

Digital Television
Technology and Standards

John Arnold

Michael Frater

Mark Pickering
The University of New South Wales, ADFA
Canberra, ACT, Australia

Innodata
9780470173411.jpg

Digital Television

Digital Television
Technology and Standards

John Arnold

Michael Frater

Mark Pickering
The University of New South Wales, ADFA
Canberra, ACT, Australia

Copyright © 2007 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400,
fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy
or completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our web
site at www.wiley.com.

Wiley Bicentennial Logo: Richard J. Pacifi co

Library of Congress Cataloging-in-Publication Data:

Arnold, John, 1954-
 Digital television : technology and standards / by John Arnold, Michael
Frater, Mark Pickering.
 p. cm.
 ISBN 978-0-470-14783-2
1. Digital television. I. Frater, Michael II. Pickering, Mark
1966- III. Title.
 TK6678.A77 2007
 621.388�07–dc22 2007007077
Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com/go/permission
http://www.wiley.com

This book is dedicated to our wives

Gemma Arnold
Emma Frater
Kim Pickering

whose support made possible both this book and our numerous
absences at international standards meetings which preceded it.

vii

Contents

Preface xv

1. Introduction to Analog and Digital Television 1

1.1 Introduction 1
1.2 Analog Television 1

1.2.1 Video 2
1.2.2 Audio 9
1.2.3 Systems 9

1.3 The Motivation for Digital Television 11
1.4 The Need for Compression 12
1.5 Standards for Digital Television 14
References 15

2. Characteristics of Video Material 17

2.1 Picture Correlation 17
2.2 Information Content 22
2.3 The Human Visual System 26

2.3.1 Perception of Changes in Brightness 27
2.3.2 Spatial Masking 28
2.3.3 Temporal Masking 28
2.3.4 Frequency Sensitivity 28
2.3.5 Tracking of Motion 29
2.3.6 Conclusion 29

2.4 Summary 30
Problems 30
MATLAB Exercise 2.1: Correlation Coeffi cient within a Picture 32
MATLAB Exercise 2.2: Correlation Coeffi cient between Pictures in a

Sequence 33
MATLAB Exercise 2.3: Entropy of a Picture 33

3. Predictive Encoding 35

3.1 Entropy Coding 35
3.1.1 Huffman Coding 35
3.1.2 Run Length Coding 41

3.2 Predictive Coding 41
3.3 Motion-Compensated Prediction 50

3.3.1 Motion Estimation 51

viii Contents

3.3.2 Motion-Compensated Prediction to Subpixel Accuracy 66
3.4 Quantization 68
3.5 Rate-Distortion Curves 73
3.6 Summary 74
Problems 75
MATLAB Exercise 3.1: Huffman Coding 80
MATLAB Exercise 3.2: Differential Pulse Code Modulation 81
MATLAB Exercise 3.3: Temporal Prediction and Motion Estimation 82
MATLAB Exercise 3.4: Fast Search Motion Estimation 84

4. Transform Coding 87

4.1 Introduction to Transform Coding 87
4.2 The Fourier Transform 89
4.3 The Karhunen–Loeve Transform 92
4.4 The Discrete Cosine Transform 100

4.4.1 Choice of Transform Block Size 105
4.4.2 Quantization of DCT Transform Coeffi cients 107
4.4.3 Quantization of DCT Coeffi cients Based on the Human

Visual System 110
4.4.4 Coding of Nonzero DCT Coeffi cients 113

4.5 Motion-Compensated DCT Encoders and Decoders 114
4.6 Rate Control 116
4.7 Conclusion 122
Problems 122
MATLAB Exercise 4.1: Eigenvectors of a Picture 126
MATLAB Exercise 4.2: Discrete Cosine Transform 127
MATLAB Exercise 4.3: Discrete Cosine Transform with Motion

Compensation 128

5. Video Coder Syntax 129

5.1 Introduction 129
5.2 Representation of Chrominance Information 129
5.3 Structure of a Video Bit Stream 132

5.3.1 The Block Layer 132
5.3.2 The Macroblock Layer 134
5.3.3 The Slice Layer 148
5.3.4 The Picture Layer 151
5.3.5 The Sequence Layer 151

5.4 Bit-Stream Syntax 151
5.4.1 Abbreviations 152
5.4.2 Start Codes 152
5.4.3 Describing the Bit-Stream Syntex 152
5.4.4 Special Functions within the Syntax 154

5.5 A Simple Bit-Stream Syntax 155
5.5.1 The Video Sequence Layer 155

Contents ix

5.5.2 The Picture Layer 157
5.5.3 The Slice Layer 158
5.5.4 The Macroblock Layer 159
5.5.5 The Block Layer 161

5.6 Conclusion 162
Problems 162
MATLAB Exercise 5.1: Effi cient Coding of Motion Vector Information 167
MATLAB Exercise 5.2: A Simple Video Encoder 167
MATLAB Exercise 5.3: A Simple Video Decoder 168
MATLAB Exercise 5.4: A Video Encoder 168
MATLAB Exercise 5.5: A Video Decoder 169
MATLAB Exercise 5.6: Intra/Inter/Motion-Compensated Coding of
 Macroblocks 169

6. The MPEG-2 Video Compression Standard 171

6.1 Introduction 171
6.2 Picture Types in MPEG-2 173
6.3 The Syntax of MPEG-2 179

6.3.1 Extension Start Code and Extension Data 180
6.3.2 Sequence Layer 181
6.3.3 The Group of Pictures Layer 187
6.3.4 The Picture Layer 188
6.3.5 The Slice Layer 198
6.3.6 The Macroblock Layer 200
6.3.7 The Block Layer 221

6.4 Video Buffer Verifi er 223
6.5 Profi les and Levels 227

6.5.1 Profi les 227
6.5.2 Levels 229

6.6 Summary 229
Problems 229
MATLAB Exercise 6.1: Bidirectional Motion-Compenseted Prediction 233
MATLAB Exercise 6.2: Dual-Prime Motion-Compensated Prediction 233
MATLAB Exercise 6.3: Field and Frame Motion-Compensated
 Prediction 234
MATLAB Exercise 6.4: Field and Frame DCT Coding 235

7. Perceptual Audio Coding 237

7.1 The Human Auditory System 238
7.1.1 Outer Ear 239
7.1.2 Middle Ear 239
7.1.3 Inner Ear 240

7.2 Psychoacoustics 244
7.2.1 Sound Pressure Level 244
7.2.2 Auditory Thresholds 244

x Contents

7.2.3 The Critical Bandwidth and Auditory Filters 246
7.2.4 Auditory Masking 248

7.3 Summary 251
Problems 251
References 252

8. Frequency Analysis and Synthesis 253

8.1 The Sampling Theorem 253
8.2 Digital Filters 255
8.3 Subband Filtering 256

8.3.1 The Analysis Filter Bank 256
8.3.2 The Synthesis Filter Bank 258
8.3.3 Filters for Perfect Reconstruction 259

8.4 Cosine-Modulated Filters 260
8.5 Effi cient Implementation of a Cosine-Modulated Filterbank 265

8.5.1 Analysis Filter 265
8.5.2 Synthesis Filter 270

8.6 Time-Domain Aliasing Cancellation 274
8.7 Summary 280
Problems 280
MATLAB Exercise 8.1 282
MATLAB Exercise 8.2 283
References 284

9. MPEG Audio 285

9.1 MPEG-1 Layer I,II Encoders 287
9.1.1 Analysis Filterbank 288
9.1.2 Scalefactor Calculation 288
9.1.3 Psychoacoustic Model 1 291
9.1.4 Dynamic Bit Allocation 307
9.1.5 Coding of Bit Allocation 310
9.1.6 Quantization and Coding of Subband Samples 311
9.1.7 Formatting 312

9.2 Layer II Encoder 314
9.2.1 Analysis Filterbank 315
9.2.2 Scalefactor Calculation 315
9.2.3 Coding of Scalefactors 315
9.2.4 Dynamic Bit Allocation 317
9.2.5 Coding of Bit Allocation 319
9.2.6 Quantization and Coding of Subband Samples 319
9.2.7 Ancillary Data 321
9.2.8 Formatting 321

9.3 Joint Stereo Coding 322
9.4 MPEG-1 Syntax 323

9.4.1 Audio Sequence Layer 323
9.4.2 Audio Frame 323

Contents xi

9.4.3 Header 324
9.4.4 Error Check 328
9.4.5 Audio Data, Layer I 328
9.4.6 Audio Data, Layer II 328

9.5 MPEG-1 Layer I, II Decoders 328
9.5.1 Bit Allocation Decoding 328
9.5.2 Scalefactor Selection Information Decoding 331
9.5.3 Scalefactor Decoding 331
9.5.4 Requantization of Subband Samples 332
9.5.5 Synthesis Filterbank 333

9.6 MPEG-2 333
9.6.1 Backwards-Compatible MPEG-2 Frame Formatting 333
9.6.2 Matrixing Procedures for Backwards Compatibility 335

9.7 Summary 335
Problems 336
MATLAB Exercise 9.1 338
MATLAB Exercise 9.2 339
MATLAB Exercise 9.3 340
References 340

10. Dolby AC-3 Audio 341

10.1 Encoder 343
10.1.1 Audio Input Format 344
10.1.2 Transient Detection 345
10.1.3 Forward Transform 346
10.1.4 Channel Coupling 349
10.1.5 Rematrixing 356
10.1.6 Extract Exponents 359
10.1.7 Encode Exponents 363
10.1.8 Bit Allocation 364
10.1.9 Quantize Mantissas 381

10.1.10 Dialog Normalization 386
10.1.11 Dynamic Range Compression 387
10.1.12 Heavy Compression 389
10.1.13 Downmixing 390

10.2 Syntax 397
10.2.1 Syntax Specifi cation 397

10.3 Decoder 410
10.3.1 Decode Exponents 410
10.3.2 Bit Allocation 412
10.3.3 Decode Coeffi cients 413
10.3.4 Decoupling 414
10.3.5 Inverse Transform 414
10.3.6 Overlap and Add 415

10.4 Summary 415
Problems 415
MATLAB Exercise 10.1 419

xii Contents

MATLAB Exercise 10.2 419
MATLAB Exercise 10.3 420
References 420

11. MPEG-2 Systems 421

11.1 Introduction 421
11.2 Service Overview 422
11.3 Multiplexer Structure 425

11.3.1 PES Sublayer 425
11.3.2 Transport Stream Sublayer 428
11.3.3 Program Stream Sublayer 434

11.4 Timing 434
11.4.1 System Time Clock 435
11.4.2 Clock References and Reconstruction of the STC 435
11.4.3 Time Stamps 437

11.5 Buffer Management 437
11.6 Program-Specifi c Information 439

11.6.1 MPEG-2 Descriptors 439
11.6.2 MPEG-2 Tables 453
11.6.3 Overheads Due to PSI 458

11.7 MPEG-2 Decoder Operation 459
11.7.1 Synchronization to Transport Stream 459
11.7.2 PSI Decoding 459
11.7.3 Program Reassembly 459

11.8 Use Of MPEG-2 Systems In Digital Television 463
11.8.1 Use of MPEG-2 Systems in ATSC 463
11.8.2 Use of MPEG-2 Systems in DVB 464
11.8.3 Implementation of PSI in DVB 465

11.9 Conclusion 465
Problems 465
References 469

12. DVB Service Information and ATSC Program and System
Information Protocol 471

12.1 Introduction 471
12.2 Why SI and PSIP? 471
12.3 DVB-SI 472

12.3.1 DVB Common Data Formats 474
12.3.2 DVB Descriptors 476
12.3.3 DVB Tables 492
12.3.4 DVB Delivery Issues 500

12.4 ATSC Program and System Information Protocol 501
12.4.1 Common Data Formats 502
12.4.2 ATSC Descriptors 504
12.4.3 ATSC Tables 508

12.5 DVB SI and ATSC PSIP Interoperability 516
12.5.1 PIDs 517

Contents xiii

12.5.2 Use of table_id 517
12.5.3 Use of descriptor_tag 517

12.6 Conclusion 517
Problems 517
MATLAB Exercise 12.1 523
References 524

13. Digital Television Channel Coding and Modulation 525

13.1 Introduction 525
13.2 Generic Concepts 525

13.2.1 Channel Characteristics and Intersymbol Interference 526
13.2.2 Modulation 528
13.2.3 Equalization 532
13.2.4 Randomization 535
13.2.5 Channel Coding Technology 537

13.3 Channel Coding and Modulation for ATSC 545
13.3.1 ATSC 8-VSB Modulation 545
13.3.2 ATSC Data Framing 546
13.3.3 ATSC Concatenated Channel Coder 547
13.3.4 ATSC Channel Capacity 550

13.4 Channel Coding and Modulation for DVB 550
13.4.1 DVB Modulation 550
13.4.2 DVB Channel Coding 562
13.4.3 DVB Channel Capacity 566

13.5 Conclusion 566
Problems 566
MATLAB Exercise 13.1 569
MATLAB Exercise 13.2 569
MATLAB Exercise 13.3 570
References 570

14. Closed Captioning, Subtitling, and Teletext 571

14.1 Introduction 571
14.2 DVB Subtitles and Teletext 571

14.2.1 Subtitles 572
14.2.2 Teletext 581

14.3 ATSC Closed Captioning 587
14.3.1 Line 21 Data Service 587
14.3.2 Advanced Television Closed Captioning 592

14.4 Conclusion 603
Problems 603
References 604

Appendix. MPEG Tables 605

Index 617

xv

Preface

In the last 50 years, television has arguably become the dominant source of enter-
tainment and information in many countries. In the western world, most households
own at least one television. Many have two or more. Over this half century, television
technology has proved to be very adaptable, able to accommodate upgrades taking
advantage of new technology without requiring existing receivers to be replaced.
Indeed, a 50-year-old television receiver could still be used in most countries. The
maintenance of compatibility with the existing receivers has been achieved through
incremental improvements in service quality. The transitions from black-and-white
to color television and from mono to stereo audio are both examples of this.

Digital television offers a number of potential advantages over the older, ana-
log technology. High-defi nition services, providing much greater resolution than the
conventional standard-defi nition television, are possible, as is the packing of several
standard defi nition programs into the same bandwidth as a single analog television
channel. The current international move to digital television is more revolutionary
in nature than the previous changes, requiring the phasing-in of digital receivers and
the subsequent phasing-out of the existing analog receivers. Consumers will there-
fore be required to purchase new equipment, in the form of a digital television or
a decoder, to convert digital signals into a form that can be passed to their existing
analog receiver.

This book describes the technology and standards behind digital television. It
introduces the basic techniques used in video coding, audio coding, and systems,
which provide for the multiplexing of these services and other ancillary data into a
single bit stream. The description of standards covers the north-American Advanced
Television System Committee (ATSC) and the European Digital Video Broadcasting
(DVB). Aspects relating to these standards are described independently, allowing
the reader to cover only those parts relevant to one system if desired.

The fi rst chapter provides an introduction to analog and digital television,
setting up the basic division of functionality into the representation of video, the
representation of audio, and the underlying systems that provide services such as
multiplexing of video and audio onto a single channel and modulation. The remain-
ing chapters are grouped into three parts, covering the video, audio, and systems
aspects of digital television, respectively. Each of these parts is written so that it
can be read independent of the other parts. The fi rst part deals with the coding of
digital video signals using the MPEG-2 standard to produce a compressed digital
video bit stream.

Chapter 2 describes the characteristics of video material. Chapters 3 and 4
describe the signal processing used to reduce the spatial and temporal redundancy

of digital video signals, with Chapter 3 describing predictive coding and Chapter 4
transform coding. Chapter 5 describes the principles behind the syntax used to rep-
resent the various data elements carried in a compressed video bit stream, whereas
Chapter 6 introduces the specifi c features of the MPEG-2 video standard.

The second part covers the coding and compression of digital audio, using a
similar structure to the fi rst part. Chapter 7 introduces the aspects of the human ear
that are critical in determining subjective audio quality, followed in Chapter 8 by a
description of the signal processing used for digital audio compression, including
the use of subband fi lter banks in audio coding. Chapters 9 describes the specifi c
methods used by the MPEG-1 and MPEG-2 standards, respectively, with Chapter 10
describing the Dolby AC-3 system used primarily by ATSC.

The third part describes the modulation of digital television services for trans-
mission, the system protocols used for multiplexing, timing, and control, and the
other components of a digital television service that provide a range of data services,
including closed captioning (also known as subtitling) and teletext. In this part,
separate descriptions are provided for the different techniques provided by DVB
and ATSC. Chapter 11 describes MPEG-2 systems, which provide the multiplexing,
timing, control data for digital television. MPEG-2 systems also carry a collection
of data, known as program-specifi c information, which describes the contents of
a systems’ bit stream. ATSC and DVB each provide its own extensions to the pro-
gram-specifi c information, which are described separately in Chapter 12. Chapter
13 describes the terrestrial broadcast modulation schemes of ATSC and DVB, in-
cluding the use of channel coding to protect bit streams from errors introduced in
transmission. Finally, the closed-captioning and teletext systems are described in
Chapter 14.

This book might be used as a textbook supporting a variety of different types
of courses. An undergraduate digital television course might be based on a selec-
tion of material from Chapters 1–3, 5, 6, and 11. A postgraduate course in digital
television, for which background in digital signal processing and digital com-
munications theory is assumed, could extend this to include all material from
Chapters 1–3 on video, 5 and 6 on audio, and 10 and 11 on systems, incorporating
selections from other chapters. A more specialized course on video coding could
be based on Chapters 1–5.

JOHN ARNOLD

MICHAEL FRATER

MARK PICKERING

Canberra, Australia
June 2007

xvi Preface

1

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 1

Introduction to Analog
and Digital Television

1.1. INTRODUCTION

From small beginnings less than 100 years ago, the television industry has grown
to be a signifi cant part of the lives of most people in the developed world, providing
arguably the largest single source of information to its viewers.

The fi rst true television system was demonstrated by John Logie Baird in the
1920s. Further experiments were conducted in the following decade, leading to trial
broadcasts in Europe and the United States, and eventually to the regular televi-
sion service we know today. Originally, only monochrome pictures were supported.
Color television was introduced in the United States in 1954 and in Europe in 1967.

Television systems have evolved as simplex transmission systems, as shown in
Figure 1.1. The term simplex means that information fl ows only in one direction
across the channel. A transmitter, whose antenna is usually mounted on a tall tower,
broadcasts a signal to a large number of receivers. Each receiver decodes the trans-
mission and passes it on to a display device. Sometimes, the receiver and display are
integrated into a single device, such as in a standard television that incorporates a
means for the user to select the channel to be viewed. Sometimes, the receiver and
display are separate devices, such as when a signal is received through a video cas-
sette recorder (VCR) and passed to an external display. This system is known as
terrestrial broadcast television.

Satellite and cable television systems operate on similar models. Figure 1.2
shows the outline structure of a cable television system.

1.2. ANALOG TELEVISION

Traditional television services make use of analog technology to provide an audio-
visual, broadcast service. The basic structure of an analog television transmitter
is shown in Figure 1.3. Video and audio signals, which may be derived from live
sources such as cameras and microphones or from storage devices such as video

2 Chapter 1 Introduction to Analog and Digital Television

recorders, are fed into separate modulators, whose output is multiplexed and upcon-
verted to form the broadcast signal.

Various methods of modulating, multiplexing, and upconverting the signals to spe-
cifi c broadcast frequencies (as shown in Figure 1.3) are defi ned in the various analog
television standards. Three of the major standards used for analog television are National
Television System Committee (NTSC) [1], used primarily in North, Central, and South
America, Systeme Electronique (pour) Couleur avec Memoire (SECAM), used in France
and countries in eastern Europe such as Poland and Russia, and Phase Alternating Line
(PAL) [2], used in many other countries including western Europe and Australia.

In this chapter, we discuss the operation of analog television with reference to
three areas: the representation of video, the representation of audio, and the systems
that provide the multiplexing of video and audio services into a single channel.

1.2.1. Video

An analog video signal is created by a time sequence of pictures, with 25 or 30 of
these pictures displayed every second. Each picture consists of a number of lines,

Transmitter
Video/audio

signal

Receiver Display

Receiver Display

Receiver Display

Figure 1.1 Simplex structure of terrestrial broadcast television.

Figure 1.2 Structure of a cable television system.

Transmitter/
multiplexer

Video/audio
signal

Video/audio
signal

Receiver Display

Receiver Display

Receiver DisplayCable distribution network

1.2. Analog Television 3

each of which is scanned left to right, as illustrated in Figure 1.4. The vertical
resolution is usually 576 lines for 25 Hz systems and 480 lines for 30 Hz systems.

In addition to the displayed lines, a number of other lines of data are transmitted.
These are intended to provide time for the scan in a cathode ray tube to return from
the bottom right of the display at the end of one picture to the top left of the display
at the beginning of the next picture. The inclusion of these nondisplayed lines brings
the total number of lines per picture to 625 for 25 Hz systems and 525 for 30 Hz
systems. The time in which these nondisplayed lines are transmitted is known as the
vertical blanking interval (VBI).

1.2.1.1. Horizontal Synchronization

In an analog television signal, a synchronization pulse is provided at the start of
every line in the picture as shown in Figure 1.5, which shows the waveform for a
single line where the brightness decreases in steps from left to right. This means that
the display begins its horizontal scan at the same place in the signal as the camera
that captured the video signal. In addition, a longer synchronization pulse is used to
indicate that the scan should restart at the top left of the display. These synchroniza-
tion pulses allow the receiver to achieve synchronism with the incoming signal.

Video
camera

Microphone Modulator

Modulator

Multiplexer Upconverter

Figure 1.3 Basic structure of an analog television system.

First, scan left to right

Se
co

nd
, s

ca
n

to
p

to
 b

ot
to

m

Figure 1.4 Simple left-to-right, top-to-bottom scan.

4 Chapter 1 Introduction to Analog and Digital Television

The interval allocated for transmission of the line synchronization pulse and the
immediately surrounding regions (known as the front and back porches) is known as
the line blanking interval or the horizontal blanking interval. Its length is 11 µs in
NTSC and 12 µs in PAL and SECAM systems.

1.2.1.2. Horizontal Resolution

The horizontal resolution of an analog television system depends on the bandwidth
of the video signal. Roughly speaking, the resolution of the system is 2 pixels per
Hertz of video bandwidth. These pixels are shared equally between the transmitted
lines. The number of useful pixels in each line is reduced by the length of the line
blanking interval. The horizontal resolution rh of an analog video system with band-
width B is therefore

rh � 2BtULI

where tULI is the useful line interval. The horizontal resolutions for a number of
in-service analog television systems are shown in Table 1.1. In the case of PAL
and SECAM, there are a number of different implementations, each denoted by a

Video line

Line
synch
pulse

Figure 1.5 Waveform of a single picture line of analog video.

Table 1.1 Approximate horizontal resolution for selected analog television systems.

System

Lines per
second
(KHz)

Line
period

(µs)

Useful line
interval (line
period – line

blanking interval)
(µs)

Video
bandwidth
(B) (MHz)

Approximate
horizontal
resolution
(pixels)

NTSC 15.750 63.5 52.5 4.2 441
PAL (B, G, H)/
SECAM (B, G)

15.625 64.0 52 5.0 520

PAL (I) 15.625 64.0 52 5.5 572
PAL (D)/SECAM
(D, K, K1, L)

15.625 64.0 52 6.0 624

1.2. Analog Television 5

single letter. The video bandwidth varies between implementations, and a number
of options are shown.

1.2.1.3. Interlaced Video

When analog television was designed, an important design trade-off was between
the service picture rate and the service bandwidth. The picture rate chosen needs to
be suffi ciently fast to ensure that a human viewer perceives an apparently continuous
service (as opposed to a rapid series of individual pictures—called fl icker—which
would be subjectively most unpleasant). Once the appropriate horizontal and vertical
resolution of a television picture had been decided, the desired bandwidth meant that
a relatively low picture rate (25 or 30 Hz) was all that could be achieved. These
picture rates are insuffi cient to avoid fl icker in all circumstances. However, simply
increasing the picture rate would lead to an increase in the required service bandwidth.
This was an unacceptable outcome. The developers of analog television overcame
this problem using a technique called interlacing.

Interlacing divides each picture into two fi elds, as shown in Figure 1.6. One fi eld
contains the odd lines from the picture (i.e., lines 1, 3, 5, …) and is called the odd
fi eld, whereas the other fi eld contains the even lines from the picture (i.e., lines 2, 4,
6,…) and is called the even fi eld (Figure 6(a)). The odd lines are scanned from the
camera system and then half a picture time later (i.e., 1/50th or 1/60th of a second)
the even lines are scanned (Figure 6(b)). This approach improves the rendition of
moving objects and also completely removes the fl icker problem discussed earlier.
The trade-off is some loss in vertical resolution of the picture.

(a) (b)

Odd (top) field
Even (bottom) field

Time

Figure 1.6 Interlace structure showing location of odd and even fi elds, (a) as seen on the display,
and (b) the formation of pictures from two consecutive fi elds.

6 Chapter 1 Introduction to Analog and Digital Television

Table 1.2 shows the number of lines per picture and fi eld for 25 and 30 Hz
analog television systems.

EXAMPLE 1.1—MATLAB

The aim of this example is to demonstrate the impact of combining two fi elds containing a
moving object into a single picture.

SOLUTION Figure 1.7 shows two fi elds of 128 � 128 pixels consisting of a black background
and a white square of size 32 � 32 pixels that has moved four pixels to the right between fi elds.

A � zeros(128); % black background for odd fi eld

B � zeros(128); % black background for even fi eld

A(49:80, 49:80) � 255 � ones(32); % white square in odd fi eld

B(49:80, 57:88) � 255 � ones(32); % white square in even fi eld
(moved 8 pixels right)

The individual fi elds can be displayed using the MATLAB function image.m:
image(A) % display odd fi eld

image(B) % display even fi eld

The images obtained by displaying A and B are shown in Figure 1.7.

The two fi elds can be merged into a single picture, which is then displayed, using the
commands below.
C � zeros(256,128);

C(1:2:255,:) � A;

C(2:2:256,:) � B;

image(C);

Table 1.2 Numbers of video lines per field and picture.

System

Notional
picture

frequency
Hz

Field
frequency

Hz

Displayed
lines per
picture

Displayed
lines per

field

Total
lines per
picture

Total lines
per field

PAL,
SECAM

25 50 576 288 625 313 (odd)/
312 (even)

NTSC 30 60 480 240 525 263 (odd)/
262 (even)

Figure 1.7 Odd and even fi elds produced in Example 1.

1.2. Analog Television 7

The resulting image is shown in Figure 1.8. The jagged edges are caused by the movement of
the white block between the odd and even fi elds. In some circumstances, these jagged edges
can lead to localized fl ickering. �

When fi elds containing moving objects are merged to form a single picture,
straight edges that are moving horizontally are turned into jagged edges. An
example from the “Mobile and Calendar” sequence is shown in Figure 1.9, in which
the jagged edges of moving objects such as the spots on the ball and the numbers on
the calendar are clearly apparent.

1.2.1.4. Color Television

Television was initially a monochrome (black-and-white) service. When color tele-
vision was to be introduced, the color information needed to be introduced in a way
that did not affect substantially the quality of service received by consumers who
still had a black-and-white television receiver. As is well known, color receivers
display only three colors (red (R), green (G), and blue (B)). The mixing of these
colors at the human eye provides the range of colors that we are used to with color
television.

Transmitting separate signals for red, green, and blue would triple the band-
width requirement for color television compared to monochrome television.
Because a monochrome signal is not present in this set, the only way to provide a
good quality monochrome picture for existing receivers would be to send yet
another signal just for this purpose; this would be a very wasteful use of valuable
spectrum. The quality of reception at monochrome receivers would have been
signifi cantly compromised.

Figure 1.8 Merged fi elds to form a picture.

8 Chapter 1 Introduction to Analog and Digital Television

The approach taken was to transmit not the color signals R, G, and B but the
monochrome signal (known as the luminance Y) accompanied by two color
difference, or chrominance, signals (U and V) from which the three colors R, G, and
B can be reconstructed. The values of the luminance signal and two chrominance
signals can be calculated from R, G, and B according to

Y� 0.299R� 0.587G� 0.114B

U
B Y

�
�

2 03.

V
R Y

�
�

1 14.

Slightly different versions of these equations are used in different television systems.
The three color signals R, G, and B are reconstructed at the receiver and dis-

played. Because the luminance signal is still transmitted, it is still available to mono-
chrome receivers and so there is a minimal impact on existing viewers. The color
difference signals can also be transmitted with a signifi cantly smaller bandwidth
than the luminance signal. This is acceptable because the resolution of the human
eye is lower for chrominance than it is for luminance. The use of color difference
signals was therefore an early attempt at bandwidth compression.

Figure 1.9 Picture from the “Mobile and Calendar” sequence.

1.2. Analog Television 9

1.2.2. Audio

The audio accompanying video in an analog television system usually has a band-
width of approximately 15 kHz. The audio system in analog television originally
supported only a single (monophonic) channel. It has been extended with the same
philosophy of backward compatibility used for adding color information in the video
to provide a range of services, including options for stereo audio, and two indepen-
dent audio channels. In all cases, the original monophonic audio is still transmit-
ted to support older receivers, with other signals added to provide higher levels of
functionality.

1.2.3. Systems

Specifi cation of the representation of audio and video is not suffi cient to defi ne a
television service. A means is required to multiplex the video signals (luminance and
chrominance) and the audio (mono or stereo) onto a single channel. We refer to this
capability as the “systems” part of the television service.

Each country specifi es a channel bandwidth for broadcast television systems.
In North and Central America, 6 MHz is used, whereas 7 or 8 MHz is commonly
used in the rest of the world. Approximately 70% of the bandwidth of the channel is
allocated to video, with the remaining capacity available for audio and guard bands
between channels.

Figure 1.10 shows the spectrum of a typical, monochrome, analog television
channel with a single audio channel. Most of the capacity of the channel is allocated
to the video, with a small amount available for audio. The video signal is usually
modulated using vestigial sideband amplitude modulation with the upper sideband
dominant, whereas the audio signal is frequency modulated with a maximum devia-
tion of approximately 50 kHz (giving an audio bandwidth of 100 kHz). The audio
carrier is located within the channel, but outside that part of the channel specifi ed
for the transmission of video. Each of the analog television standards specifi es the
locations of the video and audio carriers.

Extension to support color television can be achieved by the multiplexing of the
chrominance signals onto the channel, as shown in Figure 1.11. This is done by using

Channel bandwidth

Video carrier Audio carrier

Video (luminance)

Audio
(monophonic)

Figure 1.10 Spectrum of a typical monochrome analog television channel.

10 Chapter 1 Introduction to Analog and Digital Television

vestigial sideband modulation for the chrominance signal, with the lower sideband
dominant. Each of the three standards specifi es the location for the color subcarrier,
which is the carrier frequency associated with the modulation of the chrominance
signal. The carriers for the two chrominance signals have the same frequency, but
differ in phase by 90�. This “phase multiplexing” allows separation of the signals at
the receiver. Noting that most of the energy in video signals occurs at low frequen-
cies, the chrominance information is transmitted toward the upper end of the video
spectrum. This does have the effect that high-frequency luminance information can
sometimes be mistakenly decoded as color information. It is for this reason that
herringbone tweed jackets sometime fl air purple on color television receivers. The
high-frequency monochrome information from the tweed is incorrectly decoded as
color information. The problem has been addressed by television producers becom-
ing aware of the problem and making sure that presenters do not wear inappropriate
clothing.

A second audio channel can be incorporated simply by specifying the loca-
tion of its carrier. Frequency modulation is usually also used for the second audio
channel. Backward compatibility is maintained by ensuring that a valid monophonic
audio signal for the program is transmitted on the original audio carrier. This is
illustrated in Figure 1.12.

Each of the various standards for analog television (NTSC, PAL, and SECAM)
specifi es frequencies for the video carrier, color subcarrier, and audio carriers. Each
standard also specifi es maximum bandwidths for the video and each of the audio
channels.

Channel bandwidth

Video carrier Audio carrier

Color subcarrier

Video (luminance)

Audio
(monophonic)

Chrominance

Figure 1.11 Spectrum of a color analog television channel.

Channel bandwidth

Video carrier Audio carriers

Color subcarrier

Video (luminance)

Audio
(monophonic)

Chrominance

Second audio
channel

Figure 1.12 Spectrum of a typical color analog television channel with stereo audio.

1.2.3.1. Ancillary Services

Analog television systems have evolved to carry not only audio and video signals,
but also a range of ancillary data services. These ancillary services make use of the
nondisplayed lines of the video vertical blanking interval to provide low-rate data
services such as closed captioning (also known as subtitling) and teletext. Because
these services are carried in the vertical blanking interval, they have no impact on
receivers that are not equipped to decode them.

1.3. THE MOTIVATION FOR DIGITAL TELEVISION

The initial impetus for moving to a digital signal was standards conversion (e.g., from
525 line NTSC at 30 pictures/s to 625 line PAL at 25 pictures/s). This is an extremely
diffi cult process in the analog domain. Signifi cant signal processing is still required in
the digital domain. However, appropriate high-speed hardware can be built to allow
the task to be successfully carried out. Other motivations for the change from analog
to digital television include carrying multiple digital television channels within the
existing bandwidth allocated to a single analog television service, the ability to carry
higher resolution services (such as high-defi nition television) in a single channel, and
the integration of a range of interactive services into the television broadcast.

From a communication point of view, digital transmission has many advan-
tages. In particular, it offers considerable noise immunity. Consider the analog signal
shown in Figure 1.13. The original analog signal is perturbed by noise. If the noise is

Original analog signal

Signal after addition of noise

Figure 1.13 Impact of noise on an analog signal.

1.3. The Motivation for Digital Television 11

12 Chapter 1 Introduction to Analog and Digital Television

in the same area of the spectrum as the signal (so-called in-band noise), then there is
little that can de done to remove it.

The impact of noise on a digital signal is quite different, as illustrated in
Figure 1.14. In this case, a simple thresholding operation allows the original
signal to be perfectly reconstructed. Even when the noise is large enough to cross
the threshold, enhanced signal processing techniques such as matched fi ltering
[3] can be employed to achieve good performance (which can be improved still
further using error correction techniques such as those described in a later
chapter). The ability of digital signals to reject noise makes digital systems ideal
for long-distance transmission because quality can be maintained through many
repeaters.

Other advantages of digital systems include the fact that digital components are
of low cost and are very stable. In addition, many digital networks are now emerging
for the transmission of audiovisual material at a range of transmission rates.

1.4. THE NEED FOR COMPRESSION

If digital systems offer so many advantages, why have we not moved to digital televi-
sion long ago? The answer lies in the very high data rates required for transmitting
raw, uncompressed digital video and the complexity of the digital systems required
to provide real-time processing for compression and decompression.

Original digital signal

Signal after addition of noise

Signal after thresholding

Figure 1.14 Impact of noise on a digital signal.

The resolution defi ned for digital television by the ITU-R Recommendation
BT.601 [4] is given in Table 1.3. The number of lines per picture is the same as the
number of displayed lines for the analog services. When an analog television signal
is converted to digital, the nondisplayed lines in the vertical blanking interval are
removed. For both 25 and 30 Hz transmission, 14,400 lines per second are transmit-
ted, which means that 10,368,000 pixels (or luminance samples) must be transmitted
each second.

For distribution of digital television, each chrominance signal is sampled at half
the rate of the luminance signal, that is, at 360 samples per line. Thus, there is one
sample of each of the chrominance components (U and V) for every two luminance
components (Y). If each of the Y, U, and V is represented to 8-bit accuracy, then an
average of 16 bits is required for each luminance sample.

The raw bit rate is therefore 10,368,000 luminance samples per second multi-
plied by 16 bits per sample, giving a data rate of 165.89 Mbit/s. Even in the highest
capacity, modern, communications networks, this is an extremely high capacity to
be allocated to a single service.

The corresponding bandwidth requirement for various digital modulation
schemes is shown in Table 1.4, each of which is much greater than the 6, 7, or
8 MHz allocated for the transmission of an analog television service. If digital
television is to compete effectively with analog television, it needs to be able to
utilize a bandwidth not more than (and preferably signifi cantly less than) an equiv-
alent analog service. Of course, the raw data rate could be reduced to achieve this

Table 1.3 Resolution of digital television.

Picture rate (Hz) 25 30
Lines per picture 576 480
Luminance samples per line 720 720
Fields per second 50 60
Interlace Two fields per picture (2:1) Two fields per picture (2:1)

Table 1.4 Bandwidth requirement for uncompressed digital video using various
digital modulation schemes.

Modulation scheme
Bits/second/Hertz of

bandwidth
Required bandwidth

(MHz)

Binary phase-shift keying (BPSK) 1 165.89
Quadrature phase-shift keying (QPSK) 2 82.94
8-ary phase-shift keying (8-ary PSK) 3 55.30
256-ary quadrature amplitude
modulation (256-ary QAM)

8 20.74

1.4. The Need for Compression 13

14 Chapter 1 Introduction to Analog and Digital Television

goal. This could be done by reducing either the number of samples per line, the
number of lines per picture, or the number of pictures per second. Such an ap-
proach would seriously affect the quality of the received service and so is not a
viable solution.

A similar method can be used to calculate the rate required for transmitting
uncompressed digital audio. If each channel of audio is sampled at 44.1 kHz with
a resolution of 16 bits per sample, 705.6 kbit/s is required per channel. For fi ve-
channel audio (such as that used for surround-sound systems), a total of 3.5 Mbit/s
is required. Although this is much less than the rate required for raw digital video,
it still represents a signifi cant expansion of the bandwidth requirement for the audio
service compared to analog television.

Fortunately, the characteristics of the video and audio signals are such that
signifi cant savings are possible in the amount of data that needs to be transmitted
in order to adequately represent the original signals. The digital signal processing
techniques that allow this aim to be achieved will be a major focus of the fi rst
two parts of this text. It turns out that 5–10 Mbit/s is a reasonable target bit rate
for a digital television service, with approximately 10% of the available data rate
taken by transmission overheads, 10% allocated to audio, and the remaining 80%
to video. Under these circumstances, compression factors of approximately 40 are
required for digital video (meaning that the compressed digital video should re-
quire one fortieth of the rate required by the uncompressed video) and 10 for digital
audio.

1.5. STANDARDS FOR DIGITAL TELEVISION

The use of standards in television broadcast systems is critical to their success.
It is necessary that a consumer be able to purchase a receiver from any manu-
facturer and be confi dent of being able to watch television transmissions from
any television broadcaster. Standards have always played a major part in pro-
viding this interoperability. For analog television, these were NTSC, PAL, and
SECAM.

Modern digital television systems are based on one of the two standards, both
named after the groups that developed them. The US Advanced Television Systems
Committee (ATSC) [5] family of standards is used in North America, whereas the
Digital Video Broadcast (DVB) [6] family of standards is used in much of the rest of
the world, including Europe, much of Asia, and Australia.

DVB uses the MPEG-2 video standard [7] to provide video compression,
the MPEG-2 audio standard [8] for audio compression, and the MPEG-2 systems
standard [9] to multiplex the compressed video and audio with other data for trans-
mission. Additional DVB standards extend the functionality of the MPEG-2 systems
specifi cation and specify how additional data (including subtitling and teletext) are
carried in the bit stream.

ATSC also uses the MPEG-2 standards for video compression and multiplexing.
Instead of using the MPEG-2 audio standard, ATSC specifi es its own standard for

audio compression, which uses the Dolby AC-3 compression system [10]. Like DVB,
ATSC specifi es additional standards for carrying data (including closed captioning)
in the bit stream.

The DVB and ATSC standards are available free of charge, at the time of writ-
ing. MPEG standards are available for purchase through national bodies affi liated
to the International Standards Organization. In all cases, suffi cient information is
provided in this text for the reader to understand how the technology embedded in
each relevant standard works. Access to the standard would be required, however,
for a complete implementation to be developed.

The notional structure of a digital video transmitter is shown in Figure 1.15,
consisting of separate encoders for each type of signal to be included in the transmit-
ted program, a system encoder that multiplexes the outputs of these encoders and a
modulator that converts the multiplexed bit stream into a form suitable for transmis-
sion in the same channel as that used for analog television. Part 1 of this book is
concerned with the characteristics of the video encoder, its output bit stream, and
the corresponding decoder. Part 2 is concerned with the audio encoder, its output
bit stream, and decoder. Part 3 of the book covers the system encoder, encoders for
other types of data, and modulation.

REFERENCES

1. See, for example,
(a) D.G. Fink (Ed.), Color Television Standards—NTSC, New York: McGraw-Hill, 1955.
(b) D.H. Pritchard, US color television fundamentals—a review, IEEE Trans. Consumer Electron.,

CE-23, 1977.
Television systems; Enhanced 625-line Phased Alternate Line (PAL) television; PALplus, Sofi a
Antipolis: ETSI, 1997.
Further details on matched fi ltering can be found in many textbooks on digital communications,
including B. Sklar, Digital Communications: Fundamentals and Applications, Englewood Cliffs,
NJ: Prentice Hall, 2001.
Recommendation BT.601, Studio encoding parameters of digital television for standard 4:3 and
wide-screen 16:9 aspect ratios, Geneva: ITU-R, 1995.
See, for example, http://www.atsc.org.
See, for example, http://www.dvb.org.

2.

3.

4.

5.
6.

Raw digital video

Raw digital audio

Other data

Video
encoder

Audio
encoder

Data
encoder

System
encoder

Modulator

Figure 1.15 Outline structure of a digital television encoding and transmission system.

References 15

16 Chapter 1 Introduction to Analog and Digital Television

ISO/IEC 13818-2, Information technology—Generic coding of moving pictures and associated
audio information—Part 2: Video, 1996.
ISO/IEC 13818-2, Information technology—Generic coding of moving pictures and associated au-
dio information—Part 3: Audio, 1996.
ISO/IEC 13818-2, Information technology—Generic coding of moving pictures and associated
audio information—Part 1: Systems, 1996.
ATSC Standard A/58, Digital audio compression standard (AC-3), Advanced Television Systems
Committee, 1995.

7.

8.

9.

10.

17

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 2

Characteristics
of Video Material

We saw in the previous chapter that simply converting an analog video service
into digital form results in an unacceptable increase in the bandwidth required
to transmit the service even when sophisticated modulation schemes that trans-
mit several bits/s/Hz are employed. For digital video to be a practical reality, it
is essential that the number of bits required to represent each picture in a video
sequence be signifi cantly reduced. Fortunately, the characteristics of video mate-
rial are such that substantial reductions in the number of bits can be achieved with-
out noticeably affecting the subjective quality of the video service. In this chapter,
we describe the characteristics that allow these savings to be made.

Figure 2.1 shows the fi rst picture of the “Mobile and Calendar” video sequence
that will be used to illustrate concepts as we consider the various signal processing
techniques employed to compress video material. Longer versions of this sequence
(among others) were used during the development of the MPEG digital standards
that are at the heart of digital television. The picture contains 576 rows of pixels with
each row containing 704 pixels. Although slightly less than CCIR Recommendation
601,1 most of the development work for international standards was performed at
this resolution.

2.1. PICTURE CORRELATION

Consider the picture shown in Figure 2.1, which is taken from the “Mobile and
 Calendar” sequence. Although this is an extremely “busy” picture, there are still
large areas that are of a similar gray level. This includes the white background in the
calendar, the light gray of the goat, the light background of the wallpaper, and the
black of the body of the train. This “sameness” within a picture can be exploited to
reduce the amount of data that needs to be transmitted to accurately represent the

1 The missing pixels and rows of pixels are taken up by the horizontal and vertical blanking intervals.

18 Chapter 2 Characteristics of Video Material

picture. Let us take an extreme example. Consider a picture in which every pixel is
the same shade of gray. In order to completely represent the picture all that would be
needed would be the gray level of the fi rst (top left) pixel together with the statement
that every other pixel is the same shade of gray. The information about this one pixel
is suffi cient to allow the values of all the other pixels to be correctly determined.

Going to the other extreme, consider a picture made up of white noise. In this case,
the value of every pixel needs to be individually specifi ed because knowing the value
of a particular pixel tells nothing about the value of any other pixel in the picture.

Mathematically, the “sameness” of a picture is measured by the autocorrelation
function. This function measures how pixel “sameness” varies as a function of the
distance between the pixels. The correlation coeffi cient r between two blocks of pixels
A(i,j) and B(i,j) where i and j are the pixel positions within each block is defi ned as

 r

A i j B i j

A i j B

A
j

B
i

A
j

�

� �

�

, ,

,

()() ()()

()()

∑∑

∑

µ µ

µ
2

ii j B
jii

,()()∑∑∑ �µ
2 (2.1)

where µA and µB are the mean values of A(i,j) and B(i,j), respectively.
For two blocks that are identical (e.g., any two blocks extracted from the picture

where every pixel is identical), the correlation coeffi cient is one. For blocks that are
completely uncorrelated (e.g., any two blocks extracted from the white noise picture),

Figure 2.1 First frame of the video sequence “Mobile and Calendar.”

the correlation will be zero. In fact the correlation coeffi cient can take values in the
range from �1 to 1 corresponding to the cases where A(i,j) � �B(i,j) and A(i,j) �
B(i,j), respectively.

Consider the two 2 � 2 block of pixels shown in Figure 2.2. The mean of each block is fi rst
subtracted from each pixel in that block. Failing to do this leads to a correlation coeffi cient
that is always positive and close to one irrespective of the pixel values because the mean value
dominates the calculation.

r �
� � � � � � � � � � �

� �

2 5 7 3 2 4 6 3

2 2

()() ()() ()() ()()
()(() ()() ()() ()()() ()()� � � � � � � � � � � � �7 7 2 2 6 6 5 5 3(()() ()() ()()()� � � � � � �

�

3 4 4 3 3

0.0328

This corresponds to a pair of (admittedly small) blocks that are almost uncorrelated.
Note that if the mean was not subtracted the correlation coeffi cient would be 0.9993. This
clearly demonstrates how the mean can mask the underlying behavior within the block. �

This idea can be easily extended to whole pictures using MATLAB.

Calculate the correlation coeffi cient for the luminance component of the fi rst picture of the
“Mobile and Calendar” sequence for horizontal shifts in the range from �10 to �10 pixels.

SOLUTION In order to obtain a reasonably global value for the correlation coeffi cient, it is
necessary to use a large block of pixels. We use a 576 � 684 pixel block within the 576 � 704
pixel picture. This allows the block to be moved in the range from �10 to �10 pixels without
running off the edge of the picture. This is shown in Figure 2.3.

EXAMPLE 2.1EXAMPLE 2.1

EXAMPLE 2.2—MATLABEXAMPLE 2.2—MATLAB

2.1. Picture Correlation 19

130

126

135

122
Subtract mean (say 128)

+2

–2

+7

–6

133

132

131

131
Subtract mean (say 128)

+5

+4

+3

+3

Figure 2.2 Calculation of correlation coeffi cient.

20 Chapter 2 Characteristics of Video Material

Assume that the array calendar_1 contains the fi rst picture of the “Mobile and Calendar”
sequence. The appropriate MATLAB script is

horiz_corr � zeros(1,21);
[row,col] � size(calendar_1);
block � calendar_1(:,11:col-10); %defi ne block to be moved over picture
block � block – mean(mean(block)); %subtract block mean
for position � �10:10
 compare_block � calendar_1(:,11�position:col-10�position); %defi ne block
 compare_block � compare_block � mean(mean(compare_block)); %subtract mean
 horiz_corr(1,position�11) � corr2(block,compare_block); % calculate coeffi cient
end
x��10:10;
plot(x,horiz_corr);
grid

After appropriate labeling of the axes, the result is shown in Figure 2.4.
As expected, at a displacement of 0 the correlation coeffi cient is 1. Note that the correla-

tion coeffi cient at a displacement of 1 pixel is, however, in excess of 0.9. Even at a pixel shift
of 10 pixels, the correlation coeffi cient is still greater than 0.65. This clearly demonstrates
that even for a complex picture such as this one, there is still a large amount of correlation that
can be exploited to reduce the required data rate. �

This idea can simply be extended to calculate a two-dimensional plot of the
correlation coeffi cient. In this case the block of interest is moved over a range of
�5 to �5 pixels in both the horizontal and the vertical directions with the result
 being plotted as a three-dimensional surface plot. After appropriate interpolation,
the result is shown in Figure 2.5.

576 pixels

684 pixels

704 pixels

Figure 2.3 Block area for horizontal correlation coeffi cient calculation.

–10 –8 –6 –4 –2 0 2 4 6 8 10
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Displacement (pixels)

C
or

re
la

tio
n

co
ef

fic
ie

nt

Figure 2.4 Horizontal correlation coeffi cient for luminance component of the fi rst picture of sequence
“Mobile and Calendar.”

 5

0

5

5

0

5
0.6

0.7

0.8

0.9

1

X displacement (pixels)Y displacement (pixels)

C
or

re
la

tio
n

co
ef

fic
ie

nt

– –

Figure 2.5 The three-dimensional surface plot of the correlation coeffi cient for the luminance
component of the fi rst picture of sequence “Mobile and Calendar.”

2.1. Picture Correlation 21

22 Chapter 2 Characteristics of Video Material

It is clear that correlation in all directions remains high for several pixel shifts
from the pixel of interest. Even at a shift of 5 pixels left and 5 pixels down, the cor-
relation is still as high as 0.65.

The conclusion from these examples is that if we know the value of a par-
ticular pixel then we also have a considerable amount of information about the
 values of nearby pixels. It turns out that correlation between adjacent pictures
in a video sequence is as large, and often even larger, than is the correlation
between pixels within a picture. How this information can be exploited to
 reduce the amount of data required to represent a picture is discussed in later
 chapters.

2.2. INFORMATION CONTENT

It is important to be able to quantify in some way the amount of information pro-
duced by a source. Consider the emission of a symbol “a” from a source with prob-
ability pa. If pa � 1 then symbol a is produced continuously by the source. There is
therefore no surprise when it is produced and hence there is no information provided
by its appearance.

On the contrary, if the various symbols produced by the source have a range
of possibilities and, if the probability pa is low, there is more surprise—and hence
more information—in its occurrence. The smaller the value of pa, the greater is the
information content. The information content is related to the reciprocal of the prob-
ability of occurrence.

The amount of information Ia is defi ned as

 I
P

Pa
a

a� ��log log2 2

1

() (2.2)

The base for the logarithmic function is in fact quite arbitrary. However, it is
usual to use the base 2 as shown. In this case, the unit of information is the bit
(a contraction of binary digit).

When pa is equal to ½, the information content is 1 bit. Thus 1 bit of information
is suffi cient to distinguish one of two equally likely events.

This defi nition of information content displays the following pleasing
characteristics:

Ia � 0 for pa � 1. As stated earlier, if we are sure of the symbol prior to its
occurrence then no information is gained.

Ia � 0 for 0 � pa � 1. The occurrence of a symbol provides at worst no infor-
mation but never brings about a loss of information.

Ia � Ib if pa � pb. Less likely events provide more information than more
likely events.

•

•

•

Iab � Ia � Ib � Ia � Ib. If a and b are statistically independent events (i.e., if
pab � pa pb) then the information content of the two events is the sum of the
information content of each event.

If we consider a source producing m symbols s0, s1, …, sm � 1 with probabilities
p0, p1, …, pm � 1, then the mean information content is given by

H E IS k
� ()

H p Ik s
k

m

k
�

�

�

0

1

∑
 (2.3)

H p
p

k
kk

m

�
�

�

log2
0

1 1

∑

H p pk
k

m

k��
�

�

log2
0

1

∑

H is called the entropy of the source and measures the average information content
per source symbol. The entropy provides a lower bound on the average number of
bits required to transmit a sequence of independent symbols, given the probability
of each symbol.

A source generates four symbols a, b, c, and d that have probability of occurrence of 0.4, 0.3,
0.2, and 0.1, respectively. What is the entropy of the source?

SOLUTION The entropy calculation is shown in Table 2.1.

Table 2.1 Entropy calculation for Example 2.3.

Symbol pi I � �log2(pi) �pi log2(pi)

a 0.4 1.32 0.53
b 0.3 1.74 0.52
c 0.2 2.32 0.46
d 0.1 3.32 0.33

Total source
entropy

1.84 bits/
symbol

 �

This process can be extended to measure the information content of a picture. In
an 8-bit gray scale picture, each pixel takes one of 256 possible values (0–255). By
calculating the probability of each of these 256 values, it is possible to calculate the
entropy of the picture. Figure 2.6 shows the histogram of pixel intensities for the fi rst
luminance picture of the sequence “Mobile and Calendar.”

•

EXAMPLE 2.3EXAMPLE 2.3

2.2. Information Content 23

24 Chapter 2 Characteristics of Video Material

From Figure 2.6, it is clear that not all pixels are equally likely. When the picture
entropy is calculated, it turns out that the entropy is 7.61 bits/pixel. This implies that
the coding effi ciency, defi ned as the entropy divided by the actual number of bits per
symbol in the original picture (7.61/8 in this case), is already more than 95% effi cient.
Future chapters show that signifi cantly more complex signal processing is needed to
achieve the level of compression required for the successful introduction of digital
television. If all 256 values were equally likely, the entropy would be 8 bits/pixel.

The key question now is how do we attempt to exploit the fact that the entropy
is less than the number of bits per pixel currently required to represent the picture.
This question can be answered by considering an old form of coding symbols (in this
case letters of the alphabet)—Morse code. The Morse code representation of the 26
letters of the alphabet is given in Table 2.2.

The amount of time required to transmit a message is minimized by represent-
ing commonly occurring letters with a small number of keystrokes (e.g., the letter E)
whereas less commonly occurring letters are represented by a larger number of key-
strokes (e.g., the letters Q, Y, and Z). In Morse code, a dot (.) requires only one third
of the transmission time of a dash (�). This implies that the number of keystrokes
does not exactly correlate with transmission time. Nonetheless, the implications are
clear. If we want to transmit symbols at the rate suggested by the entropy, we need
to represent each symbol by a binary number with the same number of bits as the
information content of the symbol. This is not always possible because the informa-
tion content is not necessarily exactly an integer number of bits.

0 64 128 192 255
0

1000

2000

3000

4000

5000

6000

7000

8000

Pixel value

N
um

be
r

Figure 2.6 The histogram of the fi rst luminance picture of the sequence “Mobile and Calendar.”

A message consists of four symbols (a, b, c and d) with probabilities 0.75, 0.125, 0.0625, and
0.0625, respectively.

(a) Calculate the entropy of the message.

(b) Calculate the required number of bits per symbol and the coding effi ciency if fi xed
length coding is employed.

(c) Calculate the required number of bits per symbol and the coding effi ciency if vari-
able length coding is employed.

SOLUTION (a) The entropy of the message can be calculated as shown in Table 2.3.

Table 2.3 Calculation of message entropy.

Symbol pi I � �log2(pi) �pi log2(pi)

a 0.7500 0.415 0.311
b 0.1250 3.000 0.375
c 0.0625 4.000 0.250
d 0.0625 4.000 0.250

Total source
entropy

1.186 bits/
symbol

(b) As there are four symbols, representing each symbol by a fi xed length code would
require 2 bits/symbol as shown in Table 2.4.

Table 2.4 Representation with fixed length code words.

Symbol pi Code word Code word length

a 0.7500 00 2
b 0.1250 01 2
c 0.0625 10 2
d 0.0625 11 2

EXAMPLE 2.4EXAMPLE 2.4

Table 2.2 Morse code for letters of the alphabet.

Letter Morse code Letter Morse code Letter Morse code

A .- J .- - - S …
B -… K -.- T -
C -.-. L .-.. U ..-
D -.. M – V …-
E . N -. W .- -
F ..-. O - - - X -..-
G - -. P .- -. Y -.- -
H …. Q - -.- Z - -..
I .. R .-.

2.2. Information Content 25

26 Chapter 2 Characteristics of Video Material

The average code word length (L) can then be calculated according to

L pi

i
i� ()()∑ code word length

� 0.75 � 2 � 0.125 � 2 � 0.0625 � 2 � 0.0625 � 2 (2.4)
� 2 bits/symbol

Given that every symbol is represented by 2 bits, this is hardly a remarkable result. The
coding effi ciency is defi ned below.

Coding effi ciency �
Entropy

Number of bits per symbol
 (2.5)

In this case the coding effi ciency is

1.186

2.0
� 59.3% (2.6)

(c) Now consider the variable word length coding shown in Table 2.5. The most likely
symbol is represented by a short code word whereas less likely symbols are repre-
sented by longer code words.

Table 2.5 Representation with variable length code words.

Symbol pi Code word Code word length

a 0.7500 0 1
b 0.1250 10 2
c 0.0625 110 3
d 0.0625 111 3

In this case, the average code word length (L) can then be calculated according to

L pi

i
i� ()()∑ code word length

� 0.75 � 1 � 0.125 � 2 � 0.0625 � 3 � 0.0625 � 3 (2.7)
� 1.375 bits/symbol

The coding effi ciency has been increased to 1.186/1.375 � 86.2% a substantial
improvement. �

Details of techniques used to design variable length coding schemes will be
considered in the next chapter.

2.3. THE HUMAN VISUAL SYSTEM

The previous two sections have discussed the mathematical properties of picture
data that can be exploited to reduce the amount of data required to represent a
picture. In considering the data compression problem, it needs to be fi rmly borne
in mind that the aim of the process is to produce a reconstructed picture that,

when viewed by a human viewer, is of suffi cient quality to meet the needs of the
service. In particular, the aim is not to produce a reconstructed picture that is
identical with the original picture that was imaged at the source. It follows that
any parts of the picture that are not apparent to a viewer need not be preserved in
the reconstructed picture. This allows huge savings to be made in the amount of
data that needs to be transmitted. For these savings to be made, we need to have a
reasonable understanding of the characteristics, and in particular the limitations,
of the human visual system. These characteristics are discussed briefl y in this
section.

2.3.1. Perception of Changes in Brightness

According to Weber’s law, the just detectable change in luminance (∆Y) is propor-
tional to the luminance (Y). In fact

∆Y

Y
� 0 02. (2.8)

The response of the human visual system is therefore logarithmic. It also im-
plies that a given change in luminance value due to a coding artifact is more visible
in darker rather than light areas of the picture.

There is, however, another effect that needs to be considered. The luminance
from a cathode ray tube (CRT) is related to the applied voltage (V) according to the
nonlinear relationship.

 Y V= γ γ, 2 3� � (2.9)

When taken together, Weber’s law and the nonlinear CRT relationship mean
that the luminance perceived by a viewer is in fact approximately linearly related
to the voltage applied to the CRT. Figure 2.7 shows a complete video compression
system starting with a scene and camera followed by video coding (and decoding),
and fi nally display on a CRT for the viewer. We have already seen that the combined
effect of the CRT and the viewer’s human visual system (as shown in the smaller
rectangle in Fig. 2.7) is approximately linear. For the displayed image to look the

2.3. The Human Visual System 27

Scene Camera Video
Coding

CRT ViewerScene Camera Video
coding

CRT Viewer

Figure 2.7 A complete video compression system.

28 Chapter 2 Characteristics of Video Material

same as the scene when viewed by the camera, the system contained in the larger
rectangle from camera to CRT should also be linear. We want to perform video cod-
ing in the linear domain, and so video cameras invariably contain gamma correction
circuitry.

 V Vout = camera

1
γ (2.10)

2.3.2. Spatial Masking

It has been demonstrated experimentally that coding artifacts2 in active re-
gions of a picture (i.e., areas where there are sharp edges or other fast intensity
changes) are less subjectively noticeable than those in inactive (i.e., flat) regions
of a picture. This means that active areas of a picture can be coded more coarsely
than inactive areas. Spatial masking is extensively exploited in modern video
coders.

2.3.3. Temporal Masking

It has also been demonstrated that near scene changes in a video sequence there is
a signifi cant reduction in the subjective impact of coding artifacts. This means that
pictures immediately after a scene cut (and to a lesser extent prior to the scene cut as
well) can be coded more harshly than other pictures in the sequence without having
any signifi cant impact on subjective service quality.

2.3.4. Frequency Sensitivity

Figure 2.8 shows the approximate spatial frequency sensitivity of the human visual
system for luminance information. It is clear that the frequency sensitivity is highest
at low and medium frequencies and decreases rapidly at high frequencies. This does
not mean that all high-frequency information can be deleted because edges intro-
duce signifi cant amounts of such high-frequency data that, if removed, would lead to
a general blurring of the reconstructed image. Rather it means that high-frequency
information can be represented less accurately than lower frequency information.
This aspect of the human visual system is also widely exploited in modern video
coders.

It is also worth noting that the contrast sensitivity for chrominance (color)
 information falls off at signifi cantly lower frequencies than is the case for luminance

2 The representation of parts of a picture can be made more and more approximate, or “coarse,” if fewer bits are
available to represent it. In such situations, artifacts of the coding occur as either visible or invisible distortion.

information. For this reason, chrominance information is invariably sampled in the
spatial domain at a lower sampling rate than the luminance information.

2.3.5. Tracking of Motion

When an object in a video sequence fi rst begins to move, there is a short period of
time before the eye starts to track the motion. The eye’s ability to resolve fi ne spa-
tial detail in the object is reduced during this period. This is a similar effect to that
described earlier at scene cuts. As an object continues to move, the eye’s ability to
track this detail improves providing that the motion is suffi ciently slow that the eye
can track it. Coding artifacts near objects that have just begun to move are therefore
less noticeable than in other areas of the picture.

2.3.6. Conclusion

A thorough understanding of the human visual system is essential in the de-
sign of effective video encoders. Much of the compression achieved relies upon
the introduction of coding artifacts in areas of a picture where they will not be
subjectively noticeable. Although some conclusions have been drawn about the

 0.1 1.0 10.0 100.0
 1

 10

100

Spatial frequency (cycles/degree)

R
es

po
ns

e
(%

)

Figure 2.8 Luminance contrast sensitivity response as a function of frequency for the human visual
system.

2.3. The Human Visual System 29

30 Chapter 2 Characteristics of Video Material

characteristics of the human visual system in this section, this is still an area of ac-
tive research.

2.4. SUMMARY

In this chapter, we have introduced the characteristics of images and the human
visual system that can be exploited to allow the effi cient representation of video ma-
terial. In the next two chapters, we introduce the signal processing techniques that
have been developed to facilitate this exploitation.

PROBLEMS

2.1 A progressive television service called 480p is to be introduced with each picture being
made up of 720 pixels/line and 480 lines/picture. The picture rate is 60 pictures/s. Each
pixel requires 12 bits of data to represent luminance and chrominance information. Cal-
culate the effi ciency required from the modulation scheme (in bits/s/Hz) so that the digi-
tized video service can be carried in a channel with bandwidth 6 MHz.

2.2 Repeat Problem 2.1 for a 1080i service that is made up of 2:1 interlaced pictures
transmitted at a picture rate of 30 pictures/s. Each picture (i.e., a pair of fi elds) contains
1440 pixels/line and 1080 lines/picture.

2.3 Calculate the correlation coeffi cient between the 2 � 2 pixel blocks shown in Figure 2.9.
Assume that the mean value of all pixels in the picture is 128.

146 123 157 117

130 105 140 91

Figure 2.9 Pixel data for Problem 2.3.

2.4 Calculate the correlation coeffi cient between the 3 � 3 pixel blocks shown in Figure 2.10.
Assume that the mean value of all pixels in the picture is 128.

205 130 247 217 172 174

163 224 188 134 215 97

153 185 182 52 5 213

Figure 2.10 Pixel data for Problem 2.4.

2.5 What areas of a picture would you expect to display high correlation values and which
areas would you expect to display low correlation? Consider the fi rst picture of the “Mo-
bile and Calendar” sequence. What areas of the picture will display local high and low
values of correlation?

2.6 Consider the fi rst picture of other video sequences. What areas of each picture would you
expect to display local high and low values of correlation?

(a) Explain how this could be calculated.

(b) Under what circumstances would you expect high and low values of temporal cor-
relation?

2.7 As indicated in the chapter, the correlation coeffi cient can take values in the range from
�1 to �1. Consider the 4 � 4 pixel block shown in Figure 2.11 that has been drawn for
a set of pixel values with mean value 128.

150 145 161 168

144 153 170 101

141 155 148 84

145 160 160 92

Figure 2.11 Pixel data for Problem 2.7.

(a) Calculate the 4 � 4 pixel block that has a correlation coeffi cient of �1 when com-
pared to this block.

(b) Calculate a 4 � 4 pixel block that has a correlation coeffi cient of 0 when compared
to this block.

(c) Calculate a 4 � 4 pixel block that has a correlation coeffi cient of �1 when compared
to this block.

2.8 A source generates four symbols a, b, c, and d with probabilities 0.50, 0.20, 0.20, and
0.10, respectively. What is the entropy of the source? If each symbol is represented by a
fi xed length binary code word, what is the coding effi ciency?

2.9 A source generates six symbols a, b, c, d, e, and f with probabilities 0.30, 0.20, 0.20,
0.15, 0.10, and 0.05 respectively. What is the entropy of the source? If each symbol is
represented by a fi xed length binary code word, what is the coding effi ciency?

2.10 A source produces three symbols with probabilities 0.90, 0.05, and 0.05, respectively.
What is the entropy of the source? If each symbol is represented by a fi xed length binary
code word, what is the coding effi ciency?

2.11 The source described in Problem 2.10 has symbols grouped in pairs prior to encod-
ing. Each symbol can be assumed to be independent of any other symbol. What is the
 entropy of the source now? If each pair of symbols is represented by a fi xed length
binary code word, what is the coding effi ciency?

2.12 Repeat Problem 2.11 for the case where the symbols are grouped in threes.

2.13 A source generates three symbols. One symbol has probability p whereas both of the
other two symbols have the same probability. Plot source entropy as a function of the
probability p.

2.14 The coding effi ciency using variable length code words is usually less than 100%.
 Under what circumstances will this coding effi ciency be exactly 100%?

2.15 When variable word length code words are used to represent symbols of differing
probabilities, it is usual to ensure that no short code word is a prefix for a longer
code word (i.e., if one code word is 00 then 001 could not be another code word
as it begins with 00). Explain briefly why this might be an advantage. For Prob-
lems 2.8 and 2.9 suggest appropriate variable length code words that fulfill this
requirement.

Problems 31

32 Chapter 2 Characteristics of Video Material

2.16 The Morse code is not a code where short code words cannot be a prefi x of longer code
words (e.g., the letter E is represented by a single dot whereas the letter I is represent-
ed by two dots). When transmitting Morse code, the operator needs to pause between
 letters to allow correct decoding at the receiver. What would be the impact of using such
a code in a digital television system?

2.17 The length of variable word length codes is designed to match the long-term probabili-
ties of each of the symbols generated by the source. Although this should lead to a sav-
ing overall, it is possible in some instances that the number of bits generated to represent
a string of symbols can be more if the symbols were encoded using fi xed length code
word. Explain the circumstances where this is possible.

2.18 Four symbols are represented by the variable length code words as shown in Table 2.6.
A string of transmitted symbols consists of the symbols A,B,A,B,C,D,A,A, espectively.

(a) Calculate the generated bit stream corresponding to this run of symbols.

(b) The second bit of this bit stream is received in error. Decode the received bit stream
and comment on the result.

(c) Suggest a method that might be used to overcome the problem of transmission errors
when variable length coding is used.

2.19 The characteristics of the human visual system are very complex. Over the years, re-
searchers have developed tests that attempt to quantify these characteristics. Design an
experiment that might allow you to verify Weber’s law.

2.20 Repeat Problem 2.19 but this time design an experiment that measures the frequency
response of the human visual system.

MATLAB EXERCISE 2.1: CORRELATION COEFFICIENT
WITHIN A PICTURE

The text has discussed in some detail the idea of correlation within a picture. In this
exercise, you use MATLAB to measure the correlation coeffi cient of pictures from
different video sequences. You also study the variation in the local value of the cor-
relation coeffi cient within an image.

Section 1 Correlation coeffi cient of pictures from different sequences

(a) For the fi rst picture of a video sequence, calculate the two-dimensional
correlation coeffi cient over the range of ±5 pixels. Plot the result as a

Table 2.6 Variable length code words for Problem 2.18.

Symbol Code word

A 0
B 10
C 110
D 111

three- dimensional plot. Your fi nal result should look very similar to the
plot shown in Figure 2.5. Note that the readability of the plot can be in-
creased by interpolating between integer points us the two-dimensional
interpolation function available in MATLAB.

(b) Repeat this exercise for the fi rst picture of other video sequences. Com-
ment on the results. Which pictures would you expect to be easy to com-
press? Which pictures would you expect to be more diffi cult to compress?
Why?

Section 2 Correlation coeffi cient within a picture

(a) Extend the MATLAB program developed in the previous section so that
you can select individual 16 � 16 pixel blocks within a picture. Choose
different blocks within the fi rst picture of your sequence. Calculate the two-
 dimensional correlation coeffi cient for each of these blocks again in the
range of ±5 pixels. You might fi nd it helpful to highlight the selected block
in some way (such as surrounding it with a white boarder). Use you program
to determine what picture characteristics give rise to high and low values for
the correlation coeffi cient.

(b) Use your program to perform a similar study on the fi rst picture from other
video sequences. Comment on whether you observations for these pictures
correspond to those for the fi rst sequence.

MATLAB EXERCISE 2.2: CORRELATION
COEFFICIENT BETWEEN PICTURES IN A SEQUENCE

As well as being able to calculate the correlation coeffi cient within a picture, it is
also possible to calculate the correlation coeffi cient between pictures in a sequence.
This is studied in this exercise.

(a) Load the third picture from a video sequence into MATLAB. Now calcu-
late the temporal correlation coeffi cient with the fi rst fi ve pictures in the
sequence. Plot the correlation coeffi cient as a function of temporal displace-
ment over the range of ±2 frame times.

(b) Repeat this calculation for other video sequences. Plot these on the same
graph as the one used for the fi rst sequence.

(c) What characteristics of a sequence lead to high and low values of temporal
correlation?

MATLAB EXERCISE 2.3: ENTROPY OF A PICTURE

In this exercise we plot the histogram of a picture. We then calculate the entropy of
the picture and the coding effi ciency when represented by fi xed length code words.

MATLAB Exercise 2.3: Entropy of a Picture 33

34 Chapter 2 Characteristics of Video Material

Section 1 Histogram of a picture

(a) For the fi rst picture of a video sequence, calculate the number of pixels at each
of the possible 256 gray scale values (range 0–255). Plot the histogram.

(b) Calculate the histogram for the fi rst picture of other sequences.

(c) Comment on any differences between the histograms. Which picture would
you expect to have the highest entropy? Which picture would you expect to
have the lowest entropy?

Section 2 Calculation of entropy

(a) Extend the program developed in the previous section to calculate the
entropy (H) of each picture using the formula

 H p pk k
k

m

�� log2
0

1

=

−

∑ (2.11)

where pk is the probability of a pixel having intensity k.
Note that there may be some gray scale values that have a probability of
zero. Your program needs to be able to deal with this situation.

(b) How do the actual entropy values compare with the estimate you made in
the previous section?

35

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 3

Predictive Encoding

In the previous chapter we saw that most pictures can be characterized by high
spatial and temporal picture correlation. All pictures exhibit nonuniform pixel
distribution to a certain degree and signal processing can greatly increase this
nonuniformity. If we can exploit these characteristics, we can reduce the amount
of information that needs to be transmitted to adequately represent a picture. In
the next two chapters, the video coding tools that exploit these characteristics are
discussed. This chapter covers predictive encoding techniques including motion-
compensated prediction. Chapter 4 looks at transform encoding. Together, pre-
dictive encoding and transform encoding form the heart of the MPEG-2 video
encoder.

3.1. ENTROPY CODING

The idea of using variable length coding to effi ciently represent messages is known
as entropy coding. If we are to be able to make regular use of it, we need some auto-
matic method for calculating the appropriate variable word length codes dictated by
a particular set of symbol probabilities. The best and most widely used technique is
called Huffman coding. The current video and audio compression standards used for
digital television include variable length code words generated as Huffman codes.
We will now study how to generate these useful code word sets.

3.1.1. Huffman Coding

The steps involved in generating a set of Huffman code words are summarized
below.

Step 1: List the symbols to be transmitted in decreasing order of probability.

Step 2: Combine the two symbols with the smallest probabilities and reorder the
symbols in decreasing order of probability.

Step 3: Repeat Step 2 until only two combined symbols remain.

36 Chapter 3 Predictive Encoding

Step 4: Mark each combination consistently with either

Step 5: Read off the Huffman code words from right to left.

The entire process is best illustrated by way of an example.

EXAMPLE 3.1

The symbols a, b, c, and d have probabilities 0.75, 0.125, 0.0625, and 0.0625, respectively.
Calculate the Huffman code words appropriate for these symbols.

SOLUTION We begin by listing the code words in decreasing order of probability (Step 1)
as shown in Figure 3.1.

Now we combine the two symbols with the smallest probabilities and reorder in decreas-
ing order of probability (Step 2). In this case after combining, the two smallest probabilities
are equal. It is not important to the fi nal outcome that one is placed higher in the reordered
list. In this case we have placed the newly merged symbols last as shown in Figure 3.2. We
will return at the end of the example to look at the impact of the other choice.

We now again combine the two smallest probabilities and reorder (Step 2). The result is
shown in Figure 3.3. As this leaves us with only two probabilities, we can stop the combining
process (Step 3).

0.750.75a

0.1250.125b

0.1250.0625c

0.0625d
]

Figure 3.2 Probabilities after fi rst combining and reordering.

a 0.75 0.75 0.75

b 0.125 0.125 0.25

c 0.0625 0.125

d 0.0625
]

]

Figure 3.3 Probabilities after second combining and reordering.

0.75a

0.125b

0.0625c

0.0625d

Figure 3.1 Initial ordering of symbol probabilities.

This is called the Huffman tree. We now proceed to mark each combination operation
(Step 4). This is shown in Figure 3.4.

The Huffman code word for each symbol can be read back from right to left in the
Huffman tree as shown in Figures 3.5–3.8.

a 0.75 0.75 0.75

b 0.125 0.125 0.25

c 0.0625 0.125

d 0.0625
]

]
]0

10

10

1

Figure 3.4 The marking of each combination operation.

a 0 0.75 0.75 0.75

b 0.125 0.125 0.25

c 0.0625 0.125

d 0.0625
]

]
]0

10

10

1

Figure 3.5 Reading off the Huffman code word for symbol a.

a 0 0.75 0.75 0.75

b 10 0.125 0.125 0.25

c 0.0625 0.125

d 0.0625
]

]
]0

10

10

1

Figure 3.6 Reading off the Huffman code word for symbol b.

a 0 0.75 0.75 0.75

b 10 0.125 0.125 0.25

c 110 0.0625 0.125

d 0.0625
]

]
]0

10

10

1

Figure 3.7 Reading off the Huffman code word for symbol c.

a 0 0.75 0.75 0.75

b 10 0.125 0.125 0.25

c 110 0.0625 0.125

d 111 0.0625
]

]
]0

10

10

1

Figure 3.8 Reading off the Huffman code word for symbol d.

3.1. Entropy Coding 37

38 Chapter 3 Predictive Encoding

Thus the Huffman code words for this example are as shown in Table 3.1.
No short code word ever forms a prefi x for a longer code word in a Huffman code. This

means that there is no need for any form of space between code words, and so any bit stream
is uniquely decipherable.

Had we reordered the other way after the fi rst combination operation, the fi nal Huffman
tree would be as shown in Figure 3.9.

In this case, the Huffman code words are as shown in Table 3.2.

The code words for symbols b, c, and d have changed. However, each code word is the
same length as in the previous Huffman code calculation in this example. The average code
word length in each case would therefore be identical.

We now look at a simple example of coding and decoding symbols using Huffman codes.
 �

EXAMPLE 3.2

Use the Huffman code defi ned in Table 3.1 to encode the stream of symbols shown in
Figure 3.10.

Table 3.1 Huffman code words for Example 3.1.

Symbol Huffman code word

a 0
b 10
c 110
d 111

a 0 0.75 0.75 0.75

b 11 0.125 0.125 0.25

c 100 0.0625 0.125

d 101 0.0625
]

]
]0

10

10

1

Figure 3.9 Huffman tree if alternate reordering after fi rst symbol combination.

Table 3.2 Huffman code words for alternate ordering
in Example 3.1

Symbol Huffman code word

a 0
b 11
c 100
d 101

a b c d a a a b

Figure 3.10 Original stream of symbols for Example 3.2.

After the encoding process, we have the code words shown in Figure 3.11.

This can be concatenated to form the fi nal transmitted bit stream shown in Figure 3.12.

The decoding process consists of reading values from the bit stream until a valid code
word is detected. Because no Huffman code word ever forms the prefi x of a longer Huffman
code word, this always results in correct decoding in an error-free environment. The decoding
process is shown in Figure 3.13.

01011011100010

Figure 3.12 Final transmitted bit stream.

0 10 110 111 0 0 0 10

Figure 3.11 Symbols from Figure 3.10 encoded using Huffman code from Table 3.1.

10110111000100

a

01101110001010

?a

11011100010100

ba

10111000101100

?ba

01110001011100

?ba

11100010110100

cba

11000101110100

?cba

10001011110100

?cba

00010111110100

dcba

00100111110100

adcba

01000111110100

aadcba

10000111110100

aaadcba

01000111110100

?aaadcba

10000111110100

baaadcba

 Figure 3.13 Huffman decoding process. �

3.1. Entropy Coding 39

40 Chapter 3 Predictive Encoding

The introduction of transmission errors can have a signifi cant effect on the
decoding process. This is illustrated in Example 3.3.

EXAMPLE 3.3

The bit stream generated in Example 3.2 is received with a single bit error in the second bit of
the bit stream. Determine the decoded sequence in this case.

SOLUTION The received bit stream is given in Figure 3.14.

The decoding process is shown in Figure 3.15.

00011011100010

Figure 3.14 Bit stream generated in Example 3.2 with a single bit error.

0011011100010 0

a

011011100010 0 0

a a

11011100010 0 0 0

a a a

1011100010 1 0 0 0

? a a a

011100010 11 0 0 0

? a a a

11100010 110 0 0 0

c a a a

1100010 1 110 0 0 0

? c a a a

100010 11 110 0 0 0

? c a a a

00010 111 110 0 0 0

d c a a a

0010 0 111 110 0 0 0

a d c a a a

010 0 0 111 110 0 0 0

a a d c a a a

10 0 0 0 111 110 0 0 0

a a a d c a a a

0 1 0 0 0 111 110 0 0 0

? a a a d c a a a

10 0 0 0 111 110 0 0 0

b a a a d c a a a

Figure 3.15 Huffman decoding process for the errored bit stream of Figure 3.14.

Comparing the decoded sequence for the errored bit stream with the correctly decoded
sequence, we see that the second and third symbols (b and c) have been incorrectly received (as
a and a) and an additional symbol (c) is also decoded before correct decoding resumes with the
next symbol (d). The compression achieved using Huffman coding is achieved at the expense
of greater vulnerability of the generated bit stream to errors. Modern video coders are designed
to minimize the effect of this vulnerability. However, it cannot be completely removed. �

Another limitation of Huffman code words is the requirement that each code
word is an integer number of bits in length. If the probability of a symbol is 1/3, the
optimum number of bits to assign is 1.6. The Huffman code assigns either one or
two bits—either choice leads to a longer compressed message than is theoretically
necessary. The problem is particularly serious when the probability of one symbol is
very high. For example, if the probability of one symbol is 0.9 then the optimal code
word length would be 0.15 bits. A Huffman code would assign a one bit code word.
This is the reason that Huffman codes cannot exactly achieve the entropy of the
symbol stream. This problem can be addressed by using a different scheme known as
arithmetic coding. Although arithmetic coding features in standards such as MPEG-
4 and JPEG-2000, it is not a part of the MPEG-2 standards that form the basis of
digital television broadcasting services. It is therefore not discussed further here.

3.1.2. Run Length Coding

In run length coding, a run of consecutive identical symbols is combined together and
represented by a single variable length (e.g., Huffman) code word. A simple example
is the transmission of a black-and-white facsimile. Consider the line segment shown
in Figure 3.16.

The message to be transmitted would be
(3 white pixels) (2 black pixels) (5 white pixels) (1 black pixel) (2 white pixels)
(6 black pixels) (3 white pixels) (3 black pixels) (3 white pixels) …
If the statistics of the various run lengths are calculated, appropriate Huffman

code words can be designed. In the case of facsimile transmission, separate Huffman
code word sets have been designed for runs of white pixels and runs of black pixels.
This design strategy has been used because the statistics for the different types of
runs are not the same. In typical documents, long runs of white pixels are more
common than long runs of black pixels.

3.2 PREDICTIVE CODING

In Chapter 2, we have seen that knowing the value of a particular pixel provides
a considerable amount of information about the pixels that surround it due to the

333621523

Figure 3.16 Segment of a black-and-white facsimile.

3.2. Predictive Coding 41

42 Chapter 3 Predictive Encoding

high correlation that typically exists between nearby pixels. What is needed is some
way to exploit this correlation so that the amount of information that needs to be
transmitted can be reduced. One way of achieving this is by a technique known as
predictive encoding.

The aim of predictive encoding is to use the values of already transmitted pixels
to predict the value of the current pixel to be transmitted. It is then only necessary
to transmit the difference between the prediction and the actual pixel value. If the
prediction is accurate, this is usually a small value and so less bits of data will need
to be transmitted in order to represent it.

The simplest form of predictive encoding is to predict the value of the pixel to
be transmitted using the value of the pixel immediately to its left. This is illustrated
in Figure 3.17. This approach is often called one-dimensional differential pulse code
modulation (DPCM). The difference between the prediction and the actual pixel
value is then transmitted.

In Figure 3.17, X is the pixel to be transmitted and A is the value of the pixel im-
mediately to its left. We estimate the value of X as A that is

X̂ � A

The value transmitted to the receiver is then

Difference � X�X̂

Difference � X�A

EXAMPLE 3.4

Consider the set of pixel values given in Figure 3.18. Calculate the values of the prediction
difference when one-dimensional DPCM is employed. We assume that the fi rst pixel in a line
is predicted by the mid-gray value 128.

The pixel values are repeated in Figure 3.19 with the prediction value for each pixel in
italics directly below it. Thus the fi rst pixel in the fi rst row (130) is predicted by mid-gray
value (128), the second value in the fi rst row (135) is predicted by the fi rst value in the fi rst
row (130), and so on.

A X

Figure 3.17 Simple one-dimensional prediction.

130 135 141 129 151

124 140 165 200 199

119 132 175 205 203 Figure 3.18 Pixel values for Example 3.4.

3.2. Predictive Coding 43

The prediction difference is then simply calculated by subtracting the prediction from
the true pixel value giving the result shown in Figure 3.20.

The following MATLAB example applies one-dimensional DPCM to the fi rst
picture in the “Mobile and Calendar” sequence.

EXAMPLE 3.5—MATLAB

Calculate the one-dimensional DPCM prediction difference picture for the fi rst picture in
the “Mobile and Calendar” sequence. Also calculate the entropy of this prediction difference
picture.

SOLUTION The process is simply that the prediction difference for column i is the
pixel value in column i minus the pixel value in column (i � 1). The exception is the fi rst
column where there is no pixel to the left from which to form a prediction. This column
is predicted with the mid-gray value 128. If the prediction difference is stored in an array
DIFF then appropriate MATLAB code is given below. It is assumed that the an array
calendar_1 contains the luminance pixel values of the fi rst frame of the sequence “Mobile
and Calendar.”

151 129 141 135 130 Pixel value

Prediction

199 200 165 140 124 Pixel value

Prediction

203 205 175 132 119 Pixel value

Prediction

128 130 135 141 129

128 124 140 165 200

128 119 132 175 205

Figure 3.19 Pixel values with appropriate predictor immediately below the pixel value.

+2 +5 +6 –12 +22

–4 +16 +25 +35 –1

–9 +13 +43 +30 –2

 Figure 3.20 Prediction difference for Example 3.4. �

44 Chapter 3 Predictive Encoding

[row,col] � size(calendar_1);
DIFF � zeros(row,col);
DIFF(:,1) � calendar_1(:,1) — 128*ones(row,1);
for col_number � 2:col
DIFF(:,col_number) � calendar_1(:,col_number) — calendar_1(:,col_number-1);
end

The histogram for the prediction difference contained in an array DIFF is shown in
Figure 3.21.

As we had hoped, Figure 3.21 shows that the prediction difference is usually small with
zero, the most common prediction difference and almost all prediction differences in the
range of ±64. The possible range of pixel values has increased from 0 to 255 in the original
picture to �255 to �255 in the prediction difference. If the prediction was not reasonably
accurate, we could actually have an increase in the average number of bits needed to represent
each pixel. The entropy for the prediction difference is 5.95 bits/pixel. This represents a small
saving (just over 20%) on the original picture entropy of 7.61 bits/pixel. Although this is far
less than is needed for the introduction of digital television services, it has been achieved in
a lossless manner.

Figure 3.22 shows the prediction difference picture for one-dimensional DPCM (after
shifting by 128 so that mid-gray value represents 0 and scaling by a factor of 2 to make the
prediction difference clearer).

–255 –192 –128 –64 0 64 128 192 255
0

5000

10,000

15,000

20,000

25,000

30,000

35,000

Pixel value

N
um

be
r

Figure 3.21 Histogram of one-dimensional DPCM prediction difference.

3.2. Predictive Coding 45

It is apparent that most of the large prediction differences occur at the edges of objects
within the picture. �

In the previous example, the pixel to the left of the pixel to be transmitted was
used as the predictor. There is, of course, no reason why this pixel needs to be the
one used. Any pixel whose value has already been transmitted to the receiver (so that
the receiver can form an identical prediction) can be used. For example, the pixel
immediately above (i.e., on the previous line to) the pixel to be transmitted could be
used to form the prediction. Indeed, there is no need for the prediction to be based on
just a single pixel. Figure 3.23 shows a generalized two-dimensional predictor.

In this case, the prediction of X (X̂) can be formed according to

X̂ � k1A � k2B � k3C � k4D

The values of the weighting factors (ki) are picture-dependant. Using pixels both
to the left and above the pixel to be predicted means that both the horizontal and
vertical correlations within the picture are exploited. Some improvement in perfor-
mance would therefore be expected.

Figure 3.22 One-dimensional DPCM difference picture for fi rst picture in “Mobile and Calendar”
sequence (shifted by 128 and scaled by 2).

A X

B C D

Figure 3.23 Two-dimensional prediction.

46 Chapter 3 Predictive Encoding

EXAMPLE 3.6—MATLAB

Implement a two-dimensional predictor of the form given below.

X̂ � 0.5A � 0.5C

Calculate the entropy of the prediction difference using MATLAB for the fi rst picture in
the “Mobile and Calendar” sequence.

SOLUTION First we need to form the prediction. For pixels in the fi rst row of the
picture, we assume that the pixel above the pixel to be predicted has value 128 (mid-
gray). For pixels in the fi rst column of the picture, we assume that the pixel to the left
of the pixel to be predicted has value 128. The prediction and the prediction difference
can then be formed according to the MATLAB code given below. As before, the array
calendar_1 contains the luminance pixel values of the fi rst frame of the sequence “Mobile
and Calendar.”

[row,col] � size(calendar_1);
Guess � zeros(row,col);

for irow � 1:row
 if(irow �� 1)
 Guess(irow,:) � Guess(irow,:) 1 0.5*128*ones(1,col);
 else
 Guess(irow,:) � Guess(irow,:) � 0.5* calendar_1(irow-1,:);
 end
end

for icol � 1:col
 if(icol �� 1)
 Guess(:,icol) � Guess(:,icol) � 0.5*128*ones(row,1);
 else
 Guess(:,icol) � Guess(:,icol) � 0.5* calendar_1(:,icol-1);
 end
end

PRED � A - fi x(Guess);

The picture entropy is 5.79 bits/pixel in this case, a reduction of 0.16 bits/pixel (2.5%)
compared to one-dimensional prediction. This is a modest improvement given the additional
computational requirements, but has still been achieved in a lossless manner. �

Researchers have shown that once pixels A and C in Figure 3.23 have been used,
there is little to be gained by using additional pixels in the same picture. Predictive
encoders where all of the pixels used to form the prediction are in the same picture as
the pixel to be predicted are called intrapicture predictive encoders.

As well as predicting from other pixels within the current picture, it is also pos-
sible to predict from a previous picture or pictures. If there has been little motion
between the pictures then the prediction can be effi cient. This is called interpicture
prediction.

3.2. Predictive Coding 47

EXAMPLE 3.7—MATLAB

Use the fi rst picture of the sequence “Mobile and Calendar” to predict the second picture in
the sequence. Display the prediction difference picture and calculate its entropy.

SOLUTION The appropriate MATLAB code is given below. It is assumed that calendar_1
and calendar_2 contains the fi rst and second frames, respectively, of the sequence “Mobile
and Calendar.”

DIFFERENCE � calendar_2 — calendar_1;

The resulting prediction difference picture (after shifting by 128 so that mid-gray repre-
sents 0 and scaling by a factor of 2 to make the prediction difference clearer scaled by a factor
of 2) is shown in Figure 3.24.

The entropy of the difference picture is 6.18 bits/pixel. This is higher than either the one-
dimensional or the two-dimensional intrapicture predictors, meaning that the prediction in this case
requires more information to be transmitted when compared to the intrapicture predictors. �

It might initially seem surprising that the interpicture prediction performs worse
than the intrapicture prediction. The fi rst thing to note is that the sequence “Mobile
and Calendar” from which these pictures are extracted contains a large amount of
motion. MATLAB provides a convenient means of viewing this motion using the
movie function, and this is illustrated in Example 3.8.

EXAMPLE 3.8—MATLAB

Display as a sequence the fi rst fi ve pictures of the sequence “Mobile and Calendar.” Assume
that the fi rst fi ve pictures are held in arrays calendar_1 to calendar_5, respectively.

Figure 3.24 Interpicture prediction difference picture (shifted by 128 and scaled by 2).

48 Chapter 3 Predictive Encoding

SOLUTION The MATLAB code to achieve this is given below.

display_picture(calendar_1);
M(:,1) � getpicture;
display_picture(calendar_2);
M(:,2) � getpicture;
display_picture(calendar_3);
M(:,3) � getpicture;
display_picture(calendar_4);
M(:,4) � getpicture;
display_picture(calendar_5);
M(:,5) � getpicture;

movie(M,-50,25);

Each picture needs to be displayed prior to being stored into the movie array M. This
is achieved by the function display_picture. The MATLAB code for this function is given
below.

function display_picture(CURR)
image(CURR);
colormap(gray(256))
set(gca,’XTick’,[])
set(gca,’YTick’,[])
imHandle�gco;
imageWidth � size(CURR,2);
imageHeight � size(CURR,1);
set(gca,’Units’,’pixels’);
set(gcf,’Units’,’pixels’);
fi gPos�[10,10,imageWidth,imageHeight];
axPos�[1,1,imageWidth,imageHeight];
set(gcf,’Position’,fi gPos);
set(gca,’Position’,axPos);
pause(1);

The fi nal movie command causes the pictures stored in the array M to be played forward
and backward 50 times at 25 pictures/s. Using �50 for the second variable in the function
call causes the picture to be played in the forward direction only. In this case, the jerkiness
between picture 5 at the end of a forward play and picture 1 at the start of the next forward
play is subjectively distracting.

Looking at the sequence we see that the camera is panning continuously to the left. At
the same time, the train is moving from right to left pushing the ball while the calendar is
moving up. Almost every part of the picture is in motion, which explains why interpicture
prediction is not especially successful in this case. �

The impact of motion can be clearly seen if we compare a pair of pictures sepa-
rated by more than one picture time. Figure 3.25 shows the prediction difference
picture (shifted and scaled by 2) when the fi rst picture of the sequence “Mobile and
Calendar” is used to predict the fourth picture of the sequence.

The impact of the motion is clearly apparent, as many objects appear more
than once in the prediction difference picture (e.g., spots on the ball, numbers on
the calendar). This is because we need to put the object in its new position in the
current picture as well as to remove it from its former position in the prediction

3.2. Predictive Coding 49

picture. These objects thus contribute twice to the entropy of the prediction differ-
ence picture.

The simple interpicture predictor described above uses the pixel in the same loca-
tion in the previous picture to predict the pixel in the current picture. This could be
easily extended to include pixels in both the current and the prediction picture. Such a
predictor is known as a three-dimensional predictor and is illustrated in Figure 3.26.

In this case the predictor would be

X̂ � k1A � k2B � k3C

Such predictors are rarely used in practice as temporal prediction is invariably
combined with motion compensation. Motion-compensated prediction is covered in
the next section of this chapter. Another technique, known as transform coding, is
used to code the prediction difference after this motion-compensated temporal pre-
diction. Transform coding is the topic of Chapter 4.

Figure 3.25 Interpicture prediction difference when pictures are separated by three picture times
(shifted by 128 and scaled by 2).

A X

B

C

Current
frame

Prediction
frame

Figure 3.26 Three-dimensional prediction.

50 Chapter 3 Predictive Encoding

3.3 MOTION-COMPENSATED PREDICTION

The performance of interpicture prediction would be greatly improved if we
were somehow able to take account of the motion that occurs between pictures.
Success would mean that instead of moving objects needing to be coded twice
in a picture, we may be able to remove the requirement to code them at all. In-
stead, information about how the object had moved between pictures would be
transmitted.

Although this sounds fi ne in theory, the estimation of motion in a sequence of
pictures is complex. Even if we can assume that the object is rigid (i.e., does not
change shape), motion can be made up of several components such as

zoom (i.e., change of the camera focal length)

pan (i.e., rotation around an axis normal to the camera axis)

rotation around the camera axis

translation along the camera axis

translation in the plane normal to the camera axis.

Each of these motion types affects the temporal appearance of the resulting
video sequence in a particular way. Indeed, complex motion models have been pro-
posed in an attempt to accurately take account of all of these various types of motion.
Attempting to implement these models in real time hardware would be impossibly
complex. Fortunately approximating all motion as translational motion in a plane
normal to the camera axis is a satisfactory approach provided that this is done on
suffi ciently small objects.

The fi rst part of the process is to attempt to estimate the motion of the ob-
ject. Motion estimation is performed by searching the prediction picture for the best
match to the object of interest in the current picture to be coded. Let us consider an
example where rotational motion is estimated using only translation.

EXAMPLE 3.9—MATLAB

The picture in Figure 3.27 is a rotated version of the picture in Figure 3.28. Each picture has
size 256 � 256 pixels. The picture is broken into 16 � 16 pixel blocks for motion estimation
purposes. Calculate the motion-compensated prediction of Figure 3.27 using the picture in
Figure 3.28 as the basis for the prediction.

•
•
•
•
•

Figure 3.27 Current picture.

SOLUTION The motion-compensated prediction picture is shown in Figure 3.29. Using
only translational motion to estimate an object that has undergone rotational motion leads to

a reasonable approximation of the real motion in this case. The motion compensated predic-
tion difference and the interpicture difference are shown in Figure 3.30. The improvement

as a result of the motion compensation process is clearly apparent. In fact, all of the types of
motion listed earlier can usually be approximated by translational motion providing that the
block size is suffi ciently small. �

3.3.1. Motion Estimation

The previous example demonstrates that translational motion can be used to form a
reasonable estimate to rotational motion. However, we still need to develop a tech-
nique by which this translational motion can be estimated.

Figure 3.28 Prediction picture.

Figure 3.29 Motion-compensated prediction.

Figure 3.30 (a) Motion-compensated prediction difference. (b)Interpicture difference.

3.3. Motion-Compensated Prediction 51

52 Chapter 3 Predictive Encoding

One approach is to partition each picture in the video sequence into its individual
objects. A previous prediction picture can then be searched for the same object and
the motion of the object between pictures can be estimated. Although this may
provide excellent performance, there are a number of diffi culties associated with
this approach. The fi rst of these is diffi culty of fi nding individual objects within
a picture. This process, known as segmentation, has been studied for a long time.
Despite this, reliable segmentation techniques have not been found. The second
problem is that objects do not move in a purely translational manner. It is therefore
highly likely that there would be differences between the object as it appears in the
current picture and how it appears in the prediction picture making the matching
process far more diffi cult.

The usual approach to motion estimation is to divide the current picture to be
predicted into a number of blocks. The prediction picture, which has already been
coded, is then searched for the best matching block to each of these blocks in the
current picture. Example 3.10 demonstrates the process.

EXAMPLE 3.10—MATLAB

Use picture 1 of the “Mobile and Calendar”sequence (the prediction picture) to predict pic-
ture 5 of the same sequence (the current picture) using motion-compensated prediction. Use
a block size of 144 � 176 pixels.

SOLUTION The two pictures are shown in Figure 3.31. The spacing between the pictures
has been chosen to allow the motion between pictures to be more easily seen.

Figure 3.31 (a) Prediction picture: fi rst picture in “Mobile and Calendar” sequence. (b) Current
picture: fi fth picture in “Mobile and Calendar” sequence.

The picture difference is displayed in Figure 3.32 after shifting by 128 and scaling by 2.

The motion that has occurred between pictures is clearly evident in the difference pic-
ture especially in the spots on the rolling ball and the numbers on the calendar. The aim of
motion estimation is to fi nd a block in the prediction picture (picture 1) that best matches
each block in the current picture (picture 5). Figure 3.33(a) shows the current picture divided

Figure 3.31 (Continued)

Figure 3.32 Picture difference for the pictures shown in Figure 3.31 (shifted by 128 and scaled by 2).

3.3. Motion-Compensated Prediction 53

54 Chapter 3 Predictive Encoding

into 144 � 176 pixel blocks whereas Figure 3.33(b) shows the prediction picture divided into
identical blocks. The grid overlay highlights the motion that has occurred between pictures.

We now need to fi nd the block from the prediction picture that best matches each block
in the current picture. For simplicity, we consider just one of the blocks so formed—the third
block in the third row. This block contains a section of the background wallpaper, part of the
train, and a section of the calendar including the large number one. Comparing this block

Figure 3.33 (a) Current picture (picture 5) divided into blocks. (b) Prediction picture (picture 1)
divided into blocks.

with the block in the same position in the prediction picture, the prediction difference is as
shown in Figure 3.34. The motion between the pictures is again clearly evident.

The motion estimation process consists of fi nding the same sized block in the prediction
picture that best matches the block in the current picture. One simple method of calculation
would indicate that the best matching block would be found four pixels to the left and one
pixels up from the colocated block in the prediction picture. This block is highlighted in the
prediction picture in Figure 3.35.

The absolute difference between the block in the current picture and the displaced block
from the prediction picture is shown in Figure 3.36. This is called the motion-compensated
difference.

Figure 3.34 Interpicture difference for block of interest
(shifted by 128 and scaled by 2).

Figure 3.35 Best matching block in the prediction picture.

Figure 3.36 Motion-compensated prediction difference
(shifted and scaled by 2).

3.3. Motion-Compensated Prediction 55

56 Chapter 3 Predictive Encoding

The improvement when the result shown in Figure 3.36 is compared with the inter-
picture difference shown in Figure 3.34 is clearly evident. The mean absolute difference is
reduced from 25.5 to 18.4 (a reduction of 30%). Note that though the background wallpaper is
quite well predicted, the numbers on the calendar and the train are much less well predicted.
This is a result of the fact that the motion of the each of these objects is different. The motion
estimation approach employed does not allow for two or more different motions in the same
block to be estimated. �

Motion-compensated prediction consists then of two parts: motion estimation
(which is performed at the encoder only) and motion compensation (which needs to
be performed both at the encoder and at the decoder).

The motion estimation process consists of dividing the current picture to be
encoded into a number of blocks. The prediction picture is then searched for the best
match to each of the blocks in the current picture. The process can be best thought
of as involving three pictures—the current picture, the prediction picture, and the
motion-compensated prediction, as illustrated in Figure 3.37. Both the current and
the prediction picture are composed of two round objects. The position of each object
has moved between pictures. The motion-compensated prediction is initially blank.

Each block in the current picture is considered in turn. For convenience, we will
start with the block that contains the left-hand round object. We defi ne a search area
in the prediction picture and then look for the block of pixels that best matches the
pixels in the selected block in the current picture. This is illustrated in Figure 3.38
with the search area indicated by the highlighted square. The size of the search area
is user selectable. The larger the search area, the larger the motion that can be tracked
and hence the more likely a good match. However, this comes at the expense of higher
computation requirements. We will consider this topic in more detail a little later.

Current picture Prediction picture

Motion compensated picture

Figure 3.37 Current picture, prediction picture, and motion-compensated prediction.

The best matching block1 in the prediction picture is the one indicated in
Figure 3.39. This block is then copied into the same position in the motion-
compensated prediction as the block to be predicted in the current picture. This is
also illustrated in Figure 3.39.

Current picture Prediction picture

Figure 3.38 Search region in the prediction picture for the selected block in the current picture.

1The best matching block in this case is obvious. For a more general pair of pictures, we need some
matching criteria that can be used to select the best match. This is covered a little later.

Prediction picture

Motion compensated picture

Motion
vector

Figure 3.39 Generation of block in motion-compensated prediction.

3.3. Motion-Compensated Prediction 57

58 Chapter 3 Predictive Encoding

The location of the block in the prediction picture used to predict the selected
block in the current picture is transmitted to the decoder because the decoder does
not have access to the same information as the encoder (e.g., original versions of
the current and prediction pictures) and so cannot calculate the location itself. The
information transmitted to the decoder is called a motion vector. The motion vector
in this case is shown in the prediction picture in Figure 3.39 by a solid arrow. It
marks the displacement from the location of the top left-hand corner of the block
in the current picture that is being predicted to the location of the top left-hand
corner of the chosen prediction block in the prediction picture. The arrow in Figure
3.39(a) indicates that the block to be used is several pixels to the left and below
the location of the block in the same position as the block being predicted in the
current picture.

This process is repeated for the next block in the current picture, and this is
shown in Figure 3.40.

In this highly idealized case, the motion compensated prediction is identical
to the original picture. Thus the prediction difference when the current picture is
predicted using the motion-compensated prediction would be a picture consisting
entirely of zeros. The only information that would need to be transmitted to the de-
coder is the motion vectors.

The search area could of course be made larger. An example of this is shown in
Figure 3.41 for the case of the block containing the left-hand object. There are now
two possible best match blocks. Each is shown with its corresponding motion vector

Current picture Prediction picture

Motion-compensated picture

Motion
vector

Figure 3.40 Motion estimation process for the next block in the current picture.

in Figure 3.41. As the aim of motion-compensated prediction is to fi nd a good match
for the block to be predicted in the current picture, it does not really matter which
one of these is selected. In video compression, the aim is to fi nd a good match, not
necessarily to estimate the correct motion.2

In the example just discussed, the best matching block was easily identifi ed.
In general, the task is not quite so easy as the best matching block is usually not
identical to the block in the current picture. We need a measure of the similarity
between the block in the current picture and the various possible prediction blocks
in the prediction picture. The average difference between the blocks is of little use
because large positive and negative differences might well cancel over the block.
Various matching criteria have been proposed, of which the two most common are
the summed absolute difference between current and candidate prediction blocks
and the summed squared difference. Of these, summed absolute difference is most
commonly chosen as there is no need for the relatively slow multiplication operation
that is needed for squared difference, even though the use of squared difference of-
ten produces a slightly superior result. After the search operation, the block with the
smallest summed absolute difference is selected as the best matching block.

Finally, we need to determine how the search is to be performed. The optimum
approach (in a minimum absolute error sense assuming that total absolute error is
the matching metric being used) is to compare the block we are trying to match with
every block of the same size within the search area.

Consider the two 2 � 2 pixel block from the current picture and the search
area (±2 pixels horizontally and vertically) from the prediction picture shown in
Figure 3.42. The colocated pixels in the search area are shown shaded.

There are a total of 25 possible search positions, all of which are shown in
Figure 3.43. The order of the search is of no particular signifi cance provided that all
of the 25 search positions in this case are considered. Figure 3.43 shows the search

2There are other applications such as standards conversion or slow motion replay where correct motion
estimation is the prime requirement.

Prediction picture

Figure 3.41 Prediction picture from Figure 3.39 with larger search area.

3.3. Motion-Compensated Prediction 59

60 Chapter 3 Predictive Encoding

starting in the top left-hand corner of the search area with the block being moved
one pixel to the right for each succeeding search until the top right-hand corner is
reached. The search then reverts to the left-hand side one pixel from the top and
again moves to the right one pixel at a time. This process continues until the block
reaches the bottom row and concludes when the bottom right-hand corner is reached.
At each search position, the summed absolute difference is calculated between the
block at the search position and the block in the current picture. The block with the
smallest summed absolute difference would be chosen as the motion-compensated
prediction block.

Figure 3.43 Possible search positions for the blocks shown in Figure 3.42.

Block from
current picture

Search area from
prediction picture

Figure 3.42 Current block and search area.

When every possible search position is considered, the process is referred to
as full search. For a search area of ± N pixels both horizontally and vertically, the
total number of search positions to be considered is (2N� 1) � (2N� 1). For a large
search area, this can be a very large number of search positions.

EXAMPLE 3.11

Block-based full search motion estimation with a search area of ± 16 pixels is used to form
the prediction of the current picture from a previously coded prediction picture. Block size is
16 � 16 pixels. Each picture is of resolution 704 � 480 pixels at a picture rate of 30 pictures/s.
Calculate

the number of search positions for each block

the number of pixel comparisons per block

the number of pixel comparisons per picture

the number of pixel comparisons per second.

SOLUTION The number of searches per block is (2 � 16 � 1)(2 � 16 � 1) � 33 � 33 � 1089
searches.

For each search, two blocks of size 16 � 16 pixels are compared. This requires 256 pixel
comparisons per search. The total number of pixel comparisons is then 1089 � 256 � 278,874
per block.
Each picture consists of

704 480

16 16
1320

�

�
� blocks.

The total number of pixel operations per picture is
278,874 � 1320 � 3.68 � 108.
The picture rate is 30 pictures/s. The total number of pixel operations per second is

therefore 3.68 � 108 � 30 � 11.0 � 109. �

The computational requirements of motion estimation are large indeed. Further,
in digital television applications search areas considerably greater than ±16 pixels
are regularly employed. Fortunately, special purpose digital signal processing hard-
ware is available that is capable of working at these rates.

Reconsider the pair of pictures shown in Figure 3.31 and the blocked current
picture shown in Figure 3.33. If we perform motion compensated prediction for these
blocks using a search area of ±8 pixels, then the motion-compensated prediction
picture is as shown in Figure 3.44. The motion-compensated prediction difference
is shown in Figure 3.45. The discontinuities in the ball, the engine of the train, and
the edge of the calendar occur because within each of these blocks there is more
than one form of motion—the moving foreground object (ball, engine, or calendar)
and the background wallpaper. The fi nal block chosen as the motion-compensated
prediction is therefore a compromise between the two different motions. In the case
of the fi rst two blocks in the second column particularly, successful matching has

•
•
•
•

3.3. Motion-Compensated Prediction 61

62 Chapter 3 Predictive Encoding

been achieved because there is only one moving object (the wallpaper) in each of
these blocks.

This raises the question as to what is the most appropriate block size to use. As
we have already seen, the block size should be suffi ciently small that the likelihood
that a block contains two or more different motions is small. On the contrary, the
block should be suffi ciently large that the overhead associated with the motion vector
is not excessive. Let us attempt to quantify this overhead. Assuming a search range

Figure 3.44 Motion-compensated prediction of picture shown in Figure 3.33(a).

Figure 3.45 Motion-compensated prediction difference with 96 � 96 pixel blocks
(shifted by 128 and scaled by 2).

of ±7 pixels, we need 4 bits to represent the horizontal component of the motion
vector and 4 bits to represent the vertical component of the motion vector—a total of
8 bits/block. Table 3.3 shows the motion vector overhead for various block sizes.

As expected, the motion vector overhead is large for very small block sizes.
However, by the time we reach a block size of 16 � 16 pixels the motion vector over-
head reaches a negligibly small level. Most video coding standards use a block size
of 16 � 16 pixels for motion-compensated prediction.

Figure 3.46(a) shows motion-compensated prediction for the pictures of
Figure 3.31 using a block size of 16 � 16 pixels. The obvious improvement of this
prediction compared to Figure 3.44 comes directly from the use of smaller blocks.
There are still some minor distortions in the numbers on the calendar, and two of
the spots on the ball are missing (as a result of the search area being not large
enough). Of course, motion-compensated prediction can only rarely provide
perfect prediction. The aim is to improve the prediction quality so that the amount
of prediction difference information that needs to be transmitted is minimized.
Figure 3.46(b) shows the motion vectors calculated during the motion
compensation process overlayed on the motion-compensated prediction picture.
This is easily done using the MATLAB quiver command. It can be seen that the
motion estimation process has determined the true motion for much of the picture.
However, there are a number of exceptions including

The left-hand edge of the picture. The panning left of the camera causes new
information to be introduced at the left-hand edge that cannot be found in the
previous picture. Motion-compensated prediction simply cannot work in this
circumstance.

The white area below the large number one in the calendar. As this area is
fl at white, almost any motion vector would provide a good prediction and the
actual vector chosen will be determined by noise within the picture. Motion-
compensated prediction is still effective. A similar effect can be seen in the
fl at area of hay on the cart (top left of picture) and in the fence behind the
sheep (middle left of picture).

The middle of the ball. The motion estimation search area is not large enough
for the correct prediction block containing the white dot to be found. Fast
moving objects will invariably prove a problem for motion estimation if the

•

•

•

Table 3.3 Motion vector overhead as a function of block size.

Blocks size (pixels) Motion vector overhead (bits/pixel)

1 � 1 8.0000
2 � 2 2.0000
4 � 4 0.5000
8 � 8 0.1250

16 � 16 0.0313
32 � 32 0.0078

3.3. Motion-Compensated Prediction 63

64 Chapter 3 Predictive Encoding

search area is not suffi ciently large. Increasing the search area will improve
the performance of motion estimation at the expense of an increase in com-
putational requirements.

The motion-compensated prediction difference in this case is shown in Figure 3.47.
Figure 3.48 shows the histogram for the motion-compensated difference picture

shown in Figure 3.47.

Figure 3.46 (a) Motion-compensated prediction using a block size of 16 � 16 pixels. (b) Motion
vector overlay on motion-compensated prediction (vectors scaled by 2).

The entropy of the motion-compensated difference picture is 5.46 bits/pixel.
By comparison, the interpicture difference has an entropy of 6.18 bits/pixel and the
two-dimensional intrapicture difference has an entropy of 5.79 bits/pixel. So motion
compensation has reduced the entropy compared to intrapicture prediction but only
by a relatively small amount.

Figure 3.47 Motion-compensated prediction difference with 16 � 16 pixel blocks (shifted by 128
and scaled by 2).

–255 –192 –128 –64 0 64 128 192 255
0

5000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

45,000

Pixel value

N
um

be
r

Figure 3.48 Histogram for the motion-compensated difference picture of Figure 3.47.

3.3. Motion-Compensated Prediction 65

66 Chapter 3 Predictive Encoding

A block diagram of the motion-compensated encoder is shown in Figure 3.49
whereas the matching decoder is shown in Figure 3.50.

The decoder is simply the feedback loop of the encoder except for the entropy
encoding in the coder and entropy decoding in the decoder. The motion-compensated
difference signal is added to the motion-compensated prediction with the result
stored in a picture store (a block of memory that holds the data for a digitized video
picture).

3.3.2. Motion-Compensated Prediction to Subpixel
Accuracy

Up to this point, we have assumed that motion estimation is performed to pixel
accuracy. By this, we mean that each pixel in the current picture is predicted using
a displaced pixel from the prediction picture. This assumes that motion occurs in
multiples of single pixel displacements between pictures. This is obviously not the
case in reality. Motion-compensated prediction to subpixel accuracy is possible
and is supported in many video encoding standards including those used for digital
television services.

+
–

Entropy
coding

+
+

Frame
store

Motion
estimation

Video
input

Bit stream
output

Motion-
compensated

difference

Motion-
compensated

prediction

Motion vectors

Figure 3.49 Motion-compensated encoder.

Entropy
decoding +

+
Video

output

Bit stream
input

Frame
store

Motion-
compensated

prediction

Motion-
compensated

difference

Motion vectors

Figure 3.50 Motion-compensated decoder.

Motion-compensated prediction to subpixel accuracy can be achieved by esti-
mating the values of pixels at subpixel displacements using bilinear interpolation
from the known pixel values. This is illustrated in Example 3.12.

EXAMPLE 3.12

A 6 � 6 pixel block of picture data is shown in Figure 3.51. The center 4 � 4 pixel block is
highlighted.

(a) Calculate the value of the 4 � 4 pixel block half a pixel to the right of the highlighted
block.

(b) Calculate the value of the 4 � 4 pixel block half a pixel below the highlighted
block.

(c) Calculate the value of the 4 � 4 pixel block half a pixel to the left and half a pixel
above the highlighted block.

SOLUTION (a) The block half a pixel to the right can be calculated by averaging each
pixel in the selected region with the pixel immediately to its right. Rounding is employed to
produce integer results. Half values round away from zero that is 1.5 round to 2. The fi nal
result is shown in Figure 3.52.

(b) The block half a pixel below the highlighted block can be calculated by averaging
each pixel in the selected region with the pixel immediately below. Rounding is employed to
produce integer results. Again, half values round away from zero. The fi nal result is shown
in Figure 3.53.

99 93 70 71 96 96

100 82 70 88 97 87

71 96 78 77 98 92

54 67 71 93 98 84

109 55 50 69 92 92

164 110 50 46 73 83

Figure 3.51 Picture data for Example 3.12.

76 79 93 92

87 78 88 95

69 82 96 91

53 60 81 92 Figure 3.52 Half pixel shift to the right.

3.3. Motion-Compensated Prediction 67

68 Chapter 3 Predictive Encoding

(c) The task of calculating the block half a pixel to the left and half a pixel up from
the highlighted block is slightly more diffi cult. Consider the 2 � 2 pixel block at the top
right of Figure 3.51 that is shown in Figure 3.54. The pixel half a pixel to the left and half a
pixel above (X in the diagram) is calculated by averaging these four pixel values. Rounding
is employed to produce integer results. Again, half values round away from zero. The fi nal
result is a pixel value of 94.

When applied to the entire 4 � 4 pixel block, the result obtained is shown in
Figure 3.55.

It is possible to perform motion-compensated prediction to less than half pixel
accuracy. For example, it would be possible to interpolate between half pixel points
to calculate quarter pixel points. However, for digital television services based on
MPEG-2, motion-compensated prediction is limited to a maximum of half pixel
accuracy.

3.4 QUANTIZATION

All of the techniques discussed up to this point have been lossless. This means
that the decoded video signal is identical in all respects to the signal that enters
the encoder. Although this ensures that the received signal is of the highest pos-
sible quality, it also ensures that the amount of compression that can be achieved is

89 74 83 98

82 75 85 98

61 61 81 95

83 50 58 83 Figure 3.53 Half pixel shift down.

99 93

 X

100 82 Figure 3.54 Top 2 � 2 pixels of Figure 3.51.

94 79 75 88

87 82 78 90

72 78 80 92

71 61 71 88 Figure 3.55 Half pixel shift up and left. �

limited. Fortunately, it is possible to relax this constraint and thus achieve higher
compression while still maintaining more than adequate video service quality. This
is achieved by removing information that is not important to the subjective quality
of the video material.

While determining which information is subjectively important and which is
not is quite a diffi cult task, the technique for removing information is more eas-
ily understood. If we revisit the lossless motion-compensated encoder shown in
Figure 3.49, a lossy coder can be produced simply by introducing a quantizer to
the motion-compensated difference signal as shown in Figure 3.56.

The motion-compensated difference is quantized prior to entropy coding and
transmission to the decoder. As shown in Figure 3.48, the motion-compensated
difference can take values in the range of ±255 (511 possible values) although
most values will lie close to zero if the motion estimation process has been
effective.

Quantizer design has been extensively studied over the years. A quantizer is
defi ned by the position of its decision and reconstruction levels. This is illustrated in
the quantizer transfer function shown in Figure 3.57 for a linear quantizer where the
spacing between decision levels is constant. Such a quantizer is most useful for an
input signal where all values are equally likely.

The role of the quantizer is summarized in Table 3.4. Each row should be read
as Lower decision level � Input � Upper decision level ⇒ Output � Reconstruction
level

For a linear quantizer, the reconstruction level is usually the average of the two
decision levels that surround it (i.e., for a level defi ned by decision levels of �2 and
�6, the reconstruction level would be �4) as this is optimum in a mean square error
sense.

+
–

Entropy
coding

+
+

Frame
store

Motion
estimation

Video
input

Bit stream
outputQuantizer

Inverse
quantizer

Motion vectors

Motion-
compensated

difference

Quantized motion-
compensated

difference

Motion-
compensated

prediction

Figure 3.56 Lossy motion-compensated encoder.

3.4. Quantization 69

70 Chapter 3 Predictive Encoding

EXAMPLE 3.13

The data shown in Figure 3.58 has been extracted from the top left-hand corner of a picture.
The picture consists of gray scale values in the range 0–255.

Table 3.4 Decision and reconstruction levels for the quantizer of Figure 3.57.

Lower decision level Upper decision level Reconstruction level

�∞ �d3 �r3

�d3 �d2 �r2

�d2 �d1 �r1

�d1 �d1 0
�d1 �d2 �r1

�d2 �d3 �r2

�d3 �∞ �r3

Input

Output

d1 d2 d3–d3 –d2 –d1

r1

r2

r3

–r3

–r 2

–r1

Figure 3.57 Quantizer transfer function.

145 162 199 155 112

149 151 153 154 162

 92 85 88 187 212 Figure 3.58 Picture data for Example 3.13.

(a) Calculate the prediction difference when one-dimensional prediction using the pixel
immediately to the left of the pixel to be predicted is employed. Assume that any
predictor that falls outside the picture has value 128.

(b) The prediction difference is quantized using a linear quantizer with step size 8.
Calculate the reconstructed data after prediction and quantization.

SOLUTION (a) The prediction difference is calculated by subtracting the prediction pixel
from the current pixel. Remembering that the fi rst pixel in each line is predicted by the value
128, the prediction difference is as shown in Figure 3.59.

(b) Quantization cannot be performed by simply quantizing the prediction difference
shown in Figure 3.59. This is because the prediction differences shown in Figure 3.59 were
formed using original pixel values. Although these values are available at the encoder, only
reconstructed values are available at the decoder. For this reason, reconstructed values need
to be used for prediction in the encoder as well. This means that we need to determine the
reconstructed value of the current pixel before we can predict the next pixel. The solution is
shown in Figure 3.60.

+17 +17 +37 –44 –43

+21 + 2 + 2 +1 + 8

–36 –7 + 3 +99 +25
Figure 3.59 Unquantized prediction difference for
Example 3.13.

112 155 199 162 145 Current pixel

152 200 160 144 128 Prediction

–40 –45 39 +18 +17 Prediction difference

–5 –6 +5 +2 +2 Quantized prediction difference

–40 –48 +40 +16 +16 Reconstructed prediction difference

112 152 200 160 144 Reconstructed pixel

162 154 153 151 149 Current pixel

152 152 152 152 128 Prediction

+10 +2 +1 –1 +21 Prediction difference

+1 0 0 0 +3 Quantized prediction difference

+8 0 0 0 +24 Reconstructed prediction difference

160 152 152 152 152 Reconstructed pixel

212 187 88 85 92 Current pixel

184 88 88 96 128 Prediction

+28 +99 0 –11 –36 Prediction difference

+3 +12 0 –1 –4 Quantized prediction difference

+24 +96 0 –8 –32 Reconstructed prediction difference

208 184 88 88 96 Reconstructed pixel

Figure 3.60 Determination of reconstruction after one-dimensional prediction and quantization.

3.4. Quantization 71

72 Chapter 3 Predictive Encoding

The calculations used in Figure 3.60 can be summarized as follows.

Prediction is the reconstructed value of the previous pixel in the line.

Prediction difference is the difference between the value of the current pixel and the
prediction.

The quantizer prediction difference is the prediction difference divided by the
quantizer step size (eight in this case) rounded to the nearest integer (with a fractional
part of 0.5 rounded toward zero thus 14.5 rounds to �14 and �14.5 rounds to �14). It
is the quantized prediction difference that would be transmitted to the decoder.

The reconstructed prediction difference is the quantized prediction difference
multiplied by the quantizer step size (eight in this case).

Finally the reconstructed pixel is the prediction plus the reconstructed prediction
difference. This reconstructed value is used as the prediction for the next pixel. �

The briefest perusal of Figure 3.48 indicates that the values are anything but
equally likely. Quantizers can be designed to minimize the mean square error on
the basis of the statistical distribution p(x) of the signal to be quantized. The mean
square error of a quantizer with decision levels d0 � d1 � d2 � … � dL and recon-
struction levels r0 � r1 � r2 � … � rL is given by

MSE d
1

�
�

x r p x xk

d

d

k

L

k

k

−() ()∫∑
=

2

1

Differentiating with respect to dk and rk for a fi xed number of levels L leads to
the following conditions for the decision and reconstruction levels.

d
r r

k
k k�
� �1

2

r

xp x x

p x x
k

d

d

d

d
k

k

k q

k
� �

�

()

()

∫

∫

d

d

1

For the predictive encoders considered up to this point, p(x) can be approxi-
mated by a Laplacian distribution with mean zero and variance 2/λ2.

p x x()� �
λ λ

2
e

The prediction difference is highly peaked around zero. This results in the quantizer
steps being closely spaced near zero prediction difference and getting larger as the
prediction difference gets larger. Such a nonlinear quantizer is shown in Figure 3.61.

Although quantization is an important aspect of video compression, in modern
coding standard quantization is not performed on prediction differences. Rather,
it is transform coeffi cients that are quantized. We therefore leave any further

•
•

•

•

•

consideration of quantization until after transform coding has been introduced
in Chapter 4.

3.5. RATE-DISTORTION CURVES

The introduction of quantization allows the data rate produced by the encoder to
be traded against the quality of the reconstructed service. A small value of the
quantizer leads to a high-quality reconstruction at a high data rate. A large value
of the quantizer greatly reduces the data rate, but produces a much lower quality
reconstruction.

A common method of measuring the quality of a reconstructed video service is
the peak signal-to-noise ratio (PSNR). The mean square error between an original
and a reconstructed picture of size M � N pixels is defi ned as

MSE � �
��

1 2

11MN
x xi j i j

j

N

i

M

, ,ˆ()∑∑

where xi,j is the value of the original pixel and x̂i,j is the value of the reconsructed
pixel.

The PSNR is then defi ned as

PSNR
Peak-to-peak signal

MSE

2

�10 10log
()

Input

Output

d1 d2 d3–d3 –d2 –d1

r1

r2

r3

–r3

–r2

–r1

Figure 3.61 Nonlinear quantizer.

3.5. Rate-Distortion Curves 73

74 Chapter 3 Predictive Encoding

For a 256 level gray scale image the peak to peak signals is 255 and so

PSNR
255

MSE

2

�10 10log
()

Plotting PSNR versus the generated data rate produces a curve called the rate-
distortion curve. Rate-distortion curves can be useful in the comparison of the per-
formance of various coding techniques on the same video material. An example of
a rate-distortion curve, which has been drawn based on the distortion at a number of
data rates, is shown in Figure 3.62.

3.6. SUMMARY

In this chapter we have introduced the idea of predictive encoding to reduce the
amount of data required to represent a picture. We have seen that prediction can
be performed in the spatial domain (intrapicture prediction) or between pictures
separated in time (interpicture prediction). The prediction difference is then further
coded using a Huffman code to exploit the fact that not all values of prediction
difference are equally likely.

The chapter has also introduced the concept of motion-compensated prediction
that attempts to compensate for the movement of objects between pictures prior to
prediction. This was shown to signifi cantly enhance the performance of interpicture
prediction.

Finally, the concept of quantization was introduced. This lossy technique allows
the prediction difference to be represented more coarsely. Distortion is introduced
while at the same time a major saving in the required data rate is achieved. Distor-
tion and rate can be traded off by varying the value of the quantizer step size.

Motion-compensated prediction is an important technique in the coding of digi-
tal television services. However, rather than transmitting the quantized prediction

PSNR
(dB)

Rate (Mbit/s)

Figure 3.62 Typical rate-distortion curve.

difference, another technique known as transform coding is employed prior to quan-
tization. Transform coding is the topic of the next chapter.

PROBLEMS

3.1 Explain briefl y the advantages and disadvantages of variable length codes.

3.2 An encoder produces an output consisting of four different symbols (a to d) having the
probabilities of appearance given in Table 3.5.

(a) What is the entropy of encoder output?

(b) If fi xed length code words are used, how many bits would be required to represent
each symbol? What is the coding effi ciency?

(c) The output symbols are encoded with a variable length Huffman code. What is the
average number of bits per symbol needed to transmit the symbols? What is the
coding effi ciency?

3.3 An encoder produces an output consisting of 10 different symbols (a to j) having the
probabilities of occurrence given in Table 3.6.

(a) What is the entropy of encoder output?

(b) If fi xed length code word are used, how many bits would be required to represent
each symbol? What is the coding effi ciency?

(c) The output symbols are encoded with a variable length Huffman code. What is the
average number of bits per symbol needed to transmit the symbols? What is the cod-
ing effi ciency?

3.4 An encoder has been designed that produces three output symbols namely go up (U),
no change (N), or go down (D). The relative probabilities of each symbol are given in
Table 3.7.

Table 3.5 Probabilities for Problem 3.2.

Symbol a b c d

Probability 0.20 0.30 0.40 0.10

Table 3.6 Probabilities for Problem 3.3.

Symbol a b c d e f g h i j

Probability 0.02 0.05 0.08 0.10 0.25 0.20 0.18 0.07 0.04 0.01

Table 3.7 Probabilities for Problem 3.4.

Symbol U N D

Probability 0.05 0.90 0.05

Problems 75

76 Chapter 3 Predictive Encoding

(a) Determine the coding effi ciency if these symbol are transmitted individually using

(i) a fi xed word length coding scheme

(ii) a variable word length Huffman code.

(b) Repeat part (a) after the three symbols have been grouped in pairs (i.e., UU, UN,
UD, NU, NN, ND, DU, DN, DD) prior to encoding. You may assume the symbols
are independent, that is P(AB) � P(A)P(B).

(c) Repeat part (a) after the three symbols have been grouped in triplets.

(d) Comment on the results obtained in terms of the suitability of Huffman codes in
cases where one symbol is much more likely than any of the others.

3.5 An encoder produces a binary output (i.e., a 0 or a 1). The probability of a 0, P0, is given
by p whereas the probability of a 1, P1, is given by (1�p).

(a) Plot the information content of the encoder output in bits per symbol as a function of p.

(b) If each output symbol is represented by a fi xed length code word, plot the encoder
output in bits per symbol as a function of p.

(c) If output symbols are grouped in pairs and then variable length coded, plot the
encoder output in bits per symbol as a function of p.

(d) If output symbols are grouped in triplets and then variable length coded, plot the
encoder output in bits per symbol as a function of p.

(e) Comment on the range of values of p where each of these approaches is appropriate.
Give reasons for your decision.

3.6 Five symbols (a to e) are encoded using the variable length codes shown in Table 3.8.

(a) Determine the bit stream when the transmitted string of symbols is as shown in
Figure 3.63.

(b) A single transmission results in an error in the reception of the fi rst bit of the bit
stream. Determine the symbol stream that will be output by the decoder.

(c) Repeat (b) for the case where the transmission error occurs in the second bit of the
bit stream.

(d) Comment briefl y on the impact of transmission errors on information coded with
variable length code words.

3.7 A source encoder produces strings of zero bits of various length followed by the value
one. The output of the source encoder is to be transmitted as a series of variable length
code words that defi ne the length of the string of zeros that occur before each one. The
variable length code words are defi ned in Table 3.9.

b a a c a d a e a a Figure 3.63 Symbol stream for Problem 3.7.

Table 3.8 Variable length code words for Problem 3.7.

Symbol code word

a 0
b 10
c 110
d 1110
e 1111

Use this scheme to encode the sample encoder output shown in Figure 3.64.

3.8 The run length coding scheme described in Problem 3.7 is to be extended so that it can
handle a string of zeros up to a length of 63. Rather than defi ne a new Huffman code word
for each case, the scheme defi ned in Table 3.9 is modifi ed by including an additional code
word that covers any string of zeros greater than six.

The new code word consists of the prefi x 1111 (which is not an existing valid code
word) followed by the number of zeros as a 6-bit number. Thus a string of ten zeros
followed by a one would be represented by the code word 1111001010. Use the modifi ed
coding scheme to encode the sample encoder output shown in Figure 3.65.

3.9 Figure 3.66 shows a block of data from a picture containing pixels with values in the
range 0–255.

(a) Calculate the prediction difference after one-dimensional predictive encoding
using the value of the pixel to the left of the pixel to be predicted as the predic-
tion. Assume that all pixels surrounding the pixels to be predicted have value
128.

(b) Calculate the prediction difference after two-dimensional predictive encoding using
the average of the value of the pixel to the left of the pixel to be predicted and the
value of the pixel directly above the pixel to be predicted as the prediction. Assume
that all pixels surrounding the pixels to be predicted have value 128. Fractional val-
ues should be rounded toward zero.

001100100000010000101100001000100000100100100010010001

Figure 3.64 Sample encoder output for Problem 3.7.

Table 3.9 Variable length code words for Problem 3.7.

Length of string of zeros Source encoder output code word

0 1 1100
1 01 100
2 001 01
3 0001 00
4 00001 101
5 000001 1101
6 0000001 1110

001100100000000100001011000000000000010001000001001001000100100000001

Figure 3.65 Sample encoder output for Problem 3.8.

62 61 45 25

28 32 30 27

21 20 22 20

17 16 18 18 Figure 3.66 Picture data for Problem 3.9.

Problems 77

78 Chapter 3 Predictive Encoding

3.10 Consider the picture data given in Figure 3.66. In this case, the prediction difference is
to be quantized by a linear quantizer of the type shown in Figure 3.57. The quantizer
step size is 4 (i.e., decision levels are at ±2, ±6, ±10, etc.) and the reconstruction level is
at the mid-point of the relevant decision levels. Calculate the reconstructed pixel values
that would be output from the decoder in these circumstances.

3.11 Repeat Problem 3.10 using a variety of quantizer step sizes in the range 1–256. Plot the
mean square error introduced by quantization versus the quantizer step size. Comment
on the result.

3.12 Figure 3.67 shows a block of data from a picture containing pixels with values in the
range 0–255.

(c) Calculate the prediction difference after one-dimensional predictive encoding
using the value of the pixel to the left of the pixel to be predicted as the predic-
tion. Assume that all pixels surrounding the pixels to be predicted have value
128.

(d) Calculate the prediction difference after two-dimensional predictive encoding us-
ing the average of the value of the pixel to the left of the pixel to be predicted and
the value of the pixel directly above the pixel to be predicted as the prediction.
Assume that all pixels surrounding the pixels to be predicted have value 128. Frac-
tional values should be rounded toward zero.

3.13 Consider the picture data given in Figure 3.67. In this case, the prediction difference is
to be quantized by a linear quantizer of the type shown in Figure 3.57. The quantizer
step size is 8 (i.e., decision levels are at ±4, ±12, ±20, etc.) and the reconstruction level is
at the mid-point of the relevant decision levels. Calculate the reconstructed pixel values
that would be output from the decoder in these circumstances.

3.14 Repeat Problem 3.13 using

(a) a quantizer step size of 1

(b) a quantizer step size of 128

(c) Comment on the results achieved.

3.15 A video encoder designed for digital television operates on pictures of resolution 720 �
576 pixels at a frame rate of 25 pictures/s. Full search motion estimation is employed

60 121 222 247 97 11 48 66

105 227 240 172 48 16 62 72

74 186 246 206 169 41 25 69

184 254 191 212 131 12 58 68

115 241 225 187 215 96 17 71

236 227 186 210 189 37 35 81

193 242 202 196 220 157 20 42

240 207 206 201 207 79 14 78

Figure 3.67 Picture data for Problem 3.12.

using 16�16 pixel blocks with minimum absolute difference as the matching criteria.
The search area employed is ±64 pixels.

(a) Calculate the total number of search positions and the total number of absolute pixel
difference operations required each second in the encoder.

(b) Calculate the number of search positions and the total number of absolute pixel dif-
ference operations required each second in the decoder.

3.16 A video encoder designed for high-defi nition digital television operates on pictures of
resolution 1440 � 480 pixels at a rate of 60 pictures/s. Full search motion estimation is
employed using 16�16 pixel blocks with minimum absolute difference as the matching
criteria. The search area employed is ±128 pixels.

(a) Calculate the total number of search positions and the total number of absolute pixel
difference operations required each second in the encoder.

(b) Calculate the number of search positions and the total number of absolute pixel dif-
ference operations required each second in the decoder.

3.17 The enormous number of computations required in the motion estimation process can
be achieved in practice, but requires signifi cant use of parallel processing (i.e., several
calculations being performed at the same time) to be successfully achieved. What parts
of the motion estimation process can occur in parallel. What is the speed-up factor
achieved by each type of parallel processing?

3.18 In what circumstances would you expect motion-compensated prediction to perform
poorly? Give real world examples in support of your answer.

3.19 Consider the block of pixel data shown in Figure 3.68. The block of interest is sur-
rounded by a black border.

(a) Calculate the block half a pixel to the left block of interest.

50 61 73 75 81 84 84 91 91 82

78 110 106 100 100 102 100 106 100 101

42 102 121 102 98 97 96 98 95 93

52 108 103 96 93 91 94 88 89 92

46 80 111 96 95 89 95 81 71 94

76 104 98 92 93 91 89 48 58 103

79 92 105 97 90 92 93 72 26 72

97 98 99 95 90 96 90 49 59 106

98 93 102 100 91 92 89 77 61 87

91 96 106 90 90 94 85 66 85 101

Figure 3.68 Pixel data for Problem 3.19.

Problems 79

80 Chapter 3 Predictive Encoding

(b) Calculate the block half a pixel up from the block of interest.

(c) Calculate the block half a pixel to the right and half a pixel down from the block
of interest.

3.20 How would you go about performing motion estimation to quarter pixel accuracy?
Reconsider the pixel data given in Figure 3.68.

(a) Calculate the block one quarter of a pixel to the left block of interest.

(b) Calculate the block three quarters of a pixel up from the block of interest.

(c) Calculate the block three quarters of a pixel to the right and one quarter of a pixel
down from the block of interest.

3.21 When a perfect match is found during the motion estimation process, there is no need to
perform further searches. However, most hardware implementations of motion estimation
algorithms would continue the search in any case. Why do you think this would be the case?

3.22 Most video encoders that incorporate motion-compensated prediction allow poorly
predicted blocks to be coded in intrapicture mode (i.e., without any form of temporal
prediction). What impact would this have on the bit stream transmitted between the
encoder and the decoder?

MATLAB EXERCISE 3.1: HUFFMAN CODING

Huffman encoding is commonly employed in modern digital video encoders to re-
duce the amount of information needed to represent digital information. In this ex-
ercise you will develop a MATLAB program that calculates the Huffman code for
an original picture.

Section 1 Design of Huffman code words
Write a MATLAB program to calculate the Huffman code words for a video picture.
Hence calculate the average number of bits per pixel required to represent a number
of different pictures.

In order to perform this task, you will need to complete the following steps:

Calculate the probability of each pixel value in the picture.

Develop the Huffman tree. This requires the development of a representation
of the linkages within the computer. One way of doing this is to track where
each element in column i of the tree maps to in column i�1. It is then possible
to read the tree from left to right. Reversing the code word read gives the
Huffman code word.

Calculate the average number of bits per pixel by multiplying the probability
of each pixel value by the number of bits in the code word used to represent it
and then summing over all possible pixel values. Note that not all 256 possible
pixel values may occur in a particular picture.

Section 2 Huffman code effi ciency
Write a MATLAB program to calculate the entropy of a picture or a prediction
difference picture. Use your routine to calculate the entropy of the various pictures

•
•

•

studied in Section 1. Hence calculate the coding effi ciency of the Huffman code for
each picture.

Section 3 Huffman code effectiveness
Plot in the same fi gure the number of bits allocated by your Huffman algorithm to
each pixel brightness and the number of bits suggested by the entropy value for that
pixel. Comment on the result. Note that not all pixel values are used in some pictures
so care will be needed in calculating the individual pixel entropies.

MATLAB EXERCISE 3.2: DIFFERENTIAL PULSE CODE
MODULATION

In this exercise you will explore the bit-rate savings that can be achieved using one-
dimensional and two-dimensional lossless predictive encoding. Linear quantization
is then incorporated in Section 2, thus allowing a study in the trade-offs possible
between bit rate and picture quality in differential pulse code modulation.

Section 1 Lossless intrapicture predictive encoding
For at least one picture taken from different video sequences calculate

the entropy of the horizontal one-dimensional prediction difference (i.e., using
the pixel directly to the left of the pixel to be predicted as the prediction).

the entropy of the vertical one-dimensional prediction difference (i.e., using
the pixel directly above the pixel to be predicted as the prediction).

the entropy of the two-dimensional prediction difference (i.e., using the aver-
age of the pixel directly to the left of the pixel to be predicted and the pixel
directly above the pixel to be predicted as the prediction).

Comment on these results.

Section 2 Lossy intrapicture predictive encoding
Section 1 involves the lossless encoding of a picture since the original picture can
be reconstructed at the decoder. The process is made lossy by the introduction of
quantization. Extend the predictive encoders developed in Section 1 to include linear

•

•

•

MATLAB Hint: The MATLAB command

hold on

allows more than one graph to be plotted on the same set of axes. The hold is turned off
by the

hold off

command

MATLAB Exercise 3.2: Differential Pulse Code Modulation 81

82 Chapter 3 Predictive Encoding

quantization of the type shown in Figure 3.57. For a quantizer with step size 4, the
decision levels would be ±2, ±6, ±10, … and the reconstruction levels 0, ±4, ±8, …

Use your simulation to calculate the PSNR in decibels of the reconstructed
picture and the entropy of the quantized prediction difference signal for a range
of quantizer step sizes. Plot PSNR versus entropy for each of the three prediction
techniques. Such a plot is called a rate-distortion curve. Also examine the quality
of the reconstructed picture as the quantizer step size is increased. Summarize your
results.
Note: A quick check that your program is operating correctly is to use a quantizer

step size of 1. In this case, the PSNR should be infi nite and the entropy the
same as in Section 1.

MATLAB EXERCISE 3.3: TEMPORAL PREDICTION
AND MOTION ESTIMATION

In this exercise we study the effectiveness of temporal prediction techniques. This
begins with a study of interpicture prediction (i.e., predicting the current pixel using
the pixel in the same location in the previous picture). We then move on to look at
motion-compensated prediction. Quantization is incorporated into both techniques.

Section 1 Lossless and lossy interpicture prediction
For several video sequences:

Calculate the entropy of the interpicture prediction difference (i.e., using the pix-
el in the same location as the current pixel in the previous picture as the predic-
tor). Naturally picture N�1 will be predicted by picture N in this experiment.

Take the fi fth picture in each sequence and perform interpicture prediction
using each of the pictures that precedes it (i.e., pictures 1–4). Comment on the
effectiveness of interpicture prediction as the spacing between the pictures
increases.

The previous two parts deal with the lossless interpicture encoding of a pic-
ture because the original picture can be reconstructed at the decoder. The
process is made lossy by the introduction of quantization. Extend the predic-
tive encoders developed to include linear quantization of the type shown in
Figure 3.57. For a quantizer with step size 4, the decision levels would be ±2,
±6, ±10, … and the reconstruction levels 0, ±4, ±8, ….

Use your simulation to calculate the peak signal-to-noise ratio in decibels
of the reconstructed picture and the entropy of the quantized prediction dif-
ference signal for a range of quantizer step sizes. Plot PSNR versus entropy
for interpicture prediction. Such a plot is called a rate-distortion curve. Also
examine the quality of the reconstructed picture as the quantizer step size is
increased. You should note that the picture quality looks good when a small
quantizer is used, gets worse as the quantizer is increased and then starts to
improve again when the quantizer step size becomes large. Explain why this

•

•

•

•

is the case and why this improvement at large quantizer step sizes is of no
value in real applications.

Note: A quick check that your program is operating correctly is to use a quantizer
step size of 1. In this case, the PSNR should be infi nite and the entropy the
same as in the lossless case.

Section 2 Lossless motion-compensated prediction
For several video sequences

Calculate the entropy of the motion-compensated prediction difference using
a block size for motion estimation of 16 � 16 pixels and a search range of ±8
pixels both vertically and horizontally. Use minimum absolute error as the
matching criteria for all of the motion estimation experiments contained in
this exercise. Do not forget to include the overhead associated with the motion
vectors in this calculation. Naturally picture N�1 will be predicted by picture
N in this experiment. Make use of the MATLAB quiver command to overlay
the motion vectors onto the picture being predicted.

For a fi xed search area of ±8 pixels both vertically and horizontally, per-
form experiments to determine the effect of changing the block size used for
motion estimation on the total entropy of the motion-compensated predic-
tion difference. Make sure that you include the overhead associated with the
motion vectors.

For a fi xed block size of 16 � 16 pixels, perform experiments to determine
the effect of changing the search area to be used for motion estimation on the
entropy of the motion-compensated prediction difference. Make sure that you
include the overhead associated with the motion vectors.

Find a pair of pictures from a video sequence that are on either side of a scene
cut (or alternatively use two pictures from different video sequences) and
calculate the entropy of the motion-compensated prediction difference. This
situation occurs at every scene cut in a sequence. Suggest methods by which
this limitation of motion-compensated prediction could be overcome.

Take the fi fth picture in each video sequence and perform motion-compensated
prediction using each of the pictures that precedes it (i.e., pictures 1–4).
Comment on the effectiveness of motion-compensated prediction as the
spacing between the pictures increases.

Section 3 Lossy motion-compensated prediction
The previous section dealt with the lossless motion-compensated prediction of a
picture because the original picture can be reconstructed at the decoder. The process
is made lossy by the introduction of quantization. Extend the motion-compensated
encoders developed in Section 2 to include linear quantization of the type shown in
Figure 3.57. For a quantizer with step size 4, the decision levels would be ±2, ±6,
±10,… and the reconstruction levels 0, ±4, ±8, ….

Use your simulation to calculate the PSNR in decibels of the reconstructed
picture and the entropy of the quantized motion-compensated prediction difference

•

•

•

•

•

MATLAB Exercise 3.3: Temporal Prediction and Motion Estimation 83

84 Chapter 3 Predictive Encoding

signal (including motion vector overhead) for a range of quantizer step sizes. Plot the
rate-distortion curve. Also examine the quality of the reconstructed picture as the
quantizer step size is increased. Compare the results obtained with those for lossy
interpicture prediction calculated in Section 1.

MATLAB EXERCISE 3.4: FAST SEARCH MOTION
ESTIMATION

Full search motion estimation always provides optimum performance (in terms of
the matching criteria used at least). However, for a search area of ± M horizontally
and ± N vertically, the total number of search required is (2M� 1) � (2N� 1) which
can be very large. A number of fast search motion estimation techniques have been
proposed by various researchers. Invariably, the aim is to search only a subset of the
possible search positions and to choose the search positions checked in an intelligent
way that increases the chances of obtaining the best (or at least a good) match. In
this exercise we will study one of these techniques and compare its performance to
full search motion estimation.

The fast search technique to be studied is three-step search motion estimation that
is designed to work with a search area of ±7 pixels both horizontally and vertically. Fig-
ure 3.69 shows a 2 � 2 pixel block shaded surrounded by a search area of ± 7 pixels.

The initial nine searches in the prediction picture are at the colocated block
and at blocks ±4 pixels above, ±4 pixels below, and a combination of both of these
displacements as shown in Figure 3.70. This is a total of nine searches as shown
in the fi gure although the order of search is not important. One of these yields the
best match in terms of the measure being used (say absolute error). In this case,
we assume that this occurs at search position 1 that is shown in a different color in
Figure 3.70.

Position 1 becomes the center of the next search and the new search positions
are located at blocks ±2 pixels above, ±2 pixels below, and a combination of both
of these displacements as shown in Figure 3.71. This requires eight new searches
(searches 10–17 although again the search order is not signifi cant). One of these nine

Figure 3.69 2 � 2 pixel block surrounded by a ±7 pixel search area in the current picture.

positions (the best match could still be at position 1) is the best match in terms of the
matching criteria. In this case, we will assume that this occurs at search position 14
that is shown in a different color in Figure 3.71.

Position 14 becomes the center of the next search, and the new search posi-
tions are located at blocks ±1 pixels above, ±1 pixels below, and a combination of
both of these displacements. Because there is signifi cant overlap between the search
positions, no attempt will be made to draw them—hopefully the process is now suf-
fi ciently clear that this is not necessary. This again requires 8 new searches (searches
18–25 and again the search order is not signifi cant). One of these nine positions
(the best match could still be at position 14) will be the best match in terms of
the matching criteria. This match will be taken as the best matching block and its
displacement compared to the colocated is the motion vector.

The technique works on the basis that the closer one moves to the best match
block, the smaller is the matching error. If this were always the case (which, of
course, it is not), the three-step search algorithm would always produce the best
matching block. In the remainder of this exercise we will explore the success of this
fast search method.

Section 1 Full search motion estimation

For a range of pairs of adjacent pictures extracted from different video
sequences, calculate the entropy of the motion-compensated prediction
difference using a block size for motion estimation of 16 � 16 pixels and
a search range of ±7 pixels both vertically and horizontally. Use minimum
absolute error as the matching criteria for all of the motion estimation ex-
periments contained in this exercise. Do not forget to include the overhead
associated with the motion vectors in this calculation. Naturally picture

•

Figure 3.70 First step of three-step search.

Figure 3.71 Second step in three-step search.

MATLAB Exercise 3.4: Fast Search Motion Estimation 85

86 Chapter 3 Predictive Encoding

N�1 will be predicted by picture N in this experiment. Make use of the
MATLAB quiver command to overlay the motion vectors onto the picture
being predicted.

Section 2 Fast search motion estimation

Repeat the previous calculation using the three-step search fast motion
estimation algorithm. Comment on the performance in terms of the entropy
of the motion-compensated prediction difference, the accuracy of the motion
estimation, and the amount of computation needed.

Take the fi fth picture in each sequence and perform motion-compensated
prediction using each of the pictures that precedes it (i.e., pictures 1–4) using
both full search and the fast search technique. Comment on the effectiveness
of motion-compensated prediction techniques as the spacing between the
pictures increases.

Extend the three-step search to cover a search area of ±15 pixels by including
a fourth step in the search process. Again compare the performance of the
fast search algorithm with full search in terms of the entropy of the motion-
compensated prediction difference, the accuracy of the motion estimation,
and the amount of computation needed.

•

•

•

87

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 4

Transform Coding

4.1. INTRODUCTION TO TRANSFORM CODING

In Chapter 3 we saw that predictive encoding has some success in reducing the
amount of information that needs to be transmitted to accurately represent a video
picture. The total savings possible are, however, limited. A major drawback of
predictive coding is that the number of elements to be transmitted (pixel differences)
is the same after prediction as it was before prediction (pixels). The saving results
from the reduction in the entropy of the prediction difference compared to the entropy
of the original pixel values. For further gains, we need to reduce the number of
elements that are transmitted. This can be achieved by transforming the data into a
different domain.

In transform coding, the original pixel values are multiplied by a set of basis
functions to produce a set of products. These products are added together to pro-
duce the coeffi cient for that basis function. The coeffi cient indicates how similar the
original pixels are to the particular basis function. If the pixels and the basis func-
tion are similar then each product is positive and the result is a large positive value.
If the pixels and the basis function are dissimilar then some products are positive
whereas others are negative. When summed, the result is close to zero. Finally, if the
pixels and the basis functions are similar in shape but different in sign then each of
the products is negative and the sum is a large negative value. This is illustrated in
Example 4.1.

EXAMPLE 4.1

Consider the simple one-dimensional transform1 whose basis functions are shown in
Figure 4.1 that takes four pixels as input and produces four transform coeffi cients.

Suppose that the pixel vector to be transformed is [21 8 12 21]. This is shown in
Figure 4.2.

1This is an example of the Hadamard transform.

88 Chapter 4 Transform Coding

The transform coeffi cients are then calculated by multiplying the pixel values by the
basis functions on a point by point basis and then summing. Thus

Coeffi cient 0 � 21 � (�0.5) � 8 � (�0.5) � 12 � (�0.5) � 21 � (�0.5) � 31

Coeffi cient 1 � 21 � (�0.5) � 8 � (�0.5) � 12 � (�0.5) � 21 � (�0.5) � �2

Coeffi cient 2 � 21 � (�0.5) � 8 � (�0.5) � 12 � (�0.5) � 21 � (�0.5) � 11

Coeffi cient 3 � 21 � (�0.5) � 8 � (�0.5) � 12 � (�0.5) � 21 � (�0.5) � 2

The resulting coeffi cients are shown in Figure 4.3.

The fi rst coeffi cient gives the average value of the pixels. For this reason it is often called
the DC2 coeffi cient. The remaining coeffi cients give information about the variation of the
pixel values and are sometimes referred to as AC3 coeffi cients. In this case, the second AC
coeffi cient (coeffi cient 3) is larger than the other two because the general shape of the pixels
to be transformed is a close match to the basis function of this coeffi cient.

The original pixel values can be recovered by the inverse transform process. This
consists of weighting each basis function by its coeffi cient and then summing the four
resulting vectors.

0.5

–0.5

0.5

–0.5

0.5

–0.5

0.5

–0.5

 (0) (1) (2) (3)

Figure 4.1 Basis functions for a simple four point one-dimensional transform.

10

20

Figure 4.2 Pixel vector to be transformed.

20

30

10

Figure 4.3 Resulting transform coeffi cients.

2Direct current.
3Alternating current.

[�0.5 �0.5 �0.5 �0.5] � 31 � [�15.5 �15.5 �15.5 �15.5]

[�0.5 �0.5 �0.5 �0.5] � �2 � [�1.0 �1.0 �1.0 �1.0]

[�0.5 �0.5 �0.5 �0.5] � 11 � [�5.5 �5.5 �5.5 �5.5]

[�0.5 �0.5 �0.5 �0.5] � 2 � [�1.0 �1.0 �1.0 �1.0]

On summing we obtain [21 8 12 21]

This was the original pixel vector. The inverse transformation process is illustrated in
Figure 4.4. �

4.2. THE FOURIER TRANSFORM

A common transform, one that many engineers and scientists are familiar with, is
the Fourier transform. Some explanation of how the Fourier transform works and
how it represents signals will help in understanding how transforms are used for
compression. The Fourier transform is used to take a signal in the time domain and
transform it into the frequency domain. This is possible because any time-domain
signal can be represented by a weighted sum of sine and cosine waveforms. Thus the
periodic time domain signal f(t) with period T0 can be represented as

f t a a n t b n tk

k

k

k

() cos sin=
= =

∑ ∑0

1

0 0

1

� �
∞ ∞

ω ω ωwhere 00 02= π / .T

The sinusoidal and cosinusoidal signals are called basis functions. In transform
coding, the original signal is reproduced when these basis functions (appropriately
weighted) are summed.

0.5

–0.5

0.5

–0.5

0.5

–0.5

0.5

–0.5

x 31

x –2

x 11

x 2

15.5

–15.5

1.0

5.5

–5.5

1.0

–1.0

20

10

–1.0

+

+

+

Figure 4.4 Inverse transform process.

4.2. The Fourier Transform 89

90 Chapter 4 Transform Coding

Figure 4.5 shows a square wave whose period is 1 s. Fourier analysis shows that
the following Fourier series can represent this waveform.

f t t t t t() cos cos cos cos� � � �
4 1

3
3

1

5
5 0

1

7
7 0π

ω ω ω ω0 0 �� � �
1

9
9 0

1

11
11 0cos cosω ωt t ……

where ω0 �2π.

Figure 4.5 also shows the fi rst six terms of the Fourier expansion plus the sum of
these six terms. The convergence toward a square wave is apparent.

The weighting factor for each basis function is determined by comparing the
basis function to the signal to be transformed. If the signal looks very similar to the
basis function then a large weighting factor will result. If the signal and the basis
function are dissimilar, a small weighting factor will result.

In the case of the Fourier transform of a periodic signal with period T0, the
weighting factors are determined according to

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
–1.5

–1

–0.5

0

0.5

1

1.5

Time (s)

A
m

pl
itu

de

Figure 4.5 Square wave approximated by a weighted summation of cosine waveforms.

a
T

f t t

T

0
0 0

1
0

� ()d∫

a
T

f t k t t k nk

T

� �
2

1 2
0

0

0

0

()cos , , ,...,ω d∫

where ω0 �2π /T0

The a0 term gives the average value of the periodic signal whereas the ak and
bk values measure the similarity of the waveform to appropriate cosinusoidal and
sinusoidal signals, respectively.

The Fourier transform is designed to represent continuous functions. The pictures
that we wish to encode are, of course, sampled. In this case, the appropriate transform
is the discrete Fourier transform. The method of calculating weighting coeffi cients of
the sampled function f(n) with a total of N sample points is given below.

a f n
kn

k

n

N

�
�

�

()cos
2

0

1 π
Ν

∑

b f n
kn

k

n

N

�
�

�

()sin
2

0

1 π
Ν

∑

The sampled values of the basis functions are called basis vectors. Figure 4.6
shows the fi rst cosinusoidal basis vector when N � 8. This is a sampled cosine wave-
form with period eight samples.

The Fourier transform, though an important tool in understanding communica-
tion systems, is not the best choice for transform encoding. One reason for this is

0 1 2 3 4 5 6 7 8
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Sample number

A
m

pl
itu

de

Figure 4.6 First cosine basis vector of discrete Fourier transform.

b
T

f t k t t k nk

T

� �
2

1 2
0

0

0

0

()sin , , ,...,ω d∫

4.2. The Fourier Transform 91

92 Chapter 4 Transform Coding

that there are two weighting factors (ak and bk) required for each frequency.4 This
requires a substantial amount of computation.

4.3. THE KARHUNEN–LOEVE TRANSFORM

The aim of a good signal compression transform is to pack the information in the
data into the smallest number of transform coeffi cients. The data to be transformed
is collected into a block. For an N point transform, the data would consist of an
N element vector.

x x x xN� 1 2 …[]

The transform consists of multiplying the data vector by an N � N transform
matrix.

C � �

C

C

C

t t t

t t t

N

N

N

1

2

11 12 1

21 22 2

� �

…

…

�� � �…

…t t t

x

x

xN N NN N1 2

1

2

� Tx

Each row of matrix T (tm) represents a basis vector of the transform. An effec-
tive transform would produce transform coeffi cients C that pack the information
contained in the data into as few transform coeffi cients as possible. This means that
it is not necessary to transmit all of the coeffi cients to obtain a satisfactory recon-
struction of the original picture or, if the coeffi cients are very small, they may not
need to be represented very accurately. The lower the number of coeffi cients that
need to be transmitted, the less the amount of data required to transmit them.

Transforms are always orthonormal,5 that is, when two basis vectors are multi-
plied together and summed

t tm n
T �

�

�

1,

0,

m n

m n

where the superscript T represents the matrix transpose.
It follows directly that the inverse transform (T�1) is simply the transpose of the

forward transform (TT).

T�1 � TT

4Many texts on digital signal processing refer to the discrete Fourier transform as generating a complex
value for each weighting coeffi cient of the form ak � jbk.
5This ensures that if we initially approximate a desired function with a limited number of weighted
basis functions, the subsequent addition of further weighted basis functions to improve the
approximation will not change the values of the coeffi cients weighting the original basis functions.

We can therefore write

x T C T C1� � �− T

…

…

…

…

t t t

t t t

t t t

N

N

N N

11 21 1

12 22 2

1 2

� � �

NNN N

C

C

C

1

2

�

and so

x t t t tk 1 2 N� � � � �C C C Ck N

k

N

1 2

1

. . .
=

∑

Thus the original signal can be thought of as a weighted sum of the basis vec-
tors. These weights, C, are calculated by the forward transform.

If we want to understand the theory behind transform coding of pictures, some
statistical measures of pictures need to be defi ned. The mean of an N � M pixel
picture is given by

x �
1

11NM
xn m

m

M

n

N

,

==
∑∑

where xn,m is the value of pixel m on line n of the picture. The expected value opera-
tor E(·) is often used to defi ne an averaging operation. We can therefore write

x E x� ()

The variance of an N � M pixel picture is defi ned as

σ 2 2

11

1
� �

NM
x xn m

m

M

n

N

(),
==

∑∑

which can be written using the expected value operator as

σ 2 2� �E x x()()
If we have two random variables, x1 and x2, the covariance of the two variables

can be written as

σ12
2

1 2� E x x x x−() −()()
Using this terminology, the variance of a single variable would be referred to as

σ11. If we have k random variables, the covariance matrix Rx is defi ned as

Rx �

σ σ σ
σ σ σ

σ σ σ

11
2

12
2

1
2

21
2

22
2

2
2

1
2

2
2

…

…

…

k

k

k k

� � � �

kkk
2

4.3. The Karhunen–Loeve Transform 93

94 Chapter 4 Transform Coding

Consider a single line of pixels in a picture as defi ned by

 x1,1 x1,2 x1,3 ... x1,m

Let random variable x1 and x2 represent the pixel values

 x1 � x1,1 x1,2 x1,3 ... x1,m�1

 x2 � x1,2 x1,3 x1,4 ... x1,m

The covariance for these two random variables is given by

σ12
2

1 1 2 2� � �E x x x x()()()

and is called the one-step horizontal covariance of the picture line. The k-step horizontal
covariance is defi ned for the random variables x1 and xk�1 that represent the pixel values

 x1 � x1,1 x1,2 x1,3 ... x1,m�k

 xk+1 � x1,k�1 x1,k+2 x1,k�3 ... x1,m

and is given by

σ1
2

1 1 1 1k k kE x x x x� � �� �()()()
If we want to calculate the covariance matrix for a whole picture, the covariance

of each line is calculated using the mean value of the entire picture rather than the
mean value for each variable on each line. The k-step horizontal covariance for each
line is then given by

σ1
2

1 1k kE x x x x� � ��()()()

where x− is the mean of the entire image.
The k-step horizontal covariance for the picture is the average of the covari-

ance for each line of the picture. A vertical covariance matrix can also be produced
using pixel values down columns as opposed to across rows in the picture. For the
fi rst luminance picture in the “Mobile and Calendar” sequence, the 4 � 4 horizontal
covariance matrix (rounded to the nearest integer) is given by

3914 3525 3126 3050

3525 3907 3518 3118

3126 3518 39011 3511

3050 3118 3511 3894

By similar reasoning, the 4 � 4 vertical covariance matrix (rounded to the near-
est integer) for this picture is given by

3914 3540 3312 3031

3540 3914 3541 3313

3312 3541 39155 3541

3031 3313 3541 3915

As stated earlier, the aim of a good transform is to pack the information content
of the data into the smallest possible number of transform coeffi cients. Although infor-
mation content is somewhat diffi cult to quantify, one approach to achieving this aim
would be to pack the maximum amount of energy into the smallest number of trans-
form coeffi cients. If we represent the original data by only the fi rst M of N transform
coeffi cients with the remaining coeffi cients replaced by a constant aj then we obtain

x̂ t tM j j� �
� �

C aj
k

M

j
k M

N

1 1
∑ ∑

+

The resulting error is

x x x

t t

eM M

k k

� �

� �

�

� � � �

ˆ

C ak
k M

N

k
k M

N

1 1
∑ ∑

(()C ak k
k M

N

�
� �

tk
1

∑
We now want to calculate eM the average energy in xeM where

e E C ak k

k M

N

M

� �

�

� �

()tk

1

2

∑

EE C a C a C aM M M M N N� � � � � �� � � � � �1 1 2 2 2() ()t tM 1 M . . . (() { }
()

t

t tM 1 M 1

N

M M ME C a C

2

1 1
2

 � � �� � � � �
T

11 1 2 2 2� � �

� � �

� � � � �a C a

C a C

M M M

N N N

()(){
()

t tM 1 M
T …

aaN() }t tN N
T

As the transform is orthonormal

t ti j
T �

�

�

1

0

,

,

i j

i j

Thus the equation for eM simplifi es to

e C ak k
k M

N

M � �
� �

E ()2

1
∑

We can now choose the value of ak that minimizes eM by partial differentiation
with respect to each aj where j is in the range M � 1 to N.

∂
∂a

C a C a
k M

N

j
k k j jE E()� � � �

� �

2

1

2∑

()()

��2((E jC)) ())�E aj

�� �2(())E j jC a

0, at the minimum�

4.3. The Karhunen–Loeve Transform 95

96 Chapter 4 Transform Coding

Therefore, at the minimum

a E Cj j� ()

Now since

Cj � t xj
T

It follows that

a E

E

j �

�

()

)

t x

t x
j

j

T

T (

E(x) is the mean vector of the data. Setting the mean value to zero results in the
optimum value aj (j � M � 1 to N) being zero and so

x̂ tM j�
�

C
k

M

j
1

∑
From the above, it follows that

C a Ek k� � �t x xj
T ()()

This can be substituted into

e E C a
k M

N

M k k� �
� �

()

∑ 2

1

to obtain

e E E

E E

k M

N

M � �

� �

� �

((())

()

t x x

t x x

k
T

k
T

2

1
∑

()((()

() ((

x x t

t x x x x

k

k
T

�

� � �

� �

E

E E E

k M

N
T

1
∑

()))

()

T()

()

∑

∑

t

t x t

k

k
T

k

k M

N

k M

N

� �

� �

�

1

1

COV

where COV(x) is the covariance matrix of the input data.
We now need to minimize eM with respect to the basis vectors tk while maintain-

ing the orthonormal property. Using Lagrange multipliers, we therefore minimize

′ ∑e e k

k M

N

k M

M M

COV

� � �

� �

� �

� �

λ ()

()

t t

t x t

k k

k k

T

T

1
1

1

NN

k∑ λ ()t tk k
T �1

Because we want to minimize e�M, we want to fi nd the point where the gradient
of e�M with respect to tj is zero. Noting6 that

GRAD T
t k k kj

t t t[] []A A()� 2

and

GRAD T
t j

()t t tk k k� 2

It follows that

GRAD COVt j jj
t t′e xM � � �2 2 0() ()λk

from which it follows that

COV()x t tk j� λk

which when solved for tk and λk will lead to the kth basis vector of the optimum
transform. This is exactly the eigenvalue equation, and so tk is an eigenvector of the
covariance matrix whereas λk is the corresponding eigenvalue. Because the covari-
ance matrix is positive and symmetrical about the leading diagonal, it will always
have eigenvectors and eigenvalues that will be real.

If the eigenvalues are arranged from largest to smallest this optimum transform,
which is called the Karhunen–Loeve transform (KLT),7 packs the maximum amount
of energy into any given number of coeffi cients. Putting this another way, the mean
square error introduced by deleting a given number of coeffi cients is a minimum for
this transform.

EXAMPLE 4.2—MATLAB

Calculate the 8 � 8 horizontal covariance matrix for the fi rst luminance picture in the “Mobile
and Calendar” sequence. Calculate the eigenvectors for this matrix. Hence determine the
percentage of energy in each coeffi cient.

SOLUTION The 8 � 8 horizontal covariance matrix can be calculated using the following
MATLAB function.

function covar � covariance_h(PICTURE)
[row,col] � size(PICTURE);
PICTURE � PICTURE - mean(mean(PICTURE));
Covar � Zeros(8,8);
Sum � 0;

For matrix_row � 1:8
 For matrix_col � 1:8
 delta � matrix_col-matrix_row;

6See R.J. Clarke, Transform Coding of Pictures, Academic Press, 1985 Appendix 4 for further details.
7It is also sometimes referred to as the Hotelling transform or the principal components transform.

4.3. The Karhunen–Loeve Transform 97

98 Chapter 4 Transform Coding

 If delta � 0
 col_max � col;
 else
 col_max � col - delta;
 end
 for row_num � 1:row
 for col_num � matrix_row:col_max
 sum � sum � PICTURE(row_num,col_num)*PICTURE(row_num,col_num�delta);
 end
 sum � sum/(col_max-matrix_row�1);
 covar(matrix_row,matrix_col) � covar(matrix_row,matrix_col) � sum;
 sum � 0;
 end
 end
end
covar � covar/row;

When applied to the fi rst picture of the “Mobile and Calendar” sequence, the covariance
matrix obtained (after rounding to the nearest integer) is

3914 3525 3126 3050 2956 2883 2797 2730

3525 3907 35188 3118 3042 2948 2875 2789

3126 3518 3901 3511 3110 30035 2940 2867

3050 3118 3511 3894 3504 3102 3027 29333

2956 3042 3110 3504 3888 3496 3095 3019

2883 2948 30035 3102 3496 3881 3489 3087

2797 2875 2940 3027 30955 3489 3874 3482

2730 2789 2867 2933 3019 3087 3482 38868

The MATLAB command

[V,D] � eig(A)

produces the eigenvalues in matrix D and the corresponding eigenvectors as the columns
of matrix V. MATLAB arranges the eigenvectors vertically down columns. It also ar-
ranges the eigenvalues so that each is larger than those that come before it whereas it
is usual to list the eigenvalues in decreasing order of magnitude. For consistency with
the defi nition of basis vectors given earlier, it is necessary to employ the MATLAB
command

V � fl iplr(V)�;

which fl ips the columns of the matrix from left to right and then calculates the transpose.
When all this is done with the horizontal covariance matrix shown above, the eigenvec-

tor matrix, as determined in MATLAB, is

� � � � � � � �0 344 0 354 0 359 0 361 0 360 0 357 0 352. 00 341

0 426 0 448 0 317 0 115 0 115 0 318

.

.� � � � � � �00 452 0 430

0 394 0 274 0 144 0 495 0 499

. .

.

�

� � � � � �00 151 0 273 0 397

0 406 0 039 0 484 0 318

. . .

. . . .

� �

� � � � �00 308 0 487 0 033 0 407

0 397 0 253 0 434

. . . .

. . .

� � �

� � � �00 299 0 306 0 429 0 258 0 396

0 357 0 441

.

. .

� � � �

� � �00 010 0 423 0 419 0 002 0 442 0 356

0 264

.

.

� � � � �

� �00 486 0 404 0 175 0 180 0 406 0 484 0 263.� � � � � �

�00 157 0 318 0 405 0 460 0 459 0 404 0 316.� � � � � � �00 156.

The eight eigenvectors are plotted in Figure 4.7. We see that the frequency of the eigen-
vectors increases from top to bottom in the fi gure.

The energy compaction capability of the transform is simply calculated from the
 eigenvalues. For the eigenvectors shown in Figure 4.7, the corresponding eigenvalues
 together with their relative energy are listed in Table 4.1. Note that most of the energy is
compacted into the fi rst eigenvalue with about 96% of the total energy compacted into the
fi rst four eigenvalues.

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5
Figure 4.7 Horizontal eigenvectors for the fi rst picture in the “Mobile and Calendar” sequence.

4.3. The Karhunen–Loeve Transform 99

100 Chapter 4 Transform Coding

4.4. THE DISCRETE COSINE TRANSFORM

Although the Karhunen–Loeve transform is the optimum transform in terms of en-
ergy compaction, it suffers from the signifi cant diffi culty that the transform needs to
be defi ned for each picture (or even each 8 � 8 block within a picture). This requires
a signifi cant amount of computation both to calculate the covariance matrix and then
the eigenvectors that are used as the basis vectors of the transform. In addition, the
transform basis functions (eigenvectors) required for each picture (or each 8 � 8
block within a picture) need to be transmitted to the decoder so that the picture can
be correctly decoded. This represents a signifi cant overhead.

For this reason, a fi xed transform known as the discrete cosine transform (DCT) is
commonly used in picture and video coding applications. Although suboptimal when
compared to the Karhunen–Loeve transform, it has the advantage that it can be used
without the need for calculating covariance matrices and eigenvectors. In addition,
there is no need to transmit information on the basis vectors used to the receiver.

The basis vectors of an N-point DCT in one-dimension are defi ned as

C u u f x
x u

Nx

N

() () ()cos
()

�
�

�

α
π2 1

20

1

−

∑ u N� �0 1 2 1, , ,...,

Similarly, the inverse DCT is defi ned as

f x u C u
x u

Nu

N

() () ()cos
()

�
�

�

α
π2 1

20

1

−

∑ x N� �0 1 2 1, , ,...,

In both of these equations

α()u
N

u
�

�
1

 for 0

2

N
 for 1,2,... 1u N� �

Table 4.1 Horizontal eigenvalues for the first picture in the
“Mobile and Calendar” sequence.

Eigenvalue number Eigenvalue Percentage of energy

1 25,664 82.4
2 2,104 6.8
3 1,224 3.9
4 877 2.8
5 615 2.0
6 383 1.2
7 203 0.7
8 56 0.2

 �

The basis vectors for an eight-point DCT are given in the matrix shown in
Figure 4.8. They are also shown in Figure 4.9.

These are just sampled versions of cosine waveforms of increasing frequency
ranging from 0 periods per vector (i.e., constant) in the case of the fi rst vector to
3.5 periods per vector in the case of the last vector with each vector containing 0.5
 additional periods to the one before it.

Comparing the eigenvectors from the Karhunen–Loeve transform shown in
Figure 4.7 with those for the DCT shown in Figure 4.9, we note a remarkable

−+−+−+−+

+−+−−+−+

−+−−++−+

+−−++−−+

−+++−−−+

++−−−−++

−−−−++++

++++++++

098.0278.0416.0490.0490.0416.0278.0098.0

191.0462.0462.0191.0191.0462.0462.0191.0

278.0490.0098.0416.0416.0098.0490.0278.0

354.0354.0354.0354.0354.0354.0354.0354.0

416.0098.0490.0278.0278.0490.0098.0416.0

462.0191.0191.0462.0462.0191.0191.0462.0

490.0416.0278.0098.0098.0278.0416.0490.0

354.0354.0354.0354.0354.0354.0354.0354.0

Figure 4.8 Basis functions for the DCT.

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

+0.5

–0.5

Figure 4.9 Basis vectors for the eight-point discrete cosine transform.

4.4. The Discrete Cosine Transform 101

102 Chapter 4 Transform Coding

similarity in general shape. The most signifi cant difference is that several of the
corresponding eigenvectors in each fi gure are approximately the negative of each
other. However, the effect of changing the sign of an eigenvector is just that the sign
of the associated transform coeffi cients will be changed—energy compaction is
identical. The DCT then seems to be a reasonable approximation to the Karhunen–
Loeve transform at least for this picture.

For pictures, a two-dimensional DCT is required. The forward and reverse
transform are calculated according to the equations

C u v u v f x y
x u

N

y
(,) () () (,)cos

() (
�

�
α α

π2 1

2

2

��

�

�

�

�
�

1

20

1

0

1)v

Ny

N

x

N
u v

π

∑∑ , 0,1,2,,..., 1N�

and

f x y u v C u v
x u

N

y
(,) () () (,)cos

() (
�

�
α α

π2 1

2

2

��

�

�

�

�
�

1

20

1

0

1)v

Nv

N

u

N
x y

π

∑∑ , 0,1,2,,..., 1N�

where again

α()u
N

u

N

=

1

2

 for 0

 fo

�

rr 1, 2, ..., 1u N� �

The basis vectors t(u,v) in this case are two-dimensional arrays defi ned by

t u v u v
x u

N

y v
(,) () ()cos

() ()
�

� �
α α

π π2 1

2

2 1

2

 NN

x y N

 for , 0,1,..., 1� �

Pictures of the 64 two-dimensional basis vectors from an 8 � 8 transform are
shown in Figure 4.10 that includes an offset so that negative values appear dark and
positive values appear light with mid-gray representing values close to zero. Vertical
frequency increases from top to bottom whereas horizontal frequency increases from
left to right. Any 8 � 8 pixel block can be represented by a weighted sum of these
two-dimensional basis vectors.

Fortunately, the DCT is a separable transform. This means that the two-
 dimensional transform can be obtained by fi rst applying a one-dimensional
 transform across the rows of the data. The result after the horizontal transform
has a one- dimensional transform applied vertically to yield the fi nal two-dimen-
sional transform result. This greatly simplifi es the transform procedure as well as
 signifi cantly increasing the speed of the transform.

EXAMPLE 4.3—MATLAB

For the 8 � 8 pixel block shown in Figure 4.11, calculate the two-dimensional DCT. Hence,
show that the picture can be represented by a weighted sum of the two-dimensional basis
vectors shown in Figure 4.10.

This picture is represented by the 8 � 8 pixel array of data shown in Figure 4.12 where
white is represented by 255 and black by 0.

Figure 4.10 Basis vectors for two-dimensional discrete cosine transform.

Figure 4.11 Block to be analyzed in Example 4.3.

4.4. The Discrete Cosine Transform 103

104 Chapter 4 Transform Coding

As explained earlier, the two-dimensional DCT can be calculated by fi rst taking the one-
dimensional DCT horizontally and then vertically. After applying the horizontal DCT and
rounding to the nearest integer we obtain the result shown in Figure 4.13.

The fi nal two-dimensional DCT is obtained by repeating the one-dimensional discrete
cosine transform down the columns of this result. The fi nal result is shown in Figure 4.14.

255255255255255255255255

255255255255255255255255

255 255 255 0000 255

255 255 255 0000 255

255 255 255 0000 255

255 255 255 0000 255

255255255255255255255255

255255255255255255255255

Figure 4.12 Numerical picture data for Example 4.3.

+721

+721

361

361

361

361

+721

+721

0

0

0

0

0

0

0

0

0

0

–138

–138

–138

–138

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

333

333

333

333

0

0

0

0

0

0

0

0

0

0

Figure 4.13 Data of Figure 4.12 after one-dimensional horizontal DCT.

0

0

0

0

0

0

0

0

–195

0

+180

0

0

0

–75

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

471

0

–435

0

0

0

+180

0

0

0

0

0

0

0

0

0

+1530

0

+471

0

0

0

–195

0

Figure 4.14 Data of Figure 4.12 after two-dimensional DCT.

The weighted two-dimensional basis vectors for each nonzero term in the two-dimen-
sional DCT are shown in Figure 4.15. Also shown is the result when the current weighted
basis vector is added to the sum of all the weighted basis vectors appearing above it in Figure
4.15. When all the weighted basis vectors have been summed, we end up with the original
block. The last few basis vectors make only a small change to the fi nal block despite the fact
that the block chosen has a number of sharp discontinuities that usually imply signifi cant
energy at high frequencies. A smoother block would show even less distortion when high
frequency basis vectors were omitted. �

4.4.1. Choice of Transform Block Size

Example 4.3 uses a block size of 8 � 8 pixels. The appropriate block size is a com-
promise between the amount of compression achieved (which tends to increase with
block size), the correlation within the picture (which tends to decrease with block
size), the ability to adapt to local picture statistics (which is better as block size

Figure 4.15 Weighted two-dimensional basis vectors for the block of Figure 4.11 together with the
result from summing the weighted basis vectors to reconstruct the original block.

4.4. The Discrete Cosine Transform 105

106 Chapter 4 Transform Coding

decreases), and computational complexity (which increases with block size). The
block size is invariably chosen to be a power of two (i.e., 4 � 4, 8 � 8, and 16 � 16
pixels) as this simplifi es computational complexity.

EXAMPLE 4.4—MATLAB

For the fi rst picture of the “Mobile and Calendar” sequence, divide the picture into square
blocks of size N � 2, 4, 8, 16, 32, and 64 pixels and calculate the DCT of each block. Now
retain only the top N/2 � N/2 pixels and calculate the RMS error for each reconstructed pic-
ture. Hence, comment on the most appropriate choice of transform block size.

The MATLAB function dct2(A) will calculate the two-dimensional DCT of a block of
data. Appropriate MATLAB code to perform this task is given below. The DCT block size is
set by the variable tf_size.

tf_size � 8;
for irow � 1:tf_size:row
 for icol � 1:tf_size:col
 dct_block � dct2(A(irow:irow1(tf_size-1),icol:icol�(tf_size-1)));
 limit � (tf_size/2)�1;
 dct_block(limit:tf_size,:) � zeros((tf_size/2),tf_size);
 dct_block(:,limit:tf_size) � zeros(tf_size,(tf_size/2));
 rec(irow:irow�(tf_size-1),icol:icol�(tf_size-1)) � round(idct2(dct_block));
 end
end
 rms � sqrt(mean(mean((A - rec). * (A-rec))));

The result when applied to the picture is shown in Figure 4.16.

 2x2 4x4 8x8 16x16 32x32 64x64
0

2

4

6

8

10

12

14

16

18

20

Block size

R
M

S
 e

rr
or

Figure 4.16 Result of deleting all but the top left quarter coeffi cients for the fi rst picture of the
“Mobile and Calendar” sequence.

It is clear that most of the savings are achieved by the time a block size between 8 � 8
and 16 � 16 pixels is reached. Hardware complexity considerations lead to the choice of an
8 � 8 pixel block size. �

4.4.2. Quantization of DCT Transform Coefficients

We have now succeeded in transforming integer pixel values into real transform
coeffi cients. Transmitting these coeffi cients without any further processing would
probably lead to an increase in the number of bits of information required to repre-
sent the picture. However, the transform has packed most of the energy of the picture
into a small number of coeffi cients. Quantizing these coeffi cients and then transmit-
ting only the signifi cant ones can result in a signifi cant saving. The question remains
how best to do this. As the energy is compacted primarily into the fi rst few (low
frequency) coeffi cients, one approach would be to simply not transmit a number of
the other (high frequency) coeffi cients. This is considered in Example 4.5.

BEXAMPLE 4.5—MATLAB

For the fi rst luminance picture in the sequence “Mobile and Calendar,” calculate the resulting
picture when only the top left 4 � 4, 2 � 2, and 1 � 1 DCT coeffi cients are retained.

The results are shown in Figure 4.17. Even retaining the top 4 � 4 low-frequency coef-
fi cients (Fig. 4.17a) leads to signifi cant blurring in the reconstructed picture. Reducing this

4.4. The Discrete Cosine Transform 107

Figure 4.17 Effect of deleting high-frequency DCT coeffi cients: (a) top 4 � 4 coeffi cients retained;
(b) top 2 � 2 coeffi cients retained; (c) top 1 � 1 coeffi cient retained.

108 Chapter 4 Transform Coding

Figure 4.17 (Continued)

to the top 2 � 2 low-frequency coeffi cients (Fig. 4.17b) greatly increases the blurring. In ad-
dition, the edges of the individual 8 � 8 pixel blocks start to become obvious. When only the
single DC coeffi cient is retained (Fig. 4.17c) then the picture becomes a series of blocks. This
is hardly surprising as retaining only the DC coeffi cient means that each pixel in the 8 � 8
pixel block is replaced by the average value of the block. �

The previous example has demonstrated that performing the DCT and then
simply deleting the higher frequency coeffi cients is not a satisfactory approach if
high-quality reconstructed pictures are required. Although low-frequency informa-
tion is almost always important, simply removing high-frequency information leads
to blurring at sharp edges where high-frequency information is signifi cant.

After quantization, it is desirable that the maximum number of coeffi cients are
zero as this reduces the amount of information that needs to be transmitted. For
this reason, a quantizer with a larger than normal “dead zone’’ (i.e., a quantization
region where the coeffi cient will be set to zero) as shown in Figure 4.18 is commonly
employed.

By comparison, a completely linear quantizer would have decision levels at …
�2.5Q, �1.5Q, �0.5Q, �0.5Q, �1.5Q, �2.5Q… and reconstruction levels at …�2Q,
�Q, 0, �Q, �2Q… The larger dead zone ensures that all coeffi cients in the range �Q
to Q are set to zero. The value of the quantizer (Q) is chosen by the user to ensure an
adequate representation of the picture. More is said on this topic later.

Input

Output

Q 2Q 3Q–3Q –2Q –Q

1.5Q

3Q

4.5Q

–4.5Q

–3Q

–1.5Q

Figure 4.18 Quantizer with central dead zone.

4.4. The Discrete Cosine Transform 109

110 Chapter 4 Transform Coding

4.4.3. Quantization of DCT Coefficients Based
on the Human Visual System

Despite the results shown in Example 4.5, it is well known that the sensitivity of the
human visual system does indeed decrease as the spatial frequency (usually mea-
sured in cycles per degree of arc) increases. Figure 4.19 shows an indicative plot of
the relative spatial frequency response of the eye as a function of spatial frequency
measured in cycles per degree of sight.

It is clear that the response peaks at a spatial frequency around 5–10 cycles/
degree and falls off sharply at higher frequencies. However, even at these higher
frequencies a signifi cant signal will still be observable.

Almost invariably, the transform coeffi cients are quantized by a linear or near
linear quantizer. However, the step size of the quantizer can be varied according
to the spatial frequency represented with the step size increasing as the spatial fre-
quency increases. This ensures that high-frequency coeffi cients will be quantized
to zero unless they are suffi ciently large that they are likely to be observable to the
human visual system.

One way that this can be done is to use a quantization relationship such as

ˆ
,

,

,

C
C

Q W
i j

i j

i j

�
�

�
round

8

where Ĉi,j is the value of the quantized transform coefficient, Ci,j is the value of
the original transform coefficient, Q is the quantizer step size for a particular

0.1 1.0 10.0 100.0
1

 10

100

Spatial frequency (cycles/degree)

R
es

po
ns

e
(%

)

Figure 4.19 Relative spatial frequency response of human visual system.

block of data, and Wi,j is the weighting value for this particular transform
coefficient.

The weighting value Wi,j increases as the horizontal and vertical frequencies
increase. An example of a matrix of weighting values is shown in Figure 4.20.

Thus if the quantizer step size is 16 and the value of c(4,4)8 for a particular
intrablock is 75 then the value of the quantized DCT coeffi cient, noting that the
 appropriate quantizer matrix value is 32, would be calculated as shown.

cq (,) (.)4 4
8 75

16 32
1 17 1�

�

�
� �round round

If the coeffi cient c(1,1) had the same value of the original DCT coeffi cient and
the quantizer step size was unchanged then the quantized DCT coeffi cient value
would be calculated as shown.

cq (,) (.)1 1
8 75

16 16
2 34 2�

�

�
� �round round

EXAMPLE 4.6

An 8 � 8 block of data from a picture is shown in Figure 4.21.

(a) Calculate the two-dimensional DCT of the data.
(b) Quantize the data using a quantizer step size of 8.
(c) Quantize the data using a quantizer step size of 8 using the weighting matrix given

in Figure 4.20.

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

Figure 4.20 Typical values of weighting matrix Wi,j.

8The DC DCT coeffi cient would of course be c(0,0).

91

75

50

72

33

75

241

221

234

222

229

223

245

216

245

214

242

216

189

227

228

225

242

223

 83

240

119

239

155

237

 72

245

 65

246

 72

248

 67

171

 75

198

 75

215

 42

74

 45

93

 58

106

Figure 4.21 Picture data for Example 4.6

4.4. The Discrete Cosine Transform 111

112 Chapter 4 Transform Coding

(a) The result after a two-dimensional DCT performed in MATLAB after rounding to
the nearest integer is shown in Figure 4.22.

(b) Quantizing using a quantizer step size of 8 and rounding to the nearest integer yields
the quantized DCT coeffi cients shown in Figure 4.23.

(c) Quantizing when the weighting factors used in Figure 4.20 are employed yields the
results shown in Figure 4.24.

1294

–66

–15

–35

–10

–60

–7

–189

–495

–13

7

–7

8

–24

19

–117

–104

84

26

53

19

71

35

173

0

13

1

12

–9

25

–25

99

–22

–1

21

–17

6

–26

–8

–76

34

30

24

–4

15

–7

24

–31

48

5

–1

–5

2

–1

11

0

7

–8

–4

1

–2

1

0

–2

Figure 4.22 Picture data of Figure 4.21 after two-dimensional DCT.

161 –61 0 –13 0 64–2

–8 –1 0 110 03 –1

2030–1 0 03

160–4 0 00–2

21–1 0 –1 0 01

–7 3 8–3 –3 0 00

420 –3 –1 0 13

–23 –14 21 12 –9 –3 0 0

Figure 4.23 Quantized DCT coeffi cients—no weighting matrix.

161 –30 0 0–5 0 11

0030–4 0 01

00100 0 00

0020–1 0 00

00000 0 00

0020–2 0 00

00100 0 00

–7 2 4–4 –1 0 00

Figure 4.24 Quantized DCT coeffi cients—weighting matrix in Figure 4.20 are employed.

Note that the number of DCT coefficients quantized to zero when the weighting
matrix is used (45) is considerably greater than when the quantization matrix is not
employed (16). �

4.4.4. Coding of Nonzero DCT Coefficients

We have now produced an 8 � 8 array of quantized DCT coeffi cients many of which
are zero. We need to be able to entropy code these coeffi cients and then transmit
them to the receiver. The fi rst step of this process is to scan the two-dimensional
array of coeffi cients into a one-dimensional array. This is achieved by scanning the
coeffi cients in the zig-zag scan order shown in Figure 4.25.

This order ensures that the DC coeffi cient is scanned fi rst followed by the low-
frequency AC coeffi cients. Higher frequency coeffi cients are scanned toward the
end of the scan. Because there is usually less energy at high-frequencies and also
because high-frequency coeffi cients are often quantized more coarsely than low-
frequency coeffi cients to match the characteristics of the human visual system, it is
likely that the last nonzero coeffi cient will be met well before the end of the scan. As
we shall see, the scan process can be terminated after the last nonzero coeffi cient.

After the zig-zag scanning, each nonzero coeffi cient is grouped with a the run
of zero coeffi cients that proceeds it to form a (run,level) pair. Consider the quantized
DCT coeffi cients shown in Figure 4.26.

After zig-zag scanning in accordance with Figure 4.25, the one-dimensional
array is shown in Figure 4.27.

The resulting run-coeffi cient pairs are as shown in Figure 4.28 with all of the
remaining coeffi cients being zero.

Each run–coeffi cient pair is not equally likely and so a saving in the number of
bits required to transmit the information occurs if the run–coeffi cient pairs are en-
coded using a Huffman code. A special Huffman code word is used to indicate that
the last nonzero coeffi cient in a block has been transmitted and is called the end of

DC

Increasing horizontal frequency

In
cr

ea
si

ng
 v

er
tic

al
 fr

eq
ue

nc
y

Figure 4.25 Zig-zag scan order of block of quantized transform coeffi cients.

4.4. The Discrete Cosine Transform 113

114 Chapter 4 Transform Coding

block (EOB) code word. Because the EOB code word is sent with every transmitted
block, it occurs quite commonly and so is able to be represented by a short Huffman
code word. For the (run,level) pairs given above, the transmitted code words would
be as given in Figure 4.29.

The Huffman coding tables for the set of possible (run,level) pairs have been
developed by standards bodies and are based on the statistics of typical sequences
of video material.

4.5. MOTION-COMPENSATED DCT ENCODERS
AND DECODERS

While we have so far only considered the application of the DCT to original pic-
tures, it can also be used to code the prediction difference after motion-compensated

Code word(0, +38), Code word(1, -5), Code word(0, +7), Code word(0, +1), Code word(0, +4),

Code word(0, -2), Code word(1, +2), Code word(0, +2), Code word(0, -2), Code word(0, -1),

Code word(0, -2), Code word(0, +1), Code word(3, +1), Code word(0, +1), Code word(5, -1),

Code wordEOB.

Figure 4.29 Huffman code words used to represent the quantized DCT coeffi cients of Figure 4.26.

+38, 0, –5, +7, +1, +4, –2, 0, +2, +2, –2, –1, –2, +1, 0, 0, 0, +1, +1, 0, 0, 0, 0, 0, –1, 0, 0,

0,

0, 0, 0

Figure 4.27 Coeffi cients for Figure 4.26 after zig-zag scanning.

(0, +38) (1, –5) (0, +7) (0, +1) (0, +4) (0, –2) (1, +2) (0, +2) (0, –2) (0, –1) (0, –2)

(0, +1) (3, +1) (0, +1) (5, –1)

Figure 4.28 Coeffi cients of Figure 4.27 after coding into (run,coeffi cient) pairs.

−

−+−+

+−++

++−

−++

00000000

00000000

00000000

00000002

00001112

00001227

00001015

000024038

Figure 4.26 Block of quantized DCT coeffi cients.

prediction. Figure 4.30 shows the block diagram of a motion-compensated DCT
encoder. The video input has the motion-compensated prediction subtracted from it.
The motion-compensated prediction difference is then processed with a two-dimen-
sional DCT prior to quantization. Finally, the quantized DCT coeffi cients together
with the relevant motion vectors are entropy coded and transmitted. The feedback
loop of the encoder is equivalent to a decoder and consists of an inverse quantizer9
followed by an inverse two-dimensional DCT. This produces a reconstruction of the
motion-compensated prediction difference. The motion-compensated prediction is
then added to the reconstruction of the motion-compensation prediction difference
to form the reconstructed picture, which is stored in a frame store for use in the pre-
diction of a subsequent picture.

The corresponding decoder is shown in Figure 4.31. Apart from the initial en-
tropy decoding stage to produce the transform coeffi cients and motion vectors, this
is identical to the feedback loop of the encoder.

Motion-compensated DCT encoders and decoders are the key coding tools of
the MPEG-2 video compression standard that is used for digital television broadcast-
ing. Refi nements and improvements introduced during the standardization process
signifi cantly enhance the performance of the basic architecture. We will consider
this topic in considerable detail in Chapter 6.

9However, remember that quantization is a lossy process and so cannot be perfectly reversed.

+
-

Entropy
coding

+
+

Frame
store

Motion
estimation

Motion vectors

motion-compensated
prediction

Video
input

Bitstream
output

Motion
compensated

difference

Quantizer

Quantized DCT
coefficients

Inverse
quantizer

Discrete
cosine

transform

Invese
discrete cosine

transform

DCT
coefficients

Reconstructed
picture

Reconstructed
DCT coefficients

Reconstructed motion
compensated difference

Figure 4.30 Motion-compensated discrete cosine transform encoder.

4.5. Motion-Compensated DCT Encoders and Decoders 115

116 Chapter 4 Transform Coding

4.6. RATE CONTROL

The motion-compensated DCT coder shown in Figure 4.32 still has one major
 problem. Pixels arrive at the encoder at a regular rate and are grouped into 16 � 16
pixel blocks for motion-compensated prediction. These blocks are subsequently
divided into 8 � 8 pixel blocks for processing with the DCT. Blocks arrive at the
 motion estimation and the DCT hardware at a regular rate. However, the output of
the encoder is inherently a variable rate bit stream. This arises inherently from the
fact that

the number of transform coeffi cients to be encoded will vary from block to
block;

the number of bits required to encode each transform coeffi cient is variable
and depends on the value of the nonzero coeffi cients as well as its position
within the DCT block (i.e., the number of zeros that precedes each nonzero
coeffi cient).

Most transmission media operate only with constant bit rate (CBR) data
streams. It is therefore necessary to turn the variable bit rate (VBR) output of
the entropy encoder into a constant bit rate data stream. This process is known
as rate control.

The simplest way to achieve rate control is to introduce a buffer between the
output of the entropy encoder and the transmission channel. The buffer is simply a
block of memory. Data is clocked into the memory at a variable rate and clocked out
of the memory at a constant rate in a fi rst in–fi rst out (FIFO) manner. Such a scheme
is illustrated in Figure 4.32.

The rate control buffer needs to be suffi ciently large to avoid becoming full
(called buffer overfl ow). If the buffer overfl ows then the data which overfl ows is lost.
This results in serious problems for the decoder in reconstructing the video service.

•

•

Entropy
decoding

+
+

Bitstream
input

Frame

Video
output

store

Motion-
compensated

predictionMotion vectors

Reconstructed
motion

compensated
difference

Inverse
quantization

Inverse
discrete cosine

transform

Reconstructed
DCT

coefficients

Quantized
DCT

coefficients

Figure 4.31 Motion-compensated discrete cosine transform decoder.

If the rate control buffer was of unlimited size then any variable bit stream could be
losslessly transformed to a constant bit rate stream.

In practice, some limit needs to be placed on the size of the rate control
buffer. The reason for this becomes clear when it is realized that a second rate
control buffer is required at the decoder. In the case of the decoder, the rate
control buffer accepts data at a constant rate from the channel but transfers data
to the entropy decoder at the variable rate that it requires. Such a decoder is
shown in Figure 4.33.

+
–

Entropy
coding

+
+

Frame
store

Motion
estimation

Motion vectors

Video
input

Bitstream
output

Quantizer

Inverse
quantizer

Discrete
cosine

transform

Invese
discrete cosine

transform

Rate
control
buffer

Variable
bit rate

Constant
bit rate

Figure 4.32 Motion-compensated DCT encoder with rate control buffer.

Entropy
decoding

+
+

Video
output

Bitstream
input

Frame
store

Motion
compensated

predictionMotion vectors

Inverse
quantization

Inverse
discrete cosine

transform

Rate
control
buffer

Constant
bit rate

Variable
bit rate

Figure 4.33 Motion-compensated DCT decoder with rate control buffer.

4.6. Rate Control 117

118 Chapter 4 Transform Coding

EXAMPLE 4.7

(a) The rate control buffer of an encoder and a decoder are 12 bits deep each. The av-
erage data rate output of the encoder (and hence the average data rate input of the
decoder) is 2 bits/s. The channel transmission rate is a constant 2 bits/s. A new code
word arrives from the encoder every second. Determine the fullness of each buffer
if a series of 3-bit code words arrive consecutively from the encoder. Assume that
the encoder and the decoder buffers initially contains exactly two 3-bit code words
each. Assume that there is synchronization between the encoder and the decoder so
that data is clocked in and clocked out of the buffers at the same rate.

(b) Repeat this example for the case where a series of 1 bit code words arrive consecu-
tively from the encoder. In this case, assume that the encoder and the decoder buf-
fers each initially contains exactly six 1-bit code words.

For the fi rst case, the state of the two rate control buffers is shown in Figure 4.34.

As each code word arrives at the encoder buffer, three new bits are added into the buffer,
while two bits are transmitted to the decoder buffer. The amount of data stored in the encoder
buffer increases by one bit per code word. At the decoder buffer, two bits are received from
the encoder while at the same time a 3-bit code word is read from the buffer. The amount of
data stored in the decoder buffer decreases by one bit per code word. Eventually, the amount
of data stored in the buffer is insuffi cient to allow a valid code word to be decoded.

This example is indicative of what happens when the amount of data being generated by
the encoder is greater than the transmission rate for a period of time. The encoder buffer fi lls
and the decoder buffer empties. Buffer overfl ow (at the encoder) and buffer underfl ow (at the
decoder) can occur in this circumstance.

The sum of the bits in the two buffers is indicative of the delay introduced by buffering since

Average delay
(Encoder buffer fullness De

�
� ccoder buffer fullness)

Average codeword lenggth

In this case, the sum of the encoder buffer fullness and decoder buffer fullness is always
constant (12 bits).

In the case of 1 bit code words, the situation is as shown in Figure 4.35

Figure 4.34 Rate control buffer fullness (3-bit code words).

In this case, the decoder buffer fi lls and the encoder buffer empties. Eventually, a
stage is reached where there are insuffi cient bits in the encoder buffer for the next transmis-
sion. Buffer underfl ow has occurred. At the same time, the decoder buffer is approaching
overfl ow.

Once again, the total number of bits in the two buffers at any time remains constant. �

In general, the fullness of the encoder buffer at time, (t � 1), Fe (t � 1), can be
calculated from the buffer fullness at time, t, Fe(t), according to

F t F t R Re e coeff() ()� � � �1

where Rcoeff is the number of coeffi cient bits received from the encoder and R is the
number of bits transmitted to the decoder. A similar expression can be developed for
the decoder buffer fullness Fd namely

F t F t T Rd d coeff() ()� � � �1

where Tcoeff is the number of coeffi cient bits passed to the decoder and R is the num-
ber of bits received from the encoder. It follows that the total buffer fullness at any
time, Ftotal, can be calculated according to

F t F t R Ttotal total coeff coeff() ()� � � �1

This shows that the total buffer fullness can vary slightly with time. However,
because coeffi cients placed into the encoder buffer are eventually read from the de-
coder buffer, it follows that over the long term

E R T()coeff coeff� � 0

The average total buffer fullness is then just the buffer fullness initially. The
likelihood of buffer overfl ow and underfl ow are minimized if each buffer starts half
full. This implies an inherent delay associated with the two buffering processes. The
larger the size of the buffers, the larger is this delay. For two-way video services

Figure 4.35 Rate control buffer fullness (1-bit code words).

4.6. Rate Control 119

120 Chapter 4 Transform Coding

(i.e., videoconferencing) this delay is crucial, as too much delay leads to substantial
diffi culties in communicating. For one-way services like digital television, delay is
less important. However, the larger the buffer, the more the memory required in the
decoder and hence higher the cost. For this reason, some limits are placed on buffer
size. This topic is discussed further when we consider the profi les and levels of the
MPEG-2 video standard in Chapter 6.

Because buffer overfl ow and buffer underfl ow are so undesirable, it is usual
to take steps to ensure that they do not occur. One simplistic approach would be to
use buffer fullness in determining the quantizer step size to use at the encoder. As
the buffer empties, the quantizer step size would be reduced to increase the amount
of data that was produced by the encoder. Similarly, as the buffer became full, the
quantizer step size would be increased to reduce the amount of data produced by
the encoder. In an extreme situation, entire pictures could be dropped completely
to ensure that buffer overfl ow did not occur or dummy data could be transmitted to
prevent buffer underfl ow. Video coding standards support both of these functions,
although it is rare that they would need to be used in a high-quality application like
digital television. They are commonly used in lower rate, lower quality videocon-
ferencing applications. An encoder incorporating this simple rate control strategy is
illustrated in Figure 4.36.

Such an approach, though likely to be successful in avoiding buffer overfl ow
and underfl ow, is likely to produce a poor quality video service because no account
is taken of the characteristics of the human visual system. A good rate controller
would consider the likely impact of quantization on particular blocks of the picture
from the point of view of a human observer.

Figure 4.36 A simple example of rate control.

+
–

Entropy
coding

+
+

Frame
store

Motion
estimation

Motion vectors

Video
input

Bitstream
output

Quantizer

Inverse
quantizer

Discrete
cosine

transform

Invese
discrete cosine

transform

Rate
control
buffer

Buffer
fullness

Characteristics of the human visual system that can be taken into account by an
effective rate controller include

Frequency sensitivity. As discussed in the section on transform coding,
the human visual system is more sensitive to low to medium frequencies
than to high frequencies. If an encoder is generating too much data, it
makes sense to increase the quantizer step size for higher frequency DCT
 coeffi cients fi rst.

Visibility threshold. Coding artifacts are more visible in medium to dark re-
gions of a picture than in brighter regions. Quantizer step size in brighter
regions can therefore be increased faster than in darker regions.

Spatial masking. Coding artifacts are far less visible near sharp lumi-
nance changes (edges) in pictures than in flat regions. Many rate control-
lers attempt to measure the “busyness’’ of a block (i.e., the amount of
edge information) in determining the quantizer step size that should be
employed.

Temporal masking—fast moving objects. Although the human visual system
is good at noticing coding artifacts in stationary objects or objects moving
suffi ciently slowly that the eye can track them, coding artifacts in fast moving
objects are far less perceptible. Blocks containing such objects can be quan-
tized more harshly.

Temporal masking—scene changes. The ability of the human visual system to
notice coding artifacts is signifi cantly reduced after a scene change. The fi rst
picture of the new scene can therefore be quantized more harshly without af-
fecting subjective quality. This is helpful because the amount of data required
to represent the fi rst picture of a new scene can be high due to the ineffective-
ness of motion-compensated prediction in this situation.

Luminance masking of chrominance. The human visual system is less
able to resolve chrominance information than the luminance information.
This is the reason that the two chrominance components are invariably
subsampled prior to coding. The human visual system’s ability to resolve
chrominance is reduced still further at sharp changes in luminance (i.e.,
edges).

The effective exploitation of the characteristics of the human visual system is
essential if a high-quality digital television service is to be achieved at an accept-
able data rate. The topic of how best to do this would form the topic for a book
in its own right. Although video compression standards provide tools that can be
used to exploit human visual system characteristics, the best means of doing so is
not standardized. This allows encoder manufacturers to differentiate their products
in the marketplace.Standards bodies only standardize how decoders are to oper-
ate. This means that any two compliant decoders presented with the identical
compliant bit stream produces an identical decoded video service. However, two
compliant encoders when provided with the same video material to encode at the
same data rate can produce quite different bit streams and quite different decoded

•

•

•

•

•

•

4.6. Rate Control 121

122 Chapter 4 Transform Coding

service qualities depending largely on the effectiveness of their quantization and
rate control strategies.

Over the years, much research has been performed in an attempt to define
an objective algorithm that is able to measure the subjective quality of a video
sequence after coding. The existence of such a measure would greatly ease the
task of optimizing the various video coding tools employed by video encoders.
Given the complexity of the human visual system, it is perhaps not surpris-
ing that this has proved to be an extremely complex task. Peak signal-to-noise
ratio (PSNR), as defined in the previous chapter, is known to be inadequate in
performing this task. However, its computational simplicity together with its
ability to provide reasonable performance comparisons when comparing minor
variations of a particular coding algorithm has meant that it is often used for
this purpose.

4.7. CONCLUSION

This chapter has introduced the coding tools that form the basis of the MPEG-2
video compression algorithm that is used in current digital television broadcasting
standards. Having coded the data, it needs to be transmitted to the decoder in a form
that can be understood. This requires the defi nition of a syntax (basically a set of
communication rules—almost a language) for the bit stream. Video syntax the topic
of Chapter 5.

PROBLEMS

4.1 The pixel vector [35 17 18 44] is to be transformed using the basis functions shown in
Figure 4.1. Calculate the resulting transform coeffi cients. Also perform the inverse trans-
form and hence show that the transform is lossless.

4.2 Consider the set of four basis function shown in Figure 4.1.

(a) Use these basis functions fi rst horizontally and then vertically to obtain the two-
 dimensional transform of the block of data given below.

 60 121 222 247

 105 227 240 172

 74 186 246 206

 184 254 191 212

Comment on the effectiveness of the transform.

(b) Calculate the pixel values that make up the reconstructed picture when only the top
left 2 � 2 transform coeffi cients are retained. Also calculate the peak signal-to-noise
ratio in decibels.

4.3 The horizontal covariance matrix of a picture is shown in Figure 4.37. Calculate the basis
functions of the Karhunen–Loeve transform for this picture. Also determine the percent-
age of energy in each transform coeffi cient.

4.4 The vertical covariance matrix of the same picture used in Problem 4.3 is shown in
 Figure 4.38. Calculate the basis functions of the Karhunen–Loeve transform for this
picture. Also determine the percentage of energy in each transform coeffi cient.

4.5 The horizontal covariance matrix of a picture is shown in Figure 4.39.

Where a has the value 0.95. Calculate the basis functions of the Karhunen–Loeve
 transform for this picture. Compare the result with the basis function of the discrete
cosine transform and comment on the result.

4.6 Explain why the Karhunen–Loeve transform, despite its optimum performance, is not
used in practical image compression systems. Are there any circumstances where the
Karhunen–Loeve transform might represent a practical solution?

4.7 The Karhunen–Loeve transform is known to concentrate energy into the smallest num-
ber of transform coeffi cients. Does this mean that the coeffi cients generated will require
a minimum number of bits to represent them?

4.8 Calculate the basis functions for a 4-point DCT.

4.9 Calculate the basis functions for a 16-point DCT.

4.10 Calculate the two-dimensional 8-point DCT for the picture data shown in Figure 4.40.
Comment on the effectiveness of the DCT in compressing the picture energy into a
relatively small number of transform coeffi cients.

3604344931722932

3449360334483170

3172344836013445

2932317034453598

Figure 4.37 Horizontal covariance matrix for Problem 4.3.

3600312329332566

3123360031222932

2933312235993121

2566293231213598

Figure 4.38 Vertical covariance matrix for Problem 4.4.

1

1

1

1

1

1

234567

23456

22345

32234

43223

65432

aaaaaaa

aaaaaaa

aaaaaaa

aaaaaaa

aaaaaaa

aaaaaaa

1 765432 aaaaaaa

1 54322 aaaaaaa

Figure 4.39 Horizontal covariance matrix for Problem 4.5.

Problems 123

124 Chapter 4 Transform Coding

4.11 Consider the picture data given in Figure 4.40

(a) Perform the two-dimensional DCT and then plot the number of nonzero DCT trans-
form coeffi cients as a function of quantizer step size.

(b) Use the weighting matrix given in Figure 4.20 as part of the quantization process
and again plot the number of nonzero DCT coeffi cients as a function of quantizer
step size.

(c) Comment on your results.

4.12 A block of picture data is processed using a two-dimensional DCT followed by quanti-
zation. The resulting quantized DCT coeffi cients are shown in Figure 4.41. Determine
the (run,level) pairs that would need to be transmitted to the receiver in order to cor-
rectly represent this block.

4.13 If the quantizer step size used to generate the data in Figure 4.41 was 16 and if quantiza-
tion did not include weighting for the human visual system, calculate the value of the
block after reconstruction at the decoder.

4.14 Repeat Problem 4.12 for the quantized DCT data shown in Figure 4.42

152

151

134

147

135

136

172

164

150

146

142

129

140

103

171

187

144

135

158

113

124

82

160

211

145

118

161

113

92

72

150

231

142

147

135

99

103

63

59

236

149

132

158

138

104

148

128

151

147

134

153

136

123

163

149

146

145

142

134

144

131

157

166

149

Figure 4.40 Picture data for Problem 4.10.

000

–1

28 –1 0 0 0

00008 0 00

00012 0 00

00010 0 00

00001 0 00

2 0 00–1 0 00

000–1 0 00

0000–3 0 00

Figure 4.41 Quantized DCT data for Problem 4.12.

4.15 If the quantizer step size used to generate the data in Figure 4.42 was 6 and if quan-
tization did include weighting for the human visual system as defi ned in Figure 4.20,
calculate the value of the block after reconstruction at the decoder.

4.16 A decoder receives the (run,level) pair data shown in Figure 4.43 for a particular block
of data that has been quantized with a two-dimensional DCT and then quantized using
a quantizer step size of 10 with a quantizer that did include weighting for the human
visual system as defi ned in Figure 4.20. Calculate the value of the reconstructed pic-
ture data.

4.17 When motion-compensated prediction is combined with the two-dimensional DCT, it is
quite common for all quantized DCT coeffi cients to take the value zero.

(a) How would such a block be transmitted to the decoder?

(b) In modern video coders, it is quite common for blocks in which all of the quan-
tized transform coeffi cients are zero to not to be transmitted at all. They are called
skipped blocks. How could such a scheme be made to work given the need for
the decoder to be able to unambiguously understand all data transmitted by the
encoder?

4.18 In what circumstances will a motion-compensated DCT encoder work ineffi ciently?
Suggest methods that might be employed to improve performance. What impact will
your improvements have on the way that the encoder and the decoder operate?

4.19 A suffi ciently large rate control buffer can turn a variable bit rate stream into a constant
bit rate stream irrespective of the quantizer used. Explain why such an arrangement is
not suitable for real-world applications.

4.20 A constant bit rate video encoder is used to transmit a test pattern (i.e., a fi xed picture
that remains constant for a long period of time). How will the encoder quantizer and rate
control buffer react to this situation? What techniques are available to overcome any
diffi culties?

00000 0 00

00000 0 00

01000 0 00

00000 0 00

3000 –1 0 0–1

0212 2 –10 10 –1 0 –1

3000 0 00–2

00000 0 00

Figure 4.42 Quantized DCT data for Problem 4.14.

Figure 4.43 Received (run,level) pairs for Problem 4.16.

(0,119)(0,–5)(0,–1)(0,3)(0,–2)(0,–1)(2,3)(0,1)(1,1)(0,1)(1,1)(33,–1)EOB

Problems 125

126 Chapter 4 Transform Coding

4.21 Most practical video encoder systems spend some time (one or more picture times)
analyzing a picture prior to passing it through the motion-compensated DCT process.
Explain what is happening during this time. Why is this process important to the provi-
sion of high-quality video services?

MATLAB EXERCISE 4.1: EIGENVECTORS
OF A PICTURE

In this exercise, we will generate the eigenvectors of a picture and compare the energy
compaction ability with that of the discrete cosine transform. Each section should be
repeated for a typical picture from the video sequences available to you.

Section 1 Average eigenvectors of a picture

Calculate the 8 � 8 horizontal and vertical covariance matrices for the pic-
ture. Note that the matrix should be symmetrical about its leading diagonal.
These matrices represent the average covariance of the picture and not the
exact covariance of each 8 � 8 pixel block within the picture.

Calculate the eigenvectors and corresponding eigenvalues that correspond
to these covariance matrices. Make sure that you know the appropriate or-
der of the eigenvectors so that maximum energy is compacted into a few
 coeffi cients.

Divide the picture into 8 � 8 pixel blocks and apply the horizontal eigenvec-
tors to each row within a block, a horizontal Karhunen–Loeve transform.
Now apply the vertical eigenvectors to the result of the horizontal KLT. The
result is a set of two-dimensional KLT coeffi cients.

Plot the percentage of the total picture energy in the top left 1 � 1, 2 � 2,
3 � 3, … , 8 � 8 two-dimensional KLT coeffi cients.

Repeat the above four steps using the discrete cosine transform instead of
the eigenvectors. Make sure that each of the DCT transform vectors is ortho-
normal. Compare the energy compaction ability of the DCT with that of the
eigenvector approach.

Section 2 Individual eigenvectors for every block in a picture

Repeat Section 1, but this time calculate new covariance matrices (and hence
a new set of horizontal and vertical eigenvectors) for each 8 � 8 pixel block.
This represents the optimum transform for the picture. Remember that this
would imply the transmission of the eight horizontal and the eight vertical
eigenvectors with every block in the picture—a very signifi cant overhead.

In order to get sensible results, the mean of the entire picture (as opposed to
the mean of each block) should be subtracted as part of the calculation of the co-
variance matrix. If the block mean is used, the average value of each block will be
exactly zero, which implies that a basis function for the DC value might not be gen-
erated (or if it is generated have a relatively low position due to the small amount of

•

•

•

•

•

•

energy it represents and thus the small eigenvalue generated). When a transform is
applied to the original picture, in which each block has a nonzero mean, this leads to
 problems because most of the energy is deleted when the less signifi cant transform
coeffi cients are deleted.

Section 3 Eigenvectors of a difference picture
Repeat Section 1 for an interpicture difference picture produced by subtracting a
prediction picture (picture N) from a current picture (picture N � 1). Comment on
the suitability of the DCT for the coding of prediction difference pictures. If time
permits, repeat with a motion-compensated prediction difference picture of the type
generated in MATLAB Exercises 3.3 and 3.4.

MATLAB EXERCISE 4.2: DISCRETE COSINE
TRANSFORM

Despite the fact that it is suboptimal when compared to the Karhunen– Loeve
transform, the discrete cosine transform is used as the basis of transform
 encoding in modern video encoders. The reasons relate to the fact that the basis
functions are fi xed and also that performance is close to that of the KLT. In this
exercise, we will attempt to quantify the performance of the DCT. In perform-
ing this exercise, full use should be made of pictures from the video sequences
available to you.

Section 1 The effect of block size on performance
Calculate the two-dimensional DCT of a picture for a range of block size from
2 � 2 pixels to 64 � 64 pixels. In each case, set all but the top left quarter of the
coeffi cients to zero (i.e., for an 8 � 8 pixel block, set all but the top left 4 � 4 coef-
fi cients to zero). Reconstruct the picture and plot the peak signal-to-noise ratio (in
decibels) versus block size. Also calculate the number of fl oating point operations
required by MATLAB to perform the transform operation for the various block sizes
using the “fl ops’’ command. Comment on the effect of block size on the perfor-
mance of the discrete cosine transform both in terms of operations required and in
terms of the reconstructed picture quality.

Section 2 Quantization of DCT coeffi cients

Calculate the two-dimensional DCT of a picture using a block size of 8 � 8
pixels. Quantize the DCT coeffi cients with a linear quantizer with central
dead zone of the type shown in Figure 4.18 for a range of quantizer step sizes
and then reconstruct. Calculate the PSNR in decibels for each picture and
also examine the quality of the reconstructed picture. Comment on the type
of artifacts that are introduced as the quantizer step size increases. Also cal-
culate the entropy of the DCT coeffi cients (i.e., without the run length coding
described in the section on transform encoding) in each case and hence plot a
rate distortion curve for the transform encoder.

•

MATLAB Exercise 4.2: Discrete Cosine Transform 127

128 Chapter 4 Transform Coding

Repeat the previous part, but in this case always represent the DC DCT coef-
fi cient as a fi xed length 8 bit number. This is usually done when a picture is
being transform coded without the use of temporal prediction. Comment on
the advantages of this approach.

MATLAB EXERCISE 4.3: DISCRETE COSINE
TRANSFORM WITH MOTION COMPENSATION

In this MATLAB Exercise we will study the performance of the discrete cosine trans-
form when combined with motion-compensated prediction. In performing this exercise,
full use should be made of pictures from the video sequences available to you.

Section 1 The effect of block size on performance
Calculate the motion-compensated prediction of a picture from a picture that occurs
temporally earlier in the sequence. Hence calculate the motion-compensated predic-
tion difference.

Calculate the two-dimensional DCT of the motion-compensated prediction
difference for a range of block size from 2 � 2 to 64 � 64 pixels. In each case,
set all but the top left quarter of the coeffi cients to zero (i.e., for an 8 � 8 pixel
block, set all but the top left 4 � 4 coeffi cients to zero). Reconstruct the picture
(including reading the motion-compensated prediction) and plot the peak signal-
to-noise ratio (in decibels) versus block size. Also calculate the number of fl oating
point operations required by MATLAB to perform the transform operation for the
various block sizes using the “fl ops’’ command. Comment on the effect of block
size on the performance of the discrete cosine transform both in terms of operations
required and in terms of the reconstructed picture quality.

Section 2 Quantization of DCT coeffi cients

Calculate the two-dimensional DCT of the motion-compensated prediction
difference using a block size of 8 � 8 pixels. Quantize the DCT coeffi cients
with a linear quantizer with central dead zone of the type shown in Figure
4.18 for a range of quantizer step sizes and then reconstruct. Calculate the
PSNR in decibels for each picture and also examine the quality of the re-
constructed picture. Comment on the type of artifacts that are introduced
as the quantizer step size increases. Also calculate the entropy of the DCT
coeffi cients (i.e., without the run length coding described in the section on
transform encoding) in each case and hence plot a rate-distortion curve for
the transform encoder.

•

•

129

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 5

Video Coder Syntax

5.1. INTRODUCTION

The previous two chapters have dealt with the signal processing tools that are used
to compress the amount of information needed to represent video material. The
result of the signal processing is a series of primarily Huffman code words that
represent the information that needs to be transmitted to the decoder in order to
allow the reconstruction of the video service. Examples of the information that needs
to be transmitted include quantized DCT coeffi cients represented as (run,level) pairs,
motion vectors and quantizer step sizes. In addition, there is other information that
needs to be transmitted to the decoder to allow successful decoding. This includes
picture resolution (i.e., pixels per line and lines per picture), interlace structure,
picture rate, and data rate.

This information needs to be delivered to the decoder in a form that the decoder
can understand. This implies careful formatting and ordering to ensure that the in-
formation can be correctly interpreted when received by the decoder. In this chapter,
we will look at the structure of the information that needs to be transmitted. This is
followed by a consideration of the aspects that go to make a suitable syntax. Finally,
we design a simple video encoder syntax that incorporates a number of the features
found in the full syntax for MPEG-2 video. A knowledge of the fundamentals of
video coder syntax greatly simplifi es the process of understanding the complete
MPEG-2 video standard, which is discussed in the following chapter.

5.2. REPRESENTATION OF CHROMINANCE
INFORMATION

At its most general, each pixel in an image would be represented by a value for each
of the primary colors that are red (R), green (G), and blue (B). However, as explained
in Chapter 1, it is more usual to represent these three signals by a luminace (Y) signal
that represents the gray scale level of the image and two chrominance signals (U and
V). These are calculated according to

Y � 0.30R � 0.59G � 0.11B

130 Chapter 5 Video Coder Syntax

U
B Y

�
�

2 03.

V
R Y

�
�

1 14.

If the R, G, and B components are sampled at CCIR Recommendation 601
resolution (i.e., 720 � 576 pixels at 25 Hz or 720 � 480 pixels at 30 Hz) then it is
possible to have Y, U, and V components also represented at this resolution. How-
ever, the information content of the chrominance information is considerably less
than that of the luminance information and thus some subsampling is possible.
In CCIR Recommendation 601, the chrominance components are sampled hori-
zontally at half the rate of the luminance information. The vertical chrominance
sampling rate remains unchanged. This is known as the 4:2:2 video format and is
shown in Figure 5.1.

The high chrominance accuracy of the 4:2:2 video format is important for spe-
cialized applications such as chromakeying.1 However, for distribution television ap-
plications, further chrominance subsampling in the vertical direction is possible.
The video format used in digital video broadcasting applications is usually the 4:2:0
format. The location of the luminance and chrominance pixels in the 4:2:0 video
format are shown in Figure 5.2.

There is now exactly one pair of chrominance pixels for every four luminance
pixels. Further, the chrominance pixels are located half way between each pair of
horizontal lines. This can be achieved using a simple fi ltering procedure. This is
explored further in a MATLAB exercise at the end of this chapter.

Figure 5.3 shows the position of the luminance and chrominance pixels in each
fi eld of an interlaced picture in 4:2:0 format.

1An example of chromakeying is when a reporter stands in front of a blue screen that is replaced during
postprocessing by some active video material. This is a common practice in the television industry.

Figure 5.1 Luminance and chrominance positions in a 4:2:2 video picture.

Luminance pixel (Y)

Chrominance pixels (U,V)

5.2. Representation of Chrominance Information 131

Figure 5.2 Luminance and chrominance positions in a 4:2:0 video picture.

Luminance pixel (Y)

Chrominance pixels (U,V)

Figure 5.3 Vertical and temporal position of luminance and chrominance pixels in an interlaced
4:2:0 picture.

Top
field

Bottom
field

Time

132 Chapter 5 Video Coder Syntax

Note that in this case, the chrominance pixels do not lie vertically half way be-
tween the luminance pixels in a fi eld. This approach means that the location of the
chrominance pixels does not change depending upon whether the picture is coded as
a whole (i.e., both fi elds at once) or one fi eld at a time.

We saw in previous chapters that motion-compensated prediction is usually per-
formed on blocks of size 16 � 16 pixels while the DCT is performed on blocks of 8 � 8
pixels. Using the 4:2:0 video format implies that for each 16 � 16 block of luminance
pixels, there will be one 8 � 8 block of each of the two chrominance pixels. There will
therefore be a total of six 8 � 8 pixel blocks, four luminance (Y0, Y1, Y2, and Y3), and two
chrominance (U and V), to be coded using the DCT as shown in Figure 5.4. Each 8 � 8
group of pixels (whether luminance or chrominance) is usually called a block.

5.3. STRUCTURE OF A VIDEO BIT STREAM

Video encoder syntax is made up of a hierarchical tree of layers starting with the
sequence layer at the top and fi nishing at the block layer at the bottom. This is shown
in Figure 5.5.

So far, we have considered how blocks of quantized DCT coeffi cients are zig-zag
scanned and then transmitted in a bit stream. We now study how we move from the
coding of blocks of picture data to the coding of an entire sequence. For simplicity,
we start at the level at which we are familiar, namely the block level, and then move
up to the high levels in the hierarchy.

5.3.1. The Block Layer

A video encoder output bit stream is generated in a bottom up manner starting
from the simplest element namely a Huffman code word that represents a single
(run,coeffi cient) pair or, as they are more usually referred to in the MPEG standards,
a (run,level) pair corresponding to a single nonzero DCT coeffi cient. A number of
these (run,level) pairs, together with an end of block (EOB) code word, combine to
represent an 8 � 8 block of quantized DCT coeffi cients. This structure is usually
referred to as a block.

5.3.1.1. Quantization of DCT Coefficients

With the exception of the DC coeffi cient in intracoded macroblocks (which is dis-
cussed a little later), we assume that quantization is carried out according to the

Figure 5.4 Blocks in a macroblock.

Y 0 Y 1

Y 2 Y 3

U V

formula given below.

ˆ ,
,

C i j
C i j() ()

�
� �8 2 quantizer_scale

where C(i, j) is the original DCT coeffi cient value, Ĉ (i, j) is the quantized DCT coef-
fi cient value rounded to the nearest integer, and quantizer_scale is a value extracted
from the bit stream that indicates the current quantizer step size.

5.3.1.2. Coding of (run,level) Pairs of DCT Coefficients

Each of the (run,level) pairs associated with each nonzero DCT coeffi cient is en-
coded using a variable length code word and this leads to a problem. Runs of zeros
are in the range 0–63 (at total of 64 possibilities) while the level can be in the
range ± 2047 (4094 possibilities2) for the video standard used for digital television

2 A level of 0 cannot occur as all zero coeffi cients would be incorporated in to the run part of the
(run,level) pair.

5.3. Structure of a Video Bit Stream 133

Figure 5.5 Bit-stream structure.

Sequence

Picture Picture PicturePicturePicture

Slice Slice SliceSliceSlice

Macroblock Macroblock MacroblockMacroblockMacroblock

Block Block BlockBlockBlock

134 Chapter 5 Video Coder Syntax

broadcasting. This leads to a total of 262,016 (64 � 4094) different variable length
code words. Hardware capable of decoding such a huge number of variable length
code words would be excessively complex. On the contrary, using fi xed length code
words would require at least 18 bits per code word (6 bits for run and 12 bits for level
information in 2’s complement form), and this is also highly ineffi cient. A com-
promise approach is therefore employed. Variable length code words are used for
more common (run,level) pairs, with fi xed length code words used for the remaining
majority (in terms of number but not in terms of likelihood) of (run,level) pairs. Of
course, the decoder needs to be able to determine whether a particular code word
is from the variable or fi xed length code word set. In our syntax, each fi xed length
code word is therefore preceded by a 6-bit ESCAPE code that is unique among the
variable length code words. Upon receipt of an escape code, the decoder knows that
the next 18 bits carry a fi xed length code specifying the (run,level) pair.

A typical set of variable length codes for the coding of (run,level) pairs is given
in Table 5.1, whereas the fi xed length code words that apply only for those (run,level)
pairs not included in Table 5.1 are shown in Figure 5.6. The code words in Table 5.1
deal with both positive and negative level values. In the case of a positive value of
level, the last bit of the code word (indicated by an “x”) is a 0 whereas for a negative
value of level it is a 1. Thus a (0,�1) (run,level) pair is indicated by the code word 110
whereas a (0,�1) (run,level) pair is indicated by the code word 111.

For the variable length code words, as might be intuitively expected, the length
of the code word increases as either the length of the run of zeros or the absolute level
increases as each of these makes that particular (run,level) pair less likely. No valid
variable length code word is ever a prefi x for any other valid code word as expected with
Huffman codes. The longest code word in the variable length code words is of length 17
bits compared to the 24 bits required when an ESCAPE code word is needed.

5.3.1.3. Block with All Zero DCT Coefficients

Successful motion-compensated prediction combined with quantization of the re-
sulting DCT coeffi cients can often lead to a situation where all of the DCT coef-
fi cients in a block are quantized to zero. Using the variable length codes shown in
Table 5.1, such a block would be coded with an end of block code word that requires
two bits. A more effi cient approach is to simply not transmit any information for this
block—such a block is called a skipped block. However, this immediately leads to
a problem, because the decoder needs to know which blocks have been coded and
which blocks have been skipped. This is achieved by placing information in the
header of each macroblock that indicates which blocks within the macroblock are
actually coded (i.e., contain at least one nonzero quantized DCT coeffi cient).

5.3.2. The Macroblock Layer

A macroblock comprises a 16 � 16 pixel block of luminance pixels together with
the associated chrominance information. For the 4:2:0 video format, there would

5.3. Structure of a Video Bit Stream 135

Table 5.1 Table of variable length codes for the coding of (run,level) pairs of DCT
coefficients.

Run Level Code word Run Level Code word

0 1 11x 0 4 0000 110x
1 1 011x 1 4 0000 0011 00x
2 1 0101 x 2 4 0000 0001 0100 x
3 1 0011 1x 3 4 0000 0000 1001 1x
4 1 0011 0x 0 5 0010 0110 x
5 1 0001 11x 1 5 0000 0001 1011 x
6 1 0001 01x 2 5 0000 0000 1010 0x
7 1 0001 00x 0 6 0010 0001 x
8 1 0000 111x 1 6 0000 0000 1011 0x
9 1 0000 101x 0 7 0000 0010 10x

10 1 0010 0111 x 1 7 0000 0000 1010 1x
11 1 0010 0011 x 0 8 0000 0001 1101 x
12 1 0010 0010 x 1 8 0000 0000 0011 111x
13 1 0010 0000 x 0 9 0000 0001 1000 x
14 1 0000 0011 10x 1 9 0000 0000 0011 110x
15 1 0000 0011 01x 0 10 0000 0001 0011 x
16 1 0000 0010 00x 1 10 0000 0000 0011 101x
17 1 0000 0001 1111 x 0 11 0000 0001 0000 x
18 1 0000 0001 1010 x 1 11 0000 0000 0011 100x
19 1 0000 0001 1001 x 0 12 0000 0000 1101 0x
20 1 0000 0001 0111 x 1 12 0000 0000 0011 011x
21 1 0000 0001 0110 x 0 13 0000 0000 1100 1x
22 1 0000 0000 1111 1x 1 13 0000 0000 0011 010x
23 1 0000 0000 1111 0x 0 14 0000 0000 1100 0x
24 1 0000 0000 1110 1x 1 14 0000 0000 0011 001x
25 1 0000 0000 1110 0x 0 15 0000 0000 1011 1x
26 1 0000 0000 1101 1x 1 15 0000 0000 0001 0011 x
27 1 0000 0000 0001 1111 x 0 16 0000 0000 0111 11x
28 1 0000 0000 0001 1110 x 1 16 0000 0000 0001 0010x
29 1 0000 0000 0001 1101 x 0 17 0000 0000 0111 10x
30 1 0000 0000 0001 1100 x 1 17 0000 0000 0001 0001 x
31 1 0000 0000 0001 1011 x 0 18 0000 0000 0111 01x
0 2 0100 x 1 18 0000 0000 0001 0000 x
1 2 0001 10x 0 19 0000 0000 0111 00x
2 2 0000 100x 0 20 0000 0000 0110 11x
3 2 0010 0100 x 0 21 0000 0000 0110 10x
4 2 0000 0011 11x 0 22 0000 0000 0110 01x
5 2 0000 0010 01x 0 23 0000 0000 0110 00x
6 2 0000 0001 1110 x 0 24 0000 0000 0101 11x
7 2 0000 0001 0101 x 0 25 0000 0000 0101 10x
8 2 0000 0001 0001 x 0 26 0000 0000 0101 01x

(continued)

136 Chapter 5 Video Coder Syntax

be four luminance blocks and two chrominance blocks (one of U pixels and one
of V pixels) in each macroblock. This was shown in Figure 5.4. Because motion-
compensated prediction is performed on 16 � 16 pixel blocks, each macroblock also
contains a motion vector if motion-compensated prediction is employed.

Table 5.1 (Continued)

Run Level Code word Run Level Code word

9 2 0000 0000 1000 1x 0 27 0000 0000 0101 00x
10 2 0000 0000 1000 0x 0 28 0000 0000 0100 11x
11 2 0000 0000 0001 1010 x 0 29 0000 0000 0100 10x
12 2 0000 0000 0001 1001 x 0 30 0000 0000 0100 01x
13 2 0000 0000 0001 1000 x 0 31 0000 0000 0100 00x
14 2 0000 0000 0001 0111 x 0 32 0000 0000 0011 000x
15 2 0000 0000 0001 0110 x 0 33 0000 0000 0010 111x
16 2 0000 0000 0001 0101 x 0 34 0000 0000 0010 110x
0 3 0010 1x 0 35 0000 0000 0010 101x
1 3 0010 0101 x 0 36 0000 0000 0010 100x
2 3 0000 0010 11x 0 37 0000 0000 0010 011x
3 3 0000 0001 1100 x 0 38 0000 0000 0010 010x
4 3 0000 0001 0010 x 0 39 0000 0000 0010 001x
5 3 0000 0000 1001 0x 0 40 0000 0000 0010 000x
6 3 0000 0000 0001 0100 x

End of block 10 ESCAPE 0000 01

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Figure 5.6 Table of fi xed length codes for the coding of (run,level) pairs of DCT coeffi cients.
© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

0000 01
Run Code word

0
1
2
...
…
…
...
...
63

0000 00
0000 01
0000 10

...
…
…
...
...

1111 11

Level Code word

-2047
-2046
-2045

…
...
…
-2
-1
0

+1
+2
...
…
…

+2045
+2046
+2047

1000 0000 0001
1000 0000 0010
1000 0000 0011

…
...
…

1111 1111 1110
1111 1111 1111

Not allowed
0000 0000 0001
0000 0000 0010

...
…
…

0111 1111 1101
0111 1111 1110
0111 1111 1111

Escape code word

5.3.2.1. Macroblock Type

Each macroblock can be coded in one of the following three modes: intramode, in-
termode, or motion-compensated prediction mode. The mode is used to inform the
decoder which type of macroblock is being transmitted. In intramode, the macro-
block is coded without temporal prediction from an earlier picture. For intermode,
the macroblock is coded using temporal prediction by the macroblock in exactly
the same position in an earlier (prediction) picture. In the motion-compensated
prediction mode, the macroblock is coded using temporal prediction with a mac-
roblock-sized block of data in an earlier (prediction) picture indicated by a motion
vector.

Intermode is simply motion-compensated mode with a motion vector of (0,0).
However, indicating intermode means that there is no requirement to transmit the
motion vector. This results in an overall saving in the total number of bits required
to represent the macroblock.

It is also possible to change the value of the quantizer step size at the macro-
block level. Again, the decoder needs to know that a new quantizer is about to be
specifi ed. All of this information is contained in the macroblock header in a fi eld
called the macroblock type. An example of a typical macroblock type fi eld is shown
in Table 5.2.

The macroblock type information is variable length coded to minimize the over-
head associated with its transmission. Because every block in an intracoded block
requires at least a DC DCT coeffi cient, every block in an intra macroblock requires
coding. In an intercoded macroblock, if all of the quantized DCT coeffi cients in each
block are zero then the macroblock does not need to be transmitted—such a macro-
block is called a skipped macroblock. Any skipped macroblocks are decoded as the
reconstructed macroblock in the same spatial location in the reference picture. As
with skipped blocks, there is a need to signal to the decoder the location of the cur-
rent macroblock in case one or more of the macroblocks that immediately precedes
it have been skipped. How this is achieved is described in detail a little later.

5.3.2.2. Macroblock Address

As for skipped blocks, it is also possible for a video encoder to skip an entire macrob-
lock. In this case, the macroblock is assumed to have been encoded using interpicture
prediction (i.e., the macroblock is predicted by the macroblock of information in the

Table 5.2 Macroblock type field.

Macroblock mode Same quantizer New quantizer Not coded

Intra 0001 1 0000 01 Not allowed
Inter 01 0000 1 Skipped
Motion compensated 1 001 0010 0

5.3. Structure of a Video Bit Stream 137

138 Chapter 5 Video Coder Syntax

same position in the reference picture) and all quantized DCT coeffi cients from this
prediction difference are zero. The result is that the reconstructed macroblock in
the current picture is simply the reconstructed macroblock in the same position in
the reference picture. As with skipped blocks, the decoder needs to be able to detect
when a macroblock has been skipped. One way that this could be achieved would be
to number macroblocks from left to right across a picture. For a CCIR Recommen-
dation 601 picture with 704 pixels/lines, there would be 44 macroblocks in a row of
macroblocks thus requiring a 6-bit address fi eld in the macroblock header.

In fact rather than transmitting the macroblock address, it is more usual to trans-
mit the difference between the current macroblock and the last macroblock that was
transmitted. This is called the macroblock address increment. Thus if the current mac-
roblock is macroblock 3 and the last transmitted macroblock was macroblock 2 then
the macroblock address increment would have value 1. Not all macroblock address
increments are equally likely, and so variable length coding is once again possible.
Table 5.3 shows typical variable length code words for the macroblock address incre-
ment. It is clear that small macroblock address increments are the most probable.

The macroblock_escape code word indicates that the macroblock address in-
crement is greater than 33. It causes the value 33 to be added each time it occurs.
Thus a macroblock address increment of 67 would be represented by the code word
shown in Figure 5.7.

Table 5.3 Typical Huffman codes for macroblock address increment.

Macroblock
address increment Code word

Macroblock address
increment Code word

1 1 18 0000 0101 01
2 011 19 0000 0101 00
3 010 20 0000 0100 11
4 0011 21 0000 0100 10
5 0010 22 0000 0100 011
6 0001 1 23 0000 0100 010
7 0001 0 24 0000 0100 001
8 0000 111 25 0000 0100 000

9 0000 110 26 0000 0011 111
10 0000 1011 27 0000 0011 110
11 0000 1010 28 0000 0011 101
12 0000 1001 29 0000 0011 100
13 0000 1000 30 0000 0011 011
14 0000 0111 31 0000 0011 010
15 0000 0110 32 0000 0011 001
16 0000 0101 11 33 0000 0011 000
17 0000 0101 10 macroblock_escape 0000 0001 000

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

This is another example of a modifi ed Huffman code.

5.3.2.3. Coding of Motion Vectors

Each macroblock that is coded in motion-compensated mode requires a motion vec-
tor to be included in its header information. This motion vector indicates the posi-
tion in the reference picture of the macroblock that is to be used to predict the cur-
rent macroblock. A positive value of the horizontal component of the motion vector
means that the prediction is made from pixels in the reference picture that lie to the
right of the pixels that are being predicted. Similarly, a positive value of the vertical
component of the motion vector means that the prediction is made from pixels in the
reference picture that lie below the pixels that are being predicted.

For a motion vector range of �16 to �15 both horizontally and vertically, fi ve
bits would be needed to represent each motion vector—a total of 10 bits per mac-
roblock. Fortunately, motion vector fi elds are often highly correlated. Figure 5.8

Figure 5.7 Code word for a macroblock address increment of 67.

10000 0001 000 0000 0001 000

macroblock_escape macroblock_escape macroblock address increment = 1

5.3. Structure of a Video Bit Stream 139

Figure 5.8 Motion vector fi eld for fi rst picture of “Mobile and Calendar” sequence.

140 Chapter 5 Video Coder Syntax

shows the motion vectors for a picture of the “Mobile and Calendar” sequence. The
similarity in nearby motion vectors is clearly apparent. This is especially true in the
calendar and also in the wallpaper background.

Figure 5.9 shows the histogram for the horizontal and vertical component
of each motion vector. There are two dominant motions in the horizontal direc-
tion (�4 pixels and �5 pixels) corresponding to the motion in the background
wallpaper. In the vertical direction, there is a pair of dominant motions close to
zero (�1 pixels and 0 pixels) again corresponding to motion in the background
and another dominant motion (at �6 pixels) corresponding to the motion of the
calendar.

It is clear that there is strong correlation between nearby motion vectors. This
correlation is exploited using lossless one-dimensional horizontal prediction of each
component of the motion vector. Thus each component of the motion vector is pre-
dicted by the identical component of the motion vector immediately to its left and
only the prediction difference is sent to the decoder. The fi rst pixel is transmitted
without prediction. If the fi rst motion vector in a row was (�3, �2) and the second
motion vector was (�2, �3), then the prediction difference that would be sent is
(�2 � �3, �3 � �2) � (�1, �1). Histograms of the prediction difference for the

Figure 5.9 Histogram of horizontal and vertical motion components for Figure 5.8.

–8 –4 0 4 8
0

200

400

600

800

1000

Horizontal motion (pixels)

N
um

be
r

–8 –4 0 4 8
0

200

400

600

800

Vertical motion (pixels)

N
um

be
r

motion vector fi eld shown in Figure 5.8 are shown in Figure 5.10. Note that for
motion vector components in the range of ±8, prediction differences will be in the
range of ±16.

It is clear from Figure 5.10 that the prediction differences are closely packed
around zero. A worthwhile saving therefore results if the prediction differences are
coded using a variable length Huffman code. For the example just completed, the
number of bits per motion vector component is reduced from 4 bits to approximately
2 bits—a saving of 50%.

A typical Huffman code for the motion vector prediction differences in the
range of ±16 is shown in Table 5.4. Again, the last bit of the variable length code
word indicates the sign of the motion vector prediction difference. In the case of a
positive difference, the last bit of the code word (indicated by an “x”) is 0 whereas for
a negative value of the difference is 1. As expected, the code word becomes longer as
the absolute size of the prediction difference increases.

5.3.2.4. Coding of DC Coefficients in Intramacroblocks

In intracoded macroblocks, the DC DCT coeffi cient always needs to be coded. In ad-
dition, the DC value of an intracoded block is particularly important as it represents
the average luminance or chrominance value of the block. Signifi cant quantization

5.3. Structure of a Video Bit Stream 141

Figure 5.10 Histogram motion vector prediction differences for Figure 5.8.

–16 –8 0

0

8 16
0

200

400

600

800

1000

Horizontal motion (pixels)

N
um

be
r

–16 –8

0

8 16
0

200

400

600

800

1000

Vertical motion (pixels)

N
um

be
r

142 Chapter 5 Video Coder Syntax

of this coeffi cient would be readily apparent in the decoded picture because it would
lead to sharp intensity changes between adjacent blocks. These would show up as
blocking artifacts (i.e., block boundaries would be clearly visible in the decoded
picture). For this reason, the DC coeffi cient in intramacroblocks is not coded using
the quantizer that is applied to the other coeffi cients in the block. Instead, a quantizer
step size of 8 is always applied. Thus a DC coeffi cient of 601 would be quantized to a
value of 75 irrespective of the quantizer used for the remainder of the macroblock.

In fact, the intra DC coeffi cients are coded separately from the other DCT
coeffi cients that are coded as (run,level) pairs as shown in Table 5.1. We have seen
already that there is strong correlation between nearby pixels in images. For this
reason, there is also strong correlation between the DC DCT coeffi cients of nearby
blocks within a picture because the DC value represents the average luminance or
chrominance value of that block in the picture. Figure 5.11 shows the average
luminance value of each 8 � 8 pixel block within the fi rst picture of the “Mobile and
Calendar” sequence.

An approach similar to that employed to code motion vectors can be used to
code the DC DCT coeffi cients in intramacroblocks. For simplicity, prediction is
made based on blocks in the current macroblock or from the previous macroblock
as shown in Table 5.5. The block nomenclature shown in Figure 5.4 is used in
Table 5.5.

When this lossless prediction is applied to the luminance data of the fi rst pic-
ture of the “Mobile and Calendar” sequence, the prediction differences produce the

Table 5.4 Typical motion vector prediction difference Huffman codes.

Motion vector prediction difference Code word

0 1
1 01x
2 001x
3 0001 x
4 0000 11x
5 0000101x
6 0000 100x
7 0000 011x
8 0000 0101 1x
9 0000 0101 0x
10 0000 0100 1x
11 0000 0100 01x
12 0000 0100 00x
13 0000 0011 11x
14 0000 0011 10x
15 0000 0011 01x
16 0000 0011 00x

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

histogram shown in Figure 5.12. It is clear that some saving is possible using an ap-
propriate variable length Huffman code. Note also that blocks used for prediction are
all within the current row of macroblocks. This means that a row of macroblocks can
be correctly decoded even if the previous row of macroblocks could not be decoded
due to transmission errors, for example. The predictor is reset to 1024 (128 � 8) at
the beginning of each row of macroblocks.

In fact the difference information is coded using two code words. The fi rst
code word specifi es the length in bits of the difference (as shown in Table 5.6)
whereas the second code word specifi es the actual value (as shown in Table 5.7).
Note that the code words used for length in bits are different for luminance and
chrominance.

Table 5.5 Prediction of DC DCT coefficient in intramacroblocks.

Block Prediction block

Y0 Y3 in previous macroblock
Y1 Y0 in current macroblock
Y2 Y1 in current macroblock
Y3 Y2 in current macroblock
U U in previous macroblock
V V in previous macroblock

5.3. Structure of a Video Bit Stream 143

Figure 5.11 Histogram of average luminance values.

0 64 128 192 255

10

0

20

30

40

50

60

70

80

90

100

Average block luminance value

N
um

be
r

144 Chapter 5 Video Coder Syntax

Thus a prediction difference of 29 in the luminance DC DCT value would be
represented by the code words given in Figure 5.13.

Figure 5.12 Histogram of DC block differences.

–255 –128 0 128 255
0

50

100

150

200

250

300

350

400

Block difference value

N
um

be
r

Table 5.6 Variable length codes for the differential DC length.

Absolute value of
differential DC Length (bits)

VLC code
(luminance)

VLC code
(chrominance)

0 0 100 00
1 1 00 01
2–3 2 01 10
4–7 3 101 110
8–15 4 110 1110
16–31 5 1110 1111 0
32–63 6 1111 0 1111 10
64–127 7 1111 10 1111 110
128–255 8 1111 110 1111 1110

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Figure 5.13 Calculation of luminance DC DCT code-word.

111011110

(Actual value +29) (Absolute value in range 16–31)

5.3.2.5. Coded Block Pattern

As indicated when we were considering the block level, it is not necessary to code
every block of DCT coeffi cients within a macroblock because some blocks, after
quantization, will have all zero coeffi cients. In this case, the block is skipped. The
decoder needs to know which blocks within a macroblock have been skipped. This
is signaled in the macroblock header by a fi eld called the coded block pattern (CBP).
The value of the CBP is determined as follows with reference to Figure 5.4: If a block
requires coding, that block is given the value 1 in the CBP. If the block is skipped,
that block is given the value 0. Then

CBP � 32 � Y1 � 16 � Y2 � 8 � Y3 � 4 � Y4 � 2 � U � 1 � V

Thus, if all blocks needed to be coded then CBP would take the value 63 whereas
CBP would take the value 60 if only the luminance blocks are needed to be coded. Some
values of CBP are more likely than others, and so a saving can be achieved using
Huffman coding. A typical Huffman code table for the CBP is shown in Table 5.8. Note
that the CBP takes values in the range 1–63. A CBP of zero would imply either a skipped
macroblock (i.e., no data is transmitted about the macroblock) or a motion-compensated
not coded macroblock type (see Table 5.2) in which case a CBP is not transmitted.

These Huffman code words have been developed based on the statistics of real
coded video sequences. The shortest code word and thus the highest probability
symbol (CBP � 60) corresponds to the case of all four luminance blocks coded but

Table 5.7 Value of differential DC.

Differential DC Length (bits) Code word

�255 to �128 8 00000000 to 01111111
�127 to �64 7 0000000 to 0111111
�63 to �32 6 000000 to 011111
�31 to �16 5 00000 to 01111
�15 to �8 4 0000 to 0111
�7 to �4 3 000 to 011
�3 to �2 2 00 to 01
�1 1 0
0 0
1 1 1
2–3 2 10 to 11
4–7 3 100 to 111
8–15 4 1000 to 1111
16–31 5 10000 to 11111
32–63 6 100000 to 111111
64–127 7 1000000 to 1111111
128–255 8 10000000 to 11111111

© This Table is based on AS/NZS 13818.2:2002. Permission to
reprint has been granted by SAI Global Ltd. The standard can
be purchased online at http://www.sai-global.com.

5.3. Structure of a Video Bit Stream 145

146 Chapter 5 Video Coder Syntax

Table 5.8 Huffman code words for coded block pattern.

Coded block
pattern

Pattern[i]

Code wordY0 (i�0) Y1 (i�1) Y2 (i�2) Y3 (i�3) U (i�4) V (i�5)

1 1 0101 1
2 1 0100 1
3 1 1 0011 01
4 1 1101
5 1 1 0010 111
6 1 1 0010 011
7 1 1 1 0001 1111
8 1 1100
9 1 1 0010 110

10 1 1 0010 010
11 1 1 1 0001 1110
12 1 1 1001 1
13 1 1 1 0001 1011
14 1 1 1 0001 0111
15 1 1 1 1 0001 0011
16 1 1011
17 1 1 0010 101
18 1 1 0010 001
19 1 1 1 0001 1101
20 1 1 1000 1
21 1 1 1 0001 1001
22 1 1 1 0001 0101
23 1 1 1 1 0001 0001
24 1 1 0011 11
25 1 1 1 0000 1111
26 1 1 1 0000 1101
27 1 1 1 1 0000 0001 1
28 1 1 1 0111 1
29 1 1 1 1 0000 1011
30 1 1 1 1 0000 0111
31 1 1 1 1 1 0000 0011 1
32 1 1010
33 1 1 0010 100
34 1 1 0010 000
35 1 1 1 0001 1100
36 1 1 0011 10
37 1 1 1 0000 1110
38 1 1 1 0000 1100
39 1 1 1 1 0000 0001 0
40 1 1 1000 0

41 1 1 1 0001 1000
(continued)

with both chrominance blocks skipped. Next most likely are macroblocks containing
just a single coded luminance block (CBP � 32, 16, 8, or 4) followed by macroblocks
containing just two coded luminance blocks. It is clear that skipped blocks occur
regularly in coded video sequences.

5.3.2.6. Summary

The macroblock header contains a large amount of information required to allow
the decoder to correctly interpret the information contained in the macroblock. The
information contained in the macroblock header is a function of the type of macro-
block that is being coded. As shown in Table 5.2, there are seven valid macroblock
types.3 The format of each of these macroblock types is shown in Figure 5.14. For

3 As we shall see in the next chapter, there are a considerably larger number of macroblock types
available in the compression standard used for digital video broadcasting.

Table 5.8 (Continued)

Coded block
pattern

Pattern[i]

Code wordY0 (i�0) Y1 (i�1) Y2 (i�2 Y3 (i�3) U (i�4) V (i�5)

42 1 1 1 0001 0100
43 1 1 1 1 0001 0000
44 1 1 1 0111 0
45 1 1 1 1 0000 1010
46 1 1 1 1 0000 0110
47 1 1 1 1 1 0000 0011 0
48 1 1 1001 0
49 1 1 1 0001 1010
50 1 1 1 0001 0110
51 1 1 1 1 0001 0010
52 1 1 1 0110 1
53 1 1 1 1 0000 1001
54 1 1 1 1 0000 0101
55 1 1 1 1 1 0000 0010 1
56 1 1 1 0110 0
57 1 1 1 1 0000 1000
58 1 1 1 1 0000 0100
59 1 1 1 1 1 0000 0010 0
60 1 1 1 1 111
61 1 1 1 1 1 0101 0
62 1 1 1 1 1 0100 0
63 1 1 1 1 1 1 0011 00

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

5.3. Structure of a Video Bit Stream 147

148 Chapter 5 Video Coder Syntax

intramacroblocks, each block is always coded as it will contain at least a DC DCT
coeffi cient. In motion-compensated macroblocks, MV Diff (H) and MV Diff (V) are
the horizontal and vertical difference motion vectors respectively.

5.3.3. The Slice Layer

Macroblocks merge, commonly, to form a slice with a slice containing a complete
row of macroblocks as shown in Figure 5.15. In this case, n macroblocks in the same
row merge to form a slice.

Each slice needs a header. One important task of the slice header is to allow for
decoder resynchronization in case the decoder reaches a stage where it is unable to

Figure 5.14 Format of various macroblock types.

MB
type

Coded
block
pattern

01

Macroblock
address

increment

Block data for selection of
Y 1, Y 2, Y 3, Y 4, U, and V as indicated by CBP

Coded
block
pattern

MB
type

MB
type

0001 1

Intramacroblock with same quantizer

Macroblock
address

increment

0001 01

Intramacroblock with new quantizer

Macroblock
address

increment

Block data for all of
Y 1, Y 2, Y 3, Y 4, U, and V

New
quantizer

(5 bits)

Intermacroblock with same quantizer

MB
type

Block data for all of
Y 1, Y 2, Y 3, Y 4, U, and V

0000 1

Intermacroblock with new quantizer

Macroblock
address

increment

Block data for selection of
Y 1, Y 2, Y 3, Y 4, U, and V as indicated by CBP

1

Motion-compensated macroblock with same quantizer—coded

Macroblock
address

increment

Block data for selection of
Y 1, Y 2, Y 3, Y 4, U, and V as indicated by CBP

MB
type

Coded
block
pattern

MV
diff
(H)

MV
diff
(V)

001

Motion-compensated macroblock with new quantizer—coded

Macroblock
address

increment

Block data for selection of
Y 1, Y 2, Y 3, Y 4, U, and V as indicated by CBP

MB
type

Coded
block
pattern

MV
diff
(H)

MV
diff
(V)

New
quantizer

(5 bits)

New
quantizer

(5 bits)

0010 0

Motion-compensated macroblock—not coded

Macroblock
address

increment

MB
type

MV
diff
(H)

MV
diff
(V)

decode the bit stream. This is usually caused by transmission errors affecting the
bit stream received by the decoder. The digital bit stream is particularly vulnerable
to transmission errors as a result of the large number of variable length Huffman
code words used to reduce the amount of data that needs to be transmitted. This is
illustrated in Figure 5.16 where a series of symbol is encoded using a simple Huff-
man code and then decoded after a single transmission error. The resulting decoded
symbol stream is not the same as the transmitted symbol stream. Moreover, having
some symbols decoded incorrectly, the total number of decoded symbols is also
different.

When this occurs, the decoder often encounters some impossible situation such
as attempting to decode more than 64 DCT coeffi cients in a block or trying to use
a motion vector that points outside the reference picture. When this occurs, the de-
coder has no other alternative than to attempt to resynchronize to the incoming bit
stream. This is achieved by looking for a resynchronization code word that can only
occur in a nonerrored bit stream at the start of a slice (or at the start of a higher ele-
ment in the syntax hierarchy as discussed a little later). Typically this is the 24-bit
hexadecimal number 0x000001 and is called a start code. For this approach to work,
care needs to be exercised in the design of the encoder syntax to ensure that the only
time that a start code can occur is at the designated resynchronization points (i.e.,
23 or more successive zero bits can never occur at other than the resynchronization
point).

Because entire slices can be skipped in the same way as blocks and macro-
blocks, the slice header needs to contain information that allows the decoder to

Figure 5.15 A row of macroblocks merges to form a slice.

MB
1

MB
2

MB
3

MB
4

MB
5

MB
6

MB
n

………………………..

5.3. Structure of a Video Bit Stream 149

150 Chapter 5 Video Coder Syntax

determine which slice in the current picture is about to be decoded. It would be pos-
sible to code this as an increment from the previous slice with a value of 1 indicat-
ing that the current slice is one on from the last slice. However, this would mean that
when resynchronization was needed following a transmission error, the decoder
could not be sure which slice was being decoded. For this reason (and noting that
the number of slice headers is small), the actual slice number is incorporated into
the slice header. Slice 1 is the fi rst 16 lines of the picture, slice two is lines 17–32
and so on.

For resynchronization to be possible, it is essential that the decoder does not
need to know any information that was transmitted before the current slice header
(as this may have been lost). For this reason

The current quantizer step size is included in the slice header.

All elements that are usually coded with respect to a previous macroblock in
the macroblock header are coded without prediction in the fi rst macroblock
after a slice header. This includes the macroblock address increment and the
motion vectors.

A typical slice header is shown in Figure 5.17.

•
•

Figure 5.17 Typical slice header.

Start code

0000 0000 0000 0000 0000 0001

Slice

number

Quantizer

step size

First macroblock

of slice

Figure 5.16 The effect of a transmission error on Huffman decoding.

Symbol
Huffman

codeword

a

b

c

d

0

10

110

111

Encoded symbols b a a c a d

Transmitted Bit stream 10 0 0 110 0 111

Received Bit stream 10 1 0 110 0 111

Decoded symbols b b c a d

5.3.4. The Picture Layer

As we continue to move up the syntax hierarchy, the next level is the picture level.
As indicated in Figure 5.15, the various slices merge to make up a complete picture,
which is again preceded by a picture header. Resynchronization also needs to be
available at the picture level, and so the picture header commences with a start code
followed by a number that cannot be mistaken for a slice number (e.g., zero). This
allows a picture header to be differentiated from a slice header by the decoder. As
we shall see in the next chapter, the picture header can also be used to signal picture
specifi c information. In order to minimize our syntax complexity, such information
will be ignored here.

5.3.5. The Sequence Layer

The header at the sequence layer is used to signal information that applies to the
entire video sequence that is to be decoded. Like the slice and picture layers, the
sequence header begins with a start code followed by a unique number that differ-
entiates it from slice and picture layer headers. Sequence specifi c information might
include, inter alia, the following:

The horizontal size of the pictures in the sequence (in pixels).

The vertical size of the pictures in the sequence (in pixels).

The picture rate (in pictures per second).

The transmission bit rate (in bits per second).

5.4. BIT-STREAM SYNTAX

The task of specifying a bit-stream syntax is an important one because without a
valid syntax, interoperability been encoders and decoders will be impossible to
achieve. The syntax must be defi ned carefully—in the same way that a computer
program needs to be specifi ed carefully. This similarity has led to the use of a syntax
description methodology that is quite similar to the C programming language. This
section will provide an introduction to this method by using it to describe the simple
video bit-stream syntax already developed in this chapter. These ideas will be
extended in the next chapter when we consider the MPEG-2 video compression
standard used for digital television broadcasting.

All video compression standards deal with the description of a decoder because it
is mandated that all decoders that comply with the standard must be capable of decod-
ing any compliant bit stream generated by an encoder. Although two different encoders
presented with the same video material would most probably produce different encoded
bit streams (both of which would comply with the standard), two different decoders
presented with the same compliant bit stream should produce identical decoded out-
puts. The syntax is therefore written from the point of view of the decoding process.

•
•
•
•

5.4. Bit-Stream Syntax 151

152 Chapter 5 Video Coder Syntax

5.4.1. Abbreviations

There are a number of abbreviations used to specify the type of data that is expected
at the decoder at a particular point of the syntax. The most common of these are
listed below.

bslbf bit string with the leftmost bit transmitted first
uimsbf unsigned integer with most signifi cant bit transmitted first
vlclbf variable length code with leftmost bit transmitted first

5.4.2. Start Codes

As indicated earlier, all start codes begin with the 24-bit hexadecimal code
0x000001. The syntax is written in such a way that this code will only occur at a
start code in a nonerrored bit-stream. The next 8 bits (i.e, two hexadecimal
numbers) specify the type of start code. As indicated earlier in this chapter, this is
crucial information for the decoder particularly during resynchronization after a
transmission error. The value corresponding to the various types of start codes
described in this chapter are shown in Table 5.9. As we shall see later, the reserved
start code types are used for other functions within the MPEG suite of standards.
Slice start code fi eld numbering is from 01 to AF hexadecimal (a total of 175
different values) with the number giving the vertical position of the slice within
the picture. This means that there can be up to 2800 luminance lines per picture
(175 � 16 rows per macroblock).

5.4.3. Describing the Bit-Stream Syntax

A number of constructs, similar to those of the C language, are used to describe the
conditions under which the various syntactical units are present.

Table 5.9 Definition of start code types.

Type of start code Start code type field (hexadecimal)

picture_start_code 00
slice_start_code 01 to AF
Reserved B0 to B2
sequence_header_code B3
Reserved B4 to B6
sequence_end_code B7
Reserved B8
Reserved B9 to FF

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

5.4.3.1. The While Construct

while (conditional_expression) {
 bitstream_element
 �
}

If the conditional_expression is true, the bit-stream elements occur next in the bit
stream. The bit-stream elements are repeated until the expression is not true.

5.4.3.2. The Do–While Construct

do {
 bitstream_element
 �
} while (conditional_expression)

The bitstream_elements occur next in the bit stream and continue to be repeated
until the conditional_expression is not true. Note that unlike the while construct, in
the do-while construct the bitstream_elements must occur at least once.

5.4.3.3. The If–Else Construct

if (conditional_expression) {
 bitstream_element_a
�
}
else {
 bitstream_element_b
�
}

If the conditional_expression is true then the bit-stream elements beginning with
bitstream_element_a occur next in the bit stream. If the conditional_expression is
not true then the bit-stream elements beginning with bitstream_element_b occur
next in the bit stream.

5.4.3.4. The For Construct

for(expression_1; conditional_expression;expression_2) {
 bitstream_element
�
}

The for construct is simply a shorthand version of the while construct that is useful
in many circumstances. The equivalent while construct would be

5.4. Bit-Stream Syntax 153

154 Chapter 5 Video Coder Syntax

expression_1
while(conditional_expression) {
 bitstream_element
 �
 expression_2
}

In the for construct, expression_1 is used to initialize the loop and is often the
initial state of a counter. Before each iteration of the loop the conditional_expression
is tested and the loop is terminated if the conditional expression is false. At the end
of each iteration of the loop, expression_2 is performed and is often used to incre-
ment a counter. A typical example of the use of the for construct is given below.

for (i�0; i�n; i��) {
 bitstream_element
 �
}

In this case, the bit-stream elements occur n times. The expression i�� means
that i is incremented by one.

5.4.4. Special Functions within the Syntax

A number of functions are used to defi ne operations that need to be performed to
correctly decode a bit stream.

5.4.4.1. The Bytealigned Function

The function bytealigned() returns the value 1 if the current position in the bit stream
is on a byte (8-bit) boundary, that is, the next bit is the fi rst bit of a byte. It is needed
because start codes are typically bytealigned.

5.4.4.2. The Nextbits Function

The nextbits() function allows the next several bits in the bit stream to be compared to a
particular bit string. This allows the syntax to move through the bit stream looking for
a particular bit string. A typical example of this is when a start code is being sought.

5.4.4.3. The Next_Start_Code Function

The next_start_code() function shown in Table 5.10 uses both the bytealigned() and
nextbits() functions described above to locate the next start code in the bit stream.
Any zero bit stuffi ng (to reach the next byte boundary because start codes start on
a byte boundary) and zero byte stuffi ng (which may have been added to increase
the amount of transmitted data to meet rate control requirements) are ignored. This
ensures that start codes can be preceded by any number of zero stuffi ng bits subject
only to the start code being bytealigned.

5.5. A SIMPLE BIT-STREAM SYNTAX

We will now defi ne a simplifi ed bit-stream syntax using the methods described in
this chapter. This syntax greatly simplifi es the understanding of the full MPEG-2
video syntax that is described in the next chapter. We will begin at the top layer
(video sequence layer) and work our way down to the bottom layer (block layer).

5.5.1. The Video Sequence Layer

As explained earlier, this layer defi nes parameters that will apply to the entire video
sequence. The syntax is given in Table 5.11.

Table 5.10 The next_start_code() function.

Syntax Number of bits Mnemonic

next_start_code() {
 while(!bytealigned()) {

zero_bit 1 “0”
 }
 while(nextbits !� ‘0000 0000 0000 0000 0000 0001’) {

zero_byte 8 “0000 0000”
 }
}

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 5.11 Video sequence syntax.

Syntax Bits Mnemonic

1 video_sequence() {
2 next_start_code()
3 do {
4 sequence_header()
5 do {
6 picture()
7 }while (nextbits() �� picture_start_code)
8 }while (nextbits() �� sequence_header_code)
9 sequence_end_code 32 bslbf

10 }

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

5.5. A Simple Bit-Stream Syntax 155

156 Chapter 5 Video Coder Syntax

The function next_start_code() (line 2) is used to byte align the incoming bit
stream. Next follows the sequence_header() (as defi ned below) followed immediately
by a picture. Pictures then continue until nextbits() reveals that picture_start_code
(line 7) is not present. The function nextbits() is then used to check if a new
sequence_header_code is present (line 8). A new sequence_header_code followed
by a new sequence_header() is possible before any picture of the sequence. This
allows sequence parameters to be changed if necessary. If nextbits() reveals that
there is neither a picture_start_code nor a sequence_header_code, then the
sequence concludes with a sequence_end_code.

The function sequence_header() is defi ned in Table 5.12.
The sequence header() consists of

(a) The 32-bit start code sequence_header_code (000001B3 hexadecimal).

(b) The 12-bit horizontal size.

(c) The 12-bit vertical size.

(d) The 4-bit aspect_ratio_information defi nes the shape of each pixel in a
picture. The horizontal and vertical size of the picture only defi ne the aspect
ratio of the picture if pixels can be assumed to be square. This is usually not
the case. However, if we know the Display aspect ratio (DAR) and the hori-
zontal and vertical size of the picture then the Sample aspect ratio (SAR)
can be calculated according to the following equation.

SAR
horizontal_size

vertical_size
� �DAR

The aspect_ratio_information defi nes either the SAR (for square pixels) or
the DAR as shown in Table 5.13. The value 0000 is not used to avoid start code
emulation.

Table 5.12 Sequence header syntax.

Syntax Bits Mnemonic

1 sequence_header() {
2 sequence_header_code 32 bslbf
3 horizontal_size 12 uimsbf
4 vertical_size 12 uimsbf
5 aspect_ratio_information 4 uimsbf
6 picture_rate 4 uimsbf
7 bit_rate 18 uimsbf
8 next_start_code()
9 }

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

(e) The 4-bit picture_rate defi nes the picture rate of the video sequence. Al-
lowed values are given in Table 5.14. The value 0000 is not used to avoid
start code emulation.

(f) The 18 bit bit_rate fi eld gives the bit rate of the channel in multiples of 400
bits/s and is assumed constant. Any bit rate that is not a multiple of 400 bits/
s is rounded up to the next multiple of 400 bits/s. Thus the bit rate 999,800
bits/s would be rounded up to 1,000,000 bits/s and represented by a bit_rate
value of 2500 (1,000,000 � 400). The value 0x3FFFF is used to indicate
variable bit-rate operation.

5.5.2. The Picture Layer

The picture layer provides information relating to the current picture only. An ex-
ample of a simple syntax for this layer is given in Table 5.15.

Table 5.13 Definition of aspect_ratio_information.

aspect_ratio_information Sample aspect ratio Display aspect ratio

0000 Forbidden Forbidden
0001 1.0 (Square) —
0010 — 3�4
0011 — 9�16
0100 — 1�2.21
0101 to 1111 — Reserved

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 5.14 Allowable picture rates.

picture_rate Pictures per second

0000 Forbidden
0001 24,000�1001 � 23.976
0010 24
0011 25
0100 30,000�1001 � 29.97
0101 30
0110 50
0111 60,000�1001 � 59.94
1000 60
1001 to 1111 Reserved

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

5.5. A Simple Bit-Stream Syntax 157

158 Chapter 5 Video Coder Syntax

The header information at the picture layer consists of the following fi elds:

(a) The 32-bit picture_start_code (00000100 hexadecimal).

(b) A 10-bit temporal_reference, which is an unsigned integer that is incre-
mented by 1 (modulo 1024) for each input picture.

The next_start_code() function is then called to look for a bytealigned start
code that should be a slice header. Slices are then processed until the next start code
is not a slice header.

5.5.3. The Slice Layer

The slice layer provides information about the current slice. This includes the quan-
tizer step size to be used initially for the decoding of the slice. A simple slice syntax
is given in Table 5.16.

Table 5.15 Picture syntax.

Syntax Bits Mnemonic

1 picture() {
2 picture_start_code 32 bslbf
3 temporal_reference 10 uimsbf
4 next_start_code()
5 do {
6 slice()
7 }while (nextbits() �� slice_start_code)
8 }

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 5.16 Slice syntax.

Syntax Bits Mnemonic

1 slice() {
2 slice_start_code 32 bslbf
3 quantizer_scale 5 uimsbf
4 do {
5 macroblock()
6 } while (nextbits() !� 000 0000 0000 0000 0000 0000)
7 }

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

The slice begins with a slice_start_code. The fi rst 24-bits are the hexadecimal
code 000001 whereas the last 8 bits give the vertical position of the slice and take
values in the range 01 to AF hexadecimal.

This is followed by the quantizer_scale that defi nes the quantizer step size to
be used for the quantization of DCT coeffi cients. This is a 5-bit number in the range
1–31 that corresponds to quantizer step sizes in the range 2–62, respectively. This
quantizer value is used for the entire slice unless changed in a subsequent macrob-
lock header.

Macroblocks are then processed (lines 4–6) until a start code (23 successive
zeros) is encountered indicating a new slice, picture or sequence level start code.

5.5.4. The Macroblock Layer

The macroblock layer provides detailed information about each 16 � 16 block of
luminance (and associated chrominance) pixels. This includes the way that the mac-
roblock is to be coded (intra, inter, or motion compensated), a new quantizer step
size (if needed) and motion vector (if required). A simplifi ed syntax for the macro-
block layer is shown in Table 5.17.

The fi rst piece of information in the macroblock (lines 2–4) is the macro-
block_address_increment. This indicates the difference between the current mac-
roblock address and the address of the previously coded macroblock. The code
word macroblock_address_increment is limited to the range 1–33. Because the

Table 5.17 Macroblock syntax.

Syntax Bits Mnemonic

1 macroblock() {
2 while(nextbits() �� ‘0000 0001 000’) {
3 macroblock_escape} 11 vlclbf
4 macroblock_address_increment 1–11 vlclbf
5 macroblock_type 1–6 vlclbf
6 if(macroblock_quant) {
7 quantizer_scale } 5 uimsbf
8 if(macroblock_motion) {
9 motion_horizontal_code 1–11 vlclbf

10 motion_vertical_code 1–11 vlclbf
11 }
12 if(macroblock_pattern) {
13 coded_block_pattern} 3–9 vlclbf
14 for(i�0; i�6; i��) {
15 block(i) }
16 }

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

5.5. A Simple Bit-Stream Syntax 159

160 Chapter 5 Video Coder Syntax

previously coded macroblock may be more than 33 macroblocks back, the macro-
block_escape code word can be used to allow for larger increments. Each time the
macroblock_escape code word is included 33 is added to the total increment. Thus
an increment of 70 macroblocks would comprise the macroblock_escape_code
word twice followed by a macroblock_address_increment of four macroblocks.

Next (line 5) comes the macroblock_type code word. As discussed earlier in
this chapter, this defi nes which other elements are contained in the macroblock.
Based on the value of the macroblock_type code word, various internal syntax
variables are set as shown in Table 5.18.

The meaning of these internal variables is listed below.

macroblock_quant when set indicates that the macroblock contains a new
value for quantizer_scale.

macroblock_motion when set indicates that the macroblock contains a mo-
tion vector.

macroblock_pattern when set indicates that the macroblock contains a cod-
ed block pattern.

macroblock_intra when set indicates that the macroblock is coded in intramode.

It is now a simple task to interpret the remainder of the macroblock syntax.
If macroblock_quant is set (line 6) then a new 5 bit fi xed length value of quan-
tizer_scale appears next in the bit stream (line 7).

If macroblock_motion is set (line 8) then the two components of the motion vec-
tor appear next in the bit stream (lines 9–10). Note that the motion vector difference
between the motion vector in the current macroblock and the motion vector in the
previous macroblock is transmitted. The prediction motion vector is reset to zero if:

the macroblock immediately follows a slice header.

the previous macroblock was coded in intermode because a zero motion vec-
tor is assumed in this case. This applies also if the previous macroblock was
a skipped macroblock.

•

•

•

•

•
•

Table 5.18 Definition of Internal Syntax Variable Based on macroblock_type.

macroblock_type 1 01 001 0001 1 0001 0 0000 1 0000 01

Macroblock type MC Inter MC Intra MC Inter Intra
Coded Yes Yes No Yes Yes Yes Yes
New quantizer No No No No Yes Yes Yes
macroblock_quant 0 0 0 0 1 1 1
macroblock_motion 1 0 1 0 1 0 0
macroblock_pattern 1 1 0 0 1 1 0
macroblock_intra 0 0 0 1 0 0 1

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

the previous macroblock was coded in intramode because no motion vector
information is available from an intracoded macroblock.

The motion vector differences are variable length coded as described earlier in
this chapter and are of length 1–11 bits each.

If macroblock_pattern is set (line 13) then the coded block pattern appears
next in the bit stream (line 14).

We now have all the information needed to decode the blocks of DCT coef-
fi cients associated with the macroblock, and this is now performed (lines 14–15) for
each of the six possible blocks in a macroblock.

5.5.5. The Block Layer

A simple syntax for the block layer is given in Table 5.19.
The coded block pattern read at the macroblock level produces a 6-bit pattern

code indicating which of the blocks 0 (Y0) to 5 (V) are to be coded with a value of
1, indicating that the block is to be coded (see Table 5.8). If the block is not coded,
as indicated by pattern[i] (line 2) then the block syntax is skipped as required for
a skipped block. Next a check is made to see if the block is coded in intramode

•

Table 5.19 Block syntax.

Syntax Bits Mnemonic

1 block(i) {
2 if(pattern_code[i]) {
3 if (macroblock_intra) {
4 if (i � 4) {
5 dct_dc_size_luminance 2–7 vlclbf
6 if (dc_size_luminance !�0) {
7 dct_dc_differential} 1–8 uimsbf
8 }
9 else {

10 dct_dc_size_chrominance 2–8 vlclbf
11 if (dc_size_chrominance !� 0) {
12 dct_dc_differential } 1–8 uimsbf
13 }
14 }
15 while (nextbits() !� ‘10’) {
16 dct_coeff_next } 3–28 vlclbf
17 end_of_block 2 vlclbf
18 }
19 }

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

5.5. A Simple Bit-Stream Syntax 161

162 Chapter 5 Video Coder Syntax

(line 3). If this is the case then the DC DCT coeffi cient is treated separately from the
other DCT coeffi cients. As described earlier, each DC coeffi cient is predicted from
an earlier DC coeffi cient. For the fi rst four blocks where the block count, i, is in the
range of 0–3 (line 4), the variable length codes for dct_dc_size_luminance and dct_
dc_differential appear next in the bit stream (lines 5–7) whereas for a block count in
the range 4–5 the dct_dc_size_chrominance and dct_dc_differential appear next
in the bit stream. Then follows the remaining (run,level) pairs of DCT coeffi cients (in
the case of intra macroblocks) or all DCT coeffi cients represented as (run,level) pairs
(in the case of motion-compensated or inter macroblocks) until the end of block code
word (“10”) is encountered.

5.6. CONCLUSION

This chapter has provided an introduction to the syntax used by video encoders to
transmit compressed video information to the decoder in a form that it can under-
stand. We have also introduced a number of tools for the effi cient representation of
this information.

In the next chapter, detailed consideration will be given to the MPEG-2 video
compression standard that forms the basis of all current digital television broadcast-
ing systems worldwide.

PROBLEMS

5.1 Briefl y explain the reasons that a bit-stream syntax is required for video encoders. What
are the major advantages?

5.2 Most of the information contained in a video bit stream is encoded using variable word
length codes. Why is this the case? What disadvantages does the use of these variable
word length codes introduce? How does the use of a video encoder syntax allow these
problems to be minimized?

5.3 A camera produces signals representing the red, green, and blue components of the scene
that it is imaging. This information is invariably transformed into YUV form. Explain
briefl y why this is the case.

5.4 Table 5.1 and Figure 5.6 show that the (run,level) pairs representing quantized DCT coef-
fi cients are sometimes represented by variable length code words and sometimes by fi xed
length code words. Given that even in the (run,level) pairs represented by the fi xed length
code words some will be more common than others, it would seem desirable to use vari-
able length codes here as well. Explain briefl y why this is not done.

5.5 Why is it that the macroblock header for an intracoded macroblock does not require a
fi eld for the coded block pattern?

5.6 Explain briefl y why motion vectors are coded differentially. What are the advantages and
disadvantages of doing this?

5.7 A quantized block of DCT coeffi cients from a macroblock coded in intramode is given in
Figure 5.18. Calculate the code words that would need to be transmitted to represent this
block of data. Assume that this is the fi rst block in the macroblock and that the macrob-
lock immediately follows a slice header.

5.8 A quantized block of DCT coeffi cients from a macroblock coded using motion compen-
sated prediction is given in Figure 5.19. Calculate the code words that would need to be
transmitted to represent this block of data.

5.9 The seventh macroblock of a particular slice is to be coded. The macroblock is coded
using motion compensated prediction and the motion vector employed is (�2, �1). After
motion-compensated prediction, application of the DCT, and quantization with the same
quantizer as used in the previous macroblock, all blocks in the macroblock contain all
zero coeffi cients with the exception of block Y2 that is shown in Figure 5.20.

Figure 5.18 Quantized DCT coeffi cients for Problem 5.7.

00000000

01001000

01011000

00001000

00100100

00000000

01010100

000000020

−+

+−−

−

−+

−+−

+

Figure 5.19 Quantized DCT coeffi cients for Problem 5.8.

00000000

00000000

00000002

00000003−

01000021 ++−

00000100 −

000002713 +−+

00001050 −−

−

Problems 163

Figure 5.20 Quantized DCT data for Problem 5.9.

00000000

00000000

00000000

00000000

00000000

00000000

00000010

00000002

−

+

164 Chapter 5 Video Coder Syntax

The previous macroblock coded was the fourth macroblock in the slice and was
also coded with motion-compensated prediction using a motion vector of (�1, 0). Using
the syntax described in this chapter, determine the bit stream required to represent this
macroblock.

5.10 A macroblock is coded in intramode. The fi rst quantized block (Y1) in the macroblock
contains only a quantized DC DCT coeffi cient with value 120. The second block (Y2) is
shown in Figure 5.21.

Using the syntax described in this chapter, determine the bit stream required to
represent this block.

5.11 The two-dimensional DCT of a luminance block in an intracoded macroblock produces
the data shown in Figure 5.22.

(a) If the quantizer_scale value is 10 and the DC DCT coeffi cient of the previous lumi-
nance block was 480, calculate the values of the quantized DCT coeffi cients.

(b) Determine the bit stream required to represent these quantized DCT coeffi cients
using the syntax developed in this chapter.

Figure 5.21 Quantized DCT data for Problem 5.10.

00000000

00000000

00000000

00000000

00000000

00000011

00000111

000001195

++

−−−

+++

Figure 5.22 DCT data for Problem 5.11.

+ 14.2

− 13.8

+ 15.1

− 1.1

− 45.0

+ 107.5

− 119.2

+ 755.6

+ 14.5

− 22.0

+ 15.4

− 13.7

− 41.8

+ 136.7

− 177.1

+ 141.3

+ 8.2

+ 1.3

+ 8.8

− 32.9

+ 30.8

+ 54.9

− 107.2

+ 78.6

+ 1.2

+ 13.7

− 15.9

− 20.5

+ 67.6

− 42.1

+ 39.6

+ 29.1

− 10.4

− 5.8

− 23.0

+ 4.4

+ 21.3

− 32.0

+ 21.2

+ 2.1

0.0

− 11.7

− 8.4

+ 7.6

+ 2.6

+ 6.4

− 18.0

− 7.6

+ 6.5

− 8.9

− 5.0

+ 3.2

+ 5.0

− 1.5

− 8.1

− 2.7

0.0

0.0

0.0

0.9

+ 4.0

+ 0.9

+ 0.6

+ 3.7

5.12 The bit stream shown in Figure 5.23 represents the fi rst block of an intracoded macrob-
lock which immediately follows a slice header.

(a) Determine the decoded quantized DCT values.

(b) If the quantizer step size used was 8, determine the DCT values after inverse
quantization.

(c) Determine the decoded pixel values for this block.

5.13 The fi rst fi ve motion vectors in a slice are shown in Figure 5.24.

(a) Calculate the differential motion vectors that need to be transmitted to the
receiver.

(b) Calculate the code words used to represent these motion vectors.

5.14 Repeat Problem 5.13 for the case where the motion vectors given in Figure 5.24
apply to macroblocks 1, 2, 4, 5, and 6, respectively. Macroblock 3 is a skipped
macroblock.

5.15 The DC DCT coeffi cients for two successive macroblocks coded in intramode are shown
in Figure 5.25. Determine the variable length code words that would be transmitted to
represent the DC coeffi cients in the second macroblock.

5.16 Repeat Problem 5.15, but this time assume that the fi rst macroblock in Figure 5.25 is
preceded by a slice header. Calculate the variable wordlength code words that would be
used to represent each of the DC coeffi cients in both macroblocks.

5.17 Explain the meaning of the following piece of syntax shown in Table 5.20. What func-
tionality does this syntax allow?

Figure 5.23 Bit stream values for Problem 5.12.

1101010000000000011111101000000101110

Figure 5.24 Motion vectors for Problem 5.13.

(+4,–7) (+5,–9) (+2,–1) (+2,+2) (+3,–1)

Figure 5.25 DC DCT coeffi cient values for Problem 5.15.

110
(Y1)

137
(Y2)

99
(Y3)

118
(Y4)

200
(U)

21
(V)

145
(Y1)

161
(Y2)

120
(Y3)

118
(Y4)

188
(U)

34
(V)

First macroblock Second macroblock

Problems 165

166 Chapter 5 Video Coder Syntax

5.18 Suppose that it was decided to always transmit the DC DCT coeffi cients in all blocks
(as opposed to just intrablocks).

(a) Rewrite the block syntax shown in Table 5.19 to refl ect this change.

(b) Would this change have any impact on any of the higher level syntax elements?

5.19 If we are to be able to decode a bit stream stored in a fi le using MATLAB, we need to
be able to read bits from the fi le. The MATLAB command given below reads one byte
from the fi le defi ned by fi d.

fread(fi d,1,‘uchar’);

Develop a MATLAB function bit_in(length) that will read a code word of “length” bits
from the fi le. For example, suppose that the fi le contained the fi rst four bytes shown in
Figure 5.26.

The succession of function calls listed below would then return the binary code
words shown in Figure 5.27.

bit_in(7) would return 0001110
bin_in(5) would return 01001
bit_in(9) would return 010001110
bit_in(11) would return 01110010010
This is illustrated in Figure 5.27.

5.20 An important part of the video syntax is the nextbits() function that allows the next
several bits of the bit stream to be checked for a particular value. Write and test a
MATLAB function that will carry out this function. Note that your routine needs to be
able to check the next several bits in the bit stream while still leaving the bits in the bit
stream to be subsequently read by another part of the syntax if required. Line 15 of the
block syntax shows an example of where this might be necessary. Note that the MAT-
LAB functions fseek and ftell might prove useful in carrying out this task.

Table 5.20 Syntax for Problem 5.17.

Syntax Bits Mnemonic

1 while (nextbits() �� ‘1’){
2 extra_bit_picture /* with value 1 */ 1 uimsbf
3 extra_information_picture 8 uimsbf
4 }

extra_bit_picture /* with value 0 */ 1 uimsbf

Figure 5.27 Reading variable length code words from a fi le.

00011100 10010100 01110011 10010010

bit_in(7) bit_in(5) bit_in(9) bit_in(11)

Figure 5.26 Data for Problem 5.19.

00011100 10010100 01110011 10010010

MATLAB EXERCISE 5.1: EFFICIENT CODING
OF MOTION VECTOR INFORMATION

In this chapter we saw an example of how the coding of motion vectors using hori-
zontal prediction. In this exercise, you will verify that these results are correct and
study the effi ciency of this approach for other video sequences.

Section 1 Coding of motion vectors for a video sequence

(a) Load the fi rst and fi fth picture from a video sequence. Form the motion-
compensated prediction of the fi fth picture using the fi rst picture as the ref-
erence picture using a search range of ±8 both horizontally and vertically.
Save the motion vectors generated.

(b) Display the histogram of each component of the motion vector information.

(c) Predict each component of each motion vector by the same component of
the motion vector immediately to its left. The fi rst motion vector of each row
of macroblocks should be predicted using a zero motion vector. Draw the
histogram of the prediction differences for each motion vector component.

(d) Compare the entropy of the original motion vector information and the en-
tropy of the motion vector prediction differences. Comment on the result.

Section 2
Repeat Section 1 for pairs of pictures taken from other video sequences. Comment
on the results achieved. What types of sequences achieve the biggest saving when
motion-compensated prediction is employed?

Section 3
Extend the motion-compensated prediction process developed in Section 1 to include
motion-compensated prediction to half pixel accuracy. Use your improved motion-
compensated prediction scheme for various pairs of pictures from the sequences
provided. Comment on the performance compared to motion-compensated predic-
tion to single pixel accuracy.

MATLAB EXERCISE 5.2: A SIMPLE VIDEO ENCODER

In this exercise you are required to write an encoder that can be used to code pictures
in a video sequence. For simplicity, we will code every macroblock in every picture
in intramode. Although not terribly effective from a coding effi ciency point of view,
this exercise will give you experience in working with a reasonably detailed syntax.
In running the encoder, you can assume the following.

(a) The shape of each pixel in the picture is square (because this is almost cer-
tainly the case for your computer monitor).

(b) For constant bit-rate operation, it is necessary to include rate control into
the encoder. This is too complex in this case so constant quantizer, variable
bit-rate operation should be employed.

MATLAB Exercise 5.2: A Simple Video Encoder 167

168 Chapter 5 Video Coder Syntax

(c) The quantizer step size is to remain the same for each picture in the sequence.

(d) If only luminance information is available, the chrominance blocks should
be assumed to be always zero.

Use your encoder to encode a variety of short video sequences. Comment on
the quality and bit rate requirement for each sequence over a range of quantizer step
sizes.

MATLAB EXERCISE 5.3: A SIMPLE VIDEO DECODER

In this exercise you will decode a video sequence that has been encoded using the
syntax described in this chapter. Given that the full syntax presented is quite com-
plex, we will simplify the task by assuming that all macroblocks in all pictures are
coded in intramode. This means that there will be only one set of variable length
code words in the bit stream for the (run,level) pairs of quantized DCT coeffi -
cients. The variable word length codes for motion vector differences, macroblock
increment, and coded block pattern are not needed in intra macroblocks. The bit
stream to be decoded is one of the bitstreams that you generated in MATLAB
Exercise 5.2.

Display the decoded sequence on your computer monitor using the MATLAB
movie function.

MATLAB EXERCISE 5.4: A VIDEO ENCODER

In this exercise you are required to write an encoder that can be used to code pictures
in a video sequence. In running the encoder, you can assume the following.

(a) The fi rst picture in the sequence is coded in intramode with all the remain-
ing pictures coded using motion-compensated prediction from the previous
picture.

(b) All macroblocks in a picture that uses motion-compensated prediction are
coded using motion-compensated prediction (i.e., intramode and intermode
are not used for these pictures).

(c) The shape of each pixel in the picture is square (because this is almost cer-
tainly the case for your computer monitor).

(d) For constant bit-rate operation, it is necessary to include rate control into
the encoder. This is too complex in this case so constant quantizer, variable
bit-rate operation should be employed.

(e) The quantizer step size is to remain the same for each picture in the sequence.

(f) The motion vector search range should be ±8 pixels both horizontally and
vertically.

(g) If only luminance information is available, the chrominance blocks should
be assumed to be always zero.

Use your encoder to encode a variety of short video sequences. Comment on
the quality and bit rate requirement for each sequence over a range of quantizer step
sizes.

This exercise is very challenging and requires signifi cant effort.

MATLAB EXERCISE 5.5: A VIDEO DECODER

In this exercise you will decode a video sequence that has been encoded using
the syntax described in this chapter. The bit stream to be decoded is one of the bit
streams generated by your encoder in MATLAB Exercise 5.4. As might be expected,
all macroblocks in the fi rst picture of the sequence are encoded in intramode. Dis-
play the decoded sequence on your computer monitor using the MATLAB movie
function.

Note that this exercise is quite challenging and requires signifi cant effort.

MATLAB EXERCISE 5.6: INTRA/INTER/MOTION-
COMPENSATED CODING OF MACROBLOCKS

In this chapter we saw that macroblocks can be coded in either intramode, inter-
mode, or motion-compensated mode. It is, of course, necessary for the encoder to
determine the appropriate manner of encoding for each macroblock. Like many en-
coder issues, this is not the subject of standardization because decoders only need
to know the result of the choice and this is specifi ed in the macroblock_type fi eld.
This gives encoder manufacturers the ability to differentiate their products in the
marketplace because the more effi ciently this choice is made, the better will be the
performance of the encoder. In this exercise you will look at the success of a simple
technique for deciding which of the three modes should be chosen. For this exercise,
you will need fi rst to have completed MATLAB Exercise 4.3.

The choice is made in two steps. First a decision is made whether to code in
intermode or using motion compensation. Following this, a decision is made as to
whether to use the inter/MC decision made in the fi rst step or to use intracoding. The
approach described was used in the development of the MPEG video standard.

Stage 1 Inter – motion-compensated decision
Calculate the average absolute difference for the luminance macroblock using the
chosen motion vector (M) and using the zero motion vector (Z). The decision as
to whether to use intermode or motion compensated mode is made according to
Figure 5.28. Points on the line dividing the two regions are defi ned as being inter.

Stage 2 Intra – nonintra decision
The mode chosen in stage 1 (inter or MC) needs to be compared with intracoding.
This is done by calculating the variance of the luminance information in the macro-
block to be encoded (var_current) and the variance of the luminance difference
macroblock produced after the appropriate prediction macroblock is subtracted
(var_difference). Note that the macroblock mean luminance value needs to be

MATLAB Exercise 5.6: Intra/Inter/Motion-Compensated Coding of Macroblocks 169

170 Chapter 5 Video Coder Syntax

subtracted from the current macroblock before var_current can be calculated. The
difference macroblock is always assumed to have a zero mean for the calculation of
var_difference. The decision between intra or inter/MC coding is then made
according to Figure 5.29.

Modify the encoder developed in MATLAB Exercise 5.4 to incorporate this
method of decision between inter – motion compensated – intra macroblocks. Apply
the encoder to a variety of short video sequences. Comment on the change in
performance compared to the encoder of MATLAB Exercise 5.4.

Figure 5.29 Intra – Inter/MC Decision.

var_current

var_difference
12864 192 256

64

128

192

256

Inter or
motion

compensated

Intra

Figure 5.28 Inter motion-compensated decision.

M

Z1 2 3 4 5 6 7

1

2

3

4

5

6

7

(1, 0.5)

(3, 1.5)

(3, 2.7)

M = Z÷1.1

Inter

Motion

compensation

171

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 6

The MPEG-2 Video
Compression Standard

6.1. INTRODUCTION

In Chapter 5 we examined the syntax of a simple MPEG-like encoder and decoder.
This coder is, in fact, quite close to an MPEG-1 video encoder. In this chapter we
consider the additional signal processing and syntactical elements that are used in
the full MPEG-2 video standard that forms a central part of all modern digital tel-
evision systems. Although the aim of the previous chapter was to provide suffi cient
information to allow the reader to implement an encoder and a decoder, the complex-
ity of the full MPEG-2 video standard is such that this aim is beyond the reasonable
expectations of this chapter. The chapter aims instead to give the reader a full un-
derstanding of the capabilities, power, and fl exibility of the MPEG-2 video standard.
Armed with a full understanding of the information provided in this chapter as well
as in Chapter 5 on syntax, it should be possible for a reader to consult the relevant
international standard1 and carry out a full implementation of a compliant encoder
or decoder.

After a brief introduction to the MPEG-2 video standard, we introduce the pic-
ture types used in the MPEG-2 standard. Then follows a detailed discussion of the
syntax of MPEG-2. The discussion is limited to those elements of the standard that
are used in current digital television applications. We then look at the video buffer
verifi er (VBV), which is important in ensuring the compliance of any MPEG-2 video
encoder. Finally, we discuss the currently defi ned profi les and levels for MPEG-2.

The development of MPEG-2 followed and built on the successful earlier de-
velopment of the MPEG-1 suite of standards. MPEG-1 was designed to code mov-
ing pictures and the associated audio for digital storage media applications at about
1.5 Mbit/s.2 The primary limitation of MPEG-1 was that it was not designed to
handle interlaced material. This does not mean that it could not code interlaced
material—just that a specifi cation that included specifi c coding tools to deal with

1 ISO/IEC 13818-2.
2 Although optimised for operation at around 1.5 Mbit/s, MPEG-1 can operate at rates up to 100
 Mbit/s and so meet the requirements for many applications.

172 Chapter 6 The MPEG-2 Video Compression Standard

interlace would provide a better quality of service at a given bit rate than MPEG-1.
The most important difference between MPEG-1 and MPEG-2 is the introduction
of these coding tools designed to handle interlace. MPEG-2 was also designed with
higher quality applications in mind than MPEG-1,3 and this led to the inclusion of a
number of improved coding techniques as well as extensions to the approach used
in MPEG-1. Finally, the likelihood of data errors when information is read from
digital storage media is low. However, transmission errors are more common in ter-
restrial broadcast digital television applications. Noting this, MPEG-2 gave special
 consideration to error resilience in the development of the standard.

The MPEG-2 standard is designed to be extremely fl exible and thus be able to
handle a wide variety of possible applications. For example, the standard allows for
pictures made up of more than 16,000 � 16,000 pixels and transmitted at bit rates
in excess of 100 Gbit/s. For an encoder or a decoder to be able to claim full compli-
ance with the standard, it would need to be able to handle these picture sizes and
bit rates. For digital television applications, it is known that the picture sizes and bit
rates are far less than the maximum allowed by the standard. The maximum picture
size defi nes the size of the internal frame stores4 that the encoder requires whereas
the bit rate defi nes the speed at which the decoder front end (i.e., the variable-length
code (VLC) decoder) needs to operate. Requiring full compliance with the stand-
ard would therefore greatly increase the cost of encoders and, more importantly, of
 decoders that are required by every user.

Recognizing this problem, the committee that designed the MPEG-2 video
standard has provided a number of less complex compliance points that are suitable
for a wide range of applications. Using these compliance points, which are defi ned by
profi les and levels, it is possible to design encoders and decoders that comply with the
standard but require only the hardware complexity necessary to service a particular
application. Further details on the currently defi ned profi les and levels of MPEG-2
are provided later in this chapter after the defi nition of the MPEG-2 syntax.

MPEG-2 video is designed to code both interlaced and progressive material. For
progressive material, all information is coded as frame pictures. For interlaced mate-
rial, information can be coded as a frame picture (i.e., two fi elds merged to form a
single frame) or as two separate fi eld pictures. The two fi eld pictures are referred to
as the top fi eld picture and the bottom fi eld picture. Each line of the top fi eld picture
is spatially located immediately above the corresponding line in the bottom fi eld
picture. For compatibility with interlaced displays, it is required that the bottom fi eld
picture always follows the top fi eld picture and the top fi eld picture always follows
the bottom fi eld picture after decoding.

The hierarchy of layers in the MPEG-2 syntax is shown in Figure 6.1. The only
change in the structure used in Chapter 5 is the introduction of the group of pictures
(GOP) layer. This is a compulsory layer in MPEG-1 although optional in MPEG-2.
Its functions are described later in the chapter.

3 It was envisaged that a standard-defi nition television would require a bit rate around 4 Mbit/s and a
high-defi nition television around 20 Mbit/s.
4 Although it may seem sensible to refer to these stores as picture stores, they are more commonly
referred to as frame stores and so this terminology is used.

6.2. PICTURE TYPES IN MPEG-2

Although a number of new coding tools are introduced in this chapter at the layer in
which they appear in the syntax, there is one new coding tool that is so important for
an overall understanding of the standard and has an impact at so many different lev-
els within the syntax that it needs to be introduced immediately. This is the picture
type.

In the MPEG-2 video standard, pictures are classifi ed as one of the three types.
The fi rst of these is an intrapicture (I picture). In an I picture, all macroblocks are
coded as intra macroblocks (i.e., without any prediction from any other picture).

6.2. Picture Types in MPEG-2 173

Picture Picture PicturePicturePicture

Slice Slice SliceSliceSlice

Macroblock Macroblock MacroblockMacroblockMacroblock

Block Block BlockBlockBlock

Sequence

Group of
pictures

Group of
pictures

Group of
pictures

Group of
pictures

Group of
pictures

Figure 6.1 Layer hierarchy of MPEG-2 video.

174 Chapter 6 The MPEG-2 Video Compression Standard

This means that an I picture usually requires a large amount of data to represent
it. However, in digital television applications, the regular inclusion of I pictures is
essential. The reason for this becomes clear when we consider the architecture of
the video decoder shown in Figure 6.2. Consider the situation when a user changes
from one channel to another. For convenience, assume that the change of channel
is forced to occur on a picture boundary. For the fi rst picture after the switch, the
frame store in Figure 6.2 contains a reconstruction of the last picture received from
the previous channel. However, the bit stream provides coded difference informa-
tion from the new channel. The video output is therefore of very poor quality, and it
takes a long time before a reasonable quality video service is restored. This problem
can be overcome if the fi rst picture received from the new channel is an I picture,
as I pictures can be decoded without reference to the current contents of the frame
store. The decoded I picture then replaces the current contents of the frame store.
Subsequent pictures can then be successfully predicted in the normal way using
 motion-compensated prediction.

Decoder set-top boxes are therefore invariably constrained to change to a new
channel only when an I picture is being received from the new channel. This implies
that I pictures need to occur regularly within the bit stream as a large I picture spac-
ing would mean that there would be a signifi cant delay before a change from one
channel to another could occur. This would be unacceptable to users. Typically,5

the spacing between I pictures is around half a second. This means that a channel
change can occur on average after a quarter of second and the upper threshold on the
delay is half a second. Such a delay is unlikely to be noticed by users. I pictures are
also useful for error resilience as they remove the effect of any transmission errors
from the reconstructed picture in the frame store. As mentioned earlier, I pictures
generate a large amount of data and so the inclusion of I pictures decreases the video
quality of a given service bit rate.

5 This is not a matter of standardization but is left up to the service provider.

Entropy
decoding
Entropy
decoding

+
+

Video
output

Bitstream
input

Frame
store

Motion
compensated

predictionMotion vectors

Reconstructed
motion

compensated
difference

Inverse
quantization

Inverse
quantization

Inverse
discrete cosine

transform

Reconstructed
DCT

coefficients

Quantized
DCT

coefficients

-

Figure 6.2 Motion-compensated DCT decoder.

The second type of picture is the predicted picture (P picture). P pictures are
coded using motion-compensated prediction from an immediately past I picture or
an immediately past P picture. This is referred to as forward motion-compensated
prediction. Although every macroblock in a P picture can be predicted using forward
motion-compensated prediction, there is no requirement for every macroblock to be
predicted using forward motion-compensated prediction. Macroblocks can be coded
using interprediction (i.e., forming the difference between the current macroblock
and the macroblock in the same position in the reference picture, which is useful
when there has been little change between pictures) or intraprediction (i.e., coding
without using any form of temporal prediction, which is useful for macroblocks
where no suitable prediction is possible from the previous picture). A video sequence
made up of I and P pictures is shown in Figure 6.3. The arrows illustrate the forward
prediction. Each P picture is predicted from the I or P picture that immediately
precedes it, and I pictures do not use prediction. P pictures can usually be represented
by a signifi cantly smaller amount of data than I pictures.

The fi nal type of picture is the bidirectionally predicted picture (B picture). B
pictures are coded using motion-compensated prediction from an immediately past
I or P picture (forward prediction), an immediately future I or P picture (backward
prediction), or an average of the prediction from both immediately future I or P pic-
ture and immediately past I or P picture (interpolated prediction). Thus, if three suc-
cessive pictures in a video sequence are coded as an I picture followed by a B picture
followed by a P picture, then the P picture is predicted from the reconstruction of the
I picture and then the B picture is predicted from the reconstructions of both the I
picture and the P picture. This situation is illustrated in Figure 6.4.

In Figure 6.4, the B picture (2) is predicted from the preceding I picture (1)
and the following P picture (3). As motion-compensated prediction is based on
 reconstructed pictures, the B picture cannot be coded until after the P picture is
coded. This means that the display order of the pictures (1, 2, 3) is different from the

6.2. Picture Types in MPEG-2 175

I

1

P

2

P

3

P

4

I

5

P

6

I

7

P

8

Figure 6.3 Video sequence comprising I and P pictures.

I

1

B

2

P

3

Figure 6.4 Prediction for an I picture followed by a B picture
followed by a P picture.

176 Chapter 6 The MPEG-2 Video Compression Standard

order of encoding and decoding (1, 3, 2) and that the encoder must store the original
B picture until after the following P picture is coded.

The situation becomes even more complex when several B pictures lie between
the I or P pictures used to form the prediction. This situation is shown in Figure 6.5,
where four B pictures are predicted from a pair of P pictures.

In this case, the four pictures to be coded as B pictures would need to be stored in
the encoder until the second P picture has arrived and been encoded. In digital televi-
sion applications, there is only one encoder transmitting to a very large number of de-
coders and so the added memory requirement at the encoder is not a serious problem.

Initially, it might seem sensible to rearrange the coded pictures back into the
correct display order before transmission from the encoder. For this to be done, it
would be necessary for the encoder to internally store the bit-stream representation
of the future reference picture (I or P) for transmission after the bit-stream represen-
tation of the B pictures. This would add slightly to encoder complexity.

At the decoder, if the coded pictures are transmitted in their original (i.e., dis-
play) order, then the picture (I or P) preceding the B pictures is received and can be
immediately decoded as its reference picture (a previous I or P picture) occurred
earlier in the bit stream and so has already been received by the decoder. The data
representing the four B pictures need to be held at the decoder until after the arrival
of the second reference picture (again I or P). After that reference picture has been
decoded, the four B pictures that preceded it can fi nally be decoded.

However, there is a simpler approach that can be employed, which eases the task
for both the encoder and the decoder: Pictures are transmitted in the same order that
they are encoded. The encoder has to wait for the arrival of the second reference pic-
ture (I or P) before it can encode any B pictures that precede it. When the second ref-
erence picture is encoded, then it is transmitted immediately followed by the encoded
B pictures that occurred immediately before it. This means that the encoder no longer
needs to store the coded bit-stream representation of the future reference picture.

When a B picture arrives at the decoder, both of the reference pictures needed
for its prediction have already arrived. Thus, when a coded B picture arrives, it can
immediately be decoded. There is never a need to store the data representing a B
picture at the decoder while a later reference picture is awaited. This means that for
video sequences employing B pictures, the picture transmission order is different
from the picture display order. The picture order rearrangement done by the encoder

B

3

B

5

P

6

P

1

B

2

B

4

Figure 6.5 A video sequence containing several successive B pictures.

is easily undone by the decoder, thereby ensuring that pictures are always displayed
in the correct order.

Consider the case of 16 pictures that are to be coded with the picture types
shown in Figure 6.6.

The transmission order after encoding is shown in Figure 6.7. The different
sizes used for each picture are to indicate that I pictures usually require the largest
amount of data to represent them, whereas P pictures require less data and B pictures
the smallest amount of data.

The decoder requires just two frame stores (each able to store one decoded
picture) irrespective of the number of consecutive B pictures that occur in the video
sequence. The decoding procedure is shown in Table 6.1.

Every time an I or a P picture arrives at the decoder, it is decoded and overwrites
the oldest I or P picture currently stored in the pair of frame stores. When a B picture
arrives, the two reference pictures from which it was predicted are already available
in the decoder’s frame stores and so the B picture can be immediately decoded.
The process of reordering the received pictures into the correct order for display is
therefore straightforward.

The use of B pictures greatly increases the overall coding effi ciency since
 motion-compensated prediction is almost always possible. There are a number of
situations where forward-only motion compensation does not work effectively. We
now consider how the use of bidirectional motion-compensated prediction effects
these situations.

Forward-only motion-compensated prediction is ineffective at a scene cut
 because the reference picture bears little or no resemblance to the current picture
to be coded. With bidirectional prediction, the reference picture used for forward
prediction is still of little use. However, the picture used for backward prediction is
highly likely to be suitable for motion-compensated prediction.

When a foreground object moves and uncovers a previously hidden background
material, forward-only motion-compensated prediction is ineffective since a match
to the uncovered background cannot be found in the past reference picture. With bi-
directional motion-compensated prediction, performance is improved, as it is likely
that the background is still uncovered in the future reference picture.

1

I

2

B

3

B

4

P

5

B

6

B

7

P

8

B

9

B

10

P

11

B

12

B

13

P

14

B

15

B

16

I

Figure 6.6 Pictures to be transmitted in display order with picture types shown.

I
1

P
4

B
2

B
3

P
7

B
5

B
6

P
10

B
8

B
9

P
13

B
11

B
12

I
16

B
14

B
15

I
1

P
4

B
2

B
3

P
7

B
5

B
6

P
10

B
8

B
9

P
13

B
11

B
12

I
16

B
14

B
15

Figure 6.7 Transmission order of pictures shown in Figure 6.6.

6.2. Picture Types in MPEG-2 177

178 Chapter 6 The MPEG-2 Video Compression Standard

When a new material enters a picture (e.g., a new object or new background due
for example to camera movement), forward-only motion-compensated prediction is
ineffective in predicting this new material since it is not available in the past reference
picture. With bidirectional motion-compensated prediction, performance improves,
as it is likely that the new material can still be seen in the future reference picture.

If an object moves between pictures by an amount greater than the search area,
then forward-only motion-compensated prediction is not effective. Unless the object
slows down, this problem also exists for bidirectional motion-compensated predic-
tion and can only be addressed by increasing the size of the search area.

A further advantage of B pictures is that they are not used to predict other pic-
tures in the video stream. This means that if a B picture is quantized coarsely, it will
have no impact on the effi ciency of coding the subsequent pictures in the sequence.
Coding I pictures or P pictures coarsely would mean that the subsequent pictures
would likely require additional bits as the quality of the motion-compensated predic-
tion from the coarsely coded I picture or P picture would be reduced.

It is clear that bidirectional motion-compensated prediction can improve coding
performance in a number of situations. It needs to be remembered that these improve-
ments do come with some signifi cant costs. The fi rst of these costs is that all pictures
to be encoded using motion-compensated prediction (i.e., P or B pictures) and the rel-
evant reference picture or pictures are often separated by several picture times when
B pictures are used. This means that the moving objects have moved by a greater
amount than would have been the case if the current and reference pictures were adja-
cent. Larger search areas are therefore required with a consequential increase in com-
putational requirements at the encoder. The wider spacing also leads to a decrease

Table 6.1 Decoding process for bit stream of Figure 6.6.

Picture decoded
and picture type

Contents of
frame store 1

Contents of
frame store 2

Picture to be
displayed

1 (I) 1 —
4 (P) 1 4 1
2 (B) 1 4 2
3 (B) 1 4 3
7 (P) 7 4 4
5 (B) 7 4 5
6 (B) 7 4 6
10 (P) 7 10 7
8 (B) 7 10 8
9 (B) 7 10 9
13 (P) 13 10 10
11 (B) 13 10 11
12 (B) 13 10 12
16 (I) 13 16 13
14 (B) 13 16 14
15 (B) 13 16 15

in coding effi ciency. This is a particular problem for P pictures since the separation
between a P picture and its reference picture is greater than the separation between an
associated B picture and its reference pictures. This is shown in Figure 6.6.

In addition, for B pictures, motion-compensated prediction needs to be performed
twice—once in the forward direction and once in the backward direction. A decision
also needs to be made as to whether to use forward prediction, backward prediction,
or an average of the two to code the current macroblock. This decision needs to be
signaled to the decoder together with the appropriate motion vector(s). If the average
of the two predictions is to be used, then two motion vectors need to be transmitted.

A further problem introduced by the use of B pictures is an increase in delay.
This problem arises because a B picture cannot be transmitted until the future I or
P picture from which it is to be predicted has arrived and been encoded. If there are
several consecutive B pictures, there can be several picture times. Although not a
problem for distribution television services, this can be a serious problem in two-way
interpersonal communication services where round trip delay is very important. For
these latter applications, B pictures are often not used.

6.3. THE SYNTAX OF MPEG-2

We now discuss the special coding tools and semantic defi nitions that are used in the
full MPEG-2 video coding standard. These build directly on the tools and semantics
described in Chapter 5. As in the previous chapter, our discussions are ordered by the
structure of the video bit stream.

Like the syntax described in Chapter 5, MPEG-2 makes use of start codes to
allow resynchronization within the bit stream. Each start code begins with the 24-bit
value 0x000001 followed by the appropriate start-code type as shown in Table 6.2.

6.3. The Syntax of MPEG-2 179

Table 6.2 MPEG-2 start codes.

Type of start code Start-code values

picture_start_code 0x00
slice_start_code 0x01 to 0xAF
Reserved 0xB0 to 0xB1
user_data_start_code 0xB2
sequence_header_code 0xB3
sequence_error_code 0xB4
extension_start_code 0xB5
Reserved 0xB6
sequence_end_code 0xB7
group_start_code 0xB8
Reserved 0xB9 to 0xFFa

a These start code values are used in MPEG-2 system specifi cation.

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint
has been granted by SAI Global Ltd. The standard can be purchased
online at http://www.sai-global.com.

180 Chapter 6 The MPEG-2 Video Compression Standard

MPEG-2 also makes use of extension start codes to expand the number of head-
ers available. Before moving to a full discussion of the syntax, we fi rst introduce the
defi nition and functions of extension start codes.

6.3.1. Extension Start Code and Extension Data

Extension start codes identify extensions of the video syntax beyond those elements
that were provided in the MPEG-1 video syntax. Like all start codes, extension start
codes begin with the 24-bit pattern 0x000001 followed by the 8-bit start-code iden-
tifi er 0xB5. The type of extension is identifi ed by a 4-bit extension_start_code_
identifi er fi eld that immediately follows the extension start code and is defi ned in
Table 6.3.

Extensions considered in this chapter include sequence extension, sequence
display extension, quantizer matrix extension, copyright extension, picture display
extension, and picture coding extension. Other currently defi ned extensions are pro-
vided for the various scalable6 modes of MPEG-2. As these are not used in any cur-
rent digital television applications, they are not considered in detail here.

We are now in a position to discuss the MPEG-2 syntax. We begin at the top
layer called the sequence layer and then move through the group of pictures, picture,

6 Scalability in video compression is the ability to code a sequence into several bit streams. Decoding
just the base layer bit stream gives a basic service whereas decoding the base layer bit stream plus one
or more of the enhancement bit streams provides an improvement in the received service (e.g., higher
quality, higher spatial resolution, higher frame rate).

Table 6.3 Codes for extension_start_code_identifier.

extension_start_code_identifier Extension data type

0000 Reserved
0001 Sequence extension
0010 Sequence display extension
0011 Quantizer matrix extension
0100 Copyright extension
0101 Sequence scalable extension
0110 Reserved
0111 Picture display extension
1000 Picture coding extension
1001 Picture spatial scalable extension
1010 Picture temporal scalable extension
1011 Reserved
1100 Reserved
1101 Reserved
1110 Reserved
1111 Reserved

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

slice, macroblock, and block levels. Notice that the MPEG-2 syntax is really just a
superset of the syntax described in Chapter 5.

6.3.2. Sequence Layer

The complete syntax for a video sequence in MPEG-2 is shown in Table 6.4.
For a new video sequence, the fi rst step is to search for a start_code (line 2) that

should be a sequence_header() (line 3) as discussed in Section 6.3.2.1. If this is fol-
lowed by an extension_start_code (line 4), then the bit stream is compliant with the
MPEG-2 video standard. Otherwise, it is compliant with the MPEG-1 video stand-
ard (line 24).7 For MPEG-2 video, the next item in the bit stream is the sequence_ex-
tension() (line 5) (Section 6.3.2.2). This is followed by extension_and_user_data(0)

7 All MPEG-2 video decoders need to be able to decode MPEG-1 encoded video (ISO/IEC 11172-2).

6.3. The Syntax of MPEG-2 181

Table 6.4 Video sequence syntax for MPEG-2 video.

Syntax Bits Mnemonic

1 video_sequence() {
2 next_start_code()
3 sequence_header()
4 if(nextbits() � � extension_start_code) {
5 sequence_extension()
6 do {
7 extension_and_user_data(0)
8 do {
9 if(nextbits() � � group_start_code) {

10 group_of_pictures_header()
11 extension_and_user_data(1)
12 }
13 picture_header()
14 picture_coding_extension()
15 extension_and_user_data(2)
16 picture_data()
17 } while ((nextbits() � � picture_start_code)||(nextbits() ��

group_start_code))
18 if (nextbits() !� sequence_end_code) {
19 sequence_header()
20 sequence_extension()
21 }
22 } while (nextbits() !� sequence_end_code)
23 } else {
24 /* ISO/IEC 11172-2 MPEG-1*/
25 }
26 sequence_end_code 32 bslbf
27 }

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

182 Chapter 6 The MPEG-2 Video Compression Standard

(line 7), which can include user data as discussed in Section 6.3.2.3 or a sequence_
display_extension() as discussed in Section 6.3.2.4. Next in the bit stream there can
be a group_start_code indicating the presence of a group_of_pictures_header()
followed by extension_and_user(1) (lines 10–11) as discussed in Sections 6.3.3.1
and 6.3.3.2. With or without the group of pictures information, next follows picture_
header() (Section 6.3.4.1), picture_coding_extension() (Section 6.3.4.2), extension_
and_user_data(2) (Sections 6.3.4.3–6.3.4.5) followed by the coded slice and mac-
roblock information in picture data() (lines 13–16) (Sections 6.3.5–6.3.7).

Groups of pictures and pictures continue until a start code arrives, which is
neither a group_start_code nor a picture_start_code (line 17). At this point, if
the next start code is not a sequence_end_code, then a new sequence_header() and
 sequence_header_extension() are read (lines 18–20) and the loop starting at line 6 is
repeated. Alternatively, a sequence_end_code occurs (line 26) indicating the end of
the current sequence. As the chapter unfolds, we look in more detail at each of these
major structures as well as the elements that make them up.

6.3.2.1. The Sequence Header

In MPEG-2, information about a video sequence is contained in the sequence_
header(), the sequence_extension(), the sequence_display_extension(), and the
extension_and_user_data(0).8 The sequence_header() is designed to be similar
to the sequence header used in MPEG-1. The additional information required for
MPEG-2 sequences (e.g., greater number of pixels in a line or lines in a picture,
higher bit rates, wider range of frame rates) is achieved by including extension
data in the sequence_extension() header with the least signifi cant bits (LSB) of
the parameter contained in the sequence_header() and the most signifi cant bits
(MSB) in the sequence_extension(). For convenience, in this section we consider
those parts of the sequence_extension() that augment values in the sequence_
header().

The next section on the sequence_extension() will only cover the new elements
contained in the sequence_extension().

The sequence_header() begins with a sequence_header_code, which is a 32-bit
start code. Other parameters fully or partly defi ned in the sequence_header() are
listed below.

Horizontal and Vertical Picture Size The picture size in pixels is defined
by the variables horizontal_size and vertical_size. Both are 14-bit values of which
the 12 LSB (horizontal_size value and vertical_size_value) are contained in the
sequence_header() and the two MSB are contained in the sequence_extension().
The maximum allowed horizontal and vertical picture sizes for pictures in MPEG-2
are thus in excess of 16,000 pixels. In order to avoid start-code emulation, the values
of horizontal_size value and vertical_size_value cannot be zero. This implies

8 This structure has been used to maintain compatibility with MPEG-1 standard that has only a
sequence header.

that values of horizontal_size and vertical_size that are multiples of 4096 are not
allowed.

Picture Aspect Ratio Aspect ratio information is identical to that defined in
Chapter 5.

Frame Rate The 4-bit frame_rate_code in the sequence header serves the same
purpose as described in Chapter 5 in defining the frame_rate_value. In the full
MPEG-2 standard, the range of possible frame rates can be expanded using the 2-bit
frame_rate_extension_n field (range 0–3) and the 5-bit frame_rate_extension_d
field (range 0–31) defined in the sequence_extension(). The equation below shows
how these can be used to vary the frame rate.

frame_rate frame_rate_value
frame_rate_exte

� �
nnsion_

frame_rate_extension_

n

d

�

�

1

1

Although a part of the full MPEG-2 specifi cation, the existing profi les do not make
use of frame_rate_extension_n and frame_rate_extension_d, both of which must
take the value zero.

Sequence Bit Rate The bit rate of the sequence is defined by a 30-bit value
bit_rate with the 18 LSB (bit_rate_value) in the sequence_header() and the 12
MSB (bit_rate_extension) in the sequence_extension(). The bit rate is defined in
multiples of 400 bits/s. It is therefore possible to specify bit rates in excess of 400
Gbits/s for MPEG-2 video bit streams. The variable bit_rate may not take the value
zero and so the allowed range is 400–400 � (230 � 1) bits/s.

Video Buffer Verifier Buffer Size The vbv_buffer_size variable defines
the size of the video buffer verifier rate control buffer. The role of this buffer
is described further in Section 6.4. It is an 18-bit field with the 10 LSB (vbv_
buffer_size_value) in the sequence_header() and the eight MSB (vbv_buffer_
size_extension) in the sequence_extension(). It specifies the minimum size rate
control buffer needed by a decoder to be able to successfully decode the video
sequence. The buffer size in bits is derived from vbv_buffer_size according to the
equation given below.

VBV_BufferSize � 16 � 1024 � vbv_buffer_size

The larger the buffer, the better the smoothing and the higher the video quality
for a given bit rate. However, both delay and cost increase as the buffer size increases.
The maximum buffer size is in excess of 4 Gbits (range 0 to 16 � 1024 � (218 � 1)).

Constrained Parameter Flag The constrained parameter flag was used in the
specification of MPEG-1 to perform a limited but similar function to that achieved
by the definition of levels in MPEG-2. For MPEG-2 video bit streams, it must be set
to zero.

6.3. The Syntax of MPEG-2 183

184 Chapter 6 The MPEG-2 Video Compression Standard

Quantizer Matrix Definition In the MPEG video compression standards, DCT
coefficients can be quantized using different quantizers depending upon their rela-
tive frequency using the method described in Section 4.4.3. This allows the quanti-
zation to better match the characteristics of the human visual system. The quantizer
matrix definition allows the user to specify how this quantization is performed.

The quantizer matrices given in Figures 6.8 and 6.9 are the defaults defi ned in
the standard for intrablocks and inter (including motion-compensated) blocks, respec-
tively. They are used if no other quantizer matrices are specifi ed in the bit stream and
apply equally to luminance and chrominance blocks. However, it is possible to down-
load new quantizer matrices both at the sequence and picture layers. At the sequence
layer, a 1-bit fl ag is used to indicate whether a new intrablock quantizer matrix or a
new interblock quantizer matrix is to be transmitted as part of the sequence header.
If a fl ag is set to one, it is immediately followed by the new quantizer matrix repre-
sented by sixty-four 8-bit numbers ordered in the default zig-zag scan order used for

8 16 19 22 26 27 29 34

16 16 22 24 27 29 34 37

19 22 26 27 29 34 34 38

22 22 26 27 29 34 37 40

22 26 27 29 32 35 40 48

26 27 29 32 35 40 48 58

26 27 29 34 38 46 56 69

27 29 35 38 46 56 69 83

Figure 6.8 Default quantizer matrix for intrablocks. © This Figure is based on AS/NZS
13818.2:2002. Permission to reprint has been granted by SAI Global Ltd. The standard can be
purchased online at http://www.sai-global.com.

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

16 16 16 16 16 16 16 16

Figure 6.9 Default quantizer matrix for interblocks. © This Figure is based on AS/NZS
13818.2:2002. Permission to reprint has been granted by SAI Global Ltd. The standard can be
purchased online at http://www.sai-global.com.

DCT coeffi cients. This means that the values in the quantizer matrix need to be in
the range of 1–255. A zero quantizer value is, of course, not allowed. Any quantizer
matrix downloaded at the sequence layer applies to both luminance and chrominance
blocks.

6.3.2.2. The Sequence Extension

As already described in Section 6.3.2.1, a number of parameters in the sequence_
header() are defi ned by entries in both the sequence_header() and the sequence_ex-
tension(). Several other parameters are defi ned only in the sequence_extension() and
so are relevant to MPEG-2 video bit streams but not to MPEG-1 video bit streams.

Profile and Level Indication An 8-bit profile_and_level_indication field
defines the profile and level of the current video sequence. For profiles and levels9

defined in the original MPEG-2 standard, which includes all of the profiles and
levels used in digital television applications, the MSB in this field (called an escape
bit) is 0 and is followed by a 3-bit profile indication and finally a 4-bit level indica-
tion. The profile indication field is defined in Table 6.5, whereas the level indication
is shown in Table 6.6. Other profiles have been defined subsequently and have been
defined with the escape bit set to 1. We will not consider these further here as they
do not relate to digital television services. Further discussion of currently defined
profiles and levels is included later in this chapter.

Progressive Sequence The 1-bit progressive_sequence field defines that the
sequence is progressive (i.e., each picture is fully imaged at the same time) when set
to one. Otherwise, the sequence is interlaced (i.e., each picture is imaged twice to
produce two fields separated in time by half the period between pictures). Most cur-
rent digital television applications use interlaced sequences.

9 Profi les defi ne a subset of the complete syntax of the standard, whereas levels place constraints on the
values that may be taken by parameters in the bit stream. See Section 6.5 for more details.

6.3. The Syntax of MPEG-2 185

Table 6.5 Profile indication.

Profile indication Profile

111 Reserved
110 Reserved
101 Simple
100 Main
011 SNR scalable
010 Spatially scalable
001 High
000 Reserved

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint
has been granted by SAI Global Ltd. The standard can be purchased
online at http://www.sai-global.com.

186 Chapter 6 The MPEG-2 Video Compression Standard

Chrominance Format MPEG-2 allows three chrominance formats: 4:2:0, 4:2:2,
and 4:4:4. The format used in the current video sequence is signaled in the 2-bit chroma_
format field in the sequence_extension(). All current distribution digital television ap-
plications use the 4:2:0 chrominance format and so this field takes the value 01.

Low Delay The 1-bit low_delay flag in the sequence extension indicates that the
video sequence is a low-delay sequence and therefore does not contain B pictures that, as
explained earlier, introduce delay due to the need for picture reordering after decoding.

6.3.2.3. User Data at the Sequence Layer

User data can be specifi ed at the sequence layer and is preceded by a start code and
a unique start-code value as shown in Table 6.1. Then follows the user data in 8-bit
bytes until a new start code is encountered. Because start-code emulation must be
avoided, user data must not contain a string of 23 or more consecutive zeros. As the
name implies, user data is user defi ned for particular applications. As is shown later,
user data can also be present at lower levels of the syntax.

6.3.2.4. The Sequence Display Extension

The fi nal type of information that is available at the sequence layer is the sequence_
display_extension(). It is important to realize that the MPEG-2 video specifi cation
does not defi ne the display process. Thus, the information contained in the sequence_
display_extension() may be helpful to some decoders while it may be completely
 ignored by others. All compliant decoders must be capable of decoding bit streams
in which these values are defi ned. The elements contained in the sequence_display_
extension() are described briefl y below.

Video Format The 3-bit video_format field indicates the format of the analog
video before coding. Possible formats include component, PAL, NTSC, SECAM,
and MAC.

Table 6.6 Level indication.

Level indication Level

1011 to 1111 Reserved
1010 Low
1001 Reserved
1000 Main
0111 Reserved
0110 High 1440
0101 Reserved
0100 High
0000 to 0011 Reserved

© This Table is based on AS/NZS 13818.2:2002. Permission to
reprint has been granted by SAI Global Ltd. The standard can be
purchased online at http://www.sai-global.com.

Color Description The 1-bit color_description flag when set to one indicates
the presence of the following three elements next in the bit stream:

color_primaries: an 8-bit number that defi nes the chromaticity coordinates
of the source primaries.

transfer_characteristics: an 8-bit number that specifi es the optoelectronic
characteristics of the source picture. This is commonly referred to as the
gamma.

matrix_coeffi cients: an 8-bit number that specifi es the matrix coeffi cients
used to derive the luminance and chrominance signals from the red, green,
and blue primaries in the original source material.

Display Horizontal and Vertical Size The two 14-bit parameters display_
horizontal_size and display_vertical_size define a rectangle that may be considered as
the active region of the intended display. If the rectangle is smaller than the decoded picture
size, the display would be expected to show only a part of the decoded picture. Alterna-
tively, if the rectangle is larger than the decoded picture size, the display would be expected
to show the decoded picture in a portion rather than all of the display.

6.3.3. The Group of Pictures Layer

A group of pictures is defi ned as one or more coded pictures with the fi rst coded
picture (in transmission order) as an intracoded picture. The situation is illustrated
in Figure 6.10, which shows the position of the group_of_pictures_header() for a
sequence in both transmission and display order.

A GOP can contain more than one I picture as well as any number of P pictures
and B pictures. The last coded picture (in display order) of a GOP is either an I pic-
ture or a P picture. The GOP layer provides a convenient structure for random access
into a video sequence. It was developed as part of the MPEG-1 video standard that
was designed to handle video from digital storage media such as CDs. Clearly, ran-
dom access to the video material is essential for such applications. In the MPEG-2
video standard, the use of the group of pictures layer is optional.

•

•

•

6.3. The Syntax of MPEG-2 187

Figure 6.10 Positioning of the group of pictures header.

G
O
P

I
1

P
4

B
2

B
3

P
7

B
5

B
6

G
O
P

I
10

B
8

B
9

I
13

B
11

B
12

P
16

G
O
P

I
1

B
2

B
3

P
4

B
5

B
6

P
7

G
O
P

B
8

B
9

I
10

B
11

B
12

I
13

B
14

B
14

B
15

B
15

P
16

Display order

Transmission order

188 Chapter 6 The MPEG-2 Video Compression Standard

6.3.3.1. Group of Pictures Header

The group_of_pictures() header begins with a group_start_code as defi ned in
Table 6.2. Other items defi ned in the group_of_pictures_header() are listed below.

Time Code The 25-bit time_code field is in the format used for the transmission
of time and control codes for video tape recorders.10 The information carried in this
field plays no part in the video decoding process.

Closed GOP and Broken Link Flags As shown in Figure 6.10, in transmis-
sion order the first I picture in a GOP may be followed by a number of B pictures
calculated using a reference picture in the previous GOP. In general, these B pic-
tures need both the I picture in the current GOP and the last I picture or P picture
from the previous GOP for correct decoding. In television applications, independent
pieces of video material are often edited together. As a result of this editing, the
previous GOP may no longer be present in the bit stream having been replaced by
a GOP from a different sequence. The 1-bit closed_gop flag indicates that the B
pictures that follow the first I picture in the GOP have been encoded in intramode
or using motion-compensated prediction only from the first I picture of the GOP.
They can therefore still be correctly decoded even if the previous GOP is no longer
available in the bit stream. The 1-bit broken_link flag indicates that the B pictures
following the first I picture in the GOP cannot be correctly decoded. It is set to one
during the editing process if the previous GOP is removed unless the current GOP
is a closed GOP.

6.3.3.2. User Data

User data can also be included in the GOP layer. It begins with the unique user_
data_start_code and has a format identical to that used for user data at the sequence
layer.

6.3.4. The Picture Layer

The picture layer includes the picture_header() and the picture_coding_exten-
sion(). It may also contain the optional extensions quant_matrix_extension(),
picture_display_extension(), and copyright_extension().11 The picture layer is
organized in a similar manner to the sequence layer in that the picture_header()
is almost identical to MPEG-1, whereas new additions at the picture layer required
for MPEG-2 are contained in the picture_coding_extension(). The picture header
begins with the 32-bit picture_start_code. Other items defi ned at the picture layer
are listed below.

10 See IEC Publication 461, Time and Control Code for Video Tape Recorders.
11 Extensions for temporal scalability and spatial scalabilty can also occur at the picture layer. As these
are not used for current distribution television applications, they are not considered here.

6.3.4.1. Picture Header

In this section we discuss parameters defi ned in the picture_header().

Temporal Reference The temporal_reference is a 10-bit integer that is as-
sociated with each coded picture and defines the display order of the pictures. This
information can be useful to a decoder as pictures do not necessarily arrive at the
decoder in display order when B pictures are used. The first picture in display order
in each group of pictures has a temporal_reference value of zero, and the temporal
reference is incremented as described below for each successive picture in the group
of pictures.

For sequences that are not coded in low-delay mode (i.e., low_delay at the sequence
layer is set to zero),12 the temporal_reference for each coded picture increases by one
modulo 1024 in display order. For a frame picture coded as two fi eld pictures, as is
allowed for interlaced sequences, each fi eld is assigned the same temporal reference.
Figure 6.11 shows the use of the temporal reference in a typical group of pictures where
each picture is a frame picture. Both display and transmission orders are shown.

Picture Coding Type The 3-bit picture_coding_type field specifies the pre-
diction method used to code a particular picture as defined by Table 6.7.

Although every macroblock in an I picture is coded in intramode, it is still pos-
sible to have intracoded macroblocks in both P pictures and B pictures. In addition
and as described earlier, not every macroblock in a B picture needs to be coded using
bidirectional prediction, as prediction from only one of the two reference pictures is
also possible.

VBV Delay The video buffer verifier is a hypothetical decoder that is connected
directly to the output of the encoder. Its role is to ensure that buffer overflow or

12 Distribution digital television services do not use low-delay mode and so the case of low delay mode
is not considered. Details can be found in the international standard.

6.3. The Syntax of MPEG-2 189

B

0

B

1

I

2

B

3

B

4

P

5

B

6

B

7

P

8

B

9

B

10

P

11

I

2

B

0

B

1

P

5

B

3

B

4

P

8

B

6

B

7

P

11

B

9

B

10

Display order

Transmission order

P

12

P

12

Picture type

Temporal
reference

Picture type

Temporal
reference

Figure 6.11 Use of the temporal_reference in display and transmission orders.

190 Chapter 6 The MPEG-2 Video Compression Standard

buffer underflow does not occur at the decoder. The VBV is described in detail
later in this chapter. The vbv_delay field sets the number of periods of a 90-kHz
clock (which is derived from the 27-MHz system clock13) that the VBV waits after
the receipt of the final byte of picture_start_code before decoding the picture. The
vbv_delay can be used by the decoder to correct for any variation between the tim-
ing (such as the clock speeds) at the encoder and the decoder.

Redundant Fields The picture header next contains four redundant fields,
namely, full_pel_forward_vector (1 bit), forward_f_code (3 bits), full_pel_back-
ward_vector (1 bit), and backward_f_code (3 bits). All were used in the picture
header for the MPEG-1 video standard to specify information about the way that mo-
tion vectors had been coded. They are not used in MPEG-2 and are set to predefined
values (the 1-bit fields to 0 and the 3-bit fields to 111). Instead, data on the coding
of motion vectors are included in the picture_coding_extension() for MPEG-2 bit
streams.

Extra Picture Information The 1-bit extra_bit_picture field when set to
one is followed immediately by the 8-bit extra_information_picture field. This
field can be used for future extensions of the standard. It is currently not used
and must not be used in compliant bit streams. After this field, the extra_bit_
picture field is again checked and if set to one, a further 8-bit extra_infor-
mation_picture field is read. This continues until extra_bit_picture is not set
to one. If the extra_bit_picture is initially zero, then no extra_information_
picture data is read.

6.3.4.2. Picture Coding Extension

The picture_coding_extension() begins with a 32-bit extension_start_code and a
4-bit extension_start_code_identifi er as defi ned in Table 6.3. Other parameters
are defi ned below.

13 See Chapter 11 on MPEG-2 systems for further details.

Table 6.7 Definition of picture_coding_type.

picture_coding_type Prediction method used for coding

000 Forbidden
001 Intrapicture (I)
010 Predictive picture (P)
011 Bidirectionally predicted picture (B)
100 Not to be useda

101–111 Reserved

a This type was used for D pictures (pictures that only contained the DC DCT coeffi cient after
coding in intramode) in MPEG-1. It is not allowed in MPEG-2.

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Motion Vector Range Motion vector ranges are defined by the values of the
four fields f_code[0][0], f_code[0][1], f_code[1][0], and f_code[1][1] that refer to
forward horizontal, forward vertical, backward horizontal, and backward vertical
motion vector components, respectively. Each field is of length 4-bits, and not all
fields are relevant for every picture type. Thus, no f_code[][] fields are needed in
an I picture,14 and so all 4-bit fields take the value 1111. Only forward f_code[][]
fields are required for P pictures, and so the two 4-bit backward fields take the value
1111.

The four values are needed to allow a separate f_code[][] value for forward
and backward motion vectors (both of which could be required for B pictures) and
for the vertical and horizontal component of each motion vector. The f_code[][]
value defi nes the motion vector range as defi ned in Table 6.8. The range for the verti-
cal component of fi eld motion vectors in frame pictures is half of that for all other
components. This is because a one-pixel vertical displacement in a fi eld picture is
equivalent to a two-pixel horizontal displacement in a frame picture because a line
from the alternate fi eld lies between the position of the current pixel and the pixel
displaced by one pixel vertically in the same fi eld. A smaller motion vector range is
therefore appropriate.

From the data in Table 6.8, it can be seen that very large motion vector ranges are
allowed and that motion-compensated prediction is performed to half pixel accuracy.

Intra-DC Precision In an intracoded macroblock, the value of the DC DCT coef-
ficient for luminance and chrominance defines the average color of the macroblock.
Coding this information with insufficient accuracy means that only a limited range of
colors are possible. This can show up as blocking artifacts in flat regions of a picture.

14Unless the I picture makes use of concealment motion vectors for error concealment. These are
described later in the picture_coding_extension().

Table 6.8 Motion vector ranges for various values of f_code.

f_code[][] value
Range for vertical component of field

motion vectors in frame pictures
Range for all other motion

vectors

0 Not allowed
1 �4 to �3.5 �8 to �7.5
2 �8 to �7.5 �16 to �15.1
3 �16 to �15.5 �32 to �31.5
4 �32 to �31.5 �64 to �63.5
5 �64 to �63.5 �128 to �127.5
6 �128 to �127.5 �256 to �255.5
7 �256 to �255.5 �512 to �511.5
8 �512 to �511.5 �1024 to �1023.5
9 �1024 to �1023.5 �2048 to �2047.5
10–14 Reserved Reserved
15 Used when a particular f_code[][] is not needed

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

6.3. The Syntax of MPEG-2 191

192 Chapter 6 The MPEG-2 Video Compression Standard

For this reason, particular care is taken in coding these DC DCT coeffi cients
using 8, 9, 10, or 11-bit precision. This precision can be set at the picture layer using
the 2-bit intra_dc_precision fi eld defi ned in Table 6.9.

Picture Structure The field or frame structure of a picture is defined by the
2-bit picture_structure field as defined in Table 6.10.

Top Field First This top_field_first flag has a number of meanings, depending
upon the values of the progressive_sequence flag (sequence layer) and the picture_
structure and repeat_first_field flags (picture layer).

For interlaced sequences (progressive_sequence set to zero), this fl ag indicates
which fi eld is to be output fi rst by the decoder. For fi eld pictures, it always takes the
value zero since whether the fi eld is the top fi eld or the bottom fi eld is indicated by
the picture_structure fi eld. For frame pictures, if top_fi eld_fi rst is set to one then
the fi rst fi eld output from the decoding process is the top fi eld. Otherwise, the fi rst
fi eld output is the bottom fi eld.

For progressive sequences (progressive_sequence set to one), the top_fi eld_
fi rst and repeat_fi rst_fi eld fl ags indicate how many times (one, two, or three) the
reconstructed progressive picture is to be output by the decoding process as defi ned
in Table 6.11.

Frame-Only Prediction and DCT Frame pictures in MPEG-2 can still be pre-
dicted using field prediction. In addition, the DCT can also be carried out in either
field or frame mode. Both of these are discussed further at the macroblock level later

Table 6.10 Definition of picture_structure.

picture_structure Type of picture

00 Reserved
01 Top field of a pair of field pictures
10 Bottom field of a pair of field pictures
11 Frame picture

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 6.9 Definition of intra_dc_precision.

intra_dc_precision
Precision of DC DCT

coefficient in I blocks (bits)

00 8
01 9
10 10
11 11

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint
has been granted by SAI Global Ltd. The standard can be purchased
online at http://www.sai-global.com.

in this chapter. However, if the flag frame_pred_frame_dct is set to one in a frame
picture from an interlaced video sequence, then only frame prediction and frame
DCT are used in the coding of this picture. This allows some savings in overhead bits
to be achieved at the macroblock layer. The flag is set to zero in field pictures since
field prediction is always employed. It is always set to one in progressive sequences
since only frame prediction and frame DCT are employed.

Concealment Motion Vectors The MPEG-2 syntax allows motion vectors
to be transmitted in I macroblocks even though motion-compensated predic-
tion is not used for the coding of these macroblocks. The availability of these
motion vectors allows improved concealment if transmission errors occur.
Transmitting the motion vector in the same macroblock which has the data for
that macroblock is of little use because if the data is lost, then it is highly likely
that the motion vector is also lost. For this reason, a concealment motion vector
sent in a particular macroblock refers to the macroblock directly below the cur-
rent macroblock. For the last row of macroblocks in a picture, concealment
 motion vectors serve no useful purpose and so should be set to zero to reduce
unnecessary overhead.

Quantizer Scale Type The quantizer to be used for the coding and decoding
of DCT coefficients is defined by a 5-bit quantizer_scale_code field, which is de-
fined at the slice and macroblock layers. This can be decoded in one of the two ways
 depending on the value of the q_scale_type flag as defined in Table 6.12.

The fi rst column of quantizer values is the set used in MPEG-1 with the quan-
tizer directly proportional to the quantizer_scale_code value. The second col-
umn is an alternative set introduced for MPEG-2, which allows both an increased
range of possible quantizers (1–112 as opposed to 2–62) as well as a large range
of small quantizer values (i.e., 1–8 in steps of 1), which is useful for high-quality
applications.

Intra-Variable-Length Code Format The variable-length code words used to
represent run-level pairs of DCT coefficients are the same as those given in Chapter 5,
with the exception that if the intra_vlc_format flag is set then an alternate set of
variable-length code words are used for the coding of intramacroblocks. Since intra
macroblocks can occur in any type of picture (I, P, or B), the variable-length code
word table to be used needs to be specified for every picture. The exact specification
of the alternate table can be found in the standard.

Table 6.11 Use of top_field_first and repeat_first_field for progressive sequences.

top_field_first repeat_first_field Decoder output

0 0 One progressive picture
0 1 Two identical progressive pictures
1 0 Not allowed
1 1 Three identical progressive pictures

6.3. The Syntax of MPEG-2 193

194 Chapter 6 The MPEG-2 Video Compression Standard

Zig-Zag Scanning of DCT Coefficients The zig-zag scan order for DCT
coefficients used in MPEG-1 has already been defined in Chapter 4. An alternate zig-
zag scan order has been introduced in MPEG-2 and is used when the alternate_scan
flag is set to one. This alternate zig-zag scan pattern is shown in Figure 6.12.

The alternate scan order scans the coeffi cients toward the bottom of the fi rst two
columns of DCT coeffi cients considerably earlier in the scan than the other original

Table 6.12 Definition of quantizer step size for different values of
q_scale_type.

quantizer_scale_code

Quantizer step size

q_scale_type � 0 q_scale_type � 1

0 Not allowed
1 2 1
2 4 2
3 6 3
4 8 4
5 10 5
6 12 6
7 14 7
8 16 8
9 18 10

10 20 12
11 22 14
12 24 16
13 26 18
14 28 20
15 30 22
16 32 24
17 34 28
18 36 32
19 38 36
20 40 40
21 42 44
22 44 48
23 46 52
24 48 56
25 50 64
26 52 72
27 54 80
28 56 88
29 58 96
30 60 104
31 62 112

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been
granted by SAI Global Ltd. The standard can be purchased online at http://www.
sai-global.com.

scan order. It would therefore be suitable for blocks with faster vertical than horizon-
tal changes. This can be expected to occur in fi eld pictures in interlaced sequences,
as the 16 vertical pixels in a macroblock effectively span 32 pixels in the equivalent
frame picture.

Repeat First Field The 1-bit repeat_first_field flag causes the first field of an
interlaced frame picture to be repeated. The first field (either top or bottom) is fol-
lowed by the alternate field, and then the first field is repeated. At the first glance, this
might not seem a particularly useful functionality. Its usefulness becomes apparent
when we consider the transmission of film material over digital television.

Film material is usually recorded at 24 frames/s. For transmission over a
50-fi eld/s system, the fi lm material is speeded up to 25 frames/s. This results in a
barely noticeable change in the pitch of the accompanying audio material. However,
for a 60-fi eld/s systems, a process known as 3:2 pulldown is employed. Using this
 approach, one fi lm frame produces three fi elds of television information whereas the
next fi lm frame produces just two fi elds. This is illustrated in Figure 6.13.

The fi rst fi lm frame is scanned into three fi elds, which are then merged to
form a single frame for coding and transmission (Fields 1 and 3 can be identical or
alternatively averaged to form the top fi eld of Frame 1). For correct display, Frame
1 needs both repeat_fi rst_fi eld and top_fi eld_fi rst fl ags set to one. The second
fi lm scene is scanned to two fi elds that are merged to form a single frame for coding
and transmission. To keep the required alternate order of fi elds, which is needed
by interlaced displays, the top_fi eld_fi rst fl ag is set to zero in this case as it is the
bottom fi eld that needs to be displayed fi rst. The third fi lm frame is treated in identi-
cal manner to the fi rst frame, except that the bottom fi eld needs to be displayed fi rst
and is the fi eld that is repeated. The fourth frame is treated like the second, except

Figure 6.12 Alternate zig-zag scan order.

DC

Increasing horizontal frequency

In
cr

ea
si

ng
 v

er
ti

ca
l f

re
qu

en
cy

6.3. The Syntax of MPEG-2 195

196 Chapter 6 The MPEG-2 Video Compression Standard

that the top_fi eld_fi rst fl ag is set to one. This allows a 30-picture/s movie to be
displayed while only transmitting 24 pictures/s. This greatly enhances the coding
performance for movie material. For fi eld pictures, the repeat_fi rst_fi eld fl ag is
always set to zero.

As described in the section on “Top fi eld fi rst”, for progressive sequences the
repeat_fi rst_fi eld fl ag is used together with the top_fi eld_fi rst fl ag to indicate the
number of times that a decoded progressive frame should be output by the decoder.

Composite Display Flag This flag indicates that the bit stream contains infor-
mation about the analog composite video prior to encoding. This includes the field
sequence, burst amplitude, and subcarrier phase. This information is not needed to
correctly decode the digital bit stream but can be useful if the decoded video signal
is to be returned to the analog form.

6.3.4.3. Quantizer Matrix Extension

We have already seen at the sequence layer that new intrablock and interblock quan-
tizer matrices can be defi ned by the user and downloaded in the bit stream. It is pos-
sible to redefi ne these quantizer matrices using the quantizer matrix extension at the
picture layer. In addition, the extra fl exibility of having different quantizer matrices
for luminance and chrominance is also provided at the picture layer for chrominance
formats other than 4:2:0. A 1-bit fl ag indicates whether a particular quantizer matrix
is present or not. Thus, up to four quantizer matrices can be loaded in the follow-
ing order: intraquantizer matrix, interquantizer matrix, chrominance intraquantizer
matrix, and chrominance interquantizer matrix.15

15 For a 4:2:0 chrominance structure, separate luminance and chrominance quantizer matrices are not
available.

Film
1

Film
2

Film
3

Film
4

TV
1

Top
field

TV
2

Bottom
field

TV
3

Top
field

TV
4

Bottom
field

TV
5

Top
field

TV
6

Bottom
field

TV
7

Top
field

TV
8

Bottom
field

TV
9

Top
field

TV
10

Bottom
field

Frame 1
Repeat first field

Top field first

Frame 2
Bottom field first

Frame 3
Repeat first field
Bottom field first

Frame 4
Top field first

Figure 6.13 Use of 3:2 pulldown in 60-Hz systems.

When the intraquantizer matrix is loaded, its values are also used for the
chrominance intraquantizer matrix, unless this is subsequently defi ned in the exten-
sion. Similarly, when the interquantizer matrix is loaded, its values are also used for
the chrominance interquantizer matrix, unless this is subsequently defi ned in the
extension. Similar to the sequence layer, the quantizer matrices are downloaded as
sixty-four 8-bit values (range 1–255) in the default zig-zag scan order.

6.3.4.4. Picture Display Extension

The picture_display_extension() allows the position of the display rectangle defi ned
in the sequence_display_extension() to be moved on a picture-by-picture basis. It
begins with a start code followed by the appropriate extension_start_code_identifi er
value as defi ned in Table 6.3. The position of the display rectangle is defi ned relative
to the center of the complete reconstructed picture as shown in Figure 6.14. The two
offsets are 16-bit signed integers giving each offset in units of 1/16th of a pixel.16 A
positive value for the frame_center_horizontal_offset indicates that the center of
the reconstructed picture lies to the right of the center of the display rectangle. A
positive value for the frame_center_vertical_offset indicates that the center of the
reconstructed picture lies below the center of the display rectangle. In Figure 6.14,
both of these offsets take negative values.

The frame center offsets can be used to implement pan and scan so that the dis-
play rectangle can be moved around the entire reconstructed picture to ensure that
the most “interesting” area is always displayed. As an example, suppose that we have
a wide-screen (16 � 9) image of two people talking at either end of a long table. One
person is therefore at the extreme left in the reconstructed picture while the other
person is at the extreme right of the picture. For a viewer watching on a standard-
defi nition (4 � 3) display, looking at the central portion of the reconstructed picture

16 Specifi cation to 1/16th of a pixel accuracy is required for scalable applications where higher layers
may contain more pixels than lower layers and still require at least pixel accuracy. Scalability is not
covered in detail in this text as it is not used in current digital television applications.

Display
rectangle

Reconstructed
picture

display_horizontal_size

display–vertical–size

frame_center_horizontal_offset

frame_center
vertical_offset

Center of
display

rectangle

Center of
reconstructed

picture

Figure 6.14 Offset of displayed picture relative to reconstructed picture.

6.3. The Syntax of MPEG-2 197

198 Chapter 6 The MPEG-2 Video Compression Standard

would show the table, but possibly neither of the speakers. The use of the frame
center offsets allows the displayed area to move both left and right to show each
person while they are speaking.

Earlier in this chapter we saw that for interlaced sequences, a fi eld picture
 always contains exactly one fi eld whereas a frame picture can contain two or three
fi elds depending on the value of the repeat_fi rst_fi eld fl ag. If there is more than one
fi eld, then separate values of the frame_center_horizontal_offset and the frame_
center_vertical_offset are required for each displayed fi eld.

Similarly for progressive sequences, the picture can be displayed one, two, or
three times depending upon the values of the repeat_fi rst_fi eld and top_fi eld_fi rst
fl ags. Again, if a picture is displayed more than once then separate values for the two
offsets are required for each displayed picture.

6.3.4.5. Copyright Extension

The copyright extension allows materials to be marked as copyright. It again consists
of a start code followed by the appropriate extension_start_code_identifi er value
shown in Table 6.3. A 1-bit fl ag indicates whether the material is copyright or not.
When set to one, this indicates that all the coded pictures following the copyright
extension up to the next copyright extension or the end of sequence start code are
copyright. This is followed by an 8-bit copyright_identifi er, which indicates the
registration authority for the copyright, an original_or_copy fl ag, which indicates
that the material is original when set to one and a copy when set to zero, and a 64-
bit copyright_number, which uniquely identifi es the copyright material. To remove
the possibility of start-code emulation (i.e., 23 or more successive zero bits), the
copyright number is transmitted as a 20-bit fi eld and two 22-bit fi elds with each fi eld
separated by a marker bit, which is set to one.

6.3.4.6. User Data

User data can also be included at the picture layer. It begins with the unique user_
data_start_code and has a format identical to that used for user data at the sequence
layer.

6.3.5. The Slice Layer

A slice consists of a number of consecutive macroblocks all in the same row of mac-
roblocks. A slice can contain all of the macroblocks in a particular row of macrob-
locks in a picture or a series of macroblocks in the same row of macroblocks. This is
shown in Figure 6.15. Each row of macroblocks starts with a new slice header. The
fi rst row of macroblocks in Figure 6.15 forms a single slice while the second row of
macroblocks forms two slices. There is no limit to the number of macroblocks that
can be included in a slice, except that each slice must contain at least one macroblock
and all macroblocks in a slice must be in the same row of macroblocks. The fi rst and
last macroblocks in a slice cannot be skipped macroblocks.

Requiring all macroblocks in a picture to be covered by a slice is called the
restricted slice structure. This structure is used in all current digital television
 applications. The unrestricted slice structure allows gaps of unencoded macroblocks
between slices as shown in Figure 6.16. In this case, it is clear that the fi rst and last
macroblocks in each slice need to be coded, so that the parts of the picture coded
can be uniquely defi ned.

Each slice begins with a slice start code that consists of the start code 0x000001
followed by an 8-bit slice_vertical_position, which takes values in the range
0x01–0xAF (in decimal 1–175). The slice_vertical_position defi nes which row of
macroblocks is contained in the slice with the fi rst row of macroblocks in a pic-
ture numbered one, the second row of macroblocks numbered two, and so on. If
a row of macroblocks is made up of more than one slice, then each of these slices
has the same value for slice_vertical_position. The horizontal position of the fi rst

6.3. The Syntax of MPEG-2 199

Figure 6.15 Arrangement of slices in a picture (restricted slice structure).

Figure 6.16 Arrangement of slices in a picture (unrestricted slice structure).

200 Chapter 6 The MPEG-2 Video Compression Standard

macroblock in each slice is defi ned in the macroblock header as is discussed in the
section on ‘Macroblock address’.

6.3.5.1. Slice Number Extension for Pictures With More

Than 2800 Lines

A picture with more than 2800 lines of pixels (i.e., more than 175 rows of macrob-
locks) requires more slices than are allowed by the range of slice_vertical_position.
For pictures of this size (as defi ned at the sequence layer), a further 3-bits imme-
diately follows the slice_start_code. This fi eld is called the slice_vertical_posi-
tion_extension and extends the range of slice numbers from 1 to 1023 by acting as
the three MSBs of the slice_vertical_position. This range is suffi cient for all picture
sizes permitted by the MPEG-2 specifi cation.

6.3.5.2. Quantizer Step Size

Next follows the 5-bit quantizer_scale_code fi eld that indicates the quantizer to be
used for macroblocks in the slice. The mapping between quantizer_scale_code and
quantizer value is given in Table 6.12 for each value of q_scale_type (defi ned at the
picture layer). The quantizer value can be redefi ned in the macroblock header of any
macroblock that is not skipped. In practice, it is not usually desirable to do this for
every macroblock because of the large overhead involved.

6.3.5.3. Intraslice

The intra_slice_fl ag fi eld when set to one indicates the presence in the bit stream
of an intra_slice fl ag as well as further reserved_bits and extra slice information.
The intra_slice fl ag, when set to one, indicates that all macroblocks in the slice
are coded in intramode. This can be useful in allowing a decoder to perform fast
forward and fast reverse operations. The intra_slice fl ag is followed by a 7-bit fi eld
(reserved_bits), which is reserved for future use and must currently take the value
zero. The extra slice information consists of an extra_bit_slice fl ag, which if set to
one, indicates that it is followed by an 8-bit extra_information_slice fi eld. Then
follows another extra_bit_slice fl ag, and the process continues until the extra_bit_
slice fl ag takes the value zero. In the current systems, the extra_bit_slice fl ag should
be set to zero and any information following the extra_bit_slice fl ag, if set to one,
should be ignored by the decoder.

The slice header is followed by a series of coded macroblocks of data until a
further start code is encountered.

6.3.6. The Macroblock Layer

The macroblock header is used to defi ne the address of the macroblock, the mac-
roblock type, the quantizer to be used, the motion vector(s), and the coded block
pattern. We consider each of the elements one by one. Not all of these elements are

present in every macroblock header. However, the decoder can correctly determine
which elements to expect from the macroblock-type information.

6.3.6.1. Macroblock Header

Macroblock Address The macroblock address defines the horizontal posi-
tion of the macroblock within a row of macroblocks. The row of macroblocks in
which the macroblock is located can be inferred from the slice header. As explained
in Chapter 5, the data transmitted is actually the difference between the address
of the current macroblock and the address of the last transmitted macroblock and
is called the macroblock_address_increment. A variable-length code is used to
represent these differences with a range of 1–33. As discussed when considering
the sequence layer, MPEG-2 can deal with very large pictures. It is therefore pos-
sible that the macroblock_address_increment might need to be larger than 33.
In this case, it is preceded by one or more fixed-length 11-bit code words called
the macroblock_escape. Each time the macroblock_escape is included in the bit
stream, the macroblock_address_increment is increased by 33. Thus, if the differ-
ence in address between the last-coded and the current macroblocks was 88 macrob-
locks, then this would be encoded as shown in Figure 6.17.

After the slice header, the address of the fi rst macroblock is coded as its actual
value rather than the difference from the last-encoded macroblock in the previous
slice. This allows the decoder to correctly determine the position of this macroblock
even if transmission errors have made it impossible for the previous slice to be cor-
rectly decoded. The slice header gives the vertical position of the macroblock while
the macroblock header gives the horizontal position. All the coded macroblocks con-
tain a macroblock_address_increment.

Macroblock Type The macroblock-type information depends on the type of picture
(I, P, or B) that is currently being decoded. We consider each picture type separately.

I Pictures All macroblocks in I pictures are coded in intramode. As shown in
Table 6.13, there are only two types of macroblocks in I pictures, namely macrob-
locks where the quantizer step size is redefi ned and macroblocks where the quantizer
remains unchanged. Motion vectors are not needed for the decoding of I macrob-
locks.17 Since every block in an I macroblock needs to be coded as it must contain

17 Other than concealment motion vectors if specifi ed at the picture layer. All intramacroblocks in a
picture that uses concealment motion vectors contain a motion vector and so this does not need to be
determined at the macroblock layer.

6.3. The Syntax of MPEG-2 201

macroblock_escape

macroblock_escape

macroblock_address_increment = 22

Figure 6.17 Representation of a macroblock_address_increment of 88.

202 Chapter 6 The MPEG-2 Video Compression Standard

at least a nonzero DC DCT coeffi cient, there is no need for a coded block pattern to
indicate which blocks are coded.

P Pictures The types of macroblocks that can occur in a P picture are shown in
Table 6.14.

Table 6.14 Macroblock types for P pictures.

Macroblock-type VLC code word

New quantizer defined

forward motion vector

Backward motion vector

Coded block pattern

Intra macroblock

Description of macroblock

1 No Yes No Yes No MC, coded blocks, old quant
01 No No No Yes No Inter, coded blocks, old quant
001 No Yes No No No MC, no coded blocks, old quant
00011 No No No No Yes Intra, old quant
00010 Yes Yes No Yes No MC, coded blocks, new quant
00001 Yes No No Yes No Inter, coded blocks, new quant
000001 Yes No No No Yes Intra, new quant

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 6.13 Macroblock types for I pictures.

Macroblock-type VLC code word

New quantizer defined

forward motion vector

Backward motion vector

Coded block pattern

Intramacroblock

Description of macroblock

1 No No No No Yes Intra, no new quantizer
01 Yes No No No Yes Intra, new quantizer

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

The macroblock types can be divided into three groups: macroblocks that utilize
forward motion-compensated prediction from the previous I or P reference picture
(motion-compensated mode), macroblocks that use the macroblock in the same posi-
tion in the previous I or P reference picture for prediction (intermode), and macrob-
locks that do not use any form of temporal prediction (intramode).

For macroblocks coded using motion-compensated prediction, the possibilities
are as follows:

One or more blocks contains coded data and the quantizer is unchanged.

No block contains coded data and the quantizer is unchanged. The macrob-
lock still needs to be transmitted to send the appropriate motion vector.

One or more blocks contain coded data and a new quantizer value is used.

There is no need to defi ne a macroblock type for the case where no block con-
tains coded data and a new quantizer value is used, because if no blocks contain
coded data then all reconstructed blocks are zero irrespective of the quantizer value
used.

For macroblocks coded using interprediction, there are two possibilities

One or more blocks contain coded data and the quantizer is unchanged.

One or more blocks contain coded data and a new quantizer value is used.

An intercoded macroblock in which no block has a coded data is a skipped
macroblock. The reconstructed value of a skipped intermacroblock (all zeros) is the
same irrespective of the quantizer. As with motion-compensated macroblocks, there
is therefore no need to defi ne an intermacroblock that only defi nes a new quantizer
value but for which all blocks of data are zero.

The case for intracoded macroblocks is the same as that for I pictures, that is,
the macroblocks are coded using the current quantizer or have a new quantizer value
defi ned in the macroblock header. Intramacroblocks are always coded.

B Pictures The types of macroblocks that can occur in a B picture are shown in
Table 6.15.

In this case, there are four different classes of macroblocks. Interpolated mac-
roblocks require two motion vectors: a forward motion vector that points to a previ-
ous I or P reference picture and a backward motion vector that points to a future I
or P reference picture (interpolated prediction). Two motion vectors are transmitted
in the macroblock header. The fi nal prediction is the average of the two predictions
generated. The result of motion-compensated prediction and coding can result in all
blocks being zero. In this case, the quantizer is assumed to be unchanged because
decoding produces the same result irrespective of the quantizer used. Alternatively,
one or more blocks might contain the coded data in which case the quantizer can
remain the same or be redefi ned in the macroblock header.

The same three macroblock types are used for macroblocks coded with for-
ward motion-compensated prediction only (forward prediction) and for macroblocks
coded with backward motion-compensated prediction only (backward prediction).

•
•

•

•
•

6.3. The Syntax of MPEG-2 203

204 Chapter 6 The MPEG-2 Video Compression Standard

In each of these cases, only one motion vector is transmitted in the macroblock
header.

Finally, there can still be intracoded macroblocks in B pictures. As for I and
P pictures, an intracoded macroblock can use the current quantizer or have a new
quantizer defi ned in the macroblock header. Intramacroblocks in B pictures are
 always coded.

In B pictures, a skipped macroblock is a macroblock that uses exactly the same
form of prediction with exactly the same motion vectors as the macroblock that im-
mediately precedes it. For this reason, the macroblock immediately after an intrac-
oded macroblock cannot be a skipped macroblock in a B picture.

Types of Motion-Compensated Prediction For macroblocks that are
coded using motion-compensated prediction, the next field in the bit stream
specifies the prediction type, unless this has been already determined for a
frame picture by the fact that the frame_pred_frame_dct flag has been set to
one at the picture layer. The field specifying the prediction type is the frame_
motion_type for frame pictures or the field_motion_type for field pictures.
Each of these 2-bit fields defines the type of motion compensation used to code
the macroblock.

Table 6.15 Macroblock types for B pictures.

Macroblock-type VLC code word

New quantizer defined

forward motion vector

Backward motion vector

Coded block pattern

Intramacroblock

Description of macroblock

10 No Yes Yes No No Interp, no coded blocks, old quant
11 No Yes Yes Yes No Interp, coded blocks, old quant
010 No No Yes No No Back, no coded blocks, old quant
011 No No Yes Yes No Back, coded blocks, old quant
0010 No Yes No No No Fwd, no coded blocks, old quant
0011 No Yes No Yes No Fwd, coded blocks, old quant
00011 No No No No Yes Intra, old quant
00010 Yes Yes Yes Yes No Interp, coded blocks, new quant
000011 Yes Yes No Yes No Fwd, coded blocks, new quant
000010 Yes No Yes Yes No Back, coded blocks, new quant
000001 Yes No No No Yes Intra, new quant

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Motion-Compensated Prediction for Frame Pictures The type of motion-compen-
sated prediction used in frame pictures is specifi ed by the frame_motion_type fi eld
and defi ned in Table 6.16. There are three possible forms of motion- compensated
prediction: fi eld prediction, frame prediction, and dual-prime prediction.

The simplest form of prediction is the frame prediction where a macroblock in
the current frame picture is predicted by the best matching macroblock in a previ-
ous I or P frame picture (P pictures) or from a previous and/or a future I or P frame
 picture (B pictures). The frame prediction process for a P picture is illustrated in
Figure 6.1818 for a pair of vertically adjacent macroblocks. For both current and
reference pictures, the two fi elds are merged to form a single frame reference pic-
ture. This reference frame picture may originally have been transmitted as two fi eld
pictures. A macroblock in the current frame picture is then predicted from the refer-
ence picture. Thus, in the top macroblock shown in Figure 6.18, the top fi eld pixels
in the current picture are predicted from top fi eld pixels in the reference picture
whereas in the bottom macroblock top fi eld pixels in the current frame picture are
predicted from bottom fi eld pixels in the reference picture. The vertical component
of the motion vector relative to a pixel in the current picture (shown surrounded by
a square) is also shown. Thus, in the top macroblock, the vertical component of the
motion vector is �2 whereas in the bottom macroblock it is �5.

The situation is similar for frame prediction in B pictures and is illustrated in
Figure 6.19. Once again the fi elds of the current picture and the two reference pic-
tures are merged to form frame pictures. One or both of the reference frame pictures
may originally have been transmitted as fi eld pictures. In the top macroblock shown
in Figure 6.19, interpolative prediction is employed. Thus, both forward and back-
ward motion vectors are used. In the bottom macroblock, only backward prediction
is employed, and so only a single motion vector is required. The values of the vertical
component of the motion vectors are again shown relative to a pixel in the current
picture (shown surrounded by a square).

As shown in Table 6.16, only a single motion vector is required for frame predic-
tion of a P picture. Since prediction is required in up to two directions for interpo-
lated prediction in a B picture, up to two motion vectors may be required.

18 All of the diagrams in this section of the text show motion vectors with integer components. This is
for clarity. In reality, motion-compensated prediction is performed to half-pixel accuracy in MPEG-2.

6.3. The Syntax of MPEG-2 205

Table 6.16 Definition of frame_motion_type.

frame_motion_
type

Prediction
type

Number of motion
vectors

Motion vector
format

Differential
motion vector

00 Reserved — — —
01 Field 2 Field No
10 Frame 1 Frame No
11 Dual prime 1 Field Yes

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

206 Chapter 6 The MPEG-2 Video Compression Standard

Now let us consider fi eld prediction in frame pictures. In this case, the pixels in
a macroblock are split according to whether they come from the top fi eld or the bot-
tom fi eld. A separate motion vector is then used to encode each fi eld. The reference
fi elds used for prediction are the most recently decoded reference top fi eld and the
most recently decoded reference bottom fi eld prior to the current frame picture. Each
of the fi elds in the frame picture can be predicted from either of the reference fi elds.
There is no requirement for the top fi eld to be predicted from the top reference fi eld,
the bottom fi eld from the bottom reference fi eld, or even each fi eld from a different
reference fi eld.

Figure 6.20 shows the situation for fi eld prediction in a P frame picture. In the
top macroblock, both fi elds are predicted from the bottom reference fi eld. In the
bottom macroblock, the top fi eld is again predicted from the bottom reference fi eld
whereas the bottom fi eld is predicted from the top reference fi eld. The vertical mo-
tion vector displacements are again shown in the diagram and are identical for the
two reference pixels in the two fi elds of the current frame picture (indicated by a
square). Thus, a vertical displacement of zero when the top fi eld is predicted from
the top reference fi eld refers to the pixel on the same line as the pixel in the current
picture. A vertical displacement of zero when the top fi eld is predicted from the bot-
tom reference fi eld is actually predicted from the line in the frame picture directly
below (and therefore in the other fi eld from) the line containing the current pixel.

Figure 6.18 Frame prediction of a P frame picture: (a) top macroblock and (b) Bottom macroblock.

6.3. The Syntax of MPEG-2 207

Figure 6.19 Frame prediction of a B frame picture: (a) top macroblock and (b) bottom macroblock.

208 Chapter 6 The MPEG-2 Video Compression Standard

Figure 6.20 Field prediction in a P frame picture: (a) top macroblock and (b) bottom macroblock.

A similar situation applies when the bottom fi eld is being predicted, except that in
the case of prediction from the top fi eld, a vertical displacement of zero refers to the
pixel in the line directly above (and therefore in the other fi eld from) the line con-
taining the current pixel. In all cases, a zero vertical displacement refers to the same
line number in the fi eld as the line number in the fi eld of the current picture.

Comparing Figure 6.20 with Figure 6.18, we can see that a vertical displacement
of �1 using fi eld prediction is the same as a vertical displacement of �2 using frame
prediction. This is the reason, as shown in the section on “Motion vector range”, that
the vertical motion vector range used for fi eld prediction is half that for frame predic-
tion as well as half that for the horizontal motion vector range in both modes.

The situation for the use of fi eld prediction in a B frame picture is shown in
Figure 6.21. In this case, the top macroblock is coded using interpolative prediction.
As shown, a total of four motion vectors are required. In the bottom macroblock,
only backward prediction is employed, and so only two motion vectors are required
in this case.

In summary, fi eld prediction in frame pictures requires two motion vectors for
macroblocks in P pictures and two motion vectors (backward prediction only or for-
ward prediction only) or four motion vectors (interpolative prediction) for B pictures.
In the latter case, an encoder needs to carefully balance the additional overhead as-
sociated with transmitting additional motion vectors with the saving in bits required
to represent the prediction difference.

The fi nal form of motion-compensated prediction used in frame pictures is
dual-prime motion-compensated prediction. This is a special motion-compensated
prediction technique developed during the MPEG-2 standardization process. Dual-
prime motion-compensated prediction can only be used for P pictures and only when
the current picture and the reference picture from which prediction is to occur are
concurrent in display order (i.e., not separated by any intervening B pictures).

Dual prime operates by sending a single full motion vector and a small differ-
ential motion vector. Each component of the differential motion vector can only take
one of the three values: �0.5, 0, or �0.5. The prediction mode for a frame picture
is shown in Figure 6.22.

Each fi eld within the macroblock to be predicted is treated separately. A single
motion vector that is read from the bit stream is used to perform fi eld prediction
for each fi eld with the top fi eld being predicted from the top fi eld of the reference
picture and the bottom fi eld being predicted from the bottom fi eld of the reference
picture. This motion is then interpolated or extrapolated to make a prediction from
the other fi eld in the reference frame picture. In the case of the top fi eld shown in
Figure 6.22, the motion vector used to form a prediction from the bottom fi eld in the
reference frame picture is half the motion vector used to form a prediction from the
top reference fi eld since the temporal distance is halved. Similarly, for the bottom
fi eld shown in Figure 6.22, the motion vector used to form a prediction from the top
reference fi eld is one and a half times the motion vector used to form a prediction
from the bottom reference fi eld since the temporal distance is one and a half times
as great.

Where a component of the fi eld motion vector is not an integer, the motion vector
calculated by extrapolation or interpolation contains a motion vector to quarter-pixel

6.3. The Syntax of MPEG-2 209

210 Chapter 6 The MPEG-2 Video Compression Standard

Figure 6.21 Field prediction in a B frame picture: (a) top macroblock and (b) bottom macroblock.

accuracy. For example, a fi eld motion vector of (�2.5, �3.5) would be interpolated
to (�1.25, �1.75) and extrapolated to (�3.75, �5.25). Rounding is performed to the
nearest half-pixel value away from zero. Thus, in the case just considered, the in-
terpolated motion vector would be (�1.5, �2.0) and the extrapolated motion vector
(�4.0, �5.5). As shown in Figure 6.22, for the vertical component of the motion vec-
tor, a 0.5-pixel offset needs to be included to account for the vertical displacement
the between top and bottom fi elds.

The motion vectors calculated by extrapolation and interpolation are further
modifi ed by the differential motion vector, each component of which is limited to
the three values: �0.5, 0, or �0.5. The two predictions for each fi eld within the
 macroblock are then averaged to form the fi nal prediction. The following example
illustrates the operation of dual-prime motion-compensated prediction.

EXAMPLE 6.1

The fi eld motion vector for dual-prime motion-compensated prediction in a frame picture is
(�2, �2). The differential motion vector is (�0.5, �0.5). Calculate the displacements of the
information to be used to predict each fi eld in the macroblock. Assume that the top fi eld is
transmitted fi rst for each picture.

We consider the prediction of the top and bottom fi elds within the macroblock separately.

Top Field
Predicted from top fi eld of reference picture (�2, �2)

Predicted from bottom fi eld of reference picture

6.3. The Syntax of MPEG-2 211

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

–1

–0.5

 –1.5

–1

–0.5

Top
field

Bottom
field

Top
field

Bottom
field

Reference
picture

Current
picture

Transmitted
field motion

vector

Differential
motion vector

Derived
motion vectors

Figure 6.22 Dual-prime motion-compensated prediction for frame pictures.

212 Chapter 6 The MPEG-2 Video Compression Standard

Vertical component � Half vertical component of fi eld motion vector � Field offset (� 0.5 in
this case) � Vertical component differential motion vector

� 0.5 � (�2) � 0.5 � 0.5 � 0
Horizontal component � Half horizontal component of fi eld motion vector � Horizontal

component differential motion vector
 � 0.5 � (�2) � 0.5 � �0.5

Bottom Field
Predicted from bottom fi eld of reference picture (�2, �2)

Predicted from top fi eld of reference picture
Vertical component � 1.5 times vertical component of fi eld motion vector � Field offset

(�0.5 in this case) � Vertical component differential motion vector
 � 1.5 � (�2) � 0.5 � 0.5 � 3

Horizontal component � 1.5 times horizontal component of fi eld motion vector � Horizontal
component differential motion vector

 � 1.5 � (�2) � 0.5 ��2.5 �

Motion-Compensated Prediction for Field Pictures The type of motion-compen-
sated prediction used in fi eld pictures is specifi ed by the fi eld_motion_type fi eld
and defi ned in Table 6.17. There are three possible forms of motion- compensated
prediction: fi eld prediction, 16 � 8 prediction, and dual-prime prediction.

The simplest of these is fi eld prediction, where the macroblock in the current
fi eld picture is predicted from a displaced macroblock in a previous I or P fi eld
picture (P pictures) or a previous and/or a future I or P fi eld picture (B pictures). The
reference pictures used are the most recently decoded I or P fi eld pictures. These
reference fi eld pictures may themselves have been coded as frame pictures. The situ-
ation for the fi rst P fi eld picture (which is assumed to be the top fi eld) is shown in
Figure 6.23. In the top macroblock, prediction is made from the previous top refer-
ence fi eld whereas in the bottom macroblock prediction is made from the bottom
reference fi eld.

The situation for the second P fi eld picture is shown in Figure 6.24. Remember
that prediction is performed from the two most recently received reference fi elds.
This means that one of the reference fi elds is the P fi eld picture just received and
decoded together with the last received reference fi eld of the type opposite (top or
bottom) to the P fi eld picture just decoded. In Figure 6.24, the top macroblock is

Table 6.17 Definition of field_motion_type.

field_motion_type Prediction type
Number of motion

vectors
Motion vector

format
Differential

motion vector

00 Reserved — — —
01 Field 1 Field No
10 16 � 8 MC 2 Field No
11 Dual prime 1 Field Yes

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

predicted from the P top fi eld picture just received whereas the bottom macroblock is
predicted from the bottom reference fi eld received some time earlier.

The situation for the prediction of a B fi eld picture is shown in Figure 6.25. In-
terpolative motion-compensated prediction is used for the top macroblock requiring

Figure 6.23 Field prediction of the fi rst P fi eld picture: (a) top macroblock and (b) bottom macroblock.

6.3. The Syntax of MPEG-2 213

214 Chapter 6 The MPEG-2 Video Compression Standard

Figure 6.24 Field prediction of the second P fi eld picture: (a) top macroblock and (b) bottom macroblock.

6.3. The Syntax of MPEG-2 215

Figure 6.25 Field prediction for the fi rst B fi eld picture: (a) top macroblock and (b) bottom macroblock.

216 Chapter 6 The MPEG-2 Video Compression Standard

Figure 6.26 Field prediction for a second B fi eld picture: (a) top macroblock and (b) bottom
macroblock.

two motion vectors. Only backward prediction is used for the bottom macroblock,
and so only a single motion vector is required. The case for the second B picture is
shown in Figure 6.26. Unlike P pictures, the appropriate reference pictures for the
second B picture are identical to those for the fi rst, and so the prediction process is
also identical.

There is another special type of prediction possible in fi eld pictures. This occurs
in the case of a pair of fi eld pictures that make up an I frame picture. In this case, the
second fi eld picture can be coded as a P fi eld picture. However, all predictions must
be from the immediately preceding I fi eld picture as shown in Figure 6.27.

As shown in Table 6.17, only a single motion vector is required for fi eld predic-
tion for macroblocks in P fi eld pictures. For B fi eld pictures, either one motion vector
(forward prediction or backward prediction) or two motion vectors (interpolative
prediction) are required.

Figure 6.28 shows the top fi eld of the fi rst picture of the “Mobile and Calendar”
sequence. When compared to the full frame picture, it is clear that the picture changes
twice as quickly vertically in a fi eld picture as in the equivalent frame picture (i.e., the
entire image is contained in half as many lines). This means that the chance of more
than one type of motion within a macroblock (which is still 16 � 16 luminance pixels
in a fi eld picture) is increased. For this reason, a new motion compensated prediction
mode has been introduced for fi eld pictures and is called 16 � 8 motion compensa-
tion. In this mode, two motion vectors (four in the case of a macroblock in a B picture

Figure 6.27 Second of a pair of I fi eld pictures coded as a P fi eld picture.

6.3. The Syntax of MPEG-2 217

218 Chapter 6 The MPEG-2 Video Compression Standard

where both forward and backward predictions are employed) are included in the mac-
roblock. The fi rst motion vector (pair of motion vectors) is used for the prediction of
the top 16 � 8 pixels in the macroblock whereas the second motion vector (pair of mo-
tion vectors) is used for the prediction of the bottom 16 � 8 pixels in the macroblock.

Finally, dual-prime prediction is also available for fi eld pictures. As shown in
Figure 6.29, the fi eld motion vector is used to form a prediction from the reference
fi eld of the same parity (top or bottom) as the current fi eld picture. A further predic-
tion is formed from the reference fi eld of opposite parity in exactly the same manner
as that for dual-prime prediction for frame pictures.

Motion Vector Prediction As was the case in the syntax described in Chapter 5,
the values of the transmitted motion vectors in MPEG-2 are predicted using the val-
ues of the previously transmitted motion vectors. This prediction is set to zero after a
slice header. This allows correct decoding of a new slice even if transmission errors

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0

0.5

1

1.5

2

2.5

3

3.5

4

–1

–0.5

–1.5

–1

–0.5

Top
field

Bottom
field

Top
field

Reference
pictures

Current
field

picture

Transmitted
field motion

vector

Differential
motion vector

Derived
motion vector

Figure 6.29 Dual-prime motion-compensated prediction for a top fi eld picture.

Figure 6.28 Top fi eld of the fi rst picture of the mobile and calendar sequence.

prevented the correct decoding of the previous slice. For P pictures, the motion vec-
tor in the current macroblock is predicted from the motion vector in the previous
macroblock, if it made use of motion-compensated prediction (i.e., was not coded
as either an intramacroblock or an intermacroblock). Otherwise a prediction of zero
is used. This implies that the motion vector predictor is set to zero after a skipped
macroblock in a P picture.

For B pictures, there needs to be separate predictors for forward and backward
motion vectors. In each case, the predictor is the most recently transmitted motion
vector of that type in the current slice, if any. A skipped macroblock in a B picture
does not set to zero the predictor because a skipped macroblock in a B picture is
 assumed to use the same form of motion-compensated prediction as the macroblock
that came immediately before it.

This has given a brief introduction of the way that motion vectors are coded.
There is considerably more detailed information contained in the standards docu-
mentation.

Type of DCT The dct_type flag indicates whether a macroblock in a frame
picture uses frame DCT coding or field DCT coding. The difference between these
two modes is shown in Figure 6.30.

In frame-based DCT, the 16 � 16 pixel macroblock is simply split into four 8 � 8
pixel blocks prior to transformation by the DCT. As shown, each block still contains
pixels from both fi elds. In fi eld-based DCT, the lines in the macroblock are rear-
ranged so that all the lines from one fi eld are contained in the top eight lines of the
macroblock with the eight lines from the other fi eld contained in the bottom eight
lines. The rearranged macroblock is then split into 8 � 8 pixel blocks and then trans-
formed by the DCT. As shown in Figure 6.30, this rearrangement ensures that all
pixels within a block are from the same fi eld.

Field-based DCT is useful for blocks where movement has occurred between
fi elds. Figure 6.31 shows a simple macroblock containing an 8 � 8 pixel black block

6.3. The Syntax of MPEG-2 219

Frame
based
DCT

Field
based
DCT

- -

Figure 6.30 Frame-based and fi eld-based DCT coding.

220 Chapter 6 The MPEG-2 Video Compression Standard

on a white background. If we assume that the block starts to move to the right at the
rate of 2 pixels/fi eld, then after the fi rst fi eld of motion, the macroblock would look
as shown in Figure 6.32.

Looking at the pixels in columns 5, 6, 13, and 14, we observe high-frequency
vertical changes of intensity. After the application of the DCT, considerable energy
appears near the bottom left of the block of DCT coeffi cients. This leads to ineffi cient
coding as a large number of bits are required to represent DCT coeffi cients in this
area.

The macroblock after rearrangement for fi eld-based DCT coding is shown in
Figure 6.33. The high-frequency vertical changes are no longer present, and so im-
proved coding effi ciency after the DCT can be expected.

Coded Block Pattern The macroblock header can also contain a coded block
pattern to indicate which blocks within the macroblock are coded where this needs
to be specified. For digital television, which uses the 4:2:0 color sampling structure,
this is identical to the use of the coded block pattern as described in Chapter 5.

Figure 6.31 Example macroblock.

Figure 6.32 Object shown in Figure 6.31 with motion of 2 pixels/fi eld.

6.3.7. The Block Layer

Coding at the block layer is very similar to what was discussed in Chapter 5. Again,
rather than coding the actual value of DC DCT coeffi cients in intracoded blocks,
the coeffi cient is predicted by the value of the previous intracoded block of the same
type (i.e., Y, U, or V). The prediction difference is then transmitted. The predictor is
reset at the start of a slice, when a non-intra-macroblock is decoded or when a mac-
roblock is skipped. The last two of these only occur in P and B pictures. The value to
which the predictor is reset is defi ned in Table 6.18. The reset value is the midpoint
of the relevant DC range.

Figure 6.34 shows the prediction of DC DCT coeffi cients for Y, U, and V blocks.
In the case of Y blocks, the top left block is predicted from the bottom right block of
the previous macroblock, the top right block is predicted from the top left block, the
bottom left block is predicted from the top right block, and the bottom right block is
predicted from the bottom left block. For U and V blocks, the DC DCT coeffi cient is
predicted from the U or V block in the previous macroblock.

As was the case in Chapter 5, the value of the prediction difference is coded
in two parts. The fi rst part gives the number of bits used for the prediction differ-
ence that immediately follows and is called dct_dc_size_luminance for luminance

Figure 6.33 Macroblock shown in Figure 6.32 after rearrangement for fi eld DCT coding.

Table 6.18 DC coefficient reset value for various DC coefficient
precisions.

intra_dc_precision Precision (bits) Reset value

0 8 128
1 9 256
2 10 512
3 11 1024

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint
has been granted by SAI Global Ltd. The standard can be purchased
online at http://www.sai-global.com.

6.3. The Syntax of MPEG-2 221

222 Chapter 6 The MPEG-2 Video Compression Standard

blocks and dct_dc_size_chrominance for chrominance blocks. The variable-length
codes are given in Table 6.19.

So, a value of zero indicates that the difference has zero bits, that is, it has the
value zero and so the DC DCT coeffi cient is the same as the relevant predictor. A
value of one indicates that the prediction difference (dct_dc_differential) is repre-
sented by a single bit and so can take values �1 or �1. A value of two indicates that
the prediction difference is represented by 2 bits and so can take the values �3, �2,
�2, or �3. The full defi nition of dct_dc_differential is given in Table 6.20. The large
range of possible values comes from the fact that DC coeffi cients can be represented
by up to 11-bit accuracy (i.e., values from 0 to 2047) in MPEG-2 video. This means
that the prediction difference can take values in the range of ±2047.

All other DCT coeffi cients in intrablocks as well as all coeffi cients in inter- or
 motion-compensated blocks are coded in the manner described in Chapter 5. How-
ever, there are two possible variable-length codes that can be used to encode the

Y

U

V

Figure 6.34 Prediction of DC DCT coeffi cients in intramacroblocks.

Table 6.19 VLCs for dct_dc_size_chrominance and dct_dc_size_luminance.

Luminance Chrominance

dct_dc_size_
luminance VLC

dct_dc_size_chrominance VLC

0 100 0 00
1 00 1 01
2 01 2 10
3 101 3 110
4 110 4 1110
5 1110 5 11110
6 11110 6 111110
7 111110 7 1111110
8 1111110 8 11111110
9 11111110 9 111111110

10 111111110 10 1111111110
11 111111111 11 1111111111

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

(run, level) pairs defi ning nonzero DCT coeffi cients. Blocks not coded in intramode
are always coded using the VLC codes defi ned in Chapter 5. Intracoded blocks can
also be coded in this way if the intra_vlc_format fl ag at the picture layer is zero.
An alternate VLC code word set is used for intrablocks when the intra_vlc_format
fl ag is set to one. Full details of the alternate VLC code words can be found in the
standard documentation.

6.4. VIDEO BUFFER VERIFIER

The video buffer verifi er is a hypothetical decoder that is connected directly to the
output of a compliant encoder. The input buffer to the decoder, referred to as the
VBV buffer, receives coded data from the encoder. Data is removed from the buffer
at regular intervals. On each occasion, the data removed is that corresponding to an
entire coded picture. In order to conform to the MPEG specifi cation, a bit stream
is not permitted to cause the VBV buffer either to overfl ow or to underfl ow. As
 described earlier, the VBV buffer size and the bit rate of the encoder are specifi ed at
the sequence layer.

Table 6.20 Definition of dct_dc_differential.

DC prediction difference dct_dc_differential Code word

�2047 to �1024 11 00000000000 to 01111111111
�1023 to �512 10 0000000000 to 0111111111
�511 to �256 9 000000000 to 011111111
�255 to �128 8 00000000 to 01111111
�127 to �64 7 0000000 to 0111111
�63 to �32 6 000000 to 011111
�31 to �16 5 00000 to 01111
�15 to -8 4 0000 to 0111
�7 to �4 3 000 to 011
�3 to �2 2 00 to 01
�1 1 0
0 0 None
1 1 1
2 to 3 2 10 to 11
4 to 7 3 100 to 111
8 to 15 4 1000 to 1111
16 to 31 5 10000 to 11111
32 to 63 6 100000 to 111111
64 to 127 7 1000000 to 1111111
128 to 255 8 10000000 to 11111111
256 to 511 9 100000000 to 111111111
512 to 1023 10 1000000000 to 1111111111
1024 to 2047 11 10000000000 to 11111111111

© This Table is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

6.4. Video Buffer Verifi er 223

224 Chapter 6 The MPEG-2 Video Compression Standard

The vbv_delay fi eld given in the picture header specifi es the number of periods
of a 90-kHz clock (which is derived from the 27-MHz system clock) that the VBV
waits after receiving the fi nal byte of the picture start code before decoding that
picture.

For constant bit-rate operation,19 the value to be placed in the vbv_delay fi eld
can be calculated according to the following equation.

vbv delay_
,

n
nB

R
�

�90 000

where Bn is the VBV buffer occupancy immediately before removing picture n from
the buffer but after removing any headers, user data, and stuffi ng that immediately
precede the data elements of picture n and R is the actual bit rate as opposed to
the value given in the sequence header that is rounded up to the next multiple of
400 bits/s.

Picture data of the nth coded picture enters the VBV buffer at a rate R(n) as
defi ned below.

R n
d

t t
n

n n n n

()
*

=
− + −()+ +τ τ 1 1

where d *
n is the number of bits from the fi nal bit of the nth picture start code to

the fi nal bit of the (n�1)th picture start code, τn the decoding delay coded in the
vbv_delay fi eld for the nth coded picture in seconds, and tn is the time when the nth
coded picture is removed from the VBV buffer.

For constant bit-rate operation, the value of R(n) remains constant throughout
the sequence to the accuracy allowed by the quantization of vbv_delay.

Prior to the receipt of the fi rst picture start code of a video sequence and follow-
ing the fi nal picture start code of a video sequence, R(n) is assumed to take the value
specifi ed in the bit_rate fi eld.

At the start of a video sequence, the VBV buffer is fi lled with all of the header
data up to and including the fi rst picture start code. The buffer is then further fi lled
with the incoming bit stream for the time specifi ed in the vbv_delay fi eld of this fi rst
picture header at which time decoding (i.e., the removal of the fi rst picture from the
VBV buffer) begins. This is illustrated in Figure 6.35.

From the time when decoding begins, the VBV buffer is regularly examined.20

At the time when the VBV buffer is examined and prior to the removal of any picture
data, the total number of bits in the buffer lies between zero and the maximum VBV
buffer size. All of the data for the picture that has been in the buffer for the maxi-
mum time at the time of examination is then instantaneously removed. This must not
 result in buffer underfl ow (i.e., the number of bits in the buffer cannot be negative).

The time at which the VBV buffer is examined depends upon whether the
 sequence is interlaced or progressive, whether the picture structure is fi eld or frame,

19 This is the usual situation in digital television applications.
20 The exact times are defi ned a little later.

whether the value of the repeat_fi rst_fi eld fi eld in the picture coding extension is
set to one or not, and on the type of picture (fi eld or frame) that is being decoded,
the frame/fi eld structure, and the state of the repeat_fi rst_fi eld fl ag in a previous
picture.

The time for which the VBV buffer is examined is determined by the pictures
in display order as opposed to the order in which they are removed from the buffer.
Although B pictures are decoded and displayed immediately upon their removal
from the buffer, I and P pictures are decoded immediately but may not be displayed
for some time as they are transmitted before B pictures, which precede them in
display order.

We use some examples to make the situation clear.21 Let us fi rst consider the
case of a video sequence that does not contain B pictures. In this case, the picture
transmission order is the same as the picture display order. The time for which the
VBV is examined is then determined by the display time of each picture. Thus,
if the current picture is a fi eld picture, the VBV is examined after one fi eld time.
 Alternatively, if the current picture is a frame picture then the VBV is examined
after two fi eld times if repeat_fi rst_fi eld is not set to one and after three fi eld times
if repeat_fi rst_fi eld is set to one. In each case, the time between VBV examinations
is just the display time of the current picture. This is illustrated in Figure 6.36 where
it is assumed that all pictures are frame pictures and that pictures I0, P2, and P4

have the repeat_fi rst_fi eld fi eld set to one and so are displayed for three fi eld times
each.

The situation is slightly more complex when B pictures are included. How-
ever, the time between examinations is still determined by the display time of
the picture currently being displayed. Since B pictures are displayed immediately,

21Only interlaced video sequences are considered here. For progressive sequences, there are no fi eld
pictures and any fi eld repetition implies that the entire progressive picture is repeated.

VBV buffer size

Time (picture intervals)
vbv_delay

sequence_header()
to first

picture_header()

Figure 6.35 VBV buffer occupancy up to the removal of the fi rst picture.

6.4. Video Buffer Verifi er 225

226 Chapter 6 The MPEG-2 Video Compression Standard

when a B picture is being decoded, the time between VBV examinations is one
fi eld time in the case of a fi eld-structured B picture, two fi eld times in the case of
a frame-structured B picture when repeat_fi rst_fi eld is not set to one, and three
fi eld times in the case of a frame-structured B picture when repeat_fi rst_fi eld is
set to one.

When B pictures are included, any subsequent I or P picture that is needed to
predict the B pictures is transmitted before these B pictures. Thus, when an I or P
picture is received, it implies that all the B pictures prior to the previously received I
or P pictures have been received and decoded, and therefore, it is time for this previ-
ously received I or P picture to be displayed. The time between VBV examinations
when I or P pictures are being decoded is therefore the time required to decode this
previously received I or P picture. The time between VBV examinations is two fi eld
times if the previous I or P picture is frame structured and repeat_fi rst_fi eld is not
set to one, three fi eld times if the previous I or P picture is frame structured and

VBV buffer size

P3

B1
B2

P6

B4

B5

P0 B1 B2 P3 B4 B5

time

Figure 6.37 Typical VBV for interlaced video sequence with B pictures.
© This Figure is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

VBV buffer size

I0

P1
P2

P3

P4

P5

I0 P1 P2 P3 P4 P5

time

Figure 6.36 Typical VBV for interlaced video sequence without B pictures.
© This Figure is based on AS/NZS 13818.2:2002. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

repeat_fi rst_fi eld is set to one, one fi eld time if the current I or P picture is the fi rst
fi eld of a fi eld-structured picture, one fi eld time if the current I or P picture is the
second fi eld of a fi eld- structured picture and repeat_fi rst_fi eld is not set to one, and
two fi eld times if the current I or P picture is the second fi eld of a fi eld-structured
picture and repeat_fi rst_fi eld is set to one. This is illustrated in Figure 6.37 for a
simple case with only frame pictures. In Figure 6.37, P0, B2, and B4 have display
durations of three fi elds.

6.5. PROFILES AND LEVELS

The complete MPEG-2 video standard is designed to cater to a large number of dif-
ferent applications ranging from videoconferencing to high-defi nition television and
beyond. For an encoder or decoder to fully comply with the standard, it would need
to be able to handle all of these applications. Such encoders and decoders would be
far more complex than necessary for their intended applications and would involve
signifi cant unnecessary expense. For this reason, MPEG has defi ned a number of
profi les and levels for the video standard. These allow compliance with the standard
at a point that is more suitable for a particular application.

A profi le specifi es a defi ned subset of the complete syntax of the standard. This
means that profi les do not use all of the coding tools provided by the standard. For
example, it would be possible to defi ne a profi le that did not allow temporal predic-
tion (i.e., either interprediction or motion-compensated prediction) between pictures.
Such a profi le would lead to inexpensive encoders and decoders because interpicture
predictions (and in particular, motion-compensated prediction) are computationally
complex operations. In fact, no such profi le currently exists.

A level places constraints on the values that may be taken by parameters in
the bit stream. Parameters include values such as picture size, picture rate, and
bit rate. Placing a limit on the maximum values of these parameters also leads to
simpler encoders or decoders. For example, limiting the maximum picture size
reduces the memory requirement for internal frame stores whereas reducing the
bit rate reduces the speed of operation of the variable-length code encoders and
decoders.

At the time of writing, MPEG has defi ned seven profi les and four levels. We now
briefl y discuss each of these profi les and levels.

6.5.1. Profiles

6.5.1.1. Simple Profile

The simple profi le is intended for real-time applications. As such, round-trip de-
lays are important, and so additional delays in encoding and decoding need to be
avoided. For this reason, B pictures are not allowed in the simple profi le. In addition,
the simple profi le uses the restricted slice structure and only the 4:2:0 color sam-
pling structure. The simple profi le is defi ned only for main level.

6.5. Profi les and Levels 227

228 Chapter 6 The MPEG-2 Video Compression Standard

6.5.1.2. Main Profile

Main profi le is the profi le for digital television services. The only difference between
simple profi le and main profi le is that main profi le allows B pictures. Main profi le is
defi ned for all four levels (low, main, high 1440, and high).

6.5.1.3. Signal-to-Noise Ratio (SNR) Scalable Profile

The scalable profi les in MPEG allow a service to be made up of more than one
transmitted bit stream. Receiving just the base-level bit stream provides a service of
a particular quality. Receiving the base and one (or more) enhancement bit streams
provides a service of enhanced quality. In the case of SNR scalability, the enhance-
ment is in the picture quality of the service. Using this profi le, a maximum of two bit
streams (base plus a single enhancement) are allowed. The SNR scalable profi le is
defi ned for low and main levels.

6.5.1.4. Spatial Scalable Profile

In this case, the enhancement of quality produced by the enhancement bit stream is
an increase in the spatial resolution of the displayed pictures. This might mean that
the base-level service is at standard-defi nition television resolution whereas the en-
hanced service could be at high-defi nition television resolution. A single SNR scal-
able bit stream is also permitted, and this may be applied at either resolution level.
The spatial scalable profi le is defi ned only for the high-1440 level.

6.5.1.5. High Profile

The high profi le is identical to the spatial scalable profi le except that both 4:2:0 and
4:2:2 color sampling structures are allowed. The high profi le is defi ned for main,
high 1440, and high levels.

6.5.1.6. Professional Profile

The professional profi le has been defi ned for use within television stations where
higher quality levels are required so that subsequent postprocessing of the video ma-
terial is possible. It needs to allow higher bit rates and is defi ned primarily for main-
level applications. However, as it can encode all the active lines of video (as opposed
to those defi ned by CCIR Recommendation 601), it does not strictly conform to any
of the currently defi ned levels.

6.5.1.7. Multiview Profile

The multiview profi le allows for the effi cient coding of a service comprising more
than one view such as a stereo television. It is defi ned for the four existing levels
(low, main, high 1440, and high).

6.5.2. Levels

The parameter restrictions for the various defi ned levels of MPEG-2 are shown in
Table 6.21. For profi les that include scalability, there is a need for separate defi nition
of some of the parameters for each bit stream (base or enhancement). As scalability
is not used in current digital television services, this additional information has been
omitted for clarity.

6.6. SUMMARY

This chapter has provided an overview of the MPEG-2 video compression standard
that forms the basis of current digital television services worldwide. The aim of the
chapter has been to introduce the reader to the main features and functionalities of
the MPEG-2 standard. It has not attempted to provide suffi cient depth to allow the
reader to completely implement the standard. However, armed with the informa-
tion contained in this chapter and a copy of the standard itself, a competent student
should be capable of implementing a compliant encoder or decoder.

PROBLEMS

6.1 Calculate the compression ratio required to represent a 720 � 480 pixel, 30 frames/s
interlaced service with 4:2:0 chrominance structure at a total rate of 4 Mbit/s. Repeat
your calculation for a 720 � 576 pixel, 25 frames/s interlaced service again with 4:2:0
chrominance structure.

Table 6.21 Parameter values for various levels of MPEG-2.

Parameter Low level Main level High-1440 level High level

Horizontal size
(pixels)

352 720 1,440 1,920

Vertical size
(pixels)

288 576 1,152 1,152

Picture rate (Hz) 30 30 60 60
Pixel rate (s�1) 3,041,280 10,368,000 47,001,600 62,668,800
Bit rate (Mbits/s) 4 15 60 80
Bits/picture
(kbits)

167 626 2,503 3,337

VBV buffer size
(bits)

475,136 1,835,008 7,340,032 9,781,248

Motion vector
range

�64 to �63.5 �128 to � 127.5 �128 to � 127.5 �128 to � 127.5

Intra-DC
precision (bits)

8–10 8–10 8–11 8–11

Problems 229

230 Chapter 6 The MPEG-2 Video Compression Standard

6.2 List the advantages and disadvantages of each of the picture types (I, P, and B) used in
the MPEG-2 video standard.

6.3 Why are profi les and levels important for MPEG-2 encoder and decoder manu-
facturers?

6.4 A series of pictures in a video sequence are received by an encoder and coded as the
picture types shown in Figure 6.38. Determine the order in which the pictures will be
transmitted to the decoder.

6.5 For the series of pictures and picture types given in Figure 6.38, indicate which picture(s)
are used as reference picture(s) for the motion-compensated prediction of each picture.

6.6 A series of coded pictures is received by an MPEG-2 decoder with the picture types
shown in Figure 6.39.

(a) In what order should these pictures be displayed?

(b) What pictures are held in the decoder frame stores as each picture is received?

(c) What pictures are used as reference pictures for each received picture?

6.7 Although some MPEG-2 encoders use a regular sequence of picture types for simplicity,
there is no requirement for this. Thus, an intelligent encoder is able to choose the picture
type according to the characteristics of each picture to be encoded.

(a) What characteristics would the pictures have that would make them particularly suit-
able for encoding as a particular picture type?

(b) Suggest some simple algorithms by which an encoder might go about making this
decision.

6.8 In MPEG-2 video, great care is taken to ensure that not more than 23 consecutive zeros
can occur. Explain briefl y why this is important.

6.9 In the production of services for digital television, bit streams from different sources
often need to be edited together.

(a) Why is it desirable to perform editing at the bit stream level rather than decoding and
then editing the decoded pictures prior to a further encoding stage?

(b) Explain how the use of the closed_gop and broken_link fl ags in the GOP header can
be used to assist the bit stream editing process.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I B P B B P P I B B B B P I I B P B B I

Figure 6.38 Picture types for Problem 6.4.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

I P B B B I P P B B I I P P B B I B B I

Figure 6.39 Picture types for Problem 6.6.

6.10 The MPEG-2 video standard allows a number of motion vector ranges to be defi ned.
Describe the advantages and disadvantages of using a large motion vector range.

6.11 Concealment motion vectors can be transmitted in intramacroblocks. Describe how
these concealment motion vectors might be used if transmission errors occur.

6.12 The fi rst four macroblocks after a slice header are all coded as P macroblocks with the
prediction modes and motion vectors given in Table 6.22. Calculate the differential mo-
tion vector values transmitted for each macroblock.

Table 6.22 Prediction modes and motion vectors for Problem 6.12.

Macroblock 1 2 3 4

Prediction mode Forward Skipped Forward Forward
Motion vector (�1.0, �1.0) — (�1.5, �1.0) (�2.0, �2.5)

6.13 The fi rst four macroblocks after a slice header are all coded as B macroblocks with the
prediction modes and motion vectors given in Table 6.23. Calculate the differential mo-
tion vector values transmitted for each macroblock.

Table 6.23 Prediction modes and motion vectors for Problem 6.13.

Macroblock 1 2 3 4

Prediction mode Backward Interpolated Forward Interpolated
Forward motion
vector

— (�2.0, �4.0) (�3.5,
�4.0)

(�3.0, �3.5)

Backward motion
vector

(�3.5, �2.5) (�2.0, �2.0) — (�3.0, �4.5)

6.14 Under what circumstances is 3:2 pulldown useful in MPEG-2 video systems? How does
it work and what are the advantages?

6.15 What is the use of pan and scan in MPEG-2 video? How is it implemented and in what
circumstances is it useful?

6.16 Two coded macroblocks in the same slice are separated by 35 skipped macroblocks.
What is the variable-length coded value of macroblock_address_increment that is
transmitted to the decoder?

6.17 The fi eld motion vector for dual-prime prediction in a P frame picture is (�8.5, � 6.5).
The differential motion vector is (�0.5, �0.5). Calculate the displacement of the pixels
to be used to predict each fi eld in the macroblock. You may assume that the top fi eld is
transmitted fi rst for each picture.

6.18 The fi rst eight coded macroblocks in a particular slice taken from a P picture have the
macroblock_address_increment, macroblock type (I or P), and raw motion vectors as
shown in Table 6.24. What are the unencoded values of the motion vectors transmitted
to the decoder after the appropriate motion vector prediction?

Problems 231

232 Chapter 6 The MPEG-2 Video Compression Standard

Table 6.24 Macroblock types and motion vectors for Problem 6.18.

Macroblock address
increment

Macroblock type Raw motion vector

3 P (�7.5, �9.0)
2 P (�8.0, �9.5)
1 I —
1 P (�6.0, �5.0)
2 P (�6.0, �5.0)
1 I —
1 P (�6.0, �5.0)
1 P (�6.0, �5.0)

6.19 The fi rst eight coded macroblocks in a particular slice taken from a B picture have the
macroblock_address_increment, macroblock type (I, B forward prediction, B back-
ward prediction, and B interpolated prediction), and raw motion vectors as shown in
Table 6.25. What are the unencoded values of the motion vectors transmitted to the
decoder after the appropriate motion vector prediction?

Table 6.25 Macroblock types and motion vectors for Problem 6.19.

Macroblock
address increment Macroblock type

Raw forward
motion vector

Raw backward
motion vector

3 B interpolated (�4.5, �5.0) (�3.5, �4.0)
2 B forward (�4.0, �6.5) —
1 B backward — (�4.5, �3.5)
1 B backward — (�5.0, �2.0)
2 B interpolated (�5.0, �5.0) (�1.0, �3.5)
1 I — —
1 B backward — (0.0, �1.0)
1 B forward (�6.0, �5.0) —

6.20 The DC coeffi cients of the fi rst two macroblocks of an I picture are shown below.
Calculate the variable-length code words transmitted to the decoder to represent each
of these coeffi cients. Assume that DC coeffi cients are represented to 10-bit accuracy.

Macroblock 1 Macroblock 2

Y1 � 643 Y1 � 685
Y2 � 659 Y2 � 732
Y3 � 801 Y3 � 847
Y4 � 894 Y4 � 922
U � 140 U � 184
V � 278 V � 278

MATLAB EXERCISE 6.1: BIDIRECTIONAL
MOTION-COMPENSATED PREDICTION

In this exercise we study the effectiveness of bidirectional motion-compensated
 prediction.

Section 1 Forward and backward prediction
Write a MATLAB program that will perform forward motion estimation and
backward motion estimation from a current picture to a past and a future
 picture, respectively. Use minimum absolute error as the matching criteria and
generate a motion-compensated prediction picture from both the past and future
pictures.

It is now necessary to decide whether forward or backward prediction is to be
employed. Do this by choosing as the predictor the forward or backward prediction
macroblock that has the minimum-squared error to the macroblock in the current
picture.

Summarize your results under the following circumstances:

The past, current, and future pictures are all from the same video sequence.

The past picture is from one video sequence and the current and future pic-
tures are from a different video sequence. This simulates a cut prior to the
current picture.

The past and current pictures are from one video sequence whereas the future
picture is from a different video sequence. This simulates a cut after the cur-
rent picture.

Consider the circumstances where an inappropriate prediction (i.e., forward
 instead of backward) is made. Suggest and apply tests that might improve the
 accuracy of this decision.

Section 2 Interpolative prediction
Repeat Section 1 of this exercise, but this time allow for interpolated prediction
as well as forward and backward predictions. The interpolated prediction is
formed by averaging the forward and backward motion-compensated prediction
pictures.

In what circumstances is interpolative prediction useful?

MATLAB EXERCISE 6.2: DUAL-PRIME
MOTION-COMPENSATED PREDICTION

In this exercise you will implement dual-prime motion-compensated prediction and
compare its performance to other forms of motion-compensated prediction.

•
•

•

MATLAB Exercise 6.2: Dual-Prime Motion-Compensated Prediction 233

234 Chapter 6 The MPEG-2 Video Compression Standard

Section 1 Implementation of dual-prime motion-compensated prediction
Using the description contained in the chapter, implement dual-prime motion-
 compensated prediction for frame pictures. Use a full search motion estimation ap-
proach with a search range from �8.0 to �7.5 pixels and for each fi eld motion vector.
For each possible fi eld motion vector you should consider each of the nine possible
differential motion vectors.

Test your dual-prime program on the fi rst two pictures of a video sequence. Com-
pare the result obtained with that obtained using frame-based motion-compensated
prediction with the same search range.

If time permits, also experiment with pictures from other video sequences.

Section 2 Speeding up dual-prime motion-compensated prediction
Rather than considering the differential motion vector in association with each pos-
sible fi eld motion vector, simply calculate the best fi eld motion vector and then calcu-
late the appropriate differential vector just for this “best” fi eld motion vector. Com-
ment on the change in performance.

MATLAB EXERCISE 6.3: FIELD AND FRAME
MOTION-COMPENSATED PREDICTION

In this exercise we will consider the advantages of using adaptive fi eld/frame motion-
compensated prediction in frame pictures.

Section 1 Comparison of fi eld- and frame-based motion-compensated prediction
Use MATLAB to implement frame-based motion-compensated prediction and fi eld-
based motion-compensated prediction on a pair of frame pictures. Choose the pre-
diction type according to which of the two produces the lower value of squared error
for each macroblock in the current picture.

Experiment with pictures from the available sequences, and comment on the
characteristics of macroblocks that require fi eld as opposed to frame coding.

Section 2 Realistic fi eld/frame decision
The use of fi eld motion-compensated prediction carries a penalty in that two
motion vectors are required as opposed to a single motion vector for frame motion-
compensated prediction. For this reason, the decision whether to use fi eld or frame-
based prediction should be biased slightly toward frame prediction.

One way to do this is to introduce a threshold so that if

MSEframe � MSEfi eld � threshold

then frame prediction is employed. Incorporate this threshold into the simulation of
Section 1 of this exercise and comment on the results achieved.

MATLAB EXERCISE 6.4: FIELD AND FRAME DCT
CODING

In this exercise, we examine the implementation of adaptive fi eld/frame DCT coding
of pictures both with and without motion-compensated prediction.

Section 1 Field and frame DCT
Develop MATLAB code to implement both fi eld-based DCT and frame-based
DCT.

It is now necessary to fi nd a criterion to determine whether to use fi eld- or frame-
based DCT. One simple approach would be to look at the amount of energy packed
in low-frequency DCT coeffi cients in each case. Use the energy in the low-frequency
4� 4 DCT coeffi cients of each block in a macroblock to determine whether the mac-
roblock should be coded in fi eld or frame mode.

Section 2 Field/frame decision prior to DCT
In the development of the MPEG-2 video standard, a decision was made in the pixel
domain as to whether frame- or fi eld-based DCT should be employed. The method
employed is described below.

Determine the sum-squared difference between lines 1 and 3, 2 and 4, 3 and
5, . . . 14 and 16 and call this var1,

Determine the sum-squared difference between lines 1 and 2, 2 and 3, 3 and
4, . . . 14 and 15 and call this var2.

If var1 is less than var2, then use fi eld DCT coding. Otherwise use frame
DCT.

This is a simple method for estimating whether correlation is greatest between
every second line (as would be expected in macroblocks suited to fi eld DCT) or
 between adjacent lines (as would be the case in macroblocks suited for frame
DCT).

Implement this approach and comment on its ability to correctly choose between
frame and fi eld DCT.

Section 3 Incorporation of motion-compensated prediction
The previous two sections have concentrated on intra macroblocks only. Extend
your simulation to include fi eld and frame motion-compensated prediction as well.
MATLAB Exercise 6.3 provides details on how to do this.

1.

2.

3.

MATLAB Exercise 6.4: Field and Frame DCT Coding 235

236 Chapter 6 The MPEG-2 Video Compression Standard

There are now four possible types of macroblocks:

Frame motion-compensated prediction with frame DCT coding.

Frame motion-compensated prediction with fi eld DCT coding.

Field motion-compensated prediction with frame DCT coding.

Field motion-compensated prediction with fi eld DCT coding.

What characteristics do macroblocks that fall under each of these categories
 possess?

•
•
•
•

237

Chapter 7

Perceptual Audio Coding

The term audio coding usually refers to the source coding of digital audio signals,
including high fi delity music, with bandwidths of up to 24 kHz. The fi rst digital au-
dio coding algorithms were developed in the early 1970s and used techniques such
as adaptive differential pulse code modulation (ADPCM) and logarithmic quantiza-
tion. These algorithms achieved typical compression ratios of 4:1 while maintaining
high-quality output.

Since the early 1980s audio compression techniques have employed models of
the human auditory system to achieve higher compression ratios while still main-
taining good perceptual audio quality. This technique is known as perceptual audio
coding (PAC), and a typical block diagram of an audio coder employing this tech-
nique is shown in Figure 7.1.

The analysis stage involves converting the time-domain signals of the sampled
audio signal into frequency-domain coeffi cients. Because there is usually a high
degree of correlation between successive audio samples, audio signals can be gener-
ally represented more effi ciently in the frequency domain.

The psychoacoustic model stage is used to identify frequency components of
the audio signal that do not contribute to the perceived quality of the reconstructed
signal. These perceptually redundant components can then be encoded using fewer
bits than other components that are necessary to reproduce an audio signal with a
high perceptual quality.

The dynamic quantizer stage then uses the information produced by the psycho-
acoustic model to calculate the required quantizer step size for each frequency band
in the audio signal. Each frequency coeffi cient produced by the analysis stage is then
quantized using the required step size for that band.

The bit-stream formatting stage takes the quantized coeffi cients and transforms
them into a binary representation. This transformation into binary data will also
usually include entropy coding techniques such as Huffman coding. Any formatting
overhead bits are also added at this stage such as frame headers and error correction
bits.

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

238 Chapter 7 Perceptual Audio Coding

The psychoacoustic model forms an integral part of any perceptual audio coder,
and it is this component that is responsible for providing high-quality audio output
at compression ratios of up to 12:1. In order to learn about this stage however, it is
fi rst necessary to gain a basic understanding of the human auditory system. In the
remainder of this chapter, the basic anatomy and psychoacoustic properties of the
human auditory system are explained.

7.1. THE HUMAN AUDITORY SYSTEM

The human auditory system can be divided into three main areas: the outer ear, the
middle ear, and the inner ear as shown in Figure 7.2. The pinna, ear canal (meatus),
and eardrum (tympanic membrane) form the outer ear. Sound waves in the air travel
down the ear canal and cause the eardrum to vibrate. The middle ear is an air-fi lled
cavity that contains a group of three small bones called the ossicles. The ossicles

Psychoacoustic
model

Analysis Dynamic
quantizer

Bitstream
format

Audio
samples

Frequency
coefficients

Quantized
coefficients

Digital
bitstream

Masking
threshold

Figure 7.1 Typical block diagram of a perceptual audio coder.

Figure 7.2 Parts of the ear.

convert the vibration of the eardrum to pressure waves in the fl uid contained in the
cochlea. The major components of the inner ear are the cochlea and the auditory
nerve. The cochlea is responsible for transforming the mechanical vibrations of the
ossicles into nerve impulses in the auditory nerve.

7.1.1. Outer Ear

The most outer part of the ear is called the pinna as shown in Figure 7.2. The shape
of the pinna signifi cantly modifi es the sound waves arriving at the entrance to the ear
canal. The changes in the sound waves made by the pinna depend on the direction at
which they arrive. It is the shape of the pinna that allows us to determine the loca-
tion of sound sources. The ear canal is a tube about 2.7 cm in length and 0.7 cm in
diameter that is terminated at one end by the eardrum or tympanic membrane. The
eardrum is a thin membrane containing a layer of radial fi bers that form a stiff cone
with an angle at its apex of about 135�.

7.1.2. Middle Ear

The individual names for the three bones that form the ossicles are the malleus,
incus, and stapes as shown in Figure 7.3. They are more commonly called the ham-
mer, anvil, and stirrup and are famous for being the smallest bones in the body. The
hammer is connected directly to the eardrum at one end and makes contact with
the anvil at the other. When the eardrum vibrates, this mechanical motion is passed
on to the stirrup via the hammer and anvil. The head of the stirrup is connected to
the anvil in a ball and socket joint and the footplate of the stirrup is attached to a
membrane covered opening in the wall of the cochlea called the oval window. As

Figure 7.3 Parts of the middle ear.

7.1. The Human Auditory System 239

240 Chapter 7 Perceptual Audio Coding

the stirrup vibrates, the oval window is pushed inward and pulled outward by the
footplate causing a pressure wave to be induced in the fl uid of the cochlea.

The mechanical impedance of this fl uid is much greater than for the eardrum,
and if sound waves were to operate directly on the inner ear, they would have little
effect. Because the effective area of the oval window is much smaller than that of
the eardrum, the middle ear acts as a mechanical impedance matching device and
allows vibrations of the eardrum to be transferred effi ciently to the inner ear.

The ossicles of the middle ear also protect the inner ear from damage caused by
loud sounds. The bones of the ossicles are connected to the walls of the tympanic
cavity by a series of ligaments that limit their range of motion in response to vibra-
tions in the eardrum. Once the intensity of the sound reaches a certain level, these
ligaments limit the movement of the anvil, and the intensity of the pressure wave in
the cochlea is also limited.

7.1.3. Inner Ear

The cochlea and auditory nerve perform the major functions of the inner ear. The
cochlea forms a cone-shaped spiral of approximately two and a half turns, and the
auditory nerve is intertwined throughout the center of this spiral. The main coiled
structure of the cochlea is approximately 35 mm in length and has a cross-sectional
area of approximately 4 mm2 at the base and 1 mm2 at the apex. This structure con-
sists of two fl uid-fi lled chambers, the scala vestibuli and the scala tympani, that are
separated by the cochlea partition. Figure 7.4 shows a simplifi ed illustration of the
cochlea as it would look if the chambers were uncoiled. The two chambers are fi lled
with a colorless liquid called perilymph. Note that the cochlea partition does not
completely separate the two halves of the cochlea. There is a small opening at the
apex of the cochlea partition called the helicotrema that allows the perilymph to fl ow
between the two chambers.

Figure 7.4 Simplifi ed illustration of an uncoiled cochlea.

Scala vestibuli

Scala tympani

Cochlea partition

Helicotrema

Round window

Oval window

Apex

Base

Figure 7.5 shows an expanded view of the cross section of the cochlea. The cochlea
partition mainly consists of a self-contained chamber called the scala media. The scala
media is fi lled with a fl uid called endolymph and is separated from the scala vestibuli
by Reissner’s membrane and from the scala tympani by the basilar membrane.

The basilar membrane is attached to a complex system of hair cells and support-
ing structures called the organ of Corti. The organ of Corti contains approximately
30,000 sensory cells and is responsible for translating the mechanical movements of
the basilar membrane into neural impulses. Figure 7.6 shows a more detailed view
of the organ of Corti.

When the stirrup in the middle ear vibrates in response to the eardrum, the
footplate induces a pressure wave in the fl uid of the scala vestibuli. As this pressure
wave travels down the length of the chamber, a fi xed point on the cochlea partition
experiences alternating levels of high and low pressure in the fl uid at that location.
An increase in pressure in the fl uid of the scala vestibuli causes the cochlea partition
to bend toward the scala tympani and hence transfer the pressure increase to the
fl uid in the scala tympani. This pressure increase is absorbed by the expansion of
the membrane covering the round window. Conversely, a decrease in pressure causes
the cochlea partition to bend away from the scala tympani.

Figure 7.5 Cross section of the cochlea.

Scala vestibuli

Scala tympani

Basilar membrane

Scala mediaOrgan of Corti

Reissner’smembrane

Scala vestibuli

Scala tympani

Cochlea partition

Scala vestibuli

Scala tympani

Basilar membrane

Scala mediaOrgan of Corti

Reissner’smembrane

Scala vestibuli

Scala tympani

Basilar membrane

Scala mediaOrgan of corti

Reissner’s membrane

Figure 7.6 Parts of the organ of Corti.

Inner hair cells
Outer hair cells

Tectorial membrane

Basilar membrane
Nerve fibers

Spiral ganglion

7.1. The Human Auditory System 241

242 Chapter 7 Perceptual Audio Coding

As the cochlea partition bends in response to increasing and decreasing pressure
in the scala vestibuli, the basilar membrane is displaced from its original stationary
position. The displacement of the basilar membrane causes the tips of the hair cells
in the organ of Corti to brush against the underside of the tectorial membrane. This
brushing action bends the hair cells and causes nerve impulses to be sent along the
auditory nerve. In this way, the inner ear converts the mechanical vibrations of the
stirrup into nerve impulses that the brain interprets as sounds.

The basilar membrane is approximately 32 mm long and varies in width from ap-
proximately 0.5 mm at the apex of the cochlea to 0.1 mm at the base. As its width nar-
rows, the basilar membrane also becomes much thicker and stiffer so that it is approxi-
mately 100 times stiffer at the base than at the apex. This variation in width and stiffness
means that the basilar membrane has varying resonant properties along its length. Con-
sequently, each point on the basilar membrane has a particular resonant frequency. This
resonant frequency behavior can be visualized by imagining the basilar membrane as
a series of very closely spaced “guitar strings” stretched across the width of the co-
chlear and joined together by an elastic membrane. The guitar strings at the base of the
cochlear are quite short and stiff, and if one of these strings were “plucked,” it would
vibrate at a high frequency. On the contrary, the guitar strings at the apex are longer and
more elastic and would vibrate at a much lower resonant frequency when plucked.

For a sinusoidal pressure wave, all parts of the basilar membrane oscillate at the
same frequency as the input sound. However, due to the varying resonant properties
of the basilar membrane, the amplitude of the oscillations at each point along the
membrane depends on the frequency. There is a point on the basilar membrane where
the frequency of the input sound matches the resonant frequency of the membrane
and the oscillations have maximum amplitude. The location of this point of maxi-
mum displacement is very close to the stirrup for higher frequencies and gradually
moves toward the apex as the frequency decreases. Figure 7.7 shows the location of
the maximum displacement for various frequencies ranging from 20 kHz to 200 Hz.

Figure 7.7 Location of the maximum displacement of the basilar membrane for various frequencies
(kHz).

20

3
4

5

7

0.6
0.8

1

1.5

2

0.2
0.3

As the pressure wave travels along the basilar membrane, the amplitude of
the oscillations gradually increases until a maximum is reached and then rapidly
decreases at points further along the cochlea. This point of maximum displacement
corresponds to the point on the basilar membrane where its resonant frequency
matches the frequency of the pressure wave. At this point most of the energy of the
wave is absorbed by the basilar membrane, and consequently there is a rapid decrease
in the amplitude of the oscillations as the wave travels further on toward the apex of
the cochlea. Figure 7.8 shows the general shape of the instantaneous displacement
of the basilar membrane for two successive moments in time as well as the general
shape of the amplitude envelope, which is the line joining the amplitude peaks.

Figure 7.9 shows the instantaneous displacement of the basilar membrane for
two specifi c cases. The double-headed arrow in each case indicates the location of
maximum displacement. Figure 7.9(a) shows the displacement of the basilar mem-
brane at one instant in time for a 5-kHz sinusoidal input, and Figure 7.9(b) shows the
displacement of the basilar membrane at one instant in time for a 1-kHz sinusoidal
input. Note that the point of maximum displacement is much closer to the base of the
basilar membrane for the 5-kHz input than for the 1-kHz input.

The variable width and stiffness of the basilar membrane allows the cochlea to
discriminate between different frequency sound waves. Sound waves of different
frequencies cause different parts of the basilar membrane to oscillate with maximum
amplitude, and hence the auditory nerve receives nerve impulses from different parts
of the cochlea. As the frequency of an input sound varies, the brain receives nerve
impulses from different parts of the auditory nerve and perceives these changes in
location as variations in the pitch of the sound.

Figure 7.8 General shape of the displacement of the basilar membrane for a sinusoidal input.

Amplitude envelope

Distance from the base of the cochlea

Instantaneous displacement

Figure 7.9 Instantaneous displacement of the basilar membrane for (a) a 5-kHz sinusoidal input
and (b) a 1-kHz sinusoidal input.

(a)

(b)

7.1. The Human Auditory System 243

244 Chapter 7 Perceptual Audio Coding

7.2. PSYCHOACOUSTICS

The fi eld of psychoacoustics deals with how we perceive the physical stimuli that
affect the human auditory system. The air pressure waves that reach our ears are the
physical stimulus, and the sound that we hear is the perceived response. The relation-
ship between the physical properties of the stimulus and the perceptual qualities of
the sound that we hear is the subject of the following sections.

7.2.1. Sound Pressure Level

A vibrating object produces a sound wave by causing air molecules to be compressed
and then rarefi ed. As this sound wave travels past a point in space, the air pressure at
this point increases and decreases at a frequency equal to the original vibrations of the
sound source. Recall that pressure is a measure of force per unit area and is measured
in N/m2. For a sinusoidal sound wave, the air pressure oscillates between a peak value
above and a peak value below the ambient atmospheric pressure. The difference be-
tween these two peak values is the peak-to-peak amplitude of the sound wave. How-
ever, the sound pressure of a wave is defi ned as the root-mean-square (rms) amplitude
of the sound wave, which is equal to 1 2 2/ times the peak-to-peak amplitude.

The human auditory system detects these pressure variations in the air. As a
sound wave reaches the eardrum, the variations in air pressure cause the eardrum
to vibrate, and the rest of the auditory system converts this vibration into nerve im-
pulses that our brain interprets as sound. The human auditory system can detect a
huge range of sound pressure values. The smallest sound pressure that results in an
audible sound is usually given as 2 � 10�5 N/m2, and the loudest sound that can be
tolerated has a sound pressure of 200 N/m2.

Because of the large range of audible sound pressure values, it is more conve-
nient to express sound pressure values using a logarithmic scale. For this reason,
sound pressure is usually converted to sound pressure level (SPL) and expressed in
decibels using the formula in Equation (7.1).

SPL dB� 20 10
0

log
P

P

 (7.1)

In Equation (7.1), P is the sound pressure and P0 is the reference pressure value
of 2 � 10�5 N/m2. Some examples of typical sounds and their corresponding sound
pressure levels are shown in Table 7.1.

7.2.2. Auditory Thresholds

The threshold for the quietest sound that can be heard when no other sound is present
is known as the threshold in quiet or the absolute threshold. Figure 7.10 shows a plot
of the threshold in quiet for a typical young adult at frequencies ranging from 100 Hz
to 20 kHz. This graph shows that the threshold in quiet varies appreciably with the
frequency of the sound. Note that the human auditory system is most sensitive to

sound pressure at frequencies between about 1 and 5 kHz. This sensitive range is not
surprising because these are the frequencies that occur most often in human speech.

The threshold for the loudest sound that can be tolerated is known as the ter-
minal threshold. This threshold does not vary signifi cantly with frequency. A sound
pressure level of 120 dB causes slight discomfort, and a sound pressure level of
140 dB causes a tickling sensation and pain at any frequency.

As the frequency of an input sound varies, the brain receives nerve impulses
from different parts of the auditory nerve and perceives these changes in location
as variations in the pitch of the sound. The band of audible frequencies extends
from approximately 20 Hz to 20 kHz. Below 20 Hz the variations in air pressure
are too slow for the human auditory system to detect a tonal quality of the sound.
Sounds above 20 kHz can be heard if the sound pressure is increased to uncomfort-
ably high levels. However, at about 23 kHz, the threshold in quiet coincides with the
pain threshold, so this is effectively the upper frequency limit for hearing.

Table 7.1 Typical examples of sounds and
their SPL values.

Example sound SPL (dB)

Gunshot at close range 140
Jackhammer 120
Shouting at close range 100
Traffic noise 80
Normal conversation 70
Quiet conversation 50
Soft whisper 30
Watch ticking 20

Figure 7.10 Threshold in quiet for a typical young adult.

 100 1000 10,000

0

20

40

60

80

100

120

Frequency (Hz)

SPL
(dB)

7.2. Psychoacoustics 245

246 Chapter 7 Perceptual Audio Coding

7.2.3. The Critical Bandwidth and Auditory Filters

Early researchers observed that there was a critical bandwidth associated with the human
auditory system at which our perception of sounds changed abruptly. Harvey Fletcher fi rst
reported this critical bandwidth in 1940 [1]. Fletcher observed the critical bandwidth by
listening to a tone and band-limited noise simultaneously. To fi nd the critical bandwidth,
the frequency of a tone was set to the center frequency of the noise, and the bandwidth of
the noise was then gradually widened. As the bandwidth of the noise increased, the inten-
sity of the tone was adjusted so that it was just audible above the noise. Fletcher observed
that when the bandwidth of the noise was less than the critical bandwidth, the just audible
level of the tone increased as the bandwidth of the noise was increased. However, as the
bandwidth of the noise was increased above the critical bandwidth, the just audible level
of the tone remained the same, regardless of the bandwidth of the noise.

Another example of the critical bandwidth phenomena can be observed by lis-
tening to two tones of different frequencies simultaneously. If the frequency of the
two tones differs by more than the critical bandwidth, then two distinct tones are per-
ceived. However, if the frequency differs by less than a critical bandwidth, the sound
perceived has a harsh quality, and the two distinct tones can no longer be heard.

It was also observed that the critical bandwidth is not constant for all frequen-
cies but in fact increases with increasing frequency. Figure 7.11 shows a plot of the
critical bandwidth for frequencies within the audible range.

The critical bandwidth phenomena led researchers to believe that the human
auditory system acts like a bank of band-pass auditory fi lters, with continuously
overlapping center frequencies. It is generally thought that the basilar membrane
provides the physical basis for these auditory fi lters because each location on the
basilar membrane has a maximum response to a particular frequency sound wave.
It is also easy to see that, as the frequency is shifted above and below this resonant
frequency, the amplitude of the oscillations of the basilar membrane at the original

Figure 7.11 Critical bandwidth versus center frequency.

 100 1000 10,000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10,000

Frequency (Hz)

 Critical
bandwidth
 (Hz)

location is reduced. In this way, each point on the basilar membrane effectively acts
like a band-pass fi lter with a different center frequency.

For all frequencies below about 16 kHz, the range of frequencies that produce sig-
nifi cant neural activity at a fi xed location on the basilar membrane corresponds to a
constant physical distance around this fi xed location. This constant physical distance
determines the bandwidth of the auditory fi lter at each location. Remember though that,
as we move along the basilar membrane from apex to base, a constant physical distance
corresponds to an increasing range of frequencies. The basilar membrane therefore ef-
fectively acts like a band-pass fi lter bank with a continuous range of center frequencies
and with the bandwidth of each fi lter increasing as the center frequency increases.

Empirical measurements of the critical bandwidth at various frequencies by
Bertram Scharf in 1970 [2] resulted in the defi nition of 25 critical bands. The
frequencies that defi ne the center and edges of these critical bands are shown in
Table 7.2. It is important to note that these critical band boundaries do not represent

Table 7.2 Center and edge frequencies for the critical
bands of the human auditory system.

Band
number

Lower
edge (Hz)

Center
(Hz)

Upper edge
(Hz)

1 0 50 100
2 100 150 200
3 200 250 300
4 300 350 400
5 400 450 510
6 510 570 630
7 630 700 770
8 770 840 920
9 920 1,000 1,080

10 1,080 1,170 1,270
11 1,270 1,370 1,480
12 1,480 1,600 1,720
13 1,720 1,850 2,000
14 2,000 2,150 2,320
15 2,320 2,500 2,700
16 2,700 2,900 3,150
17 3,150 3,400 3,700
18 3,700 4,000 4,400
19 4,400 4,800 5,300
20 5,300 5,800 6,400
21 6,400 7,000 7,700
22 7,700 8,500 9,500
23 9,500 10,500 12,000
24 12,000 13,500 15,500
25 15,500 19,500 24,000

7.2. Psychoacoustics 247

248 Chapter 7 Perceptual Audio Coding

discrete nonoverlapping fi lters but instead represent the critical bandwidth at a set of
sample frequencies.

The boundaries of the critical bands shown in Table 7.2 were then used to gener-
ate a new scale of measurement called the critical band rate. The unit for the critical
band rate is the Bark,1 and the critical band rate is sometimes called the Bark scale.
The formula given in Equation (7.2) can be used to perform an approximate conver-
sion from frequency to critical band rate.

z
f

f
�

�
�

28

2200
0 5. Bark (7.2)

In Equation (7.2), z is the critical band rate and f is the frequency in Hertz.
Figure 7.12 shows the relationship between the critical band rate and frequency.

The critical band rate of a sound is effectively a measure of the location on the
basilar membrane that will be affected by the sound. A difference in critical band
rate of less than 1 Bark indicates that two sounds are within a critical bandwidth of
each other regardless of their absolute frequency. The critical band rate is also very
useful in determining if one sound will affect the perception of another sound. This
psychoacoustic effect is the subject of the following section.

7.2.4. Auditory Masking

Auditory masking is the general term used to describe a situation where the percep-
tion of one sound is affected by the presence of another sound. We experience forms
of auditory masking regularly in everyday life. For example, when the noise from
our car engine cannot be heard above the sounds from the car radio or when the

Figure 7.12 Critical band rate versus frequency.

 100 1000 10,000
0

5

10

15

20

25

Frequency (Hz)

Critical
band rate
 (Bark)

1The unit of Bark is named after Heinrich Georg Barkhausen, a German Physicist who introduced the
phon as a unit of measurement for loudness.

music from our home stereo is inaudible because of the sound of construction work
from the house next door.

In specifi c terms auditory masking occurs when one sound, the masker, raises
the threshold of audibility for another sound, the maskee. If sound A is the masker
and sound B is the maskee, then the raised threshold of sound B is called the masked
threshold or masking threshold. We say that sound B has been masked by sound
A, and the amount of masking is equal to the difference between the threshold in
quiet for sound B alone and the masked threshold for sound B in the presence of
sound A.

There are two main types of auditory masking: frequency masking and temporal
masking.

7.2.4.1. Frequency Masking

Frequency masking occurs when two or more sounds are presented simultaneously,
and the amount of masking depends on the difference in frequency between the
masker and the maskee and the sound pressure level of the two sounds. Figure 7.13
shows a typical example of frequency masking with a 3-kHz masker and a 4-kHz
maskee. The masking threshold of the 3-kHz tone indicates the sound pressure level
required by a second tone before it can be heard in the presence of the masker. Be-
cause the sound pressure level of the 4-kHz tone is below the masking threshold,
it is inaudible, and a human listener only hears the 3-kHz masker. For sounds that
have frequencies that are quite different to the masker, the masking threshold cor-
responds to the threshold in quiet, and the masker has no effect on the audibility of
these tones.

Figure 7.13 Masking threshold for a 3-kHz masker with a sound pressure level of 60 dB.

100 1000 10000

0

20

40

60

80

100

120

Frequency (Hz)

SPL
(dB)

Threshold in quiet

Masking threshold
Masker

Maskee

7.2. Psychoacoustics 249

250 Chapter 7 Perceptual Audio Coding

It is commonly thought that the underlying physical process involved in mask-
ing is the swamping of maskee neural activity by the masker. If the masker produces
a signifi cant amount of activity at the location on the basilar membrane that would
normally be activated by the maskee, then the small amount of extra activity caused
by the maskee may be undetectable.

Note that the slope of the masking threshold is less steep for frequencies above
the masker frequency. This phenomenon is known as the upward spread of masking
and is generally thought to occur because of the shape of the oscillations that are
induced in the basilar membrane. Recall from Section 7.1.3 that oscillations of the
basilar membrane decay away much more rapidly for parts of the basilar membrane
that have resonant frequencies below the frequency of the current sound stimulus.
This means that a masker tone has the best effect on parts of the basilar membrane
that have a resonant frequency above the masker frequency.

In the previous section it was shown that it is the distance between the stimu-
lated locations on the basilar membrane that will determine how one sound will af-
fect the perception of the other. For this reason, the masking threshold for a masker
is usually estimated using the critical band rate rather than absolute frequency.

7.2.4.2. Temporal Masking

Temporal masking is the term used to describe the masking effect that occurs when
the masker and the maskee are not presented to the ear simultaneously. Instead, there
is a small time delay between the presentation of the masker and the maskee. If the
masker is presented before the maskee, this is known as postmasking or forward
masking, and if the masker is presented after the maskee, it is known as premasking
or backward masking. The amount of masking that occurs will depend on the time
delay between the masker and the maskee, the order in which they are presented, and

Figure 7.14 The temporal masking threshold for a 3-kHz, 60-dB masker and a 3-kHz maskee.

–60 –40 –20 0 0 20 40 60 80 100 120 140 160
0

10

20

30

40

50

60

70

Time (ms)

SPL
(dB)

Forward
masking

Simultaneous
masking

Backward
masking

Masker (3 kHz)

the difference in frequency between the two sounds. Figure 7.14 shows the temporal
masking threshold for both forward and backward masking by a 60-dB, 3-kHz
masker of a 3-kHz maskee.

Forward masking can occur with much longer time delays between the masker
and the maskee than backward masking. Typically, backward masking cannot be
observed once the maskee occurs more than 20 ms before the masker. However,
forward masking can be observed with a time delay of up to 200 ms between the
masker and maskee. The amount of temporal masking reduces logarithmically with
the time delay between the maskee and masker. It is also interesting to observe that
the maximum time delay at which temporal masking can be detected does not vary
signifi cantly with sound pressure level of the masker. As the masker sound pressure
level increases, the masking threshold reduces more quickly, so the masking effect
persists for the same amount of time regardless of the initial masker level. From the
previous section it is also easy to see that the maximum temporal masking effect will
occur when both the masker and the maskee have the same frequency.

The physical basis for temporal masking is not well understood. Two possible
causes have been suggested. One is that the oscillations in the basilar membrane
from the masker may not have completely decayed away before the onset of the
maskee. The other suggests that recently stimulated hair cells may be reduced in
sensitivity for a short time and hence emit less neural activity than would normally
be the case for the maskee.

7.3. SUMMARY

In this chapter it was shown how the physical properties of the human auditory sys-
tem can alter the way we perceive sounds. In particular, it was demonstrated how
some sounds can mask the perception of other sounds that have a similar frequency
or follow closely in time. In the following audio chapters, how these psychoacoustic
limitations of the human auditory system have been exploited in the design of per-
ceptual audio coding algorithms is explained.

PROBLEMS

1. Briefl y explain the function of the following parts of the human auditory system as it con-
verts a sound wave into neural impulses:

(a) Eardrum

(b) Ossicles

(c) Basilar membrane

(d) Hair cells

2. Explain how the variable width and stiffness of the basilar membrane allows variations in
the frequency of a sound wave to be perceived as changes in the pitch of the sound.

3. If the peak-to-peak variation in air pressure for a sound wave is held constant at
4 � 10�5 N/m2 and the frequency is varied between 100 Hz and 20 kHz,

Problems 251

252 Chapter 7 Perceptual Audio Coding

(a) Determine the frequency range for which this sound will be audible to a typical young
adult.

(b) Repeat part (a) for a sound wave with a peak-to-peak variation in air pressure of
1 � 10�4 N/m2.

REFERENCES

H. Fletcher, Auditory patterns, Rev. Modern Phy., 12, 1940, 47–66.
B. Scharf, Critical bands, in Foundations of Modern Auditory Theory (J. Tobias, ed.), New York and
London: Academic Press, 1970, pp. 159–202.

1.
2.

253

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 8

Frequency Analysis
and Synthesis

A conversion from time-domain samples to frequency-domain coeffi cients is the
fi rst stage in all of the current standard digital audio compression algorithms. In the
MPEG suite of algorithms, this conversion is done using an effi cient implementa-
tion of a subband fi lterbank approach, whereas in the Dolby AC-3 algorithm, a co-
sine transform is used that incorporates time-domain aliasing cancellation. In this
chapter, the basic theory behind each of these techniques is explained and the actual
implementations used in the standard algorithms are discussed.

8.1. THE SAMPLING THEOREM

The fi rst stage in digital audio coding is usually the conversion of the analog wave-
form into a series of digital samples. Probably the most important concept to con-
sider during this conversion is the introduction of aliasing errors. In this section,
the mathematical explanation for aliasing, which is more commonly known as the
sampling theorem, is introduced.

Consider the signal x(t) that has a spectrum X(f) and a bandwidth of B Hz as
shown in Figure 8.1(a) and (b).

If this signal is sampled at a rate of one sample every TS seconds, this is equiva-
lent to multiplying the signal by a unit impulse train with period TS. The sampled
signal x(nTS) is given by the following equation:

 x nT x t t nTS S

n

() () ()
∞

∞

∑� �
��

δ (8.1)

By taking the exponential Fourier series of an impulse train, this equation can be
rewritten to give

 x nT
T

x t eS
S

jn t

n

S() ()
∞

∞

∑�
��

1 ω (8.2)

254 Chapter 8 Frequency Analysis and Synthesis

and taking the Fourier transform of x(nTS) gives

 X
T

X nS

S

S

n

ω ω ω() ()
∞

∞

∑
1

� �
��

 (8.3)

The spectrum of the sampled signal therefore consists of the spectrum of the
original signal repeating itself indefi nitely at intervals of ωS � 2π fS, where fS � 1/TS
is the sampling frequency. Figure 8.2(a) shows the sampled signal (in future, for
ease of notation, the sampling period term TS will be dropped and this signal will
simply be referred to as x(n)), and Figure 8.2(b) shows the magnitude spectrum of
the sampled signal.

Figure 8.2(b) shows that there is no overlap between successive cycles of XS(ω)
provided that the sampling frequency ωS is greater than twice the maximum frequency
of the signal. If there is no overlap between successive cycles, the original signal can
be recovered from the sampled signal by passing it through a low-pass fi lter. The
sampling theorem states that a signal with a bandwidth of B Hz can be reconstructed
perfectly from samples taken at a rate of not less than 2B samples per second. This
sampling rate of 2B samples per second is known as the Nyquist sampling rate.

If a signal is sampled at a rate less than the Nyquist rate, the spectrum of the
sampled signal consists of overlapping repetitions of X(ω). If the sampled signal

0 0.05 0.1 0.15 0.2

–10

0

10

20x(t)

x(f)

(a)

 –B 0 B
0

2

4

6

(b)

t

f

Figure 8.1 (a) The signal x(t) and (b) its magnitude spectrum |X(f)|.

is then passed through a low-pass fi lter, the result is a distorted version of the
 original signal. This distortion is known as aliasing error and is caused by the loss
of frequency components above the frequency of ωS /2 and frequency components
from the next repetition of X(ω) adding to the original signal below the frequency
of ωS /2.

8.2. DIGITAL FILTERS

For the MPEG suite of audio coding algorithms, the conversion from time-domain
samples to frequency coeffi cients is performed using a bank of digital fi lters. A
digital fi lter is specifi ed by its discrete impulse response h(k), k � 0, …, N. A sampled
signal x(n) is fi ltered by performing a discrete convolution of the fi lter impulse
response with the sampled signal. Hence the output of a digital fi lter with impulse
response h(k) is given by the equation

 s n h k x n k
k

N

() () ()∑� �
�0

 (8.4)

The frequency response of a digital fi lter can be found by taking the Fourier transform
of the fi lter impulse response.

8.2. Digital Filters 255

0 1 2 3 4 5 6 7 8 9
n

–10

0

10

20x(n)

(a)

(b)

0

2

4

6

Sω− 2Sω− 0 2Sω Sω
ω

()ωSX

Figure 8.2 (a) The sampled signal x(n) and (b) its magnitude spectrum |XS(ω)|.

256 Chapter 8 Frequency Analysis and Synthesis

8.3. SUBBAND FILTERING

Subband fi ltering is the process of dividing the original signal into a series of fre-
quency bands. This results in a set of frequency coeffi cients or subband samples
that represent the amplitude of the component with the frequency of the correspond-
ing subband. These subband samples are then transmitted and added together to
reconstruct the original signal. The subband fi ltering process requires two steps:
First, the analysis fi lter bank is used to convert time-domain samples of the original
signal to frequency-domain subband samples. The synthesis fi lter bank is then used
to reconstruct the time-domain samples of the signal from the transmitted subband
samples. The block diagram of an M-channel analysis–synthesis fi lter bank is shown
in Figure 8.3.

8.3.1. The Analysis Filter Bank

The analysis stage uses a set of bandpass digital fi lters to divide the frequency spec-
trum of the sampled signal into M subbands. The output of each of these fi lters is then
subsampled by a factor of M so that the number of subband samples produced is the
same as the original number of time-domain samples. From the sampling theorem,
because the output of each bandpass fi lter has a bandwidth of B/M, the sampling rate
can also be reduced to 2B/M while still guaranteeing perfect reconstruction.

8.3.1.1. The Effect of Subsampling

Subsampling by a factor of M is effectively dividing the sampling frequency by M.
This means that the sampling frequency is now not high enough to eliminate aliasing
errors and the spectrum becomes distorted. This distorted spectrum is a combina-
tion of the M repetitions of the original spectrum and can be represented by the
equation

 X
M

X
j

M
SS S

j

M

ω
ω()

∑�

�

�

�1

0

1 π
 (8.5)

H0(ω)

H1(ω)

HM-1(ω)

G0(ω)

G1(ω)

GM-1(ω)

M

M

M

M

M

M

S0(ω)

S1(ω)

SM-1(ω)

R0(ω)

R1(ω)

RM-1(ω)

Σ

Σ
XS(ω) XS′(ω)

H0 ω)

H1(ω)H1 ω)

HM-1(ω)HM-1 ω)

G0(ω)G0 ω)

G1(ω)G1 ω)

GM-1(ω)M-1 ω)

M

MM

MM

MM

M

0

S1 ω)

(ω)

0 ω)

R1 ω)

RM-1 ω)

ΣΣ

ΣΣ
XS(ω) XS ω)

Figure 8.3 M-channel subband analysis and synthesis fi lters.

Equation (8.5) shows that, after fi ltering and subsampling, the spectrum of the
outputs of the analysis fi lter bank are given by the equation

 S
M

X
j

M
H

j

M
i S

j

M

iω
ω ω()

∑�

� �

�

�1

0

1 π π
 for i � 0,1,2,…,M � 1 (8.6)

EXAMPLE 8.1

Consider the sampled signal x(n) with the magnitude spectrum |XS(ω)| as shown in Figure 8.2.
Now if this signal is subsampled by a factor of 2, the result is the signal xSS(n) as shown in
Figure 8.4.

However, because the sampling frequency has been halved, the aliased spectrum is
given by the following equation.

 X X XSS S Sω
ω ω()

� �
�1

2 2 2

π
 (8.7)

The magnitude spectrum of this subsampled signal is shown as the full line in Figure 8.5;
the dashed line is |X(ω /2)| and the dotted line is |X((ω � π)/2)|. Remember that the magnitude
spectra of the two terms in Equation (8.7) cannot simply be added together. Figure 8.5 shows
the magnitude spectrum of the subsampled signal after the two terms have been added as
complex signals with both magnitude and phase information.

8.3. Subband Filtering 257

0 1 2 3 4 5 6 7 8 9
n

–10

0

10

20
xss(n)

Figure 8.4 The subsampled signal xSS(n).

0

2

4

6()ωSSX

Sω− 2Sω− 0 2Sω Sω ω

Figure 8.5 The magnitude spectrum of the subsampled signal |XSS(ω)| (full line) with the magnitude
spectrum of |XS(ω /2)| (dashed line) and the magnitude spectrum of |XS ((ω � π)/2)| (dotted line). �

258 Chapter 8 Frequency Analysis and Synthesis

8.3.2. The Synthesis Filter Bank

The synthesis stage also uses a set of bandpass fi lters to reconstruct the samples of
the time-domain signal. The input to each of these synthesis fi lters is upsampled
by M so that the output of each fi lter has the same number of samples as the original
time-domain signal. This upsampling process is implemented by inserting M � 1
zero-valued samples between each sample of the subsampled signal. The output
samples from each synthesis fi lter are then added together to form the recon-
structed signal.

8.3.2.1. The Effect of Upsampling

Upsampling by a factor of M is effectively dividing the frequency of each compo-
nent by M. The spectrum of the upsampled signal is therefore given by the following
equation:

 X X MUS Sω ω() ()� (8.8)

Equation (8.8) shows that, after upsampling and fi ltering, the spectrum of the
outputs of the synthesis fi lter bank in Figure 8.3 is given by the equation

 R
M

G X j H j ii i S

j

M

iω ω ω ω() () () ()∑� � �
�

�1

0

1

π π for �� �0 1 2, , , . . . , M 1 (8.9)

EXAMPLE 8.2

Consider the sampled signal x(n) with the magnitude spectrum |XS(ω)| as shown in
Figure 8.2. If this signal is upsampled by a factor of 2, the result is the signal xUS (n) as
shown in Figure 8.6, and the magnitude spectrum of this upsampled signal is shown in
Figure 8.7.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

–10

0

10

20
xUS(n)

n

Figure 8.6 The upsampled signal xUS (n).

8.3.3. Filters for Perfect Reconstruction

The reconstructed signal from the synthesis fi lterbank in Figure 8.3 is found by add-
ing the outputs of the synthesis fi lters and is given by

 ′ () () () ()∑X
M

G X j H jS i S

j

M

i

i

M

ω ω ω ω� � �
�

�

�

�1

0

1

0

1

π π∑∑ (8.10)

and rearranging this equation to separate the terms where j � 0 gives the following
equation:

′ () = () () () +
=

−

=

−

∑ ∑X
M

X G H
M

XS S i
i

M

i S
j

M

ω ω ω ω
1 1

0

1

1

1

ωω ω ω+() () +()
=

−

∑j G H ji
i

M

iπ π
0

1

 (8.11)

Equation (8.11) has one term that contains the original sampled signal XS(ω), and the
remaining terms contain frequency-shifted versions of the original signal XS (ω � jπ).
To perfectly reconstruct the original signal, a set of fi lters that satisfy the following
equations must be found:

 G H Mi i

i

M

ω ω() ()∑
�

�

�
0

1

 (8.12)

 G H ji i

i

M

j

M

ω ω() ()∑∑ � �
�

�

�

�

π
0

1

1

1

0 (8.13)

Equation (8.12) tells us that if the frequency response for the analysis and
synthesis fi lters for each subband are multiplied together and these combined
frequency responses are added for all subbands, then the overall frequency response
should be constant over the bandwidth of the original sampled signal. Equation
(8.13) tells us that if the analysis fi lter for one subband is multiplied with the
synthesis fi lters for all other subbands and these combined frequency responses are
added for all subbands, then this overall frequency response should be zero. For a
set of fi lters that satisfy these equations, the aliasing terms from Equation (8.11) are
eliminated, and the overall frequency response of the fi lterbank is constant over the
bandwidth of the signal.

0

2

4

6()ωUSX

Sω− 2Sω− 0 2Sω Sω
ω

 Figure 8.7 The magnitude spectrum of the upsampled signal |XUS (ω)|. �

8.3. Subband Filtering 259

260 Chapter 8 Frequency Analysis and Synthesis

8.4. COSINE-MODULATED FILTERS

One technique that can be used to determine a set of fi lters that satisfy the perfect
reconstruction equations is to use a set of cosine-modulated fi lters. In this technique
a prototype fi lter is determined, and each of the analysis and synthesis fi lters is
derived from this prototype fi lter using cosine modulation.

For an M-channel subband fi lter bank, the impulse responses for the analysis
and synthesis fi lters are given by the following equations:

 h k h k
i k

M
i

M

() () ()()

�

� �
cos

2 1

2
2 π

 (8.14)

 g k h k
i k

M
i

M

() () ()()

�

� �
cos

2 1

2
2 π

 (8.15)

where h(k) is the impulse response of the prototype fi lter.

EXAMPLE 8.3

The impulse response h(k) of a prototype fi lter for a two-channel fi lterbank is shown in
Figure 8.8(a), and the magnitude of the frequency response of this fi lter |H(ω)| is shown
in Figure 8.8(b).

The two analysis fi lters are determined using the following equations:

 h k h k
k

0

1

4
() () ()

�

�
cos

π
 (8.16)

 h k h k
k

1

3 1

4
() () ()

�

�
cos

π
 (8.17)

The fi lter coeffi cients of the analysis fi lters are found by multiplying the coeffi cients of
the prototype fi lter by a sampled cosine wave as shown in Figure 8.9(a). In the frequency
domain this is equivalent to the convolution of the spectrum of the prototype fi lter with the
spectrum of the cosine wave as shown in Figure 8.9(b).

Figure 8.10 shows the same process for h1 (k), and Figures 8.9 and 8.10 show that the two
analysis fi lters divide the spectrum of the sampled input signal into two equal width subbands. �

 −π −π/2 0 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π 2Sω− 2Sω SωSω−
ω

()kh

k
 −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π 2Sω− 2Sω SωSω−

H ω()

Figure 8.8 (a) The impulse response h(k) and (b) the magnitude of the frequency response |H(ω)|
of a prototype fi lter for a two-channel perfect reconstruction fi lterbank.

8.4. Cosine-Modulated Filters 261

x

=

*

=

 −π −π/2 0 π/2 π −π −π/2 π/2 π

 −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π

 −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π

2Sω− 2Sω SωSω−
ω

()ωH

2Sω− 2Sω SωSω−
ω

()ω0H

2Sω− 2Sω SωSω−
ω

()kh

k

()

 −

4

1
cos

πk

k

()kh0

k

x

= =

 −π −π/2 π/2 π −π −π/2 π/2 π

 −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π

 −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π

== ==

 −π −π/2 π/2 π −π −π/2 π/2 π

 −π −π/2 π/2 π −π −π/2 0 π/2 π −π −π/2 π/2 π

 −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 π/2 π −π −π/2 0 π/2 π

2Sω− 2Sω SωSω−
ω

()ωH

2Sω− 2Sω SωSω−
ω

()ω0H

2Sω− 2Sω SωSω−
ω

()kh

k

()

−
4

1
cos

πk

k

k

(a) (b)

Figure 8.9 (a) The coeffi cients of the low-pass fi lter are found by multiplying the prototype fi lter
coeffi cients by a sampled cosine wave. (b) In the frequency domain, this is equivalent to the convolution
of the prototype frequency response with an impulse function at the frequency of the cosine.

= =

 −π −π/2 0 π/2 π −π −π/2 0 π/2 π −π −π/2 0 π/2 π

 −π −π/2 0 π/2 π

 −π −π/2 0 π/2 π −π −π/2 0 π/2 π

2Sω− 2Sω SωSω−
ω

2Sω− 2Sω SωSω−
ω

2Sω− 2Sω SωSω−
ω

k

k

k

= =

 −π −π/2 0 π/2 π −π −π/2 0 π/2 π −π −π/2 0 π/2 π

 −π −π/2 0 π/2 π

 −π −π/2 0 π/2 π −π −π/2 0 π/2 π

x

==

*

==

 −π −π/2 0 π/2 π −π −π/2 0 π/2 π −π −π/2 0 π/2 π

 −π −π/2 0 π/2 π

 −π −π/2 0 π/2 π −π −π/2 0 π/2 π

2Sω− 2Sω SωSω−
ω

()ωH

2Sω− 2Sω SωSω−
ω

()ω1H

2Sω− 2Sω SωSω−
ω

()kh

k

()−
4

13
cos

πk

k

()kh1

k

(a) (b)

Figure 8.10 (a) The coeffi cients of the high-pass fi lter are found by multiplying the prototype fi lter
coeffi cients by a sampled cosine wave. (b) In the frequency domain this is equivalent to the convolution
of the prototype frequency response with an impulse function at the frequency of the cosine.

262 Chapter 8 Frequency Analysis and Synthesis

The two synthesis fi lters are determined using the following equations:

 g k h k
k

0

1

4
() () ()

�

�
cos

π
 (8.18)

 g k h k
k

1

3 1

4
() () ()

�

�
cos

π
 (8.19)

The sampled cosine waves and the resulting fi lter coeffi cients for the synthesis fi lters
are shown in Figure 8.11. Note from Figure 8.11 that the synthesis fi lters are simply
the analysis fi lters reversed in time.

The output of each of the analysis fi lters is the digital convolution of the impulse
response of the fi lters with the input signal that is given by the following equations:

 s n h k x n k
k

N

0 0() () ()∑� �
�0

 (8.20)

 s n h k x n k
k

N

1 1() () ()∑� �
�0

 (8.21)

A simple implementation of an M-channel analysis fi lterbank with fi lters of N
coeffi cients requires MN multiplications and M(N � 1) additions for each sample of
the input signal.

Similarly, the output of each of the synthesis fi lters is the digital convolution
of the impulse response of the fi lters with the upsampled subband samples. The
outputs of these fi lters are then added to produce the reconstructed output samples.
A simple implementation of an M-channel synthesis fi lterbank with fi lters of N coef-
fi cients requires MN multiplications and MN � 1 additions for each sample of the
 reconstructed signal.

()kg0

k

4
cos

(k+1)p 3(k+1)p

k

()kg1

k

4
cos

k

0

k

4

k

k

k

(a) (b)
Figure 8.11 The sampled cosine waves and the resulting fi lter coeffi cients for (a) the low-pass
synthesis fi lter and (b) the high-pass synthesis fi lter.

EXAMPLE 8.4

Figure 8.12(a) shows a graphical representation of the calculations required for an output sub-
band sample of the low-pass fi lter in the analysis fi lter bank. The fi lter has a length of 32, so
each set of 32 input samples is fi rst reversed in time and then multiplied by the corresponding
value of the impulse response. The sum of all these product terms is then calculated to obtain
the single output subband sample s0(n) (shown as a full circle). For a two-channel fi lterbank
using the analysis fi lters from the previous example, each output subband sample requires 32
multiplications and 31 additions. These same calculations are also required for the high-pass
fi lter. For each input sample, a total of 64 multiplications and 62 additions are required to
obtain each pair of low-pass and high-pass subband samples.

8.4. Cosine-Modulated Filters 263

x

=

������ ������� ��

+

x

=

������ ������� ��

+

()kh0

k

()knx −

k

()ns0

k

n

() ()knxkh −0

()kh1

k

()knx −

k

()ns1

k

n

() ()knxkh −1

==

������ ������� ��

+

����������

+

==

������ ������� ��

+

������ ������� ��

+

()kh0

k

()knx −

k

()ns0

k

n

() ()knxkh −0

()kh1

k

()knx −

k

()ns1

k

n

() ()knxkh −1

(a) (b)

Figure 8.12 Multiplications and additions required for one output sample of the analysis fi lter
(shown as a fi lled circle). (a) Low-pass fi lter and (b) high-pass fi lter (zero samples have been added to
the output sample sequence to maintain the same timescale as for the input samples).

264 Chapter 8 Frequency Analysis and Synthesis

Figure 8.13(a) shows a graphical representation of the calculations required for an out-
put sample of the low-pass fi lter in the synthesis fi lter bank (shown as a full circle). The input
to the fi lter, s0 (n � k), is the set of 32 time-reversed subband samples from the low-pass
analysis fi lter that have been subsampled by a factor of 2 and then upsampled by inserting a
zero-valued sample between each sample. Each set of 32 samples of s0 (n � k) is multiplied by
the corresponding value of the impulse response of the low-pass synthesis fi lter g0 (k). Then
the sum of all these product terms is calculated to obtain the single reconstructed low-pass
output sample r0 (n). For a two-channel fi lter bank using the synthesis fi lters from the previ-
ous example, each reconstructed output sample requires 32 multiplications and 31 additions.
These same calculations are also required for the high-pass fi lter, and a further addition is re-
quired to add the low-pass and high-pass samples together. Therefore, for each output sample,
a total of 64 multiplications and 63 additions are required.

Figure 8.13 Multiplications and additions required for one output sample of the synthesis fi lter
(shown as a fi lled circle). (a) Low-pass fi lter and (b) high-pass fi lter. �

x

=

������ ������� ��

+

x

=

������ ������� ��

+

()kg
0

k

()kns −
0

k

()nr
0

k

n

() ()knskg −
00

()kg
1

k

()kns −
1

k

()nr
1

k

n

() ()knskg −
11

x

==

������ ������� ��

+

������ ������� ��

++

==

������ ������� ��

+

������ ������� ��

++

k

()nr
0

() ()knskg −
00

ns −
1

()nr
1

() ()knskg −
11

(a) (b)

8.5. EFFICIENT IMPLEMENTATION OF A COSINE-
MODULATED FILTERBANK

The standard implementation of a subband fi lterbank requires many more calcula-
tions than is necessary. A more effi cient implementation of a set of cosine-modulated
fi lters was proposed by Joseph Rothweiler in 1983 [1]. This effi cient implementation
takes advantage of two things: (a) the prototype fi lter coeffi cients are common to all
fi lters with the only difference being the frequency of the sampled cosine waves and
(b) the periodic nature of the sampled cosine waves.

8.5.1. Analysis Filter

In order to explain the basic principles behind Rothweiler’s proposal, fi rst consider
the following example that shows how the two-channel analysis fi lterbank from
Section 8.4 can be implemented more effi ciently.

EXAMPLE 8.5

Figure 8.14(a) shows the conventional method for calculating the low-pass fi lter impulse re-
sponse by multiplying the prototype fi lter impulse response with a sampled cosine wave.
Figure 8.14(b) shows how the same impulse response can be calculated by inverting every
second set of four samples in both the cosine wave and the prototype fi lter response. By in-
verting every second set of four samples, the sampled cosine wave becomes a repeating set

8.5. Effi cient Implementation of a Cosine-Modulated Filterbank 265

x

=

x

=

≡
c

xx

==

xx

==

≡
()kh

k

()−
4

1
cos

πk

k

()kh0

k

(a) (b)

()kc

k

()kh0

k

k

Figure 8.14 (a) The conventional approach to implementing the analysis fi lter. (b) In Rothweiler’s
approach the cosine-modulated fi lters can be constructed by multiplying c(k) by a repeating set of
samples from the original sampled cosine wave.

266 Chapter 8 Frequency Analysis and Synthesis

of the same four samples of the original wave and the prototype fi lter impulse response, h(k),
becomes the modifi ed impulse response, c(k).

In the discrete convolution process that would take place in a conventional implemen-
tation of the analysis fi lterbank, 32 time-reversed samples of the audio input are multiplied
with the 32 samples of the low-pass fi lter impulse response as shown in Figure 8.15(a). This
is equivalent to multiplying by the modifi ed impulse response, c(k), and then by the repeating
set of the same four samples of the original cosine wave as shown in Figure 8.15(b).

If c(k) is substituted for h(k), the next step in the convolution process is simplifi ed. The
corresponding samples of c(k)x(n � k) are simply multiplied by the repeating set of four
 cosine samples, and then the sum of these products is calculated to determine the current
output sample value as shown in Figure 8.16(a). However, in the calculations performed in
Figure 8.16(a), all samples of c(k)x(n � k) that are four samples apart are multiplied by the
same cosine value. This set of four cosine samples can be factored out as shown in Figure
8.16(b). To achieve this factorization, the 32 samples of c(k)x(n � k) are divided into eight
groups of four samples, and the corresponding samples in each of these groups are added
to determine the intermediate sum, y(j). Each sample of this intermediate sum is then mul-
tiplied by its corresponding cosine value, and the sum of these products is calculated to
determine the current output sample value.

In this approach, instead of performing 32 multiplications and 31 additions, 32
multiplications and 28 additions are performed to calculate the intermediate sum, and then
further four multiplications and three additions are performed to calculate the output value.

For the low-pass fi lter on its own, this approach does not produce any signifi cant saving in
calculations, but there are more savings to be made for the entire analysis fi lterbank. Because
the only difference between the values of the low-pass and high-pass impulse response is the

x

x

≡
x

x (n–k)

x (n–k)

h0(k)

c(k)
k

k

(a) (b)

k

k

k

Figure 8.15 (a) The conventional approach to fi ltering the input signal involves multiplying by
the low-pass fi lter impulse response. (b) In Rothweiler’s approach, multiplying by the low-pass fi lter
impulse response is equivalent to multiplying by c(k) and then by a repeating set of samples from the
original sampled cosine wave.

frequency of the sampled cosine wave, the intermediate sum is reused in the calculations for
the output sample of the high-pass fi lter. The four samples of the low-pass cosine wave in Fig-
ure 8.16(b) are replaced with the fi rst four samples of the high-pass cosine wave to determine
the current output sample for the high-pass fi lter.

Figure 8.17 shows the effi cient implementation of the two-channel analysis fi lter bank
from the previous examples using Rothweiler’s method. Figure 8.17(a) shows the calculation
of the intermediate sum, and Figure 8.17(b) shows how this intermediate sum is multiplied by
four samples from both the low-pass and high-pass cosine waves to obtain the output samples
of the low-pass and high-pass fi lters, respectively.

Instead of the 64 multiplications and 62 additions required in a conventional implemen-
tation of this fi lterbank, 32 multiplications and 28 additions are required for the intermediate
sum, and then four multiplications and three additions are required for each of the low-pass

x

=

������ ������� ��

+

+

�

+

x

=

≡

k

() ()knxkc −

()ns0

n ()ns0

n

k

() ()knxkc −

j

()jy

()

 −

4

1
cos

πj

j

������ ������� �� ������ ������� ��

++

�

+

�

++

==

k

() ()knxkc −

()ns0

n ()ns0

n

k

() ()knxkc −

j

()jy

()−
4

1
cos

πj

j

(a) (b)

Figure 8.16 (a) The corresponding samples of c(k)x(n � k) are simply multiplied by the repeating
set of four cosine samples, and then the sum of these products is calculated to determine the current
output sample value (shown as a full circle). (b) The process shown in (a) is simplifi ed by dividing the
32 samples of c(k)x(n � k) into eight groups of four samples, and the corresponding samples in each
of these groups are added to determine the intermediate sum, y(j). Each sample of this intermediate
sum is then multiplied by its corresponding cosine value, and the sum of these products is calculated to
determine the current output sample value (shown as a full circle).

8.5. Effi cient Implementation of a Cosine-Modulated Filterbank 267

268 Chapter 8 Frequency Analysis and Synthesis

and high-pass outputs giving a total of 40 multiplications and 34 additions. It is clear from
this example that Rothweiler’s approach becomes much more effi cient than a conventional
implementation as the number of bandpass fi lters in the fi lterbank increases. �

For the general case of an M-channel fi lterbank using a prototype fi lter with
length N, the following MATLAB code defi nes the operations performed in the
analysis fi lter bank. The array x acts as a FIFO buffer to hold the audio samples in
time-reversed order; the modifi ed impulse response is contained in the array c, and
the set of M PCM samples to be converted to subband samples is contained in the

x

=

+

�

+

x

=

�

+

=

x

()kc

k

()knx −

k

j

()jy

j
()jy

j
()jy

()

−

4

1
cos

πj

j

()−
4

13
cos

πj

j

()ns0

n

()ns1

n
==

+

�

+

�

++

==

�

+

�

++

==()kc

k

()knx −

k

j

()jy

j
()jy

j
()jy

()−
4

1
cos

πj

j

()−
4

13
cos

πj

j

()ns0

n

()ns1

n

(a)

(b)

Figure 8.17 (a) In Rothweiler’s effi cient implementation of a two-channel cosine-modulated
analysis fi lterbank, the product of the time-reversed input samples, x(n � k), and the modifi ed impulse
response, c(k), is divided into eight groups of four samples, and the samples in each of these groups
are added to determine the intermediate sum, y(j). (b) Each sample of this intermediate sum is then
multiplied by its corresponding high-pass and low-pass cosine values, and the sum of these products
is calculated to determine the current high-pass and low-pass output sample values (shown as a full
circle).

array next_pcm_input. The array subband_samples contains the set of M subband
samples corresponding to the current set of M PCM samples.

% shift in the next M audio samples in time-reversed order
for k � N:�1:M�1

 x(k) � x(k�M);

end

for k � M:�1:1

 x(k) � next_pcm_input(M�k�1);

end

% multiply the audio samples by the modifi ed impulse response c(k)

 for k � 1:N

 z(k) � c(k)*x(k);

end

% calculate the intermediate sum y(j)

for j � 1:2*M

 y(j) � 0;

 for q � 0:N/(2*M)�1;

 y(j) � y(j)�z(j�2*M*q);

 end

end

% multiply the intermediate sum by each sampled cosine wave

% to produce the next M subband samples

for i � 1:M;

 subband_samples(i) � 0;

 for j � 1:2*M

 basis(j,i) � cos(((2*i�1)* (j�(M/2)�1)* pi)/(2*M));

 subband_samples(i) � subband_samples(i)�y (j)*basis(j,i);

 end

end

This implementation requires N multiplications and N � 2M additions to
calculate y and then 2M2 multiplications and 2M2 � M additions to calculate the
output samples of the M analysis fi lters.

In the analysis fi lterbank used in the MPEG audio coding algorithms, the num-
ber of bandpass fi lters in the fi lterbank is 32, and the prototype impulse response has
a length of 512, that is, M � 32 and N � 512. A conventional implementation would
therefore require 512 � 32 � 16,384 multiplications and 511 � 32 � 16,352 addi-
tions for each set of 32 output samples. An implementation using Rothweiler’s
method requires 512 multiplications and 448 additions to calculate the intermediate
sum and then 64 multiplications and 63 additions for each of the 32 output samples,
giving a total of 2560 multiplications and 2464 additions.

In addition, the equation for calculating the M subband samples is effectively
 describing a modifi ed discrete cosine transform (DCT) with 2M inputs and M
 outputs, so a further reduction in computational complexity is possible by using a
fast DCT implementation of this equation.

8.5. Effi cient Implementation of a Cosine-Modulated Filterbank 269

270 Chapter 8 Frequency Analysis and Synthesis

8.5.2. Synthesis Filter

As for the analysis fi lter, to explain Rothweiler’s proposal it is best to fi rst consider
the following example that shows how the two-channel synthesis fi lterbank from
Section 8.4 is implemented more effi ciently.

EXAMPLE 8.6

In the discrete convolution process that takes place in a conventional implementation of the
synthesis fi lterbank, 32 time-reversed subband samples are multiplied with the 32 samples of
the low-pass fi lter impulse response as shown in Figure 8.18(a). This is equivalent to multi-
plying by a repeating set of the same four samples of the original cosine wave and then by the
modifi ed impulse response, c(k), as shown in Figure 8.18(b).

During the course of the process shown in Figure 8.18(b), each subband sample is only
multiplied by four different cosine sample values. To explain this further, consider the dia-
gram in Figure 8.19(a) that shows the relative position of the subband samples and the fi rst
four samples of the cosine wave for four consecutive output sample times. This diagram

x

x

x

≡

(a) (b)

s0(n–k)

g0(k)

c(k)

s0(n–k)

k

k

k

k

Figure 8.18 (a) The conventional approach to reconstructing the time-domain signal involves
multiplying by the low-pass synthesis fi lter impulse response. (b) In Rothweiler’s approach,
multiplying by the low-pass fi lter impulse response is equivalent to multiplying by a repeating set of
samples from the original sampled cosine wave and then by c(k).

shows that, because every second subband sample is zero, the same set of input subband
samples is used in the convolution process for the output samples at times n and n � 1. The
only difference between times n and n � 1 is the relative position of the subband samples
and the cosine samples. Then for output samples at times n � 2 and n � 3, the next subband
sample is included in the convolution process, and this new set of subband samples is used
for both output sample times. Hence, during the entire convolution process, one individual
subband sample is multiplied by the fi rst two cosine samples for times n and n � 1, the last
two cosine samples for times n � 2 and n � 3, the fi rst two cosine samples for times n � 4
and n � 5, the last two cosine samples for times n � 6 and n � 7, and so on.

Now consider the product of one individual subband sample with each of the four cosine
sample values, v(j), as shown in Figure 8.19(b). The fi rst two values of v(j) are included in
the convolution process for output samples at times n and n � 1, and the last two values are
included in the convolution process for output samples at times n � 2 and n � 3. Then for
output samples at times n � 4 and n � 5, the fi rst two values of v(j) are reused, and for output
samples at times n � 6 and n � 7, the last two values of v(j) are reused, and so on.

For the case of the two-channel synthesis fi lter from the previous example, the number
of calculations required is reduced by fi rst calculating v0 (j) using the fi rst four low-pass co-
sine samples and v1 (j) using the fi rst four high-pass cosine samples as shown in Figure 8.20(a).
The corresponding values of v0 (j) and v1 (j) are then added to produce four intermediate
values, v(j). For each two input subband samples, four new v(j) values are produced. The

x

=

Used for output samples

n, n+1, n+4, n+5,

()ns0

)(+

4

1
cos

πj

j

Direction of convolution

)(jvn n+1 n+2 n+3

x

=

Used for output samples

n+2, n+3, n+6, n+7,

j

j

Output sample times

(a)

(b)
Figure 8.19 (a) One individual subband sample during the convolution process is multiplied by
the fi rst two repeating cosine samples for times n and n � 1 and the last two cosine samples for times
n � 2 and n � 3. (b) The product of one individual subband sample with each of the four cosine
sample values is denoted by v(j). The fi rst two values of v(j) are included in the convolution process
for output samples at times n, n � 1, n � 4, n � 5, …, and the last two values are included in the
convolution process for output samples at times n � 2, n � 3, n � 6, n � 7, ….

8.5. Effi cient Implementation of a Cosine-Modulated Filterbank 271

272 Chapter 8 Frequency Analysis and Synthesis

current set of output samples only requires the fi rst two values, but the last two v(j) values are
needed for the next two output samples. To save recalculating values, a FIFO buffer is con-
structed, and each time four new values for v(j) are calculated, the current contents of the
buffer is shifted by four positions and the current set of v(j) values is placed at the start of the
buffer. Note that there are 64 values stored in the FIFO buffer for any one output sample time,
so the complete set of values in the buffer is not shown in Figure 8.20(a).

Figure 8.20 (a) In Rothweiler’s effi cient implementation of a two-channel cosine-modulated synthesis
fi lterbank, v0 (j) is calculated using the fi rst four low-pass cosine samples and v1 (j) using the fi rst four
high-pass cosine samples. The corresponding values of v0 (j) and v1 (j) are then added to produce four
intermediate values, v(j). A FIFO buffer is constructed and, each time four new values for v(j) are
calculated, the current contents of the buffer is shifted by four positions, and the current set of v(j) values
is placed at the start of the buffer. The set of values u(k) is constructed by taking the fi rst two values from
the current set of four v(j) values, the second two samples from the previous set of four v(j) values, and
so on. (b) The values of u(k) are multiplied by the corresponding samples of the modifi ed prototype fi lter
c(k) to give w(k). The even values in w(k) are added together to produce the output sample at time n, and
the odd values are added together to produce the output sample at time n � 1 (shown as full circles).

The set of values u(k) is then constructed as shown in Figure 8.20(a) by taking the fi rst
two values from the current set of four v(j) values, the second two samples from the previous
set of four v(j) values, and so on.

The values of u(k) are then multiplied by the corresponding samples of the modifi ed
prototype fi lter c(k) to give w(k) as shown in Figure 8.20(b). The even values in w(k) are then
added together to produce the output sample at time n, and the odd values are added together
to produce the output sample at time n � 1.

Instead of the 64 multiplications and 63 additions required in a conventional imple-
mentation of this fi lterbank, four multiplications and three additions are required for each
of the low-pass and high-pass outputs, four additions are required for the intermediate
values of v(j), and 32 multiplications and 30 additions are required for the two output
sample values giving a total of 40 multiplications and 40 additions. Again, it is clear
from this example that Rothweiler’s approach becomes much more effi cient than a con-
ventional implementation as the number of bandpass fi lters in the synthesis fi lterbank
increases. �

For the more general case of an M-channel fi lterbank using a prototype fi lter
with length N, the following MATLAB code defi nes the operations performed in
the synthesis fi lter bank. The array v acts as a FIFO buffer to hold intermediate
values v(j); the modifi ed impulse response is contained in the array c, and the set
of M subband samples to be converted to PCM samples is contained in the array
subband_samples. The array next_pcm_output contains the set of M output PCM
samples corresponding to the current set of M subband samples.

% shift the values in the FIFO buffer v(j) by 2M elements

for j � 2*N:�1:2*M�1

 v(j) � v(j�2*M);

end

% calculate the next 2M values and place them at the start of the FIFO buffer v(j)

for j � 1:2*M

 v(j) � 0;

 for i � 1:M

 basis(i,j) � cos(((2*i�1)*(j�M/2�1)*pi)/(2*M));

 v(j) � v(j)�subband_samples(i)*basis(i,j);

 end

end

% calculate the intermediate sum u(k)

for q � 0:N/(2*M)�1

 for i � 1:M

 u(2*M*q�i) � v(4*M*q�i);

 u(2*M*q�M�i) � v(4*M*q�3*M�i);

 end

end

% multiply the intermediate sum by the modifi ed impulse response c(k)

for k � 1:N

 w(k) � u(k)*c(k);

end

% calculate the next M output PCM samples

8.5. Effi cient Implementation of a Cosine-Modulated Filterbank 273

274 Chapter 8 Frequency Analysis and Synthesis

for n � 1:M

 next_pcm_output(n) � 0;

 for p � 0:N/M�1

 next_pcm_output(n) � next_pcm_output(n)�w (n�M*p)*M;

 end

end

It is important to note that for each M output samples of the synthesis fi l-
terbank, it is only necessary to calculate the fi rst 2M values of v(j) because the
remaining values have already been calculated for previous output samples of the
fi lterbank.

This implementation requires 2M2 multiplications and 2M2 � M additions to
calculate the fi rst 2M samples of v and then N multiplications and N � M additions to
calculate the M samples of the reconstructed signal.

In the synthesis fi lterbank used in the MPEG audio coding algorithms, the num-
ber of bandpass fi lters in the fi lterbank is 32, and the prototype impulse response has
a length of 512, that is, M � 32 and N � 512. Therefore, a conventional implemen-
tation would require 512 � 32 � 16,384 multiplications and 512 � 32 � 1 � 16,383
additions for each set of 32 output samples. But an implementation using Rothwei-
ler’s method requires 2048 multiplications and 2080 additions to calculate the fi rst
64 samples of v(j) and then 512 multiplications and 480 additions to calculate the
32 samples of the reconstructed signal, giving a total of 2560 multiplications and
2560 additions.

In addition, the equation for calculating each 2M values of v(j) is effectively de-
scribing a modifi ed inverse DCT with M inputs and 2M outputs, so a further reduc-
tion in computational complexity is possible by using a fast IDCT implementation
of this equation.

8.6. TIME-DOMAIN ALIASING CANCELLATION

An alternative method to conducting subband fi ltering with aliasing cancellation in
the frequency domain is to construct a set of fi lters that overlap in both time and fre-
quency and provide aliasing cancellation in the time domain. This system was fi rst
proposed by John Princen and Alan Bradley in 1986 [2] and is commonly referred to
as time-domain aliasing cancellation (TDAC).

This system is effectively a transform-based approach to conversion between the
time and frequency domains. However, with TDAC transforms a critically sampled
system is designed using overlapping transform windows in the time domain. In all
fi lterbank designs there is some trade-off between window size in the time domain
and resolution in the frequency domain. The main disadvantage of orthonormal
transform-based techniques is that the number of samples in the time-domain cor-
responds directly to the number of frequency-domain coeffi cients. This means that
relatively small time-domain windows are used, and the resulting coeffi cients rep-
resent strongly overlapping subbands in the frequency domain. One solution to this

problem is to use a large strongly overlapping window in the time domain such as
that used in the cosine-modulated fi lter bank of the previous section. The outputs
of this fi lterbank are then subsampled, and aliasing is introduced in the frequency
domain. If the frequency responses of these fi lters are designed correctly, a perfect
reconstruction fi lter bank is produced and the frequency-domain aliasing can be
removed.

Time-domain aliasing cancellation takes a different approach. In this system an
overlapped window in the time domain is used, but this window typically only over-
laps by half the size of the window. By extending the size of the window, the amount
of overlap in the corresponding frequency-domain subbands is reduced compared
to a critically sampled transform. However, there are now more frequency-domain
coeffi cients than time-domain samples in the analysis stage. To overcome this prob-
lem, in a TDAC system, only half the frequency-domain coeffi cients are transmit-
ted, and distortion is introduced into the reconstructed time-domain samples. If the
transform is designed correctly, the distortion introduced by discarding coeffi cients
is directly canceled out by overlapping and adding successive windows in the time
domain.

Such a TDAC system uses certain properties of the DCT to guarantee perfect
reconstruction. The general equation for an N-point DCT of the sequence x(n) is
given by

 X k x n
k

N
n n k 0 N() () ()

� � � �cos

2
0

π …, for 11
n

N

�

�

0

1

∑ (8.22)

and the inverse of this transform is given by

 x r
N

X k
k

N
r n r 0� � �() () ()

 =1 2

0cos
π

, for ……N 1
k

N

�
�

�

0

1

∑ (8.23)

This set of equations produces a distorted version of the original sequence. Note
that the variable r has been substituted for the variable n to indicate the sample
time of the outputs of the inverse transform. This substitution is necessary for the
remainder of the derivation as the equations for the forward and inverse transforms
are combined.

An example of the type of distortion produced is shown by substituting Equa-
tion (8.22) into Equation (8.23) to give

 x r
N

x n
k

N
n n

n

N

� � �
�

�

() () ()

∑1 2 2

0
0

1

cos cos
π πkk

N
r n

k

N

�
�

�

0
0

1

()

∑ (8.24)

This equation can be rearranged using the simple trigonometric identity,
cos(A)cos(B) � 1/2 [cos(A � B) � cos(A � B)], to give

 x r
N

x n
k

N
n r

n

N

k

N

� � �
�

�

�

�

() () ()

∑1

2

2

0

1

0

cos
π11

0
0

1 2
2∑ ∑ ()

� � �
�

�

cos
πk

N
n r n

k

N

 (8.25)

8.6. Time-Domain Aliasing Cancellation 275

276 Chapter 8 Frequency Analysis and Synthesis

The following equation holds for the general form of the terms in the square
 brackets

 cos
, , , ,

,
2 0 2

00

1 π …k

N
n

N n N N

k

N

∑

�

�

�
�if

otherrwise

 (8.26)

Because the values of n in Equation (8.25) are restricted to the range 0 … N � 1,
the fi rst term in the square brackets in Equation (8.25) reduces to a value of N when
n � r (i.e., when n � r � 0), and the second term reduces to a value of N when
n � N � r � 2n0 (i.e., when n � r � 2n0 � N). Hence Equation (8.25) can be
rewritten as

 x r x r x N r n� � � � �() () ()
1

2
2 0 (8.27)

From Equation (8.27), it is evident that the distorted output signal is the sum of the
original sequence and a time-reversed and shifted replica of the original sequence.
This time-reversed replica of the original sequence is effectively a time-domain
aliased version of the original signal.

EXAMPLE 8.7

Determine the output signal obtained from the general DCT described in Equations (8.22)
and (8.23) when the input signal is x(n) � [0 1 2 3 4 5 6 7] and the phase term is n0 � 2. Verify
that this output signal is equal to x�(r) � 1/2 [x(r) � x(N � r � 2n0)].

SOLUTION If Equations (8.22) and (8.23) are implemented directly, the output signal is
given by x�(r) � [2 2 2 2 2 6 6 6]. Then if N � 8, the second term of Equation (8.27) is given
by x(8 � r � 4) � [4 3 2 1 0 7 6 5], and substituting these values into Equation (8.27) gives
the desired result.

Figure 8.21 shows a graphical representation of the transform process with the original
signal shown as the dotted line, the time-domain aliasing error as the dashed line, and the
output signal of the transform process as the full line with dots showing the actual sample
values.

Time-domain aliasing error

x(8–r–4)

x¢(r)

x (r)

r

Figure 8.21 The output signal of the transform process is the sum of the original signal and the
time-domain aliasing error. �

Now, using this same basic idea, the general equation of the DCT is modifi ed to give the
following transform equations:

 X k
N

x n
N

k n N() () ()()

� � � �

2 2

4
2 1 2 12cos

π
, for k 0 N 1

n

N

� �
�

�

… 2
0

1

∑ (8.28)

and

 x r X k
N

k r N� � � � �() () ()()

cos

2

4
2 1 2 12

π
, ffor r 0 N 1

k

N

� �
�

�

…
0

2 1

∑ (8.29)

Note that this modifi ed transform only requires half as many transform co-
effi cients as there are samples of the input signal. In this way, the transform
is implemented on an extended set of input samples, but a critically sampled
system is still maintained. Then substitute Equation (8.28) into Equation (8.29)
and rearrange using the same simple trigonometric identity to give the following
equation:

x r
N

x n
N

k n r
n

N

� � � �
�

�

() () ()()

∑2 2

4
2 1 2 2

0

1

cos
π

()()

∑
k

N

N
k n r N

�

�

� � � � �

0

2 1

2

4
2 1 2 2 2cos

π

∑

k

N

�

�

0

2 1
 (8.30)

The following equation holds for the general form of the terms in the square
brackets:

 cos

, , ,
2

4
2 1 2

2 0 2

0

2 1 π
N

k n

N n N

k

N

� �

�

�

�

()

∑

if 44

2 3 5

0

N

N n N N N

, . . .

, , , , . . .

,

� �if

otherwise

 (8.31)

Because the values of n in Equation (8.30) are restricted to the range 0 … N � 1,
the fi rst term in the square brackets in Equation (8.30) reduces to a value of N/2
when n � r. However, the second term in the square brackets has two different values
depending on the value of r. When r � 0 … N/2 � 1, the second term has the value
�N/2 because this range of values of r corresponds to n � N/2 � 1…0 when the
equation n � r � N/2 � 1 � N is satisfi ed. Similarly, when r � N/2…N � 1, the
second term has the value N/2 because this range of values of r corresponds to n �
N � 1 … N/2 when the equation n � r � N/2 � 1 � 2N is satisfi ed. Hence Equation
(8.30) can be rewritten as

 x r

x r x N r r N

x r

� �

� � � �

()
() () −1

2
2 1 0 2 1

1

2

, for …

(() ()

 � � � � �x N r r N N3 2 1 2 1, for …

 (8.32)

8.6. Time-Domain Aliasing Cancellation 277

278 Chapter 8 Frequency Analysis and Synthesis

EXAMPLE 8.8

Determine the output signal obtained from the DCT described in Equations (8.28) and (8.29)
when the input signal is x(n) � [0 1 2 3 4 5 6 7]. Verify that this output signal is equal to the
signal obtained using Equation (8.32).

SOLUTION If Equations (8.28) and (8.29) are implemented directly, the output signal
is given by x�(r) � [�1.5 �0.5 0.5 1.5 5.5 5.5 5.5 5.5]. Then if N � 8 the second term of
Equation (8.32) is given by �x(4 � r � 1) � [� 3 �2 � 1 0] for r � 0…3 and x(12 � r
� 1) � [7 6 5 4] for r � 4…7. Substituting these values into Equation (8.32) gives the de-
sired result. Figure 8.22 shows a graphical representation of the transform process with the
original signal shown as the dotted line, the time-domain aliasing error as the dashed line,
and the output signal of the transform process as the full line with dots showing the actual
sample values.

Now using the transform process defi ned by Equations (8.28) and (8.29)
a critically sampled overlapped transform with perfect reconstruction can be
implemented. However, the properties of this transform process need to be
combined with a suitable window function. This window function should have
similar properties to the frequency response of perfect reconstruction bandpass
fi lters, that is, when the weighting function is squared and added to a shifted
version of itself, the resulting weighting is unity. An example of the coeffi cients
of a possible weighting function for an eight-band TDAC transform is given in
Table 8.1.

Figure 8.23 shows how the weighting function is combined with the overlapped
transform process to provide perfect reconstruction of the original signal. Figure
8.23(a) shows the shape of the weighting function that is multiplied with the input

Time-domain aliasing error

x(12 – r – 1)

x¢ (r)

x(r)

– x (4 – r –1)

r

Figure 8.22 The output signal of the transform process is the sum of the original signal and the
time-domain aliasing error. �

signal before the transform is applied. Then, if the forward and inverse transform is
applied to the weighting function only, Figure 8.23(b) shows the distorted weighting
function that is produced by time-domain aliasing in the transform process. This
distorted weighting function is then multiplied by the original weights to produce the
fi nal weighting for the output of the transform process as shown in Figure 8.23(c).
This fi nal weighting function now exhibits the desired properties for time-domain
aliasing cancellation. Figure 8.23(d) shows that, if the output of each transform pro-
cess is overlapped by half with the previous output, the original input signal is re-
constructed perfectly.

The frequency analysis and synthesis used in the Dolby AC-3 audio coding al-
gorithm is based on the transform process defi ned by Equations (8.28) and (8.29).
The transform is performed on a single block of 512 audio samples or two blocks of
256 samples, and consequently the window function used has a length of 512 but has
a similar shape to the function shown in Figure 8.23.

8.6. Time-Domain Aliasing Cancellation 279

Table 8.1 Weighting function coefficients
for an eight-band TDAC transform.

n W(n)

0 0.00443
1 0.06153
2 0.24757
3 0.55031
4 0.82831
5 0.96674
6 0.99788
7 0.99999

Combined weighting after overlap and add

(a) (b)

(c) (d)

Figure 8.23 (a) The weighting function. (b) The distorted weighting function after the forward and
inverse transform has been applied. (c) The fi nal weighting function after multiplying the distorted
function by the original weighting function. (d) If the fi nal weighting function is overlapped by half
and added, the result is a constant weighting of the reconstructed samples and a cancellation of the
distortion introduced by the transform process.

280 Chapter 8 Frequency Analysis and Synthesis

8.7. SUMMARY

In this chapter, two different techniques for converting from time-domain samples
to frequency-domain coeffi cients have been explained. In particular, the cosine-
modulated fi lterbank approach used in the MPEG audio coding algorithms and the
time-domain aliasing cancellation approach used in the Dolby AC-3 algorithm have
been investigated. The following chapters explain how these frequency analysis and
synthesis techniques have been incorporated into the design of the standard audio
coding algorithms.

PROBLEMS

8.1 Briefl y explain what is meant by the following terms:

(a) Sampling

(b) Aliasing

(c) Nyquist sampling rate

8.2 If a signal has the magnitude spectrum given below:

B–B

(a) Sketch the spectrum of the sampled signal if the sampling frequency is 2B.

(b) Sketch the spectrum of the signal if it has been subsampled by a factor of 2.

(c) Sketch the spectrum of the signal if it has been upsampled by a factor of 2.

8.3 Write the equations for the impulse response of the cosine-modulated analysis fi lters that
would be used in a four-channel subband fi lterbank.

8.4 Write the equations for the impulse response of the cosine-modulated synthesis fi lters
that would be used in a four-channel subband fi lterbank.

8.5 For the 32 PCM samples and the prototype fi lter impulse response given below, calculate
the intermediate sum y(j) that would be produced in a two-channel analysis fi lterbank
using Rothweiler’s method.

x(n) � {�4.02, 4.76, 6.73, 7.60, 15.30, 9.17, �6.86, �7.36, �3.91, �7.68, �4.02, 4.76,
6.73, 7.60, 15.30, 9.17, �6.86, �7.36, �3.91, �7.68, �4.02, 4.76, 6.73, 7.60, 15.30,
9.17, �6.86, �7.36, �3.91, �7.68, �4.02, 4.76}

h(k) � {0.00000, �0.00004, �0.00022, �0.00079, �0.00163, �0.00111, 0.00350, 0.01196,
0.01554, �0.00034, �0.03931, �0.07421, �0.05016, 0.07610, 0.28602, 0.48843,
0.57250, 0.48843, 0.28602, 0.07610, �0.05016, �0.07421, �0.03931, �0.00034,
0.01554, 0.01196, 0.00350, �0.00111, �0.00163, �0.00079, �0.00022, �0.00004}

8.6 For the intermediate sum y(j) calculated in question 8.5, determine the output sub-
band sample for the low-pass and high-pass fi lters that would be produced in the
two-channel analysis fi lterbank. Verify that these subband samples are identical to
the output samples that would be produced by a conventional implementation of the
analysis fi lterbank.

8.7 If the value of the next low-pass and high-pass subband samples are �2.31 and 37.96,
respectively, calculate the next four values for v(j) that would be produced in a two-
 channel synthesis fi lterbank using Rothweiler’s method.

8.8 For the following values of v(j) calculate the values for u(k) to be used to determine the
next two output PCM samples of a synthesis fi lterbank using Rothweiler’s method. Use
the prototype fi lter given in question 8.5 to determine the next two reconstructed output
samples that would be produced in the two-channel synthesis fi lter. Verify that these
reconstructed PCM samples are identical to the samples that would be produced by a
conventional implementation of the synthesis fi lterbank.

v(j) � {28.47, 0.00, �28.47, �35.65, 41.21, �0.00, �41.21, �120.83, 8.26, 0.00, �8.26,
63.83, �65.07, �0.00, 65.07, 42.28, �0.73, 0.00, 0.73, 5.50, 52.44, 0.00, �52.44,
�48.48, 40.67, �0.00, �40.67, �121.14, 10.49, 0.00, �10.49, 63.38, �66.22,
�0.00, 66.22, 42.68, �0.60, 0.00, 0.60, 5.84, 52.07, 0.00, �52.07, �48.25, 40.08,
�0.00, �40.08, �119.09, 8.37, 0.00, �8.37, 66.81, �72.42, �0.00, 72.42, 55.31,
�9.45, �0.00, 9.45, 24.97, 17.57, 0.00, �17.57, 33.72}

8.9 Modify the MATLAB code given in Section 8.5.1 to implement an effi cient four-channel
analysis fi lterbank using a prototype fi lter of length 64.

8.10 Modify the MATLAB code given in Section 8.5.2 to implement an effi cient four-
channel synthesis fi lterbank using a prototype fi lter of length 64.

8.11 For an effi cient implementation of a four-channel cosine-modulated analysis fi lterbank
using Rothweiler’s method, how many additions and multiplications are required per
output subband sample if the prototype fi lter impulse response has 64 sample values?
How many additions and multiplications would be required for a conventional imple-
mentation of this fi lterbank?

8.12 Complete the following table of values for the function cos(2π nk/N) when N � 4:

Problems 281

k
n

0 1 2 3 4 5 6 7 8

0

1

2

3

282 Chapter 8 Frequency Analysis and Synthesis

Use these values to verify that the following equation holds for N � 4 :

cos
, , , ,

,
2 0 2

00

1 π …k

N
n

N n N N

k

N

∑

�

�

�
�if

otherrwise

8.13 Determine the output signal obtained from the DCT described in Equations (8.28) and
(8.29) when the input signal is x(n) � [0 0 4 4 4 4 0 0]. Verify that this output signal is
equal to the signal obtained using Equation (8.32).

8.14 Write the forward transform equation for a TDAC transform that would convert 16 input
samples to eight coeffi cients.

8.15 Write the inverse transform equation for a TDAC transform that would convert eight
coeffi cients into 16 output samples.

8.16 Calculate the output coeffi cients for the fi rst two overlapping blocks of 16 samples from
the following set of input sample values using the forward transform from question 16
and the following weighting function values.

 w(n) � {0.00443, 0.06153, 0.24757, 0.55031, 0.82831, 0.96674, 0.99788, 0.99999,
0.99999, 0.99788, 0.96674, 0.82831, 0.55031, 0.24757, 0.06153, 0.00443}

8.17 Calculate the output samples for the two blocks of eight coeffi cients from question 8.16
using the inverse transform from question 17 and the following weighting function
values.

8.18 Add the last eight samples of the first block of output samples from question
19 with the first eight samples of the second block and verify that the resulting out-
put samples are identical to the corresponding input sample values given in question
8.16.

MATLAB EXERCISE 8.1

Modify the MATLAB code given in Section 8.5.1 to implement a 32-channel
analysis fi lterbank. Use the MPEG-modifi ed prototype fi lter given in Section
9.1.1 of Chapter 9 for the values of c(k).

Construct a signal that is the sum of two sinusoids where the frequency of
the fi rst sinusoid is the center frequency of the fi rst critical band of the ear
and the frequency of the second sinusoid is 0.1 Bark higher than that of the
fi rst sinusoid.

Obtain the set of 32 subband samples that are produced by the analysis
fi lterbank from part 1 (note that you should pass enough samples of the
input signal through the fi lterbank so that the output subband samples are
stable).

Repeat steps 2 and 3 keeping the frequency of the fi rst sinusoid constant
and increasing the frequency of the second sinusoid by 0.1 Bark until
there is no overlap between the subband samples produced by the two
sinusoids. Determine the difference in critical band rate required between
the fi rst and second sinusoids so that there is no overlap between the

1.

2.

3.

4.

subband samples produced by the two sinusoids and record this value in
the following table:

Repeat steps 2–4 for the remaining critical bands of the human auditory
system.

Comment on the selectivity of this fi lterbank compared with the selectivity
of the human auditory system across the range of audible frequencies.

MATLAB EXERCISE 8.2

Use Equation (8.28) given in Section 8.6 to implement a 256 point TDAC
forward transform. Use the Dolby AC-3 weighting function given in Section
10.1.3 of Chapter 10.

Construct a signal that is the sum of two sinusoids where the frequency of
the fi rst sinusoid is the center frequency of the fi rst critical band of the ear
and the frequency of the second sinusoid is 0.1 Bark higher than that of the
fi rst sinusoid.

Obtain the set of 256 coeffi cients that are produced by the forward
TDAC transform from part 1 (Note that you should pass enough samples
of the input signal through the transform so that the output coeffi cients
are stable).

Repeat steps 2 and 3 keeping the frequency of the fi rst sinusoid constant
and increasing the frequency of the second sinusoid by 0.1 Bark until the
there is no overlap between the subband samples produced by the two
sinusoids. Determine the difference in critical band rate required between
the fi rst and second sinusoids so that there is no overlap between the

5.

6.

1.

2.

3.

4.

MATLAB Exercise 8.2 283

Critical band no. Selectivity ∆z

1
2
3
4
5
6
7
8
9

10
11
12
13

Critical band no. Selectivity ∆z

14
15
16
17
18
19
20
21
22
23
24
25

284 Chapter 8 Frequency Analysis and Synthesis

coeffi cients produced by the two sinusoids and record this value in the
following table:

Repeat steps 2–4 for the remaining critical bands of the human auditory
system.

Comment on the selectivity of this transform compared with the selectivity
of the human auditory system across the range of audible frequencies.

REFERENCES

Rothweiler, J. H. Polyphase Quadrature Filters - A New Subband Coding Technique, Proceedings of
the IEEE International Conference on Acoustics Speech and Signal Processing, 27.2, IEEE Press,
Piscataway, N.J., 1983, pp. 1280–1283.
Princen, J., Bradley, A. Analysis/Synthesis fi lter bank design based on time domain aliasing cancel-
lation, IEEE Transactions on Acoustics, Speech and Signal Processing, Vol. 34, Issue 5, Oct. 1986,
pp. 1153–1161.

5.

6.

1.

2.

Critical band no. Selectivity ∆z

1
2
3
4
5
6
7
8
9
10
11
12
13

Critical band no. Selectivity ∆z

14
15
16
17
18
19
20
21
22
23
24
25

285

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 9

MPEG Audio

The MPEG-1 audio standard describes an algorithm suitable for coding a mono-
phonic or stereo audio signal with a bandwidth of up to 24 kHz. The algorithm is
divided into three levels of coding complexity called layers. The Layer I algorithm is
the simplest algorithm in terms of computational complexity and requires the high-
est bit rate to produce an output audio quality that is indistinguishable from the origi-
nal. The Layers II and III algorithms include additional components that increase the
computational complexity of the Layer I algorithm and consequently require lower
bit rates to provide indistinguishable quality.

The MPEG-1 audio coding algorithm was fi nalized as an international standard
in 1993 [1], and the algorithms used in the standard are based on two perceptual
audio coding algorithms that were developed in the late 1980s. Layer I is a sim-
plifi ed version of the MUSICAM (masking-pattern universal subband integrated
coding and multiplexing) algorithm. The MUSICAM algorithm was derived from
an earlier subband coding scheme called MASCAM (masking pattern adapted
subband coding and multiplexing) and has been adopted in Europe for use in digital
audio broadcasting. Layer II is essentially identical to MUSICAM and Layer III is
a combination of techniques from MUSICAM and the ASPEC (adaptive spectral
perceptual entropy coding) transform-based algorithm.

The MPEG-2 audio standards extend the functionality of the MPEG-1 algo-
rithm to allow lower input sampling rates and the coding of multichannel audio
signals for surround-sound reproduction. Early psychoacoustic experiments showed
that at least four channels are required to produce a realistic surround-sound fi eld.
But due to limitations in the technology available, two-channel stereo became the
accepted standard for home sound reproduction. Today though, with the improve-
ments in digital coding techniques and the increased capacity of storage devices,
multichannel audio systems have become a viable alternative.

In particular, the ITU-R have recommended a fi ve-channel audio system known
as 3/2 stereo that consists of left and right channels (L and R), a center channel (C),
and two rear surround channels (LS and RS) [2]. This system produces a realistic
surround-sound fi eld with a stable frontal sound image and a large listening area.

286 Chapter 9 MPEG Audio

An optional low-frequency enhancement channel (LFE) can be added to increase
the level of frequency components between 15 and 120 Hz. A 3/2 stereo system
combined with a LFE channel is usually referred to as a 5.1 channel system and a
typical speaker confi guration for such a system in a home listening environment is
shown in Figure 9.1.

The MPEG-2 audio coding standard contains two completely separate algo-
rithms. The fi rst algorithm was designed to allow backward compatibility with
MPEG-1 and is usually referred to as MPEG-2 BC (backward compatible). It was
fi nalized as an international standard in 1995 with amendment 1 added in 1996
[3]. The second algorithm (known as MPEG-2 AAC (advanced audio coding)) was
added as a new part to the MPEG-2 standard in 1997 [4].

The MPEG-2 BC standard uses essentially the same algorithms as the MPEG-1
encoder and decoder, but has added functionality to allow lower input sampling rates
for mono and stereo inputs and multichannel audio at the MPEG-1 input sampling
rates. The backward compatibility between MPEG-2 BC and MPEG-1 means that an
MPEG-2 decoder can decode an MPEG-1 bit stream and an MPEG-1 decoder can
derive a stereo signal from an MPEG-2 multichannel bit stream provided that an ap-
propriate matrixing procedure is conducted before encoding. An MPEG-2 encoder
may also produce a multichannel bit stream that is not backward compatible with an
MPEG-1 decoder.

The MPEG-2 AAC algorithm was designed to include many of the latest audio
coding compression techniques that could not be implemented while maintaining
backward compatibility. These new compression techniques allow the MPEG-2
AAC coder to produce indistinguishable quality at signifi cantly lower bit rates than
MPEG-2 BC.

The DVB digital television standard specifi es that an IRD (integrated receiver-
decoder) must conform to the following guidelines for audio:

MPEG-2 Layers I and II is supported by the IRD;

The use of Layer II is recommended for the encoded bit stream;

IRDs support single channel, dual channel, joint stereo, stereo, and the extrac-
tion of at least a stereo pair from MPEG-2 compatible multichannel audio;

•
•
•

Figure 9.1 A typical speaker position for a 5.1 channel surround-sound listening environment.

RL C

Ls RsLFE

Sampling rates of 32, 44.1, and 48 kHz are supported by IRDs;

The encoded bit stream does not use emphasis.

This chapter describes the MPEG-1 and MPEG-2 algorithms and bit-stream
syntax associated with these minimum requirements of a DVB IRD.

9.1. MPEG-1 LAYER I,II ENCODERS

The algorithms used in the Layer I encoder and decoder are a subset of the algo-
rithms used in layer II. This section describes the algorithms that are common to the
Layers I and II encoders. The extra parts of the standard that are used only in the
Layer II encoder are described in Section 9.2.

The MPEG-1 Layer I encoder is intended to be used to code wideband audio signals
that have been converted to PCM (pulse code modulation) samples with sampling rates
of 32, 44.1, or 48 kHz. The encoder can operate using one of the following four modes:

Single channel (a single audio signal)

Dual channel (two independent audio signals)

Stereo (a left and right stereo pair)

Joint stereo (a left and right stereo pair with the stereo redundancy used to
reduce the output bit rate).

The Layer I, II encoders produce a digital bit stream with a constant output bit
rate that is specifi ed in the bit stream syntax. The maximum output bitrates are 448
and 384 kbits/s for Layers I and II, respectively.

The basic block diagram for a Layer I encoder is shown in Figure 9.2. The re-
mainder of this section contains a very brief description of the algorithm and then

•
•

1.

2.

3.

4.

Figure 9.2 Basic block diagram of a Layer I encoder.

Psychoacoustic
model

Dynamic bit
allocation

FFT
(512 samples)

Subband
filterbank

Scalefactor
calculation

Normalization,
quantization &

coding

Bit-stream
formatting &
error check

Code
scalefactors

Code
allocation

Audio
samples Digital

bitstream

Subband
samples

Scalefactors

Power spectral
density

Signal-to-mask
ratio

Bit allocation
per subband

Bit allocation
index

Scalefactor
index

Psychoacoustic
model

Psychoacoustic
model

Dynamic bit
allocation

Dynamic bit
allocation

FFT
(512 samples)

FFT
(512 samples)

Subband
filterbank
Subband
filterbank

Scalefactor
calculation
Scalefactor
calculation

Normalization,
quantization &

coding

Normalization,
quantization &

coding

Bit-stream
formatting &
error check

Bit-stream
formatting &
error check

Code
scalefactors

Code
scalefactors

Code
allocation

Code
allocation

Audio
samples Digital

bitstream

Subband
samples

Scalefactors

Power spectral
density

Signal-to-mask
ratio

Bit allocation
per subband

Bit allocation
index

Scalefactor
index

9.1. MPEG-1 Layer I,II Encoders 287

288 Chapter 9 MPEG Audio

the individual components of the encoder are explained in more detail in the follow-
ing sections.

For a Layer I encoder, the analysis fi lter bank converts 384 input PCM samples
into a block of 12 sets of 32 subband samples. A scalefactor is then calculated for each
subband and used to normalize the subband samples to a range of �1 to �1. The same
scalefactor is used to normalize the 12 samples in each subband. In parallel to the fi lter
bank, a psychoacoustic model is used to estimate the masking threshold associated
with the current set of input samples. The masking threshold indicates the level of in-
audible quantization noise that can be added to the subband samples during the quan-
tization process. A dynamic bit allocation process then uses this masking threshold
information to determine the number of bits required to transmit each subband sample.
The block of normalized subband samples is then quantized using the quantizer step
size that corresponds to the number of bits allocated for each subband. Then fi nally,
the bits for the coded bit allocation, scalefactor information, and quantized subband
samples are combined with header information and formatted into an audio frame.

9.1.1. Analysis Filterbank

The analysis fi lterbank used in the Layer I,II encoders is based on the effi cient im-
plementation of a cosine modulated fi lterbank proposed by Joseph Rothweiler in
1983. A detailed explanation of this fi lterbank technique is given in Section 8.5 of
Chapter 8. The fi rst 256 values of the modifi ed prototype fi lter c(k) are given in
Table 9.1. The value of c(257) is 0.03578097 and the remaining 255 values are found
by time-reversing and negating the values with indexes 1 to 255 from Table 9.1.

The subband fi lterbank used in the Layer I,II encoders has the following minor
limitations:

The individual frequency responses of adjacent subbands overlap, so a single
frequency can affect two adjacent subband sample values.

The fi lterbank does not provide perfect reconstruction, so even if no quantization
is performed there is still a very small error introduced into the output samples.

The equal width subbands do not correspond well to the unequal critical
bandwidths of the human ear, especially at low frequencies.

9.1.2. Scalefactor Calculation

For a Layer I encoder, a scalefactor is calculated for each set of 12 subband samples.
This scalefactor is used later in the calculation of the signal-to-mask ratio and also in the
quantization and encoding of the subband samples. The scalefactor is calculated, for each
subband, by fi nding the maximum of the absolute values of the 12 subband samples and
then taking the lowest value from Table 9.2 that is greater than this maximum value.

The index in Table 9.2 is transmitted as a 6-bit binary number (MSB fi rst) if
a nonzero number of bits has been allocated to the subband in the bit allocation
procedure.

1.

2.

3.

T
ab

le
 9

.1

V
al

ue
s

fo
r

th
e

m
od

if
ie

d
pr

ot
ot

yp
e

fi
lte

r
us

ed
 in

 th
e

L
ay

er
 I

,I
I

M
PE

G
-1

 a
ud

io
 c

od
er

s.

w
(8

*i
�

j)

j�
0

j�
1

j�
2

j�
3

j�
4

j�
5

j�
6

j�
7

i�
0

0.
00

00
00

00
0

�
0.

00
00

00
47

7
�

0.
00

00
00

47
7

�
0.

00
00

00
47

7
�

0.
00

00
00

47
7

�
0.

00
00

00
47

7
�

0.
00

00
00

47
7

�
0.

00
00

00
95

4
i�

1
�

0.
00

00
00

95
4

�
0.

00
00

00
95

4
�

0.
00

00
00

95
4

�
0.

00
00

01
43

1
�

0.
00

00
01

43
1

�
0.

00
00

01
90

7
�

0.
00

00
01

90
7

�
0.

00
00

02
38

4
i�

2
�

0.
00

00
02

38
4

�
0.

00
00

02
86

1
�

0.
00

00
03

33
8

�
0.

00
00

03
33

8
�

0.
00

00
03

81
5

�
0.

00
00

04
29

2
�

0.
00

00
04

76
8

�
0.

00
00

05
24

5
i�

3
�

0.
00

00
06

19
9

�
0.

00
00

06
67

6
�

0.
00

00
07

62
9

�
0.

00
00

08
10

6
�

0.
00

00
09

06
0

�
0.

00
00

10
01

4
�

0.
00

00
11

44
4

�
0.

00
00

12
39

8
i�

4
�

0.
00

00
13

82
8

�
0.

00
00

14
78

2
�

0.
00

00
16

68
9

�
0.

00
00

18
12

0
�

0.
00

00
19

55
0

�
0.

00
00

21
45

8
�

0.
00

00
23

36
5

�
0.

00
00

25
27

2
i�

5
�

0.
00

00
27

65
7

�
0.

00
00

30
04

1
�

0.
00

00
32

42
5

�
0.

00
00

34
80

9
�

0.
00

00
37

67
0

�
0.

00
00

40
53

1
�

0.
00

00
43

39
2

�
0.

00
00

46
25

3
i�

6
�

0.
00

00
49

59
1

�
0.

00
00

52
92

9
�

0.
00

00
55

79
0

�
0.

00
00

59
60

5
�

0.
00

00
62

94
3

�
0.

00
00

66
28

0
�

0.
00

00
70

09
5

�
0.

00
00

73
43

3
i�

7
�

0.
00

00
76

77
1

�
0.

00
00

80
58

5
�

0.
00

00
83

92
3

�
0.

00
00

87
26

1
�

0.
00

00
90

59
9

�
0.

00
00

93
46

0
�

0.
00

00
96

32
1

�
0.

00
00

99
18

2
i�

8
0.

00
01

01
56

6
0.

00
01

03
95

1
0.

00
01

05
85

8
0.

00
01

07
28

8
0.

00
01

08
24

2
0.

00
01

08
71

9
0.

00
01

08
71

9
0.

00
01

08
24

2
i�

9
0.

00
01

06
81

2
0.

00
01

05
38

1
0.

00
01

02
52

0
0.

00
00

99
18

2
0.

00
00

95
36

7
0.

00
00

90
12

2
0.

00
00

84
40

0
0.

00
00

77
72

4
i�

10
0.

00
00

69
61

8
0.

00
00

60
55

8
0.

00
00

50
54

5
0.

00
00

39
57

7
0.

00
00

27
18

0
0.

00
00

13
82

8
�

0.
00

00
00

95
4

�
0.

00
00

17
16

6
i�

11
�

0.
00

00
34

33
2

�
0.

00
00

52
92

9
�

0.
00

00
72

95
6

�
0.

00
00

93
93

7
�

0.
00

01
16

34
8

�
0.

00
01

40
19

0
�

0.
00

01
65

46
2

�
0.

00
01

91
21

2
i�

12
�

0.
00

02
18

86
8

�
0.

00
02

47
47

8
�

0.
00

02
77

04
2

�
0.

00
03

07
56

0
�

0.
00

03
39

03
1

�
0.

00
03

71
45

6
�

0.
00

04
04

35
8

�
0.

00
04

38
21

3
i�

13
�

0.
00

04
72

54
6

�
0.

00
05

07
35

5
�

0.
00

05
42

16
4

�
0.

00
05

76
97

3
�

0.
00

06
11

78
2

�
0.

00
06

46
59

1
�

0.
00

06
80

92
3

�
0.

00
07

14
30

2
i�

14
�

0.
00

07
47

20
4

�
0.

00
07

79
15

2
�

0.
00

08
09

66
9

�
0.

00
08

38
75

7
�

0.
00

08
66

41
3

�
0.

00
08

91
68

5
�

0.
00

09
15

05
1

�
0.

00
09

35
55

5
i�

15
�

0.
00

09
54

15
1

�
0.

00
09

68
93

3
�

0.
00

09
80

85
4

�
0.

00
09

89
43

7
�

0.
00

09
94

20
5

�
0.

00
09

95
15

9
�

0.
00

09
91

82
1

�
0.

00
09

83
71

5
i�

16
0.

00
09

71
31

7
0.

00
09

53
67

4
0.

00
09

30
78

6
0.

00
09

02
65

3
0.

00
08

68
79

7
0.

00
08

29
22

0
0.

00
07

83
92

0
0.

00
07

31
94

5
i�

17
0.

00
06

74
24

8
0.

00
06

10
35

2
0.

00
05

39
30

3
0.

00
04

62
53

2
0.

00
03

78
60

9
0.

00
02

88
48

6
0.

00
01

91
68

9
0.

00
00

88
21

5
i�

18
�

0.
00

00
21

45
8

�
0.

00
01

37
32

9
�

0.
00

02
59

87
6

�
0.

00
03

88
14

5
�

0.
00

05
22

13
7

�
0.

00
06

61
85

0
�

0.
00

08
06

80
8

�
0.

00
09

56
53

5
i�

19
�

0.
00

11
11

03
1

�
0.

00
12

69
81

7
�

0.
00

14
32

41
9

�
0.

00
15

97
88

1
�

0.
00

17
66

68
2

�
0.

00
19

37
38

9
�

0.
00

21
10

00
4

�
0.

00
22

83
09

6
i�

20
�

0.
00

24
57

14
2

�
0.

00
26

30
71

1
�

0.
00

28
03

32
6

�
0.

00
29

74
03

3
�

0.
00

31
41

88
0

�
0.

00
33

06
86

6
�

0.
00

34
67

08
3

�
0.

00
36

22
53

2
i�

21
�

0.
00

37
71

78
2

�
0.

00
39

14
35

6
�

0.
00

40
48

82
4

�
0.

00
41

74
70

9
�

0.
00

42
90

58
1

�
0.

00
43

95
96

2
�

0.
00

44
89

89
9

�
0.

00
45

70
48

4
(c

on
ti

nu
ed

)

289

T
ab

le
 9

.1

(C
on

ti
nu

ed
)

w
(8

*i
�

j)

j�
0

j�
1

j�
2

j�
3

j�
4

j�
5

j�
6

j�
7

i�
22

�
0.

00
46

38
19

5
�

0.
00

46
91

12
4

�
0.

00
47

28
31

7
�

0.
00

47
48

82
1

�
0.

00
47

52
15

9
�

0.
00

47
37

37
7

�
0.

00
47

03
04

5
�

0.
00

46
49

16
2

i�
23

�
0.

00
45

73
82

2
�

0.
00

44
77

02
4

�
0.

00
43

57
81

5
�

0.
00

42
15

24
0

�
0.

00
40

49
30

1
�

0.
00

38
58

56
6

�
0.

00
36

43
03

6
�

0.
00

34
01

75
6

i�
24

0.
00

31
34

72
7

0.
00

28
41

47
3

0.
00

25
21

51
5

0.
00

21
74

85
4

0.
00

18
00

53
7

0.
00

13
99

51
7

0.
00

09
71

31
7

0.
00

05
15

93
8

i�
25

0.
00

00
33

37
9

�
0.

00
04

75
88

3
�

0.
00

10
11

84
8

�
0.

00
15

73
56

3
�

0.
00

21
61

50
3

�
0.

00
27

74
23

9
�

0.
00

34
11

29
3

�
0.

00
40

72
18

9
i�

26
�

0.
00

47
56

45
1

�
0.

00
54

62
17

0
�

0.
00

61
89

34
6

�
0.

00
69

37
02

7
�

0.
00

77
03

30
4

�
0.

00
84

87
22

5
�

0.
00

92
87

83
4

�
0.

01
01

03
70

3
i�

27
�

0.
01

09
33

39
9

�
0.

01
17

75
01

7
�

0.
01

26
27

60
2

�
0.

01
34

89
24

6
�

0.
01

43
58

52
1

�
0.

01
52

33
51

7
�

0.
01

61
12

80
4

�
0.

01
69

94
47

6
i�

28
�

0.
01

78
76

14
8

�
0.

01
87

56
86

6
�

0.
01

96
34

24
7

�
0.

02
05

06
85

9
�

0.
02

13
72

31
8

�
0.

02
22

28
71

8
�

0.
02

30
74

15
0

�
0.

02
39

07
18

5
i�

29
�

0.
02

47
25

43
7

�
0.

02
55

27
00

0
�

0.
02

63
10

92
1

�
0.

02
70

73
86

0
�

0.
02

78
15

34
2

�
0.

02
85

32
98

2
�

0.
02

92
24

87
3

�
0.

02
98

90
06

0
i�

30
�

0.
03

05
26

63
8

�
0.

03
11

32
69

8
�

0.
03

17
06

81
0

�
0.

03
22

48
02

0
�

0.
03

27
54

89
8

�
0.

03
32

25
53

6
�

0.
03

36
59

93
5

�
0.

03
40

55
71

0
i�

31
�

0.
03

44
12

86
1

�
0.

03
47

30
43

4
�

0.
03

50
07

00
0

�
0.

03
52

42
08

1
�

0.
03

54
35

20
0

�
0.

03
55

86
35

7
�

0.
03

56
94

12
2

�
0.

03
57

58
97

2

©
 T

hi
s

Ta
bl

e
is

 b
as

ed
 o

n
A

S
/N

Z
S

42
30

.3
:1

99
4.

 P
er

m
is

si
on

 to
 r

ep
ri

nt
 h

as
 b

ee
n

gr
an

te
d

by
 S

A
I

G
lo

ba
l L

td
. T

he
 s

ta
nd

ar
d

ca
n

be
 p

ur
ch

as
ed

 o
nl

in
e

at
 h

tt
p:

//
w

w
w

.
sa

i-
gl

ob
al

.c
om

.

290

9.1.3. Psychoacoustic Model 1

The details of how to implement a psychoacoustic model are nonnormative. This
means that it is not necessary to defi ne these implementation details in order to pro-
duce a bitstream that can be decoded by a decoder that complies with the standard.
However, the MPEG-1 audio standard provides an informative annex that specifi es
the implementation details of two psychoacoustic models. It is suggested that model 1

Table 9.2 Layer I,II Scalefactors.

Index Scalefactor Index Scalefactor

0 2.00000000000000 32 0.00123039165029
1 1.58740105196820 33 0.00097656250000
2 1.25992104989487 34 0.00077509816991
3 1.00000000000000 35 0.00061519582514
4 0.79370052598410 36 0.00048828125000
5 0.62996052494744 37 0.00038754908495
6 0.50000000000000 38 0.00030759791257
7 0.39685026299205 39 0.00024414062500
8 0.31498026247372 40 0.00019377454248
9 0.25000000000000 41 0.00015379895629

10 0.19842513149602 42 0.00012207031250
11 0.15749013123686 43 0.00009688727124
12 0.12500000000000 44 0.00007689947814
13 0.09921256574801 45 0.00006103515625
14 0.07874506561843 46 0.00004844363562
15 0.06250000000000 47 0.00003844973907
16 0.04960628287401 48 0.00003051757813
17 0.03937253280921 49 0.00002422181781
18 0.03125000000000 50 0.00001922486954
19 0.02480314143700 51 0.00001525878906
20 0.01968626640461 52 0.00001211090890
21 0.01562500000000 53 0.00000961243477
22 0.01240157071850 54 0.00000762939453
23 0.00984313320230 55 0.00000605545445
24 0.00781250000000 56 0.00000480621738
25 0.00620078535925 57 0.00000381469727
26 0.00492156660115 58 0.00000302772723
27 0.00390625000000 59 0.00000240310869
28 0.00310039267963 60 0.00000190734863
29 0.00246078330058 61 0.00000151386361
30 0.00195312500000 62 0.00000120155435
31 0.00155019633981

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

9.1. MPEG-1 Layer I,II Encoders 291

292 Chapter 9 MPEG Audio

be used for Layers I and II and model 2 be used in layer III. The psychoacoustic model
is used to calculate the signal-to-mask ratio (SMR) for each subband. This informa-
tion is then used to select the quantizer step size for each subband that guarantees that
the quantization noise introduced is inaudible.

More specifi cally, the psychoacoustic model defi nes an algorithm to estimate the
masking threshold for the current input audio signal. (For a more detailed explanation
of auditory masking see Chapter 7.) This masking threshold is used to determine the
number of bits required to transmit the subband samples, in a particular subband, with
no audible quantization noise as shown in Figure 9.3. For each subband, the minimum
level of the masking threshold indicates the worst-case level of masking. The SMR
is then determined using this minimum masking level and the maximum signal level
in that subband. Then, because the subband samples are normalized before they are
quantized, there is a well-defi ned relationship between the number of bits used to
transmit the subband sample and the signal-to-noise ratio (SNR) introduced by quan-
tizing to this number of bits. To guarantee no quantization noise is audible in the de-
coded audio signal, it is simply a matter of allocating the number of bits to each sub-
band that guarantees that the SNR is greater than the SMR as shown in Figure 9.3.

In psychoacoustic model 1 the SNR is calculated using the following nine steps:

Calculate the FFT of the input audio samples.

Determine the maximum sound pressure level in each subband.

Determine the threshold in quiet.

Find the tonal and nontonal components of the input audio signal.

Decimate the maskers to obtain only the relevant maskers.

Calculate the individual masking thresholds for each relevant masker.

1.

2.

3.

4.

5.

6.

Figure 9.3 The masking threshold produced by the psychoacoustic model is used to determine the
SMR for each subband.

2 bits

3 bits

4 bits

5 bits
6 bits
7 bits

8 bits
9 bits

10 bits

Subband n

Maximum
signal level

Masking
threshold

Minimum
masking level

Quantisation
noise level

Simulated
masker

SMR SNR for
5 bits

Determine the global masking threshold.

Determine the minimum masking threshold in each subband.

Calculate the SMR ratio.

These nine steps are explained in more detail in the following sections.

9.1.3.1. Calculating the FFT of the Input Audio Samples

An estimate of the power spectral density of the audio samples is calculated using a
512-point FFT for Layer I or a 1024-point FFT for Layer II. In each case, the input
samples are fi rst multiplied by a Hann window function given by

 w n
n

N
n N()

� � � �8
12 1

2
0cos , . . . ,

π
for 11 (9.1)

where N is the number of points used to calculate the FFT. Because of the delay
through the analysis fi lter, for the output of the FFT to coincide with the output sub-
band samples of the analysis fi lter, a delay must be introduced at the input to the FFT.
For Layer I, the input samples of the FFT should be delayed by 320 samples, and for
Layer II the delay should be 192 samples.

Figure 9.4(a) shows the relative positions of the prototype analysis fi lter at the
beginning and end of a Layer I frame, and Figure 9.4(b) shows the position of the
Hann window used in the power spectral density calculation. Figure 9.4 shows that

7.

8.

9.

9.1. MPEG-1 Layer I,II Encoders 293

Figure 9.4 The relative position of the analysis fi lter and the Hann window function used in the
FFT calculation.

–512 –448 –384 –320 –256 –192 –128 –64 0 64 128 192 256 320 384

–512 –448 –384 –320 –256 –192 –128 –64 0 64 128 192 256 320 384

Relative sample number

Relative sample number

Start Position End Position

Hann
Window

Prototype
filter impulse

response

294 Chapter 9 MPEG Audio

a delay of 320 samples is required so that the power spectral density calculation is
operating on the same set of input samples as the analysis fi lter. Note that the Hann
window does not extend to all input samples used in the analysis fi lter bank for the
current frame. This disparity has a negligible effect because the samples lying out-
side the extent of the Hann window do not contribute signifi cantly to the values of
the output subband samples.

The power spectral density of the delayed input samples x(n) is then given by

 X k
N

w n x n e j nk N

n

N

() () ()

 ()∑� �

�

�

10
1

10
2

0

1 2

log π

 for k N� �0 2 1, . . . , (9.2)

To account for variations in the dynamic range of the input sample values,
the power spectral density values should be normalized so that the maximum am-
plitude possible corresponds to a sound pressure level of 96 dB. Therefore, if the
input samples represent a pure sinusoid with amplitude 2, the power spectral den-
sity values should be scaled so that the maximum value of X(k) is 96 dB. Figure
9.5 shows an example of the power spectral density of a typical audio signal for a
Layer I frame.

9.1.3.2. Determining the Maximum Sound Pressure Level in Each

Subband

The power spectral density and the scalefactors for the frame are then used to
determine the maximum sound pressure level in each subband. For Layer I, there

Figure 9.5 The power spectral density of a typical audio signal for a Layer 1 frame.

0 32 64 96 128 160 192 224
0

10

20

30

40

50

60

70

80

90

100

SPL

Coefficient number

are eight spectral lines per subband and for Layer II there are 16 spectral lines
per subband. The maximum sound pressure level of subband n is taken as the
maximum of the spectral lines in the subband and the scalefactor for the subband
converted to decibels. So the maximum sound pressure level, Lsb, of subband n
is given by

 L n X ksb
k n

() ()� �max , log
 in subband

32768 s20 10 ccfmax n()() �10 (9.3)

In Layer I, the expression scfmax(n) is simply the scalefactor for subband n, but in
Layer II it denotes the maximum of the three scalefactors for subband n. Figure 9.6
shows the maximum sound pressure level for each subband of the audio signal from
the previous example.

The following MATLAB code defi nes the algorithm used to determine the
maximum sound pressure level in each subband. The array X contains the sound
pressure level values for the FFT coeffi cients and scf_max contains the maximum
scalefactor for each subband. The elements of the array Lsb are set to the maximum
sound pressure level in each subband.

% step through the FFT coeffi cients corresponding to each subband
n � 1;
for k � 1:8:256

 % convert the maximum scalefactor for the nth subband to decibels
 scf_max_level(n) � 20*log10(32768*scf_max(n))-10;

 % fi nd the maximum of the scalefactor level and the FFT coeffi cients
 % corresponding to subband n
 max_level � -inf;
 for m � 0:subband_width-1
 max_level � max([max_level X(k�m) scf_max_level(n)]);
 end

Figure 9.6 The maximum sound pressure level for each subband of the audio signal in Figure 9.5.

0 4 8 12 16 20 24 28
0

10

20

30

40

50

60

70

80

90

100

SPL

Subband Number

9.1. MPEG-1 Layer I,II Encoders 295

296 Chapter 9 MPEG Audio

 % set the maximum sound pressure level for subband n to this
 % maximum level
 Lsb(n) � max_level;

 n � n�1;
end

9.1.3.3. Determining the Threshold in Quiet

The absolute threshold or the threshold in quiet, LTq, is given in Tables A.1 and A.2
in Appendix for Layers I and II, respectively. Note that the values in these tables are
given for a subset (indexed by i) of the original N/2 frequency values (indexed by
k).

For Layer I, no subsampling is used for the fi rst six subbands. For the next six
subbands, every second frequency value is considered. Then for input sampling rates
of 44.1 and 48 kHz, every fourth frequency value is considered up to a maximum of
20 kHz and for 32 kHz, every fourth frequency value is considered up to a maximum
of 15 kHz.

For Layer II, no subsampling is used for the fi rst three subbands and for the next
three subbands, every second frequency value is considered. For the next six sub-
bands, every fourth frequency value is considered. Then for input sampling rates of
44.1 and 48 kHz, every eighth frequency value is considered up to a maximum of 20
kHz and for 32 kHz, every eighth frequency value is considered up to a maximum
of 15 kHz.

EXAMPLE 9.1

For a Layer I frame with an input sample rate of 44.1 kHz, the following equation describes
the relationship between the index i of the subset of frequency values and the index k of the
original frequency values:

i

k k

kk�

�

� �

, , , . . .,

, , , . . .,

for

for

1 2 48

24 50 52 92 66

48 100 104 2324
k k� �, , , . . .,for

 �

9.1.3.4. Finding the Tonal and Nontonal Masking Components

The masking effect is different for tonal (sinusoidal) and nontonal maskers so it is
necessary to determine the position of both tonal and nontonal masking components
from the power spectral density of the input signal. The process for determining the
location of these masking components is explained below.

Locating Local Maxima Because a tonal masker produces a large narrow spike
in the power spectral density of the signal, the first step in this process is to deter-
mine the position of the local maxima.

A spectral line in X(k) is considered to be a local maximum if the following
condition holds:

 X k X k X k X k() () () ()� � � �1 1and (9.4)

Figure 9.7 shows the envelope for the fi rst half of the power spectral density
from the previous example with those components identifi ed as local maxima using
the above criteria.

The following MATLAB code defi nes the algorithm used to locate the local
maxima. The elements of the array is_loc_max are set to 1 when an FFT coeffi cient
is greater than its neighbors above and below in frequency.

is_loc_max � zeros(1,256);

for k � 2:255
 if ((X(k) � X(k-1)) && (X(k) � X(k�1)))
 is_loc_max(k) � 1;
 else
 is_loc_max(k) � 0;
 end
end

Locating Tonal Maskers Not every local maximum represents a tonal masker.
The next step requires the location of maxima that are significantly greater in am-
plitude than their neighboring spectral components. Because the human auditory
system has a better frequency resolution at lower frequencies, tonal components at
lower frequencies can be closer together than at higher frequencies and still be heard
as two distinct tones. For this reason, a larger number of neighboring spectral com-
ponents are considered as the frequency of the local maxima increases. So a local
maximum is considered to be a tonal masker if the following equation holds

 X k X k j() ()� � � 7 dB (9.5)

Figure 9.7 The envelope of the power spectral density and the local maxima.

0 16 32 48 64 80 96 112
0

10

20

30

40

50

60

70

80

90

100

SPL

Coefficient number

PSD envelope Local maxima

9.1. MPEG-1 Layer I,II Encoders 297

298 Chapter 9 MPEG Audio

where j is determined according to the value of k and is given by the following
equations.
Layer I:

j

k

k�

�

� �

�

2 2 2 63

3 2 2 3 64 127

6

, ,

, , , ,

, .

for

for

< <
≤ <

.. . , , , . . . , ,�2 2 6 128 250for ≤ <

 k

Layer II:

j

k

k
�

�

� �

�

2 2 2 63

3 2 2 3 64 127

6

, ,

, , , ,

, .

for

for

< <
≤ <

.. . , , , . . . , ,

, . . . , , , . .

�

� �

2 2 6 128 255

12 2 2

for ≤ <k

.. , ,12 256 500for ≤ ≤

 k

If a local maximum at frequency index k satisfi es this equation then the sound
pressure level of the tonal masker is given by

 X ktm

X k X k X k() () () ()
� � �

� �

10 10 10 1010

1
10 10

1
1log 00() dB (9.6)

Figure 9.8 shows the envelope for the fi rst half of the power spectral density from
the previous example together with those components identifi ed as tonal maskers
using the above criteria.

So the tonal maskers are not considered when calculating the sound pressure
level of the nontonal maskers, all spectral components within the neighborhood of a
tonal masker are set to �∞ dB. The following MATLAB code defi nes the algorithm
used to locate the tonal maskers. The elements of the array is_tonal_masker are set
to 1 when an FFT coeffi cient is found to be a tonal masker. The elements of the array

Figure 9.8 The envelope of the power spectral density and the tonal maskers.

0 16 32 48 64 80 96 112
0

10

20

30

40

50

60

70

80

90

100

SPL

Coefficient Number

PSD envelopeTonal masker

Xtm are set to the simulated SPL value for a single tone masker at the location of the
masker and minus infi nity elsewhere.

is_tonal_masker � zeros(1,N);
Xtm � -inf*ones(1,256);

% step through the FFT coeffi cients one at a time
for k � 3:250
 % if the coeffi cient has previously been identifi ed as a local maxima
 % check to determine if it is at a suffi cient higher level compared to
 % its neighbours
 if (is_loc_max(k) �� 1)

 % the frequency of the coeffi cient is used to determine the number
 % of coeffi cients to consider as neighbours
 if ((k �� 3) && (k � 64))
 neighbour_coeff � [�2 2];
 num_coeff � 2;
 elseif ((k �� 64) && (k � 128))
 neighbour_coeff � [�3 �2 2 3];
 num_coeff � 4;
 else
 neighbour_coeff � [�6 �5 �4 �3 �2 2 3 4 5 6];
 num_coeff � 10;
 end

 % if one of the coeffi cient’s neighours is within 7 dB of the
 % coeffi cient then the tonal masker criterion is not satisfi ed
 satisfi ed � 1;
 for j � 1:num_coeff
 if (X(k) - X(k�neighbour_coeff(j)) � 7)
 satisfi ed � 0;
 end
 end

 % if the coeffi cient satisfi es the criterion for a tonal masker
 if (satisfi ed)
 % calculate the level for a simulated single tone tonal masker
 masker_sum � 10^(X(k�1)/10) � 10^(X(k)/10) � 10^(X(k�1)/10);
 Xtm(k) � 10*log10(masker_sum);

 % set a boolean variable to locate the tonal maskers
 is_tonal_masker(k) � 1;

 % set coeffi cients in neighbourhood of masker to minus infi nity
 % for the calculation of non-tonal maskers
 for j � 1:num_coeff
 X(k�neighbour_coeff(j)) � -inf;
 end
 X(k�1:k�1) � [-inf -inf -inf];
 end
 end
end

9.1. MPEG-1 Layer I,II Encoders 299

300 Chapter 9 MPEG Audio

Locating Nontonal Maskers The SPL of the nontonal masking components
are calculated from the spectral lines remaining after the components associated
with the tonal maskers have been removed. The input frequency range is first
divided up into a series of critical bands. Then one nontonal masking component
is calculated for each critical band. The SPL of a nontonal masking component is
calculated for each critical band by taking the sum of the power of the spectral
components in the critical band (after the tonal components have been removed)
and is given by

 X knm cb
X k

k k

k

l

u

()

()()∑�
�

10 1010
10log (9.7)

where kl is the FFT index corresponding to the lowest frequency in the criti-
cal band and ku is the FFT index corresponding to the highest frequency in the
critical band. The location of the nontonal component for each critical band, kcb,
is taken as the index that is closest to the geometric mean of the indices of the
critical band.

The following MATLAB code defi nes the algorithm used to locate the tonal
maskers. The arrays lower, geom_mean, and upper contain the FFT index of the
lower, geometric mean, and upper frequencies in each critical band and are given
in Tables A.3 and A.4 in Appendix. The elements of the array is_non_tonal_
masker are set to 1 for the index that is closest to the geometric mean of the in-
dices of the critical band. The elements of the array Xnm are set to the simulated
SPL value for a single tone masker at the location of the masker and minus infi nity
elsewhere.

is_non_tonal_masker � zeros(1,256);
Xnm � -inf*ones(1,256);

% step through each critical band
for crit_band � 1:num_critical_band
 % fi nd the linear sum of the power of the SPL values in the critical
 % band after the tonal maskers have been removed
 linear_sum � 0;
 for k � lower(crit_band):upper(crit_band)
 linear_sum � linear_sum�10^(X(k)/10);
 end

 % set a boolean variable to locate the non-tonal maskers at the
 % coeffi cient index that is closest to the geometric mean of the indexes
 % in the critical band
 is_non_tonal_masker(geom_mean(crit_band)) � 1;
 % set the level for a simulated single tone tonal masker
 Xnm(geom_mean(crit_band)) � 10*log10(linear_sum);
 end
end

Figure 9.9 shows the envelope for the fi rst half of the power spectral density
from the previous example (after the components in the neighborhood of the tonal

maskers have been removed) and the nontonal maskers for each critical band calcu-
lated using the above equations.

9.1.3.5. Decimating the Tonal and Nontonal Masking Components

Not all maskers from the previous step are used to calculate the global masking
threshold. In this step, maskers can be removed if they do not meet certain require-
ments. Tonal or nontonal masking components are removed if their SPL is less than
the absolute threshold, that is, tonal and nontonal masking components must satisfy
the following conditions.

Tonal masking components:

 X k LT ktm q() ()� (9.8)

Nontonal masking components:

 X k LT knm q() ()� (9.9)

The following MATLAB code defi nes the algorithm used to decimate the tonal
and nontonal maskers that are below the threshold-in-quiet. The array LTq(k) con-
tains the absolute threshold values at the frequency indicated by k. These absolute
threshold values can be calculated for each input sampling rate from the values in
Tables A.1 and A.2 of the Appendix.

% step through the FFT coeffi cients
for k � 1:256

 if (is_tonal_masker(k))

 % if the level of a tonal masker is below the threshold-in-quiet
 % then remove it

9.1. MPEG-1 Layer I,II Encoders 301

Figure 9.9 The envelope of the power spectral density after the components contributing to tonal
masking have been removed and the nontonal maskers.

0 16 32 48 64 80 96 112
0

10

20

30

40

50

60

70

80

90

100

SPL

Coefficient Number

Non-tonal PSD envelopeNon-tonal masker

302 Chapter 9 MPEG Audio

 if (Xtm(k) � LTq(k))
 is_tonal_masker(k) � 0;
 Xtm(k) � -inf;
 end

 elseif (is_non_tonal_masker(k))

 % if the level of a non-tonal masker is below the threshold-in-quiet
 % then remove it
 if (Xnm(k) � LTq(k))
 is_non_tonal_masker(k) � 0;
 Xnm(k) � -inf;
 end

 end
end

In addition, if two tonal masking components have critical band rates that are
within 0.5 Bark of each other, the component with the lowest power is removed.
The following MATLAB code defi nes the algorithm used to decimate the tonal
maskers that are within 0.5 Bark of a larger tonal masker. The array band_rate(k)
contains the critical band rate that corresponds to the frequency of the index k.
The frequency to band rate conversion can be calculated using Equation (7.2) in
Chapter 7.

% In each iteration fi nd the smallest difference in critical band rate
% between two tonal maskers. If this difference is smaller than 0.5 then
% remove the tonal masker with the lowest power. Stop when no two tonal
% maskers are less than 0.5 bark apart.

% set the minimum difference in band rate to zero to start the while loop
min_dz � 0;

while min_dz � 0.5

 min_dz � inf;
 % step through the FFT coeffi cients
 for k � 1:256
 if is_tonal_masker(k)

 % if the coeffi cient is a tonal masker fi nd its critical band
 % rate
 z1 � band_rate(k);

 % now step though the remaining coeffi cients
 for j � 1:256-k
 if is_tonal_masker(k�j)

 % if a second tonal masker is found fi nd its critical
 % band rate
 z2 � band_rate(k�j);

 % fi nd the difference in critical band rate for these
 % two tonal maskers
 dz � z2-z1;

 % check to see if this is the minimum difference

 % between two coeffi cients
 if dz � min_dz

 % if this is the minimum difference update the
 % minimum and remember the index of the coeffi cient
 % with the lowest power
 min_dz � dz;

 if Xtm(k) � Xtm(k�j)
 remove � k;
 else
 remove � k�j;
 end
 end
 end
 end
 end
 end
 % if the minimum difference is less than 0.5 bark remove the
 % coeffi cient with the lowest power
 if min_dz � 0.5
 Xtm(remove) � -inf;
 is_tonal_masker(remove) � 0;
 end

end

Figure 9.10 shows the envelope for the fi rst half of the power spectral density
from the previous example together with the tonal and nontonal maskers that are
used to calculate the individual masking thresholds in the next step.

9.1. MPEG-1 Layer I,II Encoders 303

Figure 9.10 The envelope of the power spectral density and the tonal and nontonal maskers.

0 16 32 48 64 80 96 112
0

10

20

30

40

50

60

70

80

90

100

SPL

Coefficient Number

PSD envelope

Tonal masker

Non-tonal masker

304 Chapter 9 MPEG Audio

9.1.3.6. Calculating the Individual Masking Thresholds

The individual masking thresholds for the ith masking components at frequencies
with index j are given by the following equations.

For tonal maskers:

 LT i j X k av k vf k jtm tm tm, ,() () () ()� � � (9.10)

For non-tonal maskers:

 LT i j X k av k vf k jnm nm nm, ,() () () ()� � � (9.11)

In these equations, k is the frequency index of the ith masking component, the
terms avtm(k) and avnm(k) denote the masking index for tonal and nontonal maskers,
respectively, and the term vf(k,j) denotes the value of the masking function of the ith
masking component at frequency index j. The masking index differs for tonal and
nontonal maskers and is given by the following equations.

For tonal maskers:

 av k z ktm () ()�� �0 275 6 025. . (9.12)

For nontonal maskers:

 av k z knm () ()�� �0 175 2 025. . (9.13)

In these equations, the term z(k) denotes the critical band rate of the masker and
can be found using the equation:

 z k
f k

f k
() ()

()�
�

�
28

 Bark
2200

0 5. (9.14)

where f(k) is the frequency value corresponding to the index k.
The masking index sets a constant offset for the masking threshold of a masker.

This offset is lower and also decreases more rapidly with critical band rate for tonal
maskers than for nontonal maskers. The masking function defi nes the slope of the
masking threshold for frequencies above and below the critical band rate of the
masker. The masking function defi nes four different slopes for the masking thresh-
old and is given by

 vf k j

z X k z

,

. ,

()

() ()()
�

� � � � � ��17 1 0 4 6 1

0

d dfor 3

.. ,

,

4 6 0

17 1

X k z z

z z

()()� � � �

� � �

d d

d d

for 1

for 0

�� � � � � �d dz X k z1 17 0 15 17 8() ()()

 . , for 1

 (9.15)

where dz is the distance in Bark from the masker and is given by dz � z(j) � z(k).
The individual masking threshold for each masker is set to �∞ dB for critical

band rates less than 3 Bark below and greater than 8 Bark above the critical band
rate of the masker. The following MATLAB code defi nes the algorithm used to
calculate the individual masking thresholds. The elements of the array LTm(i,j) are
set to the masking threshold values for the ith masking component at frequency
index j.

LTm � -inf*ones(1,256);
i � 0;

% step through each FFT coeffi cient
for k � 1:256

 % if the coeffi cient is a masker
 if (is_tonal_masker(k) ‖‖ is_non_tonal_masker(k))

 % increment the index for the masker
 i � i�1;

 % fi nd the critical band rate corresponding to the frequency of the
 % masker
 z � band_rate(k);

 % for this masker step through each frequency index
 for j � 1:256
 % fi nd the difference in critical band rate between this
 % frequency index to the critical band rate of the masker
 dz � band_rate(j) - z;

 % calculate the individual masking threshold for this tonal
 % masker
 if (is_tonal_masker(k))
 avtm � �1.525 - 0.275*z - 4.5;
 vf � masking_function(dz,Xtm(k));
 LTm(i,j) � Xtm(k) � avtm � vf;
 end

 % calculate the individual masking threshold for this non-tonal
 % masker
 if (is_non_tonal_masker(k))
 avnm � �1.525 - 0.175*z - 0.5;
 vf � masking_function(dz,Xnm(k));
 LTm(i,j) � Xnm(k) � avnm � vf;
 end
 end
 end
end

function vf � masking_function(dz,X)
% calculate the masking function for the critical band rate difference dz
% and masker SPL value X

if (dz �� �3 && dz � �1)
 vf � 17*(dz � 1) - 0.4*X - 6;

9.1. MPEG-1 Layer I,II Encoders 305

306 Chapter 9 MPEG Audio

elseif (dz �� �1 && dz � 0)
 vf � (0.4*X � 6)*dz;
elseif (dz �� 0 && dz � 1)
 vf � �17*dz;
elseif (dz �� 1 && dz � 8)
 vf � �(dz � 1)*(17 � 0.15*X) � 17;
else
 vf � -inf;
end

Figure 9.11 shows the individual masking thresholds for a subset of the tonal and
nontonal maskers from the previous example.

9.1.3.7. Calculating the Global Masking Threshold

The global masking threshold is calculated for each frequency value by taking the
sum of the individual masking thresholds, and the absolute threshold, and is given
by

 LT kg
i

N
LTq k LTm i km

() () ()∑� �
�

10 10 1010
1

10 10log
,

 (9.16)

where Nm is the number maskers.
Figure 9.12 shows the global masking threshold calculated from the individual

masking thresholds from the previous example.

Figure 9.11 Individual masking thresholds for a subset of the tonal and nontonal maskers

0 8 16 24 32 40 48 56
0

10

20

30

40

50

60

70

80

90

100

SPL

Subsampled Coefficient Number

Individual masking threshold

9.1.3.8. Calculating the Minimum Masking Threshold

The minimum masking threshold is calculated for each subband by fi nding the mini-
mum of the global masking threshold over the subsampled frequency values con-
tained in the subband and is given by

 LT n LT k
k

gmin min() ()()�
 in subband n

 (9.17)

Figure 9.13 shows the minimum masking threshold for each subband calculated from
the global masking threshold of the previous example. The dots on the plot of the global
threshold indicate the frequency values at which the global threshold was calculated.

9.1.3.9. Calculating the Signal-to-Mask Ratio

The signal-to-mask ratio is calculated by subtracting the minimum masking thresh-
old from the sound pressure level for each subband and is given by

 SMR n L n LT nsb() () ()� � min
 (9.18)

Figure 9.14 shows the signal-to-mask ratio for each subband calculated using the
above equation.

9.1.4. Dynamic Bit Allocation

The total number of bits available for each audio frame, cb, is determined from
the number of 32-bit slots that are to be transmitted for that frame (see Section
9.1.7). Not all of the bits in each frame are available to transmit subband sample

9.1. MPEG-1 Layer I,II Encoders 307

Figure 9.12 The global masking threshold for a subset of the tonal and nontonal maskers.

0 8 16 24 32 40 48 56
0

10

20

30

40

50

60

70

80

90

100

SPL

Subsampled Coefficient Number

Global masking threshold

308 Chapter 9 MPEG Audio

and scalefactor information. The available number of bits can be determined by
subtracting from the total number of bits available, cb, the number of bits required
to transmit the header, bhdr (32 bits), the CRC check word if used, bcrc, (16 bits), the
bit allocation for each subband, bbal, and any ancillary data, banc (see Section 9.4).

Figure 9.13 The minimum masking threshold for each subband and the global masking threshold.

0 4 8 12 16 20 24 28
0

10

20

30

40

50

60

70

80

90

100

SPL

Subband Number

Global masking threshold

Subband minimum
masking threshold

Figure 9.14 The signal-to-mask ratio for each subband.

0 4 8 12 16 20 24 28
–50

–40

–30

–20

–10

0

10

20

30

40

50

SPL

Subband Number

Signal-to-mask ratio

So the number of bits available for subband sample and scalefactor information,
adb, is

 adb � cb � (bhdr � bcrc � bbal � banc) (9.19)

The available bits are then allocated to the subbands using the principle of mini-
mizing the total noise-to-mask ratio of the frame. The number of bits allocated to
one sample can range from 0 to 15 bits with the exception of 1 bit per sample, which
is not allowed.

The procedure to fi nd the number of bits allocated to each subband begins by fi nding
the mask-to-noise-ratio (MNR) for each subband. The MNR is calculated by subtracting
the signal-to-mask ratio from the signal-to-noise ratio for each subband and is given by

 MNR � SNR � SMR (9.20)

The signal-to-mask ratio is the output of the psychoacoustic model and the sig-
nal-to-noise ratio depends on the number of bits allocated to the subband. The rela-
tionship between SNR and bits allocated to a subband is given in Table 9.3.

The allocation of bits to each subband is an iterative process that begins by al-
locating zero bits for the scalefactors and subband samples of each subband. The
iterative process then continues using the following steps:

Use the number of bits allocated to each subband to determine the SNR for
each subband and then calculate the MNR for each subband.

1.

9.1. MPEG-1 Layer I,II Encoders 309

Table 9.3 SNR per number of bits allocated to each subband.

No. of bits SNR (dB) A B

0 0.00
2 7.00 0.750000000 �0.250000000
3 16.00 0.875000000 �0.125000000
4 25.28 0.937500000 �0.062500000
5 31.59 0.968750000 �0.031250000
6 37.75 0.984375000 �0.015625000
7 43.84 0.992187500 �0.007812500
8 49.89 0.996093750 �0.003906250
9 55.93 0.998046875 �0.001953125

10 61.96 0.999023438 �0.000976563
11 67.98 0.999511719 �0.000488281
12 74.01 0.999755859 �0.000244141
13 80.03 0.999877930 �0.000122070
14 86.05 0.999938965 �0.000061035
15 92.01 0.999969482 �0.000030518

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has
been granted by SAI Global Ltd. The standard can be purchased online at
http://www.sai-global.com.

310 Chapter 9 MPEG Audio

Determine the subband that has the minimum MNR.

The number of bits allocated to this subband is then increased to the next
highest allowable number of bits.

The number of bits required to transmit the samples, bspl, is updated to the
number of bits required in step 2. In addition, if bspl has increased from zero
to two then the number of bits required to transmit the scalefactor for this
subband, bscf is increased from zero to six bits.

Recalculate the number of bits available for subband sample and scalefactor
information, adb, using the following equation:

 adb � cb � (bhdr � bcrc � bbal � bscf � bspl � banc) (9.21)

If adb is greater than any possible increase of bscf � bspl the iterative proce-
dure continues from step 1.

9.1.5. Coding of Bit Allocation

The bit allocation information for subband sb of channel ch is transmitted us-
ing the 4 bit code word allocation[ch][sb]. The number of bits per sample that
corresponds to each value of the allocation[ch][sb] code word is shown in
Table 9.4.

2.

3.

4.

5.

6.

Table 9.4 Bits per sample for each value of the allocation index.

allocation[ch][sb] Bits per sample

“0000” 0
“0001” 2
“0010” 3
“0011” 4
“0100” 5
“0101” 6
“0110” 7
“0111” 8
“1000” 9
“1001” 10
“1010” 11
“1011” 12
“1100” 13
“1101” 14
“1110” 15
“1111” forbidden

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has
been granted by SAI Global Ltd. The standard can be purchased online at
http://www.sai-global.com.

9.1.6. Quantization and Coding of Subband Samples

The subband samples are coded using a linear quantizer with a symmetric zero rep-
resentation. This type of quantizer guarantees that small values close to zero are
quantized to zero. The quantization process is defi ned by the following steps:

Normalize the subband sample by dividing its value by the scalefactor to
obtain the normalized sample X.

Calculate the quantized value Q using the following formula:

Q � AX � B
where the values for the quantization coeffi cients A and B depend on the
number of bits allocated to the subband and are given in Table 9.3.

Find QN by taking the N most signifi cant bits of Q where N is the number of
bits allocated in the previous bit allocation process and Q is stored as a two’s
complement binary fraction.

Invert the most signifi cant bit of QN in order to avoid the code word contain-
ing all 1s.

EXAMPLE 9.2

To quantize a subband sample using three bits, the fi rst step is to normalize the subband value
by the scalefactor to give a value for X. Since the scalefactor must always be larger than the
maximum sample value in each subband, the possible range of values for X is defi ned by
�1 � X � 1. The value of X is then used to calculate a value for Q using the equation

Q � 0.875 X � 0.125

and the possible range of values for Q is then defi ned by �1 � Q � 0.75. If Q is then stored as
a two’s complement binary fraction and Q3 is taken as the fi rst three bits of this binary fraction,
there are only seven different possible values for Q3. Table 9.5 shows the range of values for X
and Q that correspond to each of these seven values of Q3. The last column of Table 9.5 shows
the actual code word that is transmitted after the most signifi cant bit of Q3 has been inverted.

Table 9.5 Ranges and code words for a 3-bit quantizer.

Range for X Range for Q Q3 Code word

� � � �1 5
7X �1 � Q � �0.75 100 000

� �� �5
7 7X 3 �0.75 � Q � �0.5 101 001

� �� �3
7 7X 1 �0.5 � Q � �0.25 110 010

� � �1
7 7X 1 �0.25 � Q � 0.0 111 011

1
7 7� �X 3 0.0 � Q � 0.25 000 100

3
7 7� �X 5 0.25 � Q � 0.5 001 101

5
7 1� �X 0.5 � Q � 0.75 010 110

 �

1.

2.

3.

4.

9.1. MPEG-1 Layer I,II Encoders 311

312 Chapter 9 MPEG Audio

There is a provision in the MPEG-1 Audio standard for the inclusion of a
variable amount of ancillary data provided by the user. The number of ancillary
data bits is included in the calculation of the constant number of bits for each
frame and reduces the number of bits available for transmitting audio data. Hence
a large amount of ancillary data may result in a signifi cant degradation of audio
quality if the output bit rate is not increased to compensate for the inclusion of
this extra data.

Care should also be taken that a group of bits in the ancillary data does not
match the syncword that occurs at the beginning of each frame (see Section 9.4.3).
If care is not taken to avoid such a match, recovering synchronization immediately
after an error event may be made more diffi cult.

9.1.7. Formatting

The output of the audio encoder is transmitted in frames. Each frame contains the
information required to decode 384 samples of the original audio signal. The Layer
I and II encoders produce an output bit stream with a constant bitrate. The number
of bits available to code a single frame is determined using this constant output bit
rate.

Each frame must consist of an integer number of slots. In Layer I, a slot is
defi ned as 32 bits and the number of slots in a frame, NS, is calculated using the fol-
lowing formula:

 N
R F

S
S� int

384

32

 (9.22)

where R is the output bit rate and FS is the input sampling frequency. The length of
a frame is forced to be an integer number of slots so that every frame must start on
a slot boundary. This alignment of a frame to a slot boundary is done to increase the
speed of resynchronization after an error event has occurred. For some combinations
of bit rate and input sampling frequency, if the number of slots is kept constant at NS,
the actual output bit rate gradually falls below the desired output bit rate. This means
that, in practice, the number of slots in each frame is allowed to vary between NS and
NS � 1 to maintain the desired output bit rate.

EXAMPLE 9.3

For a Layer I coder with an input sampling rate of 44.1 kHz and an output bit-rate of 192 kbit/s
the number of slots per frame is given by

NS �
�

int
384 192000 (samples/frame) (bits/secoond) (samples/second)

 (bits/slot)

44100

32

� 52 (slots/frame)

Then, if each frame is transmitted using 52 slots, after 100 frames the desired number of
bits is

100 384 192 000

44100
167184

� �
�

,
 (bits)

but the actual number of bits produced by the decoder is

100 � 52 � 32 � 166,400 (bits)

The actual number of output bits is 784 bits (or approximately 24 slots) less than the desired
number of output bits. To compensate for this discrepancy, the encoder would need to trans-
mit approximately every fourth frame using 53 slots instead of 52. �

If a frame is coded using an extra slot, the value of the fl ag padding_bit is set to
‘1’ in the header of the frame. The following MATLAB code defi nes the algorithm
that can be used to determine if padding is necessary.

% for the fi rst frame don’t use an extra slot and set the variable rest to
% zero
if (frame �� 0)
 rest � 0;
 padding_bit � 0;
else

 % for every other frame calculate the discrepancy between the desired
 % number of bits and the actual number of bits for a single frame
 if (layer��1)
 dif � mod(384*bitrate/sampling_frequency,32);
 bits_per_slot � 32;
 else
 dif � mod(1152*bitrate/sampling_frequency,8);
 bits_per_slot � 8;
 end

 % the variable rest is used to keep track of the difference between the
 % desired and actual number of bits
 rest � rest-dif;

 % when the value of rest is negative an extra slot is required to keep
 % the difference between the desired and actual number of bits used to
 % within the size of one slot
 if (rest � 0)

 % if an extra slot is required set the value of padding_bit to 1
 % and add the number of bits in a slot to the value of rest
 padding_bit � 1;
 rest � rest � bits_per_slot;
 else
 padding_bit � 0
 end
end

9.1. MPEG-1 Layer I,II Encoders 313

314 Chapter 9 MPEG Audio

Figure 9.15 shows the format of a Layer I frame. The bit-stream syntax required for
each audio frame is described later in Section 9.4.

9.2. LAYER II ENCODER

The major components that are changed or added to form a Layer II encoder are
shown highlighted in Figure 9.16. The same analysis fi lter bank is used for both
Layers I and II but in Layer II, three blocks of 12 � 32 subband samples are com-
bined to form a superblock. This means a Layer II audio frame is effectively triple
the size of a Layer I frame and contains the coded data for 1152 PCM samples
compared with 384 samples for Layer I. The number of samples used in the FFT
calculation is also increased to 1024 so that the power spectral density used in
the psychoacoustic model is representative of the audio samples to be coded. A
scalefactor is still calculated for each set of 12 samples in a subband so there are

Figure 9.15 Format for a Layer I audio frame.

allocation

Header
Error

check

Audio

data

Ancillary

Bit
Scalefactors Samples

data

Figure 9.16 Basic block diagram of a Layer II encoder.

Form
superblock

Psychoacoustic
model

Dynamic bit
allocation

FFT
(1024 samples)

Subband
filterbank

Scalefactor
calculation

Normalization,
quantization &

coding

Bit-stream
formatting &
error check

Code
allocation

Audio
samples Digital

bitstream

Subband
samples

Scalefactors

Power spectral
density

Signal-to-mask
ratio

Bit allocation
per subband

Bit allocation
index

Scalefactor
index & sfsi

Scalefactor
selection

Code
scalefactors &
selection info

Form
superblock

Dynamic bit
allocation

FFT
(1024 samples)

Scalefactor
selection

now three scalefactors for each subband in the superblock. Since there is often
some redundancy between these three scalefactors, a more sophisticated method
of scalefactor coding is adopted in Layer II. The fi nal major modifi cation occurs in
the bit allocation procedure where the number of allowable quantizer step sizes is
reduced for mid and high frequency subbands resulting in a saving in the bits used
for the bit allocation code words.

9.2.1. Analysis Filterbank

The same analysis fi lterbank is used in both Layers I and II (see Section 9.1.1).

9.2.2. Scalefactor Calculation

As in Layer I, a scalefactor is calculated for each set of 12 subband samples by
fi nding the maximum of the absolute values of the 12 subband samples and then
taking the lowest value from Table 9.2 that is greater than this maximum value. The
scalefactor index is then defi ned as the index from Table 9.2 that corresponds to this
value.

9.2.3. Coding of Scalefactors

For a Layer II frame the audio data contains information from a superblock that
consists of three consecutive blocks of 12 subband samples for each subband. This
means that three scalefactors are calculated for each subband in the superblock. Of-
ten there is some redundancy between these three scalefactors and for this reason
a Layer II encoder employs the following method to effi ciently code the scalefactor
information for a superblock.

The fi rst step in coding the scalefactors is to calculate the two scalefactor differ-
ences, dscf1 and dscf2, using the following two equations:

dscf scf scf

dscf scf scf
1 1 2

2 2 3

� �

� �
 (9.23)

where scf1, scf2, and scf3 are the successive scalefactor indices for the three blocks
calculated as described in Section 9.2.2. The scalefactor differences are then catego-
rized into one of fi ve classes using the criteria described in Table 9.6.

The pair of scalefactor difference classes for each subband is then used to deter-
mine the method for transmitting the scalefactors from Table 9.7.

In Table 9.7, the third column titled “scalefactor used in encoder” indicates the
scalefactors that are actually used in the later encoding procedures. The numbers in
this column, indicate which scalefactor is used with 1, 2, and 3 indicating the scal-
efactors from the fi rst, second, and third blocks in the superblock respectively and 4
indicating the maximum of the three scalefactor values (i.e. the scalefactor with the
minimum scalefactor index).

9.2. Layer II Encoder 315

316 Chapter 9 MPEG Audio

Table 9.6 Scalefactor difference classes.

Class dscf

1 dscf � �3
2 �3 � dscf � 0
3 dscf � 0
4 0 � dscf � 3
5 dscf � 3

© This Table is based on AS/NZS 4230.3:1994. Permission
to reprint has been granted by SAI Global Ltd. The standard
can be purchased online at http://www.sai-global.com.

Table 9.7 Scalefactor transmission patterns and selection information.

Class1 Class2

Scalefactors
used in
encoder

Transmission
pattern

Selection
information

1 1 1 2 3 1 2 3 0
1 2 1 2 2 1 2 3
1 3 1 2 2 1 2 3
1 4 1 3 3 1 3 3
1 5 1 2 3 1 2 3 0
2 1 1 1 3 1 3 1
2 2 1 1 1 1 2
2 3 1 1 1 1 2
2 4 4 4 4 4 2
2 5 1 1 3 1 3 1
3 1 1 1 1 1 2
3 2 1 1 1 1 2
3 3 1 1 1 1 2
3 4 3 3 3 3 2
3 5 1 1 3 1 3 1
4 1 2 2 2 2 2
4 2 2 2 2 2 2
4 3 2 2 2 2 2
4 4 3 3 3 3 2
4 5 1 2 3 1 2 3 0
5 1 1 2 3 1 2 3 0
5 2 1 2 2 1 2 3
5 3 1 2 2 1 2 3
5 4 1 3 3 1 3 3
5 5 1 2 3 1 2 3 0

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

The third column of Table 9.7 shows that there is often some duplication of the
scalefactors across the three blocks and so it is not always necessary to transmit all
three scalefactors for each subband in a frame. For this reason only the scalefactors
indicated by the transmission pattern in the next column of Table 9.7 are actually
transmitted. The next column of Table 9.7 contains the scalefactor selection infor-
mation which is a number between 0 and 3 that is used to indicate how the transmit-
ted scalefactor indices are to be allocated to the three blocks during the decoding
process. The meaning of the four values of the scalefactor selection information is
shown in Table 9.8.

The scalefactor selection information is transmitted as a two bit unsigned inte-
ger for those subbands that are allocated with more than zero bits in the following
bit allocation procedure.

9.2.4. Dynamic Bit Allocation

The total number of bits available for each audio frame, cb, is determined from
the number of 8-bit slots that are to be transmitted for that frame (see Section
9.2.8). Not all of the bits in each frame are available to transmit subband sample
and scalefactor information. The available number of bits can be determined by
subtracting from the total number of bits available, cb, the number of bits required
to transmit the header, bhdr, (32 bits), the CRC check word if used, bcrc, (16 bits),
the bit allocation for each subband, bbal, and any ancillary data, banc. So the
number of bits available for subband sample and scalefactor information, adb, is
given by the following equation:

 adb � cb � (bhdr � bcrc � bbal � banc) (9.24)

The available bits are then allocated to the subbands using the principle of mini-
mizing the total noise-to-mask ratio of the frame. The number of bits allocated to
one sample can range from 0 to 16 bits with the exception of 1 bit per sample, which

9.2. Layer II Encoder 317

Table 9.8 Meaning of the scalefactor selection information.

Selection information Meaning

00 The first, second, and third scalefactor transmitted
should be allocated to blocks 1, 2, and 3, respectively.

01 The first scalefactor transmitted should be allocated
to blocks 1 and 2 and the second to block 3.

10 The scalefactor transmitted should be allocated to all
three blocks.

11 The first scalefactor transmitted should be allocated
to block 1 and the second to blocks 2 and 3.

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

318 Chapter 9 MPEG Audio

is not allowed. For a Layer II encoder certain restrictions are made on the number
of bits that can be allocated to each subband. These restrictions depend on the input
sampling rate, the output bit rate and the subband. Tables and show the allowable
number of bits for each subband for the various input sampling rates and output bit
rates.

The procedure to fi nd the number of bits allocated to each subband begins by
fi nding the mask-to-noise-ratio (MNR) for each subband. The MNR is calculated by
subtracting the signal-to-mask ratio from the signal-to-noise ratio for each subband
and is given by

MNR � SNR � SMR (9.25)

The signal-to-mask ratio is the output of the psychoacoustic model and
the signal-to-noise ratio depends on the number of bits allocated to the sub-
band. The relationship between SNR and bits allocated to a subband is given in
Table 9.9. Note that the number of bits allocated in column 1 of Table 9.9 refers
to the number of bits for the group of three subband samples in each granule
(see Section 9.2.6).

Table 9.9 SNR per number of bits allocated to each subband for a Layer II encoder.

No. of bits SNR (dB) A B

0 0.00
5 7.00 0.750000000 �0.250000000
7 11.00 0.625000000 �0.375000000
9 16.00 0.875000000 �0.125000000

10 20.84 0.562500000 �0.437500000
12 25.28 0.937500000 �0.062500000
15 31.59 0.968750000 �0.031250000
18 37.75 0.984375000 �0.015625000
21 43.84 0.992187500 �0.007812500
24 49.89 0.996093750 �0.003906250
27 55.93 0.998046875 �0.001953125
30 61.96 0.999023438 �0.000976563
33 67.98 0.999511719 �0.000488281
36 74.01 0.999755859 �0.000244141
39 80.03 0.999877930 �0.000122070
42 86.05 0.999938965 �0.000061035
45 92.01 0.999969482 �0.000030518
48 98.01 0.999984741 �0.000015259

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

The allocation of bits to each subband is an iterative process that begins by
allocating zero bits for the scalefactors and subband samples of each subband. The
iterative process then continues using the following steps:

Use the number of bits allocated to each subband to determine the SNR for
each subband and then calculate the MNR for each subband.

Determine the subband that has the minimum MNR.

The number of bits allocated to this subband is then increased to the next
highest allowable number of bits.

The number of bits required to transmit the samples, bspl, is updated to the
number of bits required in step 2. In addition, if bspl has increased from zero
to fi ve then the number of bits required to transmit the scalefactors, bscf, and
the scalefactor selection information, bsel, is updated for this subband.

Recalculate the number of bits available for subband sample and scalefactor
information, adb, using the following equation:

adb � cb � (bhdr � bcrc � bbal � bsel � bscf � bspl � banc)

If adb is greater than any possible increase of bsel � bscf � bspl the iterative
procedure continues from step 1.

9.2.5. Coding of Bit Allocation

The bit allocation information for each subband is coded as an unsigned integer,
MSB fi rst. The value of this integer is taken as the allocation index from Tables A.5,
A.6, A.7 or A.8. The number of bits used to code the allocation index is indicated
by the column labeled nbal in these tables. The number of bits per group of three
subband samples that corresponds to each value of the allocation index is shown in
the remaining columns.

9.2.6. Quantization and Coding of Subband Samples

The subband samples are coded using a linear quantizer with a symmetric zero rep-
resentation. This type of quantizer guarantees that small values close to zeros are
quantized to zero. The quantization process is defi ned by the following steps:

Normalize the subband sample by dividing its value by the scalefactor to
obtain the normalize sample X.

Calculate the quantized value Q using the following formula:

Q � AX � B

where the values for the quantization coeffi cients A and B depend on the
number of bits allocated to the subband and are given in Table 9.9.

1.

2.

3.

4.

5.

6.

1.

2.

9.2. Layer II Encoder 319

320 Chapter 9 MPEG Audio

Find QN by taking the N most signifi cant bits of Q, where N is the number of
bits allocated in the previous bit allocation process and Q is stored as a two’s
complement binary fraction.

Invert the most signifi cant bit of QN in order to avoid the code word contain-
ing all 1s.

For a Layer II coder, each block of subband samples is further subdivided into
four granules as shown in Figure 9.17. Each shaded square in Figure 9.17 repre-
sents the value of a subband sample with gray indicating zero, white indicating a
large positive value, and black indicating a large negative value. Each column of
shaded squares represents one set of 32 subband sample outputs from the analysis
fi lter and one granule consists of three of these sets of 32 subband samples. The
Layer II coding algorithm specifi es that subband samples be transmitted as sets of
three samples for each subband in each granule. If two channels are to be coded,
the two sets of three samples for each channel in each subband are transmitted
consecutively.

If the number of bits allocated to the subband is 5, 7, or 10 then the code words
corresponding to the set of three samples are treated as unsigned integers and
grouped together into a single larger code word. Otherwise, each sample is transmit-
ted as a separate code word.

If grouping is required, the three smaller code words denoted by wa, wb, and wc
are treated as unsigned integers and combined into a single larger code word using
the following equations:

w w w w

w w w w

w w w w

c b a

c b a

c b a

5

7

10

9 3

25 5

81 9

� � �

� � �

� � �

 (9.26)

3.

4.

Figure 9.17 Subband sample transmission order for a single channel Layer II frame.

Su
bb

an
d

nu
m

be
r

Granule

Superblock

Group

Block

Transmission
order

Su
bb

an
d

nu
m

be
r

Granule

Superblock

Group

Block

Transmission
order

Then w5, w7, and w10 are transmitted as 5, 7, and 10-bit unsigned integers, respec-
tively, MSB fi rst.

EXAMPLE 9.4

To quantize three consecutive subband samples using fi ve bits, the fi rst step is to normalize the
subband values by the scalefactor to give a value for X. Since the scalefactor must always be
larger than the maximum sample value in each subband, the possible range of values for X is de-
fi ned by �1 � X � 1. The value of X is then used to calculate a value for Q using the equation

Q � 0.75 X � 0.25

and the possible range of values for Q is then defi ned by �1 � Q � 0.5.
If Q is then stored as a two’s complement binary fraction and Q2 is taken as the fi rst two

bits of this binary fraction, there are only three different possible values for Q2. Table 9.10
shows the range of values for X and Q that correspond to each of these three values of Q2. The
last column of Table 9.10 shows the code word that is grouped together with two other code
words to form a single larger code word after the most signifi cant bit of Q2 has been inverted.

Then three consecutive code words produced in this way, wa, wb, and wc, are treated as un-
signed integers (i.e. with values of 0, 1, or 2) and grouped together to form a single code word
using the equation

w5 � 9wc � 3wb � wa

This equation results in a value of w5 between 0 and 26 that is transmitted as a 5-bit unsigned
integer, MSB fi rst. �

9.2.7. Ancillary Data

See Section 9.1.6.

9.2.8. Formatting

The output of the audio encoder is transmitted in frames. In a Layer II bit stream,
each frame contains the information required to decode 1152 samples of the original
audio signal. Each frame must consist of an integer number of slots. In Layer II, a

9.2. Layer II Encoder 321

Table 9.10 Ranges and code words for a 2-bit quantizer.

Range for X Range for Q Q2 Code word

� � � �1 1
3X �1 � Q � �0.5 10 00

� � �1
3

1
3X �0.5 � Q � 0.0 11 01

1
3 1� �X 0.0 � Q � �0.5 10 00

322 Chapter 9 MPEG Audio

slot is defi ned as 8 bits and the number of slots in a frame, NS, can be calculated using
the following formula:

 N
R F

S
S� int

1152

8

 (9.27)

where R is the output bit rate and FS is the input sampling frequency. As for a
Layer I frame, the number of slots in each frame may vary between NS and NS � 1.
Figure 9.18 shows the general format of a Layer II frame. The bit stream syntax
required for each audio frame is described later in Section 9.4.

9.3. JOINT STEREO CODING

The ability of the human auditory system to determine the location of sound sources
depends on interaural level differences and interaural time differences. For frequen-
cies above 2 kHz, it is the level differences between the envelope of the left and right
signals that determines the perceived lateral position of the sound source. For Layer
I and II encoders an optional joint stereo coding mode known as intensity stereo cod-
ing is available to exploit this limitation of the human auditory system.

In intensity stereo mode, the samples for the left and right channels for some
subbands are added and transmitted as a single channel. The bit allocation, quan-
tization and coding of the combined subband samples is performed as for a single
channel but the scalefactor information is transmitted for both the left and right
channels. In this way, the decoded left and right signals are identical except for the
level. However, the ability of the human auditory system to perceive the location of
the sound source is unaffected by this approximation.

The intensity stereo coding mode can be applied in one of four different con-
fi gurations. The difference between the confi gurations is simply the lowest frequency
subband that is coded using the intensity stereo method. The four possible choices for
the lowest subband coded in the intensity stereo mode are subbands 4, 8, 12, or 16.

The fi rst step in the intensity stereo process is to determine the number of subbands
to be code in intensity stereo mode. For these subbands the left and right samples are
added and the combined samples are scaled in the same way as for subbands from a
single channel. It is important to note however that the scalefactor used in this step is not
transmitted. Instead, the originally determined scalefactors for the left and right channels
are transmitted. The combined and scaled samples are then quantized and coded as for a
single channel using the higher of the bit allocations from the left and right channels.

Figure 9.18 Format of a Layer II audio frame.

Header
Error
check

Audio
data

Ancillary
data

Bit
allocation

Scalefactor
selection

SamplesScalefactors

Use of the intensity stereo mode generally results in a bit-rate saving of between
10 and 30 kbit/s for no perceivable degradation of audio quality and requires only a
small increase in encoder and decoder complexity.

9.4. MPEG-1 SYNTAX

The syntax of the MPEG-1 audio bit sream is specifi ed in this section. The order of
arrival of the bits is defi ned using the C-like methodology described in Chapter 5 for
the simple video coder syntax.

9.4.1. Audio Sequence Layer

The syntax specifi cation for an MPEG-1 audio bit stream is given in Table 9.11. The
bitstream consists of consecutive audio frames.

9.4.2. Audio Frame

The syntax specifi cation for an MPEG-1 audio frame is given in Table 9.12.

9.4. MPEG-1 Syntax 323

Table 9.11 Syntax specification for an MPEG-1 audio bitstream.

Syntax Bits Mnemonic

1 audio_sequence()
2 {
3 while (nextbits()��syncword){
4 frame()
5 }
6 }

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 9.12 Syntax specification for an MPEG-1 audio frame.

Syntax Bits Mnemonic

1 frame()
2 {
3 header()
4 error_check()
5 audio_data()
6 ancillary_data()
7 }

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

324 Chapter 9 MPEG Audio

9.4.3. Header

The header fi eld contains information necessary for the decoder to maintain syn-
chronization of the incoming bit stream and parameters that specify aspects of the
audio service being transmitted. The syntax specifi cation of the header fi eld is given
in Table 9.13

A description of the bit stream elements contained in a header fi eld is given in
Table 9.14.

The meaning of the layer code word is specifi ed in Table 9.15.
The meaning of the bitrate_index code word is specifi ed in Table 9.16. The

specifi ed bit rate is the total bit rate for all channels regardless of the coding mode.
The “free” format is used to allow a fi xed bit rate that is not specifi ed in Table 9.16
to be used. In “free” format, the maximum bit rate allowed is 448 and 384 in Layers
I and II, respectively. A continuously variable bit rate is not allowed for Layers I
and II.

For Layer II, not all combinations of total bit rate and mode are allowed. The
combinations that are allowed are shown in Table 9.17.

The meaning of the sampling_frequency code word is specifi ed in Table
9.18.

The meaning of the mode code word is specifi ed in Table 9.19.

Table 9.13 Syntax specification of the header field.

Syntax Bits Mnemonic

1 header()
2 {
3 syncword 12 bslbf
4 ID 1 bslbf
5 layer 2 bslbf
6 protection_bit 1 bslbf
7 bitrate_index 4 bslbf
8 sampling_frequency 2 bslbf
9 padding_bit 1 bslbf

10 private_bit 1 bslbf
11 mode 2 bslbf
12 mode_extension 2 bslbf
13 copyright 1 bslbf
14 original/copy 1 bslbf
15 emphasis 2 bslbf
16 }

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.
com.

In intensity stereo mode the code word mode_extension specifi es the highest
frequency subband that is not included in intensity stereo coding. The meaning of
the mode_extension code word is specifi ed in Table 9.20.

The meaning of the emphasis code word is specifi ed in Table 9.21.

9.4. MPEG-1 Syntax 325

Table 9.14 Description of the bit stream elements in a header field.

Element Description

syncword Used to detect the start of the header field. The value of the
syncword is always 0�FFF.

ID A value of “1” indicates the following bit stream was coded using
MPEG-1. The value “0” is reserved.

layer Indicates the layer used to produce the following bit sream (see
Table 9.15).

protection_bit A value of “1” indicates that the error_check field follows the
header.

bitrate_index Specifies the output bit rate of the coder (see Table 9.16).
sampling_frequency Specifies the input sampling frequency (see Table 9.18).
padding_bit A value of “1” indicates that the following audio frame contains an

extra slot (see Section 9.1.7).
private_bit Flag for private use.
mode Specifies the coding mode (see Table 9.19).
mode_extension Specifies the highest frequency subband that is not included in

intensity stereo coding (see Table 9.20).
copyright A value of “1” indicates that the following bit stream is protected

by copyright.
original/copy A value of “1” indicates that the following bit stream is an original

bit stream.
emphasis Specifies the type of emphasis/deemphasis used (see Table 9.21).

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 9.15 Meaning of Layer.

layer Meaning

“11” Layer I
“10” Layer II
“01” Layer III
“00” Reserved

© This Table is based on AS/NZS 4230.3:1994.
Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://
www.sai-global.com.

326 Chapter 9 MPEG Audio

Table 9.17 Allowed modes for each bit rate of a Layer II encoder.

Bit rate (kbits/s) Allowed modes

Free format All modes
32 Single_channel
48 Single_channel
56 Single_channel
64 All modes
80 Single_channel
96 All modes

112 All modes
128 All modes
160 All modes
192 All modes
224 Stereo, intensity stereo, dual channel
256 Stereo, intensity stereo, dual channel
320 Stereo, intensity stereo, dual channel
384 Stereo, intensity stereo, dual channel

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 9.16 Meaning of bitrate_index.

bitrate_index

Specified bitrate (kbits/s)

Layer I Layer II

“0000” free free
“0001” 32 32
“0010” 64 48
“0011” 96 56
“0100” 128 64
“0101” 160 80
“0110” 192 96
“0111” 224 112
“1000” 256 128
“1001” 288 160
“1010” 320 192
“1011” 352 224
“1100” 384 256
“1101” 416 320
“1110” 448 384
“1111” Forbidden Forbidden

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has
been granted by SAI Global Ltd. The standard can be purchased online at
http://www.sai-global.com.

Table 9.18 Meaning of sampling_frequency.

sampling_frequency Specified frequency (kHz)

“11” 44.1
“10” 48
“01” 32
“11” Reserved

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has
been granted by SAI Global Ltd. The standard can be purchased online at
http://www.sai-global.com.

Table 9.19 Meaning of mode.

mode Specified mode

“11” Stereo
“10” Intensity_stereo
“01” Dual_channel
“11” Single_channel

© This Table is based on AS/NZS 4230.3:1994.
Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.
sai-global.com.

9.4. MPEG-1 Syntax 327

Table 9.20 Meaning of mode_extension.

mode_extension Meaning

“00” Subbands 4 – 31 in intensity_stereo, bound � 4
“10” Subbands 8 – 31 in intensity_stereo, bound � 8
“01” Subbands 12 – 31 in intensity_stereo, bound � 12
“11” Subbands 16 – 31 in intensity_stereo, bound � 16

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table 9.21 Meaning of emphasis.

emphasis Specified emphasis

“00” None
“10” 50/15 µs
“01” Reserved
“11” CCITT J.17

© This Table is based on AS/NZS 4230.3:1994. Permission to
reprint has been granted by SAI Global Ltd. The standard can
be purchased online at http://www.sai-global.com.

328 Chapter 9 MPEG Audio

9.4.4. Error Check

The syntax specifi cation of the error_check fi eld is given in Table 9.22.
The crc_check code word contains a 16 bit parity-check word. This code

word is transmitted using the remainder polynomial coeffi cients, highest order fi rst
(rpchof) data type. Further details of the error checking procedure can be found in
Ref. [1].

9.4.5. Audio Data, Layer I

The syntax specifi cation of the audio_data fi eld in Layer I is given in Table 9.23.
A description of the bit stream elements contained in an audio_data fi eld for

Layer I is given in Table 9.24.

9.4.6. Audio Data, Layer II

The syntax specifi cation of the audio_data fi eld in Layer II is given in Table 9.25.
A description of the bit stream elements contained in an audio_data fi eld for

Layer II is given in Table 9.26.

9.5. MPEG-1 LAYER I,II DECODERS

9.5.1. Bit Allocation Decoding

For a Layer I decoder, the 4-bit allocation parameter is read for all subbands. If the
coding mode is joint stereo then only one bit allocation parameter is read for each
subband above the subband indicated by the mode_extension parameter.

For a Layer II decoder, the number of bits used for the bit allocation parameter
varies for different input sampling rates and output bit rates and can be found using
tables in Appendix. The output bit rate used to determine the appropriate table is the

Table 9.22 Syntax specification of the error_check field.

Syntax Bits Mnemonic

1 error_check()
2 {
3 if (protection_bit��0)
4 crc_check 16 rpchof
5 }

© This Table is based on AS/NZS 4230.3:1994. Permission to
reprint has been granted by SAI Global Ltd. The standard can be
purchased online at http://www.sai-global.com.

bit rate for one channel so if the coding mode is not single channel then the output
bit rate indicated in the frame header should be divided by two to fi nd the bit rate
per channel. The number of bits to read for each subband is indicated by the value
of nbal in the appropriate table in Appendix. This allocation parameter is treated as

Table 9.23 Syntax specification of the audio_data field in Layer I.

Syntax Bits Mnemonic

1 audio_data(){
2 for (sb�0; sb�bound; sb��)
3 for (ch�0; ch�nch; ch��)
4 allocation[ch][sb] 4 uimsbf
5 for (sb�bound; sb�32; sb��){
6 allocation[0][sb] 4 uimsbf
7 allocation[1][sb]�allocation[0][sb]
8 }
9 for (sb�0; sb�32; sb��)

10 for (ch�0; ch�nch; ch��)
11 if (allocation[ch][sb]!�0)
12 scalefactor[ch][sb] 6 uimsbf
13 for (s�0; s�12; s��)
14 for (sb�0; sb�bound; sb��)
15 for (ch�0; ch�nch; ch��)
16 if (allocation[ch][sb]!�0)
17 sample[ch][sb][s] 2..15 uimsbf
18 for (sb�bound; sb�32; sb��)
19 if (allocation[ch][sb]!�0)
20 sample[0][sb][s] 2..15 uimsbf
21 }
22 }

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been
granted by SAI Global Ltd. The standard can be purchased online at http://
www.sai-global.com.

Table 9.24 Description of the bitstream elements in an audio_data field for Layer I.

Element Description

allocation[ch][sb] Specifies the bits per sample used to code the subband
samples in subband sb of channel ch (see Section 9.1.4).

scalefactor[ch][sb] Specifies the scalefactor used in subband sb of channel ch
(see Section 9.1.2).

sample[ch][sb][s] The coded value for sample s in subband sb of channel ch
(see Section 9.1.6)

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

9.5. MPEG-1 Layer I,II Decoders 329

330 Chapter 9 MPEG Audio

Table 9.25 Syntax specification of the audio_data field in Layer II.

Syntax Bits Mnemonic

1 audio_data(){
2 for (sb�0; sb�bound; sb��)
3 for (ch�0; ch�nch; ch��)
4 allocation[ch][sb] 2..4 uimsbf
5 for (sb�bound; sb�sblimit; sb��){
6 allocation[0][sb] 2..4 uimsbf
7 allocation[1][sb]�allocation[0][sb]
8 }
9 for (sb�0; sb�sblimit; sb��)

10 for (ch�0; ch�nch; ch��)
11 if (allocation[ch][sb]!�0)
12 scfsi[ch][sb] 2 uimsbf
13 for (sb�0; sb�32; sb��)
14 for (ch�0; ch�nch; ch��)
15 if (allocation[ch][sb]!�0)
16 if (scfsi[ch][sb]��0){
17 scalefactor[ch][sb][0] 6 uimsbf
18 scalefactor[ch][sb][1] 6 uimsbf
19 scalefactor[ch][sb][2] 6 uimsbf
20 }
21 if ((scfsi[ch][sb]��1) || (scfsi[ch][sb]��3)){
22 scalefactor[ch][sb][0] 6 uimsbf
23 scalefactor[ch][sb][1] 6 uimsbf
24 }
25 if ((scfsi[ch][sb]��2)
26 scalefactor[ch][sb][0] 6 uimsbf
27 }
28 for (gr�0; gr�12; gr��){
29 for (sb�0; sb�bound; sb��)
30 for (ch�0; ch�nch; ch��)
31 if (allocation[ch][sb]!�0){
32 if (grouping[ch][sb])
33 samplecode[ch][sb][gr] 5..10 uimsbf
34 else
35 for (s�0; s� 3; s��)
36 sample[ch][sb][3*gr�s] 3..16 uimsbf
37 }
38 for (sb�bound; sb�sblimit; sb��)
39 if (allocation[0][sb]!�0){
40 if (grouping[0][sb])
41 samplecode[0][sb][gr] 5..10 uimsbf
42 else

an unsigned integer and used as an index into the remaining columns of the table.
The value indicated by this index represents the number of bits transmitted in the
corresponding subband. This number of bits can then in turn be used as an index into
Table 9.27 that shows the number of bits used to code the quantized samples and the
requantization coeffi cients C and D.

9.5.2. Scalefactor Selection Information Decoding

For a layer II decoder the 2-bit scalefactor selection information (scfsi) code word
is read for all subbands that have a nonzero bit allocation. The meaning of the scfsi
code word can be found in Table 9.8.

9.5.3. Scalefactor Decoding

For a Layer I decoder, a 6-bit scalefactor code word for each subband with a nonzero
bit allocation is read from the bit stream and used as an index into Table 9.2 to fi nd
the scalefactor for the corresponding subband.

Table 9.26 Description of the bit stream elements in an audio_data field for Layer II.

Element Description

allocation[ch][sb] Specifies the bits per sample used to code the subband
samples in subband sb of channel ch (see Section 9.2.4).

scfsi[ch][sb] Specifies the number of scalefactors transferred for
subband sb of channel ch (see Section 9.2.3).

scalefactor[ch][sb][p] Specifies the scalefactor used subband sb of channel ch
for part p of the frame (see Section 9.2.3)

samplecode[ch][sb][gr] The code word for the three consecutive sample values
in granule gr in subband sb of channel ch if grouping is
used (see Section 9.2.6).

sample[ch][sb][s] The coded value for sample s in subband sb of channel ch
(see Section 9.2.6).

Table 9.25 (Continued)

Syntax Bits Mnemonic

43 for (s�0; s� 3; s��)
44 sample[0][sb][3*gr�s] 3..16 uimsbf
45 }
46 }
47 }

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

9.5. MPEG-1 Layer I,II Decoders 331

332 Chapter 9 MPEG Audio

For a Layer II decoder, the number of 6-bit scalefactor code words correspond-
ing to each subband with a nonzero bit allocation is indicated by the scalefactor
selection information. These scalefactor code words are read from the bit stream
and used as an index into Table 9.2 to determine the three scalefactors for the cor-
responding subband.

9.5.4. Requantization of Subband Samples

9.5.4.1. Layer I

The number of bits indicated by the bit allocation parameter is read from the bit
stream. This N-bit code word is then used to fi nd the value of the requantized and
rescaled subband sample using the following steps:

Invert the most signifi cant bit of the N-bit code word to obtain the 2’s comple-
ment fractional number RN.

Calculate the requantized value R using the following formula:

R R

N

N N
N�

�
� �

2

2 1
21()

Rescale the subband sample by multiplying R by the scalefactor for the cor-
responding subband to obtain the rescaled subband sample S.

1.

2.

3.

Table 9.27 Classes of quantization for a Layer II decoder.

No. of bits C D

5 1.33333333333 0.50000000000
7 1.60000000000 0.50000000000
9 1.14285714286 0.25000000000

10 1.77777777777 0.50000000000
12 1.06666666666 0.12500000000
15 1.03225806452 0.06250000000
18 1.01587301587 0.03125000000
21 1.00787401575 0.01562500000
24 1.00392156863 0.00781250000
27 1.00195694716 0.00390625000
30 1.00097751711 0.00195312500
33 1.00048851979 0.00097656250
36 1.00024420024 0.00048828125
39 1.00012208522 0.00024414063
42 1.00006103888 0.00012207031
45 1.00003051851 0.00006103516
48 1.00001525902 0.00003051758

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

9.5.4.2. Layer II

If the number of bits allocated to the subband is 5, 7, or 10 then the code words corre-
sponding to the set of three consecutive samples are grouped together into a single larger
code word. The algorithm used to convert this group code word back into three individual
code words is defi ned by the following MATLAB code. The variable nlevels has the
value 3, 5, or 9 if the number of bits allocated to the subband is 5, 7, or 10, respectively.

for i � 1:3
 code word(i) � mod(group_code,nlevels)
 group_code � fl oor(group_code/nlevels);
end

Then, for each individual N-bit code word, the following steps are used to fi nd the
value of the requantized and rescaled subband sample:

Invert the most signifi cant bit of the N-bit code word to obtain the 2’s comple-
ment fractional number RN.

Calculate the requantized value R using the following formula:

 R � C(RN � D)

where the values for the requantization coeffi cients C and D depend on the
number of bits allocated to the subband and are given in Table 9.27.

Rescale the subband sample by multiplying R by the scalefactor for the
corresponding subband to obtain the rescaled subband sample S.

9.5.5. Synthesis Filterbank

The synthesis fi lterbank used in the Layer I,II encoders is based on the effi cient imple-
mentation of a cosine modulated fi lterbank proposed by Joseph Rothweiler in 1983. A
detailed explanation of this fi lter bank technique is given in Section 8.5 of Chapter 8.

9.6. MPEG-2

The DVB guidelines state that an IRD need only be able to decode a stereo pair
from an MPEG-2 BC bit stream. So this section describes the frame formatting and
matrixing procedures required to produce an MPEG-1 compatible frame within an
MPEG-2 bit stream.

9.6.1. Backwards-Compatible MPEG-2 Frame
Formatting

If a 5.1 channel signal is to be transmitted using an MPEG-2 encoder and backwards
compatibility with an MPEG-1 decoder is required, the fi rst step is to down-mix

1.

2.

3.

9.6. MPEG-2 333

334 Chapter 9 MPEG Audio

the fi ve input channels into a basic stereo pair. This down-mixing process is usually
referred to as matrixing and the resulting stereo pair is denoted by L0 and R0. This
stereo pair is then allocated to transmission channels T0 and T1 and encoded using
an MPEG-1 encoder. Transmission channels T2, T3, and T4 contain the audio data
required to reconstruct the remaining multichannel signal and are coded using an
MPEG-2 extension encoder as shown in Figure 9.19.

Backwards compatibility with an MPEG-1 decoder is achieved by placing
the data for transmission channels T0 and T1 in the audio data field of an
MPEG-1 frame and all the multichannel extension data in the ancillary data field
of the frame as shown in Figure 9.20. An MPEG-1 decoder simply ignores the
multichannel data in the ancillary data field and decodes the stereo pair L0/ R0.
An MPEG-2 decoder decodes both the stereo pair and the multichannel data
and performs a dematrixing procedure to obtain the decoded 5.1 multichannel
signals.

MPEG-1

Encoder

MPEG-2

Extension

encoder

Matrix

L

C

R

LS

RS

T0 = L0

T1 = R0

T2

T3

T4

Bit stream

formatting

MPEG-1 compatible
audio frame

Figure 9.19 The down-mixed stereo pair is encoded using an MPEG-1 encoder and the remaining
multichannel data is encoded using an MPEG-2 extension encoder.

Figure 9.20 Data format of an MPEG-2 audio frame that is backwards compatible with an MPEG-1
decoder.

9.6.2. Matrixing Procedures for Backwards
Compatibility

The MPEG-2 standard defi nes four possible matrixing procedures that can be used
to obtain the L0/R0 stereo pair from a 5.1 channel signal. The equations used for
procedures 0, 1, and 3 are

 L0 � α (L � βC � γLS) (9.28)

 R0 � α (R � βC � γ RS) (9.29)

Matrixing procedure 2 can be used to produce a L0/R0 stereo pair that is compat-
ible with a Dolby Pro Logic decoder and the equations used for this procedure are

 L0 � α (L � βC � γ jS) (9.30)

 R0 � α (R � βC � γ jS) (9.31)

To obtain the signal jS used in Equations (9.30) and (9.31), half Dolby B-type
encoding is applied to the signals LS and RS followed by a 90	 phase shift. The mono-
phonic component of the resulting signals is then calculated and limited in bandwidth
to the range 100–7 kHz to produce the surround signal jS. The transfer function of the
bandwidth-limiting fi lter is given in Equation (9.32) and the coeffi cients to be used in
this equation are given in Table 9.28 for each input sampling frequency.

 H z
a z z

b b z b z
() ()

�
� �

� �

� �

� �

0
1 2

0 1
1

2
2

1 2
 (9.32)

The attenuation factors, α, β, and γ, differ for each procedure and are given in Table 9.29.

9.7. SUMMARY

The DVB digital television standard prescribes the use of an MPEG-1 or backwards
compatible MPEG-2 bit stream to transmit audio information. The MPEG-1 audio
standard defi nes a multilayer coding algorithm with each additional layer providing
increased complexity and coding effi ciency. The MPEG-2 BC audio standard defi nes
a mechanism for transmitting a multichannel audio signal that can be decoded by an
MPEG-1 decoder. The encoding algorithm, syntax, and decoding algorithm for the
fi rst two layers of the MPEG-1 standard and the matrixing operations required to allow
an MPEG-1 decoder to decode an MPEG-2 bit stream are described in this chapter.

9.7. Summary 335

Table 9.28 Filter coefficients for the filter used in matrixing procedure 2.

Sampling frequency (kHz) a0 b0 b1 b2

32 486 2048 �471 370
44.1 295 2048 �1394 521
48 294 2048 �1388 520

© This Table is based on AS/NZS 13818.3:2002. Permission to reprint has been granted by
SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

336 Chapter 9 MPEG Audio

PROBLEMS

9.1 Draw a simple block diagram of an MPEG-1 encoder that includes the following system
components and briefl y explain the function of each of these components:

(a) Analysis fi lterbank

(b) Psychoacoustic model

(c) Dynamic bit allocation

(d) Normalization quantization and coding

(e) Bitstream formatting

9.2 Briefl y explain the four audio coding modes that are possible with an MPEG-1 audio coder.

9.3 Explain how a scalefactor is calculated for each of the subbands in an audio block.

9.4 Explain why a psychoacoustic model is used to calculate a signal-to-mask ratio value for
each subband.

9.5 Explain what is meant by the following terms when used in the context of Psychoacoustic
model 1 in the MPEG-1 encoder:

(a) Maximum sound pressure level in each subband

(b) Threshold-in-quiet

(c) Tonal and Nontonal components

(d) Individual masking threshold

(e) Global masking threshold

(f) Signal-to-mask ratio

9.6 Explain how the global masking threshold curve is calculated from the individual mask-
ing curves for each masker.

9.7 Explain how the minimum masking threshold for each subband is calculated from the
global masking curve.

9.8 Describe the process for allocating the number of bits to be used to quantize the sub-
band samples in each subband for a Layer I coder.

9.9 Describe the process for quantizing and coding subband samples in each subband for a
Layer I coder.

9.10 Complete the following table by determining the actual bits to be transmitted to the
decoder for the given normalized subband sample and bspl values.

Table 9.29 Attenuation factors for each matrixing procedure.

Matrixing procedure α β γ

0 1

1 2�

1

2

1

2

1 1

1 5 0 5 2. .�

1

2

1

2

2 1

1 2�

1

2

1

2

3 1 0 0

© This Table is based on AS/NZS 13818.3:2002. Permission to reprint has been granted
by SAI Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Subband sample bspl Code word

0.2311 3
�0.6068 5

0.4860 7
�0.8913 9

9.11 Calculate the number of slots per frame for a Layer I coder with an input sampling rate
of 48 kHz and output bitrate of 128 kbit/s.

9.12 With the aid of a diagram describe the format of an MPEG-1 Layer I audio frame.

9.13 Briefl y explain the major differences between the MPEG-1 Layer 1 encoding algorithm
and the MPEG-1 layer II encoding algorithm.

9.14 Complete the following table by determining the pair of scalefactor difference classes,
the scalefactors to be used in the encoder, the transmission pattern and the scalefactor
selection information for each set of three scalefactor indices.

Scalefactor
indices Class1 Class2

Scalefactors
used in encoder

Transmission
pattern

Selection
information

5,10,20
32,34,36
20,25,26
16,18,17
48,32,34
36,30,24

9.15 Describe the process for allocating the number of bits to be used to quantize the sub-
band samples in each subband for a Layer II coder.

9.16 Describe the process for quantizing and coding subband samples in each subband for a
Layer II coder.

9.17 With the aid of a diagram, explain what is meant by the following terms when used in
the context of quantizing and coding subband samples in an MPEG-1 layer II encoder:

(a) Superblock

(b) Block

(c) Granule

(d) Group

9.18 Complete the following table by determining the actual bits to be transmitted to the
decoder for the given sets of three normalized subband sample values.

Subband samples bspl Code word

�0.1106, 0.8436, �0.1886 5
0.2309, 0.4764, 0.8709 7
0.5839, �0.6475, 0.8338 9

�0.1795, �0.2943, �0.7222 10

9.19 Calculate the number of slots per frame for a Layer II coder with an input sampling rate
of 48 kHz and output bitrate of 128 kbit/s.

Problems 337

338 Chapter 9 MPEG Audio

9.20 With the aid of a diagram describe the format of an MPEG-1 Layer II audio frame.

9.21 Determine the actual bits required in the header of an MPEG-1 audio frame for the
audio stream with the following confi guration:

Property Value

ID ISO/IEC 11172-3
Layer I
Error protection redundancy None
Bitrate 128 kbit/s
Sampling frequency 44.1 kHz
Padding slot required No
Mode Single channel
Copyright Protected
Original Yes
Emphasis None

9.22 Determine the actual bits required in the header of an MPEG-1 audio frame for the
audio stream with the following confi guration:

Property Value

ID ISO/IEC 11172-3
Layer II
Error protection redundancy None
Bitrate 256 kbit/s
Sampling frequency 48 kHz
Padding slot required No
Mode Intensity_stereo
Subbands in intensity_stereo 4–31
Copyright Protected
Original Yes
Emphasis None

9.23 Decode the following bit stream that represents a single audio frame from an MPEG-1
Layer II bit stream.

9.24 With the aid of diagrams, explain how a multichannel audio signal can be encoded with
an MPEG-2 encoder to produce an MPEG-1 compatible audio frame.

MATLAB EXERCISE 9.1

The aim of this exercise is to implement the Psychoacoustic model used in the
MPEG-1 Layer I/II encoder.

Write a MATLAB function to determine the scalefactor for each subband
given a block of 12 sets of 32 subband samples and using the scalefactor
values defi ned in Section 9.1.2.

Write a MATLAB function to calculate the FFT of a set of 512 input audio
samples using the equation defi ned in Section 9.1.3.1.

1.

2.

Write a MATLAB function to determine the maximum sound pressure
level in each subband given a set of 256 FFT coeffi cients and the scal-
efactors for each subband of the corresponding subband samples using the
equation defi ned in Section 9.1.3.2.

Write a MATLAB function to determine the threshold in quiet at the sub-
sampled frequency values for each input sampling frequency.

Write a MATLAB function to locate the tonal and nontonal masking compo-
nents for a set of 256 FFT coeffi cients using the code given in Section 9.1.3.4.

Write a MATLAB function to decimate the tonal and nontonal masking
components for a set of 256 FFT coeffi cients using the code given in Sec-
tion 9.1.3.5.

Write a MATLAB function to calculate the individual masking threshold
for a set of tonal and nontonal masking components using the code given in
Section 9.1.3.6.

Write a MATLAB function to calculate the global masking threshold
for a set of individual masking thresholds using the equation given in
Section 9.1.3.7.

Write a MATLAB function to calculate the minimum masking threshold
in each subband for a given global masking thresholds using the equation
given in Section 9.1.3.8.

 Write a MATLAB function to calculate the signal-to-mask ratio for a set
of minimum masking threshold and sound pressure level values using the
pseudocode given in Section 9.1.3.9.

 Combine these functions to produce a MATLAB program that calculates
the signal-to-mask-ratio for each subband given a block of 12 sets of 32 sub-
band samples.

 Write a MATLAB function to calculate the number of bits allocated to each
subband given a set of signal-to-mask ratio values for each subband.

 Combine the functions from 11 and 12 and determine the number of bits
allocated to each subband for a block of 12 sets of 32 subband samples.

MATLAB EXERCISE 9.2

The aim of this exercise is to implement the quantization and inverse quantization
algorithms used in the MPEG Layer I encoder.

Write a MATLAB function to quantize a block of subband sample values
with the number of bits specifi ed by a set of bit allocation values for each
subband using the quantization algorithm given in Section 9.1.6.

Write a MATLAB function to produce a block of subband samples values
from a bit stream containing the code words corresponding to a set of quan-
tized subband sample values.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

1.

2.

MATLAB Exercise 9.2 339

340 Chapter 9 MPEG Audio

MATLAB EXERCISE 9.3

The aim of this exercise is to implement the scalefactor coding and decoding algo-
rithms used in the MPEG-1 Layer II encoder and decoder.

Write a MATLAB function to determine the two scalefactor difference
classes for a set of three scalefactor indices using the algorithm described in
Section 9.2.2.

Write a MATLAB function to determine the scalefactor to be used in the
encoder and the scalefactor selection information given a set of three scal-
efactor indices and their scalefactor difference classes.

Write a MATLAB function to produce a set of three scalefactor indices given
a bit stream containing the scalefactors and scalefactor selection information
for an MPEG-1 Layer II audio frame.

REFERENCES

ISO/IEC 11172-3: 1993, Information technology—Coding of moving pictures and associated audio
for digital storage media at up to about 1.5 Mbit/s, Part 3: Audio.
ITU-R Recommendation BS-775-1, Multichannel stereophonic sound system with and without ac-
companying picture.
ISO/IEC 13818-3: 1995/Amd. 1: 1996, Information technology—Generic coding of moving pictures
and associated audio information, Part 3: Audio.
ISO/IEC 13818-7: 1997/Cor. 1: 1998, Information technology—Generic coding of moving pictures
and associated audio information, Part 7: Advanced audio coding.

1.

2.

3.

1.

2.

3.

4.

341

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 10

Dolby AC-3 Audio

The Dolby AC-3 standard describes an algorithm suitable for coding an audio sig-
nal with channel formats ranging from monophonic to 5.1 channels into a serial bit
stream with data rates ranging from 32 to 640 kbits/s. The AC-3 algorithm is based
on the transform coding technology developed for the AC-2 coding algorithm in
1989. The AC-2 algorithm operated on stereo signals only and relied on a 4-2-4
multichannel matrix system to transmit a four-channel surround-sound signal. By
1990 it was realized that the data compression performed by the 4-2-4 matrix system
could be better performed as part of the coding algorithm and the development of
a multichannel audio coder was initiated. The fi rst implementation of such a multi-
channel coder was used for providing a 5.1 channel digital soundtrack in cinemas in
1991. This early implementation of the AC-3 algorithm (or Dolby digital as it is usu-
ally called) converted a 5.1 channel input signal into a serial bit stream with a single
output bit rate of 320 kbits/s. This rate was determined by the maximum amount of
data that could be reliably placed and extracted from the area between the sprocket
holes on one side of the 35 mm fi lm.

In February 1992, the U.S. Advanced Television Systems Committee formally
recommended the use of a 5.1 channel audio signal for the U.S. HDTV service. The
AC-3 coder was considered as a possible technique to provide this audio signal. How-
ever, the requirements placed for an audio coder providing such a service are more
diverse than for a coder intended solely for digital cinema applications. So the basic
AC-3 algorithm was improved to provide extra functionality. These extra features in-
cluded support for a range of output bit rates, the ability to downmix the 5.1 channel
output to fewer channels, and the ability to reproduce the output signal with a re-
stricted dynamic range. In late 1993, the AC-3 coding algorithm was formally evalu-
ated using subjective testing and was subsequently recommended for use in the U.S.
HDTV system. The standard was initially published in November 1994 and a revised
edition containing a backwards-compatible alternate bit-stream syntax was published
in August 2001 [1]. (The latest version of the standard can be found at www.atsc.org.)

A block diagram of the AC-3 encoder is shown in Figure 10.1. The fi rst step in
the encoding process is to convert a sequence of audio input samples into a block of

342 Chapter 10 Dolby AC-3 Audio

frequency coeffi cients. This is achieved using a time-domain aliasing cancellation
(TDAC) transform approach as discussed in Section 8.6 of Chapter 8. Then each fre-
quency coeffi cient in the block is represented in fl oating point format as an exponent
and a mantissa. The exponent acts as a scalefactor for the mantissa and indicates the
number of leading zeros in the binary integer representation of the coeffi cient. Ex-
ponent values can range from 0 to 24 and are fi xed at 24 if the coeffi cient has more
leading zeros. The set of exponents is also used as an approximation of the power
spectral density of the signal and is referred to as the spectral envelope of the signal.
This spectral envelope is then used in the bit-allocation process to determine the
quantizer step size for the mantissas for each coeffi cient. The bit-allocation process
uses a model of frequency masking to determine the precision required for each
mantissa.

An AC-3 bit stream consists of a sequence of synchronization frames as shown
in Figure 10.2. Each synchronization frame includes six audio blocks, each of which
contains the coded data representing 256 new input samples. Each synchronization
frame begins with a synchronization information (SI) header, which contains infor-
mation necessary to acquire and maintain synchronization, and a bit-stream infor-
mation (BSI) header that contains parameters describing the coded audio service.
The synchronization frame ends with an error check fi eld that contains a CRC code
word used for error detection, and an auxiliary (Aux) data fi eld may also be included
after the coded audio blocks.

Exponent Bit

Mantissa Bit-stream

Audio
Mantissas

Exponents

Coded

Quantized Digital

Analysis filter
bank

Exponent
coding

Bit
allocation

quantization formatting

samples

exponents

mantissas bit stream

Figure 10.1 Block diagram of the AC-3 encoder. © Advanced Television Standards Committee Inc.
2001. A copy of this standard is available at http://www.atsc.org.

SI xuA0BAISB CRCAB1 AB2 AB3 AB4 AB5SI xuA0BAISB CRCAB1 AB2 AB3 AB4 AB5SI xuA0BAISB CRCAB3AB2AB1 AB5AB4

Synchronization frame

Figure 10.2 Format of an AC-3 synchronization frame.

The algorithms and bit-stream syntax associated with a basic implementation of
the AC-3 encoder and decoder are described in more detail in the following sections.

10.1. ENCODER

A more detailed fl ow diagram of the encoding process is shown in Figure 10.3, and
the individual components of this diagram are explained in more detail in the following
section.

Input Samples

Transient Detect

Extract Exponents

Dither Strategy

Encode Exponents

Forward Transform

Coupling Strategy

Form Coupling
Channel

Rematrixing

Exponent Strategy

Normalize Mantissas

Core Bit Allocation

Output Frame

Pack AC-3 Frame

Quantize
Mantissas

block switch
flag

dither flag

coupling
strategy info

rematrixing
flags

exponent
strategy info

Encoded Spectral Envelope

Mantissas

bit allocation
params

bit allocation
params

Quantized
Mantissas

Audio DataSide
Information

Figure 10.3 Flow diagram of the AC-3 encoding process.

10.1. Encoder 343

344 Chapter 10 Dolby AC-3 Audio

10.1.1. Audio Input Format

The AC-3 encoder accepts audio samples with a precision of up to 24 bits. The
sampling rate of the input signal is directly proportional to the output. The input
sample rate must be chosen such that each AC-3 audio frame consists of the audio
data for 1536 audio samples. If the input audio data is sampled at a rate other than
that required, sample rate conversion must be preformed to achieve the desired input
sample rate. The input sample rate is indicated by the 2-bit code word fscod. The
sampling rate indicated by each value of this code word is shown in Table 10.1.

The input audio signal may have one of the eight possible channel confi gura-
tions (usually referred to as audio coding modes) as shown in Table 10.2. The p/q
notation is typically used in multichannel systems to indicate p front and q back
channels. These channels are referred to as full-bandwidth channels as opposed to
the low-frequency effects channel that typically has a much smaller bandwidth. So
if the low-frequency effects channel is present, the total number of channels to be
transmitted is equal to the number of full-bandwidth channels plus one. The 1�1
notation is used to indicate two completely independent input channels.

Individual input channels may also be fi ltered to remove the DC components.
This allows more effi cient coding of the input signal. A typical encoder would fi lter the

Table 10.1 Sample rate code words.

fscod Sampling rate (kHz)

“00” 48
“01” 44.1
“10” 32
“11” Reserved

© Advanced Television Standards Committee Inc. 2001. A copy of
this standard is available at http://www.atsc.org.

Table 10.2 Audio coding modes.

acmod Audio coding mode nfchans Channel array ordering

“000” 1�1 2 Ch1, Ch2
“001” 1/0 1 C
“010” 2/0 2 L, R
“011” 3/0 3 L, C, R
“100” 2/1 3 L, R, S
“101” 3/1 4 L, C, R, S
“110” 2/2 4 L, R, Ls, Rs
“111” 3/2 5 L, C, R, Ls, Rs

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

input signals using a high-pass fi lter with a cutoff frequency of 3 Hz. The LFE channel
may also be fi ltered using a low-pass fi lter with a cutoff frequency of 120 Hz.

10.1.2. Transient Detection

One common problem that is encountered by most digital audio encoders is the
occurrence of preecho. This problem is associated with transients in the audio sig-
nal that take the form of a period of silence followed by the rapid onset of a loud
percussive sound such as a cymbal clash or a drum beat. If these transients occur in
the middle of an audio block, the quantization strategy for that block is determined
based on the loud sound rather than the period of silence, and this generally results
in relatively large quantizer step sizes being chosen for the entire block. Because the
frequency-domain coeffi cients translate back to sinusoidal waveforms that extend
over the entire reconstructed audio signal, the large amount of distortion associ-
ated with the coarse quantization strategy is present in the period of silence at the
beginning of the block and is not hidden by either frequency masking or backward
temporal masking. Hence, the noise at the beginning of the block is usually clearly
audible and is referred to as preecho.

One solution to this problem is to use a shorter window length for the transform
so that backward temporal masking can be used to mask the preechoes. However,
shorter window lengths result in an increase in block overhead information and an
increase in the overlap of subbands in the frequency domain. Therefore, a typical
approach in audio coding is to switch between long and short transform windows
depending on the transient behavior of the input audio signal.

In the AC-3 encoder, transient detection is used to determine when to switch
between a single 512-sample window and two 256-sample windows. The transient
detection algorithm is divided into four basic steps:

high-pass fi ltering,

segmentation of the block into subblocks,

peak amplitude detection within each subblock, and

threshold comparison.

The high-pass fi lter used in the fi rst step should have a cutoff frequency of 8
kHz. Each block of 256 high-pass fi ltered samples is then segmented into a
hierarchical tree of subblocks. Level 1 in the tree corresponds to the entire 256-sample
block, Level 2 consists of two 128-sample subblocks, and Level 3 consists of four
64-sample subblocks. The peak detection algorithm then determines the sample with
the largest magnitude in each subblock in each level of the hierarchical tree. The
peak magnitude in subblock k of Level j is denoted by Pj,k.

The fi rst step in the threshold comparison process is to determine if the maxi-
mum signal level in the block is above a silence threshold. This is achieved by com-
paring P1,1 with the silence threshold value of 100/32768. If the value of P1,1 is below
the silence threshold, the remaining threshold comparison is not performed and a
transient is not detected in the current 256-sample block. If P1,1 is above the silence

1.

2.

3.

4.

10.1. Encoder 345

346 Chapter 10 Dolby AC-3 Audio

threshold, the next step in the threshold comparison process is to compare the ratio
of the peak values of adjacent subblocks at each level with a predefi ned threshold Tj.
The threshold values for each level are shown in Table 10.3.

If any of these ratios is above the threshold, a transient is detected in the current
256-sample block. Note that for the fi rst subblock of each level, the ratio of peak values
is calculated using the last subblock of the same level from the previously calculated
tree. For example, P3,1 of the current tree and P3,4 of the preceding tree would be used
to calculate the ratio for the fi rst subblock in Level 3 of the current tree.

If a transient is detected in the second half of the 512-sample block, this is
indicated by a value of 1 for the blksw[ch] fl ag, and the following forward transform
operation is performed using two 256-point transform operations.

10.1.3. Forward Transform

The TDAC transform process requires that the input audio samples be multiplied by
a window function. The values for the fi rst half of this window function are given in
Table 10.4. These values are mirrored and repeated to form a 512-point symmetrical
window function.

The forward transform is then performed using the following equation:

X k
N

w n x n
N

n k k() () () ()() (�
�

� � � �
2 2

4
2 1 2 1 2 1cos

π π
4

))()

∑ 1

2
0

1

�

� �

�

�

α

for 0 1
n

N

k N,. . ., (10.1)

Where x(n) is the set of input samples, w(n) is the window function with the
values shown in Table 10.4, and X(k) is the set of transform coeffi cients. The variable
α is used to control the time offset for the transform basis functions and is given by

α �

�1,

,

for the first short transform

 for t0 hhe long transform

for the second short t�1, rransform

 (10.2)

Figure 10.4 shows an example of a set of 512 samples of a typical audio wave-
form, and Figure 10.5 shows the set of 256 output coeffi cients for these input samples
when the forward transform is applied using a single long window.

Table 10.3 Threshold values of the transient detection
algorithm.

Level (j) Tj

1 0.1
2 0.075
3 0.05

T
ab

le
 1

0.
4

W
in

do
w

 f
un

ct
io

n
fo

r
th

e
T

D
A

C
 tr

an
sf

or
m

.

w
(i

�
 j)

j�
0

j�
1

j�
2

j�
3

j�
4

j�
5

j�
6

j�
7

j�
8

j�
9

i�
0

0.
00

01
4

0.
00

02
4

0.
00

03
7

0.
00

05
1

0.
00

06
7

0.
00

08
6

0.
00

10
7

0.
00

13
0

0.
00

15
7

0.
00

18
7

i�
10

0.
00

22
0

0.
00

25
6

0.
00

29
7

0.
00

34
1

0.
00

39
0

0.
00

44
3

0.
00

50
1

0.
00

56
4

0.
00

63
2

0.
00

70
6

i�
20

0.
00

78
5

0.
00

87
1

0.
00

96
2

0.
01

06
1

0.
01

16
6

0.
01

27
9

0.
01

39
9

0.
01

52
6

0.
01

66
2

0.
01

80
6

i�
30

0.
01

95
9

0.
02

12
1

0.
02

29
2

0.
02

47
2

0.
02

66
2

0.
02

86
3

0.
03

07
3

0.
03

29
4

0.
03

52
7

0.
03

77
0

i�
40

0.
04

02
5

0.
04

29
2

0.
04

57
1

0.
04

86
2

0.
05

16
5

0.
05

48
1

0.
05

81
0

0.
06

15
3

0.
06

50
8

0.
06

87
8

i�
50

0.
07

26
1

0.
07

65
8

0.
08

06
9

0.
08

49
5

0.
08

93
5

0.
09

38
9

0.
09

85
9

0.
10

34
3

0.
10

84
2

0.
11

35
6

i�
60

0.
11

88
5

0.
12

42
9

0.
12

98
8

0.
13

56
3

0.
14

15
2

0.
14

75
7

0.
15

37
6

0.
16

01
1

0.
16

66
1

0.
17

32
5

i�
70

0.
18

00
5

0.
18

69
9

0.
19

40
7

0.
20

13
0

0.
20

86
7

0.
21

61
8

0.
22

38
2

0.
23

16
1

0.
23

95
2

0.
24

75
7

i�
80

0.
25

57
4

0.
26

40
4

0.
27

24
6

0.
28

10
0

0.
28

96
5

0.
29

84
1

0.
30

72
9

0.
31

62
6

0.
32

53
3

0.
33

45
0

i�
90

0.
34

37
6

0.
35

31
1

0.
36

25
3

0.
37

20
4

0.
38

16
1

0.
39

12
6

0.
40

09
6

0.
41

07
2

0.
42

05
4

0.
43

04
0

i�
10

0
0.

44
03

0
0.

45
02

3
0.

46
02

0
0.

47
01

9
0.

48
02

0
0.

49
02

2
0.

50
02

5
0.

51
02

8
0.

52
03

1
0.

53
03

3
i�

11
0

0.
54

03
3

0.
55

03
1

0.
56

02
6

0.
57

01
9

0.
58

00
7

0.
58

99
1

0.
59

97
0

0.
60

94
4

0.
61

91
2

0.
62

87
3

i�
12

0
0.

63
82

7
0.

64
77

4
0.

65
71

3
0.

66
64

3
0.

67
56

4
0.

68
47

6
0.

69
37

7
0.

70
26

9
0.

71
15

0
0.

72
01

9
i�

13
0

0.
72

87
7

0.
73

72
3

0.
74

55
7

0.
75

37
8

0.
76

18
6

0.
76

98
1

0.
77

76
2

0.
78

53
0

0.
79

28
3

0.
80

02
2

i�
14

0
0.

80
74

7
0.

81
45

7
0.

82
15

1
0.

82
83

1
0.

83
49

6
0.

84
14

5
0.

84
77

9
0.

85
39

8
0.

86
00

1
0.

86
58

8
i�

15
0

0.
87

16
0

0.
87

71
6

0.
88

25
7

0.
88

78
2

0.
89

29
1

0.
89

78
5

0.
90

26
4

0.
90

72
8

0.
91

17
6

0.
91

61
0

i�
16

0
0.

92
02

8
0.

92
43

2
0.

92
82

2
0.

93
19

7
0.

93
55

8
0.

93
90

6
0.

94
24

0
0.

94
56

0
0.

94
86

7
0.

95
16

2
i�

17
0

0.
95

44
4

0.
95

71
3

0.
95

97
1

0.
96

21
7

0.
96

45
1

0.
96

67
4

0.
96

88
7

0.
97

08
9

0.
97

28
1

0.
97

46
3

i�
18

0
0.

97
63

5
0.

97
79

9
0.

97
95

3
0.

98
09

9
0.

98
23

6
0.

98
36

6
0.

98
48

8
0.

98
60

2
0.

98
71

0
0.

98
81

1
i�

19
0

0.
98

90
5

0.
98

99
4

0.
99

07
6

0.
99

15
3

0.
99

22
5

0.
99

29
1

0.
99

35
3

0.
99

41
1

0.
99

46
4

0.
99

51
3

i�
20

0
0.

99
55

8
0.

99
60

0
0.

99
63

9
0.

99
67

4
0.

99
70

6
0.

99
73

6
0.

99
76

3
0.

99
78

8
0.

99
81

1
0.

99
83

1
i�

21
0

0.
99

85
0

0.
99

86
7

0.
99

88
2

0.
99

89
5

0.
99

90
8

0.
99

91
9

0.
99

92
9

0.
99

93
8

0.
99

94
6

0.
99

95
3

i�
22

0
0.

99
95

9
0.

99
96

5
0.

99
96

9
0.

99
97

4
0.

99
97

8
0.

99
98

1
0.

99
98

4
0.

99
98

6
0.

99
98

8
0.

99
99

0
i�

23
0

0.
99

99
2

0.
99

99
3

0.
99

99
4

0.
99

99
5

0.
99

99
6

0.
99

99
7

0.
99

99
8

0.
99

99
8

0.
99

99
8

0.
99

99
9

i�
24

0
0.

99
99

9
0.

99
99

9
0.

99
99

9
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
1.

00
00

0
i�

25
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

1.
00

00
0

©
 A

dv
an

ce
d

Te
le

vi
si

on
 S

ta
nd

ar
ds

 C
om

m
it

te
e

In
c.

 2
00

1.
 A

 c
op

y
of

 th
is

 s
ta

nd
ar

d
is

 a
va

il
ab

le
 a

t h
tt

p:
//

w
w

w
.a

ts
c.

or
g.

347

348 Chapter 10 Dolby AC-3 Audio

Each frequency coeffi cient is then converted to an exponent and a mantissa. The
exponent indicates the number of leading zeros in the binary integer representation
of the coeffi cient. The exponents are integer values ranging from 0 to 24 and are
fi xed at 24 if the coeffi cient has more leading zeros. For example, a coeffi cient with
a value of 0.1 would be represented as 0.8 � 2�3, where 0.8 is the mantissa value and

0 32 64 96 128 160 192 224 256 288 320 352 384 416 448 480 512
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

n

x(n)

Figure 10.4 An example of a set of 512 input samples of an audio waveform.

0 32 64 96 128 160 192 224 256
–0.1

–0.05

0

0.05

0.1

0.15

0.2

k

X(k)

Figure 10.5 Output coeffi cients of the forward transform for the input samples shown in Figure 10.4.

3 is the exponent value. Figure 10.6 shows the exponent values for the output coef-
fi cients shown in Figure 10.5. Note that the exponent values are always negative, so
only the magnitude is required to be transmitted to the decoder. The method for cod-
ing the exponent and mantissa values is discussed in Sections 10.1.7 and 10.1.9.

10.1.4. Channel Coupling

For multichannel audio signals, there is often a signifi cant amount of correlation be-
tween the different channels in the audio signal. Channel coupling is a means of ex-
ploiting this correlation to reduce the output bit rate of the AC-3 coder. The basis of
the technique is to combine the high-frequency portion of several channels to form a
single coupling channel. The coeffi cients of this coupling channel are transmitted as
a set of mantissas and exponents in the same manner as the uncoupled coeffi cients of
each channel. Then, in order to reconstruct an approximation of the original chan-
nels at the decoder, the ratio of the magnitude of the original coeffi cients in each
channel to the coeffi cients in the coupling channel is also calculated. This ratio is
called a coupling coordinate and is not calculated for each coeffi cient but is instead
calculated for groups of coeffi cients called coupling bands.

The justifi cation for reducing the bit rate in this way stems from the way the hu-
man ear perceives the directionality of an audio source. At frequencies above about
2 kHz, the ear determines the direction of a source using the level difference and
interaural time delay of the envelope of the signal. So, for multichannel signals, as
long as approximately the same signal envelope for the high-frequency components
is maintained, the ear still perceives the correct directional information from the
decoded sound source.

0 32 64 96 128 160 192 224 256
–24

–20

–16

–12

–8

–4

 0

k

exponent
value

Figure 10.6 Exponent values for the output coeffi cients shown in Figure 10.5.

10.1. Encoder 349

350 Chapter 10 Dolby AC-3 Audio

Coupling may be performed on frequency coeffi cients 37 to 252 only. These
coeffi cients are grouped into 18 coupling subbands, with 12 coeffi cients in each
subband. The coeffi cient numbers corresponding to the beginning and end of each
coupling subband are given in Table 10.5.

The parameters cplbegf and cplendf indicate the fi rst and last coupling subbands,
respectively, that are included in the coupling process. The parameter cplendf is trans-
mitted as a 4-bit unsigned integer and, hence, has a maximum value of 15, so the de-
coder adds 2 to the value of cplendf to obtain the last coupling band used.

The coupling subbands may be combined to form coupling bands (coupling
coordinates are transmitted for each coupling band in each channel included in
the coupling process). The parameter cplbndstrc[sbnd] is used to indicate which
subbands have been combined and which subbands are treated independently.
cplbndstrc[sbnd] is treated as an array of single bit elements with one element
for each subband included in the coupling process, except for the fi rst subband. No
element is transmitted in cplbndstrc[sbnd] for the fi rst subband included in the
coupling process. A value of 1 for a bit in cplbndstrc[sbnd] indicates that the cor-
responding subband should be combined with the subband immediately below it in
frequency, and a value of 0 indicates that the subband should start a new coupling
band. For example, a basic encoder coupling strategy would produce the following
coupling parameters:

Table 10.5 Coupling subbands.

Subband No. Start coefficient End coefficient

0 37 48
1 49 60
2 61 72
3 73 84
4 85 96
5 97 108
6 109 120
7 121 132
8 133 144
9 145 156

10 157 168
11 169 180
12 181 192
13 193 204
14 205 216
15 217 228
16 229 240
17 241 252

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

cplbegf � 6
cplendf � 12
cplbndstrc � 00110111

These parameters indicate that the coupling is performed using subbands 6 to 14
and that four coupling bands are formed from subbands 6, 7, 8–10, and 11–14.

The coeffi cients of the coupling channel are calculated by averaging the
coeffi cients of the individual channels included in the coupling process. Only those
coeffi cients that correspond to the coupling bands are included in this process. How-
ever, simply averaging the coeffi cients may lead to an inaccurate estimate of the
combined signal power when the coeffi cients to be combined represent signals that
are close to 180� out-of-phase with each other. If this is the case, then the coeffi cients
in the out-of-phase bands may be negated before the coupling channel is determined.
This does not usually result in any perceived difference in the directionality of the
sound source since the human auditory system does not use the interaural phase shift
to determine directionality at these frequencies.

For the special case of 2/0 mode (left and right side channels only) it is possible
to restore the relative phase of the two channels at the decoder. This is achieved
by sending phase restoration information to the decoder using the parameter
phsfl g[bnd]. This parameter is treated as an array of single bit elements with one
element for each coupling band. A value of 1 for a bit in phsfl g[bnd] indicates that
the coeffi cients of the right channel in the corresponding coupling band have been
negated before the coupling channel was formed.

EXAMPLE 10.1

Figure 10.7 shows an example of the left and right audio signals for a stereo pair. Note that the am-
plitude of the high-frequency components is much larger in the right-hand signal than in the left.

0 64 128 192 256 320 384 448 512
–1

–0.5

0

0.5

1

0 64 128 192 256 320 384 448 512
–1

–0.5

0

0.5

1

l(n)

r(n)

n

n
Figure 10.7 Audio signals for the left and right side channels of a stereo pair.

10.1. Encoder 351

352 Chapter 10 Dolby AC-3 Audio

If coupling is to be performed on these two channels using subbands 6 to 14, Figure 10.8
shows the frequency coeffi cients that would be used for the two channels.

The next step in the coupling process is to adjust the phase of the right channel to avoid
phase cancellation and combine subbands into bands. One suitable coupling strategy for these
channels would be to form six coupling bands from subbands 6, 7, 8, 9–11, 12–13 and 14. For
this strategy, the coupling parameters to be transmitted to the decoder are

cplbegf � 6
cplendf � 12
cplbndstrc � 00011010
phsfl g � 010101

Now the coupling channel can be formed by averaging the coeffi cients from the left
channel and the phase-adjusted right channel. The resulting coupling channel coeffi cients are
shown in Figure 10.9.

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06

L (k)

k

R (k)

k
Figure 10.8 Frequency coeffi cients corresponding to subbands 6 to 14 for the left and right
channels shown in Figure 10.7.

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06
XC(k)

k
 Figure 10.9 Coupling channel coeffi cients. �

The next step in the coupling process is to calculate coupling coordinates for
each band in each coupled channel. These coupling coordinates are determined by
dividing the average magnitude of the original coeffi cients in a coupled band by
the average magnitude of the coeffi cients in the same band of the coupling chan-
nel. The coupling coordinates for each band are transmitted using a 4-bit mantissa
cplcomant[ch][bnd] and a 4-bit exponent cplcoexp[ch][bnd].

To guarantee that the coupling coordinate values used to generate the mantissa and
exponent are always in the range 0.0 to 1.0, coupling coordinate values should be limited
to the range 0.0 to 8.0. Then, before converting the coordinate values to a fl oating-point
representation, they are scaled to the range 0.0 to 1.0 by dividing by a factor of 8.0.

The coupling exponents indicate the number of leading zeros in the binary repre-
sentation of the fractional coupling coordinates. Except for the case when the exponent
value is 15, the mantissa values are always positive values in the range 0.5–1.0. Hence
when the exponent value is less than 15, the most signifi cant bit of the mantissa is always
1 and is not transmitted. So when the exponent value is less than 15, the 4-bit value of
cplcomant[ch][bnd] is generated by multiplying the mantissa value by 32 and then
subtracting 16 from the result. If the exponent value is equal to 15, cplcomant[ch][bnd]
is calculated by multiplying the mantissa value by 16.

The dynamic range of the coupling coordinates can be increased by transmit-
ting a 2-bit master coupling coordinate mstrcplco[ch] for any of the coupled chan-
nels. The exponent values for all coupling coordinates in the corresponding channel
are increased three times the value of mstrcplco[ch].

EXAMPLE 10.2

Figure 10.10 shows the frequency coeffi cient values and the average coeffi cient magnitudes for
each coupling band of the left and right side channels shown in Figure 10.7, and Figure 10.11

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06

L(k)

k

R (k)

k

Average magnitude per
coupling band

Average magnitude per
coupling band

Figure 10.10 Frequency coeffi cient values and the average coeffi cient magnitudes for each
coupling band of the left and right side channels shown in Figure 10.7.

10.1. Encoder 353

354 Chapter 10 Dolby AC-3 Audio

shows the average coeffi cient magnitudes for each band of the coupling channel generated in
the previous example.

Now, using these average magnitude values, the coupling coordinates for the six bands
in each channel are generated. The values of the average coeffi cient magnitudes for each band
are shown in Table 10.6 along with the corresponding coupling coordinates for each band of
the left and right side channels.

Then, after converting these coupling coordinates into a fl oating point representation,
the values to be transmitted for cplcomant[ch][bnd] and cplcoexp[ch][bnd] are shown in

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06
XC(k)

k

Average magnitude per
coupling band

Figure 10.11 Frequency coeffi cient values and the average coeffi cient magnitudes for each band of
the coupling channel.

Table 10.6 Average coefficient magnitudes and the corresponding coupling coordinates
for each coupling band.

Coupling band

Average magnitude (� 10�3) Coupling coordinates

Left Right Coupling Left Right

0 1.68 1.60 1.28 1.3131 1.2522
1 0.80 0.82 0.54 1.4803 1.5296
2 1.02 2.00 1.09 0.9353 1.8273
3 2.08 4.36 2.89 0.7216 1.5112
4 5.58 9.44 5.94 0.9393 1.5908
5 8.65 14.34 9.52 0.9078 1.5056

Table 10.7 Transmitted values for cplcomant[ch][bnd] and cplcoexp[ch][bnd] and the
corresponding decoded coupling coordinates.

cplcomant cplcoexp Decoded coordinates

Left Right Left Right Left Right

5 4 2 2 1.3125 1.25
7 8 2 2 1.4375 1.5

13 13 3 2 0.90625 1.8125
7 8 3 2 0.71875 1.5

14 9 3 2 0.9375 1.5625
13 8 3 2 0.90625 1.5

Table 10.7 along with corresponding values for the coupling coordinates that would be gener-
ated at the decoder.

At the decoder, the values of each element of phsfl g[bnd] and the decoded coupling
coordinates would be used to reconstruct the high-frequency portions of the original left and
right side channels. Figure 10.12 shows the original and reconstructed frequency coeffi cients
that would be obtained for the left and right side channels shown in Figure 10.7. Figure 10.13
shows the reconstructed audio signals obtained by performing the inverse TDAC transform
on the original low-frequency coeffi cients and the reconstructed high-frequency coeffi cients.
Figures 10.7 and 10.13 show that the coupling process has maintained the relationship between
the high-frequency envelopes of the two channels.

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06

109 121 133 145 157 169 181 193 205 217
–0.06

–0.04

–0.02

0

0.02

0.04

0.06

L(k)

k

R(k)

k

L’(k)

R’(k)

Figure 10.12 Original and reconstructed frequency coeffi cients for the left and right side channels
shown in Figure 10.7.

Figure 10.13 Reconstructed audio signals for the left and right side channels shown in Figure 10.7. �

0 64 128 192 256 320 384 448 512
–1

–0.5

0

0.5

1

0 64 128 192 256 320 384 448 512
–1

–0.5

0

0.5

1

l¢(n)

r ¢(n)

n

n

10.1. Encoder 355

356 Chapter 10 Dolby AC-3 Audio

So, after coupling has been performed, there are a number of different types
of channels that are transmitted to the receiver. Consider the example shown in
Figure 10.14 where only the left and right side channels are included in the coupling
process. The coeffi cients of the coupled channels (the left and right side channel
in this example) are coded individually as exponent and mantissa values up to the
coeffi cient bin number indicated by the parameter cplstrtmant. Then above this bin
number, the coeffi cients are coded using coupling parameters up to the bin number
indicated by cplendmant. The coeffi cients of the coupling channel are only required
for bin numbers between cplstrtmant and cplendmant and are coded individually
as exponent and mantissa values. The remaining full bandwidth channels that are
not included in the coupling process are referred to as independent channels, and
these are shown as shaded parts in Figure 10.14. The coeffi cients of the indepen-
dent channels are coded individually as exponent and mantissa values up to the
bin number indicated by fbwendmant[ch]. Note that the value of fbwendmant[ch]
may be different for each independent channel. Finally the coeffi cients in the low-
frequency effects channel are coded individually as exponent and mantissa values
up to the bin number indicated by lfeendmant. The starting bin numbers for the full
bandwidth and LFE channels are indicated by fbwstrtmant[ch] and lfestrtmant,
respectively.

10.1.5. Rematrixing

Rematrixing is an additional channel combination technique that is employed in the
2/0 audio coding mode. When rematrixing is in use, the coder is able to transmit
a L�R signal and a L�R signal instead of the original L and R stereo signals. If
coupling is also in use, rematrixing is only performed on those frequencies below
the coupling frequency.

Left

Center

Right

Coupling

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Left

Right

Left surround

Right surround

Coupling

Low frequency effects

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Exponent/Mantissa

Coupling coordinate

Coupling coordinate

endmant cplendmantcplstrtmantlfeendmant

Coefficient bin number

Figure 10.14 Structure of the channels to be coded when coupling is in use.

The use of rematrixing allows a signifi cant reduction in the bit rate when the
original left and right side signals are highly correlated. Rematrixing is also impor-
tant for preserving compatibility with Dolby surround algorithms. Consider the case
where the input left and right side signals are transmitted without rematrixing. The
received left and right side signals, denoted by Lr and Rr , are

L L N

R R N
r

r

� �

� �

1

2

(10.3)

where N1 and N2 denote the uncorrelated quantization noise associated with the
encoding process. The Dolby Pro Logic decoder takes these received signals and
constructs a center and surround channel, denoted by C and S, respectively, which
are as follows:

C L R N N

S L R N N

� � � �

� � � �

0 5

0 5

1 2

1 2

.

.

()()
()() (10.4)

So, for the decoded center channel, the noise signals add, but the resulting noise
remains masked by L�R since this signal is of similar magnitude to the original
left and right side signals. However, for the decoded surround channel, because the
noise signals are uncorrelated they also add, but in this case the L�R signal is much
smaller in magnitude than the original left and right side signals and may not mask
the decoded noise signal.

Now consider the case when rematrixing is in use. The received left and right
side signals are

L L R N

R L R N

r

r

� � �

� � �

0 5

0 5

1

2

.

.

()
() (10.5)

Note that, in this case, the encoding process attempts to mask all quantization
noise in the L�R signal, and hence N2 is typically much smaller in magnitude than
N1. The Dolby Pro Logic decoder takes these received signals and constructs the
center and surround channel as follows:

C L

S R
r

r

�

�
(10.6)

Hence the quantization noise remains masked for the decoded center and sur-
round signals. The decoded left and right side signals, denoted by Ld and Rd, are

L L R L N N

R L R R N N

d r r

d r r

� � � � �

� � � � �

1 2

1 2

()
() (10.7)

10.1. Encoder 357

358 Chapter 10 Dolby AC-3 Audio

So for both these signals the uncorrelated noise signals add but are dominated
by the much larger N1. Hence most, if not all, of the decoded noise remains masked
by the L and R signals, which are of similar magnitude to the 0.5(L�R) signal that
was used in the encoding process.

10.1.5.1. Rematrixing Frequency Bands

The rematrixing process is conducted using independent frequency bands. The
boundary locations for these bands are defi ned using the coeffi cient numbers and
depend on the number of coeffi cients that are included in the coupling process.
Tables 10.8 to 10.11 show the four rematrixing band boundaries to be used for differ-
ent values of cplbegf.

Table 10.8 Rematrixing bands, coupling not in use.

Band No. Start Coeff. End Coeff.

0 13 24
1 25 36
2 37 60
3 61 252

© Advanced Television Standards Committee Inc. 2001. A copy of this
standard is available at http://www.atsc.org.

Table 10.9 Rematrixing bands, cplbegf � 2.

Band No. Start Coeff. End Coeff.

0 13 24
1 25 36
2 37 60
3 61 36 � cplbegf � 12

© Advanced Television Standards Committee Inc. 2001. A copy of this
standard is available at http://www.atsc.org.

Table 10.10 Rematrixing bands, 2 � cplbegf � 0.

Band No. Start Coeff. End Coeff.

0 13 24
1 25 36
2 37 36 � cplbegf � 12

© Advanced Television Standards Committee Inc. 2001. A copy of this
standard is available at http://www.atsc.org.

10.1.5.2. Encoding Technique

In the 2/0 audio coding mode, rematrixing is always in use. However, for each re-
matrixing band it is still possible to transmit the original L and R channels rather
than rematrixing them into sum and difference channels. The decision to rematrix
or not is made using the sum of the squares of the coeffi cients in the band. This
sum is calculated for the L and R channels and for the L � R and L � R combina-
tions. If the minimum of these four sums for a rematrixing band corresponds to
the L or R channels, then L and R channels are transmitted for that band. Alter-
natively, if the minimum sum corresponds to the L � R or the L � R combination,
then the rematrixed sum and difference channels 0.5(L � R) and 0.5(L � R) are
transmitted.

The type of channel to be transmitted for each band is indicated by the param-
eter rematfl g[rbnd]. This parameter is treated as an array of single bit elements
with one element for each rematrixing band. A value of 1 for a bit in rematfl g[rbnd]
indicates that the coeffi cients in the band have been rematrixed into sum and differ-
ence channels.

10.1.6. Extract Exponents

After the coupling (and rematrixing if in 2/0 mode) strategies have been deter-
mined, the coeffi cients that are to be transmitted to the decoder are known. These
coeffi cients are transmitted in fl oating point form as a mantissa and an exponent
value.

The exponent information is coded differentially across the transmitted fre-
quency range for the channel. The fi rst exponent of the channel is sent as a 4-bit
absolute value with a range of 0–15. Then successive exponent values are transmit-
ted as differential values. These differential values are referred to as differential
exponents and are limited to one of the following fi ve values: �2, �1, 0, 1, or 2. The
decoded differential exponents can be used to form an approximation of the power
spectral density of the audio signal. This approximation is commonly referred to as
the coded spectral envelope of the signal.

The differential exponents can be calculated using three different methods that
are referred to as exponent strategies. The difference between the three methods
is simply the number of original exponents corresponding to each differential ex-
ponent. The fi rst method is called the D-15 exponent strategy, and in this method

Table 10.11 Rematrixing bands, cplbegf � 0.

Band No. Start Coeff. End Coeff.

0 13 24
1 25 36

© Advanced Television Standards Committee Inc. 2001. A copy
of this standard is available at http://www.atsc.org.

10.1. Encoder 359

360 Chapter 10 Dolby AC-3 Audio

a differential exponent is transmitted for every original exponent value. The D-15
strategy results in the highest resolution spectral envelope and also requires the most
number of bits to transmit. For this reason the D-15 strategy is typically used for
signals with a spectral envelope that remains relatively stable over time. For this type
of signal, the coded spectral envelope is usually transmitted once at the beginning of
each audio frame and is reused for each of the six audio blocks in the frame.

EXAMPLE 10.3

Figure 10.15 shows the original exponent values for the fi rst 36 coeffi cients of Figure 10.6
together with the differentially coded spectral envelope for the signal when the D-15 exponent
strategy is in use. Figure 10.16 shows the differential exponents that would be transmitted to
the decoder for the spectral envelope shown in Figure 10.15.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
–24

–20

–16

–12

 –8

 –4

 0

Exponent
(6 dB)

k
Figure 10.15 Original exponent values and the corresponding differentially coded spectral
envelope for the fi rst 36 coeffi cients shown in Figure 10.6.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
–3

–2

–1

0

1

2

3

Differential
exponent

(6 dB)

k
Figure 10.16 Transmitted differential exponents for the spectral envelope shown in Figure 10.15.

Figure 10.15 shows that the limited range of possible differential exponent values means
that the coded spectral envelope may not always exactly match the original exponent values.
However, if the coded spectral envelope is always greater than or equal to the actual expo-
nent values, then the discrepancy simply means that the mantissa value to be quantized and
transmitted is smaller than the original mantissa value. To illustrate this point, Figure 10.17
shows the original mantissa values for the fi rst 36 coeffi cients of Figure 10.5 together with the
mantissa values obtained by dividing the same 36 coeffi cients by the coded spectral envelope
shown in Figure 10.15. �

The second method is called the D-25 exponent strategy, and in this method
a differential exponent is transmitted for every two original exponent values.
The D-25 strategy results in a medium-resolution spectral envelope and is
typically used for signals with a spectral envelope that remains relatively stable
for two to three audio blocks. Hence, if the D-25 exponent strategy is in use,
the coded spectral envelope is usually transmitted twice for each audio frame
and the same spectral envelope is used for three consecutive audio blocks in
the frame.

The fi nal method is called the D-45 exponent strategy, and in this method a dif-
ferential exponent is transmitted for every four original exponent values. The D-45
strategy results in a low-resolution spectral envelope and is typically used for tran-
sient signals where the spectral envelope changes for each block but is usually rela-
tively fl at in nature. Consequently, a coded spectral envelope is usually transmitted
for every audio block if the D-45 strategy is in use.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

Original
Mantissa

k

Encoded
Mantissa

Figure 10.17 Original mantissa values and the mantissa values to be quantized and transmitted for
the fi rst 36 coeffi cients of Figure 10.5.

10.1. Encoder 361

362 Chapter 10 Dolby AC-3 Audio

EXAMPLE 10.4

Figure 10.19 shows the coded spectral envelope produced using the D-45 exponent strategy
for the coeffi cients of the transient signal shown in Figure 10.18.

0 64 128 192 256 320 384 448 512
–1

–0.8

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

1

x(n)

n
Figure 10.18 Transient audio signal produced by a castanet “click.”

0 32 64 96 128 160 192 224 256
–24

–20

–16

–12

 –8

 –4

 0

k

D-45 Coded
spectral
envelope

Exponents
(6 dB)

Figure 10.19 Original exponent values and the D-45 coded spectral envelope for the coeffi cients of
the transient signal shown in Figure 10.18. �

The exponent strategy in use for a full bandwidth channel is transmitted to the
decoder using a 2-bit code word for each channel designated by chexpstr[ch]. If the
coupling channel is present, the 2-bit code word cplexpstr is used. The exponent
strategy corresponding to each value of these code words is shown in Table 10.12 for
full bandwidth and coupling channels.

If the low-frequency effects channel is enabled, the exponent strategy is
transmitted to the decoder using a single bit code word designated by lfeexpstr. A
value of 1 for lfeexpstr indicates that a new spectral envelope coded using the D-15
exponent strategy will be transmitted for the current audio block, otherwise the
spectral envelope from the previous block should be reused.

If a full bandwidth channel is not included in the coupling process, it is often not
necessary to transmit the entire set of coeffi cients for the channel. In such cases, the
last coeffi cient to be transmitted is indicated by a channel bandwidth code, designated
by chbwcod[ch]. The channel bandwidth code is transmitted to the decoder as a 6-
bit unsigned integer and is calculated from the end mantissa bin number, endmant[ch],
using the following formula:

chbwcod[ch]� ((endmant[ch] � 37) / 3) � 12 (10.8)

Valid values for chbwcod[ch] lie in the range 0–60.

10.1.7. Encode Exponents

The spectral envelope for a channel is transmitted using a 4-bit absolute value for
the fi rst exponent of the channel followed by a set of differential exponents. For full
bandwidth and low-frequency effects channels, the initial absolute value is limited
to the range 0 to 15, and exponent values larger than 15 are truncated. For the cou-
pling channel, the absolute exponent is limited to even values and is divided by a
factor of 2 before transmission. The initial absolute exponent value is transmitted to
the decoder using a 4-bit unsigned integer designated by cplabsexp, exps[ch][0],
and lfeexps[0] for the coupling, full bandwidth, and low-frequency effects channels,
respectively.

Each differential exponent is fi rst mapped to a positive integer, called a mapped
value, by adding a factor of 2. Then each set of three adjacent mapped values is
grouped into a 7-bit grouped value using the formula:

Table 10.12 Exponent strategy code words.

chexpstr[ch], cplexpstr Exponent strategy

“00” Reuse prior exponents
“01” D15
“10” D25
“11” D45

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

10.1. Encoder 363

364 Chapter 10 Dolby AC-3 Audio

 G� 25M1 � 5M2 �M3 (10.9)

where G denotes the 7-bit grouped value, and M1, M2, and M3 are three adjacent
mapped values. The grouped values are transmitted to the decoder using 7-bit
unsigned integers designated by cplexps[grp], exps[ch][grp], and lfeexps[grp] for
the coupling, full bandwidth, and low frequency effects channels, respectively.

10.1.8. Bit Allocation

The bit-allocation strategy used in the AC-3 algorithm consists of two separate pro-
cedures; a standard core bit-allocation procedure and an optional delta bit-allocation
procedure. The core bit-allocation algorithm uses the coded spectral envelope as an
approximation to the power spectral density of the transmitted signal. A standard
psychoacoustic model is then used to determine a masking threshold for the signal.
This threshold can be used to determine the number of bits to be allocated to each
mantissa for a given level of perceived distortion at the receiver. The psychoacoustic
model used in the core bit-allocation procedure is defi ned as part of the standard.
The approach used is to iteratively decrease the level of noise introduced by the cod-
ing process until the required bit rate is reached and then transmit the fi nal setup of
the model to the decoder via a number of parameters in the bit stream. The decoder
can then reproduce the identical bit-allocation values for each coeffi cient and cor-
rectly decode the transmitted coeffi cients.

The advantage of this approach is that it is not necessary to transmit the actual
bit allocation for each coeffi cient in the bit stream. The decoder has the coded spec-
tral envelope and the parameters of the psychoacoustic model that were used in the
encoding process, so it can repeat the calculations and arrive at identical bit-
allocation values. The disadvantage of this approach is that the psychoacoustic model
is fi xed and cannot be improved or changed for different input signals. To overcome
this problem, the syntax allows for delta bit-allocation parameters to be transmitted
so that the bit-allocation values obtained by the standard psychoacoustic model can
be adjusted to match the output of an alternative model. These adjustments should
only be minor because the standard psychoacoustic model usually provides a good
approximation to the required acoustic model.

10.1.8.1. Initialization

The fi rst step in the core bit-allocation process is to initialize the strtmant and
endmant parameters for each of the channels. These parameters are determined us-
ing chincpl[ch] for each full bandwidth channel, cplbegf and cplendf for the cou-
pled and coupling channels, and chbwcod[ch] for the independent channels. The
following MATLAB code defi nes the algorithm used to initialize these parameters.
The value of the parameter nfchans is equal to the number of full bandwidth channels
and is determined from acmod as shown in Table 10.2.

for ch � 0:nfchans-1

 fbwstrtmant(ch�1) � 0;

 if chincpl(ch�1)
 fbwendmant(ch�1) � 37 � (12*cplbegf);
 else
 fbwendmant(ch�1) � 37 � (3*(chbwcod(ch�1) � 12));
 end
end

cplstrtmant � 37 � (12*cplbegf);
cplendmant � 37 � (12*(cplendf � 3));

lfestrtmant � 0;
lfeendmant � 7;

Then, in the following procedures, the parameters strtmant and endmant are
equal to fbwstrtmant[ch] and fbwendmant[ch] for the full bandwidth channels,
cplstrtmant and cplendmant for the coupling channel, and lfestrtmant and lfeend-
mant for the LFE channel.

10.1.8.2. Exponent to PSD Conversion

The next step in the core bit-allocation procedure is to convert the coded spectral
envelope to a power spectral density function. The conversion process consists
of simply shifting the range of coded spectral envelope values from [�24, 0] to
[0, 3027]. The algorithm used is defi ned by the following MATLAB code:

for bin � strtmant:endmant
 psd(bin�1) � 3072 - exponent(bin�1)*128;
end

10.1.8.3. PSD Integration

The next step in the process is to convert the domain of the PSD values from a
fi ne-resolution linear frequency scale into a scale that approximates the Bark scale.
To perform this conversion, the frequency scale is subdivided into 50 nonuniform
frequency bands. The power spectral density value for each band, designated by
bndpsd[band], is found by calculating the integral of the PSD values in the band.
The width of the bands is nonuniform and is derived from the critical bandwidths
at the corresponding frequency. The starting bin number for each band is defi ned
using the array bndtab[band], and the width of each band is defi ned using the array
bndsz[band]. The values contained in these two arrays are shown in Table 10.13.

The conversion from a linear frequency scale into bands corresponding to the
Bark scale requires the integration of the linear values corresponding to the loga-
rithmic PSD values. So a direct computation of bndpsd[band] would require the

10.1. Encoder 365

366 Chapter 10 Dolby AC-3 Audio

conversion of the logarithmic PSD values into linear values, then a summation, and
fi nally a conversion back to a logarithmic scale for the banded PSD values. However,
because the logarithmic PSD values are available, this process of log addition can be
performed more effi ciently if the following relationship is used:

log max log , log log log
2 2 2 2 1 2 2a b a b� � � � �() () ()() aa b() ()()�log2 (10.10)

Equation (10.10) shows that if a and b are dissimilar and hence |log(a)� log(b)|
is large, then the second term on the right-hand side becomes insignifi cant.
Consequently, log2(a�b) is dominated by the larger values of a and b and can be
approximated by max(log2(a),log2(b)). Alternatively, if a and b are similar then the
second term on the right-hand side is signifi cant and provides the required adjustment

Table 10.13 Bark scale banding structure.

band bndtab[band] bndsz[band] band bndtab[band] bndsz[band]

0 0 1 25 25 1
1 1 1 26 26 1
2 2 1 27 27 1
3 3 1 28 28 3
4 4 1 29 31 3
5 5 1 30 34 3
6 6 1 31 37 3
7 7 1 32 40 3
8 8 1 33 43 3
9 9 1 34 46 3

10 10 1 35 49 6
11 11 1 36 55 6
12 12 1 37 61 6
13 13 1 38 67 6
14 14 1 39 73 6
15 15 1 40 79 6
16 16 1 41 85 12
17 17 1 42 97 12
18 18 1 43 109 12
19 19 1 44 121 12
20 20 1 45 133 24
21 21 1 46 157 24
22 22 1 47 181 24
23 23 1 48 205 24
24 24 1 49 229 24

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

to max(log2(a),log2(b)). The maximum adjustment is required when a and b are
equal, in which case the second term becomes log2(1 � 1) � 1.

In the AC-3 encoder, the log addition is performed using a maximum opera-
tion for the fi rst term on the right-hand side of Equation (10.10) and a subtraction,
absolute value, and table lookup for the second term. The output of the table lookup
operation is the integer part of 64 log2(1 � 2�d/32), if d is the index to the table. So
the algorithm used to calculate the banded PSD values is defi ned by the following
MATLAB code. The values in the lookup table, latab[], used in the log-addition
process are shown in Table 10.14, and the table used to convert bin numbers to band
numbers, masktab[], is shown in Table 10.15.

Table 10.14 Log addition lookup table values, latab[i�j].

j� 0 j� 1 j� 2 j� 3 j� 4 j� 5 j� 6 j� 7 j� 8 j� 9

i� 0 64 63 62 61 60 59 58 57 56 55
i� 10 54 53 52 52 51 50 49 48 47 47
i� 20 46 45 44 44 43 42 41 41 40 39
i� 30 38 38 37 36 36 35 35 34 33 33
i� 40 32 32 31 30 30 29 29 28 28 27
i� 50 27 26 26 25 25 24 24 23 23 22
i� 60 22 21 21 21 20 20 19 19 19 18
i� 70 18 18 17 17 17 16 16 16 15 15
i� 80 15 14 14 14 13 13 13 13 12 12
i� 90 12 12 11 11 11 11 10 10 10 10
i� 100 10 9 9 9 9 9 8 8 8 8
i� 110 8 8 7 7 7 7 7 7 6 6
i� 120 6 6 6 6 6 6 5 5 5 5
i� 130 5 5 5 5 4 4 4 4 4 4
i� 140 4 4 4 4 4 3 3 3 3 3
i� 150 3 3 3 3 3 3 3 3 3 2
i� 160 2 2 2 2 2 2 2 2 2 2
i� 170 2 2 2 2 2 2 2 2 1 1
i� 180 1 1 1 1 1 1 1 1 1 1
i� 190 1 1 1 1 1 1 1 1 1 1
i� 200 1 1 1 1 1 1 1 1 1 1
i� 210 0 0 0 0 0 0 0 0 0 0
i� 220 0 0 0 0 0 0 0 0 0 0
i� 230 0 0 0 0 0 0 0 0 0 0
i� 240 0 0 0 0 0 0 0 0 0 0
i� 250 0 0 0 0 0 0 0 0 0 0

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

10.1. Encoder 367

368 Chapter 10 Dolby AC-3 Audio

bin � strtmant;
band � masktab(strtmant11);
lastbin � bin;
while (lastbin � endmant)

 % calculate the last coeffi cient bin number in the current critical
 % band
 lastbin � min(bndtab(band�1) � bndsz(band�1), endmant);

 % fi nd the PSD values for the current band using the process of log
 % addition
 bndpsd(band�1) � psd(bin�1);
 bin � bin�1;

Table 10.15 Bin number to band number conversion table, masktab[i�j].

j� 0 j� 1 j� 2 j� 3 j� 4 j� 5 j� 6 j� 7 j� 8 j� 9

i� 0 0 1 2 3 4 5 6 7 8 9
i� 10 10 11 12 13 14 15 16 17 18 19
i� 20 20 21 22 23 24 25 26 27 28 28
i� 30 28 29 29 29 30 30 30 31 31 31
i� 40 32 32 32 33 33 33 34 34 34 35
i� 50 35 35 35 35 35 36 36 36 36 36
i� 60 36 37 37 37 37 37 37 38 38 38
i� 70 38 38 38 39 39 39 39 39 39 40
i� 80 40 40 40 40 40 41 41 41 41 41
i� 90 41 41 41 41 41 41 41 42 42 42
i� 100 42 42 42 42 42 42 42 42 42 43
i� 110 43 43 43 43 43 43 43 43 43 43
i� 120 43 44 44 44 44 44 44 44 44 44
i� 130 44 44 44 45 45 45 45 45 45 45
i� 140 45 45 45 45 45 45 45 45 45 45
i� 150 45 45 45 45 45 45 45 46 46 46
i� 160 46 46 46 46 46 46 46 46 46 46
i� 170 46 46 46 46 46 46 46 46 46 46
i� 180 46 47 47 47 47 47 47 47 47 47
i� 190 47 47 47 47 47 47 47 47 47 47
i� 200 47 47 47 47 47 48 48 48 48 48
i� 210 48 48 48 48 48 48 48 48 48 48
i� 220 48 48 48 48 48 48 48 48 48 49
i� 230 49 49 49 49 49 49 49 49 49 49
i� 240 49 49 49 49 49 49 49 49 49 49
i� 250 49 49 49 0 0 0

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

 for i � bin:lastbin-1
 bndpsd(band�1) � logadd(bndpsd(band�1),psd(bin�1));
 bin � bin�1;
 end
 band � band�1;
end

function x � logadd(a,b)

c � a - b;

% fi nd the address into the look up table latab using the difference in the
% PSD values
d � min(fl oor(abs(c)/2),255);

if (c �� 0)
 x � a � latab(d�1);
else
 x � b � latab(d�1);
end

10.1.8.4. The Spreading Function

The banded PSD values are then used to estimate the masking threshold curve by con-
volving them with a spreading function. The spreading function is approximated by
a fast-decaying upward masking curve and a slow-decaying upward masking curve
as shown in Figure 10.20. Downward masking is ignored in this algorithm to reduce
computational complexity at the expense of calculating a more conservative masking
threshold.

A simplifi ed convolution is then performed using the two masking curves
and the banded PSD values. The calculations for the convolution operation are
carried out using the logarithmic amplitude values available in the bndpsd[band]
array. This simplifi es the process since, in the log domain, multiplication can be

(bndpsd[band])

fgain

sgain

Banded PSD
(bndpsd[band])

Fast decay masking curve
(slope = –fdecay, offset = bndpsd [band]–fgain)

Slow decay masking curve
(slope = –sdecay, offset = bndpsd [band]–sgain)

fgain

sgain

Band

Figure 10.20 Linear masking curves used to approximate the upward masking spreading function.

10.1. Encoder 369

370 Chapter 10 Dolby AC-3 Audio

performed by addition, and log additions can be approximated by a maximum
value operation.

To explain this simplifi cation further, consider the case of performing a lin-
ear convolution of a signal xn and a fi lter with exponentially decaying coeffi cients
[1,1/2,1/4,1/8].

In the linear domain, the output of this convolution is

y
x x x

xn
n n n

n� � � �� � �3 2 1

8 4 2 (10.11)

However, if the convolution is performed in the log domain and log addition is
replaced with the maximum operator, the output of the convolution is

log max log , log , log2 2 3 2 2 23 2y x x xn n n() () ()� � �� � nn nx� �1 21() ()(), log (10.12)

For the special case of a fi lter with exponentially decaying coeffi cients, the pro-
cess can be simplifi ed further by performing the maximum operation in a recursive
manner. The output of the convolution can now be written as a function of the previ-
ous output and is

log max log , log2 2 1 21y y xn n n() () ()()� �� (10.13)

To see why this recursive simplifi cation is possible, consider the previous con-
volution output given by

log max log , log , log2 1 2 3 2 22 1y x xn n n� � �� � �() () () 22 1xn�()() (10.14)

Then, if both sides of this equation are decayed, the result is

log max log , log , l2 1 2 3 2 21 2 1y x xn n n� � �� � � �() () () oog

max log , log

2 1

2 3 2 2

1

3 2

x

x x

n

n n

�

� �

�

� � �

()()
() () ,, log2 1 1xn� �()() (10.15)

Hence, the output of the convolution process in the log domain can be obtained
by simply fi nding the maximum of the current input and a decayed version of the
previous output.

An example illustrating this simplifi cation process is shown in Figure 10.21.
Figure 10.21 shows that, when n � 3, the maximum of the decayed values of the pre-
vious inputs (log2(x0)� 3) is equal to the decayed previous output value (log2(y2)� 1).
So the output of the convolution for n � 3 is given by the maximum of log2(y2)� 1
and log2(x3).

This simplifi ed convolution process is conducted for the two linear masking
curves, and the fi nal output is referred to as the excitation function for the current set

of banded PSD values. The convolution process to determine the excitation function
is illustrated in Figure 10.22. The output of the convolution of the fast-decaying mask-
ing curve with the banded PSD values is stored in the fastleak parameter as shown in
Figure 10.22(a). The output of the convolution of the slow-decaying masking curve

Figure 10.21 Illustration of the simplifi cation process for performing convolution in the log
domain with exponentially decaying fi lter coeffi cients.

30 1 2

log2(x0)

log2(x1)

log2(x2)

log2(x2)-1

log2(x1)-2

log2(x3)

log2(y2)-1 = log2(x0)-3

log2(y1)

log2(y2)

n

Figure 10.22 An example illustrating the convolution process used to form the excitation function.

bndpsd[band]-fgain

fastleak

band

bndpsd[band]-sgain

slowleak

band

slowleak fastleak

excite [band]

band

(b)(a)

(c)

10.1. Encoder 371

372 Chapter 10 Dolby AC-3 Audio

with the banded PSD values is stored in the slowleak parameter as shown in Figure
10.22(b). The fi nal excitation function, designated by excite[band], is calculated by
taking the maximum of the fastleak and slowleak values for each band as shown in
Figure 10.22(c).

10.1.8.5. Compensation for Decoder Selectivity

A problem exists for the lower frequency coeffi cients of the decoder fi lterbank. At
these low frequencies there is a signifi cant amount of overlap between the subbands
of the decoder fi lterbank. So if quantization distortion is introduced into one band at
the encoder, then a signifi cant amount of this distortion appears in neighboring fre-
quencies at the output of the decoder fi lter bank. The problem occurs predominantly
at low frequencies where the slope of the masking curve can exceed the roll-off of
the fi lter frequency response.

In the AC-3 encoder a compensation for this poor decoder frequency selectivity
is incorporated into the calculation of the excitation function. The compensation is
only applied to frequencies between 0 and approximately 700 Hz, and this range is
further subdivided into two smaller frequency ranges. For frequencies below about
200 Hz, no upward masking is assumed when calculating the excitation function.
For frequencies between 200 and 700 Hz, upward masking is only enabled for fre-
quencies above the fi rst signifi cant spectral component.

In addition to these limitations on upward masking, the compensating factor,
lowcomp, is included in the calculation of the excitation function for frequencies
between 0 and about 2.3 kHz. The value for lowcomp is calculated using the slope
between consecutive banded PSD values using the algorithm defi ned by the follow-
ing MATLAB code.

% for frequencies below about 700 Hz

if band � 7

 % if two consecutive PSD values have a difference of 256 (�12 dB)
 % the value of lowcomp is set to 384 (an 18 dB adjustment)

 if bandpsd0 � 256 �� bandpsd1
 lowcomp � 384;

 % if two consecutive PSD values have a difference of �128 or �256 (�6
 % or �12 dB) the value for lowcomp is taken as the larger of: the
 % current value of lowcomp minus 64 and zero

 elseif bandpsd0 � bandpsd1
 lowcomp � max(0,lowcomp � 64);
 end

 % if two consecutive PSD values have a difference of 128 or 0 (�6 or 0
 % dB) the value for lowcomp remains unchanged

% for frequencies between about 700 Hz and 1.8 kHz the algorithm is the
% same except that the value of lowcomp is set to 320 (a 12 dB adjustment)

elseif band � 20

 if bandpsd0 � 256 �� bandpsd1
 lowcomp � 320;
 elseif bandpsd0 � bandpsd1
 lowcomp � max(0,lowcomp � 64);
 end

% for frequencies between about 1.8 kHz and 2.3 kHz, the value for lowcomp
% is taken as the larger of: the current value of lowcomp minus 128, and
% zero

else
 lowcomp 5 max(0,lowcomp � 128);
end

For frequencies below about 700 Hz, if any two consecutive PSD values have a
difference of 256 (i.e. a positive slope of 12 dB), the value of lowcomp is set to 384
(i.e., an 18-dB adjustment). If two consecutive PSD values have a difference of 128
or 0 (i.e., a positive slope of 6 or 0 dB), the value for lowcomp remains unchanged.
If two consecutive PSD values have a difference of �128 or �256 (i.e., a slope of
�6 or �12 dB), the value for lowcomp is taken as the larger of the current value of
lowcomp minus 64 and zero.

For frequencies between about 700 Hz and 1.8 kHz, the algorithm is the same
except that the value of lowcomp is set to 320 for a slope of 12 dB and, for frequen-
cies between about 1.8 and 2.3 kHz, the value for lowcomp is taken as the larger of
the current value of lowcomp minus 128 and zero.

So the full algorithm to compute the excitation function, including low-frequency
selectivity compensation, is defi ned by the following MATLAB code:

bndstrt � masktab(strtmant�1);
bndend � masktab(endmant) � 1;

% for fbw and lfe channels

if (bndstrt �� 0)

 % for frequencies below about 200 Hz, no upward masking is assumed when
 % calculating the excitation function.

 lowcomp � calc_lowcomp(lowcomp,bndpsd(1),bndpsd(2),0);
 excite(1) � bndpsd(1) - fgain - lowcomp;
 lowcomp � calc_lowcomp(lowcomp,bndpsd(2),bndpsd(3),1);
 excite(2) � bndpsd(2) - fgain - lowcomp;
 begin � 7;

 % for frequencies between 200 and 700 Hz, upward masking is only
 % enabled for frequencies above the fi rst signifi cant spectral
 % component.

 for band � 2:6

 % skip for the last band of the lfe channel

 if ((bndend ∼� 7) || (band ∼� 6))

10.1. Encoder 373

374 Chapter 10 Dolby AC-3 Audio

 lowcomp � calc_lowcomp(lowcomp,bndpsd(band�1),bndpsd(band�2),band);

 end

 % calculate the starting values for the convolution

 fastleak � bndpsd(band�1) - fgain;
 slowleak � bndpsd(band�1) - sgain;

 % but don’t perform masking until a signifi cant spectral component
 % is found

 excite(band�1) � bndpsd(band�1) - fgain - lowcomp;

 % skip for the last band of the lfe channel

 if ((bndend ∼� 7) || (band ∼� 6))

 % if a signifi cant spectral component is found begin upward
 % masking
 if (bndpsd(band�1) �� bndpsd(band�2))

 begin � band � 1;
 break;
 end
 end
end

for band � begin:min(bndend,22)-1

 % skip for the last band of the lfe channel

 if ((bndend ∼� 7) || (band ∼� 6))

 lowcomp � calc_lowcomp(lowcomp,bndpsd(band�1),bndpsd(band�2),band);

 end

 % perform the convolution in the log domain for the slow decaying
 % masking curve

 fastleak � fastleak - fdecay;
 fastleak � max(fastleak, bndpsd(band�1) - fgain);

 % perform the convolution in the log domain for the fast decaying
 % masking curve

 slowleak � slowleak - sdecay;
 slowleak � max(slowleak, bndpsd(band�1) - sgain);

 % the excitation function is taken as the maximum of the fast
 % decaying and slow decaying masking curves
 excite(band�1) � max(fastleak - lowcomp, slowleak);
 end
 begin � 22;

% for the coupling channel
else

 begin � bndstrt ;

end

for band � begin:bndend-1

 fastleak � fastleak - fdecay;

 fastleak � max(fastleak, bndpsd(band�1) - fgain);
 slowleak � slowleak - sdecay;
 slowleak � max(slowleak, bndpsd(band�1) - sgain);
 excite(band�1) � max(fastleak, slowleak);

end

where strtmant is equal to fbwstrtmant[ch], cplstrtmant, or lfestrtmant and endmant
is equal to fbwendmant[ch], cplendmant, or lfeendmant for the full bandwidth, cou-
pling, and LFE channels, respectively.

The values for the parameters sdecay, fdecay, and sgain are constant for all
channels and are transmitted to the decoder using the code words sdcycod, fdcycod,
and sgaincod. These code words are treated as addresses into the corresponding
lookup tables shown in Table 10.16.

The value for the parameter fgain may vary with the type of channel and
is transmitted to the decoder using the code words fgaincod[ch], cplfgaincod,
and lfefgaincod for the full bandwidth, coupling, and LFE channels, respec-
tively. These code words are treated as addresses into the lookup table shown in
Table 10.17.

For the coupling channel, initial values for the fastleak and slowleak parameter
other than zero may be used. These nonzero values are transmitted to the decoder
using the 3-bit unsigned integers, cplfl eak and cplsleak. The values for
these parameters are calculated from the initial values of fastleak and slowleak using
the following equations:

cplfl eak � (fastleak � 768) �� 8 (10.16)

cplsleak � (slowleak � 768) �� 8 (10.17)

10.1.8.6. Masking Curve Computation

Once the excitation function has been determined, the next step in the bit-
allocation process is to compute the masking threshold curve. This curve is cal-
culated using the absolute threshold of hearing, the excitation function, and the
parameter dbknee. This last parameter is used to adjust the masking curve ac-
cording to the absolute level of the masking signal. The results of experimental

Table 10.16 Bit allocation tables slowdec[], fastdec[], and slowgain[].

sdcycod slowdec[] fdcycod fastdec[] sgaincod slowgain[]

“00” 0x0f “00” 0x3f “00” 0x540
“01” 0x11 “01” 0x53 “01” 0x4d8
“10” 0x13 “10” 0x67 “10” 0x478
“11” 0x15 “11” 0x7b “11” 0x410

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

10.1. Encoder 375

376 Chapter 10 Dolby AC-3 Audio

listening tests have shown that the masking threshold increases by about 5 dB
for each 20 dB reduction in the absolute level of the masking tone. The param-
eter dbknee is used to indicate the level below which the masking threshold is
adjusted upward. If the masking signal is less than dbknee, the masking thresh-
old is adjusted upward by an amount proportional to the difference between the
masking signal and dbknee. If the masking signal is greater than dbknee, the
masking curve is not adjusted. The value of dbknee can be set to zero so that no
adjustment for masking signal level is included in the calculation. The algorithm
used to determine the masking threshold curve is defi ned by the following MAT-
LAB code:

bndstrt � masktab(strtmant�1)
bndend � masktab(endmant)

for band � bndstrt:bndend

 % if the masking signal is less than dbknee, the masking threshold is
 % adjusted upwards by an amount proportional to the difference between
 % the masking signal and dbknee.

 if bndpsd(band�1) � dbknee
 excite(band�1) � excite(band�1) � (dbknee � bndpsd(band�1))/4;
 end

 % if the masking signal is greater than dbknee, the masking curve is
 % not adjusted.

 mask(band�1) � max(excite(band�1), hth(fscod�1,band�1))

end

The array hth[fscod][band] contains values for the absolute threshold for each
band at each input sampling rate and is shown in Table 10.18.

The value for the parameters dbknee is constant for all channels and is transmitted
to the decoder using the code word dbpbcod. This code word is treated as an address
in the lookup table shown in Table 10.19.

Table 10.17 Bit allocation table fastgain[].

fgaincod fastgain[]

“000” 0x080
“001” 0x100
“010” 0x180
“011” 0x200
“100” 0x280
“101” 0x300
“110” 0x380
“111” 0x400

© Advanced Television Standards Committee Inc. 2001. A copy
of this standard is available at http://www.atsc.org.

Table 10.18 Absolute threshold table, hth[fscod][band].

Band

fs (kHz)/fscod

Band

fs (kHz)/fscod

48/0 44.1/1 32/2 48/0 44.1/1 32/2

0 1232 1264 1408 25 832 848 896
1 1232 1264 1408 26 816 832 896
2 1088 1120 1200 27 800 832 880
3 1024 1040 1104 28 784 800 864
4 992 992 1056 29 768 784 848
5 960 976 1008 30 752 768 832
6 944 960 992 31 752 752 816
7 944 944 976 32 752 752 800
8 928 944 960 33 752 752 784
9 928 928 944 34 768 752 768

10 928 928 944 35 784 768 752
11 928 928 944 36 832 800 752
12 928 928 928 37 912 848 752
13 912 928 928 38 992 912 768
14 912 912 928 39 1056 992 784
15 912 912 928 40 1120 1056 816
16 896 912 928 41 1168 1104 848
17 896 896 928 42 1184 1184 960
18 880 896 928 43 1120 1168 1040
19 880 896 928 44 1088 1120 1136
20 864 880 912 45 1088 1088 1184
21 864 880 912 46 1312 1152 1120
22 848 864 912 47 2048 1584 1088
23 848 864 912 48 2112 2112 1104
24 832 848 896 49 2112 2112 1248

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

10.1. Encoder 377

Table 10.19 Bit-allocation table dbpbtab[].

dbpbcod dbpbtab[]

“00” 0x000
“01” 0x700
“10” 0x900
“11” 0xb00

© Advanced Television Standards Committee Inc. 2001. A copy
of this standard is available at http://www.atsc.org.

378 Chapter 10 Dolby AC-3 Audio

10.1.8.7. Delta Bit Allocation

The AC-3 coder provides a means of adjusting the masking curve produced by
applying the default masking model. This adjustment might be necessary for
special types of signals or if a more sophisticated masking model is to be used.
The adjustment to the masking curve is achieved by transmitting a set of delta
bit-allocation parameters as side information. These parameters describe the
necessary adjustments to transform the default masking curve into the alternate
curve.

The existence of delta bit-allocation parameters in the bit stream is indicated
by the single bit code word deltbaie. A value of 1 for deltbaie indicates that
some delta bit-allocation information follows in the bit stream. A value of 0 for
deltbaie in blocks 2 to 6 indicates that the delta bit-allocation information from
the previous block is to be reused. However, if deltbaie is 0 in the fi rst block of the
audio frame, this indicates that no delta bit-allocation information is to be used in
the frame.

The delta bit-allocation strategy to be used in the current block is indicated by
the 2-bit code word deltbae[ch] for the full bandwidth channels or cpldeltbae for the
coupling channel as shown in Table 10.20.

The delta bit-allocation parameters describe a set of variable length and constant
amplitude segments where the amplitude of each segment is the difference between
the default masking curve and the alternate curve. The properties of these segments
are transmitted as follows.

The number of segments is indicated by a 3-bit unsigned integer deltnseg[ch].
The actual number of segments ranges from 1 to 8 and is calculated by adding 1 to
the transmitted 3-bit value. For the fi rst segment transmitted (seg � 0), the fi rst band
to be modifi ed by that segment is indicated by a 5-bit unsigned integer
deltoffst[ch][seg]. For subsequent segments, this parameter indicates the offset
from the last band of the previous segment to the fi rst band of the current segment.
The number of bands spanned by each segment is indicated by the 4-bit unsigned
integer deltlen[ch][seg]. The required adjustment to the default masking curve for
the current segment is indicated by the 3-bit code word deltba[ch][seg] as shown in
Table 10.21.

Table 10.20 Delta bit-allocation strategy.

cpldeltbae/deltbae Strategy

“00” Reuse previous state
“01” New info follows
“10” Perform no delta allocation
“11” Reserved

© Advanced Television Standards Committee Inc. 2001. A copy of this
standard is available at http://www.atsc.org.

The corresponding information, is transmitted for the coupling chan-
nel using the parameters cpldeltnseg, cpldeltoffst[seg], cpldeltlen[seg], and
cpldeltba[seg].

So if the default masking curve is to be modifi ed using the delta bit-allocation
parameters, the following pseudocode defi nes the algorithm used to make these ad-
justments for a single channel. The parameters deltbae, deltnseg, deltoffst[seg],
deltlen[seg], and deltba[seg] can be replaced by the parameters associated with the
channel being coded. The following MATLAB code defi nes the algorithm used to
perform the delta bit-allocation procedure.

if ((deltbae �� 0) || (deltbae �� 1))
 band � 0 ;

 % the number of segments is indicated by deltnseg.

 for seg � 0:deltnseg

 % deltoffst indicates the offset from the last band of the previous
 % segment to the fi rst band of the current segment.

 band � band � deltoffst(seg�1);

 % the required adjustment to the default masking curve for the
 % current segment is indicated by deltba

 if (deltba(seg�1) �� 4)
 delta � (deltba(seg�1) - 3)*128;
 else
 delta � (deltba(seg�1) - 4)*128;
 end

 % The number of bands spanned by each segment is indicated by
 % deltlen

 for k � 0:deltlen(seg�1)�1
 mask(band�1) � mask(band�1) � delta ;

Table 10.21 Delta bit allocation code words and adjustments.

cpldeltba/deltba Adjustment (dB)

“000” �24
“001” �18
“010” �12
“011” �6
“100” 6
“101” 12
“110” 18
“111” 24

© Advanced Television Standards Committee Inc. 2001. A copy of this
standard is available at http://www.atsc.org.

10.1. Encoder 379

380 Chapter 10 Dolby AC-3 Audio

 band � band � 1;
 end

 end
end

10.1.8.8. Compute Bit Allocation

In the fi nal step of the bit-allocation process, the signal-to-mask ratio is obtained
by subtracting the masking threshold values from the fi ne resolution PSD values.
This signal-to-mask ratio is converted to a 6-bit number and used as an index in a
lookup table to obtain the number of bits allocated to each coeffi cient mantissa.
The total number of bits allocated to coding the mantissa values is constrained to
be less than or equal to a fi xed number of bits available for the current audio frame.
The encoder controls the number of bits allocated by adjusting a constant offset,
snroffset, and a lower bound, snrfl oor, for the masking threshold values in the array
mask[band]. The adjustments are made to snroffset in an iterative manner until the
desired number of bits is produced. The value for snroffset at each iteration is cal-
culated using a global coarse offset value, csnroffst, and a fi ne offset value for each
full bandwidth channel, fsnroffst[ch], the coupling channel, cplfsnroffst, and the
low frequency channel, lfefsnroffst. The value for snroffset for each channel is
then calculated from these parameters using Equation (10.18) with the term fsn-
roffst replaced by the fi ne offset parameter associated with the channel being
coded.

 snroffset � ((csnroffst � 15) � 16 � fsnroffst) � 4 (10.18)

Once the required number of bits has been allocated to each channel, the
coarse offset parameter is transmitted to the decoder as a 6-bit unsigned integer
and the fi ne offset parameters for each channel are transmitted using 4-bit un-
signed integers. The following MATLAB code defi nes the algorithm used to
calculate the bit-allocation pointer, designated by bap[bin], for each mantissa
value.

bin � strtmant;
band � masktab(strtmant�1);
lastbin � bin;

while (endmant � lastbin)

 lastbin � min(bndtab(band�1) � bndsz(band�1),endmant);

 % the encoder controls the number of bits allocated by adjusting a
 % constant offset, snroffset, and a lower bound, snrfl oor, for the
 % masking threshold values.

 mask(band�1) � mask(band�1) - snroffset;
 mask(band�1) � mask(band�1) - snrfl oor;

 if (mask(band�1) � 0)
 mask(band�1) � 0;
 end

 mask(band�1) � bitand(mask(band�1),8160);
 mask(band�1) � mask(band�1) � snrfl oor;

 for k � bin:lastbin-1

 % the signal-to-mask ratio is obtained by subtracting the masking
 % threshold values from the fi ne resolution PSD values.

 address � fl oor((psd(bin�1) - mask(band�1))/32);

 % This signal to mask ratio is converted to a 6-bit number and used
 % as an index in to a lookup table to obtain the number of bits
 % allocated to each coeffi cient mantissa.

 address � min(63, max(0, address)) ;
 bap(bin�1) � baptab(address�1);

 bin � bin � 1;

 end

 band � band�1;

end

The lookup table, baptab[smr], to translate the signal-to-mask ratio values into
bit-allocation pointers is shown in Table 10.22.

The value for the parameter snrfl oor is constant for all channels and is transmit-
ted to the decoder using the code word fl oorcod. This code word is treated as an
address in the lookup table shown in Table 10.23.

10.1.9. Quantize Mantissas

Now that the bits to be used for each coeffi cient number have been allocated, the corre-
sponding mantissa can be quantized with the appropriate level of precision. This quan-
tization is performed using a symmetric uniform quantizer for bit-allocation pointer
(bap) values less than 5 and an asymmetric quantizer for bap values greater than 5.

Table 10.24 shows the number of quantizer levels for each bap value and also
the number of bits required to code the mantissa. For bap values of 1 and 2, three
quantized values are grouped together and coded as 5- and 7-bit code words, respec-
tively, and for the bap value of 4, two quantized values are grouped together and
coded as a 7-bit code word.

Before quantization is performed, each mantissa is normalized by shifting its
binary representation to the left by the number of positions indicated in the corre-
sponding coded exponent value. Then either symmetric or asymmetric quantization
is performed on the normalized mantissa values as given in the following section.

10.1. Encoder 381

382 Chapter 10 Dolby AC-3 Audio

10.1.9.1. Symmetric Quantization (1 	 bap 	 5)

For bap values of 1–5, the quantized mantissa value is represented by the code word
mantissa_code assigned using a table lookup. The decimal value of the code word
assigned to each quantized mantissa value is shown in Tables 10.25–10.29.

Table 10.22 Bit-allocation pointer table.

smr baptab[smr] smr baptab[smr]

0 0 32 10
1 1 33 10
2 1 34 10
3 1 35 11
4 1 36 11
5 1 37 11
6 2 38 11
7 2 39 12
8 3 40 12
9 3 41 12

10 3 42 12
11 4 43 13
12 4 44 13
13 5 45 13
14 5 46 13
15 6 47 14
16 6 48 14
17 6 49 14
18 6 50 14
19 7 51 14
20 7 52 14
21 7 53 14
22 7 54 14
23 8 55 15
24 8 56 15
25 8 57 15
26 8 58 15
27 9 59 15
28 9 60 15
29 9 61 15
30 9 62 15
31 10 63 15

© Advanced Television Standards Committee Inc. 2001. A copy of this standard
is available at http://www.atsc.org.

Table 10.23 Bit-allocation table floortab[].

floorcod floortab[]

“000” 0x2f0
“001” 0x2b0
“010” 0x270
“011” 0x230
“100” 0x1f0
“101” 0x170
“110” 0x0f0
“111” 0xf800

© Advanced Television Standards Committee Inc. 2001.
A copy of this standard is available at http://www.atsc.org.

Table 10.24 Number of quantizer levels and mantissa bits.

bap Quantizer levels Mantissa bits (qntztab[bap])

0 0 0
1 3 5/3
2 5 7/3
3 7 3
4 11 7/2
5 15 4
6 32 5
7 64 6
8 128 7
9 256 8

10 512 9
11 1024 10
12 2048 11
13 4096 12
14 16384 14
15 65536 16

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

10.1. Encoder 383

Table 10.25 Mantissa code words for symmetric quantization (bap � 1).

mantissa_code mantissa value

0 �2/3
1 0
2 2/3

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

384 Chapter 10 Dolby AC-3 Audio

For bap values of 1 and 2, three mantissa_code values are treated as unsigned
integers and grouped together to form a single larger code word using the following
equations:

bap � 1:

group_code � 9 � mantissa_code[a] � 3 �
 mantissa_code[b] � mantissa_code[c] (10.19)

bap � 2:

group_code � 25 � mantissa_code[a] � 5 �
 mantissa_code[b] � mantissa_code[c] (10.20)

For a bap value of 4, two mantissa_code values are treated as unsigned inte-
gers and grouped together to form a single larger code word using the following
equation:

bap � 4:

group_code � 11 � mantissa_code[a] �
 mantissa_code[b] (10.21)

Table 10.26 Mantissa code words for symmetric quantization (bap � 2).

mantissa_code mantissa value

0 �4/5
1 �2/5
2 0
3 2/5
4 4/5

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

Table 10.27 Mantissa code words for symmetric quantization (bap � 3).

mantissa_code mantissa value

0 �6/7
1 �4/7
2 �2/7
3 0
4 2/7
5 4/7
6 6/7

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

Table 10.28 Mantissa code words for symmetric
quantization (bap � 4).

mantissa_code mantissa value

0 �10/11
1 �8/11
2 �6/11
3 �4/11
4 �2/11
5 0
6 2/11
7 4/11
8 6/11
9 8/11

10 10/11

© Advanced Television Standards Committee Inc. 2001.
A copy of this standard is available at http://www.atsc.org.

Table 10.29 Mantissa code words for symmetric
quantization (bap � 5).

mantissa_code mantissa value

0 �14/15
1 �12/15
2 �10/15
3 �8/15
4 �6/15
5 �4/15
6 �2/15
7 0
8 2/15
9 4/15

10 6/15
11 8/15
12 10/15
13 12/15
14 14/15

© Advanced Television Standards Committee Inc.
2001. A copy of this standard is available at http://
www.atsc.org.

10.1. Encoder 385

386 Chapter 10 Dolby AC-3 Audio

where index a refers to the mantissa_code value with the lowest frequency in the
group and indexes b and c refer to values with successively higher frequencies.

Note that these mantissa_code values are not required to be immediately ad-
jacent to each other in frequency. The group_code value is constructed from the
next available mantissa_code values in order of ascending frequency. If the number
of mantissa_code values in a channel is not a multiple of the group size, then the
mantissa_code value from the next channel to be processed is used to complete the
group. If the number of mantissa_code values in an audio block is not a multiple of
the group size, then the last group in the block is completed by padding with dummy
mantissa values.

10.1.9.2. Asymmetric Quantization (6 	 bap 	 15)

For bap values of 6 to 15, the quantized mantissa value is defi ned as the fractional 2’s
complement representation of the mantissa value. So, if the number of bits allocated
to each mantissa is designated by qntztab[bap] and the decimal point is considered
to be to the left of the MSB, the 2’s complement form of the normalized mantissa can
represent values in the range �1.0 to (1.0 � 2�(qntztab[bap]�1)).

10.1.9.3. Dither for Zero Bit Mantissas

Dither is the term commonly used for the substitution of zero values with random
noise. In the AC-3 decoder, those coeffi cient mantissas that have been allocated a
bap of zero may be reconstructed using random noise. The use of dither is controlled
by the single bit parameter dithfl ag. A value of 1 for dithfl ag indicates that dither
should be used, and a value of 0 indicates that the coeffi cient should be reconstructed
as a true zero value. A dithfl ag bit is transmitted for each channel, and the dither
noise is added after individual channel coeffi cients have been extracted from the cou-
pling channel. The dither noise is added in this way so that the noise in each channel
remains uncorrelated.

The random noise sequence used to generate the dither values should have
a uniform distribution and ideally has values in the range �0.707 to 0.707. How-
ever, this range can be approximated to �0.75 to 0.75 or even �0.5 to 0.5 to reduce
computational complexity.

10.1.10. Dialog Normalization

In some cases there may be a signifi cant loudness difference for normal spoken
dialog between different portions of a television broadcast. For example, the loud-
ness level of dialog in a commercial may be different from that in the movie being
broadcast at the time. The dialnorm parameter in the AC-3 bit stream provides a
mechanism for alleviating this problem and allowing normal dialog from all parts
of the broadcast signal to be reproduced at the same loudness level. The dialnorm

parameter is interpreted as a 5-bit unsigned integer that indicates the subjective
level of spoken dialog relative to the maximum possible reproduced sound level.
For example a dialnorm value of 25 indicates that the level of spoken dialog in the
current transmission is at a level of 25 dB below the maximum output level of the
decoder.

The dialnorm parameter is not intended to be used by the decoder itself but
instead can be used in the section of the sound reproduction system that controls the
output sound level. This section of the system typically uses dialnorm to adjust the
output sound level so that spoken dialog is always reproduced at a constant volume
level while allowing the maximum volume level to vary for different parts of the
broadcast signal.

EXAMPLE 10.5

Consider the situation where the soundtrack of a movie is currently being reproduced
with a dialnorm value of 20 and the listener has adjusted the desired output volume to
65 dB. The volume control section of the sound reproduction system adjusts the output
volume so that the maximum decoded signal level is reproduced at 85 dB (i.e., 20 dB
above the level for spoken dialog) and, hence, normal spoken dialog is reproduced at the
desired 65 dB.

Now consider what happens if a commercial message is inserted into the broadcast and
is transmitted with a dialnorm value of 10. The volume control section can use this value to
automatically adjust the output volume so that the maximum decoded signal level is repro-
duced at 75 dB. Consequently, the spoken dialog in the commercial message is automatically
normalized to 65 dB (10 dB below the maximum level) and is reproduced at the same output
volume as the dialog in the movie. �

10.1.11. Dynamic Range Compression

There is often a requirement for different listeners to be able to reproduce the same
audio signal with different amounts of dynamic range. The original dynamic range
for some audio signals can be very wide. For example a soundtrack for a feature fi lm
may be produced with loud sounds, such as explosions, that are 20 dB louder than
normal dialog and quiet sounds, such as leaves rustling, that are 50 dB quieter than
the level for dialog.

There are many listening situations where this amount of dynamic range is
unacceptable, and it is desirable to reduce the volume of loud sounds and also
increase the volume of quiet sounds. These limitations on the reproduced volume of
signals are collectively known as dynamic range compression. However, there also
situations where the listener would like to receive the signal with the original dynamic
range.

To satisfy the requirements of both these situations, the AC-3 bit stream
may contain a sequence of dynamic range control values. These control val-
ues are transmitted as 8-bit code words designated by dynrng. A dynrng code

10.1. Encoder 387

388 Chapter 10 Dolby AC-3 Audio

word may be transmitted at the start of each audio block and is used to indicate
the alteration to the original sound level required to implement dynamic range
compression.

EXAMPLE 10.6

Consider the case of a soundtrack for a feature fi lm that has an original dialog level of 25 dB
less than the maximum level. In this soundtrack, very loud sounds can reach the maximum
level of 25 dB greater than the dialog level and quiet sounds can reach 50 dB below the dialog
level.

A typical set of dynrng parameters would indicate a reduction in level for those sounds
above the dialog level and an increase in level for those sounds below the dialog level. The
loudest sounds might be reduced by 15 dB, and the quietest sounds might be increased by
20 dB. Hence, these dynrng parameters provide a well-defi ned mechanism for compressing
the reproduced dynamic range of the transmitted audio signal from 75 to 40 dB. Use of the
dynrng parameters also allows the reproduction system to maintain a constant volume level
for spoken dialog while reducing the volume of loud sounds, such as explosions, and increas-
ing the volume of quiet sounds that would otherwise be inaudible. �

The default action for the AC-3 decoder is to implement the gain control
indicated by the dynrng parameters. However, users may optionally decide to fully
or partially disable the dynamic range compression in order to reproduce the signal
with some or all of its original dynamic range.

10.1.11.1. Detailed Implementation

The 8-bit dynrng parameter may be transmitted with any audio block. The presence
of this parameter is indicated with the 1 bit parameter dynrnge, with a value of 1 for
dynrnge indicating that a dynrng parameter follows in the bit stream. A value of 0
for dynrnge in blocks 2 to 6 of an audio frame indicates that the dynrng parameter
from the previous block should be used. For the fi rst block in the audio frame, a value
of 0 indicates that a dynrng code word of “00000000” should be used.

The fi rst three bits of the dynrng code word are used to indicate a gain change
that can be implemented using a simple left or right side shift. Table 10.30 shows the
number of shifts indicated by the fi rst three bits of the dynrng code word and the
corresponding gain adjustment in dB.

The remaining 5 bits of the dynrng code word are interpreted as the fi ve
least signifi cant bits of a 6-bit unsigned binary fraction with a leading value of 1.
So the fractional values that can be represented in this way range from 0.1111112

(63/64 or �0.14 dB) to 0.1000002 (1/2 or �6.02 dB). These fractional gain adjust-
ments can then be implemented using a 6-bit multiply operation.

The gain adjustments indicated by the two segments of the dynrng code
word are consecutively implemented and, hence, allow for gain changes of
�18.06 � 6.02 �� 24.08 dB to 24.08 � 0.14 � 23.94 dB in steps of 0.14 dB.

10.1.12. Heavy Compression

The AC-3 syntax provides a second means of transmitting dynamic range compres-
sion information in the BSI header of the audio frame. The 8-bit code word compr
can be used to indicate a larger reduction in dynamic range than the dynrng code
words in each audio block. The gain adjustment indicated by compr can also be used
to guarantee that a monophonic downmix of the transmitted audio signal does not
exceed a certain peak level.

The large dynamic range reduction (or heavy compression) provided by the
compr control signal may be useful when the audio signal is to be delivered in a
quiet environment such as a hotel room or an airline seat. The gain adjustment in-
dicated by compr has twice the range of that indicated by the dynrng parameters
and half the resolution (i.e., �48 to 48 dB rather than �24 to 24 dB in steps of 0.28
rather than 0.14 dB) but only has a time resolution of an audio frame rather than a
block (i.e., 32 to 48 ms rather than 5.33 to 8 ms).

The peak downmix level limitation may be required when a monophonic down-
mix is to be used to modulate an RF signal and overmodulation is to be avoided.
For example, a digital set-top decoder may be required to modulate video and audio
signals onto an RF channel in order for the broadcast signal to be received by an
analog television receiver.

User implementations that require the peak downmix level to be constrained
should use the compr code words rather than the dynrng control signal. However,
it may only be necessary to transmit compr parameters when the compression pro-
vided by dynrng does not adequately restrict the peak level. In such cases, if the
decoder has been instructed to use compr, and the compr code word is not present
in the bit stream, then the decoder should use the dynrng code words for peak level
limitation.

Table 10.30 Interpretation of the three most significant bits of dynrng.

Three most significant
bits of dynrng Number of shifts

Equivalent gain
adjustment (dB)

011 4 left 24.08
010 3 left 18.06
001 2 left 12.04
000 1 left 6.02
111 none 0
110 1 right �6.02
101 2 right �12.04
100 3 right �18.06

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

10.1. Encoder 389

390 Chapter 10 Dolby AC-3 Audio

10.1.12.1. Detailed Implementation

The 8-bit compr parameter may be transmitted with any audio frame. The presence
of this parameter is indicated by the 1 bit parameter compre. A value of 1 for compre
indicates that a compr parameter follows in the bit stream.

The fi rst four bits of the compr code word are used to indicate a gain change that
can be implemented using a simple left or right shift. Table 10.31 shows the number
of shifts indicated by the fi rst three bits of the compr code word and the correspond-
ing gain adjustment in dB.

The remaining four bits of the compr code word are interpreted as the four least
signifi cant bits of a 5-bit unsigned binary fraction with a leading value of 1. So the
fractional values that can be represented in this way range from 0.111112 (31/32 or
�0.28 dB) to 0.100002 (1/2 or �6.02 dB). These fractional gain adjustments can
then be implemented using a 5-bit multiply operation.

The gain adjustments indicated by the two segments of the compr code
word are consecutively implemented and hence allow for gain changes of �42.14
�6.02 �� 48.16 dB to 48.16 � 0.28 � 47.88 dB in steps of 0.28 dB.

10.1.13. Downmixing

If the number of speakers in the reproduction system does not match the number of
channels provided in the transmitted audio signal, then some form of downmixing

Table 10.31 Interpretation of the four most significant bits of compr.

Four most significant bits of compr Number of shifts Equivalent gain adjustment (dB)

0111 8 left 48.16
0110 7 left 42.14
0101 6 left 36.12
0100 5 left 30.10
0011 4 left 24.08
0010 3 left 18.06
0001 2 left 12.04
0000 1 left 6.02
1111 none 0
1110 1 right �6.02
1101 2 right �12.04
1100 3 right �18.06
1011 4 right �24.08
1010 5 right �30.10
1001 6 right �36.12
1000 7 right �42.14

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

is required. The downmixing procedure for an AC-3 decoder is standardized so that
audio content providers can be certain of the fi nal audio quality of systems with vari-
ous loudspeaker confi gurations.

10.1.13.1. General Downmix Procedure.

The unnormalized downmix coeffi cients for a range of channel and speaker confi gu-
rations can be determined using the following pseudocode. Once these coeffi cients
have been determined, it may be necessary to apply a normalization procedure to
prevent arithmetic overfl ow. This normalization is achieved by attenuating all the
downmix coeffi cients equally so that the sum of the coeffi cients used to create any
single output channel does not exceed 1.0.

Pseudocode
downmix()
{
 if (acmod �� 0) /* 1�1 mode, dual independent mono channels present */
 {
 if (output_nfront �� 1) /* 1 front loudspeaker (center) */
 {
 if (dualmode �� Chan 1) /* Ch1 output requested */
 {
 route left into center ;
 }
 else if (dualmode �� Chan 2) /* Ch2 output requested */
 {
 route right into center ;
 }
 else
 {
 mix left into center with �6 dB gain ;
 mix right into center with �6 dB gain ;
 }
 }
 else if (output_nfront �� 2) /* 2 front loudspeakers (left, right) */
 {
 if (dualmode �� Stereo)
 /* output of both mono channels requested */
 {
 route left into left ;
 route right into right ;
 }
 else if (dualmode �� Chan 1)
 {
 mix left into left with �3 dB gain ;
 mix left into right with �3 dB gain ;
 }

10.1. Encoder 391

392 Chapter 10 Dolby AC-3 Audio

 else if (dualmode �� Chan 2)
 {
 mix right into left with �3 dB gain ;
 mix right into right with �3 dB gain ;
 }
 else /* mono sum of both mono channels requested */
 {
 mix left into left with �6 dB gain ;
 mix right into left with �6 dB gain ;
 mix left into right with �6 dB gain ;
 mix right into right with �6 dB gain ;
 }
 }
 else /* output_nfront �� 3 */
 {
 if (dualmode �� Stereo)
 {
 route left into left ;
 route right into right ;
 }
 else if (dualmode �� Chan 1)
 {
 route left into center ;
 }
 else if (dualmode �� Chan 2)
 {
 route right into center ;
 }
 else
 {
 mix left into center with �6 dB gain ;
 mix right into center with �6 dB gain ;
 }
 }
 }
 else /* acmod � 0 */
 {
 for i � { left, center, right, leftsur/monosur, rightsur }
 {
 if (exists(input_chan[i])) and (exists(output_chan[i]))
 {
 route input_chan[i] into output_chan[i] ;
 }
 }
 if (output_mode �� 2/0 Dolby Surround compatible)
 /* 2 ch matrix encoded output requested */
 {
 if (input_nfront !� 2)
 {

 mix center into left with �3 dB gain ;
 mix center into right with �3 dB gain ;
 }
 if (input_nrear �� 1)
 {
 mix -mono surround into left with �3 dB gain ;
 mix mono surround into right with �3 dB gain ;
 }
 else if (input_nrear �� 2)
 {
 mix -left surround into left with �3 dB gain ;
 mix -right surround into left with �3 dB gain ;
 mix left surround into right with �3 dB gain ;
 mix right surround into right with �3 dB gain ;
 }
 }
 else if (output_mode �� 1/0) /* center only */
 {
 if (input_nfront !� 1)
 {
 mix left into center with �3 dB gain ;
 mix right into center with �3 dB gain ;
 }
 if (input_nfront �� 3)
 {
 mix center into center using clev and �3 dB gain ;
 }
 if (input_nrear �� 1)
 {
 mix mono surround into center using slev;
 }
 else if (input_nrear �� 2)
 {
 mix left surround into center using slev and �3 dB gain ;
 mix right surround into center using slev and �3 dB gain ;
 }
 }
 else /* more than center output requested */
 {
 if (output_nfront �� 2)
 {
 if (input_nfront �� 1)
 {
 mix center into left with �3 dB gain ;
 mix center into right with �3 dB gain ;
 }
 else if (input_nfront �� 3)
 {
 mix center into left using clev ;

10.1. Encoder 393

394 Chapter 10 Dolby AC-3 Audio

 mix center into right using clev ;
 }
 }
 if (input_nrear �� 1) /* single surround channel coded */
 {
 if (output_nrear �� 0) /* no surround loudspeakers */
 {
 mix mono surround into left with slev and �3 dB gain ;
 mix mono surround into right with slev and �3 dB gain ;
 }
 else if (output_nrear �� 2) /* two surround loudspeaker channels */
 {
 mix mono srnd into left surround with �3 dB gain ;
 mix mono srnd into right surround with �3 dB gain ;
 }
 }
 else if (input_nrear �� 2) /* two surround channels encoded */
 {
 if (output_nrear �� 0)
 {
 mix left surround into left using slev ;
 mix right surround into right using slev ;
 }
 else if (output_nrear �� 1).
 {
 mix left srnd into mono surround with �3 dB gain ;
 mix right srnd into mono surround with �3 dB gain ;
 }
 }
 }
}

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

The downmix coeffi cients clev and slev are indicated by the 2-bit code words
cmixlev and surmixlev, respectively. These code words are transmitted in the BSI
part of the audio frame, and the coeffi cient value corresponding to each code word
is shown in Table 10.32. If the reserved code is received for cmixlev, the decoder
should use the intermediate value of 0.596. If the reserved code is received for sur-
mixlev, the decoder should use the intermediate value of 0.5.

10.1.13.2. Downmixing to Stereo

If surround channels are transmitted and the output required is a stereo pair, then
two types of downmix are required. The fi rst is a downmix to a conventional stereo

pair, Lo and Ro, and the second is a downmix to a matrix surround encoded stereo
pair, Lt and Rt.

If all fi ve channels are transmitted (3/2 mode) and the output required is a
conventional stereo pair, then the following downmix equations are to be used.

 Lo � L� clev � C� slev � Ls (10.22)

 Ro � R� clev � C� slev � Rs (10.23)

If the output required is a matrix surround encoded stereo pair, then the follow-
ing downmix equations are to be used.

Lt � L� 0.707 � (C�Ls � Rs) (10.24)

 Rt � R� 0.707 � (C�Ls � Rs) (10.25)

If the center channel is not transmitted (2/2 mode), the same equations can be
used without the C term.

If only a single surround channel is transmitted (3/1 mode) and the output
required is a conventional stereo pair, then the following downmix equations are to
be used.

Lo � L� clev � C� 0.707 � slev � S (10.26)

 Ro � R� clev � C� 0.707 � slev � S (10.27)

If the output required is a matrix surround encoded stereo pair, then the follow-
ing downmix equations are to be used.

Lt � L� 0.707 � (C� S) (10.28)

 Rt � R� 0.707 � (C� S) (10.29)

If the center channel is not transmitted (2/1 mode), the same equations can be
used without the C term. If the surround channels are not transmitted (3/0 mode),
the same equations can be used without the Ls, Rs, or S terms.

Table 10.32 Center and surround mix levels.

cmixlev clev surmixlev slev

00 0.707 00 0.707
01 0.596 01 0.5
10 0.5 10 0
11 Reserved 11 Reserved

© Advanced Television Standards Committee Inc. 2001.
A copy of this standard is available at http://www.atsc.org.

10.1. Encoder 395

396 Chapter 10 Dolby AC-3 Audio

10.1.13.3. Downmixing to Mono

If the output required is a monophonic signal, the downmixed stereo signals may be
further downmixed to mono using a simple summation of the two channels. How-
ever, if the matrix surround encoded pair is used, the surround information is lost,
so it is desirable to use the conventional stereo pair.

If the monophonic signal is to be calculated directly and all channels are trans-
mitted, the following equation is to be used.

 M�L�R� 2.0 � clev � C � slev � (Ls �Rs) (10.30)

If the center channel is not transmitted (2/2 mode), the same equation can be
used without the C term. If only a single surround channel is transmitted (3/1 mode),
the following equation is to be used.

 M�L�R� 2.0 � clev � C� 1.4 � slev � S (10.31)

If the center or surround channels are not transmitted (2/1, 3/0, or 2/0 mode),
the same equation may be used without the C or S terms.

10.1.13.4. Normalizing Downmixing Coefficients

If all the channels to be included in a downmixed signal have their maximum value
at the same time, the values in the signal will exceed the maximum available word-
length. This problem is known as arithmetic overfl ow and can be avoided if the
coeffi cients used in the downmixing equations described in the previous section are
scaled downwards. A different scaling could be applied for all possible combinations
of input and output channels, but this would require a very large number of scaled
coeffi cients to be defi ned. Instead, the worst-case situation is used to determine the
maximum scaling factor required when clev and slev are both equal to 0.707.

For a conventional stereo output, if unscaled coeffi cients are used, the maximum
downmixed signal has a value of 1 � 0.707 � 0.707 � 2.414. So the maximum scal-
ing required for the coeffi cients is 1/2.414 � 0.4143. Table 10.33 shows the unscaled
and scaled versions of all the possible downmixing coeffi cients required to produce
a conventional stereo pair. The downmixing equation is typically implemented using

Table 10.33 Scaled downmix coefficients for a conventional stereo signal.

Unscaled coefficient Scaled coefficient 6-bit Quantized coefficient

1.0 0.414 26/64
0.707 0.293 18/64
0.596 0.247 15/64
0.5 0.207 13/64
0.354 0.147 9/64

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is
available at http://www.atsc.org.

fi xed length binary arithmetic, and if this is the case the 6-bit quantized coeffi cients
shown in Table 10.33 produce a downmixed signal with the required accuracy. If a
mono signal is required, the coeffi cients need to be scaled by a further factor of 0.5.

For a matrix surround encoded stereo output, if unscaled coeffi cients are used,
the maximum downmixed signal has a value of 1 � 0.707 � 0.707 � 0.707 � 3.121. So
the maximum scaling required for the coeffi cients is 1/3.121 � 0.3204. Table 10.34
shows the unscaled, scaled, and 6-bit quantized versions of all the possible down-
mixing coeffi cients required to produce a matrix surround encoded stereo pair.

10.2. SYNTAX

The syntax of the AC-3 bit stream is specifi ed in this section. The order of arrival of
the bits is defi ned using the methodology described in Chapter 5. If the bit-stream
element to be transmitted is larger than 1 bit, it is transmitted in one of two ways: (a)
if the element specifi es a numerical value, it is transmitted with the most signifi cant
bit fi rst and (b) if the element is a bit fi eld, it is transmitted with the left bit fi rst. In
some cases, the meaning for a possible value of a bit-stream element is “reserved.”
If the decoder erroneously receives a reserved value for an element, there are two
possible responses for the decoder: (a) the decoder cannot decode any value and
(b) the decoder can use a default value for the element.

10.2.1. Syntax Specification

The structure of an AC-3 synchronization frame is shown in Figure 10.2. The
synchronization frame begins with a syncinfo (SI) header. The bit-stream infor-
mation (BSI) header is transmitted next, and this is followed by six audio blocks
(AB). Each audio block contains the information required to decode 256 audio
samples. The synchronization frame may then contain an optional auxiliary data
fi eld (Aux) and ends with an error check fi eld that contains a cyclic redundancy
code word (CRC) used for error detection. The syntax specifi cation for an AC-3
bit stream is given in Table 10.35. The bit stream consists of consecutive synchro-
nization frames.

Table 10.34 Scaled downmix coefficients for a matrix surround
encoded stereo signal.

Unscaled coefficient Scaled coefficient 6-bit Quantized coefficient

1.0 0.3204 26/64
0.707 0.293 18/64

© Advanced Television Standards Committee Inc. 2001. A copy of this standard
is available at http://www.atsc.org.

10.2. Syntax 397

398 Chapter 10 Dolby AC-3 Audio

The syntax specifi cation for a syncframe is given in Table 10.36.
Each fi eld of the syncframe is described in the following sections.

10.2.1.1. Synchronization Information (syncinfo)

The syncinfo fi eld contains information necessary for the decoder to maintain syn-
chronization of the incoming bit stream. The syntax specifi cation of the syncinfo
fi eld is given in Table 10.37.

A description of the bit stream elements contained in the syncinfo fi eld is given
in Table 10.38.

10.2.1.2. Bit-Stream Information (bsi)

The BSI fi eld contains parameters that specify aspects of the audio service being
transmitted. The syntax specifi cation of the BSI fi eld is given in Table 10.39.

Table 10.35 Syntax specification for an AC-3 bit stream.

Syntax Bits

AC-3_bit stream()
{
 while(true)
 {
 syncframe();
 }
}/* end of AC-3 bit stream */

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

Table 10.36 Syntax specification for a syncframe.

Syntax Bits

syncframe()
{
 syncinfo();
 bsi();
 for(blk � 0; blk � 6; blk��)
 {
 audblk();
 }
 auxdata();
 errorcheck();
}/* end of syncframe */

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

A description of the bit stream elements contained in a BSI fi eld is given in
Table 10.40.

10.2.1.3. Audio Block (audblk)

Each audio block contains the information required to decode 256 audio samples.
The syntax specifi cation of the audblk fi eld is given in Table 10.41.

A description of the bit stream elements contained in an audblk fi eld is given in
Table 10.42.

Table 10.37 Syntax specification for a syncinfo field.

Syntax Bits

syncinfo()
{

syncword; 16
crc1; 16
fscod; 2
frmsizecod; 6

}/* end of syncinfo */

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

Table 10.38 Description of the bit stream elements in a syncinfo field.

Element Description

syncword Used to locate the start of the syncframe (the value of the syncword is
always 0x0B77)

crc1 Error check bits
fscod Specifies the input sampling rate (see Table 10.1)
frmsizecod Specifies the number of 16-bit words in the current syncframe (see Ref. [1])

10.2. Syntax 399

Table 10.39 Syntax specification of the BSI field.

Syntax Bits

bsi()
{

bsid 5

 bsmod 3

acmod 3

 if((acmod & 0x1) && (acmod !� 0x1)) /* if 3 front channels */ {cmixlev} 2

 if(acmod & 0x4) /* if a surround channel exists */ {surmixlev} 2

(continued)

400 Chapter 10 Dolby AC-3 Audio

Table 10.39 (Continued)

Syntax Bits

 if(acmod �� 0x2) /* if in 2/0 mode */ {dsurmod} 2

lfeon 1

dialnorm 5

compre 1

 if(compre) {compr} 8

langcode 1

 if(langcode) {langcod} 8

audprodie 1

 if(audprodie)
 {

mixlevel 5

roomtyp 2

 }
 if(acmod �� 0) /* if 1�1 mode (dual mono, so some items need a second value) */
 {

dialnorm2 5

compr2e 1

 if(compr2e) {compr2} 8

lngcod2e 1

 if(langcod2e) {langcod2} 8

audprodi2e 1

 if(audprodi2e)
 {

mixlevel2 5

roomtyp2 2

 }
 }

copyrightb 1

origbs 1

timecod1e 1

 if(timecod1e) {timecod1} 14

timecod2e 1

 if(timecod2e) {timecod2} 14

addbsie 1

 if(addbsie)
 {

addbsil 6

addbsi (addbsil�1) 8

 }
} /* end of bsi */

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

Table 10.40 Description of the bit stream elements in a BSI field.

Element Description

bsid Specifies the version of the standard (currently 8).
bsmod Specifies the type of service that this audio bit stream is providing (see Ref. [1]).
acmod Specifies the channel configuration in use (see Table 10.2).
cmixlev Specifies the downmix level for the center channel relative to the left and

right side channels (see Ref. [1]).
surmixlev Specifies the downmix level for the surround channels relative to the left and

right side channels (see Ref. [1]).
dsurmod Specifies whether the program has been encoded using Dolby surround

mode (see Ref. [1]).
lfeon A value of “1” indicates that the low-frequency effects (LFE) channel is in use.
dialnorm Specifies how far the average dialog level is below the maximum level (see

Section 10.1.10).
compre A value of “1” indicates that a compression gain word follows in the bit stream.
compr The compression gain word (see Section 10.1.12).
langcode A value of “1” indicates that a language code follows in the bit stream.
langcod The language code word (see Ref. [1]).
audprodie A value of “1” indicates that audio production information follows in the bit

stream.
mixlevel Specifies the absolute sound pressure level of a channel (see Ref. [1]).
roomtyp Specifies the type of room used in the final mixing process (see Ref. [1]).
dialnorm2 Used for channel 2 in dual mono mode.
compr2e Used for channel 2 in dual mono mode.
compr2 Used for channel 2 in dual mono mode.
langcod2e Used for channel 2 in dual mono mode.
langcod2 Used for channel 2 in dual mono mode.
audprodi2e Used for channel 2 in dual mono mode.
mixlevel2 Used for channel 2 in dual mono mode.
roomtyp2 Used for channel 2 in dual mono mode.
copyrightb A value of “1” indicates that the following bit stream is protected by

copyright.
origbs A value of “1” indicates that the following bit stream is an original bit

stream.
timecod1e A value of “1” indicates that the first half of a time code follows in the bit

stream.
timecod1 Specifies a time with resolution of 8 s and full scale of 24 h (see Ref. [1]).
timecod2e A value of “1” indicates that the second half of a time code follows in the bit

stream.
timecod2 Specifies a time with resolution of 1/64th of a frame and full scale of 8 s

(see Ref. [1]).
addbsie A value of “1” indicates that additional information follows in the bit stream.
addbsil Specifies the length in bytes of the additional information that follows.
addbsi Additional information.

10.2. Syntax 401

402 Chapter 10 Dolby AC-3 Audio

Table 10.41 Syntax specification of the audblk field.

Syntax Bits

audblk()
{
 /* These fields for block switch and dither flags */
 for(ch � 0; ch � nfchans; ch��) {blksw[ch]} 1
 for(ch � 0; ch � nfchans; ch��) {dithflag[ch]} 1
 /* These fields for dynamic range control */

dynrnge 1
 if(dynrnge) {dynrng} 8
 if(acmod �� 0) /* if 1�1 mode */
 {

dynrng2e 1
 if(dynrng2e) {dynrng2} 8
 }
 /* These fields for coupling strategy information */

cplstre 1
 if(cplstre)
 {

cplinu 1
 if(cplinu)
 {
 for(ch � 0; ch � nfchans; ch��) {chincpl[ch]} 1
 if(acmod �� 0x2) {phsflginu} /* if in 2/0 mode */ 1

cplbegf 4
cplendf 4

 /* ncplsubnd � 3 � cplendf - cplbegf */
 for(bnd � 1; bnd � ncplsubnd; bnd��) {cplbndstrc[bnd]} 1
 }
 }
 /* These fields for coupling coordinates, phase flags */
 if(cplinu)
 {
 for(ch � 0; ch � nfchans; ch��)
 {
 if(chincpl[ch])
 {

cplcoe[ch] 1
 if(cplcoe[ch])
 {

mstrcplco[ch] 2

 /* ncplbnd derived from ncplsubnd, and cplbndstrc */
 for(bnd � 0; bnd � ncplbnd; bnd��)
 {

cplcoexp[ch][bnd] 4

Table 10.41 (Continued)

Syntax Bits

cplcomant[ch][bnd] 4
 }
 }
 }
 }
 if((acmod �� 0x2) && phsflginu && (cplcoe[0] || cplcoe[1]))
 {
 for(bnd � 0; bnd � ncplbnd; bnd��) {phsflg[bnd]} 1
 }
 }
 /* These fields for rematrixing operation in the 2/0 mode */
 if(acmod �� 0x2) /* if in 2/0 mode */
 {

rematstr 1
 if(rematstr)
 {
 if((cplbegf � 2) || (cplinu �� 0))
 {
 for(rbnd � 0; rbnd � 4; rbnd��) {rematflg[rbnd]} 1
 if((2 �� cplbegf � 0) && cplinu)
 {
 for(rbnd � 0; rbnd � 3; rbnd��) {rematflg[rbnd]} 1
 }
 if((cplbegf �� 0) && cplinu)
 {
 for(rbnd � 0; rbnd � 2; rbnd��) {rematflg[rbnd]} 1
 }
 }
 }
 /* These fields for exponent strategy */
 if(cplinu) {cplexpstr} 2
 for(ch � 0; ch � nfchans; ch��) {chexpstr[ch]} 2
 if(lfeon) {lfeexpstr} 1
 for(ch � 0; ch � nfchans; ch��)
 {
 if(chexpstr[ch] !� reuse)
 {
 if(!chincpl[ch]) {chbwcod[ch]} 6
 }
 }
 /* These fields for exponents */
 if(cplinu) /* exponents for the coupling channel */
 {

(continued)

10.2. Syntax 403

404 Chapter 10 Dolby AC-3 Audio

Table 10.41 (Continued)

Syntax Bits

 if(cplexpstr !� reuse)
 }

cplabsexp 4
 /* ncplgrps derived from ncplsubnd, cplexpstr */
 for(grp � 0; grp� ncplgrps; grp��) {cplexps[grp]} 7
 }
 }
 for(ch � 0; ch � nfchans; ch��) /* exponents for full bandwidth channels */
 {
 if(chexpstr[ch] !� reuse)
 {

exps[ch][0] 4
 /* nchgrps derived from chexpstr[ch], and cplbegf or chbwcod[ch] */
 for(grp � 1; grp �� nchgrps[ch]; grp��) {exps[ch][grp]} 7

gainrng[ch] 2
 }
 }
 if(lfeon) /* exponents for the low-frequency effects channel */
 {
 if(lfeexpstr !� reuse)
 {

lfeexps[0] 4
 /* nlfegrps � 2 */
 for(grp � 1; grp �� nlfegrps; grp��) {lfeexps[grp]} 7
 }
 }
 /* These fields for bit-allocation parametric information */

baie 1
 if(baie)
 {
 sdcycod 2
 fdcycod 2
 sgaincod 2
 dbpbcod 2
 floorcod 3
 }

snroffste 1
 if(snroffste)
 {

csnroffst 6
 if(cplinu)
 {

cplfsnroffst 4
cplfgaincod 3

Table 10.41 (Continued)

Syntax Bits

 }
 for(ch � 0; ch � nfchans; ch��)
 }
 fsnroffst[ch] 4
 fgaincod[ch] 3
 }
 if(lfeon)
 {
 lfefsnroffst 4

lfefgaincod 3
 }
 }
 if(cplinu)
 {

cplleake 1
 if(cplleake)
 {

cplfleak 3
cplsleak 3

 }
 }
 /* These fields for delta bit-allocation information */

deltbaie 1
 if(deltbaie)
 {
 if(cplinu) {cpldeltbae} 2
 for(ch � 0; ch � nfchans; ch��) {deltbae[ch]} 2
 if(cplinu)
 {
 if(cpldeltbae��new info follows)
 {

cpldeltnseg 3
 for(seg � 0; seg �� cpldeltnseg; seg��)
 {

cpldeltoffst[seg] 5
cpldeltlen[seg] 4
cpldeltba[seg] 3

 }
 }
 }
 for(ch � 0; ch � nfchans; ch��)
 {

(continued)

10.2. Syntax 405

406 Chapter 10 Dolby AC-3 Audio

Table 10.41 (Continued)

Syntax Bits

 if(deltbae[ch]��new info follows)
 {

deltnseg[ch] 3
 for (seg� 0; seg �� deltnseg[ch]; seg ��

 {
 deltoffst[ch][seg] 5
 deltlen[ch][seg] 4
 deltba[ch][seg] 3
 }
 }
 }
 }
 /* These fields for inclusion of unused dummy data */

skiple 1
 if(skiple)
 {
 skipl 9
 skipfld skipl � 8
 }
 /* These fields for quantized mantissa values */
 got_cplchan � 0
 for (ch � 0; ch � nfchans; ch��)
 {
 for (bin � 0; bin � nchmant[ch]; bin��) {chmant[ch][bin]} (0 � 16)
 if (cplinu && chincpl[ch] && !got_cplchan)
 {
 for (bin � 0; bin � ncplmant; bin��) {cplmant[bin]} (0 � 16)
 got_cplchan � 1
 }
 }
 if(lfeon) /* mantissas of low-frequency effects channel */
 {
 for (bin � 0; bin � nlfemant; bin��) {lfemant[bin]} (0 � 16)
 }
} /* end of audblk */

© Advanced Television Standards Committee Inc. 2001. A copy of this standard is available at
http://www.atsc.org.

Table 10.42 Description of the bit stream elements in an audblk field.

Element Description

blksw[ch] A value of “1” indicates that the current audio block was coded
using two blocks in channel ch (see Section 10.1.2).

dithflag[ch] A value of “1” indicates that the decoder should use dither in
channel ch (see Section 10.1.9.3).

dynrnge A value of “1” indicates that a dynamic range gain word
follows in the bit stream.

dynrng The dynamic range gain word (see Section 10.1.11).
dynrng2e Used for channel 2 in dual mono mode.
dynrng2 Used for channel 2 in dual mono mode.
cplstre A value of “1” indicates that new coupling information follows.
cplinu A value of “1” indicates that coupling is in use.
chincpl[ch] A value of “1” indicates that channel ch is coupled.
phsflginu A value of “1” indicates that phase flags are included with the

coupling information.
cplbegf Specifies the lowest frequency subband included in coupling

(see Section 10.1.4).
cplendf Specifies the highest frequency subband included in coupling

(see Section 10.1.4).
cplbndstrc[sbnd] A value of “1” indicates that the corresponding subband should

be combined with the subband immediately below it in
frequency (see Section 10.1.4).

cplcoe[ch] A value of “1” indicates that coupling coordinates for channel
ch follow (see Section 10.1.4).

mstrcplco[ch] Specifies the master coupling coordinate gain factor for
channel ch (see Section 10.1.4).

cplcoexp[ch][bnd] The coupling coordinate exponent (see Section 10.1.4).
cplcomant[ch][bnd] The coupling coordinate mantissa (see Section 10.1.4).
phsflg[bnd] A value of “1” indicates that the coefficients of the right

channel in coupling band bnd were negated before the
coupling channel was formed (see Section 10.1.4).

rematstr A value of “1” indicates that new rematrix flags follow.
rematflg[rbnd] A value of “1” indicates that the coefficients in rematrixing

band rbnd have been rematrixed (see Section 10.1.5).
cplexpstr Specifies the method used to code exponents in the coupling

channel (see Table 10.12).
chexpstr[ch] Specifies the method used to code exponents in the full

bandwidth channel ch (see Table 10.12).
lfeexpstr Specifies the method used to code exponents in the LFE

channel (see Section 10.1.6).
chbwcod[ch] Specifies the highest frequency band included in the full

bandwidth channel ch (see Section 10.1.6).
cplabsexp The coupling absolute exponent (see Section 10.1.7).

(continued)

10.2. Syntax 407

408 Chapter 10 Dolby AC-3 Audio

Table 10.42 (Continued)

Element Description

cplexps[grp] Specifies the value of differentially coded exponents for the
coupling exponent group grp (see Section 10.1.7).

exps[ch][grp] Specifies the encoded exponents for channel ch in group grp
(see Section 10.1.7).

gainrng[ch] Specifies an increase in dynamic range for channel ch (see
Ref. [1]).

lfeexps[grp] Specifies the encoded exponents for the LFE channel in group
grp (see Section 10.1.7).

baie A value of “1” indicates that bit-allocation information follows.
sdcycod Specifies the slow delay parameter sdecay (see Section 10.1.8).
fdcycod Specifies the fast-delay parameter fdecay (see Section 10.1.8).
sgaincod Specifies the slow-gain parameter sgain (see Section 10.1.8).
dbpbcod Specifies the parameter dbknee (see Section 10.1.8).
floorcod Specifies the parameter floor (see Section 10.1.8).
snroffste A value of “1” indicates that SNR offset parameters follow.
csnroffst Specifies the coarse SNR offset (see Section 10.1.8).
cplfsnroffst Specifies the fine SNR offset for the coupling channel (see

Section 10.1.8).
cplfgaincod Specifies the fast gain parameter fgain for the coupling

channel (see Section 10.1.8).
fsnroffst[ch] Specifies the fine SNR offset for the channel ch (see Section

10.1.8).
fgaincod[ch] Specifies the fast gain parameter fgain for the channel ch (see

Section 10.1.8).
lfefsnroffst Specifies the fine SNR offset for the LFE channel (see Section

10.1.8).
lfefgaincod Specifies the fast gain parameter fgain for the LFE channel

(see Section 10.1.8).
cplleake A value of “1” indicates that leak initialization parameters

follow (see Section 10.1.8).
cplfleak Specifies the parameter fastleak for the coupling channel (see

Section 10.1.8).
cplsleak Specifies the parameter slowleak for the coupling channel (see

Section 10.1.8).
deltbaie A value of “1” indicates that delta bit allocation follows.
cpldeltbae Specifies the delta bit-allocation mode for the coupling

channel (see Section 10.1.8.7).
cpldeltnseg Specifies the number of delta bit-allocation segments in the

coupling channel (see Section 10.1.8.7).
cpldeltoffst[seg] Specifies the offset from the last band of the previous segment

to the first band of the segment seg in the coupling channel
(see Section 10.1.8.7).

10.2.1.4. Auxiliary Data (auxdata)

User information may be placed at the end of a synchronization frame in the auxiliary
data fi eld. The syntax specifi cation of the auxdata fi eld is given in Table 10.43.

The auxiliary data is placed in the auxdata fi eld so that an auxiliary data de-
coder can begin decoding from the end of the fi eld. The auxiliary data decoder fi rst
examines the last bit of the auxdata fi eld. This bit contains the fl ag auxdatae. If the
value of auxdatae is “1,” the data decoder examines the previous 14 bits that contain
the auxdatal code word. This code word specifi es the length in bits of the user data
contained in the auxdata fi eld. The decoder can then back up auxdatal bits from the
end of the auxbits fi eld and begin decoding the auxiliary data. Note that the length of
the auxbits fi eld, nauxbits, may be greater than auxdatal. The auxiliary data fi eld is
structured in this way so that the auxiliary data can be decoded independently with-
out having to fi rst decode the audio data contained in the synchronization frame.

Table 10.42 (Continued)

Element Description

cpldeltlen[seg] Specifies the number of bands in the segment seg in the
coupling channel (see Section 10.1.8.7).

cpldeltba[seg] Specifies the adjustment to the default masking curve in the
segment seg in the coupling channel (see Section 10.1.8.7).

deltbae[ch] Specifies the delta bit-allocation mode for channel ch (see
Section 10.1.8.7).

deltnseg[ch] Specifies the number of delta bit-allocation segments in
channel ch (see Section 10.1.8.7).

deltoffst[ch][seg] Specifies the offset from the last band of the previous segment
to the first band of the segment seg in channel ch (see
Section 10.1.8.7).

deltlen[ch][seg] Specifies the number of bands in the segment seg in channel
ch (see Section 10.1.8.7).

deltba[ch][seg] Specifies the adjustment to the default masking curve in the
segment seg in channel ch (see Section 10.1.8.7).

skiple A value of “1” indicates that padding bytes follow.
skipl Specifies the number of padding bytes that follow.
skipfld The padding bytes.
chmant[ch][bin] The quantized mantissa value for frequency index bin in

channel ch (see Section 10.1.9).
cplmant[bin] The quantized mantissa value for frequency index bin in the

coupling channel (see Section 10.1.9).
lfemant[bin] The quantized mantissa value for frequency index bin in the

LFE channel (see Section 10.1.9).

10.2. Syntax 409

410 Chapter 10 Dolby AC-3 Audio

10.2.1.5. Frame Error Detection Field (Error Check)

The syntax specifi cation of the error check fi eld is given in Table 10.44.
The one bit code word crcrsv is reserved for use in certain situations to guarantee

that crc2 is not equal to the syncword. The details of the error checking procedure
using the 16 bit CRC code word crc2 can be found in Ref. [1].

10.3. DECODER

10.3.1. Decode Exponents

The number of exponents to decode for each channel is determined from the bit-
stream parameters chbwcod[ch] if the channel is not included in coupling and
cplbegf and cplendf for the coupled and coupling channels. The starting bin number
for the full bandwidth channels is always 0, that is fbwstrtmant[ch] � 0. The starting
bin number for the coupling channel is given by

 cplstrtmant � (cplbegf � 12) � 37 (10.32)

Table 10.43 Syntax specification of the auxdata field.

Syntax Bits

auxdata()
{

auxbits nauxbits
 if(auxdatae)
 {

auxdatal 14
 }

auxdatae 1
} /* end of auxdata */

© Advanced Television Standards Committee Inc. 2001. A copy of this
standard is available at http://www.atsc.org.

Table 10.44 Syntax specification of the error check field.

Syntax Bits

errorcheck()
{

crcrsv 1
crc2 16

} /* end of errorcheck */

© Advanced Television Standards Committee Inc. 2001. A copy of this standard
is available at http://www.atsc.org.

The last mantissa bin number for the full bandwidth channels is defi ned by

 fbwendmant[ch] � ((chbwcod[ch]� 12) � 3)� 37 (10.33)

and for the coupling channel is defi ned by

 cplendmant � ((cplendf� 3) � 12) � 37 (10.34)

For the low-frequency effects channel the start and end mantissa numbers are
always given by lfestrtmant � 0 and lfeendmant � 7, respectively.

The number of grouped exponents to decode depends on the exponent strategy
and (for independent and coupled channels) is given by the following equations.

D-15 mode:

 nchgrps[ch] � truncate((endmant[ch] � 1)/3) (10.35)

D-25 mode:

 nchgrps[ch] � truncate((endmant[ch] � 1 � 3)/6) (10.36)

D-45 mode:

 nchgrps[ch] � truncate((endmant[ch] � 1 � 9)/12) (10.37)

For the coupling channel, the number of grouped exponents to decode is given
by the following equations.

D-15 mode:

 ncplgrps � (cplendmant � cplstrtmant)/3 (10.38)

D-25 mode:

 ncplgrps � (cplendmant � cplstrtmant)/6 (10.39)

D-45 mode:

 ncplgrps � (cplendmant � cplstrtmant)/12 (10.40)

For the low-frequency effects channel, the number of groups is always given by
nlfegrps � 2.

Then to obtain the set of 5-bit absolute exponents for each coeffi cient bin num-
ber the following procedure is used:

Each 7-bit grouped value, G, is decoded into three mapped values using the
following equations (where % denotes the modulus operation):

M G

M G

M G

1 25

2 25 5

3 25

=

=

=

truncate

truncate

()
()()%

%(() % 5

(10.41)

1.

10.3. Decoder 411

412 Chapter 10 Dolby AC-3 Audio

Each mapped value is converted to a differential exponent by subtracting a
factor of 2.

The set of differential exponents is converted to a set of absolute exponents
by adding each differential exponent to the previous absolute exponent
value.

For the D-25 and D-45 modes, each absolute exponent is copied to the cor-
responding two or four coeffi cient bins.

10.3.2. Bit Allocation

The bit-allocation procedure is the same as that defi ned in Section 10.1.8., except that
the value for snroffset is calculated using the transmitted values of the global coarse
offset parameter, csnroffst, and the fi ne offset parameter for each full bandwidth
channel, fsnroffst[ch], the coupling channel, cplfsnroffst, and the low frequency
channel, lfefsnroffst.

The setup of the psychoacoustic model is determined from the parameters trans-
mitted in the bit stream so the following MATLAB code defi nes the initialization
of the model.

For all channels:
sdecay � slowdec(sdcycod�1);
fdecay � fastdec(fdcycod�1);
sgain � slowgain(sgaincod�1);
dbknee � dbpbtab(dbpbcod�1);
snrfl oor � fl oortab(fl oorcod�1);

For the full bandwidth channels:
strtmant � fbwstrtmant(ch);
endmant � fbwendmant(ch);
lowcomp � 0 ;
fgain � fastgain(fgaincod(ch)�1);
snroffset(ch) � (((csnroffst - 15) * 16) � fsnroffst(ch)) * 4;

For the coupling channel:
startmant � cplstrtmant;
endmant � cplendmant;
fgain � fastgain(cplfgaincod�1);
snroffset � (((csnroffst - 15) * 16) � cplfsnroffst) * 4;
fastleak � (cplfl eak*256) � 768 ;
slowleak � (cplsleak*256) � 768 ;

For the LFE channel:
strtmant � lfestrtmant;
endmant � lfeendmant;
lowcomp � 0;
fgain � fastgain(lfefgaincod�1);
snroffset � (((csnroffst - 15) * 16) � lfefsnroffst) * 4;

2.

3.

4.

10.3.3. Decode Coefficients

For each coeffi cient that is not included in coupling, a fi xed point value is obtained
by right shifting the mantissa value by its exponent as follows:

 coeffi cient[bin] � mantissa[bin] �� exponent[bin] (10.42)

The value for mantissa[bin] depends on the type of quantization used and is
determined using one of the following procedures.

10.3.3.1. Symmetric Quantization (1 	 bap 	 5)

For bap[bin] values of 1–5, the value for mantissa[bin] is determined using the code
word mantissa_code[bin] as follows:

 mantissa[bin] � mantissa_value[mantissa_code[bin]] (10.43)

where the mantissa_value corresponding to each mantissa_code[bin] value can be
found in Tables 10.25 – 10.29.

For bap[bin] values of 3 or 5, the value of mantissa_code[bin] is obtained di-
rectly from the corresponding 3 or 4 bits of the bit stream, respectively.

For a bap[bin] value of 1, the corresponding 5 bits of the bit stream repre-
sent a group_code value for the next three mantissa_code values to be processed
that have been allocated a bap[bin] value of 1. Similarly, for a bap[bin] value of
2, the corresponding 7 bits of the bit stream represents a group_code value for
three mantissa_code values, and for a bap[bin] value of 4, the corresponding
7 bits of the bit stream represents a group_code values for two mantissa_code
values.

The mantissa_code values corresponding to each group_code value are ex-
tracted using the following equations:

bap � 1:

mantissa_code[a] � truncate(group_code/9)

mantissa_code[b] � truncate((group_code%9)/3))

mantissa_code[c] �(group_code%9)%3

(10.44)

bap � 2:

mantissa_code[a] � truncate(group_code/25)

mantissa_code[b] � truncate((group_code%25)/5))

mantissa_code[c] �(group_code%25)%5
(10.45)

bap � 4:

mantissa_code[a] � truncate(group_code/11)

mantissa_code[b] � group_code%11 (10.46)

10.3. Decoder 413

414 Chapter 10 Dolby AC-3 Audio

10.3.3.2. Asymmetric Quantization (6 	 bap 	 15)

For bap[bin] values of 6 to 15, the value for mantissa[bin] is obtained directly from
the corresponding qntztab[bap[bin]] bits of the bit stream.

10.3.4. Decoupling

If coupling is in use, the high-frequency coeffi cients of the coupled channels must be
reconstructed from the coupling channel coeffi cients and the coupling coordinates
of the coupled channels. The following MATLAB code defi nes the algorithm used to
reconstruct the coupling coordinates for each coupling band of the coupled channels
from the coupling coordinate mantissa and exponent values.

if (cplcoexp(ch�1,bnd�1) �� 15)
 cplco_temp(ch�1,bnd�1) � cplcomant(ch�1,bnd�1)/16;
else
 cplco_temp(ch�1,bnd�1) � (cplcomant(ch�1,bnd�1)�16)/32;
end

cplexp � (cplcoexp(ch�1,bnd�1)�3*mstrcplco(ch�1));
cplco(ch�1,bnd�1) � cplco_temp(ch�1,bnd�1)*(2^(-cplexp));

Then using the cplbndstrc array, the coupling coordinates for bands that span
multiple coupling subbands are repeated to reconstruct the coupling coordinates for
each subband.

The mantissa values for each coupled coeffi cient can then be determined from
these coupling coordinates using the algorithm defi ned by the following MATLAB
code.

for sbnd � cplbegf:cplendf�2
for bin � 0:11

s � sbnd*12�bin�37;
chmant(ch�1,s�1) � cplmant(s�1)*cplco(ch�1,sbnd�1)*8;

end
end

Then for each coeffi cient that is included in coupling, a fi xed point value is ob-
tained by right shifting this mantissa value by the corresponding exponent from the
coupling channel.

10.3.5. Inverse Transform

Once the transform coeffi cients have been recovered from the decoded mantissa
and exponent values, the inverse transform is performed to obtain the recon-
structed sample values. The inverse transform is performed using the following
equation:

y n w n X k
N

n k k() () ()() ()�� � � � �() cos
2

4
2 1 2 1 2 1 1

π π
4

��

�

�

�

α()

∑

k

n
0

2 1N /

, . . ., for 0 NN �1
(10.47)

where X(k) is the set of decoded transform coeffcients, w(n) is the window function
with the values shown in Table 10.4, and y(n) is the set of windowed output samples.
The variable α is used to control the time offset for the transform basis functions and
is given by

α �

�1,

,

for the first short transform

 for t0 hhe long transform

for the second short t�1, rransform

 (10.48)

10.3.6. Overlap and Add

The fi nal step in the TDAC transform is to overlap the fi rst half of the set of win-
dowed output samples with the second half of the previous block. The following
MATLAB code defi nes this overlap-and-add process.

for n�0:N/2-1
 output(n�1) � 2*(y(n�1)�delay(n�1));
 delay(n�1) � y(N/2�n�1);
end

10.4. SUMMARY

The ATSC digital television standard prescribes the use of an AC-3 bit stream to
transmit audio information. The AC-3 audio standard defi nes a multichannel coding
algorithm that is capable of transmitting up to fi ve full bandwidth channels and one
low-frequency effects channel in one of the eight possible channel confi gurations. In
this chapter, the encoding algorithm, syntax, and decoding algorithm for the AC-3
standard are explained.

PROBLEMS

10.1 Draw a simple block diagram of an AC-3 encoder that includes the following system
components, and briefl y explain the function of each of these components:

(a) Frequency analysis

(b) Exponent coding

Problems 415

416 Chapter 10 Dolby AC-3 Audio

(c) Bit allocation

(d) Mantissa quantization

(e) Bit-stream formatting

10.2 With the aid of a diagram describe the format of an AC-3 synchronization frame.

10.3 List the eight audio coding modes that are possible with an AC-3 coder and specify the
order in which the channels are coded in each mode.

10.4 Explain what is meant by the term preecho in digital audio coding and describe the
system used in the AC-3 coder to overcome this problem.

10.5 Explain how the output coeffi cients of the TDAC transform are converted into an
exponent/mantissa representation and the reason for transmitting the coeffi cients in
this manner.

10.6 Explain why channel coupling is used in the AC-3 encoder and discuss the
psychoacoustic effect that allows this type of data rate reduction to be performed with-
out introducing audible distortion in the reconstructed audio signal.

10.7 Explain what is meant by the following terms when used in the context of channel
coding in the AC-3 encoder:

(a) Coupling subband

(b) Coupling band

(c) Coupling coordinates

(d) Phase fl ag

(e) Master coupling coordinate

(f) Coupling channel

(g) Coupled channel

(h) Independent channel

10.8 Explain why rematrixing is used in the 2/0 audio coding mode.

10.9 Explain how the coeffi cient exponent values are transmitted to the decoder using
differential exponents.

10.10 Explain the difference between the three exponent strategies D15, D25, and
D45, and discuss the types of audio signals that would be best coded using each
strategy.

10.11 Determine the absolute exponent value for the first exponent and the differential
exponent values that would be transmitted to the decoder for the original
exponent values given below. Assume that the D-15 exponent coding strategy is
in use.

10.12 Determine the absolute exponent value for the first exponent and the differen-
tial exponent values that would be transmitted to the decoder for the original
exponent values given below. Assume that the D-45 exponent coding strategy
is in use.

10.13 Explain how differential exponents are transmitted to the decoder using mapped
values and grouped values.

10.14 Complete the following table by calculating the actual bits to be transmitted to the
decoder for each set of three differential exponent values.

10.15 Discuss the advantages and disadvantages of the AC-3 bit-allocation philosophy
of using a standard core bit-allocation procedure that can be modifi ed by delta bit-
allocation parameters.

10.16 Explain what is meant by the following terms when used in the context of bit allocation
in the AC-3 encoder:

(a) PSD integration

(b) Bark scale band

(c) Log addition

(d) Spreading function

(e) Fast decay masking curve

(f) Slow decay masking curve

(g) Excitation function

10.17 Explain why it is necessary to compensate for the selectivity of the TDAC transform
at low frequencies.

10.18 Explain how the masking threshold curve is calculated from the excitation function
and the absolute threshold of hearing.

10.19 Describe the process for adjusting the masking curve produced by the core bit-
allocation procedure using delta bit-allocation parameters.

10.20 Describe the process for determining the bit-allocation pointer values for each Bark
scale band.

10.21 Explain the difference between the symmetric and asymmetric quantization proce-
dures used to quantize the mantissa values.

10.22 Complete the following table by determining the actual bits to be transmitted to the
decoder for the given mantissa and bap values.

10.23 Explain the concept of dialog normalization and give examples of when it may be
benefi cial to use this procedure.

10.24 Explain the concept of dynamic range compression and give examples of when it may
be benefi cial to use this procedure.

Differential exponent values Grouped value code word

�2,1,0
�1,�1,�1
1,0,�1

Mantissa bap Code word

0.2311 3
0.6068 5
0.4860 7
0.8913 9

Problems 417

418 Chapter 10 Dolby AC-3 Audio

10.25 Complete the following table by determining the normalized standard downmix
equations that should be used in the audio reproduction system for the following input/
output channel confi gurations:

10.26 Determine the actual bits required in the BSI header of an AC-3 syncframe for the
audio stream with the following confi guration:

10.27 Determine the actual bits required in the BSI header of an AC-3 syncframe for the
audio stream with the following confi guration:

Input channels Output channels Equations

L,C,R,S L0,R0

L,C,R,S Lt,Rt

L,C,R,S C
L,C,R,Ls,Rs L0,R0

L,C,R,Ls,Rs Lt,Rt

L,C,R,S L,C,R,Ls,Rs

Property Value

Version 8
Type of service C
Audio coding mode 1/0
Low-frequency effects channel Off
Average dialog level �25 dB
Heavy compression Off
Copyright Protected
Original Yes
Time code (h:min:s:frame) 1:45:15:0

Property Value

Version 8
Type of service CM
Audio coding mode 3/2
Center mix level �4.5 dB
Surround mix level �6 dB
Low-frequency effects channel on
Average dialogue level �30 dB
Heavy compression off
Peak mixing level 100 dB
Room type Large room, X curve monitor
Copyright Protected
Original Yes
Time code (h:min:s:frame) 2:05:10:0

MATLAB EXERCISE 10.1

The aim of this exercise is to implement the spectral envelope coding and decoding
algorithms used in the AC-3 encoder and decoder.

Write a MATLAB function to calculate the mantissa and exponent values for
a set of transform coeffi cients using the procedure described in Section 10.1.6.

Write a MATLAB function to calculate the differential exponent values for
a set of absolute exponent values using the procedure described in Section
10.1.7. Your function should have the exponent coding strategy as an input
and be able to produce differential exponent values for the three exponent
coding strategies.

Write a MATLAB function to convert a set of differential exponent values
into mapped values and then take three mapped values and produce the bits
corresponding to a grouped value.

Write a MATLAB function to produce a set of coeffi cient exponent values
from a bit stream containing the code words corresponding to a set of coded
group values.

Discuss techniques that may be used to automatically choose the most ap-
propriate exponent coding strategy.

MATLAB EXERCISE 10.2

The aim of this exercise is to implement the bit-allocation algorithm used in the
AC-3 encoder.

Write a MATLAB function to initialize the strtmant and endmant param-
eters using the code given in Section 10.1.8.1.

Write a MATLAB function to convert the exponent values specifi ed by the
coded spectral envelope into power spectral density values using the code
given in Section 10.1.8.2.

Write a MATLAB function to calculate the power spectral density values for
the set of 50 Bark scale bands given in Table 10.13 using the code given in
Section 10.1.8.3.

Write a MATLAB function to calculate the excitation function values for
the set of 50 Bark scale bands given in Table 10.13 using the code given in
Section 10.1.8.4.

Write a MATLAB function to calculate the masking curve values for the set
of 50 Bark scale bands given in Table 10.13, using the pseudocode given in
Section 10.1.8.6.

Write a MATLAB function to calculate the bit-allocation pointer values for the
set of transform coeffi cients, using the pseudocode given in Section 10.1.8.8.

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

6.

MATLAB Exercise 10.2 419

420 Chapter 10 Dolby AC-3 Audio

Now combine these functions to produce a MATLAB function that
determines bit-allocation pointer values for a given set of input coeffi cients.
Determine the required snroffset values to produce an audio block with the
following output bitrates:

(a) 32 kbit/s

(b) 128 kbit/s

MATLAB EXERCISE 10.3

The aim of this exercise is to implement the quantization and inverse quantization
algorithms used in the AC-3 encoder and decoder.

Write a MATLAB function to quantize a set of coeffi cient mantissa values
with the number of bits specifi ed by a set of bit-allocation values for each
coeffi cient using the quantization algorithm given in Section 10.1.9.

Write a MATLAB function to produce a set of coeffi cient mantissa values
from a bit stream containing the code words corresponding to a set of
quantized mantissa values.

REFERENCES

ATSC Standard: Digital Audio Compression (AC-3), Revision A, Doc. A/52A, 20 August 2001.

7.

1.

2.

1.

421

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 11

MPEG-2 Systems

11.1. INTRODUCTION

The video and audio parts of the MPEG-2 standard defi ne the bit-stream syntaxes and
the signal processing required for the decoding of video and audio bit streams. Each
of these bit streams, known as an elementary stream, is generated by an elementary
stream encoder (either video or audio) and must be stored or transported across a
communications system before being passed to an elementary stream decoder. The
systems part of the MPEG-2 standard [1] defi nes a number of services that are re-
quired for the delivery of these elementary streams. These services are as follows:

Multiplexing. Multiplexing is used to interleave two or more elementary
streams into a single stream that can be carried on a communications channel.
This is achieved using a packet-based multiplex. Multiplexing is discussed in
Section 11.3.

Timing. The major purpose of the timing function is to provide synchroniza-
tion. First, it is necessary during decoding to synchronize the operation of
a decoder to the timing of the encoder that generated the bit stream being
decoded. Second, synchronization between compressed streams on decoding
and playback must be provided. Without this type of synchronization, lip-
sync cannot be provided. Timing is discussed in Section 11.4.

Buffer management. A decoder stores a received bit stream until it is ready to
decode it. Buffer management is required to ensure that the decoder’s internal
buffers do not overfl ow, resulting in the loss of parts of an elementary stream.
Buffer management is discussed in Section 11.5.

Transmission of control data. A variety of control data must be transmit-
ted to carry confi guration information about elementary streams (allowing
them to be reassembled into audio–visual programs), the network carrying
the multiplexed stream, and the conditional access system used. This data
takes the form of a number of tables and is discussed in Section 11.6.

This chapter describes the structure of MPEG-2 systems and its use in the digital
video broadcast (DVB) and advanced television standards committee (ATSC) suites

•

•

•

•

422 Chapter 11 MPEG-2 Systems

of standards. The aim is to provide the reader with an understanding of the operation
of MPEG-2 systems but not to describe fully its syntax. A complete description of
the syntax can be found in the MPEG-2 systems standard. A number of extensions
to MPEG-2 systems have been defi ned by DVB and ATSC. These extensions both
increase the functionality of the systems layer and ease the task of the decoder in
some circumstances. They are discussed separately in Chapter 12.

11.2. SERVICE OVERVIEW

The structure of a simple MPEG-2 encoder [2] encoding a single program is shown
in Figure 11.1. A video signal is converted into a video bit stream by the video
 encoder. An audio signal is converted into an audio bit stream by the audio encoder.
These two elementary streams are conveyed to the multiplexer, which multiplexes
them together and inserts control information to produce a single systems bit
stream.

The systems bit stream, illustrated in Figure 11.2, contains interleaved
video, audio, and control data. The interleaving is achieved by placing data
from the elementary streams in packets. This allows much greater flexibility
than would be possible with a periodic time-division multiplexing, particularly
for streams that have vastly different data rates and streams whose data rate
changes over time.

The various components making up an MPEG-2 systems bit stream are distin-
guished by the contents of the packet header, in which each component is allocated
a unique value of the payload identifi er (PID) fi eld.

A television program encoded as an MPEG-2 bit stream contains, therefore, a
number of multiplexed elementary streams, each of which contains data that can be
decoded by either a video or audio decoder. The MPEG-2 decoder (Figure 11.3) [3]
is responsible for decoding of the received systems bit stream and the reassembly of
the video and audio components of the program. The systems decoder performs the
fi rst stage of decoding, extracting the elementary streams and passing them to the
elementary stream decoders, that is, the video and audio decoders. The elementary
stream decoders decode the elementary streams and perform the signal processing
required to reconstruct the video and audio signals.

Video
bit stream

Video
encoder

Audio
bit stream

Audio
encoder

Control

MUX
Systems
bit stream

Figure 11.1 Example encoder.

The systems encoding and decoding processes for a single program can be
 represented schematically as shown in Figure 11.4. The elementary stream encoders
and decoders are not shown.

For a systems bit stream containing multiple programs, the systems encoder and
decoder can be represented as shown in Figure 11.5. Elementary streams from the
multiple programs are passed into the systems encoder. The resulting systems bit
stream is then transmitted to the decoder over a single channel. The systems decoder
extracts the elementary streams that make up the multiple programs, passing the
streams corresponding to one program to the elementary stream decoders and dis-
carding all other elementary streams.

The sharing of elementary streams between programs is also possible. In the
example shown in Figure 11.6, a video stream is shared between two programs that
have distinct audio streams. This approach might be used for the broadcast of a

11.2. Service Overview 423

Video
bit stream

Display
Video
decoder

Audio
bit stream

Audio
decoder

Systems
bit stream

C
on

tr
ol

DEMUX

Figure 11.3 Example decoder.

Audio

Video

MUX DEMUX

Audio

Video

Figure 11.4 Single-program operation.

MUX DEMUX
Audio

Video

Audio

Video

Program 1

Program 2

Audio

Video

Audio

Video

Program 1

Program 2

Figure 11.5 Multiple programs.

Video Audio Control Video Video Audio.

Figure 11.2 Example systems bit stream.

424 Chapter 11 MPEG-2 Systems

movie dubbed into a number of languages or for a sports broadcast to be viewed in
several languages. In the latter case, the soundtracks may not only be in different
languages but may also be generated independently, expressing national biases in
the outcome of the event.

Although the primary types of data carried by the MPEG-2 systems layer are
MPEG-2 video and MPEG-2 audio, it is often necessary to carry other types of data
not standardized by MPEG-2. Such data, known as private data, may be used for
the transfer of key management data for conditional access systems, the use of non-
MPEG-2 audio standards (such as Dolby AC-3), or carrying information associated
with a program such as subtitles. The combined use of video, audio, and private
data elementary streams is illustrated in Figure 11.7. Both DVB and ATSC make
 extensive use of private data.

In order to allow synchronization between elementary streams, two types of
timing information are carried in an MPEG-2 systems bit stream. Clock references
are used to pass the current time to the decoder; time stamps provide information on
the time at which specifi c actions are to occur.

The term access unit is used to describe the basic unit of data that is presented
to the viewer by the decoder. For a video elementary stream, the access unit corre-
sponds to a picture. For an audio elementary stream, the access unit corresponds to
an audio frame.

The control information carried by the MPEG-2 systems layer provides
 information about timing, buffer management, and the structure of the bit stream,
including the program-specifi c information (PSI) that allows a decoder to group
 elementary streams into programs and to decode one program from a systems bit
stream containing several programs. The PSI is organized into a number of tables.
Two of these tables effectively provide a table of contents for the bit stream: the

MUX DEMUXVideo

Audio 1

Audio 2

Video

Audio 1

Audio 2

Program 1

Program 2

Figure 11.6 Shared elementary streams.

Audio

Video

MUX DEMUXAudio

Video

Private
data

Private
data

Figure 11.7 Use of private data.

 program association table and the program map table. Each program has its own
associated program map table, which contains a list of PIDs for the packets carry-
ing the elementary streams making up the program. The program association table
carries a list of PIDs for the packets carrying the program map tables of all program
carried in the system bit stream, providing a single entry point for the system bit
stream.

11.3. MULTIPLEXER STRUCTURE

The MPEG-2 systems multiplexer is a two-layer, packet-oriented multiplex. The up-
per sublayer, the packetized elementary stream (PES) sublayer, breaks the video
and audio bit streams into packets and attaches a packet header that contains
 packetization, timing, and control information. The PES packets are passed to one
of the two multiplexing sublayers. The transport stream (TS) is the more commonly
used of the multiplexing sublayers and is designed to provide robust transmission
on unreliable channels. The program stream is provided as an alternative to the
 transport stream and can be used to provide backward compatibility with MPEG-1.
The DVB and ATSC standards for digital television use only the transport stream.

In this section, the properties of the MPEG-2 multiplexer are discussed.

11.3.1. PES Sublayer

The PES sublayer packetizes bit streams from elementary stream encoders. Each
packet consists of a header, containing confi guration information about the packet,
timing information and information about the type of the payload, and a payload
containing the elementary stream data.

The PES sublayer can be thought of as an adaptation layer between the con-
tinuous bit streams generated by the video and audio encoders and the multiplex of
the transport stream or program stream. This adaptation layer captures a number
of important types of information about the elementary stream including timing
and control information. PES packets are passed to either the transport stream or
 program stream for multiplexing.

11.3.1.1. PES Packet Header

Each PES packet header begins with a 32-bit MPEG start code. The fi rst 24 bits have
value 0x000001. The remaining 8 bits are the stream_id of the data in the packet,
which specifi es the type of data carried by the PES packet. This stream_id is used
extensively by both DVB and ATSC digital television systems.

The remainder of the PES packet header contains the following types of infor-
mation: packetization information, which provides information about the structure
of the packet; timing information, which is used by the decoder for synchroniza-
tion; and control information, which provides other information about the elemen-
tary stream.

11.3. Multiplexer Structure 425

426 Chapter 11 MPEG-2 Systems

The major fi elds of the PES packet header are shown in Table 11.1. Fields
 carrying data that only describes the structure of the PES packet header have been
 omitted. All other fi elds are included. Even though the lengths of many of the fi elds
in the PES packet header are not multiples of 8 bits, the syntax guarantees that the
length of the header is always an integer number of bytes.

The length of a PES packet is specifi ed in the 16-bit PES_packet_length fi eld of
the PES header. The maximum length that can be specifi ed in this fi eld is 216�1 bits,
which is the maximum length allowed for all PES packets except for those contain-
ing video elementary streams. In the case of video elementary streams, a value of 0
may be placed in this fi eld, indicating that the length is unbounded. Where the PES
length is unbounded, a decoder must determine the length from the transmitted bit
stream. The reason that the unbounded length option is permitted for video elemen-
tary streams is that start-code emulation is prevented in these streams. (Chapter 5
provides an explanation of start-code emulation.) Because audio elementary streams

Table 11.1 Fields of PES packet header.

Field Size (bits) Use

packet_start_code_prefix 24 0x000001
stream_id 8 Identifies the type of the elementary

stream, for example, video, audio,
or private data

PES_packet_length 16 Number of bytes in the PES packet
following this field

PES_scrambling_control 2 Indicates whether or not the payload
of the PES packet is scrambled

PES_priority 1 “1” indicates higher priority that “0”
data_alignment 1 “1” indicates that the PES header is

immediately followed by a video
start code or audio sync word

Copyright 1 Indicates that the payload is
protected by copyright

PTS 33 Presentation time stamp
DTS 33 Decoding time stamp
ESCR 42 Elementary stream clock reference
trick_mode_control 3 Signals the use of pause, fast

forward, and fast reverse
modes—primarily for video-on-
demand applications

previous_PES_packet_CRC 16 Intended for network
maintenance—only calculated on
payload because header can be
modified in transport

stuffing_byte 8 Up to 32 bytes of stuffing may be
added to a PES header

do not use the same start-code structure, start-code emulation is therefore not pre-
vented in these streams.

The use of scrambling on the body of the PES packet can be indicated using the
PES_scrambling_control fi eld. The binary value 00 indicates no scrambling; the
remaining three values indicate that scrambling is used. Differences in the meanings
of these three values are not defi ned by MPEG-2 but are left to vendors of condi-
tional access systems.

The primary type of timing information carried by the PES packet header
is time stamps. The structure of these fi elds is discussed in Section 11.4. Two
types of time stamps may be used: PTS and DTS. The PTS tells the decoder
the time at which decoded information should be presented to the viewer and
may be used with video, audio, and private data. The decoding time stamp is for
use where a picture must be decoded before it is displayed and tells the decoder
when decoding should begin. (More information on clock references is provided
in Section 11.4.2.) Clock references can also be carried in the PES header using
the elementary stream clock reference (ESCR). In principle, this means that each
elementary stream can be synchronized to an independent clock. In digital televi-
sion, all streams making up a program are usually required to be synchronized to
a single clock, and this is not used.

The stuffi ng_byte may be used to pad a header. One use of this fi eld is to allow
the length of the PES header to remain unchanged when a fi eld is deleted during
transmission. This might occur when a time stamp is deleted during transcoding.

Alignment between the boundaries of PES packets and the video bit stream
 offers a number of advantages, especially for error resilience. Byte alignment is
 always preserved, because a PES packet always contains a whole number of bytes of
the video bit stream. Byte alignment of start codes in the video bit stream is achieved
by inserting 0 bits at the end of a video bit stream until its length in bits is a multiple
of 8. Setting the data_alignment fi eld of the PES header to 1 indicates that the PES
header is immediately followed by a video start code or audio sync word. For video,
this means that the PES packet is aligned with the slice layer, picture layer, GOP
layer, or sequence layer. Further information on alignment may be carried in the PSI
referring to this stream as discussed in Section 11.6.2.2.

11.3.1.2. Overheads Due to the PES Layer

The basic length of the PES header used with video and audio elementary streams
is 8 bytes. A major component of this fi rst part of the header is a group of fl ags that
indicate the presence or absence of other parts of the PES header. Where a time
stamp is present in the PES header, an additional overhead of 5 bytes is added to the
basic overhead. Time stamps are required no more often than once per picture and
are often required much less often. Their overhead amounts to much less than 0.1%
of the total rate. Where the ESCR is present, a further 6 bytes of overhead is added.
A further 2 bytes is added if the optional CRC is transmitted, which does not usually
occur in normal transmission. Further variable overheads are added by the use of
trick modes, or inclusion of private data or stuffi ng bytes in the header.

11.3. Multiplexer Structure 427

428 Chapter 11 MPEG-2 Systems

The average overhead of the PES layer is therefore approximately 8 bytes per
PES packet, with the additional data added by the use of optional fi elds not contrib-
uting signifi cantly. The total overhead (O) therefore depends on the number of PES
packets per second (P) and the data rate in bytes per second (R):

O
P

R
�8

EXAMPLE 11.1—PES Layer Overheads

Calculate the percentage overhead for a 4-Mbit/s, Rec.601-resolution video sequence
(25 pictures per second, with each picture containing 576 lines) with one slice per row of
 macroblocks and one PES packet per slice. Repeat the calculation for HDTV (1088 lines per
picture, with a frame rate of 25 frames per second) at 20 Mbit/s.

In 576 lines, there are 36 rows of macroblocks. With one slice per row of macroblocks
and one PES packet per slice, we have 25 � 36 � 900 PES packets per second or 7200 byte/s.
For a video elementary stream at Rec.601 resolution and 4 Mbit/s (500 Kbyte/s) with one PES
packet per slice, the overhead is therefore 1.4%.

In 1088 lines, we have 68 rows of macroblocks. With one slice per row of macroblocks and
one PES packet per slice, we have 25 � 68 � 1700 PES packets per second or 13.6 Kbyte/s. For
HDTV at 20 Mbit/s (2.5 Mbyte/s) with one PES packet per slice, the overhead is approximately
0.54%. The use of larger PES packets reduces these overheads to even lower levels. �

11.3.2. Transport Stream Sublayer

The purpose of the transport stream sublayer is to provide a robust multiplex for
PES packets from a number of elementary streams. All data is carried in packets
with length 188 bytes. This packet length is chosen to allow an MPEG-2 transport
stream packet to fi t into four asynchronous transfer mode (ATM) cells, allowing for
the overhead of the ATM adaptation layer. The fi rst four bytes of each packet are
the packet header. The remaining bytes may optionally contain an adaptation fi eld,
payload bytes, or an adaptation fi eld followed by payload bytes.

Each section of each PSI table is carried as the payload of one or more transport
stream packets. Multiple sections with a common PID may be carried in a single
transport stream packet.

11.3.2.1. Transport Stream Packet Header

The allocation of the contents of the transport stream packet header is shown in
Table 11.2. The fi rst byte of the transport stream packet header is the sync_byte.
This fi eld always has the value 0x47 and is used for synchronization. When a de-
coder begins the decoding of a new transport stream, it fi rst searches the stream
for the value 0x47. Because there is no protection against emulation of the sync_
byte (unlike the start codes used in MPEG-2 video), the decoder must ensure that

a number of correct sync_byte fi elds are received spaced exactly 188 bytes apart.
The transport_error_indicator is usually set to 0, but may be set to 1 where the
transmission network’s transport layer detects an error that is passed uncorrected to
the MPEG-2 decoder.

The payload_unit_start_indicator fi eld is used to indicate whether the trans-
port stream packet contains the fi rst byte of a new PES packet or a new section of a
PSI table. If the transport stream carries PES data, setting the payload_unit_start_
indicator to 1 indicates that the payload of the transport stream packet begins with
a new PES packet, that is, the PES start code consisting of 0x000001 followed by
the 8-bit stream_id; a value of 0 indicates that no PES packet starts in this transport
stream packet. For transport stream packets carrying PSI data, setting the payload_
unit_start_indicator to 1 means that the fi rst byte of the payload of the transport
stream packet points to the start of the fi rst new PSI section to start in this transport
stream packet. The possible uses of payload_unit_start_indicator are illustrated
in Figure 11.8.

The transport_priority field may be used by an encoder to indicate to the
transport layer of the transmission network that some transport stream packets
have higher priority than others. This may be useful in distribution systems,
such as those based on ATM switching, that are able to provide higher levels
of protection against error and loss to some packets. The PID identifies the
 elementary stream with which the transport stream packet is associated. The
13 bits assigned to this field permit up to 8192 different streams to be uniquely
identified. Some values of this field are preassigned, such as 0x0000 being used
for the program map table. A PID value of 0x47 should not be used, as this
may be confused by a decoder with the sync_byte. The transport_ scrambling_

Table 11.2 Transport stream packet header. Fields are transmitted in the order indicated.
Each field is transmitted with its most significant bit first.

Field Size (bits) Use

sync_byte 8 Always 0100 0111 (0x47)—used for
Synchronization.

transport_error_indicator 1 Set if network’s transport layer detects an error.
payload_unit_start_

indicator
1 Packet begins with new PES packet or PSI

section.
transport_priority 1 “1” indicates higher priority than “0.”
PID 13 Payload ID; indicates number and type of

elementary stream.
transport_scrambling_

control
2 Indicates use of encryption.

adaptation_field_control 2 Indicates presence or absence of adaptation
field and payload.

continuity_counter 4 Increases with each transport stream packet with
same PID. Can be used to detect lost packets.

11.3. Multiplexer Structure 429

430 Chapter 11 MPEG-2 Systems

 control field is used to indicate if the contents of the transport stream packet
are scrambled for conditional access. A value of 0 indicates no scrambling. All
other values indicate the use of conditional access. Definition of any difference
in meaning between the available nonzero values is left to the implementor.
The adaptation_field_control indicates whether or not the adaptation field (de-
scribed below) and payload are present in the transport stream packet. Two bits
are required to signal one of the three possible packet configurations: adapta-
tion field only, payload only, or both adaptation field and payload. The conti-
nuity_counter is increased by one for each successive packet having the same
value of PID.

11.3.2.2. Adaptation Field

Table 11.3 shows a summary of the contents of the adaptation fi eld, listing fi elds
whose value impacts on the remainder of the transport stream but omitting fl ags and
fi eld lengths that affect only the contents of the adaptation fi eld.

The purposes of the adaptation fi eld are to carry the clock references used by
the decoder to recover information about the timing of the stream (described in
Section 11.4) and to provide information to assist buffer management, including
notifi cation of discontinuities in the clock reference, splicing points, and the latest
valid arrival time for a transport stream packet. Without these clock references, a
decoder would not be able to reliably decode a received bit stream and to regenerate
the video frame and audio sample clocks.

Splicing points provide support for the editing of MPEG-2 systems bit streams.
Editing without the use of splicing points requires that the system time clock run
continuously, that is, without break. The major impact of this is that when two
MPEG-2 bit streams are spliced together, the timing of one must be altered so that
the system time clock is continuous across the point where they are joined. This
usually requires that the transport stream of at least one of the sequences is recoded,
although it may be possible to avoid recoding of video and audio material. The VBV
requirements (see Chapter 6) of video, however, must also be met. Meeting this
requirement may sometimes require recoding of video.

pa
yl

oa
d_

un
it_

st
ar

t_
in

di
ca

to
r

1 New PES packet…1 New PES packet…

1 New PSI section New PSI section…1 New PSI section New PSI section…

1 Continuation of previous PSI section New PSI section…1 Continuation of previous PSI section New PSI section…

0 Continuation of previous PSI section…0 Continuation of previous PSI section…

0 Continuation of previous PES packet…0 Continuation of previous PES packet…

Figure 11.8 Uses of payload_unit_start_indicator in the MPEG-2 transport stream packet header.

The purpose of splicing points in MPEG-2 systems bit streams is to avoid
the need for recoding of either systems bit streams or elementary streams
during editing. Where a splice occurs in an MPEG-2 systems bit stream, the
discontinuity_indicator fi eld of the transport stream packet after the splice is
set to 1. This means that the continuity_counter fi eld of the header of the fi rst
transport stream after the splice may have an arbitrary value. The discontinuity_
indicator fi eld of the transport stream packet after the splice carrying the pro-
gram clock reference (PCR) is also set to 1. This means that the decoder must
resynchronize to a new system time clock. The splice_countdown fi eld of the
adaptation fi eld of transport stream packets preceding the splice is used to in-
form the decoder of the precise location of the splice. The splice_type fi eld in

Table 11.3 Summary of adaptation field contents.

Field Size (bits) Use

discontinuity_indicator 1 Indicates discontinuity in system time clock—the
next program clock reference in a transport
stream packet with same PID begins a new
system time clock.

random_access_
indicator

1 Current transport stream packet contains
information to aid random access—a video
sequence header for a video elementary stream
or the start of an audio frame for an audio
elementary stream.

elementary_stream_
priority_indicator

1 Indicates priority of transport stream packet
within elementary stream.

program_clock_
reference

42 PCR—this clock reference is used by the decoder
to reconstruct the STC.

original_program_
clock_reference

42 Original PCR—used to transmit the original value
of the PCR when it has been modified during
remultiplexing or transcoding.

splice_countdown 8 Number of transport stream packets of same PID
until a splicing point.

transport_private_
data_length

8 Number of bytes of private data contained in this
transport stream packet.

ltw_offset 15 Legal time window in which transport stream
packet should arrive to prevent illegal buffer
conditions.

piecewise_rate 22 Notional rate used to define end of legal time
window.

splice_type 4 Assists the decoder to prevent buffer overflow at
the next splice.

DTS_next_AU 33 Decoding time stamp for the next access unit,
which begins in the transport stream packet
after splice_countdown reaches 0.

11.3. Multiplexer Structure 431

432 Chapter 11 MPEG-2 Systems

the adaptation fi eld of transport stream packets leading up to the splice is used to
provide information to the decoder on the peak data rates that can be expected as
a result of the splice, assisting the decoder with its buffer management.

Stuffi ng bytes, whose value is 0xFF, are available in the adaptation fi eld. These
are used to fi ll up transport stream packets that are only partially fi lled by the payload
and adaptation fi elds. This might happen in the last transport stream packet of a PES
packet.

Null transport stream packets, whose PID is alway 0x1FFF, are allowed.
These transport stream packets can be inserted and deleted when transport
streams are multiplexed to provide fi ne adjustment of bit rate. They can also be
inserted in place of transport stream packets from a program that is deleted from
a transport stream. The payload bytes of a null transport stream packet may take
any value.

Private data may also be carried in the adaptation fi eld. This private data may
be used to extend the functionality of the adaptation fi eld but is obviously available
only to proprietary decoders.

An adaptation fi eld containing a single clock reference is 8 bytes in length.

11.3.2.3. Transport Stream Payload

The payload of a transport stream packet consists of elementary stream data or
PSI data. Each transport stream packet may carry data from only one elementary
stream. Alternatively, a transport stream packet may carry data from one or more
PSI sections. Multiple PSI sections may be carried in one transport stream pay-
load, subject to the constraint that these PSI sections have the same associated
PID. This often prevents carrying sections from multiple tables in a single trans-
port stream packet.

11.3.2.4. Alignment between Transport Stream and PES

Byte alignment of the PES packet is always preserved by the transport stream. PES
packets may only begin at the beginning of a transport stream packet. The last trans-
port stream packet carrying a PES packet or PSI section may be only partially full;
the remaining bytes of this transport stream packet have the value 0xFF.

11.3.2.5. Overhead Due to Transport Stream

The overhead due to the transport stream packet header (O1) is 4 bytes per
packet (total length 188 bytes), giving O1 � 2.1%, which is mostly associated
with synchronization. Additional overheads come from the last transport stream
packet carrying a PES packet being only partially full and the transmission of the
adaptation fi eld.

The amount of overhead due to partially full packets depends on the alignment
between elementary stream (video, audio, or private) data and the PES layer and
the proportion of the last transport stream packet that is empty. We assume that this

last packet is on average half full. Then the overhead due to partially full transport
stream packets (O2) depends on the number of transport stream packets per second
(T) and the number of PES packets per second (P):

O
P

T
2

0 5
�

.

The overhead due to the adaptation fi eld depends on how often this fi eld is
transmitted. In a transport stream, it is necessary to transmit the clock at least
once every 100 ms, that is, 10 times per second (see Section 11.4). The clock ref-
erence is transmitted more regularly where there are discontinuities in the clock
reference due to, for example, splicing. Based on the minimum 8 bytes required
for an adaptation fi eld containing a single clock reference, an overhead of 80 bytes
per second is required for each program. This is insignifi cant for digital television
applications.

The signifi cant sources of overhead are therefore due to the transport stream
packet header and the use of partially fi lled transport stream packets due to align-
ment between the PES packets and elementary streams. The total overhead O is
therefore the sum of O1 and O2:

O
P

T
� �

4

188

0 5.

EXAMPLE 11.2—Overhead Due to Transport Stream

Calculate the overheads due to the transport stream for Rec.601 video (25 pictures per sec-
ond, with each picture containing 576 lines) at 4 Mbit/s and HDTV (1088 lines per picture,
with a frame rate of 25 frames per second) at 20 Mbit/s, assuming alignment between the
PES and video layers at either the slice or picture layer. Assume that each slice contains one
complete row of macroblocks.

For all cases, the overhead due to the transport stream packet header is approximately
2.1%.

For Rec.601 video, there are 576/16 � 36 rows of macroblocks per picture, or 900 rows
of macroblocks per second, corresponding to 900 PES packets per second if the alignment
between PES and video layers is at the slice layer. For each of these PES packets, there
is an average of one transport streams packet that is approximately half full. At 4 Mbps
(500 kbyte/s), there are 500,000/184 � 2717 transport stream packets per second. The over-
head due to partially full transport stream packets is therefore approximately 16.6%, giving
a total overhead of approximately 19%.

If the alignment between PES and video layers is at the picture layer, there are 25 PES
packets per second. The overhead for this case is therefore approximately 0.5%, giving a total
overhead of approximately 2.6%.

For HDTV, with alignment between video and PES at the slice layer, there are
25� 68 � 1700 PES packets per second. On average, each of these leads to one transport
stream packet that is half full. For HDTV at 20 Mbps (13,587 transport stream packets per
second), the overhead due to partially full packets is approximately 6.3%. With alignment
between video and PES at the picture layer, the overhead due to partially full transport stream

11.3. Multiplexer Structure 433

434 Chapter 11 MPEG-2 Systems

packets is approximately 0.1%. (This latter case would almost certainly require the use of the
unbounded option on the PES_packet_length fi eld.)

These overheads are summarized in Table 11.4. �

11.3.3. Program Stream Sublayer

The program stream is provided for backward compatibility with MPEG-1
systems. It supports variable length packets, formed by grouping PES packets
into packs. Each pack consists of a pack header possibly containing an optional
system header, and zero or more PES packets. Although the program stream is
used for DVDs, it is not used in either DVB or ATSC and is not discussed further
here.

11.4. TIMING

The MPEG-2 timing functions are required to provide synchronization of the
 decoder to the encoder and between the elementary streams making up a program.
Without synchronization of the decoder to the encoder, the decoder’s video frame
clock may run slower than the encoder’s. Even if the difference in clock speed is very
small, video frames will eventually have to be dropped when the internal buffers
of the decoder overfl ow. On the contrary, if the decoder’s video frame clock runs
faster than the encoder’s, extra video frames will have to be inserted by playing back
some frames twice. In addition, if synchronization between elementary streams is
not possible, the decoder is unable to preserve features such as lip synchronization
in corresponding audio and video streams.

Synchronization of the decoder to the encoder requires that the two devices
have the same concept of time. Synchronization between elementary streams
 requires that the encoder can pass information to the decoder on the times at which
events associated with an elementary stream should occur. The common concept
of time used by the encoder and decoder is the system time clock (STC). Inclusion
of regular clock references in an MPEG-2 systems bit stream allows the transfer of
the STC from encoder to decoder, allowing synchronization of decoder to encoder.
The use of time stamps associated with events in individual elementary streams
permits synchronization between these elementary streams. The concepts of the
STC, clock references, and time stamps (illustrated in Fig. 11.9) are discussed in
the following sections.

Table 11.4 Summary of transport stream overheads for video elementary
streams in digital television applications.

Rec.601 at 4 Mbps HDTV at 20 Mbps

One slice per PES packet 19% 8%
One picture per PES packet 2.6% 2.2%

11.4.1. System Time Clock

All timing in an MPEG-2 encoder or decoder is defi ned with respect to the STC. This
27-MHz clock is notionally generated by all encoders and must be reconstructed
by decoders from clock references transmitted in the bit stream. A decoder can
use the STC to manage its internal buffers, to generate the video frame and audio
 sample clocks, and to identify the precise time at which presentation units should be
 displayed. The relationship between the 27-MHz STC and the notional frequencies
of the various video and audio clocks is shown in Table 11.5.

Each program in an MPEG-2 transport stream may have its own STC. There
is no requirement for any timing relationship between these different STCs. Even
within one program, discontinuities in the STC are permitted. These are commonly
introduced at splicing points, where material from different sources is joined.

11.4.2. Clock References and Reconstruction
of the STC

Clock references transmitted in an MPEG-2 systems bit stream are used by a decoder
to reconstruct the STC. In simple terms, this means that clock references are used by
the decoder to fi nd out what the current time is.

11.4. Timing 435

Encoder Decoder

Clock
reference

Time
stamp

.

Figure 11.9 Time stamps and clock references.

Table 11.5 Divisors required to generate notional video
and audio clocks from 27-MHz STC.

Clock Divisor

25-Hz video frame 1,080,000
50-Hz video field 540,000
30-Hz video frame 900,000
60-Hz video field 450,000
44.1-kHz audio 30,000/49
48-kHz audio 1,125/2

436 Chapter 11 MPEG-2 Systems

A clock reference is transmitted in the bit stream in two parts whose length totals
42 bits. The fi rst is the CR_base (33 bits) and the second is the CR_ext (9 bits). The
CR_base fi eld specifi es the time with respect to a 90-kHz clock derived by dividing
the STC by 300. The CR_ext fi eld specifi es the remainder from this division. The
full clock reference is used to reconstruct the STC. Time stamps are specifi ed with
respect to the 90-kHz clock of the CR_base.

The value of the clock reference is specifi ed with respect to the location of the
last bit of CR_base as illustrated in Figure 11.10.

The decoder uses the received clock references to regenerate the STC. This may
be achieved by the use of a phase-locked loop (Fig. 11.11), which is used to adjust
the operating frequency of a 27-MHz oscillator so as to keep it synchronized to a
corresponding oscillator in the encoder. The phase-locked loop works by comparing
received clock references to its internally generated STC. The differences are passed
into a low-pass fi lter, whose output is used to speed up or slow down the oscilla-
tor from which the internal STC is derived. The use of a well-designed low-pass
fi lter prevents jumps in the value of the STC and short-term, large variations in the
operating frequency of the oscillator.

Simpler decoders may use a free-running oscillator and simply update the
current value of the STC every time a clock reference is received, reducing com-
plexity by removing the need for a phase-locked loop. Such decoders are likely to
be particularly susceptible to delay jitter in the distribution system, which can cause
larger jumps in the value of the STC.

Where STC discontinuities are signaled in the systems stream, the MPEG-2
decoder discards the memory in its clock recovery circuit, allowing the new STC
to be generated. In the case of the structure shown in Figure 11.11, this requires
setting to 0 all the values stored inside the low-pass fi lter. In digital television
applications, the interval between clock references transmitted by an encoder must
never exceed 100 ms. STC discontinuities may cause additional clock references
to be transmitted.

CR_base CR_ext

Figure 11.10 Timing of clock reference.

Subtract
Low
pass
filter

VCO

Counter

Received
Clk_Ref

STC

27 MHz-

Figure 11.11 Outline structure of clock recovery circuit.

EXAMPLE 11.3—Clock Reference

How is the STC value 4,505,342 represented?

For an STC value of 4,505,342, the value of CR_base is the integer part of
4,505,342/300� 15,017 (represented in hexadecimal as 0x000003AA9). The value of CR_ext
is the remainder from the division 4,505,342/300, which is 242 (0xF2 in hexadecimal). �

11.4.3. Time Stamps

Time stamps tell a decoder when an event associated with an elementary stream
should occur. There are two types of time stamp: the presentation time stamp (PTS)
and the decoding time stamp (DTS). The PTS is used to determine the display time
of, for example, a video picture. This allows synchronization between elementary
streams and generation of accurate video frame and audio sample clocks. The DTS
may be used by a decoder to determine when it is necessary to start decoding the data
for an access unit. The specifi cation of DTS is based on the system target decoder
(STD), which is a notional decoder architecture specifi ed by MPEG-2. For decod-
ers with different architectures, the DTS can be translated to a value appropriate to
that architecture. The DTS is used only where the decoding time differs from the
presentation time. One example is in a video sequence incorporating B-pictures,
where I and P-pictures immediately following a B-picture (in presentation order) are
transmitted before the B-picture.

Each time stamp is encoded as a 33-bit fi eld. These 33 bits specify the time at
which an event (presentation or decoding) associated with an elementary stream occur.
The value of the time stamp provides the time with respect to the 90-kHz clock derived
by dividing the STC by 300 and encoded as the base part of the clock reference.

11.5. BUFFER MANAGEMENT

The basic structure of an end-to-end MPEG-2 system is shown in Figure 11.12.
Video and audio arrive at the left side of their respective elementary stream encoder,
pass though the system and emerge at the right side with all timing relationships
preserved. For the usual case of a constant video picture rate and a constant audio
sample rate, this means that the video picture rates at either end of the system are
the same, as are the audio sample rates. Any timing relationship between video and
audio is also preserved.

In a simple system, the timing relationships may be preserved at all points through
the chain from encoder to decoder. Because this would imply, for example, that all
macroblocks of video were coded with the same number of bits, this situation never
arises in practice. The usual situation is that the output of the video encoder has con-
stant picture rate but variable bit rate. The buffer converts this output into a constant
rate bit stream. Because the number of bits used to code each picture is not constant,
pictures occupy different amounts of time in the output bit stream of the buffer.

11.5. Buffer Management 437

438 Chapter 11 MPEG-2 Systems

A smaller amount of variability in the delay is introduced by multiplexing ser-
vices at different rates. If, for example, there are 10 packets of video generated for
each packet of audio, each of the 10 consecutive video packets experiences a differ-
ent delay in multiplexing, which depends on how close it lies to an audio packet. If
there were two audio packets for every nine video packets, then the audio packets
experience variable multiplexing delay as well.

The bit stream that travels through the channel can be thought of as being con-
stant bit rate but variable sample rate (i.e., variable picture rate for video). At the
decoder, the buffer converts this signal back into a constant sample rate, variable
bit-rate stream that is passed to the elementary stream decoder.

Practical decoders have fi nite-length buffers. Providing a high-quality service
requires that the bit stream is such that these buffers do not overfl ow. This guarantee
is provided by placing constraints on the minimum-length buffers that a decoder
provides and on the amount of variability in sample rate that can be introduced into
a bit stream by the encoder buffering.

An important consequence of the requirement to preserve timing relationships
through encoding, multiplexing, demultiplexing, and decoding is that the end-to-end
delay is constant. This means that an audio sample and a video picture arriving at the
encoder at the same time will also be the output from the decoder at the same time.

The STD is defi ned by MPEG-2 as a reference structure against which param-
eters such as timing and buffer sizes can be defi ned. The STD defi nes the inter-
connections, transfer rates, and buffer sizes for a notional decoder, in which it is
assumed that the elementary stream decoders operate instantaneously. There is no
requirement, however, that a manufacturer implement this architecture in a real
 decoder. The purpose of the STD is to provide a framework allowing manufacturers
to build decoders that are capable of decoding all compliant bit streams without loss
of data due to buffer overfl ows. In other words, specifying buffer sizes with respect
to the STD provides enough information so that a manufacturer can determine the
buffer sizes required for a different decoder architecture.

Encoder Buffer
Video

in System
coder
and

multiplex

Transmission
or

storage

Encoder
Audio

in Buffer

System
coder
and

demultiplex

Buffer

Buffer

Decoder

Decoder

Video
out

Audio
out

Constant delayVariable delay Variable delay

Constant delay

Figure 11.12 Basic structure of end-to-end MPEG-2 system.

11.6. PROGRAM-SPECIFIC INFORMATION

The MPEG-2 PSI provides information to the decoder on the structure of the
MPEG-2 systems bit stream. This information includes the structure of the
 transport stream itself, the grouping of elementary streams to form programs, the
types of these elementary streams (i.e., video, audio, or private data), the condi-
tional access system (if any) used, and details of the distribution network. This
information is contained in four tables: the program association table (PAT), the
program map table (PMT), the conditional access table (CAT), and the network
 information table (NIT).

The program map table and conditional access table provide information about
the programs carried in the transport stream. An MPEG-2 program can be thought
of as comprising a set of elementary streams that are decoded and displayed simulta-
neously. Programs may share elementary streams. Elementary streams can exist for
which there is no PSI information, which are therefore not part of any program and
would not normally be decoded or displayed. PSI information may also be provided
for programs whose elementary streams are not contained in the transport stream.
The program map table and conditional access table carry most of their data in
descriptors. Depending on where they are placed, a descriptor may refer to a single
elementary stream, to all the elementary streams making up a program, or to the
conditional access system.

The specifi c purposes of the tables are as follows:

Program association table. The program association table is used to inform the
decoder of the PIDs in which the program map table is carried for each pro-
gram as well as the PID used for the network information table (if present).

Program map table. Each program has its own program map table section,
which specifi es the PIDs of the elementary streams that make up the program
and the type of each of these streams. Descriptors in the program map table
may be associated with the whole program or with one elementary stream.

Conditional access table. Where encryption is used to provide conditional ac-
cess, the conditional access table is used to inform the decoder of the type of
encryption used. A descriptor placed in the conditional access table provides
system-wide information on conditional access.

Network information table. A decoder requires a variety of information
about the transmission network in order to receive and decode the transport
streams carried by it. This type of information may be carried by the network
information table.

11.6.1. MPEG-2 Descriptors

Most of the data in the PSI is carried in the descriptors. This section describes
the generic syntax of MPEG-2 descriptors, before describing the structure of each
 individual descriptor.

•

•

•

•

11.6. Program-Specifi c Information 439

440 Chapter 11 MPEG-2 Systems

11.6.1.1. Generic Descriptor Syntax

Because of the great variability in the types of information specifi ed in the program
map table and conditional access table, specifi c fi elds are not defi ned for most types
of data carried in these tables. The basic idea of a descriptor is that it carries infor-
mation on both the type of the data and its value. This is in contrast to most data
in MPEG-2, where the type is not explicitly transmitted. The generic syntax of a
 descriptor contained in an MPEG-2 PSI table is shown in Table 11.6. (This pseudo-C
syntax is explained in Chapter 5.)

The descriptor_tag fi eld uniquely identifi es the descriptor. For example, the
value 0x02 identifi es the descriptor as a video_stream_descriptor. The meanings
of the possible values of the descriptor_tag fi eld are shown in Table 11.7. The
descriptor type is independent of the table in which the descriptor is transmitted.

Table 11.6 Generic syntax of descriptors used in MPEG-2 PSI
tables.

Syntax Number of bits Mnemonic

type_descriptor() {
 descriptor_tag 8 uimsbf
 descriptor_length 8 uimsbf
 …
}

Table 11.7 Descriptor names and purposes associated with values of the descriptor_tag.

descriptor_tag Descriptor Purpose

0 Reserved. Not currently used.
1 Reserved. Not currently used.
2 Video stream

descriptor.
Provides basic information about a video elementary

stream, such as profile and level, frame rate, and
chroma format.

3 Audio stream
descriptor.

Provides basic information about an audio elementary
stream, including the type (e.g., layer number) of
the audio stream.

4 Hierarchy
descriptor.

Identifies program elements containing components
of hierarchically coded audio and video, including
spatial, temporal, and SNR scalability.

5 Registration
descriptor.

Identifies formats for private data.

6 Data stream
alignment
descriptor.

Used to indicate the type of alignment for an
elementary stream with data alignment �� 1 in the
PES header. For example, in video, alignment may
be at the slice, picture, GOP, or sequence layer.

At least in principle, this means that any descriptor can be transmitted in either
the conditional access table or program map table. The descriptor_length fi eld
specifi es the number of bytes of data contained in the descriptor following the
 descriptor_length fi eld. The use of the descriptor_length fi eld allows a decoder
that is unable to decode a particular descriptor to skip over its data and begin
decoding the data that immediately follows. The remaining bits making up a

Table 11.7 (Continued)

descriptor_tag Descriptor Purpose

7 Target
background
grid descriptor.

Specifies the size of the display area where a decoded
video stream is not to occupy the whole display
area.

8 Video window
descriptor.

Specifies the offset from the top left corner of the
display area where a decoded video stream is not to
occupy the whole display area.

9 CA descriptor. Used in the PMT to indicate that conditional access is
used to scramble a program. The type of CA used
is specified. It may be used to carry (as private data)
system-wide information (in the CAT) or elementary-
stream-specific information (in the PMT)

10 ISO 639
language
descriptor.

Specifies the language of the associated program
(e.g., French) and the audio type (e.g., hearing
impaired or visual impaired commentary).

11 System clock
descriptor.

Specifies the source and accuracy of the clock used to
generate clock references.

12 Multiplex buffer
utilization
descriptor.

Provides bounds on the occupancy of system target
decoder multiplex buffers. Primarily intended for
use in remultiplexing.

13 Copyright
descriptor.

Identifies the owner of copyright on a program
element and carries private data specific to the
copyright owner.

14 Maximum bit-
rate descriptor.

Indicates the maximum bit rate in a program.

15 Private data
indicator
descriptor.

Contains 32 bits of private data.

16 Smoothing
buffer
descriptor.

Specifies the size and leak rate of the smoothing
buffer associated with a program element. This
descriptor can be used by a decoder to assist with
buffer management.

17 STD descriptor. Used in buffer management for video streams.
18 IBP descriptor. Contains information on the sequence of picture types

in a video sequence.
19–63 Reserved. Reserved for future ISO use.
64–255 User private. Available for private definition.

11.6. Program-Specifi c Information 441

442 Chapter 11 MPEG-2 Systems

descriptor carry the value of the descriptor. The syntax of these bits is defi ned
separately for each descriptor.

11.6.1.2. MPEG-2 Audio Stream Descriptor

The MPEG-2 audio stream descriptor is used to provide information on an MPEG-2
audio elementary stream as shown in Table 11.8. The free_format_fl ag is set to 1
where one or more audio frames may have a value of 0 in the bitrate_ index fi eld
in the audio elementary stream. The ID and layer fi elds have the same meanings as
the corresponding fi elds in the associated audio elementary stream (Chapter 9). The
variable_rate_audio_indicator is set where the bit rate may vary between consecu-
tive audio frames.

A simplifi ed representation of the structure of the MPEG-2 audio stream
 descriptor is shown in Figure 11.13, leaving out fi elds that are only used in the
 decoding of the descriptor. In this representation, an “*” next to a fi eld represents a
fi eld that is optional or may be repeated, whereas a brace indicates that a group of
fi elds is optional or may be repeated. This simplifi ed representation is used through-
out the remainder of this chapter and also in Chapter 12. Readers requiring more
detailed information on the syntax of the various descriptors are referred to the
MPEG-2 systems standard [1].

Table 11.8 Syntax of the MPEG-2 audio stream descriptor.

Pseudo-C syntax
Number of

bits Data type Description

audio_stream_descriptor() { Function header—does
not contribute bits to the
stream.

 descriptor_tag 8 uimsbf Standard descriptor
header—see Table 11.6

 descriptor_length 8 uimsbf
 free_format_flag 1 bslbf Data from MPEG-2 audio

header describing
the audio elementary
stream—specific to the
audio stream descriptor.

 ID 1 bslbf
 Layer 2 bslbf
 variable_rate_

 audio_indicator
1 bslbf

 Reserved 3 bslbf Pad to byte boundary.
} Function close—

contributes no bits to the
stream

EXAMPLE 11.4—Audio Stream Descriptor

Using the simplifi ed representation, what are the contents of the audio stream descriptor
describing a constant bit-rate audio stream with the bitrate_index fi elds taking values other
than 0000 and ID fi eld set to 1 and Layer 2?

The audio stream descriptor carrying this information is shown in Figure 11.14.

11.6.1.3. MPEG-2 Video Stream Descriptor

The purpose of the video stream descriptor (Fig. 11.15) is to provide information
about one video elementary stream. This descriptor is usually carried in the program
map table.

The video frame clock associated with a video elementary stream may be fi xed
or variable rate, as indicated by the multiple_frame_rate_fl ag. For streams where
the frame rate is fi xed, it may be signaled in the frame_rate_code as one of 23.976,
24.0, 25.0, 29.97, 30.0, 50.0, 59.94, or 60.0 Hz. Twenty fi ve hertz is commonly used
for European standard-defi nition television, with 29.97 and 30.0 Hz used for U.S.
standard-defi nition television. Twenty four hertz may be used for movies shot on
fi lm. In 25-Hz television systems, such movies have usually been sped up to a frame
rate of 25 Hz for broadcast.

11.6. Program-Specifi c Information 443

audio_stream_descriptor
free_format_flag flag

galfDI
}3,2,1{reyal

variable_rate_audio_indicator flag

Figure 11.13 MPEG-2 audio stream descriptor.

audio_stream_descriptor
free_format_flag 0

1DI
2reyal

variable_rate_audio_indicator 0

 Figure 11.14 Example MPEG-2 audio stream descriptor. �

video_stream_descriptor
multiple_frame_rate_flag 0

zH79.92edoc_etar_emarf
MPEG_1_only_flag 0
constrained_parameter_flag 0

0galf_erutcip_llits
if (MPEG_1_only_flag == 0)

profile_and_level_indication Main profile at main level
chroma_format 4:2:0
frame_rate_extension_flag 0

Figure 11.15 Structure of the MPEG-2 video stream descriptor.

444 Chapter 11 MPEG-2 Systems

Video sequences that are compliant with MPEG-1 are indicated by setting the
MPEG_1_only_fl ag, with the constrained_parameter_fl ag set to 1 for MPEG-1
sequences that comply with the MPEG-1 constrained parameters. Both of these fl ags
are set to 0 for MPEG-2 video sequences. The still_picture_fl ag is set only in those
sequences that consist only of still pictures. For MPEG-2 video sequences, the profi le
and level indication (following the format of MPEG-2 video discussed in Chapter 6)
and chroma format (4:2:0, 4:2:2, or 4:4:4) are signaled. The use of nonzero values
in the frame rate extension fi elds in the video sequence header (see Chapter 6) is
indicated by setting the frame_rate_extension_fl ag.

EXAMPLE 11.5—Video Stream Descriptor

Using the simplifi ed representation, show the contents of a video stream descriptor for an
MPEG-2, main profi le at main level, video sequence with a frame rate of 29.97 Hz, which
includes pictures other than still pictures. The chroma format is 4:2:0.

The video stream descriptor carrying this data is shown in Figure 11.16.

11.6.1.4. MPEG-2 Hierarchy Descriptor

The MPEG-2 hierarchy descriptor (Fig. 11.17) carries information on scalable
hierarchies in video, audio, and private data elementary streams. For MPEG-2 video,
the hierarchy_type may be used to identify an elementary stream as the base layer
or an enhancement layer for spatial, SNR or temporal scalability, or data partition-
ing. An MPEG-2 audio elementary stream may be indicated as the base layer or an
MPEG-2 audio extension bit stream. The unique index of a particular elementary
stream in a scalable hierarchy is indicated by the hierarchy_layer_index. The in-
dex of the layer in the hierarchy immediately below the current layer is specifi ed by

 Figure 11.16 Example of MPEG-2 video stream descriptor. �

video_stream_descriptor
multiple_frame_rate_flag 0

zH79.92edoc_etar_emarf
MPEG_1_only_flag 0
constrained_parameter_flag 1

0galf_erutcip_llits
if (MPEG_1_only_flag == 0)

profile_and_level_indication Main profile at main level
chroma_format 4:2:0
frame_rate_extension_flag 0

hierarchy_descriptor
hierarchy_type {MPEG-2 video spatial/SNR/temporal/
 data partitioning, MPEG-2 audio extension
hierarchy_layer_index Unsigned integer
hierarchy_embedded_layer_index Unsigned integer
hierarchy_channel Unsigned integer

Figure 11.17 Structure of the MPEG-2 hierarchy descriptor.

the hierarchy_embedded_layer_index, which has no meaning for a base layer. The
hierarchy_channel is used to indicate an ordering of channels in a hierarchy, with
the most robust of these channels having the lowest value.

Because scalable hierarchies are not supported by either ATSC or DVB, we do
not consider the use of this descriptor further.

11.6.1.5. MPEG-2 Registration Descriptor

MPEG-2 provides several opportunities for private data to be included in an MPEG-2
systems bit stream, a feature that is exploited by both DVB and ATSC. The registra-
tion descriptor (Fig. 11.18) signals the type of any private data in the bit stream using
the format_identifi er, which is a unique number issued by a registration authority.

11.6.1.6. MPEG-2 Data Stream Alignment Descriptor

The MPEG-2 data stream alignment descriptor, illustrated in Figure 11.19, indicates
the type of alignment between the associated video elementary stream and the PES
sublayer. The specifi ed alignment applies to those PES packets in which the data_
alignment_indicator is set to 1. The allowed values of alignment_type are “slice
or picture,” indicating alignment at the slice or picture layer, “picture,” indicating
alignment at the picture layer, “GOP or SEQ,” indicating alignment at the GOP
or sequence layer, and “SEQ,” indicating alignment at the sequence layer. Specify-
ing alignment at the slice layer is useful for error robustness because it allows a
decoder to resynchronize and begin decoding at the fi rst slice header after an error
has occurred.

EXAMPLE 11.6—Data Stream Alignment Indicator

Using the simplifi ed representation, show the contents of a data stream alignment descriptor
that indicates that each PES packet with data_alignment_indicator set to 1 begins with a
picture header.

This descriptor is shown in Figure 11.20.

11.6. Program-Specifi c Information 445

registration_descriptor
format_identifier Unsigned integer
<< additional identification info >>

Figure 11.18 Structure of the MPEG-2 registration descriptor.

data_stream_alignment_descriptor
alignment_type {slice or picture, picture, GOP or SEQ, SEQ}

Figure 11.19 Structure of the MPEG-2 data stream alignment descriptor.

data_stream_alignment_descriptor
alignment_type picture

 Figure 11.20 Example of data stream alignment descriptor. �

446 Chapter 11 MPEG-2 Systems

11.6.1.7. Descriptors for Video Windows

An MPEG-2 video elementary stream may carry a video sequence that is designed
to fi ll only part of the available display window as illustrated in Figure 11.21.
This may arise where a mosaic of video windows, with each window coded in
its own elementary stream, is to be displayed. MPEG-2 provides two descrip-
tors to convey information on the window occupied by a video sequence: the
target background grid descriptor, which describes the background grid, and the
video window descriptor, which specifi es the offset in the background grid for
one video sequence.

MPEG-2 Target Background Grid Descriptor The MPEG-2 target
 background grid descriptor specifies a background grid for the associated video
 elementary stream as shown in Figure 11.22. It specifies the number of pixels verti-
cally and horizontally that make up the grid, which is intended to cover the whole
display. The aspect ratio for the grid is also specified, either for the display as a whole
or for the individual pixels making up the display. The values of the horizontal_size
and vertical_size fields are calculated as shown in Figure 11.21.

EXAMPLE 11.7—Target Background Grid Descriptor

Using the simplifi ed representation, show the contents of a target background grid descrip-
tor whose target background grid has 720 pixels horizontally and 576 pixels vertically, with
a display aspect ratio of 3:4.

Horizontal size

V
er

tic
al

 s
iz

e

Video window

Vertical offset

H
or

iz
on

ta
l o

ff
se

t

(0,0)

Figure 11.21 Video window fi lling only part of a display.

target_background_grid_descriptor
horizontal_size Unsigned integer
vertical_size Unsigned integer
aspect_ratio_information {1:1, 3:4, 9:16, 1:2.21}

Figure 11.22 Structure of the MPEG-2 target background grid descriptor.

This descriptor is shown in Figure 11.23.

MPEG-2 Video Window Descriptor The MPEG-2 video window descriptor
(Fig. 11.24) specifies the offset (horizontal and vertical) in the grid specified by the
target background grid descriptor for an associated video elementary stream as well
as a priority value. The available priority values are between 0 and 7, and higher
priority windows should be displayed on top of lower priority windows. The values
of the horizontal_offset and vertical_offset fields are calculated as shown in Figure
11.21.

EXAMPLE 11.8—Video Window Descriptor

Using the simplifi ed representation, show a video window descriptor for which a horizontal
offset of 134 pixels from the left side of the display and a vertical offset of 0 pixel form the top
of the display are specifi ed. This particular window has priority seven, which indicates that
it should appear in front of windows with priority between zero and six but behind windows
with priority eight or higher.

The descriptor is shown in Figure 11.25.

11.6.1.8. MPEG-2 CA Descriptor

The MPEG-2 CA descriptor carries a registered identifi er for the conditional
 access system associated with a program or elementary stream using the structure
shown in Figure 11.26. The registered identifi er for the conditional access system
is carried in the CA_system_ID, whereas the PID of the transport stream packets
 containing data associated with the CA system is specifi ed by CA_PID. Additional

11.6. Program-Specifi c Information 447

target_background_grid_descriptor
horizontal_size 720
vertical_size 576
aspect_ratio_information 3:4

 Figure 11.23 Example of MPEG-2 target background grid descriptor. �

video_window_descriptor
horizontal_offset Unsigned integer
vertical_offset Unsigned integer
window_priority Unsigned integer

Figure 11.24 MPEG-2 video window descriptor.

video_window_descriptor
134horizontal_offset

0vertical_offset
7window_priority

 Figure 11.25 Example of MPEG-2 video window descriptor. �

448 Chapter 11 MPEG-2 Systems

private data associated with the particular conditional access system may be
carried in this descriptor. Any decoder can skip over this private data by using the
descriptor_length fi eld.

EXAMPLE 11.9—CA Descriptor

Using the simplifi ed representation, show an MPEG-2 CA descriptor indicating that the
assigned identifi er for the CA used in the associated elementary stream or program is
0x0234 and that information associated with this CA is carried in transport stream packets
with PID 0x0934. The remaining data in the CA descriptor is private data with value
0x238F2426.

The descriptor is shown in Figure 11.27.

11.6.1.9. MPEG-2 ISO 639 Language Descriptor

The languages associated with an elementary stream are specifi ed by the ISO
639 language descriptor (see Fig. 11.28), using the format of ISO 639 [4]. This
descriptor can also indicate other properties that the audio may possess: “clean
effects,” which means that the audio contains no language; “hearing impaired,”
which indicates a stream specially designed for the hearing impaired that
emphasizes speech over background sounds and effects; and “visual impaired
commentary,” which is an audio stream containing additional commentary to
assist the visually impaired.

CA_descriptor
CA_system_ID Unsigned integer
CA_PID Unsigned integer
<< private data bytes >>

Figure 11.26 Structure of the MPEG-2 CA descriptor.

CA_descriptor
CA_system_ID 0x0234
CA_PID 0x0934
private_data_byte 0x238F2426

 Figure 11.27 Example of MPEG-2 CA descriptor. �

ISO_639_language_descriptor

ISO_639_language_code ISO 639 language code
audio_type {Undefined, clean effects, hearing

impaired, visual impaired commentary}

*

Figure 11.28 Structure of the MPEG-2 ISO 639 language descriptor.

EXAMPLE 11.10—ISO 639 Language Descriptor

Using the simplifi ed representation, show an ISO 639 language descriptor for an English
audio service with no special properties.

The descriptor is shown in Figure 11.29.

11.6.1.10. MPEG-2 System Clock Descriptor

The purpose of the MPEG-2 system clock descriptor is to specify the accuracy
of the system time clock generated by the encoder as shown in Figure 11.30.
The accuracy is specified in parts per million (PPM) using the clock_
accuracy_integer and clock_accuracy_exponent fields and is calculated
from clock_accuracy_integer � 10�clock_accuracy_exponent ppm. Where an external
source that may be available to a decoder is used by an encoder to generate the
system clock, the external_clock_reference_indicator may be set to 1.

EXAMPLE 11.11—System Clock Descriptor

Using the simplifi ed representation, show a system clock descriptor describing a system
clock based on an external time reference that may be available to the decoder and with an
accuracy of 5.4 ppm.

The descriptor is shown in Figure 11.31.

ISO_639_language_descriptor

ISO_639_language_code English
audio_type Undefined

 Figure 11.29 Example of MPEG-2 ISO 639 language descriptor. �

system_clock_descriptor
external_clock_reference_indicator flag
clock_accuracy_integer Unsigned integer
clock_accuracy_exponent Unsigned integer

Figure 11.30 Structure of the MPEG-2 system clock descriptor.

system_clock_descriptor
external_clock_reference_indicator 1
clock_accuracy_integer 540
clock_accuracy_exponent 2

 Figure 11.31 Example of MPEG-2 system clock descriptor. �

11.6. Program-Specifi c Information 449

450 Chapter 11 MPEG-2 Systems

11.6.1.11. MPEG-2 Multiplex Buffer Utilization Descriptor

The MPEG-2 multiplex buffer descriptor provides upper and lower bounds on the
occupancy of the multiplex buffer in the system target decoder using the structure
shown in Figure 11.32. This information is intended for use by a remultiplexer. The
bound_valid_fl ag is used to signal that the other information in the descriptor is
valid. The remaining two fi elds in the descriptor specify the upper and lower bounds,
each specifi ed as a number of 90-kHz clock cycles, that is, a multiple of 11.1 µs.

EXAMPLE 11.12—Multiplex Buffer Utilization Descriptor

Using the simplifi ed representation, show a multiplex buffer utilization descriptor containing
valid bounds with a lower bound of 0.389 ms and an upper bound of 193.244 ms.

The descriptor is shown in Figure 11.33.

11.6.1.12. MPEG-2 Copyright Descriptor

The MPEG-2 copyright descriptor (Fig. 11.34) is used to enable identifi cation of
rights associated with audio–visual material. The value of the copyright_identifi er
is assigned by a registration authority. A particular value may indicate that rights are
owned by a particular organization. Additional information may also be attached,
but the format of this information is not standardized by MPEG-2.

11.6.1.13. MPEG-2 Maximum Bit-Rate Descriptor

The MPEG-2 maximum bit-rate descriptor, illustrated in Figure 11.35, tells a
 decoder the maximum bitrate (including transport overhead) that is associated with

multiplex_buffer_utilization_descriptor
bound_valid_flag flag
LTW_offset_lower_bound Unsigned integer
LTW_offset_upper_bound Unsigned integer

Figure 11.32 Structure of the MPEG-2 multiplex buffer utilization descriptor.

multiplex_buffer_ut ilization_descriptor
bound_valid_flag 1
LTW_offset_lower_bound 0x0023
LTW_offset_upper_bound 0x43F0

 Figure 11.33 Example of MPEG-2 multiplex buffer utilization descriptor. �

copyright_descriptor
copyright_identifier Unsigned integer
<< additional_copyright_info >>

Figure 11.34 Structure of the MPEG-2 copyright descriptor.

a program or elementary stream in multiples of 400 bit/s (50 byte/s). It is carried in
the program map table.

EXAMPLE 11.13—Maximum Bit-Rate Descriptor

Using the simplifi ed representation, show a maximum bit-rate descriptor specifying a
maximum bitrate of 4 Mbit/s (500 kbyte/s).

The descriptor is shown in Figure 11.36.

11.6.1.14. MPEG-2 Private Data Indicator Descriptor

The MPEG-2 private data indicator descriptor (Fig. 11.37) carries one fi eld to provide
information about private data. The meaning of this fi eld is not defi ned by MPEG-2.

11.6.1.15. MPEG-2 Smoothing Buffer Descriptor

The MPEG-2 smoothing buffer descriptor provides information on the size and leak
rate of the smoothing buffer of the associated elementary stream. Its structure is
shown in Figure 11.38. The leak rate is specifi ed in units of 400 bit/s. The buffer size
is specifi ed in units of 1 byte.

EXAMPLE 11.14—Smoothing Buffer Descriptor

Using the simplifi ed representation, show an MPEG-2 smoothing buffer descriptor, specifying
a leaking rate of 4Mbit/s and a buffer size of 20,000 bytes.

maximum_bitrate_descriptor
maximum_bitrate Unsigned integer

Figure 11.35 Structure of the MPEG-2 maximum bit-rate descriptor.

maximum_bitrate_descriptor
maximum_bitrate 10,000

 Figure 11.36 Example of MPEG-2 maximum bit-rate descriptor. �

private_data_indicator_descriptor
private_data_indicator Unsigned integer

Figure 11.37 Structure of the MPEG-2 private data indicator descriptor.

smoothing_buffer_descriptor
sb_leak_rate Unsigned integer
sb_size Unsigned integer

Figure 11.38 Structure of the MPEG-2 smoothing buffer descriptor.

11.6. Program-Specifi c Information 451

452 Chapter 11 MPEG-2 Systems

The descriptor is shown in Figure 11.39.

11.6.1.16. MPEG-2 STD Descriptor

The MPEG-2 (system target decoder) STD descriptor (Fig. 11.40) indicates whether
the leak method (leak_valid_fl ag � 1) or vbv_delay method (leak_valid_fl ag � 0)
is used in the system target decoder.

11.6.1.17. MPEG-2 IBP Descriptor

The MPEG-2 IBP descriptor, illustrated in Figure 11.41, provides information on
the GOP structure in an MPEG-2 video elementary stream. The closed_gop_fl ag is
set to 1 for elementary streams in which a GOP header immediately precedes each
I-picture. Elementary streams in which all GOPs have the same structure (i.e., the
same sequence of B- and P-pictures between I-pictures) have the identical_gop_fl ag
set to 1. The maximum number of frames that may be transmitted in one GOP is
signaled in the max_gop_length.

EXAMPLE 11.15—IBP Descriptor

Using the simplifi ed syntax, show an MPEG-2 IBP descriptor, in which a GOP header does
not always appear before an I-picture, all GOPs are of the same structure, and the maximum
GOP length is 15 pictures.

The descriptor is shown in Figure 11.42.

smoothing_buffer_descriptor
sb_leak_rate 10,000
sb_size 20,000

 Figure 11.39 Example of MPEG-2 smoothing buffer descriptor. �

STD_descriptor
leak_valid_flag flag

Figure 11.40 Structure of the MPEG-2 STD descriptor.

IBP_descriptor
closed_gop_flag flag
identical_gop_flag flag
max_gop-length Unsigned integer

Figure 11.41 Structure of the MPEG-2 IBP descriptor.

IBP_descriptor
closed_gop_flag 0
identical_gop_flag 1
max_gop-length 15

 Figure 11.42 Example of MPEG-2 IBP descriptor. �

11.6.2. MPEG-2 Tables

The MPEG-2 descriptors described in Section 11.6.1 above are carried within one of
the three PSI tables (program association table, program map table, or conditional
access table) whose syntax is defi ned by MPEG-2. In this section, the generic syntax
of these tables is presented, followed by a discussion of the structure of each table.

11.6.2.1. Generic Table Syntax

Each table is transmitted as one or more sections. Each section may be up to 1024 bytes
in length. The generic syntax of the MPEG-2 PSI section is shown in Table 11.9.

The type of table, that is, program association table, program map table,
 conditional access table, or network information table is specifi ed by the table_id
fi eld. The values 0x00, 0x01, and 0x02 are assigned to the program association table,
conditional access table, and program map table, respectively. Values between 0x40
and 0xFE are available for tables defi ned outside the scope of MPEG-2 (including
the network information table). Other values are not allowed. The identifi cation of
table type is followed by the 1-bit section_syntax_indicator fi eld whose value is
always 1. The reserved bits always take the value 00 and are reserved for future use
by the ISO.

The section_length fi eld specifi es the number of bytes in the current table sec-
tion following the section_length fi eld (i.e., three less than the total number of bytes
in the section). This fi eld allows a decoder to identify the location of the end of the
section, even if it does not understand the internal syntax of a particular table. For
example, an MPEG-2 systems decoder is able to skip over the non-MPEG-2 tables
defi ned by DVB without being able to decode the internal contents of these tables.

11.6. Program-Specifi c Information 453

Table 11.9 Generic syntax of MPEG-2 PSI tables.

Syntax Number of bits Mnemonic

TS_table_section() {
 table_id 8 uimsbf
 section_syntax_indicator 1 bslbf
 “0” 1 bslbf
 reserved 2 bslbf
 section_length 12 uimsbf
 —
 reserved 2 bslbf
 version_number 5 uimsbf
 current_next_indicator 1 bslbf
 section_number 8 uimsbf
 last_section_number 8 uimsbf
 —
 CRC_32 32 rpchof

454 Chapter 11 MPEG-2 Systems

MPEG-2 allows tables longer than 1024 bytes to be transmitted as multiple sections,
although many encoders and decoders do not support multisection tables. The vari-
ous sections of these multisection tables are distinguished by their different values in
the section_number fi eld.

Each time the contents of a table are changed, the version_number fi eld of the
table is increased by 1. This allows the new and old contents to be distinguished from
one another. An updated table may be transmitted before the new information is cur-
rent. If this transmission occurs a number of times, it provides a powerful protection
against transmission errors introduced in the channel. The current_next_indicator
is used to indicate whether the table contents being transmitted refer to the current
value or the next future value.

The last_section_number fi eld specifi es the largest value of the section_number
fi eld used in the table. This enables a decoder to determine the total number of
sections in a table when any one of those sections is received.

Each section of each table includes a 32-bit cyclic redundancy code (CRC)
(CRC_32) so that a decoder can determine confi dently whether or not it has been
correctly received. This CRC is used on PSI tables but not for other data transmit-
ted in MPEG-2 bit streams because of the catastrophic effect on the quality of the
decoded programs of using a corrupted table. Errors introduced into other parts of
the bit stream will have effects that are neither as longlasting nor as catastrophic.
The mnemonic “rpchof” indicates a fi eld whose value can be used to detect trans-
mission errors.

11.6.2.2. Program Association Table

When it begins decoding an MPEG-2 systems bit stream, the decoder fi rst searches
for the program association table, which can be readily identifi ed because it is
 always transmitted with a PID of 0x00. The purpose of the program association
table is to associate a program number with the PID of the program map table that
contains the details of the elementary streams making up that program. The pro-
gram association table also specifi es the PID that is used to transmit the network
information table. The program association table must be present in every transport
stream and is not scrambled.

The structure of the program map table, shown in Figure 11.43, consists of two
parts. The fi rst (transport_stream_id) assigns a unique label that can be used to

program_association_section
transport_stream_id Unsigned integer

program_number Unsigned integer
if (program_number == 0)

* network_PID Unsigned integer
else

program_map_PID Unsigned integer

Figure 11.43 Structure of the program association table.

identify this transport stream. The second is a list of one or more programs, for
each of which the PID of the transport stream packets carrying the program map
table is specifi ed. Program number 0 is used to indicate that the PID used to carry
the network information table follows. The program association table carries no
descriptors.

A decoder that is able to switch between a number of systems bit streams may
monitor all of these bit streams for updates in the program association table to reduce
the time required to switch between streams. Without this, there may be long delays
associated with a change of systems bit stream.

EXAMPLE 11.16—Program Association Table

Using the simplifi ed representation, show a program association section for a transport_
stream_id of 0x1200. The section is to signal that a network information table is carried
with PID 0x0010 and that programs 1–3 are carried with PIDs 0x0103, 0x0538, and 0x0456,
respectively.

A program association section meeting this specifi cation is shown in Figure 11.44. The
order of the programs is arbitrary: In this case we have chosen the sequence 0, 1, 3, 2.

11.6.2.3. Program Map Table

Each section of the program map table provides information about one program.
The PID used to carry the program map table section for each program is specifi ed
in the program association table. The program map table specifi es the PIDs for the
elementary streams that make up a program and the PID containing the clock refer-
ence for the program. An encoder may assign a separate PID that is used only to
carry the clock reference, or the clock reference PID may be shared with one of the
elementary stream PIDs. For each elementary stream making up the program, the
type of the elementary stream is specifi ed. Normally, the elementary streams of this
program are carried in the same transport stream as the section of the program map

11.6. Program-Specifi c Information 455

program_association_section
transport_stream_id 0 x1200

program_number 0
network_PID 0 x0 010

program_number 1
program_map_PID 0 x 0103

program_number 3
program_map_PID 0 x 0456

program_number 2
program_map_PID 0 x 0538

 Figure 11.44 Example of program association section. �

456 Chapter 11 MPEG-2 Systems

table referring to the program. Program-map-table data must be transmitted for each
program carried in a transport stream. The program map table is not scrambled.

The basic structure of the program map table is illustrated in Figure 11.45. The
main part of the table contains the program number, which is used by both DVB
and ATSC as a means of identifying the group of elementary streams making up
the program, and the PID of the transport stream packets carrying the clock refer-
ence for this program (PCR_PID). Descriptors carried immediately following the
PCR_PID fi eld refer to the whole program.

For each elementary stream making up the program, the program map table
carries the stream type and the PID of the transport stream packets carrying the
elementary stream. The stream type specifi es the elementary stream decoder to
which arriving packets are sent at the decoder. Descriptors following these fi elds
refer only to one elementary stream. For video elementary streams, the video
stream descriptor identifi es basic coding parameters of the elementary stream,
including frame rate, profi le and level, and chroma format. For MPEG-2 audio
elementary streams, the audio stream descriptor identifi es the audio coder used
including layer information.

EXAMPLE 11.17—Program Map Table

Using the simplifi ed representation, show a program map table containing one video and one
audio elementary stream. The PCR is carried in transport stream packets with the same PID
as the video and the maximum bit rate for the program, including all elementary streams and
systems overhead, is 5 Mbit/s.

The program map table is shown in Figure 11.46.
The video elementary stream is carried in transport stream packets with PID 0x0308

and is described by two descriptors: the video stream descriptor and data_stream_alignment
descriptor. The video stream descriptor shows that the frame rate of the video is 25 Hz, that it
is MPEG-2 main profi le at main level, and that the chroma format is 4:2:0. The data stream
alignment descriptor tells a decoder that the elementary stream is aligned to the PES layer at
the slice layer.

The audio elementary stream is MPEG-2, Layer-2 audio. The ISO 639 language
descriptor shows that the language of the audio stream is English. The value “undefi ned”
for audio_type means that the audio stream does not have special properties such as being
designed for hearing impaired.

program_map_section
program_number Unsigned integer
PCR_PID Unsigned integer
<< descriptors >>

stream_type {MPEG-2 video,MPEG-2 audio, etc}
* elementary_PID Unsigned integer

<< descriptors >>

Figure 11.45 Structure of the program map table.

11.6.2.4. Conditional Access Table

The conditional access table carries information on conditional access schemes that
may be used to control access to programs by scrambling. It is only transmitted
where conditional access is used. If present, the conditional access table is transmit-
ted with PID 0x01. Its major purposes are to fl ag the use of conditional access, to
identify the conditional access system in use, and to specify the locations of con-
ditional access data in a transport stream. The conditional access table may carry
descriptors providing system-wide confi guration management information for the
conditional access system. This might include the delivery of keys to be used to
decrypt encrypted programs.

All data in the conditional access table is carried in descriptors as shown in the
structure of Figure 11.47.

The CA descriptor is usually the only descriptor carried in the conditional access
table. Its contents point to system wide access management or control information,
in contrast to the information associated with particular programs that is carried by
this descriptor when it appears in the program map table.

11.6. Program-Specifi c Information 457

program_map_section
program_number 2
PCR_PID 0x0308
maximum_bitrate_descriptor

maximum_bitrate 5 Mbit/s

stream_type MPEG-2 video
elementary_PID 0x0308
video_stream_descriptor

multiple_frame_rate_flag 0
frame_rate_code 25 Hz
MPEG_1_only_flag 0
constrained_parameter_flag 0
still_picture_flag 0
profile_and_level_indication Main profile at main level
chroma format 4:2:0
frame_rate_extension_flag 0

data_stream_alignment_descriptor
alignment_type Slice layer

stream_type MPEG-2 BC audio
elementary_PID 0x0309
audio_stream_descriptor

free_format_flag 0
1DI

layer 2
variable_rate_audio_indicator

ISO_639_language_descriptor
ISO_639_language_code English
audio_type Undefined

0

 Figure 11.46 Example of program map table. �

conditional_access_section
<< descriptors >>

Figure 11.47 Structure of the conditional access table.

458 Chapter 11 MPEG-2 Systems

EXAMPLE 11.18—Conditional Access Table

Using the simplifi ed representation, show a conditional access table that carries one CA
descriptor that identifi es the CA system in use and PID in which information associated with
the CA system it carried.

The conditional access section is shown in Figure 11.48.

11.6.2.5. Network Information Table

The purpose of the network information table is to carry information on the physi-
cal characteristics of the network being used to deliver the transport stream and
possibly on other networks being used to deliver other transport streams. Its con-
tents are not defi ned by MPEG-2. For a satellite delivery network, the types of
information that might be carried in the network information table include the
transmission frequency, modulation characteristics, and polarization. The net-
work information table is transmitted in its own PID as specifi ed in the program
association table.

11.6.3. Overheads Due to PSI

An MPEG-2 decoder cannot extract the elementary streams making up a program
from a systems bit stream without fi rst receiving the PSI data describing the structure
of the multiplex. Typically, random access points in digital television occur at GOP
boundaries. An approximate length of the PSI can be obtained by assuming that
the PSI is transmitted once per GOP, that each table occupies exactly one transport
stream packet, and that each program map section (describing one program) is trans-
mitted in its own transport stream packet.

EXAMPLE 11.19—PSI Overheads

For typical standard-defi nition television, random access is usually limited by the GOP
structure of the video to approximately every half second (15 frames for 30 frames per
second and 12 frames for 25 frames per second). For a systems bit stream at 4 Mbit/s
containing one program, the overhead if PSI data is transmitted twice per second is likely
to be approximately 6 kbyte/s, which is equivalent to 1.2% of the systems bit-stream
capacity.

conditional_access_section
CA_descriptor

CA_system_ID 0x0234
CA_PID 0x0934

 Figure 11.48 Example of conditional access table. �

11.7. MPEG-2 DECODER OPERATION

When beginning to decode a transport stream, an MPEG-2 decoder undertakes three
major tasks: synchronization to the transport stream, acquisition of PSI data, and
program selection and decoding. Each task must be completed before the following
task can begin.

11.7.1. Synchronization to Transport Stream

The sequence of operations required to begin decoding a program contained in a
transport stream is as follows. First, the decoder must acquire synchronization with
the transport stream, identifying the locations of the boundaries of the transport
stream packets. Because there is no guarantee that the sync_byte value (0x47) cannot
appear elsewhere in a transport stream, this synchronization process involves test-
ing the sync_byte value for several successive packets. For some delivery systems,
such as an ATM network, the underlying transport layer may assist the decoder in
transport stream synchronization.

11.7.2. PSI Decoding

Following synchronization, the decoder scans the transport stream to fi nd the program
association table, which always uses a PID of 0x00. From the program association
table, the decoder obtains one or more PIDs that are used to carry the program map
table, which contains lists of PIDS of elementary streams making up the programs
contained in the transport stream. The viewer is now able to select a program for
 decoding, after which the systems decoder extracts the elementary stream data for
that program and discards all other data in the transport stream. Each of the elemen-
tary streams making up the program is passed to the appropriate elementary stream
decoder. After decoding, the contents of each elementary stream are displayed.

Random access within transport streams is required where a decoder is able to
switch between two or more streams. This may happen in terrestrial broadcast when
changing frequencies. It may also occur when a decoder connected to two or more
types of distribution network (e.g., cable and satellite) changes from one network to
another. Random access can be facilitated by the regular retransmission of tables
within each transport stream. MPEG-2 does not specify how often tables should be
retransmitted. This approach is used in DVB. Random access may also be facilitated
by placing additional restrictions on the transport stream. For example, the PIDs of
the elementary streams making up a program may be required to be contiguous.
This approach is used in ATSC.

11.7.3. Program Reassembly

An MPEG-2 decoder is only required to be capable of decoding one program, even
though a transport stream may contain elementary streams for many programs.

11.7. MPEG-2 Decoder Operation 459

The transport stream packets for a particular elementary stream are identifi ed by
their unique PID. Program reassembly in a decoder begins with breaking up of the
MPEG-2 systems bit stream into transport stream packets. The decoder scans the
PIDs in the transport stream packet headers and discards all those transport stream
packets whose PID is not associated with an elementary stream associated with
the current program. PES packets are then reassembled for each elementary stream
that forms part of the current program, from which the elementary streams are
extracted and passed to an elementary stream decoder. This process is illustrated
in Figure 11.49.

EXAMPLE 11.20—MPEG-2 Transport Stream Decoding

An example of fi ve packets from an MPEG-2 transport stream is shown in Table 11.10. Each
table entry shows the contents of 1 byte of the transport stream. The fi rst 16 bytes are shown
in the top row, the next 16 on the second row, and so on. For this example stream, identify
the contents of the header of each transport stream packet.

In this example, the fi rst byte has value 0x47 and may be a transport packet sync_byte.
This can be confi rmed by observing that the value 188 byte later (0x0B, 0xC) has the same
value as do all the entries at higher multiples of 188 bytes. In this example, all sync bytes are
shown in italics.

The PID of the first transport stream packet is 0x0233. Unless the decoder has
already read the program association table and program map table for this transport
stream, this packet cannot be decoded. The 13-bit PID of the second transport
stream packet is 0x0000, indicating the presence of the program association table.
The payload_unit_start_indicator is also set to 1, showing that a new program
association section starts in this transport stream packet. The first payload byte of
the transport packet (at location (0x0C,0)) has value 5, indicating an offset of 5 bytes
to the start of the program association section (at location (0x0C,6) where a value of
zero corresponds to table_id � 0, which is consistent with the program association
 section.

Figure 11.49 Program reassembly in MPEG-2 decoder.

Arriving TS packets

Discard other programs

Reassemble PES packets

Reassemble elementary streams
and pass to elementary stream

decoders

460 Chapter 11 MPEG-2 Systems

T
ab

le
 1

1.
10

E

xa
m

pl
e

of
 M

PE
G

-2
 tr

an
sp

or
t s

tr
ea

m
.

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

00
47

02
33

15
E

4
C

3
74

04
D

2
71

9D
C

A
E

B
B

C
2D

67
01

E
F

E
A

69
E

4
0E

5A
D

0
02

23
33

32
9A

45
32

03
B

F
02

71
E

E
77

6B
D

8
86

33
A

C
D

6
05

A
E

61
D

4
80

B
5

6D
03

4D
30

31
A

E
4D

8A
26

B
2

60
D

C
D

A
97

7F
E

6
D

2
A

5
04

D
1

A
9

57
4A

57
88

B
A

4F
D

6
91

5E
B

3
8B

71
B

1
9F

05
C

B
F

4
85

E
1

2C
FA

45
40

E
0

B
C

22
03

E
4

32
4C

A
9

06
48

78
10

F
D

95
6C

83
55

6E
39

94
C

2
87

A
3

35
61

07
C

8
A

E
76

91
C

B
0F

9A
0C

6A
4E

D
F

03
C

4
F

8
F

D
C

9
08

70
7F

36
A

4
51

F5
B

A
69

B
E

44
70

E
E

A
E

36
D

6
A

0
09

22
35

9B
A

1
5E

93
73

0B
06

50
03

62
A

E
17

09
9C

0A
9B

04
04

30
96

0E
5E

A
1

B
7

B
1

15
74

71
5A

27
A

C
0B

B
2

B
A

7A
8E

1E
73

B
7

E
4

45
41

D
D

3B
47

40
00

15
0C

05
14

A
4

30
D

8
2C

00
00

70
57

50
5D

64
97

1E
09

0D
75

D
E

E
F

43
29

D
F

3C
A

5
F

7
A

A
D

E
02

23
D

1
6E

E
3

0E
B

C
A

F
58

2A
27

30
6C

D
B

7D
D

0
75

75
73

69
E

6
01

0F
4C

0C
B

1
A

6
F

B
8D

66
32

A
0

B
B

60
02

6B
C

0
C

B
E

B
10

D
8

5E
9E

B
B

31
E

7
91

A
1

3C
8C

E
E

55
A

7
64

A
0

B
2

11
65

69
A

7
D

6
5F

6C
98

90
B

7
82

C
6

7D
2F

B
3

F
B

C
E

12
B

4
7C

1D
A

A
5D

23
91

D
2

A
C

F
F

F6
0F

5C
8C

43
98

13
0C

92
B

3
F6

C
0

B
D

6E
A

2
C

D
15

F
2

E
A

9A
40

D
F

83
14

B
B

6C
F6

12
8D

4A
D

B
55

A
E

0D
5B

7F
6F

8F
9D

1D
15

E
5

C
1

C
A

D
0

A
B

33
45

A
0

89
0F

16
45

68
79

E
8

98
16

54
7A

98
29

D
4

F
4

98
07

C
F

9C
B

3
17

6C
60

2A
D

5
17

D
6

73
F

4
25

D
E

C
4

71
9E

47
02

33
16

30
7D

68
76

18
9C

12
50

9B
2C

9E
3E

96
81

76
8A

F1
57

66
4E

69
19

49
64

80
B

8
4E

1C
71

77
03

A
9

B
9

48
43

B
5

C
8

F
C

1A
79

E
7

73
C

D
D

4
2A

64
85

B
7

91
75

71
16

71
5D

4D
1B

D
A

C
2

F
3

8E
03

98
D

0
FA

38
B

4
85

E
E

B
6

3A
73

2C
1C

F
8

5B
0C

C
1

E
5

49
40

E
E

21
F

0
B

3
D

9
35

74
14

D
9

(c
on

ti
nu

ed
)

461

T
ab

le
 1

1.
10

(C

on
ti

nu
ed

)

0
1

2
3

4
5

6
7

8
9

A
B

C
D

E
F

1D
8F

51
5F

D
E

5F
12

33
0C

91
1F

85
1D

C
5

60
D

2
0B

1E
99

F
2

49
E

3
1A

10
3B

E
E

10
43

F
F

36
7F

4A
A

C
F5

1F
C

4
A

A
21

18
03

49
D

1
F

C
04

D
1

9F
8F

3E
D

2
43

C
0

20
A

8
36

9A
9A

A
8

2E
A

2
2B

8A
9F

A
F

A
D

E
0

03
4F

C
7

21
4E

E
D

A
D

13
12

03
3A

84
75

B
4

95
82

13
31

61
46

22
C

5
50

A
3

F
C

80
F

2
D

3
E

A
1C

C
F

E
8

28
1F

C
3

B
8

A
6

23
C

1
A

9
E

2
45

47
00

00
16

D
9

57
77

E
9

3A
D

C
A

8
E

4
24

7C
F

E
5F

88
2E

80
6C

A
9

A
C

F5
31

1C
90

F
8

06
D

E
25

06
84

31
B

7
40

E
F

23
85

E
5

F1
55

6F
78

26
22

88
26

B
9

66
5B

49
D

E
A

0
3D

FA
A

3
3A

A
E

A
A

22
05

43
1D

27
11

D
A

2E
08

B
B

89
46

5E
03

E
3

D
D

41
91

28
98

54
28

A
8

D
D

91
F

B
C

A
27

D
5

31
A

3
A

B
C

5
61

71
7B

9B
2D

29
00

C
A

83
36

1A
28

68
68

0D
F1

26
62

4F
2B

E
5

52
2A

B
B

69
66

81
2B

86
A

4
04

D
6

C
D

B
2

76
15

D
2

31
72

2B
03

4F
E

0
D

5
55

E
1

7A
8F

9D
A

9
9D

A
F

82
B

6
83

9B
2C

F
7

D
2

51
96

21
41

C
D

A
A

03
8F

74
E

7
48

10
7A

F
B

2D
E

C
8F

A
6

C
5

1B
00

8A
01

73
32

C
9

9E
03

E
4

C
2

E
8

2E
C

2
61

54
81

90
C

4
C

7
7B

C
D

78
33

94
A

A
A

D
F1

C
5

2F
47

02
33

17
A

1
C

A
72

86
2B

21
38

1B
24

74
C

9
47

30
39

E
8

01
96

8A
A

7
50

3B
6A

4C
A

C
F

0
57

90
1E

2B
31

47
8E

7C
F

3
3B

7A
86

C
A

31
E

8
E

C
03

C
4

F
2

D
0

E
C

32
32

A
C

E
D

58
98

9D
00

F
B

E
6

B
1

70
B

3
9C

4C
D

B
1C

33
4A

18
65

55
F1

D
6

42
0A

01
93

B
E

C
E

A
3

40
24

A
6

34
F

2
D

0
E

E
4F

44
89

29
36

37
A

6
0D

3A
A

A
4F

4E
B

8
35

F
4

21
11

20
2A

E
9

22
9D

44
38

B
6

8C
F

0
54

B
4

F1
36

94
E

1
B

F
61

B
9

29
F

4
32

C
6

9D
29

07
49

F
8

F
3

3A
37

F5
A

E
0E

99
64

37
2E

13
01

C
9

04
E

0
5A

B
8

F
7

27
38

29
50

07
5B

06
C

B
F

F
1C

9F
21

4F
22

39
65

22
3D

39
E

D
64

82
17

05
28

D
8

E
1

2F
F

D
B

6
D

F
7A

7E
49

0F
3A

43
2F

E
A

1F
03

5E
B

2
E

3
98

28
51

3B

462

The last two packets in Table 11.10 have PID 0x0233, which is the same as the
fi rst packet. The continuity_counter fi elds of these three packets can be seen to be
increasing by 1. �

11.8. USE OF MPEG-2 SYSTEMS IN DIGITAL
TELEVISION

This section describes the specifi c use of MPEG-2 systems in the ATSC and DVB
digital television standards. Both systems place a number of restrictions on the
MPEG-2 systems.

11.8.1. Use of MPEG-2 Systems in ATSC

MPEG-2 systems provides the multiplex for ATSC digital television. The ATSC
standard, however, places a number of restrictions on the MPEG-2 implementation
of multiplexing and PSI, which are discussed in this section.

11.8.1.1. Implementation of Multiplexing in ATSC

The MPEG-2 transport stream is the only multiplex used; the program stream is
not used.

Within the PES header

scrambling is not used (this means that scrambling in ATSC is based on
scrambling of transport stream packets);

the ESCR is not transmitted;

the optional CRC is not transmitted;

private data is not carried; and

fi elds relating to the program stream are coded as zero or not carried.

For video elementary streams, the data_alignment_indicator in the PES
header always has value 1, and the PES_packet_length is specifi ed as 0. This means
that the length of PES packets is not bounded by the PES header and that alignment
is guaranteed between the video and PES layers in every PES packet.

AC-3 audio is assigned a value of 0xBD for the stream_id in the PES header.
Still pictures are not supported.

11.8.1.2. Implementation of PSI in ATSC

MPEG-2 PSI is used by ATSC, with extensions to add tables and descriptors of
its own, using values of descriptor_tag and table_id left for private defi nition by
MPEG-2. These extensions are described fully in Chapter 12.

•

•
•
•
•

11.8. Use of MPEG-2 Systems in Digital Television 463

464 Chapter 11 MPEG-2 Systems

ATSC assigns the stream_type value 0x81 in the PMT to AC-3 audio.
Programs carried by a transport stream that comply with the requirements of

ATSC are indicated by the placement of a registration descriptor in the program
map table, with the format_identifi er set to 0x4741 3934. AC-3 audio streams are
carried as private data and indicated by associating a registration descriptor with
format_identifi er set to 0x4143 2D33 with the audio elementary stream in the pro-
gram map table.

Using the MPEG-2 PSI, random access to a transport stream is limited to
those points where a complete set of PSI is transmitted. Rather than limit random
 access to these points, ATSC defi nes program numbers and assigns fi xed PIDs
to the elementary streams making up each program. For each program number
(assigned in the program association table) between 1 and 255, a base_pid is calcu-
lated by multiplying the program number by 16. The PMT for this program is car-
ried in transport stream packets whose PID is PMT_PID � base_PID � 0x0000.
The video elementary stream (Video_PID) and PCR (PCR_PID) are both carried
with PID base_PID � 0x0001. The primary audio for the program is carried in
Audio_PID � base_PID � 0x0004. An example of this calculation is shown in
Table 11.11.

11.8.2. Use of MPEG-2 Systems in DVB

MPEG-2 systems provides the multiplex for DVB digital television. The DVB stan-
dards, however, place a number of restrictions on the MPEG-2 implementation of
multiplexing and PSI, which are discussed in this section.

11.8.2.1. Implementation of Multiplexing in DVB

DVB does not use the following features of MPEG-2 systems [5]:

the use of trick modes (such as fast forward, fast rewind, pause);

ESCR;

private data in PES headers; and

the program stream, including all associated signaling.

•
•
•
•

Table 11.11 Example for Program 51 (0x0033).

Name PID value

base_PID 0x0330
PMT_PID 0x0330
Video_PID 0x0331
PCR_PID 0x0331
Audio_PID 0x0334

A DVB decoder is required to be able to scan any valid MPEG-2 systems bit
stream but may ignore any components associated with unused features.

11.8.3. Implementation of PSI in DVB

MPEG-2 PSI is used by DVB, along with additional tables and descriptors of its own,
using values of descriptor_tag and table_id left for private defi nition by MPEG-2.
These extensions are described fully in Chapter 12.

11.9. CONCLUSION

MPEG-2 systems provide a range of services for multiplexing elementary streams,
timing and synchronization, buffer management, and control.

In following chapters, the following are of particular importance:

The value of the PID fi eld in the transport stream packet header is associated
with one source of data, either an elementary stream or a PSI table.

A particular transport stream can be uniquely identifi ed by the transport_
stream_id in the program association table.

The type of an elementary stream can be identifi ed from the stream_id fi eld
of the PES packet header and the stream_type fi eld of the program map
table.

PROBLEMS

11.1 Fill in the empty boxes in the following table of transport stream overheads in Table 11.12.

11.2 For the bitstream in Table 11.13:

(a) Identify the locations at which transport stream packets start.

(b) For each transport stream packet, fi nd its PID and ensure that all values of the
 continuity counter are valid.

(c) Find the packet(s) that contain the program map table and ensure that the correct
value of table_id is present.

•

•

•

Problems 465

Table 11.12 Transport stream overheads for Q 11.1.

Frames per second
Slices per

frame
Number of
programs

Transport
stream rate Overhead

30 30 5 20 Mbit/s
30 30 1 2%
30 1 5 20 Mbit/s

466 Chapter 11 MPEG-2 Systems

Table 11.13 Example transport stream bit stream for Q 11.2.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 43 2F EA 1F 03 5E B2 E3 98 28 51 3B B2 E3 98 47

01 02 33 15 E4 C3 86 74 04 D2 71 9D CA EB BC 2D 67

02 EF EA 69 E4 0E 5A D0 02 23 33 32 9A 45 32 03 BF

03 71 EE 77 6B D8 86 33 AC D6 05 AE 61 D4 80 B5 6D

04 4D 30 31 AE 4D 8A 26 B2 60 DC DA 97 7F E6 D2 A5

05 D1 A9 57 4A 57 88 BA 4F D6 91 5E B3 8B 71 B1 9F

06 CB F4 85 E1 2C FA 45 40 E0 BC 22 03 E4 32 4C A9

07 48 78 10 FD 95 6C 83 55 6E 39 94 C2 87 A3 35 61

08 C8 AE 76 91 CB 0F 9A 0C 6A 4E DF 03 C4 F8 FD C9

09 70 7F 36 A4 51 F5 BA 69 BE 44 70 EE AE 36 D6 A0

0A 22 35 9B A1 5E 93 73 0B 06 50 03 62 AE 17 09 9C

0B 9B 04 04 30 96 0E 5E A1 B7 B1 15 74 71 5A 27 AC

0C B2 BA 7A 8E 1E 73 B7 E4 45 41 DD 47 40 00 15 05

0D 14 A4 30 D8 2C 00 3C 00 70 57 50 5D 64 97 1E 09

0E 75 DE EF 43 29 DF 3C A5 F7 AA DE 02 23 D1 6E E3

0F BC AF 58 2A 27 30 6C DB 7D D0 75 75 73 69 E6 01

10 4C 0C B1 A6 FB 8D 66 32 A0 BB 60 02 6B C0 CB EB

11 D8 5E 9E BB 31 E7 91 A1 3C 8C EE 55 A7 64 A0 B2

12 65 69 A7 D6 5F 6C 98 90 B7 82 C6 7D 2F B3 FB CE

13 B4 7C 1D AA 5D 23 91 D2 AC FF F6 0F 5C 8C 43 98

14 0C 92 B3 F6 C0 BD 6E A2 CD 15 F2 EA 9A 40 DF 83

15 BB 6C F6 12 8D 4A DB 55 AE 0D 5B 7F 6F 8F 9D 1D

16 E5 C1 CA D0 AB 33 45 A0 89 0F 16 45 68 79 E8 98

17 54 7A 98 29 D4 F4 98 07 CF 9C B3 17 6C 60 2A D5

18 D6 73 F4 25 DE C4 71 47 02 33 16 30 7D 68 76 03

19 9C 12 50 9B 2C 9E 3E 96 81 76 8A F1 57 66 4E 69

1A 49 64 80 B8 4E 1C 71 77 03 A9 B9 48 43 B5 C8 FC

1B 79 E7 73 CD D4 2A 64 85 B7 91 75 71 16 71 5D 4D

1C DA C2 F3 8E 03 98 D0 FA 38 B4 85 EE B6 3A 73 2C

1D F8 5B 0C C1 E5 49 40 EE 21 F0 B3 D9 35 74 14 D9

1E 8F 51 5F DE 5F 12 33 0C 91 1F 85 1D C5 60 D2 0B

1F 99 F2 49 E3 1A 10 3B EE 10 43 FF 36 7F 4A AC F5

20 C4 AA 21 18 03 49 D1 FC 04 D1 9F 8F 3E D2 43 C0

21 A8 36 9A 9A A8 2E A2 2B 8A 9F AF AD E0 03 4F C7

22 4E ED AD 13 12 03 3A 84 75 B4 95 82 13 31 61 46

23 C5 50 A3 FC 80 F2 D3 EA 1C CF E8 28 1F C3 B8 A6

24 C1 A9 E2 00 00 16 D9 57 77 E9 3A 3A 3A DC A8 E4

25 7C FE 5F 88 2E 80 6C A9 AC F5 31 1C 90 F8 06 DE

26 06 84 31 B7 40 EF 23 85 E5 F1 55 6F 78 26 22 88

27 B9 66 5B 49 DE A0 3D FA A3 3A AE AA 22 05 43 1D

28 11 DA 2E 08 BB 89 46 5E 03 E3 DD 41 91 28 98 54

29 A8 DD 91 FB CA 27 D5 31 A3 AB C5 61 71 7B 9B 2D

2A 00 CA 83 36 1A 28 68 68 0D F1 26 62 4F 2B E5 52

2B BB 69 66 81 2B 86 A4 04 D6 CD B2 76 15 D2 31 72

11.3 Construct transport stream headers (including offsets to the start of any PSI sections
and start codes associated with PES packet headers) for the following data: transport_
error_indicator � 0, payload_unit_start_indicator � 0, transport_priority � 0,
PID � 563, ts_scrambling_control � 0, ts_adaptation_control � 1, continuity_
counter � 6.

11.4 Construct transport stream headers (including offsets to the start of any PSI sections
and start codes associated with PES packet headers) for the following data: trans-
port_error_indicator � 0, payload_unit_start_indicator � 1, transport_priority
� 0, PID � 563, ts_scrambling_control � 0, ts_adaptation_control � 1, continu-
ity_counter � 6, for a transport stream packet containing PES packet data.

11.5 Construct transport stream headers (including offsets to the start of any PSI sections and
start codes associated with PES packet headers) for the following data: transport_error_
indicator � 0, payload_unit_start_indicator � 1, transport_priority � 0, PID � 63,
ts_scrambling_control � 0, ts_adaptation_control � 1, continuity_counter � 6, for
a transport stream carrying PSI data with offsets of 34 and 93 bytes to the starts of the
PSI sections.

11.6 Construct a program association table for a transport stream carrying two programs
whose program map tables have PID 0x0123 and 0x38F, with transport_stream_id �
0x083E. The network information table for this transport stream is carried in packets
with PID 0x0562.

11.7 Construct a program map table for a program consisting of one video and one audio
elementary stream, with the PCR carried in with the same PID as the video elementary
stream. The video elementary stream is carried with PID 0x0437 and is the main profi le
at main level with 30-Hz frame rate and 4:2:0 chroma format. The audio elementary
stream is constant bit-rate MPEG-2 Layer 2 audio with free_format_fl ag � 0, ID � 1
and is carried with PID 0x0346.

Table 11.13 (Continued)

0 1 2 3 4 5 6 7 8 9 A B C D E F

2C 03 4F E0 D5 55 E1 7A 8F 9D A9 9D AF 82 B6 83 9B

2D F7 D2 51 96 21 41 CD AA 03 8F 74 E7 48 10 7A FB

2E EC 8F A6 C5 1B 00 8A 01 73 32 C9 9E 03 E4 C2 E8

2F C2 61 54 81 90 C4 C7 7B CD 78 33 94 AA AD F1 47

30 02 33 17 A1 CA 72 86 2B 21 98 38 1B 24 74 C9 47

31 39 E8 01 96 8A A7 50 3B 6A 4C AC F0 57 90 1E 2B

32 47 8E 7C F3 3B 7A 86 CA 31 E8 EC 03 C4 F2 D0 EC

33 32 AC ED 58 98 9D 00 FB E6 B1 70 B3 9C 4C DB 1C

34 4A 18 65 55 F1 D6 42 0A 01 93 BE CE A3 40 24 A6

35 F2 D0 EE 4F 44 89 29 36 37 A6 0D 3A AA 4F 4E B8

36 F4 21 11 20 2A E9 22 9D 44 38 B6 8C F0 54 B4 F1

37 94 E1 BF 61 B9 29 F4 32 C6 9D 29 07 49 F8 F3 3A

38 F5 AE 0E 99 64 37 2E 13 01 C9 04 E0 5A B8 F7 27

39 29 50 07 5B 06 CB FF 1C 9F 21 4F 22 39 65 22 3D

3A ED 64 82 17 05 28 D8 E1 2F FD B6 DF 7A 7E 49 0F

Problems 467

468 Chapter 11 MPEG-2 Systems

11.8 Use the data in Table 11.14, which describes the programs and elementary streams
carried in an MPEG-2 transport stream, to construct a program association table and
program map tables. The transport stream has a maximum bit rate of 20 Mbit/s, and
transport_stream_id is 0x0034. In answering this question, it may be necessary to
assign PIDs or other parameters. The network information table is carried in transport
stream packets with PID 0x001F.

11.9 Calculate the overheads for the transport stream sublayer in the following cases:

(a) 30 slices per picture, 24 pictures per second, with each slice occupying one PES
packet;

(b) 36 slices per picture, 25 pictures per second, with each slice occupying two PES
packets; and

(c) 36 slices per picture, 25 pictures per second, with each slice occupying four PES
packets.

11.10 Calculate the overheads due to the PES sublayer in the following cases:

(a) 30 slices per picture, 24 pictures per second, with each slice occupying one PES
packet;

(b) 36 slices per picture, 25 pictures per second, with each slice occupying two PES
packets; and

(c) 36 slices per picture, 25 pictures per second, with each slice occupying four PES
packets.

11.11 Construct an MPEG-2 target background grid descriptor and MPEG-2 video window
descriptor for a 720 � 576 pixel display with aspect ratio 4:3, containing a 352 � 288
window offset 50 pixels horizontally and 30 pixels vertically from the top left of the
display;

Table 11.14 Parameters of program and their constituent elementary streams
for Q 11.6.

Program
number PID

Elementary
stream type Elementary stream description

1 0x0365 MPEG-2 video Main profile at main level; 4:2:0; 25 Hz;
aligned at slice layer

0x366 MPEG-2 audio English language; constant rate; Layer 2;
ID � 1; free_format_flag � 0

0x0365 PCR Elementary stream carrying PCR for this
program

2 0x0385 MPEG-2 video Main profile at main level; 4:2:0; 30 Hz;
aligned at picture layer

0x386 MPEG-2 audio English language; constant rate; Layer 2;
ID � 1; free_format_flag � 0

0x387 MPEG-2 audio French language; constant rate; Layer 2;
ID � 1; free_format_flag � 0

0x0385 PCR Elementary stream carrying PCR for this
program

11.12 Construct an MPEG-2 target background grid descriptor and MPEG-2 video window
descriptor for a 720 � 576 pixel display with aspect ratio 4:3, containing a 352 � 288
window offset, 50 pixels horizontally and 30 pixels vertically from the bottom right
of the display;

11.13 Construct an MPEG-2 IBP descriptor for an MPEG-2 video elementary stream in
which each I-picture is immediately preceded by a GOP header, and each GOP con-
tains exactly 12 pictures.

11.14 Construct an MPEG-2 video stream descriptor for a video elementary stream that car-
ries an MPEG-1 constrained parameters bit stream with a frame rate of 30 Hz.

11.15 Construct an MPEG-2 ISO 639 language descriptor describing an audio elementary
stream containing English language with no defi ned type and a French service for the
hearing impaired.

11.16 Construct an MPEG-2 system clock descriptor for a system clock with accuracy 34 ppm.

11.17 Construct an MPEG-2 system clock descriptor for a system clock with accuracy 45 ppm.

11.18 Calculate the values of CR_base and CR_ext for the following values of the system
time clock:

(a) 20,193,325;

(b) 5384.

11.19 Write down the closest time stamp values to the values of the system time clock in Q 11.18.

11.20 For the transport stream packet payload shown in Table 11.15, identify the table_id of
each section appearing and the contents of each of these sections.

REFERENCES

ISO/IEC 13818-1, Information technology – Generic coding of moving pictures and associated audio
information: Systems, Geneva, Switzerland: International Standards Organisation, 1996.
While the structure shown in Figure 11.1 is consistent with the MPEG-2 standards, it is not mandated.
There is no necessity, for example, that there exist a discrete entity that performs video encoding and

1.

2.

Table 11.15 Transport stream packet payload for Q 11.20.

0 1 2 3 4 5 6 7 8 9 A B C D E F

00 EF EA 69 E4 0E 5A D0 02 23 33 32 9A 45 32 03 BF

01 71 EE 77 6B D8 86 33 AC D6 05 AE 61 D4 80 B5 6D

02 2F 00 14 AE 4D 8A 26 B2 60 DC DA 97 7F E6 D2 A5

03 D1 A9 57 4A 57 88 BA FF FF FF FF FF FF FF FF FF

04 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

05 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

06 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

07 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

08 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

09 FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

0A FF FF FF FF FF FF FF FF

References 469

470 Chapter 11 MPEG-2 Systems

produces a video bit stream. What is required is that the encoder accept video and audio inputs and
produce a valid systems bit stream.
As discussed above for the encoder, the MPEG-2 standards do not require that the decoder adopt this
structure. What is required is that the decoder be capable of reconstructing video and audio signals
from a received systems bit stream. Subject to this constraint, the internal architecture of the decoder
may have any structure.
ISO 639, Code for the representation of names of languages.
Digital Video Broadcasting (DVB); Implementation guidelines for the use of MPEG-2 Systems,
Video and Audio in satellite, cable and terrestrial broadcasting applications, ETR 154, Sophia
Antipolis: ETSI, 1997.

3.

4.
5.

471

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Chapter 12

DVB Service Information and
ATSC Program and System
Information Protocol

12.1. INTRODUCTION

The systems part of MPEG-2 provides a range of functions needed to carry MPEG-2
video and audio elementary streams in a single multiplexed bit stream. The Program-
Specifi c Information (PSI) in MPEG-2 systems (Chapter 11) allows limited
information on the grouping of elementary streams to form programs to be delivered
with the elementary streams. Both DVB and ATSC extend this concept, allowing
much more side information on the services being delivered to be carried in the
stream, each adding a number of its own new tables. In DVB, this additional
information is known as Service Information (SI); in ATSC it is known as the
Program and System Information Protocol (PSIP).

This chapter begins by examining the reasons why the information carried in
the MPEG-2 PSI is not suffi cient for a digital television service. This is followed by
the operation of the DVB SI and ATSC PSIP. The aim of these sections is to present
information on how the SI and the PSIP operate, rather than a complete examination
of all the syntax involved. Readers interested in further information will fi nd this
in the relevant standards documents. It fi nishes by analyzing the constraints on the
structure of transport streams that can enable embedding both DVB SI and ATSC
PSIP in a single stream, allowing decoding by either ATSC or DVB decoders.

12.2. WHY SI AND PSIP?

The MPEG-2 PSI provides suffi cient information on the structure of a transport
stream for a decoder to identify packets carrying data for each elementary stream, to
extract the elementary stream data, and to build complete programs from elementary
streams. What is not provided, however, is any information that might be required to
extract the transport stream from a distribution network. There is also no information

472 Chapter 12 DVB Service Information and ATSC Program

that might be used to present an electronic program guide or other information on
the available programs to the viewer.

The purpose of both the DVB SI and the ATSC PSIP is to extend the functionality
of the MPEG-2 PSI in two areas: viewer information and system information. The
viewer information may be used by a decoder to provide an electronic program
guide. Examples include program titles; cast lists; and information on starting times
and program classifi cation, meeting regulatory requirements to indicate the presence
of certain types of program content (such as violence).

The system information provides information used internally by a decoder,
including the following:

network information, describing one or more distribution networks;

conditional access information, providing information to the decoder on any
conditional access system in use;

timing information, passing to the decoder the current time and date; and

information on services not provided by MPEG-2, such as closed captioning/
subtitling, teletext, and data services.

It is worth noting that, while both DVB and ATSC have been fi t to defi ne new tables
and descriptors, neither has provided any performance requirements for decoders.
Information provided in the profi les and levels for MPEG-2 video makes possible the
guarantee that a compliant decoder can successfully decode a compliant bit stream.
No such requirements exist for either SI or PSIP.

12.3. DVB-SI

The structure of DVB services is illustrated in Figure 12.1 [1]. A receiver or
set-top box receives signals from one or more distribution systems, which are

•
•

•
•

Network

Component Video 1 Audio 1 Video 2 Audio 2

Satellite Cable

Multiplex Transponder
1

Transponder
2

Channel 1 Channel 2 Channel 3

Service Service 1 Service 2 ... Service S Service 1 Service 2 ... Service S

Bouquet

Figure 12.1 DVB service structure. © European Telecommunications Standards Institute 1997.
© European Broadcasting Union 2006. Further use, modifi cation, redistribution is strictly prohibited.
ETSI standards are available from http://pda.etsi.org/pda/ and http:www.etsi.org/services_products/
freestandard/home.htm.

known as networks in DVB. Possible networks are terrestrial broadcast, cable,
satellite, and multipoint microwave distribution systems. Each of these networks
delivers one or more multiplexes, each of which is an MPEG-2 system bit stream.
Within each multiplexed stream, there are one or more services (corresponding
to channels in analog television), each made up of a sequence of one or more pro-
grams. Each program consists of a sequence of one or more events. One or more
components (corresponding to the MPEG-2 elementary stream) are combined to
form each event.

Each network may contain the offerings of more than one service provider. The
offerings of a service provider may also be spread across a number of networks. A
bouquet is a group of services, usually corresponding to the services offered by a
single provider. A bouquet may therefore be spread across a number of networks.

DVB SI consists of the four tables defi ned in the MPEG-2 PSI (program
association table (PAT), program map table (PMT), network information table
(NIT), conditional access table (CAT)) as well as a number of new tables, known
as the bouquet association table (BAT), service description table (SDT), event
information table (EIT), running status table (RST), time and date table (TDT),
time offset table (TOT), and stuffi ng table (ST).

The transport_stream_id fi eld in the program association table was intended
by the designers of MPEG-2 to provide a unique identifi er to each transport stream,
potentially allowing one transport stream to carry data that refers to another identi-
fi ed transport stream. For ensuring that two network operators do not use the same
value of transport_stream_id, fi xed values can be assigned to each operator. The
16 bits allocated to this fi eld allow 65,536 different streams to be distinguished,
which is suffi cient to distinguish one network’s transport streams but insuffi cient to
identify all transport streams on all networks or to allow permanent allocation of
values to network operators. In order to solve this problem, DVB has introduced a
new fi eld, the original_network_id, carried in the network information table. A
fi xed assignment of values of the original_network_id to network operators is
made. Each operator is at liberty to assign values of the transport_stream_id. The
combination of original_network_id and transport_stream_id uniquely identifi es
a transport stream. When a transport stream crosses from one network to another,
the value of the original_network_id is preserved. The relationship between
network_id, original_network_id, and transport_stream_id is illustrated in
Figure 12.2.

In addition to carrying SI tables describing itself, a DVB transport stream may
also carry tables describing other transport streams. DVB uses the transport_
stream_id fi eld of the PAT to identify a transport stream described by a table.
Tables describing data in the transport stream in which they are carried are said
to refer to the actual transport stream, whereas the term other transport stream
is used for tables describing data carried in a different transport stream. Tables
referring to another transport stream identify the stream by the combination of its
original_network_id and transport_stream_id. In the case of the network infor-
mation table, information about the actual or other networks may also be carried.

12.3. DVB-SI 473

474 Chapter 12 DVB Service Information and ATSC Program

DVB tables are identifi ed in the transport stream using the table_id fi eld. DVB
also assigns a fi xed PID to each table (except for the PMT), which is not allowed to
be used for other purposes. Some tables (such as the service description table and
the bouquet association table) share PIDs, but have unique values of table_id. These
PID and table_id values are shown in Table 12.1.

Where conditional access is used, tables are not scrambled except for the event
information table carrying schedule information (table_id � 0 x 50–0 x 6F). The event
information table may be scrambled because it is often considered that it carries propri-
etary information. Other tables do carry information that is effective in the public do-
main, so there is no protection for a network operator in scrambling them.

In DVB a new version of a section of a table becomes effective immediately
after the last byte of the 32-bit CRC at the end of the section. Although the syn-
tax supports sections with current_next_indicator equal to 0, these are never
transmitted.

The decoders in consumer set-top boxes always use the SI data. Professional
decoders (used by network operators) may use neither the SI nor the PSI, allowing
streams with no SI or unreliable SI to be viewed and possibly debugged.

12.3.1. DVB Common Data Formats

A number of common elements appear in DVB tables and descriptors:

The code used for text fi elds is based on the printable values of the
ASCII code [2]. The length of text fi elds is sometimes specifi ed explicitly

•

network_id 10
original_network_id 10
transport_stream_id 0x0365

network_id 15
original_network_id1 5
transport_stream_id 0x0365

network_id 23
original_network_id 10
transport_stream_id 0x0365

network_id 23
original_network_id 15
transport_stream_id 0x0365

Figure 12.2 Use of network_id, original_network_id, and transport_stream_id to uniquely
identify transport streams.

immediately prior to the beginning of the fi eld. Otherwise, this length is
derived from the value of descriptor_length (in a descriptor) or section_
length (in a table).

Countries are specifi ed using the three-character (24-bit) codes specifi ed by
ISO 3166 [3]. For example, the code for the United Kingdom is “GBR.”

Languages are specifi ed by the three-character (24-bit) codes specifi ed by
ISO 639 [4]. For example, the code for French is “FRE” and the code for
English is “ENG.”

Time is coded as a 24-bit BCD number, specifying hours (hh), minutes (mm),
and seconds (ss): hhmmss.

Date is coded as a 16-bit modifi ed Julian date (MJD), calculated as [5]

MJD � � � � � � � � � �14 956 1900 365 25 1 1, () . (D Y L M L 22 30 6001) . ,�
where Y is the year, M is the month number (January � 1, February � 2, etc.),
D is the day of the month (from 1 to 31), and L� 0 if M� 1 or M� 2 and L� 1
otherwise. x means the integer part of x.

•

•

•

•

Table 12.1 DVB tables.

Table Abbreviation PID table_id

Program association PAT 0x 0000 0 x 00
Conditional access CAT 0x 0001 0x 01
Program map PMT Assigned in PAT 0x 02
Network information—actual

network
NIT 0x 0010 0 x 40

Network information—other
network

NIT 0x 0010 0 x 41

Service description—actual TS SDT 0x 0011 0 x 42
Service description—other TS SDT 0x 0011 0 x 46
Bouquet association BAT 0x 0011 0 x 4A
Event information—actual TS

present/following
EIT 0x 0012 0 x 4E

Event information—other TS
present/following

EIT 0x 0012 0 x 4F

Event information—actual TS
schedule

EIT 0x 0012 0 x 50–0 x 5F

Event information—other TS
schedule

EIT 0x 0012 0 x 60–0 x 6F

Time and date TDT 0x 0014 0 x 70
Time offset TOT 0x 0014 0 x 73
Running status RST 0x 0013 0 x 71
Stuffing ST 0x 0010–0x 0014 0 x 72

12.3. DVB-SI 475

476 Chapter 12 DVB Service Information and ATSC Program

Where the time and date are to be specifi ed together, a 40-bit number is used
in which the modifi ed Julian date forms the most signifi cant 16 bits and the
time forms the remaining 24 bits.

12.3.2. DVB Descriptors

DVB defi nes a number of descriptors in addition to those defi ned by MPEG-2 (dis-
cussed in Section 11.6). The properties of these new descriptors, whose syntax
follows the generic structure shown in Chapter 11, are shown in Table 12.2. The
values of descriptor_tag used are all in the range assigned for private descriptors by
MPEG-2 (0x40–0xFF). DVB claims values in the range 0x40–0x7F for its own use,
leaving the remaining values for user defi nition.

•

Table 12.2 Descriptors defined by DVB in EN 300 468.

descriptor_tag Descriptor Purpose

0x40 Network name
descriptor

Network name in text form.

0x41 Service list descriptor Specifies a service type for a program
number.

0x42 Stuffing descriptor Allows overwriting of invalidated
descriptors without changing size or
timing of transport stream or inserting of
dummy descriptors as place holders. May
be carried in NIT, BAT, SDT, and EIT.

0x43 Satellite delivery system
descriptor

Specifies the characteristics of a satellite
delivery system.

0x44 Cable delivery system
descriptor

Specifies the characteristics of a cable
delivery system.

0x45–0x46 Reserved for future use.
0x47 Bouquet name

descriptor
Text name of a bouquet.

0x48 Service descriptor Specifies the name of the service provider
and service in text form, along with the
service type.

0x49 Country availability
descriptor

Specifies countries in which the service
is intended to be available and those in
which the service is not intended to be
available.

0x4A Linkage descriptor Specifies a service that can be presented at
user request (e.g., additional information
related to the service or electronic
program guide) or when the selected
service is not available (e.g., denied by
CA).

Table 12.2 (Continued)

descriptor_tag Descriptor Purpose

0x4B NVOD reference
descriptor

Provides a list of services that form a near
video-on-demand service, allowing a user
to select near to the start of an event by
choosing the appropriate service.

0x4C Time-shifted service
descriptor

Used in place of the service descriptor to
indicate a time-shifted copy of a service.

0x4D Short event descriptor Provides the name of an event and a short
text description in a specified language.

0x4E Extended event
descriptor

Detailed text description of an event,
including a specification of the language
used in the description. Up to 15 of these
descriptors may be combined where
insufficient space is available in one
descriptor.

0x4F Time-shifted event
descriptor

Used in place of the short event descriptor to
indicate a time-shifted copy of an event.

0x50 Component descriptor Identifies the content of an elementary
stream (video, audio, or DVB-defined
data) and the type of the content (e.g.,
video 4:3 aspect ratio, audio single
channel), and assigns a text name to it.

0x51 Mosaic descriptor Specifies a mosaic of images for display.
0x52 Stream identifier

descriptor
Tags a component to allow association with

a component_descriptor.
0x53 CA identifier descriptor Contains a 16-bit field that identifies the

CA system in use. DVB document ETR
162 assigns the values of this field to CA
vendors.

0x54 Content descriptor Classifies content. See example below.
0x55 Parental rating

descriptor
Specifies for individual countries the

minimum suitable viewing age for service.
0x56 Teletext descriptor Specifies the language used in the teletext

and a magazine and page number.
0x57 Telephone descriptor Specifies a telephone number for narrow-

band dial-up interactive channel.
0x58 Local time offset

descriptor
Provides a list of countries and regions

with the associated time offsets from
coordinated universal time (UTC),
expressed in hours and minutes. Also
allows for the next time offset and the
date of the change to be specified (e.g.,
beginning or end of summer time) for
each region.

(continued)

12.3. DVB-SI 477

478 Chapter 12 DVB Service Information and ATSC Program

Many of these descriptors may appear in more than one table. The scope of the
descriptor (i.e., the objects to which it refers) is defi ned by the table in which it ap-
pears, as discussed in Section 12.3.3. The following sections provide a more detailed
description of a number of these descriptors.

Table 12.2 (Continued)

descriptor_tag Descriptor Purpose

0x59 Subtitling descriptor Identifies the type of subtitling and the
language of the subtitles.

0x5A Terrestrial delivery
system descriptor

Specifies the characteristics of a terrestrial
delivery system.

0x5B Multilingual network
name descriptor

Text description of network name in one or
more languages.

0x5C Multilingual bouquet
name descriptor

Provides bouquet name in one or more
languages.

0x5D Multilingual service
name descriptor

Provides text name of service provider and
text description of service in one or more
languages.

0x5E Multilingual component
descriptor

Provides a text description of a component
in one or more languages.

0x5F Private data specifier
descriptor

Specifies the type of private data, using
values listed in ETR 162.

0x60 Service move descriptor Used to allow a service to be tracked by a
receiver from one TS to another TS if it
is moved.

0x61 Short smoothing buffer
descriptor

A compact version of the MPEG-2
smoothing_buffer_descriptor.

0x62 Frequency list
descriptor

Contains a list of center frequencies for a
multiplex that is transmitted on more than
one frequency.

0x63 Partial transport stream
descriptor

Used with partial transport streams; usually
associated with digital storage media.

0x64 Data broadcast
descriptor

For data broadcast components, identifies
the specification to which the broadcast
adheres and the language of the data
broadcast. An optional text description of
the component is also available.

0x65 CA system descriptor Reserved for definition by the Digital Audio
Visual Council (DAVIC).

0x66 Data broadcast id
descriptor

Short form of data broadcast descriptor
containing only the type of the
data broadcast (but without text or
language).

12.3.2.1. DVB Content Descriptor

The syntax of the DVB content_descriptor is shown in Figure 12.3, using the simpli-
fi ed syntax defi ned in Chapter 11. The placement of the bracket and “*” to the left
of a fi eld or group of fi elds indicates that the fi eld or group is repeated zero or more
times. This alternative representation is used throughout this chapter.

The body of the DVB content_descriptor consists of four 4-bit fi elds. The
values of the fi rst two of these (content_nibble_1 and content_nibble_2) are
standardized by ETSI EN 300 468 [1], allowing a high-level description of the
content, such as “drama” or “comedy.” The meanings associated with the remain-
ing two fi elds (user_nibble) is not standardized, but is left for defi nition by the
broadcaster. The mnemonic “uimsbf” means that the fi eld is represented as an
unsigned integer and the most signifi cant bit is transmitted fi rst. The purpose of
the “for” loop is to allow multiple values to be transmitted for the body of the
descriptor. “N” is the number of sets of values contained in the descriptor. This
is not transmitted in the bit stream but is inferred from the value of the descrip-
tor_length fi eld.

EXAMPLE 12.1—Content Descriptor

The construction of the bit stream for an example content_descriptor is illustrated in
Table 12.3. This descriptor specifi es a movie/drama (content_nibble_level_1 � 0x1), of
type comedy (content_nibble_level_2 � 0x4). The values assigned to the two user nibbles
are 0x9 and 0xD. The bit stream generated is 0101 0100 0000 0010 0001 0100 1001 1101.

content_descriptor
content_nibble_level_1 {movie/drama,news/current affairs, sports, etc}
content_nibble_level_2 {comedy, game show, football, etc}
user_nibble Unsigned integer
user_nibble Unsigned integer

*

Figure 12.3 Structure of the DVB content descriptor.

Table 12.3 Sample DVB content descriptor.

Bit stream Syntax element

0101 0100 descriptor_tag � content_descriptor (0x54)
0000 0010 descriptor_length � 2 bytes
0001 content_nibble_level_1 � movie/drama (0x1)
0100 content_nibble_level_2 � comedy (0x4)
1001 user_nibble � 0x9
1101 user_nibble � 0xD

12.3. DVB-SI 479

480 Chapter 12 DVB Service Information and ATSC Program

The alternative representation, avoiding the use of syntax, is shown in Figure 12.4.

12.3.2.2. DVB Delivery System Descriptors

DVB provides three descriptors that convey the properties of a particular delivery
system: the cable deliver system descriptor, the satellite delivery system descriptor,
and the terrestrial delivery system descriptor. All delivery system descriptors have
length 13 bytes in order to facilitate swapping of descriptors when a transport stream
moves between networks. Without this fi xed length, retiming of the transport stream
would often be required at network boundaries.

DVB Satellite Delivery System Descriptor The satellite delivery sys-
tem descriptor carries information on satellite orbital position, modulation, and
channel coding. The contents of this descriptor, shown in Figure 12.5, are the
frequency (expressed in megahertz, with a resolution of 100 Hz1), the orbital po-
sition (in degrees east or west, with a resolution of 0.1�), the polarization of the
transmitted signal (linear vertical/horizontal or circular left/right), the modula-
tion (always QPSK), the symbol rate (in megasymbols (Msym) per second, with
a resolution of 100 sym/s), and the coding rate for the inner convolutional coder
(1/2, 2/3, 3/4, 5/6, or 7/8). (The operation of the convolutional coder is discussed
in Chapter 13.)

EXAMPLE 12.2—Satellite Delivery System Descriptor

An example of the satellite delivery system descriptor, with a frequency of 500.5 MHz, orbital
position 150.7� East, vertical polarization, a symbol rate of 10 Msym/s, and a 1/2 rate inner
convolutional coder, is shown in Figure 12.6.

content_descriptor
content_nibble_level_1 movie / drama
content_nibble_level_2 comedy
user_nibble 0x9
user_nibble 0xD

 Figure 12.4 Alternative representation of DVB content descriptor example. �

satellite_delivery_system_descriptor
frequency (in MHz)frequency
degrees east or westorbital_position
{linear (vertical/horizontal),circular (left/right)}polarization
QPSKmodulation
rate in Msym/ssymbol_rate
{1/2,2/3,3/4,5/6,7/8}FEC_inner

Figure 12.5 Simplifi ed syntax for the DVB satellite delivery system descriptor.

1This could also be expressed as an integer representing the frequency divided by 100 Hz. The
description in the main text follows that used by the DVB standards.

DVB Cable Delivery System Descriptor The cable delivery system descrip-
tor is similar in structure to the satellite delivery system descriptor, as illustrated in
Figure 12.7. It carries the frequency (in megahertz, with a resolution of 100 Hz), the
coding rates for the inner and outer convolutional coders (1/2, 2/3, 3/4, 5/6, 7/8, or
none), and the modulation type (16, 32, 64, 128, or 256 QAM). Modulation and the
operation of convolutional coders are discussed in Chapter 13.

EXAMPLE 12.3—Cable Delivery System Descriptor

An example cable delivery system descriptor is shown in Figure 12.8, with frequency 10.5005
GHz, 7/8 rate outer convolution coder, 1/2 rate inner convolutional coder, 64-QAM modula-
tion, and a symbol rate of 20 Msym/s.

DVB Terrestrial Delivery System Descriptor The terrestrial delivery system
descriptor, whose structure is shown in Figure 12.9, carries the center frequency of
the channel (in megahertz, with a resolution of 10 Hz), the channel bandwidth (6,
7, or 8 MHz), the constellation (QPSK, 16 QAM, or 64 QAM), a fl ag indicating the
presence or absence of the hierarchical mode, coding rates for the inner convolu-
tional coder in the high- and low-priority streams, the guard interval (1/32, 1/16, 1/8,
or 1/4), the transmission mode (2k or 8k), and a fl ag indicating whether or not other
frequencies are in use. The modulation and channel coding used for DVB terrestrial
broadcast delivery systems are described in Chapter 13.

satellite_delivery_system_descriptor
500.5 MHzfrequency
150.6 degrees eastorbital_position
linear/verticalpolarization
QPSKmodulation
10 Msym/ssymbol_rate
1/2 rateFEC_inner

 Figure 12.6 Example satellite DVB delivery system descriptor. �

cable_delivery_system_descriptor
frequency in MHzfrequency
{1/2,2/3/,3/4,4/5,5/6,7/8}FEC_outer
{16, 32, 64, 128, 256} QAMmodulation
rate in Msym/ssymbol_rate
{1/2,2/3,3/4,5/6,7/8, none}FEC_inner

Figure 12.7 Structure of the DVB cable delivery system descriptor.

cable_delivery_system_descriptor
10,500.5 MHzfrequency
7/8 rateFEC_outer
64-QAMmodulation
20 Msym/ssymbol_rate
1/2 rateFEC_inner

 Figure 12.8 Example DVB cable delivery system descriptor. �

12.3. DVB-SI 481

482 Chapter 12 DVB Service Information and ATSC Program

EXAMPLE 12.4—Terrestrial Delivery System Descriptor

Figure 12.10 shows the contents of a terrestrial delivery system descriptor, for a system trans-
mitting at 500.5 MHz, with a bandwidth of 7 MHz using 64 QAM in the nonhierarchical
mode with a 1/2 rate inner code, a 1/32 guard interval, operating in the 2k mode, and not
using other frequencies.

12.3.2.3. DVB Name Descriptors

DVB provides a number of descriptors whose function is to carry the name of an
object, such as a network, a bouquet, a service, or a component.

DVB Network Name Descriptor The purpose of the network name descrip-
tor is to carry a text name for a network, as illustrated in Figure 12.11. The network
name is expressed as a single text string, whose length is limited by the maximum
descriptor size of 256 bytes.

terrestrial_delivery_system_descriptor
center frequency frequency (in MHz)
bandwidth bandwidth in MHz
constellation {QPSK,16-QAM,64-QAM}
hierarchy information {Hierarchical,non-hierarchical}
code_rate-HP_stream {1/2,2/3,3/4,5/6,7/8}
code_rate-LP_stream {1/2,2/3,3/4,5/6,7/8}
guard_interval {1/32,1/16,1/8,1/4}
transmission mode {2k,8k}
other_frequency_flag flag

Figure 12.9 Structure of the DVB terrestrial delivery system descriptor.

terrestrial_delivery_system_descriptor
center frequency 500.5 MHz
bandwidth 7 MHz
constellation 64-QAM
hierarchy information Non hierarchical
code_rate 1/2
guard_interval 1/32
transmission mode 2k
other_frequency_flag None

 Figure 12.10 Example DVB terrestrial deliver system descriptor. �

network_name_descriptor
char String

Figure 12.11 Structure of the DVB network name descriptor.

EXAMPLE 12.5—Network Name Descriptor

An example network name descriptor, carrying the text “News Network” is shown in
Figure 12.12.

DVB Bouquet Name Descriptor The bouquet name descriptor carries text
for the name of a particular bouquet in an unspecifi ed language, as illustrated in
Figure 12.13. The only data-carrying fi eld of the descriptor is the character string.

DVB Multilingual Network Name Descriptor The multilingual network
name descriptor has the same purpose as the network name descriptor, that is, to
carry the text name of a network. The multilingual version, however, is able to carry
this name expressed in one or more languages, each of which is explicitly identifi ed
within the descriptor. The multilingual network name descriptor carries a language
identifi er (using the format of ISO 639) and a text string for each language in which
the network name is specifi ed, as shown in Figure 12.14. The network to which the
descriptor refers is not specifi ed in the descriptor, but is inferred from the table in
which the descriptor appears.

EXAMPLE 12.6—Multilingual Network Name Descriptor

A multilingual network name descriptor for a news service is shown in Figure 12.15. Two lan-
guages (English and German) are supported, each identifi ed by an ISO 639 language code.

network_name_descriptor
char “News Network”

 Figure 12.12 Example DVB network name descriptor. �

bouquet_name_descriptor
char String

Figure 12.13 Structure of the DVB bouquet name descriptor.

multilingual_network_name_descriptor
ISO_639_language_code ISO 639 language code

Stringchar*

Figure 12.14 Structure of the DVB multilingual network name descriptor.

multilingual_network_name_descriptor
ISO_639_language_code English

”krowteNsweN“rahc

ISO_639_language_code German
”nethcirhcaN“rahc

 Figure 12.15 Example DVB multilingual network name descriptor. �

12.3. DVB-SI 483

484 Chapter 12 DVB Service Information and ATSC Program

DVB Multilingual Bouquet Name Descriptor Like the multilingual net-
work name descriptor, the multilingual bouquet name descriptor carries its data
in one or more specifi ed languages, as shown in Figure 12.16. The purpose of
this descriptor is to carry the name of a bouquet in one or more languages. The
bouquet to which the descriptor refers is inferred from the table in which it is
carried.

DVB Multilingual Service Name Descriptor The multilingual service name
descriptor carries the name of a service provider and service name for one service in
one or more specifi ed languages, as shown in Figure 12.17. The service described is
not explicitly identifi ed in the descriptor, but is determined from the table in which
the descriptor is carried.

DVB Multilingual Component Descriptor The multilingual component
descriptor specifi es a text name for a component in one or more specifi ed lan-
guages, as illustrated in Figure 12.18. The component is identifi ed explicitly
in the descriptor by its unique component_tag, which appears before the text
description. The value of component_tag is assigned to a particular elemen-
tary stream by placing a stream identifi er descriptor in the program map table.
The component tag is therefore guaranteed to be unique only within a transport
stream.

EXAMPLE 12.7—Multilingual Component Descriptor

An example of the multilingual component descriptor is shown in Figure 12.19, for which
the component being named has component_tag equal to 0x45. The language of the string is
English.

multilingual_bouquet_name_descriptor
ISO_639_language_code ISO 639 language code

gnirtSrahc*

Figure 12.16 Structure of the DVB multilingual bouquet name descriptor.

multilingual_service_name_descriptor
ISO_639_language_code ISO 639 language code
service_provider_name String
service_name String

*

Figure 12.17 Structure of the DVB multilingual service name descriptor.

multilingual_component_descriptor
component_tag Unsigned integer

ISO_639_language_code ISO 639 language code
gnirtSrahc*

Figure 12.18 Structure of the DVB multilingual component descriptor.

12.3.2.4. DVB Component Descriptor

The DVB component descriptor, whose structure is shown in Figure 12.20, describes
one component (i.e., elementary stream) present in a transport stream. The stream_
content tells a decoder that the stream is video, audio, subtitles, or teletext, indicating
the appropriate elementary stream decoder to be used. The component_type further
classifi es the stream, specifying for video the aspect ratio and for audio the number of
channels. The component_tag assigns a unique identifi er to the component.

EXAMPLE 12.8—DVB Component Descriptor

An example DVB component descriptor is shown in Figure 12.21. The component described
is a video elementary stream with 4:3 aspect ratio, component_tag equal to 0x23, English
language, and name “Football-video.”

12.3.2.5. DVB Event Descriptors

DVB uses the term event to describe a portion of one program. Two descriptors are
available to provide text descriptions of events: the short event descriptor and the
extended event descriptor.

DVB Short Event Descriptor The short event descriptor (Fig. 12.22) carries
the name of an event and a free-form text description of the event in one specifi ed
language. The event to which the descriptor refers is not specifi ed, but is determined
from the table in which the descriptor is carried.

multilingual_component_descriptor
component_tag 0x45

ISO_639_language_code English
”oiduahsilgnE“rahc

 Figure 12.19 Example DVB multilingual component descriptor. �

component_descriptor
stream_content {video, audio, teletext, subtitles}
component_type {aspect ratio for video, subtitles & teletext,

number of channels for audio}
component_tag Unsigned integer
ISO_639_language_code ISO 639 language code

gnirtStxet

Figure 12.20 Structure of the DVB component descriptor.

component_descriptor
stream_content video
component_type 4:3 aspect ratio
component_tag 0x23
ISO_639_language_code ENG

”oediv-llabtooF“txet

 Figure 12.21 Example DVB component descriptor. �

12.3. DVB-SI 485

486 Chapter 12 DVB Service Information and ATSC Program

EXAMPLE 12.9—Short Event Descriptor

An example short event descriptor is shown in Figure 12.23. This descriptor names the event as
“Premier League Football,” with a description that includes the names of the teams involved.

DVB Extended Event Descriptor The extended event descriptor, which is
intended for use in addition to the short event descriptor rather than as a replacement
for it, is used to specify additional information about an event (Fig. 12.24). The
descriptor begins by specifying the language used in its text, which is followed by one
or more pairs of strings that are designed to be presented in a two-column format. The
item_description carries the string for the left column; the item_char carries the
data for the right column. This style is useful in an electronic program guide for pre-
senting credits for the program. Further text, for presentation in a single column, can
be carried in the text_char, which might carry an expanded version of the text in the
short event descriptor and might be a general description of the event. The extended
event descriptor is unique among descriptors, in that its syntax permits the size of the
descriptor to be larger than 256 bytes.

Like the short event descriptor, the event to which the extended event descriptor
refers is determined from the table in which it is carried.

EXAMPLE 12.10—Extended Event Descriptor

An example extended event descriptor is shown in Figure 12.25. The intended, two-
column presentation of the item_description_char and item_char fi elds is shown in
Table 12.4.

Figure 12.22 Structure of the DVB short event descriptor.

short_event_descriptor
ISO_639_language_code ISO_639_language_code
event_name_char String
text_char String

short_event_descriptor
ISO_639_language_code English
event_name_char Premier League Football
text_char Manchester United vs Arsenal

 Figure 12.23 Example of the DVB short event descriptor. �

extended_event_descriptor
ISO_639_language_code ISO_639_language_code

item_description_char String
item_char String

text_char String

*

Figure 12.24 Simplifi ed syntax of the DVB extended event descriptor.

12.3.2.6. DVB Descriptors for Ancillary Services

DVB supports several ancillary services, including teletext and subtitles. Each of
these ancillary services has an associated descriptor.

DVB Teletext Descriptor The teletext descriptor (Fig. 12.26) specifi es for
one or more teletext pages, the language, the type of data carried, the magazine
number, and the page number. (The operation of ITU-T System B Teletext, which
is used in DVB streams, is described in Chapter 14.) A teletext page may be
specifi ed as carrying subtitles, as an initial page or additional page, or a program
schedule page. Without specifi cation of the page type, the decoder treats a teletext
stream in the same way as an analog receiver; use of these fi elds may support
more sophisticated page navigation features. The teletext stream to which the de-
scriptor refers is determined from the placement of the descriptor in the program
map table.

EXAMPLE 12.11—Teletext Descriptor

An example teletext descriptor is shown in Figure 12.27. Identifi cation of this page as a pro-
gram schedule facilitates quick presentation, without a requirement for the viewer to explic-
itly enter the magazine and page number.

extended_event_descriptor
ISO_639_language_code English

item_description_char “Producer”
item_char “John Smith”

item_description_char “Director”
item_char “Hugo Jones”

text_char “Live from Manchester”

Figure 12.25 Example DVB extended event descriptor.

Table 12.4 Presentation of data from example
extended event descriptor of Figure 12.25.

Producer John Smith
Director Hugo Jones

teletext_descriptor
ISO_639_language_code ISO_639_language_code
teletext_type {Subtitle,initial page, additional page,

program schedule page}
teletext_magazine_number Unsigned number
teletext_page_number Unsigned number

*

Figure 12.26 Structure of the DVB teletext descriptor.

12.3. DVB-SI 487

488 Chapter 12 DVB Service Information and ATSC Program

DVB Subtitling Descriptor The subtitling descriptor is used to identify the
type of subtitles (Fig. 12.28). More than one subtitling service may be provided for
one program, some supporting services for the hearing impaired while other provid-
ing text translation of dialog into other languages. This descriptor is usually carried
in the program map table, from which the subtitling stream to which it refers is
identifi ed. The values of composition_page_id and ancillary_page_id refer to the
location in the subtitling service where the subtitling data can be found.

DVB subtitling is described in Chapter 14.

EXAMPLE 12.12—Subtitling Descriptor

An example subtitling descriptor is shown in Figure 12.29, in which subtitling in two lan-
guages is specifi ed. For English, hearing-impaired subtitles are provided (with a composition
page id of 34 and ancillary page id 653), whereas for French, normal subtitles are provided
(with a composition page id of 36 and ancillary page id 659). For each type of subtitle, the
subtitle page is identifi ed.

12.3.2.7. DVB Service Descriptor

The service descriptor (Fig. 12.30) specifi es the type of a service, using one of
the values shown in Table 12.5, the name of the service provider, and the name

 Figure 12.27 Example DVB teletext descriptor. �

teletext_descriptor
ISO_639_language_code English
subtitling_type Program schedule
teletext_magazine_number 5
teletext_page_number 12

subtitling_descriptor
ISO_639_language_code ISO_639_language_code
subtitling_type {Normal/hearing impaired}
composition_page_id Unsigned number
ancillary_page_id Unsigned number

*

Figure 12.28 Structure of the DVB subtitling descriptor.

subtitling_descriptor
ISO_639_language_code English
subtitling_type Hearing impaired
composition_page_id 34
ancillary_page_id 653

ISO_639_language_code French
subtitling_type Normal
composition_page_id 36
ancillary_page_id 659

 Figure 12.29 Example of the DVB subtitling descriptor. �

of the service. The service to which these values refer is inferred from the service
description table in which the descriptor is carried. “NVOD” is an abbreviation for
near-video-on-demand, which refers to a group of services that are time-shifted from
one another to provide a similar service to video-on-demand.

EXAMPLE 12.13—Service Descriptor

An example service descriptor for a news service provided by CNN is shown in Figure 12.31.

12.3.2.8. DVB Service List Descriptor

The service list descriptor, illustrated in Figure 12.32, provides a means for speci-
fying the types (e.g., digital television, digital radio) of one or more services. It is
typically carried in the network information table or bouquet association table. The

service_descriptor
service_type {digital television,digital radio,teletext,

data broadcast, etc}
service_provider_name String
service_name String

Figure 12.30 Structure of the DVB service descriptor.

Table 12.5 Service types supported by the DVB
service descriptor.

Service type

Digital television service
Digital radio sound service
Teletext service
NVOD reference service
NVOD time-shifted service
Mosaic service
PAL coded signal
SECAM coded signal
D/D2-MAC
FM radio
NTSC coded signal
Data broadcast service

service_descriptor
service_type digital television
service_provider_name “CNN”
service_name “News channel”

 Figure 12.31 Example DVB service descriptor. �

12.3. DVB-SI 489

490 Chapter 12 DVB Service Information and ATSC Program

transport stream in which the service is carried must be inferred from the table in
which the service list descriptor is carried. The format of the service_type fi eld is
the same as in the service descriptor.

EXAMPLE 12.14—Service List Descriptor

Figure 12.33 shows an example of the service list descriptor. The fi rst service, with service_id
0x4535, is a digital television service, whereas the second service is a teletext service.

12.3.2.9. DVB Linkage Descriptor

The linkage descriptor specifi es a service that provides extra information about a
bouquet, service, or event and has the structure shown in Figure 12.34. The type of
the associated information is specifi ed by the linkage_type and may be an informa-
tion service, an EPG service, a CA replacement service, (for use where the condi-
tional access system does not grant access to the service), a service replacement
service, or a data broadcast service. The service carrying the associated information
is specifi ed by the transport_stream_id, original_network_id, and service_id
contained in the descriptor. The bouquet, service, or event to which the associated
information is linked is inferred from the table in which the linkage descriptor is
transmitted.

EXAMPLE 12.15—Linkage Descriptor

An example linkage descriptor that specifi es a service carrying an EPG associated with a
service is shown in Figure 12.35.

service_list_descriptor
service_id Unsigned integer
service_type {digital television,digital radio,teletext,data broadcast, etc}*

Figure 12.32 Structure of the DVB service list descriptor.

service_list_descriptor
service_id 0x4535
service_type digital television

service_id 0x543D
service_type teletext

 Figure 12.33 Example DVB service list descriptor. �

linkage_descriptor
transport_stream_id Unsigned integer
original_network_id Unsigned integer
service_id Unsigned integer
linkage_type {information,EPG, CA replacement,

service replacement,data broadcast}

Figure 12.34 Structure of the DVB linkage descriptor.

12.3.2.10. DVB Parental Rating Descriptor

The parental rating descriptor (Fig. 12.36) specifi es the minimum age for which a
particular content is suitable. A separate specifi cation may be made for each country.

EXAMPLE 12.16—Parental Rating Descriptor

An example parental rating descriptor, specifying a minimum age of 15 for England and 10
for Sweden, is shown in Figure 12.37.

12.3.2.11. DVB Local Time Offset Descriptor

The local time offset descriptor is used to specify one or more time offsets from
coordinated universal time that are used in particular regions of one or more countries.
UTC was previously known as Greenwich mean time (GMT). For each region and
country, the current local time offset from UTC is specifi ed in hours and minutes,
with positive values indicating east and negative values indicating west. The date and
time at which the next change in time offset is to occur is also specifi ed (as a modifi ed
Julian date), accompanied by the value of this new offset (in hours and minutes). The
most likely reason for this offset is a switch to or from summer time (Fig. 12.38).

linkage_descriptor
transport_stream_id 0xD234
original_network_id 0x5432
service_id 0x4545
linkage_type EPG

 Figure 12.35 Example DVB linkage descriptor. �

parental_rating_descriptor
country_code ISO-8859 country code
rating age*

Figure 12.36 Structure of the DVB parental rating descriptor.

parental_rating_descriptor
country_code England
rating 15

country_code Sweden
rating 10

 Figure 12.37 Example DVB parental rating descriptor. �

local_time_offset_descriptor
country_code ISO-3166 country code
region_id time zone within country
local_time_offset signed BCD number
time_of_next_change same format as UTC_time
next_time_offset signed BCD number

*

Figure 12.38 Structure of the DVB local time offset descriptor.

12.3. DVB-SI 491

492 Chapter 12 DVB Service Information and ATSC Program

EXAMPLE 12.17—Local Time Offset Descriptor

An example local time offset descriptor is shown in Figure 12.39, specifying the time offset
for the United Kingdom as plus 1 h (i.e., summer time). The descriptor also specifi es a time
and date for the next change in this time offset, at which the offset changes to zero.

12.3.3. DVB Tables

MPEG-2 defi nes four tables: the program association table, the program map table,
the conditional access table, and the network information table. These tables form a
part of the DVB SI. In the case of the program association table, the program map
table, and the conditional access table, the full syntax and semantics are defi ned by
MPEG-2. For the network information table, only its existence is defi ned by MPEG-
2; its syntax is defi ned by DVB. This section discusses special use made by DVB of
the MPEG-2 PSI and the new tables introduced by DVB.

12.3.3.1. DVB Use of the Network Information Table

The syntax of the network information table is not defi ned by MPEG-2 but is defi ned
by DVB, where it is always carried with a PID of 0x0010. Its purpose is to carry in-
formation on the physical organization of transport streams on a network and on the
network itself. A network information table may describe the network on which it is
transmitted (the actual network) or another network (other network). Transmission
of the network information table for the actual network is mandatory.

One section of the network information table (Fig. 12.40) is required for each
network to be described. The network information section consists of a unique net-
work identifi er (assigned in ETR 162 [6]), a group of descriptors describing this
network, and a list of transport streams carried by the network, each of which may
be accompanied by one or more descriptors describing that transport stream. Each

local_time_offset_descriptor
country_code United Kingdom
region_id Only one time zone
local_time_offset +0100
time_of_next_change 0xCBD7000000
next_time +0000

 Figure 12.39 Example DVB local time offset descriptor. �

network_information_section-(actual/other)_network
regetnidengisnudi_krowten

* << descriptors>>

transport_stream_id unsigned integer
* original_network_id unsigned integer

<< descriptors>>

Figure 12.40 Simplifi ed syntax of the DVB network information table.

of these transport streams is identifi ed by its combination of transport_stream_id
and original_network_id.

The network information table is not scrambled.
A number of descriptors have meaning when carried in the network information

table, some describing the network as a whole and others describing one multiplex
carried by the network. Descriptors that can be used to describe the network to
which the table refers are the linkage descriptor, the network name descriptor, and
the multilingual network name descriptor. The linkage descriptor is used to point to
services associated with the network as a whole, such as electronic program guides or
network information. The network name descriptor and multilingual network name
descriptor carry a text form of the network’s name, such as “BSkyB,” or “ASTRA.”

Descriptors carried by the network information table that describe individual
multiplexes are the delivery system (cable, satellite, and terrestrial) descriptors, the
service list descriptor, and the frequency list descriptor. The carriage of one delivery
system descriptor describing each multiplex is required. The service list descriptor
may contain a list of services carried by the multiplex, identifi ed by their service_id,
which is the same as the MPEG-2 program_number. The frequency list descriptor
may carry a list of other frequencies used in transmission of the multiplex.

EXAMPLE 12.18—DVB Network Information Table

An example network information table is shown in Figure 12.41. This network has a net-
work identifi er of 0x0069 and a network name “Satellite Network.” This network carries two

network_information_section-actual_network
0x0069network_id

network_name_descriptor
“Satellite Network”char

0x0234transport_stream_id
0x0001original_network_id

satellite_delivery_system_descriptor
12.750 MHzfrequency

E156.0°orbital_position
7 MHzbandwidth
linear/verticalpolarization
QPSKmodulation
14 Msym/ssymbol_rate
1/2FEC_inner

0x0239transport_stream_id
0x0001original_network_id

satellite_delivery_system_descriptor
12.720 MHzfrequency

E156.0°orbital_position
10 MHzbandwidth
linear/verticalpolarization
QPSKmodulation
20 Msym/ssymbol_rate
3/4FEC_inner

Figure 12.41 Example DVB network information table.

12.3. DVB-SI 493

494 Chapter 12 DVB Service Information and ATSC Program

multiplexes, each of which is identifi ed by its unique combination of transport_stream_id
and original_network_id. Each of these multiplexes is described by a satellite delivery system
descriptor. �

12.3.3.2. DVB Bouquet Association Table

The purpose of the bouquet association table is to provide information on bouquets,
which are collections of services, possibly crossing network boundaries. The bouquet
association table has the same structure as the network information table. Whereas
the network information table provides information on the physical arrangement of
multiplexes and services, the bouquet association table describes the logical group-
ing of services into bouquets.

Each section of the bouquet association table, whose syntax is illustrated
in Figure 12.42, contains a bouquet_id that uniquely identifies the bouquet
to which the table refers. These values are assigned in ETR 162. BSkyB, for
example, is assigned values in the range 0x1000–0x101F. The bouquet_id is
followed by a list of descriptors describing the bouquet as a whole. These de-
scriptors may include the bouquet name descriptor and multilingual bouquet
name descriptor, CA identifier descriptor, country availability descriptor, and
linkage descriptor.

The bouquet name descriptor and the multilingual bouquet name descriptor
may be used in the bouquet association table to provide a text name for the bouquet.
The CA identifi er descriptor identifi es conditional access used by services within the
bouquet. The country availability descriptor specifi es countries in which the entire
bouquet is to be available or not. The linkage descriptor is used to specify a service
that carries information on the bouquet or an EPG.

For each transport stream carrying services belonging to a bouquet, the bou-
quet association table carries the transport_stream_id, original_network_id, and
a service list descriptor that associates one or more services in that transport stream
with the bouquet.

EXAMPLE 12.19—Bouquet Association Table

An example bouquet association table is shown in Figure 12.43. This bouquet is spread
across two transport streams, encompassing two services on each (giving a total of four
services).

bouquet_association_section
bouqet_id unsigned integer

* << descriptors>>

transport_stream_id unsigned integer
* original_network_id unsigned integer

<< descriptors>>

Figure 12.42 Simplifi ed syntax for the DVB bouquet association table.

12.3.3.3. DVB Service Description Table

The service description table defi nes the services carried by a network. A service is simi-
lar in concept to an analog television channel and to the MPEG-2 concept of a program.

Each section of the service description table refers to one transport stream,
identifi ed by its transport_stream_id and its original_network_id. For each ser-
vice present in the transport stream, the section carries the service_id, fl ags to in-
dicate the presence of event information tables for the schedule and the present and
following events, and a fl ag to indicate the use of conditional access in one or more
components of the service. The service_id uniquely identifi es a service within a trans-
port stream. A service can be uniquely identifi ed among all services on all networks
using its service_id with the transport_stream_id and original_network_id of
its host transport stream. The program_number in the program map table has the
same value as the service_id. It is recommended by the DVB standards that a fi xed
service_id (and therefore program_number) be allocated to each service so that
a decoder can store a list of previously used services to allow the viewer to return
easily (Fig. 12.44).

Each descriptor carried by the service description table refers to the one service
with whose service_id it is grouped. Descriptors that are likely to be carried in
this table include the service descriptor (specifying the name of the service and the
service operator) and multilingual service descriptor, the bouquet name descriptor,
the CA identifi er descriptor, the country availability descriptor, the data broadcast
descriptor, the linkage descriptor (used to specify services that contain additional
information about this service, that carry an EPG for this service, or that is a re-
placement service for this service if it is unavailable), the mosaic descriptor, the

bouquet_association_section
bouqet_id 0x1000
bouquet_name_descriptor

char “Satellite Bouquet”

transport_stream_id 0x0234
original_network_id 0x1056
service_list_descriptor

service_id 0x4520
service_type digital television

service_id 0x5123
service_type teletext

transport_stream_id 0x028F
original_network_id 0x1056
service_list_descriptor

service_id 0x4535
service_type digital television

service_id 0x543D
service_type digital radio

 Figure 12.43 Example DVB bouquet association table. �

12.3. DVB-SI 495

496 Chapter 12 DVB Service Information and ATSC Program

NVOD reference descriptor, the telephone descriptor, and the time-shifted service
descriptor.

The EIT_schedule_fl ag and EIT_present_following_fl ag indicate the
presence (or absence) of the event information table for the schedule and the
present/following events, respectively. The running_status is used to indicate
whether a program is currently running, paused, or about to run. The free_CA_
mode fi eld is set to one for services in which conditional access is not used on
any component.

EXAMPLE 12.20—Service Description Table

An example service description table is shown in Figure 12.45, carrying information on two
digital television services carried in the same transport stream as the table. For each of these
services, event information tables are present for both the schedule and the present/following
events, and no conditional access is used. Both services are running.

service_description_section-(actual/other)_transport_stream
transport_stream_id unsigned integer
original_network_id unsigned integer

service_id unsigned integer
EIT_schedule_flag flag
EIT_present_following_flag flag
running_status {running,pausing,…}
free_CA_mode flag
<< descriptors>>

*

Figure 12.44 Simplifi ed syntax for the DVB service description table.

service_description_section-actual_transport_stream
transport_stream_id 0x0234
original_network_id 0x1000

service_id 0x33
EIT_schedule_flag 1
EIT_present_following_flag 1
running_status running
free_CA_mode 1
service_descriptor

service_type digital television
service_provider_name “CNN”
service_name “CNN Headline News”

service_id 0x35
EIT_schedule_flag 1
EIT_present_following_flag 1
running_status running
free_CA_mode 1
service_descriptor

service_type digital television
service_provider_name “NBC”
service_name “NBC-Europe”

 Figure 12.45 Example DVB service description table. �

12.3.3.4. DVB Event Information Table

The purpose of the event information table is to provide information in chronologi-
cal order on the events within each service. Each section of the event information
table contains information on one service, which is identifi ed by its service_id and
the transport_stream_id and original_network_id of the transport stream carry-
ing the service (Fig. 12.46).

Unlike other tables, the event information table may be scrambled.
Each descriptor carried by the event information table refers to one event. De-

scriptors that are likely to be present include the component descriptor, the content
descriptor, the data broadcast descriptor, the extended event descriptor, the linkage
descriptor, the multilingual component descriptor, the parental rating descriptor, the
short event descriptor, the telephone descriptor, and the time-shifted event descriptor.

EXAMPLE 12.21—Event Information Table

An example event information table is shown in Figure 12.47, showing information on two
events (numbered 0x32 and 0x33) associated with the service_id 0x31. �

12.3.3.5. DVB Running Status Table

The purpose of the running status table is to enable fast updating of the timing status
of one or more events, which may be necessary when the starting time of an event is
altered. This might occur when the preceding event fi nishes later or earlier than pro-
grammed. The running status of an event is one of the following values: “undefi ned,”
“not running,” “starts in a few seconds,” “pausing,” or “running.” The running status
table is not scrambled. The running status table is not able to carry any descriptors.

EXAMPLE 12.22—Running Status Table

An example running status table is shown in Figure 12.48. This table contains entries for
three events. The fi rst two share the same transport stream (because they have the same
value of transport_stream_id and original_network_id). The third entry refers to a dif-

event_information_section
service_id unsigned integer
transport_stream_id unsigned integer
original_network_id unsigned integer

event_id unsigned integer
start_time time and date
duration time
running_status {running,pausing,…}
free_CA_mode flag
<< descriptors >>

*

Figure 12.46 Simplifi ed syntax for the DVB event information table.

12.3. DVB-SI 497

498 Chapter 12 DVB Service Information and ATSC Program

ferent transport stream. The only means to determine if a reference in the running status
table refers to a service in the same transport stream is to compare the transport stream’s
values of transport_stream_id and original_network_id to those in the running status
table.

running_status_section
transport_stream_id 0x0300
original_network_id 0x1020
service_id 0x20
event_id 0x54
running_status Pausing

transport_stream_id 0x0300
original_network_id 0x1020
service_id 0x31
event_id 0x65
running_status Running

transport_stream_id 0x1000
original_network_id 0x17F1
service_id 0xF4
event_id 0x45
running_status Starts in a few seconds

 Figure 12.48 Example DVB running status table. �

event_information_section
0x31service_id

0x0300transport_stream_id

0x1020original_network_id

0x32event_id

0xCBD7000000start_time

3600duration

runningrunning_status

1free_CA_mode

short_event_descriptor
EnglishISO_639_language_code

Premier League Footballevent_name_char

Manchester United vs Arsenaltext_char

0x33event_id

0xCBD7000100start_time

1800duration

runningrunning_status

1free_CA_mode

short_event_descriptor
EnglishISO_639_language_code

BBC Newsevent_name_char

BBC early edition news servicetext_char

parental_rating_descriptor
Englandcountry_code

5rating

Swedencountry_code

3rating

Figure 12.47 Example DVB event information table.

12.3.3.6. DVB Time and Date Table

The purpose of this table is to carry time and date information, with the syntax illus-
trated in Figure 12.49. Time is expressed as a six-digit number (hh:mm:ss), coded as
BCD. The date is expressed as a modifi ed Julian date and is coded as a 16-bit binary
number. This table is always transmitted as a single section and is not scrambled. It
is not able to carry any descriptors. The UTC_time fi eld is 40 bits in length, with the
most signifi cant 16 bits corresponding to the least signifi cant 16 bits of the MJD, and
the remaining 24 bits carrying the six BCD digits for time.

EXAMPLE 12.23—Time and Date Table

The time 08:05:10 (i.e., 5 min and 10 s after 8 a.m.) is represented in BCD as 080510. The date
“September 21, 2001” corresponds to D� 21, M� 9, Y� 2001, and L� 1, for which MJD � 52,173,
or 0xCBCD. The contents of the time and date table for this example are shown in Figure 12.50.

12.3.3.7. DVB Time Offset Table

The purpose of the time offset table is to carry the current time and date information.
Time and date information is carried in UTC. The table can also carry a list of countries
and regions and their associated time offsets, allowing conversion of time and data to
local values. This table is not scrambled and is always transmitted as a single section.

The header of the time offset table contains the current time (in UTC, coded in
the same manner as that for time and date table) and date (expressed as a modifi ed
Julian date, coded as that for the time and date table). The local time offset descrip-
tor is typically the only descriptor carried in this table (Fig. 12.51).

EXAMPLE 12.24—Time Offset Table

Figure 12.52 shows an example time offset table showing the same time and date as in the
previous example of the time and date table. This time offset table also contains a local time off-
set descriptor, which specifi es information for two countries: the United Kingdom and Australia.
For the United Kingdom, the region_id shows that only one time zone is used. The current

program time_and_date_section
UTC_time number

Figure 12.49 Simplifi ed syntax of the DVB time and data table.

time_and_date_section
UTC_time 0xCBCD080510

 Figure 12.50 Example DVB time and date table. �

program time_offset_section
UTC_time number
<< descriptors >>

Figure 12.51 Simplifi ed syntax for the DVB time offset table.

12.3. DVB-SI 499

500 Chapter 12 DVB Service Information and ATSC Program

local_time_offset is plus 1 h, which will change to zero at midnight on October 1, 2001. For
Australia, the region_id specifi es the eastern-most time zone, where the current time offset is
plus 10 h, which will change to plus 11 h at 2 a.m. on October 7, 2001.

12.3.3.8. DVB Stuffing Table

The purpose of the stuffi ng table is to allow a section becoming invalid as a transport
stream crosses a network boundary to be overwritten with null data. This means that
the data rate of the transport stream remains constant. A stuffi ng table may also be
inserted in anticipation of a section being added when the transport stream crosses a
network boundary. This table is not scrambled and contains no descriptors. All bytes
after the header have the value 0xFF.

12.3.4. DVB Delivery Issues

12.3.4.1. Size of Tables

Although tables larger than 1024 bytes are supported by the DVB standard, the maxi-
mum size of each table section is limited to 1024 bytes. A table may be suffi ciently
long so that it requires two or more sections for transmission simply because an
encoder places a large number of descriptors in the table. This may also occur because
of the use of a number of free-text descriptors whose length is not constrained.

When a TS is remultiplexed, new descriptors may be added to one or more tables.
Some descriptors may also be deleted. When descriptors are deleted, the system
encoder may shorten the table. Alternatively, it may simply overwrite the deleted
descriptor with a stuffi ng descriptor. This use of stuffi ng descriptors can lead to a
growth in the length of tables, especially when a number of stages of remultiplexing
occur. This growth in the length of tables is supported by the standard through the
use of multisection tables. Many encoders, however, do not support multisection
tables. Use of these encoders in the remultiplexing of streams that contain multi-
section tables can lead to corruption of SI data.

time_offset_section
UTC_time 0xCBCD080510

local_time_offset_descriptor
country_code United Kingdom
region_id Only one time zone
local_time_offset +0100
time_of_next_change 0xCBD7000000
next_time +0000

country_code Australia
region_id Eastern time zone
local_time_offset +1000
time_of_next_change 0xCBDE020000
next_time +1100

 Figure 12.52 Example DVB time offset table. �

12.3.4.2. Table Entries

To be decoded, a service must contain one or more elementary streams (containing video,
audio, or private data), an entry in the PAT for a PMT, and the PMT specifi ed in the PAT.
A service missing any one of these cannot be decoded. A DVB bit stream may, however,
contain elementary streams that do not have corresponding PAT and PMT entries. There
may also exist services that are defi ned by the SI but with no PSI or elementary streams,
which are sometimes referred to as blank programs. Blank programs occur when SI for a
service is carried in a transport stream separate from the one carrying the service itself.

12.3.4.3. Repetition Rates

The DVB standard defi nes the maximum intervals between transmission for each
type of table, shown in Table 12.6 [7]. Regular retransmission of tables minimizes
the impact of propagation errors on the decoded service and the time taken to be-
gin decoding a transport stream. Different repetition rates are specifi ed for satellite,
cable, and terrestrial broadcast systems.

In a DVB system, approximately 5% of the network capacity is allocated to the
transmission of SI tables and CA information. In a-40 Mbit/s satellite distribution
system, the total SI and CA data is likely to be 2 Mbit/s.

12.4. ATSC PROGRAM AND SYSTEM
INFORMATION PROTOCOL

ATSC’s program and the PSIP provides a small collection of tables and associated de-
scriptors that can be used to describe the contents of one or more transport streams. These

Table 12.6 Maximum intervals in seconds between retransmission of tables.

Table Satellite/Cable Terrestrial

NIT 10 10
BAT 10 10
SDT Actual TS: 2

Other TS: 10
Actual TS: 2
Other TS: 10

TDT 30 30*

TOT 30 30*

EIT (Present/following) Actual TS: 2
Other TS: 10

Actual TS: 2
Other TS: 10

EIT (Schedule Table) First 8 days: 10
Later: 30

Actual TS
First 8 days: 10*

Later: 30*

Other TS
First 8 days: 60*

Later: 300*

Note: entries marked “*” are recommended. All other entries are mandatory.

12.4. ATSC Program and System Information Protocol 501

502 Chapter 12 DVB Service Information and ATSC Program

tables can also be used to describe the contents of analog transmissions. The purpose of
ATSC PSIP [8] is similar to that of DVB SI, although it is much simpler in structure.

ATSC continues to use the program association table, program map table, and
conditional access table defi ned by MPEG-2. In addition, ATSC defi nes

a system time table (STT), used to specify the current UTC time;

a master guide table (MGT), which provides an index to the other tables;

a virtual channel table (VCT), which describes the virtual channels that are
carried by one or more transport streams and also provides the facilities of the
network information table;

a rating region (RRT) table that conveys information on the program
classifi cation system in use in one or more regions;

event information tables, which describe the upcoming programs on all
virtual channel defi ned in the virtual channel table; and

the extended text table, which provides text descriptions that can be used to
augment the virtual channel table or event information table.

The logical structure of these tables is shown in Figure 12.53, where the master
guide table sits at the top of the hierarchy, with the virtual channel table, rating re-
gion table, and event information tables below it. The virtual channel table and event
information tables may each have a child extended text table. The system time table
sits outside this hierarchy.

In this section, we begin with an overview of the common data formats used by the
ATSC’s PSIP. This is followed by a description of each of the descriptors and tables.

12.4.1. Common Data Formats

ATSC uses common data formats for the representation of strings and time and date.

12.4.1.1. String Representation

ATSC uses the multiple string structure, illustrated in Figure 12.54, as a common
means for specifying strings in one or more identifi ed languages. (The format for
the structure is set out in Section 12.3.2.1.) The language is specifi ed by an ISO 639
three-character code. Strings may be uncompressed, or compressed using one of the

•
•
•

•

•

•

MGT

VCT RRT EIT-0 EIT-3EIT-1 EIT-2

ETT-0 ETT-3ETT-1 ETT-2ETT-V

STT

Figure 12.53 Logical structure of ATSC PSIP tables.

two Huffman codes. The character set is based on an 8- or 16-bit code defi ned by
ISO 10646, with the page number controlled by the mode fi eld.

EXAMPLE 12.25—Multiple String Structure

Figure 12.55 shows an example multiple string structure carrying the string “Hello” in
English and in French. In both cases the mode has value 0x00, the ISO 10646 value indicating
the Latin-1 alphabet.

12.4.1.2. ATSC Time and Date Formats

Time and date in ATSC tables is specifi ed as a 32-bit unsigned integer represent-
ing the number of seconds since midnight, January 6, 1980, based on the GPS time
reference. This GPS time is translated to UTC time by adding an offset carried by
the system time table.

EXAMPLE 12.26—ATSC Time and Date

The GPS time at 12:00, August 7, 2001, is 681220800. �

12.4.1.3. ATSC Virtual Channels

Each ATSC transport stream may carry several programs simultaneously. A means
is required to identify uniquely each of these programs and possibly to identify pro-
grams in other transport streams. ATSC uses virtual channel numbers for this pur-
pose, with each virtual channel number identifying a particular program that the
viewer can select. Each virtual channel is uniquely identifi ed by a major channel

multiple_string_structure
ISO_639_language_code ISO 639 language code
compression_type {No compression,Huffman 1, Huffman 2}
mode Unsigned integer
compressed_string Compressed string

*
*

Figure 12.54 Structure of the ATSC multiple string structure.

multiple_string_structure
ISO_639_language_code English
compression_type No compression
mode 0x00
compressed_string “Hello”

ISO_639_language_code French
compression_type No compression
mode 0x00
compressed_string “Bonjour”

 Figure 12.55 Example ATSC multiple string structure. �

12.4. ATSC Program and System Information Protocol 503

504 Chapter 12 DVB Service Information and ATSC Program

number and a minor channel number. The major channel number is assigned based
on the RF channel number on which the operator broadcasts. For broadcasters who
already hold an NTSC license, the major channel number is the number of this chan-
nel. For new, digital-only broadcasters, the major channel number is the number of
their assigned digital channel. This method of assignment means that, in a given
geographic area, only one major channel number is used by each broadcaster, even
if that broadcaster controls more than one RF channel. Minor channel numbers are
used to identify individual virtual channels.

12.4.2. ATSC Descriptors

ATSC defi nes a number of descriptors in addition to those defi ned by MPEG-2
(Chapter 11), whose characteristics are summarized in Table 12.7, to complement
those defi ned in MPEG-2 systems. The values of descriptor_tag assigned by ATSC
are in the range 0x80–0xAF, which are values left unassigned by MPEG-2. ATSC
restricts user-defi ned descriptor tags to the range 0xC0–0xFE.

12.4.2.1. ATSC AC-3 Audio Descriptor

The AC-3 audio descriptor [9] is used to provide information about an AC-3 audio
elementary stream. It is usually transmitted in the program map table, with the struc-
ture shown in Figure 12.56.

The bsid and bsmod fi elds take the same values as the fi elds of the same name
in the AC-3 audio elementary stream. The bit_rate_code specifi es either the exact
bit rate or the upper limit for the bit rate for values between 32 and 640 kbit/s. The
num_channels fi eld specifi es either the number of audio channels encoded in the

Table 12.7 ATSC Descriptors.

descriptor_tag Descriptor Purpose

0x80 Stuffing descriptor Acts as a place holder in a table.
0x81 AC-3 audio descriptor Describes an AC-3 audio elementary stream.
0x86 Caption service

descriptor
Carries characteristics of closed caption

services associated with an event.
0x87 Content advisory

descriptor
Conveys advisory indications of program

classification for one or more regions.
0xA0 Extended channel

name descriptor
Carries the long form of the name of a

virtual channel.
0xA1 Service location

descriptor
Specifies the stream types, PID, and

language for each elementary stream.
0xA2 Time-shifted service

descriptor
For one virtual channel, identifies other virtual

channels that are time-shifted copies.
0xA3 Component name

descriptor
Provides a text name for one component.

0xC0–0xFE User private Available for definition by users without
interference with the operation of ATSC

AC-3 elementary stream or an upper bound on the number of channels. The langcod
fi eld is set to the same value as the langcode fi eld in the AC-3 elementary stream, and
represents the language of the audio. A value of zero is used to indicate an unknown
language. A value of zero for full_svc indicates that this audio elementary stream is
not suitable for presentation on its own but should be combined with some other audio
service. This might occur where an audio elementary stream contains only special
effects and is designed to be combined with another containing dialog. The use of
surround sound is indicated by the surround_mode fi eld. The text fi eld can be used
to carry a text description of the audio elementary stream and can be encoded using
either the 8-bit ASCII or the 16-bit Unicode formats. Unlike other text strings in ATSC
descriptors, this fi eld does not use the multiple string structure.

12.4.2.2. ATSC Caption Service Descriptor

The caption service descriptor (Fig. 12.57) conveys the characteristics of closed cap-
tioning that are associated with an event. The captioning systems used in ATSC are
described in Chapter 14. Up to 16 different closed captioning services can be
associated with one event, for each of which the language, its type (ATVCC or Line
21), the transmission fi eld for Line 21 data, and the caption service number for
ATVCC captions, and whether or not the captions are specially formatted for begin-
ner readers or for a wide aspect ratio is specifi ed.

EXAMPLE 12.27—Caption Service Descriptor

An example caption service descriptor is shown in Figure 12.58, specifying two ATVCC closed
captioning services. The fi rst is in English, using the caption service number 4 and is aimed at
beginner readers. The second service is in French and uses the caption service number 6.

AC3_audio_descriptor
sample_rate_code {48,44.1,32} kHz

gnirtstibdisb
bit_rate_code {32-640} Kbps
surround_mode {Not indicated, not Dolby surround, Dolby surround}
bsmod bit string
num_channels bit string
full_svc flag
langcod bit string

gnirtStxet

Figure 12.56 Structure of the ATSC AC-3 audio descriptor.

caption_service_descriptor
edocegaugnal936OSIegaugnal

snoitpaC}12eniL,CCVTA{epyt_cc
if cc_type == 0

line21_field {Field 1, Field 2}
else

caption_service_number Unsigned integer
galfredaer_ysae

wide_aspect_ratio flag

*

Figure 12.57 Structure of the ATSC caption service descriptor.

12.4. ATSC Program and System Information Protocol 505

506 Chapter 12 DVB Service Information and ATSC Program

12.4.2.3. ATSC Content Advisory Descriptor

The content advisory descriptor, carried in the rating region table, is used to indicate
program classifi cations for up to eight regions for each event. The region rating table
(Section 12.4.3.5) defi nes one or more dimensions of rating (e.g., language, sexual
content) and one or more levels of content for each dimension. The content advisory
descriptor presents a list of dimensions and the corresponding rating values for a
particular region (Fig. 12.59).

12.4.2.4. ATSC Extended Channel Name Descriptor

The extended channel name descriptor provides the long channel name for a virtual
channel. Its payload carries one multiple string structure (Fig. 12.60).

12.4.2.5. ATSC Service Location Descriptor

The service location descriptor specifi es the stream types, PID, and language for
each elementary stream. The Valid values for the stream_type fi eld include MPEG-2
video and AC-3 audio. One service location descriptor is carried in the virtual chan-
nel table for each active channel and refers to the elementary streams associated with
the current event on that channel (Fig. 12.61).

caption_service_descriptor
hsilgnEegaugnal

snoitpaCCCVTAepyt_cc
caption_service_number 4

1redaer_ysae
wide_aspect_ratio 0

hcnerFegaugnal
snoitpaCCCVTAepyt_cc

caption_service_number 6
0redaer_ysae

wide_aspect_ratio 0

 Figure 12.58 Example ATSC caption service descriptor. �

content_advisory_descriptor
rating_region Unsigned integer

rating_dimension_j Unsigned integer
regetnidengisnUeulav_gnitar

rating_description_text Multiple string structure

* *

Figure 12.59 Structure of the ATSC content advisory descriptor.

extended_channel_name_descriptor
long_channel_name_text Multiple string structure

Figure 12.60 Structure of the ATSC extended channel name descriptor.

EXAMPLE 12.28—Service Location Descriptor

An example service location descriptor is shown in Figure 12.62 for an event with two as-
sociated elementary streams, one containing MPEG-2 video and the other containing AC-3
audio. For each elementary stream, the language is specifi ed as English. The PCR is carried
in the transport stream packets with the same PID as the video elementary stream.

12.4.2.6. ATSC Time-Shifted Service Descriptor

The time-shifted service descriptor, carried in the virtual channel table, links one
virtual channel with one or more other virtual channels that carry the same content
at a different time. NVOD services are the most likely application on this descriptor.
As illustrated in Figure 12.63, for each linked virtual channel, this descriptor carries
the time shift in minutes, and the major and minor channel numbers of the linked
virtual channel. Up to 20 linked virtual channels may be specifi ed.

EXAMPLE 12.29—Time-Shifted Service Descriptor

An example time-shifted service descriptor is shown in Figure 12.64, showing three linked
virtual channels. The major channel number of each of the linked virtual channels is 12. The
fi rst linked virtual channel is time shifted by 60 min and has minor channel number 4, the
second is time shifted by 30 min with a minor channel number of 5, and the third is time
shifted by 90 min and has a minor channel number of 6.

service_location_descriptor
PCR_PID

{MPEG-2 video,AC-3 audio}stream_type
unsigned integerelementary_PID
ISO 639 language codeISO_639_language_code

*

Figure 12.61 Structure of the ATSC service location descriptor.

service_location_descriptor
0x0456PCR_PID

MPEG-2 videostream_type
0x0456elementary_PID
EnglishISO_639_language_code

AC-3 audiostream_type
0x0765elementary_PID
EnglishISO_639_language_code

 Figure 12.62 Example ATSC service location descriptor. �

12.4. ATSC Program and System Information Protocol 507

time_shifted_service_descriptor
time_shift Unsigned integer
major_channel_number Unsigned integer
minor_channel_number Unsigned integer

*

Figure 12.63 Structure of the ATSC time-shifted service descriptor.

508 Chapter 12 DVB Service Information and ATSC Program

12.4.2.7. ATSC Component Name Descriptor

The component name descriptor carries a single multiple string structure, which
can be used as the text name of one component, such as a single video or audio
elementary stream (Fig. 12.65).

12.4.2.8. ATSC Stuffing Descriptor

The stuffi ng descriptor may appear in any ATSC table and may be used as a place
holder where it is known that it may be necessary to insert a new descriptor, for
example, when the transport stream crosses a network boundary. The stuffi ng
descriptor may also be used to replace a descriptor that is removed from a transport
stream, avoiding the need for retiming the stream.

12.4.2.9. Descriptors for Inactive Channels

For virtual channels that are not currently active, no service location descriptor
should be carried in the bit stream. Other descriptors for inactive virtual channels
may, however, be carried by the transport stream.

12.4.3. ATSC Tables

The tables used by ATSC, including those defi ned by MPEG-2, are shown in
Table 12.8. Of the new tables defi ned by ATSC, the event information table and the
extended text table have PIDs assigned by the master guide table. All other ATSC-
defi ned tables use PID 0x1FFB and are distinguished from one another only by the
different values of table_id assigned.

12.4.3.1. ATSC Use of the Program Map Table

In an ATSC transport stream, the program map table may carry a number of ATSC-
defi ned descriptors in addition to those defi ned by MPEG-2, including the AC-3

time_shifted_service_descriptor
time_shift 30
major_channel_number 12
minor_channel_number 4

time_shift 60
major_channel_number 12
minor_channel_number 5

time_shift 90
major_channel_number 12
minor_channel_number 6

 Figure 12.64 Example ATSC time-shifted service descriptor. �

component_name_descriptor
component_name_string Multiple string structure

Figure 12.65 Structure of the ATSC component name descriptor.

audio descriptor (to describe audio elementary streams), the caption service descrip-
tor, the content advisory descriptor, and the component name descriptor (to assign
names to individual components).

12.4.3.2. ATSC System Time Table

The system time table specifi es the current time and date and the status of daylight
saving. The protocol_version, which currently must be set to zero, is included to
facilitate future evolution of the protocol. The system_time is specifi ed using the
format described in Section 12.4.1.2. The GPS_UTC_offset (measured in seconds)
can be subtracted from the system time, which is calibrated in GPS time, to obtain
a UTC time.

The use of daylight savings in converting between UTC and local time is
specifi ed by the DS_status, DS_day_of_month, and DS_hour fi elds. DS_status
takes the value 1 when daylight savings time is active, zero otherwise. In months
where the status of daylight savings changes, DS_day_of_month indicates the date
on which this is to occur, and DS_hour the time on that day. In other months, DS_
day_of_month and DS_hour are set to zero.

Although not prohibited by the syntax, the system time table would not normally
carry any descriptors (Fig. 12.66).

Table 12.8. ATSC Tables.

Table Abbreviation PID table_id

Program association PAT 0x0000 0x00
Conditional access CAT 0x0001 0x01
Program map PMT Assigned in PAT 0x02
Master guide MGT 0x1FFB 0xC7
Virtual channel

(terrestrial)
VCT 0x1FFB 0xC8

Virtual channel
(cable)

VCT 0x1FFB 0xC9

Rating region RRT 0x1FFB 0xCA
Event information EIT Assigned in MGT 0xCB
Extended text ETT Assigned in MGT 0xCC
System time STT 0x1FFB 0xCD

12.4. ATSC Program and System Information Protocol 509

system_time_table_section
protocol_version Unsigned integer
system_time Time and date
GPS_UTC_offset Unsigned integer
DS_status flag
DS_day_of_month Unsigned integer
DS_hour Unsigned integer
<< descriptors >>

Figure 12.66 Structure of the ATSC system time table.

510 Chapter 12 DVB Service Information and ATSC Program

EXAMPLE 12.30—System Time Table

The GPS time at 0800 UTC, August 7, 2001, with an offset of 5 s is 681206405. The system
time table for this time, with daylight savings active and no change in daylight savings status
during August, is shown in Figure 12.67.

12.4.3.3. ATSC Master Guide Table

The master guide table carries information on all PSIP tables in a transport
stream, except for the system time table, using the structure shown in Figure 12.68.
Descriptors defi ned by MPEG-2 and ATSC are not usually carried in the master
guide table, even though carriage of descriptors is supported by the syntax. The data
of the master guide table begins with a protocol_version fi eld, which is intended to
enable future evolution of the protocol. For each PSIP table, the master guide table
carries the table type, the PID of the transport stream packets in which this table
is carried (table_type_PID), the current version number of the table (table_type_
version_number), and the total number of bytes used by this table. Specifi cation of
the version number allows a decoder to determine from the master guide table when
a new version of a table is transmitted, without having to monitor all PSIP data in
the transport stream. Direct specifi cation of the number of bytes used by a table is
designed to assist a decoder to manage its memory. The master guide table is not
scrambled.

EXAMPLE 12.31—System Time Table

A partial example of the ATSC master guide table is shown in Figure 12.69, for which the
protocol version is 0. The virtual channel table is located in PID 0x1FFB (as required for this
table), its current version number is 5 and length 354 bytes. The rating region table for region

system_time_table_section
protocol_version 0
system_time 681206405
GPS_UTC_offset 5
DS_status 1
DS_day_of_month 0
DS_hour 0

 Figure 12.67 Example ATSC system time table. �

master_guide_table_section
protocol_version Unsigned integer

table_type {VCT,ETT-V,EIT0-127,ETT0-127,RRT1-255}
table_type_PID Unsigned integer
table_type_version_number Unsigned integer
number_bytes Unsigned integer
<<descriptors>>

<< descriptors >>

*

Figure 12.68 Structure of the ATSC master guide table.

1 is located in PID 0x1FFB (as required), with version number 3 and size 74 bytes. EIT-0 is
located in PID 0x0543, with version number 45 and size 742 bytes, whereas EIT-1 is located
in PID 0x523, with version number 47 and size 890 bytes.

12.4.3.4. ATSC Virtual Channel Table

ATSC specifi es two versions of the virtual channel table, the fi rst for terrestrial
broadcast and the second for cable. Only the terrestrial virtual channel table is de-
scribed here.

The virtual channel table uses the protocol_version fi eld in the same way as
the master guide table, allowing future evolution of the protocol. For each virtual
channel described, the major channel number and minor channel number are
specifi ed, followed by the modulation_mode, which may be analog, ATSC (8 or
16 VSB), two modes designed for transmission over a cable network, or speci-
fi ed in private data. The carrier frequency is transmitted as a multiple of 10 Hz,
followed by the MPEG-2 transport stream id and program number associated with
the virtual channel. The presence of any extended text description is fl agged by
the ETM_location, whereas the use of conditional access on any component of a
virtual channel is indicated by setting access_controlled to 1. A virtual channel
may be hidden from viewing by entering its channel number using the hidden fl ag,
or it may be hidden from an EPG using the hide_guide fl ag. This latter case may
be useful for NVOD services, where the EPG may show a single virtual channel.
The service_type specifi es whether the virtual channel is an analog transmis-
sion, ATSC television, or audio or ATSC data broadcast service. The source_id
indicates the programming source of the virtual channel and has provision for

master_guide_table_section
protocol_version 0

table_type VCT
table_type_PID 0x1FFB
table_type_version_number 5
number_bytes 354

table_type RRT-1
table_type_PID 0x1FFB
table_type_version_number 3
number_bytes 74

table_type EIT-0
table_type_PID 0x0543
table_type_version_number 45
number_bytes 742

table_type EIT-1
table_type_PID 0x523
table_type_version_number 47
number_bytes 890

 Figure 12.69 Example ATSC master guide table. �

12.4. ATSC Program and System Information Protocol 511

512 Chapter 12 DVB Service Information and ATSC Program

registration of values, enabling the unique identifi cation of a content provider. No
two virtual channels within any transport stream for which the virtual channel
table carries data should have the same value of source_id, unless one virtual
channel is a time-shifted version of the other. Descriptors are usually placed in the
virtual channel table to describe one virtual channel, although there is provision
in the syntax for additional descriptors that are not specifi c to one virtual channel
(Fig. 12.70).

Descriptors typically carried in the virtual channel table are the extended chan-
nel name descriptor, the service location descriptor, and the time-shifted service
descriptor. The virtual channel table is not scrambled.

EXAMPLE 12.32—Virtual Channel Table

An example virtual channel table is shown in Figure 12.71. Each of the three virtual channels
has major channel number 12, has no extended text message (ETM), is not access controlled,
is not hidden, and is not hidden in the EPG. The fi rst and third virtual channels are ATSC
digital television services, using 8-VSB modulation, with transport_stream_id 0x453D and
transmission frequency 540.32 MHz. The MPEG-2 program number (which is used in the
PMT) of the fi rst virtual channel is 4 and that of the third virtual channel is 6. The analog
virtual channel is assigned transport stream id and program number 0xFFFF.

12.4.3.5. ATSC Rating Region Table

The rating region table carries information on program rating for up to 255 distinct
geographic regions. The purpose of the table is to defi ne the ratings system used; the
actual rating of a particular event is carried by the content rating descriptor in the
event information table or in the program map table.

The region to which a section of the rating region table refers is determined by
the value of the rating_region fi eld. This value is also used to refer to this region

virtual_channel_table_section
protocol_version Unsigned integer

major_channel_number Unsigned integer
minor_channel_number Unsigned integer
modulation_mode {Analog,ATSC(8VSB),ATSC(16VSB),Cable Mode 1,Cable Mode 2,Private}
carrier_frequency Unsigned integer (MHz)
channel_TSID Unsigned integer (MPEG-2 transport_stream_id)
program_number Unsigned integer (MPEG-2 program number)
ETM_location {No ETM,ETM in PSIP VC,ETM in channel_TDID}Q
access_controlled flag
hidden flag
hide_guide flag
service_type {analog, ATSC television,ATSC audio,ATSC data}
source_id Unsigned integer
<<descriptors>>

<< additional descriptors >>

*

Figure 12.70 Structure of the ATSC virtual channel table.

in other tables, such as the master guide table. The text name of the rating region is
carried in the rating_region_name_text fi eld. For each rating dimension (such as
“violence,” “nudity,” or “language”) to be defi ned, dimension_name_text specifi es
the name of the dimension. Dimensions for which a graduated scale of increasing
content is to be defi ned are identifi ed by setting graduated_scale to 1. For each value
of the dimension, abbrev_rating_value_text contains an abbreviated version of the
name of the rating value, whereas rating_value_text contains the full text of the
name (Fig. 12.72).

virtual_channel_table_section
0protocol_version

12major_channel_number
0minor_channel_number
ATSC(8VSB)modulation_mode
800.31 MHzcarrier_frequency
0x453Dchannel_TSID
0x4program_number
No ETMETM_location
0access_controlled
0hidden
0hide_guide
ATSC televisionservice_type
0x1242source_id

<<descriptors>>

12major_channel_number
1minor_channel_number
Analogmodulation_mode
205.25 MHzcarrier_frequency
0xFFFFchannel_TSID
0xFFFFprogram_number
No ETMETM_location
0access_controlled
0hidden
0hide_guide
Analogservice_type
0x1242source_id

<<descriptors>>

12major_channel_number
2minor_channel_number
ATSC(8VSB)modulation_mode
800.31 MHzcarrier_frequency

0x453Dchannel_TSID
0x6program_number
No ETMETM_location
0access_controlled
0hidden
0hide_guide
ATSC televisionservice_type
0x1242source_id

<<descriptors>>

 Figure 12.71 Example ATSC virtual channel table (without descriptors). �

12.4. ATSC Program and System Information Protocol 513

514 Chapter 12 DVB Service Information and ATSC Program

The rating region table is not scrambled and does not usually carry ATSC-
defi ned descriptors.

EXAMPLE 12.33—Rating Region Table

An example rating region table, which partially defi nes the television program classifi cation
system used in Australia, is shown in Figure 12.73. The region_rating_name shows the
region as being Australia. Two dimensions are defi ned: “language” and “other.” The language
dimension is a graduated scale, using four levels: “some coarse language,” “frequent coarse

rating_region_table_section
protocol_version Unsigned integer
rating_region Unsigned integer
rating_region_name_text Multiple string structure

dimension_name_text Multiple string structure
graduated_scale flag

abbrev_rating_value_text Multiple string structure
rating_value_text Multiple string structure

<<descriptors>>

*

*

Figure 12.72 Structure of the ATSC rating region table.

rating_region_table_section
0protocol_version
1rating_region

“Australia”rating_region_name_text

“Language”dimension_name_text
1graduated_scale

“SCL”abbrev_rating_value_text
“Some coarse language”rating_value_text

“FCL”abbrev_rating_value_text
“Frequent coarse language”rating_value_text

“VCL”abbrev_rating_value_text
“Very coarse language”rating_value_text

“FVCL”abbrev_rating_value_text
“Frequent very coarse language”rating_value_text

“Other”dimension_name_text
0graduated_scale

“A”abbrev_rating_value_text
“Adult themes”rating_value_text

“N”abbrev_rating_value_text
“Nudity”rating_value_text

Figure 12.73 Example ATSC rating region table.

language,” “very coarse language,” and “frequent very coarse language.” The other dimen-
sion is not a graduated scale, but instead indicates the presence of particular features, such as
“nudity” or “adult themes.” For each of these rating values, both the full text and an abbrevia-
tion are included. �

12.4.3.6. ATSC Event Information Table

The event information table is used to carry information on the contents of virtual
channels. Each section of the event information table carries information on one
virtual channel, which is identifi ed by its source_id (which can be used to link to the
corresponding information in the virtual channel table).

The structure of the event information table is shown in Figure 12.74. Following
the source_id and protocol_version fi elds, one or more events on the virtual chan-
nel are described. Each event is assigned a unique identifi er (event_id), and the start
time, length, title, and the location of any ETM event are specifi ed.

Each event information table describes events in a 3-h window. Each 3-h
window begins at 0000, 0300, 0600, 0900, 1200, 1500, 1800, or 2100 UTC. EIT-0
always specifi es current events, EIT-1 specifi es events in the next 3-h window, and
the following event information tables specify events in future 3-h windows. For
example, if the current time is 0500, EIT-0 contains information on events in the pe-
riod 0300–0600, EIT-1 on 0600–0900, EIT-2 on 0900–1200, and so on. A minimum
of four event information tables must be carried, describing events in the current 3-h
period and the following three 3-h periods.

ATSC descriptors commonly carried in the event information table are the AC-3
audio descriptor, the caption service descriptor, and the content advisory descriptor.
The event information table is not scrambled.

EXAMPLE 12.34—Event Information Table

An example event information table for EIT-0 valid at 0930 UTC, January 26, 2000, is
shown in Figure 12.75.

The fi rst event, whose title is “Who wants to be a millionaire,” has event_id 0x0425,
starts at 0830 (coded as 0x25B97308), and is 1-h long. The second event, whose event_id is
0x0625, starts at 0930 (0x25B98118), is 90 min long, has extended text in the virtual chan-
nel carrying the event and has the title “Friends.” The third event (0x0429) starts at 1100
(0x25B99630), is 60 min long, and has the title “The Late Show.”

event_information_table_section
source_id Unsigned integer
protocol_version Unsigned integer

event_id Unsigned integer
start_time Time and date
ETM_location {No ETM,ETM in channel carrying PSIP VC,ETM in channel carrying event}
length_in_seconds Unsigned integer
title_text Multiple string structure
<<descriptors>>

*

Figure 12.74 Structure of the ATSC event information table.

12.4. ATSC Program and System Information Protocol 515

516 Chapter 12 DVB Service Information and ATSC Program

12.4.3.7. ATSC Extended Text Table

The extended text table is used to carry longer text descriptions of events and virtual
channels, and contains one multiple string structure (Fig. 12.76). For an event, the
ETM_id (32 bits) combines the source_id (16 bits) of the virtual channel and the
event_id (16 bits) of the event. For a virtual channel, the source_id is combined with
16 zero bits.

The extended text table is not scrambled.

12.5. DVB SI AND ATSC PSIP INTEROPERABILITY

It may sometimes be desirable to create a transport stream that can be decoded by
either a DVB or an ATSC decoder. This is most likely to occur when a transport
stream is to be distributed into a number of countries.

In practice, interoperability in this respect does not mean that the DVB receiver
decodes ATSC PSIP or that the ATSC receiver decodes DVB SI. What is meant is
that the transport stream carries both DVB SI and ATSC PSIP in a manner such that
no confl icts between the two systems arise, which imposes a number of restrictions

event_information_table_section
source_id 0x4352
protocol_version 0

event_id 0x0425
start_time 0x25B97308
ETM_location No ETM
length_in_seconds 3600
title_text “Who wants to be a millionaire”
<<descriptors>>

event_id 0x0625
start_time 0x25B98118
ETM_location ETM in channel carrying event
length_in_seconds 5400
title_text “Friends”
<<descriptors>>

event_id 0x0429
start_time 0x25B99630
ETM_location No ETM
length_in_seconds 3600
title_text “The Late Show”
<<descriptors>>

 Figure 12.75 Example ATSC event information table. �

extended_text_table_section
protocol_version Unsigned integer
ETM_id Unsigned integer
extended_text_message Multiple string structure

Figure 12.76 Structure of the extended text table.

on the structure of the transport stream to ensure that confl icts between DVB and
ATSC do not arise [10].

The restrictions imposed by this requirement are in the areas of allocation of
PIDs to transport stream packets, and the use of values of table_id or descriptor_tag
assigned by either DVB or ATSC.

12.5.1. PIDs

PIDs in the range 0x1FFB–0x1FFD are reserved for use by ATSC (e.g., 0x1FFB is
used by PSIP) and should not be used by DVB. Similarly, PIDs in the range 0x0010
through 0x0014 are reserved by DVB and should not be used by ATSC. This latter
restriction means that ATSC program number 1 should not be used.

12.5.2. Use of table_id

The ranges of values reserved by DVB (0x40 through 0x7F) and ATSC (0xC0
through 0xFE) should not be used for user-private data.

12.5.3. Use of descriptor_tag

Descriptor tag values from 0x80 to 0xAF are used or reserved for use in the ATSC
specifi cation, whereas 0x40 through 0x7F are reserved in the DVB specifi cation.
User-private descriptors should use descriptor tag values outside this range. The
range 0xB0 through 0xFE can be safely used for user-private descriptors, the use of
which is controlled by the MPEG-2 registration descriptor.

12.6. CONCLUSION

DVB SI and ATSC PSIP extend the basic functionality of the MPEG-2 PSI, provid-
ing a range of additional information about the programs carried in one or more
transport streams. This additional information supports applications such as elec-
tronic program guides, assists the viewer in navigating between different programs,
and allows the appearance of service offerings to be made independent of the physi-
cal structure of MPEG-2 transport streams.

PROBLEMS

12.1 Using the format of Figure 12.40, construct a network information table for a satellite
distribution system with two channels on one satellite with orbital position 130.5�E,
original_network_id 0x1010, and network identifi er 0x0432, with the following char-
acteristics:

Problems 517

518 Chapter 12 DVB Service Information and ATSC Program

• Channel 1 is transmitted with transport_stream_id 0x0786, at a frequency of 3587
MHz, with a channel bandwidth of 10 MHz, vertical polarization, a symbol rate of 10
Msym/s, and an inner coding rate of 2/3.

• Channel 2 is transmitted with transport_stream_id 0x0765, at a frequency of 3456
MHz, with a symbol rate of 20 Msym/s, a bandwidth of 20 MHz, left circular polar-
ization, and an inner coding rate of 1/2.

12.2 Answer the following questions, using the information in the example network
information table shown in Figure 12.77.

• How many transport streams are carried by this network?

• Which fi elds uniquely identify each transport stream?

• For each descriptor, whether it refers to one transport stream or to the whole network?

12.3 A transport stream carries fi ve programs with no conditional access. If each table con-
sists of exactly one section, and each section occupies one transport stream packet,
calculate the overhead in bytes per second in the following cases:

(a) DVB SI (consisting of program association table, program map table, network in-
formation table, bouquet association table, network information table, service de-
scription table, event information table (present/following), and time offset table)
is broadcast twice per second.

network_information_section-actual_network
network_id 0x0163
network_name_descriptor

char “BBC”

transport_stream_id 0x0234
original_network_id 0x0001
terrestrial_delivery_system_descriptor

center frequency 500.5 MHz
bandwidth 7 MHz
constellation QPSK
hierarchy information Non-hierarchical
code_rate-HP_stream 1/2
code_rate-LP_stream 1/2
guard_interval 1/4
transmission mode 2k
other_frequency_flag None

transport_stream_id 0x0239
original_network_id 0x0001
terrestrial_delivery_system_descriptor

center frequency 630.0 MHz
7 MHzbandwidth

constellation 64-QAM
hierarchy information Non-hierarchical
code_rate-HP_stream 7/8
code_rate-LP_stream 7/8
guard_interval 1/32
transmission mode 8k
other_frequency_flag None

Figure 12.77 Example network information table for Question 12.2.

(b) ATSC PSIP (consisting of program association table, program map table, system
time table, master guide table, virtual channel table, event information table, and
rating region table) is broadcast twice per second.

(c) Both DVB SI and ATSC PSIP are carried.

12.4 Fill in the blank entries in Table 12.9.

12.5 Fill in the blank entries in Table 12.10. The number of days since the reference date can
be found using the difference between their values of MJD.

12.6 Use the data in Table 12.11, which describes the programs and elementary streams
carried in a DVB transport stream, to construct a program association table and pro-
gram map tables. The transport stream has a maximum bit rate of 20 Mbit/s, original_
network_id is 0x0100, and transport_stream_id is 0x0034. In answering this ques-
tion, it may be necessary to assign PIDs or other parameters. No conditional access is
used in this transport stream.

12.7 Construct a bouquet association table based on the data provided in Tables
12.11–12.13.

12.8 Construct a service description table based on the data provided in Tables 12.12 and
12.13. All services are running and event information tables are carried in the trans-
port stream for present/following events but not for the schedule.

12.9 Construct an event information table for Service 1, using the data in Tables 12.12–
12.14.

12.10 Is the DVB transport stream defi ned in Tables 12.11–12.14 compatible with ATSC, in
the sense that ATSC PSIP could be added to the transport stream to allow decoding
by an ATSC decoder?

Table 12.9 Corresponding values of date and MJD for
Question 12.4.

Date MJD

January 5, 2001
September 9, 1999

52035
51106

Problems 519

Table 12.10 Corresponding entries of GPS time and
date and time for Q 12.5.

Time and date GPS time

8:45 a.m., August 8, 1995
3:40 p.m., February 29, 1996

673275360
545217240

520 Chapter 12 DVB Service Information and ATSC Program

Table 12.11 Elementary stream data for Questions 12.6–12.9.

Program
number PID

Elementary
stream type

Component
name

Elementary stream
description

— 0x0056 EPG EPG for Bouquet 1
— 0x0057 EPG EPG for Bouquet 2
1 0x0365 MPEG-2 video BBC1—video Main profile at main level;

4:2:0; 25 Hz; aligned at
slice layer

0x366 MPEG-2 audio BBC1—audio English language; constant
rate; Layer 2; ID � 1;
free_format_flag � 0

0x375 DVB subtitle BBC1—subtitles English (hearing impaired,
composition_page_id
� 1, ancillary_page_id
� 10) and French
language (normal,
composition_page_id �
11, ancillary_page_id
� 43)

0x377 DVB teletext BBC1—teletext English (initial page in
magazine 0, page 10)
and French language
(initial page in magazine
1, page 10)

0x0365 PCR Elementary stream
carrying PCR for this
program

2 0x0385 MPEG-2 video BBC2—video Main profile at main level;
4:2:0; 30 Hz; aligned at
picture layer

0x386 MPEG-2 audio BBC2—English
audio

English language; constant
rate; Layer 2; ID � 1;
free_format_flag � 0

0x387 MPEG-2 audio BBC2—French
audio

French language; constant
rate; Layer 2; ID � 1;
free_format_flag � 0

0x0385 PCR Elementary stream
carrying PCR for this
program

3 0x0435 MPEG-2 video Sky—video Main profile at main level;
4:2:0; 30 Hz; aligned at
picture layer

0x436 MPEG-2 audio Sky—English
audio

English language; constant
rate; Layer 2; ID � 1;
free_format_flag � 0

Table 12.13 Bouquet information associated with data in Tables 12.12
and 12.13.

Bouquet
identifier

Bouquet
name Services

Country
availability EPG PID

1 BBC 1, 2 UK, France 0x0056
2 News 1, 3 UK, Germany 0x0057

Table 12.11 (Continued)

Program
number

PID Elementary
stream type

Component
name

Elementary stream
description

0x437 MPEG-2 audio Sky—German
audio

German language; constant
rate; Layer 2; ID � 1;
free_format_flag � 0

0x0435 PCR Elementary stream
carrying PCR for this
program

Table 12.12 Service description information associated with components
defined in Table 12.11.

Service identifier Service name Service provider

1 BBC-1 British Broadcasting Corporation
2 BBC-2 British Broadcasting Corporation
3 Sky Sports Sky Television

Problems 521

Table 12.14 Data for event information table in Questions 12.9 and 12.14.

Event
identifier Start time

Duration
(min)

Running
status Event name Description

0x23 7:00 p.m.,
January
1, 2000

90 Running Premier
league
football

Manchester
United
versus
Arsenal

0x6B 8:30 p.m.,
January
1, 2000

30 About to
start

Nightly news National and
international
news from
the BBC

522 Chapter 12 DVB Service Information and ATSC Program

12.11 Use the data in Table 12.15, which describes the programs and elementary streams
carried in an ATSC transport stream, to construct a program association table and
program map tables. The transport stream has a maximum bit rate of 20 Mbit/s,
and transport_stream_id is 0x0034. In answering this question, follow the
ATSC program number convention. No conditional access is used in this transport
stream.

12.12 Using the data in Tables 12.15 and 12.16, construct an ATSC virtual channel table for
a station using Channel 7 for its preexisting NTSC analog service and Channel 14 for
its digital service. There is no extended text for these programs.

12.13 Construct an ATSC master guide table for the services in Questions 12.9–12.11. Where
necessary, assign PIDs for tables that have not yet been defi ned. All tables have version
number 7 and size 875 bytes.

12.14 Use the data in Table 12.14 to construct an ATSC event information table for the
transport stream defi ned in Tables 12.15 and 12.16.

Table 12.15 Elementary stream data for Questions 12.11–12.14.

Program
number PID

Elementary
stream type

Component
name

Elementary stream
description

2 0x0021 MPEG-2 video NBC-video Main profile at main level;
4:2:0; 30 Hz; aligned at
slice layer, with English
(Line 21) closed captioning
in Field 1, designed for
beginner readers.

0x0024 AC-3 audio NBC-audio English language; 44.1 kHz,
320 kbit/s, two channels.

3 0x0031 MPEG-2 video CBS-audio Main profile at main level;
4:2:0; 30 Hz; aligned at
picture layer; with German
(ATVCC) closed captioning
using caption service
number 3.

0x0034 AC-3 audio CBS-English
audio

English language; 48 kHz,
320 kbit/s, two channels.

0x0038 AC-3 audio CBS-French
audio

French language; 44.1 kHz,
320 kbit/s, two channels.

4 0x0041 MPEG-2 video ABC-video Main profile at main level;
4:2:0; 30 Hz; aligned at
picture layer; with English
(Line 21) closed captioning
in Field 2.

0x0044 AC-3 audio ABC-English
audio

English language; 44.1 kHz,
320 kbit/s, two channels.

0x0047 AC-3 audio ABC-
German
audio

German language; 44.1 kHz,
640 kbit/s, two channels.

12.15 Is the transport stream described by Question 12.10 capable of carrying DVB-SI
and thereby being decodable by a DVB decoder?

12.16 Construct an ATSC rating region table from the data in Table 12.17.

12.17 Construct an ATSC system time table specifying the time as 0020 UTC on 4th March,
1999. The offset between UTC and GPS is 14 s, and daylight savings is inactive. The
next change of daylight savings status is to occur on October 1, 1999, at 2 a.m.

12.18 Construct a DVB time offset table for New Zealand (which has only one time zone),
specifying that the current time is 8 p.m., January 3, 1998 (local time), with an offset
of �13 h from UTC, and also specifying that this offset will change to �12 h at 2 a.m.
(local time), April 1, 1998.

MATLAB EXERCISE 12.1

ATSC and DVB make use of different time and date representations.
The aim of this exercise is to implement MATLAB functions to calculate the

modifi ed Julian date and GPS time, and to use these to calculate the days of week.

Using the formula provided in Section 12.3.1, implement a MATLAB func-
tion to calculate the modifi ed Julian date, given the year, month, and day of
month.

1.

Table 12.16 Data for virtual channel table for Question 12.12.

Minor channel
number

Program
number Service type

Carrier
frequency (MHz)

Source
identifier

1 — Analog 175.25 0x5345
2 2 ATSC television 470.310 0x5345
3 3 ATSC television 470.310 0x5345
4 4 ATSC television 470.310 0x5345

MATLAB Exercise 12.1 523

Table 12.17 Rating region data for Question 12.15.

Dimension name
Graduated

scale Rating value text
Abbreviated

rating value text

Violence 1 Some violence SV
Frequent violence FV
Strong violence StV

Sex 1 Sexual reference SR
Sex scenes SS
Strong sex scenes StS

Other 0 Medical procedures M
Horror H

524 Chapter 12 DVB Service Information and ATSC Program

Write a MATLAB function to translate an array in the format of the output of
the MATLAB clock() function into the GPS time used by ATSC. (Hint: The
number of days since January 6, 1980, can be easily found using the modifi ed
Julian date function from Part 1 of this exercise.)

Implement a function to calculate the days of week (i.e., Sunday, Monday,
etc.) from the modifi ed Julian date. (Hint: Start by picking a reference date for
which the day of week is known. Find the modifi ed Julian date of this refer-
ence date and the date for which the day of week is required. The required day
of week can be calculated from the difference in the modifi ed Julian dates.

REFERENCES

DVB specifi cations relating to SI are
(a) Digital Video Broadcasting (DVB); Specifi cation for Service Information (SI) in DVB Systems,

EN 300 468, Sophia Antipolis: ETSI, 1998.
(b) Digital Video Broadcasting (DVB); Guidelines on Implementation and Usage of Service Infor-

mation (SI), ETR 211, Sophia Antipolis: ETSI, 1997.
(c) Digital Video Broadcasting (DVB); Allocation of Service Information (SI) Codes for DVB

Systems, ETR 162, Sophia Antipolis: ETSI, 1995.
2. The formal defi nitions for character sets used in DVB-SI are contained in

(a) ISO 6937, Information technology—coded graphic character set for text communication—
Latin alphabet.

(b) ISO 8859, Information processing—8-bit single-byte coded graphic character sets, Latin
alphabets.

ISO 3166, Codes for the representations of names of countries.
ISO 639, Code for the representation of names of languages.
Digital Video Broadcasting (DVB); Specifi cation for Service Information (SI) in DVB Systems, EN
300 468, Sophia Antipolis: ETSI, 1998, Annex C, pp. 71–72.
Digital broadcasting systems for television, sound and data services; Allocation of Service Informa-
tion (SI) Codes for Digital Video Broadcasting (DVB) Systems, ETR 162, Sophia Antipolis: ETSI,
1995.
Digital Video Broadcasting (DVB); Guidelines on implementation and usage of Service Informa-
tion (SI), ETR 211, Sophia Antipolis: ETSI, 1997, Section 4.4, pp. 27–28.
ATSC Standard A/65A, Program and system information protocol for terrestrial broadcast and
cable, Advanced Television Systems Committee, May 2000.
This descriptor is specifi ed in ATSC Standard A/58, Digital audio compression standard (AC-3),
Advanced Television Systems Committee, December 1995.
This issue is discussed further in
(a) Digital Video Broadcasting (DVB); Guidelines on implementation and usage of Service

Information (SI), ETR 211, Sophia Antipolis: ETSI, 1997, Annex A.
(b) ATSC Standard A/58, Harmonization with DVB SI in the use of the ATSC Digital Television

Standard, Advanced Television Systems Committee, September 1996.
(c) AS 4599-1999, Digital television—terrestrial broadcasting—characteristics of digital terrestrial

television transmissions, Homebush NSW: Standards Australia, 1999, Annex A to Section 7.

2.

3.

1.

3.
4.
5.

6.

7.

8.

9.

10.

525

Chapter 13

Digital Television Channel
Coding and Modulation

13.1. INTRODUCTION

Although the MPEG-2 standards specify source coding and multiplexing for digital
television, they do not specify the channel coding and modulation to be used to
transmit the systems bit stream over any particular channel. This chapter describes
the channel coding and modulation provided for terrestrial broadcast by the DVB
and ATSC digital television standards.1 Generic concepts of channel coding and
modulation, common to both standards are described fi rst, followed by more detailed
description of the methods employed in DVB [1] and ATSC. The sections relating to
DVB and ATSC are written so that each can be read independent of the other.

The aim of this chapter is to provide an overview of the modulation techniques
used in digital television systems. Some familiarity with digital modulation is there-
fore assumed. A comprehensive coverage of digital modulation and channel coding
would require a book in its own right.

13.2. GENERIC CONCEPTS

Digital signals passing through transmission channels are subject to errors introduced
in the transmission process. Although all channels introduce errors, some channels,
especially radio channels, tend to introduce high error rates. The types of impairments
introduced by an imperfect transmission channel include additive noise and channel
perturbations. Additive noise may take the form of Gaussian noise with stationary
statistics, impulsive noise that is not always stationary or easy to characterize, or even
deliberate jamming. Channel perturbations may occur due to fading in radio channels,
synchronization slip in digital channels, and breaks in transmission.

1We do not discuss satellite or cable delivery systems in this chapter. Information on these systems can
be found in the relevant standards.

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

526 Chapter 13 Digital Television Channel Coding and Modulation

The likely effects of these channel impairments on a digital signal are one of
uniformly random errors—errors occurring individually and independently, with ap-
proximately uniform probability density, primarily due to noise (often just called ran-
dom noise); burst errors—errors grouped in clusters, mainly the result of a combina-
tion of noise and channel perturbations; and erasures—irregular intervals when it is
known that no reliable signal can be detected because of severe channel perturbation.

Minimization of the impact of transmission errors involves a combination
of channel coding and modulation, each of which are addressed in the following
sections.

13.2.1. Channel Characteristics and Intersymbol
Interference

Transfer of information across a communications channel is limited by the band-
width of the channel and the combination of its bandwidth and signal-to-noise ratio.

For a channel that introduces additive, white, Gaussian noise (AWGN), the
precise relationship between channel capacity, bandwidth, and signal-to-noise ratio
is given by Shannon’s criterion:

where C is the capacity of the channel in bits per second, B is the bandwidth of the
channel in hertz, S is the signal power at the receiver, and N is the noise power at the
receiver [2]. In practice, the throughput of a channel is usually signifi cantly less than
the maximum indicated by the value of C. The major reason for this is limitations
in the performance of channel coding systems. Shannon’s criterion tells us that an
increase in channel capacity can be achieved either by increasing its bandwidth or
increasing its signal-to-noise ratio. It also tells us that channel bandwidth has a much
greater impact than its signal-to-noise ratio.

Limited channel bandwidth can blur transitions where changes of state occur
in a bit stream. This effect, known as intersymbol interference, is illustrated in
Figure 13.1. An equalizer is a digital fi lter that has been designed to correct for

Channel output

Channel input

Equalizer output

Figure 13.1 Intersymbol interference and equalization for a binary waveform.

C B
S

N
� �log2 1

the intersymbol interference of the channel. The use of an appropriately designed
equalizer can allow the original signal to be recovered so long as the channel band-
width meets the Nyquist criterion, which is discussed below.

Independent of any limitation on information-carrying capacity implied by
Shannon’s criterion, the bandwidth of a channel limits the symbol rate that can be
carried. The Nyquist criterion says that the minimum bandwidth required to carry
a given symbol rate is equal to half the symbol rate [3]. Figure 13.2 illustrates the
minimum bandwidth requirements with and without equalization for a signal with
symbol period T.

EXAMPLE 13.1—Nyquist Criterion

A bit stream is transmitted at a rate of 120,000 bit/s, with each bit carried in one symbol.
What is the minimum channel bandwidth required to meet the Nyquist criterion? What is the
impact if each symbol carries two bits of information?

The minimum channel bandwidth to meet the Nyquist criterion is 60 kHz. If the same
bit stream is transmitted with two bits in each transmitted symbol (that is, at 60,000 sym/s),
then the minimum bandwidth to meet the Nyquist criterion is 30 kHz. �

As the data rate rises or channel bandwidth falls, the impact of intersymbol in-
terference increases. If signifi cant intersymbol interference occurs, a receiver must
incorporate an equalizer to recover the original bit stream.

In this section the following notation is used:

c(t)—the impulse response of channel;

C(f)— the frequency response of channel, which is the Fourier transform of
the impulse response;

W—the bandwidth of bandlimited channel;

θ(f)—the phase component of C(f); and

τ(f)—the delay response � �(1/2π) dθ (f)/df.

•
•

•
•
•

1/T 2/T 3/T–1/T–2/T–3/T

Minimum bandwidth
without equalization

Minimum bandwidth
for Nyquist criterion

Figure 13.2 Minimum channel bandwidths required to meet the Nyquist criterion and to avoid the
need for equalization.

13.2. Generic Concepts 527

528 Chapter 13 Digital Television Channel Coding and Modulation

The characteristics of ideal and nonideal channels are illustrated in Figure 13.3.
An ideal channel is one with the following characteristics:

Constant in-band amplitude response. |C(f)| is constant for | f | � W.
Violation ⇒ “amplitude distortion.”

Zero out-of-band amplitude response. C(f) � 0 for | f | � W.

Phase linearity. θ(f) is a linear function of f for | f | � W. Violation ⇒ “phase
distortion.”

Constant delay. τ(f) is constant for | f | � W. Violation ⇒ “delay distortion.”

13.2.2. Modulation

A digital bit stream is a representation of data in terms of the binary values 0 and 1.
Inside a video coder or decoder, these values are often represented as voltage levels.
They cannot normally be transmitted over a communications system directly in this
form. The purpose of modulation is to convert the binary values into a form that is
suitable for transmission. Currently used transmission systems usually represent the
information content of the bit stream in the amplitude, the frequency, or the phase
of the transmitted signal. For digital signals, these forms of modulation are referred
to as amplitude-shift keying (ASK), frequency-shift keying (FSK), and phase-shift
keying (PSK).

The forms of modulation used for digital television are PSK or combinations
of ASK and PSK. The simplest form of modulation used is binary PSK (BPSK).
The waveforms used by BPSK to represent the binary values 0 and 1 are illustrated
on the left side of Figure 13.4. For each bit entering the modulator, one symbol is
produced at the output. Each BPSK symbol, therefore, carries one bit of data. These
waveforms are simply �/� cosine functions. An alternative representation, in terms
of the phase of waveforms, is shown on the right side of Figure 13.4. BPSK offers
a high level of robustness in the presence of additive channel noise (signifi cantly
higher than, e.g., ASK) because the information is contained in the phase of the

•

•
•

•

Non ideallaedI

Amplitude

Phase

Delay

W
f

W
f

W
f

W
f

W
f

W
f

W
f

W
f

W
f

W
f

W
ff

Figure 13.3 Ideal versus nonideal channels.

transmitted signal, which is not directly affected by the additive noise, rather than in
the amplitude, which is directly affected by additive noise.

Differential binary PSK, often denoted by DPSK, represents a binary 1 by a
change of phase of π radians (one half cycle) and a binary 0 by no change of phase.

In quadrature PSK (QPSK), the number of symbols is increased from two to
four, producing the constellation diagram shown in Figure 13.5. One QPSK symbol
is produced at the output of the modulator for each pair of bits at its input. Each
QPSK symbol, therefore, carries two bits of data. QPSK transports data at twice the
rate as BPSK in the same channel bandwidth and offers identical error performance
to BPSK with the same energy per bit on the transmission channel. This is pos-
sible because the QPSK waveform is made up of two orthogonal components: the
in-phase (I) componenent, shown as the horizontal (real) axis in Figure 13.5, and
the quadrature (Q) component, shown as the vertical (imaginary) axis. The cost of
increase in channel capacity depends on a small increase in encoder and decoder
complexity. For encoders and decoders implemented within modern integrated cir-
cuits, this additional cost is negligible.

The data carrying capacity of a channel can be increased beyond that available
using QPSK without increasing the channel bandwidth, by increasing the number of
bits of data carried by each modulation symbol. This requires increasing the number
of points in the constellation diagram, which implies a reduction in the spacing be-
tween these points for a fi xed transmission power. For digital television applications,
this increase is achieved by making use of both the amplitude and phase of the

cosw 0t

sin 0t

01

0

1

w

Figure 13.4 Constellation diagram for BPSK.

cosw 0t

sinw 0t

00

0111

10

Figure 13.5 Constellation diagram for QPSK.

13.2. Generic Concepts 529

530 Chapter 13 Digital Television Channel Coding and Modulation

transmitted signal to carry information. The cost of this increase in channel capacity
depends both on the complexity of encoders and decoders (which is acceptable with
modern integrated circuits) and on a reduced robustness to additive noise introduced
in the channel, resulting in an increased error rate.

The use of this combination of amplitude and phase modulation to carry four
bits per symbol results in the 16-symbol constellation diagram of 16-quadrature
amplitude modulation (16-QAM) as shown in Figure 13.6. Further increasing the
number of bits per symbol to 6 leads to the constellation diagram of 64-QAM
(Fig. 13.7). The further increase in data rate going from 16-QAM to 64-QAM
comes with a corresponding reduction in robustness to channel noise. Using 16-
QAM, a channel bandwidth of at least 3 kHz is required to carry a bit stream with
rate 12 kbit/s without equalization, which reduces to 2 kHz for 64-QAM.

The amplitude spectrum of QPSK, 16-QAM, and 64-QAM is shown in
Figure 13.8. The width of the central lobe is 2/T, where T is the symbol period.

An alternative strategy is the combination of ASK with QPSK, which is used to
combine ASK with BPSK. An example of this approach is the 8-level ASK modu-
lation scheme illustrated in Figure 13.9. There are eight possible symbols, each of
which carries three bits of data. These are illustrated on the left side of Figure 13.9,
with the corresponding constellation diagram on the right side. The spectrum of this
form of modulation is the same as illustrated in Figure 13.8, with T being the symbol

cosw 0t

sinw 0t

Figure 13.6 Constellation diagram for 16-QAM.

cosw 0t

sinw 0t

Figure 13.7 Constellation diagram for 64-QAM.

period. Using this 8-level ASK, a channel bandwidth of at least 4 kHz is required to
carry a bit stream with rate 12 kbit/s without signifi cant intersymbol interference.

This 8-level ASK waveform may be fi ltered to reduce the transmission band-
width. Theoretically, the minimum bandwidth that can be achieved without loss of
information is the Nyquist bandwidth. This can be achieved by retaining the upper
sideband and removing the lower sideband by fi ltering. In practice, a small amount
of the lower sideband is usually retained, giving vestigial sideband modulation.

BPSK and QPSK have identical error performance because QPSK is formed
from an orthogonal combination of two BPSK signals. In the same way, 64-QAM
can be formed by the combination of two of the 8-level ASK modulation illustrated
in Figure 13.9. The 8-level ASK modulation scheme should, therefore, have the same
error performance as 64-QAM.

The bandwidth effi ciency of this 8-level ASK scheme can be maximized by
fi ltering, as illustrated in Figure 13.10, to limit the total bandwidth to the Nyquist

1/T 2/T 3/T–1/T–2/T–3/T

Figure 13.8 Spectrum of QPSK, 16-QAM, and 64-QAM.

1 3 53 15

1

3

3

1

7 7

–

–

– – – –

Figure 13.9 Symbol shapes and constellation diagram for 8-level ASK.

13.2. Generic Concepts 531

532 Chapter 13 Digital Television Channel Coding and Modulation

bandwidth. T is the period of a single 8-level symbol. Because the power density of
the signal at the boundary between upper and lower sidebands is nonzero, the use
of upper-sideband or lower-sideband transmission is not possible. Vestigial sideband
modulation, in which the upper sideband and a small proportion of the lower side-
band are retained, is preferred.

13.2.3. Equalization

Usually, an equalizer is an integral part of the demodulator. In the general case,
modeling of the impact of channel and equalizer is quite diffi cult. Given the restric-
tions, however, that the channel noise is additive, white Gaussian and the channel is
time invariant, a linear transversal model can be used for the combined impact of
modulator, channel, and demodulator, that is, their combined effect can be modeled
as an IIR fi lter [4]. This is illustrated in Figure 13.11.

13.2.3.1. Fixed-Tap Equalizer

In situations where the channel response is known in advance and remains constant,
an optimal equalizer can be designed off-line. The equalizer consists of two parts:

Figure 13.10 Frequency components used in 8-level vestigial sideband (8-VSB) modulation with
carrier frequency fc.

Demodulator

Channel

Modulator

Equalizer

Signal
source

Figure 13.11 Linear-transversal model for channel.

an FIR fi lter and a decision block (Fig. 13.12). The fi lter approximately reverses
the intersymbol interference introduced by the channel. The fi lter block is usually
an FIR linear transversal fi lter, with taps denoted by the M-element vector {dm}.
The decision block takes the output of the fi lter and selects the most appropriate
symbol as the output of the equalizer. The channel input at time k is denoted by
I(k), whereas the channel output at time k is denoted by v(k). The equalizer output
is an estimate of the channel input, so the equalizer output at time k is denoted by
I(k), so

13.2.3.2. Trained Adaptive Equalizer

In a trained adaptive equalizer, the optimal values for the fi lter taps are estimated
using knowledge of the original value of the incoming bit stream. This information
is available in systems, such as ATSC, where a known training sequence is transmit-
ted at regular intervals.

The operation of the fi lter and decision blocks is the same as that for a fi xed
equalizer (Fig. 13.13).

The adaptation block calculates updates to the equalizer fi lter coeffi cients based
on the equalizer outputs and original symbol values. Because the optimal value of
the equalizer fi lter taps is now estimated rather than known a priori, it is usual to
denote the values of the taps by d̂ (k), with the mth tap of the equalizer denoted
by d̂m (k).

Decision
blockFilter

I(k)
^

I(k)
~

Equalizer
filter
taps
d={dm}

v(k)

Figure 13.12 Fixed-tap equalizer.

Decision
block

Adaptation
block

Filter
I(k)^ I(k)~

Equalizer
filter
taps d(k)

I(k)

v(k)

^

Decision
block

Adaptation
block

Filter
I(k)^ (k)

filter
taps d(k)

I(k)

Decision
block

Decision
block

Adaptation
block

Adaptation
block

FilterFilter
I(k)Î(k)^ (k)(k)

filter
taps d(k)

I(k)

v()

^

Figure 13.13 Trained adaptive equalizer.

Î () ()k d v k mm
m

M

= ⋅ −
=

−

∑
0

1

13.2. Generic Concepts 533

534 Chapter 13 Digital Television Channel Coding and Modulation

13.2.3.3. Blind Adaptive Equalizer

In a blind-adaptive equalizer, the optimal values for the fi lter taps are estimated
without access to the original value of the incoming bit stream. Instead, estimates of
these symbol values based on equalizer output are used. Blind-adaptive equalizers
do not require training sequences or explicit knowledge of channel characteristics.

The operation of the fi lter and decision blocks is identical to that discussed
above for trained equalizers. The adaptation block calculates updates to the equal-
izer fi lter coeffi cients based on the equalizer outputs and decision block outputs
(Fig. 13.14).

13.2.3.4. The LMS Algorithm

The least mean square (LMS) algorithm is one of the most fundamental techniques
used in adaptive equalization and adaptive control. The LMS algorithm updates
equalizer taps d(k) in accordance with

where ∆ is known as the step size, and where the error is given by

LMS is a gradient descent algorithm. This means that the equalizer uses its
measurement of the error to determine the magnitude and direction of the update at
each step using a notational performance surface in which the best performance lies
at the bottom of a well.

Convergence of the LMS algorithm is guaranteed if ∆ is small enough. Increas-
ing ∆ has two effects:

the rate of convergence increases and

the long-term error is increased.

13.2.3.5. Practical Blind Adaptive Equalizers

Blind LMS In cases where a training sequence is not available, the LMS
algorithm can be used for blind adaptation by replacing the training sequence

•
•

Decision
block

Adaptation
block

Adaptation
block

FilterFilter
I(k)Î(k^ I(k)~I(k)

Equalizer
filter
taps d(k)

v(k)

^

Figure 13.14 Blind adaptive equalizer.

ˆ () ˆ () () ()*d k d k k v k mm m� � � �1 ∆ε

ε() () ()k I k k� �Î

input to the adaptation process by the equalizer’s output, using the same notation
as in the previous section

ˆ () ˆ () () ()*d k d k k v k mm m� � � �1 ∆ε

where

ε(k)� ̃I(k)� Î(k)

This algorithm has many of the same properties as the LMS algorithm. Its con-
vergence, however, cannot be guaranteed. It is only suitable for situations where
a reasonable approximation to the channel response is known a priori. This ap-
proach might be used to continue adaptation throughout a long transmission where
a training sequence is used to provide the initial adaptation at the beginning of the
 transmission.

Godard’s Algorithm Another method for blind equalization is that proposed by
Godard [5]. In this algorithm, equalizer taps are updated as follows:

ˆ () () () ˆ() ˆ()*d k d k v k m I k R I kmk m� � � � �1 2

2
∆ ()

where

R
E I k

E I k
2

4

2
�

()

()

()
()

For modulation techniques whose alphabets include symbols with nonzero
imaginary parts, all calculations in the equalizer are carried out on complex numbers
(Table 13.1).

Convergence of the Godard algorithm can be guaranteed if the symbol stream is
pseudorandom, an equalizer of infi nite length is used, and the equalizer is initialized
with all its taps set to zero, except for the center tap that is set to one.

13.2.4. Randomization

Before the demodulator in a receiver can recover a bit stream from the received
signal, it must extract timing information. As a minimum, this timing information
is used to identify the boundaries between symbols. A demodulator often relies on
changes in the value of received symbols to identify these boundaries.

Figure 13.15 illustrates a BPSK received signal with and without transitions in
the symbol value. In the former case, the demodulator has no means of identifying

13.2. Generic Concepts 535

536 Chapter 13 Digital Television Channel Coding and Modulation

where boundaries between symbols lie. In the latter case, the presence of transitions
between different symbol values makes this possible.

Long runs of identical symbols may often occur in digital television. Examples
include start codes used in video and systems layers and transport stream null pack-
ets. In order to prevent these runs of identical symbols, a process of transport stream
randomization is applied by both DVB and ATSC to the transport stream prior to
channel coding. This is illustrated in Figure 13.16. The encoder generates a pseudo-
random sequence. The exclusive-or of each bit of this pseudorandom sequence with
the transport stream generated by the MPEG-2 systems encoder is passed through
to the channel coding.

The decoder generates the same pseudorandom sequence as the encoder. The
exclusive-or of this sequence with the received stream recovers the original bit

Table 13.1 Alphabets and R2 values for various modulation techniques using the Godard
equalizer.

Modulation Alphabet R2

BPSK {1, �1} 1
QPSK {1�j, 1�j, �1�j, �1�j} 2
16-QAM {3�3j, 3�j, 1�3j, 1�j, �3�3j, �3�j, �1�3j, �1�j, 3�3j, 3�j, 1�3j,

1�j, �3�3j, �3�j, �1�3j, �1�j}
13.2

64-QAM {7�7j, 7�5j, 5�7j, 5�5j, 7�j, 7�3j, 5�j, 5�3j, 1�7j, 1�5j, 3�5j,
3�7j, 1�j, 3�j, 1�3j, 3�3j, �7�7j, �7�5j, �5�7j, �5�5j, �7�j,
�7�3j, �5�j, �5�3j, �1�7j, �1�5j, �3�5j, �3�7j, �1�j, �3�j,
�1�3j, �3�3j,7�7j, 7�5j, 5�7j, 5�5j, 7�j, 7�3j, 5�j, 5�3j, 1�7j,
1�5j, 3�5j, 3�7j, 1�j, 3�j, 1�3j, 3�3j, �7�7j, �7�5j, �5�7j,
�5�5j, �7�j, �7�3j, �5�j, �5�3j, �1�7j, �1�5j, �3�5j,
�3�7j, �1�j, �3�j, �1�3j, �3�3j}

58

8-VSB {7, 5, 3, 1, �1, �3, �5, �7} 37

(a)

(b)

Figure 13.15 Received BPSK signal (a) without transitions and (b) with transitions in symbol
value.

stream. To facilitate decoder operation, both DVB and ATSC reset the state of the
pseudorandom sequence generator periodically.

Transport stream randomization does not guarantee that long runs of identical
symbols cannot occur; rather it makes these events very unlikely. Although a similar
effect could be achieved by the use of a periodic sequence, long streams of identical
symbols would then be converted into long periodic streams. These long periodic
streams may also upset the operation of a receiver.

13.2.5. Channel Coding Technology

Channel coding is used to correct errors caused by channel impairments through
the introduction of controlled redundancy, enabling messages corrupted in transmis-
sion to be corrected before further processing [6]. With this controlled redundancy,
only a subset of all possible transmitted messages (bit sequences) contains valid
messages. This subset is called a code and the valid messages are called code words
or code vectors. A good code is one in which code words are so separated that the
likelihood of errors corrupting one into another is kept small.

Error detection is simplifi ed to answering this question: Is the received message
a code word or not? If it is a code word, one assumes that no errors have occurred.
The probability of an undetected error getting through is then the probability of
suffi cient errors occurring to transform the real transmitted code word into another,
apparently correct but in reality a false one.

If an error is detected, it can be corrected (at least in principle) by automatic
repeat request (ARQ) or forward error correction (FEC). In ARQ systems, the re-
ceiver checks received blocks of data for errors. If an error is detected, the receiver
sends a request for retransmission to the transmitter. For broadcast services, such
as digital television, ARQ is not feasible because it is not possible for a receiver to
request retransmission. FEC is, therefore, used to protect transmitted data.

In FEC, the recipient corrects the errors by fi nding the valid code word ‘nearest’
to the received message, on the assumption that the nearest is the most likely because
few corrupting errors are more likely than many. There are two types of FEC: block
coding and convolutional coding.

In block coding, source data is partitioned into blocks of k bits, converted by the
encoder into blocks of n (�k) bits with enough checks to enable the decoder to correct
errors of the more probable kinds. The most common types of block codes [7] are
Golay Codes, Bose–Chadhuri–Hocquenghem (BCH) Codes, and Reed–Solomon
(RS) Codes. Block codes are used when information is naturally structured in blocks,

+
MPEG-2
bit stream

Pseuorandom
sequence 0 1 0 1

0 0 1 1

0 1 1 0 Randomized
bit stream

Figure 13.16 Transport stream randomization.

13.2. Generic Concepts 537

538 Chapter 13 Digital Television Channel Coding and Modulation

when channel capacity is relatively low and we do not want to waste it further with
unnecessarily low code rates, and when quick effi cient decoding is required because
of limited processing time available.

For a convolutional code, the encoder operates not on disjoint blocks but on
a running block of bits held in a shift register, generating a sequence of higher
rate. The correcting capabilities of convolutional codes are not so clear-cut as with
block codes. Probabilistic decoding, approximating maximum likelihood, is gener-
ally used. When long streams of relatively unstructured data are transmitted on
high-capacity channels (such as terrestrial broadcast channels with capacities of
approximately 20 Mbit/s) and when the complexity of the decoder represents a rela-
tively small proportion of the total cost of the receiving equipment (such as a digital
television set-top box), then convolutional codes can offer the best error-correcting
solutions.

13.2.5.1. Block Codes

FEC allows transmission errors to be corrected by adding redundancy to a bit
stream. This may seem to contradict the aim of source coding, which is to minimize
the number of bits to be transmitted. The key difference between the original source
redundancy and that added for FEC is that FEC adds (usually small amounts of)
controlled redundancy in such a way as to maximize error correction.

A very simple example of a block code would be to represent each bit of data
with a 5-bit symbol: 1→ 11111 and 0 → 00000. Using this code, two errors in each
code word can be detected and corrected. If, for example, the transmitted code word
is 11111 and the received code word 01110, the receiver converts this code word to
a 1 because its value is closer to 11111 than to 00000. The obvious drawback of this
very simple approach is that it has a very high overhead (400%).

Practical block codes group symbols into blocks and provide parity symbols for
each block. Each symbol may consist of one or more bits, with the number of bits per
symbol fi xed for all symbols in the block. This greatly reduces the overhead, although at
the cost of some reduction in performance. This is illustrated in Figure 13.17. This code
with k information symbols and n-k parity symbols is referred to as an (n, k) code.

If all valid code words differ in at least dmin symbols, the number of symbol
errors t that the code is capable of correcting is

t
d

�
�min 1

2

where x denotes the largest integer whose value is not greater than x.

k information symbols
n-k

parity symbols

n symbols

Figure 13.17 Structure of a practical block code.

In the simple example above, each bit is one symbol, dmin is 5, so t � 2, meaning
that two bit errors can be corrected.

The block codes used in digital television transmission are Reed–Solomon (RS)
codes. RS codes use a nonbinary alphabet, that is, each symbol consists of more
than one bit. One code word of an (7,5) RS code is illustrated in Figure 13.18. Each
symbol contains three bits. Seven symbols make up one code word. The fi rst fi ve of
these symbols contain the original data; the other two provide the redundancy for
error correction.

This code can correct one symbol error, where a symbol error is defi ned as any
number of bit errors in a single symbol. Reed–Solomon codes are therefore good for
correcting burst errors, because there is no additional cost for correcting two errors
in one symbol compared to a single error. In this example, the code could correct up
to three bit errors provided they are all in the same symbol.

For k-bit symbols, the maximum code word length (n) for a Reed–Solomon code
is 2k�1. Typically 8-bit symbols are used, which means that each code word can
contain up to 255 bytes.

A Reed–Solomon code that can correct t symbol errors requires 2t parity
symbols. A Reed–Solomon code that can correct t symbol errors can also correct
2t erasures (i.e., where position of errors are known). In general, correction is pos-
sible if

2s � r� 2t

where s is the number of symbol errors and r is the number of erasures.
Reed–Solomon codes can be shortened by setting a number of symbols to zero

at the encoder, transmitting the code word without these zero symbols and then rein-
serting these zero symbols at the decoder. For example, a (255,223) code can correct
16 symbol errors. A (200,168) code could operate by adding 55 zero bytes to create
a (255,223) code and then transmitting only 168 data bytes plus 32 parity bytes. The
notation (200,168,8) is often used to represent an RS (200,168) coder that operates
on symbols of 8 bits.

The performance of RS codes is illustrated in Figure 13.19. The error rate at the
input to the encoder is expressed as the symbol error rate on the horizontal axis. The
residual error rate at the output of the coder (expressed as a bit error rate) is shown
on the vertical axis.

 1 0 0 1 1 1 1

 0 0 1 0 1 0 0

 1 0 0 0 0 1 0

 Five data symbols Two redundancy symbols

Figure 13.18 Example of block code using (7,5) RS code.

13.2. Generic Concepts 539

540 Chapter 13 Digital Television Channel Coding and Modulation

One disadvantage of block codes is that their performance depends on the location
of errors in the bit stream. In the top bit stream illustrated in Figure 13.20, a particular
pattern of three errors is split across the boundary of two blocks, with two errors
occurring in the fi rst block and one in the second. In the bottom bit stream, all three
errors occur in the same block. The use of a block code capable of correcting two errors
leads to an error-free output bit stream in the top case, but not in the bottom case.

13.2.5.2. Convolutional Codes

Convolutional codes operate on continuous streams of data and are commonly used
on high-capacity wireless communications channels such as terrestrial broadcast

10
−4

10
−3

10
−2

10
−1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

Channel symbol error probability

O
ut

pu
t b

it
er

ro
r

pr
ob

ab
ili

ty

t=1

t=2

t=4

t=8
t=16

Figure 13.19 Performance of Reed–Solomon codes.

Errored bit

Correctly received bit

Block boundary

Figure 13.20 Impact of location of block boundaries on the performance of block codes.

digital television. The basic structure of a simple convolutional encoder is shown in
Figure 13.21. Data arrives at the left of the fi gure and passes to a shift register, which
is clocked once for each arriving bit. For each input bit D, two output bits are gener-
ated by calculating the modulo-2 sum of nominated bits in the shift register. Each
output bit uses a different combination of these bits. In this example, the output bits
are labeled X and Y and are multiplexed into a single output stream X1 Y1 X2 Y2 X3

Y3 X4 Y4 X5 Y5 X6 Y6 …, whose rate is twice that of the input data stream. Since two
output bits are generated for each input bit, this is an example of a 1/2 rate encoder.

Unlike block coders, convolutional coders do not usually have the input bit stream ap-
pearing as a subset of the output bits. Even when no errors are introduced into a bit stream,
some logic is required in the receiver to recover the original bits. In the case of the simple
example above, values of D can be recovered from correctly received X and Y using

Di � Xi�1 ⊕ Yi�1

In the more usual case where the decoder must be able to recover from errors,
decoding techniques are based on reconstructing possible internal states of the en-
coder. The Viterbi algorithm provides an optimal method [8].

The major factors that control the performance of a convolutional code are the
length of the shift register (usually referred to as the constraint length) and the cod-
ing rate. The example shown above can be easily extended to 1/3 rate codes by the
addition of another set of taps and exclusive-or function. The use of puncturing,
where some bits are deleted before multiplexing at the output of the convolutional
encoder, allows lower coding overheads at the cost of some loss of error correction
performance. For the example coder, a 2/3 rate code might be produced by deleting
every second bit on the X path, leaving a stream: X1 Y1 Y2 X3 Y3 Y4 X5 Y5 Y6 …

One of the important advantages of convolutional codes is that their performance
is less dependent on the location of errors in the bit stream than for a block code.
Because there are no block boundaries for convolutional codes, the effects illustrated
in Figure 13.20 cannot occur.

1-bit
delay
1-bit
delay

1-bit
delay
1-bit
delay

+

+

Input
data

X output

Y output

X

Y

Output
bit stream

D

Figure 13.21 Example of 1/2 rate convolutional encoder with constraint length 3.

13.2. Generic Concepts 541

542 Chapter 13 Digital Television Channel Coding and Modulation

The error correcting capability of a convolutional code is not as easily quantifi -
able as for a block code. Although it is given by

t
d f

�
�1

2

where df is the minimum free distance of the convolutional code and t is the number
of errors that can be corrected within an interval of a few constraint lengths, it is not
possible to quantify “a few” without describing the distribution of errors. Generally,
“a few” is between three and fi ve.

13.2.5.3. Interleaving

Error correcting codes can be used to detect and correct random bit errors. The
codes are effective so long as the number of errors close together remains small. In
many types of channel, especially radio channels, however, the channel errors occur
in bursts of many errors followed by long periods with almost no errors.

The problem of bursty channel errors can be overcome by interleaving the trans-
mitted data. This is achieved by rearranging the coded data at the transmitter in a
predefi ned pseudorandom order. This means that a burst of errors will be random-
ized at the receiver when the bits are placed back in their original order.

The simplest form of interleaver is a cyclic interleaver, which operates on fi xed-
length blocks of data. Each block of input data is read into the register. The output
is formed by reading this data out with a different (known) start position. A cyclic
interleaver with a start point of zero simply reproduces its input stream.

EXAMPLE 13.2—Cyclic Interleaver

What is the output of a 7-register cyclic interleaver with start position 3?

A 7-register cyclic interleaver with start position 3 and an input sequence 1, 2, 3, 4, … ,
14 produces the output 4, 5, 6, 7, 1, 2, 3, 11, 12, 13, 14, 8, 9, 10. �

A block interleaver consists of an M � N block of memory into which arriving bits
are scanned in horizontally and scanned out vertically as illustrated in Figures 13.22
and 13.23.

EXAMPLE 13.3—Block Interleaver

What is the output of the 8 � 3 block interleaver shown in Figure 13.22, in which the data
arrives at the interleaver in the order 1 2 3 4 5 6 7 … 24?

The corresponding scan out is shown in Figure 13.23, showing that data leave the inter-
leaver in the order 1 9 17 2 10 18 3 11 19 4 12 20 5 13 21 … 8 16 24.

The convolutional interleaver is more commonly used in digital television
systems, and this is illustrated in Figure 13.24.

With n � 1 and a 24-element input block with input order 1 2 3 4 5 6 7 8 9 10 …,
the convolutional interleaver illustrated in Figure 13.24 will provide data with output
order 1 X X X X X 7 2 X X X X 13 8 3 X X X 19 14 9 4 X X 25 20 15 10 5 X 31 26
21 16 11 6 37 32 27 22 17 12 43 38 33 28 23 18 49 44 39 34 29 24, where X denotes
data loaded into the interleaver prior to ‘1.’ The period of the convolutional inter-
leaver is the amount of data that is loaded into the shift registers during one cycle of
the input data distributor, and it is the product of the number of levels and the size of
the registers, denoted by D in Figure 13.24. For the convolutional interleaver shown
in Figure 13.24, the period is 6D.

The performance of a convolutional interleaver is similar to a block interleaver.
The primary advantages of the convolutional interleaver are that it causes half the
delay and requires only half the memory of a corresponding block interleaver.

The primary purpose of an interleaver is to protect the decoder of a block code
from burst errors introduced during transmission. The aim is, therefore, usually to

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

Figure 13.22 Example 8 � 3 block interleaver — scan in.

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

Figure 13.23 Example 8 � 3 block interleaver — scan out. �

D

D D

D DD

D DDD

D DDDD

Data
in

Data
out

D = n-bit delay

Figure 13.24 Example 6-level convolutional interleaver.

13.2. Generic Concepts 543

544 Chapter 13 Digital Television Channel Coding and Modulation

distribute each code word of the block code over several code word transmission
times. For example, a 12-level convolutional interleaver with a register size of 17
bytes might be used to protect an (204,188) RS code. Although there is no necessary
relationship between the period of the input to the interleaver and the length of the
block code word, they often take the same value, which can be used to ensure that
the fi rst byte of a code word always passes through the zero-delay path of the inter-
leaver. In this case, the period of the input to the interleaver is 204, which is the same
as the code word length. Each 204-byte RS code word is distributed over 12 times its
normal transmission interval.

13.2.5.4. Concatenated Codes

Concatenated codes use two levels of coding as illustrated in Figure 13.25. In the
encoder, the input data passes through the outer encoder, after which its order is
modifi ed by an interleaver before passing through the inner coder. In the decoder, the
order of these processes is reversed. The data received from the channel is passed
through the inner decoder, which corrects most of the errors introduced during
transmission. Where the inner coder fails to correct errors, it is likely to leave bursts
of errors at its output. The deinterleaver rearranges the order of the data, spreading
these bursts of errors before passing the data to the outer decoder.

Residual errors at the output of the inner decoder tend to be bursty. This would
lead to poor performance by the outer decoder, so an interleaver is used to change
the order of received data, spreading out bursts of errors to maximize the correcting
capability of the outer decoder. A further interleaver may also be used between the
inner encoder and the modulator to minimize the likelihood of bursts of errors at the
input to the decoder for the inner code.

One of the most popular systems uses a convolutional inner code and an RS outer
code. The RS coder is chosen because it can operate on symbols that consist of a
number of bits. Like other FEC, it operates best on isolated symbol errors. Because
the symbols may consist of a number of bits, the RS coder is quite effective in correct-
ing bursts of bit errors. The interleaver in such systems is likely to be based on the
same symbol size as the RS code; there is no value in reordering errors within one
symbol of the RS code. Both DVB and ATSC employ such a concatenated coder.

InterleaverInterleaver ModulatorModulator
Inner

encoder
Inner

encoder
Outer

encoder
Outer

encoder
Input
data

Channel

(a)

DeinterleaverDeinterleaver DemodulatorDemodulator
Inner

decoder
Inner

decoder
Outer

decoder
Outer

decoder
Output

data

(b)

Figure 13.25 Block diagram of (a) a concatenated coder and (b) the corresponding decoder.

13.3. CHANNEL CODING AND MODULATION
FOR ATSC

ATSC supports a payload data rate for terrestrial broadcast of 19.28 Mbit/s in one 6
MHz channel [9]. A high data-rate mode is also available that supports a data rate of
38.57 Mbit/s, but this is not intended for use in terrestrial broadcast and is, therefore,
not considered further here.

The ATSC coder consists of the following blocks as illustrated in Figure 13.26:

a data stream randomizer (Section 13.3.3.4);

a concatenated channel coder (Section 13.3.3), based on:

an RS outer coder,

an outer convolutional interleaver, and

a trellis inner coder (that incorporates an inner block interleaver);

a framing module in which one segment carries one TS packet, 313 data
segments form one data fi eld, and two data fi elds form one data frame (Section
13.3.2); and

a modulator, employing 8-VSB modulation (Section 13.3.1).

13.3.1. ATSC 8-VSB Modulation

All data transmitted by an ATSC transmitter is modulated using an 8-VSB
modulator at a rate of 10.762 Msym/s, with the eight symbol values denoted by
{�7,�5,�3,�1,1,3,5,7}. The output of the modulator is passed through a fi lter to
reduce the bandwidth of the transmitted signal to 6 MHz.

The Nyquist criterion tells us that the maximum rate at which symbols can be
transmitted over a bandwidth-limited channel and detected by a receiver is equal to
twice the channel bandwidth (Section 13.2.1). For a 6 MHz digital television chan-
nel, the Nyquist criterion limits the symbol rate to 12 Msym/s, which is higher than
the 10.76 Msym/s used by ATSC. As we saw in Section 13.2.1, satisfying the Nyquist
criterion does not mean that intersymbol interference will not occur; generally a
channel bandwidth at least equal to the symbol rate (that is, twice the Nyqist limit)
is required to prevent intersymbol interference. A channel equalizer is, therefore,
always required in an ATSC terrestrial receiver. This adaptive equalizer is typically
based on the LMS algorithm and employs an FIR fi lter with approximately 64 taps
to equalize received data, with a further 192-tap fi lter being used in the adaptation
process that adjusts the tap values of the 64-tap fi lter.

•
•

∗
∗
∗

•

•

Data-stream
randomizer

Concatenated
channel coder

Framing
module

8-VSB
modulator

MPEG-2
transport stream

Figure 13.26 Outline structure of ATSC encoder.

13.3. Channel Coding and Modulation for ATSC 545

546 Chapter 13 Digital Television Channel Coding and Modulation

Transmission of the 10.762 Msym/s, 8-VSB signal in a 6 MHz channel requires
fi ltering at the output of the modulator. The nominal channel occupancy of the fi l-
tered signal is shown in Figure 13.27. The half-power bandwidth of the transmitted
signal is 5.38 MHz, lying in the center of the 6 MHz channel. A reference pilot signal
is transmitted 0.31 MHz from the bottom of the channel, which is the frequency of
the suppressed carrier for the VSB signal. A linear-phase, raised-cosine fi lter is used
to produce this band-limited signal.

The primary advantages of 8-VSB are its relatively high bandwidth effi ciency
and the simplicity created by using only the I component (that is, the value of the
symbol does not depend on its Q component). The use of only the I component
means that only one analog-to-digital converter is required, and equalization can be
carried out using real multiplications and additions.

13.3.2. ATSC Data Framing

The 8-VSB data symbols are grouped into data segments, each consisting of 832
symbols, as illustrated in Figure 13.28. Each data segment is transmitted over 77.3 µs.
The fi rst four symbols of the segment are used for synchronization and always have

6 MHz

5.38 MHz0.31 MHz

1
0.7

0.31 MHz

Reference pilot

Figure 13.27 Nominal channel occupancy of 8-VSB ATSC transmitted signal. © Advanced
Television Standards Committee Inc 2001. A copy of this standard is available at http://www.atsc.org.

Field sync #1

828 symbols4

Se
gm

en
t s

yn
c

1 Segment
77.3 µs

24.2 ms

Field sync #2

Se
gm

en
t s

yn
c

24.2 ms

48.4 ms

313
Segments

313
Segments

2 Fields

Figure 13.28 ATSC frame structure. © Advanced Television Standards Committee Inc 2001.
A copy of this standard is available at http://www.atsc.org.

the values {5,�5,�5,5}. The remaining 828 symbols (carrying 2484 bits) form the
payload of the segment and have exactly the capacity required to carry one MPEG-2
TS packet, complete with all overhead for error correction.

Data segments are grouped into data fi elds, each consisting of 313 data seg-
ments, transmitted over approximately 24 ms. The payload of the fi rst segment of
each fi eld contains only a special synchronization sequence, that is, it carries no
audio–visual data. This synchronization sequence is used by the decoder to identify
the start of a data fi eld and as a training sequence for the channel equalizer. This fi rst
segment carries the same 4-symbol synchronization header as all other segments.

A data frame is made up of two data fi elds and is, therefore, transmitted over ap-
proximately 48 ms. The fi rst and second data fi elds of a data frame are distinguished
by the different synchronization sequences carried in their fi rst segments.

13.3.3. ATSC Concatenated Channel Coder

ATSC employs a concatenated coder. The outer coder is an RS coder, which is
followed by a convolutional interleaver. The inner coder is a trellis coder that
incorporates a stage of inner interleaving.

13.3.3.1. ATSC RS Coder

An (207,187,8) RS code is used to protect each MPEG-2 transport stream packet,
allowing up to 10 symbol errors to be corrected in each code word. On entering the
RS coder, the length of each transport stream packet is 187 bytes because the sync
byte was removed during randomization. The purpose of the outer code is to allow
removal of residual errors remaining after decoding of the inner code.

13.3.3.2. ATSC Interleaver

ATSC employs a byte-oriented, 52-level convolutional outer interleaver as shown in
Figure 13.29.

D

D D

DD

Data
in

Data
out

D = 4-byte delay

D DDDD D

51

Figure 13.29 ATSC outer interleaver.

13.3. Channel Coding and Modulation for ATSC 547

548 Chapter 13 Digital Television Channel Coding and Modulation

This interleaver has a period of 208 bytes, which corresponds to the combined
size of the MPEG-2 transport stream sync byte and the outer RS code word.
Each input code word is distributed over 52 TS-packet periods, corresponding to
approximately 4.0 ms with a data rate of 19.28 Mbit/s or 1/6 of the data fi eld size.
The MPEG-2 sync byte is replaced by the 4-symbol data-segment synchronization
signal, and always passes through the zero-delay path at the encoder.

In each 207-byte code word, the RS outer coder can correct 10 symbol errors
(that is, bytes that contain one or more errors) or 20 erasures. The outer interleaver
distributes the 208-byte protected MPEG-2 transport stream packets across 52 TS-
packet transmission times in 4-byte groups. The RS coder can, therefore, always
correct errors occurring in two of these 4-byte groups within one RS code word, and
sometimes correct errors occurring in three or more.

13.3.3.3. ATSC Inner Coder and Interleaver

The ATSC inner coder is a 2/3-rate trellis coder whose input symbols are formed
from pairs of output bits from the outer interleaver and whose output consists of 3-bit
symbols for the VSB modulator.

At the input to the inner coder, data is formed in bytes. These bytes are then
demultiplexed across 12 identical trellis coders (Figure 13.30), whose output is re-
multiplexed to form the input symbol stream for the 8-VSB modulator. This demul-
tiplexing and remultiplexing is a form of interleaving, whose effect is to spread burst
errors on the channel across a number of independent trellis decoders.

Each of the twelve trellis coders has the structure shown in Figure 13.31. Each
input byte is broken into four 2-bit symbols, with bits 7, 5, 3, and 1 or the bytes being
the more signifi cant bit of their symbol and bits 6, 4, 2, and 0 the less signifi cant bit.
The more signifi cant bit (X2) of each symbol passes through an interference fi lter
precoder. The trellis coder passes the less signifi cant bit (X1) of each symbol through
a 1/2 rate convolutional encoder but leaves the more signifi cant bit uncoded. The
outputs of the precoder (Z2) and convolutional encoder (Z1 and Z0) then pass to the
symbol mapper that converts the 3-bit symbol inputs into one of the eight levels at
its output. This mapping, in which the distance Z2 is more signifi cant than Z1 and Z0,
explains why it is reasonable that redundancy is added to X1 but not to X2.

Trellis encoder 0

Data
bytes in

3-bit data
symbols out

Trellis encoder 1

Trellis encoder 2

Trellis encoder 12

Figure 13.30 ATSC inner interleaver.

13.3.3.4. ATSC Randomization

Data stream randomization in ATSC is applied only to the 187-byte payloads of
MPEG-2 TS packets. The sync byte of MPEG-2 TS packets is discarded and re-
placed by the data segment sync signal. The randomization is carried out by taking
the exclusive-or of the payload with the output of a pseudorandom binary sequence
generator, which is initialized at the beginning of every data fi eld. This initialization,
combined with the unique data fi eld sync signal that occupies the fi rst data segment
of the data fi eld, makes random access possible at the beginning of any data fi eld, in
other words, random access is possible once in every 24 ms.

The pseudorandom sequence generator is a 16-bit linear shift register with eight
feedback taps and eight outputs as shown in Figure 13.32. Each element in the shift
register is labeled with its index. At each clock cycle, one output byte [D7…D0] is
produced. This output byte is bit-wise exclusive-ored with one byte of the MPEG-2
TS packet. The shift register is initialized to the value 0xF180 at the beginning of
every data fi eld (that is, registers 16, 15, 14, 13, 9, and 8 are loaded with 1, the other
registers with 0).

D

+

Interference filter
precoder

X2

D D+

X1

Trellis coder

Z2

Z1

Z0

D = 12-Symbol delay

Symbol mapper

Z2Z1Z0 R
0 0 0 –7
0 0 1 –5
0 1 0 –3
0 1 1 –1
1 0 0 1
1 0 1 3
1 1 0 5
1 1 1 7

R

Figure 13.31 VSB trellis coder with interference fi lter precoder and symbol mapper. © Advanced
Television Standards Committee Inc 2001. A copy of this standard is available at http://www.atsc.org.

X1 ++

D0

X2 X3 ++

D1

X4

D2

X5 X6 ++ X7 ++

D3

X8 X9 X10 X11

D4

++ X12

D5

++ X13

D6

++ X14

D7

X15 X16

Figure 13.32 Detailed structure of ATSC PN generator. © Advanced Television Standards
Committee Inc 2001. A copy of this standard is available at http://www.atsc.org.

13.3. Channel Coding and Modulation for ATSC 549

550 Chapter 13 Digital Television Channel Coding and Modulation

13.3.4. ATSC Channel Capacity

The capacity of the ATSC channel can be derived as follows. The raw symbol rate on
the channel is 10.762 Msym/s. Each symbol carries 3 bits of data. The trellis coder is
a rate 2/3 coder, so that two out of every three bits transmitted are information (the
other is overhead). This rate is reduced by the overheads for transmission of fi eld
sync segments (312/313) and the outer RS code (188/208). The useful transmission
capacity is, therefore,

U � � � � � �10 762 3
2

3

312

313

188

208
19 392. . Mbit/s

This value for U includes the MPEG-2 transport stream sync bytes, which are
mapped to the segment sync headers before transmission. This method of calcula-
tion differs from that used in the ATSC standard, but it provides a value that is
directly useable in assessing the channel capacity in terms relevant to the MPEG-2
transport stream. ATSC documents often quote a useful data rate of 19.29 Mbit/s,
which excludes the MPEG-2 transport stream sync bytes.

13.4. CHANNEL CODING AND MODULATION FOR DVB

The DVB channel coder takes an MPEG-2 transport stream as input and passes it
through the following processes prior to modulation [10] as illustrated in Figure 13.33:

transport adaptation and randomization,

outer coding using Reed–Solomon code,

outer interleaving,

inner coding using a punctured convolutional code, and

inner interleaving.

The output of the channel coder is passed to the modulator for modulation using
QPSK, 16-QAM, or 64-QAM and orthogonal frequency-division multiplexing. Each
of these processes is described in the following sections.

13.4.1. DVB Modulation

Having completed the processes of outer coding and interleaving and inner coding
and interleaving, a DVB encoder proceeds to modulation. Data is modulated using
QPSK, 16-QAM, or 64-QAM. The fi rst step of the modulation process is to group

•
•
•
•
•

Data stream
randomizer

Concatenated
channel coder

Carrier
allocation

OFDM
MPEG-2

transport stream

Figure 13.33 Outline structure of DVB channel coding and modulation.

the data bits to form complex-valued modulation symbols, denoted by z, based on
the constellation diagrams in Section 13.2.1. For QPSK the constellation diagram in
Figure 13.5 is used. Each QPSK symbol is made of 2 bits. The symbol value obtained
from Figure 13.5 is then normalized so that the average symbol energy is 1. For
QPSK, this requires dividing the symbol value by ��2, giving a normalized symbol
value c. For example, the symbol value z for the bits 10 is z � �1 � j, where j denotes
the square root of �1, and c � �0.7071 � 0.7071j.

Figure 13.6 shows the corresponding constellation diagram for 16-QAM, for
which each symbol consists of 4 bits. Normalization for 16-QAM requires dividing
each symbol value by ��10. Figure 13.7 shows the constellation diagram for the 6-bit
symbols used for 64-QAM, for which normalization requires division of the symbol
value by ��42.

The normalized complex symbols are then converted to a sequence of sample
values using orthogonal frequency-division multiplexing (OFDM), during which
pilot signals and signaling information are incorporated into the signal.

13.4.1.1. DVB Orthogonal Frequency-Division Multiplexing

The basic idea of orthogonal frequency-division multiplexing (OFDM) is to split
the data to be carried on a channel among several subchannels, and to frequency-
division multiplex these subchannels within the bandwidth of the original
channel. A very simple implementation, using four subchannels, is illustrated in
Figure 13.34.

Figure 13.34(a) shows a block diagram of the four subchannel OFDM modu-
lator. Figure 13.34(b) shows the approximate power spectrum for a conventional
signal, whereas Figure 13.34(c) shows the power spectrum of the OFDM signal.
The OFDM signal provides a more even distribution of power across the bandwidth
of the channel and has sharper drop off in power at the edge of the channel, which
simplifi es the design of transmitter output fi lters.

0 1 2 3

Demux

Rate n

Rate n / 4
0 1 2 3

Freq shift

Freq shift

Freq shift

+
(a) (c)

(b)

Figure 13.34 Simple OFDM with four carriers.

13.4. Channel Coding and Modulation for DVB 551

552 Chapter 13 Digital Television Channel Coding and Modulation

The major requirements for an effective implementation of OFDM are that

the subchannels must be synchronized so that remultiplexing is possible at the
decoder to reconstruct exactly the original bit stream, and

the modulation waveforms for the individual subchannels should be orthogonal
to provide high spectral effi ciency.

Under these circumstances, the principal advantages of OFDM are

spectral effi ciency—signal is more evenly spread over channel than for a
single data stream;

immunity to fading and interference—fading or interference associated with
one modulated carrier may not affect others; when data is protected by FEC,
this provides a powerful means for overcoming narrowband fading and inter-
ference; and

interference with other signals—minimization of signal level outside channel
is easily achieved without complicated fi ltering.

The DVB OFDM system has two modes of operation: the 2k mode and the
8k mode. In the 2k mode, there are 2048 notional carriers spread across the whole
channel bandwidth, with constant intercarrier spacing. Only a subset of the carriers
(1705) at the center of the channel is actually used for transmission. The remaining
notional carriers are not generated and, therefore, help with suppression of out-of-
channel emissions. The signals transmitted on the 2048 carriers are each orthogonal
to every other signal (i.e., their cross correlation is zero), enabling high spectral
effi ciency.

For the 8k mode, there are 8192 notional carriers spread evenly across the
channel bandwidth. Of these carriers, the 6817 lying in the middle of the channel
 bandwidth are used for transmission. Once again the signals transmitted on the
carriers are orthogonal, enabling high-spectral effi ciency.

Each carrier may be modulated by QPSK, 16-QAM, or 64-QAM. The group
of symbols transmitted simultaneously on all carriers is called an OFDM symbol.
OFDM symbols are grouped together to form OFDM frames, each of which con-
tains 68 OFDM symbols. Frames are grouped to form super frames, each of which
contains four frames.

More formally, the output s of the OFDM modulator is given by

s t e c ej f t
m l k

j k t T

k k

c U�() � �
�

�

Re , ,
'(')/

mi

2
1

2π π ∆

nn

maxk k�

∑

where t� is the time relative to the beginning of the symbol transmission period; T
is the elementary period, which is the reciprocal of the clock period; k denotes the
carrier number; l denotes the OFDM symbol number; m denotes the transmission
frame number; K is the number of transmitted carriers (1705 for the 2k mode and
6817 for the 8k mode); TU is the inverse of the spacing between OFDM carriers;
(TU � 2048 � T for the 2k mode and TU � 8192 � T for the 8k mode); ∆ is the

•

•

•

•

•

duration of the guard interval; TS � ∆ � TU is the symbol duration; fc is the center
frequency of the RF signal; Kmin is the index of the lowest frequency carrier (0 for
both 2k and 8k modes); Kmax is the index of the highest frequency carrier (1704 for
2k mode, 6816 for 8k mode); k� � k � (Kmax � Kmin)/2 is carrier index relative to the
channel center frequency fc; cm,l�1,k is the normalized complex symbol for carrier k
of the data symbol number l in frame m.

For a channel bandwidth of 7 MHz, the clock frequency is 8 MHz and the
elementary period T � 1/8 µs. DVB also supports operation using 6 MHz and 8 MHz
channel bandwidths. The only changes required to encoder and decoder operation
are in the clock frequency (and therefore the elementary period T). For a 6 MHz
channel, the clock frequency is 48/7 MHz and the elementary period T � 7/48 µs.
For an 8 MHz channel, the clock frequency is 64/7 MHz and the elementary period
T � 7/64 µs. A 6 MHz channel, therefore, operates at 6/7 the symbol rate of a 7 MHz
channel and has 6/7 the useful bit rate. An 8 MHz channel operates at 8/7 the symbol
rate of a 7 MHz channel and has 8/7 the useful bit rate.

In converting from the OFDM symbol to a time sequence s to be transmitted,
the sampling rate must be at least twice the bandwidth of the symbol to ensure that
aliasing does not occur; in other words, the sampling rate for s must be greater than
or equal to 2/T. One common implementation of this conversion is by means of an
inverse Fourier transform. The choice of the number of notional carriers as a power of
two in both the 2k and 8k modes facilitates this transform, making possible the use of
the inverse fast Fourier transform (IFFT). The principle advantage of the IFFT over
other implementations of the transform is that its computational complexity is of the
order of (n log n), rather than of the order of (n2), where n is the number of carriers.

In the 2k mode, DVB uses 1705 carriers in each OFDM symbol, of which 193
are used for pilots and signaling (described in Sections 13.4.1.4 and 13.4.1.5 below),
leaving 1512 useful carriers. In the 8k mode, there are 6817 carriers in each OFDM
symbol, with 769 used for pilots and signaling, leaving 6048 useful carriers.

13.4.1.2. DVB Guard Interval

The choice of the intercarrier spacing (which is effectively the channel bandwidth for
the stream of signals transmitted on one carrier) to be the reciprocal of the OFDM
symbol duration TU means that essentially all the intersymbol interference in a DVB
system is caused by the channel. The purpose of the guard interval is to reduce the
impact of intersymbol interference by increasing the spacing between symbols and
allowing time for the impulse response of the channel to decay between the point
where the encoder changes symbol value and the point where the decoder uses the
received signal in demodulation. The DVB guard interval is created by making a
copy of that portion of symbol to be transmitted last and transmitting this immedi-
ately in front of the symbol as shown in Figure 13.35. The size of the DVB guard
interval determines what fraction of the symbol is copied in this way. In DVB, the
guard interval may be chosen to be 1/4, 1/8, 1/16, or 1/32 of the OFDM symbol pe-
riod, and it would usually be chosen to ensure that the impulse response of the chan-
nel has decayed before the beginning of the symbol to be decoded. This is especially

13.4. Channel Coding and Modulation for DVB 553

554 Chapter 13 Digital Television Channel Coding and Modulation

important for channels in which the signal travels between transmitter and receiver
over multiple, simultaneous paths (i.e., multipath channels). Without this guard in-
terval, multipath propagation leads to signifi cant intersymbol interference. Because
the OFDM symbol period is longer for the 8k mode than that for the 2k mode, the 8k
mode is more suitable for channels with longer impulse responses than that for the
2k mode. One of the major advantages of this use of the guard interval is that the re-
quirement for channel equalization is reduced to one complex multiplication for each
OFDM carrier if the decoder in signal processing is based on a Fourier transform
(i.e., reversing the inverse Fourier transform at the encoder).

The choice of guard interval length directly affects the useful channel capacity
available. Table 13.2 shows how the number of OFDM symbols per second varies

TU

Guard
interval

Useful
period

∆

TS

Previous
symbol

Following
symbol

Copied for
guard interval

∆

Figure 13.35 Construction of DVB guard interval.

Table 13.2 Impact of guard interval on number of OFDM symbols per second.

Mode ∆/TU ODFM symbols per second Loss of capacity due to guard interval (%)

2k 1/4 3125 20
1/8 3472 11
1/16 3677 6
1/32 3788 3
0a 3906 0

8k 1/4 781 20
1/8 868 11
1/16 919 6
1/32 947 3
0a 977 0

aNot supported by DVB. The number of OFDM symbols per second is 1/TU in this case.

with the mode (2k or 8k) and size of guard interval (∆/TU) for a 7 MHz channel.
Changing between modes does not affect the relative loss of capacity for fi xed ∆/TU.
It is likely, however, that a smaller value of ∆/TU would be used for a given channel
in the 8k mode than in the 2k mode, so that the length of the guard interval ∆ is the
same. This means that for a fi xed transmission channel, less loss of capacity is likely
to be required for guard intervals in the 8k mode than in the 2k mode. Alternatively,
the 8k mode allows operation with channels whose impulse response takes longer to
decay than is possible in the 2k mode.

13.4.1.3. Single-Frequency Network

In conventional television broadcast, black spots of extremely poor reception oc-
cur due to terrain. Additional, local repeaters are sometimes used to provide an
acceptable signal quality in such areas. Because of their potential to cause inter-
ference with other signals, it is usual that such repeaters are allocated a separate
channel from the main transmitter. Sometimes, it is even necessary to allocate a
separate channel to each repeater in an area. This is a very ineffi cient use of the
limited bandwidth available for terrestrial-broadcast television. The use of OFDM
in combination with channel coding (known as coded OFDM) in DVB offers the
possibility of operating a large number of repeaters on one channel. Interference
will occur on a small proportion of the carriers, causing fading and very high
bit error rates. The combination of inner and outer coding, spread across a large
number of carriers by interleaving, overcomes this interference, leading to a high-
quality bit stream at the input to the MPEG-2 systems decoder. This is known as a
single-frequency network.

A single-frequency network is illustrated in Figure 13.36. Two transmitters (“A”
and “B”) are used. Clearly, the use of two transmitters in close proximity, operating
on the same frequency, can lead to interference between their signals. The difference
between the propagation delays from the two transmitters to the receiver is the major
potential cause of degradation in the received signal.

Tx A
Tx B

Figure 13.36 A simple single-frequency network.

13.4. Channel Coding and Modulation for DVB 555

556 Chapter 13 Digital Television Channel Coding and Modulation

The fi rst impact of the difference in propagation delay is that it can cause inter-
symbol interference. So long as the difference in propagation delays from the two
transmitters is less than the DVB guard interval, the contribution of the single-
frequency network to intersymbol interference should be negligible.

The second effect of receiving two signals from different sources is that the
received power depends on the relative phase of the two signals, which changes
with frequency. If the phase difference between the two signals is one half cycle,
destructive interference causes the received power to be zero. In analyzing the
impact of this interference, we assume the worst case, that is, that the signal
strengths from A and B are the same. In this case, nulls occur at frequencies where
the difference in path lengths between the transmitters and the receiver takes
particular values satisfying

d
n

null �
�λ()2 1

2

for integer values of n. The frequency spacing between these nulls is equal to the
reciprocal of the difference in propagation delay from A to the receiver and B to the
receiver.

If the signals received from transmitters A and B have the same electric fi eld
strength, we can write

EA � sin(2πft � φ/2)

and

EB � sin(2πft � φ/2)

where φ is the phase shift caused by the difference in propagation delays between
A and the receiver and B and the receiver. The total electric fi eld strength of the
received signal is therefore

EA�B � 2cos(φ/2) sin(2πft)

In other words, the amplitude of the received signal is 2cos(φ/2). The implications
of this calculation are that

the peak received power is four times higher than that for one transmitter,

the received power is higher than that would be received from a single
transmitter for 2/3 of the OFDM carriers, and

the received power is higher than half that of what would be received from a
single transmitter for 77 % of the OFDM carriers.

In a DVB system, the OFDM carriers for which the received power is small
tend to be clustered in groups. It is for this reason that DVB does not assign symbols
to OFDM carriers simply in order of increasing frequency, but assigns symbols to
carriers in a pseudorandom order.

•
•

•

EXAMPLE 13.4—Single-Frequency Network

Calculate the difference in propagation delay experienced by two signals in a single-frequency
network where one transmitter is 3 km closer to the receiver than the other. Calculate also
the spacing between frequencies for which the received signal strength is zero if the received
power from each of the two transmitters is the same.

A difference in path length of 3 km is equivalent to a 10 µs difference in propagation
delay. The frequency spacing between nulls in the received power is 100 kHz. �

In the more general case where the strengths of the signals received from the
two transmitters differ, the peak power is less than that indicated by the above
analysis; but the received power never drops to zero. The proportion of the OFDM
carriers for which the power is less than half the stronger of the received powers is
also reduced. This is illustrated in Table 13.3 and Figure 13.37.

13.4. Channel Coding and Modulation for DVB 557

Figure 13.37 Total received power versus phase difference for 0 dB received from A and various
powers from B.

Table 13.3 Relationship between received power and signal cancellation in a single-
frequency network.

Received power (dB)

Peak power (dB)
Carriers with
power 	 0 dB

Carriers with
	 �3 dB

Carriers with
	 �6 dBA B

0 0 6.0 66 % 77 % 84 %
0 �3 4.6 61 % 75 % 85 %
0 �6 3.5 58 % 77 % 100 %
0 �12 1.9 53 % 100 % 100 %

558 Chapter 13 Digital Television Channel Coding and Modulation

13.4.1.4. DVB Transmission Parameter Signaling

A DVB decoder is required to be able to identify the parameters of a received signal
and begin decoding it without user intervention. This means that the decoder must
identify features, such as the type of modulation, the inner coding rate, and guard
interval, which cannot be easily inferred from the encoded data itself. Transmission
parameter signaling (TPS) is used to provide this type of information to the decoder
in an easily accessible way.

TPS data is carried on a number of dedicated OFDM carriers, 17 for the 2k
mode and 68 for the 8k mode, each of which carries an identical data stream. The
 indices of these carriers are shown in Table 13.4. These carriers are never used for
any other purpose. All TPS data is modulated using differential BPSK (DBPSK), so
that a decoder does not need to identify the modulation type before decoding this
data.

Each OFDM symbol carries one TPS bit. Sixty eight consecutive OFDM
symbols form an OFDM frame. The 68 bits of TPS data is carried by each OFDM
frame form one TPS block. Each TPS block contains one initialization bit, followed
by 16 synchronization bits, 37 information bits, and 14 redundancy bits for error
protection. The contents of each fi eld are described in Table 13.5.

13.4.1.5. DVB Reference Signals

Of the 1705 transmitted carriers in the 2k mode, 1512 are available for carrying data
and the remaining 193 are used to carry reference signals. (Similarly, in the 8k mode,
there are 6048 useful carriers and 769 are used for reference signals.) In addition to
TPS, DVB uses two other types of reference signals: continual pilots and scattered
pilots. Both continual and scattered pilots transmit a pseudorandom sequence, which
is modulated using BPSK.

Scattered pilots are always transmitted on the lowest and highest frequency car-
riers. They are also transmitted on every twelfth carrier, starting at Kmin for symbols
0, 4, 8, … , 64 in a frame; Kmin�3 for symbols 1, 5, 9, … , 65; Kmin�6 for symbols 2,
6, 10, … , 66; and Kmin�9 for symbols 3, 7, 11, … , 67. Continual pilots are always
transmitted on the same carriers, which are listed in Table 13.6.

Table 13.4 Carrier indices for TPS.

2k Mode 8k Mode

34 50 209 346 413 569
595 688 790 901 1073
1219 1262 1286 1469
1594 1687

34 50 209 346 413 569 595 688 790 901 1073 1219 1262 1286
1469 1594 1687 1738 1754 1913 2050 2117 2273 2299 2392
2494 2605 2777 2923 2966 2990 3173 3298 3391 3442 3458
3617 3754 3821 3977 4003 4096 4198 4309 4481 4627 4670
4694 4877 5002 5095 5146 5162 5321 5458 5525 5681 5707
5800 5902 6013 6185 6331 6374 6398 6581 6706 6799

© European Telecommunications Standards Institute 1997. © European Broadcasting Union 2004.
Further use, modification, redistribution is strictly prohibited. ETSI standards are available from
http://pda.etsi.org/pda/ and http://www.etsi.org/services_products/freestandard/home.htm.

Table 13.5 Usage of fields in each TPS block.

Field purpose Length Description

Initialization bit 1 Initialization bit for DBPSK.
Synchronization bits 16 Alternating 0011 0101 1110 1110 and1100 1010 0001

0001.
Length indicator 6 010 111 if cell identifier not supported, 011 111

otherwise.
Frame number 2 Frame number in superframe.
Constellation 2 Identifies QPSK, 16-QAM, or 64-QAM as the

modulation used for data.
Hierarchy information 3 Selects hierarchical/nonhierarchical mode.
Code rate, HP stream 3 Selects inner code rate from 1/2, 2/3, 3/4, 5/6, and

7/8 for nonhierarchical or high-priority stream of
hierarchical mode.

Code rate, LP stream 3 Selects inner code rate from 1/2, 2/3, 3/4, 5/6, and 7/8
low-priority stream of hierarchical mode.

Guard interval 2 Identifies guard interval from 1/32, 1/16, 1/8, and 1/4.
Transmission mode 2 Selects between 2k mode and 8k mode. This field must

be guessed first by the receiver, but transmission in
TPS can be used to confirm this guess.

Cell identifier 8 Used to identify the cell from which the signal comes.
Reserved for future use 6 Set all to zero.
Error Protection 14 BCH code protecting the TPS block.

13.4. Channel Coding and Modulation for DVB 559

Table 13.6 Carrier indices for continual pilots.

2k Mode 8k Mode

0 48 54 87 141 156 192 201
255 279 282 333 432 450
483 525 531 618 636 714
759 765 780 804 873
888 918 939 942 969
984 1050 1101 1107 1110
1137 1140 1146 1206
1269 1323 1377 1491
1683 1704

0 48 54 87 141 156 192 201 255 279 282 333 432 450 483 525
531 618 636 714 759 765 780 804 873 888 918 939 942 969
984 1050 1101 1107 1110 1137 1140 1146 1206 1269 1323
1377 1491 1683 1704 1752 1758 1791 1845 1860 1896 1905
1959 1983 1986 2037 2136 2154 2187 2229 2235 2322
2340 2418 2463 2469 2484 2508 2577 2592 2622 2643
2646 2673 2688 2754 2805 2811 2814 2841 2844 2850
2910 2973 3027 3081 3195 3387 3408 3456 3462 3495
3549 3564 3600 3609 3663 3687 3690 3741 3840 3858
3891 3933 3939 4026 4044 4122 4167 4173 4188 4212 4281
4296 4326 4347 4350 4377 4392 4458 4509 4515 4518 4545
4548 4554 4614 4677 4731 4785 4899 5091 5112 5160 5166
5199 5253 5268 5304 5313 5367 5391 5394 5445 5544 5562
5595 5637 5643 5730 5748 5826 5871 5877 5892 5916 5985
6000 6030 6051 6054 6081 6096 6162 6213 6219 6222
6249 6252 6258 6318 6381 6435 6489 6603 6795 6816

© European Telecommunications Standards Institute 1997. © European Broadcasting Union 2004.
Further use, modification, redistribution is strictly prohibited. ETSI standards are available from
http://pda.etsi.org/pda/ and http://www.etsi.org/services_products/freestandard/home.htm.

560 Chapter 13 Digital Television Channel Coding and Modulation

The outline structure of the pseudorandom sequence carried by both continual
and scattered pilots is shown in Figure 13.38. The generator is reset at the beginning of
every OFDM symbol by setting all elements of the shift register to 1. One bit wk is gen-
erated for each carrier of the OFDM symbol, regardless of whether this bit carries data
or a pilot signal; that is, if carrier k carries a pilot signal, the value of the pilot is wk.

13.4.1.6. DVB Spectrum Characteristics

DVB supports channel bandwidths 6, 7, and 8 MHz. One important advantage of the
use of OFDM is that changing from one channel bandwidth to another requires only
scaling the elementary period T in proportion to the new channel bandwidth required.

Figure 13.39 shows the power spectrum of a DVB transmission signal for an 8
MHz channel in the 2k mode with a guard interval ∆ � TU/4. Frequency is shown
relative to the center frequency fc of the channel. The power spectral density is sim-
ply the sum of the power spectral densities of the individual modulated carriers. In
this mode of operation, the power spectral density of the transmitted signal is attenu-
ated by more than 30 dB outside the allocated channel. The frequency of the highest
frequency carrier is approximately 3.83 MHz above the channel center frequency,
and the frequency of the lowest frequency carrier is approximately 3.83 MHz below
the center frequency.

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

+

wk

Figure 13.38 Pseudo random sequence generator for pilot signals.

4 0 4
50

40

30

20

10

0

10

Frequency relative to center frequency fc (MHz)

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

dB
)

–
–

–

–

–

–

Figure 13.39 DVB transmission signal spectrum for 8MHz channel operating in 2k mode with
guard interval ∆ � TU/4.

Alteration of the guard interval to ∆�TU/32 produces the power spectral density
shown in Figure 13.40. There are no signifi cant differences between this spectrum
and that shown previously for ∆�TU/4. This is because the change in guard interval
makes no difference to the center frequencies of OFDM carriers. A change in the
line width around individual carriers does occur, because a change in guard interval
changes the number of OFDM symbols per second (Table 13.2). The line width
around individual carriers, therefore, may vary by up to 20%, but the overall impact
on the bandwidth of the channel is negligible.

Changing from the 2k mode to the 8k mode increases the attenuation at the edge of
the channel’s allocated bandwidth by approximately 6–36 dB as shown in Figure 13.41.

13.4. Channel Coding and Modulation for DVB 561

4 0 4
50

40

30

20

10

0

10

Frequency relative to center frequency fc (MHz)

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

dB
)

–
–

–

–

–

–

Figure 13.40 DVB transmission signal spectrum for 8 MHz channel operating in 2k mode with
guard interval ∆�TU/32.

4 0 4
50

40

30

20

10

0

10

Frequency relative to center frequency fc (MHz)

Po
w

er
 s

pe
ct

ra
l d

en
si

ty
 (

dB
)

–
–

–

–

–

–

Figure 13.41 DVB transmission signal spectrum for 8 MHz channel operating in 8k mode with
guard interval ∆�TU/4.

562 Chapter 13 Digital Television Channel Coding and Modulation

This occurs because the OFDM symbol rate in the 8k mode is one quarter of that in
the 2k mode, causing the bandwidth of individual modulated carriers in the 8k mode
to be one quarter of that in the 2k mode leading to a reduction in their contribution to
out-of-band power.

Other properties of the DVB transmitted signal, such as modulation type and
inner code rate, do not signifi cantly affect the transmitted power spectral density.

13.4.2. DVB Channel Coding

The DVB channel coder employs data randomization, an RS outer coder, an
outer convolutional interleaver, an inner convolutional coder, and an inner block
interleaver.

13.4.2.1. DVB Randomization

Transport-stream randomization in DVB is performed using a pseudorandom
sequence generated by a 15-stage shift register shown in Figure 13.42. The
pseudorandom sequence generator is initialized with the value 100101010000000
and used to generate 1503 bytes of data. These bytes are bit-wise exclusive ored with
eight transport-stream packets, starting immediately after the sync byte of the fi rst
transport-stream packet. Sync bytes of transport-stream packets are not randomized,
but 1 byte of the sequence is skipped for the sync byte of all subsequent transport-
stream packets. The fi rst transport-stream packet in the group of eight is identifi ed in
the transmitted bit stream by having its sync byte inverted (that is, 0x47 is transmitted
as 0xB8).

13.4.2.2. DVB Outer Coding

DVB’s outer coder uses an RS (204, 188, 8) code, with the information part of each
code word representing one MPEG-2 transport stream packet. This code can correct
up to eight symbol errors in each received code word. The construction of the code
word is illustrated in Figure 13.43.

Each byte of the data to be protected is treated as one symbol. The fi rst step is to
prefi x the 188-symbol transport stream packet with 51 symbols containing all zeros,
giving a 239-symbol block. The parity symbols for this block are then calculated as

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

1-bit
delay

+

Figure 13.42 Structure of the pseudorandom sequence generator for DVB transport randomization.

for an RS (255,239) code, generating a 16-symbol parity block. The 51 zero symbols
are then discarded, leaving a 204-symbol code word, made up of the 188-byte trans-
port stream packet and 16 parity bytes.

13.4.2.3. DVB Outer Interleaving

The DVB outer interleaver is a 12-level, byte-oriented convolutional interleaver as
shown in Figure 13.44. Each delay element D corresponds to a delay of 17 bytes,
leading to a period of 204 bytes. The sync byte of the fi rst MPEG-2 TS packet is
always routed through the zero-delay path, causing the sync bytes of all future TS
packets to also be routed through the zero-delay path (Table 13.7).

This interleaver is byte oriented because the RS coder it precedes in the decoder
treats each byte of data as a single symbol. Where burst errors occur, it is therefore
desirable to keep these errors within the symbols in which they occur, rather than
spread them to other symbols and thereby increase the symbol error rate.

In each 204-byte code word, the RS outer coder can correct eight symbol errors
(i.e., bytes that contain one or more errors) or 16 erasures. The outer interleaver
distributes the 204-byte RS code words across 12 TS-packet transmission times in
17-byte groups.

13.4. Channel Coding and Modulation for DVB 563

MPEG-2 TS PACKET

188 bytes

0 0 0 . . . 0 0 0

51 bytes

+

0 0 0 . . . 0 0 0 MPEG-2 TS PACKET

239 bytes

+
16 bytes

FEC

MPEG-2 TS PACKET

204 bytes

FEC

Figure 13.43 DVB outer coding.

D

D D

D DDDD

Data
in

Data
out

D = 17-byte delay

D DDDDD

Figure 13.44 DVB outer interleaver.

564 Chapter 13 Digital Television Channel Coding and Modulation

13.4.2.4. DVB Inner Coding

The DVB inner coder is based on the 1/2 rate convolutional coder with 64 states (i.e.,
a constraint length of seven) as shown in Figure 13.45. The data arrives at the left
side of the fi gure and passes through the 6-bit shift register. For each input bit, the
contents of the shift register are shifted one position to the right side and two output
bits, X and Y, are generated. These two output bits are then multiplexed to provide
two bits for the single-coded output bit stream. This particular code offers the best
performance available from a 1/2 rate, constrain-length seven convolutional code
[11]. This code has a free distance df equal to 10, meaning that it can correct bursts
of up to four errors, following the discussion of Section 13.2.5.2.

1-bit
delay
1-bit
delay

1-bit
delay
1-bit
delay

1-bit
delay
1-bit
delay

1-bit
delay
1-bit
delay

1-bit
delay
1-bit
delay

1-bit
delay
1-bit
delay

+

+

Input
data

from
outer

interleaver

X output

Y output

X

Y

Output
bitstream

Figure 13.45 The 1/2 rate convolutional coder used for DVB’s inner coder. © European
Telecommunications Standards Institute 1997. © European Broadcasting Union 2004. Further use,
modifi cation, redistribution is strictly prohibited. ETSI standards are available from http://pda.etsi.
org/pda/ and http://www.etsi.org/services_products/freestandard/home.htm.

Table 13.7 Temporal spread of an interleaved
TS packet in a DVB transmission signal.

Useful bit rate (Mbit/s) Interleaving spread (ms)

5 3.6
10 1.8
15 1.2
20 0.9
25 0.7
30 0.6

For operation at lower coding rates, puncturing is used, allowing coding rates of
2/3, 3/4, 5/6, and 7/8 to be achieved. Puncturing is commonly used with convolutional
codes to allow a variety of different levels of error protection to be achieved, without
requiring more than one decoder to be implemented. Changing the error protection
overhead with block codes, in contrast, requires the use of a different code and de-
coder for each level of protection.

13.4.2.5. DVB Inner Interleaving

The purpose of inner interleaving is to randomize the order of errors being passed
into the inner (convolutional) decoder. The fi rst stage of inner interleaving is to break
the bit stream into v-bit symbols for modulation. For QPSK, v� 2; for 16-QAM,
v� 4; and for 64-QAM, v� 6. Each bit of the v-bit symbols is passed through a bit-
wise interleaver, after which the symbols are reconstructed and assigned to OFDM
carriers by the symbol interleaver.

The outline structure of the inner interleaver is shown in Figure 13.46. Up to six
different block interleavers are used depending on the modulation (QPSK, 16-QAM,
or 64-QAM). Each of the bit-wise interleavers I0 … I5 operates on a 126-bit block
and performs a cyclic shift of this block. The starting points for the cyclic shift are
shown in Table 13.8.

The symbol interleaver is responsible for assigning interleaved data symbols to
OFDM carriers. Each OFDM symbol carries 12 126-symbol blocks in the 2k mode
and 48 126-symbol blocks in the 8k mode.

13.4. Channel Coding and Modulation for DVB 565

Table 13.8 Start points for 126-bit cyclic interleavers.

Interleaver Start point

I0 0
I1 63
I2 105
I3 42
I4 21
I5 84

Interleaver I0

Interleaver I1

Interleaver Iv

Demux

v = 2, 4 or 6
Parallel bit streams

}v-Bit symbols.
.
.

126 bit -block interleavers

Figure 13.46 DVB inner interleaver.

566 Chapter 13 Digital Television Channel Coding and Modulation

13.4.3. DVB Channel Capacity

The useful transmission capacity of a DVB channel depends on the elementary
period, the modulation (QPSK, 16-QAM, or 64-QAM), the length of the guard
interval, and the coding rate used for the inner coder. The useful transmission
capacity U is given by

U
v

T T
C

U

�
�

1512

2048

1

1

188

204(/)∆

where v is the number of bits per symbol (2 for QPSK, 4 for 16-QAM, and 6 for
64-QAM); T is the elementary period (1/8 µs for a 7 MHz channel, 7/48 µs for a 6
MHz channel, and 7/64 µs for an 8 MHz channel); ∆/TU is the length of the guard
interval; and C is the rate of the inner convolutional coder.

The value of U can be constructed as follows. The basic data rate of the
DVB system is v/T. This is reduced by the fact that not all carriers are used to
carry data (1512/2048); some transmission capacity is used for the guard intervals
1/(1�∆/TU), the overhead for the outer code (188/204), and the overhead for the
inner code (C).

EXAMPLE 13.5—DVB Channel Capacity

Find the capacity of a 7-MHz DVB channel using QPSK modulation with a guard interval of
one quarter of the symbol period and a 7/8-rate inner code.

A QPSK (v � 2), 7 MHz (T � 1/8 µs) channel with guard interval ∆/TU � 1/4 and a
7/8-rate convolutional coder has a capacity of 7.62 Mbit/s. �

13.5. CONCLUSION

Channel coding and modulation are an integral part of any digital television sys-
tem. Although DVB and ATSC have developed different systems, both are based
on a concatenated coder, employing a convolutional inner coder, a convolutional
interleaver, and a Reed–Solomon outer coder. This is no coincidence, representing a
very effective trade-off between performance and complexity, using the technology
available at the time of development.

PROBLEMS

13.1 Fill in the blank cells in Table 13.9, relating the DVB channel capacity to the various
parameters of the channel.

13.2 Complete the blank entries in Table 13.10. The notation is that used in Section 13.2.5.1.

13.3 Using the data provided in Tables 13.4 and 13.6 and Section 13.4.1.5, confi rm that each
OFDM symbol uses 193 carriers for reference signals in the 2k mode and 769 carriers
for reference signals in the 8k mode.

13.4 If a convolutional encoder of the type shown in Figure 13.21 is used to encode a data
stream D into two streams X and Y, write down a logic equation that can be used to
extract the stream D from

(a) the current value of X and the previous values of D and

(b) the current value of Y and the previous values of D.

13.5 Write down a logic equation to decode the output of the DVB inner convolutional coder
and recover its input data in the error free case using

(a) the current value of X and previous values of D and

(b) the current value of Y and previous values of D.

13.6 A 5-register cyclic interleaver has input stream 10, 3, 4, 2, 8, 9, 3, 11, 19, 0, 5, 7, 2, 1, 12.
Write down the output stream for start positions zero and four.

13.7 A 5 � 2 block interleaver has input stream 10, 3, 4, 2, 8, 9, 3, 11, 19, 0, 5, 7, 2, 1, 12, 14,
7, 5, 2, 1. Write down the output stream.

13.8 A 3-level convolutional interleaver with n � 1 has input stream 7, 2, 1, 7, 4, 2, 1, 12, 14,
10, 3, 4, 2, 8, 9, 3, 11, 19, 60, 5, followed by a continuous stream of value 17. All cells of
the interleaver have the value zero prior to loading the fi rst element of the input stream.
Write down the output stream beginning from the time that the fi rst element of the input
stream appears at the output and ending when the element with value 5 is output.

Problems 567

Table 13.9 DVB channel capacities for Q 13.1.

U (Mbit/s) v
Channel BW

(MHz) ∆/TU C

4.3544 2 7 1/4 1/2
15.834 7 1/32 3/4

4 6 1/16 2/3
21.772 6 7 5/6
14.929 6 1/4 1/2

Table 13.10 Reed–Solomon characteristics for Q 13.2.

n k Max(s) Max(r)

255 251 4
255 239 8
255 223 16

15 4 8
255 4 8

568 Chapter 13 Digital Television Channel Coding and Modulation

13.9 Complete the missing entries in Table 13.11, relating the input data rate, code rate, and
output bit-stream rate for a convolutional coder.

13.10 Figure 13.31 shows the VSB trellis encoder used for ATSC. Draw the block diagram of
a decoder to reproduce X1 and X2 from R, assuming that no transmission errors occur.

13.11 Calculate the total bit rate of the DVB transmission parameter signaling in the 2k and
8k modes.

13.12 A DVB system, using the 8k mode, employs two transmitters on a single-frequency net-
work. What is the maximum permissible difference in path length between a receiver and
each of the transmitters before the difference in arrival times of the two transmissions ex-
ceeds the length of the guard interval? Perform the calculation for ∆/TU � 1/4 and 1/32.

13.13 Calculate the average number of DVB transmission parameter signaling blocks
transmitted each second on the carrier with index 34 in 2k and 8k modes.

13.14 Draw the block diagram of a decoder to recover the values of X1 and X2 from the
sequence R generated by the encoder shown in Figure 13.31. This decoder need is only
able to function correctly where all values of R are correctly received.

13.15 Calculate the number of data frames, data fi elds, data segments, and MPEG-2 transport
packets per second carried by an ATSC digital television channel.

13.16 Calculate the proportions of the ATSC channel capacity used for carriage of

(a) fi eld sync,

(b) segment sync,

(c) trellis coder overhead,

(d) Reed–Solomon coder overhead, and

(e) MPEG-2 transport stream packets.

13.17 Calculate the proportions of the DVB channel capacity used for carriage of

(a) TPS,

(b) scattered and continual pilots,

(c) convolutional coder overhead,

(d) Reed–Solomon coder overhead, and

(e) MPEG-2 transport stream packets.

13.18 Calculate the minimum bandwidth required to transmit a 64 kbit/s signal without sig-
nifi cant intersymbol interference using

(a) BPSK,

(b) QPSK,

Table 13.11 Relationship between input bit-stream rate, code rate, and output
bit-stream rate for Q 13.9.

Input bit-stream rate Code rate Output bit-stream rate

100 kbit/s 1/2 200 kbit/s
1/3 3 Mbit/s

300 kbit/s 450 kbit/s
150 bit/s 5/6

3/4 160 Mbit/s

(c) 16-QAM, and

(d) 64-QAM.

13.19 Calculate the minimum bandwidth (based on the Nyquist criterion) required to trans-
mit a 128 kbit/s signal using

(a) BPSK,

(b) QPSK,

(c) 16-QAM, and

(d) 64-QAM.

13.20 Calculate the number of data bits carried by one DVB OFDM symbol in 2k and 8k
modes for each of the three modulation schemes: QPSK, 16-QAM, and 64-QAM.

MATLAB EXERCISE 13.1

The aim of this exercise is to implement the DVB 8k mode using the inverse Fourier
transform. The sequence of operations is to pack bits into modulation symbols, to
interleave these modulation symbols across OFDM symbols, to convert this array of
OFDM symbols to a sequence of samples to be sent to the transmitter, and fi nally to
add the guard intervals.

Write a MATLAB function to convert an input array of bits into an output
array of symbols for QPSK, 16-QAM, or 64-QAM.

Write a MATLAB function that takes as its input an array of QPSK, 16-QAM,
or 64-QAM symbols, which it interleaves across 8k OFDM symbols using
the parameters set out in Section 13.4.1.1, and returns an array of 8k OFDM
symbols.

Implement an 8k OFDM modulator in accordance with the description in
Section 13.4.1.1.

Add the guard interval to the beginning of each OFDM symbol.

MATLAB EXERCISE 13.2

The aim of this exercise is to evaluate the performance of the channel coding systems
used in DVB and ATSC.

Write a MATLAB function that generates a random bit stream and
convolutionally encodes this bit stream using the DVB convolutional encoder.

Write a MATLAB function that decodes this random bit stream using hard-
decision Viterbi decoding.

Write a function that introduces random errors into the coded bit stream at a
nominated error rate.

Grouping the output bits from the Viterbi decoder into 8-bit symbols, plot
the output symbol error rate of the Viterbi decoder against its input bit error
rate. This should be done for input bit error rates in the range 10�1–10�6. You

1.

2.

3.

4.

1.

2.

3.

4.

MATLAB Exercise 13.2 569

570 Chapter 13 Digital Television Channel Coding and Modulation

may need to run these simulations a number of times and average the results
to obtain useful plots.

Assuming that the input symbol errors to the DVB RS decoder are randomly
spaced, use the information in the graph in Figure 13.19 to plot the output bit
error rate of the DVB concatenated coder versus its input bit error rate.

Hint: the convenc and vitdec functions in the MATLAB communications tool-
box provide convolutional encoding and decoding.

MATLAB EXERCISE 13.3

The aim of this exercise is to implement a convolutional interleaver in MATLAB.

Implement a 6-level convolutional interleaver using a MATLAB function.
The argument to this function is an array of data to be interleaved. The delay
D is one array element.

Extend the interleaver so that the number of levels can be specifi ed as a
second argument to the function.

Further extend the interleaver function so that the register size (expressed in
array elements of the input data) can be specifi ed as a third argument to the
function.

REFERENCES

While DVB also supports satellite and cable delivery, the channel coding and modulation used for
these channels differs from that used for terrestrial broadcast, and is not described here.
C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J. 27, 1948, 379–423 and
623–656. Alternatively, see B. Sklar, Digital Communications, Englewood Cliffs, NJ: Prentice-Hall,
1988.
H. Nyquist, Certain topics on telegraph transmission theory, Trans. Am. Inst. Electr. Eng., 47, 1928,
617–644.
The discussion here follows that of Proakis (J. G. Proakis, Digital Communications, 2nd edn.,
New York: McGraw-Hill, 1989.)
D. N. Godard, Self-recovering equalization and carrier tracking in two-dimensional data communi-
cation systems, IEEE Trans. Commun. COM-28, 1980, 1867–1875.
See, for example, B. Sklar, Digital Communications, Englewood Cliffs, NJ: Prentice-Hall, 1988;
J. G. Proakis, Digital Communications, 2nd edn., New York: McGraw-Hill, 1989.
See, for example, B. Sklar, Digital Communications, Englewood Cliffs, NJ: Prentice-Hall, 1988;
J. G. Proakis, Digital Communications, 2nd edn., New York : McGraw-Hill, 1989.
A. J. Viterbi, Error bounds for convolutional codes and an asymptotically optimal decoding
algorithm, IEEE Trans. Inf. Theo. IT13, 1967, 260–269.
Channel coding and modulation for ATSC are described in: ATSC Standard A/53A, ATSC Digital
Television Standard, Advanced Television Systems Committee, 2001, pp. 24–26; ATSC Document
A/54, Guide to the Use of the ATSC Digital Television Standard, Advanced Television Systems
Committee, 1995, p. 60.
Framing structure, channel coding and modulation for digital terrestrial television, Digital Video
Broadcasting (DVB), EN 300 744, Sophia Antipolis: ETSI, 2001.
J. P. Odenwalder, Error Control Coding Handbook, San Diego, CA: Linkabit Corp., 1976.

5.

1.

2.

3.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

571

Chapter 14

Closed Captioning, Subtitling,
and Teletext

14.1. INTRODUCTION

One of the major advantages offered by digital television is the ability to augment
programs with a variety of text, graphics, and even subsidiary audio–visual informa-
tion. The simplest of these ancillary services are closed captioning, also known as
subtitling and teletext.

Subtitling and teletext services in digital television extend those provided in
analog television, which make use of the otherwise unused transmission capacity in
the vertical blanking interval (VBI) to transmit text and simple graphics. Very low
coding effi ciencies are obtained when this information in the VBI is coded using the
video coding tools of MPEG-2. Therefore, both DVB and ATSC carry this ancillary
text information in special-purpose data channels.

14.2. DVB SUBTITLES AND TELETEXT

The ancillary services provided by DVB are as follows:

subtitling, which provides a similar closed-captioning service to that provided
by analog television but with signifi cantly greater fl exibility and

teletext, which replicates the analog television teletext service based on
System-B teletext and is primarily intended to provide backward compatibil-
ity with previous systems and will eventually be superseded by datacasting.

This section describes both of these services.
Both subtitling and teletext data in a DVB stream are carried in PES packets.

Table 14.1 shows the information used by a decoder to identify subtitling and teletext
data so that it can be passed to the appropriate decoder. The stream_type fi eld of
the program map table entry pointing to these PES packets identifi es the stream as
PES packets containing private data. The headers of these PES packets also identify
the payload as private data (by setting the stream_id fi eld to the value 0xBD). DVB

•

•

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

has a convention that the fi rst payload byte of a PES packet containing private data
carries the data_identifi er fi eld, which is used to identify uniquely the type of data
in the payload of the packet.

Further information about subtitling and teletext streams is provided to the de-
coder in the component, subtitling, and teletext descriptors described in Chapter 12.

14.2.1. Subtitles

The subtitling function of DVB is designed for carrying the simple text and graphics
required for closed captioning. These services are used traditionally to provide text
for the hearing impaired and in lieu of dubbing for foreign language content.

Subtitling in DVB is defi ned in ETS 300 743 [1], which specifi es the transmis-
sion and coding of graphical elements. Data is transmitted in the form of pixel struc-
tures, which defi ne objects that can be displayed. These pixel structures are reusable
but are not suitable for downloading character sets because there is no special error
protection provided for pixel structures, which leads to error expansion when an in-
correctly received pixel structure is reused. DVB does not provide any specifi c char-
acter set or font for subtitles. A means is provided to utilize ROM-based pixel struc-
tures, however, although no ROM-based pixel structure is defi ned by the standard. A
network operator may use ROM-based pixel structures for character generation.

In DVB subtitling, a region is composed of one or more objects present in the de-
coder’s memory. A group of regions that are displayed simultaneously forms a page.

Color information is coded with a resolution of 2, 4, or 8 bits, requiring color
lookup tables with 4, 16, or 256 colors, respectively. Pixel data is compressed by ap-
plying run-length coding to consecutive pixels of the same color.

14.2.1.1. Timing

DVB subtitles are delivered in the MPEG-2 stream as private data, carried in PES
packets. The MPEG-2 presentation time stamp defi nes the display time for a subtitle.
This allows subtitle display to be synchronized with other elements of the displayed
program including video and audio.

14.2.1.2. Example Subtitle Operation

A simple example of the operation of the DVB subtitling system is shown in the
fi gures below. Figure 14.1 shows the initial (empty) display. The subtitling systems’

Table 14.1 Identification of subtitling and teletext data in DVB.

Field Value for subtitle Value for teletext

stream_type in PMT 0x06 0x06
stream_id in PES header 0xBD 0xBD
data_identifier in PES payload 0x20 0x10 � 0x1F

572 Chapter 14 Closed Captioning, Subtitling, and Teletext

internal region list is represented on the left side and the output on the display on the
right side.

Figure 14.2 shows the contents of the region list and display after the introduc-
tion of regions. Placing region A in the page specifi es that this region is to be dis-
played. Regions outside the page (B and C) are not displayed. In this example, region
A will be used to display a logo, whereas buffers B and C will be used to display
text. Although the appearance of this logo is similar to the watermarks used in ana-
log television, DVB subtitling does not provide a satisfactory means for conveying
watermarks. A key characteristic of a watermark is that it is diffi cult to remove from
the watermarked image. Because it is transmitted separately from the video, a DVB
subtitle is easily removed.

Once the regions have been defi ned, the pixel structures defi ning graphics to
be displayed can be downloaded as illustrated in Figure 14.3. Because region A is
contained within the current version of the displayed page, the logo is displayed im-
mediately after it is downloaded.

Figure 14.4 shows the delivery of the fi rst text. This text is placed in the region B,
but is not displayed immediately, because region B is not defi ned to lie within the page.

When the time for display of the fi rst text arrives (as indicated by its associated
presentation time stamp), a new version of the page description is activated in which
region B is defi ned to lie at a particular location within the display. Although this
text is displayed (Fig. 14.5), the next text to be displayed can be downloaded into
region C.

Region list display

Figure 14.1 Initial display.

DisplayRegion list

B

C

ALogo

Buffers for

display text

Figure 14.2 Introduce regions.

14.2. DVB Subtitles and Teletext 573

574 Chapter 14 Closed Captioning, Subtitling, and Teletext

The second text is displayed by the use of a new page defi nition, in which region
B is outside the display, but region C is now inside the display. Once the second text
is displayed (Fig. 14.6), the third text can be downloaded into region B.

Finally as shown in Figure 14.7, the third text can be displayed.
This example illustrates the use of regions for immediate display (A) and the

use of regions (B and C) for deferred display and simultaneous offscreen download
of updates.

resurgence around the

globe, with the journey

Display

Train travel is

experiencing a

Region list

B

B

C

A

Figure 14.5 Reveal fi rst text and deliver second text.

DisplayRegion list

B

C

A

Train travel is

experiencing a

Figure 14.4 Deliver fi rst text.

DisplayRegion list

B

C

A

Figure 14.3 Deliver and display logo.

14.2.1.3. Coding for DVB Subtitling Data

Four new syntactic structures are defi ned to carry the DVB subtitling data. The page
composition segment (PCS) defi nes the locations within the picture of those regions
that are to be displayed as part of the page. Each region is defi ned by a region com-
position segment, which specifi es the objects that make up that region. The structure
of each object is defi ned by an object data segment, which specifi es either the pixel
structure for the object or one or more characters from a character set that make up
the object. The color lookup table (CLUT) defi nes the 2, 4, or 8-bit colormap to be
used for a particular page.

Page Composition Segment The PCS defines regions within the displayed
picture into which data is subsequently loaded. Each region is specified to lie within
a specific page. The PCS defines the following for one page:

its page_id, which uniquely identifi es the page;

the page_time_out, which specifi es a time in seconds after which the page is
to be erased, protecting against the loss of a subsequent PCS that would cause
this erasure;

•
•

being more important

than the destination.

Display

resurgence around the

globe with the journey

Region list

B

C

C

A

Figure 14.6 Reveal second text and deliver third text.

Display

being more important

than the destination.

Region list

B

B

C

A

Figure 14.7 Reveal third text.

14.2. DVB Subtitles and Teletext 575

576 Chapter 14 Closed Captioning, Subtitling, and Teletext

the page_version_number, which is increased by 1 (mod 16) each time the
page is modifi ed;

the page_state, which is used to specify where suffi cient information is pro-
vided to permit random access and those points at which the memory plan of
the decoder is to be changed;

a list of regions (specifi ed by their region_id) and their horizontal and verti-
cal addresses in the display.

Region Composition Segment The region composition table defines for a
particular region

the region_id, which is used to uniquely identify the region;

the region_version_number, which is increased by 1 (mod 16) each time the
contents of the region are changed;

the region_fi ll_fl ag and region_fi ll_n-bit_color, which are used to allow
a region to be fi lled with a particular color before composition of objects
begins;

the region_width and region_height, specifying the horizontal and vertical
size of the region, respectively;

the region_depth, specifying the maximum pixel depth to be used in render-
ing the region and the region_level_of_compatibility, specifying the mini-
mum CLUT size to be used for rendering the region;

a list of objects from which the region is composed, each of which is identifi ed
by its unique object_id and their locations within the region.

Object Data Segment The object data segment is used to download data into a
specified region in a particular page. Where a predefined character set is used, object
data takes the form of indices in this character set and is carried directly in the object
data segment. Where pixel-based subtitling is to occur, pixel data is carried within
a number of pixel-data subblocks. The syntax of the object data segment is shown
in Table 14.2.

The sync_byte has value “0000 1111,” and is used to ensure that correct syn-
chronization is maintained during decoding. The value of segment_type for the ob-
ject data segment is 0x13. The page_id fi eld identifi es the page in which this object
appears, whereas the segment_length specifi es the length in bytes of the remainder
of the object data segment.

The object_id uniquely identifi es this object, with the object_version_number
used to distinguish between different versions of the same object. The object_
version_number is increased by 1 each time the content of an object is modifi ed.

The object_coding_method specifi es whether the object is coded as a bitmap
(“00”) or string of characters (“01”). The non_modifying_color_fl ag is set to 1 if
the CLUT entry 1 does not overwrite other objects.

•

•

•

•
•

•

•

•

•

Where the object is coded as a bitmap, that is, pixel data is to be transmit-
ted explicitly, the object_coding_method is transmitted as “00.” Pixel data for
the two fields of the interlaced display is transmitted separately. The number of
bytes of data present for the top field is specified by top_field_block_length,
whereas the number of bytes of data for the bottom field is specified by the
value of bottom_field_block_length.

Specifying the value “01” for the object_coding_method fi eld tells the decoder
that the object makes use of a predefi ned character set. In this case, the number of
characters in the object is determined by the value of number_of_codes and the val-
ues of the characters by the contents of the character_code fi elds. Because character

Table 14.2 Syntax for object data segment.

Syntax Number of bits Mnemonic

object_data_segment() {
 sync_byte 8 bslbf
 segment_type 8 bslbf
 page_id 16 bslbf
 segment_length 16 uimsbf
 object_id 16 bslbf
 object_version_number 4 uimsbf
 object_coding_method 2 bslbf
 non_modifying_color_flag 1 bslbf
 reserved 1 bslbf
 if (object_coding_method��’00’) {
 top_field_block_length 16 uimsbf
 bottom_field_block_length 16 uimsbf
 while(processed_length�top_field_block_length)
 pixel-data_sub-block()
 while(processed_length�bottom_field_block_length)
 pixel-data_sub-block()
 if (!wordaligned())
 “0000 0000” 8 bslbf
 }
 if (object_coding_method��’01’){
 number_of_codes 8 uimsbf
 for (i�1, i��number_of_codes, i��)
 character_code 16 bslbf
 }
}

© European Telecommunications Standards Institute 1997. © European Broadcasting Union 1997.
Further use, modification, redistribution is strictly prohibited. ETSI standards are available from
http://pda.etsi.org/pda/ and http://www.etsi.org/services_products/freestandard/home.htm.

14.2. DVB Subtitles and Teletext 577

578 Chapter 14 Closed Captioning, Subtitling, and Teletext

sets are not standardized, but are agreed privately between network operators and
equipment manufacturers, these characters are not restricted to any particular code.

Each call to pixel-data_subblock() returns pixel values for one line of pixel data
in the object.

EXAMPLE 14.1—Object Data Segment

Table 14.3 shows the makeup of an object data segment for an object with page_id equal to
0x10, object_id equal to 0x23, object_version_number 2, and coded as characters. The
contents of the object are the character string “HELLO WORLD,” represented as ASCII
characters.

The bit stream representing this segment is therefore 0000 1111 0001 0011 0000 0000
0001 0000 0000 0000 0001 1011 0000 0000 0010 0011 0010 0100 0000 0000 0000 1011
0000 0000 0100 1000 0000 0000 0100 0101 0000 0000 0100 1100 0000 0000 0100 1100
0000 0000 0100 1111 0000 0000 0010 0000 0000 0000 0101 0111 0000 0000 0100 1111 0000
0000 0101 0010 0000 0000 0100 1100 0000 0000 0100 0100. �

Table 14.3 Example object data segment.

Field name Field value (binary) Meaning

sync_byte 0000 1111 Sync byte is always 0000 1111.
segment_type 0001 0011 0x13 means that this segment

is an object data segment.
page_id 0000 0000 0001 0000 Page id is 0x10.
segment_length 0000 0000 0001 1011 27 data bytes follow in this

object data segment.
object_id 0000 0000 0010 0011 Object id is 0 � 23.
object_version_number 0010 Object version number is 2.
object_coding_method 01 Object coded as characters.
non_modifying_color_flag 0 CLUT entry 1 modifies

underlying objects.
Reserved 0 Always 0.
number_of_codes 0000 0000 0000 1011 Eleven characters follow.
character_code 0000 0000 0100 1000 “H”
character_code 0000 0000 0100 0101 “E”
character_code 0000 0000 0100 1100 “L”
character_code 0000 0000 0100 1100 “L”
character_code 0000 0000 0100 1111 “O”
character_code 0000 0000 0010 0000 “ ”
character_code 0000 0000 0101 0111 “W”
character_code 0000 0000 0100 1111 “O”
character_code 0000 0000 0101 0010 “R”
character_code 0000 0000 0100 1100 “L”
character_code 0000 0000 0100 0100 “D”

14.2.1.4. Pixel-Data Subblock

The pixel-data subblock carries pixel-based subtitling data, that is, all subtitling data
not based on a predefi ned character set. The subset of the syntax of the pixel-data_
sub-block required to transmit pixel data for an 8-bit color lookup table is shown in
Table 14.4.

The sync_byte, segment_type, page_id, and segment_length fi elds have the
same meaning as for the object data segment. The data_type fi eld specifi es the pixel
depth of the color lookup table using the value 0x12 for an 8-bit table.

The 8-bit/pixel_code_string field uses a run-length code to specify a run
of pixels of a particular value in an 8-bit color lookup table. The possible values
of the variable length code used for the 8-bit/pixel_code_string field and their
meanings are shown in Table 14.5. The length of each of these possible values
is 16 or 24 bits, both of which are a multiple of 8, ensuring that whole bytes
of data are always generated. This avoids the need for padding of incomplete
bytes at the end of a line of pixels and simplifies the implementation of the
decoder.

Using the values shown in Table 14.5, 1 pixel whose index in the color lookup
table is 12 would be represented by the 8-bit code 0000 1100. A string of 17 consecu-
tive pixels with color index 34 would be represented by the 24-bit code 0000 0000
1001 0001 0010 0010.

Table 14.4 Syntax for pixel-data_sub-block.

Syntax Number of bits Mnemonic

pixel-data_sub-block() {
 sync_byte 8 bslbf
 segment_type 8 bslbf
 page_id 16 bslbf
 segment_length 16 uimsbf
 data_type 8 bslbf
 …
 if (data_type��’0x12’) {
 repeat {
 8-bit/pixel_code_string vlclbf
 } until (next_bits �� ‘0000 0000 0000 0000’)
 0000 0000 0000 0000 16 bslbf
 }
 …
}

© European Telecommunications Standards Institute 1997. © European Broadcasting Union 1997.
Further use, modification, redistribution is strictly prohibited. ETSI standards are available from
http://pda.etsi.org/pda/ and http://www.etsi.org/services_products/freestandard/home.htm.

14.2. DVB Subtitles and Teletext 579

580 Chapter 14 Closed Captioning, Subtitling, and Teletext

EXAMPLE 14.2—Pixel-Data Subblock

Table 14.6 shows the fi elds making up a pixel-data subblock to carry a line of 15 pixels whose
indices in the current color lookup table are 0 0 0 0 0 5 10 10 10 10 10 10 10 0 5 10.

The bit stream produced to carry this pixel-data subblock is therefore 0000 1111 0001
0011 0000 0000 0001 0000 0000 0000 0000 1101 0001 0010 0000 0000 0000 0101 0000
0101 0000 0000 1000 0110 0000 1010 0000 0000 0000 0001 0000 0101 0000 1010 0000
0000 0000 0000. �

14.2.1.5. Color Lookup Table

The color lookup table specifi es the color to be associated with each index in the
color table. For each index, the luminance, two chrominance components, and trans-
parency are defi ned.

Table 14.5 Eight bits per pixel_code_string.

Value Meaning

0000 0001 � 1111 1111 One pixel in color 1 to one pixel in color 255.
0000 0000 0LLL LLLL L (1–127) pixels in color 0.
0000 0000 1LLL LLLL CCCC CCCC L (3–127) pixels in color C.

Table 14.6 Example pixel-data subblock.

Field name Field value (binary) Meaning

sync_byte 0000 1111 Sync byte is always 0000 1111.
segment_type 0001 0011 0x13 means that this segment

is an object data segment.
page_id 0000 0000 0001 0000 Page id is 0x10.
segment_length 0000 0000 0000 1101 Thirteen data bytes follow.
data_type 0001 0010 0x12 means 8-bit/pixel color

lookup table.
8-bit/pixel_code_string 0000 0000 0000 0101 Five pixels of color 0.
8-bit/pixel_code_string 0000 0101 One pixel of color 5.
8-bit/pixel_code_string 0000 0000 1000 0110

0000 1010
Six pixels of color 10.

8-bit/pixel_code_string 0000 0000 0000 0001 One pixel of color 0.
8-bit/pixel_code_string 0000 0101 One pixel of color 5.
8-bit/pixel_code_string 0000 1010 One pixel of color 10.

0000 0000 0000 0000 End of pixel data.

14.2.2. Teletext

The DVB teletext service is intended to carry teletext coded in accordance with
the ITU-R System B Teletext recommendation [2] and is defi ned by EN 300 472
[3]. The major purpose of this part of the standard is to provide backward com-
patibility with existing equipment, belonging to both the network operator and
their customers. In this section, the characteristics of ITU-R System B Teletext
are described, followed by a discussion of the carriage of this data in a DVB
stream.

14.2.2.1. ITU-R System B Teletext

Teletext provides a text-based service that allows users to browse pages of informa-
tion. Each page consists notionally of 25 lines, each of which contains 40 characters.
Up to 99 pages may exist in one magazine. Up to eight magazines are supported.
Teletext is based on a data carousel, which means that data is transmitted continu-
ously, with new copies of all data transmitted regularly. A new copy of a page usually
completely replaces its previous contents. By regularly retransmitting all pages, a
receiver need to only have a very limited storage capability, certainly not suffi cient
to hold the whole data carousel.

All teletext data is transmitted in packets of 360 bits organized as 45 bytes,
transmitted LSB fi rst. In analog television, all teletext data is transmitted in the VBI.
Up to 16 lines per fi eld (32 lines per picture) are allocated for this purpose, with
each teletext packet occupying one VBI line. The maximum average raw data rate
is therefore 11.52 kbit per picture or 288 kbit/s. There are three types of packet: the
page header packet, normal packets intended for direct display, and nondisplayable
packets.

ITU-R System B Teletext Packet Header Packets begin with a 2-byte clock
run-in sequence (0x5555) and a 1-byte framing code (0x27). Each packet header
specifies a 3-bit magazine number and 5-bit line number to which the content of
the packet is applicable. Page header packets also identify a page number within the
magazine, a page subcode, and control information. All subsequent packets with the
same magazine number refer to this page until another page header packet with the
same magazine number is received.

For packet numbers between 0 and 24, the packet number indicates the line of
the display on which the packet’s data should be displayed. Packet numbers larger
than 24 are used to transmit nondisplayed control data and are described fully in
ETS 300 706.

Teletext data is always transmitted least-signifi cant-bit-fi rst.
The magazine and packet number fi elds are protected against errors using a

Hamming (8,4) code. The Hamming (8,4) code is generated as a Hamming 7/4 code
with an additional parity bit to ensure that the byte has odd parity. The 4 parity bits

14.2. DVB Subtitles and Teletext 581

582 Chapter 14 Closed Captioning, Subtitling, and Teletext

produced are as follows:

P D D D

P D D D

P D D D

P

1 1 3 4

2 1 2 4

3 1 2 3

4

1

1

1

1

= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕
= ⊕ ⊕ ⊕
= ⊕⊕ ⊕ ⊕ ⊕ ⊕ ⊕D D D P P P1 2 4 1 2 3

A 4-bit input word D4 D3 D2 D1 is transmitted as the 8-bit code word D4 P4 D3

P3 D2 P2 D1 P1.

EXAMPLE 14.3—(8,4) Hamming Code

The Hamming (8,4) code word for the input value 0x5 is 0xDC, while the code word for 0x0
is 0x15. �

Protection of the magazine number and packet number is achieved by forming
an 8-bit word in which the magazine number forms the least signifi cant 3 bits and
the packet number forms the most signifi cant 5 bits. Each nibble of this 8-bit word is
coded using the Hamming (8,4) code, giving a total size for these fi elds of 16 bits.

ITU-R System B Teletext Page Header The page header (i.e., Packet 0 of each
page) also indicates a page subcode, which allows one page to contain a number of sub-
pages, each of which is designed to be displayed individually. There are four subcode com-
ponents, denoted as S1, S2, S3, and S4, whose sizes are 4, 3, 4, and 2 bits, respectively.

A number of control bits are also transmitted in the page header, whose mean-
ings are shown in Table 14.7.

Table 14.7 Allocation of control bits in Packet 0.

Control bit Function

C4 Erase page—packets from a previous transmission of the page should be erased
from decoder’s memory before decoding and storing new transmission.

C5 Indicates a news flash that should be displayed boxed inset into normal video.
C6 Subtitle—should be displayed inset into normal picture when subtitles are

selected.
C7 Suppress header—data transmitted in line 0 should be ignored.
C8 Update indicator—data in page has changed since previous transmission.
C9 Interrupted sequence—the associated page is not in numerical order of page

sequence.
C10 Inhibit display—data from page should not be displayed.
C11 Magazine serial—set when all pages from one magazine are transmitted

before any pages from another magazine.
C12, C13,

C14
National character option subset—used to control national character sets.

Six bytes are used to transmit the page subcodes and control bits, with each byte
protected by the Hamming 8/4 code. The fi rst byte carries S1, the second S2 and C4,
the third S3, the fourth S4, C5, and C6, with C7-C10 in byte 5 and C11-C14 in byte 6
as shown in Table 14.8. In each case, leftmost bits are the least signifi cant, and bytes
are transmitted least-signifi cant-bit fi rst.

ITU-R System B Teletext Character Set The basic teletext character set
(known as the G0 character set), which is based on the ASCII standard, supports
minor variations for language-specific characters. The English variant is shown
in Table 14.9. The precise appearance of characters is a decoder option, although
the teletext standard provides a sample character set based on a 10 � 12 pixel
grid.

ITU-R System B Teletext Attributes The presentation of characters may
be modified by the selection of other character sets or by changing the attributes
of the basic G0 set using spacing attributes, a selection of which is shown in
Table 14.10.

Attributes labeled “set-after” apply to subsequent character positions; those
labeled “set-at” apply from the current character position. Each position occupied

Table 14.8 Contents of page subcode and control bits.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

S1 S2 C4 S3 S4 C5 C6 C7 � C10 C11 � C14

14.2. DVB Subtitles and Teletext 583

Table 14.9 Basic teletext character set.

D
6

D
5

D
4

D
3

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

D2 D1 D0

000 (0 8 @ H P X — h p x
001 !) 1 9 A I Q Y a I q y
010 “ * 2 : B J R Z b j r z
011 £ � 3 ; C K S ← c k s ¼
100 $, 4 � D L T ½ d l t '

101 % - 5 � E M U → e m u ¾
110 & . 6 � F N V ↑ f n v �

111 ‘ / 7 ? G O W # g o w �

584 Chapter 14 Closed Captioning, Subtitling, and Teletext

by a spacing attribute is usually displayed as a space. The action of an attribute per-
sists until the end of a row or explicit modifi cation by the transmission of another
 attribute.

ITU-R System B Teletext Syntax An outline of the syntax used by the teletext
system is shown in Table 14.11. Each packet begins with the magazine and packet

Table 14.10 Spacing attributes for ITU-R System B teletext.

Code Function

0x00 Alpha black (“set-after”)—sets the text color to black.
0x01 Alpha red (“set-after”)—sets the text color to red.
0x02 Alpha green (“set-after”)—sets the text color to green.
0x03 Alpha yellow (“set-after”)—sets the text color to yellow.
0x04 Alpha blue (“set-after”)—sets the text color to blue.
0x05 Alpha magenta (“set-after”)—sets the text color to magenta.
0x06 Alpha cyan (“set-after”)—sets the text color to cyan.
0x07 Alpha white (“set-after”)—sets the text color to white—this is the default at the

beginning of a packet.
0x08 Flash (“set-after”)—causes foreground pixels subsequent characters to flash

between foreground and background colors.
0x09 Steady (“set-at”)—cancels a previous flash attribute for subsequent characters.
0x0A End box (“set-after”)—terminates a box beginning with the “Start box”

attribute.
0x0B Start box (“set-after”)—Used with subtitles to specify a part of the picture that

is to be boxed on top of the normal picture. Characters outside this area are
not displayed.

0x0C Normal size (“set-at”)—cancels a previous double height, double width, or
double size code for subsequent characters.

0x0D Double height (“set-after”)—characters have double height and are stretched
into the next row down. Any characters transmitted in these positions are
ignored.

0x0E Double width (“set-after”)—subsequent characters are displayed at double their
normal width.

0x0F Double size (“set-after”)—subsequent characters are displayed at double their
normal height and width.

0x18 Conceal (“set-at”)—subsequent characters are to be displayed as spaces
until a color code is received. A decoder or user action may reveal these
characters.

0x1C Black background (“set-at”)—sets background color for subsequent characters
to black—default at beginning of row.

0x1D New background (“set-at”)—the current foreground color is adopted as the
background color. The foreground color must be changed before subsequently
transmitted characters become visible.

numbers encoded together as two 8/4 Hamming code words. A packet number of
zero indicates a new page, for which the page number is transmitted as an 8/4 Ham-
ming code word, followed by the 6-byte subcode and control field (Table 11.8), of
which each byte is an 8/4 Hamming code word. For packets with packet number less
than or equal to 24, the remaining bytes of each packet are filled with attribute bytes
(Table 11.9) or text characters (Table 11.10).

EXAMPLE 14.4—ITU-R System B Teletext

Figure 14.8 shows an example of teletext page, with a black (default color) background and
white (default color) text. The fi rst line of text is double height, double width. The second line
is double height, whereas the third line is double width, and the last line is normal height and
width. The construction of this simple page in page 10 of magazine 4 with all subcode and
control bits set to 0 is shown in Table 14.12.

14.2. DVB Subtitles and Teletext 585

Figure 14.8 Example of teletext page.

Table 14.11 Syntax of ITU-R System B Teletext.

Syntax Number of bits Mnemonic

teletext_packet() {
 magazine_packet_number 16 bslbf
 if (packet �� 0) {
 page_number 8 bslbf
 subcode_and_control 48 bslbf
 }
 if (packet_number �� 24)
 for (k � n; k � 45; k��)
 char_or_attribute_byte 8 bslbf
 else {
 …
 }
}

586 Chapter 14 Closed Captioning, Subtitling, and Teletext

In this example, because the fi rst two lines are double height, any data transmitted in
Packets 1 or 3 is ignored. The second line of text is therefore transmitted in Packet 2 and the
third line in Packet 4 and the fourth line in Packet 5. �

14.2.2.2. DVB Teletext

DVB allows teletext information to be carried as private data in PES packets of an
MPEG-2 stream. The PID of the PES packets used to carry teletext data is defi ned
in the program map table for that service. DVB teletext may be used to provide
either the teletext service or as an alternative means of subtitling; this usage is iden-
tifi ed within the teletext and also by DVB’s teletext descriptor that is carried in the
 program map table (see Section 11.6.2.3). Multiple streams of teletext may be pres-
ent in one PID. These can be distinguished by different values of data_identifi er
between 0x10 and 0x1F in the PES packet header. Each teletext stream should use a
single value of the data_identifi er.

Table 14.12 Construction of sample teletext page in Figure 11.8.

Command/data
Transmitted data (expressed as 7-bit hexadecimal words,
excluding parity)

Clock run-in and framing 55 55 27
Magazine 4, Packet 0 D0 15
Page number 02 15
Page subcode and control 15 15 15 15 15 15
Set double size attribute 0F
Text “System B Teletext” 53 79 73 74 65 6D 20 42 20 54 65 6C 65 74 65 78 74
Fill remainder of packet 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Clock run-in and framing 55 55 27
Magazine 4, Packet 2 D0 49
Set double height attribute 0D
Text “Double height” 44 6F 75 62 6C 65 20 68 65 69 67 68 74
Fill remainder of packet 20

20 20 20 20 20 20
Clock run-in and framing 55 55 27
Magazine 4, Packet 4 D0 25
Set double width attribute 0E
Text “Double width” 44 6F 75 62 6C 65 20 77 69 64 74 78
Fill remainder of packet 20

20 20 20 20 20 20 20
Clock run-in and framing 55 55 27
Magazine 4, Packet 5 D0 33
Text “Normal height and

width”
4E 6F 72 6D 61 6C 20 68 65 69 67 68 74 20 61 6E 64 20 77 69

64 74 78
Fill remainder of packet 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

The data carried in these packets is decoded by the set-top box, which may pro-
vide directly for the display of this data or may simply transcode this data into the
VBI of an output analog television signal. In the former case, the set-top box stores
the teletext data and provides a user interface to switching between teletext and
video and the selection of a particular page of teletext. In the latter case, a teletext
decoder in the analog television receiver is responsible for decoding and display of
the transcoded teletext data. By restricting the amount of data in each teletext stream
to 16 lines per fi eld, DVB guarantees that transcoding of this teletext data in to an
analog television signal is always possible.

14.3. ATSC CLOSED CAPTIONING

There are two closed-captioning (i.e., subtitling) systems specifi ed by the ATSC
standard, both developed by the Electronic Industry Association. The fi rst is the
“Line 21 Data Service” [4], which provides closed captioning for NTSC ana-
log transmissions. The second, specifi cation for advanced television closed cap-
tioning (ATVCC), is specifi cally designed for digital television [5]. Support for
closed captioning is mandated by the FCC for all digital television receivers in the
United States.

All closed-captioning data in an ATSC transmission is carried as user data in
the MPEG-2 video picture header [6], which is intended to ease the task of trans-
coding between digital and analog signals. Data is carried in quanta of 16 bits, with
each picture header able to carry between 0 and 31 quanta, that is, up to 496 bits. It is
required that an average data rate of 9600 bit/s be maintained for closed-caption data
(if present), which equates to an average of 320 bits per picture with a transmission
rate of 30 pictures per second.

The type of closed-captioning data (i.e., Line-21 data service or ATVCC) is
indicated within the picture-header user data. ATSC’s caption service descriptor
(described in Chapter 12), which may be transmitted in the program map table or
event information table, also tells a decoder which subtitling system is used by a
particular program.

This section describes both the line-21 data service and ATVCC.

14.3.1. Line 21 Data Service

The Line 21 data service provides a text-based closed-captioning system. Its name
comes from the fact that the data for captions in analog television is transmitted in
line 21 of each frame (and optionally in line 248), which is part of the VBI. Each
fi eld carries two 7-bit characters of data, each of which is protected by 1 parity
bit (using odd parity). Seventeen bits are transmitted in each fi eld, beginning with
1 start bit, which is followed by the fi rst 7-bit character (LSB fi rst) and its parity bit,
followed by the second 7-bit character (LSB fi rst) and its parity bit. On a standard
4:3 interlaced display, the Line 21 data service can display 15 lines (numbered 1–15),

14.3. ATSC Closed Captioning 587

588 Chapter 14 Closed Captioning, Subtitling, and Teletext

each containing up to 32 characters. In ATSC digital television, the 2 bytes of the
Line 21 data service are carried in the MPEG-2 video bit stream in the user_data
fi eld of the picture header.

The Line 21 data service supports a number of operating modes, including the
following:

Text mode. The text mode displays text in 7–15 rows of the display and dis-
plays text immediately after it is decoded. The cursor is initially at the top left
position and moves to the right side as text is displayed and down as carriage-
return commands are received. When the display is full, it scrolls up one line
and places new text on the bottom line. If more than 32 characters are trans-
mitted on one line, the 33rd and subsequent characters overwrite the 32nd
character. Text mode is entered on receiving one of the commands “resume
text display” or “text restart.”

Roll-up captioning. The bottom 2, 3, or 4 rows of the display contain the
caption. New text is always displayed on the bottom line (15), and the
display scrolls when this line becomes full or a carriage-return command
is received, while the cursor returns to the beginning of line 15. Roll-
up captioning mode is entered on receiving one of the commands “roll-
up captions, 2-rows,” “roll-up captions, 3-rows,” or “roll-up captions,
4-rows.”

Pop-on captioning. Two text buffers are provided, one for the caption cur-
rently being displayed and the other for the caption currently being received.
The received caption text is buffered without changing the displayed caption.
When an “end of caption” command is received, the buffers swap roles. Four
rows of text (either rows 1–4 or 12–15) are supported. This mode is entered
when the “resume caption loading” command is received. The “erase nondis-
played memory” is used to remove the contents of the receiver buffer before
transmitting its new contents.

Paint-on captioning. One text buffer is provided, into which caption text is
both loaded on decoding and simultaneously displayed. This mode is entered
on receipt of the “resume direct captioning” command.

All transmitted data is either a control code, a text character, or a null character.
All control codes have the form 001HXXX XXXXXXX, which allows them to
be distinguished from text characters, all of which have the form 1XXXXXX or
01XXXXX. Two channels of caption data are supported, distinguished by the 1-bit
value of “H” in the control code. A null character is used as a fi ller where no data is
to be transmitted.

Control codes consist of 2 bytes of data, which are transmitted twice. There
are three types of control codes: preamble address codes, midrow codes, and
miscellaneous control codes. Prototypes of the three types of control codes are
shown in Table 14.13. H is used to distinguish commands associated with the two

•

•

•

•

 captioning channels supported. U is set to one if the caption is to be underlined. If
N is zero, C2 C1 C0 determines the color in which text is displayed in accordance
with Table 14.14. If N is one, text is displayed in white and indented by 4n spaces,
where n is the 3-bit, unsigned binary number represented by C2 C1 C0 spaces. L3

L2 L1 L0 determines the row number to which text is addressed for the preamble
control code, following the assignment set out in Table 14.15. The commands as-
sociated with the miscellaneous control codes are represented by the value of M3

M2 M1 M0 and are defi ned in Table 14.16. F is zero if the command is transmitted
in line 21, one if the command is transmitted in line 248.

Miscellaneous control codes are used to set the operating mode of the closed-
captioning decoder and sometimes to control its operation within this mode (e.g., to
fl ip memories in the pop-on captioning mode).

Preamble address codes are always used at the beginning of a line of text, except
in the caption-roll-up and text modes. In these latter cases, the line on which text is
displayed is determined automatically by the mode. In other modes, the specifi cation
of the line number in the preamble address code is used by the decoder to position
text in the display. Color attributes are automatically reset at the beginning of each
line.

Midrow codes are used within a line of text to alter its attributes and may also
be used at the beginning of a line of text in caption-roll-up and text modes. Chang-
ing the color automatically turns off italics; changing the italics has no effect on the
color.

Table 14.13 Prototypes of control codes.

Code Prototype

Preamble address code 0 0 1 H L3 L2 L1 1 L0 N C2 C1 C0 U
Midrow code 0 0 1 H 0 0 1 0 1 0 C2 C1 C0 U
Miscellaneous control code 0 0 1 H 1 0 F 0 1 0 M3 M2 M1 M0

14.3. ATSC Closed Captioning 589

Table 14.14 Color codes.

C2 C1 C0 Color

000 White
001 Green
010 Blue
011 Cyan
100 Red
101 Yellow
110 Magenta
111 Italic

590 Chapter 14 Closed Captioning, Subtitling, and Teletext

Table 14.16 Commands for miscellaneous control codes.

M3 M2 M1 M0 Command

0000 Resume caption loading
0001 Backspace
0010 Reserved
0011 Reserved
0100 Delete to end of row
0101 Roll-up captions, 2 rows
0110 Roll-up captions, 3 rows
0111 Roll-up captions, 4 rows
1000 Flash on
1001 Resume direct captioning
1010 Text restart
1011 Resume text display
1100 Erase displayed message
1101 Carriage return
1110 Erase nondisplayed memory
1111 End of caption (flip memories)

Table 14.15 Codes for row addresses.

L3 L2 L1 L0 Row number

0000 11
0001 Not used.
0010 1
0011 2
0100 3
0101 4
0110 12
0111 13
1000 14
1001 15
1010 5
1011 6
1100 7
1101 8
1110 9
1111 10

Characters for display may follow a preamble address code or a midrow con-
trol code. The basic character set for captions is shown in Table 14.17. These codes
mostly follow the ASCII standard.

EXAMPLE 14.5—Line-21 Data Service

What data is transmitted by the Line-21 data service to display the text:

Hello world
Line-21 data standard is published
by the EIA
with the fi rst and last lines colored green and the middle line colored blue in the “roll-up

captions, 2 rows” mode.
Table 14.18 shows the sequence of transmitted data required in order to transmit the text.

The transmission begins with the miscellaneous command to set the transmission mode. This
has the binary form 001H10F010M3M2M1M0. For this command, M3M2M1M0 � 0101, so if
H � 0 and F � 0, the binary form of the command is 0010100 00100101, which is equivalent
to 14 25 in hexadecimal.

Once the transmission mode is set, a midrow command is used to set the attributes of
the row of text to green. After the line of text is transmitted, a carriage- return command
moves the display to the next line of text, and two midrow commands are required to set
the text to blue italics. Following some text, a midrow command setting the color is used to
turn off italics, after which more text is transmitted on the same line. This line is followed
by another carriage-return command, a midrow command to begin the next line and the text
of the line.

14.3. ATSC Closed Captioning 591

Table 14.17 Basic character set of EIA-608 closed captioning.
D

6
D

5
D

4
D

3

01
00

01
01

01
10

01
11

10
00

10
01

10
10

10
11

11
00

11
01

11
10

11
11

D2 D1 D0

000 (0 8 @ H P X ú h p x
001 !) 1 9 A I Q Y a i q y
010 “ á 2 : B J R Z b j r z
011 # � 3 ; C K S [c k s ç
100 $, 4 � D L T é d l t �

101 % - 5 � E M U] e m u Ñ
110 & . 6 � F N V í f n v ñ
111 ‘ / 7 ? G O W ó g o w �

592 Chapter 14 Closed Captioning, Subtitling, and Teletext

The complete stream of characters to be transmitted is therefore 14 25 11 22 48 65 6C
6C 6F 20 77 6F 72 6C 64 14 2D 11 24 11 2E 4C 69 6D 65 2D 32 31 20 44 61 74 61 20 43 74
61 6D 64 61 72 64 20 11 24 69 72 20 70 75 62 6C 69 73 68 65 64 20 62 79 14 2D 11 22 74 68
65 20 45 49 41 2E 14 2D. �

14.3.2. Advanced Television Closed Captioning

The closed captioning used for all ATSC services is defi ned by EIA-708-B [7] and is
known as ATVCC. This caption system supports text captions that are displayed in
windows on the screen. The structure of the caption services associated with a video
stream is defi ned by the ATVCC service directory carried in the caption service
descriptor in the program map table and/or event information table.

All ATSC television services carry ATVCC data. Each second of video car-
ries a nominal 9600 bits, which is normally allocated as 20 bytes per frame with a
frame rate of 60 Hz. This constant-bit-rate approach means that insertion of closed-
captioning data into a precoded video stream can be accomplished without the need
for retiming of the bitstream (with its accompanying diffi culties of recoding the
clock references in the transport stream).

All ATVCC data is transmitted in packets, each of which may overlap frame
boundaries. Data is inserted into the video bit stream in “frame order.”

The ATVCC specifi cation assumes that the underlying ATSC system provides a
nominally error-free channel. Consequently, no channel coding is provided by ATVCC.

ATVCC allows several different captioning services to be multiplexed together,
allowing the viewer to select the most appropriate. This would allow, for example,
subtitles for a movie to be carried in a number of different languages, while at the
same time providing a separate captioning service for hearing-impaired viewers.

Table 14.18 Sequence of transmitted data for Line-21 example.

Command/data
Transmitted data (expressed as 7-bit hexadecimal words,
excluding parity)

Roll-up captions, 2-rows 14 25
Midrow command, green 11 22
“Hello world” 48 65 6C 6C 6F 20 77 6F 72 6C 64
Carriage return 14 2D
Midrow command, blue 11 24
Midrow command, italics 11 2E
“Line-21 Data Standard ” 4C 69 6D 65 2D 32 31 20 44 61 74 61 20 43 74 61 6D 64 61 72 64 20
Midrow command, blue 11 24
“is published by” 69 72 20 70 75 62 6C 69 73 68 65 64 20 62 79
Carriage return 14 2D
Midrow command, green 11 22
“the EIA” 74 68 65 20 45 49 41 2E
Carriage return 14 2D

Data from each captioning service is displayed in windows, which can be
positioned on the video display. The ATVCC bit stream includes information that
describes the attributes of these windows (such as size and color) and directs text
into a particular window for display.

14.3.2.1. Caption Display Model

In the ATVCC channel, data is assigned to one of 63 caption services. Caption ser-
vice 1 is the primary caption service, whereas caption service 2 is known as the
 secondary language service. It is intended that a viewer selects one particular cap-
tion service to be decoded. Support for multiple caption services means that simulta-
neous support can be provided for several different secondary languages, as well as
providing captions for the hearing impaired.

All caption data are displayed as text in windows, very much like the windows
provided by a personal computer. Each window is displayed over the top of the pro-
gram’s video material. A caption service may defi ne up to eight windows.

Each caption window is assigned a number of attributes, including its size and
background color. Each window has an associated pen, which also has attributes that
control the properties of characters as they are displayed.

This section presents the ATVCC models for the screen, window and pen, and
the method used for specifying color.

Color Representation Color in ATVCC is specified using a palette of red,
green, and blue. Each color is specified with a resolution of 2 bits, making possible
a total of 64 distinct colors. For example, white is specified by the (r, g, b) values
(3,3,3), black by (0,0,0), and bright green by (0,3,0).

In some circumstances, opacity can be specifi ed. Opacity is defi ned by a 2-bit
number, with the meanings shown in Table 14.19. “Solid” means that pixels lying
behind the object are not visible; “translucent” means that pixels lying behind the
object are partially visible, and transparent means that pixels lying behind the object
are fully visible (and the object itself is not visible). “Flashing” means that the object
alternates between solid and transparent.

Caption Screen Coordinate System ATVCC defines a rectangular grid of
cells that sits over the top of the displayed picture. Normally, this grid does not cover
the whole of the displayed picture, leaving margins at the left, right, top, and bottom

14.3. ATSC Closed Captioning 593

Table 14.19 Opacity values associated with ATVCC colors.

Opacity Meaning

0 Solid
1 Flashing
2 Translucent
3 Transparent

594 Chapter 14 Closed Captioning, Subtitling, and Teletext

of the screen. For a 16:9 aspect ratio display, the grid is 210 horizontal cells by 75
vertical cells. For a 4:3 aspect ratio, the grid is 160 cells horizontally and 75 cells
vertically.

Grid coordinates are specifi ed as pairs of integers, with the top left cell being
(0, 0). The fi rst number specifi es the horizontal location (column) of the cell; the
second specifi es the vertical location (row).

Caption Windows Each service may define up to eight caption windows. The
position of a window on the screen may be specified using either relative or absolute
positioning.

All caption data are displayed in windows, which occupy a part of the display screen.
A window must be defi ned before caption data can be displayed in it. All windows are
rectangular in shape. For each window, the following parameters are defi ned:

Priority. The relative priority of two windows determines which one appears
on top if they overlap. Eight different priorities are supported. A lower value
of the priority indicates a higher priority.

Anchor identifi er. The anchor of a window is the point in the window that is
used to specify its location. The anchor has two components: one horizontal
and the other vertical. The horizontal component may refer to the left, middle,
or right side of the window. The vertical component may refer to the top,
middle, or bottom portion of the window. In total, there are therefore nine
different possible types of anchor.

Anchor location. The anchor location specifi es a horizontal and vertical value
for the location of the window’s anchor. Both horizontal and vertical values
are specifi ed in terms of the screen’s grid of cells.

Window size. The size of the window is specifi ed as the number of rows of
characters contained in the window vertically and the number of columns
horizontally. The actual displayed size of the window therefore depends on
the font size.

Row lock and column lock. These parameters are used to specify whether
or not the display is allowed to change the number of rows and columns in a
window on the fl y.

Visibility. The visibility of a window may be set to 1 (displayed) or 0 (hidden).

Row and column count. The row and column count specify the width and
height of the window, respectively.

Window style id. Allows window attributes to be selected from one of the
seven predefi ned styles when the window is created.

Pen style id. The attributes associated with the pen in the current window may
be specifi ed by the pen style identifi er.

Justifi cation. Displayed text may be left, right, center, or full justifi ed.

Print direction. The direction in which characters are written may be left-to-
right, right-to-left, top-to-bottom, or bottom-to-top.

•

•

•

•

•

•
•

•

•

•
•

Scroll direction. When carriage returns occur, the scroll direction controls the di-
rection in which scrolling occurs. The options for scroll direction are the same as
for print direction. Horizontal scrolling is permitted only for vertical print direc-
tions. Likewise, vertical scrolling is only allowed for horizontal print directions.

Word wrap. Word wrap specifi es whether the decoder is allowed to force
words onto a new line where a transmitted line is too long to be displayed in
the window.

Display effect. The display effect controls the use of snap, wipe, and fade
when a window is displayed or hidden.

Effect direction. Where an effect such as wipe is used in displaying or hiding
a window, the direction of this effect can be specifi ed.

Effect speed. The effect speed determines the time for a window to transition
fully between the hidden and displayed states.

Fill color. The fi ll color is the color of the window background, using the
color format defi ned in section “Color Representation.”

Fill opacity. The fi ll opacity is the opacity of the window fi ll as specifi ed in
Table 14.19.

Border type. Window borders may be used to surround windows. These bor-
ders may be raised, depressed, uniform, or drop shadowed.

Border color. The border color is the color of the window border, using the
color format defi ned in section “Color Representation.”

Caption Pen The caption pen is a notional pen that draws new text to be displayed
onto a window. The pen has a number of attributes, which control the properties of
characters that are moved to the display. Changing the pen attributes only affects
future characters displayed. Characters already in the display remain unchanged.

The attributes associated with the caption pen are described in section “ATVCC
Pen Commands.”

14.3.2.2. Caption Packet Format

Each caption packet consists of a 1-byte header and between 1 and 127 bytes of cap-
tion data. The packet header contains a 2-bit sequence number, used by the receiver
to detect lost packets, and a 6-bit packet size code. The total length of the packet
(including header) is twice the value specifi ed in the packet size code.

14.3.2.3. Service Block Payload

Within each packet, caption data is carried in service blocks. Each service block car-
ries data for one service and cannot overlap a caption packet boundary. A packet car-
ries one or more service blocks. Each service block consists of a 1 or 2 byte header
and a payload, which carries between 0 and 31 bytes of data for one service.

•

•

•

•

•

•

•

•

•

14.3. ATSC Closed Captioning 595

596 Chapter 14 Closed Captioning, Subtitling, and Teletext

For services 1–7, the service block has a 1-byte header, consisting of a 3-bit
service number and a 5-bit payload length. For services 8–63, the fi rst header byte
specifi es a service number of zero, and a second header byte carries a 6-bit service
number fi eld. The remaining 2 bits of this second byte are set to 0.

Each payload byte of a service block carries one text character or forms part of
a control code. The decoder uses the most signifi cant 4 bits of a byte to determine
whether it is a character to be displayed or a control code as set out in Table 14.20.

14.3.2.4. ATVCC Commands

ATVCC commands are used to control the operation of the closed-captioning system
in the receiver. They are grouped into three classes:

Windows commands. Windows commands are used to create, delete, clear,
display, and hide closed-captioning windows. They can also be used to set the
attributes of windows, including their color and position.

Pen commands. ATVCC pen commands are used to control the attributes,
color, and location of the pen.

Synchronization commands. The ATVCC synchronization commands are
used to program delays between when caption data is received and displayed.

All of the commands in each of these three classes are discussed in the remain-
der of this section.

•

•

•

Table 14.20 Assignment of codes in ATVCC service block payload.

Most significant bits of byte Use

0 Subset of ASCII control codes.
1
2 Displayed characters, using a slightly modified

form of the standard ASCII codes.
3
4
5
6
7
8 Caption control codes (see Section 14.3.2.4).
9
A Additional characters following the ISO 8859-1 Latin

character set and room for future expansion.
B
C
D
E
F

ATVCC Windows Commands The ATVCC windows commands control the
operation of windows, allowing the current window to be set, new windows to be
defined, the attributes of windows to be changed, the display status (displayed or
hidden) of windows to be altered, and windows to be deleted.

SetCurrentWindow The SetCurrentWindow command is a 1-byte command that
selects one of the eight windows to be the current window. This window must have
already been defi ned using the Defi neWindow command.

The structure of the ATVCC SetCurrentWindow command, including its argu-
ment, is shown in Table 14.21. The number of the window (between 0 and 7) chosen
to be the new current window is specifi ed as the 3-bit id value.

Defi neWindow The ATVCC Defi neWindow command is a 7-byte command that
is used to create a new window. The structure of the ATVCC Defi neWindow com-
mand, including its arguments, is shown in Table 14.22. The type (ap) and horizontal
and vertical coordinates (ah and av, respectively) of the anchor point for the window
are specifi ed, along with its priority (p), relative positioning (rp), row count (rc),
column count (cc), row lock (rl), column lock (cl), visibility (v), window style id
(ws), and pen style id (ps). The available values for each of these parameters are set
out in previous sections.

ClearWindows The structure of the ATVCC ClearWindows command is a 2-byte
command that specifi es a list of windows whose contents are to be cleared. This
command can be used to clear simultaneously between one and eight windows.

14.3. ATSC Closed Captioning 597

Table 14.21 Structure of the ATVCC SetCurrentWindow command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 0 id

Table 14.22 Structure of the ATVCC DefineWindow command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 1 1 id
1 0 0 v rl cl p
2 rp av
3 ah
4 ap rc
5 0 0 cc
6 0 0 ws ps

598 Chapter 14 Closed Captioning, Subtitling, and Teletext

The structure of the ATVCC ClearWindows command, including its arguments,
is shown in Table 14.23. The second byte of the command is a binary mask that
specifi es which windows are to be cleared. For example, if window 0 is to be cleared,
bit 0 is set in this byte; if window 5 is to be cleared, bit 5 is set.

DeleteWindows The structure of the ATVCC DeleteWindows command, in-
cluding its arguments, is shown in Table 14.24. The bit mask for specifying
the windows to be cleared has the same structure as for the ClearWindows
command.

DisplayWindows The ATVCC DisplayWindows command is a 2-byte com-
mand, which specifi es which of the eight windows are to be visible on the
screen.

The structure of the ATVCC DisplayWindows command, including its argu-
ments, is shown in Table 14.25. The bit mask for specifying the windows to be
cleared has the same structure as for the ClearWindows command. For each bit set
to 1, the corresponding window is made visible. For each bit set to 0, the display
status of the corresponding window is not changed.

Table 14.23 Structure of the ATVCC ClearWindows command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 0
1 w7…w0

Table 14.24 Structure of the ATVCC DeleteWindows command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 0
1 w7…w0

Table 14.25 Structure of the ATVCC DisplayWindows command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 0 1
1 w7…w0

HideWindows The ATVCC HideWindows command specifi es windows that are
to be hidden. The structure of the ATVCC HideWindows command, including its
arguments, is shown in Table 14.26. The bit mask for specifying the windows to be
cleared has the same structure as for the ClearWindows command. For each bit set
to 1, the corresponding window is hidden. For each bit set to 0, the display status of
the corresponding window is not changed.

ToggleWindows The ATVCC ToggleWindows command is a 2-byte command. Its
purpose is to toggle the visibility of nominated windows, that is, hidden windows are
displayed and displayed windows are hidden.

The structure of the ATVCC ToggleWindows command, including its argu-
ments, is shown in Table 14.27. The bit mask for specifying the windows to be
cleared has the same structure as for the ClearWindows command. For each bit set
to 1, the visibility of the corresponding window is toggled. For each bit set to 0, the
visibility of the corresponding window is not changed. A mask value of 0xFF causes
the visibility of all windows to be toggled.

SetWindowAttributes The ATVCC SetWindowAttributes command is a 5-byte
command, used to set attributes for a window that has already been defi ned using
the Defi neWindow command.

The structure of the ATVCC SetWindowAttributes command, including its
arguments, is shown in Table 14.28. The attributes set are the fi ll color and opacity
(fr, fg, fb, and fo), the border color (br, bg, and bb), the border type (bt), the word
wrap (ww), print direction (pd), scroll direction (sd), justifi cation (j), effect speed
(es), effect direction (ed), and display effect (de). The available values for each of
these parameters are set out in previous sections.

Table 14.26 Structure of the ATVCC HideWindows command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 0
1 w7…w0

14.3. ATSC Closed Captioning 599

Table 14.27 Structure of the ATVCC ToggleWindows command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 0 1 1
1 w7…w0

600 Chapter 14 Closed Captioning, Subtitling, and Teletext

ATVCC Pen Commands. The three ATVCC pen commands are used to set the
attributes, color, and location of the pen.

SetPenAttributes The ATVCC SetPenAttributes command is used to set the at-
tributes associated with the pen for the current window. These attributes include the
pen size, font style, text tag, and control of italics and underlining. Pen attributes
for a window can be changed at any time and remain in effect until either the next
SetPenAttributes command or the window is closed.

The structure of the ATVCC SetPenAttributes command, including its argu-
ments, is shown in Table 14.29. The arguments to the SetPenAttributes command
are as follows:

Text tag (tt). Sixteen caption function tags are defi ned. They are used to in-
dicate that the text displayed is dialog, source or speaker identifi cation, elec-
tronically synthesized voice, dialog in a language different to the primary
language, voiceover, and a range of other effects.

Offset (o). Displayed text may be one of superscript, subscript, or normal.

Pen size (s). Specifi es whether the pen is small, medium, or large.

Italics (i). A value of 1 indicates the use of italics.

Underline (u). A value of 1 indicates that text is to be underlined.

Edge type (et). Edge types for the text include raised, depressed, and uniform.

Font style (fs). Although a specifi c font cannot be specifi ed, font styles such
as the use of serifs, mono versus proportional spacing, and the use of small
capitals can be specifi ed.

•

•
•
•
•
•
•

Table 14.29 Structure of the ATVCC SetPenAttributes command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 0
1 tt o s
2 i u et fs

Table 14.28 Structure of the ATVCC Set Window Attributes command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 1 0 1 1 1
1 fo fr fg fb
2 bt br bg bb
3 ww pd sd j
4 es ed de

SetPenColor The ATVCC SetPenColor command is used to set the color that is
used for characters that are written to the window. Three colors are specifi ed: the
foreground color, the background color, and the edge color, each specifi ed using the
format described in section “Color Representation.”

The structure of the ATVCC SetPenColor command, including its arguments is
shown in Table 14.30. The red, green, and blue values for the text foreground color
are defi ned by fr, fg, and fb, respectively, with the foreground opacity defi ned by fo.
Similarly, the red, green, and blue values for the text background color are defi ned
by br, bg, and bb and the background opacity by bo. The color for the edge of the
text is specifi ed by er, eg, and eb. The opacity of the text edge is the same as the
foreground.

SetPenLocation The ATVCC SetPenLocation command sets the location at which
the next text is written to the current caption window (known as the pen location).
This command takes two arguments, which are the row address (r) and the column
address (c) to which the pen is to be moved. The structure of the ATVCC SetPenLo-
cation command, including its arguments, is shown in Table 14.31.

A confl ict exists between the window justifi cation and the location specifi ed
by the SetPenLocation command if the justifi cation is not left. The current window
justifi cation is not left:

if the print direction is left-right or right-left, the column value c is ignored,
or

if the print direction is top-bottom or bottom-top, the row value r is ignored.

•

•

14.3. ATSC Closed Captioning 601

Table 14.30 Structure of the ATVCC SetPenColor command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 0 1
1 fo fr fg fb
2 bo br bg bb
3 0 0 er eg eb

Table 14.31 Structure of the ATVCC SetPenLocation command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 1 0 0 1 0

1 0 0 0 0 r
2 0 0 c

602 Chapter 14 Closed Captioning, Subtitling, and Teletext

ATVCC Synchronization Commands The ATVCC synchronization commands are
used to control the decoding of caption services. They can be used to either defi ne a
delay between receipt of data and its decoding or to reset the decoder.

Delay The ATVCC Delay command is a 2-byte command, which suspends in-
terpretation of the current caption service’s command input buffer for t tenths of a
second. Interpretation recommences when one of the following occurs:

the specifi ed time delay expires,

a DelayCancel command is received,

the service’s input buffer becomes full, or

a Reset command is received for the service.

The structure of the ATVCC Delay command, including its argument, is shown
in Table 14.32.

DelayCancel The ATVCC DelayCancel command is a 1-byte command, which
cancels all active delays in the caption decoder. It takes no arguments. The structure
of the ATVCC DelayCancel command is shown in Table 14.33.

Reset. The ATVCC Reset command is a 1-byte command that reinitializes the cap-
tion service for which it is received. It takes no arguments. The structure of the AT-
VCC Reset command is shown in Table 14.34. The reset command causes all of the
service’s windows to be deleted and removed from the display, all attributes of these
windows and their pens to be removed and the service input buffer to be fl ushed.

•
•
•
•

Table 14.32 Structure of the ATVCC Delay command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 0 1
1 t

Table 14.33 Structure of the ATVCC DelayCancel command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0

Table 14.34 Structure of the ATVCC Reset command.

Byte

Bit number

7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1

14.4. CONCLUSION

Both ATSC and DVB provide a range of ancillary text services. For ATSC, these are
aimed at text-only closed captioning, whereas DVB supports both subtitling based
on graphic elements and text-only teletext. In both cases, the ability to provide back-
ward compatibility with systems used in existing analog television has been a major
design driver.

Ancillary text services provide a simple means for carrying basic data in a way
that is compatible with the analog television systems that might be used as displays
for digital television decoders. Although the life of a text-only teletext service is
probably limited by the impending availability of a broad range of competing mul-
timedia services, subtitling (or closed captioning) will continue to have a roll to
provide text for language translation and access for the hearing impaired for the
foreseeable future.

PROBLEMS

14.1 Using the syntax of Section 14.2.1.4, encode the following pixel sequence into DVB
subtitling pixel-data subblocks. Each number represents the index in an 8-bit color look-
up table of 1 pixel: 0 0 0 5 5 5 5 5.

14.2 Using the syntax of Section 14.2.1.4, encode the following pixel sequence into DVB
subtitling pixel-data subblocks. Each number represents the index in an 8-bit color look-
up table of 1 pixel: 1 2 3 0 0 0 0 0 0 0 0 68 248 248 248.

14.3 Decode the following DVB subtitling pixel-data subblock: 0000 1111 0001 0011 0000
0000 0000 0101 0000 0000 0000 0111 0001 0010 0000 0000 1000 1000 1010 0111
0000 0000 0100 0000 0001 0001.

14.4 Using the syntax of section “Object Data Segment,” encode the string “Television
Broadcast” into a DVB subtitling object data segment, with page id equal to 2, object id
5, object version number 1.

14.5 Decode the following DVB subtitling object data segment, using the syntax of section
“Object Data Segment”: 0000 1111 0001 0011 0001 1010 0000 0000 0001 1100 0000
0101 0001 0100 0000 0000 0000 1100 0100 0111 0110 1111 0110 1111 0110 0100 0010
0000 0100 1101 0110 1111 0111 0010 0110 1110 0110 1001 0110 1110 0110 0111.

14.6 Decode the following ITU-R System B Teletext packet (all values are in hexadecimal):
55 55 27 CB 15 0F 02 64 65 63 6F 64 65 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20.

14.7 Decode the following ITU-R System B Teletext packet (all values are in hexadecimal):
55 55 27 38 15 0E 15 15 15 15 15 15 0D 65 6E 63 6F 64 65 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20.

14.8 Decode the following ITU-R System B Teletext packet (all values are in hexadecimal):
55 55 27 E6 19 04 6F 6E 65 01 74 77 6F 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20.

14.9 Decode the following ITU-R System B Teletext packet (all values are in hexadecimal):
55 55 27 34 15 C7 15 15 15 15 15 15 15 74 68 72 65 65 20 20 20 20 20 20 20 20 20 20
20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20.

Problems 603

604 Chapter 14 Closed Captioning, Subtitling, and Teletext

14.10 Encode the following set of information into ITU-R System B Teletext packets, ex-
pressing the encoded data as hexadecimal numbers: Magazine 3, packet 0, page 4,
page subcode and control 0x15 0x15 0x15 0x15 0x15 0x15, double size, blue, “This is
a test.”

14.11 Encode the following set of information into ITU-R System B Teletext packets, ex-
pressing the encoded data as hexadecimal numbers: Magazine 2, packet 1, double
height, green, “of manual,” blue, “encoding.”

14.12 Encode the following set of information into ITU-R System B Teletext packets, ex-
pressing the encoded data as hexadecimal numbers: Magazine 1, packet 20, double
width, white, “which is,” blue, fl ash on, “quite painful.”

14.13 Encode the following data using the Line-21 format (with parity bit set to 0), express-
ing the encoded data as hexadecimal numbers: Roll-up captions (2 rows) mode, blue,
“This is a simple closed,” carriage return, blue, “that can,” italic, “be hand-encoded.”

14.14 Encode the following data using the Line-21 format (with parity bit set to 0), express-
ing the encoded data as hexadecimal numbers: Text mode, row 5, yellow, “One,” row
10, blue, italic, “two.”

14.15 Decode the following of Line-21 hexadecimal data stream: 14 2B 53 61 6D 70 6C 65
11 26 74 65 78 74.

14.16 Decode the following of Line-21 hexadecimal data stream: 14 27 11 2E 4D 6F 72 65
14 2D 74 65 78 74.

REFERENCES

Digital Video Broadcasting (DVB); DVB subtitling system, ETS 300 743, Sophia Antipolis: ETSI,
1997.
The complete specifi cation for System B teletext can be found in:

ITU-R Recommendation 653, System B, 625/50 Television Systems; or
Enhanced Teletext Specifi cation, ETS 300 706, Sophia Antipolis: ETSI, 1997.

Digital Video Broadcasting (DVB); Specifi cation for conveying ITU-R System B Teletext in DVB
Bitstreams, EN 300 472, Sophia Antipolis: ETSI, 1997.
EIA-608, Recommended Practice for Line 21 Data Service, Electronic Industry Association.
EIA-708B, Specifi cation for Advanced Television Closed Captioning (ATVCC), Electronic Industry
Association, December 1999.
See: ATSC Standard A/53A, ATSC Digital Television Standard, Advanced Television Systems Com-
mittee, April 2001, Annex D, pp. 46–57; ATSC Document A/54, Guide to the Use of the ATSC Digi-
tal Television Standard, Advanced Television Systems Committee, October 1995, pp. 96–135.
EIA-708B, Specifi cation for Advanced Television Closed Captioning (ATVCC), Electronic Industry
Association, December 1999.

1.

2.

3.

4.
5.

6.

7.

605

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Appendix

MPEG Tables

Table A.1 Frequencies, critical band rates, and absolute threshold for Layer I at sampling rates of
32, 44.1, and 48 kHz.

Index
i

Frequency (Hz) Critical band rate (z) Absolute threshold (dB)

32 44.1 48 32 44.1 48 32 44.1 48

1 93.75 96.13 62.50 0,925 0,850 0,617 24.17 25.87 33.44

2 187.50 172.27 125.00 1,842 1,694 1,232 13.87 14.85 19.20

3 281.25 258.40 187.50 2,742 2,525 1,842 10.01 10.72 13.87

4 375.00 344.53 250.00 3,618 3,337 2,445 7.94 8.50 11.01

5 468.75 430.66 312.50 4,463 4,124 3,037 6.62 7.10 9.20

6 562.50 516.80 375.00 5,272 4,882 3,619 5.70 6.11 7.94

7 656.25 602.93 437.50 6,041 5,608 4,185 5.00 5.37 7.00

8 750.00 689.06 500.00 6,770 6,301 4,736 4.45 4.79 6.28

9 843.75 775.20 562.50 7,457 6,959 5,272 4.00 4.32 5.70

10 937.50 861.33 625.00 8,103 7,581 5,789 3.61 3.92 5.21

11 1,031.25 9,479.46 697.50 8,708 8,169 6,289 3.26 3.57 4.80

12 1,125.00 1,033.59 750.00 9,275 8,723 6,770 2.93 3.25 4.45

13 1,218.75 1,119.73 812.50 9,805 9,244 7,233 2.63 2.95 4.14

14 1,312.50 1,205.86 875.00 10,301 9,734 7,677 2.32 2.67 3.96

15 1,406.25 1,291.99 937.50 10,765 10,195 8,103 2.02 2.39 3.61

16 1,500.00 1,378.13 1,000.00 11,199 10,629 8,511 1.71 2.11 3.37

17 1,593.75 1,464.26 1,062.50 11,606 11,037 8,901 1.38 1.83 3.15

18 1,687.50 1,550.39 1,125.00 11,988 11,421 9,275 1.04 1.53 2.93

19 1,781.25 1,636.52 1,187.50 12,347 11,783 9,632 0.67 1.23 2.73

20 1,875.00 1,722.66 1,250.00 12,684 12,125 9,974 0.29 0.90 2.53

21 1,968.75 1,808.79 1,312.50 13,002 12,448 10,301 �0.11 0.56 2.32

22 2,062.50 1,894.92 1,375.00 13,302 12,753 10,614 �0.54 0.21 2.12

23 2,156.25 1,981.05 1,437.50 13,586 13,042 10,913 �0.97 �0.17 1.92

24 2,250.00 2,067.19 1,500.00 13,855 13,317 11,199 �1.43 �0.56 1.71

25 2,343.75 2,153.32 1,562.50 14,111 13,578 11,474 �1.89 �0.96 1.49

26 2,437.50 2,239.45 1,625.00 14,354 13,826 11,736 �2.34 �1.38 1.27

27 2,531.25 2,325.59 1,687.50 14,585 14,062 11,988 �2.79 �1.79 1.04

(continued)

Table A.1 (Continued)

Index
i

Frequency (Hz) Critical band rate (z) Absolute threshold (dB)

32 44.1 48 32 44.1 48 32 44.1 48

28 2,625.00 2,411.72 1,750.00 14,807 14,288 12,230 �3.22 �2.21 0.80

29 2,718.75 2,497.85 1,912.50 15,018 14,504 12,461 �3.62 �2.63 0.55

30 2,812.50 2,583.98 1,875.00 15,221 14,711 12,684 �3.98 �3.03 0.29

31 2,906.25 2,670.12 1,937.50 15,415 14,909 12,898 �4.30 �3.41 0.02

32 3,000.00 2,756.25 2,000.00 15,602 15,100 13,104 �4.57 �3.77 �0.25

33 3,093.75 2,842.38 2,062.50 15,783 15,284 13,302 �4.77 �4.09 �0.54

34 3,187.50 2,928.52 2,125.00 15,956 15,460 13,493 �4.91 �4.37 �0.83

35 3,281.25 3,014.65 2,187.50 16,124 15,631 13,678 �4.98 �4.60 �1.12

36 3,375.00 3,100.78 2,250.00 16,287 15,796 13,855 �4.97 �4.78 �1.43

37 3,468.75 3,186.91 2,312.50 16,445 15,955 14,027 �4.90 �4.91 �1.73

38 3,562.50 3,273.05 2,375.00 16,598 16,110 14,193 �4.76 �4.97 �2.04

39 3,656.25 3,359.18 2,437.50 16,746 16,260 14,354 �4.55 �4.98 �2.34

40 3,750.00 3,445.31 2,500.00 16,891 16,406 14,509 �4.29 �4.92 �2.64

41 3,843.75 3,531.45 2,562.50 17,032 16,547 14,660 �3.99 �4.81 �2.93

42 3,937.50 3,617.58 2,625.00 17,169 16,685 14,807 �3.64 �4.65 �3.22

43 4,031.25 3,703.71 2,687.50 17,303 16,820 14,949 �3.26 �4.43 �3.49

44 4,125.00 3,789.84 2,750.00 17,434 16,951 15,087 �2.86 �4.17 �3.74

45 4,218.75 3,875.98 2,812.50 17,563 17,079 15,221 �2.45 �3.87 �3.98

46 4,312.50 3,962.11 2,875.00 17,688 17,205 15,351 �2.04 �3.54 �4.20

47 4,406.25 4,048.24 2,937.50 17,811 17,327 15,478 �1.63 �3.19 �4.40

48 4,500.00 4,134.38 3,000.00 17,932 17,447 15,602 �1.24 �2.82 �4.57

49 4,687.50 4,306.64 3,125.00 18,166 17,680 15,841 �0.51 �2.06 �4.82

50 4,875.00 4,478.91 3,250.00 18.392 17,905 16,069 0.12 �1.32 �4.96

51 5,062.50 4,651.17 3,375.00 18,611 18,121 16,287 0.64 �0.64 �4.97

52 5,250.00 4,823.44 3,500.00 18,823 18,331 16,496 1.06 �0.04 �4.86

53 5,437.50 4,995.70 3,625.00 19,028 18,534 16,697 1.39 0.47 �4.63

54 5,625.00 5,167.97 3,750.00 19,226 18,731 16,891 1.66 0.89 �4.29

55 5,812.50 5,340.23 3,875.00 19,419 18,922 17,078 1.88 1.23 �3.87

56 6,000.00 5,512.50 4,000.00 19,606 19,108 17,259 2.08 1.51 �3.39

57 6,187.50 5,684.77 4,125.00 19,788 19,289 17,434 2.27 1.74 �2.86

58 6,375.00 5,857.03 4,250.00 19,964 19,464 17,605 2.46 1.93 �2.31

59 6,562.50 6,029.30 4,375.00 20,135 19,635 17,770 2.65 2.11 �1.77

60 6,750.00 6,201.56 4,500.00 20,300 19,801 17,932 2.86 2.28 �1.24

61 6,937.50 6,373.83 4,625.00 20,461 19,963 18,089 3.09 2.46 �0.74

62 7,125.00 6,546.09 4,750.00 20,616 20,120 18,242 3.33 2.63 �0.29

63 7,312.50 6,718.36 4,975.00 20,766 20,273 18,392 3.60 2.82 0.12

64 7,500.00 6,890.63 5,000.00 20,912 20,421 18,539 3.89 3.03 0.48

65 7,687.50 7,062.89 5,125.00 21,052 20,565 18,682 4.20 3.25 0.79

66 7,875.00 7,235.16 5,250.00 21,188 20,705 18,823 4.54 3.49 1.06

67 8,062.50 7,407.42 5,375.00 21,318 20,840 18,960 4.91 3.74 1.29

68 8,250.00 7,579.69 5,500.00 21,445 20,972 19,095 5.31 4.02 1.49

69 8,437.50 7,751.95 5,625.00 21,567 21,099 19,226 5.73 4.32 1.66

70 8,625.00 7,924.22 5,750.00 21,684 21,222 19,356 6.18 4.64 1.81

606 Appendix

Table A.1 (Continued)

Index
i

Frequency (Hz) Critical band rate (z) Absolute threshold (dB)

32 44.1 48 32 44.1 48 32 44.1 48

71 8,812.50 8,096.48 5,875.00 21,797 21,342 19,482 6.67 4.98 1.95

72 9,000.00 8,268.75 6,000.00 21,906 21,457 19,606 7.19 5.35 2.08

73 9,375.00 8,613.28 6,250.00 22,113 21,677 19,847 8.33 6.15 2.33

74 9,750.00 8,957.81 6,500.00 22,304 21,882 20,079 9.63 7.07 2.59

75 10,125.00 9,302.34 6,750.00 22,482 22,074 20,300 11.08 8.10 2.86

76 10,500.00 9,646.88 7,000.00 22,646 22,253 20,513 12.71 9.25 3.17

77 10,875.00 9,991.41 7,250.00 22,799 22,420 20,717 14.53 10.54 3.51

78 11,250.00 10,335.94 7,500.00 22,941 22,576 20,912 16.54 11.97 3.89

79 11,625.00 10,680.47 7,750.00 23,072 22,721 21,098 18.77 13.56 4.31

80 12,000.00 11,025.00 8,000.00 23,195 22,857 21,275 21.23 15.31 4.79

81 12,375.00 11,369.53 8,250.00 23,309 22,984 21,445 23.94 17.23 5.31

82 12,750.00 11,714.06 8,500.00 23,415 23,102 21,606 26.90 19.34 5.89

83 13,125.00 12,058.59 8,750.00 23,515 23,213 21,760 30.14 21.64 6.50

84 13,500.00 12,403.13 9,000.00 23,607 23,317 21,906 33.67 24.15 7.19

85 13,875.00 12,747.66 9,250.00 23,694 23,415 22,046 37.51 26.89 7.93

86 14,250.00 13,092.19 9,500.00 23,775 23,506 22,178 41.67 29.84 8.75

87 14,625.00 13,436.72 9,750.00 23,852 23,592 22,304 46.17 33.05 9.63

88 15,000.00 13,781.25 10,000.00 23,923 23,673 22,424 51.04 36.52 10.58

89 15,375.00 14,125.78 10,250.00 23,991 23,749 22,538 56.29 40.25 11.60

90 15,750.00 14,470.31 10,500.00 24,054 23,821 22,646 61.94 44.27 12.71

91 16,125.00 14,814.84 10,750.00 24,114 23,888 22,749 68.00 48.59 13.90

92 16,500.00 15,159.38 11,000.00 24,171 23,952 22,847 68.00 53.22 15.18

93 16,875.00 15,503.91 11,250.00 24,224 24,013 22,941 68.00 58.18 16.54

94 17,250.00 15,848.44 11,500.00 24,275 24,070 23,030 68.00 63.49 18.01

95 17,625.00 16,192.97 11,750.00 24,322 24,125 23,114 68.00 68.00 19.57

96 18,000.00 16,537.50 12,000.00 24,368 24,176 23,195 68.00 68.00 21.23

97 18,375.00 16,882.03 12,250.00 24,411 24,225 23,272 68.00 68.00 23.01

98 18,750.00 17,226.56 12,500.00 24,452 24,271 23,345 68.00 68.00 24.90

99 19,125.00 17,571.09 12,750.00 24,491 24,316 23,415 68.00 68.00 26.90

100 19,500.00 17,915.63 13,000.00 24,528 24,358 23,482 68.00 68.00 29.03

101 19,875.00 18,260.16 13,250.00 24,564 24,398 23,546 68.00 68.00 31.28

102 20,250.00 18,604.69 13,500.00 24,597 24,436 23,607 68.00 68.00 33.67

103 18,949.22 13,750.00 24,473 23,666 68.00 36.19

104 19,293.75 14,000.00 24,508 23,722 68.00 38.86

105 19,638.28 14,250.00 24,542 23,775 68.00 41.67

106 19,982.81 14,500.00 24,574 23,827 68.00 44.63

107 14,750.00 23,876 47.76

108 15,000.00 23,923 51.04

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

MPEG Tables 607

608 Appendix

Table A.2 Frequencies, critical band rates, and absolute threshold for Layer II at sampling rates
of 32, 44.1, and 48 kHz.

Index
i

Frequency (Hz) Critical band rate (z) Absolute threshold (dB)

32 44.1 48 32 44.1 48 32 44.1 48

1 31.25 43.07 46.88 0.309 0.425 0.463 58.23 45.05 42.10

2 62.50 86.13 93.75 0.617 0.850 0.925 33.44 25.87 24.17

3 93.75 129.20 140.63 0.925 1,273 1,385 24.17 18.70 17.47

4 125,00 172,27 187.50 1,232 1,694 1,842 19.20 14.85 13.87

5 156.25 215.33 234.38 1,538 2,112 2.295 16.05 12.41 11.60

6 187.50 258.40 281.25 1,842 2,525 2,742 13.87 10.72 10.01

7 218.75 301.46 328.13 2,145 2,934 3,184 12.26 9.47 8.84

8 250.00 344.53 375.00 2,445 3,337 3,618 11.01 8.50 7.94

9 281.25 387.60 421.88 2,742 3,733 4,045 10.01 7.73 7.22

10 312.50 430.66 468.75 3,037 4,124 4,463 9.20 7.10 6.62

11 343.75 473.73 515.63 3,329 4,507 4,872 8.52 6.56 6.12

12 375.00 516.80 562.50 3,618 4,982 5,272 7.94 6.11 5.70

13 406.25 559.86 609.38 3,903 5,249 5,661 7.44 5.72 5.33

14 437.50 602.93 656.25 4,185 5,608 6,041 7.00 5.37 5.00

15 468.75 646.00 703.13 4,463 5,959 6,411 6.62 5.07 4.71

16 500.00 689.06 750.00 4,736 6,301 6,770 6.28 4.79 4.45

17 531.25 732.13 796.88 5,006 6,634 7,119 5.97 4.55 4.21

18 562.50 775.20 843.75 5,272 6,959 7,457 5.70 4.32 4.00

19 593.75 819.26 890.63 5,533 7,274 7,785 5.44 4.11 3.79

20 625.00 861.33 937.50 5,789 7,581 8,103 5.21 3.92 3.61

21 656.25 904.39 984.38 6,041 7,879 8,410 5.00 3.74 3.43

22 687.50 947.46 1,031.25 6,289 8,169 8,708 4.80 3.57 3.26

23 718.75 990.53 1,078.13 6,532 8,450 8,996 4.62 3.40 3.09

24 750.00 1,033.59 1,125.00 6,770 8,723 9,275 4.45 3.25 2.93

25 781.25 1,076.66 1,171.88 7,004 8,987 9,544 4.29 3.10 2.78

26 812.50 1,119.73 1,218.75 7,233 9,244 9,805 4.14 2.95 2.63

27 843.75 1,162.79 1,265.63 7,457 9,493 10,057 4.00 2.81 2.47

28 875.00 1,205.86 1,312.50 7,677 9,734 10,301 3.86 2.67 2.32

29 906.25 12,489.93 13,599.38 7,892 9,968 10,537 3.73 2.53 2.17

30 937.50 1,291.99 1,406.25 8,103 10,195 10,765 3.61 2.39 2.02

31 968.75 1,335.06 1,453.13 8,309 10,416 10,986 3.49 2.25 1.86

32 1,000.00 1,378.13 1,500.00 8,511 10,629 11,199 3.37 2.11 1.71

33 1,031.25 1,421.19 1,546.88 8,708 1,09,836 11,406 3.26 1.97 1.55

34 1,062.50 1,464.26 1,593.75 8,901 11,037 11,606 3.15 1.83 1.38

35 1,093.75 1,507.32 1,640.63 9,090 11,232 1,19,800 3.04 1.68 1921

36 1,125.00 1,550.39 1,687.50 9,275 11,421 11,988 2.93 1.53 1.04

37 1,156.25 1,593.46 1,734.38 9,456 11,605 12,170 2.83 1.38 0.86

38 1,187.50 1,636.52 1,781.25 9,632 11,783 12,347 2.73 1.23 0.67

39 1,218.75 1,679.59 1,828.13 9,805 11,957 12,518 2.63 1.07 0.49

40 1,250.00 1,722.66 1,875.00 9,974 12,125 12,684 2.53 0.90 0.29

41 1,281.25 1,765.72 1,921.88 10,139 12,289 12,845 2.42 0.74 0909

42 1,312.50 1,808.79 1,968.75 10,301 12,448 13,002 2.32 0.56 �0.11

Table A.2 (Continued)

Index
i

Frequency (Hz) Critical band rate (z) Absolute threshold (dB)

32 44.1 48 32 44.1 48 32 44.1 48

43 1,343.75 1,851.86 2,015.63 10,459 12,603 13,154 2.22 0.39 �0.32

44 1,375.00 1,894.92 2,062.50 10,614 12,753 13,302 2.12 0.21 �0.54

45 1,406.25 1,937.99 2,109.38 10,765 12,900 13,446 2.02 0.02 �0.75

46 1,437.50 1,981.05 2,156.25 10,913 13,042 13,586 1.92 �0.17 �0.97

47 1,468.75 2,024.12 2,203.13 11,058 13,181 13,723 1.81 �0.36 �1.20

48 1,500.00 2,067.19 2,250.00 11,199 13,317 13,855 1.71 �0.56 �1.43

49 1,562.50 2,153.32 2,343.75 11,474 13,578 14,111 1.49 �0.96 �1.88

50 1,625.00 2,239.45 2,437.50 11,736 13,826 14,354 1.27 �1.38 �2.34

51 1,687.50 2,325.59 2,531.25 11,988 14,062 14,585 1.04 �1.79 .2.79

52 1,750.00 2,411.72 2,625.00 12,230 14,288 1,49,807 0.80 �2.21 �3.22

53 1,812.50 2,497.85 2,718.75 12,461 14,504 15,018 0.55 �2.63 �3.62

54 1,875.00 2,583.98 2,812.50 12,684 14,711 15,221 0.29 �3.03 �3.98

55 1,937.50 2,670.12 2,906.25 12,898 14,909 15,415 0.02 �3.41 �4.30

56 2,000.00 2,756.25 3,000.00 13,104 15,100 15,602 �0.25 �3.77 �4.57

57 2,062.50 2,842.38 3,093.75 13,302 15,284 15,783 �0.54 �4.09 �4.77

58 2,125.00 2,928.52 3,187.50 13,493 15,460 15,956 �0.83 �4.37 �4.91

59 2,187.50 3,014.65 3,281.25 13,678 15,631 16,124 �1.12 �4.60 �4.98

60 2,250.00 3,100.78 3,375.00 13,855 15,796 16,287 �1.43 �4.78 �4.97

61 2,312.50 3,186.91 3,468.75 14,027 15,955 16,445 �1.73 �4.91 �4990

62 2,375.00 3,273.05 3,562.50 14,193 16,110 16,598 �2.04 �4.97 �4.76

63 2,437.50 33,599.18 3,656.25 14,354 16,260 16,746 �2.34 �4.98 �4955

64 2,500.00 3,445.31 3,750.00 14,509 16,406 16,891 �2.64 �4.92 �4.29

65 2,562.50 3,531.45 3,843.75 14,660 16,547 17,032 �2.93 �4.81 �3.99

66 2,625.00 3,617.58 3,937.50 14,807 16,685 17,169 �3.22 �4.65 �3.64

67 2,687.50 3,703.71 4,031.25 14,949 16,820 17,303 �3.49 �4.43 �3.26

68 2,750.00 3,789.84 41,259.00 15,087 16,951 17,434 �3.74 �4.17 �2.86

69 2,812.50 3,875.98 4,218.75 15,221 17,079 17,563 �3.98 �3.87 �2.45

70 2,875.00 3,962.11 4,312.50 15,351 17,205 17,688 �4.20 �3.54 �2.04

71 2,937.50 4,048.24 4,406.25 15,478 17,327 17,811 �4.40 �3.19 �1.63

72 3,000.00 4,134.38 4,500.00 15,602 17,447 17,932 �4.57 �2.82 �1.24

73 3,125.00 4,306.64 4,687.50 15,841 17,680 18,166 �4.82 �2.06 �0.51

74 3,250.00 4,478.91 4,875.00 16,069 17,905 18,392 �4.96 �1.32 0.12

75 3,375.00 4,651.17 5,062.50 16,287 18,121 18,611 �4.97 �0.64 0.64

76 3,500.00 4,823.44 5,250.00 16,496 18,331 18,823 �4.86 �0.04 1.06

77 3,625.00 4,995.70 5,437.50 16,697 18,534 19,028 �4.63 0.47 1.39

78 3,750.00 5,167.97 5,625.00 16,891 18,731 19,226 �4.29 0.89 1.66

79 3,875.00 5,340.23 5,812.50 17,078 18,922 19,419 �3.87 1.23 1.88

80 4,000.00 5,512.50 6,000.00 17,259 19,108 19,606 �3.39 1.51 2.08

81 4,125.00 5,684.77 6,187.50 17,434 19,289 19,798 �2.86 1.74 2.27

82 4,250.00 5,957.03 6,375.00 17,605 19,464 19,964 �2.31 1.93 2.46

83 4,375.00 6,029.30 6,562.50 17,770 19,635 20,135 �1.77 2.11 2.65

84 4,500.00 6,201.56 6,750.00 17,932 19,801 20,300 �1.24 2.28 2.86

85 4,625.00 6,373.83 6,937.50 18,089 19,963 20,461 �0.74 2.46 3.09

MPEG Tables 609

(continued)

610 Appendix

Table A.2 (Continued)

Index
i

Frequency (Hz) Critical band rate (z) Absolute threshold (dB)

32 44.1 48 32 44.1 48 32 44.1 48

86 4,750.00 6,546.09 7,125.00 18,242 20,120 20,616 �0.29 2.63 3.33

87 4,875.00 6,718.36 7,312.50 18,392 20,273 20,766 0.12 2.82 3.60

88 5,000.00 6,890.63 7,500.00 18,539 20,421 20,912 0.48 3.03 3.89

89 5,125.00 7,062.89 7,687.50 18,682 20,565 21,052 0.79 3.25 4.20

90 5,250.00 7,235.16 7,875.00 18,823 20,705 21,188 1.06 3.49 4t54

91 5,375.00 7,407.42 8,062.50 18,960 20,840 21,318 1.29 3.74 4.91

92 5,500.00 7,579.69 8,250.00 19,095 20,972 21,445 1.49 4.02 5.31

93 5,625.00 7,751.95 8,437.50 19,226 21,099 21,567 1.66 4.32 5.73

94 5,750.00 7,924.22 8,625.00 19,356 21,222 21,684 1.81 4.64 6.18

96 6,000.00 8,268.75 9,000.00 19,606 21,457 21,906 2.08 5.35 7.19

97 6,250.00 8,613.28 9,375.00 19,847 21,677 22,113 2.33 6.15 8.33

98 6,500.00 8,957.81 9,750.00 20,079 21,882 22,304 2.59 7.07 9.63

99 6,750.00 9,302.34 10,125.00 20,300 22,074 22,482 2.86 8.10 11.08

100 7,000.00 9,646.88 10,500.00 20,513 22,253 22,646 3.17 9.25 12.71

101 7,250.00 9,991.41 10,875.00 20,717 22,420 22,799 3.51 10.54 14.53

102 7,500.00 10,335.94 11,250.00 20,912 22,576 22,941 3.89 11.97 16.54

103 7,750.00 10,680.47 11,625.00 21,098 22,721 23,072 4.31 13.56 18.77

104 8,000.00 11,025.00 12,000.00 21,275 22,857 23,195 4.79 15.31 21.23

105 8,250.00 11,369.53 12,375.00 21,445 22,984 23,309 5.31 17o23 23.94

106 8,500.00 11,714.06 12,750.00 21,606 23,102 23,415 5.88 19.34 26.90

107 8,750.00 12,058.59 13,125.00 21,760 23,213 23,515 6.50 21.64 30.14

108 9,000.00 12,403.13 13,500.00 21,906 23,317 23,607 7.19 24.15 33.67

109 9,250.00 12,747.66 13,875.00 22,046 23,415 23,694 7.93 26.88 37.51

110 9,500.00 13,092.19 14,250.00 22,178 23,506 23,775 8.75 29.84 41.67

111 9,750.00 13,436.72 14,625.00 22,304 23,592 23,852 9.63 33.05 46.17

112 10,000.00 13,781.25 15,000.00 22,424 23,673 23,923 10.58 36.52 51.04

113 10,250.00 14,125.78 15,375.00 22,538 23,749 23,991 11.60 40o25 56.29

114 10,500.00 14,470.31 15,750.00 22,646 23,821 24,054 12.71 44.27 61.94

115 10,750.00 14,814.84 16,125.00 22,749 23,888 24,114 13.90 48.59 68.00

116 11,000.00 15,159.38 16,500.00 22,847 23,952 24,171 15.18 53.22 68.00

117 11,250.00 15,503.91 16,875.00 22,941 24,013 24,224 16.54 58.18 68.00

118 11,500.00 15,848.44 17,250.00 23,030 24,070 24,275 18.01 63.49 68.00

119 11,750.00 16,192.97 17,625.00 23,114 24,125 24,322 19.57 68.00 68.00

120 12,000.00 16,537.50 18,000.00 23,195 24,176 24,368 21.23 68.00 68.00

121 12,250.00 16,882.03 18,375.00 23,272 24,225 24,411 23.01 68.00 68.00

122 12,500.00 17,226.56 18,750.00 23,345 24,271 24,452 24.90 68.00 68.00

123 12,750.00 17,571.09 19,125.00 23,415 24,316 24,491 26.90 68.00 68.00

124 13,000.00 17,915.63 19,500.00 23,482 24,358 24,528 29.03 68.00 68.00

125 13,250.00 18,260.16 19,875.00 23,546 24,398 24,564 31.28 68.00 68.00

126 13,500.00 18,604.69 20,250.00 23,607 24,436 24,597 33.67 68.00 68.00

127 13,750.00 18,949.22 23,666 24,473 36.19 68.00

128 14,000.00 19,293.75 23,722 24,508 38.86 68.00

Table A.3 The FFT index of the lower, geometric mean, and upper frequencies in each
critical band for Layer I at sampling rates of 32, 44.1, and 48 kHz.

crit_
band

Lower geom_mean Upper

32 44.1 48 32 44.1 48 32 44.1 48

0 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 3 2 2
2 4 3 3 4 3 3 5 3 3
3 6 4 4 6 4 4 7 5 4
4 8 6 5 8 6 5 9 6 5
5 10 7 6 10 7 6 11 8 6
6 12 9 7 12 9 7 13 9 7
7 14 10 8 14 10 8 15 11 9
8 16 12 10 17 12 10 18 13 10
9 19 14 11 20 14 11 21 15 12

10 22 16 13 23 16 13 24 17 14
11 25 18 15 26 19 15 27 20 16
12 28 21 17 30 22 18 32 23 19
13 33 24 20 35 25 20 37 27 21
14 38 28 22 41 30 23 44 32 25
15 45 33 26 48 35 27 52 37 29
16 53 38 30 57 41 32 62 45 35
17 63 46 36 68 49 38 74 52 41
18 75 53 42 81 57 46 88 62 50
19 89 63 51 96 68 54 104 74 58
20 105 75 59 114 81 63 124 88 68
21 125 89 69 136 98 75 148 108 82
22 149 109 83 166 120 91 184 132 100
23 185 133 101 212 156 112 240 180 124
24 181 125 206 144 232 164
25 165 190 216

MPEG Tables 611

Table A.2 (Continued)

Index
i

Frequency (Hz) Critical band rate (z) Absolute threshold (dB)

32 44.1 48 32 44.1 48 32 44.1 48

129 14,250.00 19,638.28 23,775 24,542 41.67 68.00

130 14,500.00 19,982.81 23,827 24,574 44.63 68.00

131 14,750.00 23,876 47.76

132 15,000.00 23,923 51.04

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

612 Appendix

Table A.4 The FFT index of the lower, geometric mean, and upper frequencies in each
critical band for Layer II at sampling rates of 32, 44.1, and 48 kHz.

crit_
band

Lower geom_mean Upper

32 44.1 48 32 44.1 48 32 44.1 48

0 1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 3 2 2
2 4 3 3 5 3 3 6 3 3
3 7 4 4 8 4 4 10 5 5
4 11 6 6 12 6 6 13 7 7
5 14 8 8 15 9 8 17 10 9
6 18 11 10 19 12 11 21 13 12
7 22 14 13 23 15 13 25 16 14
8 26 17 15 28 18 16 30 19 17
9 31 20 18 33 21 19 35 22 20

10 36 23 21 38 24 22 41 26 24
11 42 27 25 44 28 26 47 30 27
12 48 31 28 51 33 30 54 35 32
13 55 36 33 59 38 35 64 40 37
14 65 41 38 69 43 40 74 46 42
15 75 47 43 81 50 46 88 54 50
16 89 55 51 96 59 54 104 64 58
17 105 65 59 114 70 64 124 76 70
18 125 77 71 136 83 76 148 90 82
19 149 91 83 162 97 91 176 104 100
20 177 105 101 192 114 108 208 124 116
21 209 125 117 228 136 126 248 148 136
22 249 149 137 272 162 150 296 176 164
23 297 177 165 332 196 182 368 216 200
24 369 217 201 423 240 224 480 264 248
25 265 249 311 288 360 328
26 361 329 411 379 464 432

Table A.5 Possible number of bits per subband for the following input sampling rate
and output bit rate combinations: Fs � 32 kHz and bit rates per channel � 56, 64, and 80
kbits/s; Fs � 44.1 kHz and bit rates per channel � 56, 64, and 80 kbits/s; Fs � 48 kHz and
bit rates per channel � 56, 64, 80, 96, 112, 128, 160, 192, and kbits/s and free format.

sb nbal

Allocation index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 5 9 12 15 18 21 24 27 30 33 36 39 42 45 48
1 4 5 9 12 15 18 21 24 27 30 33 36 39 42 45 48
2 4 5 9 12 15 18 21 24 27 30 33 36 39 42 45 48
3 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
4 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
5 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
6 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
7 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
8 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
9 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48

10 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
11 3 5 7 9 10 12 15 48
12 3 5 7 9 10 12 15 48
13 3 5 7 9 10 12 15 48
14 3 5 7 9 10 12 15 48
15 3 5 7 9 10 12 15 48
16 3 5 7 9 10 12 15 48
17 3 5 7 9 10 12 15 48
18 3 5 7 9 10 12 15 48
19 3 5 7 9 10 12 15 48
20 3 5 7 9 10 12 15 48
21 3 5 7 9 10 12 15 48
22 3 5 7 9 10 12 15 48
23 2 5 7 48
24 2 5 7 48
25 2 5 7 48
26 2 5 7 48
27 2 5 7 48
28 2 5 7 48
29 2 5 7 48
30
31

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

MPEG Tables 613

614 Appendix

Table A.6 Possible number of bits per subband for the following input sampling rate and
output bit rate combinations: Fs � 32 kHz and bit rates per channel � 96, 112, 128, 160,
192, and kbits/s and free format; Fs � 44.1 kHz and bit rates per channel � 96, 112, 128,
160, 192, and kbits/s and free format.

sb nbal

Allocation index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 5 9 12 15 18 21 24 27 30 33 36 39 42 45 48
1 4 5 9 12 15 18 21 24 27 30 33 36 39 42 45 48
2 4 5 9 12 15 18 21 24 27 30 33 36 39 42 45 48
3 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
4 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
5 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
6 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
7 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
8 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
9 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48

10 4 5 7 9 10 12 15 18 21 24 27 30 33 36 39 48
11 3 5 7 9 10 12 15 48
12 3 5 7 9 10 12 15 48
13 3 5 7 9 10 12 15 48
14 3 5 7 9 10 12 15 48
15 3 5 7 9 10 12 15 48
16 3 5 7 9 10 12 15 48
17 3 5 7 9 10 12 15 48
18 3 5 7 9 10 12 15 48
19 3 5 7 9 10 12 15 48
20 3 5 7 9 10 12 15 48
21 3 5 7 9 10 12 15 48
22 3 5 7 9 10 12 15 48
23 2 5 7 48
24 2 5 7 48
25 2 5 7 48
26 2 5 7 48
27
28
29
30
31

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

Table A.7 Possible number of bits per subband for the following input sampling rate and
output bit rate combinations: Fs � 44.1 kHz and bit rates per channel � 32 and 48 kbits/s;
Fs � 48 kHz and bit rates per channel � 32 and 48 kbits/s.

sb nbal

Allocation index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 5 7 10 12 15 18 21 24 27 30 33 36 39 42 45
1 4 5 7 10 12 15 18 21 24 27 30 33 36 39 42 45
2 3 5 7 10 12 15 18 21
3 3 5 7 10 12 15 18 21
4 3 5 7 10 12 15 18 21
5 3 5 7 10 12 15 18 21
6 3 5 7 10 12 15 18 21
7 3 5 7 10 12 15 18 21
8 3 5 7 10 12 15 18 21
9 3 5 7 10 12 15 18 21

10 3 5 7 10 12 15 18 21
11 3 5 7 10 12 15 18 21

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI
Global Ltd. The standard can be purchased online at http://www.sai-global.com.

Table A.8 Possible number of bits per subband for the following input sampling rate and
output bit rate combination: Fs � 32 kHz and bit rates per channel � 32 and 48 kbits/s.

sb nbal

Allocation index

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 4 5 7 10 12 15 18 21 24 27 30 33 36 39 42 45
1 4 5 7 10 12 15 18 21 24 27 30 33 36 39 42 45
2 3 5 7 10 12 15 18 21
3 3 5 7 10 12 15 18 21
4 3 5 7 10 12 15 18 21
5 3 5 7 10 12 15 18 21
6 3 5 7 10 12 15 18 21
7 3 5 7 10 12 15 18 21
8
9

10
11

© This Table is based on AS/NZS 4230.3:1994. Permission to reprint has been granted by SAI Global
Ltd. The standard can be purchased online at http://www.sai-global.com.

MPEG Tables 615

617

4:2:0 picture format, 130–132
4:2:2 picture format, 130
AC-2, 341
AC-3 audio descriptor (ATSC), 504, 505,

515
access unit, 424, 431, 437
acmod, 344, 399–403
adaptation fi eld, 429–431
adaptation_fi eld_control, 429, 430
addbsi, 400–401
addbsie, 400–401
addbsil, 400–401
Advanced Audio Coding (AAC), 286
Advanced Television Closed Captioning

(ATVCC), 592–603
aliasing, 253–259

time-domain, 274–279
allocation, 329
alternating current (AC), 88
amplitude-shift keying (ASK), See

modulation
ancillary services, 11, 571–604

descriptors for, 587, 588, 571–604
ASPEC, 285
aspect_ratio_information, 156
asynchronous transfer mode, 428
ATM, See asynchronous transfer mode
audio clock, 435
audio stream descriptor, 440, 442, 443, 456,

457
auditory nerve, 239–243, 245
audprodi2e, 400–401
audprodie, 400–401

baie, 404–408
bandwidth

channel, 481, 482, 493, 518, 526, 527, 529
of 8-VSB (ATSC), 545, 546
of OFDM (DVB), 551–553, 560–562
of signal, 4, 5, 7–11, 13, 17, 237, 531, 532

Bark, 248
Bark scale, 248, 365–366
basilar membrane, 240–243, 246–248,

250–251
basis vectors, 91
bit stream syntax, 151–155
bit_rate, 156
bitrate_index, 324–325
blksw, 346, 402–407
block, 320
block coding, 537–544, 565
block level, 132–134

all zero blocks, 134
coding of run-level pairs, 133–134
quantization of DCT coeffi cients,

132–133
bouquet association table (DVB), 473, 474,

489, 494, 495, 518, 519
bouquet name descriptor (DVB), 476, 478,

483, 484, 494, 495
bsid, 399–401
bsmod, 399–401
buffer management, 421, 424, 430, 432, 437

CA descriptor, 441, 447, 448, 457, 458
CA identifi er descriptor (DVB), 477, 494
CA system descriptor (DVB), 478
cable delivery system descriptor (DVB),

476, 481
caption service descriptor (ATSC),

504–506, 509, 515, 587, 592
channel capacity, 526

in ATSC, 550
in DVB, 554, 566

channel impairments, 525, 526, 537
chbwcod, 363–365, 403–407
chexpstr, 363, 403–407
chincpl, 364–365, 402–407
chmant, 382–386, 406–409
chromakeying, 130

Digital Television, by John Arnold, Michael Frater and Mark Pickering.
Copyright © 2007 John Wiley & Sons, Inc.

Index

618 Index

chrominance, 8–10, 13, 28–30, 121,
129–132, 134, 136, 141–144, 147, 159,
161–162, 168, 184–187, 189, 196, 197,
222, 229

in DVB subtitles, 580
clock reference, 424, 426, 427, 430–437,

441, 449, 455, 456, 592
clock run-in sequence, 581
closed captioning (ATSC), 587–603
cmixlev, 394–395, 399–401
cochlea, 240–243
cochlea partition, 240–242
coded_block_pattern, 159, 161
component descriptor (DVB), 477, 485
component name descriptor (ATSC), 504,

508, 509
components of motion, 50
compr, 390, 400–401
compr2e, 400–401
compre, 390, 400–401
concatenated code, 544, 545, 547, 550
conditional access table, 439–441, 453, 457,

458, 473, 492, 502
content advisory descriptor (ATSC), 504,

506, 509, 515
content descriptor (DVB), 477, 479, 480,

497
continuity_counter, 429–431, 463, 467
convolutional code, 537,538, 540–542, 544

in ATSC, 548
in DVB, 550, 562, 563–566

copyright, 324–325
copyright descriptor, 441, 450
copyrightb, 400–401
correlation, 17–22, 30–34, 105, 140, 142,

235, 237, 349, 552
one-dimensional, 18–20
two-dimensional, 20–22

country availability descriptor (DVB), 476,
494, 495

cplabsexp, 363, 404–407
cplbegf, 350–352, 364–365, 402–407
cplbndstrc, 352, 402–407
cplcoe, 402–407
cplcoexp, 353–354, 402–407
cplcomant, 353–354, 403–407
cpldeltba, 379, 404–408
cpldeltbae, 378, 404–408
cpldeltbae, 378, 404–408

cpldeltlen, 378–379, 404–408
cpldeltnseg, 378–379, 404–408
cpldeltoffst, 378–379, 404–408
cplendf, 350–352, 402–407
cplexps, 364, 404–408
cplexpstr, 363, 403–407
cplfgaincod, 375, 404–408
cplfl eak, 375, 404–408
cplfsnroffst, 380–381, 404–408
cplinu, 402–407
cplleake, 404–408
cplmant, 382–386, 406–409
cplsleak, 375, 404–408
cplstre, 402–407
CR_base, 436, 437, 469
CR_ext, 436, 437, 469
CRC_32, 453, 454
crc_check, 328
crc1, 399
critical band rate, 248–250, 302–306
critical bands, 247–248, 300
critical bandwidth, 246–248
csnroffst, 380–381, 404–408
current_next_indicator, 453, 454, 474

data broadcast descriptor (DVB), 478, 495,
497

data broadcast id descriptor (DVB), 478
data framing (ATSC), 545–547
data stream alignment descriptor, 440, 445,

456, 457
data_alignment, 426, 427, 445, 463
data_identifi er, 572
dbpbcod, 377, 404–408
DCT, See discrete cosine transform
DCT coeffi cients

coding of non-zero coeffi cients,
113–114

quantization, 107–114
quantization based on human visual

system, 110–113
dct_coeff_next, 161–162
dct_dc_differential, 161–162
dct_dc_size_chrominance, 161–162
dct_dc_size_luminance, 161–162
decoding time stamp (DTS), 426, 427, 431,

437
delivery system descriptors (DVB),

480–482

Index 619

deltba, 379, 404–408
deltbae, 378, 404–408
deltbaie, 378, 404–408
deltlen, 378–379, 404–408
deltnseg, 378–379, 404–408
deltoffst, 378–379, 404–408
descriptor_length, 440–442, 448, 475, 479
descriptor_tag, 440–442, 463, 465,

476–479, 504, 517
dialnorm, 386–387, 400–401
dialnorm2, 400–401
differential pulse code modulation, 42,

81–82
direct current (DC), 88
discontinuity_indicator, 431
discrete convolution, 255, 266
discrete cosine transform, 100–114, 127–128

choice of block size, 105–107
general equation, 275
modifi ed, 269
one-dimensional, 100–102
two-dimensional, 102–105
two-dimensional basis vectors, 103

display aspect ratio (DAR), 156
dithfl ag, 402–407
down-mixing, 334, 390–397
DPCM, See differential pulse code

modulation
dsurmod, 400–401
DTS_next_AU, 431
dual-prime prediction, 209, 211, 218
dynrng , 387–389, 402–407
dynrng2 , 402–407
dynrng2e, 402–407
dynrnge, 387–389, 402–407

eigenvalues, 97–100
eigenvectors, 97–100, 126–127
elementary stream, 425–432, 434, 437–448,

451, 455, 456, 459, 460, 464, 465, 521,
522

audio, 464, 467, 469, 504, 505
video, 464, 467, 469, 485, 507

elementary stream decoder, 421, 438, 459,
460, 485

elementary_stream_priority_indicator, 431
emphasis, 324–325
end of block (EOB), 114
end_of_block, 161–162

endolymph, 241
entropy, 23

picture, 23–24, 33–34
entropy coding, 35–41
equalization, 526, 527, 530, 532–535

in ATSC, 546
in DVB, 554

ESCR, 426, 427, 463, 464
event information table (DVB), 473, 474,

495–498, 502, 508, 512
exponent strategies, 359
exps, 363–364, 404–408
extended channel name descriptor (ATSC),

504, 506, 512
extended event descriptor (DVB), 477,

485–487, 497
extension encoder, 334

fdcycod, 375, 404–408
fgaincod, 375, 404–408
fl oorcod, 380–381, 404–408
footplate, 239–240
forward error correction, 537
Fourier transform, 89–92

of a square wave, 90
frequency list descriptor (DVB), 478, 493
frequency-shift keying (FSK), See modulation
frmsizecod, 344
fscod, 344, 399
fsnroffst, 380–381, 404–408

gainrng, 404–408
granule, 320
group, 320
guard interval (DVB), 481, 482, 553–556,

558–561, 566

Hadamard transform, 87
Hamming code, 581–583, 585
Hann window, 293–294
helicotrema, 240
hierarchy descriptor, 440, 444
histogram, 24
horizontal blanking interval, 4, 17
horizontal_size, 156
Hotelling transform, See Karhunen-Loeve

transform
Huffman coding, 35–41, 80–81

limitations, 40–41

620 Index

Huffman decoding, 38–41
effect of errors, 40–41

human visual system, 26–29
frequency sensitivity, 28
perception of changes in brightness, 27
spatial masking, 28
temporal masking, 28
tracking of motion, 29

IBP descriptor, 441, 452, 469
ID, 324–325
ideal channel, 528
impulse response, 255, 260–274, 293

modifi ed, 266–273
incus (anvil), 239–240
information content, 22–26
inner coder (DVB), 564–565
inner interleaver (DVB), 565
integrated receiver-decoder (IRD), 286–287
intensity stereo coding, 322
interlaced video, 5, 30, 130, 131, 171, 172,

185, 189, 192, 193, 195, 198, 224–226,
229, 577, 587

interleaver, 542, 544
block, 542, 543
convolutional, 543, 544, 547, 548, 563, 564
cyclic, 542, 565
in ATSC, 545, 547, 548
in DVB, 550, 562–565

interoperability
between DVB and ATSC, 516, 517
equipment, 151
in analog television, 14

inter-symbol interference (ISI), 526–528,
531, 533

in ATSC, 545
in DVB, 553, 554, 556

intrapicture predictive encoder, 41–46
ISO 639 language descriptor, 441, 448, 449,

456, 457, 469

Karhunen-Loeve transform, 92–100
KLT, See Karhunen-Loeve transform

langcod, 400–401
langcod2e, 400–401
langcode, 400–401
last_section_number, 453, 454
layer, 324–325

lfeexpstr, 363, 403–407
lfeexpstr, 363, 403–407
lfefgaincod, 375, 404–408
lfefsnroffst, 380–381, 404–408
lfemant, 382–386, 406–409
lfeon, 400–406
line-21 data service, 587–592
linkage descriptor (DVB), 476, 490, 491,

493–495, 497
local time offset descriptor (DVB), 477, 491,

492, 499, 500
low-frequency enhancement, 286
ltw_offset, 431, 450
luminance, 8–10, 13, 19, 21, 23, 24, 27–30,

43, 46, 94, 97, 107, 121, 130–132, 134,
136, 141–147, 151,159, 161–162, 164,
168, 184, 185, 187, 191, 196, 217, 221,
222

in DVB subtitles, 580

macroblock layer, 134–148
coded block pattern, 145–147
coding of intra DC coeffi cients, 141–145
coding of motion vectors, 139–141
macroblock address, 137–139
macroblock type, 137

macroblock_address_increment, 159–160
macroblock_escape, 159–160
macroblock_type, 159–160
magazine, 477, 487, 520, 581, 582, 584–586,

604
malleus (hammer), 239–240
MASCAM, 285
maskee, 249–251
masker, 249–251

non-tonal, 296–307
tonal, 296–307

masking function, 304–305
masking index, 304
masking threshold, 249–251

AC-3, 369, 376, 380–381
MPEG, 292, 301–308

MATLAB commands
eig, 98
fl iplr, 98
movie, 48
quiver, 63

MATLAB function
display_picture(), 48

Index 621

matrixing, 334–336
maximum bitrate descriptor, 441, 451, 457
meatus (ear canal), 238–239
mixlevel, 400–401
mixlevel2, 400–401
mode, 324–325
mode_extension, 324–325
modulation

8-VSB, 531, 532
amplitude-shift keying (ASK), 528, 530, 531
binary PSK (BPSK), 13, 528–531, 535,

536, 558
frequency-shift keying (FSK), 528
phase-shift keying (PSK), 13, 528
quadrature amplitude modulation

(QAM), 13, 481–483, 518, 530, 531,
536, 550–552, 559, 565, 566

quadrature PSK (QPSK), 13, 528, 480–
482, 493, 518, 529–531, 536, 550–552,
559, 565, 566

vestigial-sideband, 9, 10, 531, 532
Morse code, 24–25
mosaic descriptor (DVB), 477, 495
motion compensated decoder, 66
motion compensated encoder, 66
motion compensated encoder with

quantization, 69
motion compensated prediction, 50–68
motion estimation, 51–66, 82–84

block based, 53–66
choice of block size, 62–63
computational requirements, 61
fast search, 84–86
limitations, 63–64
motion vector overhead, 63
search area, 56–61
search method, 59–61
to subpixel accuracy, 66–68

motion vector, 57–59, 63, 66
motion_horizontal_code, 159–160
motion_vertical_code, 159–160
motion-compensated DCT decoder, 115–116

block diagram, 116
block diagram with rate control, 117

motion-compensated DCT encoder, 114–116
block diagram, 115
block diagram with rate control, 117

MPEG-1 video compression standard,
171–172

MPEG-2
block layer, 221–223
extension data, 180–181
extension start code, 180–181
group of pictures layer, 187–188
macroblock layer, 200–221
picture layer, 188–198
sequence layer, 181–187
slice layer, 198–200
video buffer verifi er, 223–227

MPEG-2 16 x 8 prediction, 217–218
MPEG-2 copyright extension, 198
MPEG-2 dual-prime prediction, 209, 211,

218
fi elds pictures, 218
frame pictures, 209,211

MPEG-2 group of pictures header, 188
broken link fl ag, 188
closed GOP fl ag, 188
time code, 188

MPEG-2 levels, 227, 229
high, 229
high-1440, 229
low, 229
main, 229

MPEG-2 macroblock header, 201–221
coded block pattern, 220-
fi eld/frame DCT, 219–220
macroblock address, 201
macroblock type, 201–204
motion vector prediction, 218–219
types of motion-compensated prediction,

204–218
MPEG-2 picture coding extension,

190–196
composite display fl ag, 196
concealment motion vectors, 193
frame-only DCT, 192–193
frame-only prediction, 192–193
intra DC precision, 191–192
intra variable length code format, 193
motion vector range, 191
picture structure, 192
quantizer scale type, 193
repeat fi rst fi eld, 195–196
top fi eld fi rst, 192
zig-zag scanning mode, 194–195

MPEG-2 picture display extension,
197–198

622 Index

MPEG-2 picture header
extra picture information, 190
picture coding type, 189
redundant fi elds, 190
temporal reference, 189
VBV delay, 189–190

MPEG-2 picture types, 173–179
B pictures, 175–179
D pictures, 190
I pictures, 173–174
P pictures, 175

MPEG-2 pictures, 173–179
display order, 176–179
transmission order, 176–179

MPEG-2 prediction for fi eld pictures,
212–218

B pictures, 214–217
P pictures, 212–214

MPEG-2 prediction for frame pictures,
205–211

fi eld prediction of B pictures, 209–210
fi eld prediction of P pictures, 206–209
frame prediction of B pictures, 205–206
frame prediction of P pictures, 205–206

MPEG-2 profi les, 227–228
high, 228
main, 228
multiview, 228
professional, 228
simple, 227
SNR scalable, 228
spatial scalable, 228

MPEG-2 quantizer matrix extension,
196–197

MPEG-2 restricted slice structure, 199
MPEG-2 sequence display extension,

186–187
color description, 187
horizontal and vertical size, 187
video format, 186

MPEG-2 sequence extension, 185–186
chrominance format, 186
low delay, 186
profi le and level, 185–186
progressive sequence, 185

MPEG-2 sequence header, 182–185
constrained parameter fl ag, 183
frame rate, 183
horizontal picture size, 182–183

picture aspect ratio, 183
quantizer matrix defi nition, 184
sequence bit rate, 183
vertical picture size, 182–183
video buffer verifi er buffer size, 183

MPEG-2 slice header, 199–200
intraslice, 200
quantizer step size, 200
slice number extension, 200

MPEG-2 syntax, 179–223
MPEG-2 unrestricted slice structure, 199
MPEG-2 user data at group of pictures

layer, 188
MPEG-2 user data at picture layer, 198
MPEG-2 user data at sequence layer, 186
MPEG-2 video compression standard,

171–236
mstrcplco, 353, 402–407
multilingual bouquet name descriptor

(DVB), 478, 484, 494
multilingual component descriptor (DVB),

478, 484, 485, 497
multilingual network name descriptor

(DVB), 478, 483, 484, 493
multilingual service name descriptor

(DVB), 478, 484
multiplex buffer utilization descriptor, 441,

450
multiplexing, 2, 9, 10, 14, 285, 421, 422,

425, 438, 463–465, 525, 541, 550, 551
MUSICAM, 285

National Television System Committee
(NTSC), 2, 4, 6, 10, 11, 14, 15, 186,
489, 504, 522

closed captioning, 587
network information table, 439, 453–455,

458, 467, 468, 473, 489, 492,
network name descriptor (DVB), 476, 478,

482, 483, 484, 493, 518
NTSC, See National Television System

Committee
NVOD reference descriptor (DVB), 477, 496
Nyquist criterion, 254, 527, 531, 532, 545,

569

object data segment, 575–580, 603
organ of Corti, 241–242
origbs, 400–401

Index 623

original/copy, 324–325
original_program_clock_reference, 431
orthogonal frequency division multiplexing

(OFDM), 550–558, 560–562, 565
ossicles, 238–240
outer coder (DVB), 562–564
outer interleaver (DVB), 563–564
oval window, 239–240
overheads

packetization, 427, 428, 432–434
PSI, 458

packet header, 422, 425, 426–433, 465, 581,
586, 595

packet_start_code_prefi x, 426
packetised elementary stream (PES),

425–434, 440, 445, 467, 468, 571, 572,
586

padding_bit, 324–325
page composition segment, 575
PAL, See Phase Alternating Line
parental rating descriptor (DVB), 477, 491,

497, 498
partial transport stream descriptor (DVB),

478
payload identifi er, See PID
payload_unit_start_indicator, 429, 430,

460, 467
perilymph, 240
PES_packet_length, 426, 434, 463
PES_priority, 426
PES_scrambling_control, 426, 427
Phase Alternating Line (PAL), 2, 4, 6, 10,

11, 14, 15, 186, 489
phase-locked loop (PLL), 436
phase-shift keying (PSK), See modulation
phsfl g, 351–353, 403–407
phsfl ginu, 402–407
picture layer, 151
picture_rate, 156
picture_start_code, 152
PID, 422, 428, 429–432, 439, 447, 448,

454–460, 463, 464, 468, 474, 475, 492,
504, 506, 507, 509–511, 520–522, 586

piecewise_rate, 431
pinna, 238–239
pixel structure, 572, 573, 575
pixel-data sub-block, 577, 579
postmasking (forward masking), 250

Power Spectral Density (PSD), 287, 293,
359, 364

predictive coding, 41–49
impact of motion in interpicture, 48–49
interpicture, 47–49
one-dimensional prediction, 41–45
three-dimensional prediction, 49
two-dimensional prediction, 45–46

preecho, 345
premasking (backward masking), 250
presentation time stamp (PTS), 426, 427,

437, 472, 473
previous_PES_packet_CRC, 426
private data, 424, 426, 437, 431, 432,

439–441, 445, 451, 463, 464, 478, 501,
511, 517, 571, 572, 586

private data indicator descriptor, 441, 451
private data specifi er descriptor (DVB),

478
private_bit, 324–325
program and system information protocol

(PSIP), 501–516
program association table, 425, 439, 453,

454, 455, 458, 459, 460, 464, 465, 467,
468, 473, 492, 502, 518, 519, 522

program map table, 425, 439–441, 443,
451, 453, 455, 456, 460, 464, 465, 467,
468, 473, 484, 487, 488, 492, 495, 502,
504, 508, 512, 518, 519, 571, 586, 587,
592–594, 502, 517, 518

program reassembly, 459, 460
program stream, 425, 434, 463, 464
program_clock_reference (PCR), 431,

456, 457, 464, 467, 507, 520, 521
program-specifi c information

in ATSC, 463
in DVB, 464, 465

program-specifi c information (PSI),
439–459, 459

protection_bit, 324–325
PSI, See program-specifi c information
PSNR, 73–74
Pulse Code Modulation (PCM), 237, 268,

287

quadrature amplitude modulation (QAM),
See modulation

quadrature PSK, See modulation
quantization, 68–73

624 Index

quantizer, 69–73
linear, 69–72
minimum mean square error, 72–73
non-linear, 72–73

quantizer_scale, 158–159

random_access_indicator, 431
randomization, 535–537, 542

in ATSC, 545, 547, 549, 550, 552
in DVB, 550, 562

rate control, 116–122
incorporating human visual system,

120–122
rate control buffer, 116–122

buffer overfl ow, 118
buffer underfl ow, 119

rate-distortion curves, 73–74
Reed-Solomon (RS) code, 537, 539, 540, 544

in ATSC, 545, 547, 548, 550
in DVB, 550, 562, 563

reference signals (DVB), 558
registration descriptor, 440, 444, 464, 517
Reissner’s membrane, 241
rematfl g, 403–407
rematstr, 403–407
roomtyp, 400–401
roomtyp2, 400–401
round window, 241
run length coding, 41
run-coeffi cient pair, See run-level pair
run-level pair, 113–114
running status table (DVB), 473, 497, 498

sample, 329
sample aspect ratio (SAR), 156
samplecode, 330–331
sampling_frequency, 324–325
satellite delivery system descriptor (DVB),

476, 480, 481, 493, 494
scala media, 241
scala tympani, 240–241
scala vestibuli, 240–242
scalefactor, 329
scfsi, 330–331
sdcycod, 375, 404–408
SECAM, See Systeme Electronique (pour)

Couleur avec Memoire
section_length, 453, 475
section_number, 453, 454

section_syntax_indicator, 453
sequence layer, 151
sequence_end_code, 152
sequence_header_code, 152
service description table (DVB), 473, 474,

489, 495, 496, 518, 519
service descriptor (DVB), 476, 477, 488,

490, 495
service information (SI), 472–500
service list descriptor (DVB), 476, 489,

493–495
service location descriptor (ATSC), 504,

506–508, 512
service move descriptor (DVB), 478
sgaincod, 375, 404–408
Shannon’s criterion, 526, 527, 570
short event descriptor (DVB), 477, 485, 486,

487, 498
short smoothing buffer descriptor (DVB),

478
simple bit-stream syntax, 155–162

block level, 161–162
macroblock level, 159–161
picture layer, 157–158
slice layer, 158–159
video sequence layer, 155–157

single-frequency network (DVB), 555–557
skipfl d, 406–409
skipl, 406–409
skiple, 406–409
slice layer, 148–150

header, 148–149
slice_start_code, 152
slots, 307, 312–313
smoothing buffer descriptor, 441, 451, 452,

478
snroffste, 404–408
sound pressure level, 244–245
spectral envelope, 342–343, 359–363
spectrum characteristics (DVB), 560–562
splice_countdown, 431
splice_type, 431
splicing point, 431
stapes (stirrup), 239–240
start code, 198–200, 224–226, 425–427, 429
STD descriptor, 441, 452
stream identifi er descriptor (DVB), 477
stream_id, 425, 426, 429, 463, 465, 467,

571, 572

Index 625

stream_type, 456, 457, 464, 465, 506, 507,
571, 572

structure of a video bit stream, 132–151
stuffi ng descriptor (ATSC), 504, 508
stuffi ng descriptor (DVB), 476
stuffi ng table (DVB), 500
stuffi ng_byte, 426
subband samples, 256, 262–264
subtitle (DVB), 572–581
subtitling descriptor (DVB), 478, 488
superblock, 320
surmixlev, 394–395, 399–401
surround-sound, 285–286
sync_byte, 428, 429, 459, 460, 576–580
syncword

AC-3, 399
MPEG, 324–325

syntax constructs, 152–154
do-while, 153
for, 153
if-else, 153
while, 153

syntax functions, 154–155
bytealigned(), 154
next_start_code(), 154–155
nextbits(), 154

system clock descriptor, 441, 449, 469
system target decoder, 437 441, 450, 452
system time clock (STC), 430, 431, 434,

435–437, 449, 469
Systeme Electronique (pour) Couleur avec

Memoire (SECAM), 2, 4, 6, 10, 14,
186, 489

table_id, 453, 460, 463, 465, 469, 474, 478,
508, 509, 517

target background grid descriptor, 441, 446,
468, 469

tectorial membrane, 241–242
telephone descriptor (DVB), 477, 496, 497
teletext (DVB), 581–586
teletext descriptor (DVB), 477, 487, 488,

572, 586
temporal_reference, 158
terminal threshold, 245
terrestrial delivery system descriptor

(DVB), 478, 480, 481, 482, 518
threshold in quiet (absolute threshold),

244–245, 296, 302

timcode1, 400–401
time and date table (DVB), 473, 499
time offset table (DVB), 473, 499, 500, 518,

523
time shifted event descriptor (DVB), 477, 497
time stamp, 424, 426, 427, 431, 434–437,

469, 572, 573
timecod1e, 400–401
timecod2e, 400–401
timecod2e, 400–401
time-shifted service descriptor (ATSC),

504, 507, 508, 512
time-shifted service descriptor (DVB), 477,

496
timing, 421, 424, 425, 427, 430, 434–438,

465, 472, 476, 497, 535
for subtitles (DVB), 572

transform coding, 87–128
transform coeffi cients, 107
transmission parameter signalling (DVB), 558
transport stream, 428–434, 459–463, 500
transport_error_indicator, 429, 467
transport_priority, 429, 467
transport_private_data_length, 431
transport_scrambling_control, 429
trellis coder (ATSC), 547–550
trick_mode_control, 426
tympanic membrane (eardrum), 238–241

user private descriptor (ATSC), 517

variable length codewords, 26
VBI, See vertical blanking interval
version_number, 453, 454, 510, 511, 576–578
vertical blanking interval, 3, 11, 13, 17, 571
vertical_size, 156
vestigial-sideband modulation, See

modulation
video buffer verifi er, 189–190
video clock, 435
video coder syntax, 129–170
video stream descriptor, 440, 443, 444, 456,

457, 469
video window descriptor, 441, 446, 447,

468, 469
virtual channel, 502–504, 506–513, 515,

519, 522, 523

zig-zag scanning, 113–114

	Digital Television
	Contents
	Preface
	1. Introduction to Analog and Digital Television
	1.1 Introduction
	1.2 Analog Television
	1.2.1 Video
	1.2.2 Audio
	1.2.3 Systems

	1.3 The Motivation for Digital Television
	1.4 The Need for Compression
	1.5 Standards for Digital Television
	References

	2. Characteristics of Video Material
	2.1 Picture Correlation
	2.2 Information Content
	2.3 The Human Visual System
	2.3.1 Perception of Changes in Brightness
	2.3.2 Spatial Masking
	2.3.3 Temporal Masking
	2.3.4 Frequency Sensitivity

	2.3.5 Tracking of Motion
	2.3.6 Conclusion

	2.4 Summary
	Problems
	MATLAB Exercise 2.1: Correlation Coefficient within a Picture
	MATLAB Exercise 2.2: Correlation Coefficient between Pictures in a Sequence
	MATLAB Exercise 2.3: Entropy of a Picture

	3. Predictive Encoding
	3.1 Entropy Coding
	3.1.1 Huffman Coding
	3.1.2 Run Length Coding

	3.2 Predictive Coding
	3.3 Motion-Compensated Prediction
	3.3.1 Motion Estimation
	3.3.2 Motion-Compensated Prediction to Subpixel Accuracy

	3.4 Quantization
	3.5 Rate-Distortion Curves
	3.6 Summary
	Problems
	MATLAB Exercise 3.1: Huffman Coding
	MATLAB Exercise 3.2: Differential Pulse Code Modulation
	MATLAB Exercise 3.3: Temporal Prediction and Motion Estimation
	MATLAB Exercise 3.4: Fast Search Motion Estimation

	4. Transform Coding
	4.1 Introduction to Transform Coding
	4.2 The Fourier Transform
	4.3 The Karhunen–Loeve Transform
	4.4 The Discrete Cosine Transform
	4.4.1 Choice of Transform Block Size
	4.4.2 Quantization of DCT Transform Coefficients
	4.4.3 Quantization of DCT Coefficients Based on the Human Visual System
	4.4.4 Coding of Nonzero DCT Coefficients

	4.5 Motion-Compensated DCT Encoders and Decoders
	4.6 Rate Control
	4.7 Conclusion
	Problems
	MATLAB Exercise 4.1: Eigenvectors of a Picture
	MATLAB Exercise 4.2: Discrete Cosine Transform
	MATLAB Exercise 4.3: Discrete Cosine Transform with Motion Compensation

	5. Video Coder Syntax
	5.1 Introduction
	5.2 Representation of Chrominance Information
	5.3 Structure of a Video Bit Stream
	5.3.1 The Block Layer
	5.3.2 The Macroblock Layer
	5.3.3 The Slice Layer
	5.3.4 The Picture Layer
	5.3.5 The Sequence Layer

	5.4 Bit-Stream Syntax
	5.4.1 Abbreviations
	5.4.2 Start Codes
	5.4.3 Describing the Bit-Stream Syntex
	5.4.4 Special Functions within the Syntax

	5.5 A Simple Bit-Stream Syntax
	5.5.1 The Video Sequence Layer
	5.5.2 The Picture Layer
	5.5.3 The Slice Layer
	5.5.4 The Macroblock Layer
	5.5.5 The Block Layer

	5.6 Conclusion
	Problems
	MATLAB Exercise 5.1: Efficient Coding of Motion Vector Information
	MATLAB Exercise 5.2: A Simple Video Encoder
	MATLAB Exercise 5.3: A Simple Video Decoder
	MATLAB Exercise 5.4: A Video Encoder
	MATLAB Exercise 5.5: A Video Decoder
	MATLAB Exercise 5.6: Intra/Inter/Motion-Compensated Coding of Macroblocks

	6. The MPEG-2 Video Compression Standard
	6.1 Introduction
	6.2 Picture Types in MPEG-2
	6.3 The Syntax of MPEG-2
	6.3.1 Extension Start Code and Extension Data
	6.3.2 Sequence Layer
	6.3.3 The Group of Pictures Layer
	6.3.4 The Picture Layer
	6.3.5 The Slice Layer
	6.3.6 The Macroblock Layer
	6.3.7 The Block Layer

	6.4 Video Buffer Verifier
	6.5 Profiles and Levels
	6.5.1 Profiles
	6.5.2 Levels

	6.6 Summary
	Problems
	MATLAB Exercise 6.1: Bidirectional Motion-Compenseted Prediction
	MATLAB Exercise 6.2: Dual-Prime Motion-Compensated Prediction
	MATLAB Exercise 6.3: Field and Frame Motion-Compensated Prediction
	MATLAB Exercise 6.4: Field and Frame DCT Coding

	7. Perceptual Audio Coding
	7.1 The Human Auditory System
	7.1.1 Outer Ear
	7.1.2 Middle Ear
	7.1.3 Inner Ear

	7.2 Psychoacoustics
	7.2.1 Sound Pressure Level
	7.2.2 Auditory Thresholds
	7.2.3 The Critical Bandwidth and Auditory Filters
	7.2.4 Auditory Masking

	7.3 Summary
	Problems
	References

	8. Frequency Analysis and Synthesis
	8.1 The Sampling Theorem
	8.2 Digital Filters
	8.3 Subband Filtering
	8.3.1 The Analysis Filter Bank
	8.3.2 The Synthesis Filter Bank
	8.3.3 Filters for Perfect Reconstruction

	8.4 Cosine-Modulated Filters
	8.5 Efficient Implementation of a Cosine-Modulated Filterbank
	8.5.1 Analysis Filter
	8.5.2 Synthesis Filter

	8.6 Time-Domain Aliasing Cancellation
	8.7 Summary
	Problems
	MATLAB Exercise 8.1
	MATLAB Exercise 8.2
	References

	9. MPEG Audio
	9.1 MPEG-1 Layer I,II Encoders
	9.1.1 Analysis Filterbank
	9.1.2 Scalefactor Calculation
	9.1.3 Psychoacoustic Model 1
	9.1.4 Dynamic Bit Allocation
	9.1.5 Coding of Bit Allocation
	9.1.6 Quantization and Coding of Subband Samples
	9.1.7 Formatting

	9.2 Layer II Encoder
	9.2.1 Analysis Filterbank
	9.2.2 Scalefactor Calculation
	9.2.3 Coding of Scalefactors
	9.2.4 Dynamic Bit Allocation
	9.2.5 Coding of Bit Allocation
	9.2.6 Quantization and Coding of Subband Samples
	9.2.7 Ancillary Data
	9.2.8 Formatting

	9.3 Joint Stereo Coding
	9.4 MPEG-1 Syntax
	9.4.1 Audio Sequence Layer
	9.4.2 Audio Frame
	9.4.3 Header
	9.4.4 Error Check
	9.4.5 Audio Data, Layer I
	9.4.6 Audio Data, Layer II

	9.5 MPEG-1 Layer I, II Decoders
	9.5.1 Bit Allocation Decoding
	9.5.2 Scalefactor Selection Information Decoding
	9.5.3 Scalefactor Decoding
	9.5.4 Requantization of Subband Samples
	9.5.5 Synthesis Filterbank

	9.6 MPEG-2
	9.6.1 Backwards-Compatible MPEG-2 Frame Formatting
	9.6.2 Matrixing Procedures for Backwards Compatibility

	9.7 Summary
	Problems
	MATLAB Exercise 9.1
	MATLAB Exercise 9.2
	MATLAB Exercise 9.3
	References

	10. Dolby AC-3 Audio
	10.1 Encoder
	10.1.1 Audio Input Format
	10.1.2 Transient Detection
	10.1.3 Forward Transform
	10.1.4 Channel Coupling
	10.1.5 Rematrixing
	10.1.6 Extract Exponents
	10.1.7 Encode Exponents
	10.1.8 Bit Allocation
	10.1.9 Quantize Mantissas
	10.1.10 Dialog Normalization
	10.1.11 Dynamic Range Compression
	10.1.12 Heavy Compression
	10.1.13 Downmixing

	10.2 Syntax
	10.2.1 Syntax Specification

	10.3 Decoder
	10.3.1 Decode Exponents
	10.3.2 Bit Allocation
	10.3.3 Decode Coefficients
	10.3.4 Decoupling
	10.3.5 Inverse Transform
	10.3.6 Overlap and Add

	10.4 Summary
	Problems
	MATLAB Exercise 10.1
	MATLAB Exercise 10.2
	MATLAB Exercise 10.3
	References

	11. MPEG-2 Systems
	11.1 Introduction
	11.2 Service Overview
	11.3 Multiplexer Structure
	11.3.1 PES Sublayer
	11.3.2 Transport Stream Sublayer
	11.3.3 Program Stream Sublayer

	11.4 Timing
	11.4.1 System Time Clock
	11.4.2 Clock References and Reconstruction of the STC
	11.4.3 Time Stamps

	11.5 Buffer Management
	11.6 Program-Specific Information
	11.6.1 MPEG-2 Descriptors
	11.6.2 MPEG-2 Tables
	11.6.3 Overheads Due to PSI

	11.7 MPEG-2 Decoder Operation
	11.7.1 Synchronization to Transport Stream
	11.7.2 PSI Decoding
	11.7.3 Program Reassembly

	11.8 Use Of MPEG-2 Systems In Digital Television
	11.8.1 Use of MPEG-2 Systems in ATSC
	11.8.2 Use of MPEG-2 Systems in DVB
	11.8.3 Implementation of PSI in DVB

	11.9 Conclusion
	Problems
	References

	12. DVB Service Information and ATSC Program and System Information Protocol
	12.1 Introduction
	12.2 Why SI and PSIP?
	12.3 DVB-SI
	12.3.1 DVB Common Data Formats
	12.3.2 DVB Descriptors
	12.3.3 DVB Tables
	12.3.4 DVB Delivery Issues

	12.4 ATSC Program and System Information Protocol
	12.4.1 Common Data Formats
	12.4.2 ATSC Descriptors
	12.4.3 ATSC Tables

	12.5 DVB SI and ATSC PSIP Interoperability
	12.5.1 PIDs
	12.5.2 Use of table_id
	12.5.3 Use of descriptor_tag

	12.6 Conclusion
	Problems
	MATLAB Exercise 12.1
	References

	13. Digital Television Channel Coding and Modulation
	13.1 Introduction
	13.2 Generic Concepts
	13.2.1 Channel Characteristics and Intersymbol Interference
	13.2.2 Modulation
	13.2.3 Equalization
	13.2.4 Randomization
	13.2.5 Channel Coding Technology

	13.3 Channel Coding and Modulation for ATSC
	13.3.1 ATSC 8-VSB Modulation
	13.3.2 ATSC Data Framing
	13.3.3 ATSC Concatenated Channel Coder
	13.3.4 ATSC Channel Capacity

	13.4 Channel Coding and Modulation for DVB
	13.4.1 DVB Modulation
	13.4.2 DVB Channel Coding
	13.4.3 DVB Channel Capacity

	13.5 Conclusion
	Problems
	MATLAB Exercise 13.1
	MATLAB Exercise 13.2
	MATLAB Exercise 13.3
	References

	14. Closed Captioning, Subtitling, and Teletext
	14.1 Introduction
	14.2 DVB Subtitles and Teletext
	14.2.1 Subtitles
	14.2.2 Teletext

	14.3 ATSC Closed Captioning
	14.3.1 Line 21 Data Service
	14.3.2 Advanced Television Closed Captioning

	14.4 Conclusion
	Problems
	References

	Appendix. MPEG Tables
	Index

