand notations.

Note 33. Algebraic Long Division

Basic terminology:
dividend

divisor
¼ numerator

denominator
¼ quotient:

If the numerator and denominator are both algebraic polynomials in x, a useful
procedure to find the quotient can be summarized as follows.

1. Arrange both numerator and denominator in descending powers of x.*

2. DIVIDE the FIRST TERM OF THE NUMERATOR by the FIRST TERM OF
THE DENOMINATOR.

3. Now MULTIPLY the ENTIRE DENOMINATOR by the result of step (2), then
SUBTRACT the result from the numerator.

4. Now consider the result of step (3) as being a ‘‘new numerator,’’ and repeat steps
(2) and (3).
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The following examples will help you to check your understanding of the above four
steps. It should be noted that it’s generally not necessary, or even desirable, to apply long
division to a given algebraic fraction; it depends upon the particular situation, such as,
here, finding an inverse z-transform.

It should also be noted that algebraic fractions are classified as being ‘‘proper’’ or
‘‘improper’’ as follows. If the highest power of x is located in the denominator the fraction
is said to be ‘‘proper,’’ but if this is not true the fraction is said to be ‘‘improper.’’ Both
types will appear in the following examples, with suitable comments.

Example 1
Write the improper algebraic fraction

5x3 þ 13x2 þ 2x þ 2

x þ 2

in a form that contains only a proper fraction.

Solution

This can be done by using algebraic long division, as follows. First, for this
operation, let us begin by writing the indicated division in the more convenient
form

xþ 2 j 5x3 þ 13x2 þ 2xþ 2

where xþ 2 is the divisor. Now carefully follow the prescribed procedure until
the ‘‘new numerator’’ becomes free of the variable x. The detailed results are as
follows.

5x2 þ 3x� 4

xþ 2 5x3 þ 13x2 þ 2xþ 2

�5x3 � 10x2

3x2 þ 2x

�3x2 � 6x

�4xþ 2

þ4xþ 8

þ10

In the above result ‘‘10’’ is called the ‘‘remainder,’’ and all we can do is
write 10=ðxþ 2Þ to indicate that the remainder, 10, is to be divided by the
divisor, xþ 2. Thus the final answer is

5x3 þ 13x2 þ 2xþ 2

xþ 2
¼ 5x2 þ 3x� 4 þ 10

xþ 2

Since the only fraction,
10

xþ 2
; is a proper fraction, the problem requirement

is met.

Example 2
Apply algebraic long division to the proper algebraic fraction

1

x2 � 2
.
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Solution
We can begin by writing the indicated division in the convenient form
x2 � 2 j 1 , then applying the ‘‘four-step’’ procedure, as follows.

First, by step (2),

1

x2
¼ x�2

then, applying step (3), the work appears as

x�2

x2 � 2 j 1

�1 þ 2x�2

2x�2

The ‘‘new numerator’’ is thus 2x�2, to which, by step (4), we must again
apply steps (2) and (3). Doing this, the work now appears as

x�2 þ 2x�4

x2 � 2 j 1

�1 þ 2x�2

2x�2

�2x�2 þ 4x�4

4x�4

The ‘‘new numerator’’ is now 4x�4, to which, by step (4), we would again
apply steps (2) and (3). How long we continue on in this way depends upon the
particular problem and the range of values of x to be encountered in the
problem. For instance, if we continue on and take two more steps in the above
work we have the result that

1

x2 � 2
¼ x�2 þ 2x�4 þ 4x�6 þ 8x�8 þ 16

x8ðx2 � 2Þ
� �

where the last term to the right, in the large parentheses, is the ‘‘remainder
term,’’ corresponding to the term 10=ðxþ 2Þ in example 1. If, in applying the
above expression, the range of values of x is such that the value of the
remainder term is very small (compared with the sum of the first four terms),
then we can drop the remainder term and write that, for practical purposes,

1

x2 � 1
¼ x�2 þ 2x�4 þ 4x�6 þ 8x�8

The above considerations are understood to apply in the application of
‘‘algebraic long division’’ in section 13.4.
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Solutions to Problems

1. Setting q1 ¼ q2 ¼ 6 � 10�6 and r ¼ 0:25 in eq. (3) we have

F ¼ 9 � 109 � 36 � 10�12=0:0625 ¼ 5:184 newtons

¼ ð5:184Þð0:2248Þ ¼ 1:165 pounds; answer:

2. Let us use the method of superposition, in connection with Fig. 367.

From the figure we have

r1 ¼
ffiffiffiffiffiffiffiffi
261

p
and � ¼ arctanð6=15Þ ¼ 21:80148

and

r2 ¼
ffiffiffiffiffiffiffiffi
117

p
and � ¼ arctanð6=9Þ ¼ 33:69018

Let q1 ¼ ð3Þ10�6 coulombs at the origin, and let �EE1 be the field strength at the
point (15, 6) due to q1. Now setting q ¼ q1 ¼ ð3Þ10�6 and r2 ¼ 261 in eq. (6) gives

�EE1 ¼ 103:448=21:80148

where, since the force between q1 and q0 is a force of repulsion, the angle � ¼ 21:80148
is relative to the positive direction of the x-axis, as inspection of Fig. 367 shows.
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We then have that

horizontal component of �EE1 ¼ 103:448 cos 21:80148 ¼ 96:0491

vertical component of �EE1 ¼ 103:448 sin 21:80148 ¼ 38:4196

Next, let q2 ¼ ð�2Þ10�6 coulombs at the point x ¼ 24, and let �EE2 be the field
strength at the point (15, 6) due to q2. Setting q ¼ q2 ¼ ð�2Þ10�6 and r2 ¼ 117 in eq.
(6) gives

�EE2 ¼ 153:846=�33:69018

in which there is a force of attraction between q0 and q2 and thus the force vector
acting on q0 points toward q2, resulting in a negative value of � relative to the x-axis,
as can be seen from inspection of the figure. We then have that

horizontal component of �EE2 ¼ 153:846 cosð�33:69018Þ ¼ 128:0076

vertical component of �EE2 ¼ 153:846 sinð�33:69018Þ ¼ �85:3385

Now, letting �EE be the resultant field strength at the point (15, 6), we have

horizontal component of �EE ¼ 96:0491 þ 128:0076 ¼ 224:0567

vertical component of �EE ¼ 38:4196 � 85:3385 ¼ �46:9189

Therefore,

�EE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
52402:79

p
=�arctanð46:9189=224:0567Þ

hence,

�EE ¼ 228:917=�11:8278 newtons=coulomb; answer

shown graphically in the following diagram.

3. From eq. (8), qV ¼ W ¼ joules, answer.

4. By eq. (8),

V ¼ W

q
¼ 2:65

0:0078
¼ 339:74 volts; answer:

5. The answer is ‘‘no,’’ because, in order to calculate the potential difference between a
and b, the field strength must be known at ALL POINTS along any path connecting
a and b and NOT at just the end points of the path. (Such calculations, however,
need not concern us here, because potential difference is normally a known quantity
in practical work.)
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More basically, the equation for �EE must be given before the potential difference
between two points can be calculated. This is of little importance, however, because
potential difference is generally the known quantity in practical work.

6. If n ¼ number of electrons, then nð1:602Þ10�19 ¼ 1 (1 coulomb), and thus

n ¼ 1

1:602 � 10�19
¼ 1019

1:602
¼ 6:24 � 1018 electrons; answer:

7. In eq. (9), for this problem, Dq ¼ 9 � 106 � 1:602 � 10�19 ¼ 1:44 � 10�12 coulombs;
and Dt ¼ 10�7 seconds; thus

Dq
Dt

¼ 1:44 � 10�12

10�7
¼ 1:44 � 10�5 amperes; answer; or

¼ 14:4 microamperes; answer:

8. By eq. (11), I ¼ 48=6 ¼ 8 amperes, answer.

9. By eq. (15), ð48Þð8Þ ¼ 384 watts, answer.
By eq. (16), (48)2ð6Þ ¼ 384 watts, answer.
By eq. (17), (8)2(6) = 384 watts, answer.

10. By eq. (17), I ¼ ffiffiffiffiffiffiffiffiffiffi
P=R

p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
18=75

p ¼ 0:4899 amperes, answer.

11. By eq. (17), P ¼ ð1:86Þ2ð25Þ ¼ 86:49 watts ¼ 86:49 joules per second, and therefore
86.49/4.186=20.6617 calories/second, answer.

12. The problem is to calculate the values to put into eq. (18), beginning with the length
L, as follows. Manipulating ‘‘units’’ like algebraic quantities (as discussed just prior
to problem 3 in Chap. 1), and noting that 1 foot ¼ 12 inches and 1 meter ¼ 39:370
inches, we have, for the value of L

L ¼ 450 feet ¼ ð450 feetÞð12 inchesÞð1 meterÞ
ð1 footÞð39:370 inchesÞ ¼ 137:160 meters

Next, the radius is

0:25 inch ¼ ð0:25 inchð1 meterÞ
ð39:370 inchesÞ ¼ ð6:35Þ10�3 meters;

hence,

A ¼ �ð6:35Þ210�6 ¼ ð1:2668Þ10�4 square meters

Next, noting that for this problem T ¼ 868F ¼ 308C; we have, using eq. (19),

� ¼ ð2:83Þð10�8Þ½1 þ ð4:03Þð10�3Þð10Þ� ¼ ð2:94405Þ10�8

Upon substituting the above values of L, A, and � into eq. (18) you should find
that R ¼ 0:03188 ohms, answer.

13. Note that only the temperature T is to change in this problem. Let R1 and �1 be the
values at T1, and R2 and �2 be the values at T2. Then, by eq. (18),
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R1 ¼ �1ðL=AÞ and R2 ¼ �2ðL=AÞ
from which, after dividing the second equation by the first, we have

R2 ¼ ð�2=�1ÞR1

Hence, using eq. (19),

R2 ¼
1 þ �0ðT2 � 20Þ
1 þ �0ðT1 � 20Þ
� 	

R1

from which you should find that

R2 ¼
1:076

1:038
ð2:625Þ ¼ 2:721 ohms; answer:

14. By eq. (19), � ¼ ð49Þð10�8Þð1:00545Þ ¼ ð49:2671Þ10�8. Then, from eq. 18,

L ¼ RA

�
¼ ð35Þð�Þð25Þ10�8

ð49:2671Þ10�8
¼ 55:7957 meters ¼ 183:056 feet; answer:

15. (a) I ¼ V=RT ¼ 48=25 ¼ 1:92 amperes, answer.
(b) M2 reads reads the voltage across the 5-ohm resistor; hence, Rx ¼ 5 ohms; thus,

Vx ¼ IRx ¼ ð1:92Þð5Þ ¼ 9:6 volts; answer:

(c) P ¼ VI ¼ 48 � 1:92 ¼ 92:16 watts, answer.

16. The power to each resistor is I2R, by eq. (17). Hence, for the

3-ohm resistor ¼ (1.92)2ð3Þ ¼ 11:0592 watts

7-ohm resistor ¼ (1.92)2ð7Þ ¼ 25:8048 watts

5-ohm resistor ¼ (1.92)2ð5Þ ¼ 18:4320 watts

4-ohm resistor ¼ (1.92)2ð4Þ ¼ 14:7456 watts

6-ohm resistor ¼ (1.92)2ð6Þ ¼ 22:1184 watts

The sum of all the individual powers is 92.16 watts, which agrees with the answer
found in part (c) of problem 15.

17. (a) By eq. (32), 1=RT ¼ 1=9 þ 1=15 þ 1=22 þ 1=17 þ 1=12 ¼ 0:36539; hence,

RT ¼ 1=0:36539 ¼ 2:736808 ohms; answer:

(b) I ¼ V=RT ¼ 18=2:736808 ¼ 6:577005 amperes, answer.

(c) P ¼ VI ¼ ð18Þð6:577005Þ ¼ 118:3861 watts, answer.

(d) current in 9-ohm ¼ 18/9 ¼ 2.00000 amp.
current in 15-ohm ¼ 18/15 ¼ 1.20000 amp.
current in 22-ohm ¼ 18/22 ¼ 0.81818 amp.
current in 17-ohm ¼ 18/17 ¼ 1.05882 amp.
current in 12-ohm ¼ 18/12 ¼ 1.50000 amp.
The sum of the above currents¼ total current found in part (b); so eq. (28) is
satisfied.

(e) Using V2 ¼ ð18Þ2 ¼ 324, we have, by eq. (33),
power to 9-ohm ¼ 324/9 ¼ 36.0000 watts
power to 15-ohm ¼ 324/15 ¼ 21.6000 watts
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power to 22-ohm ¼ 324/22 ¼ 14.7273 watts
power to 17-ohm ¼ 324/17 ¼ 19.0588 watts
power to 12-ohm ¼ 324/12 ¼ 27.0000 watts

Sum of above powers ¼ output of battery in part (c), so eq. (26) is satisfied.

18. By eq. (34) the battery sees RT ¼ ð25Þð38Þ=ð25 þ 38Þ ¼ 15:0794 ohms, and hence

battery current ¼ I ¼ V=RT ¼ 15=15:0794 ¼ 0:9947 amperes; answer:

battery power ¼ VI ¼ 14:9205 watts; answer:

19. By eq. (35), RT ¼ 25=16 ¼ 1:5625 ohms; therefore

(a) battery current ¼ I ¼ V=RT ¼ 12=1:5625 ¼ 7:68 amperes, answer.

(b) Ix ¼ V=Rx ¼ 12=25 ¼ 0:48 amperes, answer.

(c) P ¼ VI ¼ 12ð7:68Þ ¼ 92:16 watts, answer.

(d) Px ¼ VIx ¼ 12ð0:48Þ ¼ 5:76 watts, answer.

Note of interest: Let us pause and consider the question ‘‘At what speed do the charge
carriers actually move in a solid conductor such as a copper wire?’’

As we know, the speed of propagation of electrical energy along wires is very
great, being only slightly less than the speed of light in free space, which is approxi-
mately 300 million meters per second (186,300 miles/sec). It should be emphasized,
however, that this is the speed at which the electric and magnetic fields are propa-
gated along the line, and is not the speed at which the charge carriers actually move.
In a solid conductor, such as a copper wire, the charge carriers move at considerably
less than 2.5 centimeters (one inch) per second.

To put it somewhat loosely, the ‘‘wave of electromotive force’’ is propagated
along wires at very great speed, but the actual charge carriers, that constitute the
current, move quite slowly, with an average speed of less than 1 inch per second. The
amount of current flowing in a wire depends upon the number of charge carriers in
motion, not on the speed of the individual charge carriers.

20. (a) By eq. (34), the parallel combination of the 12- and 6-ohm resistance is equal to a
single resistance of (12)(6)/(12 þ 6Þ ¼ 4 ohms. Hence Fig. 34 can be redrawn as
Fig. 368.

By Ohm’s law, I1 ¼ 36=9 ¼ 4 amp and I2 ¼ 36=12 ¼ 3 amp. Therefore,

battery current ¼ I ¼ I1 þ I2 ¼ 4 þ 3 ¼ 7 amperes, answer.

(b) P ¼ VI ¼ ð36Þð7Þ ¼ 252 watts, answer.
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(c) Referring to Fig. 368, we have already found, in part (a), that I2 ¼ 3 amperes.
Hence the voltage drop across the 4-ohm resistor in Fig. 368 is, by eq. (13), equal
to ð3Þð4Þ ¼ 12 volts, which is the voltage across both the 12-ohm and the 6-ohm
resistors in Fig. 34. Therefore the current in the 6-ohm resistor is equal to

I ¼ 12=6 ¼ 2 amperes; answer:

21. First, by eq. (34), the parallel 7-ohm and 12-ohm resistors are equivalent to a single
resistance of ð7Þð12Þ=19 ¼ 4:42105 ohms, approx. Since this is in series with the 3-
ohm resistor, the figure reduces to the following:

Note that we now have 4 ohms in series with the parallel combination of 9 ohms and
7.42105 ohms. Hence RT ¼ 4 þ 9ð7:42105Þ=16:42105 ¼ 8:06731 ohms, and therefore,
by Ohm’s law, eq. (11), we have

I ¼ battery current ¼ 24=8:06731 ¼ 2:97497 amperes; answer:

22. First let us find the battery current I , as follows, Let R be the equivalent resistance of
14, 16, 18, and 20 ohms in parallel. To do this we use eq. (32), thus
1=R ¼ 1=14 þ 1=16 þ 1=18 þ 1=20 ¼ 0:239484, hence R ¼ 4:17564 ohms. The bat-
tery thus sees a resistance RT ¼ 3 þ 4:17564 ¼ 7:17564 ohms, and thus the battery
current I is equal to

I ¼ V=RT ¼ 18=7:17564 ¼ 2:50849 amperes

(a) The resistance from point x to ground is Rx ¼ 4:17564 ohms, and since the
battery current I flows through this resistance we have

Vx ¼ IRx ¼ 10:47455 volts; answer:

(b) The current in the 20-ohm branch (7 þ 13 ¼ 20Þ is the voltage at point x divided
by 20 ohms, that is, 10:47455=20 ¼ 0:523728 amperes, and this current flowing
through the 13-ohm resistor gives

Vy ¼ ð0:523728Þð13Þ ¼ 6:80846 volts; answer:

23. Let us use eq. (34) as follows. Solving for R2; we have R2 ¼
R1RT

R1 � RT

, and setting
R1 ¼ 36 and RT ¼ 20, we have

R2 ¼ ð36Þð20Þ=16 ¼ 45 ohms; answer:

24. (a) 7 � 7 ¼ 49 elements.

(b) Written as a53 or, if you wish, a5;3.
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(c) a1;11 denotes the element at the intersection of the first row and the eleventh
column, whereas a11;1 denotes the element at the intersection of the eleventh
row and the first column.

Note: The answers to problems 25 through 29 all follow from eq. (36).

25. (a) ð12 � 8Þ ¼ 4, answer.
(b) 3ð2 þ 8Þ ¼ 30, answer.

26. ð24 � 6Þ þ ð�3 þ 2Þ þ ð4 þ 6Þ ¼ 27, answer.

27.
ð20 � 60Þ
ð20 � 28Þ ¼ �40=� 8 ¼ 5, answer.

28. 10x2yþ y2 ¼ yð10x2 þ yÞ, answer.

29. ðxþ 2Þð2 � xÞ � 4ðx� 5Þ ¼ �x2 � 4xþ 24, answer.

Note: The solutions to problems 30 through 34 follow the 3-step procedure of section
3.3.

30. (1) Here, a11 ¼ 3, a21 ¼ �5, a31 ¼ 1:

ð2Þ a11A11 ¼ a11ð�1Þ2M11 ¼ a11M11 ¼ 3
7 �4

�2 3

�����
����� ¼ 3ð21 � 8Þ ¼ 39

a21A21 ¼ a21ð�1Þ3M21 ¼ �a21M21 ¼ 5
6 1

�2 3

�����
����� ¼ 5ð18 þ 2Þ ¼ 100

a31A31 ¼ a31ð�1Þ4M31 ¼ a31M31 ¼
6 1

7 �4

�����
����� ¼ ð�24 � 7Þ ¼ �31

(3) D ¼ 39 þ 100 � 31 ¼ 108, answer.

31. (1) Here a31 ¼ 1, a32 ¼ �2, a33 ¼ 3

ð2Þ a31A31 ¼ a31ð�1Þ4M31 ¼ a31M31 ¼
6 1

7 �4

�����
����� ¼ ð�24 � 7Þ ¼ �31

a32A32 ¼ a32ð�1Þ5M32 ¼ �a32M32 ¼ 2
3 1

�5 �4

�����
����� ¼ 2ð�12 þ 5Þ ¼ �14

a33A33 ¼ a33ð�1Þ6M33 ¼ a33M33 ¼ 3
3 6

�5 7

�����
����� ¼ 3ð21 þ 30Þ ¼ 153

(3) D ¼ �31 � 14 þ 153 ¼ 108, answer.

32. The easiest way is to expand the determinant in terms of the elements of the third
column, because two of the three elements there are zeros. Thus, since a13 ¼ 0,
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a23 ¼ 0, and a33 ¼ �4, we have

D ¼ 0 þ 0 þ a33ð�1Þ6M33 ¼ �4
6 1

2 4

����
���� ¼ �88; answer:

33. (1) Let us use the second column (because it contains two zeros). Thus we have
a12 ¼ 2, a22 ¼ 0, a32 ¼ �1, a42 ¼ 0:

(2)* Since a22 ¼ 0 and also a42 ¼ 0, we have

a12M12 ¼ �2

1 2 2

�3 3 0

�1 6 3

�������
������� and a32M32 ¼ �ð�1Þ

2 5 �4

1 2 2

�1 6 3

�������
�������

Let D1 and D2 be the values of the two determinants above, and let us expand
both in terms of the elements of the third column. Doing this gives us

D1 ¼ �2 2
�3 3

�1 6

�����
�����þ 3

1 2

�3 3

�����
�����

 !
¼ �2ð�30 þ 27Þ ¼ 6

D2 ¼ �4
1 2

�1 6

�����
������ 2

2 5

�1 6

�����
�����þ 3

2 5

1 2

�����
����� ¼ �4ð8Þ � 2ð17Þ þ 3ð�1Þ ¼ �69

(3) D ¼ D1 þD2 ¼ 6 � 69 ¼ �63, answer.

34. Let us begin by expanding the given determinant in terms of the elements of the
fourth row. Since all the elements of the fourth row except the �5 are zeros, the value
of the determinant reduces to the value of the single third-order determinant

D ¼ �5

1 3 2

6 1 �3

4 �2 0

�������
�������

Now expand the above result in terms of, let us say, the third column; thus

D ¼ �5 2
6 1

4 �2

����
����� ð�3Þ 1 3

4 �2

����
����

� �
¼ �5ð�32 � 42Þ ¼ 370; answer:

35. First factor 6 from column 1 and 5 from column 3. Then factor 4 from the second
row. We can then, if we wish, expand the determinant in terms of the minors of the
first column; thus

ð6Þð5Þð4Þ
1 �3 1

1 �4 6

�2 1 5

��������

�������� ¼ 120
�4 6

1 5

�����
������ �3 1

1 5

�����
������ 2

�3 1

�4 6

�����
�����

 !

¼ 120ð�26 þ 16 þ 28Þ ¼ 2160; answer:
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36. Factoring in accordance with property 5, then expanding in terms of the minors of
column 2, we have

ð7Þð5Þð2Þð6Þ

3 1 �2 1

1 0 1 �2

�4 0 2 1

2 0 �3 2

���������

���������
¼ �420

1 1 �2

�4 2 1

2 �3 2

�������
������� ¼ �420; answer:

37. No, because this is simply a special case of multiplying by þ1 or �1 in property 7.

38. Factoring ‘‘2’’ from column 4, we have

2

3 �1 2 3

4 3 0 4

1 �4 4 1

6 7 5 6

���������

���������
¼ ð2Þð0Þ ¼ 0; by property 4:

39. Note, first, that no factoring can be done, and that no two rows or no two columns
are identical. Therefore, using property 7, let’s try to write the determinant in a more
convenient form, so that most of the elements in one particular row or column are
zeros. One way is as follows.

First, to each element of column 4 add the corresponding element of column 2
multiplied by 2.

Next, to each element of column 5 add the corresponding element of column 2
multiplied by 4. Taking these steps, the original determinant becomes

2 0 �1 ð5 þ 0Þ ð0 þ 0Þ
0 �1 0 ð2 � 2Þ ð4 � 4Þ

�1 3 2 ð0 þ 6Þ ð�1 þ 12Þ
3 �2 0 ð�1 � 4Þ ð�1 � 8Þ

�2 4 �3 ð2 þ 8Þ ð0 þ 16Þ

�����������

�����������
¼

2 0 �1 5 0

0 �1 0 0 0

�1 3 2 6 11

3 �2 0 �5 �9

�2 4 �3 10 16

�����������

�����������
In the new, but equivalent, determinant to the right, notice that all the elements in

row 2 are zeros except the one element ‘‘�1.’’ This is good, because it is now easy to
expand the determinant in terms of the elements of row 2; upon doing this, we are
able, very easily, to reduce the given fifth-order determinant to a single fourth-order
determinant; thus

ð�1Þ

2 �1 5 0

�1 2 6 11

3 0 �5 �9

�2 �3 10 16

���������

���������
Let us now repeat the procedure to reduce the fourth-order to a third-order

determinant; one way is as follows. First, multiply all the terms of column 3 by
‘‘3’’; this is permissible provided that we also multiply the determinant by ‘‘1/3’’;
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thus (basically making use of property 5)

� 1
3

2 �1 15 0

�1 2 18 11

3 0 �15 �9

�2 �3 30 16

���������

���������
Now take the following steps: first, to each element of column 3 add the cor-

responding element of column 1 multiplied by ‘‘5’’; then, to each element of column 4
add the corresponding element of column 1 multiplied by ‘‘3’’; thus

� 1
3

2 �1 ð15 þ 10Þ ð0 þ 6Þ
�1 2 ð18 � 5Þ ð11 � 3Þ

3 0 ð�15 þ 15Þ ð�9 þ 9Þ
�2 �3 ð30 � 10Þ ð16 � 6Þ

���������

���������
¼ � 1

3

2 �1 25 6

�1 2 13 8

3 0 0 0

�2 �3 20 10

���������

���������
In the determinant to the right notice that all the elements of row 3 are zeros

except the one element 3. Hence it’s now easy to expand the determinant in terms of
the minors of the elements of row 3, and doing this reduces the fourth-order deter-
minant to a single equivalent third-order determinant; thus,

�
�1 25 6

2 13 8

�3 20 10

������
������ ¼ �2

�1 25 3

2 13 4

�3 20 5

������
������

The final step is to expand the third-order determinant, on the right-hand side,
into a sum of basic second-order determinants. Fundamentally, this is done by
expanding the third-order determinant into a sum of three second-order determi-
nants in the basic way. Or, using property 7, we can reduce the number of second-
order determinants to just one, as follows.

First, to each element of column 2 add the corresponding element of column 1
multiplied by 25. Next, to each element of column 3 add the corresponding term of
column 1 multiplied by 3. Doing this reduces the third-order determinant to a single
equivalent second-order determinant; thus

�2

�1 0 0

2 63 10

�3 �55 �4

������
������
*

¼ ð�2Þð�1Þ 63 10

�55 �4

����
���� ¼ 2ð�252 þ 550Þ ¼ 596; answer:

The foregoing solution shows how the use of property 7 can greatly reduce the
amount of work needed to find the value of a determinant. Thus, in one step we
reduced the original 5th-order determinant to a 4th-order determinant. Then, in a
second step we reduced the 4th-order determinant to a 3rd-order, and in a third step
we reduced the 3rd-order to the basic 2nd-order form. Thus in three steps the given
5th-order determinant was reduced to one basic 2nd-order determinant.

40. Step 1 is already satisfied. Next (step 2) we have

D ¼ 5 2

�3 4

����
���� ¼ ð20 þ 6Þ ¼ 26
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Step 3:
Let us solve for x first:

D 0 ¼ �7 2

25 4

����
���� ¼ ð�28 � 50Þ ¼ �78

Step 4:

x ¼ D 0=D ¼ �78=26 ¼ �3; answer; the value of x:

To find the value of y we must now rework step 3 to find the new value of D 0; thus

D 0 ¼ 5 �7

�3 25

����
���� ¼ ð125 � 21Þ ¼ 104

thus, repeating step 4, y ¼ D 0=D ¼ 104=26 ¼ 4, answer, the value of y.
To check the correctness of the answers, go back to the original two equations and

set x ¼ �3 and y ¼ 4. Doing this we find that

5ð�3Þ þ 2ð4Þ ¼ �7 ðwhich is trueÞ;
� 3ð�3Þ þ 4ð4Þ ¼ 25 ðwhich is trueÞ;

showing that the answers are correct. It should be noted that x ¼ �3 and y ¼ 4 are
the only values of x and y that simultaneously satisfy both of the given equations.

41. Step 1 is already satisfied. Next, for step 2 we have (note that x ¼ 1 times x)

D ¼
1 1 1

1 1 �1

1 �2 �1

�������
�������

Now, using property 7, to each element of column 3 add the corresponding
element of column 1 multiplied by ‘‘1,’’ thus getting

D ¼
1 1 2

1 1 0

1 �2 0

�������
������� ¼ 2

1 1

1 �2

����
���� ¼ �6

thus, D ¼ �6.

Step 3: Let us solve for the values of x, y, and z, in that order, as follows.

x ¼

6 1 1

0 1 �1

3 �2 �1

�������
�������

�6
¼

0 5 3

0 1 �1

3 �2 �1

�������
�������

�6
¼

3
5 3

1 �1

����
����

�6
¼ 4; answer; value of x:

(Note: to get the second determinant above from the first, to each element of row 1
add the corresponding element of row 3 multiplied by �2:Þ
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Next,

y ¼

1 6 1

1 0 �1

1 3 �1

�������
�������

�6
¼

�1 0 3

1 0 �1

1 3 �1

�������
�������

�6
¼

�3
�1 3

1 �1

�����
�����

�6
¼ �1; answer; value of y:

z ¼

1 1 6

1 1 0

1 �2 3

�������
�������

�6
¼

�1 5 0

1 1 0

1 �2 3

�������
�������

�6
¼

3
�1 5

1 1

�����
�����

�6
¼ 3; answer; value of z:

Hence the answers are x ¼ 4, y ¼ �1, and z ¼ 3.

42. Step 1 is satisfied. Next, for step 2 we have

D ¼
1 1 1

3 4 �2

0 �4 �5

������
������ ¼

1 1 1

0 1 �5

0 �4 �5

������
������ ¼ 1 �5

�4 �5

����
���� ¼ �5 � 20 ¼ �25

thus, D ¼ �25.

Step 3: Let us solve for the values of x, y, and z, in that order, as follows.
First, for the value of x, the value of D 0 is

D 0 ¼
4 1 1

�2 4 �2

1 �4 �5

������
������

Now take the following steps: to each element of row 3 add the corresponding
element of row 2 multiplied by 1; then, to each element of row 2 add the correspond-
ing element of row 1 multiplied by �4. Doing this, the above expression for D 0

becomes

D 0 ¼
4 1 1

�2 4 �2

�1 0 �7

������
������ ¼

4 1 1

�18 0 �6

�1 0 �7

������
������ ¼ � �18 �6

�1 �7

����
���� ¼ �120

Hence, x ¼ D 0=D ¼ �120=�25 ¼ 4:8, answer, value of x.

Next, for the value of y,

D 0 ¼
1 4 1

3 �2 �2

0 1 �5

������
������ ¼ 75

thus, y ¼ D 0=D ¼ 75

�25
¼ �3; answer; value of y:

Next for the value of z,

D 0 ¼
1 1 4

3 4 �2

0 �4 1

������
������ ¼ �55
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thus, z ¼ D 0=D ¼ �55

�25
¼ 2:2; answer; value of z:

Thus the correct answers are x ¼ 4:8, y ¼ �3:0, and z ¼ 2:2, which you can verify
by replacing x, y, and z with these values in the original three equations.

43. Step 1 is satisfied. Next, for step 2, we have

D ¼

1 1 1 1

3 �2 4 4

�2 5 7 0

0 3 2 �3

���������

���������
The above 4th-order determinant can be reduced to a single 3rd-order by applying

property 7; one procedure is as follows.
First, to each element of row 2 add the corresponding element of row 1 multiplied

by �4. Then, to each element of row 4 add the corresponding element of row 1
multiplied by 3, thus getting

D ¼

1 1 1 1

�1 �6 0 0

�2 5 7 0

3 6 5 0

���������

���������
¼ �

�1 �6 0

�2 5 7

3 6 5

�������
�������

Now let us reduce the 3rd-order determinant to a single 2nd-order; one way is as
follows. To each element of column 2 add the corresponding element of column 1
multiplied by �6, thus giving us

D ¼ �
�1 0 0

�2 17 7

3 �12 5

�������
������� ¼

17 7

�12 5

����
���� ¼ 169

Thus, D ¼ 169 for this problem. We now go to step 3 to find the values of w, x, y,
and z, in that order, as follows.

For w:

D 0 ¼

�4 1 1 1

0 �2 4 4

�12 5 7 0

5 3 2 �3

���������

���������
¼ 338

thus, w ¼ D 0=D ¼ 338

169
¼ 2.

For x:

D 0 ¼

1 �4 1 1

3 0 4 4

�2 �12 7 0

0 5 2 �3

���������

���������
¼ �507

thus, x ¼ D 0=D ¼ � 507

169
¼ �3
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For y:

D 0 ¼

1 1 �4 1

3 �2 0 4

�2 5 �12 0

0 3 5 �3

���������

���������
¼ 169

thus, y ¼ D 0=D ¼ 169

169
¼ 1.

For z:

D 0 ¼

1 1 1 �4

3 �2 4 0

�2 5 7 �12

0 3 2 5

���������

���������
¼ �676

thus, z ¼ D 0=D ¼ �676

169
¼ �4.

Thus the correct answers are w ¼ 2, x ¼ �3, y ¼ 1, and z ¼ �4.

44. First you should verify that

D ¼
3 �2 �5

1 �1 �1

2 �1 �4

�������
������� ¼ 0

which assures us that the given system does have non-trivial solutions. Then, from
inspection of the equations

a ¼ 3; b ¼ �2; c ¼ �5

d ¼ 1; e ¼ �1; f ¼ �1

g ¼ 2; h ¼ �1; i ¼ �4

which, upon substitution into eq. (55), gives the answers x ¼ 3, y ¼ 2, and z ¼ 1.

Note: An important point concerning systems of homogeneous linear equations can
be shown as follows. Let k be any constant, and let us multiply through each of the
three equations of eq. (53) by k, thus getting

aðkxÞ þ bðkyÞ þ cðkzÞ ¼ 0

dðkxÞ þ eðkyÞ þ f ðkzÞ ¼ 0

gðkxÞ þ hðkyÞ þ iðkzÞ ¼ 0

Note that the last three equations have exactly the same form as eq. (53); thus, if
x, y, and z represent values that satisfy eq. (53), the values of kx, ky, and kz also
satisfy eq. (53).

It’s apparent that the foregoing is true for any system of n homogeneous linear
equations; thus, if x1, x2; . . . ; xn are found to be a solution set of such a system, then
kx1, kx2; . . . ; kxn is also a solution set to the system, where k is any constant.
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45. Let us expand the determinant of the coefficients in terms of the elements of the first
row; doing this, you should find that

D ¼
4 �18 �7

2 �4p p

p 3 5

�������
������� ¼ �46p2 � 92pþ 138

The system will have non-trivial solutions only if D ¼ 0. Thus, setting D ¼ 0, we
have the requirement that �46p2 � 92pþ 138 ¼ 0, the solutions of which are (using
the quadratic formula),* p ¼ 1 or p ¼ �3, answers to first part. Next, setting first
p ¼ 1 and then p ¼ �3 in the original given system gives the two possible systems

4x� 18y� 7z ¼ 0 4x� 18y� 7z ¼ 0

2x� 4yþ z ¼ 0 2xþ 12y� 3z ¼ 0

xþ 3yþ 5z ¼ 0 � 3xþ 3yþ 5z ¼ 0

Now write down the values of ‘‘a through i’’ for each of the above two equations,
then substitute into eq. (55). Doing this, you should find that the answers are

for p ¼ 1 : for p ¼ �3 :

x ¼ �23; thus x ¼ �23k x ¼ 69; thus x ¼ 69k

y ¼ �9; thus y ¼ �9k y ¼ �1; thus y ¼ �k

z ¼ 10; thus z ¼ 10k z ¼ 42; thus z ¼ 42k

46. In Fig. 48 the current arrows show the direction of flow of what we will call
‘‘positive’’ current. Let us therefore write the voltage equation generated by tracing
around the circuit in the cw sense, putting voltage ‘‘drops’’ on the left-hand side and
voltage ‘‘rises’’ on the right-hand side, as agreed upon in the discussion of Fig. 47.
Doing this, starting at point A (keeping Fig. 46 in mind), we have that the voltage
equation for Fig. 48 is

12 þ 4I þ 2I þ I þ 26 þ 5I ¼ 17

thus,

I ¼ �21=12 ¼ �1:75 amperes; answer:

The answer, ‘‘minus’’ 1.75, means that, for the given battery voltages and polarities,
the current I would actually flow in the ccw sense.

47.{ Let us follow the suggested three steps (as illustrated in the example problem) thus:

Step I. Note that two loop currents will satisfy the requirement that all the circuit
elements be traversed at least once by a current. Call the current in the left-hand loop
I1 and the current in the right-hand loop I2, and let us elect to draw the arrow-heads
to indicate that I1 and I2 both flow in the clockwise sense.
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Step II.

voltage equation around left-hand loop: 15I1 � 7I2 ¼ 6

voltage equation around right-hand loop: � 7I1 þ 11I2 ¼ 21

Step III. The current in the 7-ohm resistance is the algebraic sum of I1 and I2, and
therefore we must find the values of both I1 and I2, as follows.

First,

D ¼ 15 �7

�7 11

����
���� ¼ 116

Then,

I1 ¼
6 �7

21 11

����
����

116
¼ 1:83621 amperes and I2 ¼

15 6

�7 21

����
����

116
¼ 3:07759 amperes:

For the directions we have elected to take for I1
and I2, we have the condition shown in the figure
to the right (showing just that part of the circuit
we’re interested in now).

Since the two currents in the 7-ohm resistance
flow in opposite directions through the resistance,
we must take the difference of the two currents;
thus the current in the 7-ohm resistance is

I1 � I2 ¼ �1:24138 amperes; answer

I2 � I1 ¼ 1:24138 amperes; answer:

Both answers mean the same thing; the first answer means the resultant current (in
the 7-ohm resistor) is flowing opposite to I1, that is, in the direction of I2, while the
second answer directly states that the resultant current is flowing in the direction of
I2. An ammeter placed in series with the 7-ohm resistor would read 1.24138 amperes.

48. Step I. Three loop currents must be used, to satisfy the requirement that all the circuit
elements must be included in the analysis. Let us suppose we elect to have all the
currents flow in the clockwise sense, as in the figure below.
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Step II.

voltage equation for loop 1: 3I1 � I2 � 2I3 ¼ 6

voltage equation for loop 2: � I1 þ 8I2 � 4I3 ¼ 0

voltage equation for loop 3: � 2I1 � 4I2 þ 7I3 ¼ 0

Note that since there is zero battery voltage in loops 2 and 3, the right-hand sides of
the voltage equations for those loops is zero.

Step III. In this problem we’re asked to find the voltage drop across the 4-
ohm resistance. From the above figure we see that, since I2 and I3 both flow in
that resistor, we must find the values of both I2 and I3. The first step in doing
this is, as usual, to find the value of ‘‘delta,’’ which is found from step II to be

D ¼
3 �1 �2

�1 8 �4

�2 �4 7

�������
������� ¼ 65

Next you can verify that

I2 ¼

6

3 1 �2

�1 0 �4

�2 0 7

��������

��������
65

¼ 90

65
¼ 1:384615 amperes;

I3 ¼

6

3 �1 1

�1 8 0

�2 �4 0

�������
�������

65
¼ 120

65
¼ 1:846154 amperes:

From inspection of the figure, the net resultant current flowing from left to right
in the 4-ohm resistor is I3 � I2 ¼ 0:461539 amperes, and therefore the voltage drop
across the 4-ohm resistor is

IR ¼ ð0:461539Þ4 ¼ 1:8462 volts approx:; answer:

49. Going from left to right in Fig. 54, draw three loop currents, I1, I2, and I3, which
we’ll assume to all be in the clockwise sense. Then the three voltage equations are,
going from left to right in Fig. 54,

15I1 � 10I2 þ 0I3 ¼ 32

�10I1 þ 17I2 � 4I3 ¼ �21

0I1 � 4I2 þ 11I3 ¼ 12

In this problem we must find current I3, because this is the current through the
7-ohm resistor. To do this we now form a determinant from the coefficients of the
unknown currents; thus

D ¼
15 �10 0

�10 17 �4

0 �4 11

�������
������� ¼ 1465
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thus,

I3 ¼

15 �10 32

�10 17 �21

0 �4 12

�������
�������

1465
¼ 1880

1465
¼ 1:283277 amperes

hence,

Va ¼ 7I3 ¼ 8:98294 volts; answer:

50. The procedure is to find the current in the 7-ohm resistance in Fig. 52 due to each
battery considered separately, the other batteries being replaced by their internal
resistances (considered to be zero in this case). We must therefore, in this case,
find the current in the 7-ohm resistance in each of the following three series-
parallel networks. (Let us call ‘‘down’’ currents ‘‘negative’’ and ‘‘up’’ currents
‘‘positive.’’)

The three separate current values below the figures were calculated using the
procedures of section 2.7. The net current in the 7-ohm resistance is then the alge-
braic sum of the three currents, which is, in this case, to five decimal places,
1.24138 amperes, the same value as found in problem 47. We might mention that,
as was pointed out in section 2.5, current is assumed to flow out of a battery at the
positive terminal and re-enter at the negative terminal.

51. A change in current causes the temperature of a physical resistor to change, which in
turn causes the resistance to change (section 2.4). In our problems here we’re assum-
ing such changes in resistance are small enough to be disregarded.

52. This problem can be worked in two different ways,
as follows.

FIRST WAY: Note the figure to the right.
If the ratio of 1 to 2 is equal to the ratio of R to 1,
then zero potential difference will exist between
the terminals of the 4-ohm resistor, and thus
zero current will flow in that resistor. That is, we
must have

1

2
¼ R

1
; hence R ¼ 1=2 ohm; answer:
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SECOND WAY: We can make use of the solution given with problem 48, as
follows. Note that requiring zero current in the 4-ohm resistance is the same as
requiring that currents I2 and I3 cancel each other out in the 4-ohm resistance,
which, since I2 and I3 flow through the 4-ohm resistance in opposite directions,
will be done only if I2 and I3 have equal magnitudes, that is, if I3 ¼ I2. Therefore,
in the network diagram given with the solution to problem 48, change ‘‘3’’ to ‘‘R’’
and I3 to I2. Doing this, the three loop equations become

I1 � I2 ¼ 2 ðAÞ
�I1 þ ð1 þ RÞI2 ¼ 0 ðBÞ

�2I1 þ 3I2 ¼ 0 ðCÞ

Now add (A) and (B) together to get I2 ¼ 2=R. Now replace I2 with 2=R in (B)
and (C) to get

�I1 þ ð1 þ RÞ 2

R
¼ 0

�I1 þ
3

R
¼ 0

In these two equations, multiply through the first equation by R and the second
by �R, then add the two together to get R ¼ 1=2 ohm, answer.

53. Figure 56 is of the form of Fig. 55, and thus eq. (63) applies. Let us agree to number
the branches from 1 through 5, from left to right in Fig. 56.

The first step is to convert ‘‘ohms’’ to ‘‘mhos,’’ using the definition of eq. (58).
Doing this, and noting that, in Fig. 56, V2 ¼ V5 ¼ 0, eq. (63) becomes

Vo ¼ 0:08333 � 15 þ 0:06666 � 22 þ 0:11111 � 12

0:08333 þ 0:12500 þ 0:06666 þ 0:11111 þ 0:10000

¼ 4:04979

0:48611
¼ 8:33102 volts; answer:

54. We would not have V4 ¼ �12 volts, and upon making this change in the above
solution to problem 53 we find that

Vo ¼ 1:38315

0:48611
¼ 2:84534 volts; answer:

55. The first step is to draw the Thevenin equivalent generator for Fig. 56. To do this,
imagine that we are at the right-hand side of Fig. 56, looking to the left at the 10-ohm
resistance. Then, from the solution to problem 53, we have

Vo ¼ Vg ¼ 8:33102 volts; and

Rg ¼ 1=0:48611 ¼ 2:05715 ohms

and thus, by Thevenin’s theorem, we now have the simple series circuit condition
shown as follows.
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Thus, when the switch is closed:

for RL ¼ 2 ohms; IL ¼ 8:33102=4:05715 ¼ 2:05342 amperes; answer;

for RL ¼ 3 ohms; IL ¼ 8:33102=5:05715 ¼ 1:64738 amperes; answer;

for RL ¼ 4 ohms; IL ¼ 8:33102=6:05715 ¼ 1:37540 amperes; answer:

Without the use of Thevenin’s theorem it would be necessary to rework problem
53 for each new value of RL.

56. The first step is to remove RL and find the open-circuit voltage between terminals a
and b. One way to do this is to write the two loop-voltage equations (see figure
below), thus

20I1 � 12I2 ¼ 100

�12I1 þ 24I2 ¼ 0

from which I2 ¼ 25=7 amperes, and hence the open-circuit voltage at a, b is equal to
9ð25=7Þ ¼ 32:143 volts.

The next step is to find the resistance looking back into terminals a, b (keeping RL

disconnected, as before). The 8-ohm and 12-ohm resistances are in parallel when
looking back from terminals a, b and hence combine together (product over sum,
eq. (34), Chap. 2) to give ð12Þð8Þ=20 ¼ 4:8 ohms. The 4.8 ohms is now in series with
the 3-ohm resistance, giving us a total of 7.8 ohms in parallel with the 9-ohm resis-
tance. Therefore, looking into a, b we see 7.8 ohms in parallel with 9 ohms, which,
using the ‘‘product of the two, over the sum,’’ is equal to ð7:8Þð9Þ=16:8 ¼ 4:179 ohms,
approximately.

Thus the equivalent Thevenin generator for Fig. 59 is therefore as shown in the
following figure, answer.
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57. First, Isc flows into a conductance equal to, by eq. (61), GT ¼ Gg þ GL, and thus, by
eq. (59),

Isc ¼ ðGg þ GLÞVL

also,

IL ¼ GLVL

thus VL ¼ IL=GL, and putting this value of VL into the first equation and solving for
IL gives the answer, eq. (67).

58. (a) The first step is to find the short-circuit current Isc, which is the current that
flows into the short-circuited terminals a, b as shown in the figure to the left
below, with the two loop-voltage equations to the right.

thus,

Isc ¼
5 25

�4 0

����
����

5 �3

�4 5

����
����
¼ 100

13
¼ 7:692308 amperes; approx:

WemustnextfindthevalueoftheconductancecomponentGg oftheNorton
equivalentgenerator.

To do this, we now remove the short-circuit from the terminals a, b in the pre
ceding figure; Gg now equals the conductance seen looking to the left into the
now open-circuited terminals a, b. From inspection of Fig. 59 (disregard the 9-
ohm branch for the moment), note that we look into one branch consisting of
3 ohms in series with the parallel combination of 8 ohms and 12 ohms, that is,
into 3 þ ð8Þð12Þ=20 ¼ 7:8 ohms. Since this resistance is in parallel with the 9-
ohm resistance, the total resistance seen looking into the open-circuited term-
inals a, b is

Rg ¼ ð9Þð7:8Þ=16:8 ¼ 4:178571 ohms
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thus,

Gg ¼ 1=Rg ¼ 0:239316 mhos; approx:

and hence the answer is that the Norton equivalent generator for Fig. 59 is

(b) The Thevenin equivalent of Fig. 59 appears in the solution to problem 56, and
the Norton equivalent appears above. Setting RL ¼ 10 ohms in the Thevenin
equivalent generator and applying Ohm’s law, and setting GL ¼ 1=10 ¼
0:1mho in eq. (67), we have that

Thevenin case: IL ¼ 32:143=14:179 ¼ 2:267 amperes; approx:

Norton case: IL ¼ 0:7692308=0:339316 ¼ 2:267 amperes; approx:

there being some difference beyond the third decimal place because the same
degree of accuracy was not used in calculating in problem 56 as in problem 58.

59. Let a, b be the output terminals of any given network; to convert the network into
the Thevenin equivalent generator we must take the following two steps.

(a) Find the open-circuit voltage at the terminals a, b; this is the generated voltage,
Vg, of the equivalent generator (Fig. 57).

(b) Find the resistance looking into the open-circuited terminals a, b; this is the
internal resistance, Rg, of the equivalent generator (Fig. 57).

Now apply the two steps to Fig. 60 (keeping the switch open), as follows.

(a) Here we use the basic Ohm’s law formula V ¼ RI ¼ ð1=GÞI , thus

V ¼ Isc
Gg

¼ 6:155

0:109
¼ 56:468 volts ¼ Vg

(b) We must now replace all generators with their internal resistances. In this case
we must remember that a constant-current generator has INFINITELY
GREAT internal resistance. Thus, as far as resistance is concerned, the con-
stant-current generator has no ‘‘shunting effect’’ on Gg, and thus

1=Gg ¼ 1=0:109 ¼ 9:174 ohms ¼ Rg

hence the Thevenin equivalent generator is
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60. First note that Fig. 63 contains 7 node points (including the zero-volt reference node
at ‘‘ground’’ potential), but note that only two of the node voltages, at nodes 1 and 2,
are unknown. Let us therefore begin by writing the Kirchhoff current law equations
for nodes 1 and 2; if we take the current direction as they happen to be drawn in Fig.
63 we have

at node 1: I1 � I2 þ I3 � I4 ¼ 0 ðAÞ
at node 2: I4 � I5 þ I6 ¼ 0 ðBÞ

Now apply eq. (68) to each current at nodes 1 and 2, then substitute into (A) and
(B). Doing this (paying careful attention to battery polarities), eqs. (A) and (B)
become

8 � V1

6
� V1

15
þ 6 � V1

5
� V1 � V2

8
¼ 0

and

V1 � V2

8
� V2 þ 12

9
þ 10 � V2

7
¼ 0

Now multiply the first equation by 240 and the second by 504; this should give
you the two simultaneous equations

67V1 � 15V2 ¼ 304

�63V1 þ 191V2 ¼ 48

the solutions of which are (using determinants is probably easiest)

V1 ¼ 4:9598 volts; answer; and V2 ¼ 1:8873 volts; answer;

both voltages with respect to the zero-volt reference node.

61. Since the trigonometric functions are defined in terms of the ratios of the lengths of
the sides of a right triangle to one another, let us, for simplicity, use the triangle
below.

(By the Pythagorean theorem, the length of the vertical dashed line is equal to
ffiffiffi
3

p
,

as shown.) The answers are now found as follows. First, if we take the 608 angle as
the ‘‘reference angle,’’ we have (see the definitions just prior to eq. 69)

sin 608 ¼
ffiffiffi
3

p
=2 ¼ 0:866025 approx:

and

cos 608 ¼ 1=2 ¼ 0:500000
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Next, taking the 308 angle as the reference angle, we have

sin 308 ¼ 1=2 ¼ 0:500000
and

cos 308 ¼
ffiffiffi
3

p
=2 ¼ 0:866025; approx:

62. First, by definition, sin � ¼ b=h (using � as reference angle); also, by definition,
cos� ¼ b=h (using � as reference angle).

Thus, sin � ¼ cos�, or, since � ¼ 90 � �, we have

sin � ¼ cosð908� �Þ; answer:

63. From the answer to problem 62 we have that sin 62838 0 ¼ cosð908� 62838 0Þ. Thus
the required angle is 908� 62838 0, and hence (note that 908 ¼ 89860 0Þ we have

89860 0

� 62838 0

27822 0; answer:

64. (a) In the right triangle of Fig. 65, by the theorem of Pythagoras, a2 þ b2 ¼ h2.
However, by eqs. (69) and (70), a ¼ h cos � and b ¼ h sin �. Making these sub-
stitutions gives the required identity.

(b) Using eq. (71) and then eqs. (69) and (70), we have

b

a
¼ tan � ¼ h sin �

h cos �
¼ sin �

cos �
; as required:

65. (a) 115 degrees is a second quadrant angle, hence (Fig. 76) � ¼ 180 � 115 ¼ 65;
thus

cos 115 ¼ � cos 65 ¼ �0:4226; answer:

(b) By eq. (76),

sinð�35Þ ¼ � sin 35 ¼ �0:5736; answer:

(c) From Fig. 76,

tan 155 ¼ � tan 25 ¼ �0:4663; answer:

(d) 255 degrees is a third quadrant angle, hence (Fig. 77) � ¼ 255 � 180 ¼ 75; thus

sin 255 ¼ � sin 75 ¼ �0:9659; answer:

(e) From Fig. 76,

cos 95 ¼ � cos 85 ¼ �0:0872; answer:

(f) By eq. (78), tanð�285Þ ¼ � tan 285. Since 285 degrees is a fourth quadrant
angle, we have (Fig. 78),

� tan 285 ¼ �ð� tan 75Þ ¼ 3:7321; answer:

(g) sin 285 ¼ � sin 75 ¼ �0:9659; answer:

(h) By eq. (76), sinð�188Þ ¼ � sin 188. Since 188 is a third quadrant angle, we have
(Fig. 77)

� sin 188 ¼ �ð� sin 8Þ ¼ 0:1392; answer:

66. Let us make use of the right triangle of Fig. 64 and eqs. (69) and (70) in section 5.2, as
follows.
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First,

b ¼ h sin � ðwith � as reference angleÞ;
b ¼ h cos� ðwith � as reference angleÞ;

thus

sin � ¼ cos�; or; since � ¼ 90 � �;

sin � ¼ cosð90 � �Þ; as required:

Next,

a ¼ h cos � ðwith � as reference angleÞ;
a ¼ h sin� ðwith � as reference angleÞ;

thus,

cos � ¼ sin�; or; since � ¼ 90 � �;

cos � ¼ sinð90 � �Þ; as required:

67. (a) From eq. (81), 360f ¼ 180,000; thus

f ¼ 500 Hz; answer:

(b) By eq. (81), v ¼ 100 sin 27,0008. Since 27,000=360 ¼ 75 complete cycles, with
‘‘zero degrees left over,’’ we have

v ¼ 100 sin 08 ¼ 0; answer:

68. Here, ! ¼ 2�f ¼ 533,850, which gives (using ordinary calculator values for �)

f ¼ 84,964:866 Hz; approx:

Hence, by eq. (91),

T ¼ 1=84,964:866 ¼ 1:17695 � 10�5 seconds

¼ 11:7695 microseconds; answer:

69. From eq. (91), f ¼ 1=T . By inspection, T is smaller for B than for A; thus B has the
higher frequency, answer.

70. The answer is ‘‘yes,’’ because there is always an average power P associated with any
such waveform. The problem, however, would be to find the rms value in such a case.
We should emphasize that the simple relationships of eqs. (102) and (103) are true
only for sinusoidal voltages and currents. This is one advantage, among others, of
using sinusoidal voltages and currents.

71. (a) By eq. (104),

P ¼ ð120Þð8:5Þ ¼ 1020 watts; answer

(b) By eq. (102), Vp ¼ ffiffiffi
2

p ð120Þ, and by eq. (103), Ip ¼ ffiffiffi
2

p ð8:5Þ. Hence,

peak power ¼ VpIp ¼ 2ð120Þð8:5Þ ¼ 2040 watts; answer:

72. (a) First, the horizontal and vertical components of each generator voltage are

for V1: Vh ¼ 65 volts; Vv ¼ 0 volts;

for V2: Vh ¼ 90 cos 608 ¼ 45:000 volts; Vv ¼ 90 sin 608 ¼ 77:942 volts;

for V3: Vh ¼ 75 cos 1508 ¼ �64:952 volts; Vv ¼ 75 sin 1508 ¼ 37:500 volts:
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Hence the horizontal component of the output voltage �VV is
65 þ 45 � 64:952 ¼ 45:048 volts, and the vertical component of �VV is
0 þ 77:942 þ 37:500 ¼ 115:442 volts. The polar notation for �VV is of the form
�VV ¼ j �VV j=�, and thus, using eqs. (109) and (110), we have

j �VV j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
15,356:178

p
¼ 123:920 volts

and

� ¼ arctanð115:442=45:048Þ ¼ 68:683 degrees

hence the answer is

�VV ¼ 123:920=68:6838

(b) 123.920 volts, answer, because ac voltmeters (and ammeters) read magnitude of
rms values.

(c) Upon substituting the answer to part (a) into eq. (111) we have

�II ¼ 123:920

25
=68:6838 ¼ 4:957=68:683 amperes; answer:

Since ac ammeters read magnitude of rms current, the second answer is
4.957 amperes.

(d) The answer is ‘‘yes,’’ because, from part (c), the phase angle of �II is 68:6838, the
same as for �VV in part (a). This is true because �VV is the resultant voltage across
the resistance R, and there is always zero phase shift between voltage across a
resistance and the current through the resistance (as emphasized in the discus-
sion following Fig. 98).

(e) The answer is ‘‘no,’’ because the phase angles of the generator voltages are given
to be 08; 608, and 1508, while, from part (c), the phase angle of �II is 68:6838. (This
is a similar situation to Fig. 101, in which �II is not in phase with either generator
voltage �VV1 or �VV2.)

73. (a) From problem 72, part (a), the magnitude of the output voltage across the 25-
ohm resistive load is V ¼ 123:920 volts rms, and from part (c) the magnitude of
the current in the 25-ohm load is I ¼ 4:957 amperes rms. Since the load is a pure
resistance, �VV and �II are IN PHASE with each other, making cos � ¼ cos 0 ¼
1:000, and thus, by eq. (117), we have

P ¼ VI ¼ ð123:920Þð4:957Þ ¼ 614:27 watts approx:; answer:

(b) Let us apply eq. (117) to each generator individually, as follows. First note
that, since Fig. 102 is a series circuit, the same current, �II ¼ 4:957 =68:6838,
flows through each generator. Since the phase angles of the generators are
given to be 08; 608, and 1508, the phase angles between the generator voltages
and current are, in each case, equal to

for V1: � ¼ 68:6838

for V2: � ¼ 68:683 � 60 ¼ 8:6838

for V3: � ¼ 150 � 68:683 ¼ 81:3178

Thus, applying eq. (117), the answers are

Solutions to Problems 465



power produced by V1 ¼ ð65Þð4:957Þ cos 68:6838 ¼ 117:130 watts;

power produced by V2 ¼ ð90Þð4:957Þ cos 8:6838 ¼ 441:017 watts;

power produced by V3 ¼ ð75Þð4:957Þ cos 81:3178 ¼ 56:126 watts:

(c) The sum in part (b), to two decimal places, is 614.27 watts, which checks with
the answer found in part (a).

74. The only change in eqs. (129) and (130) would be that the � �VV3 term would become

þ �VV3. This would cause the term �25:456 �VV3 in eq. (132) to become þ25:456 �VV3. Then,
upon making use of eq. (128) and applying the same procedure as in the original
solution, you should find that

�II2 ¼
1874:492

591:991
=62:8648 ¼ 3:166=62:8648

thus

j �VVoj ¼ ð12Þð3:166Þ ¼ 37:992 volts approx:; answer:

75. (a) �j12, answer (procedure same as in example 1, part (a)).

(b) Using fractional exponents and the same procedure as in example 1 (b), we have

�j10x2y�5 ¼ �j10x2=y5; answer:

(c) ½ð�1Þð4Þ�1x2y�2z�4�1=2 ¼ �jx=2yz2; answer; or; since

A

B

� �1=2

¼ A1=2

B1=2

we have � jx

2yz2
; same answer:

76. (a) Since j2 ¼ �1, we have, �jð�1Þ ¼ j, answer.

(b) Upon adding exponents (see note following eq. (136)), we have j13. Since 4 goes
into 13 ‘‘3 times with 1 left over,’’ we have j13 ¼ j, answer.

(c) Since 4 goes into 31 ‘‘7 times with 3 left over,’’ j31 ¼ j3 ¼ �j, answer.

(d) Since 4 goes into 342 ‘‘85 times with 2 left over,’’ �j342 ¼ �j2 ¼ þ1, answer.

(e)
1

j3
¼ j

j4
¼ j, answer.

(f)
1

j34
¼ 1

j2
¼ 1

�1
¼ �1, answer.
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(g)
1

j17
¼ 1

j
¼ �j, answer, by eq. (139).

77. (a) Transposing, then taking the square root,

x ¼
ffiffiffiffiffiffiffiffiffi
�16

p
¼ �j4; answers:

(b) Transposing, then taking the square root,

x ¼
ffiffiffiffiffiffiffiffi
900

p
¼ �30; answers:

Thus the answers here are real, x ¼ 30 and x ¼ �30.

(c) Here, x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�94:8=6
p ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi�15:8

p ¼ �j3:9749, answers.

78. ð6 � 8 þ 4Þ þ jð5 � 4 � 3Þ ¼ 2 � j2 ¼ 2ð1 � jÞ, answer.

79. Since j3 ¼ �j; j2 ¼ �1, and j100 ¼ 1, the problem becomes

j5 � 7 � j þ 1 � j10 þ 4 þ 3 þ 10 ¼ ð�7 þ 1 þ 4 þ 3 þ 10Þ þ jð5 � 1 � 10Þ
¼ 11 � j6; answer:

80. 12 � j2 � j18 � 3 ¼ ð9 � j20Þ; answer.

81. The product of the first two factors is ð�1 þ j3Þ, and multiplying this result by the
third factor gives

�12 � j14 ¼ �2ð6 þ j7Þ; answer:

82. acþ jad þ jbc� bd ¼ ðac� bdÞ þ jðad þ bcÞ; answer.

83. The easiest way is to first factor 6 from both parts of the complex number and then
square; thus

½6ð1 þ j2Þ�2 ¼ ð6Þ2ð1 þ j2Þ2 ¼ 36ð1 þ j2Þð1 þ j2Þ
¼ 36ð�3 þ j4Þ; answer:

84. First note that ð1 þ jÞ2 ¼ ð1 þ jÞð1 þ jÞ ¼ j2. Hence the given problem can be written
in the form

ð1 þ jÞ5 ¼ ð j2Þð j2Þð1 þ jÞ ¼ �4ð1 þ jÞ; answer:

85. (a)
ð3 þ j4Þð1 � jÞ
ð1 þ jÞð1 � jÞ ¼ 7 þ j

2
¼ 0:5ð7 þ jÞ, answer.

(b) The conjugate of 0 þ j5 is 0 � j5 ¼ �j5; hence

ð 14 � j25Þð�j5Þ
ð j5Þð�j5Þ ¼ �125 � j70

25
¼ �ð5 þ j2:8Þ; answer:
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86. Upon multiplying in the numerator and denominator as indicated, then collecting
like terms, we have

9 � j2

5 þ j
¼ ð9 � j2Þð5 � jÞ

ð5 þ jÞð5 � jÞ ¼ 43 � j19

26
¼ 1:6539 � j0:7308; answer:

87. The easiest way is to note that ð1 þ jÞ2 ¼ j2; the problem then becomes

j12

ð j2Þð j2Þ ¼
j12

�4
¼ �j3; answer:

88. Yes, because two EQUAL complex numbers are represented by the SAME POINT
on the complex plane, so that x ¼ a for both numbers and y ¼ b for both numbers.

89. (a) Applying the SUM rule of Article 2, the problem becomes 8:1 þ j10:4. Hence,
by eqs. (143) and (144), A ¼ 13:182 and � ¼ arctanð10:4=8:1Þ ¼ 52:0878; thus
we have

13:182ðcos 52:0878þ j sin 52:0878Þ; answer:

(b) First, by section 6.3,

ð7 � j2Þð4 � j9Þ
ð4 þ j9Þð4 � j9Þ ¼

10 � j71

97
¼ 0:103 � j0:732

Hence, by eqs. (143) and (144)

A ¼ 0:739 and � ¼ arctanð�7:107Þ ¼ �81:998

and thus (making use of eqs. (77) and (76)) we have

0:739ðcos 81:998� j sin 81:998Þ; answer:

90. (a) 90ðcos 1668þ j sin 1668Þ ¼ �87:327 þ j21:773, answer.

(b) Since cosð��Þ ¼ cos � and sinð��Þ ¼ � sin �, let us write

400ðcos 1268� j sin 1268Þ ¼ �ð235:114 þ j323:607Þ; answer

(c) 17=458 ¼ 12:021 þ j12:021 and �22=2658 ¼ 1:917 þ j21:916. Hence, by section
6.2, we have

13:938 þ j33:937; answer:

91.

Total REAL COMPONENT ¼ 16 cos 368� 22 cos 3158þ 9:15 ¼ 6:5379

total IMAGINARY COMPONENT ¼ 16 sin 368� 22 sin 3158� 6:88 ¼ 18:0809

thus we have

ð6:5379 þ j18:0809Þ; answer:

92. In all four cases jbj ¼ 4 and jaj ¼ 3; thus, in all four cases, A ¼ 5 and
h ¼ arctan 4=3 ¼ 53:138. Hence the four answers are (noting the quadrant in each
case)

ðaÞ 5� j53:138 ðbÞ 5� j126:878 ðcÞ 5� j233:138 ðdÞ 5� j306:878
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Verification of the above answers, making use of eq. (153):

(a) 5ðcos 53:138þ j sin 53:138Þ ¼ 3 þ j4; which checks,

(b) 5ðcos 126:878þ j sin 126:878Þ ¼ �3 þ j4; which checks;

(c) 5ðcos 233:138þ j sin 233:138Þ ¼ �3 � j4; which checks;

(d) 5ðcos 306:878þ j sin 306:878Þ ¼ 3 � j4; which checks:

93. To find the SUM of a number of complex numbers we must first express each one in
the form of eq. (156) or (158). We can do this by applying eq. (153) to each term in
the given problem; thus

14ðcos 1128þ j sin 1128Þ ¼ �5:2445 þ j12:9806

8ðcos 288þ j sin 288Þ ¼ 7:0636 þ j3:7558

19ðcos 1558� j sin 1558Þ ¼ �17:2199 � j8:0298

in which we made use of the identities cosð�xÞ ¼ cos x and sinð�xÞ ¼ � sin x. Thus
the answer in the form of eq. (156) is �15:4008 þ j8:7066, which lies in the SECOND
QUADRANT of the complex plane, where a ¼ �15:4008 and b ¼ 8:7066 (see Fig.
110).

First, therefore, by eq. (143), A ¼ 17:6915. Next we have that
h ¼ arctanð8:7066=15:4008Þ ¼ 29:48108, hence � ¼ 180 � h ¼ 150:528, and thus the
required answer is (rounded to two decimal places)

17:69� j150:528

94. First apply eq. (161) (extended to cover three factors), then apply eq. (158), thus
getting

84� j2158 ¼ 84ðcos 2158þ j sin 2158Þ
¼ �ð68:809 þ j48:180Þ; answer:

95. By eq. (164), and also eqs. (157) and (158), we have

12=588 ¼ 12ðcos 588þ j sin 588Þ ¼ 6:359 þ j10:177; answer:

96. By eqs. (143) and (144),

2 þ j3 ¼
ffiffiffiffiffi
13

p
� j56:30998

Hence, making use of the basic relationship ðA� j�Þn ¼ An� jn�, we have that

ð2 þ j3Þ6 ¼ ð
ffiffiffiffiffi
13

p
Þ6� j337:868 ¼ 2197ðcos 337:868þ j sin 337:868Þ

¼ 2035:01 � j827:99; answer:

97. By eq. (163), noting that cosð�xÞ ¼ cos x and sinð�xÞ ¼ � sin x,

15

36

� �
��j238 ¼ 15

36
ðcos 238� j sin 238Þ

¼ 0:3835 � j0:1628; answer:
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98. One way is to write the problem as the difference of two fractions, then apply eq.
(165), thus

16=1028
7=758

� 9=3908
7=758

¼ 16

7
=278� 9

7
=3158

each term now being in the form of eq. (157). Now applying eq. (158) we have

16

7
ðcos 278þ j sin 278Þ � 9

7
ðcos 3158þ j sin 3158Þ ¼ 1:1275 þ j1:9468; answer:

99. Setting n ¼ 2 in eq. (166) (and writing ‘‘x’’ in place of ‘‘�’’) you should find that

ðcos2 x� sin2 xÞ þ jð2 sin x cos xÞ ¼ cos 2xþ j sin 2x

hence we have

(a) cos 2x ¼ cos2 x� sin2 x; answer.

(b) sin 2x ¼ 2 sin x cos x; answer.

The above illustrates the fact that the algebra of complex numbers often leads to
important and entirely REAL results.

100. Noting that 25 ¼ 32, and upon setting � ¼ 488 and n ¼ 5 in eq. (166), we have

32ðcos 2408þ j sin 2408Þ ¼ �ð16:000 þ j27:713Þ; answer:

101. Writing the problem as 0:25ðcos 178þ j sin 178Þ�3, then applying eq. (166) for
n ¼ �3, and remembering that cosð�xÞ ¼ cos x and sinð�xÞ ¼ � sin x, we have

0:25ðcos 518� j sin 518Þ ¼ 0:157 � j0:194; answer:

102. First, by eq. (153),

� jx� jy ¼ ðcos xþ j sin xÞðcos yþ j sin yÞ
¼ ðcos x cos y� sin x sin yÞ þ jðsin x cos yþ cos x sin yÞ

By eqs. (161) and (153), or by putting A ¼ B ¼ 1 in eq. (161), we find it’s also true
that

� jx� jy ¼ � jðxþyÞ ¼ cosðxþ yÞ þ j sinðxþ yÞ
Thus the right-hand sides of the last two equations are equal, and hence, invoking the
principle of problem 99, we have

(a) cosðxþ yÞ ¼ cos x cos y� sin x sin y; answer:

(b) sinðxþ yÞ ¼ sin x cos yþ cos x sin y; answer:

103. Since 3 � j2 lies in the FOURTH QUADRANT of the complex plane, we have (see
Fig. 110)

h ¼ arctanð2=3Þ ¼ 33:69018

thus,

� ¼ 360 � h ¼ 326:30998
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Hence, by eqs. (168), (143), and (144), we have

ð3 � j2Þ7 ¼ ð
ffiffiffiffiffi
13

p
Þ7ðcos 2284:178þ j sin 2284:178Þ

¼ 7921:40ðcos 124:178þ j sin 124:178Þ
¼ ð�4449:06 þ j6553:97Þ; answer:

104. We begin by writing the problem in the form 6000ð3 þ j4Þ�5. Thus n ¼ �5 in eq.
(168). Next, since 3 þ j4 lies in the first quadrant, we have (Fig. 110)
� ¼ h ¼ arctanð4=3Þ ¼ 53:13018. Also, by eq. (143), A ¼ ffiffiffiffiffi

25
p ¼ 5. Thus, using

these values and setting n ¼ �5 in the right-hand side of eq. (168), and noting that
cosð�xÞ ¼ cos x and sinð�xÞ ¼ � sin x, we have

6000ð5Þ�5ðcos 265:658� j sin 265:658Þ ¼ �0:1457 þ j1:9144 approx:; answer:

105. The four ‘‘roots’’ are the values of ð3 þ j7Þ1=4. Thus, for use in eq. (176), we have, for
this problem, a ¼ 3; b ¼ 7; and n ¼ 4. We can proceed as follows.

First, the magnitude A of the complex number ð3 þ j7Þ is, by eq. (143), equal to

A ¼
ffiffiffiffiffi
58

p
¼ ð58Þ1=2

Thus, for this problem ðn ¼ 4Þ, we have that

A1=4 ¼ ð58Þ1=8 ¼ 1:6612 approx:; by calculator:

Next, noting that ð3 þ j7Þ lies in the first quadrant of the complex plane, the value of
� is, by eq. (144), equal to

� ¼ arctanð7=3Þ ¼ 66:80148 approx:;

thus

�

n
¼ 66:80148

4
¼ 16:70048 ¼ 16:78 approx:

Let us now denote the four roots by r1; r2; r3, and r4. Since, in this problem, n ¼ 4,
the four values of k to be substituted into eq. (176) are k ¼ 0; 1; 2, and 3, and upon
doing this we find that

for k ¼ 0: r1 ¼ 1:6612ðcos 16:78þ j sin 16:78Þ ¼ 1:591 þ j0:477; answer:

for k ¼ 1: r2 ¼ 1:6612ðcos 106:78þ j sin 106:78Þ ¼ �0:477 þ j1:591; answer:

for k ¼ 2: r3 ¼ 1:6612ðcos 196:78þ j sin 196:78Þ ¼ �1:591 � j0:477; answer:

for k ¼ 3: r4 ¼ 1:6612ðcos 286:78þ j sin 286:78Þ ¼ 0:477 � j1:591; answer:

The locations of the four roots on the complex plane are shown in the figure
below.

In the figure, the LENGTH of a line drawn from the origin to any point repre-
sents the MAGNITUDE of the complex number associated with that point. Refer-
ence to eq. (176) shows that all roots will have the SAME MAGNITUDE ðA1=nÞ, and
this fact is evident, geometrically, from inspection of the following figure.

Next, the ANGULAR factors associated with each root can be clearly seen by
writing eq. (176) in the exponential form, thus

ðaþ jbÞ1=n ¼ ðA1=nÞ� jð�=nþ360k=nÞ8
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Note that the angle for the FIRST ROOT (the root for k ¼ 0) is equal to �=n,
where � (eq. (144)) is relative to the real axis; here, in this problem (where n ¼ 4), we
have �=n ¼ �=4 ¼ 16:78, as shown in the figure.

Next notice that 360ðk=nÞ ¼ ð360=nÞk is the ANGULAR SEPARATION, in
degrees, between the lines drawn from the origin to the points at the root locations.
Since n is a given constant in any given problem, the angular separation is the SAME
for all roots in any given problem. Thus, in the present problem, where n ¼ 4, the
angular separation is ð90kÞ8, that is, 90 degrees, as inspection of the figure shows.

106. Here a ¼ 19; b ¼ �33; n ¼ 5. Thus, first, we have

A1=n ¼ ð1450Þ1=10 ¼ 2:07 approx:

Next, since the point ð19;�33Þ lies in the fourth quadrant (Fig. 110), we have

h ¼ arctanð33=19Þ ¼ 60:078

thus,

� ¼ 360 � h ¼ 299:938 approx:

therefore, �=n ¼ 59:998, and hence eq. (176) becomes

ð19 � j33Þ1=5 ¼ 2:07 cosð59:99 þ 72kÞ8þ j sinð59:99 þ 72kÞ8½ �
¼ 2:07=ð59:99 þ 72kÞ8 ðsee eqs: ð157Þ and ð158Þ; section 6:5Þ

(see eqs. (157) and (158), section 6.5)
Now, setting, successively, k ¼ 0; 1; 2; 3, and 4 into the last expressions gives

for k ¼ 0: 2:07=59:998 ¼ 1:04 þ j1:79; answer:

for k ¼ 1: 2:07=131:998 ¼ �1:39 þ j1:54; answer:

for k ¼ 2: 2:07=203:998 ¼ �1:89 � j0:84; answer:

for k ¼ 3: 2:07=275:998 ¼ 0:22 � j2:06; answer:

for k ¼ 4: 2:07=347:998 ¼ 2:03 � j0:43; answer:
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Thus all five roots have the same magnitude, 2.07. To show the above results
graphically, draw a circle with center at the origin of the complex plane, and radius
of any convenient length to represent 2.07. The five roots are distributed around the
circumference of the circle, 728 apart, in accordance with the above angles.

107. We ordinarily say that ‘‘1 raised to a power is 1’’; thus, it might seem, offhand, that
the ONLY possible answer is that ð1Þ1=3 ¼ 1. This, however, assumes that the answer
has to be a real number, which is not true, because in mathematical applications ‘‘one
number is as valid as any other number’’ on the total number plane of Fig. 108. Thus,
as we’ll now find, the COMPLETE cube root of 1 is equal to the real number 1, plus
two other roots, both complex numbers.

To see why this is true, let us begin by noting that 1 ¼ 1 þ j0; thus, ‘‘1’’ can be
regarded as being a complex number, aþ jb, having a ¼ 1 and b ¼ 0. Then

A ¼ ð1Þ1=2 ¼ 1 ðby eq: ð177ÞÞ
and

� ¼ arctan 0 ¼ 08 ðby eq: ð178ÞÞ
thus ðn ¼ 3Þ

A1=n ¼ ð1Þ1=6 ¼ 1 ðby eq: ð179ÞÞ
Then, since �=n ¼ 0=n ¼ 0, eq. (176) becomes

ð1Þ1=3 ¼ ð1Þ½cosð120kÞ8þ j sinð120kÞ8� ¼ 1=ð120kÞ8

which, upon successively setting k ¼ 0; 1, and 2, gives the ‘‘three cube roots of unity,’’
thus

for k ¼ 0: r1 ¼ cos 0 þ j sin 0 ¼ 1:000; answer:

for k ¼ 1: r2 ¼ cos 1208þ j sin 1208 ¼ �0:500 þ j0:866; answer:

for k ¼ 2: r3 ¼ cos 2408þ j sin 2408 ¼ �0:500 � j0:866; answer:

108. The purpose here is to emphasize that induced voltage depends not upon the amount
of current, but only upon the rate of change of current. Here, in both (a) and (b), the
current is changing at the same constant rate of 2 amperes per second, di=dt ¼ 2 amp/
sec. Hence, by eq. (181), in both cases, v ¼ ð0:62Þð2Þ ¼ 1:24 volts, answer.

109. By eq. (181),

di=dt ¼ v=L ¼ 5:52=0:62 ¼ 8:903 amp=sec; answer:

110. By eq. (181),

L ¼ v=ðdi=dtÞ ¼ 0:048=76 ¼ 6:316 � 10�4 henrys

¼ 631:6 microhenrys; answer:

111. Since 0.00065meters ¼ 0:65mm, and since E ¼ 3000 volts per mm, we have that

v ¼ ð3000Þð0:65Þ ¼ 1950 volts; answer:
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112. 0:015 mF ¼ 1:5 � 10�2 � 10�6 F ¼ 1:5 � 10�8 F; thus, by eq. (184),

q ¼ Cv ¼ 1:5 � 10�8 � 2:9 � 102 ¼ 4:35 � 10�6 coulombs; answer:

113. (a) Using either eq. (188) or (189), you should find that

CT ¼ 0:0368 mF approx:; answer:

(b) By eq. (191),

CT ¼ 0:93 mF; answer:

114. We must use eq. (190), but to do this we first need to know the value of CT. Upon
using either eq. (188) or (189), you should find that CT ¼ 0:03934 mF approx. Hence,
for V ¼ 450 volts and CT ¼ 0:03934 mF, eq. (190) becomes

Vx ¼ 17:703=Cx volts

where, since CT is in mfd, Cx is also in mfd.
Thus we have that

V1 ¼ 17:703=0:15 ¼ 118:02 volts;

V2 ¼ 17:703=0:06 ¼ 295:05 volts;

V3 ¼ 17:703=0:48 ¼ 36:88 volts:

Since none of the capacitor voltages will exceed 300 volts, it is theoretically proper to
specify a capacitor voltage rating of 300 volts.

115. The three capacitors are, together, equivalent to a single capacitor of capacitance
CT ¼ 0:03934 � 10�6 farads. Hence, by eq. (185),

W ¼ 1
2 ð0:03934Þð10�6Þð450Þ2 ¼ 3:983 � 10�3 joules; answer:

116. (a) Here, �VV ¼ V ¼ 115 volts, R ¼ 28 ohms, !L ¼ 2�ð60Þð0:12Þ ¼ 45:2389 ohms.
Now substituting these values into eq. (197) we have

�II ¼ 115

28 þ j45:2389

hence

j�II j ¼ 115ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð28Þ2 þ ð45:2389Þ2

q ¼ 2:1615 amperes; answer:

(b) By eq. (203), � ¼ arctanð45:2389Þ=28 ¼ 58:2458, answer.

(c) Voltmeters are calibrated to read rms volts; thus (see Fig. 129)

VL ¼ !LI ¼ ð45:2389Þð2:1615Þ ¼ 97:784 volts rms; answer:

117. Here,

�VV ¼ V ¼ 95 volts, RT ¼ 30 ohms; !L ¼ 103ð37Þ10�3 ¼ 37 ohms ð1mH ¼ 10�3 HÞ:
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Hence

(a) �II ¼ 95

30 þ j37
, thus

j�II j ¼ 95ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð30Þ2 þ ð37Þ2

q ¼ 1:994 amperes; answer:

(b) By eq. (203),

� ¼ arctanð37=30Þ ¼ 50:9658 approx:; answer:

(c) Let L 0 (‘‘L prime’’) denote the 25 mH inductor; then

V ¼ !L 0I ¼ ð103Þð25Þð10�3Þð1:994Þ ¼ 49:85 volts rms; answer:

118. (a) Setting �ZZ1 ¼ 8 ohms; �ZZ2 ¼ j12 ohms; �ZZ3 ¼ ð4 þ j6Þ ohms in eq. (207), you
should find that

1
�ZZT

¼ 5 � j24

24ð3 � j2Þ
thus

�ZZT ¼ 24ð3 � j2Þ
5 � j24

which, upon rationalizing (section 6.3), becomes

�ZZT ¼ ð2:516 þ j2:476Þ ohms approx:; answer:

(b) By eq. (206),

�IIT ¼ 60

2:516 þ j2:476

which, after rationalizing, becomes

�IIT ¼ 60ð2:516 � j2:476Þ
12:461

¼ ð12:115 � j11:922Þ amperes; answer:

(c) From part (b) we have the vector diagram:

thus

� ¼ arctan
�11:922

12:115
¼ �44:548 approx:

meaning that �IIT ‘‘lags’’ �VV by approximately 44.548, answer. (In polar form,
�IIT ¼ 16:997=�44:548:Þ
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(d) �II1 ¼
60

8
¼ 7:50 amperes, answer. (In polar form, 7:50=08Þ

(e) �II2 ¼
60

j12
¼ �j5 amperes, answer. (In polar form, 5=�908Þ

(f) �II3 ¼
60

4 þ j6
¼ 30

2 þ j3
which, upon rationalizing, becomes

�II3 ¼
30ð2 � j3Þ

13
¼ ð4:615 � j6:923Þ amperes; answer:

ðIn polar form; 8:320=�56:318Þ
(g) By eq. (206),

�IIT ¼ 7:50 � j5:00 þ 4:615 � j6:923

¼ ð12:115 � j11:923Þ amperes; which does check:

(h) Relative to the reference voltage 60=08, the vector diagram can be drawn as
follows:

The basic graphical procedures is as follows.
First find the vector sum of �II1 and �II2, then combine this vector with the �II3 vector

to get the final resultant vector �IIT.

119. For this particular case ð �ZZ1 ¼ R; �ZZ2 ¼ j!LÞ, eq. (209) becomes ð �VV ¼ V=08 ¼
real number VÞ

�ZZT ¼ jR!L

Rþ j!L

thus

�IIT ¼ V
�ZZT

¼ VðRþ j!LÞ
jR!L

Now, to express the current in the rectangular form I 0 þ jI 00, all we need do is
multiply the numerator and denominator by �j, thus getting

�IIT ¼ Vð�jRþ !LÞ
R!L

¼ V
1

R
� j

1

!L

� �
; answer:
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120. Drawing the loop currents in the manner of Fig. 135 (denoting �II1 by �IIT), the three
simultaneous equations are

8�IIT � 8�II2 þ 0�II3 ¼ 60

�8�IIT þ ð8 þ j12Þ�II2 � j12�II3 ¼ 0

0�IIT � j12�II2 þ ð4 þ j18Þ�II3 ¼ 0

We next must find the value of the ‘‘denominator determinant’’ D, thus

D ¼
8 �8 0

�8 ð8 þ j12Þ �j12

0 �j12 ð4 þ j18Þ

�������
������� ¼ ð8Þð4Þð2Þ

1 �1 0

�2 ð2 þ j3Þ �j3

0 �j6 ð2 þ j9Þ

�������
�������

The easiest way, now, is to multiply each element of the first row by 2 and add the
result to the corresponding element of the second row, thus getting

D ¼ ð64Þ
1 �1 0

0 j3 �j3

0 �j6 ð2 þ j9Þ

�������
������� ¼ j192

1 �1

�j6 ð2 þ j9Þ

����
���� ¼ �192ð3 � j2Þ

hence

�IIT ¼

ð60Þð4Þð2Þ
1 �8 0

0 ð2 þ j3Þ �j3

0 �j6 ð2 þ j9Þ

�������
�������

�192ð3 � j2Þ ¼ 480

192

5 � j24

3 � j2

thus, rationalizing,

�IIT ¼ ð12:115 � j11:923Þ amperes ðAÞ; answer; as in problem 118ðbÞ:

121. (a) Here, ! ¼ 2�f ¼ ð2:5133Þ104 rad/sec, C ¼ ð5Þ10�7 farads; thus,

1

!C
¼ 1

ð2:5133Þ104ð5Þ10�7
¼ 79:577 ohms

thus, by eq. (219),

j �ZZj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16332:50

p
¼ 127:799 ohms; approx:

hence, by eq. (220),

j�II j ¼ 95:00

127:799
¼ 0:743 A; answer:

(b) By eq. (221),

� ¼ arctan 0:7958 ¼ 38:5128; answer:

(c) Ac meters read magnitude of rms values; hence, voltmeter reading across
R ¼ ð0:743Þð100Þ ¼ 74:3 volts, answer.

(d) Voltmeter reading across C ¼ ð1=!CÞj�II j ¼ ð79:577Þð0:743Þ ¼ 59:126 volts,
answer.

(e) The details of the arrival of the full answer are as follows. Using rms values
(instead of peak values), Fig. 138 becomes, on the complex plane, for the above
values,
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Hence

�VVR ¼ 74:300ðcos 38:5128þ j sin 38:5128Þ ¼ ð58:138 þ j46:265Þ volts

and

�VVC ¼ 59:126ðcos 51:4888� j sin 51:4888Þ ¼ ð36:817 � j46:265Þ volts

thus

�VVR þ �VVC ¼ 94:955 þ j0 ¼ 95=08 approx:; the applied reference voltage; answer:

122. (a) Since the value of each capacitance is 0:12 � 10�6 farads, eq. (222) becomes

�II ¼ 75

36 � j3

ð5Þð105Þð0:12Þ10�6

¼ 37:5

18 � j25

which, upon rationalizing (multiplying numerator and denominator by conju-
gate of denominator), becomes

�II ¼ 0:7113 þ j0:9879; thus j�II j ¼ 1:2173 A; answer:

(b) Here, �II ¼ aþ jb amperes, where a and b have
the values found in part (a); thus, from the
vector diagram to the right,

� ¼ arctanðb=aÞ ¼ arctan
0:9879

0:7113
¼ 54:2468; answer

(c) j �VVCj ¼ j�II jð1=!CÞ ¼ ð1:2173Þð1=0:06Þ ¼ 20:288 V, answer.

123. (a) First, in complex notation,

for 0:25 mF capacitor; �jð1=!CÞ ¼ �j40 ohms;

for 0:32 mF capacitor; �jð1=!CÞ ¼ �j31:25 ohms:

Here we’re asked to find the total (generator) current �IIT; let us do this
in two different ways, as follows.

FIRST WAY: Since �IIT ¼
�VV
�ZZT

¼ 60
�ZZT

, where �ZZT is the total impedance

seen by the generator, let us begin by making use of eq. (207); thus,
noting that 1=ð�j40Þ ¼ j=40,

1
�ZZT

¼ j

40
þ 1

32
þ 1

16 � j31:25
¼ 40 þ j32

1280
þ 1

16 � j31:25

Solutions to Problems478



hence

�IIT ¼ 60
�ZZT

¼ 3

8
ð5 þ j4Þ þ 60

16 � j31:25

which, after rationalizing the fraction, becomes

�IIT ¼ 3

8
ð5 þ j4Þ þ 60ð16 þ j31:25Þ

1232:5625
¼ 2:6539 þ j3:0212 A approx:

which is a leading current of magnitude j�IITj ¼ 4:021 A, answer.

SECOND WAY: Let us now apply the ‘‘loop current’’ procedure, explained
in connection with Fig. 135 and problem 120. Using the same current notation
and reference directions as in Fig. 135 (denoting �II1 by �IIT), the three simulta-
neous equations for Fig. 140 are

�j40�IIT þ j40�II2 þ 0�II3 ¼ 60

j40�IIT þ ð32 � j40Þ�II2 þ �32�II3 ¼ 0

0�IIT � 32�II2 þ ð48 � j31:25Þ�II3 ¼ 0

�j2�IIT þ j2�II2 þ 0�II3 ¼ 3

¼ j5�IIT þ ð4 � j5Þ�II2 � 4�II3 ¼ 0

0�IIT � 32�II2 þ ð48 � j31:25Þ�II3 ¼ 0

The value of the denominator determinant D is therefore equal to

D ¼ j2

�1 1 0

j5 ð4 � j5Þ �4

0 �32 ð48 � j31:25Þ

��������

�������� ¼ j2

�1 0 0

j5 4 �4

0 �32 ð48 � j31:25Þ

��������

��������
¼ �8ð31:25 þ j16Þ

�IIT ¼

3 j2 0

0 ð4 � j5Þ �4

0 �32 ð48 � j31:25Þ

��������

��������
�8ð31:25 þ j16Þ ¼ 3½ð4 � j5Þð48 � j31:25Þ � 128�

�8ð31:25 þ j16Þ

¼ 3ð92:25 þ j365Þ
8ð31:25 þ j16Þ

Hence

j�IITj ¼
3j92:25 þ j365j
8j31:25 þ j16j ¼ 4:021 A; answer:

(b) � ¼ arctan
3:0212

2:6539
¼ 48:7038 approx., answer.

124. Note: To save space, we’ve generally rounded calculator values off to five decimal
places.
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First, ! ¼ 2�f ¼ 2�ð28Þ103 ¼ ð1:75929Þ105 rad/sec. Hence the reactances are

for 35 microhenry coil; j!ð35Þ10�6 ¼ j6:15752 ohms;

for 65 microhenry coil; j!ð65Þ10�6 ¼ j11:43539 ohms;

for 0:22 microfarad cap:; �j=!ð22Þ10�8 ¼ �j25:83687 ohms;

total resistance ¼ 2 þ 4 ¼ 6 ohms; a real number:

Let �ZZT be the total impedance seen by the generator. Since Fig. 141 is a series
circuit, the REAL PART of �ZZT is the sum of all the real components and the
IMAGINARY PART is the sum of all the imaginary components; hence, for the
case of Fig. 141 we have

�ZZT ¼ 6 � j8:24396

thus, by Ohm’s law,

�II ¼ 20

6 � j8:24396
¼ 20ð6 þ j8:24396Þ

103:96288
¼ ð1:15426 þ j1:58594Þ A; leading:

Therefore, since the reactance of the 65 microhenry coil is j11:43539 ohms, and
since the voltage drop across the coil is equal to the coil reactance times the current �II ,
we have that

�VVa ¼ ð1:15426 þ j1:58594Þð j11:43539Þ
thus

�VVa ¼ ð�18:13584 þ j13:19941Þ volts approx:; answer:

The above answer is in terms of ‘‘rectangular coordinates,’’ expressed by a com-
plex number lying in the second quadrant. To put the same answer in terms of polar
coordinates, note that

j �VVaj ¼ 22:43063 and � ¼ arctan
13:19941

18:13584

����
���� ¼ 36:058; approx:

Since � actually ends in the second
quadrant, we have that

� ¼ 180 � 36:05 ¼ 143:958

Thus, in polar coordinates the answer is

�VVa ¼ 22:43=143:958

as shown to the right.
Thus an ac voltmeter* connected from point ‘‘a’’ to ground would read

22.43 volts, which, you’ll note, is greater than the generator voltage of 20 volts.
This is the result of the phenomenon of ‘‘series resonance,’’ which we take up in
section 8.6.

125. First,

reactance of inductor ¼ j!L ¼ jð106Þð25Þ10�6 ¼ j25 ohms

and

reactance of capacitor ¼ �j=!C ¼ �j=ð106Þð5Þ10�8 ¼ �j20 ohms
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Let us now use the method of loop currents, and let �II1 and �II2 denote the two loop
currents required for Fig. 142. In doing this, let us designate that positive current
flows in the clockwise sense around each loop (as in Fig. 135). Thus (see discussion
with Fig. 135) the simultaneous vector equations for Fig. 142 are

ð15 þ j25Þ�II1 � 15�II2 ¼ 30 ¼ ð3 þ j5Þ�II1 � 3�II2 ¼ 6

�15�II1 þ ð25 � j20Þ�II2 ¼ 0 � 3�II1 þ ð5 � j4Þ�II2 ¼ 0

hence

D ¼ ð3 þ j5Þ �3

�3 ð5 � j4Þ

����
���� ¼ 13ð2 þ jÞ

and hence

�II2 ¼
ð3 þ j5Þ 6

�3 0

����
����

13ð2 þ jÞ ¼ 18

13ð2 þ jÞ ¼
18ð2 � jÞ

65
¼ 0:55385 � j0:27692 A

thus

�VVy ¼ 10�II2 ¼ ð5:5385 � j2:7692Þ volts ðrect: formÞ; answer; or

�VVy ¼ 6:19221=�26:5668 volts ðpolar formÞ; answer:

126. We must find the TOTAL CURRENT flowing through the 15-ohm resistance. Since
we already know the value of �II2, this means we must now find the value of �II1. Since
D ¼ 13ð2 þ jÞ as before, we have that

�II1 ¼
6 �3

0 ð5 � j4Þ

����
����

13ð2 þ jÞ ¼ 6ð5 � j4Þ
13ð2 þ jÞ ¼

6ð5 � j4Þð2 � jÞ
65

¼ 0:55385 � j1:20000 amperes

Since our equations have been written for the case where
‘‘positive’’ current flows in the ‘‘clockwise’’ sense, the situation for
the 15-ohm resistance is as shown to the right. From inspection we
see that the total resultant current �IIT in the 15-ohm resistance is
equal to

�IIT ¼ �II1 � �II2 ¼ �j0:92308 A approx:

and thus, by Ohm’s law,

�VVx ¼ ð15Þ�IIT ¼ �j13:8462 volts; answer;

or, in polar form

�VVx ¼ 13:8462=�908; answer:

Note: In problems 125 and 126 we chose the ‘‘clockwise’’ direction around the loop
to be the ‘‘positive’’ direction. It should be noted, however, that the same rms values
of currents and voltages will be obtained regardless of which direction, cw or ccw, is
chosen to be the positive direction. Of course, once the positive direction is desig-
nated for each loop, in a given problem, that designation must not be changed during
the writing of the network equations.
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127. The first step is to find the voltage between terminals a and b in Fig. 143; this is the
voltage �VV 0 of the equivalent generator, and is found by applying Ohm’s law to Fig.
143 as follows.

Note that the voltage between terminals a and b is the voltage drop across
capacitor C, which is equal to the current �II times the reactance �jXC of capacitor C;
that is, we have �VV 0 ¼ ð�IIÞð�jXCÞ. However, from inspection of Fig. 143,
�II ¼ V=ðR� jXCÞ, and thus we have

�VV 0 ¼ �jVXC

R� jXC

or, rationalizing,

�VV 0 ¼ �jVXCðRþ jXCÞ
R2 þ X2

C

¼ VXCðXC � jRÞ
R2 þ X2

C

; answer; in terms of XC:

Next, the impedance �ZZ 0 of the equivalent generator is the impedance seen looking
into terminals a, b in Fig. 143; thus, since R and �jXC are in parallel, we have, using
eq. (209),

�ZZ 0 ¼ �jRXC

R� jXC

¼ �jRXCðRþ jXCÞ
R2 þ X2

C

¼ RXCðXC � jRÞ
R2 þ X2

C

; answer; in terms of XC:

Now setting XC ¼ 1=!C in the above answers, you can verify that

�VV 0 ¼ Vð1 � jR!CÞ
1 þ ðR!CÞ2 and �ZZ 0 ¼ Rð1 � jR!CÞ

1 þ ðR!CÞ2 ; answers:

Thevenin’s theorem thus allows the replacement of a somewhat complicated net-
work with a simple series circuit in the form of Fig. 144. This is useful when, given a
complicated network, we wish to find the current that would flow in a number of
different loads when connected to the original complicated network.

128. (a) First, XC ¼ 2 ohms and XL ¼ 3 ohms. Now, from left to right in Fig. 145, let �II1
and �II2 denote the two loop currents, with the positive sense to be the clockwise
direction. Then, noting that 5=908 ¼ j5 (note 16 in Appendix), the two simulta-
neous equations for Fig. 145 are

2ð1 � jÞ�II1 � 2�II2 ¼ 5ð2 þ jÞ
�2�II1 þ ð4 þ j3Þ�II2 ¼ �j5

Since, from inspection of Fig. 145, �VVx ¼ 2�II2, let us solve for �II2, as follows.
First,

D ¼ 2
ð1 � jÞ �2

�1 ð4 þ j3Þ

����
���� ¼ 2ð5 � jÞ

and hence

�II2 ¼
ð2Þð5Þ ð1 � jÞ ð2 þ jÞ

�1 �j

����
����

2ð5 � jÞ ¼ 5

5 � j

thus

�VVx ¼ 2�II2 ¼
10

5 � j

10ð5 þ jÞ
26

¼ ð1:9231 þ j0:3846Þ volts; answer:

(b) j �VVxj ¼ 1:9612 volts approx., answer.
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129. The value of �II2 is known from problem 128; hence
(see figure to the right) the value of �VVy is equal to

�VVy ¼ ð2 þ j3Þ�II2 ¼
5ð2 þ j3Þ

5 � j

thus

j �VVyj ¼
5j2 þ j3j
j5 � jj ¼ 5

ffiffiffiffiffi
13

26

r
¼ 3:5355 V; answer:

130. Note that we have a total of five node points (not counting the reference ground
node) labeled a, b, c, x, and y, in Fig. 147. From inspection of the figure we have three
known node voltages, thus

�VVa ¼ 10=08 ¼ 10 volts; �VVb ¼ 15=908 ¼ j15 volts; �VVc ¼ 20=08 ¼ 20 volts

Next note that XL ¼ !L ¼ 4 ohms and XC ¼ 1=!C ¼ 2 ohms. Then, from inspec-
tion of the figure and in accordance with eq. (223), we have that

�II1 ¼
�VVa � �VVx

j4
; �II2 ¼

�VVb � �VVx

2
; �II3 ¼

�VVx � �VVy

5
; �II4 ¼

�VVy

3
; �II5 ¼

�VVc � �VVy

�j2

Next, at node x we have �II1 þ �II2 � �II3 ¼ 0, and at node y �II3 � �II4 þ �II5 ¼ 0, which,
after substituting in the above values, gives the two simultaneous equations

�ð5 þ j14Þ �VVx þ j4 �VVy ¼ 100

j6 �VVx þ ð15 � j16Þ �VVy ¼ 300

the solution of which, by determinants, gives the required answers

�VVx ¼ ð�0:5242 þ j10:4296Þ volts; and �VVy ¼ ð11:2024 þ j12:1589Þ volts:

131. Ac voltmeters read magnitude of resultant rms voltage; thus

j �VVx � �VVyj ¼ j � 11:7266 � j1:7293j ¼ 11:8534 V; answer:

132. First

reactance of 2 microfarad cap: ¼ �j5 ohms;

reactance of 60 microhenry ind: ¼ j6 ohms;

reactance of 160 microhenry ind: ¼ j16 ohms;

reactance of 0:5 microfarad cap: ¼ �j20 ohms;

10=908 ¼ j10 volts; 20=2708 ¼ �j20 volts:
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Then,

BRANCH 1: �VV1 ¼ 12 V; �YY1 ¼ 1=8 ¼ 0:1250 mhos;

BRANCH 2: �VV2 ¼ 15 V; �YY2 ¼ 1=� j5 ¼ j0:2000 mhos;

BRANCH 3: �VV3 ¼ j10 V; �YY3 ¼ 1=j6 ¼ �j0:1667 mhos;

BRANCH 4: �VV4 ¼ 0 V; �YY4 ¼
1

3 � j4
¼ 3 þ j4

25
¼ 0:1200 þ j0:1600 mhos;

BRANCH 5: �VV5 ¼ �j20 V; �YY5 ¼ 1=5 ¼ 0:2000 mhos:

Substitution of the above values into eq. (225) gives

j �VVaj ¼ j �VVoj ¼
3:1667 � j1:0000

0:4450 þ j0:1933

����
���� ¼ 3:3208

0:4852
¼ 6:844 V approx:; answer:

133. Here, V ¼ 115 volts, R ¼ 28 ohms, X ¼ 45:2389 ohms, thus Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ X2

p
¼

53:2030 ohms approximately. Hence (using the value of I found in the solution to
problem 116) we have

(a) Pa ¼ VI ¼ ð115Þð2:1615Þ ¼ 248:5725 watts, answer.

(b) By eq. (232), Pt ¼ VIðR=ZÞ ¼ 130:82 watts, answer.

(c) By eq. (233), Px ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

a � P2
t

p
¼ 211:363 watts, answer.

134. The EASY way is to note that, in Fig. 134, since R and L are in parallel (and since
only R actually consumes energy) the true power output of the generator is equal to
the power delivered to the 12-ohm resistance, which is (since P ¼ VI ¼ V2=R)

Pt ¼ ð28Þ2=12 ¼ 65:333 W ðwattsÞ approx:; answer:

135. Note, first, that the reactance of the inductor coil is !L ¼ X ¼ 3 ohms. Then, since
the 2-ohm resistance is in series with the parallel combination of the 4-ohm resistance
and the 3-ohm inductive reactance, the generator sees an impedance equal to

�ZZ ¼ 2 þ j12

4 þ j3
¼ 2 þ j12ð4 � j3Þ

ð4 þ j3Þð 4 � j3Þ ¼ 2 þ 1:44 þ j1:92 ¼ 3:44 þ j1:92 ohms

Thus the generator sees an impedance �ZZ ¼ Rþ jX ¼ 3:44 þ j1:92 ohms, as shown
in the following figure.

Hence (see paragraph following eq. (234)) we now have

j �ZZj ¼ Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:44Þ2 þ ð1:92Þ2

q
¼ 3:9395 ohms
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thus

I ¼ 32=3:9395 ¼ 8:1229 A

Hence, in this problem, V ¼ 32; I ¼ 8:1229;R ¼ 3:44, and Z ¼ 3:9395; thus

Pt ¼ VIðR=ZÞ ¼ 226:98 watts; answer:

136. Let us denote the two loop currents (from left to right in Fig. 158) by �II1 and �II2, and
let us draw both current arrows in the clockwise sense. Then the two network
equations are

6�II1 � 4�II2 ¼ 32

�4�II1 þ ð4 þ j3Þ�II2 ¼ 0

We must now solve the above two simultaneous equations for the values of �II1 and
�II2. Using the method of determinants, we first have that

D ¼ 6 �4

�4 ð4 þ j3Þ

����
���� ¼ 2ð4 þ j9Þ

and next, upon applying the standard procedure of solution, you should find that

�II1 ¼
32ð4 þ j3Þ

D
¼ ð7:092784 � j3:958763Þ A approx:; and

�II2 ¼
128

D
¼ ð2:639175 � j5:938144Þ A approx:

The solutions to parts (a), (b), and (c) are now as follows.

(a) From the above, j�II1j ¼ I1 ¼ 8:122770 A approx., and thus the power, P2, to the
2-ohm resistance is

P2 ¼ I2
1R ¼ 131:959 W; answer:

(b) Now, in regard to the 4-ohm resistance, since
both currents were drawn in the clockwise
sense, we see, from the diagram to the right,
that �II4 ¼ �II1 � �II2 ¼ 4:453609 þ j1:979381,
and thus j�II4j ¼ j�II1 � �II2j ¼ I ¼ 4:873662 A
approx.; thus the power to the 4-ohm
resistance is

P4 ¼ I2R ¼ 95:010 W approx:; answer:

(c) PT ¼ P2 þ P4 ¼ 131:959 þ 95:010 ¼ 226:97 watts approx., which does check
with the answer obtained in problem 135.

137. From inspection of Fig. 141, and also from the solution to problem 124, we have
V ¼ 20 volts, R ¼ 6 ohms, j �ZZj ¼ 10:19622 ohms, and j�II j ¼ 1:961510 A. Hence

(a) Pa ¼ VI ¼ 39:230 W, answer.

(b) By eq. (232), Pt ¼ VIðR=ZÞ ¼ 23:085 W, answer.

138. Fromthe solution to problem126, �II1 ¼ 0:55385 � j1:20000 A.Hence the component of
generator current IN PHASE with the generator voltage of 30 volts is 0.55385 amperes,
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and thus the true power output of the generator is (see discussion with Fig. 150)

Pt ¼ ð30Þð0:55385Þ ¼ 16:6155 W approx:; answer:

139. (a) From the solution to problem 126, the magnitude of current in the 15-ohm
resistance is equal to 0.92308A, and thus the power to the 15-ohm resistance is

I2R ¼ 12:7812 W; answer:

(b) From the solution to problem 125, the magnitude of current in the 10-ohm
resistance equals 0.61922A, thus the power to the 10-ohm resistance is

I2R ¼ 3:8344 W; answer:

Since power is a scalar quantity, not a vector quantity, the total power is the sum
of the above two answers, which does check with the answer found in problem 138.

140. Disregard the value of R because, in a series circuit, the resonant frequency is inde-
pendent of the value of R. Then, from sections 7.5 and 7.6, we have that
L ¼ 4 � 10�6 henrys and C ¼ 25 � 10�10 farads; thus, by eqs. (238) and (239), we
have

!0 ¼
1ffiffiffiffiffiffiffiffiffiffiffi

10�14
p ¼ 1

10�7
¼ 107 rad=sec; answer; or

f0 ¼
107

2�
¼ 1:5916 � 106 Hz; answer; or

¼ 1:5916 MHz ðmegahertzÞ:

141. From eq. (239), C ¼ 1

4�2f 2
0 L

, upon which, after substituting in f0 ¼ 5 � 105 Hz and

L ¼ 4 � 10�4 henry, you should find that

C ¼ 10�8=4�2 ¼ 0:02533 � 10�8 F ¼ 253:3 pF; answer:

142. (a) At resonance, I0 ¼ V=R ¼ 20=5 ¼ 4 amperes; hence

P ¼ I2
0R ¼ ð16Þð5Þ ¼ 80 watts; answer:

(b) By eq. (238), !0 ¼ ð2Þ107 rad=sec, at which frequency XC ¼ 1=!0C ¼ 20 ohms;
thus, in magnitude,

VC ¼ IXC ¼ 4ð20Þ ¼ 80 volts; answer:

(c) We now have XC ¼ 1=!C ¼ 40 ohms, XL ¼ !L ¼ 10 ohms, R ¼ 5 ohms. Thus,
by eq. (236), j�II j ¼ I ¼ 20=

ffiffiffiffiffiffiffiffi
925

p
; hence

VC ¼ IXC ¼ 800=
ffiffiffiffiffiffiffiffi
925

p
¼ 26:3038 volts; answer:

(d) By eq. (237),

� ¼ arctanð30=5Þ ¼ 80:53778; leading; answer:

(e) By eq. (228), and also using the value of I from (c) above, we have

P ¼ ð20Þð20=
ffiffiffiffiffiffiffiffi
925

p
Þ cos 80:53778 ¼ 2:1620 watts approx:; answer:

OR, using the equation,

P ¼ I2R ¼ ð400=925Þð5Þ ¼ 2:1622 watts approx:; answer:
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143. The values in the following table were calculated using eq. (248), with freehand plots
of the data shown to the right. As the curves show, the higher Q circuit is clearly
superior to the lower Q circuit as far as MAXIMUM OUTPUT VOLTAGE and
SELECTIVITY are concerned. Note, however, that the higher Q circuit has a rela-
tively NARROW BANDWIDTH as compared with the low Q circuit, and this may
or may not be an advantage, depending upon the rate of transmission of information
through the circuit. (It is a fundamental fact of nature that, the more information
that is to be transmitted through a system per unit time, the greater must be the
bandwidth of the system.)

144. Since the generator is operating at the resonant frequency defined by eq. (252), it
would see a pure resistance of R0 ohms, given by eq. (254). Thus, upon substituting
the given values into eq. (254) (see conversion formulas following eq. (184) in section
7.6), we find that

R0 ¼
10�4

ð50Þð10�10Þ ¼ 20,000 ohms; answer:

Thus the LOW RESISTANCE load of 50 ohms appears to the generator as a
HIGH RESISTANCE load of 20,000 ohms. This can be of great practical advantage
if, for instance, the generator is a device having a relatively high internal resistance.

145. For Q ¼ 20, eq. (269) becomes

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 400d2ðd2 � 0:9975Þ2

q
d2 þ 400ðd2 � 1Þ2
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A, for A, for
d Q ¼ 10 Q ¼ 20

0.80 2.71 2.76

0.85 3.45 3.56

0.90 4.76 5.12

0.93 6.10 7.00

0.95 7.35 9.22

0.97 8.80 13.08

0.99 9.90 18.74

1.00 10.00 20.00

1.01 9.71 18.40

1.03 8.36 12.54

1.05 6.82 8.68

1.07 5.55 6.47

1.10 4.22 4.61

1.15 2.92 3.05

1.20 2.19 2.25



thus

The parallel circuit of Fig. 167 is widely used because it presents a very HIGH
IMPEDANCE at, and near, its resonant frequency (as the figure illustrates). Thus,
when used as a ‘‘tuned load’’ in an amplifier stage, the gain of the stage is great at,
and in the immediate neighborhood of, the resonant frequency, but low at undesired
frequencies away from the resonant frequency.

146. (a) Putting L ¼ ð250Þ10�6 and C ¼ ð4Þ10�9 into eq. (259), the approximate value of
!0 is

!0 ¼ 106 radians=second; answer; or

f0 ¼ !0=2� ¼ 159:155 kHz ðkilohertzÞ:
(b) Putting the given values of L, C, and >R into eq. (252) gives

!0 ¼ 106
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � 0:0064

p
, which for almost all practical purposes can be taken to be

!0 ¼ 106 rad/sec, the same value as found in part (a). Thus the answer to the ques-
tion is ‘‘yes.’’

147. (a) The generator sees a pure resistance at resonance, given by eq. (254); thus

R0 ¼
ð250Þ10�6

20ð4Þ10�9
¼ 3125 ohms; answer:

(b) By Ohms’s law, at resonance

�IIg ¼ Ig=08 ¼ 90=3125 ¼ 0:0288 amperes; answer:

(c) P ¼ V2=R0 ¼ 8100=3125 ¼ 2:592 watts, answer; or, if you wish,

P ¼ I2
gR0 ¼ ð0:0288Þ2ð3125Þ ¼ 2:592 watts; same answer:

(d) XC ¼ 1=!0C ¼ 250 ohms. Hence, by Ohm’s law,

�IIC ¼ 90

�j250
¼ j0:36 amperes; leading V by 908; answer:

(e) XL ¼ !0L ¼ 250 ohms. Hence, by Ohm’s law,

�IIL ¼ 90

20 þ j250
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d A d A

0.80 0.11 1.01 0.93

0.85 0.15 1.03 0.65

0.90 0.23 1.05 0.46

0.93 0.33 1.07 0.35

0.95 0.44 1.10 0.24

0.97 0.64 1.15 0.18

0.99 0.93 1.20 0.14

1.00 1.00



and thus, upon rationalizing,

�IIL ¼ ð0:02862 � j0:35771Þ amperes; lagging; answer:

(f) By eq. (256),

Q ¼ 250=20 ¼ 12:5; answer:

(g) P ¼ j�IILj2R ¼ ð0:12878Þð20Þ ¼ 2:576 watts approx., answer.

The answer here differs, by a very small amount, from the answer found in
part (c), because the true value of !0 is SLIGHTLY LESS than the value of !0

found by using eq. (259) (as was brought out in the solution to problem 146).
Hence the value of !0L used in calculating �IIL in part (e) is SLIGHTLY MORE
than the true value of !0L.

148. (a) Since the values of C;L, and R have not been changed, it follows that the values
of both !0 and Q, defined by eqs. (259) and (256), will have the same values as
found in problems 146 and 147. Likewise, R0 will still have the same value,
R0 ¼ L=RC ¼ 3125 ohms. Also note that, for this problem, by eq. (262),
d ¼ 1:05. Thus, upon substituting R0 ¼ 3125;Q ¼ 12:5, and d ¼ 1:05 into eq.
(268), we have that

�ZZp ¼ 3125
1 � j1:429313

2:744102

� 	
¼ 3125ð0:364418 � j0:520867Þ ohms

hence, upon applying Ohm’s law, then rationalizing, we have

�IIg ¼
V
�ZZp

¼ 90

3125ð0:364418 � j0:520867Þ ¼ ð0:025972 þ j0:037122Þ amperes; answer:

(b) � ¼ arctan
0:037122

0:025972
¼ 55:0228; answer:

(c) The first (and easiest) way is to multiply the generator voltage by the ‘‘in phase’’
component of the generator current (section 5.7); thus

P ¼ ð90Þð0:025972Þ ¼ 2:338 watts approx:; answer:

The second way is to make use of eq. (117) in Chap. 5; that is, P ¼ VI cos�,
where V and Ig are rms magnitudes of voltage and current. From part (a) you
can verify that Ig ¼ 0:045305 amperes; thus

P ¼ ð90Þð0:045 305Þ cos 55:0228 ¼ 2:338 watts; same answer:

149. We must first determine whether to use eq. (270) or eq. (274). To do this, make use of
eq. (271) or (275)); thus

Rin ¼ L=RC ¼ ð28:5Þ10�6=ð135Þð36Þ10�10 ¼ 58:848 ohms

This shows that Rin is less than R, and therefore we must use eq. (274), which gives
the value

!0 ¼ ð2:348Þ106 Hz ¼ 2:348 megahertz; answer:
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150. Here R ¼ 16 ohms and Rin ¼ 75 ohms, so that we must use the L-section of Fig. 170.
Hence, substituting the given values into eqs. (272) and (273), we find that

L ¼ ð16Þð10�6Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:6875

p
¼ ð30:725Þ10�6 H ¼ 30:725 mH; answer:

C ¼ 10�6

75

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:6875

p
¼ ð0:0256Þ10�6 F ¼ 0:0256 mF; answer:

151. Here R ¼ 125 ohms and Rin ¼ 85 ohms, so that we must use the reverse L section of
Fig. 171. Also note that, here, !0 ¼ 2�f0 ¼ ð2:26195Þ106 rad/sec, and upon substitut-
ing all these values into eqs. (276) and (277) you should find that

L ¼ ð25:778Þ10�6 H ¼ 25:778 mH; answer:

C ¼ ð2:426Þ10�9 F ¼ 0:002426 mF; answer; or

¼ 2426 pF ðpicofaradsÞ:

152. Let �ZZin denote the impedance looking to the right, into terminals (1, 1), in Fig. 171.
Since the inductor L is in series with the parallel combination of C and R, we have,

�ZZin ¼ jXL þ �jRXC

R� jXC

which, after rationalizing the fraction, then separating real and imaginary parts,
becomes

�ZZin ¼ RX2
C

R2 þ X2
C

þ j XL � R2XC

R2 þ X2
C

 !

Looking to the right, into terminals (1, 1), we are to see, at the resonant frequency
!0, a pure resistance; this means that, at the resonant frequency, the IMAGINARY
PART of the above equation must have the value ZERO. Thus, equating the above
imaginary part equal to zero gives the equation

R2XL þ XLX
2
C � R2XC ¼ 0

which is true at the resonant frequency !0, at which XL ¼ !0L, and XC ¼ 1=!0C.
Now, making these substitutions into the last equation, then multiplying by !0 and
solving for !0, should give eq. (274), answer.

153. Set XL ¼ !0L and XC ¼ 1=!0C in the equation for �ZZin found in the solution to
problem (152). Doing this, the imaginary part of the equation vanishes, leaving
�ZZin ¼ Rin; thus

Rin ¼ R=!2
0C

2

R2 þ 1=!2
0C

2
¼ R

1 þ !2
0R

2C2

Now substitute into the last equation the value of !0 given by eq. (274); doing this
gives the value L=RC, which is eq. (275), answer.

154. By eq. (275), C ¼ L=RinR, and substituting this value of C into eq. (274) gives, after a
bit of algebra, eq. (276). Then, also by eq. (275), L ¼ RinRC, and substituting this
value of L into eq. (274) gives eq. (277), answers.
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155. By inspection,

�ZZ1O ¼ 3 þ ð9Þð9Þ=18 ¼ 7:500 ohms;

�ZZ1S ¼ 3 þ ð9Þð4Þ=13 ¼ 5:769 ohms;

�ZZ2O ¼ ð5Þð13Þ=18 ¼ 3:611 ohms;

thus

by eq: ð282Þ; �ZZ3 ¼
ffiffiffiffiffiffiffiffiffiffiffi
6:251

p
¼ 2:500 ohms; answer;

by eq: ð283Þ; �ZZ2 ¼ 3:611 � 2:500 ¼ 1:111 ohms; answer;

by eq: ð284Þ; �ZZ1 ¼ 7:500 � 2:500 ¼ 5:000 ohms; answer:

In regard to the question asked, the answer is ‘‘yes,’’ because the value of a pure
resistance is theoretically the same at all frequencies.

156. The reactances are �j=!C ¼ �j5 ohms and, j!L ¼ j15 ohms. Then, by inspection of
Fig. 178, we have

�ZZ1O ¼ 10ð5 � j5Þ
15 � j5

¼ 10ð1 � jÞ
3 � j

¼ 10ð1 � jÞð3 þ jÞ
ð3 � jÞð3 þ jÞ ¼ ð4 � j2Þ ohms

Next, to find the value of �ZZ1S, first note that ‘‘5 ohms in parallel with j15 ohms’’ is

5ð j15Þ
5 þ j15

¼ j15

1 þ j3
¼ ð4:5 þ j1:5Þ ohms;

and with this in mind, inspection of Fig. 178 then shows that

�ZZ1S ¼ 10ð4:5 � j3:5Þ
14:5 � j3:5

¼ 775:0 � j350:0

222:50
¼ ð3:483 � j1:573Þ ohms

Next, looking into terminals (2, 2) with (1, 1) open-circuited, we see that

�ZZ2O ¼ j15 þ 5ð10 � j5Þ
15 � j5

¼ ð3:5 þ j14:5Þ ohms

The final step is to substitute the values of �ZZ1O; �ZZ1S; �ZZ2O, just found, into eqs.
(282) through (284). Let us begin with eq. (282); thus

�ZZ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3:5 þ j14:5Þð0:517 � j0:427Þ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:00 þ j6:00

p
To find the indicated square root, let us write the complex number 8:00 þ j6:00 in

the exponential form A� j�, as follows.
First, ð8:00 þ j6:00Þ ¼ 10� j�. Then, since ð8 þ j6Þ lies in the first quadrant of the

complex plane, we have � ¼ arctanð6=8Þ ¼ 36:869 908, and hence

ð8:00 þ j6:00Þ ¼ 10� j36:869 908*

Now, substituting this value into the above value of �ZZ3, and remembering thatffiffiffiffiffiffiffiffiffi
A� j�

p
¼

ffiffiffiffi
A

p
� j�=2 ¼

ffiffiffiffi
A

p �
cos

�

2
þ j sin

�

2

�
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(Euler’s formula), gives

�ZZ3 ¼
ffiffiffiffiffi
10

p
ðcos 18:43508þ j sin 18:43508Þ ¼ 3:000 þ j1:000 ohms;

then, by eqs. (283) and (284),

�ZZ2 ¼ 0:5 þ j13:5 ohms; and �ZZ1 ¼ 1:0 � j3:0 ohms:

Next, to find the actual values of inductance and capacitance required, we make
use of the reactance formulas XL ¼ !L and XC ¼ 1=!C, that is, L ¼ XL=! and
C ¼ 1=!XC. Thus, using ! ¼ 105 and the reactance values found above, we have that

for �ZZ3; XL ¼ 1:0 ohm; thus L ¼ 1=105 ¼ 10�5 H ðhenrysÞ ¼ 10 mH;

for �ZZ2; XL ¼ 13:5 ohms; thus L ¼ 13:5ð10�5ÞH ¼ 135 mH;

for �ZZ1; XC ¼ 3:0 ohms; thus C ¼ 1=ð105Þð3ÞF ðfaradsÞ ¼ 3:33 mF:

Thus the complete equivalent T for Fig. 178 is as shown below, with resistance
values in ohms.

157. It may be less confusing if we redraw the network in the form shown in the figure
below.

From the figure we see that

Z1O* ¼ 11 ohms in parallel with 20 ohms ¼ 220=31 ¼ 7:097 ohms;

Z1S ¼ 48=14 þ 60=17 ¼ 6:958 ohms;

Z2O ¼ 14 ohms in parallel with 17 ohms ¼ ð14Þð17Þ=31 ¼ 7:677 ohms:
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We now put the above values into eqs. (282), (283), and (284) to get the required
answers; thus

Z3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:677ð7:097 � 6:958Þ

p
¼ 1:033 ohms;

Z2 ¼ 7:677 � 1:033 ¼ 6:644 ohms;

Z1 ¼ 7:097 � 1:033 ¼ 6:064 ohms:

The equivalent network is shown
to the right.

158. Here we must use eqs. (285) through (289), and in using these equations the required
divisions will generally be easier to do if the complex numbers are expressed in either
the exponential or the polar form. Thus, if A=p and B=q are two complex numbers,
then (eq. (165) in Chap. 6)

A=p

B=q
¼ A

B
=p� q

and for this reason we’ve elected to write some of the following answers in both the
polar and rectangular forms, with final answers in rectangular form.

First, by eq. (288),

�ZZ 0 ¼ ð20 � j12Þð8 þ j18Þ ¼ 8ð5 � j3Þð4 þ j9Þ
thus,

�ZZ 0 ¼ 8ð47 þ j33Þ ¼ 459:426=35:0748 ohms

Next, by eq. (289),

�ZZ 00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ð5 � j3Þð5 � j3Þ

p
¼

ffiffiffi
8

p
ð5 � j3Þ ¼ 16:492=�30:9648 ohms

Then,

�ZZ2O � �ZZ 00 ¼ 5:858 � j3:515 ¼ 6:832=�30:9658 ohms

and

�ZZ1O � �ZZ 00 ¼ 3:858 þ j20:485 ¼ 20:845=79:3348 ohms

Now substitute the above values, in polar form, into eqs. (285) through (287);
then, by use of the polar formula C=� ¼ Cðcos�þ j sin�Þ, express the final answers
in rectangular form; thus

by eq: ð285Þ; �ZZA ¼ 67:246=66:0398 ¼ 27:310 þ j61:451 ohms; answer:

by eq: ð286Þ; �ZZB ¼ 27:858=66:0388 ¼ 11:314 þ j25:457 ohms; answer:

by eq: ð287Þ; �ZZC ¼ 22:040=�44:2608 ¼ 15:785 � j15:382 ohms; answer:

159. In eq. (298), combine the two quantities on the left-hand side over the common
denominator �ZZ2 þ �ZZ3, then multiply both sides by �ZZ2 þ �ZZ3, then replace �ZZ2 þ �ZZ3

with the right-hand side of eq. (299) to get

�ZZ1
�ZZ2 þ �ZZ1

�ZZ3 þ �ZZ2
�ZZ3 ¼

�ZZA
�ZZB

�ZZC

�ZZA þ �ZZB þ �ZZC

ðAÞ
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or, if we wish,

�ZZ1
�ZZ2 þ �ZZ1

�ZZ3 þ �ZZ2
�ZZ3 ¼ �ZZA

�ZZB
�ZZC

�ZZA þ �ZZB þ �ZZC

� �

hence, by eq. (303),

�ZZ1
�ZZ2 þ �ZZ1

�ZZ3 þ �ZZ2
�ZZ3 ¼ �ZZA

�ZZ2

which, upon solving for �ZZA, proves that eq. (304) is correct.
Next, upon making use of eq. (A) above and eq. (301), we have that

�ZZ1
�ZZ2 þ �ZZ1

�ZZ3 þ �ZZ2
�ZZ3 ¼ �ZZB

�ZZA
�ZZC

�ZZA þ �ZZB þ �ZZC

� �
¼ �ZZB

�ZZ3

which, upon solving for �ZZB, proves that eq. (305) is correct.
Next, again making use of eq. (A) and also eq. (302), you can verify that eq. (306)

is also correct.

160. First, ! ¼ 2�f ¼ ð3:1416Þ106 rad/sec. Next, from Fig. 180 we have �ZZA ¼ 30 ohms,
�ZZB ¼ j!L ¼ j62:832 ohms, �ZZC ¼ 20 ohms. Putting these values in equations (302),
(303), and (301), we have

�ZZ1 ¼
j1884:96

50 þ j62:832
¼ ð18:368 þ j14:617Þ ohms

�ZZ2 ¼
j1256:64

50 þ j62:832
¼ ð12:246 þ j9:745Þ ohms

�ZZ3 ¼
600

50 þ j62:832
¼ ð4:653 � j5:847Þ ohms

where the REAL PART of each answer represents resistance in ohms and the
IMAGINARY PART represents reactance in ohms. Thus, since XL ¼ !L and
XC ¼ 1=!C, we have that L ¼ XL=! and C ¼ 1=!XC, and therefore, using the
known value of ! and the above values of �ZZA; �ZZB, and �ZZC, we find that

�ZZ1 consists of a resistance of 18.368 ohms in series with an inductor coil having
4:653 mH of inductance, answer.

�ZZ2 consists of a resistance of 12.246 ohms in series with an inductor coil having
3:102 mH of inductance, answer.

�ZZ3 consists of a resistance of 4.653 ohms in series with a capacitor having
ð5:444Þ10�8 F ¼ 0:05444 mF of capacitance, answer.

161. In Fig. 181, �ZZ1 ¼ �j12; �ZZ2 ¼ �j9, and �ZZ3 ¼ j6. Putting these values into eqs. (304),
(305), and (306), you should find that

�ZZA ¼ 18

�j9
¼ j2 ohms; answer;

�ZZB ¼ 18

j6
¼ �j3 ohms; answer;

�ZZC ¼ 18

�j12
¼ j1:5 ohms; answer:
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162. To produce maximum power in the load, the generator must see a resistance of
36 ohms looking into the input terminals of the T network. Since we’re to use a
balanced T network, the magnitudes of the reactances will all have the same value.
By eq. (312),

X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð36Þð115Þ

p
¼ 64:343 ohms:

(a) Using the formulas XL ¼ 2�fL and XC ¼ 1=2�fC, we find that

L ¼ 64:343

ð6:2832Þð1:75Þ105
¼ ð5:852Þ10�5 henry ¼ 58:52 microhenrys; answer:

C ¼ 1

ð6:2832Þð1:75Þ105ð64:343Þ ¼ ð1:413Þ10�8 farads

¼ 0:01413 microfarads; answer:

(b) Igen ¼ 90=ðRg þ RLÞ ¼ 90=72 ¼ 1:25 amperes; answer:

(c) Vin ¼ IRin ¼ ð1:25Þð36Þ ¼ 45 volts, answer.

(d) The power input to the T network is Pin ¼ VinI ¼ ð45Þð1:25Þ ¼ 56:25 watts.
Since there is assumed to be no energy loss in the T network itself, the output
power to the 115-ohm load is also 56.25 watts. Hence we have, where IL ¼load
current,

Pout ¼ I2
LR

thus

IL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
56:25=115

p
¼ 0:699 amperes; answer:

Then, since Pout ¼ VLIL, we have

VL ¼ 56:25=0:699 ¼ 80:47 volts; answer:

163. Here we’re assuming a linear system, so that the principle of superposition applies;
that is, we can separately calculate the output of the 100-volt fundamental generator
and the output of the 20-volt third-harmonic generator, just as if each acted sepa-
rately.

This is illustrated in the figure below, where V1 and V3 are the separate output
voltages of the fundamental and third-harmonic generators.

(a) Let us first deal with the fundamental frequency, as follows. In order for V1 to
produce maximum power in the 100-ohm load, the V1 generator must see a
resistance of 36 ohms looking to the right into terminals (1, 1). Hence, by eq.
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(313), each element in the balanced pi network must have a magnitude of
reactance equal to

X ¼
ffiffiffiffiffiffiffiffiffiffi
3600

p
¼ 60 ohms

Now, using the formulas XL ¼ !L and XC ¼ 1=!C, we calculate the neces-
sary values of L and C for a frequency of 300 kiloradians/sec; thus

L ¼ 60

ð3Þ105
¼ ð20Þ10�5 henry

¼ 200 mH; answer:

C ¼ 1

ð60Þð3Þ105
¼ ð5:555Þ10�8 F

¼ 0:0555 mF; answer:

(b) At 300 kilorad/sec we see a pure resistance of 36 ohms looking to the right into
terminals (1, 1) in the figure. The 100-volt, 300 kilorad/sec generator thus sees a
total resistance of 36 þ 36 ¼ 72 ohms, and therefore delivers a current of
I1 ¼ 100=72 ¼ 1:3889 amp, thus generating a total power of
V1I1 ¼ 138:89 watts. Since we have matched conditions for V1, half this
power of 138.89 watts goes to the useful 100-ohm load. Thus, if If denotes
the load current at the fundamental frequency, then, since Pf ¼ I2

f R, we have

If ¼
ffiffiffiffiffiffi
Pf

R

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
69:45

100

r
¼ 0:8334 amperes

and thus the voltage across the 100-ohm load at the fundamental frequency is

Vf ¼ If R ¼ ð0:8334Þ100 ¼ 83:34 volts; answer:

(c) At 900 kiloradians per second the reactances are XL ¼ 180 ohms and XC ¼
20 ohms. We therefore cannot use the procedure of part (b), because we have
neither a ‘‘balanced’’ pi network nor matched conditions at this frequency. We
must therefore resort to the method of loop currents, as follows.

Returning to the figure, disregard the 300 kilorad/sec generator and draw
three loop currents, I1; I2; I3, from left to right in the cw sense. Doing this, the three
loop-voltage equations for the network at 900 kilorad/sec are (after simplifying
each equation as much as possible)

ð9 � j5ÞI1 þ j5I2 þ 0I3 ¼ 5

jI1 þ j7I2 jI3 ¼ 0

0I1 þ jI2 þ ð5 � jÞI3 ¼ 0

thus

I3 ¼

ð9 � j5Þ j5 5

j j7 0

0 j 0

�������
�������

ð9 � j5Þ j5 0

j j7 j

0 j ð5 � jÞ

�������
�������
¼ �5

272 þ j270
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the magnitude of which is

jI3j ¼
5ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð272Þ2 þ ð270Þ2
q ¼ 0:013 05 amperes

and this current, flowing through the 100-ohm load, produces 1.305 volts at
900 kilorad/sec, answer.
The above problem illustrates two benefits that can be realized by inserting a pi
network between generator and load. First, the network enables us to get
increased power to the load by providing the proper impedance match to
the generator. Second, it can greatly reduce the percentage of unwanted har
monic energy in the load.

164. (a) By eq. (314), P ¼ 2; thus, applying the calculator to eq. (315), we have

10 log 2 ¼ 3:01 decibels; answer:

(b) Here P ¼ 0:26=1:65 ¼ 0:157 58 approx., and thus, applying the calculator to eq.
(315), we have

10 logð0:157 58Þ ¼ �8:025 decibels; answer ða loss of 8:025 dBÞ:
(c) Substituting the given values into eqs. (314) and (315), we have

1:8 ¼ logðPout=0:75Þ, which (using the inverse key on the calculator) gives

Pout ¼ ð0:75Þð63:0957Þ ¼ 47:322 watts approx:; answer:

165. Since !1 ¼ 2�f1 ¼ 1=RC, we have

R ¼ 1

C2�f1
¼ 1

ð5Þ10�8ð2�Þð7:2Þ103
¼ 442:1 ohms; answer:

166. Since !=!1 ¼ f=f1, eq. (321) becomes 0:6 ¼ log½1 þ ð f=f1Þ2�, then, using the inverse
key, 3:9811 ¼ 1 þ ð f =f1Þ2, then

f ¼ f1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:9811

p
¼ 7:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:9811

p
¼ 12:4314 kHz answer:

167. We’ll use eqs. (319), (322), and (325). First note that !1 ¼ 1=RC ¼ 400 rad/sec. Then,
since 2�f1 ¼ !1, we have that f1 ¼ !1=2� ¼ 400=2� ¼ half-power frequency in hertz
(Hz). Thus we’ll deal with the ratio

ð!=!1Þ ¼ ð f =f1Þ ¼ ð2�f =400Þ ¼ ð0:015 71 f Þ
(a) For f ¼ 30 Hz, ð!=!1Þ ¼ 0:4713; thus, by eqs. (319) and (322), with

Vi ¼ 10 volts, we have

j �VVoj ¼ 9:046 volts; answer:

Then, by eq. (325),

� ¼ � arctanð0:4713Þ ¼ �25:2358; answer:

(b) For f ¼ 300 Hz, ð!=!1Þ ¼ 4:713; thus, by eqs. (319) and (322), with
Vi ¼ 10 volts, we have

j �VVoj ¼ 2:076 volts; answer:

Then, by eq. (325),

� ¼ � arctanð4:713Þ ¼ �78:0218; answer:
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168. In terms of steady-state sinusoidal theory, the explanation is as follows. In order for
an OUTPUT WAVE to have exactly the same waveshape as the INPUT WAVE, the
fundamental and harmonics of the input wave must ALL be treated the same in
passing through the circuit.

In the present case the ‘‘half-power’’ frequency of the given low-pass filter was
found to be 400=2� ¼ 63:66 Hz, while the fundamental frequency of the input square
wave is 30 Hz; thus the higher harmonics of the square wave would be severely
discriminated against, causing the output wave shape to be considerably different
from the input square wave.

169. C ¼ 1

R!1

¼ 1

2�Rf1
¼ 1

2�ð1:2Þ103ð2:2Þ103
¼ 0:0603ð10�6ÞF ¼ 0:0603 mF; answer:

170. (a) In the equation immediately following eq. (328) set dB ¼ �6. Then, since if
log x ¼ y, then x ¼ 10y, we have that

hffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ h2

p ¼ 10�0:3

Now square both sides; then, remembering that ðaxÞ2 ¼ a2x, we have that

h2 ¼ ð1 þ h2Þ10�0:6

thus, by calculator,

h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:335 449 7

p
¼ 0:579 180 2

then, since h ¼ !=!1 ¼ f =f1, we have

f ¼ hf1 ¼ 1:274 196 4 kHz ¼ 1274 Hz approx:; answer:

(b) As before, h2 ¼ ð1 þ h2Þ10�0:2 which gives h ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:709 713 7

p ¼ 1:307 560 2, so
that

f ¼ hf1 ¼ 2:876 632 5 kHz ¼ 2877 Hz approx:; answer:

171. Applying Ohm’s law and eq. (333) to Fig. 197, we have

�VVo ¼ R�II ¼ RVi

Rþ j!L

thus

�VVo

Vi

¼ �GG ¼ R

Rþ j!L

which gives eq. (334).
Next, upon rationalizing the last expression for �GG above,

�GG ¼ R2

R2 þ ð!LÞ2 � j
�!LR

R2 þ ð!LÞ2 ¼ aþ jb

hence,

� ¼ arctanðb=aÞ ¼ arctanð�!L=RÞ ¼ � arctanð!L=RÞ
thus verifying eq. (335).
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172. Applying Ohm’s law and eq. (333) to Fig. 198, we have

�VVo ¼ j!L�II ¼ j!LVi

Rþ j!L

thus

�VVo

Vi

¼ �GG ¼ j!L

Rþ j!L

which gives eq. (336).
Next, upon rationalizing the last expression for G above,

�GG ¼ ð!LÞ2
R2 þ ð!LÞ2 þ j

!LR

R2 þ ð!LÞ2 ¼ aþ jb

hence

� ¼ arctanðb=aÞ ¼ arctanðR=!LÞ
thus verifying eq. (337).

173. The easiest way is to set ! ¼ R=L in eq. (334); doing this, eq. (334) becomes

j �GGj ¼ 1ffiffiffi
2

p ¼ ð2Þ�1=2

thus, by eq. (320) (and note 19 in Appendix), we have

dB ¼ 20 logð2Þ�1=2 ¼ �10 log 2 ¼ �3 decibels

hence (see definition following Fig. 191) ! ¼ R=L is the half-power frequency for
Fig. 197.

174. By eq. (340),

�ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2 þ j5Þð4 � j3Þ þ ð2 þ j5Þ2=4

q
thus

�ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17:75 þ j19:00

p
¼ ½26:001=46:9488�1=2

Hence, since ½A=��1=2 ¼ A1=2
=�=2, we have

�ZZ0 ¼ 5:099=23:4748 ¼ 4:68 þ j2:03; answer in rectangular form:*

The physical meaning of the above value of �ZZ0 is that, if an impedance of
4:68 þ j2:03 ohms is placed across the OUTPUT terminals of this symmetrical T
network, the impedance LOOKING INTO THE INPUT TERMINALS is ALSO
4:68 þ j2:03 ohms.

175. In general terms, if �ZZp ¼ j �ZZpj� j� and �ZZs ¼ j �ZZsj� j�, then eq. (341) becomes

�ZZ0 ¼ ½j �ZZpjj �ZZsj� jð�þ�Þ�1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j �ZZpjj �ZZsj

q
½cosð�þ �Þ=2 þ j sinð�þ �Þ=2�

hence, here,

�ZZ0 ¼
ffiffiffiffiffiffiffiffi
375

p
½cosð�20Þ þ j sinð�20Þ� ¼ ð18:20 � j6:62Þ ohms; answer:
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176. The best procedure is to first find a general equation for !, then substitute in the
given values of L;C, and R. To do this, we’ll make use of eq. (340), because the
condition for which �ZZin ¼ �ZZL is given by this equation; the steps are as follows.

First, using the terminology of Fig. 201, �ZZ1=2 ¼ j!L, thus �ZZ1 ¼ j2!L. Next, since
�ZZ2 ¼ 1=j!C, we have, putting these values of �ZZ1 and �ZZ2 into eq. (340), that

�ZZ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

C
� 4!2L2

4

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L

C
� !2L2

r
Now, upon squaring both sides then solving for !, you should find that

! ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

LC
�

�ZZ2
0

L2

s

where we’ve shown the ‘‘plus or minus’’ sign just for the sake of mathematical
completeness; actually, however, since ‘‘negative frequencies’’ don’t exist in the
real world, we’ll disregard the minus possibility in this case. If, now, you replace L
and C with the given values and also set �ZZ0 ¼ �ZZin ¼ 2, you should find that

! ¼ 100
ffiffiffi
3

p
¼ 173:21 rad=sec; answer:

177. Here we’re dealing with the condition in which �ZZin ¼ �ZZL ¼ �ZZ0, so that eq. (342)
applies. Thus, in general terms we have, in this case

�II1
�II2
¼ 2 þ j!L

2 � j!L
¼ ð4 � !2L2Þ þ j4!LÞ

4 þ !2L2

Now substituting in the values L ¼ ð2Þ10�2 and ! ¼ 100
ffiffiffi
3

p
, you should find that

�II1=�II2 ¼ ð�1 þ j
ffiffiffi
3

p
Þ=2 ¼ �0:500 þ j0:866; answer:

178. In Fig. 207, the left- and right-hand components labeled �ZZ0 would be replaced by �ZZin

and �ZZL respectively. Thus we would have that �VV1 ¼ �ZZin
�II1 and �VV2 ¼ �ZZL

�II2; hence the
second equation following Fig. 207 would become

�ZZin
�II1 ¼ �ZZ1

�II1=2 þ �ZZ1
�II2=2 þ �ZZL

�II2

which gives eq. (343).

179. First, for ! ¼ 200, we have �ZZ1=2 ¼ j!L ¼ j4 and �ZZ2 ¼ �j2 and, as before, �ZZL ¼ 2.
Next, put these values into eq. (338); doing this, you should find that �ZZin ¼ 1 þ j.
Now, upon substituting all the foregoing values into eq. (343), we have that

�II1
�II2
¼ 2 þ j4

1 � j3
¼ 2ð1 þ j2Þð1 þ j3Þ

10
¼ ð�1 þ jÞ; answer:

180. Equation (342) applies, because the network is terminated in �ZZ0. Hence, all we need
do is substitute the known values of �ZZ1 and �ZZ0 into eq. (342); thus

�II1
�II2
¼ 5:68 þ j4:53

3:68 � j0:47
¼ 7:27=38:578

3:71=�7:28
¼ 1:96=45:858

Thus, �II1 ¼ ð1:96=45:858Þ�II2, meaning that the magnitude of �II1 is 1.96 times the
magnitude of �II2 and that �II1 leads �II2 by 45:858, answer.*
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181. (a) Since we’re using the notation of Fig. 201,

thus L=2 ¼ 800 mH, we have L ¼ 1600 mH ¼ ð16Þ10�4 H and C ¼ ð4Þ10�8 F,
and upon putting these values into eq. (250) we find that RL ¼ 200 ohms,
answer.

(b) Set �ZZ0 ¼ 0 in eq. (349); then, squaring both sides and solving for ! gives

! ¼ 2ffiffiffiffiffiffiffi
LC

p

which, upon substituting L ¼ ð16Þ10�4 and C ¼ ð4Þ10�8, gives

! ¼ ð2:5Þ105 radians=second; answer:

or, if we wish,

f ¼ !=2� ¼ 39,789 Hz

(c) From the above, ! ¼ ð25Þ104;L ¼ ð16Þ10�4;C ¼ ð4Þ10�8, thus �ZZ1 ¼ j!L ¼
j400; �ZZ2 ¼ �j=!C ¼ �j100, and also �ZZL ¼ RL ¼ 200. Upon substituting these
values into eq. (338) you should find that

�ZZin ¼ j200 þ 200ð1 � jÞ
2 þ j

which, after rationalizing the last fraction to the right, becomes

�ZZin ¼ j200 þ 40 � j120 ¼ 40ð1 þ j2Þ ohms; answer:

(d) The value of �ZZ0 can be calculated for any frequency from eq. (340), but the
generator will see �ZZ0 only if �ZZL is made equal to �ZZ0, which is not the case in part
(c) because �ZZL is given to be 200 ohms (and not zero ohms).

182. We use eq. (359), in which !c, L, and C are in radians per second, henrys, and farads.
Thus, upon solving eq. (359) for L, we have

L ¼ 4

!2
cC

¼ 4

4�2ð1010Þð1:5Þ10�8
¼ ð6:7547Þ10�4 H ¼ 675:47 mH

hence inductance of each coil¼ L=2 ¼ 337:7 mH, answer.

183. By eq. (355), �VV2 ¼
1

Aþ jB

� �
V1 ¼

A

A2 þ B2
� j

B

A2 þ B2

� �
V1 ¼ ðX � jYÞV1

hence

� ¼ � arctanðY=XÞ ¼ � arctanðB=AÞ
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or, since A ¼ ð1 � 2h2Þ and B ¼ 2hð1 � h2Þ, we have

� ¼ � arctan½2hð1 � h2Þ=ð1 � 2h2Þ�; answer:

Note: When using the above formula we should remember that ‘‘arctan x’’ is a
multiple-valued function (for example, arctan 1:0 ¼ 458 ¼ 2258) and, for this reason,
uncertainty about the correct value of � can sometimes arise. That is, we may be
uncertain about which of the four quadrants the angle � terminates in. In such a case
we must refer back to the basic complex relationship from which the formula for �
was derived, which in the above case is

�VV2 ¼ ðX � jYÞV1

in order to be sure which quadrant � terminates in.

184. (a) The purpose here is to emphasize that the value of an induced voltage does not
depend on HOW MUCH current is flowing, but only on how fast the current is
changing, that is, upon the rate of change of current, di=dt. Thus here, if i1 is
constant in value, then di1=dt ¼ 0; hence, by eq. (368), the voltage induced into
the secondary coil is zero (answer).

(b) By eqs. (368) and (371),

v2 ¼ k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p
di1=dt

¼ 0:85
ffiffiffiffiffiffiffiffiffi
13:5

p
ð25Þ ¼ 78:0775 volts; answer:

185. (a) Inspection of eqs. (368) and (369) shows that the statement is true, because, if
di1=dt ¼ di2=dt, and since M has the same value in both equations, inspection
of the equations shows that, for this condition, v1 ¼ v2, as proposed, answer.

(b) By eqs. (369) and (371),

v1 ¼ 0:85
ffiffiffiffiffiffiffiffiffi
13:5

p
ð25Þ ¼ 78:0775 volts; answer:

186. (a) Applying the right-hand rule to Fig. 217, note that if the primary and secondary
currents were BOTH reversed in direction their magnetic effects would still be
additive. Thus reversing both reference current arrows would have no effect on
eq. (389).

(b) In this case �II1 and �II2 would have opposite effects magnetically, and eq. (385)
would be �j!M �II1 þ �ZZ2

�II2 ¼ 0; thus eq. (389) would become �II2 ¼ j!M �II1= �ZZ2,
showing that this would reverse the sign of �II2. Thus, in simple circuits in
which we need to find only the magnitude of the secondary current, it’s not
necessary to be concerned about the polarity dots at all.

187. First, !L1 ¼ !L2 ¼ ð200Þð45Þ10�3 ¼ 9 ohms. Next, making use of eq. (371), you
should find M ¼ ð4:05Þ10�2 henrys, and thus !M ¼ ð200Þð4:05Þ10�2 ¼ 8:1 ohms.

Next, by eq. (387), �ZZref ¼
ð8:1Þ2
2 þ j9

ohms, which, after ‘‘rationalizing’’ (multiplying

numerator and denominator by the conjugate of the denominator), gives
�ZZref ¼ ð1:5438 � j6:9469Þ, and hence, by eq. (388),

j�II1j ¼
36

6:5438 þ j2:0531

����
���� ¼ 36

6:8583
¼ 5:249 amperes; answer:
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Discussion Note: In the solution to the above problem, note that the impedance
reflected into the primary coil is capacitive in nature, although the secondary circuit
is, by itself, inductive in nature, being ð2 þ j9Þ ohms. This illustrates the fact that if �ZZ2

is inductive, then the impedance reflected into the primary coil will be capacitive in
form. The reason for this can be seen from eq. (387), for �ZZ2 ¼ Rþ jX ; thus

�ZZref ¼
!2M2

Rþ jX
¼ !2M2

R2 þ X2
ðR� jXÞ

which is a capacitive type impedance. Or, if the net reactance of �ZZ2 is capacitive in
nature, then the impedance reflected into the primary coil will be inductive in nature.
Thus, for �ZZ2 ¼ R� jX , eq. (387) gives

�ZZref ¼
!2M2

R� jX
¼ !2M2

R2 þ X2
ðRþ jXÞ

which is inductive in nature.
Of course, if the secondary circuit is purely resistive (because of series resonance

on the secondary side), the reflected impedance will also be a pure resistance.

188. (a) Let us first calculate the reactances; thus

XL1 ¼ XL2 ¼ 4ð105Þð60Þ10�6 ¼ 24 ohms;

XC ¼ 1=4ð105Þð5Þ10�7 ¼ 5 ohms;

!M ¼ 20 ohms

Now let us look back to Fig. 222 and eq. (383). From Fig. 222 we see that �ZZb

is the impedance connected to the terminals of the secondary coil. Thus, in our
problem here, �ZZb is the parallel combination of R and �jXC, so that for Fig.
225 we have

�ZZb ¼ �jXCR

R� jXC

¼ �j50

10 � j5
¼ ð2 � j4Þ ohms

hence

�ZZ2 ¼ �ZZb þ JXL2 ¼ ð2 þ j20Þ ohms

Now, putting all the known values into eq. (387) you should find that

�ZZref ¼ ð1:980 � j19:80Þ ohms

Since there is no resistance in the primary circuit, �ZZ1 ¼ jXL1 ¼ j24 ohms.
Thus, by eq. (388), we have

j�II1j ¼
28

1:980 þ j4:20

����
���� ¼ 6:030 amperes; answer:

(b) By eq. (389),

j�II2j ¼
�j!M �II1

�ZZ2

����
���� ¼ !Mj�II1j

j �ZZ2j
¼ 120:6ffiffiffiffiffiffiffiffi

404
p ¼ 6:000 amperes; answer:

189. (a) First, ! ¼ 2�f ¼ 105 radians/second; thus, the values of �II1; �II2, and �II3 are

�II1 ¼
40

j8
¼ �j5 A; �II2 ¼

40

10
¼ 4A; �II3 ¼

40

�j4
¼ j10 A
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Next, the value of �II4 is found by making use of eqs. (388), (387), and (371); thus

�II4 ¼
40

jXL1 þ Zref

¼ 40

j12 þ ð5:099 � j19:120Þ ¼
40

5:099 � j7:120
¼ ð2:659 þ j3:713ÞA

Hence, �II ¼ �II1 þ �II2 þ �II3 þ �II4 ¼ ð6:659 þ j8:713Þ, thus

j�II j ¼ 10:966 amperes; answer:

(b) j�IIsj ¼
�j!MI4

Zs

����
���� ¼ !k

ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p j2:659 þ j3:713j
j2 þ j7:5j ¼ 7:292 amperes; answer:

(c) The principle referred to here is that TRUE POWER is equal to the voltage

times the component of current IN PHASE with the voltage. From the solution
to (a), we have the vector diagram shown below.

Thus, P ¼ ð40Þð6:659Þ ¼ 266:36 watts approx., answer.

(d) Note that the value of � can be found from the above figure. However, since
we’re instructed to use Fig. 155, we must find the value of �ZZ ¼ Rþ jX , and to
do this we’ll use the basic relationship

�ZZ ¼
�VV
�II
¼ 40

6:659 þ j8:713
¼ ð2:2149 � j2:8981Þ ohms

and hence, by Fig. 155,

� ¼ arctanX=R ¼ arctanð�2:8981=2:2149Þ ¼ �52:6118

and thus, by eq. (228),

P ¼ ð40Þð10:966Þ cosð�52:6118Þ ¼ 266:35 watts; answer:

(e) As explained in section 8.5, there is no net energy loss in an ideal inductor or
capacitor; that is, energy is removed from a network only through resistive
elements which, in Fig. 226, are the devices having 10 ohms and 2 ohms of
resistance. Since the current in the 10-ohm load is 4 amperes and the magnitude
of the current in the 2-ohm load is 7.292 amperes, we have that

P ¼ ð4Þ2ð10Þ þ ð7:292Þ2ð2Þ ¼ 266:35 watts; answer:

As must be the case, all three procedures give the same value of P, after
taking into account a slight round-off difference.)

190. Since the two coils have equal inductances of L henrys, let us, for convenience, refer
to them as the ‘‘left-hand’’ and ‘‘right-hand’’ (LH and RH) inductors. Next note that
there are five voltage drops to consider, as follows.

Solutions to Problems504



j!L�II and j!L�II ¼ the ordinary voltage drops across the inductors;

j!M �II ¼ voltage induced to LH coil from RH coil;

j!M �II ¼ voltage induced into RH coil from LH coil;

R�II ¼ voltage drop across the pure resistance of R ohms:

Whether or not the two mutually induced voltages AID each other or OPPOSE each
other depends upon the relative senses in which the coils are wound, and this infor-
mation is given us by the placement of the dots. Thus, upon taking the placement of
the dots into consideration, the equations are

ðaÞ �II ¼
�VV

Rþ j2!ðLþMÞ ; answer:

ðbÞ �II ¼
�VV

Rþ j2!ðL�MÞ ; answer:

191. First, !L1 ¼ 25 ohms, !L2 ¼ 56:25 ohms, and !M ¼ !k
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p ¼ 30 ohms. Then,
for the given directions of the reference arrows and the placement of the dots, the
loop voltage equations for Fig. 229 are

around LH loop: ð10 þ j25Þ�II1 � ð10 þ j30Þ�II2 ¼ 50

around RH loop: �ð10 þ j30Þ�II1 þ ð15 þ j56:25Þ�II2 ¼ 0

Since �VVo is the voltage drop across the 10-ohm resistance, we have
�VVo ¼ 10ð�II1 � �II2Þ; thus

j �VVoj ¼ 10j�II1 � �II2j ðAÞ
Now apply the method of determinants to the above two simultaneous equations;

doing this, you can verify that

�II1 ¼
50ð15 þ j56:25Þ
�456:25 þ j337:5

and �II2 ¼
50ð10 þ j30Þ

�456:25 þ j337:5

thus

�II1 � �II2 ¼
50ð5 þ j26:25Þ

�456:25 þ j337:5
¼ 0:50ð5 þ j26:25Þ

�4:5625 þ j3:375

and hence

jI1 � I2j ¼
0:5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
714:0625

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32:207031

p ¼ 2:354 approx:

and thus, by eq. (A),

jVoj ¼ 23:54 volts; answer:

192. The dot for the secondary coil would move to the opposite end from that shown in
Fig. 229. Thus the two simultaneous equations would now be

around the LH loop: ð10 þ j25Þ�II1 þ ð�10 þ j30Þ�II2 ¼ 50

around the RH loop: ð�10 þ j30Þ�II1 þ ð15 þ j56:25Þ�II2 ¼ 0
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which upon solving for �II1 and �II2 gives

�II1 ¼
50ð15 þ j56:25Þ

�456:25 þ j1537:50
and �II2 ¼

�50ð�10 þ j30Þ
�456:25 þ j1537:50

thus

�II1 � �II2 ¼
50ð5 þ j86:25Þ

�456:25 þ j1537:50
Hence, by eq. (A),

j �VVoj ¼ 10j�II1 � �II2j ¼ 26:94 volts approx:; answer:

193. If �NN is a complex number in the form of �NN ¼ aþ jb

cþ jd
, then

�NN ¼ aþ jb

cþ jd
¼ ðaþ jbÞðc� jdÞ

c2 þ d2
¼ acþ bd

c2 þ d2

� 	
þ j

bc� ad

c2 þ d2

� 	

and thus �NN ¼ j �NNj=�, where � ¼ arctan
bc� ad

acþ bd
; thus, from the solution to problem

191, we have that

a ¼ b; b ¼ 26:25; c ¼ �456:25; d ¼ 337:5

hence

�VVo ¼ 23:54=arctanð�2:077 20Þ ¼ 23:54=�64:298; answer:

194. From the solution to problem 192 we have that

a ¼ 5; b ¼ 86:25; c ¼ �456:25; d ¼ 1537:50

hence

�VVo ¼ 26:94=arctanð�0:36093Þ ¼ 26:94=�19:858; answer:

195. First, by eq. (371), M ¼ ð0:3Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið0:09Þð0:04Þp ¼ 0:018H (henry). Thus ðL1 �MÞ ¼
0:072 H, ðL2 �MÞ ¼ 0:022 H, and, since R1 ¼ 14 ohms and R2 ¼ 4 ohms, the equiva-
lent T is as shown below, the values being in ohms and henrys.
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Thus, by inspection, the loop-voltage equations are

ð14 þ j45Þ�II1 � j9�II2 ¼ 100

�j9�II1 þ ð6 þ j20Þ�II2 ¼ 0

from which we find that

D ¼ 5ð147 þ j110Þ
Solving for I2,

�II2 ¼ j900=D

then

j�II2j ¼
j900

5ð147 þ j110Þ
����

���� ¼ 180ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð147Þ2 þ ð110Þ2

q ¼ 0:98039 A

hence

j �VVoj ¼ 2j�II2j ¼ 1:961 volts approx:; answer:

197. The circuit will be that of Fig. 230, with 100-volt generator applied to terminals (1, 1)
and 2-ohm load connected to terminals (2, 2), where, from problem 195, M ¼
0:018 H; thus

By eqs. (382) and (383), �ZZ1 ¼ 14 þ j45 and �ZZ2 ¼ 6 þ j20, and upon substituting
these values into eq. (386) you should find that

�II1 ¼
2ð3 þ j10Þ

�7:35 þ j5:50

and thus, by eq. (389),

�II2 ¼
�jð500Þð0:018Þð2Þð3 þ j10Þ
ð6 þ j20Þð�7:35 þ j5:5Þ ¼ 18ð10 � j3Þ

�ð154 þ j114Þ
hence

j�II2j ¼ 18

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
109

36,712

s
¼ 0:9808 A

thus,

j �VVoj ¼ ð2Þð0:9808Þ ¼ 1:962 volts approx:; answer:

198. Noting the dot-marked terminals, the two connections are as follows, in which the
same voltage V is applied to both connections.
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Note that the current in L1 is equal to the current in L2. Thus, from our work in
sections 10.2 and 10.3, the equations are

V ¼ jð!L1 þ !L2 þ !M þ !MÞIaid ¼ j!ðL1 þ L2 þ 2MÞIaid

and

V ¼ jð!L1 þ !L2 � !M � !MÞIopp ¼ j!ðL1 þ L2 � 2MÞIopp

hence

ðL1 þ L2 þ 2MÞ ¼ inductance measured in AIDING case ¼ Laid

and

ðL1 þ L2 � 2MÞ ¼ inductance measured in OPPOSING case ¼ Lopp

Thus, subtracting the second equation from the first, then solving for M, we have

M ¼ ð1=4ÞðLaid � LoppÞ
hence, by eq. (371),

k ¼ Laid � Lopp

4
ffiffiffiffiffiffiffiffiffiffiffi
L1L2

p ; answer:

The above result is of considerable practical importance because it allows us,
working in the laboratory, to physically adjust the spacing between two coils until
a required value of k is obtained.

199. (a) Here T ¼ 4; hence, by eq. (418)

�ZZin ¼ T2 �ZZL ¼ ð16Þð3 � j5Þ ¼ ð48 � j80Þ ohms; answer:

(b) By eq. (419), V2 ¼ V1ðN2=N1Þ ¼ 240=4 ¼ 60 volts; hence, by Ohm’s law, the
secondary current is

�II2 ¼
60

3 � j5
¼ 60ð3 þ j5Þ

34
¼ ð5:294 þ j8:824Þ amperes; answer:

(c) One way is to use the formula P ¼ RI2, where I is the magnitude of the current.
Thus we can take the square of the magnitude of the secondary current times the
resistance in the secondary circuit,

P ¼ ð3Þð10:290Þ2 ¼ 317:65 watts; answer:

A second way is to multiply the secondary voltage by the ‘‘in-phase’’ compo-
nent of the secondary current (section 8.5). Thus

P ¼ ð60Þð5:294Þ ¼ 317:65 watts; answer:

A third way is to use the power factor, cos� ¼ R=Z ¼ 3=
ffiffiffiffiffi
34

p ¼ 0:5145, thus

P ¼ V2I2 cos� ¼ ð60Þð10:290Þð0:5145Þ ¼ 317:65 watts; answer:
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200. �ZZin is equal to the denominator of eq. (386), where M2 ¼ k2L1L2, and where, in this
case, �ZZ1 ¼ j!L1 and �ZZ2 ¼ j!L2. Thus

�ZZin ¼ j!L1 þ
!2k2L1L2

j!L2

¼ j!L1ð1 � k2Þ; answer:

201. Setting ! ¼ 2�f ¼ 376:99;L1 ¼ 4, and k ¼ 0:995 in the answer to problem 200, we
find that �ZZin ¼ j15:04 ohms. Thus by Ohm’s law,

�II1 ¼ 120=j15:04 ¼ �j7:98 amperes; answer:

(Note that in the ‘‘ideal’’ case, k ¼ 1, the shorted secondary would entirely neutralize
the primary inductance, causing theoretically ‘‘infinite’’ primary line current to flow.)

202. Because the INSTANTANEOUS SUM of the three generator voltages around the
loop is always equal to zero. This can be shown as follows. Let us, in Fig. 247, select
one of the three generators to be the ‘‘reference generator,’’ and let the equation of
this voltage wave be given by V sin!t, where V is the peak voltage (V and ! having
the same values in all three generators). Now, for convenience, let V ¼ 1 volt and
! ¼ 1 rad/sec. Then, letting v be the sum of the three voltages at any time t, we would
have that, at any instant,

v ¼ sin tþ sinðt� 1208Þ þ sinðt� 2408Þ*
Now let us make use of the following trigonometric identity

sinðxþ yÞ ¼ sin x cos yþ cos x sin y ðnote 7 in AppendixÞ
Now, in the above identity set x ¼ t; y ¼ �1208 in one case, and x ¼ t, y ¼ �2408

in the second case. Doing this, and remembering that sinð�hÞ ¼ � sin h and
cosð�hÞ ¼ cos h, you should find that the preceding equation for v becomes

v ¼ sin tþ sin t cos 1208� cos t sin 1208þ sin t cos 2408� cos t sin 2408

thus

v ¼ ðsin tÞð1 � 0:5 � 0:5Þ þ ðcos tÞð�0:8660 þ 0:8660Þ ¼ 0

showing that the instantaneous sum of the voltages around the closed loop of Fig.
247 is always equal to zero. Thus NO CURRENT can flow under such conditions.

Note that the same conclusion is reached if we are thinking in terms of sinusoidal
steady-state vector representation. In that case we would be dealing with the vector
sum of the three voltages around the loop, which (as is evident from inspection of
Fig. 252) will add up to zero.

203. (a) By eq. (435),

Vp ¼ 3300=1:732 ¼ 1905:3 volts; answer:

(b) First, the phase voltage on the Y-connected secondary side would, by eq. (435),
be equal to Vp ¼ 66;000=1:732 ¼ 38,106.2 volts. This voltage would then, going
from right to left in Fig. 254, be ‘‘stepped down’’ by a factor of 12; thus the line
voltage on the delta-connected primary side would be 38,106.2/12 ¼ 3175.5
volts, making the generator phase voltage equal to 3175.5/1.732 ¼ 1833.4
volts, answer.
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204. One way is to make use of eq. (440), as follows. First, by eq. (435)

VL ¼ ð1:732Þð330Þ ¼ 571:56 volts

Next,

IL ¼ Ip ¼ Vp=j �ZZj ¼ 330=
ffiffiffiffiffiffiffiffi
306

p
¼ 18:865 amperes

Then

cos� ¼ R=j �ZZj ¼ 15=
ffiffiffiffiffiffiffiffi
306

p
¼ 0:8575

Hence

PT ¼ 1:732VLIL cos� ¼ 16014:03 watts; answer; or;

¼ 16:014 kilowatts; answer:

205. First consider the phase voltage �VVna; note that the phase current here is the same as
the line current �IIaa 0 as shown in the figure below.

Since the system is given to be completely balanced, the voltage at junction point
n 0 is the same as the voltage at point n (a wire connected from n to n 0 would show
zero current). Hence, by Ohm’s law,

�IIaa 0 ¼
�VVna

�ZZ
¼ Vna

15 þ j9
¼ 0:0098ð5 � j3ÞVna

thus � ¼ arctanð�3=5Þ ¼ �30:968, showing that line current �IIaa 0 LAGS phase vol-
tage �VVna by approximately 318. Hence, as inspection of Fig. 253 shows, line current
�IIaa 0 lags line voltage �VVAB by approximately 618. Likewise, the same procedure will
show that �IIbb 0 and �IIcc 0 , respectively, will lag line voltages �VVBC and �VVCA by 618.

206. Remember that V 0 and I 0 in eq. (445) are maximum (peak) values. Then note that eq.
(445) can be written as

p ¼ 3

2
V 0I 0 cos� ¼ 3

V 0ffiffiffi
2

p I 0ffiffiffi
2

p cos� ¼ 3VI cos�

where V and I are now rms values (rms values are used in AVERAGE POWER
calculations). Next, inspection of Fig. 257 will show that V ¼ VL, and also that
I ¼ IL=

ffiffiffi
3

p
, where V and I are the rms values for each of the three impedances �ZZ;

thus

p ¼ 3VL

ILffiffiffi
3

p cos� ¼
ffiffiffi
3

p
VLIL cos�

showing that in a balanced three-phase system the instantaneous power p is the
SAME as the total average power PT.

207. To express the SUM of any two sets we first label the sets in A, B, and C notation.
We then go in the ccw sense, in both sets, first finding the sum of the two A vectors,
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then the sum of the two B vectors, then the sum of the two C vectors, the SUM of the
two sets then being expressed in the form of eq. (449).

In the particular case here, it’s given that both sets are to be labeled in the
sequence ‘‘ABC ’’; hence, after applying eq. (446), eq. (449) becomes*

�SS1 þ �SS2 ¼ ðA1 þ A 0
1Þ þ ðA1 þ A 0

1Þ� j120 þ ðA1 þ A 0
1Þ� j240

or, letting A1 þ A 0
1 ¼ A 00

1 , the above becomes

�SS1 þ �SS2 ¼ A 00
1 þ A 00

1 �
j120 þ A 00

1 �
j240

which is exactly the basic form of eq. (446), showing that the SUM OF TWO
POSITIVE-SEQUENCE SETS is a BALANCED set of three vectors. Thus an
unbalanced set of three vectors (Fig. 261) cannot be expressed as the sum of two
positive-sequence sets (or the sum of two negative-sequence sets).

208. The same general discussion, given at the start of the solution to problem 207 above,
applies here also. Then, referring to Figs. 262 and 263, we have, in this case

BY FIG: 262: BY FIG: 263:

�BB1 ¼ �AA1�
j120 �BB2 ¼ �AA2�

j240

�CC1 ¼ �AA1�
j240 �CC2 ¼ �AA2�

j120

and, upon substituting these values into eq. (449), you can show that

�SS1 þ �SS2 ¼ ð �AA1 þ �AA2Þ þ ð �AA1 þ �AA2�
j120Þ� j120 þ ð �AA1 þ �AA2�

�j120Þ� j240 ðAÞ
However, since ( �AA1 þ �AA2Þ does not, in general, equal either ð �AA1 þ �AA2�

j120Þ or
( �AA1 þ �AA2�

�j120Þ, it follows that eq. (A) is not of the general form of eq. (446) and
thus must represent an unbalanced set of three vectors.

209. We wish to express the given unbalanced set as the sum of positive, negative, and
zero sequence sets. To do this we’ll make use of eqs. (460) through (466), where, in
this case (angles in degrees), it’s given that

�AA ¼ 15=0 ¼ 15� j0 �BB ¼ 9=100 ¼ 9� j100 �CC ¼ 24=215 ¼ 24� j215

Let us begin by substituting the above values into eq. (460), which gives us

�AA1 ¼ 5 þ 3� j340 þþ8� j335

Now, in order to find the value of the indicated sum of the above complex
numbers, they must first be put into the rectangular form (aþ jb), which is done
by applying Euler’s formula � j� ¼ cos �þ j sin �. Upon doing this, you should find
that

�AA1 ¼ 15:070 � j4:407

showing that the vector �AA1 lies in the fourth quadrant, thus (continuing to use
degrees)

�AA1 ¼ 15:701=�16:301

or, in exponential form,

�AA1 ¼ 15:701��j16:301
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and hence, upon applying eqs. (461) and (462), we have that

�SS1 ¼ 15:701ð��j16:301 þ � j103:699 þ � j223:699ÞÞ ¼ 0

this being the POSITIVE SEQUENCE set. (The vector sum is zero because the set is
balanced.) Thus, in this particular problem, the vectors depicted in Fig. 262, in the
ccw sense, have the values

�AA1 ¼ K��j16:301 �BB1 ¼ K� j103:699 �CC1 ¼ K� j223:699

where K ¼ 15:701.
Now we must turn our attention to finding the values in the negative sequence set,

the first step being to find the value of �AA2. To do this we use the same procedure as
was used to find �AA1, except that now we use eq. (463) instead of (460). Doing this,
you should find that

�AA2 ¼ 5 þ 3� j220 þ 8� j455

hence

�AA2 ¼ 2:005 þ j6:041

and thus we find that �AA2 lies in the first quadrant, having magnitude of 6.365 and
angular displacement of arctan (6.041/2:005Þ ¼ 71:6398; that is, in exponential nota-
tion,

�AA2 ¼ 6:365� j71:639

and thus, applying eqs. (464) and (465), we have that

�SS2 ¼ 6:365ð� j71:639 þ � j311:639 þ � j191:639Þ ¼ 0

this being the NEGATIVE SEQUENCE set, the vector sum again being zero,
because this is a balanced set with equal magnitudes and equal phase displacements
of 120 degrees.

Thus, in this particular problem, the vectors depicted in Fig. 263, in the ccw sense,
have the values

�AA2 ¼ K� j71:639 �CC2 ¼ K� j191:639 �BB2 ¼ K� j311:639

where K ¼ 6:365.
All that remains now is to find the value of the zero-sequence set, which is done by

substituting the given values of �AA, �BB, and �CC into eq. (466). Doing this, you should
find that

�AA0 ¼ �BB0 ¼ �CC0 ¼ 5 þ 3� j100 þ 8� j215 ¼ �ð2:074 þ j1:634Þ;
a third-quadrant vector that let us express in the forms �AA0 ¼ �BB0 ¼
�CC0 ¼ 2:640=218:2338 ¼ 2:640� j218:233. Thus the total value of the ZERO-
SEQUENCE vector is

�SS0 ¼ �AA0 þ �BB0 þ �CC0 ¼ �3ð2:074 þ j1:634Þ ¼ 7:920� j218:233:

210. Remember that the �VV0s are identical voltages in both magnitude and phase. Then
note that just three closed loops exist in the circuit. Now note that the net generator
voltage is ZERO around each of these loops. Thus no zero-sequence current can flow
in such a circuit, regardless of whether the load is balanced or unbalanced.
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211. Using the same notation as in section 10.10 we have, in exponential notation, using
degrees,

�AA ¼ 90� j0 ¼ 90 �BB ¼ 72� j120 �CC ¼ 54� j240

and thus, by eqs. (460) through (462), we find that

�AA1 ¼ 1
3 ð90 þ 72 þ 54Þ ¼ 72 volts ð� j360 ¼ 1Þ

�BB1 ¼ 72� j120

�CC1 ¼ 72� j240

these being the POSITIVE-SEQUENCE set of vectors. Next, by eqs. (463) through
(465) we find that

�AA2 ¼ 6ð5 þ 4� j240 þ 3� j120Þ ð4808 ¼ 1208Þ
�BB2 ¼ 6ð5� j240 þ 4� j120 þ 3Þ
�CC2 ¼ 6ð5� j120 þ 4 þ 3� j240Þ

these being the NEGATIVE-SEQUENCE set of vectors. Lastly, by eq. (466),

�AA0 ¼ �BB0 ¼ �CC0 ¼ 6ð5 þ 4� j120 þ 3� j240Þ volts;

these being the ZERO-SEQUENCE set of vectors. However, since no zero-sequence
current can flow in a balanced Y-connected load (problem 210), we’ll not need to
make any further reference to the zero-sequence voltage in this problem.

The procedure now is to SEPARATELY find first the value of the phase currents
due to the POSITIVE-sequence voltages acting alone and then the phase currents due
to the NEGATIVE-sequence voltages acting alone. The total phase current is then, by
the principle of superposition, equal to the sum of the two currents found separately.
The procedure is advantageous because the positive-sequence and negative-sequence
sets are separately both balanced three-phase systems, which are individually easy to
deal with. The procedure can be applied to the present problem as follows.

Let us imagine that the generator in Fig. 266 is composed of the sum of two
separate generators, each generator working into the same common balanced load of
12 ohms per phase, as shown in the two figures below.

Since both figures represent completely balanced systems, it follows that each
phase voltage appears separately as a voltage drop across each corresponding 12-
ohm load. Hence, since ‘‘phase current’’ is the same as ‘‘line current’’ in this case, we
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have that, in the positive-sequence figure,

�II1A ¼ �AA1=12 �II1B ¼ �BB1=12 �II1C ¼ �CC1=12

and in the negative-sequence figure,

�II2A ¼ �AA2=12 �II2B ¼ �BB2=12 �II2C ¼ �CC2=12

and thus, by the principle of superposition, we have that the three line currents in
Fig. 266 are equal to

�IIA ¼ �II1A þ �II2A ¼ ð �AA1 þ �AA2Þ=12

�IIB ¼ �II1B þ �II2B ¼ ð �BB1 þ �BB2Þ=12

�IIC ¼ �II1C þ �II2C ¼ ð �CC1 þ �CC2Þ=12

Now substitute, into the above three equations, the values of the positive-
sequence and negative-sequence voltages previously found. Doing this, the above
three equations become

�IIA ¼ ð102 þ 18� j120 þ 24� j240Þ=12

�IIB ¼ ð18 þ 96� j120 þ 30� j240Þ=12

�IIC ¼ ð24 þ 30� j120 þ 90� j240Þ=12

Recall now that the value of an indicated sum of a number of complex numbers
can be found only if the numbers are expressed in rectangular form, because

ðsum of complex numbersÞ ¼ ðsum of real partsÞ þ jðsum of imaginary partsÞ
and thus, upon converting the above exponential forms into their equivalent rectan-
gular forms,* then adding, you should find that the above three equations become

�IIA ¼ ð6:750 � j0:433Þ; hence j�IIAj ¼ 6:764 amperes; answer:

�IIB ¼ ð�3:750 þ j4:763Þ; hence j�IIBj ¼ 6:062 amperes; answer:

�IIC ¼ �ð3:000 þ j4:330Þ; hence j�IICj ¼ 5:268 amperes; answer:

212. In Fig. 266, �AA ¼ �VVna ¼ 90=08, �BB ¼ �VVnb ¼ 72=1208, �CC ¼ �VVnc ¼ 54=2408, where
�AA ¼ ��VV�VVna is the reference vector. Then, using the same basic procedure as in section
10.8, we have (angles in degrees)

�VVab ¼ � �BBþ �AA ¼ �72=120 þ 90

�VVbc ¼ � �CC þ �BB ¼ �54=240 þ 72=120

�VVca ¼ � �AAþ �CC ¼ �90 þ 54=240

In order to find the values of the sums indicated above, the polar forms must first
be converted to rectangular forms; to do this, note that

1=120 ¼ cos 120 þ j sin 120 ¼ �0:5 þ j0:8660

1=240 ¼ cos 240 þ j sin 240 ¼ �0:5 � j0:8660
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thus

�VVab ¼ j126 � j62:352j ¼ 140:58 volts; answer:

�VVbc ¼ j� 9:000 þ j109:12j ¼ 109:49 volts; answer:

�VVca ¼ j� 117 � j46:76j ¼ 126:00 volts; answer:

213. The TOTAL power P is the sum of the powers produced in each of the 12-ohm loads.
Hence, using the values of current found in problem 211, we have that

P ¼ 12½ð6:764Þ2 þ ð6:062Þ2 þ ð5:268Þ2� ¼ 1323 watts approx:; answer:

214. The given values of the generator voltages, and the values of the generator currents
�IIA, �IIB, and �IIC, were found in problem 211. Using these values in eq. (467) gives the
following answers.

PA ¼ r:p:½90ð6:750 þ j0:433Þ� ¼ 607:5 watts

PB ¼ r:p:½72ð�0:5 þ j0:8660Þð�3:750 � j4:763Þ�
¼ 72ð1:875 þ 4:125Þ ¼ 432 watts

PC ¼ r:p:½54ð�0:5 � j0:8660Þð�3:000 þ j4:330Þ�
¼ 54ð1:500 þ 3:750Þ ¼ 283:5 watts

and thus the total power output of the generator is

PT ¼ PA þ PB þ PC ¼ 1323 W; as found in problem 213:

215. First, a comparison of the notation used in eqs. (460) and (463) with the notation
used in Fig. 267 shows that �AA ¼ �IIA (thus �AA1 ¼ �IIA1 and �AA2 ¼ �IIA2), and also that
�BB ¼ �IIB and �CC ¼ �IIC: thus, by eqs. (460) and (463), we have that

�IIA1 ¼ 1
3 ð�IIA þ �aa2 �IIB þ �aa�IICÞ

and

�IIA2 ¼ 1
3 ð�IIA þ �aa�IIB þ �aa2 �IICÞ

Now substitute these values into eqs. (468) through (470); upon doing this, and
noting that �aa3 ¼ 1, �aa4 ¼ �aa, and also that (�aaþ �aa2Þ ¼ �1, you should arrive at the
following three simultaneous equations

2�IIA � �IIB � �IIC þ 3 �YYA
�VVN ¼ 3 �YYAV

��IIA þ 2�IIB � �IIC þ 3 �YYB
�VVN ¼ 3�aa �YYBV

��IIA � �IIB þ 2�IIC þ 3 �YYC
�VVN ¼ 3�aa2 �YYCV

Note that we have four unknowns (�IIA; �IIB; �IIC; �VVNÞ but only three equations; this
situation can be overcome by making the substitution �IIC ¼ ��IIA � �IIB, and upon
doing this you should find that the above three equations can be written in terms
of just three unknowns, �IIA, �IIB, �VVN, as follows:

3�IIA þ 0�IIB þ 3 �YYA
�VVN ¼ 3 �YYAV

0�IIA þ 3�IIB þ 3 �YYB
�VVN ¼ 3�aa �YYBV

�3�IIA � 3�IIB þ 3 �YYC
�VVN ¼ 3�aa2 �YYCV
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The above set of equations can be solved either by the process of elimination or by
determinants; if we choose the more straightforward method of determinants the
procedure is as follows:

First,

�DD ¼ 27

1 0 �YYA

0 1 �YYB

�1 �1 �YYC

�������
������� ¼ 27ð �YYA þ �YYB þ �YYCÞ

The solution for �IIA is then as follows.

�IIA ¼ 1
�DD

3 �YYAV 0 3 �YYA

3�aa �YYBV 3 3 �YYB

3�aa2 �YYCV �3 3 �YYC

�������
������� ¼

27 �YYAV
�DD

1 0 1

�aa �YYB 1 �YYB

�aa2 �YYC �1 �YYC

�������
�������

It will be easiest, now, to expand the above determinant in terms of the elements
of the second column; doing this, we have that

�IIA ¼ 27 �YYAV
�DD

�YYC

1 1

�aa2 1

����
����þ �YYB

1 1

�aa 1

����
����
	
¼ 27 �YYAV

�DD
½ �YYCð1 � �aa2Þ þ �YYBð1 � �aaÞ�

�
Now, upon substituting in the value of �DD, and also noting that

ð1 � �aa2Þ ¼ 1 � cos 240 � j sin 240 ¼ 1:732=308 ¼ 1:732� j308

and

ð1 � �aaÞ ¼ 1 � cos 120 � j sin 120 ¼ 1:732=�308 ¼ 1:732��j308

you can verify that the final answer for �IIA can be written in the form of eq. (471).
Following the same procedure will likewise produce eq. (472) for the value of �IIB.
Then, lastly, eq. (473) is most easily verified by making use of the relationship
�IIC ¼ ��IIA � �IIB.

216.

�YYA ¼ 1= �ZZA ¼ 1=5� j53:130 ¼ 0:2��j53:130 mhos

�YYB ¼ 1= �ZZB ¼ 1=8 ¼ 0:125 mhos

�YYC ¼ 1= �ZZC ¼ 1=5 ¼ 0:200 mhos

from which we find that

�YYA þ �YYB þ �YYC ¼ ð0:445 � j0:160Þ ¼ 0:473��j19:776

Now substituting all of the above values and V ¼ 125 into eqs. (471) through
(473), you should find that

�IIA ¼ 18:309��j3:354 þ 11:443��j63:354 ¼ 23:410 � j11:299

�IIB ¼ 11:443� j109:776 � 11:443��j63:354 ¼ �9:004 þ j20:996

�IIC ¼ �18:309��j3:354 � 11:443� j109:776 ¼ �ð14:406 þ j9:697Þ
which, after applying the Pythagorean theorem in the usual manner, gives the
required magnitudes of current.
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217. In Fig. 267 the magnitude of the line voltage is 1.732 times the magnitude of the
phase voltage. Hence, all we’d need to do, in all of the equations, is to replace V with
VAB and delete the 1.732 factors. Then, in problem 216, instead of V ¼ 125 we would
use the value VAB ¼ 1:732ð125Þ ¼ 216:5, thus producing the same current values as
before.

218. 45 elements—5 rows—9 columns—row four—column six—square—6 � 5.

219. No; the sum Aþ B can exist only if both have the same number of rows and the
same number of columns.

220.
ð3 þ 0Þ ð2 þ 2Þ ð�4 þ 1Þ
ð1 þ 1Þ ð�7 þ 2Þ ð5 þ 4Þ
� 	

¼ 3 4 �3

2 �5 9

� 	
; answer:

221.

0 4

3 �2

� 	
þ ð�1Þ 2 �3

1 2

� 	
¼ 0 4

3 �2

� 	
þ �2 3

�1 �2

� 	
¼ �2 7

2 �4

� 	
; answer

222.

ðaÞ
ð6 þ 2Þ ð2 � 2Þ ð�1 � 3Þ
ð4 þ 4Þ ð0 � 3Þ ð0 þ 0Þ
ð3 þ 1Þ ð0 þ 1Þ ð5 � 6Þ

2
664

3
775 ¼

8 0 �4

8 �3 0

4 1 �1

2
664

3
775; answer:

ðbÞ
ð1 þ 2 � 7Þ ð3 � 9 þ 4Þ
ð4 þ 3 � 0Þ ð�6 þ 6 � 10Þ

" #
¼

�4 �2

7 �10

" #
; answer:

223. Two matrices can be EQUAL only if (1) they have the same number of rows and the
same number of columns and (2) all corresponding elements are equal. Hence, by
inspection, a ¼ 6, b ¼ �3, c ¼ 4, e ¼ 5, f ¼ 3, and g ¼ �6.

224. This is a (2 � 2) matrix times a ð2 � 1Þ matrix, so the product does exist in the order
as shown. The product will be a (2 � 1) matrix, thus

c11

c21

� 	
¼ ð24 þ 32Þ

ð72 � 32Þ
� 	

¼ 56

40

� 	
; answer:

225. Since A is a (2 � 3Þ matrix and B a (3 � 2) matrix, the product in the order AB does
exist. The result will be a (2 � 2) matrix, as follows:

c11 c12

c21 c22

� 	
¼ ð4 þ 3 þ 10Þ ð�2 þ 4 � 4Þ

ð6 þ 0 � 20Þ ð�3 þ 0 þ 8Þ
� 	

¼ 17 �2

�14 5

� 	
; answer

226. First take the sum of the three (2 � 2) matrices inside the parentheses, as
indicated. We then have the product of a (3 � 2) and a (2 � 2) matrix, which gives
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a (3 � 2) matrix; thus

0 2

0 4

6 1

2
664

3
775 7 �4

6 11

" #
¼

c11 c12

c21 c22

c31 c32

2
664

3
775¼

ð0 þ 12Þ ð0 þ 22Þ
ð0 þ 24Þ ð0 þ 44Þ
ð42 þ 6Þ ð�24 þ 11Þ

2
664

3
775¼

12 22

24 44

48 �13

2
664

3
775; answer

227. This is a matrix product of the form ABC ¼ D. The procedure is to first find the
product AB, then take that result times C. The work is as follows.

First,

AB ¼ 1 2

3 �4

� 	
0 2

4 6

� 	
¼ 8 14

�16 �18

� 	
;

a 2 � 2 matrix, which we now multiply the 2 � 3 matrix C by. The result is a 2 � 3
matrix D; thus

8 14

�16 �18

" # �7 6 0

�2 1 4

" #
¼

c11 c12 c13

c21 c22 c23

" #

¼
ð�56 � 28Þ ð48 þ 14Þ ð0 þ 56Þ
ð112 þ 36Þ ð�96 � 18Þ ð0 � 72Þ

" #

¼
�84 62 56

148 �114 �72

" #
; answer:

228. The first factor is a 4 � 4 matrix and the second factor is a 4 � 1 matrix, so the
product of the two, in the order shown, does exist and will be a 4 � 1 matrix; thus

1 2 �2 3

0 0 6 1

0 0 7 2

4 2 �5 10

2
6664

3
7775

6

�2

0

9

2
6664

3
7775 ¼

c11

c21

c31

c41

2
6664

3
7775 ¼

ð6 � 4 þ 0 þ 27Þ
ð0 þ 0 þ 0 þ 9Þ
ð0 þ 0 þ 0 þ 18

ð24 � 4 þ 0 þ 90Þ

2
6664

3
7775 ¼

29

9

18

110

2
6664

3
7775; answer:

229. The square of any (n� n) square matrix is also an (n� n) square matrix; thus, the
square of the given 3 � 3 matrix is a 3 � 3 square matrix, A2 ¼ AA ¼ C; thus

1 1 4

0 �3 2

9 6 �5

2
664

3
775

1 1 4

0 �3 2

9 6 �5

2
664

3
775 ¼

c11 c12 c13

c21 c22 c23

c31 c32 c33

2
664

3
775

¼
ð1 þ 0 þ 36Þ ð1 � 3 þ 24Þ ð4 þ 2 � 20Þ
ð0 þ 0 þ 18Þ ð0 þ 9 þ 12Þ ð0 � 6 � 10Þ
ð9 þ 0 � 45Þ ð9 � 18 � 30Þ ð36 þ 12 þ 25Þ

2
664

3
775

¼
37 22 �14

18 21 �16

�36 �39 73

2
664

3
775; answer:

Solutions to Problems518



230. Since A is a (3 � 4) matrix and B is a (4 � 2) matrix, their product AB does exist and
is a (3 � 2) matrix, C ¼ AB, whose value is found as follows.

2 0 1 �3

1 2 0 4

3 2 �6 1

2
664

3
775

1 �2

3 0

2 5

�6 1

2
666664

3
777775 ¼

c11 c12

c21 c22

c31 c32

2
664

3
775

¼
ð2 þ 0 þ 2 þ 18Þ ð�4 þ 0 þ 5 � 3Þ
ð1 þ 6 þ 0 � 24Þ ð�2 þ 0 þ 0 þ 4Þ
ð3 þ 6 � 12 � 6Þ ð�6 þ 0 � 30 þ 1Þ

2
664

3
775

¼
22 �2

�17 2

�9 �35

2
664

3
775; answer:

231. The first step is to find D, the value of the third-order determinant formed from the
elements of the given matrix. Using, for example, the elements of the second row, we
find that

D ¼ �5
0 4

�1 2

����
����þ 6

2 4

�3 2

����
���� ¼ 76

Next, in the manner of eq. (483), we replace each element in the given matrix with
its cofactor, to get

A0 ¼

6 0

�1 2

����
���� � 5 0

�3 2

����
���� 5 6

�3 �1

����
����

� 0 4

�1 2

����
���� 2 4

�3 2

����
���� � 2 0

�3 �1

����
����

0 4

6 0

����
���� � 2 4

5 0

����
���� 2 0

5 6

����
����

2
66666664

3
77777775
¼

12 �10 13

�4 16 2

�24 20 12

2
64

3
75

Now, in the last expression, interchange the rows and columns; that is, let the first
row become the first column, the second row become the second column, and so on.
Doing this, and remembering to multiply by 1/D, the final answer can be written in
either of the forms

A�1 ¼ 1

76

12 �4 �24

�10 16 20

13 2 12

2
64

3
75 ¼

12=76 �4=76 �24=76

�10=76 16=76 20=76

13=76 2=76 12=76

2
64

3
75

the second form being in accordance with the rule for multiplication of a matrix by a
constant, as laid down at the end of section 11.1.

232. First, D ¼ ð�20 þ 21Þ ¼ 1. Now replace each element in the given matrix with its
cofactor to get A0; thus

A0 ¼
�5 �3

7 4

� 	
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which, after interchanging rows and columns and then multiplying by 1=D (which in
this case is 1=1 ¼ 1), we have

A�1 ¼ �5 7

�3 4

� 	
; answer:

233. First,

D ¼ �6

2 4 �2

0 2 1

0 �5 3

�������
������� ¼ ð�6Þð2Þ 2 1

�5 3

����
���� ¼ �132

Next, in the manner of eq. (483), the value of A0 is

Note that, in this particular example, the values of the determinants are all easy
to find because each can be expanded in terms of a row or column in which all the
elements except one are zero. (Note that three of the determinants have the value
zero by inspection, since, if the elements of any row or column are all equal to zero,
the value of the determinant is zero.) You can now verify that the above matrix
reduces to the form
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thus

A0 ¼

�66 0 33 0

0 0 �22 0

12 �36 �6 �60

�48 12 24 �24

2
6664

3
7775

Now, in the last expression, interchange the rows and columns. Doing this, and
remembering to multiply the result by 1=D, we have that

A�1 ¼ � 1

132

�66 0 12 �48

0 0 �36 12

33 �22 �6 24

0 0 �60 �24

2
6664

3
7775; answer:

234. First (we’ll expand in terms of the elements of the second row) we have

D ¼ 2
8 �1

�6 3

����
����� 3

8 0

�6 4

����
���� ¼ �60

Then

therefore,

A�1 ¼ � 1

60

�6 �4 2

�18 18 �24

12 �32 16

2
64

3
75 ¼

1=10 1=15 �1=30

3=10 �3=10 4=10

�1=5 8=15 �4=15

2
64

3
75

either way is a correct answer.

235. First, in the manner of eq. (476), write the first set of equations in the matrix form

3 �4 1

�2 1 �5

4 6 �2

2
64

3
75 x

y

z

2
64
3
75 ¼

r

s

t

2
64
3
75 ðAÞ

In the above, now verify that D ¼ 164. Then, in the manner of eq. (480), eq. (A)
can be written as follows, where the superscript ‘‘�1’’ indicates that the inverse of the
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matrix is to be taken

x

y

z

2
64
3
75 ¼

3 �4 1

�2 1 �5

4 6 �2

2
64

3
75
�1

r

s

t

2
64
3
75 ðBÞ

To find the indicated inverse of the matrix, let us next find the value of A0 which
is, in this case, using eq. (483),

A0 ¼
28 �24 �16

�2 �10 �34

19 13 �5

2
64

3
75

and thus

3 �4 1

�2 1 �5

4 6 �2

2
64

3
75
�1

¼ 1

164

28 �2 19

�24 �10 13

�16 �34 �5

2
64

3
75

therefore, eq. (B) becomes

x

y

z

2
64
3
75 ¼ 1

164

28 �2 19

�24 �10 13

�16 �34 �5

2
64

3
75 r

s

t

2
64
3
75

Now take the product of the two matrices on the right-hand side, as indicated; the
right-hand side then becomes a 3 � 1 matrix; thus

x

y

z

2
64
3
75 ¼ 1

164

ð28r� 2sþ 19tÞ
ð�24r� 10sþ 13tÞ
ð�16r� 34s� 5tÞ

2
64

3
75

Now carry out the indicated multiplication of the right-hand side by (1/164)
(section 11.1). We then have the equality of two 3 � 1 matrices, and therefore, by
the definition of equal matrices from section 11.1, the last matrix equation is the
equivalent of the following three simultaneous equations

ð28=164Þr� ð2=164Þsþ ð19=164Þt ¼ x

�ð24=164Þr� ð10=164Þsþ ð13=164Þt ¼ y

�ð16=164Þr� ð34=164Þs� ð5=164Þt ¼ z

Now compare the coefficients in the last three equations with the corresponding
ones in set 2; doing this, you’ll find that a ¼ ð28=164Þ, b ¼ �ð2=164Þ, c ¼ ð19=164Þ,
and so on, to the final value, i ¼ �ð5=164Þ, answers.
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236.

AA�1 ¼ � 1

37

2 1 �4

1 5 3

�2 0 1

2
664

3
775

5 �1 23

�7 �6 �10

10 �2 9

2
664

3
775

¼ � 1

37

ð10 � 7 � 40Þ ð�2 � 6 þ 8Þ ð46 � 10 � 36Þ
ð5 � 35 þ 30Þ ð�1 � 30 � 6Þ ð23 � 50 þ 27Þ
ð�10 þ 0 þ 10Þ ð2 þ 0 � 2Þ ð�46 þ 0 þ 9Þ

2
664

3
775

¼ � 1

37

�37 0 0

0 �37 0

0 0 �37

2
664

3
775 ¼

1 0 0

0 1 0

0 0 1

2
664

3
775 ¼ I

which indicates that the work is correct.

237.

ðaÞ At ¼
4 3

�4 2

" #
; answer:

ðbÞ At ¼

6 0 4 0

9 2 5 7

�1 1 9 0

4 3 �2 8

2
666664

3
777775; answer:

238. First

½Aþ B�t ¼
ð3 þ 5Þ ð�3 þ 2Þ
ð�7 þ 4Þ ð6 � 3Þ
� 	

t

¼ 8 �1

�3 3

� 	
t

¼ 8 �3

�1 3

� 	
then

At þ Bt ¼
3 �7

�3 6

� 	
þ 5 4

2 �3

� 	
¼ 8 �3

�1 3

� 	
which is the same answer as above.

239. Since A is a (3 � 2) and B a (2 � 3Þ matrix, the product in the order AB does exist and
will be a (3 � 3) matrix. From the definition of matrix multiplication laid down in
section 11.2, we have that

AB ¼
2 �4

0 6

�7 3

2
64

3
75 3 0 3

2 �1 9

� 	
¼

ð6 � 8Þ ð0 þ 4Þ ð6 � 36Þ
ð0 þ 12Þ ð0 � 6Þ ð0 þ 54Þ
ð�21 þ 6Þ ð0 � 3Þ ð�21 þ 27Þ

2
64

3
75

thus

AB ¼
�2 4 �30

12 �6 54

�15 �3 6

2
64

3
75
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and hence

ðABÞt ¼
�2 12 �15

4 �6 �3

�30 54 6

2
64

3
75

then, next,

BtAt ¼
3 2

0 �1

3 9

2
664

3
775 2 0 �7

�4 6 3

" #

¼
ð6 � 8Þ ð0 þ 12Þ ð�21 þ 6Þ
ð0 þ 4Þ ð0 � 6Þ ð0 � 3Þ
ð6 � 36Þ ð0 þ 54Þ ð�21 þ 27Þ

2
664

3
775 ¼

�2 12 �15

4 �6 �3

�30 54 6

2
664

3
775

thus proving that (ABÞt ¼ BtAt for the given matrix.

240. g11 has the dimension of admittance (mhos).
g22 has the dimension of impedance (ohms).
g12 and g21 are dimensionless ratios.

a12 has dimensions of impedance (ohms).
a21 has dimensions of admittance (mhos).
a11 and a22 are dimensionless ratios.

241.

y22 ¼
I2
V2ðV1¼0Þ

g21 ¼
V2

V1ðI2¼0Þ

242. Let us begin by writing eqs. (512) and (513) with the minus sign inside the a matrix,
so that eq. (514) takes the equivalent form

V1

I1

� 	
¼ a11 �a12

a21 �a22

� 	
V2

I2

� 	
Now multiply both sides of the above equation by the inverse of the a matrix,

which gives

a11 �a12

a21 �a22

� 	�1 V1

I1

� 	
¼ a11 �a12

a21 �a22

� 	�1 a11 �a12

a21 �a22

� 	
V2

I2

� 	
ðAÞ

Note that the right-hand side of the equation is of the form

½a��1½a� V2

I2

� 	
¼ I

V2

I2

� 	
¼ V2

I2

� 	
by eqs. (489), (486), where I is the unit matrix of section 11.4. Therefore the preceding
equation (eq. A) becomes

a11 �a12

a21 �a22

� 	�1 V1

I1

� 	
¼ V2

I2

� 	
which is a correct way of writing the answer.
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A more detailed answer, can, however, be written by taking the inverse of the
2 � 2 matrix as indicated. Following the procedure of problem 232, you should find
that the inverse of the above 2 � 2 matrix is

a11 �a12

a21 �a22

� 	�1

¼ 1

a12a21 � a11a22

�a22 a12

�a21 a11

� 	
and therefore the preferable final answer, free of inverse notation, is

V2

I2

� 	
¼ 1

a12a21 � a11a22

�a22 a12

�a21 a11

� 	
V1

I1

� 	

243. Multiplication of both sides of eq. (482) by the constant c gives

cA ¼

ca11 ca12 � � � ca1n

ca21 ca22 � � � ca2n

..

. ..
. ..

.

can1 can2 � � � cann

2
66664

3
77775

We now wish to take the inverse of both sides of the above equation. The first step
in doing this is to find the value of the determinant formed from the elements of the
matrix. Note that, when regarded as a determinant, c factors from every row of the
determinant, and thus we have

determinant of cA ¼ cnD

where D is the determinant value of the original square matrix A. Next, note that cn�1

will factor from every cofactor in A0, eq. (483), and therefore from the transpose of
A0. It thus follows that

½cA��1 ¼ cn�1

cnD

transpose

of

matrix A0

2
64

3
75 ¼ 1

c
A�1

244. As mentioned following eq. (504), ½z� ¼ ½y��1, so our problem is basically to find the
inverse of the 2 � 2 admittance matrix. Following the procedure of problem 232, you
should find that

y11 y12

y21 y22

� 	�1

¼ 1

y11y22 � y12y21

y22 �y12

�y21 y11

� 	
¼ y22=D �y12=D

�y21=D y11=D

� 	
where D ¼ y11y22 � y12y21. The z-matrix is equal to the last matrix to the right above,
and thus, from the definition of equal matrices in section 11.1, the answers to the
problem are

z11 ¼ y22=D; z12 ¼ �y12=D; z21 ¼ �y21=D; z22 ¼ y11=D

245. First, remembering that j2 ¼ �1, you should find that D ¼ 20ð4 � jÞ10�6. Then
1=D ¼ 2:941ð4 þ jÞ103 approximately, and using this value with the other given
values, in the equations found in problem 244, gives the following values in ohms:

z11 ¼ �17:65 þ j70:59 z12 ¼ 20:59 þ j17:65

z21 ¼ �735:3 þ j941:1 z22 ¼ 191:2 þ j235:3
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246. Going in the ccw sense around the two secondary circuits, the sums of the voltage
drops are (letting Z2 ¼ Rþ j!LÞ

for Fig: 281: j!MI1 þ Z2I2 ¼ 0

for Fig: 282: � j!MI1 þ Z2I2 ¼ 0

hence, by eq. (517) for Fig. 281,

h21 ¼ I2=I1 ¼ �j!M=Z2Þ; answer:

then, by eq. (517), for Fig. 282,

h21 ¼ I2=I1 ¼ jð!M=Z2Þ; answer:

The results simply show that, for the particular network of Figs. 281 and 282, the
sign of h21 depends upon the sense in which the secondary turns are wound relative to
the primary turns.

247. First verify that dh ¼ 0:1320. Next recall, from section 11.1, that two matrices can be
equal only if all corresponding elements are equal. With this in mind, inspection of the
fourth row of the conversion chart then gives the approximate answers

g11 ¼ h22=dh ¼ 0:0030 mhos g12 ¼ �h12=dh ¼ �0:0606

g21 ¼ �h21=dh ¼ �197:0 g22 ¼ h11=dh ¼ 6439:4 ohms

248. One procedure is as follows. First solve eq. (507) for V2, then substitute that value of
V2 into eq. (506), which then becomes

V1 ¼ ðh11 � h12h21=h22ÞI1 þ ðh12=h22ÞI2
which, since ðh11 � h12h21=h22Þ ¼ ðh11h22 � h12h21Þ=h22 ¼ dh=h22, becomes

V1 ¼
dh

h22

I1 þ
h12

h22

I2

Next, by eq. (507),

V2 ¼ � h21

h22

I1 þ
1

h22

I2

Or, in matrix form, the last two simultaneous equations become

V1

V2

� 	
¼ dh=h22 h12=h22

�h21=h22 1=h22

� 	
I1

I2

� 	
Comparison of the above equation with eq. (519) shows it has to be true that

z11 z12

z21 z22

� 	
¼ dh=h22 h12=h22

�h21=h22 1=h22

� 	
thus proving that the relationship given in the conversion table is correct.

249. From the first row of the conversion chart we have that

z11 z12

z21 z22

� 	
¼ 1=g11 �g12=g11

g21=g11 dg=g11

� 	
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thus

z11 ¼ 1=g11 ¼ 14:71 ohms z12 ¼ �g12=g11 ¼ 1:074 ohms

z21 ¼ g21=g11 ¼ �3353 ohms z22 ¼ dg=g11 ¼ 8510 ohms

250. By eq. (511),

½g� V1

I2

� 	
¼ I1

V2

� 	
which can be written

V1

I2

� 	
¼ ½g��1 I1

V2

� 	
because ½g� is a square matrix. Comparison of the last equation with eq. (508) shows
that

½h� ¼ ½g��1

as proposed.

251. First we have

dh ¼ h11h22 � h12h21 ¼ 0:1320

Then, from the matrix conversion chart, the answers are

z11 ¼ dh=h22 ¼ 330 ohms z12 ¼ h12=h22 ¼ 20 ohms

z21 ¼ �h21=h22 ¼ �65;000 ohms z22 ¼ 1=h22 ¼ 2500 ohms

252. First, from inspection of Fig. 286, note that (where ‘‘e’’ refers to the single equivalent
two-port)

V1e ¼ V1a þ V1b V2e ¼ V2a ¼ V2b

I1e ¼ I1a ¼ I1b I2e ¼ I2a þ I2b

Next, from eq. (521) we have
for two-port a:

V1a

I2a

� 	
¼ h11a h12a

h21a h22a

� 	
I1a

I2a

� 	
ðxÞ

for two-port b:

V1b

I2b

" #
¼

h11b h12b

h21b h22b

" #
I1b

V2b

" #

¼
h11b h12b

h21b h22b

" #
I1a

V2a

" #
ðyÞ

Now note that the sum of eqs. (x) and (y) can be written as

V1e

I2e

� 	
¼ ðh11a þ h11bÞ ðh12a þ h12bÞ

ðh21a þ h21bÞ ðh22a þ h22bÞ
� 	

I1e

V2e

� 	
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which, upon reference to eq. (521), shows that the h-parameters of the single equiva-
lent two-port are equal to the sum of the h-parameters of the individual two-ports when
the two-ports are connected in the series-parallel mode of Fig. 286.

253. Making use of eq. (536) and the conversion chart in section 11.8 we have, for three
identical two-ports in parallel,

3y11 3y12

3y21 3y22

� 	
¼ 3

y11 y12

y21 y22

� 	
¼ 3z22=dz �3z12=dz

�3z21=dz 3z11=dz

� 	
and thus the answers are that parameters of the equivalent two-port, in terms of the
z-parameters of the individual two-ports, are

z11e ¼ 3z22=dz; z12e ¼ �3z12=dz; z21e ¼ �3z21=dz; z22e ¼ 3z11=dz

254. Since we’re dealing with two identical two-ports, eq. (541) becomes

V1

I1

� 	
¼ a11 a12

a21 a22

� 	
a11 a12

a21 a22

� 	
Vo

Io

� 	
which, upon using the conversion chart in section 11.8, becomes

V1

I1

� 	
¼ 1

h2
21

dh h11

h22 1

� 	
dh h11

h22 1

� 	
Vo

Io

� 	
Now make use of the procedure for matrix multiplication defined in section 11.2;

doing this gives the final answer

V1

I1

� 	
¼ ðd2hþ h11h22Þ ðdhh11 þ h11Þ

ðdhh22 þ h22Þ ðh11h22 þ 1Þ

" #
Vo

Io

� 	

(From Fig. 288, note that, for two two-ports in cascade, Vo ¼ V4 ¼ V5 and Io ¼ I5.)

255. Note that the answer to problem 254 is of the form

V1

I1

� 	
¼ A B

C D

� 	
Vo

Io

� 	
¼ c11

c21

� 	
and therefore

V1

I1

� 	
¼ AVo þ BIo

CVo þDIo

� 	
which says that

V1 ¼ AVo þ BIo ¼ ðAþ B=ZLÞVo

and

I1 ¼ CVo þDIo ¼ ðC þD=ZLÞVo

because, from Fig. 288, Io ¼ I7 ¼ Vo=ZL. Now solve the first of the two simultaneous
equations for Vo, then substitute the result in place of Vo in the second equation.
Doing this gives us

I1 ¼
ðC þD=ZLÞV1

Aþ B=ZL

¼ ðDþ CZLÞV1

Bþ AZL
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Now find the values of A, B, C, D, by making use of, from problem 254, the
matrix equation,

A B

C D

� 	
¼ ðd2hþ h11h22Þ ðdhh11 þ h11Þ

ðdhh22 þ h22Þ ðh11h22 þ 1Þ

" #

256. As noted in the solution to problem 255, the network matrix in the answer to
problem 254 is of the form

A B

C D

� 	
the inverse of which is (see problem 232 if you wish)

A B

C D

� 	�1

¼ 1

AD� BC

D �B

�C A

� 	
Now substitute, into the last expression, the values of A, B, C, D, found from
inspection of the matrix equality that appears in the solution to problem 255.
Doing this gives, after some simplification, the answer

½h��1 ¼ 1

ðdh� h11h22Þ2
ð1 þ h11h22Þ �ð1 þ dhÞh11

�ð1 þ dhÞh22 ðd2hþ h11h22

� 	

257. Note that eq. (545) is of the form

V1

V2

� 	
¼ A B

C D

� 	
I1

I2

� 	
¼ ðAI1 þ BI2Þ

ðCI1 þDI2Þ
� 	

which, by the definition of equal matrices, shows that

AI1 þ BI2 ¼ V1

CI1 þDI2 ¼ V2

Thus

I1 ¼
V1 B

V2 D

����
����

AD� BC
¼ DV1 � BV2

AD� BC

which, upon substituting in the values of A, B, C, and D, gives the required answer.

258. In eq. (545) we must first write the transistor z-parameters (Z11;Z12;Z21;Z22) in
terms of h-parameters, which is most easily done by making use of the conversion
chart in section 11.8. Doing this, eq. (545) becomes

V1

V2

� 	
¼

dh

h22

þ Z

� �
h12

h22

þ Z

� �

� h21

h22

þ Z

� �
1

h22

þ Z

� �
2
6664

3
7775 I1

I2

� 	
; answer:

259. No, because ½Z� in eq. (543) is a ‘‘singular’’ matrix. (See discussion just prior to eq.
(484) in section 11.3.)
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260. First write eq. (548) in the inverse form

Vo

Io

� 	
¼ 1 Z 0

1=Z ð1 þ Z 0=ZÞ

� 	�1
V1

I1

� 	
in which (as in the solution to problem 256) A ¼ 1, B ¼ Z 0, C ¼ 1=Z and
D ¼ ð1 þ Z 0=ZÞ; thus, using the special formula noted in the solution to problem
256, we find that

Vo

Io

� 	
¼ ð1 þ Z 0=ZÞ �Z 0

�1=Z 1

� 	
V1

I1

� 	
; answer:

261. We can make use of eqs. (506) and (507) in section 11.6 as follows. First, from Fig.
307, note that

V2 ¼ ILZL and I2 ¼ �IL

and thus eqs. (506) and (507) become

V1 ¼ h11I1 þ h12ZLIL

0 ¼ h21I1 þ ð1 þ h22ZLÞIL
We must now solve the foregoing two simultaneous equations for IL. This can be
done by using either determinants or the method of elimination. Thus, if you multi-
ply the first equation by h21 and the second equation by �h11, then add the two
equations together, you should find that

IL ¼ h21V1

h12h21ZL � h11ð1 þ h22ZLÞ
which, upon substituting in the given h-values, ZL ¼ 150 ohms, V1 ¼ 12 volts, should
give you the required answer.

262. Since V2 ¼ RLIL and �I2 ¼ IL, eq. (514) becomes

V1

I1

� 	
¼ a11 a12

a21 a22

� 	
RLIL

IL

� 	
thus

V1

I1

� 	
¼ ða11RLIL þ a12ILÞ

ða21RLIL þ a22ILÞ
� 	

hence, by the definition of equal matrices (section 11.1),

V1 ¼ ða11RL þ a12ÞIL
thus

IL ¼ V1

a11RL þ a12

We must now make use of the conversion chart in section 11.8 to express the
required a-parameters in terms of the given h-parameters. Carefully doing this, you
should find that a11 ¼ 0:14 and a12 ¼ 20, and now, substituting these a values into
the last equation above, along with V1 ¼ 12 and RL ¼ 150, you should find that
IL ¼ 0:2927 amperes, as before.
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263. Here we have a cascade connection of three two-ports in the manner of Fig. 288 and
eq. (541) in section 11.9, in which, for Fig. 308, in terms of a coefficients,

½a1� ¼
a11 a12

a21 a22

" #
; for first transistor

½a2� ¼
1 0

1=R 1

" #
; shunt impedance of Z ¼ R ohms in terms of a coefficients*

½a3� ¼
a11 a12

a21 a22

" #
; for second transistor ðsame values as for first transistorÞ

Thus we now have, for Fig. 308, in the manner of eq. (540) ðI7 ¼ IL, V7 ¼ RLILÞ,
V1

I1

� 	
¼ a11 a12

a21 a22

� 	
1

1=R

0

1

� 	
a11 a12

a21 a22

� 	
RLIL
IL

� 	

We must now take the first matrix times the second matrix, then take that result
times the third matrix, then that result times the fourth matrix. Upon doing this,
carefully following the rule for matrix multiplication from section 11.2, you should
find that the result is the matrix expression

V1

I1

� 	
¼ ½ða11 þ a12=RÞa11 þ a12a21�RLIL þ ½ða11 þ a12=RÞa12 þ a12a22�IL

½ða21 þ a22=RÞa11 þ a21a22�RLIL þ ½ða21 þ a22=RÞa12 þ a2
22�IL

� 	

Now, using the same procedure as in the solution to problem 262 (noting that
RLIL ¼ VLÞ, you can verify that

VL ¼ V1RL

½ða11 þ a12=RÞa11 þ a12a21�RL þ ða11 þ a22 þ a12=RÞa12

We must now turn to the conversion chart in section 11.8 to find the values of the
above a-parameters in terms of the given h-parameters. To do this we note that, from
the fifth row of the chart,

a11 ¼ �dh=h21 ¼ �0:0085 a12 ¼ �h11=h21 ¼ �25

a21 ¼ �h22=h21 ¼ �0:000 012 5 a22 ¼ �1=h21 ¼ �0:025

Now carefully substitute these values (including V1 ¼ 0:001, R ¼ 500, RL ¼ 900,
into the above formula for VL. Doing this, you should find that

VL ¼ 0:9

2:816 275
¼ 0:319 571

¼ 0:3196 volts approx:; answer:

In regard to the above problem it should be noted that the total phase shift produced
by two CE stages in cascade (resistive loads) is equal to 1808þ 1808 ¼ 3608, which
effectively amounts to zero degrees of phase shift between input and output signals;
thus we can disregard the 1808 of phase shift produced in each stage.
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264. By the rules for matrix multiplication (and dispensing with the ‘‘overscore’’ notation)
we have

1 1 1

a a2 1

a2 a 1

2
64

3
75 A1

A2

A0

2
64

3
75 ¼

A

B

C

2
64

3
75

265. The basic problem here is to find the inverse of the (3 � 3) matrix, as indicated. This
can be done by following the procedure summarized in connection of eq. (482) in
section 11.3.

In the present case you should find, for the first step, noting that a4 ¼ a3a ¼ a,
that

D ¼ 3aða� 1Þ

Next, you can check that the ‘‘cofactor’’ form of the (3 � 3) matrix is (again
noting that a4 ¼ a)

ða2 � aÞ �ða� a2Þ ða2 � aÞ
�ð1 � aÞ ð1 � a2Þ �ða� a2Þ
ð1 � a2Þ �ð1 � aÞ ða2 � aÞ

2
664

3
775

¼
aða� 1Þ aða� 1Þ aða� 1Þ
ða� 1Þ �ða� 1Þðaþ 1Þ aða� 1Þ

�ða� 1Þðaþ 1Þ ða� 1Þ aða� 1Þ

2
664

3
775

¼ ða� 1Þ
a a a

1 �ðaþ 1Þ a

�ðaþ 1Þ 1 a

2
664

3
775

Now transpose the above matrix, then multiply by 1=D; doing this, the statement
of problem 265 becomes

A1

A2

A0

2
64

3
75 ¼ 1

3a

a 1 �ðaþ 1Þ
a �ðaþ 1Þ 1

a a a

2
64

3
75 A

B

C

2
64

3
75

Now, on the right-hand side of the above equation, take the product of the (3 � 3)
matrix and the (3 � 1) matrix, then multiply the result by 1/3a. You now have the
equality of two (3 � 1) matrices and thus, in accordance with the law of equal
matrices, you have found that

A1 ¼
1

3a
½aAþ B� ðaþ 1ÞC�

A2 ¼
1

3a
½aA� ðaþ 1ÞBþ C�

A0 ¼
1

3a
ðaAþ aBþ aCÞ
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Actually (though it doesn’t seem true at first glance) the above three equations are
the same as eqs. (460), (463), and (466). To see this, first note that

a3 ¼ a2a ¼ 1 thus also; 1=a ¼ a2

thus the last three equations above can be written in the form

A1 ¼ 1
3 ½Aþ a2B� ð1 þ a2ÞC�

A2 ¼ 1
3 ½A� ð1 þ a2ÞBþ a2C�

A0 ¼ 1
3 ðAþ Bþ CÞ

For the final step note that

�ð1 þ a2Þ ¼ �ð1 þ � j240Þ ¼ �ð1 þ cos 240 þ j sin 240Þ ¼ �0:500 þ j0:8660 ¼ � j120 ¼ a

and thus, upon setting �ð1 þ a2Þ ¼ a, the last three equations become exactly the
same as eqs. (460), (463), and (466).

266. As in example 1:

67 divided by 2 ¼ 33; plus remainder 1; the LSD

33 divided by 2 ¼ 16; plus remainder 1; next LSD

16 divided by 2 ¼ 8; plus remainder 0; next LSD

8 divided by 2 ¼ 4; plus remainder 0; next LSD

4 divided by 2 ¼ 2; plus remainder 0; next LSD

2 divided by 2 ¼ 1; plus remainder 0; next LSD

1 divided by 2 ¼ 0; plus remainder 1; MSD

Hence

67 dec ¼ 1000011 binary; answer:

267. As in example 1:

383 divided by 2 ¼ 191; plus remainder 1; the LSD

191 divided by 2 ¼ 95; plus remainder 1; next LSD

95 divided by 2 ¼ 47; plus remainder 1; next LSD

47 divided by 2 ¼ 23; plus remainder 1; next LSD

23 divided by 2 ¼ 11; plus remainder 1; next LSD

11 divided by 2 ¼ 5; plus remainder 1; next LSD

5 divided by 2 ¼ 2; plus remainder 1; next LSD

2 divided by 2 ¼ 1; plus remainder 0; next LSD

1 divided by 2 ¼ 0; plus remainder 1; MSD

thus

383 dec ¼ 101111111 binary; answer:
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268. First, for the whole part, 118 dec ¼ 1110110 binary. Next, the binary equivalent of
the decimal fraction 0.182 is found as follows (see example 2):

0:182 � 2 ¼ 0:364; hence; 0:0

0:364 � 2 ¼ 0:728; hence; 0:00

0:728 � 2 ¼ 1:456; hence; 0:001

0:456 � 2 ¼ 0:912; hence; 0:0010

0:912 � 2 ¼ 1:824; hence; 0:00101

0:824 � 2 ¼ 1:648; hence; 0:001011

0:648 � 2 ¼ 1:296; hence; 0:0010111

0:296 � 2 ¼ 0:592; hence; 0:00101110

0:592 � 2 ¼ 1:184; hence; 0:001011101

thus

118:182 dec ¼ 1110110:001011101 binary; answer

the check on the binary fraction part showing that

0:001011101 bi ¼ 1=8 þ 1=32 þ 1=64 þ 1=128 þ 1=512 ¼ 0:182 dec: approx:

269. In the same way as in example 3 we have

2 � 1 ¼ 2;þ1 ¼ 3

2 � 3 ¼ 6;þ1 ¼ 7

2 � 7 ¼ 14;þ0 ¼ 14

2 � 14 ¼ 28;þ1 ¼ 29

2 � 29 ¼ 58;þ0 ¼ 58

2 � 58 ¼ 116;þ1 ¼ 117; answer:

270. First, for the whole part, 1001 bi ¼ 9 dec. Next, to find the decimal equivalent of the
binary fractional part 0.01101, use the procedure of example 4, thus

1 divided by 2 ¼ 0:5

ð0:5 þ 0Þ divided by 2 ¼ 0:25

ð0:25 þ 1Þ divided by 2 ¼ 0:625

ð0:625 þ 1Þ divided by 2 ¼ 0:8125

ð0:8125 þ 0Þ divided by 2 ¼ 0:40625

Hence the equivalent decimal number is 9.40625, answer.

271. (a) Noting that 1 þ 1 ¼ ‘‘zero, carry 1 to next column to left,’’ we have

0 1 0 1 1 0 1 ð45 decÞ
1 0 1 1 0 0 1 ð89 decÞ

1 0 0 0 0 1 1 0; answer ð134 decÞ
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(b) Noting 1 þ 1 þ 1 ¼ ð1 þ 1Þ þ 1 ¼ 1 and carry 1 to next column to left, we have

1 0 1 1 ð11 decÞ
0 1 0 1 ð 5 decÞ
1 1 0 1 ð13 decÞ

1 1 1 0 1; answer ð29 decÞ
(c)

1 1 : 0 1 1 ð3:375 decÞ
0 1 : 1 0 1 ð1:625 decÞ

1 0 1 : 0 0 1; answer ð5:000 decÞ

272. (a) Letting Nc denote the 1’s complement of the subtrahend N, we take the sum of
Y and Nc, then make the overflow ‘‘end-around carry,’’ thus

1 1 0 1 0 1 1

þ 0 1 1 0 0 0 0

r 0 0 1 1 0 1 1
j ����������! 1

0 0 1 1 1 0 0; answer ð28 decÞ

(b) Here the above procedure produces no overflow 1, which signals that the min-
uend Y is less than the subtrahend N, meaning that the answer is negative. In
such a case we use the 1’s complement of the minuend Y , and proceed as before;
thus

0 1 1 0 0 0 0

þ 1 1 0 1 0 1 1

r 0 0 1 1 0 1 1
j ����������! 1

0 0 1 1 1 0 0; answer ð�28 decÞ
Note: In the following problems ‘‘item numbers’’ refer to the table of ‘‘theorems’’
in section 12.2.

273. By repeated application of item (6), Aþ Aþ Aþ A ¼ A and Bþ Bþ B ¼ B, the
answer is

‘‘Aþ B; ’’ that is;A or B:

274. By repeated application of item (5),

AAABBCCCC ¼ ABC; answer:

275. Aþ Bþ C þ ABC þ 1 ¼ 1, answer, by the basic item (9). That is, a network com-
posed of a closed switch in parallel with anything else constitutes a closed network.

276. We use the basic item (17); thus

ðAþ BÞ þ C ¼ Aþ B �CC ¼ �AA �BB �CC:

277. We use the basic item (18); thus

Solutions to Problems 535



ABC ¼ ðABÞC ¼ ABþ �CC ¼ �AAþ �BBþ �CC:

278. Z ¼ Að1 þ BÞ ¼ A, answer, by items (9) and (7).

279. Z ¼ AABð1 þ �CCÞ ¼ AB, answer, by items (5), (9), and (7).

280. One way is to first note that AðAþ BÞ ¼ Aþ AB ¼ Að1 þ BÞ ¼ A, so that the given
expression simplifies to

Z ¼ AðBþ CÞ; answer:

Or instead, if we wish, we can begin by first taking the product of the two
binomials; thus

Z ¼ AðABþ AC þ BBþ BCÞ ¼ AðBþ CÞ þ ABð1 þ CÞ
¼ ABþ AC þ AB

which, since ABþ AB ¼ AB, by item (6), gives

Z ¼ ABþ AC ¼ AðBþ CÞ; answer; as before:

281. One procedure is to first note that, by items (14) and (7), we have ðBC þ �BBCÞ ¼
ðBþ �BBÞC ¼ C and AC þ A �CC ¼ AðC þ �CCÞ ¼ A so that the given expression becomes

Z ¼ Aþ C þ �BB �CC ¼ Aþ ðC þ �CC �BBÞ
Now, by item (16), note that C þ �CC �BB ¼ C þ �BB, so that the last expression above

becomes.
Z ¼ Aþ �BBþ C; answer:

282. One way is to first apply item (17) then item (5), thus getting

Z ¼ Bþ �BB �CC �DD �DD ¼ Bþ �BB �CC �DD

Now apply the generic form of item (16), that is, Aþ �AAY ¼ Aþ Y , then apply
item (17). Doing this, the last answer above becomes

Z ¼ Bþ �CC �DD ¼ Bþ C þD; answer:
Comment. We have thus found, by applying the laws of Boolean algebra, that

Bþ �CC �DD ðBþDÞ ¼ Bþ C þD

It should be noted that, although the two sides of the equation represent physi-
cally different switching arrangements, both sides perform the same electrical switch-
ing operation. Thus the right-hand side does the same electrical switching job as the
left-hand side, but has the advantage of being physically simpler. Also, from a prac-
tical viewpoint, it’s important to note that the switching network represented by the
right-hand side requires just one inverter (one transistor), while the electrically equiva-
lent network represented by the left-hand side requires three inverters.

283. Note first that ABC þ �AABC ¼ ðAþ �AAÞBC ¼ BC, by items (14) and (7), and upon
making use of this relationship the problem becomes

Z ¼ BC þ �AA �BB �CC ¼ BC þ Aþ Bþ C

because �AA �BB �CC ¼ Aþ Bþ C (from problem 276). Now apply, to the last expression

Solutions to Problems536



Solutions to Problems 537

above, the generic form of item (17), that is, X þ Y ¼ �XX �YY , to get

Z ¼ BC ðAþ Bþ CÞ ¼ BC ðAþ Bþ CÞ; answer; by item ð15Þ:
Note that we’ve greatly simplified the original switching network because now

only two ‘‘and’’ circuits, one ‘‘or’’ circuit, and one ‘‘not’’ circuit are needed.

284. Using the result of problem 276, the given problem can be written as
Z ¼ �AA �BB �CC �DDþ �AA �CC �DD ¼ �AA �CC �DDð �BBþ 1Þ ¼ �AA �CC �DD, by items (9) and (7). Hence, again
from problem 276,

Z ¼ Aþ C þD; answer:

285. By items (17) and (15),

Aþ �AAB ¼ Aþ B; answer:

286. Z ¼ ðAþ �AAÞ �BBC þ A �BB �CC ¼ �BBC þ A �BB �CC, by items (14) and (7); then

Z ¼ �BBðC þ �CCAÞ ¼ �BBðC þ AÞ, by item (16); thus

Z ¼ Bþ Aþ C; answer; by item ð18Þ:

287.

288. We are asked to simplify the expression for the output signal Z in problem 287. To
do this, we can begin with the simplification Aþ �AABC ¼ Aþ BC, by item (16),
which puts Z into the form

Z ¼ Aþ Bþ BC þ CD ¼ Aþ Bþ CD

where we used the simplification Bþ BC ¼ Bð1 þ CÞ ¼ B. Now apply items (17) and
(15) to get

Z ¼ Aþ BCD; answer

(not the quantity A or B and the quantity C and D). A sketch of the simplified
network is shown below.



289. First, the elemental equation is Z ¼ �AA �BBþ A �BBþ AB ¼ �AA �BBþ Að �BBþ BÞ, and thus

Z ¼ Aþ Bþ A; answer; by items ð14Þ; ð7Þ; ð17Þ:
The above answer is accomplished by the network below.

290. (a) Z ¼ �AA �BBþ AB, answer.

(b) First, by item (17), Z ¼ Aþ Bþ AB, which is produced by the network

Note that Z ¼ Aþ Bþ AB does satisfy the given truth table.

291. (a) Z ¼ �AA �BB �CC þ �AAB �CC þ A �BBC þ ABC, answer.
Check: inspection of the answer shows that Z ¼ 1 (which denotes the presence
of a signal on the output line) if any of the input signal combinations 000, 010,
101, and 111 appear on the input lines, and Z ¼ 0 for any other combination of
input signals.

(b) First note that Z ¼ �AA �CCð �BBþ BÞ þ ACð �BBþ BÞ, which, after applying items (14),
(7), and (17), becomes Z ¼ Aþ C þ AC, which can be generated by the hard-
ware arrangement

Note that in this case the signal B need not be connected to the network, because
the state of signal B, 1 or 0, does not affect the state of output signal Z.

292. (a) Z ¼ �AA �BBC �DDþ �AAB �CC �DDþ �AABC �DDþ A �BBCDþ ABC �DDþ ABCD, answer.

(b) One way to proceed is as follows. First, noting that the quantity �AA �DD factors
from the first three terms, and AC factors from the last three terms, we can take
the following steps:

Z ¼ �AA �DDð �BBC þ B �CC þ BCÞ þ ACð �BBDþ B �DDþ BDÞ
then

Z ¼ �AA �DD �BBC þ Bð �CC þ CÞ þ AC �BBDþ Bð �DDþDÞ
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which, after applying items (14) and (7), becomes

Z ¼ �AA �DDðBþ �BBCÞ þ ACðBþ �BBDÞ
which, after applying items (17) and (16), becomes

Z ¼ AþDðBþ CÞ þ ACðBþDÞ; answer:

(c)

293. (a) Z ¼ �AA �BBC �DDþ �AA �BBCDþ �AABCDþ A �BBC �DDþ ABCD, answer.

(b) Z ¼ C½ �AA �BBð �DDþDÞ þ ð �AAþ AÞBDþ A �BB �DD�, then

Z ¼ Cð �AA �BBþ BD þ A �BB �DDÞ
by items (14) and (7). Next,

Z ¼ C½BDþ �BBð �AAþ A �DDÞ�
and since �AAþ A �DD ¼ �AAþ �DD (example 11 on p. 349, we have

Z ¼ C½BD þ �BBð �AAþ �DDÞ� ¼ CðBDþ �BBADÞ
by item (18). Now, making use of the basic relationship �XX �YY ¼ X þ Y , the last
result becomes

Z ¼ CðBDþ Bþ ADÞ; answer:

(c)

294. (a) Here, each block of information fed into the encoder will consist of 12 binary
digits, each such block representing one of the 12 possible values of Vq, includ-
ing Vq ¼ 0.
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Hence, letting A;B;C; . . . ; I ; J;K , denote each input block to the encoder, these
blocks will be in the form of 12 binary numbers from 0000 to 1011 (binary eleven).
Thus the TRUTH TABLE for the encoder is as follows:

(b) Close inspection of the above table will show that the output ‘‘X digits’’ will
have the value ‘‘1’’ (signal ‘‘is present’’) only if the following Boolean equations
are satisfied. (Otherwise it’s understood that X ¼ 0, meaning the signal is ‘‘not
present’’ for any other arrangements of the A;B;C; . . . ; I ; J;K input signals.)

X1 ¼ 1 ¼ A �BBþ C �DDþ E �FF þ G �HH þ I �JJ þ K

X2 ¼ 1 ¼ B �DDþ F �HH þ J

X3 ¼ 1 ¼ D �FF þ F �HH

X4 ¼ 1 ¼ H

Thus, in terms of hardware, it would be necessary to provide 5 ‘‘not,’’ 7 ‘‘and,’’
and 3 ‘‘or’’ devices.

295. First note that as we go from RIGHT TO LEFT in the series of eq. (576) the values
of the exponents increase by þ1 from term to term. Let us show this more clearly by
showing a few more terms at the right-hand end of the series, thus

FðzÞ ¼ 1 þ z�1 þ z�2 þ z�3 þ � � � þ z�nz3 þ z�nz2 þ z�nz1 þ z�n ðAÞ
where we made use of the law of exponents, z�nþ3 ¼ z�nz3, z�nþ2 ¼ z�nz2 and so on.

Now multiply both sides of eq. (A) by �z�1, as suggested. Doing this, eq. (A)
becomes

�z�1FðzÞ ¼ �z�1 � z�2 � z�3 � z�4 � � � � � z�nz2 � z�nz1 � z�n � z�nz�1 ðBÞ
Now take the algebraic sum of eqs. (A) and (B), as suggested. Upon doing this,

note that on the right-hand side all of the terms except two will cancel out, leaving

ð1 � z�1ÞFðzÞ ¼ 1 � z�nz�1

which upon solving for FðzÞ gives eq. (577), as explained in the text.

296. First, for this problem, vðnTÞ ¼ cos!nT . Then, by Euler’s formulas, we have
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Vq A B C D E F G H I J K X4 X3 X2 X1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2 1 1 0 0 0 0 0 0 0 0 0 0 0 1 0

3 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1
4 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0
5 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1

6 1 1 1 1 1 1 0 0 0 0 0 0 1 1 0
7 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1
8 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0

9 1 1 1 1 1 1 1 1 1 0 0 1 0 0 1
10 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0
11 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1



� j!nT ¼ cos!nT þ j sin!nT

��j!nT ¼ cos!nt� j sin!nT

which, upon taking the algebraic sum of the two equations, shows that

cos!nt ¼ 1
2 ð� j!nT þ ��j!nT Þ ¼ vðnTÞ

and upon substituting this value of vðnTÞ into the basic eq. (573) we have

FðzÞ ¼ 1
2

Xn¼1

n¼0

ð� j!nTz�n þ ��j!nTz�nÞ

or, if we wish,

FðzÞ ¼ 1
2

Xn¼1

n¼0

½ð��j!TzÞ�n þ ð� j!TzÞ�n� ðAÞ

in which we made use of the fact that since (XabÞ ¼ ðXaÞb, then also (XabÞ ¼ ðX�aÞ�b.
Note, now, that eq. (580) applies to eq. (A), where b ¼ �j! in the first term and

b ¼ j! in the second term.
Thus eq. (581) applies to eq. (A), where k ¼ �j!T for the first term and k ¼ ��j!T

for the second term. Hence, by eq. (581), eq. (A) becomes

FðzÞ ¼ z

2

1

z� � j!T þ 1

z� ��j!T

� 	
Now, inside the brackets, combine the two fractions together over the common

denominator (the product of the two denominators), then apply Euler’s formulas to
the result. Carefully doing this, you should find that the z-transform of
vðnTÞ ¼ cos!nT is truly given by (7) in the table.

297.

298. The first two sequences, and their algebraic sum, are shown below.
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Therefore the addition of the
delayed step sequence, �3UðnT � 7TÞ,
produces the final answer shown to
the right.

299. IN SAMPLED form UðtÞ becomes UðnTÞ and t becomes nT . Thus we have that

vðnTÞ ¼ 3UðnTÞ � 20nT

Hence, making use of (1) and (2) in Table 2, then (2) and (4) in Table 1, we have
that

ZvðnTÞ ¼ FðzÞ ¼ 3z

z� 1
� 20Tz

ðz� 1Þ2

By eq. (91), Chap. 5, T ¼ 1=f ¼ 1=100 ¼ 0:01. Making use of this fact, then
combining the two fractions over a common denominator, should produce the
answer given with the problem.

300. Applying (2) of Table 1 and (4) of Table 2, we have

FðzÞ ¼ z

z� 1
þ z�1z

z� 1
þ z�2z

z� 1
¼ ðzþ 1 þ z�1Þ=ðz� 1Þ; answer:

301. Using (4) and (2) of Table 1 and (4) of Table 2, we have

FðzÞ ¼ Tz

ðz� 1Þ2 �
Tz�2

ðz� 1Þ2 �
z�6

ðz� 1Þ ; answer;

or, if you wish,

FðzÞ ¼ Tz

ðz� 1Þ2 �
T

z2ðz� 1Þ2 �
1

z6ðz� 1Þ ; answer:

302.

z�1 þ 0:5z�2 þ 0:25z�3 þ 0:125z�4 þ 0:0625z�5

z� 0:5 1

�1 þ 0:5z�1

0:5z�1

�0:5z�1 þ 0:25z�2

0:25z�2

�0:25z�2 þ 0:125z�3

0:125z�3

�0:125z�3 þ 0:0625z�4

0:0625z�4

hence the answers are

yð0Þ ¼ 0:000 yð2TÞ ¼ 0:500 yð4TÞ ¼ 0:125

yðTÞ ¼ 1:000 yð3TÞ ¼ 0:250 yð5TÞ ¼ 0:0625
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303. For convenience, let’s temporarily write ‘‘a’’ in place of ‘‘0.45.’’ Thus we have

FðzÞ ¼ z

z2 � a
, and our problem is to put FðzÞ into the form of eq. (583). To do this

we can use algebraic long division; thus,

z�1 þ az�3 þ a2z�5 þ a3z�7 þ a4z�9 þ � � �
z2 � a z

�zþ az�1

az�1

�az�1 þ a2z�3

a2z�3

�a2z�3 þ a3z�5

a3z�5

�a3z�5 þ a4z�7

a4z�7

Thus we have that

FðzÞ ¼ 0 þ ð1Þz�1 þ ð0Þz�2 þ az�3 þ ð0Þz�4 þ a2z�5 þ ð0Þz�6 þ a3z�7

þ ð0Þz�8 þ a4z�9 þ � � �
which is in the form of eq. (583). The general statement in the time domain, eq.
(584), is

vsðtÞ ¼ vð0ÞdðtÞ þ vðTÞdðt� TÞ þ vð2TÞdðt� 2TÞ þ vð3TÞdðt� 3TÞ þ � � �
and thus, by direct comparison, the answers are

vð0Þ ¼ 0:000

vðTÞ ¼ 1:000

vð2TÞ ¼ 0:000

vð3TÞ ¼ a ¼ 0:450

vð4TÞ ¼ 0:000

vð5TÞ ¼ a2 ¼ 0:203

vð6TÞ ¼ 0:000

vð7TÞ ¼ a3 ¼ 0:091

vð8TÞ ¼ 0:000

vð9TÞ ¼ a4 ¼ 0:041

304. Referring to the notation in the generalized Fig. 346, we see that, in Fig. 345, b0 ¼ 2,
b1 ¼ 3, b2 ¼ 7, and a1 ¼ 10. Hence, for Fig. 345, eq. (589) becomes

YðzÞ=XðzÞ ¼ HðzÞ ¼ ð2 þ 3z�1 þ 7z�2Þ=ð1 � 10z�1Þ; answer:

305. The a coefficients in Fig. 346 would all be equal to zero, because a non-recursive
processor uses no feedback; hence, for this type of processor, eq. (589) reduces to

YðzÞ=XðzÞ ¼ HðzÞ ¼ b0 þ b1z
�1 þ b2z

�2 þ � � � þ bpz
�p; answer:

306. From eq. (588) and Fig. 346, a processor is non-recursive if all the a coefficients are
zero. Hence the answers here are

(a) non-recursive,

(b) non-recursive,

(c) recursive.
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307. (a) Comparison with eq. (588) shows that this is a purely non-recursive processor
(no ‘‘yðnT � qTÞ’’ terms on the right-hand side). Thus this is a non-recursive
processor such as is illustrated in Fig. 343, but here requiring three delays.
Hence the block diagram is as follows.

(b) Since this is a purely non-recursive processor, all the a coefficients in eq. (589)
are zero. Thus setting b0 ¼ 4, b1 ¼ 7, b2 ¼ �5, and b3 ¼ 9 in eq. (589), the
answer is

HðzÞ ¼ 4 þ 7z�1 � 5z�2 þ 9z�3

308. For q ¼ 4 in eq. (597) we have

z4 � a1z
3 � a2z

2 � a3z� a4 ¼ 0

which, as explained in connection with eq. (602), possesses four poles. Since complex
poles can occur only in the form of pairs of conjugate complex numbers, we have
that the possibilities are

(a) four real poles, or

(b) two real and one pair of conjugate poles, or

(c) two pairs of conjugate poles.

309. For q ¼ 5 in eq. (597) we have

z5 � a1z
4 � a2z

3 � a3z
2 � a4z� a5 ¼ 0

and hence, since a fifth-degree equation possesses five roots, the possibilities are

(a) five real poles, or

(b) three real and one conjugate pair, or

(c) one real and two conjugate pairs.

310. First, setting the numerator equal to zero, 4zþ 9 ¼ 0, shows that HðzÞ has one zero,
for z ¼ �9=4 ¼ �2:25.

Next, to find the poles we set the denominator equal to zero and solve for z; thus

zðz� 9Þðz2 þ 5zþ 7Þ ¼ 0 ðAÞ
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which let us now put into the form of eq. (602), thus

zðz� 9Þðz� haÞðz� hbÞ ¼ 0 ðBÞ
in which ha and hb are the two roots of the quadratic factor, which are, in this case,
found by setting a ¼ 1, b ¼ 5, and c ¼ 7, into the ‘‘standard quadratic formula’’
which, as you should verify, yields the results

ha ¼ �2:5 þ j0:87 approx:;

hb ¼ �2:5 � j0:87 approx:

The advantage of putting eq. (A) into the form of (B) is that we can then see, by
direct inspection of (B), that the FOUR POLES of HðzÞ are located at

z ¼ 0 z ¼ ha ¼ �ð2:5 � j0:87Þ
z ¼ 9 z ¼ hb ¼ �ð2:5 þ j0:87Þ

The above demonstrates that the most time-consuming part of such solutions lies
in the necessity of factoring higher-degree expressions that may be present.

311. (a) The roots of the denominator, that is, the ‘‘poles’’ of HðzÞ, are, by inspection,
located at z ¼ 0:46 and z ¼ 0:22. Thus, since both poles lie inside the unit circle,
the processor is stable.

(b) The roots (poles) of HðzÞ are those values of z for which the denominator of
HðzÞ is equal to zero.

In this case, by inspection, we see that the first pole is at z ¼ 0:61. Next,
setting z2 � 1:6zþ 0:48 ¼ 0 gives the two poles z ¼ 1:2 and z ¼ 0:4. Since the
pole at z ¼ 1:2 lies outside the unit circle, the processor is unstable.

(c) Let us first write

HðzÞ ¼ z� 1:2

z2 � 1:37zþ 0:305

which was obtained by multiplying the numerator and denominator of the given
fraction by z2. Then, setting the denominator z2 � 1:37zþ 0:305 ¼ 0 gives the two
roots (poles) z ¼ 1:09 and z ¼ 0:28. Since the pole at z ¼ 1:09 lies outside the unit
circle, the processor is unstable.

312. Multiply the numerator and denominator by z�3, thus getting,

HðzÞ ¼ 2 þ 4z�1 þ z�2

1 � 5z�1 þ 6z�2 þ 9z�3
¼ 2 þ 4z�1 þ z�2

1 � ð5z�1 � 6z�2 � 9z�3Þ ; answer:

313. The ‘‘unit pulse response’’ of a processor is the same as the ‘‘transfer function’’ of the
processor (section 13.6). Since the processors are connected in cascade (series), we
have (section 13.8) that

HðzÞ ¼ H1H2H3

¼ z3

ðz� 0:2Þðz� 0:4Þðz2 � 0:8zþ 0:15Þ ¼
z3

z4 � 1:4z3 þ 0:71z2 � 0:154zþ 0:012
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This is a ‘‘first answer’’ which, upon multiplying the numerator and denominator of
the right-hand fraction by z�4, is thereby put in the equivalent form of eq. (606); thus

HðzÞ ¼ z�1

1 � ð1:4z�1 � 0:71z�2 þ 0:154z�3 � 0:012z�4Þ ; answer:

314. This is a parallel connection of processors, and thus (section 13.8)

HðzÞ ¼ H1 þH2 þH3 ¼
z

z� 0:2
þ z

z� 0:4
þ z

z2 � 0:8zþ 0:15

which, upon combining the three fractions into a single fraction, gives the equivalent
answers

HðzÞ ¼ 2z4 � 1:2z3 þ 0:53z2 þ 0:31z

z4 � 1:4z3 þ 0:71z2 � 0:154zþ 0:012

¼ 2 � 1:2z�1 þ 0:53z�2 þ 0:31z�3

1 � ð1:4z�1 � 0:71z�2 þ 0:154z�3 � 0:012z�4Þ
The second answer is in the form of eq. (606), and is found by multiplying the
numerator and denominator of the first answer by z�4.

315. As explained in section 13.6, for unit-pulse input the output YðzÞ of a processor is
numerically equal to the transfer function HðzÞ. Thus, in this particular case for unit-
pulse input voltage, we can use either of the equivalent answers found in problem
313.

The problem now is to put YðzÞ into the form of eq. (583) in section 13.4. To do
this we can apply algebraic long division to either of the equivalent answers found in
problem 313. If we choose to use the ‘‘first answer,’’ the details of the long division
are as follows.

z�1 þ 1:4z�2 þ 1:25z�3 þ � � �
z4 � 1:4z3 þ 0:71z2 � 0:154zþ 0:012 z3

�z3 þ 1:4z2 � 0:71zþ 0:154 � 0:012z�1

1:4z2 � 0:71zþ 0:154 � 0:012z�1

�1:4z2 þ 1:96z� 0:994 þ 0:2156z�1 � 0:0168z�2

1:25z� 0:840 þ 0:2036z�1 � 0:0168z�2

This is as far as we need to go to find the required answer. If, however, you wish to
continue the above division for a couple of more terms, you’ll find that

YðzÞ ¼ 0 þ z�1 þ 1:4z�2 þ 1:25z�3 þ 0:91z�4 þ 0:5901z�5 þ � � �
which is the output of the network, in the z-domain, for unit pulse input. By com-
parison with eq. (583) we see that,

yð0Þ ¼ 0:000 yð2TÞ ¼ 1:400 yð4TÞ ¼ 0:910

yðTÞ ¼ 1:000 yð3TÞ ¼ 1:250 yð5TÞ ¼ 0:5901

thus

yð3TÞ ¼ 1:25 V; answer:
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316. The notation in Fig. 356 is tied to that of eq. (606). Let us therefore put the given
HðzÞ into the equivalent form of eq. (606) by multiplying the numerator and denomi-
nator of HðzÞ by z�3, thus getting

HðzÞ ¼ 2 þ 1:3z�1 þ 0:9z�2

1 � ð2:2z�1 þ 1:5z�2 � 0:75z�3Þ
Note that HðzÞ now has the form of eq. (606), and thus comparison with eq. (606)
shows that

b0 ¼ 2 b1 ¼ 1:3 b2 ¼ 0:9 a1 ¼ 2:2 a2 ¼ 1:5 a3 ¼ �0:75

and hence, from comparison with Fig. 356, the required block diagram is as follows:

317. Comparing the given network with Fig. 356 shows that

a1 ¼ 1:66 b0 ¼ 1:9 b2 ¼ 1:6

a2 ¼ �1:5353 b1 ¼ �2:2

and hence, by eq. (606), we have that

HðzÞ ¼ 1:9 � 2:2z�1 þ 1:6z�2

1 � 1:66z�1 þ 1:5353z�2
¼ 1:9z2 � 2:2zþ 1:6

z2 � 1:66zþ 1:5353

Now setting the denominator equal to zero, then making use of the formula for the
roots of a quadratic function, you should find that

z ¼ 1:66 � j1:84

2
¼ 0:83 þ j0:92; first root;

0:83 � j0:92; second root

hence

jzj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:83Þ2 þ ð0:92Þ2

q
¼ 1:2391*

which means that the points 0:83 � j0:92 lie outside the unit circle; thus the given
processor is unstable, answer.
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318. From comparison of the given network with Fig. 356

a1 ¼ 0:54 b0 ¼ 0:92

a2 ¼ �0:7453 b1 ¼ 0:82

Hence, by eq. (606),

HðzÞ ¼ 0:92 þ 0:82z�1

1 � 0:54z�1 þ 0:7453z�2
¼ 0:92z2 þ 0:82z

z2 � 0:54zþ 0:7453

To find the poles of HðzÞ, set the denominator equal to zero and solve for z.
Doing this, making use of the quadratic formula, gives two poles, 0:27 � j0:82, both
of magnitude 0.8633. Thus all poles lie inside the unit circle, so the processor is stable,
answer.

319. First, by eq. (608)

HðzÞ ¼ 1 � z�1

then,

HðrÞ ¼ 1 � ��j2pr

¼ 1 � ðcos 2pr� j sin 2prÞ
that is,

HðrÞ ¼ ð1 � cos 2prÞ þ j sin 2pr

or, if we wish to work in degrees instead of radians,

HðrÞ ¼ ð1 � cos 360rÞ þ j sin 360r

Hence, remembering that sin2 xþ cos2 x ¼ 1, we have that

jHðrÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 � cos 360r

p
Þ

and

� ¼ arctan
sin 360r

1 � cos 360r

� �
Now, using the last two equations, you can verify that the following ‘‘table of values’’
of magnitudes and phase angles versus r is correct.

In graphical form these values appear as follows:
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r jHðrÞj �8

0.0 0.00 90*
0.1 0.62 72
0.2 1.18 54
0.3 1.62 36
0.4 1.90 18
0.5 2.00 0

* Arctan 1 ¼ 908



Note that merely CHANGING THE SIGN of the multiplier b1 converted the
LOW-PASS filter of Fig. 358 into the HIGH-PASS filter of Fig. 365. Also note that
phase shift � is exactly proportional to analog frequency ! (r ¼ !=!s), which is
characteristic of non-recursive digital filters.

320. Note that the processor is of the non-recursive type, corresponding to the left-hand
side of Fig. 354 in section 13.8. Hence the ‘‘sinusoidal frequency response’’ of the
processor is found by setting z ¼ � j2pr in eq. (608), along with the given values of the
‘‘b’’ multiplier coefficients. Doing this, and setting 2pr ¼ 360r if you prefer to work in
degrees instead of radians, eq. (608) becomes, after applying Euler’s formula,

HðrÞ ¼ ½0:40 þ 0:55 cosð360rÞ þ 0:13 cos 2ð360rÞ � 0:05 cos 3ð360rÞ � 0:03 cos 4ð360rÞ�
� j½0:55 sinð360rÞ þ 0:13 sin 2ð360rÞ � 0:05 sin 3ð360rÞ � 0:03 sin 4ð360rÞ�

The first step now is to substitute, into the above equation for HðrÞ, the value
r ¼ 0; doing this, you should find that Hð0Þ ¼ 1 þ j0 ¼ 1.

Next substitute, into the above equation for HðrÞ, the value r ¼ 0:1; doing this,
you should find that, approximately, Hð0:1Þ ¼ 0:93 � j0:38. Continuing on in this
way, for r ¼ 0:2, 0.3, 0.4, and 0.5, should give you the following table of values:

The final step, now, is to plot the above values of jHðrÞj, using either linear or
semi-log graph paper (section 9.5). The result, for both types of paper, is shown as
follows.
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r HðrÞ jHðrÞj
0.0 1:00 þ j 0:00 1.00
0.1 0:93 � j 0:38 1.05
0.2 0:50 � j 0:66 0.83
0.3 0:08 � j 0:45 0.46
0.4 0:00 � j 0:17 0.17
0.5 0:00 þ j 0:00 0.00



321. Fig. 366 is a recursive filter in which a1 ¼ 0, a2 ¼ �0:25, b0 ¼ 1:0, b1 ¼ 0, b2 ¼ �1,
and upon substituting these values into eq. (606) we have that

HðzÞ ¼ 1 � z�2

1 þ 0:25z�2
¼ z2 � 1

z2 þ 0:25

(a) Setting z2 þ 0:25 ¼ 0 gives the poles, z ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffi�0:25
p ¼ �j0:50, both of which lie

inside the unit circle; hence the filter is stable, answer.

(b) Setting z ¼ � j360r in the above equation for HðzÞ, then applying Euler’s formula,
gives

HðrÞ ¼ � j720r � 1

� j720r þ 0:25
¼ ð�1 þ cos 720rÞ þ j sin 720r

ð0:25 þ cos 720rÞ þ j sin 720r

One way to proceed now is to first rationalize the equation (section 6.3);
doing this, then making use of the trigonometrical identity sin2 xþ cos2 x ¼ 1,
you’ll find the above equation becomes

HðrÞ ¼ 0:75ð1 � cos 720rÞ þ j1:25 sin 720r

ð1:0625 þ 0:5 cos 720rÞ
Now substituting, into the above equation, the required values of r, you can

verify the following table of values (rounded off, here, to two decimal places):

Figure 366 is thus a BAND-PASS type of digital filter
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r HðrÞ jHðrÞj
0.00 0:00 þ j0:00 0:00
0.05 0:10 þ j0:50 0.51
0.10 0:43 þ j1:00 1.09
0.20 2:06 þ j1:12 2.35
0.25 2:67 þ j0:00 2.67
0.30 2:06 � j1:12 2.35
0.40 0:43 � j1:00 1.09
0.45 0:10 � j 0:50 0.51
0.50 0:00 þ j 0:00 0.00



Absolute value, 402
Active device, 28
Adder, full, 353
Admittance, 167
Algebra, review, 401–404
Algebraic long division, 437
Alternating current (ac), 76
Ammeter, 30
Ampere, 15
Amplifier, definition, 432

transistor, 432
Analog signal, 324
Arctan, notation, 101
Associative, 401

Battery, 20, 21
Bilateral, 72
Binary arithmetic, 325–328
Binary signal, 324

bandwidth needs, 357
Boolean algebra, 338–347

Capacitive reactance, 161
Capacitors, capacitance, 144–148

series and parallel, 148
Characteristic impedance, 216
Coefficient of coupling, 229

Commutative, 401
Comparators, 362
Conductance, 66
Conductor, 2
Constant-current generator, 70
Constant-k filter, 219–223
Constant-voltage generator, 69
Conventional current, 18
Conversion factors, 404
Conversions, pi to T, T to pi, 196
Coulomb, 8
Coulomb’s law, 8
Cramer’s rule, 54
Critical coupling, 247
Current, 15

Decibel, 203
De Moivre’s theorem, 131
Determinants, 38–57
Dielectric constant, 145
Digital filters, 393–400
Direct current (dc), 31
Discrete-time (DT) processors, 377–383

introduction, 377
recursive, non-recursive, 379
stability, 383
structure, 378, 389
transfer function HðzÞ, 377, 382
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Distortion (of signal), 423
Distributive, 401
Division, notation, 402, 404
Dot-marked terminals, 230
Double-subscript notation, 430

Electric charge, 1–8
Electric field strength, 11
Electromagnetism, 138
Electromotive force (emf), 20
Electron, 5, 16
Elemental equation, 349
Epsilon, �, 125
Euler’s formula, 127
Exponents, laws of, 403
Exponent zero, 403

Factorial, 126
Farad, 147
Frequency, 88
Frequency response, 201
Filters

constant-k, 219, 223
digital, 393–400
RC type, 204, 209
RL type, 212

Generator, 28
ac and dc, 96

Graph paper, logarithmic, 425
Greek letters, 412
Ground, 37, 73

Harmonics, 419–421
Henry, 143
Hertz, 88

Identity, 80
Imaginary and complex numbers, 114–122

as vectors, 134
exponential form, 125, 127
powers and roots of, 131
trigonometric form, 124

Impedance
series RC circuit, 162
series RL circuit, 154

series RLC circuit, 165
Impedance transformation

by L networks, 187
by T and pi networks, 198
by transformer, 235

Impulse notation, 365
Indeterminate condition, 56
Indeterminate value, 56
Inductance, 140

unit of, 143
Inductive reactance, 153
Infinitely great, 79
Insulator, 2
Internal resistance, 30
Ion, 5
Irrational number, 414

Kirchhoff’s laws, 58–61

L-networks, 188
Lenz’s law, 141
Linear resistance, 65, 72
Logarithms, 421
Logic network, 347

and, or, not, nor, nand, 348
elemental equation, 349

Loop-currents procedure,
for ac circuits, 108, 159
for dc circuits, 62–65

Matrix, matrices, 277–294
Mho, 66
Millman’s theorem, 67
Mutual inductance, 229

Networks
conversion, T to pi, pi to T, 196
L-type, 188
symmetrical T, 213
T and pi, 190

Node, nodal point, 59
Node voltages, 73
Non-recursive processor, 379
Norton’s theorem, 71

Ohm, 23
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Ohm’s law, 23
for ac circuits, 104, 154

PAM, 359
Parallel circuits, 32
Passive device, 28
PCM, 360
Phase angle, 92, 169
Phase shift, 92
pi (�) networks, 193
Potential difference, 13
Power, 24

apparent, 172
average, 96, 106
factor, 169
in ac circuits, 106
reactive, 172
true, 171, 432

Power series, 415
Powers of ten, 405
Pythagorean theorem, 403

Q, quality factor, 179
Quadratic formula, 403
Quantization, 360

Radian, 89
Rational number, 414
Recursive processor, 379
Resistance R, 22, 136
Resistivity, 25
Resistor, 25
Resonance,

parallel, 180
series, 175

rms (root-mean-square), 95
as vector quantities, 96

Sampling theorem, 359
Series circuit, 27
Series-parallel circuit, 35
Shifting theorem, 434
Sideband frequencies, 428
Signs, laws of, 402
Similar triangles, 410
Simultaneous equations, 52–57
Sinusoids as vectors, 99–105, 413

Solutions to problems, 440–550
Stability of digital processors, 383
Superposition, 11, 108
Switching algebra, 338–347
Symmetrical components, 265–272
Symmetrical-T networks, 213

Thevenin’s theorem, 69
Three-phase system, 255

balanced case, 256, 261
unbalanced case, 265

Time constant
L=R, 416
RC, 417

Time delay, 423
Time rate of change, 410
T-networks, 213
Transformers, 227–229

construction, 228
dot-marked terminals, 230
double-tuned, 241
ideal iron-core, 250
T-equivalent, 239

Transistor amplifier, 432
Trigonometric functions, 77–87
Truth table, 342
Two-port networks, 294–323

conversion chart, 304
interconnected, 306
some applications, 316–323

Unit impulse, 435
Unit pulse pðnTÞ, 367
Unit-step sequence UðnTÞ, 368

Vectors, 405–409
rms values as vectors, 96
sinusoids as vectors, 99–105

Volt, 13
Voltage drop, 28
Voltmeter, 30

Watt, 23

z-transform, 366
inverse, 373
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