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Preface

Confronted with the bewildering complexity of the world we inhabit, scientists of all

ages have attempted to bring order and simplicity to this apparent chaos. Baffled by

the potpourri of chemical elements, the zoo of elementary particles, and the plethora

of spectral lines in hydrogen’s emission spectrum, scientists have looked high and low

for some underlying unity. To this end, the power of symmetry arguments cannot be

overemphasized.

Hidden behind the variegated phenomena of every day lies a crystalline perfection

that has shattered to give birth to the real world. As the Platonic world of grand

mathematical symmetries crumbled over time, our asymmetric reality materialized.

But with this spontaneous breaking of symmetry, patterns started to emerge as well.

The act of bifurcation gave rise to variety and identity. “C’est la dissymétrie qui crée le

phénomène," dixit Pierre Curie.1

This textbook deals not only with the obvious discrete symmetries of crystals and

molecules, but is also concerned with the deeper lying continuous symmetries that are

at the basis of the dynamics of physical systems. The description of these symmetries

is made possible by the mathematical theory of groups. Shattered Symmetry consists

of three parts that build up the knowledge of groups gradually.

The first part describes the legacies of Évariste Galois and Sophus Lie. Galois

introduced the concept of a discrete group and Lie defined the algebras that describe

continuous groups. Our discovery of these concepts is based on the perfect symmetries

of the circle and the sphere, which visualize Lie group symmetry directly. The part

closes with a Scholium, which introduces the representation of groups by means of

Cartan–Weyl diagrams. These are an important graphical tool to classify and label

states of symmetric systems used throughout the book.

The second part deals with the two most important central field problems

in physics: the spherical oscillator and the Coulomb hole. Both potentials are

characterized by high dynamic symmetries that go beyond spherical geometry and

render the corresponding dynamical problems exactly solvable. During this process

the associated algebras generate the quantum numbers that characterize all the states

of the physical system. The oscillator problem embodies unitary symmetry and is

at the basis of the Eightfold Way of Murray Gell-Mann, which brought order to

the particle zoo in elementary particle physics. The particle in a Coulomb hole

is described by the four-dimensional rotation group, which corresponds to the

dynamical symmetry of the hydrogen atom and thus forms the cornerstone of atomic

1 P. Curie. “Sur la Symétrie dans les Phénoménes Physiques, Symétrie d’un Champ Électrique et

d’un Champ Magnétique.” Journal de Physique Théorique et Appliquée 3.1 (1894), pp. 393–415.

Quote on p. 400.



physics. Both these groups are of paramount importance because they encode the

elementary quantum states of matter. Again, a Scholium at the end of this group

of chapters provides a convenient resting place to look deeper into the connection

between unitary groups and rotations.

In the third part, we leave the shores of compact Lie algebras and set course to the

continent of the noncompact Lie algebras, which unite all spectral levels of a physical

system into one manifold and lead to the construction of the comprehensive SO(4,2)

symmetry of hydrogen, which collects the quantum states into one symmetry space.

In the final chapters of this book, this group theoretical construction is confronted

with the periodic system of Mendeleev, which gives all the chemical elements a place.

At this point, the perfect symmetry of the hydrogen atom is transformed, broken and

tilted, to give rise to the intriguing Aufbau of the periodic table, with its strange period

doubling and Madelung regularity.

The presentation is inspired by a naive “chemical” approach. This means the

various Lie algebras are viewed as distinct “molecules”, with their own stories and

individuality. Accordingly, the logic of the presentation follows a line of parentage,

taking us from one group to the next. In Part I, we start with the symmetry of the

circle, described by the simple SO(2) group, and then raise it to the three dimensions

of spherical symmetry described by the SO(3) group. Both these groups have the

advantage that they can be visualized easily because they relate to simple geometric

objects with a perfect symmetry. In Part II, this easy link with geometry is lost as

we extend our chain of groups from SO(3) to the unitary group SU(3), which in

many respects can be treated as SO(3)’s bigger brother. The treatment of SU(3) in

Chapter 7 brings us to the first summit of our journey, from which a magnificent

panorama on elementary particles is deployed. We then descend, simply by taking out

the third dimension and reach an SU(2) plateau. From there, the road rises up again

to reach the SO(4) dynamic symmetry group of hydrogen, which is nothing else than

the product of SU(2) × SU(2). At the horizon, we finally see a glimpse of the Periodic

Table, but we are not there yet. In Part III, we first have to open up the Lie groups

to accommodate the infinite manifold of the entire spectrum of a physical system.

We first deal with the SO(2,1) group, which is the noncompact version of SO(3).

Subsequently, by combining this SO(2,1) with the SO(4) group of hydrogen, we have

all the ingredients to construct SO(4,2). This group defines the board on which we are

going to play chess that finally reveals the structure of Mendeleev’s Table.

Our greatest concern in this book has been to maintain a high degree of accessibility

throughout. Theoretical concepts are explained in a straightforward, intuitive manner;

all calculations are worked out fully in appendices, and mathematical concepts (e.g.,

matrix and vector algebra) are reviewed briefly; most chapters commence with a

historical introduction.

Our greatest satisfaction would be to succeed in presenting Lie algebras in a

self-contained way, which requires only very little mathematical background, without

betraying, however, the beautiful and deep mathematics that is their basis.

Hopefully, readers are inspired from time to time by Tenniel’s vintage illustrations

from Alice in Wonderland,2 which are scattered throughout the book as metaphors of

group theoretical concepts.

2 For Lewis Carroll’s major tales, Alice’s Adventures in Wonderland and Through the Looking Glass,

with the original illustrations by John Tenniel, see L. Carroll. The Annotated Alice: The Definitive
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1 A primer on symmetry

What was there in the beginning? A physical law, mathematics, symmetry? In the beginning

was symmetry!

–Werner Heisenberg1

1.1 THE TRAGIC LIFE OF ÉVARISTE GALOIS

Bang! Early in the morning on Wednesday, May 30, 1832, the loud crack of a single

gunshot filled the air around the Glacière pond in Gentilly, near Paris. A local peasant,2

who was bringing vegetables to market that day, rushed toward the sound and found

a young man lying on the ground, fatally shot in the abdomen during a duel. The

young man was Évariste Galois (1811–1832), a twenty-year-old mathematical genius

and well-known revolutionary in Paris (Figure 1.1).3

1 W. Heisenberg. “Physics and Beyond: Encounters and Conversations.” In: World Perspectives,

vol. 42. Ed. R. N. Anshen. New York: Harper & Row, 1971, p. 132.
2 He might have been a former army officer; no one really knows.
3 Biographical notes: Several French biographies of Galois have appeared over the years. The first

biography was written by P. Dupuy. “La Vie d’Évariste Galois.” In Annales Scientifiques de l’École

Normale Supérieure, 3rd ser.13 Paris: Gauthier-Villars, 1896, pp. 197–266 (reprinted in P. Dupuy. La

Vie d’Évariste Galois. Paris: Éditions Jacques Gabay, 1992). Other French works include A. Dalmas.

Évariste Galois, Révolutionnaire et Géomètre. Paris: Fasquelle, 1956; A. Astruc. Évariste Galois. Paris:

Flammarion, 1994; N. Verdier. Évariste Galois, le Mathématicien Maudit. (Collection: Les Génies de

la Science. No 14.) Paris: Pour la Science, 2003; and J.-P. Auffray. Évariste 1811–1832, Le Roman

d’une Vie. Lyon: Aléas, 2004. Some of the best-documented English biographies include G. Sarton.

“Evariste Galois.” Scientific Monthly 13.4 (1921), pp. 363–375 (reprinted in G. Sarton. “Evariste
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4 FIGURE 1.1 Portrait of Évariste Galois

(1811–1832), drawn from memory by his brother

Alfred in 1848.

Although his intestines and stomach had been perforated by the bullet, Galois was

still alive and was brought to the Côchin hospital around half past nine. His younger

brother Alfred hurried to visit him and started crying. “Don’t cry Alfred,” said Galois,

trying to console his brother with his last words. “I need all my courage to die at

twenty.” That evening, peritonitis set in and, at ten o’clock the next morning, Galois

passed away.4

Galois.” Osiris 3 (1937), pp. 241–259), T. Rothman. “Genius and Biographers: The Fictionalization

of Évariste Galois.” American Mathematical Monthly 89.2 (1982), pp. 84–106 and L. Toti Rigatelli.

Evariste Galois: 1811–1832. (Vita Mathematica, vol. 11.) Ed. E. A. Fellmann. Basel: Birkhäuser

Verlag, 1996. Shorter accounts of Galois’ life and work include those found in A. Chevalier.

“Nécrologie Evariste Galois.” Revue Encyclopédique 55 (1832), pp. 744–754 and T. Rothman. “The

Short Life of Évariste Galois.” Scientific American 246.4 (1982), p. 136–149. Galois’ tragic life has

also been the focus of interest in popular scientific literature. See especially M. Livio. The Equation

That Couldn’t Be Solved: How Mathematical Genius Discovered the Language of Symmetry. New York:

Simon & Schuster Paperbacks, 2006, pp. 112–157; but also see E. T. Bell. Men of Mathematics.

Melbourne: Penguin Books, 1953, pp. 398–415; I. James. Remarkable Mathematicians: From Euler to

von Neumann. Cambridge: Cambridge University Press, 2002, pp. 134–141; I. Stewart. Why Beauty

Is Truth: A History of Symmetry. New York: Basic Books, 2007, pp. 97–123; and M. Ronan. Symmetry

and the Monster: One of the Greatest Quests of Mathematics. Oxford: Oxford University Press, 2006,

pp. 11–26.

4 The circumstances of this tragic affair defy rational explanation and have been veiled in mystery

to this day. Contradictory claims abound and, as Tony Rothman piercingly noted, most accounts

of Galois’ untimely death are “baroque, if not byzantine, inventions.” See T. Rothman. Science a la

mode. Physical Fashions and Fictions. Princeton: Princeton University Press, 1989, p. 186. Various

biographers (Galois’ brother included) are convinced Galois had been murdered by political

enemies. Galois, however, apologized in his letter “to all republicans” for dying “the victim of an

infamous coquette”—alluding to his failed love affair with Stéphanie Potterin du Motel in spring

1832. See T. Rothman. “The Short Life of Évariste Galois.” 1982, p. 149. Infeld’s hypothesis that

Stéphanie was, in fact, a prostitute who had been hired by the police seems a little far-fetched. See

L. Infeld. Whom the Gods Love: The Story of Evariste Galois. New York: Whittlesey House, 1948. In

any case, Galois mentioned two contestants in the duel and emphasized they were “two patriots”

who had acted in “good faith.” In line with this, Gabriel Demante (a cousin of Galois) noted the duel

had been provoked by Stéphanie’s uncle and fiancé. Yet another theory was recently put forth by the
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1.1.1 Entrance exams

A few years earlier, while still a student at the Lycée Louis-le-Grand, Galois had become

spellbound by the theory of equations. Having devoured Adrien-Marie Legendre’s

(1752–1833) Eléments de Géométrie in just two days, Galois began to read one

professional mathematics paper after another from the pens of Joseph-Louis Lagrange

(1736–1813) and Niels Henrik Abel (1802–1829).

Full of confidence, Galois attempted to enter the famous École Polytechnique,

one of the most prestigious institutes in Paris. Barely sixteen years old, completely

unprepared and too lazy to document his own reasoning, it was not surprising Galois

failed the entrance exam. When he tried to gain entrance a second time in August 1829,

his father had just committed suicide by suffocating himself. Galois, who was still

mourning his father’s death, was unable to think clearly, and lost his temper when one

of the examiners started asking questions he deemed childishly simple. The impatient

student threw a blackboard eraser into the examiner’s face, and lost his final chance of

being accepted at the École.

1.1.2 Publish or perish

But, Galois did not give up easily. Building on the work of Lagrange and Abel, he had

recently found a way to resolve a great mathematical riddle, one that had tormented

the mathematical community for centuries, and he was determined to disseminate his

ideas. Toward the end of May 1829, Galois submitted a paper to the French Academy

of Sciences that outlined his great breakthrough. Augustin-Louis Cauchy (1789–1857),

France’s leading mathematician at the time, was appointed as a referee, but kept the

manuscript for more than six months without ever presenting Galois’ research at a

meeting of the Academy.5

Cauchy must have been impressed by Galois’ work though, as he advised the young

man to expand on his ideas and to resubmit an enlarged manuscript for the Grand Prix

in Mathematics. A few days before the deadline, in February 1830, Galois sent his re-

vised memoir to the Academy. Joseph Fourier (1768–1830), the perpetual secretary of

the Academy, took the manuscript home, but died soon after, on May 16, 1830. Galois’

memoir got lost and was not recovered in time to be considered for the Grand Prix.

Furious, Galois resubmitted his manuscript for a third time on January 17, 1831. By

then, Cauchy had fled Paris because of the political turmoil in the capital and Fourier

was dead. So, Galois’ paper fell into the hands of Siméon Denis Poisson (1781–1840)

and Sylvestre François Lacroix (1765–1843). Two months passed without any response

and Galois was edging slowly toward a nervous breakdown. Finally, on July 4, 1831,

Poisson responded, but it was a crushing blow. Poisson judged Galois’ memoir to be

utterly “incomprehensible” and unfit for publication.

Italian mathematician and historian Laura Toti Rigatelli. Rigatelli believes the disillusioned Galois

sacrificed himself by staging the entire duel in an attempt to stir up rebellion. Given his two failed

attempts to enter the École Polytechnique, the triple rejection of his first memoir, and his broken

heart, Galois did not care to live any longer. Wherever the truth may lie, the details surrounding

Galois’ duel are still shrouded in mist, and we leave it to you to make up your own mind.

5 On January 18, 1830, Cauchy wrote an apologetic letter to the Academy. He was expected to read

Galois’ paper and one of his own that day, but was feeling slightly unwell, and decided to stay home.

At the next meeting, however, on January 25, Cauchy presented only his own paper.
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6 1.1.3 Galois’ mathematical testament

On May 29, 1832, the evening of the duel, Galois realized he was probably going to

die the next morning, and this was his very last chance to try to explain his great

breakthrough. So he stayed up all night, writing farewell letters to his friends, and

composing what would become his mathematical testament. Galois’ Lettre Testamen-

taire comprised seven hastily written pages summarizing his latest achievements. The

letter was addressed to his close friend, Auguste Chevalier (1809–1868), and Galois

urged him to take care of publishing his manuscripts. Because Poisson had failed to

understand Galois’ first memoir, Galois spent the rest of the night adding last-minute

corrections to his first memoir (Figure 1.2). Time was running short, however, and at

one point Galois broke off to scribble in the margin, “Je n’ai pas le tem[p]s” (“I have

no time”), before he moved on to the next paragraph. The sun’s first rays had already

pierced the sky when Galois went to meet his destiny, leaving a small pile of papers in

the middle of his desk.

Contained inside these documents was a new language, a language that would

enable the scientific community finally to understand one of the most fundamental

concepts of Nature—namely, symmetry. And that language, a real calculus of

symmetry, was called group theory.

The aim of this book is to learn how to speak group theory. But, before we can

do any calculus on symmetry, we must first acquaint ourselves with the concept of

symmetry itself.

FIGURE 1.2 Galois’ Premier Mémoire contained the seeds of modern group theory. On the eve

before his duel, Galois revised his manuscript and added some last-minute marginal additions.

One of them was the dramatic sentence “Je n’ai pas le tem[p]s” (“I have no time”), as can be seen

on the left-hand side of the manuscript.
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1.2 THE CONCEPT OF SYMMETRY

Symmetry lies at the heart of the world. From the six-sided snowflakes in winter to the

floral patterns in summer, symmetry is all around us. Its myriad manifestations are

overwhelming; there is rotational symmetry in flowers, helical symmetry in seashells,

spiral symmetry in the Pinwheel galaxy, cubic symmetry in salt crystals, and bilateral

symmetry (i.e., symmetry of left and right) in the human body, as exemplified in Da

Vinci’s Vitruvian Man (Figure 1.3).

In addition, symmetry also inspires; it stirs our imagination and awakens our

creativity. Think of Escher’s masterpieces or the stories of Carroll, the fugues of Bach

FIGURE 1.3 Leonardo Da Vinci’s Vitruvian Man, illustrating the bilateral symmetry of the human

body (Gallerie dell Academia, Venice, 1492).
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8 FIGURE 1.4 Symmetry provides a

key to Nature’s secrets, which

opens the door to a deeper

understanding of the natural

phenomena that surround us.

or Balanchine’s ballet choreographies. And yet, perhaps most important, symmetry

intrigues us; it stimulates our thinking and drives us onward in our quest to

understand.

Not surprisingly, then, symmetry has become a central principle in science,

underlying many of the revolutionary concepts of modern physics and chemistry. As

Steven Weinberg (Nobel laureate in Physics) recently exclaimed, symmetry provides a

key to Nature’s secrets (Figure 1.4).6 It unlocks the door to a profound understanding

of the physical world and all the wonders it entails.

1.2.1 Symmetry defined

Before we continue, let us attempt to define symmetry. Humankind has been familiar

with the concept of symmetry for thousands of years, but although we all share an

intuitive feeling for what symmetry is all about, most of us would have a hard time

coming up with a precise, succinct definition.7 We have no problem differentiating

symmetric objects from asymmetric ones, but are mute when asked to explain the

distinction. The same worriment befell early Christian theologian and philosopher

St. Augustine (354–430) when he was challenged to define the concept of time. “If no

one asks me, I know,” he wrote in his Confessions.8 “But if I wish to explain it to one

that asketh, I know not.” Not surprisingly, then, the modern definition of symmetry

took hundreds of years to develop.

The ancient Greek definition of symmetry

The first definition of symmetry arose in Ancient Greece around the fourth century

BC. Despite its age and its overthrow by more modern definitions, this primitive

6 S. Weinberg. “Symmetry: A ‘Key to Nature’s Secrets.’ ” In: The New York Review of Books, vol.

58.16. Ed. R. B. Silver. New York: Rea S. Hederman, 2011, p. 69. See also S. Weinberg. “Varieties of

Symmetry.” Symmetry: Culture and Science 23.1 (2012), pp. 5–16.
7 Just try it for yourself and you’ll notice how challenging it actually is.
8 St. (Bishop of Hippo) Augustinus, Book 11, Chapter 14, circa the year A.D. 397.
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and rather subjective definition still lies closest to our heart. The Greek philosophers

associated symmetry with harmony and balance, with regularity and order; they

introduced the word συμμετρια to convey that something was well-proportioned or

of the right balance (literally, “with measure,” from συν + μετρον). Symmetry was

also considered a sign of beauty and perfection; symmetric objects were said to be

aesthetically appealing.

In Aristotle’s (384–322 BC) words, for example, “the chief forms of beauty are

order (τάξις) and symmetry (συμμετρια) and definiteness (ω̇ρισμενον), which the

mathematical sciences demonstrate in a special degree.”9 Another example comes

from Plato’s (428–348 BC) Timaeus, which recounted how the Universe had been

created out of chaos by a Demiurge using the four elements fire, air, earth, and

water as basic building blocks. These elements were associated with four of the five

Platonic solids—the tetrahedron, octahedron, cube, and icosahedron—which were

considered to be symmetric in the sense of being well-proportioned, regular, and

aesthetic (Figure 1.5).

1.
2.

3.
4.

5.

FIGURE 1.5 The mathematical beauty and symmetry of the five Platonic solids: 1, tetrahedron;

2, octahedron; 3, cube (or hexahedron); 4, dodecahedron; and 5, icosahedron. The element fire

was identified with the pointy tetrahedron; air with the smooth octahedron; earth with the bulky,

weighty cube; and water with the fluid and nearly spherical icosahedron. Aristotle later added the

dodecahedron to this list, and postulated that it represented the aether—a quintessential substance

that made up the celestial heavens.10

9 Aristotle. Aristotle’s Metaphysics, a Revised Text with Introduction and Commentary by W. D. Ross.

Oxford: Clarendon Press, 1924. Book 13, 1078.a3. Hermann Weyll (1885–1955) echoed this in his

little book on symmetry. “Symmetry,” he said, “as wide or as narrow as you may define its meaning,

is one idea by which man through the ages has tried to comprehend and create order, beauty and

perfection.” See H. Weyl. Symmetry. Princeton: Princeton University Press, 1952, p. 5.
10 In his Timaeus, Plato devoted only one sentence to the dodecahedron, the meaning of which

is ambiguous. In one version it reads: “There remained one construction, the fifth; and the God

used it for the whole, making a pattern of animal figures thereon.” See F. Mc. D. Cornford. Plato’s

Cosmology. London: Routledge, 1937, reprinted 2014, p. 218. A dodecahedron has twelve faces

and Plato most probably believed the Demiurge had used this solid for the creation of the entire
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10 The modern-day definition of symmetry

The question remains, however, how all this can be translated into mathematically

precise terms. Harmony, balance, beauty, and perfection are all vague concepts, and

it is far from clear how they relate to physics. Indeed, according to Hermann Weyl

(1885–1955), “The Greeks never used the word ‘symmetric’ in our modern sense.”11

For centuries, scientists (and artists alike) continued to use the term symmetry in the

previously mentioned hand-waving sense, while its modern scientific connotation lay

dormant.12

Only during the late eighteenth century did scientists come up with the first

modern definition of symmetry. The idea was really very simple, and can be illustrated

with the following excerpt from Lewis Carroll’s The Hunting of the Snark:13

You boil it in sawdust: you salt it in glue:

You condense it with locusts and tape:

Still keeping one principal object in view—

To preserve its symmetrical shape.

Despite its literary nonsense, these lines nonetheless contain the essence of symmetry.

Carroll is writing about a mysterious object that is boiled, salted, and condensed. And

yet, although the object is acted on in so many different ways, it somehow retains

its original shape. This “immunity to a possible change” brings us to the scientific

definition of symmetry.14

Definition 1.1 (Symmetry): A (mathematical) object is said to be symmetric, or to

possess a symmetry, when there is a transformation that leaves the appearance of the

object unchanged. ◾

There are two crucial ingredients to this definition15:

1. Possibility of change. It should be possible to transform the object.

2. Immunity to change. When transformed, some of the object’s features should

remain unchanged.

Universe along with the zodiac and its twelve constellations. An alternative version translates as:

“this the Demiurge used in the delineation of the Universe.” The Greek word for delineation is

διαζωγραφω̂ν, which translates as “painting in semblance of life,” but it may also refer to the

depiction of living beings as the animals of the zodiac. See R. F. Kotrc. “The Dodecahedron in

Plato’s Timaeus.” Rheinisches Museum für Philologie 124 (1981), pp. 212–222.

11 Weyl, Symmetry, p. 75.
12 The great Renaissance artist Leonardo da Vinci (1452–1519), for instance, emphasized the

symmetric proportions of the human body (known as the Canon of Proportions) in his Vitruvian

Man around 1490 (Figure 1.3).
13 L. Carroll. “The Beaver’s Lesson.” In: The Hunting of the Snark: An Agony in Eight Fits. London:

Macmillan, 1876, p. 56.
14 J. Rosen. Symmetry in Science: An Introduction to the General Theory. New York: Springer-Verlag,

1995, p. 2; M. Livio. The Equation That Couldn’t Be Solved: How Mathematical Genius Discovered the

Language of Symmetry. New York: Simon & Schuster, 2006, p. 4.
15 Rosen, Symmetry in Science, p. 4; J. Rosen. Symmetry Rules: How Science and Nature Are Founded

on Symmetry. The Frontiers Collection. Berlin: Springer, 2008, p. 4
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Notice that we are no longer defining symmetry in passive, static terms (such as

perfection and balance), but in active, dynamic terms. Symmetry is no longer a thing

to be perceived in the objects around us; it has become a process, a special kind of

action—a way to transform the object such that its structure is preserved.16

When seen from this operational perspective, symmetry is very much like a

magician’s trick. A great illusionist shows you a particular object and asks you to close

your eyes for a moment. At that point, he does something to the object; he transforms

it in a certain way. If, when you open your eyes, the object looks exactly as it did before

and you are absolutely unable to tell whether the magician has fiddled around with it,

then that transformation was a symmetry of the object.17

Summarizing, we could say that to describe the symmetry of an object means to

elucidate the nature of identity in the context of change. Symmetry is all about this

never-ending quest for permanence in a world of constant flux.

1.2.2 The symmetries of a triangle

Consider, by way of introductory example, the equilateral triangle in Figure 1.6.18

Which transformations of the triangle leave its appearance (in terms of size, shape, and

orientation) apparently unchanged? Imagine holding a cardboard triangle and placing

it in front of you on the table while drawing an outline around it. How many different

ways are there to pick up the triangle and place it back down inside its outline?

One can rotate the triangle over 120◦ around its symmetry axis (perpendicular to

the plane and passing through its geometric center). Because the rotated triangle fits

inside the outline, it looks identical in appearance to the initial triangle, making it

impossible to tell whether an action has been carried out. The triangle is therefore said

to be symmetric, or to possess a geometric symmetry. An alternative wording is to say

the rotation over 120◦ is a symmetry transformation of the triangle and the triangle

remains invariant under this symmetry operation.

There are other ways the triangle can be transformed without suffering any change

in appearance. One could rotate the triangle over 240◦, for instance, or reflect it

Equilateral triangle Square Circle

FIGURE 1.6 Three geometric figures with their reflection lines. Note that only six of the infinite

number of reflection lines for the circle are actually shown.

16 I. Stewart. Why Beauty Is Truth: A History of Symmetry. New York: Basic Books, 2007, pp. ix, 118.
17 As Hermann Weyl once put it: “A thing is symmetrical if there is something you can do to it so that

after you have finished doing it it looks the same as before.” This definition was cited by physicist,

Richard P. Feynman (1918–1988) in R. Feynman. The Character of Physical Law. Cambridge, MA:

MIT Press, 1985, p. 84.
18 Equilateral implies all sides are the same length.
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12 within the plane through any of the reflection lines shown in Figure 1.6. You might

be surprised to learn that doing nothing (i.e., rotating over 0◦ = 360◦) is considered

a valid symmetry transformation as well, termed the identity transformation. At first

sight, it may seem a little pointless to include it in our list of symmetry operations, but

as we will see later, we cannot do without it if we want to “speak group theory.”

However, rotating the triangle over any other angle than the three listed so far

results in a conformation that is distinguishable from the initial one. A rotation of

180◦, for instance, would turn the triangle upside down, thus changing its overall

appearance to an observer. Not all rotations are, therefore, symmetry transformations

of the triangle, and in this case the triangle is said to be asymmetric with respect to

these rotations.

In summary, the triangle possesses a total of six symmetries, six transformations

that bring the triangle back into its original position: three rotations (over 0◦, 120◦,

and 240◦), and three reflections in the different mirror planes.

As Bronowski said: At this point, the non-mathematician is entitled to ask: “So what?

Is that what mathematics is about? Did Arab professors, do modern mathematicians,

spend their time with that kind of elegant game?” To which the unexpected answer

is—Well, it is not a game. It brings us face to face with something which is hard to

remember, and that is that we live in a special kind of space—three-dimensional,

flat—and the properties of that space are unbreakable. In asking what operations will

turn a pattern into itself, we are discovering the invisible laws that govern our space.

There are only certain kinds of symmetries which our space can support, not only

in man-made patterns, but in the regularities which nature herself imposes on her

fundamental, atomic structures.19

1.2.3 Quantifying symmetry

Consider the three geometric shapes in Figure 1.6. Which one, do you think, is the

most symmetric? How can you tell?

With the modern definition of symmetry, we can easily calculate the amount of

symmetry an object possesses; that is, we can quantify how symmetric an object is, and

(when quantified) compare it with others on this basis. Basically, the more symmetries

an object has (i.e., the more ways we can change the object without changing its overall

appearance) the more symmetric we say it is.

Because doing nothing is a valid symmetry transformation, even the least

symmetric of objects, such as a crumpled piece of paper or Einstein’s haircut is

considered symmetric. But clearly, an equilateral triangle is much more symmetric

than Einstein’s haircut; a square, in turn, is more symmetric than an equilateral

triangle20; and a circle is much more symmetric than any of these objects.

Actually, a circle is one of the most symmetric objects around. Although a triangle

and a square contain only a finite number of symmetry operations, a circle remains

invariant under an infinite number of symmetry transformations. One can rotate a

circle around its center through an infinite number of rotation angles, varying over

19 J. Bronowski. The Ascent of Man. Boston: Little, Brown and Company, 1973, p. 174.
20 A square has eight symmetries: four rotations over 0◦, 90◦, 180◦, and 270◦, and four reflections

through the mirror lines shown in Figure 1.6.



13
A
prim

er
on

sym
m
etry

the periodic interval [0◦, 360◦], and reflect it in one of the infinite mirror axes passing

through its geometric center (Figure 1.6).

1.2.4 Discrete and continuous symmetries

Figure 1.6 illustrates that there are two kinds of symmetries: either continuous or

discrete.

Corollary 1.1 (Continuous and discrete symmetry): An object is said to have a

continuous (discrete) symmetry when its symmetry transformations can be labeled by

a set of continuously (discretely) varying parameters. ◾

The discreteness or continuity of symmetries is often dependent on the object con-

cerned. A circle, for example, is said to have continuous rotational symmetry because its

symmetry operations (i.e., rotations) can be labeled by a parameter (i.e., the rotation

angle) that varies continuously over the interval [0◦, 360◦]. A triangle, on the other

hand, has discrete rotational symmetry because the symmetry operations are labeled

by a discretely varying parameter (i.e., by multiples of 120◦). Some symmetries are

always discrete (e.g., mirror reflections, permutations, and time reversals); others are

always continuous (e.g., gauge symmetries in quantum field theory).

1.2.5 Multiplying symmetries

The study of individual symmetries can only lead us so far. It turns out to be much

more interesting to look into the complete set of symmetries an object possesses. That

is, to put the power of symmetry to its full use, we need to investigate how symmetries

interact with one another, and determine which (mathematical) structure emerges

from these interactions.

Consider, for the sake of illustration, the set of six symmetries of the equilateral

triangle. One of the great insights of Galois involved multiplying symmetries—that is,

performing one symmetry operation after another. Galois observed that by combining

any two symmetry operations in pairs, you always get another symmetry from the set.

This should not be too surprising. After all, if R and S are two symmetry operations,

both of which leave the triangle invariant, then clearly the successive application

of these two symmetry operations leaves the triangle invariant as well. The two

operations, R and S, carried out in succession must therefore be equivalent to another

symmetry transformation, denoted SR.

For example, a rotation of the triangle through 120◦, followed by another rotation

through 240◦ (in counterclockwise fashion), is equivalent to a rotation through 360◦
(which is the identity transformation). Similarly, reflecting the triangle first about

its vertical mirror axis and then rotating the triangle through 120◦corresponds to a

reflection of the triangle about its mirror axis through the lower right-hand vertex

(Figure 1.7).

No matter how many symmetry operations you combine in this way, the end result

will always be another symmetry transformation; if R and S are in the list, then so

is SR. There is, in other words, no way of multiplying symmetries to create a new

transformation that was not originally in the set of all symmetries; you cannot jump

out of the set. This essential property of symmetry operations is called closure.
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240º

360º
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FIGURE 1.7 The vertices of the triangle are labeled A, B, and C to help you keep track of the

movements. Ideally, however, these markings would not be present, making it utterly impossible to

see whether a transformation has been carried out.

Closely related to this is the fact that every symmetry operation can be undone by

performing another one. A counterclockwise rotation of 120◦, for example, can be

nullified by a clockwise rotation of 120◦, which is equivalent to a counterclockwise

rotation through 240◦. In view of its inverting function, the rotation through 240◦ is

therefore called the inverse of the 120◦ rotation. Analogously, because reflecting twice

is the same as doing nothing, each reflection is considered to be its own inverse.

The notion of inverse transformations, along with the existence of an identity

transformation and the fundamental property of closure leads us straight into the

subject matter of group theory, the acquaintance of which we will make in the

following chapter.



2 The elements of group
theory

The Theory of Groups is a branch of mathematics in which one does something to something

and then compares the result with the result obtained from doing the same thing to

something else, or something else to the same thing.

–James R. Newman1

Galois was buried on Saturday, June 2, 1832. Thousands of friends, fellow Republicans,

and students from the faculties of law and medicine attended the funeral procession.

Galois had passed like a meteor,2 barely twenty years old when his tragic life came to

a sudden end. His complete mathematical oeuvre filled no more than one hundred

pages. Yet, they contained the seeds of modern group theory, the subject matter of this

chapter.

Chapter outline

The theory of groups is considered the language par excellence to study symmetry

in science; it provides the mathematical formalism needed to tackle symmetry in a

precise way. The aim of this chapter, therefore, is to lay the foundations of abstract

group theory.

The central pillar on which these foundations rest, is the mathematical concept

of a group, the algebraic structure of which will be defined formally in §2.1. In §2.2,

1 J. R. Newman. “The Supreme Art of Abstraction: Group Theory”. In: The World of Mathematics,

vol. 3. ed. J. R. Newman. New York: Simon and Schuster, 1956, p. 1534.
2 G. Sarton. “Evariste Galois.” Osiris 3 (1937), p. 241–259.
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distinction serves as an explanation for the power and flexibility of group theory to

handle highly diverse systems of sometimes completely different origins in much the

same way.

This is followed by a discussion of Abelian groups in §2.3, which are exemplified in

§2.4. In §2.5, the concept of subgroups is introduced, which naturally leads us to the

idea of symmetry breaking in §2.6. The idea of broken symmetries will form a central

theme throughout this book. Finally, §2.7 renders the ideas of §2.2 more explicit with

a brief account of isomorphisms and homomorphisms.

What happened to the pile of papers Galois left on his desk, and how they paved

the way for the development of the group concept during the nineteenth century, is

the subject of §2.8, which closes this chapter. After these historical and philosophical

diversions, and with the necessary definitions in place, we will have a powerful tool

in hand to pursue our discussion of symmetry in Chapter 3, in which the rotational

symmetry of the circle will be studied in greater detail.

2.1 MATHEMATICAL DEFINITION

The aim of this first section is to rephrase in more mathematical terms the rather

dreamy definition of a group presented at the beginning of this chapter. Following

James R. Newman (1907–1966), it will prove easiest to start from a concrete group,

such as the symmetry group of the triangle (introduced at the end of Chapter 1), and

proceed by stripping all the unessential details until one is left with the bare bones

of the abstract group concept. Newman referred to this as the “Carrollian method of

defining a grin as what remains after the Cheshire Cat, the vehicle of the grin, has

vanished” (Figure 2.1).3

Let us thus replace the set of symmetry transformations of the triangle by a set of

abstract elements, and the rule of performing one symmetry operation after another

by an abstract combination rule. What is left after this process of abstracting is the

notion of an abstract group—an algebraic structure consisting of a set of elements,

together with an operation that combines any two of its elements to form a third

element. To qualify as a group, the set of group elements and the operation must satisfy

a few conditions that are called the group axioms.

Definition 2.1 (Group): Consider a nonempty set of distinct elements, G = {e, a, b,

c, d, . . .}, endowed with a particular law of composition such that any two elements a

and b of G can be combined to yield a third element, called the product of a and b and

denoted a �b (or simply ab). The set G and the group multiplication operation � are said

to form a group (G,�) when they satisfy the following four requirements known as the

group axioms or group postulates:

1. Closure. For all a, b in G, the result of the operation a � b is also in G. The set G is said

to be closed (or saturated) under the law of composition.

2. Associativity. The law of composition is associative. That is, for all a,b, and c in G,

the associative property (a � b) � c = a � (b � c) holds true. In other words, when you

3 Newman, “The Supreme Art of Abstraction: Group Theory,” pp. 1534–1535.
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FIGURE 2.1 The Cheshire Cat

principle. When group theory is

applied to the natural world, the

system under study is stripped from

its physical content until an abstract

entity remains, which can be handled

by the machinery of abstract group

theory. This is reminiscent of the

Cheshire Cat, whose body vanishes

slowly while Alice is looking at him.

What remains is the Cat’s weird

grin—the group theoretical entity,

which is treated as an abstraction of

the physically real system. “Well! I’ve

often seen a cat without a grin,” said

Alice; “but a grin without a cat! It’s

the most curious thing I ever saw in

all my life!” Yet, the Cheshire Cat

principle is what renders group

theory, like so many other branches

of mathematics, so powerful and

diversely applicable in the real world.

evaluate a product of more than two elements, such as a � b � c, it doesn’t matter how

you group the elements, as long as you don’t change their order. You can start by

grouping a with b, making the product a � b = d, and then form the product d � c

corresponding to (a � b) � c. Alternatively, you could first combine b with c to obtain

the product b � c = f , and then make the composition a � f , corresponding to

a � (b � c). Both ways of computing lead to the same result; hence, there is no

ambiguity in writing a � b � c and you are free to insert brackets wherever

you want.

3. Identity. There exists a unique element e in G such that, for every element a in G, the

equation e � a = a � e = a is obeyed. The element e is called the unit element or

identity element.
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18 4. Invertibility. For each a in G, there exists an element a−1 in G such that

a � a−1 = a−1 � a = e, where e represents the identity element and a−1 is called the

inverse element. ◾

Corollary 2.1 (Finite and infinite groups): A group (G,�) is said to be finite when it

contains a finite number of group elements. This number is called the order of the group

and is denoted by the symbols o(G) or |G|. Infinite groups contain an infinite number of

elements and are said to be of infinite order. ◾

Finite groups are always discrete; infinite order groups, on the other hand, can be

discrete, continuous, or a mixture of both.

Corollary 2.2 (Discrete and continuous groups): An infinite group (G,�) is said to be

discrete when its elements e, a, b, c, . . . are denumerably infinite (that is, countably

infinite), in the sense that they can be labeled by the natural numbers 1, 2, 3, . . . . An

infinite group (G,�) is said to be continuous when its elements are nondenumerably

infinite (that is, noncountably infinite); each element e, a, b, c, . . . is then specified by

a number n of continuously varying parameters, r1, r2, . . . , rn. ◾

Upon one’s first encounter with the definition of a group, one naturally feels somewhat

confused, perhaps even a little sceptical. After all, it is far from clear a priori how much

understanding, insight, and unification can follow from such simple axioms. One of

the aims of this book is, therefore, to illustrate “what a wealth, what a grandeur of

thought may spring from what slight beginnings.”4

As the historian of mathematics Eric Temple Bell (1883–1960) famously wrote:

“Whenever groups disclosed themselves [in the history of mathematical and scientific

inquiry], simplicity crystallized out of comparative chaos.”5 The ubiquity of groups in

areas as diverse as mathematics, physics, and chemistry has elevated the group concept

to the central organizing principle of modern science, as we will happily show in the

chapters to follow.

2.2 THE ABSTRACT AND THE CONCRETE

Much of the power of group theory lies in its complete detachment from anything

concrete. The theory of groups has, unsurprisingly, been called “the supreme art

of mathematical abstraction.”6 Indeed, in the formal definition of a group, we

consciously refrained from specifying the exact nature of the group elements and their

product rule. The elements e, a, b, c, . . . were introduced as abstract entities, forming

abstract groups under abstract combination laws. By focusing in this way on the grin,

rather than on the entire Cheshire Cat (Figure 2.1), group theory concerns itself only

with “the fine filigree of underlying relationships”;7 it studies the relations regardless

4 British geometer Henry Frederick Baker (1866–1956), as quoted by American historian of

mathematics Florian Cajori (1859–1930) in F. Cajori. A History of Mathematics. 2nd ed. New York:

MacMillan, 1919, p. 283.
5 E. T. Bell. Mathematics, Queen and Servant of Science. New York: McGraw-Hill, 1951, p. 164.
6 Newman, “The Supreme Art of Abstraction: Group Theory,” p. 1534.
7 Ibid.
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FIGURE 2.2 Having studied the group theoretical grin of the system under study, one can make its

physical body reappear.

of the nature of the relata. It is this ignoring of all the unessential details that has

turned group theory into “the most powerful instrument yet invented for illuminating

structure.”8

Of course, at some point, the cat’s body has to reappear (Figure 2.2). That is, for

group theory to be useful in science, the abstract elements and product rules have to

be made concrete; they have to acquire specific meanings by going into correspondence

with their concrete counterparts. “Otherwise, manipulating the group amounts to

nothing more than a game, and a pretty vague and arid game at that, suitable only

for the most withdrawn lunatics.”9 As Cassius J. Keyser (1862–1947) observed:

A great idea is always generic and abstract but it has its living significance in the

particular and concrete—in a countless multitude of differing instances or examples

of it.10

Abstract groups can be represented (or realized) by an infinite number of concrete

groups. The exact relationship between an abstract and a concrete group (or between

two or more concrete groups) will be made more explicit in §2.7. For the moment, let

us note only that these concrete elements are often arithmetic objects, such as numbers,

vectors, or matrices; they can also be mathematical operations or physical operations,

such as rotations and other symmetry transformations. Most of our attention in this

book will be focused on groups with elements that are symmetry transformations.

In much the same way, the abstract product symbol � can be realized concretely

to denote just about any kind of combination operation. It doesn’t merely symbolize

the arithmetic operation of multiplying two group elements (a×b) as its (misleading)

name may seem to imply at first sight; it could just as well represent a simple addition

of the group elements (a+b), or it might be used to denote the consecutive application

of two symmetry transformations.

8 Newman, “The Supreme Art of Abstraction: Group Theory,” p. 1534.
9 Ibid., p. 1535.

10 C. J. Keyser. Mathematical Philosophy: A Study of Fate and Freedom. New York: Dutton, 1922,

p. 205.
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20 In the case of rotation operators, for instance, the product of two rotations over

the respective angles ω2 and ω1, written as R (ω2) � R (ω1), simply means to carry

out both rotations consecutively, first over ω1 and subsequently over ω2. Notice that

the operations are right justified—meaning that the sequence of operations should be

applied from right to left (and not from left to right, although this is the traditional

direction for reading and writing in English). Think of an object or “target” on which

the operators are acting that is placed behind the operators. Then, the first operator

that “hits” the target is, indeed, R (ω1) and the second is R (ω2). The same rule applies

to differential operators; for example,

d

dx
x f (x) (2.1)

means first to multiply the function f (x) by x, and, secondly, to differentiate the result.

This is, of course, completely different from

x
d

dx
f (x), (2.2)

where the function f (x) is first differentiated and then multiplied by x.

2.3 ABELIAN GROUPS

The order in which the group operations are carried out is therefore significant;

the combination of element a with element b is not necessarily the same as the

combination of element b with element a; the equation a � b = b � a does not

always hold (Figure 2.3). Whenever the equation does hold true, the elements a

and b are said to commute. It follows from Definition 2.1 that the unit element e

commutes with all group elements. Similarly, every element a commutes with its

FIGURE 2.3 A mad tea party. “ ‘You should say what you mean,’ the March Hare went on. ‘I do,’

Alice hastily replied; ‘at least—at least I mean what I say—that’s the same thing, you know.’ ‘Not

the same thing a bit!’ said the Hatter. ‘You might just as well say that “I see what I eat” is the same

thing as “I eat what I see!” ’ ‘You might just as well say,’ added the March Hare, ‘that “I like what I

get” is the same thing as “I get what I like!” ’ ‘You might just as well say,’ added the Dormouse, who

seemed to be talking in his sleep, ‘that “I breathe when I sleep” is the same thing as “I sleep when I

breathe!” ’ ‘It is the same thing with you,’ said the Hatter, and here the conversation dropped.”
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inverse element a−1. And of course, every element also commutes with itself. Groups

for which all the elements commute with one another are called Abelian in honour of

Norwegian mathematician Niels Hendrik Abel (1802–1829), and the product rule is

said to be commutative.

Definition 2.2 (Abelian groups): A group (G,�) is said to be Abelian if all the group

elements commute (i.e., if a � b = b � a for every pair of elements a, b ∈ G). The

multiplication rule (�) is then said to be commutative. Conversely, all groups with a

noncommutative product rule are called non-Abelian. ◾

As an example of a concrete Abelian group, consider the set of all positive and negative

integers, including 0 and denoted Z= {0, ±1, ±2, ±3, . . . }. This set forms an integer

addition group (Z,+) under the mathematical operation of addition. After all, the set

is clearly closed under addition and the law of associativity always holds:

(a+ b)+ c = a+ (b+ c). (2.3)

The number 0 represents the identity element since

0+ a = a+ 0 = a, (2.4)

and −a is the inverse element of a because

a+ (−a)= (−a)+ a = 0. (2.5)

This fulfils the four group axioms. Now, because of the commutativity of addition, the

equation a + b = b + a holds true for all integers a,b ∈ Z; this proves the Abelian

character of the group (Z,+). Also, Z contains an infinite number of elements, and

because one cannot proceed continuously from one element to the other, (Z,+) is a

discrete Abelian group of infinite order.

Not all groups are Abelian, however; most symmetry groups, for instance, are

non-Abelian, as we will see in the chapters to follow.

2.4 EXAMPLES OF GROUPS

We now consider some simple examples of groups and represent them in tabular form.

1. The smallest finite group {e} consists of the identity element e alone and is of

order 1, with e � e = e. This is also called the trivial group.

2. The set of real numbers R forms a group (R,+) under the operation of addition.

This group is, in many aspects, comparable with the integer addition group

(Z,+); the identity element is 0 and the inverse of a is −a. Also, because addition

in R is commutative, the group (R,+) is Abelian. However, the set of real

numbers under addition is a typical example of a continuous one-parameter

group, unlike the discrete addition group (Z,+). After all, the elements of R are

nondenumerable and the parameter of the group is just the real number itself,

which varies continuously from −∞ to +∞.

3. The set of complex numbers G = {1, i, −1, −i} forms a finite group (G,×) of

order 4 with respect to the multiplication operation. This can be seen clearly by

constructing a so-called multiplication table in Table 2.1:
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22 Table 2.1 Multiplication table

for the group {1, i,−1,−i}

1 i −1 −i

1 1 i −1 −i

i i −1 −i 1

−1 −1 −i 1 i

−i −i 1 i −1

Table 2.2 Example of a multiplication table. The

product a � b is found at the intersection of the

row starting with a and the column headed by b

e a · · · b · · ·
e e � e e � a · · · e � b · · ·
a a � e a � a · · · a � b · · ·
...

...
...

. . .
...

b b � e b � a · · · b � b · · ·
...

...
...

...
. . .

Known variously as a composition table or a Cayley table (after British

mathematician Arthur Cayley [1821–1895]), a multiplication table portrays

the structure of finite groups. To construct the table, start by listing all four group

elements in the top row (in no particular order, but without repeating elements),

then do the same in the leftmost column (again, in no particular order). This traces

out the boundaries of a 4× 4 square table. Each entry in the grid is then obtained

by making the cross product between an element from the leftmost column

and one from the top row (Table 2.2). Because many groups are non-Abelian,

the convention of first writing the element from the leftmost column and

then writing the element from the top row is of the utmost importance.

A closer examination of the multiplication table verifies the four group axioms:

I. Since all entries in the table are elements of G, the set G is closed under

the operation of multiplication.

II. All elements of G are complex numbers: G = {1, i, −1, −i} ⊂C. Since

multiplication in C is associative, the associative law is obeyed in (G,×).
III. The column headed by the element 1 of the top row matches the leftmost

column—meaning, that: 1× 1= 1, i× 1 = i, −1× 1 =−1, and

−i× 1=−i. In short, a× 1= a ∀a ∈ G. Analogously, the row headed by the

element 1 is identical to the top row: 1× (1)= 1, 1× (i)= i, 1× (−1)=−1,

and 1× (−i)=−i, which can be summarized as 1× a = a ∀a ∈ G.

Bringing together these two observations, we have just verified that

1× a = a× 1= a ∀a ∈ G, thus identifying 1 as the unit element of (G,×).
IV. For every element in the top row there is a corresponding element in the

leftmost column (and vice versa) whose product equals

the identity element 1. In other words, each element of G possesses a unique
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inverse element. The identity element, by definition, is its own inverse since

1× 1= 1. The same holds true for the element −1 because (−1)× (−1)= 1.

Finally, i and −i are each other’s inverse: i× (−i)= (−i)× i = 1.

Since multiplication in C is commutative, the group (G,×) is Abelian. This fact

can also be deduced from the multiplication table. Because the ordering of the

group elements in the top row (left to right) matches the ordering in the leftmost

column (up to down), the multiplication table is symmetric along its diagonal axis

(i.e., a× b = b× a ∀a,b ∈ G).

4. As a final example, consider the symmetry group of the equilateral

triangle. Let e denote the null operation; p and q signify the rotations through

120◦ and 240◦, respectively; and r, s, and t represent the three reflections

through the lines r, s, and t , as shown in Figure 2.4. Now, try constructing the

multiplication table yourself. It may be helpful to cut an equilateral triangle out

of paper or cardboard and to label its vertices A, B, and C. You can then play

with the triangle by performing one operation after the other and writing down

your results, which should look like Table 2.311: This group is clearly closed

and associative. The identity element is e, and each element has an inverse;

e, r, s, and t are their own inverse whereas p and q are each other’s inverse.

A

B C

st

r

p q

FIGURE 2.4 The six symmetry transformations of an

equilateral triangle. The identity transformation e is not

indicated.

Table 2.3 Multiplication table for the

symmetry group of the equilateral

triangle

e p q r s t

e e p q r s t

p p q e t r s

q q e p s t r

r r s t e p q

s s t r q e p

t t r s p q e

11 Reflections may be executed effectively by pivoting the triangles around the dashed lines in

Figure 2.4. Note that the symmetry operation changes the position of the vertices. However,

the orientation of the symmetry planes are left immobile in space. See A. Ceulemans. Group

Theory Applied to Chemistry. Dordrecht: Springer, 2013, p. 23.
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As a consequence, the Cayley table is not symmetric along its main diagonal.

2.5 SUBGROUPS

To introduce the concept of a subgroup, imagine restricting the set of symmetry

transformations G = {
e, p, q, r, s, t

}
of the equilateral triangle to rotations only.

Interestingly, this new set H = {
e, p, q

}
forms a group as well, as can be seen from

the multiplication table. Since H is a subset of G, forming a group (H,�) under the

same composition law as (G,�), (H,�) is called a subgroup of (G,�).

Not every subset of G forms a subgroup, however. The set of reflections I =
{r, s, t}, for instance, does not yield a subgroup of (G,�), since (I,�) is not closed. For

example, s � t = p, but p is not an element of set I. Set I also lacks an identity element

e. All of this is easily deduced from the previous multiplication table. Generalizing:

Definition 2.3 (Subgroup): If, from group (G,�) a new group (H,�) can be formed

under the same composition law � by taking a subset H of G, denoted H ⊂ G, then

(H,�) is said to form a subgroup of (G,�). ◾

Every group (G,�) is a subgroup of itself. Also, the identity element e always forms a

trivial subgroup {e} of (G,�) of order 1. These are called improper subgroups. Subset

H = {
e, p, q

}
of G = {

e, p, q, r, s, t
}

, on the other hand, is said to form a proper

subgroup (H,�) of group (G,�).

2.6 SYMMETRY BREAKING

The subgroups of a group are usually denoted as a chain of subgroups; the parent group

is listed first, followed by the different subgroups in decreasing order:

(G,�)⊃ (G1,�)⊃ (G2,�)⊃ (G3,�)⊃ . . . , (2.6)

with G1 a subset of G, G2 a subset of G1, and G3 a subset of G2. In the case of the

symmetry group of the equilateral triangle, for example,

(G,�)⊃ (H,�)⊃ {e}. (2.7)

This chain actually represents a series of symmetry breakings. In the first step, the full

symmetry of the triangle is broken because reflections are no longer included. In the

second step, the remaining rotational symmetry is broken even further to yield the

trivial group, where the only symmetry left is the null operation.

2.7 ISOMORPHISMS AND HOMOMORPHISMS

Let us return, for a moment, to our discussion of abstract and concrete groups. Recall

that when the notion of an abstract group was outlined in Definition 2.1, no direct

allusion was made to the nature of its elements. We thus emphasized in §2.2 that,

within abstract group theory, the elements of a group are just meaningless symbols,

devoid of any physical reality, that combine according to a given product rule, the

structural properties of which are summarized in a multiplication table. By way of

illustration, consider the following set of abstract elements G = {e, a, b, c}, forming
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Table 2.4 Multiplication table of

an abstract group of 4 elements

e a b c

e e a b c

a a b c e

b b c e a

c c e a b

an abstract group (G,�) of finite order 4 with multiplication table as given in Table 2.4.

By inspection of the multiplication table, we can easily verify that all four group axioms

are satisfied, which proves that (G,�) is, indeed, a group.

We then were able to see that whenever the nature of the elements and the product

rule are specified, a concrete group is obtained, which is just one out of an infinite

number of possible realizations of the abstract group; one says the abstract group has

been represented by the concrete group. The aim of this section is to outline how such

representations can be realized.

Basically, every abstract element has to be brought into correspondence with a

concrete element. This is done via a mapping φ from the abstract set G to the concrete

one G ′, which we denote as

G φ−→ G′ or φ : G→ G′. (2.8)

Consider, for example, the following mapping from the elements of G = {e, a, b, c} to

the elements of G′ = {1, i, −1, −i}:
G → G′

e �→ 1

a �→ i

b �→ −1

c �→ −i

(2.9)

Each element g of G corresponds to an element g ′ of G′, which is called the image of g .

This mapping is represented as g �→ g ′. Thus, 1 is the image of e, i is the image of a,

−1 is the image of b, and −i is the image of c. Let us assume the abstract product � is

realized by the multiplication operation ×. Notice, then, that this mapping preserves

the composition rule; for instance,

b � c = a
is mapped to←→ (−1)× (−i)= i. (2.10)

The abstract group (G,�) is therefore said to be represented by the concrete group(G′,×), the multiplication table of which was already given on page 22.

Because there is a one-to-one correspondence between the elements of G and G′
(i.e., each element of G′ is the image of one and only one element of G) both groups

are of the same order and their multiplication tables are equivalent (differing only in

the designation of the elements). Groups that share the same algebraic structure are

said to be isomorphic to one another, and the mapping is called an isomorphism.

Another isomorphic realization of the abstract group (G,�) can be obtained

by considering the rotational symmetry of a square. Since a square is invariant

under rotations through multiples of 90◦, we obtain the following set of symmetry
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×i ×i

×i×i

FIGURE 2.5 The isomorphism between the two concrete groups
(G ′,×) and

(G ′′,�
)

is particularly

clear in the Argand plane,12 where multiplication by i is seen to amount to a counterclockwise turn

of 90◦.

transformations: G′′ = {0◦, 90◦, 180◦, 270◦}. We can then make the following

mapping from G to G′′:

G → G′′

e �→ 0◦
a �→ 90◦
b �→ 180◦
c �→ 270◦

(2.11)

This mapping preserves the composition rule, so
(G′′,�) is another concrete

realization of (G,�). And because the mapping is one to one, the symmetry group(G′′,�) is isomorphic to (G,�). Moreover, this implies that the two concrete groups(G′,×) and
(G′′,�) are isomorphic to one another under the mapping: 1 �→ 0◦,

i �→ 90◦, −1 �→ 180◦, and −i �→ 270◦ (Figure 2.5).

What this actually means is that we can limit ourselves to a study of the abstract

group (G,�) and then translate our findings according to the mappings in Eqs. (2.9)

and (2.11) to yield valid information about both concrete groups (G ′,×) and (G′′,�).
For example, the finding that “a combines with b to yield c” translates to “the complex

number i multiplied by−1 yields the complex number−i,” or “a rotation of the square

by 180◦, followed by another one through 90◦, is the same as one rotation through

270◦.” Here is a first example of the power of group theory at work.

12 Complex numbers are presented in a plane formed by the real axis and the orthogonal imaginary

axis. It is named after the French mathematician Jean-Robert Argand (1768–1822).
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Table 2.5 Multiplication tables

corresponding to a many-to-one

mapping

e b a c

e e b a c

b b e c a

a a c b e

c c a e b

↔
1 −1

1 1 −1

−1 −1 1

We will encounter many isomorphisms in this book. The symmetries of elementary

particle physics, for instance, will reveal themselves to be isomorphic to the symmetries

of the harmonic oscillator (Chapter 7). Similarly, the symmetries of the hydrogen atom

will be shown to be isomorphic to the symmetries of the solar system (Chapter 9).

Now, before closing this section, consider yet another mapping between the

elements of G = {e, a, b, c} and the set G′′′ = {1, −1}:
G → G′′′

e �→ 1

a �→ −1

b �→ 1

c �→ −1

(2.12)

Group multiplication is still preserved; b � c = a, for instance, gets mapped onto

1 × (−1) = −1. So,
(G′′′,×) is another representation of the abstract group (G,�).

However, because there is a many-to-one correspondence between both sets of elements

(i.e., different elements from G are mapped onto one and the same element from G′′′),

the orders of the groups differ: |G| �= ∣∣G′′′∣∣. The algebraic structure of both groups is

therefore different, as can be seen by inspection of both multiplication tables (Table

2.5). Groups (G,�) and
(G′′′,×) are said to be homomorphic to one another, and the

mapping is called a homomorphism. Generalizing the aforementioned:

Definition 2.4 (Isomorphisms and homomorphisms): A mapping φ of G onto G ′ allows

each element a of G to be assigned to an element a′ = φ(a) of G ′. If φ is a one-to-one

mapping between the elements of G and G ′ for which the composition rule is preserved:

a � b = ab ←→ φ(a) �′ φ(b)= φ(ab), (2.13)

then φ is called an isomorphism and G and G ′ are said to be isomorphic to one another:

G ≈ G ′, with |G| = ∣∣G ′∣∣. When φ is a many-to-one mapping that preserves the product

rule, then φ is called a homomorphism and G and G ′ are said to be homomorphic to one

another, with |G| �= ∣∣G ′∣∣. ◾

2.8 HISTORICAL INTERLUDE

In this final section, the development of group theory throughout the nineteenth

century is briefly described. Who were the first explorers of the group theoretical

concept? Which mathematicians first set foot on the group theoretical shores of the
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four group axioms?

Just as with the concept of symmetry, the development of the abstract group

concept was a remarkably slow process. What is more, group theory did not emerge

from a study of geometric symmetries, but from the study of algebraic symmetries that

occur in equation theory.13

2.8.1 Évariste Galois

According to recorded history, Galois was probably the first to explicitly define the

notion of a group in 1832. Of course, mathematicians had been using groups well

before the first formal definitions appeared in print. As we saw in §2.4, most number

systems (e.g., the natural, rational, real, and complex numbers) have a group structure.

The same can be said about rotations, translations, or even modular arithmetic. So,

whoever was studying these matters was (at least unconsciously) dealing with groups.

But let us return to Galois. When Galois first composed his Premier Mémoire back

in 1829, he failed to provide a definition of the term group, and readers had to guess its

technical meaning from Galois’ repeated use of it in the document. Therefore, it is

not really surprising that Poisson deemed Galois’ paper to be “incomprehensible”

(see Chapter 1). It was only on the eve of the duel, when revising his manuscript for

the final time, that Galois added some last-minute marginal additions in which he

wrote down the first technical definition of a group. He thus wrote: “if in such a group

one has the substitutions S and T , one is sure to have the substitution ST .”14

Galois’ brother Alfred and his good friend Auguste Chevalier took upon themselves

the arduous task of collecting and cataloguing Galois’ mathematical manuscripts. His

Lettre Testamentaire appeared in the September issue of the Revue Encyclopédique,

along with a short obituary from the hand of Chevalier.15 And during the summer

of 1843, Chevalier donated all the manuscripts to mathematician Joseph Liouville

(1809–1882). Profoundly impressed by Galois’ revolutionary findings, Liouville

promised the Paris Academy to publish Galois’ complete Œuvres Mathématiques,

which he finally did in his journal in 1846—fourteen years after Galois’ untimely

death.16

13 For this reason, the term group has been long synonymous with permutation group.
14 Translated from French by Peter Neumann in P. M. Neumann. The Mathematical Writings

of Évariste Galois. Heritage of European Mathematics. Zürich: European Mathematical Society

Publishing House, 2011, p. 115. The original text reads: “si dans un pareil groupe on a les

substitutions S et T , on est sûr d’avoir la substitution ST .”
15 E. Galois. “Travaux Mathématiques d’Évariste Galois: Lettre de Galois.” Revue Encyclopédique 55

(1832), pp. 568–576; A. Chevalier. “Nécrologie Evariste Galois.” Revue Encyclopédique 55 (1832),

pp. 744–754.
16 E. Galois. “Oeuvres Mathématiques d’Évariste Galois.” Journal de Mathématiques Pures et

Appliquées XI (1846), pp. 381–444. At that time, Liouville’s journal was also known as the Journal de

Liouville. Galois’ Œuvres Mathématiques was later reprinted in book form in E. Picard, ed. Œuvres

Mathématiques d’Évariste Galois. Paris: Gauthier-Villars, 1897. For the English translation of Galois’

œuvre, see Neumann, op. cit.
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2.8.2 The French school

Interestingly, Augustin-Louis Cauchy came up with a very similar definition in 1845,

the year before Galois’ publications came into print in Liouville’s journal. Cauchy

did not adopt the term group, however, but preferred the phrase conjugate system of

substitutions.17 One might wonder to what extent Cauchy had been influenced by the

reading of Galois’ Premier Mémoire, which he submitted to the Academy in 1829.

In any case, both Galois and Cauchy defined a group in terms of the closure

property. There was no explicit statement of the associative law or the existence of

an identity element and inverse elements. But, judging from their work, these were

clearly assumed implicitly.

Meanwhile, Liouville had started lecturing on Galois’ work. Among those who

attended the course were Joseph Serret (1819–1885), Joseph Bertrand (1822–1900),

and Charles Hermite (1822–1901). All of them would later contribute to the subject,

but it was Camille Jordan (1838–1922), a student of Serret, who properly started the

systematic study of finite groups. Having busied himself from 1860 till 1870 with the

theory of groups, Jordan’s research culminated in the publication of his Traité des

Substitutions et des Équations Algébriques in 1870, the first major textbook on group

theory, which helped to bring Galois’ theory into the spotlight.

2.8.3 Sir Arthur Cayley

The first attempt at an abstract definition of a group arose in the work of the British

mathematician Sir Arthur Cayley (1821–1895), who wrote two papers in 1854.18

Cayley wrote:

A set of symbols, 1, α, β, . . . all of them different, and such that the product of

any two of them (no matter in what order), or the product of any one of them into

itself, belongs to the set, is said to be a group. . . . These symbols are not in general

convertible (commutative) but are associative. . . . It follows that if the entire group is

multiplied by any one of the symbols, either as further or nearer factor [i.e., left or right

multiplication], the effect is simply to reproduce the group.19

Notice that Cayley refers to a group as a set of elements (symbols) with a

binary operation (product). The closure property and associative law are mentioned

explicitly, and the existence of an identity and inverse elements follows implicitly

from the properties of left and right cancelation. In the same article, Cayley also

17 Both names were used interchangeably until 1880. After the appearance of Camille Jordan’s

commentary on Galois’ work, the word group came to be adopted as the standard term. This was

reinforced only with Jordan’s publication of his Traité des Substitutions et des Équations Algebraique

in 1870.
18 A. Cayley. “On the Theory of Groups, As Depending on the Symbolic Equation θn = 1.”

Philosophical Magazine VII (1854), pp. 40–47, 408–409.
19 Cayley, “On the Theory of Groups, As Depending on the Symbolic Equation n = 1,” p. 41.

In a footnote to this definition, Cayley acknowledged that “the idea of a group as applied to

permutations or substitutions is due to Galois, and the introduction of it may be considered as

marking an epoch in the progress of the theory of algebraical equations.”
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and quaternions could form groups as well.

Cayley’s papers were well ahead of their time, and they failed to make a lasting

impression on his fellow mathematicians. However, when Cayley returned to the

subject in 1878,20 the time was finally ripe for group theory to become a subject worthy

of deeper consideration.

20 A. Cayley. “A Theorem on Groups,” Mathematische Annalen XIII (1878), pp. 561–565; A. Cayley.

“On the Theory of Groups,” Proceedings of the London Mathematical Society IX (1878), pp. 126–133;

A. Cayley. “The Theory of Groups,” American Journal of Mathematics I (1878), pp. 50–52; A. Cayley.

“The Theory of Groups: Graphical Representation.” American Journal of Mathematics I (1878),

pp. 174–176.



3 The axial rotation group

Μή μου τοὺς κύκλους τάραττε. [Do not disturb my circles!]

–Last words of Archimedes of Syracuse (278–212 BC)1

If the first chapter of this book revolved around the concept of symmetry and the second

chapter around the concept of a group, then this chapter begins the grand synthesis of

both. That’s right, the relevance of the group concept for physics and chemistry has its

origin in the fundamental connection between (1) the algebraic structure of a group

and (2) the symmetry transformations of the particular system under study. That is

to say, the complete set of symmetry transformations of an object along with the

operation of combining two such transformations by performing one after the other

forms a symmetry group, as we shall see in this chapter.

Although most discussions of group theory start with a consideration of finite,

discrete symmetries, such as the symmetries of the triangle (§1.2.2), this monograph

plunges immediately into the fascinating but often perplexing world of continuous

symmetries that lie at the foundations of both chemistry and physics. Let’s embark

on a spectacular journey toward the sublime symmetries of both atomic and

molecular chemistry, nuclear and elementary particle physics. Such a journey requires

1 According to legend, ancient Greek mathematician and astronomer Archimedes of Syracuse was

drawing circles in the sand when a Roman soldier disturbed him. With his sword drawn over

Archimedes’ head, the soldier asked him to reveal his identity, but Archimedes’ eyes and mind

were fixed on the mathematical problem in front of him, and he only uttered: “Do not disturb

my circles!” Confused by this answer and without respect for the art of mathematics, the soldier

killed Archimedes.
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tools before we can tackle the group theoretical foundations of these sciences in Part

II of this book.

Chapter outline

In this chapter, we therefore consider the symmetry of the circle—icon of

perfection—a bit more carefully than before. After making a distinction between

the active and passive ways of defining symmetry in §3.1, we will examine the different

symmetry transformations of the circle by rotation operators in §3.2. We then take

a look at how these rotation operators form a symmetry group—the axial rotation

group—in §3.3. In the next two sections, §§3.4 and 3.5, we investigate how coordinates

and coordinate functions transform under these rotation operators by expressing the

two-dimensional rotations of the circle algebraically by means of rotation matrices.

This will lead us to consider the concept of matrix representations in §3.6. Finally, in

§3.7, we will prove that the axial rotation group is isomorphic to the so-called special

orthogonal group in two dimensions, denoted SO(2) for short (with “S” for special,

“O” for orthogonal, and “2” for two dimensions).

3.1 ACTIVE VERSUS PASSIVE VIEW OF SYMMETRY

Let’s take off by drawing a circle in the two-dimensional Euclidean plane R2, centred

at the origin O of a Cartesian coordinate frame �
(
x,y
)

(Figure 3.1). The origin O

functions as the fixed point (or pivot point) of rotation. There are two ways to express

the rotational symmetry of the circle:

ω

Active transformation

(A) (B)

x

y

0

P

P'

y'

x'

ω

Passive transformation

0

y

x
ω

P

FIGURE 3.1 (A) In the active transformation, point P is rotated actively in a counterclockwise

fashion about the pivot point O over an angle ω to the new point P′. (B) In the passive

transformation, point P does not move, but the coordinate system�
(
x,y
)

is rotated in clockwise

fashion about the origin over an angle ω to the new coordinate system �′ (x′,y ′
)
. Now, P′ is to

�
(
x,y
)

what P is to�′ (x′,y ′
)
.
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1. We can rotate the circle around its symmetry axis through a particular angle ω,

and notice that it remains invariant under this rotation.

2. Alternatively, we can also keep the circle fixed while changing our perspective of it

by tilting our head a little to the left or to the right. If you imagine the Cartesian

frame to be attached to your face, this actually corresponds to a rotation of the

coordinate system from which the circle is observed.2 Once again, the appearance

of the circle remains unchanged during this change of perspective.

Given that, in the first way, every point of the circle changes position during the

transformation, it is referred to as an active transformation. In the second way, the

circle is kept in a fixed position. So, from the circle’s point of view, this is referred to as

a passive transformation.

Another way of explaining the distinction goes as follows. From the active point

of view (situation 1), there is one observer looking at two events: the circle before and

after the rotation. From the passive point of view (situation 2), there are two observers

looking at one and the same event, but from a different perspective (read: coordinate

system).

Both ways of expressing the symmetry of a circle are equivalent, but notice

that the senses of rotation are opposite. If observers in the second mode tilt their

head clockwise, the equivalent rotation in the first mode has to be counterclockwise

(Figure 3.1), and vice versa. For this reason, it is tricky to mix the two ways of defining

symmetry. Our choice will always be to leave the observers where they are—which

means we keep the Cartesian frame fixed—and rotate the objects instead. In other

words, we adhere to an active interpretation of symmetry transformations throughout

this monograph.

At the risk of sounding overly repetitive, it bears emphasizing, once again, that

during every (active) rotation of the circle, something is changing and something

remains fixed. What is changing are the
(
x, y
)

coordinates of every point P on the

circle. What remains the same is the image observed before and after the rotation.

Note that a rotation leaves the distance between all points on the circle invariant,

and hence also the radius of the circle.3 Thinking difference and identity together is

the essence of symmetry. The simple transformation of the position of the circle in

space may look like a trivial children’s game. The odd thing is that it is not. It involves

the connection between matter and space, and carries us to the heart of physics, as

we shall see.

In the next few sections, §3.2 through §3.6, we start by focusing on the changing(
x,y
)

coordinates and express these transformations in mathematically precise terms.

Then, in §3.7, we consider how the radius remains fixed (or invariant) during these

rotations.

2 This is also termed a change of basis.
3 In Euclidean geometry, this is called an isometry (i.e., a transformation that moves points without

changing the distances between them). Rotations are distinguished from other isometries by two

additional properties: (1) they leave (at least) one point fixed (the origin) and (2) they leave

handedness unchanged. In contrast, a translation moves every point: a reflection exchanges left- and

right-hand ordering, and a glide reflection does both.
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A rotation of the circle can be defined as an operation that moves all the points of the

circle around the pivot point O over an angle ω. A positive value of ω corresponds

to a counterclockwise rotation; a negative value, to a clockwise rotation, viewed

from above the plane. Every rotation operation transforms the circle into a state

that is indistinguishable from the original one; all rotations are, therefore, symmetry

operations (or covering operations) of the circle.

We can represent each rotation operation by a rotation operator, denoted R (ω). The

result of operating on any point P with rotation operator R (ω) is that the point P is

moved to a new point P′. The former point can be considered to be the target of the

operation whereas the latter is the image:

R (ω)P = P′. (3.1)

Definition 3.1 (Rotation operator): A rotation operator, denoted R (ω), is a mathemat-

ical entity that operates (acts) on a point P by rotating it over an angle ω about a fixed

axis to the new point P′. ◾

The rotation operator is thus defined as a mapping of points. Note that this operator

affects all points in space. It acts uniformly. The origin is, of course, mapped onto itself.

Furthermore, if P is lying on the circle, its image P′ is also a point on the circle. Still,

this is not sufficient to have an isometry of the circle. What distinguishes a symmetry

operation from a random permutation of points is that the distances between points

are not affected by the mapping.

The rotation angle ω is a real parameter, varying over the periodic interval [0,2π].
This means that the angle starts over after it reaches 2π—the modulus. A rotation of

3π , for example, can be thought of as the sum of two successive rotations: one over 2π

and another over 1π . Because a rotation of 2π corresponds to no rotation at all, the

rotation of 3π is equivalent to one of π . One says the rotation angle ω is defined mod

2π (read: modulo 2π), where the mod operator ensures the rotation angle remains

between 0 and 2π radians. Note that the number of possible rotations is infinite, as

was mentioned in §1.2.3.

Simple as they may seem, these rotation operators, R (ω), have an unexpected

power that they inherit from the special kind of mathematical structure to which they

belong. They form the elements of a symmetry group.

3.3 THE AXIAL ROTATION GROUP

The set of all rotations in two-dimensional Euclidean space R2 forms an infinite

continuous group—the axial rotation group. The elements of the group are the

rotation operators R (ω), with 0 ≤ ω ≤ 2π . The product symbol � is defined to

denote the consecutive application of two or more rotation operations. Having

identified the nature of the elements and the product rule, it remains to be checked

whether this particular set and operation satisfy all four group axioms:

1. Closure: For all R (ω1) and R (ω2) in G, the result of their product is also an

element of the group:

R (ω2) �R (ω1)= R(ω). (3.2)
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After all, R (ω1) rotates the object over an angle ω1, after which the object is

rotated further over an angle ω2 under the action of R (ω2). This is equivalent to

one rotation of R (ω) over an angle ω, where

ω = ω1 +ω2 (mod 2π). (3.3)

Note that this implies the group is Abelian, because ω1 +ω2 = ω2 +ω1—

meaning, R (ω2) �R (ω1)= R (ω1) �R (ω2).

2. Associativity: For all R (ω1), R (ω2), and R (ω3) in G, the following equation always

holds:

[R (ω3) �R (ω2)] �R (ω1)= R (ω3) � [R (ω2) �R (ω1)]. (3.4)

This can be explained by the fact that the total operation corresponds to a rotation

over the sum of all three angles, which is, of course, associative:

[ω3 +ω2]+ω1 = ω3 + [ω2 +ω1] . (3.5)

3. Identity: There exists an element E in G such that for every element R (ω) in G,

E �R (ω)= R (ω) �E = R(ω). (3.6)

This identity element is simply the trivial rotation over 0◦, R(0), because

0+ω = ω+ 0= ω. (3.7)

4. Invertibility: For each R (ω) in G there exists an element R (ω)−1 in G such that

R (ω) �R (ω)−1 = R (ω)−1 �R (ω)= E. (3.8)

The inverse element corresponds to a rotation in the opposite sense; hence,

R (ω)−1 = R (−ω) (3.9)

since

ω+ (−ω)=−ω+ω= 0. (3.10)

This verifies that the set of all two-dimensional rotation operators R (ω) forms a

group—the axial rotation group.

3.4 TRANSFORMATIONS OF COORDINATES

So far, we have looked at the axial rotation group as an infinite set of physi-

cal operations denoted by the rotation operators R (ω). For each of these rotation

operators R (ω), the corresponding mapping P �→ P′ may be expressed as a change

of coordinates, where the coordinates of the target P are replaced by the coordinates

of the image P′.
The aim of this section is to describe this transformation of coordinates. It will

be convenient to express the transformation in matrix form, such that we can bring

matrix algebra into play. This will become particularly useful in subsequent chapters

when quantum mechanics enters the stage. A refresher of both vector and matrix

algebra can be found in Appendices A and B.

Taking the origin O of the Cartesian system �
(
x, y
)

as the fixed point, every point

P can be addressed by a displacement vector a from the origin (Figure 3.2). The reason



Sh
at
te
re
d
Sy
m
m
et
ry

36

x

y

a'

'

'0

P

P'

ω
ϕ

ax

ay

ay

ax

a

FIGURE 3.2 Counterclockwise rotation of point P

through angle ω to the new point P′ in a Cartesian

coordinate system �
(
x,y
)
.

for working with vectors rather than with points comes from the fact that vectors can

be represented by matrices. Suppose, for instance, that
(
ax ,ay

)
are the coordinates of

a random point P that represents the end point of a displacement vector a from the

origin O. The vector a can then be written as a column matrix:

a =
[

ax

ay

]
. (3.11)

Acting with the rotation operator R (ω) on P rotates this point counterclockwise over

an angle ω to P′ (i.e., R (ω)P = P′). In vector notation, this corresponds to

R (ω)a= a′, (3.12)

where a′ is the position vector of P′. This can be rewritten in matrix notation as

R (ω)

[
ax

ay

]
=
[

a′x
a′y

]
. (3.13)

The rotation operator R (ω) is said to induce a linear transformation of the coordinates.

Now, to calculate the new coordinates
(
a′x , a′y

)
in terms of the old ones

(
ax , ay

)
, the

exact relationship between both sets of coordinates must be first identified; that is,

one needs to understand the nature of the rotation operator R (ω) by expressing,

in an analytical way, how it acts on the coordinates of P. This may be disclosed

by reexpressing the coordinates as a function of the single parameter φ, which

corresponds to the angle of elevation above the horizontal axis (Figure 3.2):

ax = a cosφ; (3.14)

ay = a sinφ. (3.15)

The angle φ is an angular coordinate with a range from 0 to 2π , and a is the magnitude

of the position vector a (i.e., a = |a|). When the point P with angular coordinate φ is

rotated through the angleω in a counterclockwise direction, it arrives at the new point

P′. The elevation for the displaced point thus becomes

φ′ = φ+ω. (3.16)

We may now use the parametric expressions in Eqs. (3.14–3.16) to find the a′x and a′y
coordinates of the image point P′. All that is needed are the addition and subtraction

formulas from basic trigonometry. One obtains
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a′x = a cos (φ+ω)
= a cosφ cosω− a sinφ sinω

= ax cosω− ay sinω.

(3.17)

Analogously,

a′y = a sin (φ+ω)
= a sinφ cosω+ a cosφ sinω

= ax sinω+ ay cosω.

(3.18)

The results obtained in Eqs. (3.17) and (3.18) represent a linear transformation of

the old coordinates
(
ax ,ay

)
to the new coordinates

(
a′x , a′y

)
. This may be conveniently

expressed by means of a rotation matrix:

R (ω)=
[

cosω − sinω

sinω cosω

]
, (3.19)

where all the coefficients of Eqs. (3.17) and (3.18) have been listed in a square array.

To summarize, the rotation operator R (ω) turns any vector a into a new vector a′ that

may be obtained via a matrix transformation of the original column vector:

R (ω)

[
ax

ay

]
=
[

a′x
a′y

]
=
[

cosω − sinω

sinω cosω

][
ax

ay

]
. (3.20)

In vector notation,

R (ω) a= a′ =R (ω)a. (3.21)

Note that rotation matrices are always square. Although most applications involve

rotations in two or three dimensions, rotation matrices can also be defined for higher

order n-dimensional Euclidean spaces Rn. In our discussion of the hydrogen atom, for

example, use will be made of rotations in four dimensions, which can be represented

by 4× 4 rotation matrices (Chapter 9).

3.5 TRANSFORMATIONS OF COORDINATE FUNCTIONS

Now comes a subtle point! In the preceding section, we obtained an expression for

the transformation matrix R (ω), which acts on the coordinates of P and converts

them into the coordinates of P′ according to a linear transformation. Both sets of

coordinates,
(
ax ,ay

)
and

(
a′x , a′y

)
, are ordinary numbers that refer to positions in space

when a Cartesian coordinate system�
(
x, y
)

is given. In this book, however, we are not

concerned with numbers but with functions. A symbol such as f (P) associates a value

with point P, and the function f describes the distribution of these values over space.

A symmetry operation—say, R—that transforms the points can be claimed to

induce a transformation of the function as well. Hence, we write

R̂f (P)= f ′(P). (3.22)

Note that we have denoted the operation by a hat to distinguish it from operations act-

ing on coordinates. That is, for each coordinate operator R (ω) there is a corresponding

function operator R̂ (ω). There are several ways to define the connection between both.

Let us opt again for the active view of symmetry, which implies that the “value travels
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point P′ is equal to the value of the original function f in the original point P; hence,

f ′
(
P′
)= f (P). (3.23)

Using Eq. (3.1), we obtain:

f ′ (RP)= f (P). (3.24)

Now, to determine how a function changes, we want to compare the values of both

functions at the same point. That is, we have to express the transformed function f ′
in terms of P, as in Eq. (3.22), rather than in terms of RP as we just did. Because this

result is valid for any point P, we might as well apply it in point R−1P. Let us therefore

substitute P with R−1P in Eq. (3.24), yielding

f ′
(
RR−1P

)= f (R−1P). (3.25)

And because RR−1 = E, we have

f ′ (P)= f (R−1P). (3.26)

Combining Eq. (3.22) with Eq. (3.26), we obtain the important relation

R̂f (P)= f ′ (P)= f (R−1P). (3.27)

Definition 3.2 (Transformation of coordinate functions): The result of the action of

an operator on a function f , denoted by the symbol R̂f , is a new function f ′, which

is obtained by applying the inverse coordinate transformation to the original function:

R̂f (P)= f ′ (P)= f
(
R−1P

)
. ◾

Example 3.1: Temperature distribution along a ring

The following example should clarify this definition. Consider a circular ring in

the xy-plane of a Cartesian reference frame �
(
x, y, z

)
(Figure 3.3). Now let us

P0

P2

x

y

z

P1

f

f '

f(P0)

ω

f'(P1)

FIGURE 3.3 Temperature distribution along a circular ring before (f ) and after (f ′) a

counterclockwise rotation of the ring over angle ω.
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associate a particular value with each point P on the ring—say, its temperature T .

The temperature distribution along the ring is then given by a particular function

T = f (P). Let us assume, for instance, that as we walk along the ring, the temperature

goes up and down in a periodic manner, between +20 ◦C and −20 ◦C, as shown in

Figure 3.3 by the light-gray sinusoidal curve, where the z-axis denotes the temperature.

Now imagine rotating the ring around the z-axis in a counterclockwise fashion over

an angle ω. Because the temperature “travels with the ring,” the whole temperature

distribution is rotated over the same angle ω in the same counterclockwise fashion. As

seen from the fixed �
(
x,y,z

)
reference frame, a new function f ′ (P) is thus obtained,

as shown by the dark-gray curve in Figure 3.3.

Now let us check the validity of Eq. (3.23), which says the value of the rotated

function at the rotated point is equal to the value of the original function at the original

point. Consider, for example, point P1, for which the temperature was initially 0 ◦C,

as indicated by the original function. This point was rotated to P2, for which the new

function indicates the temperature has indeed remained 0◦C, as required. That is,

f ′ (P2)= R̂ (ω) f
(

R (ω)P1

)
= f (P1)= 0 ◦C. (3.28)

Alternatively, following Eq. (3.27), we could also consider the temperature of the

rotated ring at P1, which is −20 ◦C. This should equal the temperature of the original

ring at P0, which is the point obtained by rotating the original point P1 clockwise over

angle ω. In short,

f ′ (P1)= R̂ (ω) f (P1)= f
(
R−1 (ω)P1

)= f (R (−ω)P1)= f (P0)=−20 ◦C. (3.29)

Example 3.2: Natural coordinate functions

As another example, let us look at a rather special kind of function known as natural

coordinate functions. These simply correspond to the coordinate variables
(
x,y
)
.

Clearly, these are functions. As an example, the value, which the function x associates

with point P, is nothing else than the coordinate number ax . Hence,

x (P)= ax ; (3.30)

y (P)= ay . (3.31)

A convenient way to represent these functions is by means of two osculating spheres,

as shown in Figure 3.4. This works as follows. Consider a given point P within a

Cartesian reference frame �
(
x,y
)

with x-coordinate ax = a cosφ and y-coordinate

ay = a sinφ (Figure 3.4A). This point is represented in Figure 3.4C by the point Px ,

which is lying on the radius vector to P but at a distance ax from the origin (see also

Figure 3.4A). For a point on the x-axis, P and Px coincide, because in this case, ax = a.

On the other hand, by increasing the angle of elevation φ from 0 to π/2, keeping the

radius a fixed, the Px points describe a curved line, which ultimately approaches the

origin when P reaches the y-axis, and hence ax = 0 (Figure 3.4C). Similarly, when

lowering the angle below the x-axis, we obtain a curve that approaches the origin from

below for φ =−π/2.

By a touch of magic, the curved lines in the interval φ ∈ [−π/2,+π/2] together

form a perfect circle (in a perfect sphere when the z-coordinate joins in) centered

on the positive x-axis at x = a/2, and with a radius equal to a/2 (Figure 3.4C).4

4 As is seen in Figure 3.4C, the line segment for a given angle φ corresponds to a chord of the circle

with radius a/2. The length of this chord is exactly ax = a cosφ.



Sh
at
te
re
d
Sy
m
m
et
ry

40

2
π

Px

Qy

2ππ

y

a/2

a x =  a cos φ
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+
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–
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FIGURE 3.4 (A) Let P be a point with coordinates
(
ax ,ay

)
. (B) Here, we see the variation of ax , with

the angle φ for a fixed radius a. (C) All these ax values are united in an angular plot. The positive

ax values are found in the interval φ ∈ [−π/2,+π/2] and describe a circle with radius a/2

centered at x = a/2. The negative values form a similar circle in the interval φ ∈ [+π/2,+3π/2],

centered at x =−a/2. The two circles are tangent in the origin. (D) Here we see the analogous

angular plot for the y-coordinate function. (E) This plot illustrates how the angular representation

of the x-coordinate function varies for three different values of a.
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The same circle is repeated along the negative x-axis, centered at x = −a/2, for

φ ∈ [+π/2,+3π/2]. The two spheres are tangent in the origin and form a kind

of dumbbell structure, pointing along the x-direction. Chemists will recognize in

this figure the common plot of the angular part of the atomic px-orbital. For the

presentation of the whole function, osculating spheres should be drawn for each value

of the radius, as is sketched in Figure 3.4E. The angular plot of the coordinate function

for the y-coordinate is, of course, entirely analogous, but oriented along the y-axis

(Figure 3.4D).

The plots make clear that the coordinate functions are oriented along the respective

axes. We can think of them as polar vectors, with the head on the positive side of

the dumbbell and the tail on the negative side. A counterclockwise rotation of the

x-coordinate function over a quarter of a full angle turns the x-coordinate function

into the y-coordinate function; the y-function, on the other hand, is turned into minus

the x-function. These results are obtained immediately by simple visual inspection of

the angular plots. Application of the general procedure for functional transformations

reproduces these results in a rigorous way, as we will now show.

According to Eq. (3.23) we can write

R̂ (ω)x
(
P′
)= x (P)= ax ; (3.32)

R̂ (ω)y
(
P′
)= y (P)= ay . (3.33)

Or, following Eq. (3.27),

x′ (P)= x (R (−ω)P)

= a cos (φ−ω)
= a cosφ cosω+ a sinφ sinω

= ax cosω+ ay sinω

= x (P)cosω+ y (P)sinω.

(3.34)

And similarly for y′(P),

y′ (P)=−x (P)sinω+ y (P)cosω. (3.35)

These results are valid for any point in space and thus fix a functional transformation,

which means we can drop the point P altogether:

x′ = x cosω+ y sinω; (3.36)

y′ = −x sinω+ y cosω. (3.37)

This transformation, too, can be written as a matrix transformation. Because of the

inverse relationship between the transformations of the coordinates and coordinate

functions, the inverse matrix R (−ω) is now required:

R̂ (ω)

[
x

y

]
=
[

x′
y′

]
=
[

cosω sinω

− sinω cosω

][
x

y

]
=R (−ω)

[
x

y

]
. (3.38)

Now, rotation matrices are special in that their inverse matrix simply corresponds to

the transposed matrix (i.e., the matrix obtained by interchanging rows and columns).

Hence, indicating transposition by a superscript T,

[R (−ω)]T =R(ω). (3.39)
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now arranged in a row vector, which precedes the transposed transformation matrix:

R̂ (ω)
[

x y
]
=
[

x′ y′
]
=
[

x y
]
R(ω). (3.40)

The natural coordinate functions form what is called a function space. The choice to

write the components of a function space in a row vector notation has two advantages:

(1) the same rotation matrix R (ω) can be used for coordinates and coordinate

functions, notwithstanding their opposite transformations; and (2) the mapping of

the set of rotation matrices on the rotation group is an isomorphism, as we will see in

the next paragraphs.

3.6 MATRIX REPRESENTATIONS

The question arises regarding what is the connection between the group of rotation

operators and the set of rotation matrices? In §3.6.1, we first consider the relation with

the coordinate operators R (ω). In §3.6.2, we then repeat the same consideration for

the function operators R̂ (ω). Although the treatment in this section applies to rotation

operators, it is, in fact, more general and applies to any set of symmetry operations.

In the following, symmetry operations are therefore denoted more generally by the

symbols R, S, T , and so on.

3.6.1 Matrix representation of coordinate operators R

Suppose one applies two operators, S and R, consecutively to a point P. This is

expressed by a right-justified equation, which means the operator on the right acts

first:

(S �R)P = S � (R P)= S P′ = P′′. (3.41)

This is illustrated in Figure 3.5. The corresponding coordinate transformation may be

obtained by combining the two separate transformations:

R

[
ax

ay

]
=
[

a′x
a′y

]
=
[

r11 r12

r21 r22

][
ax

ay

]
=R

[
ax

ay

]
; (3.42)

S

[
a′x
a′y

]
=
[

a′′x
a′′y

]
=
[

s11 s12

s21 s22

][
a′x
a′y

]
= S

[
a′x
a′y

]
. (3.43)

x

y

P"

0

P

R

P'
S

FIGURE 3.5 When the coordinate operator

S �R acts on a point P, P is first rotated to P′

under the action of R and P′ is then further

rotated to P ′′ by S.
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Here, it behooves us to remember that the symmetry operations concern uniform

transformations. Hence, the matrices are independent of the coordinates of the points

on which they act. The matrix S can thus be used to rotate point P′ to P′′ further.

As an example, the a′′x number is calculated from a′x and a′y , which in turn are

transformations of ax and ay :

a′′x = s11a′x + s12a′y

= s11
(
r11ax + r12ay

)+ s12
(
r21ax + r22ay

)
= (s11r11 + s12r21)ax + (s11r12 + s12r22)ay .

(3.44)

Here, sij and rkl denote matrix elements of the respective matrices. As we can see,

the transformation coefficients are obtained by performing the matrix product of the

individual matrices R and S (as defined in Appendix B.4):[
a′′x
a′′y

]
=
[

s11 s12

s21 s22

][
r11 r12

r21 r22

][
ax

ay

]
= S×R

[
ax

ay

]
. (3.45)

Because the operators are part of a group, their product S � R is another symmetry

operation, which we can represent as T . This operation maps P onto P′′ directly; that

is, TP = P′′ or, in matrix form,[
a′′x
a′′y

]
=
[

t11 t12

t21 t22

][
ax

ay

]
= T

[
ax

ay

]
. (3.46)

Combining these results leads to the following mapping:

T = S �R ←→ T= S×R. (3.47)

This result indicates that the set of matrices associated with a set of symmetry

operators forms a representation of the symmetry group. The combination rule is

represented by the matrix product. The order of the operations is also preserved, which

implies that the mapping is an isomorphism (or homomorphism). This mapping is

called a matrix representation of the group. The consecutive action of the physical

operators in real space is replaced by matrix multiplications. The unit operation

and the reverse rotation find their logical mathematical counterparts in the unit and

inverse matrices.

3.6.2 Matrix representation of function operators R̂

We now repeat the derivation for the function operators. There are two important

changes: (1) the coordinate functions are represented in rows, and not in columns,

and (2) the way the operators act on the components of the function space is different.

Linear operators in a function space leave the numerical coefficients preceding the

functions unchanged and act directly on the basic functional components following

the coefficients.

Consider, as an example, the action of the operator product Ŝ � R̂ on the function

space of natural coordinate functions:(
Ŝ � R̂

)[
x y

]
= Ŝ �

(
R̂
[

x y
])
= Ŝ

[
x′ y′

]
=
[

x′′ y′′
]

. (3.48)

The action of both operators is given by

R̂
[

x y
]
=
[

x′ y′
]
=
[

x y
][ r11 r12

r21 r22

]
=
[

x y
]
R; (3.49)
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Ŝ
[

x y
]
=
[

x′ y′
]
=
[

x y
][ s11 s12

s21 s22

]
=
[

x y
]
S. (3.50)

The action of the Ŝ operator on the function x′ in Eq. (3.48) is then given by

Ŝx′ = Ŝ
(
r11x+ r21y

)
= r11Ŝx+ r21Ŝy

= r11
(
s11x+ s21y

)+ r21
(
s12x+ s22y

)
= (s11r11 + s12r21)x+ (s21r11 + s22r21)y.

(3.51)

The resulting matrix transformation is the same product matrix obtained

previously—in matrix notation:

Ŝ � R̂
[

x y
]
= Ŝ

[
x y

]
R

=
[

x y
]
S×R

=
[

x y
][ s11 s12

s21 s22

][
r11 r12

r21 r22

]
.

(3.52)

Denoting the operator product Ŝ � R̂ by the single operator T̂ yields

T̂
[

x y
]
=
[

x y
]
T=

[
x y

][ t11 t12

t21 t22

]
. (3.53)

Hence, symmetry transformations in function space lead again to a mapping of the

group that preserves the order of the operations:

T̂ = Ŝ � R̂ −→ T= S×R. (3.54)

If the components of the function space were ordered in a column vector, the order

would have been reversed and we would have obtained an anti-isomorphism.

3.7 THE ORTHOGONAL GROUP O(2)

One of the principal recurring themes of this book is that symmetries refer to some

property that remains invariant. Indeed, instead of deriving the symmetry group

from the physical covering operations that map a circle onto itself, as we did in the

previous sections, we could also start from the invariance principle, which requires

the length of the radius vector to remain unchanged. As we will see in this section,

this approach provides an alternative definition of the symmetry group as a set of

orthogonal transformations.

3.7.1 Symmetry and invariance

Eqs. (3.20) and (3.21) describe the exact relationship between the initial
(
ax ,ay

)
and

the final
(
a′x , a′y

)
coordinates of a point P being rotated over an angle ω around the

origin O. Now, despite the fact that P changes position, the distance OP never alters

during these rotations. That is to say, when the position vector a is turned into a′, its

direction changes, but its magnitude remains invariant:

|a| = |a′|. (3.55)
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This conservation of distance is called an invariance property. Let us rewrite the

previous equation in matrix form. According to the Pythagorean theorem, a2
x + a2

y =
a2; therefore, the magnitude of a equals

|a| =
√

a2
x + a2

y . (3.56)

Since a2
x + a2

y is also the dot product of a with itself (see Appendix A), this equation

may be rewritten as follows:

|a| = √
a · a. (3.57)

Restating the invariance property in Eq. (3.55) in terms of Eq. (3.57) and squaring

everything yields:

a · a= a′ · a′. (3.58)

Following Eq. (B.15), these inner products may be reformulated in matrix form:

aTa = a′Ta′, (3.59)

where a and a′ represent two column vectors as defined in Eq. (3.11). For each of these

column vectors, there is a corresponding dual vector, aT or a′T, that is defined as the

transposed form or row form of a and a′ (cf. Eq. (B.14)):

aT =
[

ax ay

]
; a′T =

[
a′x a′y

]
. (3.60)

Now let us introduce a transformation, A, represented by the matrix A, that alters the

radius vectors but keeps the distance the same. The a and aT transform as

Aa= a′ =Aa; (3.61)

AaT = a′T = [Aa]T = aTAT. (3.62)

The dual vector aT is thus rotated by the transposed matrix AT. Note that the order

of aT and AT has been reversed in Eq. (3.62) as compared to Eq. (3.61), in accordance

with the familiar rule for the transpose of a matrix product as described in Eq. (B.16).

Based on Eqs. (3.61) and (3.62), the invariance relation in Eq. (3.59) now yields

aTa = aT ATA a. (3.63)

As we saw before, invariance should refer not only to the length of the radius vector,

but should also imply that the distances between all the points of the object remain

unchanged. Hence, a more general invariance principle reads

aT
1 a2 = aT

1 ATA a2. (3.64)

Here, vectors a1 and a2 are directed to different points on the circle. For this general

set of equations to hold, AT must correspond to the inverse of A:

ATA= I=AAT, (3.65)

where I is the identity matrix. Matrices that have this property are called orthogonal

matrices (see Appendix B). Thus, the set of orthogonal matrices qualifies as transfor-

mations that obey the invariance principle. The appearance of matrix orthogonality as

a unique and sufficient criterion for invariance raises several intriguing questions. First

of all, are all orthogonal matrices, by definition, rotation matrices (see §3.7.2)? Second,

do orthogonal matrices form a group under matrix multiplication (see §3.7.3)? And,

if so, how does the structure of this group relate with the axial rotation group (see

§3.7.3)? All these questions can be solved algebraically, as we will show in the following

paragraphs.
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In the previous section, the conclusion was reached that all rotation matrices must

obey the orthogonality condition. But what about the opposite? Are all orthogonal

matrices also rotation matrices? A straightforward way to find this out is by

constructing a system of equations that expresses the orthogonality of a 2×2 matrix A

with four real unknowns: a, b, c, and d. According to Appendix B, orthogonality means

AAT = I⇒
[

a b

c d

][
a c

b d

]
=
[

1 0

0 1

]
;

ATA= I⇒
[

a c

b d

][
a b

c d

]
=
[

1 0

0 1

]
.

(3.66)

These two matrix products are equivalent to a set of six equations with four unknowns:

i. a2 + b2 = 1; iv. b2 + d2 = 1;

ii. c2 + d2 = 1; v. ac+ bd = 0;

iii. a2 + c2 = 1; vi. ab+ cd = 0.

(3.67)

A general solution for Eq. (3.67.iii) is given by

a = cosω; c = sinω, (3.68)

since cos2ω+sin2ω= 1. Eqs. (3.67.i)—(3.67.iii) yields b2 = c2; Eqs. (3.67.i)—(3.67.iv)

gives a2 = d2. It thus follows that

b =± sinω; d =±cosω. (3.69)

Combination of this result with the final two equations in Eq. (3.67) demonstrates

that the values of b and d are interdependent. That is, either

b =− sinω, d =+cosω; (3.70)

or

b =+ sinω, d =−cosω. (3.71)

There are, consequently, two general forms of orthogonal matrices:

A=
[

cosω − sinω

sinω cosω

]
; (3.72)

B=
[

cosω sinω

sinω −cosω

]
. (3.73)

Although both types are unimodular matrices (i.e., square matrices with a determinant

of +1 or −1), the sign of their determinant differs:

detA= ad− bc = cos2ω+ sin2ω= 1;

detB= ad− bc =−(cos2ω+ sin2ω)=−1.
(3.74)

When comparing the matrices of type A with the rotation matrices R (ω) of the

previous section, they are seen to correspond (compare Eqs. (3.19) and (3.72)).

A second algebraic property of rotation matrices has thus been disclosed. That is,

to qualify as a rotation matrix R (ω), any matrix A should be both orthogonal

(AT = A−1) and have a determinant equal to 1 (detA = 1). All matrices satisfying
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these two conditions act as rotation matrices, and they are therefore termed proper

rotation matrices.

But what about the other type of orthogonal matrices in Eq. (3.73) with a

determinant equal to−1? Although all physical rotations are expressed by means of the

proper rotation matrices A, matrices of type B are seen to describe physical reflections,

and they are therefore called improper rotation matrices. The simplest possible case is

obtained for ω= 0:

σh =
[

1 0

0 −1

]
; detσh =−1. (3.75)

The matrix σh corresponds to a mirror operation across the horizontal x-axis, keeping

the x-coordinate fixed, but inverting the y-coordinate:

σh

[
ax

ay

]
=
[

a′x
a′y

]
=
[

1 0

0 −1

][
ax

ay

]
=
[

ax

−ay

]
. (3.76)

In the following, we will not make use of reflections, except for this horizontal mirror

operation.

3.7.3 Orthogonal groups: O(2) and SO(2)

The orthogonal group O(2)

The set of all 2 × 2 orthogonal matrices (consisting of all proper and improper

rotation matrices) is said to form an orthogonal group under the operation of matrix

multiplication; this group is denoted by the symbol O(2), with “O” for Orthogonality

and “2” because we are dealing with 2 × 2 matrices. Let us verify this assertion by

checking the four group postulates:

1. Closure: For all U and V in O(2), the result of the operation UV is also in O(2).

The proof consists of showing that UV is a matrix that obeys the orthogonality

condition. Since U and V are both orthogonal matrices (i.e., UUT =UTU= I and

VVT =VTV= I):

(UV)(UV)T =UVVTUT =UIUT =UUT = I;

(UV)T (UV)=VTUTUV=VTIV=VTV= I,
(3.77)

where use was made of the transposition of a matrix product (see Eq. (B.16)).

2. Associativity: For all U, V, and W in O(2), the equation

(UV)W=UVW=U (VW) holds because matrix multiplication is associative.

3. Identity element : There exists an element E in O(2) such that for every element U

in O(2), the equation EU=UE=U holds. This identity element E is simply the

2× 2 unit matrix I.

4. Inverse element : For each U in O(2), there exists an element U−1 in O(2) such that

UU−1 =U−1U= I. This last requirement is satisfied because all square matrices

with nonzero determinants have an inverse matrix. For orthogonal matrices, this

inverse is equal to the transposed matrix (i.e., U−1 =UT), and since UT is

orthogonal, U−1 ∈ O(2).
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If we restrict the set of orthogonal matrices in O(2) to the subset of proper rotation

matrices with determinant+1, it is easy to verify that this subset forms a group as well.

Although the proof proceeds along the same lines as those just presented, the argument

also relies on the additional property that the determinant of a matrix product is equal

to the product of the determinants:

detUV= detUdetV. (3.78)

The importance of this equation follows from the fact that the set of rotation matrices

should satisfy the axiom of closure to qualify as a group. That is, the product of

two rotation matrices U and V (both with unit determinant) should result in a new

rotation matrix UV (again with unit determinant). This is verified in Eq. (3.78).

The subset of proper rotation matrices thus forms a group—the special orthogonal

group in two dimensions, denoted SO(2). In other words, the axial rotation group

is isomorphic to the special orthogonal group SO(2). The group is referred to as

special because the set of orthogonal matrices has been restricted to those with unit

determinant.

Following Definition 2.3 in §2.5, the group SO(2) is said to form a subgroup of

O(2). This relation can be represented by the following symmetry breaking chain:

O(2)⊃ SO(2). (3.79)

Notice also that the subgroup SO(2) is Abelian (as was shown in §3.3), whereas the

parent group O(2) is not.

The subset of improper rotation matrices (i.e., reflection matrices with determi-

nant−1), on the other hand, does not form a subgroup of O(2) because the product of

two reflections is not a reflection, but a rotation—thus violating the closure property

of groups. For instance, the matrix corresponding to a mirror operation across the

vertical y-axis is

σv =
[
−1 0

0 1

]
; detσv =−1. (3.80)

The product of Eqs. (3.80) and (3.75) is then

σvσh =
[
−1 0

0 1

][
1 0

0 −1

]
=
[
−1 0

0 −1

]
=R(π);

det(σvσh)= 1,

(3.81)

where R(π) stands for a rotation over 180◦. In terms of determinants,

(−1)(−1)=+1.

The entire subset of improper rotations is generated by multiplying all the elements

of the SO(2) group with a single mirror operation—say, σh. We denote the resulting

set as σhSO(2). We may thus write the group O(2) of rotations and reflections as the

following sum:

O(2)= SO(2)+ σhSO(2). (3.82)

The subgroup SO(2) is at the basis of a partitioning of O(2) into two halves

(Figure 3.6): the subgroup itself and the complementary set of reflections. The

elements of the partition of a group over a subgroup are called cosets.
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E

O(2)

SO(2)

σh R

σh

FIGURE 3.6 Schematic representation

of the coset decomposition of the

orthogonal group O(2). The group

O(2), represented here by a full circle,

can be thought of as the union of the

SO(2) subgroup of rotations (gray

region) and the coset σh SO(2) of

reflections (white region). To each

element from SO(2) then corresponds

an element from the coset σh SO(2).

Definition 3.3 (Coset): A coset gH of a subgroup H of G is the set of all elements

obtained by multiplying every element of H by a given element g of G:

gH= {g � hi | g ∈ G, hi ∈H}. (3.83)

For g ∈H, the coset coincides with H. This is the trivial coset. ◾

In the case of the O(2) group, only one nontrivial coset is found. In other words, every

reflection operation g ∉SO(2) will give rise to the same coset σhSO(2).



4 The SO(2) group

I would like to compare {Sophus Lie} to a Scout in the primeval forest who, when others had

given up trying to break through the undergrowth in desperation, always knew how to find a

way, the way that affords the best views of unfamiliar, yet romantic mountains and valleys.

–Friedrich Engel (November 14, 1899)

Norwegian mathematician Sophus Lie (1842–1899)—a fellow countryman of Niels

Hendrik Abel—first met Felix Klein (1849–1925) in winter 1869 during a visit to

Berlin (Figure 4.1).1 At that time, Berlin was considered the center of the mathematical

world, with the towering figures of Ernst Kummer, Leopold Kronecker, and Karl

Weierstrass dominating the mathematical scene. Lie and Klein were only at the verge

of their mathematical career by then—Lie was twenty-seven and Klein was seven years

his junior—but the two men got along immediately and became lifelong friends.

In spring 1870, Lie and Klein traveled to Paris, where they first met Jean-Gaston

Darboux (1842–1917) and Camille Jordan (1838–1922), whose book on Galois’ group

theory had just been published. Both Lie and Klein had toyed with the group concept

before on a rather intuitive basis, but it was Jordan who really opened their eyes

(and minds) to the central importance of group theory. All of this came to a sudden

end, however, on July 19, 1870, when the Franco-Prussian War broke loose. Klein,

1 The historical prelude to this chapter is based on the truly fascinating and definitive biography of

Sophus Lie, written by Arild Stubhaug. All the quotes are also taken from his book. See A. Stubhaug.

The Mathematician Sophus Lie: It Was the Audacity of My Thinking. Berlin: Springer-Verlag, 2002. A

shorter account of Sophus Lie’s life and work can be found in B. Fritzsche. “Sophus Lie: A Sketch of

His Life and Work.” Journal of Lie Theory 9 (1999), pp. 1–38.
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FIGURE 4.1 Norwegian mathematician Sophus Lie

(1842–1899) in an oil painting by Erik Theodor

Werenskiold, from the year 1902.

a Prussian, felt forced to return to Berlin, where he joined the military service. One

month later, Lie began to feel the heat around the corner as well, and he left the City

of Lights too.

Equipped with nothing more than a backpack, Lie set out on a long hiking trip

to Italy,2 where he hoped to meet some of the great Italian mathematicians, such as

Luigi Cremona (1830–1903) in Milan. But, having hiked a mere 60 km, from Paris to

Fontainebleau, Lie got arrested by the French on suspicion of being a German spy. His

backpack was searched by the gendarmes, who mistook his mathematical notes for

top secret, cryptically encoded messages. The event made Lie instantly famous across

Norway. The headlines of the local newspapers read: “Norwegian Scientist Jailed as

German Spy.”3 But Lie, the ever-strong blond and fearless Viking, didn’t seem too

distressed about the whole situation. One day, Lie casually asked one of the guards

what usually happened to German prisoners. “We usually shoot them at six in the

morning!” replied the guard somewhat ironically.

After one month of imprisonment, Lie was finally released thanks to the

intervention of Darboux, who convinced the French soldiers of the innocence of Lie’s

mathematical notes. Lie took a train via Switzerland to Italy and returned to Norway.

On his journey back, Lie passed through Germany, where he was welcomed once again

by Klein in Berlin.

The two men thrived in each other’s company and spent hours discussing

mathematics. During these exciting talks, Lie and Klein stumbled upon the idea of

studying the properties of a mathematical object by looking at its symmetry group.

The many fruitful conversations they had shared with Jordan, back in Paris, had

ripened in their minds and they were both convinced of pursuing the group theoretical

2 Lie loved to hike—in particular, in his “beloved mountains” in Norway. One weekend, Lie decided

to visit his father in Moss because he needed a book from home. Legend says he hiked nearly 60 km,

from Christiania to Moss, to find out that his father was not at home. Shrugging his shoulders, Lie

turned his back and happily hiked all the way back. Mathematical folklore even says that whenever it

started to rain when Lie was hiking, he simply took off his clothes and stuffed them in his backpack.
3 Stubhaug, The Mathematician Sophus Lie, p. 14.
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52 path. They decided that Lie would study “infinitesimal groups” (now called infinite

continuous groups), whereas Klein would focus on discrete groups.

For Klein, this ultimately resulted in his “Erlanger Programm,” whereas for Lie, the

study of infinite continuous groups culminated in the publication of his three-volume

magnum opus titled Theorie der Transformationsgruppen, which he had written with

the help of Friedrich Engel (1861–1941) during the period 1884 to 1893. In a letter to

a colleague, Lie once wrote: “I am certain, absolutely certain, that, at some point in the

future, these theories will be recognized as fundamental.”4 His prophecy was soon to

be fulfilled.

Lie’s work had opened up a new branch of mathematics that was about to

revolutionize the mathematical landscape, just as Galois had done half a century

before. Lie’s transformation groups became known as Lie groups, after Hermann

Weyl (1885–1955) first coined the term during one of his seminars in Princeton

during the mid 1930s. “Little by little,” said Jean Dieudonné (1906–1992), a French

mathematician and historian of mathematics, “it became obvious that the most

unexpected theories, from arithmetic to quantum physics, came to encircle [Lie’s

theory] like a gigantic axis.”5

Chapter outline

The aim of this fourth chapter is to take you on a whistle-stop tour through the

“romantic mountains and valleys” of modern Lie group theory to which Engel referred

in the opening quote of this chapter. Most of the concepts, which we will examine in

this chapter, will be worked out in greater detail in the following chapters.

Lie groups are a special kind of infinite continuous group whose elements can be

parametrized smoothly and analytically.6 Let us therefore initiate this chapter with

a description of infinite continuous groups in §4.1, before specializing to the central

concept of a Lie group in §4.2.

In the following section, §4.3, the infinitesimal generators of a Lie group are

introduced. The usefulness of this powerful concept comes from the fact that all

elements from a particular Lie group can be generated from this small set of generators.

As a consequence, we no longer have to deal with the infinite set of group elements;

we can focus all our attention on a study of the finite set of generators that give rise to

the Lie group and therefore embody most of the structure of Lie groups.

However, although all elements from the Lie group can be obtained from the

generators by their repeated application, the generators themselves do not belong to

the Lie group. They instead form a basis for a different kind of algebraic structure that

is commonly known as a Lie algebra. A closer study of the deep connection between Lie

algebras and their corresponding Lie groups will be undertaken in the next chapter.

Most of the concepts in this chapter are illustrated with the help of the

two-dimensional axial rotation group. This group is isomorphic to the group of special

orthogonal 2× 2 matrices, denoted SO(2), and is the simplest known one-parameter

Lie group. Therefore, it provides the perfect starting point for our discussion of

4 Stubhaug, The Mathematician Sophus Lie, p. 18.
5 Quoted from Stubhaug, The Mathematician Sophus Lie, p. 115.
6 Don’t worry about this technical language. We will examine each concept, one at a time, and with

sufficient care to make them crystal clear.
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Lie groups and infinitesimal generators. As we shall see in §4.3, the SO(2) group has

only one infinitesimal generator. Consequently, its Lie algebra lacks the rich structure

we will encounter later in problems with higher symmetry. Nevertheless, the single

infinitesimal operator of SO(2) will be seen to play the protagonist part when quantum

mechanics enters the stage in § 4.4.

In the final section of this chapter, §4.5, the simple model of an electron orbiting

on a ring is presented, which embodies SO(2) symmetry and provides a model

description for the electronic structure of aromatic molecules. These molecules can be

classified by a simple sequence of whole numbers—2, 6, 10, 14, 18, and so on—known

as the Hückel numbers. These numbers refer directly to the Lie structure of the SO(2)

group. In this way, we get a first glimpse of how a symmetry group can be realized in

a sequence of compounds. Farther up the road, more intricate and intriguing number

sequences are waiting for similar encounters.

4.1 INFINITE CONTINUOUS GROUPS

Recall that the notions of finite and infinite order groups were introduced in Chapter

2. In addition, a further distinction was made between infinite discrete and infinite

continuous groups. Their definitions are given in §2.1.

4.1.1 The nature of infinite continuous groups

Although classical group theory is mainly concerned with finite and infinite discrete

groups, the theory of Lie groups, on the other hand, deals with a special kind of

infinite continuous groups, about which we will have more to say in §4.2. When

dealing with finite and infinite discrete groups, abstract group theory (or pure group

theory, if you like) provides a sufficiently broad framework such that no other parts

of mathematics are usually needed. Infinite continuous groups, on the other hand,

are richer in nature; they exhibit a number of additional properties that provide a

point of contact with other branches of mathematics, such as ordinary and partial

differential algebra, topology, geometry, and so forth. Naturally, this renders the

subject matter mathematically more demanding. Considerable care is, therefore,

required when formulating the general framework of continuous groups. The goal,

however, is to stick to the theoretical minimum, and leave most topological and

geometric excursions aside.

The principal reason for so doing comes from the fact that all continuous groups we

will encounter throughout this book are isomorphic to (read: can be represented as)

matrix groups whose additional topological and geometrical properties are well known

and rather straightforward. These groups are commonly named linear or classical

Lie groups, because the elements of these groups (n × n matrices) represent linear

transformations of coordinates or coordinate functions in n-dimensional space. Most

Lie groups that are of interest to physicists and chemists are linear.

4.1.2 Parameters of continuous groups

As mentioned in the definition of infinite continuous groups (§2.1), the elements R̂

of a continuous group (G,�) are labeled by a finite set of n independent parameters ri

(i= 1, . . . , n), all of which vary continuously over a particular interval. The parameters
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54 are always chosen to form a set that is both necessary and sufficient. That is to say, the

particular choice of n parameters must preclude any conceivable means of working

with a smaller number m of parameters (m < n) that could specify all the group

elements R̂ of (G,�).

Let us then denote the elements of the group by R̂ (r1, r2, . . . , rn), or R̂ (ρ) for short,

with ρ = {r1, r2, . . . , rn}. It is common to parametrize infinite continuous groups in

such a way that the identity element Ê is characterized by vanishing parameters as

R̂ (0)= R̂ (0,0, . . . , 0).

The group (G,�) is said to be an n-parameter group, or to be a continuous group

of order n. (Note that although the order of a finite group refers to the number

of elements, the order of infinite continuous groups always refers to the number of

parameters.) Some books on group theory prefer to speak of the dimension of the

group, rather than the order.

Notice also that the introduction of continuously varying parameters enables us to

speak about the closeness or proximity between different group elements. A rotation

over an angle ω, for example, denoted R̂ (ω), is close to the rotation R̂ (ω+ ε) if ε is

small.

4.1.3 Examples of continuous groups

Because of the central role infinite continuous groups will play in this book, we

proceed with a description of four different continuous groups and their properties:

1. The simplest possible example of a continuous one-parameter group is the set of

real numbers R under addition (see §2.4). The elements x of (R,+) are

nondenumerable, and the parameter of the group is just the real number x itself,

which varies continuously over the interval ]−∞,+∞[.
2. Consider the linear transformation from x to x′, representing the rescaling of the

real line segment x by a factor a, being a nonzero real constant:

x′ = ax, ∀a ∈R0, (4.1)

and let T(a) denote the operator that acts according to the previous

transformation. That is,

T (a)x = x′ = ax. (4.2)

The set of transformations {T (a)} is said to form an infinite continuous group of

order 1, with a as the single continuous parameter (Figure 4.2). We can verify this

assertion by checking the four group axioms introduced in Chapter 2: closure,

associativity, identity, and invertibility. As a result of the closure property of

continuous groups, the successive application of two transformations, T (a1) and

T (a2), should always result in a third transformation T (a3):

T (a3)= T (a2)T(a1). (4.3)

Note that a1, a2, and a3 do not represent three different parameters, but are three

possible values of the same parameter a. Now, since

T (a2)T (a1)x = T (a2)a1x

= a2a1x,
(4.4)

and T (a3)x = a3x, it follows logically that

a3 = f (a2,a1)= a2a1. (4.5)
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FIGURE 4.2 Having followed the White Rabbit down the

rabbit hole, Alice discovers a mysterious bottle, labeled

“Drink Me,” as well as a piece of cake, saying “Eat Me.”

The liquid inside the bottle makes her shrink whereas the

cake makes her grow. If we represent Alice’s length by x,

then the amount she drinks corresponds to the operator

T (a) with 0< a ≤ 1, and the amount she eats

corresponds to T (a) with a ≥ 1. Her new length is then

given by x′ = T (a)x = ax.

The function f (a2,a1) is called a composition function. Given any two values a1

and a2 ∈R0 characterizing the elements T (a1) and T (a2), respectively, the

function f (a2,a1) tells us how to compute the third value, a3, which specifies the

product element T (a3) of T (a1) and T (a2). Composition functions of infinite

continuous groups are thus analogous to the multiplication tables for finite groups

(introduced in §2.4) because they both define the structure of the whole group.

The remaining three group postulates can now be examined with the help of

f (a2,a1). We first note that the composition function in Eq. (4.5) corresponds to

the multiplication of two real numbers a1 and a2. Since multiplication in R0 is

commutative, the group is clearly Abelian:

T (a2)T (a1)= T (a1)T(a2);

a2a1 = a1a2.
(4.6)

The associative property of multiplication in R0, in its turn, helps to explain why

the associative law holds true:

T (a3)[T (a2)T (a1)]= [T (a3)T (a2)] T(a1);

a3 [a2a1]= [a3a2] a1.
(4.7)

Suppose T (e) represents the unit element of the group. It then follows that

T (e)T (a1)= T (a1)T (e)= T(a1). (4.8)
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56 Based on the composition function in Eq. (4.5), this translates into ea1 = a1e = a1,

which is valid for e = 1. It thus follows that T (1) is the identity element. Indeed,

T (1)x = 1x = x. (4.9)

Finally, denoting the inverse element [T (a1)]
−1 of T (a1) by the symbol T

(
a′1
)
,

we have

T (a1)T
(
a′1
)= T

(
a′1
)

T (a1)= T(1);

a1a′1 = a′1a1 = 1.
(4.10)

This holds true for a′1 = a−1
1 ; that is, [T (a1)]

−1 = T
(
a−1

1

)
. The restriction a �= 0

in Eq. (4.1) follows from the fact that the inverse of 0 (i.e., 1
/

0) is undefined. This

concludes our proof that the set of transformations T (a) forms an infinite,

continuous one-parameter group.

3. Now consider the linear transformation from x to x′ corresponding to a rescaling

of the real line segment x by a factor a, followed by a translation over b:

x′ = ax+ b, ∀a ∈R0 and b ∈R. (4.11)

Letting T (a,b) denote the operator acting according to Eq. (4.11), we have

T (a, b)x = x′ = ax+ b. (4.12)

The set of transformations {T (a, b)} is said to form a two-parameter group, with

a and b as continuous parameters. Because of closure, the product of two

transformations T (a1,b1) and T (a2, b2) always yields a third

transformation—say, T (a3, b3). By writing

T (a2,b2)T (a1, b1)x = T (a2, b2)(a1x+ b1)

= a2 (a1x+ b1)+ b2

= a2a1x + a2b1 + b2

= T (a2a1, a2b1 + b2)x,

(4.13)

we see that T (a3,b3)= T (a2a1,a2b1 + b2). We thus obtain the following two

equalities:

a3 = f1 (a2,a1, b2, b1)= a2a1; (4.14)

b3 = f2 (a2, a1,b2, b1)= a2b1 + b2. (4.15)

These composition functions should be satisfied at all times to reconcile with the

first group postulate. With the help of Eq. (4.14) and Eq. (4.15), the associative

law can be shown to hold true. That is,

T (a3,b3) [T (a2,b2)T (a1, b1)]= [T (a3, b3)T (a2,b2)] T(a1,b1);

T (a3,b3)T (a2a1,a2b1 + b2)= T (a3a2,a3b2 + b3)T(a1, b1);

T (a3a2a1, a3a2b1 + a3b2 + b3)= T(a3a2a1,a3a2b1 + a3b2 + b3).

(4.16)

Note, however, that this continuous group is not Abelian. After all,

T (a2, b2)T (a1,b1) �= T (a1, b1)T(a2, b2);

T (a2a1,a2b1 + b2) �= T(a1a2, a1b2 + b1).
(4.17)
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The identity element clearly corresponds to T (1,0) since

T (1,0)x = 1x+ 0= x. (4.18)

Finally, denoting the inverse of T (a1,b1) by the symbol T
(
a′1, b′1

)
, we have

T (a1, b1)T
(
a′1, b′1

)= T
(
a′1,b′1

)
T (a1,b1)= T(1,0). (4.19)

This means that

a1a′1 = a′1a1 = 1; a1b′1 + b1 = a′1b1 + b′1 = 0, (4.20)

from which one obtains a′1 = 1
/

a1 and b′1 =−b1
/

a1, thus identifying the inverse

element as T̂
(
1
/

a1,−b1
/

a1
)
. The existence of an inverse element explains once

again the requirement that a �= 0.

4. The rotational symmetry group of the circle is continuous as well. In this case, the

arbitrary rotation angle ω represents the parameter that varies continuously over

the finite interval [0, 2π], and that can be used to specify the group elements, as

expressed by the notation R̂ (ω) in the previous chapter. Because the group

elements depend on the rotation angle only, the axial rotation group is a

one-parameter group.

The composition of two rotations through two arbitrary angles ω1 and ω2

corresponds to a single rotation over the angle ω1 +ω2:

R̂ (ω2) R̂ (ω1)= R̂
(
f (ω2,ω1)

)= R̂ (ω1 +ω2)= R̂(ω3). (4.21)

The composition function that describes the product rule is thus given by

f (ω2,ω1)= ω1 +ω2 = ω3. (4.22)

This function can be used subsequently to prove the remaining group axioms and

the Abelian character of the axial rotation group. The axial rotation group is

isomorphic to the matrix group of special orthogonal 2× 2 matrices, denoted

SO(2), as illustrated in the previous chapter.

4.1.4 The composition functions

Generalizing from the previous examples, the closure property of infinite continuous

groups is seen to give rise to a set of n continuous composition functions fi (σ ;ρ)

(i = 1, . . . ,n) from which the parameters τ = {t1, t2, . . . , tn} of any particular product

element T̂ = ŜR̂ can be calculated, given the parameters ρ = {r1, r2, . . . , rn} and

σ = {s1, s2, . . . , sn} of the factor elements R̂ and Ŝ, respectively:

ti = fi (s1, s2, . . . , sn; r1, r2, . . . , rn)= fi(σ ;ρ), i = 1, . . . ,n. (4.23)

The composition functions fi (σ ;ρ) define the structure of the whole group in much

the same way as the multiplication table does for finite groups.

To qualify as a group, the remaining three group postulates must be satisfied.

These group axioms impose a number of additional constraints on the composition

functions:

Associativity: fi
(
τ ; f (σ ;ρ)

)= fi
(
f (τ ;σ ) ;ρ

)
;

Identity: fi (ε;ρ)= fi (ρ;ε)= ri ;

Invertibility: fi
(
ρ−1;ρ

)= fi
(
ρ;ρ−1)= ei ,

(4.24)
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58 where ε = {e1,e2, . . . , en} are the parameters of the identity element Ê and ρ−1 ={
r−1

1 , r−1
2 , . . . , r−1

n

}
are the parameters of the inverse element R̂−1 of R̂.

4.2 LIE GROUPS

With the introduction of the composition functions fi (σ ;ρ) of an infinite continuous

group in §4.1.4, we are now in a position to provide a definition of Lie groups in §4.2.1.

We will then study the parameter space of a Lie group in §4.2.2, as well as the properties

of connectedness and compactness in §4.2.3, before we move on to the central concept

of Lie group theory—the infinitesimal generator—in §4.3.

4.2.1 Definition

To call an infinite continuous group a Lie group, there is one more requirement of the

composition functions fi (σ ;ρ) that should be satisfied: the parameter τ of the product

element T̂ = ŜR̂ should be an analytic function of the parameters ρ and σ of the factor

elements R̂ and Ŝ.

Definition 4.1 (Lie group): Let (G,�) be an infinite continuous group of order n, with a

product rule that is characterized by n composition functions fi (σ ;ρ) (i= 1, . . . ,n). If the

composition functions are analytic functions, then the corresponding infinite continuous

group is called an n-parameter Lie group. ◾

With this simple qualification the whole arsenal of mathematical analysis at once

enters the picture. Recall that a function f (x) is said to be analytic when it can be

written as a power series:

f (x)=
∞∑

n=0

anxn = a0 + a1x+ a2x2 + a3x3 +·· · . (4.25)

As a consequence, analytic functions are smooth (infinitely differentiable) functions,7

which can be written as a Taylor series expansion around any point in their domain

(see Appendix C).

Notice that the composition functions introduced in the previous examples

(Eqs. (4.5), (4.14), (4.15), and (4.22)) are analytic in this sense. Hence, all the infinite

continuous groups in §4.1.3 are also Lie groups.

Lie groups represent the best-developed theory of continuous symmetry of

mathematical objects and structures. This makes them indispensable tools for many

parts of contemporary mathematics, as well as for modern theoretical physics and

chemistry.

7 A function f is said to be of class Ck (where k is a nonnegative integer) when its derivatives

f ′, f ′′, . . ., f k exist and are all continuous. The class C0 thus consists of all continuous functions.

Functions whose first derivative is continuous as well belong to the class C1, and so forth. A function

f is said to be of class C∞ if it has derivatives of all orders that are all continuous. The function f is

then said to be smooth or infinitely differentiable. Moreover, a smooth function f is said to be of class

Cω , or to be analytic, if it can be written as a Taylor series expansion around any point in its domain

(see also Appendix C).
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FIGURE 4.3 The axial rotation group is a one-parameter group, whose only parameter, the rotation

angle ω, varies over the closed and bounded interval [0,2π]. As a result, the parameter space �
corresponds to the one-dimensional real line segment, where ω varies from 0 to 2π . What is more,

because a rotation over 2π corresponds to the null rotation, the end points 0 and 2π should be

brought into correspondence with one another, which results in the formation of a unit circle S1.

To each point ω in the one-dimensional parameter space S1 then corresponds a physical rotation

in two-dimensional space over an angle ω, as specified by the rotation operator R̂ (ω). This is

illustrated in the figure for two different angles: ω1 and ω2.

4.2.2 Parameter space

The parameters ri (i = 1, . . . ,n) that label the elements of an infinite continuous Lie

group (G,�) vary in an n-dimensional topological space, which is called the parameter

space �n of (G,�) (also known variously as the group space or group manifold).

Each point in this parameter space represents a particular set of n parameter values

ri ; the parameters ri are said to form the components of an n-dimensional vector

ρ = (r1, r2, . . . , rn).

For each vector ρ in�n, there is a corresponding element R̂ (ρ) in the group (G,�).

The identity element R̂ (0) = R̂ (0,0, . . . , 0), for example, is mapped onto the origin

of the parameter space �n. It would be tempting to claim that this mapping is one

to one—that is, that the parameter space �n is isomorphic to the group (G,�). This,

however, is usually not the case.

Consider the SO(2) group as a case in point. Each rotation operator R̂ (ω) is labeled

by one parameter, the rotation angle ω. We might thus be led to believe that the

parameter space is the one-dimensional real line, where ω varies from −∞ to +∞.

However, because each rotation over an angle ω outside the interval [0,2π] is brought

back to a rotation over an angle ω ∈ [0,2π] via the equation

R̂ (ω)= R̂ (ω+ 2πn) , ∀n ∈ Z, (4.26)

the parameter space actually corresponds to the one-dimensional space defined by

all points on the unit circle S1 ⊂ R2.8 To each point ω in the parameter space S1

corresponds a rotation R̂ (ω) over an angle ω (Figure 4.3). The circle defines the

topology of the parameter space (see also Figure 4.4).

8 This notation is explained in Definition 9.6 in Chapter 9.
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FIGURE 4.4 “‘What size do you want to be?’ asked the Caterpillar. ‘Well, I should like to be a little

larger, sir, if you wouldn’t mind,’ said Alice. The Caterpillar took the hookah out of its mouth and

remarked: ‘One side [of the mushroom] will make you grow taller, and the other side will make

you grow shorter.’ ” “Alice remained looking thoughtfully at the mushroom for a minute, trying to

make out which were the two sides of it; and as it was perfectly round, she found this a very

difficult question. However, at last she stretched her arms round it as far as they could go, and

broke off a bit of the edge with each hand.” The mushroom represents the parameter space �, with

parameter ω that varies continuously as Alice goes round the mushroom, and determines to what

extent she grows or shrinks. Nibbling a bit from one piece, has the physical effect of making her

shrink, whereas eating a little from the other piece makes her grow.

Finally, we note that two elements R̂ (ρ) and R̂ (σ ) are said to be “close” to one

another if the distance
[∑n

i=1 (ri − si)
2
]1/2

between the corresponding points ρ and

σ is small.

4.2.3 Connectedness and compactness

Let (G,�) represent an infinite continuous group of order n, with corresponding

parameter space �n, and consider any two group elements R̂ (ρ) and R̂ (σ ) with

corresponding points ρ and σ in �n. If ρ and σ can be “connected” with one another

via one or more paths that lie entirely within the parameter space, then �n is said to

be continuously connected.
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Each point on this path in parameter space then corresponds to a group element,

the entire set of which forms another path that connects the two group elements

R̂ (ρ) and R̂ (σ ). An infinite continuous group (G,�) is thus said to be connected when

any two arbitrary elements from the group can be connected with one another via

a continuous variation of the group parameters (i.e., when its parameter space is

connected).

The SO(2) group is a connected group in this sense because any rotation R̂ (ω1)

can be turned into any other rotation R̂ (ω2) via a continuous variation of the rotation

angle from ω1 to ω2. The O(2) group of rotations and reflections, on the other hand,

forms a disconnected group. To see this, let us consider the identity transformation

Ê = R̂ (0) or, in matrix form, R (0)= I. Its determinant equals

detR (0)= detI= 1. (4.27)

Every operator R̂ (ω) that evolves continuously from Ê must therefore satisfy the

condition

detR (ω)= 1, ∀ω ∈ [0,2π]. (4.28)

That is, every continuous path starting from Ê connects operators with unit determi-

nant, det=+1. These are proper rotations. All improper rotations (or reflections), on

the other hand, with det=−1, are disconnected from the identity operator.

Topologically, the parameter space of the orthogonal group O(2) thus consists

of two disconnected circles. One circle corresponds to the parameter space of the

SO(2) subgroup and contains all two-dimensional rotations, including the identity

transformation. The other circle contains all rotation reflections, consisting of all

rotations followed by the inversion operator.

To conclude, an infinite continuous group (G,�) of order n is said to be compact

when its corresponding parameter space �n is compact in the sense of being a closed

and bounded space. This means the domain of variation for the different parameters

should be finite. Both the O(2) and SO(2) groups are compact because the rotation

angle varies over the finite interval [0,2π]. In the third part of this book, we will

encounter noncompact groups, such as the SO(2, 1) and SO(4, 2) groups, where some

of the parameters vary between −∞ and +∞.

4.3 THE INFINITESIMAL GENERATOR

So far, the identity transformation Ê of the axial rotation group has been parametrized

as R̂ (0), with ω= 0. Infinitesimally small values of the rotation angle, denoted δω, are

therefore associated with elements that are infinitesimally close to the identity element,

and they correspond to infinitesimally small rotations, denoted R̂ (δω).

Now, because every finite rotation R̂ (ω) is continuously connected to the identity

operator Ê, one can produce any desired finite rotation R̂ (ω) by the repeated

application (or integration) of the infinitesimal rotation R̂ (δω):

R̂ (0)→ R̂ (δω)→ R̂ (δω+ δω)→ . . .→ R̂ (ω), (4.29)
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especially interesting to study the nature of the group elements close to the identity.

This study will lead us to the concept of the infinitesimal generator, which was

first introduced by Sophus Lie. In the following two sections, §4.3.1 and §4.3.2, the

generator of the SO(2) group will be derived in both matrix and operator form. The

great advantage behind the introduction of this concept is that we no longer have

to consider the group as a whole, with its infinite number of elements; we can limit

our attention to a study of the finite set of infinitesimal transformations around the

identity—the underlying reason being that a perfectly symmetric object, such as a

circle, is uniform everywhere, which makes it sufficient to probe its local curvature at

only one point to grasp the structure of the whole.

4.3.1 Matrix form of the SO(2) generator

Because the principle of expanding a function in Taylor and MacLaurin series is

used extensively in the following paragraphs, refer to Appendix C for a brief review

of this powerful mathematical tool. Now, to derive the infinitesimal generator of the

continuous Lie group SO(2), we start by expanding the matrix R (ω) in a Taylor series

around the identity (ω = 0). This Maclaurin series can be written with the help of

Eq. (C.16):

R (ω)=R (0)+ dR(ω)

dω

∣∣∣∣
ω=0

ω+ 1

2!
d2R (ω)

dω2

∣∣∣∣
ω=0

ω2 + . . . . (4.30)

The expansion coefficients in this series can be determined directly from the matrix

form of R (ω):

R(ω) =
[

cosω − sinω

sinω cosω

]
, (4.31)

by differentiating each matrix element an appropriate number of times. However,

because there are an infinite number of coefficients to calculate, it proves more

interesting to substitute this brute-force method by the following, more elegant,

method.

We start by determining the first coefficient of Eq. (4.30) by taking the first

derivative of R (ω) at ω= 0:

dR (ω)

dω

∣∣∣∣
ω=0

=
[

d cosω/dω −d sinω/dω

d sinω/dω d cosω/dω

]∣∣∣∣∣
ω=0

=
[
− sinω −cosω

cosω − sinω

]∣∣∣∣∣
ω=0

=
[

0 −1

1 0

]
≡X.

(4.32)

To determine the higher order derivatives of R (ω), we continue by noting that each

rotation R (ω) can be written as R (ω1 +ω2), where we will later set ω1 = 0 and

9 It bears repeating, once again, that not every group element needs to be accessible in this sense

from the repeated application of the elements close to the identity. In the O(2) group, for instance,

the elements with determinant −1 cannot be reached from the identity with determinant +1. See

§4.2.3 for more information.
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ω2 = ω. For the moment, we can use Eq. (4.21) to express the derivative ofR (ω1 +ω2)

with respect to ω1 as
dR (ω1 +ω2)

dω1
= dR (ω1)

dω1
R (ω2). (4.33)

With the help of the chain rule, the left-hand side of this equation can be rewritten as

dR (ω1 +ω2)

dω1
= dR (ω1 +ω2)

d (ω1 +ω2)

d (ω1 +ω2)

dω1
. (4.34)

Setting ω1 = 0, [
dR (ω1 +ω2)

d (ω1 +ω2)

d (ω1 +ω2)

dω1

]∣∣∣∣
ω1=0

= dR (ω2)

dω2
. (4.35)

This result can be plugged into Eq. (4.33) to yield

dR (ω)

dω
= dR (ω1)

dω1

∣∣∣∣
ω1=0

R (ω)=XR(ω) , (4.36)

where we have used the result from Eq. (4.32) and where ω2 has been replaced by ω.

The higher order derivatives of R (ω) can then be written as

dnR (ω)

dωn

∣∣∣∣
ω=0

=X
dn−1R (ω)

dωn−1

∣∣∣∣
ω=0

. (4.37)

And, with the help of Eq. (4.32),

dnR (ω)

dωn

∣∣∣∣
ω=0

=Xn. (4.38)

Substituting this result into the Maclaurin series in Eq. (4.30) finally yields

R (ω)= I+Xω+ 1

2!X
2ω2 + 1

3!X
3ω3 + . . . , (4.39)

which can be written in the more compact sigma notation

R (ω)=
∞∑

n=0

1

n! (Xω)
n , (4.40)

where X0 = I. Noting the similarity of this equation to Eq. (C.15), it follows that

R (ω)= eωX. (4.41)

That is to say, every proper two-dimensional rotation R (ω) by a finite angle ω can

be obtained from the exponentiation of the matrix X, which is therefore called the

generator of the axial rotation group SO(2). Because X is a matrix, this is called the

matrix form of the generator.

The expression in Eq. (4.41) is commonly referred to as the exponential map

because it forms the bridge between the generator X and the group elements R (ω).

We will come back to this important notion in the following chapters.

Notice also that the Taylor expansion in Eq. (4.39) can be approximated by ignoring

all the terms of order ω2 or higher:

R (ω)= I+Xω+O
(
ω2) ;

R (ω)≈ I+Xω.
(4.42)

This expression becomes exact when infinitesimally small rotations are considered. We

can thus write

R (δω)= I+Xδω. (4.43)
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rotations R̂ (δω).

In summary, we saw that most of the SO(2) group structure is determined by the

generator X, which in turn is determined by the local behavior of the SO(2) group

around the identity. The global behavior of the SO(2) group cannot be captured by the

generator concept, however. These are mostly properties of a topological nature, such

as the relation in Eq. (4.26).

4.3.2 Operator form of the SO(2) generator

An alternative way of representing the infinitesimal operator X of the Lie group SO(2)

is in terms of a differential operator. This so-called operator form of the generator will

be most helpful in the next section, when a connection will be made with quantum

mechanics. To derive the operator associated with an infinitesimal rotation, we start

by considering a rotation over a small angle �ω, denoted R̂ (�ω). In line with the

defining relationship in Chapter 3, Eq. (3.40), this rotates the angular coordinate of all

points backward over an angle�ω:[
x′ y′

]
=
[

x y
]
R (�ω)=

[
x y

][cos�ω − sin�ω

sin�ω cos�ω

]
. (4.44)

In the limit where the angle becomes infinitesimally small (�ω→ 0), this equation

becomes [
x′ y′

]
=
[

x y
]
R(δω)=

[
x y

][ 1 −δω
δω 1

]

=
[

x y
]
(I+Xδω).

(4.45)

Thus, x′ = x+yδω and y′ = y−xδω. Based on this fact, we can reproduce these results

by a differential operator as follows:

R̂ (δω)
[

x y
]
=
(

R̂ (0)+ X̂δω
)[

x y
]

. (4.46)

The operator X̂ is defined in terms of the rotation operators as

X̂ = lim
δω→0

R̂ (δω)− R̂ (0)

δω
. (4.47)

This operator is associated with the matrix transformation X and can thus be

written as

X̂
[

x y
]
=
[

x y
]
X. (4.48)

To obtain the algebraic form of the operator, we first note that the product of the

partial derivatives arranged in a column with the row matrix of the coordinative

functions is the unit matrix [
∂
∂x
∂
∂y

][
x y

]
= I. (4.49)

Introducing this product to the right of Eq. (4.48) yields

X̂
[

x y
]
=
[

x y
]
X

[
∂
∂x
∂
∂y

][
x y

]
. (4.50)
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The operator itself can thus be written as

X̂ =
[

x y
]
X

[
∂
∂x
∂
∂y

]
, (4.51)

or in algebraic form as

X̂ =
(

y
∂

∂x
− x

∂

∂y

)
. (4.52)

As outlined in the following section, this expression for the generator of the SO(2)

rotation group is closely related to the z-component of the angular momentum

operator. Because the SO(2) group is the simplest of all Lie groups, the full benefits

of the infinitesimal generator are not yet readily apparent. However, we will see in our

examination of the SO(3) group in Chapter 5 that infinitesimal generators embody

much of the structure of the full group. In fact, most solutions to the quantum

mechanical problems in this book are found by using the infinitesimal operators only,

thereby disregarding all other operators completely.

4.4 ANGULAR MOMENTUM

4.4.1 Classical mechanical picture

There is no better way to illustrate the importance of the generator we just derived

than to switch to the physical treatment of a rotational motion around a fixed point.

Classical physics first. A planet orbiting around the sun unknowingly conserves two

important physical quantities: its energy and its angular momentum. The angular

momentum vector L of a moving particle of mass m in three-dimensional space is

defined as follows. Let r be the vector from the origin to the instantaneous position of

the particle. We have

r = xex + yey + zez , (4.53)

where x,y, and z are the particle’s coordinates at a given instant. These coordinates are

functions of time. Defining the velocity vector v as the time derivative of the position

vector, we have

v≡ dr

dt
= dx

dt
ex + dy

dt
ey + dz

dt
ez ;

vx = dx

dt
, vy = dy

dt
, vz = dz

dt
.

(4.54)

We define the particle’s linear momentum vector p by

p≡mv;

px =mvx , py =mvy , pz =mvz .
(4.55)

The time derivative of the velocity is the acceleration a. By Newton’s law, the product

of mass and acceleration corresponds to the force (i.e., F=ma). For a particle moving

in a central field, the force is directed along the radius; hence,

F= Fer = F
r

r
, (4.56)

with the direction given by the unit vector er = r/r. The particle’s angular momentum L

is defined in classical mechanics as the outer product (see Appendix B) of the particle’s
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L ≡ r×p;

L =

∣∣∣∣∣∣∣
ex ey ez

x y z

px py pz

∣∣∣∣∣∣∣=
∣∣∣∣∣ y z

py pz

∣∣∣∣∣ex −
∣∣∣∣∣ x z

px pz

∣∣∣∣∣ey +
∣∣∣∣∣ x y

px py

∣∣∣∣∣ez ;

Lx = ypz − zpy , Ly = zpx − xpz , Lz = xpy − ypx .

(4.57)

Lx , Ly , and Lz are the components of L along the x-, y-, and z-axes. The angular

momentum vector L is perpendicular to the plane defined by the particle’s position

vector r and its velocity v. The time evolution of the angular momentum is given by

dL

dt
= dr

dt
×p+ r× dp

dt

= v×p+ r×ma

= 1

m
p×p+ F

r
r× r = 0.

(4.58)

A particle orbiting around a fixed point is attracted by a central force (i.e., a force

directed along the radius from the origin). As a result, both vector products in the

equation vanish and the angular momentum is conserved. This means the angular

momentum is a constant that does not change with time. When the orbital plane

coincides with the xy-plane, the angular momentum vector is directed along the

z-axis. The only nonzero angular momentum is, then, the Lz component.

4.4.2 Quantummechanical picture

Now for quantum mechanics.10 In quantum mechanics, the analogue of the classical

quantity L is the so-called orbital angular momentum, which results from the motion

of a particle through space. In addition, there is a spin angular momentum that is an

intrinsic property of elementary particles and has no classical mechanical analogue

(see Chapter 8). For the moment, let us restrict our exploration to a quantum

mechanical consideration of the orbital angular momentum.

In quantum mechanics, the physical quantities become operators. We get the

proper form of the angular momentum operators by replacing the coordinates and

momenta in the classical Eq. (4.57) with their corresponding operators according to

Eqs. (D.19) and (D.20): x̂ = x and p̂x = h̄/i ∂/∂x = −ih̄∂/∂x. Here h̄ denotes h/2π ,

with h representing Planck’s constant. We find

L̂x =−ih̄

(
y
∂

∂z
− z

∂

∂y

)
;

L̂y =−ih̄

(
z
∂

∂x
− x

∂

∂z

)
;

L̂z =−ih̄

(
x
∂

∂y
− y

∂

∂x

)
.

(4.59)

Using Eq. (4.52), the quantum mechanical operator for the z-component of the orbital

angular momentum L̂z becomes

L̂z = ih̄X̂ . (4.60)

10 For a brief review of quantum mechanics, see Appendix D.
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FIGURE 4.5 Benzene structure. Electrons can rotate around by hopping from one pz -orbital to

another on the neighbouring carbon atoms.

It follows that the infinitesimal generator of the group of rotations in the xy-plane,

multiplied by ih̄, equals the z-component of the angular momentum operator L̂z . Let

us demonstrate the power of this Lie algebraic concept by solving the wave equation

for a particle on a ring.

4.5 SO(2) SYMMETRY AND AROMATIC MOLECULES

Angular momentum, and thus SO(2) symmetry, is a key feature in the electronic

structure of circular molecules. This is best illustrated for the particular family of the

annulenes, consisting of a necklace of methyn (CH) beads, each of which carries an

electron in a 2pz -orbital, perpendicular to the plane of the ring. The coupling or “con-

jugation” of these electrons gives rise to a delocalized electronic system, commonly de-

noted as an nπ system, where n is the number of valence electrons in the 2pz -orbitals.

The prototype of annulenes is the 6π-molecule benzene, C6H6, which has the shape

of a regular hexagon (Figure 4.5). To highlight the cyclic nature of these electronic

structures, we now look at the quantum mechanical model of a particle, in casu an

electron, on a ring. Despite the fact that this is an extreme simplification of the actual

molecular systems, this model pinpoints the essence of cyclic electronic structures.

4.5.1 The particle on a ring model

The model consists of a ring surrounded by extremely high-potential walls, so that a

particle on the ring can move along the circumference only. Its position in cylindrical

coordinates is thus given by a fixed radius r, and a free angular coordinate φ, which

ranges from 0 to 2π .

Angular momentum

For a ring in the xy-plane, the z-component of the angular momentum is conserved,

as we proved in the previous section. In quantum mechanics, this means the

wave function |ψ〉, which describes the physical state of the moving particle, is an

eigenfunction of L̂z :

L̂z |ψ〉 = h̄k |ψ〉. (4.61)
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68 The eigenvalue on the right-hand side of this equation is denoted as h̄k, where h̄ is the

unit of angular momentum and k is a dimensionless quantity. The expression for the

z-component of the angular momentum operator, given in Eq. (4.59), can be used to

rewrite the previous equation:

−ih̄

(
x
∂

∂y
− y

∂

∂x

)
|ψ〉 = h̄k |ψ〉. (4.62)

We now replace the x- and y-coordinates with the angular coordinate φ. In the

xy-plane the coordinate transformation is as follows:

x = r cosφ;

y = r sinφ.
(4.63)

The multivariable chain rule allows us to express the derivative with respect to φ as

∂

∂φ
= ∂x

∂φ

∂

∂x
+ ∂y

∂φ

∂

∂y
. (4.64)

From Eq. (4.63), we obtain the required derivatives as

∂x

∂φ
=−r sinφ =−y;

∂y

∂φ
= r cosφ = x.

(4.65)

Hence, we find
∂

∂φ
=−y

∂

∂x
+ x

∂

∂y
. (4.66)

Substituting this expression in Eq. (4.62) gives

−ih̄
∂

∂φ
|ψ (φ)〉 = h̄k |ψ (φ)〉. (4.67)

Dividing by h̄ and multiplying both sides by i gives

∂

∂φ
|ψ (φ)〉 = ik |ψ (φ)〉. (4.68)

This equation is a first-order differential equation, which can be solved easily:

|ψ (φ)〉 = 1

N
eikφ. (4.69)

The value of k is quantized as a result of the cyclic nature of the angular coordinate,

which requires that the wave function be continuous and single-valued in the periodic

interval. This implies that the value of the wave function must be the same at φ and

φ+ 2π :

|ψ (φ)〉 = |ψ (φ+ 2π)〉
eikφ = eikφeik2π

1= eik2π .

(4.70)

The equality in Eq. (4.70) is satisfied only if k is an integer. Integer values of k

are traditionally denoted as ml and are known as magnetic quantum numbers when

referring to electronic states. The possible values for ml are as follows:

ml = 0, ±1, ±2, ±3, . . . . (4.71)
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The solution of the differential equation also yields an undetermined coefficient

1/N , which is called the normalization constant of the wave function.11 This

normalization constant is usually determined by requiring that the probability density,

which corresponds to the product of the wave function with its complex conjugate,

normalizes to 1 when integrated over all space. In our case, the limits of integration

for normalization are from 0 to 2π , because this covers the entire circular path.

〈ψ |ψ〉 = 1

N 2

2π∫
0

(
e−imlφ

)(
eimlφ

)
dφ = 1

N 2

2π∫
0

dφ = 1

N 2
2π = 1;

N =√
2π .

(4.72)

The normalized wave function for the particle on a ring becomes

|ψ (φ)〉 =
√

1

2π
eimlφ ; ml = 0,±1,±2,±3, . . . . (4.73)

A physical connection can be made with the sign of the ml quantum number. Positive

and negative signs of ml indicate the direction in which the wave is propagating.

Based on the right-hand rule, a positive value for the angular momentum indicates

a counterclockwise rotation whereas negative values indicate a clockwise rotation.

Because the value for angular momentum is given by h̄k = h̄ml according to

Eq. (4.61), counterclockwise rotations correspond to positive values of ml , and

clockwise rotations indicate negative values of ml .

Energy

As in classical physics, energy is also conserved. The corresponding operator is the

Hamiltonian Ĥ and the eigenvalue equation for energy is the celebrated Schrödinger

equation (see Appendix D):

Ĥ |ψ〉 = E |ψ〉, (4.74)

where E is the eigenvalue of Ĥ . The time-independent Schrödinger equation for a

single particle of mass m moving along one dimension reads as

− h̄2

2m

d2 |ψ (x)〉
dx2

+V (x) |ψ (x)〉 = E |ψ (x)〉 . (4.75)

In the case of a particle on a ring, the coordinate x corresponds to the progression

along the perimeter of the ring and is denoted as u. The potential energy anywhere on

the circle can be taken as the zero point of energy: V (u)= 0. The Hamiltonian, which

is the sum of the kinetic and potential energies, then reduces to the kinetic term. The

Schrödinger equation thus becomes

Ĥ |ψ (u)〉 = − h̄2

2m

d2 |ψ (u)〉
du2

= E |ψ (u)〉. (4.76)

Because this single particle is confined to a circle with constant radius r, the

u-coordinate has, in fact, been bent upon itself and runs from 0 to 2πr. We are

working, in other words, within a one-dimensional periodic space. All u-positions can

therefore be rewritten in function of r and φ. We find that

u (r,φ)= φr, (4.77)

11 Normalization leaves the phase of N undetermined. For simplicity, we take N to be a positive real

number.
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70 with φ running from 0 to 2π . The distance we have moved on the u-axis after one

full rotation, for instance, is just the perimeter 2πr according to this equation. In fact,

since r is kept constant, the u-coordinate is actually just dependent on φ: u(φ).

Based on this information, let us now rewrite the Schrödinger equation in

Eq. (4.76) as a function of φ rather than u. According to the simple chain rule, if

|ψ (u)〉 depends on u, which in turn depends on φ, that is |ψ〉 = |ψ (u (φ))〉, then

the rate of change of |ψ〉 with respect to φ can be computed as the rate of change of

|ψ〉 with respect to u multiplied by the rate of change of u with respect to φ:

d |ψ〉
dφ

= d |ψ〉
du

du

dφ
. (4.78)

According to Eq. (4.77),
du

dφ
= d

dφ
(φr)= r. (4.79)

Substituting this in Eq. (4.78) gives

d

dφ
|ψ〉 = r

d

du
|ψ〉, (4.80)

or simply
d

dφ
= r

d

du
. (4.81)

We can now multiply Eq. (4.80) by Eq. (4.81):

d

dφ

(
d

dφ
|ψ〉

)
= r

d

du

(
r

d

du
|ψ〉

)
d2 |ψ〉

dφ2
= r2 d2 |ψ〉

du2
.

(4.82)

This enables us to rewrite the Schrödinger equation of Eq. (4.76) as a function of φ:

Ĥ |ψ (φ)〉 = − h̄2

2mr2

d2 |ψ (φ)〉
dφ2

= E |ψ (φ)〉. (4.83)

The Hamiltonian is seen to be directly proportional to the square of the angular

momentum operator given in Eq. (4.67):

Ĥ = 1

2mr2

(
−ih̄

d

dφ

)2

= 1

2mr2
L̂2

z . (4.84)

The eigenenergies can thus be determined directly by applying the angular momentum

operator twice to the eigenfunctions
∣∣ψml

〉
, or simply |ml〉:

L̂2
z |ml〉 = L̂z

(
L̂z |ml〉

)
= L̂z ml h̄ |ml〉
=mlh̄L̂z |ml〉
=m2

l h̄2 |ml〉.

(4.85)

One thus obtains for the energy of a particle on a ring:

E = 1

2mr2
m2

l h̄2 = m2
l h̄2

2I
, (4.86)

where I = mr2 is the moment of inertia of the orbiting particle. Note that states with

opposite values of angular momenta have the same energies. They are degenerate. The
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symmetry responsible for this degeneracy may be attributed to the reflection plane,

which changes the sign of φ; hence,

σv |ml〉 = |−ml〉. (4.87)

4.5.2 The shell perspective

The solutions of the particle on a ring model, with an almost trivial Lie group at its

basis, form an energy spectrum that consists of shells. A shell is a universal concept

encountered at all quantum levels of matter. It is directly related to the presence of

Lie groups and it plays a key role in our treatment. In the current model, the shells

are of a straightforward simplicity, and yet they already illustrate nearly all the basic

ingredients of the shell concept.

For the particle on a ring, the energy spectrum is as follows: the lowest level, or

ground level, corresponds to ml = 0 and is nondegenerate whereas all other levels

are twofold degenerate, reflecting the equivalence of clockwise and counterclockwise

waves (Figure 4.6). Three ingredients of the symmetry determine the shell structure:

1. The Hamiltonian Ĥ characterizes the energy level (i.e., all states in the same

energy level are characterized by the same value of m2
l ).

2. The Lie group generator, in casu the angular momentum operator L̂z ,

characterizes the individual components of the levels in a unique way. States may

be labeled unambiguously by the signed quantum number ml .

3. Additional symmetry operators, such as σv , are available to shift from one

component to the others within the same level. Such operators are called shift or

ladder operators.

4.5.3 Aromatic molecules

The Hückel rule

In organic chemistry, Hückel’s rule determines whether a planar ring molecule has

aromatic properties.

|ml|

0
1

2

3

Negative ml Positive ml

σv

–1 +1

+2–2

+3–3

0

E ≈ ml
2 FIGURE 4.6 Energy diagram for a

particle on a ring. The first seven

energy levels are shown for

ml = 0, ±1, ±2, ±3.
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72 Definition 4.2 (Hückel’s rule): A cyclic ring molecule is aromatic when the number of

its π-electrons equals 4n+ 2, where n can be zero or any other positive integer. ◾

For example, the exceptional stability of benzene (the famous Kekulé structure with

a ring of six carbon atoms) can be explained by Hückel’s rule, which confirms that

benzene is an aromatic molecule because of its six π-electrons (for n= 1, 4n+2= 6).

The quantum mechanical basis for its formulation was first worked out by physical

chemist Erich Hückel in 1931, based on calculations using the so-called Hückel

method, but it finds its origin in the particle on a ring model.12 After all, aromatic

molecules are ringlike systems in which the excess valence electrons spin around in

both directions (Figure 4.5). The underlying rationale for the number sequence in

the Hückel rule is that stable molecules are characterized preferentially by closed-shell

electronic structures. This means there should be a large energy gap between the

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular

orbital (LUMO). This leads to a sequence that corresponds to the shells of cylindrical

quantum systems (described in §4.5.2). Recall from the previous sections that, except

for the case ml = 0, there are two quantum states for every value of ml . The number

of energy levels in a shell is thus given by 2n+ 1. To fill up all these levels to n then

requires 2× (2n+ 1) = 4n + 2 electrons, because electrons can have two additional

possible orientations of their spins. The magic numbers of this sequence: 2, 6, 10,

14, 18, and so on thus correspond precisely to the closing of consecutive levels of the

cylindrical shell with electron pairs.

When this is clear, a whole family of aromatic compounds fits into a simple

numerical scheme. Examples of molecules from 6π to 26π are presented in Table

4.1. Here benzene (6π) and porphyrin (18π) are natural products. Benzene is a

constituent of crude oil, and a variety of chemical modifications of porphyrin are

found in plants, where they form the chromophoric part of the light-harvesting

system. A porphyrin is a small wonder of molecular design shaped by the mechanisms

of evolution. At first sight, it bears little resemblance to a chain with eighteen beads,

but on closer inspection it is indeed found to incorporate a closed circuit over eighteen

atoms. There is a good reason why this circuit is warped and contains bypasses.13

The cyclic electronic structures require a planar shape, where the 2pz-orbitals on

neighboring atoms can overlap to enable the hopping of the mobile electrons. But,

a straightforward ring of eighteen CH beads, without all the colorful features of the

porphyrin, would not be able to sustain the planar geometry and would collapse

into a more densely packed cluster structure. Moreover, to harvest the sunlight that

penetrates to the surface of the planet, nature had to develop a molecule with a

HOMO–LUMO gap in the visible region of the spectrum. According to the ring

12 E. Hückel. “Quantentheoretische Beiträge zum Benzolproblem.” Zeitschrift für Physik 70 (1931),

pp. 204–286; L. Salem. The Molecular Orbital Theory of Conjugated Systems. New York: W. A.

Benjamin, 1966.
13 Strictly speaking, Hückel theory is applicable only to monocyclic conjugated systems. However,

many polycyclic systems also show aromaticity as a result of internal 4n + 2 circuits. See

M. Randić. “Aromaticity of Polycyclic Conjugated Hydrocarbons.” Chemical Reviews 103 (2003),

pp. 3449–3605.
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model, the energy of excitation is simply given by the difference between the HOMO

and LUMO shells. From Eq. (4.86), we can derive

�E = ELUMO −EHOMO = (|ml|+ 1)2 h̄2

2I
− m2

l h̄2

2I
. (4.88)

For benzene, the gap is calculated to be in the far-ultraviolet region. As a result,

benzene is colorless and cannot act as a chromophore. When going from benzene to

porphyrin, two aspects of the ring model change: (1) the size of the ring increases by

a factor of three and (2) the excitations are displaced in the shell model. In benzene,

the HOMO → LUMO excitation is from ml = ±1 to ml = ±2; in porphyrin, it is

from ml = ±4 to ml = ±5. In the previous equation, the impact of these changes is

an increase of the enumerator by a factor of three as a result of the changes in ml

quantum numbers; on the other hand, however, an increase of the denominator by a

factor of nine is seen as a result of the threefold increase of the radius. The net result is

a threefold decrease of the gap, shifting the absorption spectrum right into the visible

region and endowing porphyrin with the magnificent colors of the leaves.

The other entries in Table 4.1 are synthetic molecules reflecting the art of organic

chemistry to design ever-new compounds that incorporate desired properties. The

boron subporphyrin is a 14π system.14 If we wished to synthesize a porphyrin

analogue with only three pyrrole rings, but, knowing three is not a divisor of fourteen,

the closest we can come to realizing this goal is a subporphyrin with a macrocycle of

only twelve atoms. By donating two electrons to the ring, the boron atom in the center

stabilizes the system as a dianion, realizing a stable, 14π aromatic ring system.

The 26π system is a hexaphyrin.15 This is one of the largest synthetic annulene

systems thus far. It, too, is aromatic with cyclic delocalization. This molecule exhibits

a very interesting feature, which has a peculiar group theoretical significance. When

electrochemically reduced by injecting two more electrons, a 28π-electron system is

formed, which defies the Hückel rule. Such a system is called antiaromatic. Annulenes

of this kind carry 4nπ-electrons, which implies that the outer shell is only half filled.

As a result, such systems are unstable; they are highly reactive and exhibit all kinds of

structural distortions. Reduced hexaphyrin is large and flexible enough to distort to a

new conformation that is used to explore a different mathematical solution of cyclic

symmetry: it spontaneously adopts the twisted conformation of a Möbius ring (Figure

4.7 and Figure 4.8).16

14 T. Torres. “From Subphthalocyanines to Subporphyrins.” Angewandte Chemie, International

Edition 45 (2006), pp. 2834–2837; S. Vancoillie, M. Hendrickx, M. T. Nguyen, K. Pierloot, A.

Ceulemans, J. Mack, and N. Kobayashi. “Fourteen-Electron Ring Model and the Anomalous

Magnetic Circular Dichroism of Meso-Triarylsubporphyrins.” Journal of Physical Chemistry A116

(2012), pp. 3960–3967.
15 A. Jasat and D. Dolphin. “Expanded Porphyrins and their Hetercycles.” Chemical Reviews 97

(1997), pp. 2267–2340.
16 J. Sankar, S. Mori, S. Sato, H. Rath, M. Suzuki, Y. Inokuma, H. Shinokubo, K. S. Kim, Z. S.

Yoon, J.-Y. Shin, J. M. Lim, Y. Matsuzaki, O. Matsushita, A. Muranaka, N. Kobayashi, D. Kim,

and A. Osuka. “Unambiguous Identification of Möbius Aromaticity for Meso-Aryl-Substituted [28]

Hexaphyrins.” Journal of the American Chemical Society 130 (2008), pp. 13568–13579.



Table 4.1 Aromatic molecules with 6π- to 26π-electrons

n 4n+ 2 Name Molecular structure

1 6 Benzene

2 10 1,6-methano[10]annulene

3 14 Boron subporphyrin

N N

N

B

4 18 Porphyrin

NH

N

N

HN

5 22 N-fused[22]pentaphyrin

N

N

N

N

NH

6 26 Hexaphyrin

NH

N

N

N

N

HN

FIGURE 4.7 Structure of an electrochemically reduced hexaphyrin molecule. As a result of the

presence of 28π-electrons, the molecule spontaneously adopts a twisted Möbius—like

conformation.
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FIGURE 4.8 Escher’s Möbius Strip II is a

woodcut from 1963. The Möbius strip

(variously known as a Möbius band or

twisted cylinder) was first discovered by the

German mathematician August Ferdinand

Möbius (1790–1868) in 1858. You can create

your own Möbius band easily by cutting out

a single strip of paper, and giving one of its

ends a half twist before gluing the two ends

to create a loop. What is intriguing about a

Möbius band is that it is a one-sided surface,

with only one boundary! To convince

yourself of this fact, try following one of the

nine ants in the figure on their journey along

the band. By crawling one full length of the

original strip, each ant ends up on “the other

side” of where it started. By covering the

same length once again, it ultimately returns

to its starting position. Escher thus noted:

“An endless ring-shaped band usually has

two distinct surfaces, one inside and one

outside. Yet on this strip nine ants crawl after

each other and travel the front side as well as

the reverse side. Therefore the strip has only

one surface.”17 Notice that with a cylinder,

the ants would have to cross an edge to reach

the other side. Funnily enough, by placing

the band on its side, one obtains an inverted

number 8 or lemniscate ∞, the symbol for

infinity. Reprinted with permission of the

Escher Foundation, Den Haag.

The Heilbronner rule

As is well known, the topology of a Möbius band requires that the original starting

configuration is restored only after revolving twice around the center. As a result, a

wave function depending on the angle of revolution φ is periodic in φ + 4π . Hence,

Eq. (4.70) has to be recast as follows:

|ψ (φ)〉 = |ψ (φ+ 4π)〉
eikφ = eikφeik4π

1 = eik4π .

(4.89)

This equation is now satisfied for half integer values of k. The magnetic quantum

numbers for cyclic waves on a Möbius band thus are

ml =±1

2
, ±3

2
, ±5

2
, . . . . (4.90)

The resulting shell structure is thus at odds with the Hückel rule, predicting closed

shells for systems with 4n electrons rather than 2+4n. The electron count for Möbius

17 M. C. Escher. The Graphic Work. Köln: Taschen, 2001, p. 12.
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years before the first molecules with this topology were synthesized.

Definition 4.3 (Heilbronner rule): An annulene molecule with a Möbius band topology

is aromatic when the number of its π-electrons equals 4n, where n is any positive

integer. ◾

The remarkable property of the reduced hexaphyrin is that it spontaneously seeks

the twisted geometry to fulfil the Heilbronner rule. In smaller rings this doesn’t work

because the twist introduces too much steric tension.

The half-integer quantum solutions of the rotational symmetry group are part of

the theory of angular momentum. They have been waiting patiently “in potentiality”

as mathematical solutions for more than a century, until they finally reached their

“actuality” in a physical system such as the hexaphyrin molecule. They will make their

official appearance in the next chapter, where the rotation group will be extended to

rotations in three dimensions.

18 E. Heilbronner. “Hückel Molecular Orbitals of Möbius-Type Conformations of Annulenes.”

Tetrahedron Letters 5.29(1964), pp. 1923–1928.



5 The SO(3) group

Eppur si muove.1

–Galileo Galilei (1563–1642)

At the foundations of modern cosmology (and the Big Bang theory in particular)

lies the Cosmological Principle, which assumes that space is homogeneous and isotropic

on sufficiently large scales. The homogeneity of space means the universe looks and

behaves the same from every possible location; all locations are said to be equivalent

in the sense that our universe does not possess any priviledged position or universal

center. The isotropy of space, on the other hand, means that wherever you look

(up or down, left or right), the universe always looks the same, implying there

is no preferred direction in space, and that all directions are therefore completely

equivalent.

The homogeneity of space implies the universe has translational invariance (i.e., the

laws of physics are invariant under spatial translations). The isotropy of space implies

the universe has rotational invariance (i.e., the laws of physics are invariant under

rotational transformations). Therefore, physical experiments have the same outcome

regardless of their location and orientation in space.

On a microscopic scale, the uniformity and isotropy of space implies that the

Hamiltonian of an isolated classical system is invariant under three-dimensional

rotations; that is, the mathematical form of the Hamiltonian (and therefore also the

1 “And yet it moves.”
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78 energy of the system) does not change under spatial rotations of the system. One says

that the Hamiltonian has spherical symmetry.2

Interestingly, the spherical symmetry properties of the Hamiltonian are responsible

for the conservation of the total angular momentum L of the system. This is an example

of Noether’s theorem, which states that for every continuous symmetry of a system,

there is a corresponding conservation law, and vice versa. This idea, which first

originated in the works of Emmy Noether, has proved to be of such fundamental

importance in modern physics that it will often be at the center of our current

discussion as well. Not surprisingly, this chapter intends to fully explore the intimate

relationship that exists between three-dimensional rotations on the one hand, and the

angular momentum of a physical system on the other. In the subsequent scholium, we

will pause to contemplate Noether’s theorem in more detail.

Chapter outline

The chapter proceeds along the same logic as was for the preceding presentation of the

SO(2) group. We start our discussion in §5.1 by defining the symmetry group of the

sphere from a geometric point of view as the group of three-dimensional rotations

of the sphere. We then introduce the matrices, corresponding to these rotations,

and show that they are orthogonal. We continue our exploration in §5.2 with the

introduction of the algebraic group of 3×3 orthogonal matrices, labeled O(3). It turns

out that the matrices describing rotations of the sphere coincide with the elements of

the special orthogonal subgroup SO(3) of orthogonal 3×3 matrices with determinant

+1. In §5.3 we derive the general expression for the rotation matrices using a special

property of orthogonal matrices due to Jacobi.

Having thus established the central role of SO(3) in the treatment of spherical sys-

tems, we are then ready to focus on the Lie group characteristics of SO(3) (with its

elements being characterized by a set of three continuously varying parameters) and

its corresponding Lie algebra. In the cyclic problem of Chapter 4, we already saw a

glimpse of the power of a Lie algebra, albeit the so(2) algebra was almost trivial because

it contained only one infinitesimal operator. The spherical symmetry group SO(3)

exhibits new features because it is generated by three generators, as we will see in § 5.4.

The fundamental link between the group theoretical generators of the so(3) algebra

and the three Cartesian components of the angular momentum operator L̂ are brought

to light in §5.5 when we examine rotations in quantum mechanics. In fact, the

resulting angular momentum algebra is sufficient to obtain all the allowed eigenstates

and eigenvalues of the angular momentum observables, as will be outlined in §5.6. In

§5.7, we derive the Hamiltonian of a free particle on a sphere and examine its spherical

ingredients. The results are compared with the electronic structure of the celebrated

carbon buckyball.

5.1 THE SPHERICAL ROTATION GROUP

Let R̂ denote a physical rotation in three-dimensional Euclidean spaceR3. The set of all

rotation operators
{

R̂
}

forms an infinite continuous Lie group—the spherical rotation

group. This can be verified by checking the four group axioms:

2 This is, of course, no longer the case when a preferred direction in space is imposed by applying

an external (electric, magnetic, or gravitational) field.
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1. Closure: To start with, we note that for every two rotations R̂1 and R̂2, there is a

third rotation R̂3, such that

R̂3 = R̂2 � R̂1, (5.1)

where the product symbol � is used to denote the consecutive application of R̂1

and R̂2. Although intuitively obvious—after all, no matter how often you rotate a

sphere, the result is always another rotation—the first mathematical proof of

Eq. (5.1) only appeared in 1775 in a paper by Leonhard Euler (1707–1783). Later,

Olinde Rodrigues offered an equivalent proof, but whereas Euler had used an

algebraic approach, Rodrigues proceeded by pure geometric construction.3

2. Associativity: For all R̂1, R̂2, and R̂3, the associative law holds true:(
R̂3 � R̂2

)
� R̂1 = R̂3 � R̂2 � R̂1 = R̂3 � (R̂2 � R̂1). (5.2)

3. Identity element : There exists an element Ê such that for every element R̂,

Ê � R̂ = R̂ � Ê = R̂. (5.3)

Clearly, the identity element Ê corresponds to the trivial rotation through 0◦.

4. Inverse element : Finally, every rotation R̂ can be nullified by a rotation R̂′ in the

opposite sense; that is, R̂′ is the inverse element R̂−1 of R̂:

R̂ � R̂−1 = R̂−1 � R̂ = Ê. (5.4)

This completes our proof that the set of three-dimensional rotations forms a

group—the spherical rotation group. To assign a rotation in three dimensions, we

must specify the axis and angle of rotation. Every rotation is effected around a certain

rotation axis that passes through the origin O, and has a direction that can be specified

by the vector n. This vector is determined by the directional cosines nx , ny , and nz :

n = nxex +nyey + nzez . (5.5)

Moreover, the vector n is normalized:

|n| =
√

n2
x +n2

y +n2
z = 1. (5.6)

The scalar components nx , ny , and nz of n may be expressed by the two angle

coordinates, θ and φ, which describe the latitude and longitude, respectively:

nx = sinθ cosφ;

ny = sinθ sinφ;

nz = cosθ .

(5.7)

So in reality, only two parameters (θ and φ) are needed to specify the orientation

of the rotation axis n. Finally, we need to specify the angle over which the sphere is

rotated. This rotation angle is denoted as ω. As a result, only three effective parameters

are needed to specify a rotation in three dimensions. The corresponding operation is

3 For a detailed description of this intriguing history, see S. L. Altmann. Rotations, Quaternions, and

Double Groups. Oxford: Clarendon Press, 1986.
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80 parametrized as R̂(ωn). This manner of parameterizing three-dimensional rotations

is known as the axis-angle parameterization. Notice also that the sense of the rotation

(i.e., clockwise or counterclockwise) can always be determined with the help of the

right-hand rule (that is, if you wrap your right hand around the rotation axis so that

your thumb is pointing in the direction of n, then your fingers indicate the direction

of a positive rotation angle).

It should also be mentioned that the mapping between the group of physical

rotations and the axis-angle parameter set is not one to one. A given rotation can

be specified by four different combinations of parameters:

1. R̂(ω,nx ,ny ,nz)

2. R̂(−ω,−nx ,−ny ,−nz)

3. R̂(−2π +ω,nx ,ny , nz)

4. R̂(2π −ω,−nx ,−ny ,−nz)

(5.8)

Combinations 1 and 2 give rise to the same rotation because both the angle and the

direction change sign simultaneously, as do combinations 3 and 4. Physically, they are

identical viewed only from opposite poles. A counterclockwise rotation viewed from

the north pole is viewed as clockwise from the south pole, but it is the same rotation.

On the other hand, the physical rotation for 1 (and 2) differs from the one described

by 3 (and 4), despite having the same outcome. In 1 the rotation is counterclockwise

over angle ω, whereas in 3 one rotates about the same rotation axis but in the opposite

direction over an angle 2π − ω to arrive at the same point. The mapping between

points is thus the same, but the path that is followed is different. This aspect is not

taken into account in this treatment of SO(3), but may nevertheless be important

when transporting quantum states.

5.2 THE ORTHOGONAL GROUP IN THREE DIMENSIONS

So far, we have viewed rotations as actual motions of the sphere. We now consider the

effect of rotations on the position vectors of points on a sphere and express this by

means of rotation matrices. Rotations should leave the scalar products of the position

vectors invariant, implying that the rotation matrices should be orthogonal matrices.

In this way, we arrive at the group of all three-dimensional orthogonal matrices,

denoted as the orthogonal group in three dimensions: O(3).

5.2.1 Rotation matrices

Let a represent a position vector in real three-dimensional Euclidean space R3 with

a tail that coincides with the origin O of a Cartesian �
(
x,y,z

)
reference system,

and with a head that points to point P, defined by the set of Cartesian coordinates(
ax , ay , az

)
. In matrix notation,

a =
⎡⎢⎣ ax

ay

az

⎤⎥⎦. (5.9)

In general, all rotations are defined relative to a center of rotation, which is usually

chosen to be the origin O, which remains fixed during all rotations. When a is spatially
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rotated about the origin O, a new vector a′ is obtained with Cartesian coordinates(
a′x ,a′y , a′z

)
:

a′ =
⎡⎢⎣ a′x

a′y
a′z

⎤⎥⎦. (5.10)

This rotation is induced by a rotation operator, which we denote with the help of the

axis-angle parameters as R (ωn).

a′ = R (ωn)a. (5.11)

The operator R (ωn) induces a linear transformation4 of the coordinates and can

therefore be expressed by a 3× 3 rotation matrix R(ωn):

a′ =R (ωn)a. (5.12)

The set of rotation matrices {R (ωn)} forms a matrix representation of the spherical

rotation group. Recall also from Chapter 3, §3.3, that when a rotation matrix acts

on coordinates, it always precedes the column vector of coordinates; when acting on

coordinate functions, it follows the row vector of these functions.

When two vectors a and b are rotated, their length as well as the angle γ between

them remains invariant. Therefore, rotations conserve the scalar product :

a′ ·b′ = ∣∣a′∣∣ ∣∣b′∣∣cosγ = |a| |b|cosγ = a ·b. (5.13)

In matrix notation,

a′ ·b′ = a′Tb′ = aTb = a ·b. (5.14)

Since a′ = R(ωn)a and b′ = R (ωn)b, we have (leaving out the axis-angle

parameterization for notational simplicity):

a′Tb′ = [Ra]T Rb = aTRTRb = aTb. (5.15)

It follows from the invariance of the scalar product that

RTR= I. (5.16)

The order in this product can also be inverted. To this aim, we multiply to the left by

R and to the right by RT:

RRTRRT =RRT

RRTRRT
[
RRT

]−1 =RRT
[
RRT

]−1

RRT = I.

(5.17)

The last step in this proof is based on the assumption that RRT is nonsingular, so

that the inverse of this matrix product exists. This is verified easily from Eq. (5.16) by

taking the determinants. Since the unit matrix I has unit determinant (i.e., detI= 1),

it follows from Eq. (5.16) that

det
[
RTR

]
= detRT detR= [detR]2 = 1, (5.18)

4 The transformation is said to be linear because the rotation of a sum of vectors is equal to the sum

of the rotated vectors:

R (ωn)(a+b)= R (ωn)a+R (ωn)b = a′ +b′.



Sh
at
te
re
d
Sy
m
m
et
ry

82 where use is made of the fact that detAB = detAdetB, and that detAT = detA.

Hence, the determinant of the R matrix equals ±1. Matrices satisfying both the

conditions in Eqs. (5.16) and (5.17) are said to be orthogonal. Rows and columns in

such matrices are orthonormal to each other, meaning that the scalar product of two

rows or two columns is equal to zero, except for the products of a row with itself or a

column with itself.

5.2.2 The orthogonal group O(3)

Definition 5.1 (The O(3) Lie group): The set of all 3× 3 orthogonal matrices:

O(3)=
{

real 3× 3 matrices A :
ATA=AAT = I

|detA| = 1

}
(5.19)

forms an infinite Lie group under matrix multiplication. This group is called the

orthogonal group in three dimensions, and is denoted by the symbol O(3). ◾

Proof. To qualify as a group, O(3) should satisfy the four group axioms, as defined in

Chapter 2. This can be easily verified by letting Aa, Ab ∈ O(3) denote two orthogonal

matrices, and assuming that Ac =AaAb.

1. Closure: One needs to prove that Ac ∈O(3); in other words, Ac is a real 3× 3

orthogonal matrix with a unimodular determinant. Since Aa and Ab are real 3× 3

matrices, Ac is also a real 3× 3 matrix. Also,

AT
c Ac = (AaAb)

TAaAb =AT
bA

T
aAaAb =AT

bAb = I (orthogonality). (5.20)

2. Associativity: Matrix multiplication is associative, so the associative law obviously

holds for the O(3) group elements.

3. Identity element : The 3× 3 identity matrix I represents the identity element.

4. Inverse element : Let A−1
a denote the inverse matrix of Aa . We need to prove that

A−1
a ∈O(3). Since (A−1

a )T = (AT
a )
−1,

(
A−1

a

)T
A−1

a =
(
AT

a

)−1
A−1

a =
(
AaA

T
a

)−1 = I−1 = I (orthogonality). (5.21)

This proves that O(3) forms a group. ◾

5.2.3 The special orthogonal group SO(3)

The group O(3) is disconnected because it consists of two kind of elements:

(1) orthogonal matrices with determinant +1 and (2) orthogonal matrices with

determinant −1. The former set forms a subgroup of O(3), because the product of

two matrices of this set always yields a resulting matrix with determinant +1. This

subgroup is known as the special orthogonal group, or SO(3). The set of matrices with

determinant −1 is known in group theory as the coset of this group. As we shall

see, the SO(3) group in fact corresponds to the group of proper rotations whereas

its coset collects all improper rotations, covering reflections, rotation-reflections, and

inversion.
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5.3 ROTATIONS AND SO(3)

It is now time to confront the rotation group with the group of orthogonal matrices by

deriving explicitly the matrices, R(ωn), that represent the actual rotation operations.

This derivation is more involved than the case of rotations in two dimensions, which

depends on one parameter only. The derivation not only aims at the desired matrix

forms, but also demonstrates that every orthogonal matrix with determinant +1 is a

rotation matrix.

5.3.1 Orthogonality and skew-symmetry

To start, we note that an orthogonal matrix A can be written as the exponential of a

3× 3 matrix S:

A= expS (5.22)

By explicit expansion of the exponential, we see that the transpose relation also holds:

AT = exp
(
ST
)

. (5.23)

Since A is orthogonal, we obtain

AAT = I= expS exp
(
ST
)
= exp

(
S+ST

)
. (5.24)

This equation can be fulfilled only if the sum on the right-hand side of this equation

is the null matrix, O. Thus, we have

O= S+ST

S=−ST.
(5.25)

A matrix that changes its sign on transposition is called a skew-symmetric (or

antisymmetric) matrix. In terms of its matrix elements, Sij = −Sji . For the diagonal

elements of S, this property leads to Sii = −Sii , which holds only for Sii = 0. The

general form of an n× n skew-symmetric matrix S is therefore given by

S=

⎡⎢⎢⎢⎢⎢⎢⎣

0 S12 S13 · · · S1n

−S12 0 S23 · · · S2n

−S13 −S23 0 · · · S3n

...
...

...
. . .

...

−S1n −S2n −S3n · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦. (5.26)

The matrix S has, in general, n2 matrix elements. The n diagonal elements Sii are all

zero, leaving n2 −n unique matrix elements. However, because of the skew-symmetry

of S, the lower triangular part of S is perfectly defined by the upper triangular part.

The number N of unique matrix elements of an n × n skew-symmetric matrix S is

therefore given by the simple formula

N = n2 −n

2
= n (n− 1)

2
. (5.27)

As a further consequence, the trace, which is the sum of the diagonal elements, is

also zero:

Tr(S)=
n∑

i=1

Sii = 0. (5.28)
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matrix A is obtained by exponentiating the trace of the skew-symmetric matrix S,

which yields

detA= exp(Tr(S))= e0 = 1. (5.29)

For a derivation of this identity, see Appendix E. Let us summarize what we have so

far: any orthogonal matrix with determinant +1 can be written as the exponent of a

skew-symmetric matrix. All SO(3) matrices are thus defined as the exponent of a 3×3

skew-symmetric matrix; hence,

A= exp

⎡⎢⎣ 0 S12 S13

−S12 0 S23

−S13 −S23 0

⎤⎥⎦. (5.30)

The parameter space of this matrix is determined by only three real parameters. By

varying these numbers independently, we cover the entire set of SO(3) elements.

If we now let these parameters become infinitesimally small, the expression can be

approximated to first order as

A= I+
⎡⎢⎣ 0 dS12 dS13

−dS12 0 dS23

−dS13 −dS23 0

⎤⎥⎦. (5.31)

Here, the unit matrix, I, corresponds to the zeroth-order term of the exponential,

and the S matrix itself is the first-order term. This result forms the basis for the

construction of the rotation matrices.

5.3.2 The matrix representing an infinitesimal rotation

We now connect the algebraic expression for an orthogonal matrix in the neighbor-

hood of the unit element to an infinitesimal rotation over an angle dω. At the start,

the rotation axis is oriented along the z-axis, with n = [0,0,1]T . Figure 5.1 shows the

change of the x-coordinate function as a small vector parallel to the positive y-axis.

This change can be written as

dx = y dω. (5.32)

We now tilt the pole of the rotation axis in the direction of the y-axis so that the

direction becomes n = [0, ny ,nz ]T . As Figure 5.1 indicates, this implies that the

rotational plane is tilted around the x-direction. As a result, the displacement of x

is tilted downward, too, over the same angle as the pole of the rotation axis itself. This

displacement is thus expressed as

dx = nz y dω− nyz dω. (5.33)

On the other hand, an inclination of the rotation axis toward the x-direction (i.e., for

nx �= 0) does not introduce an additional contribution to dx. Similar considerations

can be made for the other Cartesian directions. It is not difficult to infer that, for an

arbitrary orientation of the rotation axis, n = [nx ,ny , nz]T , the overall change of the

coordinate functions is given by

dx = nz y dω−nyz dω

dy = nxz dω−nz x dω

dz = nyx dω− nxy dω. (5.34)



85
The

SO
(3)group

x
y

0

z

x' = x + y dω

y dω

dω

n = (0, 0, 1)

dx = y dωx

y

0

z

nz y dω

dω

x

n = (o, ny, nz)

α

α

x
x'

dx

α
nz y dω

nz y dω

–ny z dω dx

y dω

nz = cos α

ny = sin α

(A)

(B)

FIGURE 5.1 Infinitesimal rotation of the x-coordinate function. (A) In this view, x is rotated over

dω about the z-axis and thereby acquires a fraction of y-character, equal to ydω. (B) If the rotation

axis is tilted over an angle α toward y, the change of the x function also gains some z-character,

equal to −ny zdω.

It should be emphasized that this simple linear relationship is made possible by the

infinitesimal nature of the changes, whereby all higher order terms can be omitted.

This is the essential insight of Lie’s treatment of continuous operations. The result can

be rewritten as

R̂(dωn)
[

x y z
]
=
[

x y z
]⎛⎜⎝I+ dω

⎡⎢⎣ 0 −nz ny

nz 0 −nx

−ny nx 0

⎤⎥⎦
⎞⎟⎠. (5.35)

By comparing this result with Eq. (5.31), the rotation parameters can be mapped

unambiguously onto the three independent parameters of an infinitesimal SO(3)

matrix. Vice versa, every SO(3) matrix can be identified with a specific rotation matrix:

dS12 =−dωnz

dS13 = dωny

dS23 =−dωnx . (5.36)
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86 The rotation of the coordinate functions may be rewritten in differential form as

d

dω
R̂(dωn)

[
x y z

]
=
[

x y z
]
Z, (5.37)

with

Z=
⎡⎢⎣ 0 −nz ny

nz 0 −nx

−ny nx 0

⎤⎥⎦. (5.38)

Here, Z is the generator matrix of the infinitesimal rotation.

5.3.3 The exponential map

Finally, we extrapolate the infinitesimal operator to a finite rotation, which is provided

by the exponential map. Recall that for the SO(2) group, the generator was defined in

Chapter 4 as the derivative of the 2× 2 rotation matrix R(ω) with respect to ω taken

at ω= 0:

X= d

dω
R (ω)

∣∣∣∣
ω=0

. (5.39)

An arbitrary rotation R (ω) could then be “generated” from the exponentiation of the

generator X (a Lie algebra element). That is, if X ∈ so(2), then

R (ω)= eωX =
∞∑

n=0

(ωX)n

n! ∈ SO (2). (5.40)

Definition 5.2 (SO(2) exponential map): There exists an exponential map exp : so(2)→
SO(2), given by

R (ω)= eωX, (5.41)

that relates the generator of the so(2) Lie algebra with the elements of the SO(2)

Lie group by expressing the rotation matrix R(ω) in terms of the infinitesimal

generator X. ◾

In SO(3), the generator matrix for a rotation in three dimensions was identified in

Eq. (5.37) as the Z matrix. Executing this rotation over a finite angle ω will thus be

exponentiated as

R (ωn)= eωZ. (5.42)

This exponential map can be resolved further as a result of a remarkable property of

the Z matrix. Indeed, we can easily verify that

Z2 =
⎡⎢⎣ −n2

y −n2
z nxny nxnz

nxny −n2
x − n2

z nynz

nxnz nynz −n2
x −n2

y

⎤⎥⎦

Z3 =−(n2
x + n2

y +n2
z )

⎡⎢⎣ 0 −nz ny

nz 0 −nx

−ny nx 0

⎤⎥⎦=−Z, (5.43)
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where use was made of Eq. (5.6). The power series for the exponential is then

simplified as follows:

eωZ = I+ωZ+ 1

2
ω2Z2 + 1

3!ω
3Z3 + 1

4!ω
4Z4 + 1

5!ω
5Z5 + 1

6!ω
6Z6 +·· ·

= I+ωZ+ 1

2
ω2Z2 − 1

3!ω
3Z− 1

4!ω
4Z2 + 1

5!ω
5Z+ 1

6!ω
6Z2 −·· ·

= I+
(
ω− 1

3!ω
3 + 1

5!ω
5 −·· ·

)
Z+

(
1

2
ω2 − 1

4!ω
4 + 1

6!ω
6 −·· ·

)
Z2

= I+ sinω Z+ (1− cosω) Z2

= I+ sinω Z+ 2sin2(ω/2) Z2. (5.44)

Here, the power series in odd and even powers is recognized as the series expansion

on sin and cos functions, respectively. Finally, the desired general expression of the

rotation matrix in three dimensions reads

R(ωn)=⎛⎝ 1− 2(n2
y +n2

z )sin2(ω/2) −nz sinω+ 2nx ny sin2(ω/2) ny sinω+ 2nz nx sin2(ω/2)
nz sinω+ 2nx ny sin2(ω/2) 1− 2(n2

z + n2
x) sin2(ω/2) −nx sinω+ 2ny nz sin2(ω/2)

−ny sinω+ 2nz nx sin2(ω/2) nx sinω+ 2nynz sin2(ω/2) 1− 2(n2
x +n2

y)sin2(ω/2)

⎞⎠.

(5.45)

It can be easily verified that this matrix is indeed orthogonal and that its determinant

is equal to +1. The matrix Z contains three directional parameters—nx , ny ,nz —but

these are not independent because their norm is equal to one. However, multiplication

by the rotation angle frees the norm and yields three parameter combinations that are

fully independent: ωnx ,ωny ,ωnz . The rotation matrices thus cover the full parameter

space of the orthogonal matrices with determinant +1 and form a basis for the SO(3)

group. By multiplying the rotation matrices with the negative unit matrix −I, we

obtain a result with determinant−1, which belongs to the coset of SO(3) matrices. The

−I matrix represents the inversion of all points through the origin to their antipodes.

When detA = 1, the corresponding rotation is called a proper rotation because it

represents rotations as described earlier. When, on the other hand, detA = −1, the

corresponding operation is a combination of a rotation and an inversion, and is called

an improper rotation. In the following, attention will be focused on proper rotations

only, with detR (ωn) = 1, described by the SO(3) group. This symmetry group is

of paramount importance in theoretical physics because most classical and quantum

systems have spherical symmetry.

The subset of rotations {R (ωn)} around a fixed rotation axis forms a subgroup of

the three-dimensional rotation group SO(3). This subgroup is Abelian because two

successive rotations commute when they share the same rotation axis; that is, the

product can be written as a single rotation about the axis through the angle ω3 =
ω1+ω2 =ω2+ω1. This subgroup is the familiar rotation group in two dimensions of

the previous chapter, denoted SO(2). The relationship between the Lie groups can be

represented by a descending chain of subgroups:

O(3)⊃ SO(3)⊃ SO(2). (5.46)

5.3.4 The Euler parameterization

The SO(3) group contains an infinite number of rotation matrices R(ωn) that are con-

tinuously dependent on three parameters. Every rotation needs to be specified, in other
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called an infinite continuous group of dimension 3, or a triparametric Lie group.

The idea that three-dimensional rotations necessitated the adoption of three

parameters originated in the work of renowned mathematician Leonhard Euler. In

1775, Euler published a paper dealing with the mathematics of two-, three-, four- and

five-dimensional rotations, in which he set forth his idea that three parameters were re-

quired to specify a three-dimensional rotation R (ωn).5 His statement became known

as Euler’s rotation theorem and was soon generalized to rotations in n dimensions:

Theorem 5.1 (Euler’s generalized rotation theorem): Every n-dimensional rotation can

be characterized by a minimum of n (n− 1)
/

2 parameters. ◾

Two-dimensional rotations are thus specified by 2 (2− 1)
/

2 = 1 parameter;

three-dimensional rotations by 3 (3− 1)
/

2 = 3 parameters; and four-dimensional

rotations by 4 (4− 1)
/

2= 6 parameters (as we shall see in Chapter 9).

As we saw in the preceding section, Euler’s theorem derives directly from the

skew-symmetry of the S matrix in the exponential form of the orthogonal matrices.

The Euler parameterization of SO(3) rotations is based on three consecutive

rotations around two Cartesian directions, and hence on three angles. In the current

treatment we have given preference to the expression in Eq. (5.45), which puts

rotations around all three Cartesian directions on an equal footing.

5.4 THE so(3) LIE ALGEBRA

5.4.1 The so(3) generators

The Lie algebra, associated with the SO(3) group, can now be easily constructed.

In SO(3), the role of the unique X generator in SO(2) is taken over by the Z

generator, which has the form of a scalar product between the directional cosines of the

rotation axis and three elementary generator matrices. Let us define these constituent

generators as X1, X2, and X3, corresponding to nx ,ny , and nz , respectively:

Z= nxX1 +nyX2 +nzX3

= nx

⎡⎢⎣ 0 0 0

0 0 −1

0 1 0

⎤⎥⎦+ ny

⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦+ nz

⎡⎢⎣ 0 −1 0

1 0 0

0 0 0

⎤⎥⎦.
(5.47)

These generator components correspond to rotations around the respective Cartesian

directions. As an example for nx = 1, the rotation matrix becomes

R (ω ex)=
⎡⎢⎣ 1 0 0

0 cosω − sinω

0 sinω cosω

⎤⎥⎦. (5.48)

The generator for this rotation is then obtained exactly as in the case of the SO(2)

group, by differentiating this matrix with respect to ω taken at ω= 0, and similarly for

rotations around the y- and z-directions:

5 Euler presented this result to the St. Petersburg Academy on October 9, 1775. It was published in:

L. Euler. Novi Commentarii Academiae Scientiarum in Petropolitanae 20 (1776), pp. 189–207.
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X1 = d

dω
R (ω ex)

∣∣∣∣
ω=0

= d

dω

⎡⎢⎣ 1 0 0

0 cosω − sinω

0 sinω cosω

⎤⎥⎦
∣∣∣∣∣∣∣
ω=0

=
⎡⎢⎣ 0 0 0

0 − sinω −cosω

0 cosω − sinω

⎤⎥⎦
∣∣∣∣∣∣∣
ω=0

=
⎡⎢⎣ 0 0 0

0 0 −1

0 1 0

⎤⎥⎦;

(5.49)

X2 = d

dω
R
(
ω ey

)∣∣∣∣
ω=0

= d

dω

⎡⎢⎣ cosω 0 sinω

0 1 0

− sinω 0 cosω

⎤⎥⎦
∣∣∣∣∣∣∣
ω=0

=
⎡⎢⎣ − sinω 0 cosω

0 0 0

−cosω 0 sinω

⎤⎥⎦
∣∣∣∣∣∣∣
ω=0

=
⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦;

(5.50)

X3 = d

dω
R (ω ez)

∣∣∣∣
ω=0

= d

dω

⎡⎢⎣ cosω − sinω 0

sinω cosω 0

0 0 1

⎤⎥⎦
∣∣∣∣∣∣∣
ω=0

=
⎡⎢⎣ − sinω −cosω 0

cosω − sinω 0

0 0 0

⎤⎥⎦
∣∣∣∣∣∣∣
ω=0

=
⎡⎢⎣ 0 −1 0

1 0 0

0 0 0

⎤⎥⎦.

(5.51)

Let us list, by way of summary, the three generators of the SO(3) group in their matrix

form:

X1 =
⎡⎢⎣ 0 0 0

0 0 −1

0 1 0

⎤⎥⎦; X2 =
⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦; X3 =
⎡⎢⎣ 0 −1 0

1 0 0

0 0 0

⎤⎥⎦. (5.52)

These three matrices form the operators of our Lie algebra. To work out the structure

of this algebra we have to consider their products. For an operator algebra the product

combination rule is actually the commutator. This product rule is also known as

the Lie bracket. Its appearance in the algebra of generators is explained in detail in

Appendix F. We can verify immediately that, in the case of so(3), the operators do not

commute—that is,[
Xi ,Xj

]=XiXj −XjXi �= 0 ∀i, j = 1,2,3; i �= j. (5.53)

The set of generators {X1,X2,X3} is, however, closed under commutation. Let us

examine this concept by deriving the commutator [X1,X2] of X1 and X2. Since

[X1,X2]=X1X2−X2X1, we start by calculating the matrix productsX1X2 and X2X1,

respectively:

X1X2 =
⎡⎢⎣ 0 0 0

0 0 −1

0 1 0

⎤⎥⎦
⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦=
⎡⎢⎣ 0 0 0

1 0 0

0 0 0

⎤⎥⎦; (5.54)

X2X1 =
⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦
⎡⎢⎣ 0 0 0

0 0 −1

0 1 0

⎤⎥⎦=
⎡⎢⎣ 0 1 0

0 0 0

0 0 0

⎤⎥⎦. (5.55)
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[X1,X2]=
⎡⎢⎣ 0 0 0

1 0 0

0 0 0

⎤⎥⎦−
⎡⎢⎣ 0 1 0

0 0 0

0 0 0

⎤⎥⎦=
⎡⎢⎣ 0 −1 0

1 0 0

0 0 0

⎤⎥⎦=X3. (5.56)

Similar results are obtained for every other possible commutator
[
Xi ,Xj

]
(i, j = 1,2,3;

i �= j):
[X1,X2]=X3; [X2,X1]=−X3;

[X2,X3]=X1; [X3,X2]=−X1;

[X3,X1]=X2; [X1,X3]=−X2.

(5.57)

This proves the closure under commutation. The commutation relations of the

generators of the SO(3) group can be summarized as follows:

[
Xi ,Xj

]= 3∑
k=1

εijkXk ≡ εijkXk , (5.58)

where we have used Einstein’s summation convention in the last term (i.e., repeated

indices imply summation over the range of possible values of these indices),

and where the permutation symbol εijk denotes the elements of the Levi-Civita

antisymmetric three-dimensional tensor (after the Italian mathematician and physicist

Tullio Levi-Civita [1873–1941]):

εijk =

⎧⎪⎨⎪⎩
+1 if

(
i, j,k

)= (1,2,3) , (2,3,1) or (3,1,2)

−1 if
(
i, j,k

)= (1,3,2) , (2,1,3) or (3,2,1)

0 if i = j, j = k or k = i

. (5.59)

The set of generators {X1,X2,X3} and their commutation relations are said to define

the Lie algebra so(3) of the Lie group SO(3).

Definition 5.3 (The so(3) Lie algebra): The Lie algebra so(3) is a linear vector space,

spanned by the generatorsXi (i= 1,2,3), that is combined with a multiplication operator

(i.e., product rule) [ · , · ] : so(3) × so(3) → so(3), called the Lie bracket, for which[
Xi ,Xj

]= εijkXk , with εijk the so-called structure constant. ◾

Because the generators Xi form a basis of the Lie algebra, every X ∈ so(3) can be

written as a linear combination of the Xi ’s:

X=
3∑

i=1

ciXi ≡ ciXi ; ci ∈R. (5.60)

An example is the Z matrix defined in Eq. (5.47), which describes an infinitesimal

rotation along the direction of the unit vector n:

Z= nxX1 +nyX2 +nzX3. (5.61)

5.4.2 Operator form of the SO(3) generators

Instead of formulating the three generators Xi (i = 1,2,3) of the SO(3) group in terms

of matrices, as in Eq. (5.52), we want to find their corresponding operator formulation.

This reformulation in terms of differential operators enables us to form the bridge

between the group theory of three-dimensional rotations (as described earlier) and
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the quantum mechanics of angular momentum (see §5.5). A deeper understanding of

the physical role of the so(3) generators will thus be achieved.

The derivation of this operator is obtained by a straightforward generalization

of the operator for the rotation around the z-axis, as described in Chapter 4. Recall

that the generator matrix and the corresponding operator form for a rotation in the

xy-plane was given by:

X=
[

0 −1

1 0

]
; (5.62)

X̂ = y
∂

∂x
− x

∂

∂y
. (5.63)

In the SO(3) group, the generator matrix describing the infinitesimal rotation about

the z-axis is denoted as X3. Because this rotation does not affect the z-coordinate, the

operator form is precisely the same as obtained for the two-dimensional SO(2) group.

The derivation of the operator form of the other two generators, X1 and X2, proceeds

in a completely analogous way. By way of comparison, a list is provided here of all the

generators Xi (i = 1,2,3) in their respective matrix and operator forms:

X1 =
⎡⎢⎣ 0 0 0

0 0 −1

0 1 0

⎤⎥⎦; X2 =
⎡⎢⎣ 0 0 1

0 0 0

−1 0 0

⎤⎥⎦; X3 =
⎡⎢⎣ 0 −1 0

1 0 0

0 0 0

⎤⎥⎦; (5.64)

X̂1 = z
∂

∂y
− y

∂

∂z
; X̂2 = x

∂

∂z
− z

∂

∂x
; X̂3 = y

∂

∂x
− x

∂

∂y
. (5.65)

Note that these operators are related by a cyclic permutation of the Cartesian indices,

as x → y → z.

5.5 ROTATIONS IN QUANTUM MECHANICS

5.5.1 Angular momentum as the generator of rotations

Having established the operator formulation of the so(3) generators, we are now in a

position to assign them a physical interpretation by making the comparison with the

components L̂i (i= 1,2,3) of the orbital angular momentum L̂, as derived in Chapter 4:

L̂1 =−ih̄

(
y
∂

∂z
− z

∂

∂y

)
; L̂2 =−ih̄

(
z
∂

∂x
− x

∂

∂z

)
; L̂3 =−ih̄

(
x
∂

∂y
− y

∂

∂x

)
. (5.66)

On comparison, the components L̂i of the orbital angular momentum are seen to

correspond to the generators X̂i of the so(3) algebra via the equation

L̂i = ih̄X̂i ; i = 1,2,3. (5.67)

In the words of José Alvarado, Eq. (5.67) “follows the convention QM = ih̄ GT.

The factor ih̄ provides the link between group theoretical generators, which are

produced by Lie groups and Lie algebras, and quantum mechanical operators, which

correspond to physically meaningful quantities.”6 We can, in other words, identify

the components of the orbital angular momentum with the generators of the SO(3)

6 J. Alvarado. Group Theoretical Aspects of Quantum Mechanics. 2007, p. 45. Script based on the

Group Theory seminar by Prof. G. Rudolph during the winter semester 2004–2005 at the University

of Leipzig, see: www.alv.ac/physik/Group-Theory.pdf.

http://www.alv.ac/physik/Group-Theory.pdf
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components generate infinitesimal rotations around the mutually orthogonal x, y, and

z-axes in three-dimensional space.

5.5.2 The rotation operator

We can elaborate on this line of thought by introducing a rotation operator, Û (ωn),

associated with the matrix transformation R (ωn) = eωn·Z. This operator can be

expressed in terms of the angular momentum components L̂i . Rewriting Eq. (5.67) as

X̂i = 1

ih̄
L̂i =− i

h̄
L̂i ; i = 1,2,3, (5.68)

and substituting this expression in Eq. (5.41) yields

Û (ωn)= eωnx X̂1+ωnyX̂2+ωnz X̂3

= e−(i/h̄)ωnx L̂1−(i/h̄)ωny L̂2−(i/h̄)ωnz L̂3

= e
−(i/h̄)ω

[
nx L̂1+ny L̂2+nz L̂3

]

= e−(i/h̄)ωn·L̂.

(5.69)

This equation enables us to define the quantum mechanical rotation operator.

Definition 5.4 (Rotation operator): To every three-dimensional rotation R̂, represented

by the rotation matrix R (ωn), corresponds a unique rotation operator

Û (ωn)≡ e−(i/h̄)ωn·L̂, (5.70)

with ωn=
[
ωnx ωny ωnz

]T
and L̂ =

[
L̂1 L̂2 L̂3

]T
. ◾

5.6 ANGULAR MOMENTUM

5.6.1 The angular momentum algebra

With the help of Eq. (5.67), the commutation relations of the so(3) generators X̂i in

Eq. (5.58) translate into [
L̂i , L̂j

]
= ih̄

3∑
k=1

εijkL̂k ≡ ih̄εijkL̂k , (5.71)

which are the familiar commutation relations of the orbital angular momentum.

Eq. (5.71) defines the angular momentum algebra. As will be illustrated in the next

few paragraphs, most of the properties of angular momentum (such as the allowed

spectrum of angular momentum eigenstates and eigenvalues) simply follow from this

algebra—and this in a most elegant way.

5.6.2 Casimir invariants

To determine the consequences of the angular momentum algebra, we start by

introducing the L̂2 operator for the square of the total angular momentum:

L̂2 = L̂ · L̂ = L̂2
x + L̂2

y + L̂2
z , (5.72)
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which has the interesting property that it commutes with all three angular momentum

operators: [
L̂2, L̂i

]
= 0, i = 1,2,3. (5.73)

To prove this, we use the commutation relations of Eq. (5.71) and calculate[
L̂2, L̂x

]
=
[

L̂2
x + L̂2

y + L̂2
z , L̂x

]
=
[

L̂2
x , L̂x

]
+
[

L̂2
y , L̂x

]
+
[

L̂2
z , L̂x

]
=
[

L̂2
y , L̂x

]
+
[

L̂2
z , L̂x

]
=
[

L̂y , L̂x

]
L̂y + L̂y

[
L̂y , L̂x

]
+
[

L̂z , L̂x

]
L̂z + L̂z

[
L̂z , L̂x

]
=−ih̄L̂z L̂y − ih̄L̂y L̂z + ih̄L̂y L̂z + ih̄L̂z L̂y

= 0.

(5.74)

Since a cyclic permutation of x, y, and z leaves L̂2 = L̂2
x + L̂2

y + L̂2
z invariant, we can

carry out two such permutations on Eq. (5.74) to obtain[
L̂2, L̂y

]
= 0 and

[
L̂2, L̂z

]
= 0. (5.75)

When an operator such as L̂2 commutes (by virtue of its nature) with every generator

L̂i of the so(3) algebra, it is called a Casimir operator or a Casimir invariant of that

algebra.7

5.6.3 The eigenvalue problem

In view of its commuting properties, L̂2 shares a complete set of simultaneous

eigenfunctions with any one of the L̂i operators. However, because the L̂i operators do

not commute among themselves, we have to agree on a quantization scheme. In other

words, we have to select one (and only one) angular momentum operator component

that henceforth characterizes the eigenstates (sometimes also called substates) inside

the shell.8 The standard choice corresponds to the L̂3 = L̂z operator (although we

might just as well have chosen the operator L̂x or L̂y). We say that L̂2 and L̂z can be

diagonalized simultaneously.

The angular momentum states are thus simultaneous eigenfunctions of L̂2 and L̂z .

Representing these states as |α,β〉, we have

L̂2 |α,β〉 = α |α,β〉; (5.76)

L̂z |α,β〉 = β |α,β〉, (5.77)

where α and β are the eigenvalues of L̂2 and L̂z , respectively. For the time being,

both the eigenkets and their corresponding eigenvalues are unknown. This is called

7 The Casimir invariant is named after Dutch physicist Hendrik Casimir (1909–2000).
8 The fact that the components of the angular momentum do not share a set of common

eigenfunctions is an example of Heisenberg’s uncertainty principle, which says that L̂x , L̂y , and L̂z

are incompatible observables. See also Appendix D, §D.3.
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solving the eigenvalue problem for α and β involves the clever exploitation of the

commutation relations in Eq. (5.71) by the use of so-called ladder operators (the reason

for this terminology will become clear in the next section).

5.6.4 Dirac’s ladder operator method

The introduction of ladder operators is usually credited to British theoretical physicist

Paul A. M. Dirac (1902–1984), who first used them to solve the angular momentum

wave equations. The ladder operator method is an algebraic technique of surprising

simplicity that exploits the commutation relations of the angular momentum

operators fully. Our knowledge of the so(3) Lie algebra will, in other words, prove

to be more than sufficient to determine the possible eigenkets |α,β〉 and eigenvalues

α and β of L̂2 and L̂z .

General formulation

The eigenvalue problem of quantum mechanics consists of finding the eigenkets |ai〉
and eigenvalues ai of a Hermitian operator Â with the eigenvalue equation

Â |ai〉 = ai |ai〉. (5.78)

The ladder operator method of Dirac makes use of mathematical raising and lowering

operators, which are collectively known as ladder operators.9 A ladder operator B̂ is

an operator that transforms the eigenkets of Â into new eigenkets of Â, with the

eigenvalue ai being either raised or lowered by a certain constant value c (Figure 5.2).

That is,

ÂB̂ |ai〉 = (ai + c) B̂ |ai〉. (5.79)

Thus, if |ai〉 is an eigenket of Â with eigenvalue ai , then B̂ |ai〉 represents another

eigenket of Â with eigenvalue ai + c. The operator B̂ is said to be a raising operator

for Â when the constant c is real and positive, and it is called a lowering operator for Â

when c is real but negative.

An inquiry into the nature of B̂ has led to the formulation of an interesting theorem

that lists the fundamental operator relation between Â and B̂ that should be satisfied

for B̂ to behave as a ladder operator.

Theorem 5.2 (Ladder operators): An operator B̂ functions as a ladder operator for the

eigenvalues of a Hermitian operator Â whenever its commutator with Â satisfies the

9 Some authors prefer the term step operators or shift operators. Raising operators are also called

creation operators whereas lowering operators are termed annihilation (or destruction) operators for

reasons that will become obvious in Chapter 7.
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FIGURE 5.2 Let Alice and Humpty

Dumpty represent two states |A〉 and

|HD〉 of the system, with different

eigenvalues (heights). With the help of

ladder operators, Alice can either climb

up to Humpty Dumpty, or Humpty

Dumpty can make his great fall. That is,

if a raising operator B̂+ acts on the state

|A〉, a new state |HD〉 is created with a

raised eigenvalue: B̂+ |A〉→ |HD〉. The

opposite transformation is effected

under the action of a lowering operator

B̂−, which acts on |HD〉 to yield |A〉 with

a lowered eigenvalue: B̂− |HD〉→ |A〉.

operator relation [
Â, B̂

]
= ÂB̂− B̂Â = cB̂, (5.80)

for some nonzero real scalar c. ◾

Proof. Given the eigenvalue equation for Â in Eq. (5.78), it is clear that the operator B̂

acts on |ai〉 in such a way as to shift the eigenvalue by the amount c:

ÂB̂ |ai〉 =
(

B̂Â+
[

Â, B̂
])
|ai〉

=
(

B̂Â+ cB̂
)
|ai〉

= B̂Â |ai〉+ cB̂ |ai〉
= B̂ai |ai〉+ cB̂ |ai〉

ÂB̂ |ai〉 = (ai + c) B̂ |ai〉,

(5.81)

where use was made of Eq. (5.80). ◾

Just as |ai〉 is called an eigenfunction of Â with eigenvalue ai in view of Eq. (5.78), B̂ is

said to be an eigenoperator of Â with eigenvalue c in view of Eq. (5.80).
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The raising operator L̂+ and lowering operator L̂− for the eigenvalues of the angular

momentum operator L̂z turn out to have the following forms:

L̂+ ≡ L̂x + iL̂y ; (5.82)

L̂− ≡ L̂x − iL̂y . (5.83)

Notice that L̂+ and L̂− are the adjoint of each other; that is, L̂− =
(
L̂+
)†

. This implies

that neither of these operators is Hermitian and they do not, in any way, correspond

to physical observables, in contrast to the L̂x , L̂y , L̂z , and L̂2 operators.10

Both L̂+ and L̂− should satisfy Eq. (5.80) of Theorem 5.2 to function as ladder

operators. For this, we must evaluate the commutators of the raising and lowering

operators with L̂z . Using the commutation relations in Eq. (5.71) for the angular

momentum operators, we obtain[
L̂z , L̂+

]
=
[

L̂z , L̂x + iL̂y

]
=
[

L̂z , L̂x

]
+ i
[

L̂z , L̂y

]
= ih̄L̂y + h̄L̂x

= h̄
(

L̂x + iL̂y

)
[

L̂z , L̂+
]
= h̄L̂+.

(5.84)

Similarly, we find [
L̂z , L̂−

]
=−h̄L̂−. (5.85)

Both L̂+ and L̂− are seen to satisfy the operator relation of Theorem 5.2, which implies

that both are, indeed, ladder operators.

Operating with L̂+ and L̂− on the eigenkets of L̂z

Let us act with the raising operator on the eigenket |α,β〉 and determine the outcome

of L̂z L̂+ |α,β〉. We start by rewriting Eqs. (5.84) and (5.85) as

L̂z L̂+ = L̂+L̂z + h̄L̂+; (5.86)

L̂z L̂− = L̂−L̂z − h̄L̂−. (5.87)

Armed with these results, and the fact that L̂+ is linear, we have

L̂z L̂+ |α,β〉 =
(

L̂+L̂z + h̄L̂+
)
|α,β〉

= L̂+L̂z |α,β〉+ h̄L̂+ |α,β〉
= L̂+β |α,β〉+ h̄L̂+ |α,β〉
= (β+ h̄) L̂+ |α,β〉.

(5.88)

10 The L̂x and L̂y operators can be written in terms of the ladder operators:

L̂x = 1

2

(
L̂+ + L̂−

)
and L̂y = 1

2i

(
L̂+ − L̂−

)
.
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According to this eigenvalue equation, the function L̂+ |α,β〉 is an eigenket of L̂z with

an eigenvalue β + h̄. That is to say, when we operate with the raising operator L̂+ on

the eigenket |α,β〉, the eigenket is transformed into another eigenket of L̂z with an

eigenvalue that has been raised by 1 unit of h̄ in comparison with the eigenvalue of

|α,β〉. Applying the raising operator L̂+ once more to Eq. (5.88) yields, with the help

of Eq. (5.86),

L̂z L̂2+ |α,β〉 = (β+ 2h̄) L̂2+ |α,β〉. (5.89)

Generalizing for the k-fold application of L̂+ on |α,β〉,
L̂z L̂k+ |α,β〉 = (β+ kh̄) L̂k+ |α,β〉 , k = 0,1,2, . . . . (5.90)

We can also operate on the eigenvalue equation (5.76) with the lowering operator L̂−.

Using Eq. (5.87), and proceeding in complete analogy, leads to

L̂z L̂− |α,β〉 = (β− h̄) L̂− |α,β〉; (5.91)

L̂z L̂k− |α,β〉 = (β− kh̄) L̂k− |α,β〉, k = 0,1,2, . . . . (5.92)

It follows from Eqs. (5.90) and (5.92) that the functions L̂k± |α,β〉 are eigenkets of L̂z

with the eigenvalues β± kh̄:

L̂z L̂k± |α,β〉 = (β± kh̄) L̂k± |α,β〉, k = 0,1,2, . . . . (5.93)

We can, in other words, generate a ladder of eigenvalues by the repeated application of

the raising and lowering operators on the eigenket |α,β〉 with the eigenvalue β :

. . .
±h̄←→ β− 2h̄

±h̄←→ β− h̄
±h̄←→ β

±h̄←→ β+ h̄
±h̄←→ β+ 2h̄

±h̄←→ . . . , (5.94)

where the eigenvalues differ by integral multiples of h̄.

Operating with L̂+ and L̂− on the eigenkets of L̂2

We now show that the functions L̂k± |α,β〉 are also eigenkets of L̂2, all with the same

eigenvalue α:

L̂2L̂k± |α,β〉 = αL̂k± |α,β〉, k = 0,1,2, . . . . (5.95)

To prove Eq. (5.95), we first show that L̂2 commutes with the ladder operators L̂+ and

L̂−. Using Eqs. (5.74) and (5.75):[
L̂2, L̂±

]
=
[

L̂2, L̂x ± iL̂y

]
=
[

L̂2, L̂x

]
± i
[

L̂2, L̂y

]
= 0. (5.96)

We also have [
L̂2, L̂2±

]
=
[

L̂2, L̂±
]

L̂± + L̂±
[

L̂2, L̂±
]
= 0, (5.97)

and it follows by induction that[
L̂2, L̂k±

]
= 0 or L̂2L̂k± = L̂k±L̂2, k = 0,1,2, . . . . (5.98)

If we operate on Eq. (5.76) with L̂k± and use Eq. (5.98), we get

L̂2L̂k± |α,β〉 = L̂k±L̂2 |α,β〉 = L̂k±α |α,β〉 = αL̂k± |α,β〉, (5.99)

which is what we wanted to prove.
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Next, we show that the set of eigenvalues of L̂z , generated with the ladder operators

L̂+ and L̂−, must be bounded from above and below. For the particular eigenket |α,β〉
with L̂z eigenvalue β , we have

L̂z |α,β〉 = β |α,β〉, (5.100)

and for the set of eigenkets and eigenvalues generated by the ladder operators, we have

L̂z |α,βk〉 = βk |α,βk〉, (5.101)

where

|α,βk〉 = L̂k± |α,β〉; (5.102)

βk = β± kh̄. (5.103)

Operating on Eq. (5.101) with L̂z , we have

L̂2
z |α,βk〉 = βkL̂z |α,βk〉;
L̂2

z |α,βk〉 = β2
k |α,βk〉 .

(5.104)

Now subtract Eq. (5.104) from Eq. (5.95), and use Eqs. (5.72) and (5.102):

L̂2 |α,βk〉− L̂2
z |α,βk〉 = α |α,βk〉−β2

k |α,βk〉(
L̂2

x + L̂2
y

)
|α,βk〉 =

(
α−β2

k

) |α,βk〉.
(5.105)

The operator L̂2
x + L̂2

y corresponds to a nonnegative physical quantity and hence has

nonnegative eigenvalues. Therefore, Eq. (5.105) implies that α− β2
k � 0 and α1/2 �

|βk|. Thus,

−α1/2 � βk � α1/2, k = 0,±1,±2, . . . . (5.106)

Since α remains constant as k varies, Eq. (5.106) shows that the set of eigenvalues βk

is bounded above and below. Let βmax and βmin denote the maximum and minimum

values of βk , with |α,βmax〉 and |α,βmin〉 as the respective eigenkets:

L̂z |α,βmax〉 = βmax |α,βmax〉; (5.107)

L̂z |α,βmin〉 = βmin |α,βmin〉. (5.108)

Now operate on Eq. (5.107) with the raising operator and use Eq. (5.86):

L̂+L̂z |α,βmax〉 = βmaxL̂+ |α,βmax〉
L̂z L̂+ |α,βmax〉 = (βmax + h̄) L̂+ |α,βmax〉.

(5.109)

This last equation seems to contradict the statement that βmax is the largest eigenvalue

of L̂z , because it says that L+ |α,βmax〉 is an eigenfunction of L̂z with eigenvalue

βmax + h̄. The only way out of this contradiction is to have L+ |α,βmax〉 vanish. (We

always reject zero as an eigenfunction on physical grounds.) Thus,

L̂+ |α,βmax〉 = 0. (5.110)

Let us now operate on Eq. (5.110) with the lowering operator. This requires us to

elaborate the combination of raising and lowering operators, which again can be

resolved by using only the Lie commutator algebra. We have
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L̂−L̂+ =
(

L̂x − iL̂y

)(
L̂x + iL̂y

)
= L̂x

(
L̂x + iL̂y

)
− iL̂y

(
L̂x + iL̂y

)
= L̂2

x + iL̂x L̂y − iL̂y L̂x + L̂2
y

= L̂2 − L̂2
z − i

[
L̂y , L̂x

]
L̂−L̂+ = L̂2 − L̂2

z − h̄L̂z .

(5.111)

Similarly, we find that

L̂+L̂− = L̂2 − L̂2
z + h̄L̂z . (5.112)

Using Eqs. (5.110) and (5.111), and operating with L̂− on L+ |α,βmax〉 gives

L̂−L̂+ |α,βmax〉 =
(

L̂2 − L̂2
z − h̄L̂z

)
|α,βmax〉

= (α−β2
max − h̄βmax

) |α,βmax〉
= 0.

(5.113)

This holds only when

α−β2
max − h̄βmax = 0;

α = β2
max + h̄βmax.

(5.114)

A similar argument shows that

L̂− |α,βmin〉 = 0, (5.115)

and by applying the raising operator to this equation and using Eq. (5.112), we find

α = β2
min − h̄βmin. (5.116)

Combining this last equation with Eq. (5.114), yields

β2
max + h̄βmax = β2

min − h̄βmin. (5.117)

This is a quadratic equation relating the unknowns βmax and βmin, and using the

usual formula for quadratic equations (it still works in quantum mechanics), we find

two roots:

βmax =−βmin; βmax = βmin − h̄. (5.118)

The second root is rejected, because it says βmax is less than βmin. So,

βmax =−βmin. (5.119)

Moreover, Eq. (5.103) says βmax and βmin differ by an integral multiple of h̄:

βmax −βmin = nh̄, n= 0,1,2, . . . . (5.120)

Substituting Eq. (5.119) in Eq. (5.120) gives

βmax = n

2
h̄, n= 0,1,2, . . . , (5.121)

and setting j = n/2 yields

βmax = jh̄, j = 0,
1

2
,1,

3

2
,2, . . . . (5.122)
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βmin =−jh̄, j = 0,
1

2
,1,

3

2
,2, . . . . (5.123)

We thus obtain the following bounded set of possible L̂z eigenvalues

β =−jh̄,
(−j+ 1

)
h̄,
(−j+ 2

)
h̄, . . . ,

(
j− 2

)
h̄,
(
j− 1

)
h̄, jh̄, (5.124)

where j is either integral (for even n) or half-integral (for odd n). And from Eq. (5.114),

we find as the L̂2 eigenvalues

α = j
(
j+ 1

)
h̄2, j = 0,

1

2
,1,

3

2
,2, . . . . (5.125)

After rewriting the eigenkets |α,β〉 as
∣∣j,mj

〉
, the following eigenvalue equations are

obtained:

L̂2
∣∣j, mj

〉= j
(
j+ 1

)
h̄2
∣∣j,mj

〉
, j = 0,

1

2
,1,

3

2
,2, . . . ; (5.126)

L̂z
∣∣j, mj

〉=mjh̄
∣∣j,mj

〉
, mj =−j,−j+ 1, . . . , j− 1, j. (5.127)

The eigenket
∣∣j,mj

〉
is said to be an angular momentum eigenstate with angular

momentum j and a z-component of the angular momentum mj . It should be

emphasized once more that the eigenvalues of L̂2 and L̂z were found from the angular

momentum commutation relations only. Thus, the quantization has been derived

completely from the so(3) Lie algebra and the requirement that physical observables

be real. This is a remarkable result, to say the least; it shows the power of group

theoretical approaches in quantum mechanics.

5.7 APPLICATION: PARTICLE ON A SPHERE

An atom has spherical symmetry, so since our aim is to understand the shell structure

of atomic matter, we must leave the circle behind and consider problems with spherical

symmetry. The simplest one is that of a single particle, which is confined to a spherical

surface of constant radius. Simple as it may be, the particle-on-a-sphere model is

very useful to describe the electronic structure of globular molecules. To derive the

eigenvalues and eigenstates of the particle-on-a-sphere problem, we need to determine

the Hamiltonian of a spherically symmetric system.

5.7.1 Spherical components of the Hamiltonian

The energy of a free particle with mass m moving in a uniform potential, which can

be taken as the zero of energy, is purely kinetic. The corresponding Hamiltonian is

given by

Ĥ = 1

2m
p̂2

=− h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
.

(5.128)

In this equation, the momentum and hence the kinetic energy operator is decomposed

into the standard Cartesian components, representing motions in three orthogonal

directions. In a spherical problem, it is convenient to switch to radial and angular
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motions that are, respectively, along and orthogonal to the radius. We are thus looking

for a spherical decomposition of the Laplacian:

Ĥ = Ĥang + Ĥrad . (5.129)

Instead of replacing the Cartesian coordinates with spherical ones to find both these

components, we look for an alternative expression based entirely on position and

momentum operators. The advantage of this formalism will become clear later on

when we discuss the radial wave equation in Chapter 11.

Angular part of the Hamiltonian

From the previous chapter, we are already familiar with the angular momentum L

describing the revolution of a particle around a central point:

|L| = ∣∣r×p
∣∣= |r| ∣∣p⊥∣∣= rp⊥, (5.130)

Here, p⊥ denotes the momentum associated with the motion perpendicular to the

radius. It follows that

p⊥ = |L|
r

; p2⊥ =
L2

r2
= L2

r2
. (5.131)

In classical physics, the kinetic energy corresponding to this motion is given by

Ekin = mv2⊥
2

= p2⊥
2m

= L2

2mr2
. (5.132)

In quantum physics, the angular momentum is replaced by its operator form. We then

immediately obtain the angular part of the kinetic energy operator:

Ĥang = 1

2mr̂2
L̂2. (5.133)

Let us express this operator square in simple scalar products of r and p. In classical

physics, this is straightforward:

L2 = r2p2 sin2α

= r2p2 − r2p2 cos2α

= r2p2 − (r ·p
)2

,

(5.134)

where α is the angle between the vectors r and p. In view of the commutativity of

the scalar product of vectors in classical physics (i.e., a · b = b · a), this equation is

equivalent to

L2 = r2p2 − (p · r
)2

. (5.135)

However, when replacing this expression with its operator form, an unexpected

difficulty arises. The operator products
(

r ·p
)

and
(

p · r
)

are not the same, because

the position and momentum operators do not commute. In Appendix G, the explicit

differential operator forms of both the left-hand and right-hand side of Eq. (5.135) are

derived. The results are provided in Eqs. (G.7) and (G.10), respectively. Subtraction of

both terms gives

L̂2 −
(

r̂2p̂2 − (r̂ · p̂
)2
)
= h̄2

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
= ih̄

(
r̂ · p̂

)
. (5.136)

This enables us to reexpress L̂2 in terms of r̂ and p̂:

L̂2 = r̂2p̂2 − (r̂ · p̂
)2 + ih̄

(
r̂ · p̂

)
. (5.137)
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resulting from the noncommutation of position and momentum operators. The

angular part of the Hamiltonian is thus given by

Ĥang = 1

2m
p̂2 − 1

2mr̂2

(
r̂ · p̂

)2 + ih̄

2mr̂2

(
r̂ · p̂

)
. (5.138)

Radial part of the Hamiltonian

To obtain the radial part of the Hamiltonian, we must first define the radial

momentum operator. Following the quantum mechanical recipe in Eq. (D.20), the

radial momentum conjugate to the radial coordinate would simply be expressed as
h̄
i
∂
∂r . This differential operator can be rewritten in Cartesian form using the chain rule

and, consequently, can be simplified by introducing r̂ and p̂:

h̄

i

∂

∂r
= h̄

i

(
∂x

∂r

∂

∂x
+ ∂y

∂r

∂

∂y
+ ∂z

∂r

∂

∂z

)
= h̄

i

1

r

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
= 1

r
r̂ · p̂.

(5.139)

Here again we meet the difficulty that the expression depends on a product of

operators that do not commute. We can overcome this difficulty by defining the true

radial momentum operator as the average of this product and its reverse. Note that,

in this way, the true momentum operator is real in the operator sense, as explained by

Dirac11:

p̂r = 1

2

(
1

r
r̂ · p̂+ p̂ · r̂

1

r

)
. (5.140)

The difference between the two orderings is given by

p̂ · r̂
1

r
= 1

r
r̂ · p̂− 2ih̄

r
. (5.141)

Hence, the radial momentum is given by

p̂r = 1

r
r̂ · p̂− ih̄

r
. (5.142)

To obtain the radial part of the Hamiltonian, we have to square this expression. This

gives rise to additional commutators:

p̂2
r =

(
1

r
r̂ · p̂− ih̄

r

)2

= 1

r2

(
r̂ · p̂

)2 + 1

r

[(
r̂ · p̂

)
,

1

r

](
r̂ · p̂

)− 2ih̄

r2

(
r̂ · p̂

)− ih̄

r

[(
r̂ · p̂

)
,

1

r

]
− h̄2

r2

= 1

r2

(
r̂ · p̂

)2 − ih̄

r2

(
r̂ · p̂

)
.

(5.143)

We used here the commutator expression[(
r̂ · p̂

)
,

1

r

]
= ih̄

r
. (5.144)

11 P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford: Clarendon Press, 1930.
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The resulting radial kinetic energy is given by

Ĥrad = 1

2m
p̂2

r

= 1

2mr2

(
r̂ · p̂

)2 − ih̄

2mr2

(
r̂ · p̂

)
.

(5.145)

When this part is summed with the angular part, as given in Eq. (5.138), we indeed

recover the full kinetic energy operator. In other words, the kinetic energy of a free

particle can be reexpressed in spherical components as

Ĥ = 1

2mr2
L̂2 + 1

2m
p̂2

r . (5.146)

For a particle confined to moving on a spherical surface with constant radius R, no

radial motion is possible and the Hamiltonian reduces to its angular part. That is,

Ĥ = 1

2mR2
L̂2. (5.147)

Hence, as in the cyclic case, the Hamiltonian of the spherical problem is proportional

to the square of the angular momentum. As a consequence, the Hamiltonian is seen to

commute with the Casimir operator:[
Ĥ , L̂2

]
= 0, (5.148)

and since
[

L̂2, L̂i

]
= 0 (i = 1,2,3), the Hamiltonian also commutes with the

components of the angular momentum operator L̂:[
Ĥ , L̂i

]
= 0. (5.149)

The quantum states of this problem will thus fully coincide with the symmetry states

of the spherical symmetry group.

5.7.2 The flooded planet model and Buckminsterfullerene

Eigenstates of the spherical Hamiltonian are characterized by eigenvalues of the

Casimir operator, which thus recognizes the spherical shells. However, although all

the components of the same shell are recognized by the Casimir operator as belonging

to the same eigenvalue, the recognition of the individual components in the shell is

the task of the component operators L̂x , L̂y , or L̂z .

Now we turn to the particle-on-a-sphere model, which is also called the hollow

sphere or flooded planet model. The eigenstates of the Laplacian on the surface are

spherical harmonics that describe a pattern of waves on a sphere, such as on a planet

covered with a giant sea. Because the angular Hamiltonian is proportional to the

Casimir operator L̂2, its eigenstates correspond to the angular momentum eigenstates,

and are characterized by j and mj labels. In the SO(3) group, angular momentum

eigenstates can be integer or half-integer. For a particle on a sphere, only integer values

of j are allowed, for the same reason as in cyclic symmetry; that is, functions should

be single-valued in periodic angular coordinates. Usually, the integer values of angular

momentum are denoted as l-levels, with ml components. It is convenient to use the

symbolic ket representation of Dirac to rewrite Eqs. (5.126) and (5.127) as

L̂2 |l, ml〉 = l (l+ 1) h̄2 |l, ml〉; (5.150)

L̂z |l, ml〉 =mlh̄ |l,ml〉. (5.151)
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El = l (l+ 1) h̄2

2mR2
. (5.152)

Traditionally, the spherical shells are denoted by the labels s, p, d, and f for l = 0,

1, 2, and 3, respectively, as a tribute to the early designations of atomic line spectra.

From l = 5 onward, labels continue alphabetically starting from g . The magic numbers

corresponding to the closing of an l-shell are easily calculated:

2
n∑

l=0

(2l+ 1)= 2
(2n+ 1+ 1) (n+ 1)

2
= 2(n+ 1)2 . (5.153)

The magic numbers thus correspond to double squares: 2, 8, 18, 32, 50, 72, . . . . These

numbers correspond to the length of the periods in Mendeleev’s table, but there is

much more under the surface to be discovered here. The electron counts 8 and 18

occupy a prominent place in chemistry, as the octet rule for first row elements and the

eighteen-electron rule for transition metal elements. Both rules are examples of the

famous Langmuir noble gas rule, which is presented in Theorem 5.3.

Theorem 5.3 (Langmuir noble gas rule): Through chemical bonds, an atomic element

attempts to achieve the outer shell configuration of the noble gas in the same row of the

periodic table. ◾

Application of the magic numbers has often been proposed as a stability criterion

for globular molecules. In analogy to aromatic ring systems obeying Hückel’s rule,

Hirsch has claimed that globular molecules with the spherical electron counts should

be superaromats, as three-dimensional analogues of aromatic rings.12

Definition 5.5 (Hirsch rule): A molecule with a globular shape is aromatic when the

number of its π-electrons equals 2(n+ 1)2, where n is zero or any positive integer. ◾

The trouble with this rule is that actually very few globular molecules exist that follow

this rule. An analysis of the electronic structure of the C60 molecule is very revealing

in this respect.13

Buckminsterfullerene

When Buckminsterfullerene, alias the carbon buckyball C60, was discovered,14 it

was claimed that the π-electronic structure in this molecule would constitute a

superaromat, ignoring the simple fact that 60 is not included in the magic number

sequence. In fact, when the structure of C60 became available (Figure 5.3), it was

clear that the bond lengths are alternating, with short bonds (1.40 Å) adjacent to

two hexagons, and longer ones (1.46 Å) for the pentagons. To understand what is

12 A. Hirsch, Z. Chen, and H. Jiao. “Spherical Aromaticity in Ih Symmetrical Fullerenes: The

2(N + 1)2 Rule.” Angewandte Chemie International Edition 39 (2000), pp. 3915–3917.
13 A. Ceulemans, S. Compernolle, and E. Lijnen. “Hiatus in the Spherical Shell Model of Fullerenes.”

Physical Chemistry Chemical Physics 6 (2004), pp. 238–241.
14 H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley. “C60-Buckminsterfullerene.”

Nature 318 (1985), pp. 162–163.
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FIGURE 5.3 The so-called

Ycocedron Abscisus Vacuus

from Leonardo Da Vinci is a

truncated icosahedron,

which is identical in

structure to the C60 carbon

buckyball. From De Divina

Proportione by Luca Pacioli

(Milan, 1509).

going on, we need to examine the orbital sequence of the π-orbitals of C60, as can

already be obtained by a low-level quantum mechanical calculation (Figure 5.4).15 It

is clear from the diagram that at lower energies the spherical shell structure clearly

imposes itself with consecutive s, p, d, f , and g shells. These accommodate fifty

electrons, in agreement with the magic number rule. The next shell, with l = 5,

however, shows a large splitting; moreover, a component of the l = 6 unoccupied

shell intrudes into the manifold of the l = 5 shell. We are confronted here with

a phenomenon that is both disturbing and intriguing at the same time: spherical

symmetry is shattered. The shell structure is disrupted, but what is the message hidden

in this sequence?

The deeper lying orbitals are more bonding, which implies they undergo few

sign changes and vary smoothly when going around the sphere. They thus show a

close match with spherical waves that are not susceptible to the details of the atomic

mesh as they experience a continuous sphere. Orbitals that are less bonding show

a more fragmented nodal pattern, and thus probe in more detail the actual atomic

structure of the cage. They, indeed, experience that the carbon cage is not a perfect

sphere. To cover a sphere with a hexagonal lattice, it is necessary to introduce defects.

In the case of C60, the defects are the twelve pentagons, which remind us that the

15 M. R. Savina, L. L. Lohr, and A. H. Francis. “A Particle-on-a-Sphere Model for C60.” Chemical

Physics Letters 205 (1993), pp. 200–206.
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ag

t1u

hg

t2u

gu

hg

gg

hu

t1u

t1g

t2u

hg

0
1

2

3

4

5

6

l FIGURE 5.4 Orbital sequence of the

π-orbitals of C60, adapted from M.

R. Savina, L. L. Lohr, and A. H.

Francis. “A Particle-on-a-Sphere

Model for C60.” Chemical Physics

Letters 205 (1993), pp. 200–206. On

the left are the parent spherical levels

of the free particle model. On the

right are the actual π-orbitals of C60.

They are designated by labels for

icosahedral symmetry. See A.

Ceulemans. Group Theory Applied to

Chemistry: Theoretical Chemistry and

Computational Modelling.

Dordrecht: Springer, 2013. The

HOMO is the hu-orbital occupied by

ten electrons. The diagram displays

the breaking of the spherical levels

when the symmetry is lowered from

SO(3) to icosahedral.

buckyball is obtained by truncating the icosahedron. These defects act as scattering

centers that interfere with the spherical waves. The effect becomes clear when the

wavelength of the spherical waves becomes of the order of the distance between

the scattering defects, and this is precisely what happens near the frontier orbitals.

The result is a breaking of the spherical shell and a deviation from the magic shell

structure.

Spherical symmetry is thus shattered and shells are fragmented, but the fragments

seem to reassemble in a novel type of ordering. In the frontier orbital region, a new

ordering principle emerges. As shown by González and colleagues,16 a continuum

model can be applied based on a flat graphite lattice that is curved by insertion of the

pentagons. This curving can be mimicked by effective gauge fields emanating from the

center of the sphere. At higher energies, into the virtual orbital space toward the top

of the π-band, the spectrum can be understood as resulting from an electron moving

in the magnetic field of a monopole. For our purposes, we retain that shattering of

symmetry may announce the advent of a paradigm that is different from the spherical

continuum at the bottom of the band and that takes into account the pentagonal

defects in the lattice.

16 J. Gonzalez, F. Guinea, and M. A. H. Vozmediano. “The Electronic Spectrum of Fullerenes from

the Dirac Equation.” Nuclear Physics B 406 (1993), pp. 771–794.
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5.8 EPILOGUE

The mathematical treatment of spherical symmetry has revealed that angular

momentum is quantized. Interestingly, the quantum numbers representing spherical

symmetry can be integer or half-integer. For the current physical system of a particle

evolving on a sphere, the half-integer solutions had to be rejected because they lead to

double-valued wave functions. The rejection is only temporary. Half-integer solutions

will show up again when we will look deeper into the nature of the electron and

discover its spin structure in Chapter 8.



6 Scholium I

Noether’s theorem towers like an intellectual Mount Everest, the grand peak standing bright

and clear over an impressive mountain range of powerful ideas.

–Dwight E. Neuenschwander (2011)1

David Hilbert (1862–1943) was furious! He had been sitting in silence for quite some

time, overhearing the conversation among his colleagues, but he could not hold his

temper any longer. Slapping his fist onto the table, he shouted, “I do not see that the

sex of the candidate is an argument against her admission as a Privatdozent ! After all,

the [faculty] senate is not a bathhouse!”2

Hilbert was professor at the University of Göttingen and he was considered

the most influential mathematician of the early twentieth century. Yet, for the

last three years he had been fighting a losing battle in a vain attempt to obtain

a permanent faculty position for his dear, esteemed colleague Emmy Noether

(1882–1935) (Figure 6.1). Try as he might, his requests were met with horror and

disapproval.

“What will our soldiers think when they return to the university and find that

they are required to learn at the feet of a woman?”3 one professor complained.

The problem, put bluntly, was that Noether lacked a Y chromosome, and women

1 D. E. Neuenschwander. Emmy Noether’s Wonderful Theorem. Baltimore: Johns Hopkins University

Press, 2011, p. xi.
2 Ibid., p. 7.
3 Ibid.
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FIGURE 6.1 One of the few

photographs of Emmy Noether

(1882–1935).

during the early 1900s were excluded from holding faculty positions at German

universities.4

Sadly enough, this was not the first (and certainly not the last) of obstacles that

Noether met on her way to academic recognition. A few year earlier, for example, at

the age of eighteen, Noether had qualified as a language teacher, but she wished to

follow in her father’s footsteps; he was an established mathematics professor at the

University of Erlangen. After rebelling against her family—girls, after all, were not

supposed to study mathematics—Noether was forced to gain personal permission

from every professor to enroll in their courses because women were not generally

admitted in class. In the end, Noether was allowed to audit classes, but she could

not sit for examination. So, she had to pass her examination at a nearby university

in Nuremberg. This was in 1903.

Five years later, Noether completed her PhD in mathematics at the University of

Göttingen, summa cum laude, under the supervision of algebraist Paul A. Gordan

(1837–1912). Gordan was a close friend of Emmy Noether’s father, Max Noether,

and he was known as “the king of invariant theory.” Before long, Emmy Noether had

become a first-class expert in mathematical invariants. We’ve encountered invariants

before; they are deeply intertwined with symmetry. In the words of Dave Goldberg:

Invariants are the counterpoint to symmetries. While a symmetry describes the sort of

transformations that you can apply to a system without changing it, an invariant is the

thing itself that is unaltered.5

For example, when you rotate a circle around its midpoint, its shape (and radius)

remains invariant. More importantly many laws in physics are said to be invariant

under certain symmetry transformations, in the sense that their functional form does

not change under those transformations. We saw examples of this in the last chapter.

For the next eight years, Noether worked, unpaid, at the University of Erlangen,

occasionally lecturing for her father.

4 This attitude stood in stark contract with the more liberal universities of France, England, and

Italy.
5 D. Goldberg. The Universe in the Rearview Mirror. How Hidden Symmetries Shape Reality. New

York: Dutton, 2013. The quote is from Goldberg’s blog.
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well aware of Noether’s brilliance, and wrote in a letter to Felix Klein, dated December

27, 1918: “On receiving the new work from Fräulein Noether, I again find it a great

injustice that she cannot lecture officially. I would be very much in favour of taking

energetic steps in the ministry [to overturn this rule].”6 And in a letter to Hilbert, dated

May 24 of that same year, Einstein extorted: “It would not have done the Old Guard at

Göttingen any harm, had they picked up a thing or two from her. She certainly knows

what she is doing.”7

But who was this woman—so highly esteemed by some of the greatest mathemati-

cians of her time (such as Hilbert, Klein, and Einstein, but also Hermann Weyl and

Herman Minkowski), and yet so despised by the other academicians? Perhaps you

never heard of Emmy Noether before?

In this scholium, we pause to contemplate Noether’s theorem, which explains why

group theory is so particularly effective to treat quantum chemical problems.

Chapter Outline

We are about to confront the two great central field potentials of quantum physics:

the harmonic oscillator with SU(3) symmetry (Chapter 7) and the Coulomb attraction

hole with SO(4) symmetry (Chapter 9). The purpose of this chapter is to prepare our

approach to these problems from the point of view of symmetry.

The relevance of the group concept for physics and chemistry has its origin in the

fundamental connection between the physical properties of a system and its symmetry

transformations. That is to say, the complete set of symmetry transformations of an

object or a law, along with the operation of combining two such transformations by

performing one after the other, forms the symmetry group of the Hamiltonian.

To see this more clearly, consider the idea of mirror symmetry. Scientists long

believed that the laws of physics were invariant under mirror reflections. Whether

one observes Nature through a mirror or looks at it directly, physics still works the

same (Figure 6.2). Now, the two possible transformations (i.e., the identity and the

reflection) form a symmetry group isomorphic to the group (C2,×) of order 2, with

C2 = {1, −1}.
In this chapter, we will study the proper place of symmetry operations in the

framework of quantum mechanics (§6.1). We will be interested, in particular, in

symmetry operators generating Lie algebras (§6.2). Lie generators play a central role

in quantum mechanics because they can be represented by Hermitian operators,

which in turn correspond to physical observables. As will be shown in §6.3, this leads

to conserved quantities (or constants of the motion), and this observation sets the

scene for a treatment of the profound relation that exists between symmetries and

conservation laws, as first described by Noether’s theorem (§6.3.1).

In a final section, §6.4, we will delve even deeper into the variegated anatomy of

Lie algebras to reveal their inner workings. One way of uncovering the full power of

a Lie algebra is by introducing its Cartan subalgebra and associated Weyl diagram by

way of the so-called Cartan-Weyl method. The importance of this method cannot be

stressed enough; time and again, the Cartan-Weyl method will reveal itself as a crucial

6 Neuenschwander. Emmy Noether’s Wonderful Theorem, p. 8.
7 Ibid., p. 8.
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FIGURE 6.2 Alice through the looking glass. Scientists long thought the laws of science would stay

the same if you stepped in a mirror world, like Alice. We now know that the symmetry between left

and right is sometimes violated by Nature. This is referred to as parity violation.

tool in our analysis of Lie groups and their corresponding Lie algebras. This will be

exemplified by a brief consideration of the angular momentum algebra in §6.4.2.

6.1 SYMMETRY IN QUANTUM MECHANICS

Quantum mechanics is based on wave functions that describe the state of a

physical system. An important distinction has to be made, however, between the

transformations of space–time coordinates used to describe a system in physical space

and the corresponding transformations of the wave function that describes the state

of the system in Hilbert space (§6.1.1).

With this distinction in place, we can study the nature of these quantum mechani-

cal transformations (§6.1.2) and analyze how observables transform under their action

(§6.1.3). Central among the observables in quantum mechanics is the total energy

E of the system. Because this observable is represented by the Hamiltonian operator

Ĥ , it will prove interesting to examine how Ĥ transforms under a given symmetry

transformation (§6.1.4). A proof will be given that the symmetry transformations

of a quantum mechanical system indeed form a group: the symmetry group of the

Hamiltonian (§6.1.5). This consideration will lead to one of the most important

results of this chapter: symmetry gives rise to degeneracy. The greater the degeneracies

observed in a system, the greater the symmetry underlying that system (§6.1.6). The

exploration of this idea will form a recurrent team in the chapters to follow.

6.1.1 State vector transformations

Let S denote a particular quantum system. To each coordinate transformation T that

induces a linear transformation of the space–time coordinates of S , there corresponds



Sh
at
te
re
d
Sy
m
m
et
ry

11
2 a function operator T̂ that operates on the wave functions ψ of the system and that

transforms them into new functions ψ ′.
It will be convenient to introduce Dirac’s bra-ket notation. The wave function ψ is

then written as a ket |ψ〉, and the action of T̂ on the ket
∣∣ψ (x,y,z, t

)〉 = |ψ (r, t)〉 is

given by the following equation:

T̂ |ψ (r, t)〉 = ∣∣ψ ′ (r, t)
〉
. (6.1)

The operator T̂ is said to represent the transformation T and induces a “rotation” of

the wave function ψ in the abstract Hilbert space H of S .

To determine the functional form of the new (transformed) wave function
∣∣ψ ′〉, use

can be made of the fact that
∣∣ψ ′〉 is a function and T̂ is a function operator. We can,

therefore, apply the derivation of Chapter 3, §3.5, for the transformation of coordinate

functions to the wavefunction, yielding

T̂ |ψ (r)〉 = ∣∣ψ ′ (r)
〉= ∣∣ψ (T−1r

)〉
. (6.2)

Because the wave functions represent a set of vectors, we can set up a second set of

vectors that form a dual space. The elements of the latter are denoted as bra functions

〈ψ (r, t)|. The scalar product of a bra and a ket is then written as a bracket, 〈ψ |ψ〉,
which is a scalar number. Along this line, the symmetry transformation in the dual

bra space is as 〈
T̂ψ (r, t)

∣∣∣= 〈ψ ′ (r, t)
∣∣= 〈ψ | T̂ †, (6.3)

with T̂† denoting the adjoint (or Hermitian conjugate) of T̂ (see Appendix D).

6.1.2 Unitarity of symmetry operators

Let us inquire into the nature of the operator T̂ , which was introduced in §6.1.1.

Suppose a system is in a state |φ〉. Then, the probability that a measurement of an

operator will yield an eigenvalue that corresponds to the eigenfunction |ψ〉 of this

operator will be |〈φ |ψ〉|2. It is required that this probability remains invariant under

a symmetry operation T̂

|〈φ |ψ〉|2 = ∣∣〈φ′ |ψ ′〉∣∣2 . (6.4)

One way to satisfy this equation is by postulating that the scalar product 〈φ |ψ〉
remains invariant:

〈φ |ψ〉 = 〈φ′ | ψ ′〉= 〈φ | T̂†T̂ | ψ〉, (6.5)

where Eqs. (6.1) and (6.3) have been used. For this equality to hold,

T̂†T̂ = T̂T̂† = Î , (6.6)

with Î being the identity operator. This means that the adjoint of the symmetry

operator T̂ coincides with the inverse operator:

T̂ † = T̂−1. (6.7)

Operators with this property are said to be unitary. Generalizing this finding leads to

Wigner’s famous theorem8:

8 This theorem originated in the writings of Eugene Wigner (1902–1995) in 1931. See E. P. Wigner.

Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra. New York: Academic
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Theorem 6.1 (Wigner’s theorem): Every operator T̂ that corresponds to a symmetry

transformation T must be unitary; that is, T̂† = T̂−1. ◾

6.1.3 Transformation of observables

Next, let us investigate how observables change under a transformation T̂ . The

expectation value
〈
Â
〉

of an observable A (corresponding to the operator Â), with

respect to the original state |ψ〉 is given by〈
Â
〉
=
〈
ψ

∣∣∣Â ∣∣∣ψ〉 . (6.8)

This expectation value must remain invariant during a symmetry transformation T̂ .

That is, the expectation value of A with respect to the original state |ψ〉 should be

the same as the expectation value of the transformed observable A′ with respect to

the transformed state
∣∣ψ ′〉. Denoting this transformed expectation value by

〈
Â′
〉
=〈

ψ ′
∣∣∣Â′∣∣∣ψ ′

〉
, we get〈
ψ

∣∣∣Â ∣∣∣ψ〉= 〈ψ ′
∣∣∣Â′∣∣∣ψ ′〉= 〈T̂ψ ∣∣∣Â′∣∣∣ T̂ψ〉= 〈ψ ∣∣∣T̂ †Â′T̂

∣∣∣ψ〉 . (6.9)

This leads to the following equality:

Â = T̂†Â′T̂ , (6.10)

or, using Eq. (6.7),

Â′ = T̂ÂT̂†, (6.11)

relating the untransformed and transformed observables Â and Â′ via the unitary

operator T̂ that was used to describe the rotation of the state ket |ψ〉.
If the observable Â is invariant under T̂ (i.e., T̂ ÂT̂† = Â′ = Â), then the

transformed observable Â′ equals Â, and the previous equation reduces to

Â′ = T̂ ÂT̂† = Â, (6.12)

which implies that T̂Â = ÂT̂ , and thus[
Â, T̂

]
= ÂT̂ − T̂ Â= 0. (6.13)

Definition 6.1 (Invariance of observables): An observable Â is said to be invariant

under a symmetry operator T̂ when it commutes with the operator T̂ :
[

Â, T̂
]
= 0. The

observable Â is then referred to as a scalar with respect to the symmetry operation. ◾

In quantum mechanics operators, associated with observables, obey the condition of

Hermiticity: 〈
φ |Âψ

〉
=
〈
Âφ |ψ

〉
. (6.14)

This implies that quantum mechanical operators are self-adjoint :

Â† = Â. (6.15)

Press, 1959. It must be remarked that Theorem 6.1 is a simplified version of Wigner’s; it does not

mention the existence of antiunitary symmetry operators, which are used to describe time-reversal

symmetry.
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real quantities, implying the product
〈
ψ |Â |ψ

〉
must be a real scalar. It can be easily

shown that this is the case for Hermitian operators. For Â Hermitian, we have〈
ψ |Âψ

〉
=
〈
Âψ |ψ

〉
=
〈
ψ |Âψ

〉∗
. (6.16)

6.1.4 Symmetry transformations of the Hamiltonian

Let Ĥ represent the Hamiltonian of a particular quantum system S , with H
the Hilbert space of eigenvectors |ψ〉 for which the time-independent Schrödinger

equation applies:

Ĥ |ψ〉 = E |ψ〉. (6.17)

Acting with T̂ on both sides of the Schrödinger equation yields

T̂Ĥ |ψ〉 = T̂E |ψ〉, (6.18)

or

T̂Ĥ T̂−1T̂ |ψ〉 = ET̂ |ψ〉. (6.19)

Furthermore, suppose Ĥ is invariant under the transformation T̂—that is,

T̂Ĥ T̂−1 = Ĥ ′ = Ĥ . (6.20)

In this case, T̂ is called a symmetry transformation of Ĥ . Alternatively, Eq. (6.20) can

be written as

T̂Ĥ = Ĥ T̂ (6.21)

or [
Ĥ , T̂

]
= 0. (6.22)

Definition 6.2 (Invariance of the Hamiltonian): Let Ĥ denote the Hamiltonian of a

quantum system S that is invariant under the action of a symmetry operator T̂ . Then,

Ĥ commutes with the operator T̂ :
[
Ĥ , T̂

]= 0. ◾

6.1.5 Symmetry group of the Hamiltonian

By combining all the symmetry transformations of the Hamiltonian we can construct

the full symmetry group.

Theorem 6.2 Let {T} be the set of coordinate transformations and {T̂} be the set of

corresponding function operators under which the Hamiltonian Ĥ remains invariant.

Then, {T} forms a group G, with {T̂} a representation of that group. ◾

Proof that {T} forms a group: It is evident that the sequential execution of two sym-

metry transformations, T2T1, is also a symmetry transformation T3. That is, if

T1r = r′ and T2r′ = r′′, then T3r = r′′. The associative law also holds since the

execution of T1 and then T3T2 is the same as first executing T2T1 and then T3.

The identity transformation I leaves the spatial points untouched: Ir = r. Finally, for

each transformation T , there is an inverse transformation T−1 that undoes the first

transformation; in other words, if Tr= r′, then T−1r′ = r. This proves that the set {T}
forms a group G. ◾
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Proof that {T̂} forms a representation of G: Now, let T1 and T2 denote two coordinate

operators and suppose that

T2T1 = T3. (6.23)

Following Eq. (6.2), we describe the action of the corresponding function operators

T̂1 and T̂2 as follows:

T̂1
∣∣ψ (r)〉= ∣∣ψ ′ (r)〉= ∣∣∣ψ (T−1

1 r
)〉

; (6.24)

T̂2
∣∣ψ ′ (r)〉= ∣∣ψ ′′ (r)〉= ∣∣∣ψ ′ (T−1

2 r
)〉

. (6.25)

Substituting T−1
2 r for r in the definition of

∣∣ψ ′〉 yields∣∣∣ψ ′(T−1
2 r

)〉
=
∣∣∣ψ (T−1

1

(
T−1

2 r
))〉

=
∣∣∣ψ (T−1

1 T−1
2 r

)〉
= ∣∣ψ ((T2T1)

−1r
)〉

. (6.26)

Substitution of this result in Eq. (6.25) finally gives

T̂2T̂1
∣∣ψ (r)〉= ∣∣ψ ((T2T1)

−1r
)〉= ∣∣∣ψ (T−1

3 r
)〉
= T̂3

∣∣ψ (r)〉 , (6.27)

or simply

T̂2T̂1 = T̂3. (6.28)

This shows that the operators T̂ are multiplied in the same order as the transformations

T . Also, the product of two operators T̂2T̂1 is seen to yield another operator T̂3. This

corresponds to the requirement of closure.

For T2 equal to T−1
1 in Eq. (6.27), we get

T̂2T̂1 = Î , (6.29)

with Î as the identity operator. It follows that the operator associated with T−1
1 is the

inverse of T̂1.

This verifies all group postulates and proves that the symmetry operators {T̂}
form a group. Because each element T of G is assigned an operator T̂ operating in

the Hilbert space H of eigenvectors ψ (r), it is said that the operators {T̂} form a

representation of the group G. ◾

6.1.6 Symmetry and degeneracy

Whenever a symmetry of the Hamiltonian has been revealed, degeneracies are seen to

arise, and the more symmetry, the higher the degeneracy. To see this more clearly, let

us rewrite Eq. (6.19) in light of Eq. (6.20) to yield

Ĥ T̂ |ψ〉 = ET̂ |ψ〉. (6.30)

Rewriting the new state vector T̂ |ψ〉 as
∣∣ψ ′〉 according to Eq. (6.1), we obtain

Ĥ
∣∣ψ ′〉= E

∣∣ψ ′〉. (6.31)

Two possibilities arise at this point:

1. Nondegenerate case: There is only one eigenfunction with energy E. In this case,

the transformed wave function
∣∣ψ ′〉must be the same as the original wave

function |ψ〉, except possibly for a unimodular phase factor:
∣∣ψ ′〉= eiκ |ψ〉, with

κ ∈R a real number.
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set can be denoted as {|ψi〉 | i = 1,2, . . . , n }, with n the set cardinality. This set is

also referred to as the eigenspace of E, and the elements of the set are said to be

degenerate eigenkets. Any transformed wave function
∣∣ψ ′

i

〉
also belongs to this set

and must therefore coincide with a linear combination of the elements of the

eigenspace of E:

T̂ |ψi〉 =
n∑

j=1

cij
∣∣ψj
〉
. (6.32)

This equation illustrates the important relationship between symmetry and

degeneracy; the symmetry operators are able to connect the elements of the

eigenspace, something the Hamiltonian is incapable of doing. In fact, the mere

existence of symmetry operators is the fundamental reason for the existence of

degeneracy.

The symmetry transformations T̂ of the Hamiltonian Ĥ can thus be used to relate the

different eigenkets of one energy level (E) with one another. This allows us to discuss

the degree of degeneracy of that particular energy level—an important line of thought

that will be developed further in §6.4.1.

6.2 LIE GROUPS AND LIE ALGEBRAS

Discrete transformations give rise to discrete symmetry groups. According to the

standard model of particle physics, for instance, the laws of physics are invariant

under charge conjugation transformations, parity transformations, and time-reversal

transformations (Figure 6.3). The corresponding C, P, and T symmetries each consist

of two symmetry operators, which could be labeled by a discrete parameter that takes

FIGURE 6.3 The characters of Tweedledee and Tweedledum are symmetric reflections of one

another. They have been referred to as an enantiomeric pair, mirror twins, or a matter particle and

its corresponding antimatter particle.
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only two values—say, 0 and 1; T̂(0)= Î would denote the identity operator, and T̂(1)

the Ĉ, P̂, or T̂ operator.

In many cases, however, the parameters vary over a continuous interval, and con-

tinuous symmetry groups arise, as we saw in Chapters 4 and 5. These groups are called

Lie groups and because the group elements T̂ (r1, r2, . . . , rn) depend on the parameters

ρ = {r1, r2, . . . , rn} in a differentiable manner, it is possible to study infinitesimal

symmetry operations; these are the generators of a symmetry because all group

elements T̂ (r1, r2, . . . , rn) can be obtained from this small set of generators (§6.2.1).

We have seen that any two elements of a Lie group can be combined to form a

third element. In a similar vein, two infinitesimal transformations can be combined to

yield a third transformation, as demonstrated in §5.4. Interestingly, this operation no

longer has the familiar properties of a Lie group multiplication. Rather, a new algebraic

structure is seen to arise, which is referred to as a Lie algebra (§6.2.2).

6.2.1 Lie generators

Let G denote a Lie group, the elements of which are characterized by a finite set of n

real, independent parameters ri (i = 1, . . . ,n) that vary continuously over a particular

interval. Denoting the elements of the group by T̂ (r1, r2, . . . , rn), or T̂ (ρ) for short,

with ρ = {r1, r2, . . . , rn}, the group G is said to be an n-parameter group or to be a

continuous group of order n.

Definition 6.3 (Lie generators of a Lie group): To every unitary symmetry operator

T̂ (ρ) of a Lie group G, which depends analytically on the parameters ρ = {r1,r2, . . . , rn},
there is a corresponding set of n Lie generators X̂i according to the equation

T̂ (ρ)= exp

(
n∑

i=1

riX̂i

)
, (6.33)

where

X̂i = ∂T̂ (ρ)

∂ri

∣∣∣∣∣
ri=0

(6.34)

are the different generators. ◾

6.2.2 Lie algebras

The infinitesimal generators of a Lie group G do not in any way belong to the Lie

group they generate. Instead, as with the components L̂x , L̂y , and L̂z of the angular

momentum operator, they are seen to form a very different kind of structure called

the Lie algebra g of the group G.9 In general, an n-parameter Lie group gives rise to n

generators X̂i , which form an n-dimensional Lie algebra.

Definition 6.4 (Lie algebra): An n-dimensional Lie algebra g is a linear vector space

over some field F, spanned by n generators X̂i (i = 1, . . . ,n), that is equipped

9 Lie algebras are usually denoted by small Gothic letters a, b, . . . , g, . . . . Because, in this book, every

Lie algebra will be associated with a Lie group, we will use the spelling of the Lie group. Thus, the

Lie algebra of the Lie group SO(2), for example, is denoted so(2), as described earlier.
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8 with a multiplication operator (i.e., product rule) [ · , ·] : g × g → g, called the Lie

bracket : [
X̂i , X̂j

]
=

n∑
k=1

fijkX̂k ≡ fijkX̂k , (6.35)

with fijk the different structure constants. ◾

The Lie bracket (see also Appendix F) is defined as[
X̂i , X̂j

]
:= X̂i � X̂j − X̂j � X̂i . (6.36)

If the generators are written in matrix form, the product symbol � denotes matrix

multiplication and the Lie bracket corresponds to the commutator of X̂i and X̂j . If

the generators are written in operator form, the product symbol � stands for the

consecutive application of X̂i and X̂j . The Lie bracket should satisfy the following

properties:

1. Bilinearity: The Lie bracket is bilinear for all scalars λ, μ in F and all elements X̂i ,

X̂j , and X̂k in g: [
λX̂i +μX̂j , X̂k

]
= λ

[
X̂i , X̂k

]
+μ

[
X̂j , X̂k

]
;[

X̂k ,λX̂i +μX̂j

]
= λ

[
X̂k , X̂i

]
+μ

[
X̂k , X̂j

]
.

(6.37)

2. Self-commutation: The Lie bracket satisfies[
X̂i , X̂i

]
= 0. (6.38)

3. Jacobi identity: The Lie bracket satisfies the Jacobi identity for all X̂i , X̂j , and X̂k

in g: [
X̂i ,
[

X̂j , X̂k

]]
+
[

X̂j ,
[

X̂k , X̂i

]]
+
[

X̂k ,
[

X̂i , X̂j

]]
= 0. (6.39)

The first and second properties in Eqs. (6.37) and (6.38) imply that

0=
[

X̂i + X̂j , X̂i + X̂j

]
=
[

X̂i , X̂i

]
+
[

X̂i , X̂j

]
+
[

X̂j , X̂i

]
+
[

X̂j , X̂j

]
=
[

X̂i , X̂j

]
+
[

X̂j , X̂i

]
,

or [
X̂i , X̂j

]
=−

[
X̂j , X̂i

]
. (6.40)

This is known as the antisymmetry or skew-symmetry property.

The dimension dimg= n of a Lie algebra is defined as the dimension of the vector

space g, spanned by the generators X̂i (i = 1, . . . ,n). A basis B can then be introduced:

B = {X̂i | i = 1,2, . . . , n }. (6.41)

The structure constants fijk in Eq. (6.35) contain all the structural information needed

to define a Lie algebra uniquely; knowledge of these constants allows the computation

of every possible commutator. To see this, let X̂ denote a general element from the Lie

algebra g. Since the n generators X̂i form a basis of the Lie algebra g, every X̂ ∈ g can

be written as a linear combination of the X̂i ’s:

X̂ =
n∑

i=1

ciX̂i ≡ ciX̂i ; ci ∈ F, (6.42)
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where we have used Einstein’s summation convention in the second equality. By

Eqs. (6.35) and (6.42), the commutator of any two general elements X̂ =∑n
i=1 ciX̂i and

X̂ ′ =∑n
j=1 c′j X̂j of g can be written as

[
X̂ , X̂ ′]=

⎡⎣ n∑
i=1

ciX̂i ,
n∑

j=1

c ′j X̂j

⎤⎦
=

n∑
i,j=1

cic
′
j

[
X̂i , X̂j

]

=
n∑

i,j,k=1

cic
′
j fijk X̂k .

(6.43)

This illustrates that the commutator of any two elements of g can be determined from

a knowledge of the structure constants fijk .

The skew-symmetric property of the Lie bracket in Eqs. (6.38) and (6.40) can be

restated in terms of the structure constants as

fiik = 0 or fijk =−fjik . (6.44)

That is, the structure constants are antisymmetric in their first two indices. The Jacobi

identity in Eq. (6.39) becomes

d∑
m=0

(
fjkl film + fkil fjlm + fijl fklm

)= 0. (6.45)

The connection between the n generators X̂i of a Lie algebra g and the group elements

T̂ (ρ) of a Lie group G, as given in Eq. (6.33), is referred to as the exponential map and

it forms one of the fundamental theorems of Lie’s theory.

Definition 6.5 (Exponential map): Each T̂ (ρ) ∈ G can be expressed in terms of a finite

set of n generators X̂i via the exponential map exp : g→ G, given by

T̂ (ρ)= exp

(
n∑

i=1

riX̂i

)
,

where the X̂i are elements of the corresponding Lie algebra g. ◾

We end this section with two definitions that will be needed in §6.4.1:

Definition 6.6 (Abelian Lie algebra): An Abelian Lie algebra g is a Lie algebra for which

all structure constants fijk are equal to zero. As a result,
[
X̂ , X̂ ′]= 0 for all elements X̂ and

X̂ ′ of the Lie algebra. ◾

Definition 6.7 (Subalgebra of a Lie algebra): Let g represent a Lie algebra of dimension

n, spanned by the generators X̂i (i= 1, . . . , n), and equipped with the commutator [ · , · ] :

g×g→ g. Then, H is called an m-dimensional subalgebra of g (with m≤ n) if it contains

a subset of elements of g that themselves form a Lie algebra under the same commutation

rule as g. If m< n, H is said to be a proper subalgebra of g, denoted g⊃H. ◾
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0 6.2.3 Hermiticity and Lie generators

Let T̂ (δri) denote an infinitesimal transformation over δri , where ri is one of the n

parameters specifying the group element T̂ . The operator T̂ (δri) differs infinitesimally

from the unit operator T̂ (0)= Î :

T̂ (δri)= Î + δriX̂i +O
(
δr2

i

)
, (6.46)

where O
(
δr2

i

)
denotes terms of higher order in δri . Following Wigner’s theorem

(Theorem 6.1) T̂ (δri)must be unitary:

T̂† (δri) T̂ (δri)= Î . (6.47)

Writing the adjoint of Eq. (6.46) as

T̂† (δri)= Î + δriX̂
†
i , (6.48)

and substituting in Eq. (6.47) gives(
Î + δriX̂

†
i

)(
Î + δriX̂i

)
= Î . (6.49)

Working out the brackets and keeping everything to first order yields

Î + δri

(
X̂i + X̂†

i

)
= Î , (6.50)

and thus

X̂†
i =−X̂i . (6.51)

Hence, the generator X̂i of the unitary transformation T̂ (ri) is seen to be

skew-Hermitian instead of Hermitian. We can easily turn it into an Hermitian

operator, however, by multiplying by the imaginary unit i. Let

Ŷk = iX̂k . (6.52)

The adjoint operation then turns i into −i because it involves complex conjugation

between the ket and bra parts. As a result, the new operator can be shown to be

Hermitian:

Ŷ †
k =

(
iX̂k

)† =−iX̂†
k = iX̂k = Ŷk . (6.53)

We have witnessed this phase relationship between quantum mechanical operators

and Lie generators before in the case of the rotation group, where the X̂k operators

were the three rotation operators and the Ŷk operators were the angular momentum

operators (including the constant h̄ to account for the unit of momentum):

L̂i = ih̄X̂i . (6.54)

The importance of this phase change follows from the fact that Hermitian operators

correspond to physical observables in quantum mechanics. We will return to this point

in § 6.3.2.

We end this section by reconsidering the invariance of observables, introduced in

§6.1.3. Supposing that Eq. (6.12) holds true, we have, using Eq. (6.33):[
Â, T̂

]
=
[

Â, exp

(
n∑

i=1

riX̂i

)]
= 0. (6.55)

Since this must be the case for any ri , we have[
Â, X̂i

]
= 0, ∀i = 1, . . . ,n. (6.56)
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Specializing to the Hamiltonian case as in §6.1.4, we have[

Ĥ , X̂i

]
= 0, ∀i = 1, . . . , n. (6.57)

Definition 6.8 (Invariance of the Hamiltonian): Let Ĥ denote the Hamiltonian of a

quantum system S , which is invariant under the action of a symmetry operator T̂ (ρ),

with ρ = {r1,r2, . . . , rn}; then, Ĥ commutes with the n generators of T̂ :
[
Ĥ , X̂i

]
= 0

(i = 1, . . . , n). ◾

6.3 SYMMETRY AND CONSERVATION LAWS

6.3.1 Noether’s theorem

Summarizing the previous sections, we have seen that when the Hamiltonian Ĥ

of a quantum system is invariant under a unitary transformation T̂ , generated by

the Hermitian operator Ŷ , then Ĥ commutes with both T̂ and Ŷ (i.e.,
[
Ĥ , T̂

] =[
Ĥ , Ŷ

] = 0). The physical observable Y , corresponding to the generator Ŷ , is then

conserved in time—in other words, d
〈
Ŷ
〉
/dt = 0, and Y is said to be a constant of the

motion.

In short, symmetries give rise to conserved quantities. Conversely, each conserved

quantity implies that the system is invariant under a group of continuous symmetry

transformations. This is easily illustrated in the Hamiltonian context of quantum

mechanics (see §§6.2.3–6.3.2). Yet, this revolutionary idea first originated in the

Lagrangian context of classical mechanics through the work of mathematician Emmy

Noether (1882–1935), who first derived it in the year 1915.10 It is therefore known as

Noether’s first theorem:

Theorem 6.3 (Noether’s first theorem): For every continuous symmetry property of a

dynamical system, there corresponds a quantity with a value that is conserved in time,

and vice versa. ◾

According to American physicists Leon M. Lederman and Christopher T. Hill,

Noether’s theorem is “certainly one of the most important mathematical theorems

ever proved in guiding the development of modern physics, possibly on a par with

the Pythagorean theorem.”11 Albert Einstein similarly referred to Fräulein Noether as

“the most significant creative mathematical genius thus far produced since the higher

education of women began.”12

The implications of Noether’s theorem for our understanding of the laws of

Nature are far-reaching. Physical experiments are generally assumed to have the same

outcome regardless of their location and orientation in space, or their position in time.

Whether an apple falls from a tree in Cambridge, England, or in Central Park in

New York, Newton’s laws of motion describe the downward fall in exactly the same

10 E. Noether. “Invariante Variationsprobleme.” Nachrichten von der Gesellschaft der Wissenschaften

zu Göttingen Mathematisch-Physikalische Klasse (1918), pp. 235–257.
11 L. M. Lederman and C. T. Hill. Symmetry and the Beautiful Universe. Amherst: Prometheus

Books, 2004, p. 73.
12 A. Einstein. “Professor Einstein Writes in Appreciation of a Fellow-Mathematician.” New York

Times May 5, 1935.
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2 way. In a similar vein, it does not matter whether the apple fell back in the late 1660s

or just an hour ago.

This implies that the laws of physics must be invariant (symmetric) under spatial

translations (a′ = a+ c), time translations (t ′ = t + c), and rotations (a′ = R(ωn)a).

Without these invariances, the scientific method would crumble in the light of the

irreproducibility of experiments. Space translation symmetry is a consequence of the

homogeneity of space, time translation symmetry relates to the homogeneity of time,

and rotation symmetry is a result of the isotropy of space.

Now, following Noether, there is a conservation law (or conserved quantity) for

each of these continuous space–time symmetries. Space translation symmetry gives rise

to the conservation of linear momentum p, time translation symmetry accounts for

the conservation of energy E, and rotation symmetry allows for the conservation of

angular momentum L, as we saw in the previous chapter.

Notice that we are focusing here on the symmetries of physical laws and not on the

symmetries of the physical objects or systems subject to these laws. In our example of

the falling apple, for example, the apple itself does not need to be symmetric; rather,

the physical laws governing the downward fall of the apple have to be symmetric. In

this case, these are Newton’s laws of motion. Because we are dealing primarily with

quantum mechanics, the law that interests us most is the time-dependent Schrödinger

equation ih̄∂ψ/∂t = Ĥ ψ , which describes the evolution of a quantum system, just

as Newton’s laws of motion describe the evolution of a classical system, such as

Newton’s apple. This implies we will be mostly concerned with the symmetries of the

Hamiltonian expression Ĥ .

6.3.2 Conserved quantities in quantummechanics

There is a deep connection between the symmetry properties of a physical system and

the conservation laws characterizing that system. To address this intimate relationship,

it will be useful to express the time-dependent Schrödinger equation in both bra and ket

space. In ket space,

ih̄
∂ |ψ〉
∂t

= Ĥ |ψ〉 , (6.58)

where |ψ〉 is the wave function of the system and Ĥ is the Hamiltonian operator,

which we assume to be independent of time. When written in the dual bra space

(taking the Hermitian character of Ĥ into account),

−ih̄
∂ 〈ψ |
∂t

= 〈ψ |Ĥ . (6.59)

Let the operator Ŷ correspond to a physical observable Y . For Y to be conserved, its

expectation value
〈
Ŷ
〉

must not change in time. That is,

∂
〈
Ŷ
〉

∂t
= 0. (6.60)

With the help of the time-dependent Schrödinger equation in Eqs. (6.58) and (6.59),

this can be rewritten as

∂
〈
Ŷ
〉

∂t
= ∂

∂t
〈ψ | Ŷ |ψ〉
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=
(
∂ 〈ψ |
∂t

)
Ŷ |ψ〉+ 〈ψ |

(
∂Ŷ

∂t

)
|ψ〉+ 〈ψ | Ŷ

(
∂ |ψ〉
∂t

)

= i

h̄
〈ψ |Ĥ Ŷ |ψ〉+ 〈ψ |

(
∂Ŷ

∂t

)
|ψ〉− i

h̄
〈ψ | ŶĤ |ψ〉

= 〈ψ |
(
∂Ŷ

∂t

)
|ψ〉+ i

h̄
〈ψ |

[
Ĥ , Ŷ

]
|ψ〉 = 0.

Assuming Ŷ to be independent of time, this expression reduces to

∂
〈
Ŷ
〉

∂t
= i

h̄
〈ψ |

[
Ĥ , Ŷ

]
|ψ〉 = 0. (6.61)

It follows that ∂
〈
Ŷ
〉
/∂t is zero (i.e., Y is conserved) when Ĥ and Ŷ commute:[

Ĥ , Ŷ
]
= 0. (6.62)

This is known as Ehrenfest’s theorem, after Austrian physicist and mathematician Paul

Ehrenfest (1880–1933).

Theorem 6.4 (Ehrenfest’s theorem): Let Ŷ represent a Hermitian operator. If Ŷ

commutes with the Hamiltonian Ĥ (i.e.,
[
Ĥ , Ŷ

] = 0), then Y is a conserved physical

quantity, according to

∂
〈
Ŷ
〉

∂t
= i

h̄
〈ψ |

[
Ĥ , Ŷ

]
|ψ〉 = 0.

The physical observable Y is said to be a constant of the motion. ◾

Since the Hamiltonian Ĥ naturally commutes with itself (i.e.,
[
Ĥ ,Ĥ

] = 0), the

energy E is conserved and is called a constant of the motion.13 In view of Eq. (5.149),

the components of the angular momentum Li (i = 1,2,3) are constants of the motion

as well. This implies that the total angular momentum L is invariant in time.

6.4 THE CARTAN-WEYL METHOD

Let g represent a Lie algebra of dimension n spanned by the generators X̂i (i= 1, . . . , n)

that satisfy the commutation rules[
X̂i , X̂j

]
=

n∑
k=1

fijkX̂k ≡ fijk X̂k , (6.63)

where fijk are the structure constants. The n generators are said to form a basis B for

the Lie algebra. It is possible to chose different bases for any particular Lie algebra g. In

the case of the angular momentum algebra, for instance, a change of basis was made

from
{

L̂x , L̂y , L̂z
}

to
{

L̂+, L̂−, L̂z
}

.14 One particularly useful basis is the Cartan-Weyl

basis, which is introduced in this section.

13 Although numerous constants of the motion will pass in review in the following chapters, motion

itself does not always need to be involved, just evolution in time.
14 Note that the structure constants are basis dependent. That is, a change of basis generally leads to

different values for the structure constants.



Sh
at
te
re
d
Sy
m
m
et
ry

12
4 The reason for devoting an entire section to this basis arises from the intimate

relation between symmetries and degeneracies, as described in §6.1.6. That is, given

the time-independent Schrödinger equation

Ĥ |ψ〉 = E |ψ〉 , (6.64)

and invoking the commutation relationships
[
Ĥ , X̂i

]
= 0, X̂i |ψ〉 is an eigenket of Ĥ

as well:

X̂iĤ |ψ〉 = X̂iE |ψ〉
Ĥ X̂i |ψ〉 = EX̂i |ψ〉 .

(6.65)

The symmetry generators X̂i can thus be used to relate the different eigenkets of a

degenerate energy level. To this end, we traditionally replace the generators X̂i by a

linearly independent set of Cartan and Weyl operators Ĥi and Êα , which form the

Cartan-Weyl basis {Ĥi ; Êα} of g. Although the Cartan generators are used to label the

different degenerate eigenstates, the Weyl generators act as shift operators or ladder

operators between the different eigenkets, and enable us to transform one eigenket into

another.

The construction of the Cartan-Weyl basis proceeds along a threefold path, as

will be outlined in §6.4.1. Along the way, the concept of a Weyl diagram will also be

introduced. Weyl diagrams provide a diagrammatic summary of the most important

characteristics of any Lie algebra. And because the adage goes “A picture is worth a

thousand words,” we can only urge you to read (and reread) this section with the

greatest care and attention.

The rather formal treatment in §6.4.1 will be made more concrete in §6.4.2, where

we will review some of the results from our study of the angular momentum algebra

in light of the Cartan-Weyl method. This will form an ideal steppingstone for the

treatment of more complex Lie algebras in the chapters that follow.

But, before we embark on our journey, let us briefly compare the defining

relationships for a ladder operator (or eigenoperator) and an eigenfunction:[
Â, B̂

]
= ÂB̂− B̂Â = cB̂; (6.66)

Â |ai〉 = ai |ai〉 . (6.67)

Just as |ai〉 is called an eigenfunction of Â with eigenvalue ai in view of Eq. (6.67), B̂ is

said to be an eigenoperator of Â with eigenvalue c in view of Eq. (6.66).

6.4.1 The threefold path toward a Cartan-Weyl basis

Step 1: The Cartan subalgebra and Cartan generators

In the first step, we find the maximal subset of commuting generators X̂i (i = 1, . . . , m),

which we will denote by the new symbol Ĥi for further convenience. The operators Ĥi

form a basis for a maximal Abelian subalgebra H of g, with a dimension m < n that

equals the number of commuting generators. Note that the subalgebra H is maximal

when there does not exist an Abelian subalgebra of higher dimension F⊂ g such that

H⊂ F.

Definition 6.9 (Maximal Abelian subalgebra): An Abelian subalgebra H of a Lie algebra

g is said to be maximal when there are no additional elements of the algebra g that

commute with all the elements of the subalgebra H. ◾
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The subalgebra H is better known as the Cartan subalgebra of g, and the number of

elements m in the Cartan subalgebra is called the rank of the Lie algebra g.

Definition 6.10 (Cartan subalgebra of a Lie algebra): Let g denote an n-dimensional Lie

algebra. Then, the set of all mutually commuting basis elements
{

X̂i = Ĥi
}

(i= 1, . . . , m)

of g forms a basis for a maximal Abelian subalgebra H of g. This is called the Cartan

subalgebra of g. ◾

Definition 6.11 (Rank of a Lie algebra): The dimension m of the Cartan subalgebra

H⊂ g defines the rank of the Lie algebra g. ◾

The elements Ĥi of the Cartan subalgebra are called the Cartan generators or Cartan

elements.15 They satisfy the simple commutation relations:[
Ĥi ,Ĥj

]
= 0, ∀i, j = 1, . . . , m. (6.68)

This means all Ĥi are simultaneously diagonalizable. Denoting their eigenvalues by hi ,

we obtain the following eigenvalue equations:

Ĥi |h1,h2, . . . , hm〉 = hi |h1,h2, . . . , hm〉 , ∀i = 1, . . . ,m. (6.69)

The eigenvalues hi are called weights and can be considered components of an

m-dimensional vector h, which is termed the weight vector. The weights of a Cartan

subalgebra can thus be used as quantum numbers to label the substates of a given

multiplet.

Step 2: Weyl generators and Weyl diagrams

In the second step, we combine the remaining generators X̂i of g (i = 1, . . . , n−m)

that are not elements of the Cartan subalgebra H into linear combinations to form a

linearly independent set of raising and lowering operators. We will denote these ladder

operators by the general symbol Êα . The different Êα ’s are also called Weyl generators

or Weyl elements.

Along with the Cartan generators Ĥi , they constitute the Cartan-Weyl basis for the

Lie algebra g. The Lie algebra g has actually been decomposed into a direct sum of the

Cartan subalgebra H (spanned by the m Ĥi ’s) and n−m one-dimensional subalgebras

Eα , generated by the Weyl generators Êα :

g=H

n−m⊕
α=1

Eα =H⊕E1 ⊕E2 ⊕ . . .⊕En−m. (6.70)

In view of their function as step operators, the Êα ’s are eigenoperators of the Cartan

generators Ĥi . That is, they satisfy the following commutation relation:[
Ĥi , Êα

]
= αi Êα , ∀i = 1, . . . , m, α = 1, . . . , n−m. (6.71)

15 The Ĥi ’s are also called Abelian generators or diagonal operators.
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[
Ĥ1, Êα

]
[

Ĥ2, Êα
]

...[
Ĥm, Êα

]

⎤⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣
α1

α2

...

αm

⎤⎥⎥⎥⎥⎦ Êα = αÊα . (6.72)

The different αi ’s are called the roots of Êα ; the set of αi ’s can be considered the

components of a vector α, called the root vector, which lies in an m-dimensional root

space.16

We can thus display the root vector for every Weyl generator Êα in a diagram, which

leads to a particularly powerful geometric representation of the Lie algebra g. This is

called a root diagram or a Weyl diagram, the dimension of which is defined by the rank

m of the Lie algebra. Notice that all Cartan generators Ĥi have their roots αi = 0 in

view of Eq. (6.68) and lie at the center of the graph.

Naturally, root diagrams for rank m ≥ 3 are difficult to visualize. For this

reason, an alternative method of displaying root diagrams was introduced by Russian

mathematician Eugene Borisovich Dynkin (1924–2014). However, because the rank

of the Lie algebras considered in this book will never exceed the number 3, it will be

unnecessary for us to delve into the symbolism of Dynkin diagrams.

Step 3: Casimir operators

In the third and final step, we can construct a number of Casimir operators Ĉμ that

commute with all the operators X̂i :[
Ĉμ, X̂i

]
= 0, ∀μ= 1, . . . , m, i = 1, . . . , n. (6.73)

The number of Casimir operators for a given Lie algebra g is given by the rank m of

that Lie algebra. This is also called Racah’s theorem,17 which is stated here without

further proof.

Theorem 6.5 (Racah’s theorem): For every Lie algebra g of rank m, there are a total of m

Casimir operators Ĉμ (μ= 1, . . . , m) that commute with the generators X̂i (i = 1, . . . , n)

of g.

As a consequence, all Ĉμ’s also commute with the Cartan generators Ĥi :[
Ĉμ,Ĥi

]
= 0, ∀μ, i = 1, . . . , m. (6.74)

Therefore, we can find a complete set of states that are simultaneous eigenstates of all

Ĉμ and Ĥi . Denoting the eigenvalues of Ĉμ and Ĥi by cμ and hi , respectively, we can

16 Notice the difference between the roots αi , which are associated eigenvalues of the eigengenerators

Êα , and the weights hi , which are eigenvalues of eigenfunctions.
17 G. Racah. “Sulla caratterizzazione delle rappresentazioni irriducibili dei gruppi semisemplici di

Lie.” Atti della Accademia Nazionale dei Lincei, Rendiconti Classe dei Scienze fisiche, matematiche e

naturali 8 (1950), pp. 108–112.



127
Scholium

I
represent the corresponding eigenstates as |c1,c2, . . . ,cm;h1, h2, . . . ,hm〉, or

∣∣cμ;hi
〉

for

short. This gives rise to the following eigenvalue equations:

Ĉμ
∣∣cμ; hi

〉= cμ
∣∣cμ;hi

〉
, (6.75)

Ĥi
∣∣cμ; hi

〉= hi
∣∣cμ;hi

〉
, (6.76)

for all μ, i = 1, . . . , m. In conclusion, the Casimir operators Ĉμ and the generators

Ĥi of the Cartan subalgebra allow us to label every state of a multiplet. The Ladder

operators Êα , on the other hand, enable us to move between the states within that

multiplet, as illustrated in a Weyl diagram. That is, when a Weyl generator Êα acts on

the ket
∣∣cμ;hi

〉
, it shifts the eigenvalue of the operators Ĥi by an amount αi according to

Êα
∣∣cμ; hi

〉∼ ∣∣cμ; hi +αi
〉
, (6.77)

analogous to the raising and lowering operators L̂+ and L̂− of the angular momentum

algebra. This can be seen as follows, using Eqs. (6.71) and (6.76):

ĤiÊα
∣∣cμ;hi

〉= ([Ĥi , Êα
]
+ ÊαĤi

)∣∣cμ;hi
〉

=
(
αi Êα + Êαhi

)∣∣cμ;hi
〉

= (hi +αi) Êα
∣∣cμ;hi

〉
,

(6.78)

which leads to Eq. (6.77).

6.4.2 Review of the angular momentum algebra

The Cartan subalgebras and Weyl diagrams just introduced will reveal themselves as

crucial tools in our analysis of the Lie groups and corresponding Lie algebras of the

hydrogen atom and the periodic system. The importance of these concepts cannot be

stressed enough, and we therefore end this chapter by reviewing some of the more

important properties of the angular momentum algebra, illustrating the principles of

§6.4.1 along the way.

The well-known commutation relations between the components of the angular

momentum operator L̂ are given by[
L̂x , L̂y

]
= ih̄L̂z ,

[
L̂y , L̂z

]
= ih̄L̂x , and

[
L̂z , L̂x

]
= ih̄L̂y . (6.79)

These commutation rules are said to define the angular momentum algebra (see

§5.6.1), which is isomorphic to the so(3) Lie algebra. Notice that none of the

L̂i operators commutes among each other. To disclose the consequences of this

algebra, we select the L̂z operator as the only Cartan generator, forming the Cartan

subalgebra H. The square of the total angular momentum,

L̂2 = L̂2
x + L̂2

y + L̂2
z , (6.80)

commutes with all the angular momentum operators[
L̂2, L̂x

]
=
[

L̂2, L̂y

]
=
[

L̂2, L̂z

]
= 0, (6.81)

and, by virtue of this property, L̂2 is called a Casimir operator of the angular

momentum algebra (see §5.6.2). Because H is one-dimensional (i.e., the so(3) algebra

is of rank 1), this is the only Casimir operator of the so(3) algebra (Theorem 6.5).

The commutation relations in Eqs. (6.79) and (6.81) imply the existence of a

complete set of states that are simultaneous eigenstates of L̂2 and L̂z (see §5.6.3).
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8 We denoted the eigenvalues of L̂2 and L̂z by l and ml , respectively, and represent

the corresponding eigenstates as |l,ml〉. This gives rise to the following eigenvalue

equations:

L̂2 |l,ml〉 = l (l+ 1) h̄2 |l, ml〉; (6.82)

L̂z |l,ml〉 =mlh̄ |l,ml〉 . (6.83)

Ladder operators

The remaining two operators, L̂x and L̂y , are then combined into the following linear

combinations (see §5.6.4):

L̂± ≡ L̂x ± iL̂y . (6.84)

The introduction of L̂+ and L̂− gives rise to a number of new commutation relations.

First of all, because L̂2 commutes with all the angular momentum operators, it also

commutes with L̂+ and L̂−: [
L̂2, L̂+

]
=
[

L̂2, L̂−
]
= 0. (6.85)

Of greater importance are the commutation relations of L̂+ and L̂− with the Cartan

generator L̂z : [
L̂z , L̂±

]
=±h̄L̂±. (6.86)

Since Eq. (6.86) satisfies the defining operator relation in Eq. (6.71) for ladder operators

(see also Theorem 5.2), L̂+ and L̂− are called Weyl generators. Along with the Cartan

generator L̂z , they constitute the Cartan-Weyl basis of the so(3) algebra.

In view of Eq. (6.86), the operation of L̂+ or L̂− on one of the simultaneous

eigenkets of L̂2 and L̂z transforms this eigenket |l,ml〉 into another eigenket of L̂2 and

L̂z with the same eigenvalue l for L̂2, but with the eigenvalue ml raised or lowered

by one:

L̂± |l, ml〉→ |l,ml ± 1〉 . (6.87)

By virtue of these properties, L̂+ is called a raising operator and L̂− is called a lowering

operator. Starting from a given eigenket |l,ml〉, a ladder of eigenkets can thus be

produced by the repeated application of L̂+ and L̂−:

. . .
L̂±←→ |l, ml − 1〉 L̂±←→ |l,ml〉 L̂±←→ |l, ml + 1〉 L̂±←→ . . . . (6.88)

However, it turns out that the values of ml are bounded from above and below by the

value of l, ranging over the interval {−l, −l + 1, . . . , l − 1, l}. To every eigenvalue l,

there thus corresponds a multiplet of 2l + 1 eigenkets, which are interconnected via

the ladder operators L̂+ and L̂−:

|l,−l〉 L̂±←→ |l,−l+ 1〉 L̂±←→ . . .
L̂±←→ |l, l− 1〉 L̂±←→ |l, l〉 . (6.89)

This can also be represented diagramatically. To this aim, let us use the ml values as

coordinates to plot the 2l+1 substates of a given multiplet on the axis of L̂z eigenvalues

(in units of h̄). In such weight diagrams, a given multiplet thus appears as a line with a

set of equidistant points, symbolizing the ladder of eigenstates. An example is shown

in Figure 6.4B for the multiplet with l = 5/2.

By choosing the z-axis as the axis of quantization, we have placed the L̂z operator

in the center of the angular momentum algebra. That is, the diagonal operator L̂z has

been used to identify all components of a given multiplet.
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FIGURE 6.4 (A) Root diagram of the so(3) algebra. The L̂z operator lies in the center of the graph

and is used to label the eigenkets of a given multiplet. The L̂+ and L̂− operators act as shift

operators. (B) Weight diagram for the multiplet with l = 5/2. Each eigenket is depicted by a point

on the L̂z -axis that denotes its ml-value.

Eigenoperators

We can go one step further and represent the generators themselves in a diagram.

For this, we need to recall the concept of an eigenoperator. It is clear that the Cartan

generator L̂z is an eigenoperator of itself, with eigenvalue 0:[
L̂z , L̂z

]
= 0L̂z . (6.90)

The operators L̂x and L̂y , on the other hand, are not eigenoperators of L̂z since their

commutators do not return L̂x and L̂y , respectively:[
L̂z , L̂x

]
=+ih̄L̂y ; (6.91)[

L̂z , L̂y

]
=−ih̄L̂x . (6.92)

To find proper eigenoperators, we need to make linear combinations of the x- and

y-components. The resulting combinations are precisely the raising and lowering

operators L̂+ and L̂−: [
L̂z , L̂+

]
=+h̄L̂+; (6.93)[

L̂z , L̂−
]
=−h̄L̂−. (6.94)

The corresponding eigenvalues for the L̂+ and L̂− eigenoperators are, respectively, +h̄

and −h̄, as is evident from the previous equations. The generators of the angular

momentum algebra are thus represented by three points (or roots) with coordinates

−1, 0, and +1 (in units of h̄) in a one-dimensional root space. The resulting root

diagram with root vectors for L̂+ and L̂− is shown in Figure 6.4A.

The L̂z operator forms an so(2) subalgebra on its own because it generates an

infinitesimal rotation around the z-axis. Of course, in the current case, this Cartan

subalgebra is rather trivial because it contains only one element. In subsequent

chapters we will meet extended quantization schemes in which several quantum

numbers are needed to characterize shell components.

Reducing direct products of multiplets

We end this section with an application of the Weyl diagrams, which will be of great use

in the following chapters—namely, the combination of different multiplets. Consider

a system, consisting of several parts, in which each part is characterized by a multiplet

with a given l-value. An example is a system with both orbital and spin angular
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0 momentum. The multiplets of the parts can then be combined into the multiplet of

the whole system. To this aim, the direct product (or tensor product) has to be formed

between the constituent multiplets. This is particularly easy when use is made of Weyl

diagrams.

Let us see how it is done. Suppose, for the sake of illustration, that we want to form

the direct product between a p- and a d-multiplet with l1 = 1 and l2 = 2, respectively.

The p-multiplet has 2l1 + 1= 3 substates with ml =−1, 0, 1; and the d-multiplet has

2l2 + 1= 5 substates with ml =−2, −1, 0, 1, 2.

The formation of the direct product can be represented in a graphical way by

superimposing a p-multiplet on top of each member state of the d-multiplet, as shown

in the upper part of Figure 6.5. In the end, as shown in the lower part, 3×5= 15 states

are formed, with the Lz -values ranging between −3 and +3. That is, in general, the

ml-values range over the interval {−(l1 + l2) , . . . , l1 + l2}.
The composite system can then be decomposed as the direct sum of three

multiplets: a p-, d- and f -multiplet. We write this symbolically as

p⊗ d = p⊕ d⊕ f , (6.95)

where ⊗ denotes direct product and ⊕ indicates direct sum. Or, in terms of their

multiplet dimension:

[3]⊗ [5]= [3]⊕ [5]⊕ [7] . (6.96)

6.5 THE THREE PILLARS OF GROUP THEORY

Let us attempt to summarize, in a couple of lines, what has been introduced in this

chapter. In a nutshell, we have seen that a constant of the motion X is a telltale sign for

the existence of a particular symmetry group G of the system S , which in turn can be

invoked to rationalize the degeneracies observed in the energy eigenspectrum of S .

We could reason the other way around as well, starting from an observed degeneracy

–1 0 +1 +2
Lz

–2

–1 0 +1

p
p

p
p

p

d X X X X X

f

d

p

–1 0 +1 +2–2 +3–3

p x d = p d f+ +

FIGURE 6.5 Weight diagrams illustrating the reduction of the tensor product p⊗ d = p⊕ d⊕ f ,

which yields the global multiplets for the composite system consisting of two parts.
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2 and looking for its corresponding symmetries and conservation laws. In short, we are

faced with the following important interconnections:

Conservation Law←→ Symmetry←→Degeneracy. (6.97)

As should be clear from this and the schematic depiction in Figure 6.6, the conserva-

tion laws, symmetries, and degeneracies of a system are not to be seen as independent

or disconnected. Rather, they form a closely woven tapestry, with the theorems of

Noether, Ehrenfest, and Wigner acting as a metaphorical Ariadne’s thread interweav-

ing these three pillars into a harmonious and powerful whole. Not surprisingly, then,

the relations in Eq. (6.97) will permeate the presentation of the elementary particle

zoo and the hydrogen atom in the next few chapters, and they will figure prominently

in our discussion of the hidden symmetries of the periodic system in Chapter 13.



PART TWO
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7 The SU(3) group

The world of the quark has everything to do with a jaguar circling in the night.

–Arthur Sze (1987)1

7.1 HISTORICAL PRELUDE: THE PARTICLE ZOO

7.1.1 Probing the inner structure of the atom (1897–1947)

Since the musings of the ancient Greek philosophers in the sixth century BC, scientists

have pondered incessantly over the question: What are the most basic constituents

of matter? Around 1947, physicists believed they had finally reached a simple, yet

elegant, answer to this fundamental question.2 They proposed that all matter around

us was composed of atoms, which acted as miniature solar systems. The positive charge

and most of the mass was thought to be concentrated in a tiny central nucleus (the

sun), with the electrons (planets) swirling around the nucleus and held in orbit via

1 From Arthur Sze’s poem “The Leaves of a Dream Are the Leaves of an Onion,” which first

appeared in his collection River, River in 1987. Quoted in M. Gell-Mann. The Quark and the Jaguar:

Adventures in the Simple and the Complex. New York: W. H. Freeman, 1994, p. 11.
2 For a brief history of elementary particle physics, see D. Griffiths. Introduction to Elementary

Particles. Weinheim: Wiley-VCH, 2008, pp. 11–53. A. Pais. Inward Bound: Of Matter and Forces

in the Physical World. Oxford: Oxford University Press, 1988; M. Veltman. Facts and Mysteries in

Elementary Particle Physics. Singapore: World Scientific, 2003. See also N. Mee. The Higgs Force, the

Symmetry-Breaking Force That Makes the World an Interesting Place. Cambridge: Lutterworth Press,

2012, pp. 167–204.
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6 the electromagnetic forces between the positively charged nucleus and the negatively

charged electrons.

Hydrogen (1
1H), for instance, was considered to be a two-body system with one

electron (e−) encircling the +1 positively charged nucleus, which Ernest Rutherford

termed the proton (denoted p+). With James Chadwick’s discovery of the neutron (n0)

in 1932, the second constituent of the atomic nucleus was finally identified. Note that

the mass3 of the neutron (939.565378 MeV/c2), is comparable to the proton mass

(938.272046 MeV/c2), but both are substantially heavier than the electron, which has

a feathery mass of only 511.007 keV/c2.

Three other elementary particles were known in the classical era. There was

Einstein’s photon, γ , and Wolfgang Pauli’s neutrino, ν—a light-weight, electrically

neutral particle, the existence of which was predicted by Pauli to account for the

apparent loss of energy and momentum in radioactive beta decay. The third particle

originated in Dirac’s attempt to unify quantum theory with Einstein’s theory of special

relativity. Solutions of the Dirac equation hinted at the existence of antiparticles;

for every particle there is an associated antiparticle with exactly the same mass but

opposite electric charge. With the discovery of the positron e+ (or antielectron) by

Carl D. Anderson in 1932, Dirac’s theory gained a first experimental verification.4

Antiparticles are usually indicated by writing a bar above the symbol of their

corresponding particle. An antiproton, for instance, is denoted by the symbol p̄; an

antineutron, by the symbol n̄.5

In 1936, Anderson and his colleague Seth Neddermeyer also discovered a particle

with a mass in between that of the electron and the proton, which they called a

mesotron. Only much later was it recognized that this particle was not associated with

the strong forces inside the nucleus, but that it belonged to the same family as the

electron. It was renamed the muon.

7.1.2 Yukawa’s pion (1947–1949)

The classical era came to an abrupt end in 1947 with the discovery of the pion

(shorthand for pi-meson, denoted π ; see also Table 7.1). The first pions were

discovered in cosmic ray experiments performed by Cecil Powell and coworkers on

the Pic du Midi de Bigorre in the Pyrenees. Photographic emulsions were placed for

several hours on the mountain top before being developed. The impact of high-energy

subatomic particles from the atmospheric cosmic rays left tracks on the photographic

plates that could then be studied with a microscope to determine the mass and charge

of the detected particles. With the first hints of the pion, Powell felt as if he had “broken

3 Given Einstein’s famous equation E =mc2, the masses m of elementary particles are usually given

in terms of their rest energy E (in keV, MeV, GeV, or even TeV).
4 Negatively charged antiprotons were first discovered in 1955 by Emilio Segrè and Owen

Chamberlain; the antineutron was detected one year later, in 1956, by Bruce Cork at Berkeley.
5 You might wonder in which sense an antineutron is any different from a neutron, given that both

particles are electrically neutral. For one thing, the neutron is composed of quarks whereas the

antineutron is made out of antiquarks (see §7.6). As we will see later, many elementary properties,

besides electric charge, are inverted upon turning a particle into its corresponding antiparticle.

Some neutral particles, such as photons or the eta mesons, are their own antiparticles.
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Table 7.1 Table of the properties of the low-mass pseudoscalar mesons with spin 0

(the spin concept is described in Chapter 8). As a result of their integer spin, mesons

are classified as bosons. All mesons listed in this table are unstable and have a

lifetime of 10−8 seconds or less. As a general rule, the lower the mass of the particle,

the longer lived it will be. This table contains a number of particle–antiparticle pairs:

π+– π−, K+– K−, and K0– K̄0. The particles π0, η0, and η′0 are their own antiparticles.
The pseudoscalar mesons have baryon number B= 0, and hypercharge Y equal to

strangeness S. The rest masses have been rounded.

Name Symbol Charge Isospin
Isospin

Component Strangeness Rest Mass

(Q) (T) (T3) (S) (MeV/c2)

Pions π+ +1 1 +1 0 140

π0 0 1 0 0 135

π− −1 1 −1 0 140

Kaons K+ +1 1/2 +1/2 +1 494

K0 0 1/2 −1/2 +1 498

K− −1 1/2 −1/2 −1 494

K̄0 0 1/2 +1/2 −1 498

Eta meson η0 0 0 0 0 548

Eta prime

meson
η′0 0 0 0 0 958

into a walled orchard, where protected trees flourished and all kinds of exotic fruits

ripened in great profusion.”6

It turns out that pions have a mass of 140 MeV. This is 280 times the electron

mass and approximately one seventh times the proton mass. This intermediate

mass led to the pions being classified as the genuine mesons (or “middleweight”

particles, see Tables 7.1 and 7.2, with the former mesotron being dubbed meson, in

accordance with the Greek μεσος); electrons and neutrinos belonged to the lepton

family (for “lightweight”), and protons and neutrons were classed among the baryons

(or “heavyweight”). Mesons and baryons together constituted the hadron family (from

the Greek ἁδρος for “large” or “massive”).

Pions come in three varieties: the positively charged π+, the negatively chargedπ−,

and the neutral π0. According to Hideki Yukawa’s theory, all these pions were the

mediators of the strong nuclear force. They were responsible for holding the protons

and neutrons together in the nucleus, and counteracted the electromagnetic repulsion

of the protons resulting from their positive electric charge. (In a similar vein, photons

are said to mediate the electromagnetic force between the protons and electrons in an

atom.) Interestingly, pions were observed to disintegrate into yet another particle, the

muon μ; for example:

π+→ μ+ + ν;

π−→ μ− + ν.
(7.1)

6 Quoted from C. F. Powell. “Fragments of Autobiography.” In: Selected Papers of Cecil Frank Powell.

Ed. E. H. S. Burhop, W. O. Lock, and M. G. K. Menon. New York: North-Holland, 1972, p. 26.
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8 Table 7.2 Table of the properties of the vector mesons of spin 1. Because of their

integer spin, vector mesons are also classified as bosons. (Numerous other mesons

have been detected with even higher spins and masses.) As a result of the higher rest

mass of most vector mesons as compared to the pseudoscalar mesons, vector

mesons are generally highly unstable and have a lifetime of 10−20 s or less. This table
contains a number of particle–antiparticle pairs: ρ+– ρ−, K∗+– K∗−, and K∗0– K̄∗0. The
particles ρ0, ω0, and φ0 are their own antiparticles. The vector mesons have baryon

number B= 0, and hypercharge Y equal to strangeness S. The rest masses have been

rounded.

Name Symbol Charge Isospin
Isospin

Component Strangeness Rest Mass

(Q) (T) (T3) (S) (MeV/c2)

Rho

mesons

ρ+ +1 1 +1 0 775

ρ0 0 1 0 0 775

ρ− −1 1 −1 0 775

Kaon

resonances

K∗+ +1 1/2 +1/2 +1 892

K∗0 0 1/2 −1/2 +1 896

K∗− −1 1/2 −1/2 −1 892

K̄∗0 0 1/2 +1/2 −1 896

Omega ω0 0 0 0 0 783

Phi meson φ0 0 0 0 0 1019

The role of this lightweight particle, classified in the lepton family, was unknown at

the time and led to Isidor Isaac Rabi’s exclamation: “Who ordered that?”

7.1.3 The growing particle jungle (1950–1960)

With the construction of the first particle accelerators during the 1950s, such as

the Brookhaven Cosmotron, the discovery of elementary particles was no longer

dependent on cosmic ray experiments. The first synchrotrons reached energies in the

gigaelectronvolt range. After two protons had been accelerated to such velocities, they

were forced in a head-on collision. During the impact, most of the kinetic energy

was transformed into matter, according to Einstein’s equation E = mc2. Within the

resulting particle debris, novel particles were disclosed by studying the tracks left on

photographic emulsions or traced in bubble and cloud chambers.

The hunt for new particles soon bore fruit, and the French garden of elementary

particles rapidly transformed into a dense and wild jungle without apparent order.

Some of these newly discovered particles were the so-called K-mesons or kaons, which

came in four varieties: the positively charged K+ along with its antiparticle K−, and

the neutral K 0 with its antiparticle K̄ 0. Kaons typically decay in a number of pions; for

instance,

K 0 → π+ +π−;

K+ → π+ +π+ +π−.
(7.2)

As a consequence, kaons are roughly two to three times as heavy as the pion; they thus

belong to the meson family of middleweight particles (see Table 7.1). Another particle,
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Table 7.3 Table of the properties of the low-mass baryons of spin 1/2. As a result of

their half-integer spin, baryons are classed among the fermions. The proton is

believed to be a stable particle; the free neutron has a lifetime of approximately 15

minutes. Most of the other baryons listed in this table are shorter lived, with a lifetime

of 10−10 s or less. The corresponding antiparticle symbols can be obtained by adding a

bar over the particles’ symbols, and by inverting the signs of all charges and

strangeness quantum numbers. All baryons have baryon number B=+1; antibaryons
have B=−1. The rest masses have been rounded.

Name Symbol Charge Isospin
Isospin

Component Strangeness
Hyper-
charge Rest Mass

(Q) (T) (T3) (S) (Y) (MeV/c2)

Nucleons p+ +1 1/2 +1/2 0 1 938

n0 0 1/2 −1/2 0 1 940

Lambda �0 0 0 0 −1 0 1116

Sigmas �+ +1 1 +1 −1 0 1189

�0 0 1 0 −1 0 1193

�− −1 1 −1 −1 0 1197

Xis �0 0 1/2 +1/2 −2 −1 1315

�− −1 1/2 −1/2 −2 −1 1322

found by Anderson’s group in 1950, was the lambda particle �0, which transformed

into a proton and a pion:

�0 → p+ +π−. (7.3)

This decay mode provided an explanation for the substantially greater�0 mass (1116

MeV/c2) as compared to the mass of the proton (938 MeV/c2), and thus convinced

the scientific community to classify it among the baryons, along with the proton and

the neutron (see Table 7.3).

During the following years, a plethora of other baryons were discovered: the sigma

particles (�+, �0 and �−, as well as �∗+, �∗0 and �∗−), the cascade or xi particles

(�0 and �−, as well as �∗0 and �∗−), the delta particles (�++, �+, �0, and �−),

and so on (see Tables 7.3 and 7.4).

7.1.4 Quantum numbers and conservation laws

Not only did the discovery of all these particles come as a big surprise, physicists

were baffled by their peculiar behavior. During the course of the next few years, an

overwhelming variety of different particle reactions were observed in the heart of

particle accelerators. As a result, the central problem of particle physics became one of

understanding why certain reactions took place whereas others did not. For example,

although a proton and a pion had been observed to transform into a kaon (meson)

and a lambda particle (baryon):

p+ +π−→ K 0 +�0, (7.4)
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0 Table 7.4 Table of the properties of baryon resonances. These are extremely

short-lived baryon states with lifetimes of 10−23 s or less. All baryon resonances listed
in this table have spin 3/2 and belong to the class of fermions. In complete analogy

with the baryons of Table 7.3, the corresponding antiparticles can be obtained by

adding a bar over the particles’ symbols, and by inverting the signs of all charges and

strangeness quantum numbers. All baryon resonances have baryon number B=+1;
antibaryons have B=−1. The rest masses have been rounded.

Name Symbol Charge Isospin
Isospin

Component Strangeness
Hyper-
charge Rest Mass

(Q) (T) (T3) (S) (Y) (MeV/c2)

Deltas �++ +2 3/2 +3/2 0 +1 1232

�+ +1 3/2 +1/2 0 +1 1232

�0 0 3/2 −1/2 0 +1 1232

�− −1 3/2 −3/2 0 +1 1232

Sigmas �∗+ +1 1 +1 −1 0 1385

�∗0 0 1 0 −1 0 1385

�∗− −1 1 −1 −1 0 1385

Xis �∗0 0 1/2 +1/2 −2 −1 1530

�∗− −1 1/2 −1/2 −2 −1 1530

Omega �− −1 0 0 −3 −2 1672

the following two reactions never occurred:

p+ +π− � K 0 +�−; (7.5)

p+ +π− � K 0 +�0, (7.6)

even though �− and �0 are baryons, just like the �0 particle. To tackle this problem,

particle physicists adopted a phenomenological approach by imposing a series of

conservation laws that forbade certain reactions from happening.

We can illustrate this approach by considering the law of conservation of electric

charge, which says that electric charge can neither be created nor destroyed; that is, the

net amount of charge in any system is a conserved quantity. Electric charge occurs in

discrete quantities. In other words, charge is measured in units of the elementary charge

e. A proton, for instance, has charge+e; an electron has charge−e. Dividing the charge

of a particle by the elementary charge e yields the charge number Q. Thus, a proton

has a charge number of +1 and an electron of −1 (cf. Table 7.3). The charge number

Q is called a quantum number. The conservation of electric charge then amounts to

the following statement:

Qinitial =Qfinal, (7.7)

with Qinitial and Qfinal being the sum of Qs over all particles in the initial and final

configurations, respectively. Reactions in which Q is not conserved (i.e., for which

Qinitial �=Qfinal) are forbidden. In the first reaction (7.4), for instance, Qinitial = (+1)+
(−1)= 0 and Qfinal = 0+ 0= 0. Because the electric charge is conserved, the reaction

is allowed. The second reaction (7.5), on the other hand, is forbidden because the

electric charge is not conserved in this case: Qinitial = 0 �=Qfinal =−1.
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A strange phenomenon is seen to occur in reaction (7.6), however. Although

the electric charge is conserved, the reaction is not allowed. As a result, physicists

were forced to introduce new quantum numbers, such as baryon number, lepton

number, electron number, muon number, and strangeness (see §7.1.5), to rationalize

all observed (and nonobserved) particle reactions.

7.1.5 Strangeness (1953)

Another problem facing the theoretical physicists during the 1950s was connected to

the decay of certain baryons. Although most baryons were created almost instanta-

neously (on a timescale of 10−23 s), some of them (such as the kaons or the lambda

particle) were seen to decay considerably slower (on the order of 10−10 s). To explain

this “strange” behavior, Murray Gell-Mann and Kazuhiko Nishijima independently

introduced a new quantum number with the name strangeness (denoted with the

symbol S). Just like electric charge is a conserved quantity in elementary particle

interactions, Gell-Mann and Nishijima believed strangeness would be conserved in

strong interactions; that is,

Sinitial = Sfinal. (7.8)

For example, in the proton–pion collision (7.4) of the previous paragraph, p++π−→
K 0 +�0, both the proton and the pion have S = 0 (cf. Table 7.3), and because the

kaon K0 carries strangeness S =+1, �0 must have S =−1. That is, for each particle

with strangeness+1, formed under the strong force, another particle with strangeness

−1 is observed to be created simultaneously. This also explains the non-occurrence of

reaction (7.6): p++π− � K 0+�0, where�0 has a strangeness S=−2 (Sinitial = 0 �=
Sfinal =−1).

What is more, all particles with nonzero strangeness are highly unstable, and

they would love to decay into particles with strangeness 0. This is not possible,

however, because strangeness is conserved under the strong force. Gell-Mann and

Nishijima therefore postulated that strangeness would no longer be conserved in weak

interactions. In this way, strange particles (or hyperons as they were called) could decay

under the weak force, albeit at a much slower rate. For example, in the decay of the

lambda particle,

�0 → p+ +π−, (7.9)

strangeness is clearly not conserved. The conservation of this fundamental property

under the strong nuclear force hinted at a deep symmetry, as we intend to recount in

this chapter.

7.1.6 The Mendeleev of elementary particle physics

By the beginning of the 1960s, physicists were gravely bothered by so many unexpected

particles with startling properties. Elementary particle physics had turned into a new

form of butterfly collecting. Deeply annoyed by this discomforting situation, Enrico

Fermi told one of his students, “Young man, if I could remember the names of all these

particles, I would have been a botanist.” Willis Lamb in his Nobel Prize lecture said,

“I have heard it said that the finder of a new elementary particle used to be rewarded

by a Nobel Prize, but such a discovery now ought to be punished by a $10.000 fine.”



Sh
at
te
re
d
Sy
m
m
et
ry

14
2 The state of elementary particle physics at the beginning of the 1960s resembled

the situation in chemistry a century before. During the 1860s, numerous chemical

elements had been isolated and studied in the lab, but no apparent order was

found among the different elements. It was the Russian chemist Dmitri Ivanovich

Mendeleev (1834–1907) who finally came up with a periodic system in 1869 in

which all the elements were classified along horizontal periods according to increasing

atomic mass, and in vertical groups according to chemical similarities, thus exhibiting

the various relationships among the different elements in a tabular format (see

Chapter 13).

A century later, in 1961, American physicist Gell-Mann (b. 1929) stepped forward

as the Mendeleev of elementary particle physics. Guided by a profound belief in the

force of symmetry, Gell-Mann brought order in the apparent chaos of elementary

particles. The clarification and systematization of particle physics brought about in

his eightfold way (§7.5) culminated in his prediction of quarks (§7.6), which earned

him a Nobel Prize in physics in 1969, exactly one hundred years after Mendeleev’s

discovery of the periodic system. For more than twenty years (from 1950–1970

onward), Gell-Mann dominated the field of theoretical particle physics and stamped

his mark by introducing numerous catchy names such as “strangeness” (vide supra),

the “eightfold way,” and “quarks” (vide infra).7

There is a lot of ground to be covered before we can fully appreciate the power

and elegance of Gell-Mann’s insight. For one thing, we have to acquaint ourselves with

a new form of symmetry group. The Lie group involved is the special unitary group

in three dimensions, SU(3), which in many respects can be viewed as SO(3)’s older

brother.

The best way of introducing the SU(3) group is via a consideration of the

three-dimensional isotropic harmonic oscillator that shares the same symmetry as the

eightfold way. The fact that the SU(3) group manifests itself in these two systems

does not necessarily imply that there exists a deep relationship between both. It

simply shows that “Nature seems to like the number three!” And yet, much of the

machinery to be introduced in our treatment of the harmonic oscillator (§§7.2–7.3)

proves applicable to the quark structure as well (§7.6). This is another example of

how one and the same abstract group can be realized in two concrete and altogether

different systems (see also Chapter 2, §2.2).

To achieve a gradual understanding of the SU(3) symmetry, let us start with the

unitary group in one dimension, U(1), which is the symmetry of the one-dimensional

harmonic oscillator (§7.2). From there, it is straightforward to generalize to the

three-dimensional case with SU(3) symmetry (§7.3). Finally, after describing the

general properties of the U(3) and SU(3) group in §7.4, the story of Gell-Mann’s

eightfold way will be recounted in §7.5. We will conclude this chapter with a brief

journey to the subatomic realm of quarks in §7.6.

7 For a biography of Murray Gell-Mann, see G. Johnson. Strange Beauty: Murray Gell-Mann and

the Revolution in Twentieth-Century Physics. New York: Vintage Books, 2000. See also Gell-Mann’s

popular scientific book M. Gell-Mann. The Quark and the Jaguar. 1994. For a collection of papers

relating to the eightfold way, see M. Gell-Mann and Y. Ne’eman. The Eightfold Way. Boulder, CO:

Westview Press, 2000.
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x

t
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k

x

ω = k
m

x (t) = A cos (ωt + φ)

1
νT = 

FIGURE 7.1 Simple harmonic motion of a mass m attached to a spring with spring constant k,

yielding sinusoidal oscillations about the equilibrium x = 0, with A the amplitude, ν the frequency,

T the period, and ω the angular velocity. Note that in this situation, the phase φ equals −π/2.

7.2 THE ONE-DIMENSIONAL HARMONIC OSCILLATOR

The one-dimensional harmonic oscillator is sometimes called “the model of all models.”

It is one of the simplest integrable systems with ubiquitous ramifications, from

molecular vibrations and boson matter down to string theory. Our examination of this

system starts during the eighteenth century—1747, to be precise—when Jean-Baptiste

Le Rond d’Alembert, for the first time, described the wave equation of a vibrating

string, which is essentially the classical mechanics of the one-dimensional harmonic

oscillator. Another important pillar is Robert Hooke’s equation, which dates from even

earlier times, back in the seventeenth century.

7.2.1 Classical mechanical treatment

Suppose a single particle with mass m is attracted toward the origin by a force

proportional to the particle’s displacement x from the origin (Figure 7.1). According

to Hooke’s law,

F =−kx, (7.10)

with the proportionality constant k denoting the so-called force constant and F

being the force acting on the particle. Eq. (7.10) is obeyed by a mass attached to a

spring, provided the spring is not stretched too much from its equilibrium position

at x = 0. This system is called a simple harmonic oscillator because F is the only

force acting on the particle.8 The force constant k is also referred to as the spring

constant.

8 If a frictional force were present, the system would be described as a damped harmonic oscillator.
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Combining Newton’s second law F = ma with Hooke’s law F = −kx gives a

second-order linear differential equation:

F =ma =m
d2x

dt2
=−kx, (7.11)

where use was made of Eq. (7.10) and t represents time. This equation is essentially

d’Alembert’s wave equation. The solutions to this equation are given by

x (t)= A cos (2πνt +φ)= A cos (ωt +φ), (7.12)

and they describe simple harmonic motion of a periodic nature, (i.e., consisting of

sinusoidal oscillations about the equilibrium point), with a constant amplitude A

and a constant frequency ν (i.e., the number of cycles per second; see Figure 7.1). In

addition to its amplitude and frequency, the motion of a simple harmonic oscillator

is also characterized by a constant period T . This is the time for a single complete

oscillation, with T = 1
/
ν. The phase φ of the system determines the starting point on

the sinusoidal wave.

In Eq. 7.12, the x-coordinate of the particle is oscillating back and forth between

the A and−A extremes around the rest position. Such a motion is found to correspond

to the projection on the x-axis of the top of a vector with radius A, which is rotating

at a constant speed in the xy-plane around the origin at x = 0 (Figure 7.2). This is

a phasor. The speed ω = 2πν is also called the angular velocity, measured in units of

radians per second; the oscillator frequency ν counts the number of full oscillations

per second and is expressed in Hertz.

Using the techniques of differential calculus, the velocity v and acceleration a as a

function of time t can be found:

v (t)= dx

dt
=−Aω sin(ωt +φ); (7.13)

a (t)= d2x

dt2
=−Aω2 cos (ωt +φ). (7.14)

The speed is maximal for x = 0 and drops to zero at the turning points, where the

motion comes to a halt and then takes off again in the opposite direction. In this way,

the particle spends most of its time in the extremal positions, and the least amount

x x

ty

–A –A

+A +A

ω = 2πν

FIGURE 7.2 Representation of a sinusoidal function with the help of a phase vector or phasor that

rotates with an angular velocity ω= 2πν about the origin in the xy-plane. The sine function is

obtained by projecting the vector onto the x-axis. The amplitude A is the modulus of the vector.
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of time in the equilibrium position. As we will see, this is different from the quantum

mechanical ground state (see §7.2.2).

Using Eq. (7.12), the acceleration a in Eq. (7.14) can also be expressed as a function

of the displacement x:

a (x)=−ω2x. (7.15)

Substituting Eq. (7.15) into Eq. (7.11) gives

ma =m
(−ω2x

)=−kx;

ω=
√

k

m
.

(7.16)

Since ω = 2πν, the frequency ν of the oscillations is given by

ν = 1

2π

√
k

m
. (7.17)

The period T = 1
/
ν denotes the time for one complete oscillation, and it is given by

T = 2π

√
m

k
. (7.18)

These equations demonstrate that the period T and frequency ν are independent of

the amplitude A and the initial phase of motion φ.

Energy of a simple harmonic oscillator

Now let us consider the energy. The potential energy V is related to the displacement

of the force:

F =−dV

dx
=−kx, (7.19)

where use was made of Eq. (7.10). Integrating Eq. (7.19) gives∫
dV =

∫
kxdx;

V = 1

2
kx2 +C,

(7.20)

where C is the integration constant. It follows from Eq. (7.16) that

k =mω2. (7.21)

Choosing the bottom of the potential well as the zero point of energy (i.e., C = 0),

we have

V = 1

2
kx2 = 1

2
mω2x2. (7.22)

This is the harmonic oscillator potential—one of the most important potentials in

theoretical physics. Note that the graph of potential energy V versus the displacement

x is a parabola. The vibrating spring is thus equivalent to a particle in a parabolic well.

The kinetic energy T is

T = mv2

2
= (mv)2

2m
= p2

2m
. (7.23)

The total energy E can be found by adding the potential energy V (Eq. (7.22)) to the

kinetic energy T (Eq. (7.23)):

E = T +V = p2

2m
+ 1

2
mω2x2. (7.24)
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6 This expression yields the Hamiltonian of the classical problem. Conservation of

energy is guaranteed by

T = mv2

2
= 1

2
mA2ω2 sin2 (ωt +φ);

V = mω2x2

2
= 1

2
mA2ω2 cos2 (ωt +φ);

E = T +V = mA2ω2

2
= kA2

2
.

(7.25)

The total energy is thus only dependent on the square of the amplitude and the force

constant of the elastic potential.

7.2.2 Quantummechanical treatment

The quantum harmonic oscillator is the quantum mechanical analogue of the classical

harmonic oscillator. It is one of the most important model systems in quantum

mechanics because an arbitrary potential well can be approximated as a harmonic

potential at the vicinity of a stable equilibrium point. This technique is of great

importance for the description of molecular vibrations. Furthermore, the quantum

harmonic oscillator is one of the few quantum mechanical systems for which a simple,

exact solution is known. It is used as a basis for nuclear structure theory and quantum

field theory, and its symmetry properties have been applied successfully in elementary

particle physics, leading Murray Gell-Mann and Yuval Ne’eman to the eightfold way,

as we shall see in §7.5.

Harmonic oscillator Hamiltonian

Analogous to the classical mechanical expression for the total energy (Eq. (7.24)), the

harmonic oscillator Hamiltonian energy operator is

Ĥ = T̂ + V̂ = p̂2

2m
+ 1

2
mω2x̂2, (7.26)

where x̂ = x is the position operator and p̂ is the momentum operator, given by

p̂=−ih̄
d

dx
= h̄

i

d

dx
, (7.27)

with h̄ = h/2π denoting Planck’s constant—the logo of quantum mechanics (see

Appendix D). Eq. (7.26) can be rewritten as follows:

Ĥ = 1

2m

[
p̂2 +m2ω2x̂2]. (7.28)

To find the energy levels of the one-dimensional quantum mechanical harmonic oscil-

lator and the corresponding energy eigenstates, we must solve the time-independent

Schrödinger equation

Ĥ |ψ〉 = E |ψ〉. (7.29)

With Eqs. (7.27) and (7.28), this becomes

1

2m

(
−h̄2 d2

dx2
+m2ω2x2

)
|ψ〉 = E |ψ〉. (7.30)
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We could solve this eigenvalue problem using the so-called spectral method, which

consists of solving the differential equation (7.30), but it turns out that there is a

different approach that circumvents the need to integrate and work with Hermite

polynomials. In the following, we reapply the ladder operator method of Paul Dirac,

which was described in Chapter 5 in relation to the angular momentum eigenstates.

This alternative method is of an algebraic rather than an analytic nature; it doesn’t

involve calculus and therefore allows us to extract the energy eigenvalues E without

having to solve the differential equation (7.30) directly. Moreover, it is applicable to

more complicated problems, such as many-particle systems.

The operator method formalism

We start with a brief recapitulation of Dirac’s ladder operator method. Let |a〉 be an

eigenket of Â with the eigenvalue equation

Â |a〉 = a |a〉. (7.31)

Operators B̂+ and B̂− are said to be ladder operators for Â when their respective

commutation relations satisfy the following property:[
Â, B̂±

]
= ÂB̂± − B̂±Â =±cB̂±, (7.32)

for some nonzero real scalar c.

Factorization of the Hamiltonian

Following this approach, we can try to apply Dirac’s method to the quantum

mechanical harmonic oscillator problem. In this case, Eq. (7.31) is substituted with the

time-independent Schrödinger equation, given in Eq. (7.29); operator Â becomes the

harmonic oscillator Hamiltonian Ĥ , and B̂+ and B̂− take on the function of ladder

operators, which should satisfy the following commutation relation:[
Ĥ , B̂±

]
= Ĥ B̂± − B̂±Ĥ =±cB̂±. (7.33)

To find a valuable expression for the raising operator B̂+ and the lowering operator

B̂−, it is helpful to note that the expression between square brackets in the harmonic

oscillator Hamiltonian of Eq. (7.28) represents a sum of squares. This raises the

possibility of factorizing the Hamiltonian—that is, decomposing it in a product of

factors, which is a common operation within the field of algebra. Recall that a

difference of squares a2 − b2 can be written as

a2 − b2 = (a+ b)(a− b), (7.34)

whereas a sum of squares a2 + b2 equals

a2 + b2 = (a+ ib)(a− ib). (7.35)

Based on this observation, we could attempt to express the Hamiltonian in Eq. (7.28)

as a product of two factors:

Ĥ
?= 1

2m

(
mωx̂ − ip̂

)(
mωx̂+ ip̂

)
. (7.36)
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8 Let us check this factorization by calculating the product on the right-hand side of

Eq. (7.36):

1

2m

(
mωx̂− ip̂

)(
mωx̂+ ip̂

)= 1

2m

(
p̂2 +m2ω2x̂2 − imωp̂x̂+ imωx̂p̂

)
= 1

2m

(
p̂2 +m2ω2x̂2)+ i

2
ω
(
x̂p̂− p̂x̂

)
= Ĥ + i

2
ω
[
x̂, p̂
]
,

(7.37)

where we used Eq. (7.28) in the last line. If x̂ and p̂ were commuting with each other

(i.e.,
[
x̂, p̂
] = 0), then Eq. (7.36) would be perfectly valid. However, using Eq. (7.27),

the commutator
[
x̂, p̂
]

in Eq. (7.37) can be rewritten as[
x̂, p̂
]= x̂p̂− p̂x̂ = h̄

i

(
x

d

dx
− d

dx
x

)
. (7.38)

Operating with Eq. (7.38) on some arbitrary function f (x) gives

h̄

i

(
x

d

dx
− d

dx
x

)
f (x)= h̄

i

[
x

d

dx
f (x)− d

dx
xf (x)

]
= h̄

i

[
x

d

dx
f (x)−

(
f (x)

d

dx
x+ x

d

dx
f (x)

)]
= h̄

i

[
x

d

dx
f (x)−

(
1+ x

d

dx

)
f (x)

]
= h̄

i

[
x

d

dx
− 1− x

d

dx

]
f (x)

=− h̄

i
f (x).

(7.39)

From this, follows the commutation relation[
x̂, p̂
]=− h̄

i
, (7.40)

and after substitution in Eq. (7.37), this yields

1

2m

(
mωx̂− ip̂

)(
mωx̂+ ip̂

)= Ĥ − 1

2
h̄ω. (7.41)

Clearly, the proposed factorization in Eq. (7.36) is inadequate, because it differs from

the Hamiltonian by the additive constant −h̄ω/2.

Also, although for numbers the products (a + ib)(a − ib) and (a − ib)(a + ib)

are the same, for operators this depends on whether they commute. Hence, when we

transcribe the classical Hamiltonian into the quantum one, we are once again facing

the ambiguity that the order of the operators does matter. Let us examine this by

reversing the order of the factors in Eq. (7.36) and calculating the product once again:

1

2m

(
mωx̂+ ip̂

)(
mωx̂− ip̂

)= 1

2m

(
p̂2 +m2ω2x̂2 + imωp̂x̂− imωx̂p̂

)
= 1

2m

(
p̂2 +m2ω2x̂2)− i

2
ω
(
x̂p̂− p̂x̂

)
= Ĥ − i

2
ω
[
x̂, p̂
]

= Ĥ + 1

2
h̄ω.

(7.42)
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Compared with Eq. (7.41), a different result is obtained because of the noncommuta-

tivity of x̂ and p̂. Once again, the factorization is seen to fail because it differs from the

actual Hamiltonian by the additive constant h̄ω/2.

Note, however, that the sum of the two expressions in Eqs. (7.41) and (7.42) yields

the Hamiltonian multiplied by 2:

1

2m

(
mωx̂− ip̂

)(
mωx̂+ ip̂

)+ 1

2m

(
mωx̂+ ip̂

)(
mωx̂− ip̂

)
= Ĥ − 1

2
h̄ω+ Ĥ + 1

2
h̄ω = 2Ĥ .

(7.43)

This allows us to construct the quantum Hamiltonian as the average of both

possibilities. We start by defining

a† = 1√
2m

(
mωx̂− ip̂

)
(7.44)

as the creation operator (or the raising operator) and

a = 1√
2m

(
mωx̂+ ip̂

)
(7.45)

as the annihilation operator (or the lowering operator) for reasons that will become

obvious in the next section. As can be seen from Eqs. (7.44) and (7.45), the

annihilation operator is the adjoint of the creation operator.9 The Hamiltonian in

Eq. (7.43) can then be written as

Ĥ = 1

2

(
a†a+ aa†) . (7.46)

Similarly, Eqs. (7.41) and (7.42) reduce to

Ĥ = a†a+ 1

2
h̄ω; (7.47)

Ĥ = aa† − 1

2
h̄ω. (7.48)

With this, the commutation relation between a† and a is found immediately:[
a†,a

]= a†a− aa†

= Ĥ − 1

2
h̄ω− Ĥ − 1

2
h̄ω

=−h̄ω.

(7.49)

Creation and annihilation operators

Before we continue, it should be noted that the two ladder operators a† and a, together

with the Hamiltonian Ĥ and the identity operator Ê, form a complete algebra. The

corresponding symmetry is quite involved, however, and will only be discussed in

Chapter 11. The rest of this section is devoted to the solution of the time-independent

Schrödinger equation

Ĥ |ψ〉 = E |ψ〉 (7.50)

9 Note that the momentum operator is self-adjoint; see C. Cohen-Tannoudji, B. Diu, and F. Laloe.

Mécanique Quantique. Paris: Hermann, 1973.
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0 for the one-dimensional harmonic oscillator, making use of the algebra of ladder

operators a† and a. Acting on |ψ〉 with the creation operator a†, we obtain

Ĥ a† |ψ〉 =
(

a†a+ h̄ω

2

)
a† |ψ〉

= a†aa† |ψ〉+ h̄ω

2
a† |ψ〉,

(7.51)

where Eq. (7.47) was used. Since aa† = a†a+ h̄ω according to Eq. (7.49), Eq. (7.51)

can be rewritten as follows:

Ĥ a† |ψ〉 = a† (a†a+ h̄ω
) |ψ〉+ h̄ω

2
a† |ψ〉

= a†
(

a†a+ h̄ω

2

)
|ψ〉+ h̄ωa† |ψ〉

= a†Ĥ |ψ〉+ h̄ωa† |ψ〉
= a†E |ψ〉+ h̄ωa† |ψ〉

Ĥ a† |ψ〉 = (E+ h̄ω)a† |ψ〉,

(7.52)

where use was made again of Eq. (7.47). It thus follows from Eqs. (7.50) and (7.52) that

if |ψ〉 is an eigenstate of Ĥ with eigenvalue E, then a† |ψ〉 is an eigenfunction of Ĥ ,

with an eigenvalue E + h̄ω. In other words, operating on the eigenfunction |ψ〉 with

the raising operator a† converts |ψ〉 into another eigenfunction of Ĥ with eigenvalue

h̄ω higher than the eigenvalue of |ψ〉.
If we now apply the raising operator a† to Eq. (7.52) again, we find similarly

Ĥ
(
a†)2 |ψ〉 = (E+ 2h̄ω)

(
a†)2 |ψ〉. (7.53)

Repeated application of the raising operator gives

Ĥ
(
a†)k |ψ〉 = (E+ kh̄ω)

(
a†)k |ψ〉 , k = 0, 1, 2, . . . . (7.54)

In the same manner, the lowering operator a, when acting on the eigenstate |ψ〉, lowers

the initial eigenvalue E with the amount h̄ω:

Ĥ a |ψ〉 = (E− h̄ω)a |ψ〉;
Ĥ ak |ψ〉 = (E− kh̄ω)ak |ψ〉.

(7.55)

Thus, by using the raising and lowering operators on the eigenfunction |ψ〉 with the

eigenvalue E, we generate a ladder of eigenvalues, the difference from step to step

being h̄ω:

. . . , E− 2h̄ω, E− h̄ω, E, E+ h̄ω, E+ 2h̄ω, . . . . (7.56)

We can now understand why the ladder operators for the quantum mechanical

harmonic oscillator a† and a were termed creation and annihilation operators,

respectively. Indeed, because the raising operator a† adds a quantum of energy h̄ω

to the oscillator system (Eq. (7.52)), thus creating a new energy shell, it can be called

a creation operator. Similarly, the lowering operator a is interpreted as an annihilation

operator because it subtracts a quantum of energy h̄ω to the oscillator system, thus

annihilating the initial energy shell (Eq. (7.55)).
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The vacuum state

Given any energy eigenstate |ψ〉, we can act on it with the lowering operator a to

produce another eigenstate a |ψ〉 with less energy. By repeated application of the

lowering operator, it seems we can produce energy eigenstates down to E = −∞.

However, the set of eigenvalues of Ĥ generated using the ladder operators a† and a

must have a lower bound, which can be seen as follows: for an eigenstate |ψ〉, the length

of the square of the ket a |ψ〉 must be greater than or equal to zero, which implicates a

lower bound on the energy:

E− h̄ω

2
= 〈ψ |a†a |ψ〉 = 〈aψ |aψ〉 ≥ 0, (7.57)

which implies

E ≥ h̄ω

2
. (7.58)

Therefore, let E0 be the smallest eigenvalue of Ĥ and let |ψ0〉 be the corresponding

eigenfunction. This eigenstate is often referred to as the vacuum state and must be

destroyed when we act on it with the lowering operator:

a |ψ0〉 = 0, (7.59)

because otherwise a |ψ0〉would be an eigenfunction with eigenvalue E0− h̄ω< E0. We

can see easily that |ψ0〉 is an eigenstate of Ĥ with the aid of the Schrödinger equation

(Eq. (7.50)) and Eq. (7.47):

Ĥ |ψ0〉 =
[

a†a+ h̄ω

2

]
|ψ0〉

= a† [a |ψ0〉]+ h̄ω

2
|ψ0〉

= 0+ h̄ω

2
|ψ0〉 = E0 |ψ0〉.

(7.60)

It thus follows that the lowest achievable energy E0 is exactly equal to h̄ω
/

2, which is

called the ground state energy or zero-point energy. Classically, the oscillating particle

could come to rest at the bottom of the potential well, where it has zero momentum

p and a well-defined position x. Quantum mechanically, however, its energy cannot

be zero.10 According to Heisenberg’s uncertainty principle�x�p � h̄
/

2, the position

x and momentum p of the oscillating particle cannot be known simultaneously with

exact certainty (see Appendix D). This explains why the zero-point energy does not

vanish. The particle is never at rest; it oscillates back and forth in the well. This view is

confirmed when we look at the wave function for the ground state, which can be easily

derived from Eq. (7.59). We obtain a first-order differential equation:

1√
2m

[
mωx̂+ ip̂

] |ψ0〉 = 0

h̄
d

dx
|ψ0〉 = −mωx |ψ0〉

d |ψ0〉
|ψ0〉 = −mω

h̄
xdx.

(7.61)

10 If the particle comes to a complete rest, it ceases to have wavelike characteristics and becomes a

classical particle.
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FIGURE 7.3 The wave functions |ψi〉, allowed energies Ei , and corresponding probability densities

|ψi|2 for the first four energy levels (i = 0→ 3) of the quantum harmonic oscillator. The different

wave functions are sinusoidal inside the potential well, but decay exponentially outside. The energy

levels are equidistant.

This equation is easily solved. The normalized ground state wave function is given by

|ψ0〉 =
(

mω

π h̄

)1/4

exp

(
−mω

2h̄
x2
)

. (7.62)

The ground state wave function thus has a bell shape, with its maximum at x = 0.

Because the square of the wave function reflects the density distribution, it is

implied that the particle is concentrated in a narrow zone around the equilibrium

position. This contrasts with the weight distribution in the classical picture, where

the density peaks at the extremal positions. For higher excited states of the oscillator,

the wave function spreads out gradually to the extremal turning points, reaching

a better correspondence between the classical and the quantum mechanical picture

(Figure 7.3).

Excited states

To find the energy level of the nth eigenstate for the Hamiltonian, we use the fact that

any eigenstate can be represented as the ground state |ψ0〉 acted on n times by the

raising operator:
(
a†
)n |ψ0〉. Doing so, we find that the energy levels are

En = h̄ω

2
+nh̄ω=

(
n+ 1

2

)
h̄ω, (7.63)

with n = 0, 1, 2, . . . as the vibration quantum number. Interestingly, since |ψ0〉
represents the vacuum state, it appears as if the whole energy spectrum has been

created out of nothing (i.e., a quantum mechanical realization of the theologians’

creatio ex nihilo, standing in sharp contrast with the famous Latin dictum ex nihilo

nihil fit—from nothing, comes nothing). But, the energy spectrum of the quantum

mechanical harmonic oscillator is noteworthy for a number of other reasons as well.

First, the energies are quantized and may only take the discrete half-integer multiples
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of h̄ω. This is a typical feature of many quantum mechanical systems. Second, the

energy levels are equally spaced (Figure 7.3), unlike the energy levels for the hydrogen

atom (Chapter 9) or the particle in a box.

The symmetry of the one-dimensional oscillator

The Hamiltonian of the oscillator contains a product of two conjugate operators a†a.

Such a form is invariant under a phase change of both operators. For a′ = exp(−iθ)a,

the adjoint operator transforms as the complex conjugate, (a†)′ = a† exp (iθ), so that

the bilinear form remains unchanged:

(a†)′a′ = a† exp(iθ)exp(−iθ)a = a†a. (7.64)

Clearly, the set of all phase factors forms a group, the elements of which are

characterized by an angle θ in the complex plane. The corresponding group is called

the unitary group in one dimension: U(1). We will come back to the U(1) group in

§7.4.3. For the moment, it suffices to say that a change of phase factor can be viewed

as a rotation on the unit circle in the complex plane. As a result, U(1) is similar

to the two-dimensional rotation group SO(2). From a shell theoretical perspective,

U(1) does not contain additional information because all levels are nondegenerate. In

contrast, in higher dimensional cases, degeneracies arise and the unitary groups act as

true degeneracy groups, as we shall see in a moment.

The algebra of the ladder operators is a different matter. The ladder operators do

not conserve the energy; like elevators, they run up and down the oscillator levels.

A symmetry group that hosts the ladder operators thus collects all the levels in one

representational set. Such an algebra is called a spectrum generating algebra because

it changes the energy as it moves through the set of levels. We will come back to this

concept when addressing the noncompact Lie group SO(2,1) in Chapter 11.

7.3 THE THREE-DIMENSIONAL HARMONIC OSCILLATOR

The one-dimensional harmonic oscillator is easily generalizable to n dimensions. In

one dimension, the position of the particle is specified by a single x coordinate.

In n dimensions, this is replaced by n Cartesian position coordinates labeled

x1, x2, . . . , xn. Corresponding to each position coordinate is a momentum; these

are labeled p1, p2, . . . , pn. In analogy with the one-dimensional Hamiltonian,

given by Eq. (7.26), the Hamiltonian for the n-dimensional quantum harmonic

oscillator is

Ĥ =
n∑

i=1

(
p̂2

i

2m
+ 1

2
mω2x̂2

i

)
, (7.65)

where x̂i is the ith position operator, and p̂i is the ith momentum operator. As the

form of this Hamiltonian makes clear, the n-dimensional harmonic oscillator is exactly

analogous to n independent one-dimensional harmonic oscillators with the same mass

m and spring constant ω. In this case, however, each of the quantities x1, x2, . . . , xn

refers to the position of one of the n particles.

In the specific case of a spherically symmetric three-dimensional harmonic

oscillator, the three position coordinates x1, x2, and x3 can be written as x, y, and z.
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4 Similarly, the momenta p1, p2, and p3 become px , py , and pz , respectively. Following

Eq. (7.65), the Hamiltonian energy operator then equals

Ĥ = Ĥx + Ĥy + Ĥz

= p̂2
x

2m
+ 1

2
mω2x̂2 + p̂2

y

2m
+ 1

2
mω2ŷ2 + p̂2

z

2m
+ 1

2
mω2ẑ2

= 1

2m

[
p̂2

x +m2ω2x̂2]+ 1

2m

[
p̂2

y +m2ω2ŷ2
]
+ 1

2m

[
p̂2

z +m2ω2ẑ2].
(7.66)

This system consists of a particle with mass m bound to the origin by a force F whose

components Fx , Fy , and Fz along the x-, y-, and z-axes are equal to −kxx, −kyy, and

−kz z, respectively. kx , ky , and kz are the three force constants in the three directions,

and x, y, and z are the components of the displacement along the three axes. In the case

of spherical symmetry, the spring constant has the same magnitude in all directions:

kx = ky = kz . This oscillator is often referred to as an isotropic oscillator. Following the

same ladder operator approach as used with the one-dimensional harmonic oscillator,

the Hamiltonian Ĥ can be rewritten in analogy with Eq. (7.47) as

Ĥ =
(

a†
xax +

h̄ω

2

)
+
(

a†
y ay + h̄ω

2

)
+
(

a†
z az + h̄ω

2

)
= a†

x ax + a†
y ay + a†

z az + 3

2
h̄ω.

(7.67)

Note that the form of this expression is analogous to the one-dimensional expression

for the Hamiltonian in Eq. (7.47). As a result of the independence of the three spatial

directions, the three-dimensional Hamiltonian Ĥ can be seen as the sum of three

Hamiltonians: Ĥx acting in Ex , Ĥy acting in Ey , and Ĥz acting in Ez . Each of these

Hamiltonians relates to a one-dimensional Schrödinger equation:

Ĥx
∣∣ψnx

〉= Ex
∣∣ψnx

〉= (nx + 1

2

)
h̄ω
∣∣ψnx

〉
; (7.68)

Ĥy
∣∣ψny

〉= Ey
∣∣ψny

〉=(ny + 1

2

)
h̄ω
∣∣ψny

〉
; (7.69)

Ĥz

∣∣ψnz

〉= Ez

∣∣ψnz

〉=(nz + 1

2

)
h̄ω
∣∣ψnz

〉
; (7.70)

analogous to Eqs. (7.50) and (7.63). Since Ĥ = Ĥx + Ĥy + Ĥz ,

Ĥ
∣∣ψnx ,ny ,nz

〉= (nx +ny +nz + 3

2

)
h̄ω
∣∣ψnx ,ny ,nz

〉= En

∣∣ψnx ,ny ,nz

〉
. (7.71)

The energy levels of the three-dimensional harmonic oscillator are thus denoted by

En =
(
n+ 3

/
2
)

h̄ω, with n as the total quantum number, being a nonnegative integer

n = nx + ny + nz . Because the energy of this system depends only on the sum of

the quantum numbers nx , ny , and nz , all the energy levels for the isotropic oscillator

are degenerate, except for the lowest level E0 = 3
/

2h̄ω. Indeed, for the first energy

level, n = 0, there is only a single eigenstate: |ψ000〉. The next level, n = 1, has three

states—namely, |ψ100〉, |ψ010〉, and |ψ001〉—so it is degenerate. A little further thought

makes clear that higher energy states have even greater degeneracy (i.e., there are even

more eigenstates sharing the same eigenvalue). The second energy level, n = 2, for

instance, is sixfold degenerate with |ψ200〉, |ψ020〉, |ψ002〉, |ψ110〉, |ψ101〉, and |ψ011〉,
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all sharing the same eigenvalue E2 = 7
/

2h̄ω. The degeneracy at a particular level n can

be found by a smart rearrangement of the (nx ,ny ,nz) quantum levels as follows:∑
nx+ny+nz=n

(
nx ,ny ,nz

)= [(n, 0,0)]

+ [(n− 1,1,0)+ (n− 1,0,1)]

+ [(n− 2,2,0)+ (n− 2,1,1)+ (n− 2,0,2)]

+ . . .
+ [(n− i, i, 0)+ (n− i, i− 1,1)+ . . . (n− i, 0, i)]

+ . . .
+ [(0, n, 0)+ (0, n− 1,1)+ . . . (0,0,n)].

(7.72)

Here, the excitation is presented in slowly decreasing order of nx . For nx = n− i, there

are i+ 1 couples of ny , nz . The total degeneracy D can thus be easily calculated:

D =
n∑

i=0

(i+ 1)= (n+ 1)(n+ 2)

2
, (7.73)

resulting in the sequence 1, 3, 6, 10, 15 for n= 0→ 4.

Harmonic shells and atomic clusters

By way of illustration, let us briefly consider the shell structure of atomic clusters. An

atomic cluster is a small multiatomic particle, usually of nanometer size. As such, it

is an intermediate stage between the free atom and the regular solid. Clusters can be

formed by firing an intense laser beam at a solid sample. The collision leads to the

formation of a hot plasma of ionized atoms. When the plasma is cooled rapidly by the

supersonic expansion of the helium carrier gas in a high vacuum, atoms aggregate to

clusters that can be detected in a mass spectrometer.

Figure 7.4 shows the outcome of such an experiment in the case of sodium

clusters.11 It is clear that not all cluster sizes, or nuclearities, as they are called, are

being formed with equal probability. The peaks in the spectrum indicate clusters with

extra stability. The magic numbers associated with these are identified as 8, 20, and 40,

and less pronounced magic features are seen at 58 and 92.

The simplest shell model to interpret these spectral results is based on the harmonic

oscillator. In this model, a cluster of sodium atoms is considered as a kind of

superatom. The sodium atoms have a lonely valence electron that is easily ionized. The

resulting electron gas holds the Na+ ions together in a spherical aggregate, giving rise

to an effective central attraction potential comparable with a spherical parabolic well.

The states of this superatom thus correspond to a first approximation to the energy

levels of the harmonic oscillator. According to the Pauli principle for an electron

system, each eigenstate can accommodate only two electrons with opposite spin. The

11 W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen.

“Electronic Shell Structure and Abundances of Sodium Clusters.” Physical Review Letters 52.24

(1984), pp. 2141–2143.
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FIGURE 7.4 (A) Mass spectrum of sodium clusters, with N = 4 to 75. (B) Simulated shell model

showing peaks corresponding to closed-shell states. Adapted from W. D. Knight, K. Clemenger, W.

A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen. “Electronic Shell Structure and

Abundances of Sodium Clusters.” (1984).

number of electrons per shell therefore equals 2, 6, 12, 20, 30, leading to the following

magic numbers for shell closure:

2, (2+ 6) , (2+ 6+ 12) , (2+ 6+ 12+ 20) , (2+ 6+ 12+ 20+ 30), (7.74)

or

2, 8, 20, 40, and 70. (7.75)

The numbers 8, 20, and 40 are indeed observed in the experiment. For higher

nuclearities, deviations of the shell model become more important and lead to a

breakdown of the oscillator shells in spherical subshells,12 explaining the weak features

at 58 and 92.

12 The spherical subshells of a given oscillator shell are derived in Chapter 14.2.3.
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The U(3) group and the isotropic harmonic oscillator

Until now, no mention has been made of the use of symmetry groups, but it would be

surprising if the magic sequence of degeneracies would not hide a valiant degeneracy

group.13 According to D. M. Fradkin, “an important starting point in the investigation

of a physical system is the determination of the symmetries it possesses. Once these are

known, many of the system’s properties can be established by quite general means.

The mathematical description of a symmetry is in terms of a corresponding set of

operations that leaves the system unchanged. By this we mean that the result of these

operations still gives the same system although perhaps in a different state.”14 An

example might help to understand this point. Suppose, for instance, that a certain

operator Â exists that acts on the eigenfunction |ψ210〉, transforming it into the

eigenstate |ψ201〉. Because both functions belong to the n= 3 shell, the energy remains

unchanged, although the transformed state |ψ201〉 is clearly different from the initial

eigenstate |ψ210〉.
Let us verify whether any of the six previously mentioned ladder operators (a†

x ,

ax , a†
y , ay , a†

z , or az) is able to transform the eigenstate |ψ210〉 into the eigenfunction

|ψ201〉. Clearly, such a transformation in only one step is impossible when use is made

of these six ladder operators. At least two steps are needed. For instance, acting first

with ay on |ψ210〉 lowers the eigenfunction, resulting in |ψ200〉. In a second step, a†
z

can be used to raise |ψ200〉 to |ψ201〉. It thus follows that a†
z ay is a suitable ladder

operator to transform |ψ210〉 into |ψ201〉 in just one step.

How many of these ladder operators could we possibly build? Because the general

form of this type of ladder operator can be expressed as a†
i aj , with i = x,y,z and j =

x,y,z, a little further consideration brings us to the conclusion that a total of nine

such operators can be built: a†
xax , a†

xay , a†
xaz , a†

y ax , a†
y ay , a†

y az , a†
z ax , a†

z ay , and a†
z az .

The Hamiltonian itself is proportional to the sum of the three diagonal elements in

this row (i.e. the elements with i = j; see Eq. (7.67)). This sum clearly corresponds

to the Casimir operator, which characterizes the shell by the quantum number n. Once

the operators are in place, the next task is to derive their commutation relations. From

there, we obtain the algebra, and hence the symmetry group, and all it entails.

Instead of continuing this heuristic derivation, let us take a stepwise approach so as

to discover the landscape gradually while we climb our way to the top, starting from

the by-now-familiar valley of the orthogonal matrix group. In this way, the connection

between SO(3) and SU(3) can be clearly exposed.

We begin by rewriting the three creation operators as a row vector a†, and the

three destruction operators as a column vector a. The scalar product of these vectors

corresponds to the operator part of the Hamiltonian:

a† · a=
[

a†
x a†

y a†
z

]⎡⎢⎣ax

ay

az

⎤⎥⎦
= a†

xax + a†
y ay + a†

z az .

(7.76)

13 See H. J. Lipkin. “The Three-Dimensional Harmonic Oscillator.” In: Lie Groups for Pedestrians.

Mineola, NY: Dover Publications, 2002, pp. 57–68.
14 D. M. Fradkin. “Three-Dimensional Isotropic Harmonic Oscillator and SU3.” American Journal

of Physics 33.3 (1965), pp. 207–211, 207.
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was derived, with one difference though; the current vectors are no longer real, but

complex entities. This means that a transformation of a† by a matrixU, as (a†)′ = a† U,

will be matched by a conjugate transformation of the column vector of annihilation

operators (i.e., with a transformation matrix that is the transposed and complex

conjugate of U—transposed because row and columns are interchanged, complex

conjugate because creation and annihilation operators are complex conjugate). We

denote this conjugate matrix as U†, where the dagger stands for transposition and

complex conjugation: U† = (U∗)T. The scalar product is thus transformed as follows:

(a†)′ · a′ = a† UU† a. (7.77)

Conservation of this scalar product requires that the transformation matrices have the

following property:

U†U= I=UU†. (7.78)

Matrices satisfying this property are said to be unitary (see Appendix B). Because a

and a† are 3-vectors, the transformation matrices U and U† are of dimension 3. The

set of all 3 × 3 unitary matrices forms a group, the group of unitary, unimodular,

three-dimensional, linear transformations, U(3). The three-dimensional isotropic

harmonic oscillator is therefore said to possess the U(3) group as a symmetry group.

We will study the U(3) and SU(3) groups in detail in the next section.15

7.4 THE UNITARY GROUPS U(3) AND SU(3)

7.4.1 The unitary group U(3)

The unitary group U(3) and its special unitary subgroup SU(3) are of ubiquitous

importance in physics. We will focus on the derivation of the generators and the

Cartan-Weyl structure.

Definition 7.1 (The U(3) Lie group): The set of all 3× 3 unitary matrices,

U(3)=
{

complex 3× 3 matrices U :
U†U=UU† = I

|detU| = 1

}
, (7.79)

15 Other introductory accounts on the unitary groups can be found in J. F. Cornwell. Group

Theory in Physics: An Introduction. San Diego: Academic Press, 1997, pp. 255–270; J. Fuchs and

C. Schweigert. “The Lie Algebra su(3) and Hadron Symmetries.” In: Symmetries, Lie Algebras and

Representations: A Graduate Course for Physicists. Cambridge Monographs on Mathematical Physics.

Cambridge: Cambridge University Press, 1997, pp. 30–46; S. Gasiorowicz. Elementary Particle

Physics. New York: John Wiley & Sons, 1966; W. M. Gibson and B. R. Pollard. Symmetry Principles

in Elementary Particle Physics. Cambridge: Cambridge University Press, 1976; W. Greiner and

B. Müller. “The SU(3) Symmetry.” In: Quantum Mechanics: Symmetries. Berlin: Springer-Verlag,

2001, pp. 195–229; W. Greiner and B. Müller. “Quarks and SU(3).” In: Quantum Mechanics:

Symmetries. Berlin: Springer-Verlag, 2001, pp. 231–307; B. C. Hall. “The Representations of SU(3).”

In: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Graduate Texts in

Mathematics. New York: Springer-Verlag, 2010, pp. 127–153; H. F. Jones. “‘Accidental’ Degeneracy

of the H Atom and SO(4).” In: Groups, Representations and Physics. New York: Taylor & Francis

1998, pp. 124–127; A. W. Joshi. “Dynamical Symmetry.” In: Elements of Group Theory for Physicists.

New Delhi: Wiley Eastern, 1977, pp. 171–176; H. J. Lipkin. “The Group SU(3) and Its Application

to Elementary Particles.” In: Lie Groups for Pedestrians. Mineola, NY: Dover Publications, 2002,

pp. 33–56; W. Pfeifer. The Lie Algebras su(N): An Introduction. Basel, Switzerland: Birkhäuser, 2003.
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forms a continuous, connected, compact Lie group under matrix multiplication.

This group is called the unitary group in three dimensions and is denoted by the

symbol U(3). ◾

Proof. Let Ua and Ub denote two 3×3 unitary matrices of the group U(3), and suppose

that Uc =UaUb.

1. Closure: We need to prove that Uc ∈ U(3); (i.e., Uc is a 3× 3 unitary matrix with a

determinant of absolute value 1). Since Ua and Ub are 3× 3 matrices, Uc is also a

3× 3 matrix. Also,

U†
cUc = (UaUb)

†UaUb =U
†
bU

†
aUaUb =U

†
bUb = I (unitarity); (7.80)

|detUc | = |det(UaUb)| = |detUa| |detUb| = 1. (7.81)

2. Associativity: Matrix multiplication is associative, so the associative law holds true

for the U(3) group elements.

3. Identity element : The 3× 3 identity matrix I represents the identity element.

4. Inverse element : Let U−1
a denote the inverse matrix of Ua . We need to prove that

U−1
a ∈ U(3). Since (U−1

a )† = (U†
a)
−1,(

U−1
a

)†
U−1

a = (U†
a

)−1
U−1

a = (UaU
†
a

)−1 = I−1 = I (unitarity); (7.82)∣∣detU−1
a

∣∣= ∣∣detU†
a

∣∣= ∣∣detU∗
a

∣∣= |detUa| = 1. (7.83)

This proves that U(3) forms a Lie group. ◾

7.4.2 Subgroups of the unitary group U(3)

The relationship between SU(3) and U(3) is analogous to the relationship between

SO(3) and O(3).

Definition 7.2 (The SU(3) subgroup): The subset of 3 × 3 unitary matrices with unit

determinant

SU(3)=
{

complex 3× 3 matrices U :
U†U=UU† = I

detU= 1

}
(7.84)

forms a subgroup of the unitary group U(3) under matrix multiplication. This

group is called the special unitary group in three dimensions and is denoted by the

symbol SU(3). ◾

Definition 7.3 (The O(3) and SO(3) subgroups): Following Eq. (5.18), the set of 3× 3

orthogonal matrices with unimodular determinant

O(3)=
{

real 3× 3 matrices R :
RTR=RRT = I

|detR| = 1

}
(7.85)

forms a subgroup of the unitary group U(3) under matrix multiplication. This is the

familiar orthogonal group in three dimensions, denoted by the symbol O(3). The subset

of orthogonal matrices in Eq. (7.85) with unit determinant (detR= 1) forms the group

SO(3), which is also a subgroup of the unitary group U(3). ◾
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0 We denote the relationship between U(3) and SU(3) by a descending chain of

subgroups:

U(3)⊃ SU(3). (7.86)

The same notation applies for the chain

U(3)⊃O(3)⊃ SO(3). (7.87)

7.4.3 The generators of U(3)

Following the Lie group strategy, we must now determine the infinitesimal generators

of U(3), which we denote by the symbols Xi . To determine the generators Xi , it will

prove helpful to express the unitary matrices U in the form

U= eiX, (7.88)

with X a 3× 3 square Hermitian matrix.

Proof of the Hermiticity of X

To demonstrate the Hermiticity of X (i.e., X† =X), we start by noting that the inverse

matrix U−1 equals

U−1 = e−iX. (7.89)

After all,

UU−1 = eiXe−iX = eiX−iX = eO = I. (7.90)

As a result of the unitarity of the matrix U (cf. Eq. (7.78)), the inverse of the matrix U

can also be written as U−1 =U†. Eq. (7.89) can then be rewritten as

U−1 =U† =
[

eiX
]† = e(iX)

† = e−iX†
, (7.91)

where we have used the property that the adjoint of a matrix function equals
[
f (A)

]† =
f (A†). Because of the uniqueness of the inverse of the matrix U, it follows that

e−iX = e−iX†
, (7.92)

which holds for

X=X†. (7.93)

That is, X is a Hermitian matrix; the Hermitian adjoint X† is identical to X. In terms

of its matrix elements,

xij = x∗ji ;

Rij + iIij = Rji − iIji .
(7.94)

For the diagonal elements of X, this property leads to

xii = x∗ii ;

Rii + iIii = Rii − iIii ,
(7.95)

which holds only for Iii = 0; that is, the diagonal elements of a Hermitian matrix are

all real. Before we can continue our determination of the SU(3) generators, we need

to acquaint ourselves with two more properties of Hermitian matrices: their trace

and their number of independent matrix elements.
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The trace of a Hermitian matrix

Recall the definition of the trace of an n× n matrix A, denoted Tr(A), as the sum of

the elements on the main diagonal

Tr (A)≡
n∑

i=1

aii = a11 + a22 + . . .+ ann = a. (7.96)

Eq. (7.95) then implies that the trace of the Hermitian matrix X is a real number R:

Tr (X)=
n∑

i=1

Rii = R11 +R22 + . . .+Rnn = R, (7.97)

with Rii the matrix element of X on the ith row and ith column.

The independent matrix elements of a Hermitian matrix

Following Eq. (7.94), we can express the general form of an n×n Hermitian matrix X

as follows:

X=

⎡⎢⎢⎢⎢⎢⎢⎣

R11 R12 − iI12 R13 − iI13 · · · R1n − iI1n

R12 + iI12 R22 R23 − iI23 · · · R2n − iI2n

R13 + iI13 R23 + iI23 R33 · · · R3n − iI3n

...
...

...
. . .

...

R1n + iI1n R2n + iI2n R3n + iI3n · · · Rnn

⎤⎥⎥⎥⎥⎥⎥⎦. (7.98)

A general n × n complex matrix has 2n2 matrix elements, n2 of which are real and

another n2 of which are imaginary. However, because of the Hermiticity of X, the

number of independent matrix elements is reduced. Let us first consider the number

of real matrix elements of X. The n diagonal elements Xii are all real, leaving n2 − n

triangular matrix elements. Because of Eq. (7.94), the upper triangular part of X is

perfectly defined by the lower triangular part, leaving
(
n2 − n

)
/2 unique triangular

real matrix elements. The total number NR of independent real matrix elements is

then

NR = n+ n2 −n

2
= 2n+ n2 − n

2
= n2 +n

2
. (7.99)

The same applies to the imaginary elements of X, except that there are no imaginary

elements on the diagonal. The total number NI of unique imaginary elements is

therefore given by

NI = n2 −n

2
. (7.100)

This leads to a simple formula that describes the total number N of independent

matrix elements of an n×n Hermitian matrix X:

N =NR +NI = n2 +n

2
+ n2 −n

2
= 2n2

2
= n2. (7.101)

The generators of U(3)

We start from the general Hermitian matrix X of order 3:

X=
⎡⎢⎣ R11 R12 − iI12 R13 − iI13

R12 + iI12 R22 R23 − iI23

R13 + iI13 R23 + iI23 R33

⎤⎥⎦. (7.102)
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Iij leads to 32 = 9 linearly independent Hermitian matrices of order 3:

X1 = ∂
∂R12

X=
⎡⎣ 0 1 0

1 0 0
0 0 0

⎤⎦; X2 = ∂
∂I12

X=
⎡⎣ 0 −i 0

i 0 0
0 0 0

⎤⎦;

X3 = ∂
∂R11

X=
⎡⎣ 1 0 0

0 0 0
0 0 0

⎤⎦; X4 = ∂
∂R13

X=
⎡⎣ 0 0 1

0 0 0
1 0 0

⎤⎦;

X5 = ∂
∂I13

X=
⎡⎣ 0 0 −i

0 0 0
i 0 0

⎤⎦; X6 = ∂
∂R23

X=
⎡⎣ 0 0 0

0 0 1
0 1 0

⎤⎦;

X7 = ∂
∂I23

X=
⎡⎣ 0 0 0

0 0 −i
0 i 0

⎤⎦; X8 = ∂
∂R22

X=
⎡⎣ 0 0 0

0 1 0
0 0 0

⎤⎦;

X9 = ∂
∂R33

X=
⎡⎣ 0 0 0

0 0 0
0 0 1

⎤⎦.

(7.103)

Let us rewrite the nine independent matrix elements as ui (i = 1,2, . . . , 9) and the

partial derivatives of X to ui as Xi :

Xi = ∂

∂ui
X. (7.104)

It then follows that

X=
9∑

i=1

ui
∂

∂ui
X=

9∑
i=1

uiXi . (7.105)

Eq. (7.88) then becomes

U= exp

[
i

9∑
i=1

uiXi

]
. (7.106)

All the elements of U(3) can thus be generated via this formula; that is, by choosing

different sets of nine real values for the independent parameters ui , we can form every

possible unitary matrix U of U(3). In this way, every unitary matrix U is dependent on

nine real parameters, and the unitary group U(3) is said to be a nine-parametric Lie

group or a Lie group of dimension 9.

The nine independent Hermitian matrices Xi are the generators of U(3). These

generators span the corresponding Lie algebra, denoted u(3). The link between the

elements of the U(3) group and the generators of the u(3) algebra is given by

the following exponential map.

Definition 7.4 (U(3) exponential map): There exists an exponential map exp : u(3)→
U(3), given by

U= exp

[
i

9∑
i=1

uiXi

]
, (7.107)

which relates the generators of the u(3) Lie algebra with the elements of the U(3) Lie

group by expressing the unitary matrix U in terms of the infinitesimal generators Xi , as

defined in Eq. (7.104). ◾
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The unitary group U(1)

As another simple example, let us consider the unitary group U(1), which consists of

all unitary matrices U of dimension 1× 1. A study of this group will prove useful in

§7.4.4. Because of the unit dimensionality of U, each matrix U can be written as a

number U . In line with Eq. (7.88), we express these elements as

U = eiX, (7.108)

with X a Hermitian matrix of dimension 1. That is, X is also a number. As a

consequence of the Hermitian character of X (cf. Eqs. (7.93), (7.94), and (7.95)), X

has to be a real number, which we denote by R:

X= R. (7.109)

The elements U of U(1) can then be written as

U = eiR. (7.110)

The corresponding u(1) Lie algebra is spanned by n2 = 12 = 1 generator. With the

help of Eq. (7.104), this generator can be easily obtained from the general Hermitian

matrix X= R with one independent matrix element R:

∂

∂R
R = 1= I, (7.111)

with I being the unit matrix of dimension 1. There thus exists an exponential map

exp : u(1)→ U(1), given by

U = exp [iR I] (7.112)

that relates the infinitesimal generator I of the u(1) Lie algebra with the elements U of

the U(1) Lie group.

Finally, let us consider what happens when we act with one of the elements U from

the group U (1) on a wave function |ψ〉:
U |ψ〉 = eiR |ψ〉. (7.113)

Clearly, this has the effect of multiplying the ket by an overall phase factor eiR.

Phase factors do not affect the diagonal matrix elements of a Hermitian operator Â.

The expectation value for Â, for instance, remains invariant under the previous

transformation (Eq. (7.113)), because the phase factors cancel out when we determine

the measurable quantity
〈
Â
〉
:

〈ψ | Â |ψ〉 = 〈ψ |U †ÂU |ψ〉 = 〈ψ |e−iRÂeiR |ψ〉. (7.114)

We will come back to this point when discussing the relative importance of the groups

U(3) and SU(3). For now, however, we first need to derive the generators of SU(3).

7.4.4 The generators of SU(3)

In comparison with U(3), the elements of the special unitary group SU(3) have one

more restriction—namely, that their determinant must equal +1 (cf. Definition 7.2).

The number of independent parameters, therefore, lowers from nine to eight, and

SU(3) is said to be an eight-parametric Lie group. Its corresponding Lie algebra su(3)

is spanned by eight linearly independent generators, which we denote by the symbol

X′
i (i = 1,2, . . . , 8).
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4 This raises a number of interesting questions. First of all, what is the influence

of this restriction (unit determinant) on the general form of the SU(3) generators?

Second, what is the relationship between the nine generators Xi of U(3) and the eight

generators X′
i of SU(3)?

Traceless Hermitian matrices X′
i

To formulate an answer to the first question, let us start by recalling the Jacobi formula

for the determinant of a matrix exponential16:

det
(

eC
)
= eTr(C), (7.115)

with C representing any complex square matrix of dimension n, and Tr(C) denoting

the trace of C, as defined in Eq. (7.96). Using Eq. (7.88), and denoting the elements of

SU(3) by the general symbol U′, we write

U′ = eiX′ . (7.116)

Applying this to Eq. (7.115) yields

detU′ = det
(

eiX′
)
= eiTr(X′). (7.117)

Since all elements of SU(3) have unit determinant (detU′ = +1), it follows that

eiTr(X′) = 1 → Tr
(
X′)= 0. (7.118)

We conclude from Eq. (7.104) that the eight generators X′
i of SU(3) are all traceless

Hermitian matrices of order 3:

Tr
(
X′

i

)= 0 ∀i = 1,2, . . . , 8. (7.119)

Definition 7.5 (SU(3) exponential map): There exists an exponential map exp : su(3)→
SU (3), given by

U′ = exp

[
i

8∑
i=1

u′iX
′
i

]
, (7.120)

that relates the generators of the su(3) Lie algebra with the elements of the SU(3) Lie

group by expressing the unitary matrix U′ in terms of the infinitesimal generators X′
i

with trace equal to zero. ◾

The generators of SU(3)

This brings us to the second question: How can we derive the eight traceless generators

X′
i of SU(3) from the nine generators Xi of U(3)? This question leads us to the famous

matrices of the eightfold way used by Gell-Mann in 1961 as a basis for the standard

model of elementary particles (see §7.5). For this, we have to consider the eight

generators of the SU(3) group that we will obtain from the nine U(3) generators

by the method of trace reduction. The SU(3) generators must satisfy the property in

Eq. (7.119); that is, all the generators Xi (i = 1,2, . . . , 8) must be traceless Hermitian

matrices of order 3 (vide supra).

16 The proof of this identity is in Appendix E.
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Glancing at the matrices in Eq. (7.103), we observe that X1, X2, X4, X5, X6, and

X7 already have a vanishing trace. Let us denote them by the new symbol λi :

λi ≡Xi i = 1, 2, 4, 5, 6, and 7. (7.121)

The remaining three matrices X3, X8, and X9—corresponding to parameters R11,

R22, and R33—do not satisfy Eq. (7.119) since they have +1 on the diagonal. Let

us therefore carry out a transformation to a new set of two traceless Hermitian

generators (denoted λ3 and λ8) and the 3× 3 unit matrix I (denoted here as λ9) by

forming linearly independent combinations of the original generators X3, X8, and X9.

Although there are numerous ways of recombining the original set {X3,X8,X9} into a

traceless set {λ3,λ8} and the unit matrix {λ9}, let us follow the standard method from

elementary particle physics (as first introduced by Gell-Mann in 1961), and define λ3,

λ8, and λ9 as follows:

λ3 ≡X3 −X8 =
⎡⎢⎣ 1 0 0

0 −1 0

0 0 0

⎤⎥⎦;

λ8 ≡ 1√
3
(X3 +X8 − 2X9)= 1√

3

⎡⎢⎣ 1 0 0

0 1 0

0 0 −2

⎤⎥⎦;

λ9 ≡X3 +X8 +X9 =
⎡⎢⎣ 1 0 0

0 1 0

0 0 1

⎤⎥⎦.

(7.122)

This linear recombination effectively redistributes the nine generators of U(3) in a

singleton (the unit matrix λ9, playing the role of generator for the U(1) Lie group)

and a set of eight traceless and Hermitian matrices λi (i = 1 → 8), which form the

generators of the special unitary Lie group SU(3). In the following, we will focus our

attention on the generators of the SU(3) group only. These are the famous Gell-Mann

matrices given in Table 7.5. They form the fundamental or defining representation of

the SU(3) group. The
√

3 in the definition of λ8 takes care that all eight matrices have

the same weight (i.e., if we add the squared norms of all numbers in a given matrix, we

always obtain two). We thus say that the generators λi obey the normalization relation

Tr
(
λiλj

)= 2δij , (7.123)

which can be easily verified by explicit matrix calculation.

The factorization of U(3)

The nine Gell-Mann matrices, corresponding to the λ’s in Table 7.5, together generate

the group U(3). We can thus rewrite Eq. (7.106) as

U= exp

[
i

9∑
i=1

viλi

]
, (7.124)

where vi denotes the independent parameter associated with the λi generator. This

expression can now be factorized by splitting the sum over λ1 through λ8, which
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6 Table 7.5 The Gell-Mann 3×3matrices λi (i= 1→ 9). These matrices are the

generators of the unitary Lie group in three dimensions U(3). The first eight λi’s form

the generators for the special unitary Lie group SU(3), whereas the unit matrix λ9 is

the generator of U(1).

λ1 =
⎡⎢⎣ 0 1 0

1 0 0

0 0 0

⎤⎥⎦; λ2 =
⎡⎢⎣ 0 −i 0

i 0 0

0 0 0

⎤⎥⎦; λ3 =
⎡⎢⎣ 1 0 0

0 −1 0

0 0 0

⎤⎥⎦;

λ4 =
⎡⎢⎣ 0 0 1

0 0 0

1 0 0

⎤⎥⎦; λ5 =
⎡⎢⎣ 0 0 −i

0 0 0

i 0 0

⎤⎥⎦; λ6 =
⎡⎢⎣ 0 0 0

0 0 1

0 1 0

⎤⎥⎦;

λ7 =
⎡⎢⎣ 0 0 0

0 0 −i

0 i 0

⎤⎥⎦; λ8 =

⎡⎢⎢⎣
1√
3

0 0

0 1√
3

0

0 0 −2√
3

⎤⎥⎥⎦; λ9 =
⎡⎢⎣ 1 0 0

0 1 0

0 0 1

⎤⎥⎦.

generates SU(3) and the λ9 singleton. Hence,

U= exp

[
i

8∑
i=1

viλi

]
exp (iv9λ9). (7.125)

The first factor is the exponential map of SU(3); the second factor can be rewritten as

exp(iv9λ9)= exp (iv9I)= Iexp(iv9). (7.126)

Putting these results together, we get

U=U′ Iexp(iv9)=U′ exp(iv9). (7.127)

Every element U of U(3) can thus be written as a product between U′ (an element

from the SU(3) group) and a phase factor (an element from the U(1) group). The full

unitary group U(3) can thus be factorized as the direct product :

U(3)= SU(3)⊗U(1), (7.128)

with ⊗ denoting the direct product.

7.4.5 The su(3) Lie algebra

Having determined the eight generators λi of the SU(3) group, we can calculate their

commutation relations as follows:[
λi ,λj

]= λiλj −λjλi . (7.129)

After a number of tedious but elementary matrix computations and reductions, we

obtain the results shown in Table 7.6. This table contains a wealth of information that

we shall study in the next paragraphs. For a start, it is clear from Table 7.6 that the



Table 7.6 Commutation table for the generators λi of the su(3) Lie algebra. The commutator [λi,λj] of any λi and λj (i, j= 1→ 9) is listed
in the ith row and jth column. Notice that for most commutators [λi,λj], the result reduces to a single generator λk, whereas for the
commutators [λ4,λ5] and [λ6,λ7], the result reduces to two summands—for example, [λ4,λ5] = iλ3+

√
3iλ8. The commutation table is

skew-symmetric as a consequence of the fundamental commutation relation [A,B]=− [B,A]. Thus,
[
λi,λj

]=−[λj,λi] ,∀i, j= 1→ 9.

λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9

λ1 0 2iλ3 −2iλ2 iλ7 −iλ6 iλ5 −iλ4 0 0

λ2 −2iλ3 0 2iλ1 iλ6 iλ7 −iλ4 −iλ5 0 0

λ3 2iλ2 −2iλ1 0 iλ5 −iλ4 −iλ7 iλ6 0 0

λ4 −iλ7 −iλ6 −iλ5 0 iλ3 +
√

3iλ8 iλ2 iλ1 −√3iλ5 0

λ5 iλ6 −iλ7 iλ4 −iλ3 −
√

3iλ8 0 −iλ1 iλ2
√

3iλ4 0

λ6 −iλ5 iλ4 iλ7 −iλ2 iλ1 0 −iλ3 +
√

3iλ8 −√3iλ7 0

λ7 iλ4 iλ5 −iλ6 −iλ1 −iλ2 iλ3 −
√

3iλ8 0
√

3iλ6 0

λ8 0 0 0
√

3iλ5 −√3iλ4
√

3iλ7 −√3iλ6 0 0

λ9 0 0 0 0 0 0 0 0 0
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8 Table 7.7 Table of nonvanishing structure constants fijk for the su(3) Lie algebra. The

fijk are totally antisymmetric under the exchange of any two indices. All nonvanishing

structure constants can therefore be derived by permutation of the indices in the

structure constants listed here.

ijk fijk ijk fijk

123 1 147 1
2

156 − 1
2 246 1

2

257 1
2 345 1

2

367 − 1
2 458

√
3

2

678
√

3
2

su(3) Lie algebra is closed under commutation; that is, every commutator [λi ,λj] can

be written as a linear combination of the eight generators:

[
λi ,λj

]= 8∑
k=1

2ifijkλk ≡ 2ifijkλk , (7.130)

where we used Einstein’s summation convention in the last equality. The constant

factor 2i has been extracted for simplicity. The nonvanishing structure constants fijk
are listed in Table 7.7 and are totally antisymmetric under the exchange of any two

indices; that is,

fijk =−fjik = fjki =−fikj = and so on. (7.131)

Definition 7.6 (The su(3) Lie algebra): The su(3) Lie algebra is the linear vector space,

spanned by the generators λi (i= 1→ 8), in which the product rule is defined as follows:

[ · , · ] : su(3)×su(3)→ su(3). The multiplication operator [ · , · ] is called the Lie bracket,

for which
[
λi ,λj

]= 2ifijkλk , with fijk the different structure constants. ◾

Example: The commutator of λ4 and λ5

Let us, by way of example, compute the commutator [λ4,λ5] of λ4 and λ5. The matrix

form of these generators is given in Table 7.5. Since [λ4,λ5] = λ4λ5–λ5λ4, we start by

calculating the matrix products λ4λ5 and λ5λ4 respectively:

λ4λ5 =
⎡⎢⎣ 0 0 1

0 0 0

1 0 0

⎤⎥⎦
⎡⎢⎣ 0 0 −i

0 0 0

i 0 0

⎤⎥⎦=
⎡⎢⎣ i 0 0

0 0 0

0 0 −i

⎤⎥⎦;

λ5λ4 =
⎡⎢⎣ 0 0 −i

0 0 0

i 0 0

⎤⎥⎦
⎡⎢⎣ 0 0 1

0 0 0

1 0 0

⎤⎥⎦=
⎡⎢⎣ −i 0 0

0 0 0

0 0 i

⎤⎥⎦.

(7.132)
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The commutator [λ4,λ5] is then found to equal

[λ4,λ5]=
⎡⎢⎣ i 0 0

0 0 0

0 0 −i

⎤⎥⎦−
⎡⎢⎣ −i 0 0

0 0 0

0 0 i

⎤⎥⎦=
⎡⎢⎣ 2i 0 0

0 0 0

0 0 −2i

⎤⎥⎦

= i

⎡⎢⎣ 1 0 0

0 −1 0

0 0 0

⎤⎥⎦+√
3i

1√
3

⎡⎢⎣ 1 0 0

0 1 0

0 0 −2

⎤⎥⎦= iλ3 +
√

3iλ8,

(7.133)

as summarized in Table 7.6. Rewriting this as

[λ4,λ5]= 2i

[
1

2
λ3 +

√
3

2
λ8

]
, (7.134)

we can read off the following structure constants:

f453 = 1

2
;

f458 =
√

3

2
,

(7.135)

which is in agreement with the values for the structure constants shown in Table 7.7.17

7.4.6 The Cartan subalgebra of su(3)

With all this in hand, we are ready to get down to the serious nitty-gritty of the

su(3) algebra. Although the structure constants fijk were seen to define the su(3)

algebra completely, let us delve even deeper into the variegated anatomy of the

su(3) algebra to reveal its inner workings. One way of uncovering the full power

of the su(3) algebra is by introducing its Cartan subalgebra H and associated Weyl

diagram. To this aim, we have to change the basis of the su(3) algebra, given

by the Gell-Mann matrices in Table 7.5, and derive the more useful Cartan-Weyl

basis. For this, we shall proceed along the threefold path as outlined at the end of

Chapter 6, §6.4.

Step 1: The Cartan subalgebra and Cartan generators

To start with, let us look for the maximal subset of mutually commuting generators

λi ∈ su(3). On closer inspection of Table 7.6, we find the following three commutators:

[λ1,λ8]= 0, [λ2,λ8]= 0, and [λ3,λ8]= 0. (7.136)

Since λ1, λ2, and λ3 do not commute among themselves,

[λ1,λ2] �= 0, [λ1,λ3] �= 0, and [λ2,λ3] �= 0, (7.137)

not more than two λ’s can be diagonalized simultaneously. From the possible pairs

{λ1,λ8}, {λ2,λ8}, and {λ3,λ8}, let us chose the last pair, {λ3,λ8}, as our commuting

set. It is convenient to rewrite both operators in a slightly different form:

T̂3 ≡ 1

2
λ3; Ŷ ≡ 1√

3
λ8. (7.138)

17 Note that f453 can be obtained from the structure constant f345 = 1/2 listed in Table 7.7 via two

permutations of the indices, corresponding to two consecutive changes of sign: f345 = 1/2→ f435 =
−1/2→ f453 = 1/2.
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0 Both operators will reappear later as the isospin and hypercharge operators, respec-

tively, in our examination of the eightfold way. Since λ3 and λ8 have simply been

rescaled, their commuting property has not been upset and[
T̂3, Ŷ

]
= 0. (7.139)

The set {T̂3, Ŷ } thus forms a basis for a maximal Abelian subalgebra H⊂ su(3). This is

called the Cartan subalgebra of su(3). The operators T̂3 and Ŷ are referred to as Cartan

generators, and the dimension 2 of H defines the rank of the su(3) Lie algebra.18

In view of their commuting character, T̂3 and Ŷ are simultaneously diagonalizable.

We denote their eigenvalues by T3 and Y , respectively, and represent their common

eigenstates by the ket |T3, Y 〉. This then yields the following eigenvalue equations:

T̂3 |T3, Y 〉 = T3 |T3,Y 〉; (7.140)

Ŷ |T3, Y 〉 = Y |T3,Y 〉. (7.141)

The T3 and Y eigenvalues are referred to as the weights of the Cartan generators T̂3 and

Ŷ , and are used to label the substates within an SU(3) multiplet. In a Weyl diagram, the

T3 and Y eigenvalues function as coordinates to plot the substates of a given multiplet

in the T3—Y -plane (vide infra). The weights T3 and Y can then be considered as the

components of a two-dimensional weight vector h, which sets in at the origin O and

points to its corresponding substate.

Step 2: Weyl generators and Weyl diagrams

In a second step, we arrange the remaining generators λi of su(3) (i = 1,2,4,5,6,7)

into linear combinations to form a linearly independent set of raising and lowering

operators:

T̂+ ≡ 1

2
(λ1 + iλ2) ; T̂− ≡ 1

2
(λ1 − iλ2);

Û+ ≡ 1

2
(λ6 + iλ7) ; Û− ≡ 1

2
(λ6 − iλ7);

V̂+ ≡ 1

2
(λ4 + iλ5) ; V̂− ≡ 1

2
(λ4 − iλ5).

(7.142)

In the above definition, we have clearly been inspired by the general form of the

angular momentum ladder operators L̂± ≡ L̂x ± iL̂y , as defined in Chapter 5. The

six ladder operators in Eq. (7.142) are referred to as Weyl generators. Along with the

two Cartan generators T̂3 and Ŷ , they constitute the Cartan-Weyl basis for the su(3)

algebra:

{T̂3, Ŷ , T̂+, T̂−, Û+, Û−, V̂+, V̂−}. (7.143)

If we denote the Cartan generators for a moment by the customary symbol Ĥi (i= 1,2)

and the Weyl generators by the symbol Êα (α= 1, . . . , 6), the Cartan-Weyl basis can be

written more generally as

{Ĥ1, Ĥ2, Ê1, Ê2, Ê3, Ê4, Ê5, Ê6}. (7.144)

18 It can be shown more generally that an su(n) algebra is a Lie algebra of rank (n− 1).



171
The

SU
(3)group

This shows more clearly that the su(3) algebra has actually been decomposed

into a direct sum of the Cartan subalgebra H (spanned by Ĥ1 and Ĥ2) and six

one-dimensional subalgebras Eα , generated by the Weyl generators Êα :

su(3)=H

6⊕
α=1

Eα =H⊕E1 ⊕ . . .⊕E5 ⊕E6. (7.145)

Returning to our discussion of the Weyl generators, and the fact that they act as step

operators, they must satisfy the general commutation relations:[
Ĥi , Êα

]
= αi Êα , ∀i = 1,2; α = 1, . . . , 6. (7.146)

That is to say, the Weyl generators Êα must behave as eigenoperators of the Cartan

generators Ĥi . Recall that the eigenvalues αi are referred to as the roots of Êα with

respect to Ĥi .

Let us verify the validity of Eq. (7.146) by explicitly calculating the different

commutators. With the help of the commutation table, Table 7.6, and the defining

expressions for the Cartan and Weyl generators in Eqs. (7.138) and (7.142), the

commutator of T̂3 and T̂+ can be written as[
T̂3, T̂+

]
=
[

1

2
λ3,

1

2
(λ1 + iλ2)

]
= 1

4
([λ3,λ1]+ i [λ3,λ2])

= 1

4
(2iλ2 + 2λ1)

= 1

2
(λ1 + iλ2)[

T̂3, T̂+
]
= T̂+.

(7.147)

This establishes T̂+ as an eigenoperator of T̂3 with root +1. The other commutators

can be worked out in a similar vein. Here, we only mention the results:[
T̂3, T̂+

]
=+T̂+;

[
Ŷ , T̂+

]
= 0;[

T̂3, T̂−
]
=−T̂−;

[
Ŷ , T̂−

]
= 0;[

T̂3, Û+
]
=− 1

2 Û+;
[

Ŷ , Û+
]
=+Û+;[

T̂3, Û−
]
=+ 1

2 Û−;
[

Ŷ , Û−
]
=−Û−;[

T̂3, V̂+
]
=+ 1

2 V̂+;
[

Ŷ , V̂+
]
=+V̂+;[

T̂3, V̂−
]
=− 1

2 V̂−;
[

Ŷ , V̂−
]
=−V̂−.

(7.148)

(The commutation relations among the Weyl generators themselves are listed in

Table 7.8.) According to Eq. (7.148), every Weyl generator acts as an eigenoperator

of T̂3 and Ŷ .

The importance of this statement is the following: when one of the Weyl generators

acts on the ket |T3,Y 〉, it shifts the eigenvalues T3 and Y by an amount given by the

roots of that Weyl generator with respect to the Cartan generators T̂3 and Ŷ . To see
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2 Table 7.8 Commutation table for the generators of the su(3) Lie algebra in the

Cartan-Weyl basis. The commutator [Xi,Xj] (i, j= 1→ 8) is listed in the ith row and jth

column. The commutation table is skew-symmetric as a consequence of the

fundamental commutation relation
[
Xi,Xj

]=−[Xj,Xi]. The Cartan subalgebra H= {Ŷ , T̂3}
forms a maximal Abelian subalgebra of su(3), as indicated by the square of bold zeros

in the upper left corner of the table.

Ŷ T̂3 T̂+ T̂− Û+ Û− V̂+ V̂−

Ŷ 0 0 0 0 Û+ −Û− V̂+ −V̂−
T̂3 0 0 T̂+ −T̂− − 1

2 Û+ 1
2 Û− 1

2 V̂+ − 1
2 V̂−

T̂+ 0 −T̂+ 0 2T̂3 V̂+ 0 0 −Û−
T̂− 0 T̂− −2T̂3 0 0 −V̂− Û+ 0

Û+ −Û+ 1
2 Û+ −V̂+ 0 0 3

2 Ŷ − T̂3 0 T̂−
Û− Û− − 1

2 Û− 0 V̂− − 3
2 Ŷ + T̂3 0 −T̂+ 0

V̂+ −V̂+ − 1
2 V̂+ 0 −Û+ 0 T̂+ 0 3

2 Ŷ + T̂3

V̂− V̂− 1
2 V̂− Û− 0 −T̂− 0 − 3

2 Ŷ − T̂3 0

how this works, consider the action of the raising operator T̂+ on the eigenket |T3, Y 〉
using Eq. (7.148):

T̂3T̂+ |T3,Y 〉 =
([

T̂3, T̂+
]
+ T̂+T̂3

)
|T3,Y 〉

=
(

T̂+ + T̂+T3

)
|T3,Y 〉

= (T3 + 1) T̂+ |T3, Y 〉.

(7.149)

T̂+ raises the eigenvalue T3 by an amount +1, which is the root of T̂+ with respect to

T̂3 according to the commutation relations in Eq. (7.148). Similarly,

Ŷ T̂+ |T3,Y 〉 =
([

Ŷ , T̂+
]
+ T̂+Ŷ

)
|T3,Y 〉

=
(

0+ T̂+Y
)
|T3,Y 〉

= (Y + 0) T̂+ |T3, Y 〉.

(7.150)

In this case, T̂+ leaves the eigenvalue Y of Ŷ unchanged. The previous two equations

can then be combined to yield

T̂+ |T3, Y 〉→ |T3 + 1, Y 〉. (7.151)

By the same argument, we can deduce the action of every Weyl generator on the ket

|T3, Y 〉:
T̂± |T3,Y 〉→ |T3 ± 1,Y 〉; (7.152)

Û± |T3,Y 〉→ |T3 ∓ 1/2, Y ± 1〉; (7.153)

V̂± |T3,Y 〉→ |T3 ± 1/2, Y ± 1〉. (7.154)

We can also depict the actions of the Weyl generators in a Weyl diagram. For this, we

consider the roots of every Weyl generator as the components of a root vector that lies
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T3

Y

U+
^ V+

^

V–
^ U–

^

T–
^ T+

^

+1

+1/2

–1/2

–1

+1–1 –1/2 +1/2

FIGURE 7.5 Root diagram of

the su(3) Lie algebra. The

action of every Weyl

generator is shown in the

T3—Y -plane. The Cartan

generators T̂3 and Ŷ are

positioned at the origin of

the Weyl diagram.

in a two-dimensional weight space. For example, the roots of T̂+ are +1 and 0 with

respect to T̂3 and Ŷ , respectively. These form the components of a root vector, which

we denote using the same operator symbol T̂+ for simplicity. After positioning all the

root vectors in the T3—Y -plane, we obtain the two-dimensional root diagram of the

su(3) Lie algebra, as shown in Figure 7.5. This is also called a Weyl diagram. Note that

the end points of the Weyl generators correspond to the corners of a regular hexagon.19

Besides the Weyl generators, we can also position the Cartan generators in the Weyl

diagram. However, in view of their commuting property (Eq. (7.139)), the roots of the

Cartan generators T̂3 and Ŷ are all zero. The root vectors of the Cartan generators thus

correspond to two null vectors.

Step 3: Casimir invariants

The su(3) algebra is a Lie algebra of rank 2. According to Racah’s theorem (Chapter 6,

§6.4), this implies the existence of two independent Casimir operators Ĉμ that

commute with all the generators λi (i = 1→ 8) of su(3):[
Ĉμ,λi

]
= 0, ∀μ= 1→ 2, i = 1→ 8. (7.155)

The Casimir invariants Ĉ1 and Ĉ2 can be used to label the irreducible representations

(i.e., multiplets) of the SU(3) group and are commonly defined as

Ĉ1 =
8∑

i=1

1

2
λ2

i ;

Ĉ2 =
∑
ijk

1

8
dijkλiλjλk ,

(7.156)

19 The units of the T3- and Y -axes in the Weyl diagram have been scaled so as to form angles of 60◦

between the root vectors.
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4 where dijk are constants originating from the anticommutation relations {λi ,λj} =

λiλj +λjλi (i, j = 1→ 8).

7.4.7 TheT,U, andV subalgebras of su(3)

The T subalgebra

In this section, we study a number of subalgebras of the su(3) Lie algebra. We can

easily establish from the commutation relations in Table 7.8 that operators T̂3, T̂+,

and T̂− form a closed subalgebra of su(3):

[
T̂3, T̂±

]
=±T̂±,

[
T̂+, T̂−

]
= 2T̂3. (7.157)

Let us call this the T subalgebra. Since the commutation relations among the T̂

operators match those of the angular momentum algebra

[
L̂3, L̂±

]
=±L̂±,

[
L̂+, L̂−

]
= 2L̂3, (7.158)

we can identify the T subalgebra as an so(3) subalgebra of su(3). This provides a

connection between the unitary and orthogonal groups. That is, when reducing the

symmetry group to rotational symmetry, the following symmetry breaking occurs:

SU(3)→ SO(3). (7.159)

This corresponds to a transition from the su(3) Lie algebra to the T subalgebra

that is isomorphic to so(3). As a consequence, the rank lowers from 2 to 1 and T̂3

remains the only Cartan generator. This appears on the Cartan-Weyl diagram as a

projection on the horizontal axis, which corresponds to the T̂3 operator (Figure 7.6).

The octuplet of the SU(3) generators then gives rise to the spherical T3 eigenvalues

±1, ±1/2, ±1/2, 0, 0. Clearly, this set corresponds to the signature of four spherical

shells with T = 0, T = 1 and twice T = 1/2.

+1–1 –1/2 +1/2

T3T– T+

V+U+

U–V–

^ ^

^^

^^

0

FIGURE 7.6 Root diagram showing the

reduction of the su(3) Lie algebra to the

T subalgebra.
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+1–1 –1/2

–1/2

+1/2

–1

+1

+1/2

T3

U3 V3
Y

V-lines U-lines

T-lines

0

FIGURE 7.7 Root diagram showing the T, U, and V subalgebras. The T, U, and V submultiplets

are located along the T-, U- and V -lines, respectively.

TheU andV subalgebras

The sets of operators {Û+,Û−} and {V̂+, V̂−} do not form closed subalgebras, as can

be seen from the commutation relations in Table 7.8:[
Û+, Û−

]
= 3

2
Ŷ − T̂3;

[
V̂+, V̂−

]
= 3

2
Ŷ + T̂3. (7.160)

However, in pursuing the analogy with the T subalgebra, we might define two new

diagonal operators Û3 and V̂3:

2Û3 ≡ 3

2
Ŷ − T̂3; 2V̂3 ≡ 3

2
Ŷ + T̂3, (7.161)

which yields a number of new commutation relations, as listed in Table 7.9. As a

result, operators {Û3, Û+,Û−} and {V̂3, V̂+, V̂−} are seen to form two additional so(3)

subalgebras: the U and V subalgebras, respectively (see Figure 7.7).

As is clear from the bold zeros in Table 7.8, the original set of mutually commuting

generators {Ŷ , T̂3} has now been enlarged to include the new operators Û3 and V̂3:

{Ŷ , T̂3,Û3, V̂3}. However, this does not increase the rank of the su(3) algebra from 2 to

4 because the Ŷ , T̂3 Û3, and V̂3 operators are not all linearly independent. For instance,

Û3 =−T̂3 + V̂3. (7.162)

7.5 THE EIGHTFOLD WAY (1961)

Let us go back to the situation in particle physics at the beginning of the 1960s.

The ever-growing particle zoo of elementary particles was causing much confusion

and discussion among particle physicists. Little did they realize that with Gell-Mann’s

introduction of strangeness as a new conserved additive quantum number (see §7.1.5),

the path was finally opened to a rational classification of the elementary particles.



Table 7.9 Extended commutation table for the generators of the su(3) Lie algebra in the Cartan-Weyl basis. The commutator [Xi,Xj] is listed
in the ith row and jth column. The T, U, and V subalgebras of su(3) are located in the three square regions. Operators Ŷ , T̂3, Û3, and V̂3 form a
maximal Abelian subalgebra of su(3), as indicated by the bold zeros in the table

Ŷ T̂3 T̂+ T̂− Û3 Û+ Û− V̂3 V̂+ V̂−

Ŷ 0 0 0 0 0 Û+ −Û− 0 V̂+ −V̂−
T̂3 0 0 T̂+ −T̂− 0 − 1

2 Û+ + 1
2 Û− 0 1

2 V̂+ − 1
2 V̂−

T̂+ 0 −T̂+ 0 2T̂3
1
2 T̂+ V̂+ 0 − 1

2 T̂+ 0 −Û−
T̂− 0 T̂− −2T̂3 0 − 1

2 T̂− 0 −V̂− 1
2 T̂− Û+ 0

Û3 0 0 − 1
2 T̂+ 1

2 T̂− 0 Û+ −Û− 0 1
2 V̂+ − 1

2 V̂−
Û+ −Û+ 1

2 Û+ −V̂+ 0 −Û+ 0 2Û3 − 1
2 Û+ 0 T̂−

Û− Û− − 1
2 Û− 0 V̂− Û− −2Û3 0 1

2 Û− −T̂+ 0

V̂3 0 0 1
2 T̂+ − 1

2 T̂− 0 1
2 Û+ − 1

2 Û− 0 V̂+ −V̂−
V̂+ −V̂+ − 1

2 V̂+ 0 −Û+ − 1
2 V̂+ 0 T̂+ −V̂+ 0 2V̂3

V̂− V̂− 1
2 V̂− Û− 0 1

2 V̂− −T̂− 0 V̂− −2V̂3 0
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In this section, the enthralling story is told of how American physicist Murray

Gell-Mann brought order to the jungle of elementary particles in 1961.20 However,

before venturing into a detailed account of the process by which Gell-Mann arrived

at his classification schemes, we first have to introduce two more quantum numbers:

the hypercharge Y and baryon number B. Both are closely related to strangeness, with

hypercharge being defined as the sum of strangeness and baryon number:

Y ≡ S+B. (7.163)

The baryon number takes on the values +1 for baryons, −1 for antibaryons, and 0 for

all other particles (i.e., mesons and leptons).21 Just like strangeness, both hypercharge

and baryon number are strictly conserved quantum numbers in strong processes.

Their values are listed in the Tables 7.1 through 7.4, along with the strangeness

quantum number S, charge number Q, and isospin component T3. A study of these

values reveals that the charge number Q is given by

Q = T3 + 1

2
Y = T3 + 1

2
(S+B) . (7.164)

This equation is known as the Gell-Mann–Nishijima formula. With this, all the

ingredients are finally in place for our account of Gell-Mann’s groundbreaking work.

7.5.1 An octet of particles

The pseudoscalar meson octet

The trick toward achieving a coherent systematization was to order all the known

particles by their isospin component T3 and hypercharge Y in a two-dimensional

scheme. This process is illustrated in Figure 7.8 for the pseudoscalar mesons of Table

7.1 (except η′0). The result, remarkably, was an octet of particles, with six particles lying

at the corners of a regular hexagon and two more particles situated at the center of the

graph. Inspired by this representation, Gell-Mann decided to name his scheme the

eightfold way, in which he amusingly alluded to the Noble Eightfold Path of Buddhism

toward enlightenment.

For each particle in Figure 7.8, the values of the hypercharge and isospin

component can be read off the Y - and T3-axes. Particles lying on a horizontal line,

parallel to the T3-axis, share the same value for strangeness; the three varieties of pions

(π−, π0, and π+), for instance, are characterized by strangeness S = 0. The kaons on

the upper line (K 0 and K+) have S=+1, whereas those on the lower line (K− and K̄ 0)

have S =−1.

In a similar vein, downward-sloping diagonal lines associate particles of like charge

number Q; the neutral particles K 0, K̄ 0, π0, and η0, for example, are all situated along

the main diagonal of the graph. Similarly, Q = −1 for π− and K−, and Q = +1

for K+ and π+. Particles taking diametrically opposite positions in the scheme are

each other’s antiparticle. We thus find the familiar particle–antiparticle pairs K 0–K̄ 0,

K+–K−, and π+–π−. (Note that the particles π0 and η0 are their own antiparticles.)

20 Israeli theoretical physicist Yuval Ne’eman (1925–2006) independently discovered a way of

classifying the hadrons in 1961 based on the SU(3) flavor symmetry (vide infra).
21 We return to the origin of these assignments in §7.6.2 and §7.6.3.
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8 Interparticle transformations

You no doubt have observed the similarity between the hexagonal arrangement of

pseudoscalar mesons in Figure 7.8 and the Weyl diagram for the su(3) algebra shown

in Figure 7.5. Gell-Mann realized this was not a lucky coincidence, nor a mere

analogy, but a crucially important sign that the elementary particles were somehow

governed by the unitary symmetry group SU(3). He proclaimed that the pseudoscalar

mesons were grouped into a supermultiplet of the SU(3) group; the octet of particles

was therefore considered to be a representation of the SU(3) group. Furthermore,

Gell-Mann believed the strong force was invariant under the transformations of the

SU(3) group. As a consequence, the strong nuclear force would not distinguish between

the pseudoscalar mesons of the same octet and would therefore affect them the same

way; the pseudoscalar mesons are said to be symmetric under the strong force. That is

to say, the interchange of one meson for another goes unnoticed in strong interactions.

Mathematically, this replacement can be described by the elements of the SU(3)

group; the mesons can be transformed into each other under the action of the Weyl

generators.

Let us clarify all this with a simple example. Suppose we would like to transform

the neutral kaon K 0 into the eta meson η0. As seen in Figure 7.8, the kaon K 0 has

T3 =−1/2 and Y =+1. We can therefore represent this particle by the ket∣∣K 0〉= |T3,Y 〉 =
∣∣∣∣−1

2
,+1

〉
. (7.165)

Similarly, the eta meson η0 can be represented by the ket∣∣η0〉= |T3,Y 〉 = |0,0〉 . (7.166)

It then becomes evident that to transform K 0 into η0, we need to simultaneously

increase the T3 quantum number by 1/2 (from −1/2 to 0) and lower the Y quantum

number by 1 (from +1 to 0). From a consideration of the Weyl diagram in Figure 7.5,

and Eqs. (7.152) through (7.154), it is clear this can be accomplished under the action

of the Û− operator:

Û−
∣∣K 0〉→ ∣∣η0〉 . (7.167)

+1

T3

Y

+1–1/2 +1/2–1

–1/2

+1/2

–1

S = 0

S = +1

S = –1

Q = –1 Q = 0

Q = +1

K+K0

K– K0

η0
π0π– π+

FIGURE 7.8 Weight diagram

of the pseudoscalar meson

octet.
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Isospin multiplets

The SU(3) group contains an SO(3) subgroup, as explained in §7.4.7. When the SU(3)

symmetry is broken to the spherical symmetry group SO(3), the SU(3) multiplets

are split into a number of SO(3) submultiplets. These multiplets are characterized

by two quantum numbers: (1) the total isospin T labeling the multiplet and (2)

the isospin component T3, distinguishing the various particle states of the multiplet.

The SO(3) multiplets are called isospin multiplets whereas the SU(3) multiplets are

referred to as supermultiplets. Particles on the same horizontal line in Figure 7.8 fall

into such multiplets; each isospin multiplet therefore carries the same hypercharge Y

and strangeness charge S.

The kaons K 0 and K+, for instance, form an isospin doublet with Y = +1 and

S = +1. Since the isospin component T3 = −1/2 for K 0 and T3 = +1/2 for K+,

the doublet is assigned a total isospin T = 1/2. The three pion varieties, on the other

hand (π−, π0, and π+), form an isospin triplet with Y = 0, S = 0, and T = 1. The

neutral eta meson η0 forms an isospin singlet with Y = 0, S = 0, and T = 0. The two

remaining kaons K− and K̄ 0, at last, are seen to form another isospin doublet with

Y =−1, S =−1, and T = 1/2.

The octet of pseudoscalar mesons is thus composed of one isospin triplet, two

isospin doublets, and one isospin singlet. If we denote the (super)multiplets by the

general symbol [i], where i stands for the dimensionality of the representation, then

we can write the breaking of the SU(3) symmetry as follows:

[8]→ [3]⊕ [2]⊕ [2]⊕ [1] . (7.168)

7.5.2 Different SU(3) representations

The vector meson octet and baryon octet

When we arrange the vector mesons of Table 7.2 according to their hypercharge Y and

isospin component T3, a similar scheme is obtained as for the pseudoscalar mesons;

they form a vector meson octet as shown in Figure 7.9.

+1

T3

Y

+1–1/2 +1/2–1

–1/2

+1/2

–1

S = 0

S = +1

S = –1

Q = –1 Q = 0

Q = +1

K*+K*0

K*–

ω0
ρ0ρ– ρ+

K*0

FIGURE 7.9 Weight diagram

of the vector meson octet.
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+1

T3

Y

+1–1/2 +1/2–1

–1/2

+1/2

–1

S = –1

S = 0

S = –2

Q = –1 Q = 0

Q = +1

p+n0

Ξ–

Λ0

Σ0Σ– Σ+

Ξ0

FIGURE 7.10 Weight diagram

of the baryon octet.

Although the baryons of spin 1/2 (cf. Table 7.3) also fit in the hexagonal pattern,

giving rise to a baryon octet (Figure 7.10), there are a number of important differences

with the two meson octets. First of all, because baryons have baryon number B =+1,

their strangeness charges are always 1 unit less than the hypercharge, according to

Eq. (7.163). For example, the upper line of the baryon octet—with the neutron

n0 and the proton p+ forming an isospin doublet—has hypercharge Y = +1 and

strangeness S = 0.

Second, the antibaryons are not contained in the baryon octet; they form an octet

on their own. This antibaryon octet can be obtained from the corresponding baryon

octet by placing a bar over each baryon’s symbol.

Singlets and decuplets

When classifying the pseudoscalar mesons, Gell-Mann was forced to exclude the eta

prime meson η′0 from inclusion in the octet (cf. Table 7.1). The phi vector meson

φ0 likewise was excluded from the vector meson octet (cf. Table 7.2). Instead, both

particles were seen to form a multiplet on their own; they gave rise to an SU(3) singlet.

This is the most trivial SU(3) representation. The baryon resonances of Table 7.4, on

the other hand, fit in a triangular scheme forming a decuplet (or decimet) of particles

(Figure 7.11).

Amusingly, the baryon decuplet resembles the tetractys (τετρακτύς, or mystic

tetrad) of the Pythagorean school—a triangular figure with ten points arranged in

four rows of 1, 2, 3, and 4 points. This ancient sacred symbol represented the four

Platonic elements (water, fire, earth, and air) of which all matter was thought to be

composed. We now know that most matter is baryonic, and it is gratifying to see that

the baryons fit neatly in the tetractys configuration.

Although hexagons are clearly not the only geometric figures Gell-Mann obtained,

not all imaginable shapes are observed. The reason why vector mesons, for instance,

form an octet rather than a septet or a nonet of particles can be rationalized only from

a deeper understanding of the SU(3) symmetry that underlies their classification. We

will study this point in the next section §7.6.
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+1

+1/2

–1/2

–3/2

–3/2

–1

T3

Y

+1–1 –1/2 +1/2 +3/2
S = –1

S = 0

S = –2

Q = –1 Q = 0

Q = +1

Q = +2

Σ*–

Δ– Δ0 Δ+ Δ++

Ξ*– Ξ*0

–2S = –3

Σ*0

Ω–

Σ*+

0

FIGURE 7.11 Weight diagram of the baryon resonance decuplet.

7.5.3 Broken symmetries

The Hamiltonian Ĥst , which describes the strong nuclear force, is supposed to be

invariant under the SU(3) group. It therefore commutes with the generators of the

su(3) Lie algebra: [
Ĥst ,λi

]
= 0, ∀i = 1→ 8. (7.169)

By analogy with the angular momentum algebra (Chapter 5), we can conclude that all

the particles of an SU(3) supermultiplet are degenerate in their energy. Because energy

and mass are related via Einstein’s equation E =mc2, we instead speak of a degeneracy

in the particle masses.

Let us verify to what extent this statement holds by first considering a number of

isospin multiplets. The masses of the proton p+ and the neutron n0, for example, were

given at the beginning of this chapter:

mp+ = 938.272046 MeV/c2;

mn0 = 939.565378 MeV/c2.
(7.170)

Despite their forming an isospin doublet, a small difference in the mass values is still

noticeable, which implies the isospin symmetry is not completely perfect, but slightly

broken. The same can be said for other isospin multiplets. The three pions, for instance,
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2 have the masses as listed in Table 7.1:

mπ+ = 140 MeV/c2;

mπ0 = 135 MeV/c2;

mπ− = 140 MeV/c2.

(7.171)

When considering the SU(3) supermultiplets in their totality, even greater differences

are observed. The baryon octet shows a mass spread of nearly 400 MeV between its

particle masses (cf. Table 7.3); in the pseudoscalar meson octet, the masses of the kaons

are nearly three times as high as the pion masses (cf. Table 7.1). Clearly, the SU(3)

symmetry is badly broken. The reason for this will become clear in §7.6.

The Gell-Mann–Okubo mass formula

Despite these broken symmetries, some deeper logic is obviously at work behind the

different particle’s masses. The decuplet of baryon resonances, for instance, consists

of four isospin multiplets: a � quartet {�++,�+,�0,�−} with S = 0, a �∗ triplet

{�∗+,�∗0,�∗−}with S=−1, a�∗ doublet {�∗0,�∗+} with S=−2, and an� singlet

{�−} with S =−3 (Figure 7.11). Their masses are as follows:

m� = 1232 MeV/c2;

m�∗ = 1385 MeV/c2;

m�∗ = 1530 MeV/c2;

m� = 1672 MeV/c2,

(7.172)

with mX standing for the average mass of the X isospin multiplet. It follows from

Eq. (7.172) that for every new multiplet (with the strangeness charge decreasing

stepwise by 1 unit), the mass raises by roughly 145 MeV/c2. This led Gell-Mann,

in 1961, and Susumu Okubo (b. 1930) independently in 1962, to propose the

Gell-Mann–Okubo mass formula for the baryon decuplet:

m�−m�∗ =m�∗ −m�∗ =m�∗ −m� ≈ 145 MeV/c2. (7.173)

Although the �− particle had not yet been observed at the time, Gell-Mann was able

to use the previous formula to predict the mass of �−, as recounted in more detail in

the next paragraph.

7.5.4 In Mendeleev’s footsteps

When Mendeleev first proposed his periodic system in 1869, he consciously left a

number of gaps in the table—boldly predicting that they would get filled in the future

by as-yet-unknown elements. The gaps directly underneath boron, aluminium, and

silicon, for instance, hinted at the existence of three new elements that Mendeleev

provisionally named ekaboron (Eb), ekaaluminium (Ea), and ekasilicon (Es).22

22 Mendeleev adhered to the Sanskrit numbering system—using the prefixes eka-, dvi- and tri- for

one, two, and three—to denote whether the missing elements were one, two, or three places below

a known element in his table. His table was similar to the short form of the periodic table in Figure

13.1A, but with an indent of the periods 1a, 3a, 4b, 5b, 6b. In this way scandium is directly below

boron, gallium below aluminium, and germanium below silicon.
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News was spreading fast about Mendeleev’s daring prophecies, but most chemists

remained cautious, if not skeptical; it just seemed a remarkably improbable feat

to foresee the existence of unknown elements on the basis of a mere theoretical

construct. And as if that wasn’t bold enough, Mendeleev went on predicting the

chemical and physical properties of the eka elements from their relative position in

the periodic system. The atomic weight of ekaboron, for example, could be guessed at

by calculating the mean atomic weight of the elements above, below, and to the left

and right of Eb.

But, Mendeleev’s genius soon became apparent; one by one, and in the most

minute details, Mendeleev’s prophecies came true! In 1875, French chemist Lecoq

de Boisbaudran (1838–1912) discovered gallium (Ga) and immediately noted the

similarities between the properties of gallium and ekaaluminium.23 Four years later,

Lars Fredrick Nilson (1840–1890) discovered Mendeleev’s ekaboron and named it

scandium (Sc) to honor Scandinavia. Ekasilicon, at last, was discovered in 1882 by

German chemist Clemens Winkler (1838–1904), who named it germanium (Ge) to

honor Germany.

The quest for omega minus

Approximately one hundred years later, Gell-Mann bravely followed in

Mendeleev’s footsteps, predicting the existence of new particles (along with their

properties such as mass, isospin, and strangeness) on the basis of the holes in

his schemes. When, at the beginning of 1961, Gell-Mann took on the challenge of

organizing the pseudoscalar mesons, only three pions and four kaons were known.

With a totality of seven particles, one more particle was clearly missing to complete

the octet. Gell-Mann thus predicted the existence of a new meson and dubbed it the

eta particle, η0; it was discovered at the Bevatron before the end of 1961.

A similar situation occurred in 1962, when Gell-Mann set out to order the

extremely short-lived baryon resonances. The isospin quartet of� resonances, triplet

of �∗ resonances, and doublet of �∗ resonances, were already known to particle

physicists and fitted nicely into a triangular scheme (Figure 7.11). One member was

still missing, however, to complete the decuplet of particles. Once again, Gell-Mann

proposed the existence of a new particle and called it the omega minus baryon �−.

From its position in his triangular scheme, Gell-Mann deduced the properties of the

�− particle; it would have an isospin charge T3 = 0, hypercharge Y =−2, strangeness

S = −3, and electric charge Q = −1. With the help of the Gell-Mann–Okubo

mass formula (7.172), the mass of �− was determined to be about 1675 MeV/c2.

Furthermore, Gell-Mann believed the �− particle would be longer lived than the

other resonances of the decimet, inasmuch as there were no other (lighter) particles

with strangeness S = −3 into which the �− particle might decay. As a consequence,

strangeness conservation would be violated during the �− decay, and such processes

23 When the news about de Boisbaudran’s discovery reached Mendeleev via the French Comptes

Rendus, Mendeleev immediately noted a difference in his predicted value of the density of

ekaaluminium and Lecoq’s experimentally determined value. Without hesitation, Mendeleev

scribbled a note to de Boisbaudran, urging him to repeat the experiment and to verify the density of

gallium. Amused by Mendeleev’s faith in his own predictions, de Boisbaurdan followed his advice

and proved Mendeleev entirely correct.
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FIGURE 7.12 The discovery of the�− particle. The photograph from the hydrogen bubble

chamber is shown on the left; the most relevant tracks are shown in a line diagram on the right.

You can see the�− particle decaying into�0 +π−, with subsequent decay of�0 into�0 + 2γ .

(Photo courtesy Brookhaven National Laboratory.)

could happen only via the weak force. This yielded longer lifetimes on the order of

10−10 seconds (see §7.1.5).

Well aware of the importance of Gell-Mann’s prediction as a crucial test for the

eightfold way, particle physicists from every corner of the world embarked on the

quest for the tantalizing omega minus. Two years later, in 1964, a particle accelerator

group at Brookhaven detected the �− particle in a hydrogen bubble chamber, as

illustrated in the photograph in Figure 7.12. With this triumphant discovery, the

subatomic puzzle was finally completed and Gell-Mann’s oddly shaped schemes were

established for good.

7.6 THREE QUARKS FOR MUSTER MARK (1964)

Although Mendeleev had found a way of classifying the elements in his periodic

system, he wisely forbore any attempt at explaining the origin of the periodic law. The

first definite answers to this thorny question would have to await the discovery of the

composite structure of the atom (in terms of protons, electrons, and neutrons), and

the advent of quantum mechanics and the Pauli exclusion principle during the early

1920s (see Chapter 12).

Soon after the discovery of �−, Gell-Mann similarly started wondering about the

possible origins of the SU(3) symmetry. Just as the atomic substructure had provided

an explanation for the periodic system, Gell-Mann believed a true understanding of

the eightfold way might be arrived at by postulating that baryons and mesons were not

elementary particles after all, but had, in fact, a composite structure; they were bound

states of quarks and antiquarks.
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7.6.1 Aces and Quarks

George Zweig (b. 1937) independently the same ideas about the composite structure

of the strongly interacting hadrons in 1964, but he called the components aces and

deuces. Gell-Mann, on the other hand, preferred the name quarks, which he borrowed

from James Joyce’s Finnegans Wake24:

Three quarks for Muster Mark!

Sure he has not got much of a bark

And sure any he has it’s all beside the mark.

The number 3 in the previous quotation fitted perfectly because Gell-Mann postulated

the existence of three varieties, or flavors, of quarks (q): the up quark (u), the down

quark (d), and the strange quark (s).25 For every quark flavor, there is an associated

antiquark (q̄), denoted by a bar over the corresponding quark symbol; we distinguish

the antiup quark (ū), the antidown quark (d̄), and the antistrange quark (s̄). Antiquarks

have the same mass as their respective quarks, but the signs of all quantum numbers

are reversed (Table 7.10).

Composite particles of quarks and antiquarks are known as hadrons. Within

a hadron, the quarks and antiquarks are held together via gluons, which act like

some sort of glue between the quarks.26 The branch of physics dealing with

the quark–quark, quark–gluon, and gluon–gluon interactions is called quantum

chromodynamics (or QCD for short), for reasons that will become apparent in §7.6.4.

Let us determine some of the intrinsic properties of quarks. To this end, we

need to return briefly to our examination of the isotropic harmonic oscillator (§7.3),

which also possessed SU(3) symmetry. For each Cartesian coordinate, we introduced

a creation operator a†
i and an annihilation operator ai , the combinations of which

spanned an su(3) algebra. In the current context, it is tempting to interpret the a†
i

operators as a set of three independent quark creation operators, and the ai operators as

three quark annihilation operators (with i = u,d, s),27 which satisfy the commutation

relations [
ai ,a†

j

]
= Iδij . (7.174)

The remaining commutators are all equal to zero:[
ai , aj

]
=
[

a†
i , a†

j

]
=
[

ai , I
]
=
[

a†
i , I
]
= 0. (7.175)

24 M. Gell-Mann. The Quark and the Jaguar. 1994, p. 180.
25 In reality, three more flavors of heavy quarks are known to exist: the charm quark (c), the beauty

or bottom quark (b), and the truth or top quark (t) (see §7.6.4).
26 The hadron constituents (i.e., quarks, antiquarks, and gluons) are known collectively as partons,

a term first coined by theoretical physicist Richard Feynman (1918–1988).
27 Fuchs and Schweigert, “The Lie Algebras SU(3) and Hadron Symmetries,” p. 40. See also H.

Georgi. “Flavor SU(3) Symmetries in Particle Physics.” Physics Today 41.4 (1988), pp. 29–37. The

three-dimensional harmonic oscillator can also be seen as a system of three uncoupled harmonic

oscillators in one dimension of the same frequency. As Fuchs and Schweigert observed, the fact

“that the oscillators have the same frequency means that the three particles should have equal

masses” (p. 40).



Table 7.10 Table of the properties of the low-mass quark flavors (up u, down d, and strange s) and their
corresponding antiquarks (antiup ū, antidown d̄, and antistrange s̄). All quarks and antiquarks have spin J= 1/2;
as a result of their half-integer spin, quarks are classified as fermions. Antiquarks have the same mass and total
isospin T as their respective quarks, but the signs of all flavor quantum numbers T3, Y , B, S, and Q have been
reversed. The baryon number B=+1/3 for all quarks, whereas B=−1/3 for the antiquarks. As a general rule,
the lower the mass of the quark, the more stable it will be. The s quark, therefore, typically decays into the
lighter u and d quarks. For this reason, the u and d quarks are the most abundant in the universe, whereas the s
quark is only produced in the interior of particle accelerators.

Symbol Isospin (T)
Isospin

Component (T3)

Hyper-

charge (Y )

Baryon

Number (B)
Strangeness (S) Charge (Q) Rest Mass (MeV/c2)

u 1/2 +1/2 +1/3 +1/3 0 +2/3 1.7–3.3

d 1/2 −1/2 +1/3 +1/3 0 −1/3 4.1–5.8

s 0 0 −2/3 +1/3 −1 −1/3 101

ū 1/2 −1/2 −1/3 −1/3 0 −2/3 1.7–3.3

d̄ 1/2 +1/2 −1/3 −1/3 0 +1/3 4.1–5.8

s̄ 0 0 +2/3 −1/3 +1 +1/3 101
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We consider the three quark flavors as resulting from the action of the creation

operators a†
u, a†

d , and a†
s on the vacuum state |0〉:
|u〉 = a†

u |0〉 ; |d〉 = a†
d |0〉 ; |s〉 = a†

s |0〉 . (7.176)

Similarly, acting on any of these quark states with the annihilation operators au, ad ,

and as destroys the quark state and reduces it back to the vacuum state:

|0〉 = au |u〉 ; |0〉 = ad |d〉 ; |0〉 = as |s〉. (7.177)

To deduce the hypercharge Y and the isospin component T3 of these quarks, we

have to act on them with the corresponding hypercharge operator Ŷ and isospin

component operator T̂3, defined in Eq. (7.138), §7.4.6:

Ŷ ≡ 1√
3
λ8; T̂3 ≡ 1

2
λ3. (7.178)

From the matrix form of the Gell-Mann matrices (Table 7.5), we obtain

Ŷ = 1√
3

⎡⎢⎢⎣
1√
3

0 0

0 1√
3

0

0 0 − 2√
3

⎤⎥⎥⎦=
⎡⎢⎣ 1

3 0 0

0 1
3 0

0 0 − 2
3

⎤⎥⎦ ;

T̂3 = 1

2

⎡⎢⎣ 1 0 0

0 −1 0

0 0 0

⎤⎥⎦=
⎡⎢⎣

1
2 0 0

0 − 1
2 0

0 0 0

⎤⎥⎦.

(7.179)

Having found the matrix representation of Ŷ and T̂3, we now have to translate this

in operator form. It is possible to construct an operator Lie algebra isomorphic to

a matrix Lie algebra by associating each n× n matrix A of the matrix algebra to an

operator Â of the operator algebra that is a linear combination of the n creation and n

annihilation operators:

A→ Â = a†Aa =
∑

i

∑
j

a†
i Aijaj . (7.180)

We thus obtain for the Ŷ operator

Ŷ =
[

a†
u a†

d a†
s

]⎡⎢⎣ 1
3 0 0

0 1
3 0

0 0 − 2
3

⎤⎥⎦
⎡⎢⎣ au

ad

as

⎤⎥⎦
= 1

3
a†

uau +
1

3
a†

dad −
2

3
a†

s as .

(7.181)

Similarly for T̂3, we get

Ŷ =
[

a†
u a†

d a†
s

]⎡⎢⎣
1
2 0 0

0 − 1
2 0

0 0 0

⎤⎥⎦
⎡⎢⎣ au

ad

as

⎤⎥⎦
= 1

2
a†

uau −
1

2
a†

dad .

(7.182)

Acting with Ŷ on |u〉 then yields

Ŷ |u〉 =
(

1

3
a†

uau +
1

3
a†

dad −
2

3
a†

s as

)
|u〉 = 1

3
|u〉. (7.183)
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8 It follows that the hypercharge Y = 1/3. Similarly, acting with T̂3 on |u〉 yields

T̂3 |u〉 =
(

1

2
a†

uau −
1

2
a†

dad

)
|u〉 = 1

2
|u〉, (7.184)

with T3 =+1/2 for the value of the isospin component.

We can proceed in the same manner for the down quark:

Ŷ |d〉 = +1

3
|d〉;

T̂3 |d〉 = −1

2
|d〉,

(7.185)

yielding Y =+1/3 and T3 =−1/2. Finally, for the strange quark

Ŷ |s〉 = −2

3
|s〉;

T̂3 |s〉 = 0 |s〉,
(7.186)

with Y =−2/3 and T3 = 0. The u, d, and s quark can now be written as

|u〉 = |T3,Y 〉 =
∣∣∣∣+1

2
,

1

3

〉
; (7.187)

|d〉 = |T3,Y 〉 =
∣∣∣∣−1

2
,

1

3

〉
; (7.188)

|s〉 = |T3, Y 〉 =
∣∣∣∣0,−2

3

〉
. (7.189)

The three quark flavors are assigned a fractional baryon number B = 1/3. Following

Eq. (7.163), this results in a strangeness charge of S = 0 for the u and d quark, and

S=−1 for the s quark. Clearly, the strangeness quantum number is just a measure for

the amount of strange quarks in any quantum system. The electric charges of the three

quarks can be deduced via the Gell-Mann–Nishijima charge formula (7.164):

Qu = T3 + 1

2
Y =+2

3
; (7.190)

Qd = T3 + 1

2
Y =−1

3
; (7.191)

Qs = T3 + 1

2
Y =−1

3
. (7.192)

The up quark has Q = +2/3, whereas the down and strange quarks share the same

charge number Q =−1/3. All these values are listed in Table 7.10.

When the three quark flavors are plotted in terms of their Y and T3 eigenvalues

in the Y —T3-plane, a triangular eightfold way pattern is obtained (Figure 7.13).

This triplet of quarks forms the fundamental representation of the SU(3) group

(i.e., the smallest nontrivial SU(3) representation). In the respective antiquark

multiplet, the signs of the additive quantum numbers T3, Y , S, and Q are reversed,

as seen on the right-hand side of Figure 7.13 (see also Table 7.10). Both the quark

and the antiquark multiplets contain an isospin doublet with T = 1/2 and an isospin

singlet with T = 0. The isodoublet of the quark triplet, for instance, consists of the

u and d quark, whereas the s quark falls into an isosinglet. The same applies to the
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FIGURE 7.13 Weight diagram of the quark triplet (A) and the antiquark triplet (B).

three antiquarks: ū and d̄ forming an isodoublet and s̄, an isosinglet. As we will see

later, all higher dimensional meson and baryon multiplets can be built from these two

fundamental triplets (see §7.6.2 and §7.6.3).

We conclude this section with a brief consideration of the su(3) Weyl generators

which act as shift operators on the u, d, and s quarks, transforming them into one

another. We proceed in analogy with the Ŷ and T̂3 operators to deduce the matrix

form of the Weyl operators defined in Eq. (7.142). The V̂+ operator, for instance, has

the following form:

V̂+ = 1

2
(λ4 + iλ5)= 1

2

⎡⎢⎣ 0 0 1

0 0 0

1 0 0

⎤⎥⎦+ i
1

2

⎡⎢⎣ 0 0 −i

0 0 0

i 0 0

⎤⎥⎦

=
⎡⎢⎣ 0 0 1

2

0 0 0
1
2 0 0

⎤⎥⎦+
⎡⎢⎣ 0 0 1

2

0 0 0

− 1
2 0 0

⎤⎥⎦

=
⎡⎢⎣ 0 0 1

0 0 0

0 0 0

⎤⎥⎦.

(7.193)

In operator form, this becomes

V̂+ =
[

a†
u a†

d a†
s

]⎡⎢⎣ 0 0 1

0 0 0

0 0 0

⎤⎥⎦
⎡⎢⎣ au

ad

as

⎤⎥⎦= a†
uas . (7.194)

Acting with V̂+ on the strange quark |s〉 yields

V̂+ |s〉 = a†
uas |s〉 = a†

u |0〉 = |u〉. (7.195)

The strange quark has been transformed in an up quark under the influence of

V̂+. Figure 7.14 shows the action of the six Weyl operators on the fundamental

representation of the SU(3) group.
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FIGURE 7.14 Action of the six Weyl

operators on the fundamental

representation of the SU(3) group.

Table 7.11 Table of the qq̄ combinations, along with their total charge Q, isospin

component T3, strangeness S, and hypercharge Y. The resulting mesons are identified

in the last two columns. Pseudoscalar mesons are formed when the spins of the quark

and antiquark are pointing in opposite directions; vector mesons are obtained when the

q and q̄ spins are aligned in the same direction.

qq̄ Q T3 S Y Pseudoscalar Meson Vector Meson

uū 0 0 0 0 π0 ρ0

ud̄ +1 +1 0 0 π+ ρ+

us̄ +1 +1/2 +1 +1 K+ K∗+

dū −1 −1 0 0 π− ρ−

dd̄ 0 0 0 0 η0 ω0

ds̄ 0 −1/2 +1 +1 K0 K∗0

sū −1 −1/2 −1 −1 K− K∗−

sd̄ 0 +1/2 −1 −1 K̄0 K̄∗0

ss̄ 0 0 0 0 η′0 φ0

7.6.2 Mesons

Mesons are defined as bound states of a quark and an antiquark; they form qq̄ pairs.28

The nine possible qq̄ combinations are enumerated in Table 7.11, along with their

total charge Q, strangeness S, hypercharge Y , and isospin component T3. Note that

because Q, S, Y , and T3 are additive quantum numbers, the values listed in Table 7.11

are simply the sum of the q and q̄ quantum numbers. For example, the combination of

an u quark with Q =+2/3 and a d̄ antiquark with Q =+1/3 yields a ud̄ meson with

a total charge of Q =+1.

28 At the beginning of this chapter (§7.1.2), mesons were defined as middleweight particles with a

mass between those of baryons and leptons. Considering that some mesons were discovered later

that are heavier than baryons (e.g., mη′0 >mp+ and mφ0 >mn0 ), the definition of mesons as qq̄ pairs

turns out to be more correct.
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In the same vein, we find that the baryon number B of mesons always equals zero,

because quarks have baryon number B=+1/3 and antiquarks have B=−1/3. Quarks

and antiquarks have spin J = 1/2; when their spins are pointing in opposite directions,

the total spin is zero and a pseudoscalar meson is formed. When both spins point in the

same direction, the total spin J = 1 and a vector meson is obtained.

Comparing the values for Q, S, Y , and T3 in Table 7.11 with those of the

pseudoscalar mesons and vector mesons in Tables 7.1 and 7.2, respectively, helps to

identify the qq̄ combinations, as shown in Table 7.11.

The process of meson formation out of quarks and antiquarks can also be repre-

sented in a diagrammatic way. To this aim, we can form the direct product (or tensor

product) of a quark triplet with an antiquark triplet, and expect a hadron multiplet

to result. We use the same graphical method for forming product representations as

outlined in Chapter 6 (§6.4), and superimpose a triplet of antiquarks on top of each

member state of the quark triplet, taking care that the center of gravity of the antiquark

triplet coincides with every site of the quark triplet. This is illustrated in Figure 7.15.

In the end, nine meson states are formed; six states lie on the corners of a regular

hexagon and the three remaining states are located in the center of the graph. This

composite system can be decomposed into a direct sum of a meson octet and a meson

singlet. That is, although the eight states of the meson octet are seen to transform

among themselves under the operations of the SU(3) group, they do not mix with the

singlet state (which we identity as the η′0 pseudoscalar meson or the φ0 vector meson).

We can write this process symbolically as

[3]⊗ [3̄]= [8]⊕ [1], (7.196)

where [3] represents the quark triplet and
[
3̄
]

stands for the antiquark triplet. Note

that we use the dimensions of the multiplets to label the irreducible representations of

the SU(3) group.

The three qq̄ states in the center of the graph (uū, dd̄, and ss̄) all have T3 = 0 and

Y = 0. It is therefore impossible to say which of these corresponds to the π0 meson,

which is the η0 meson, and which the η′0 meson. It turns out that the π0, η0, and η′0
mesons are mixtures of the uū, dd̄, and ss̄ states. However interesting a phenomenon,

we will not pursue this line of reasoning any further.

We conclude this section by noting that the antimesons are readily obtained from

their corresponding mesons by turning every quark into an antiquark and vice versa.

The antiparticle of π− (with a quark content dū), for instance, is π+ (with the quark

content ud̄).

7.6.3 Baryons

Baryons are defined as bound states of three quarks, denoted abstractly as qqq. A

proton, for example, consists of two u quarks and one d quark embedded in a glob of

gluons that holds them together. The ten possible qqq combinations are enumerated in

Table 7.12, along with their total charge Q, strangeness S, hypercharge Y , and isospin

component T3. Antibaryons are similarly defined as bound states of three antiquarks,

denoted q̄q̄q̄. Because quarks are assigned a baryon number of B =+1/3, all baryons

have B = +1. Antibaryons, by analogy, have B = −1 because antiquarks always have

B =−1/3.



FIGURE 7.15 Weight diagrams illustrating the reduction of the tensor product [3]⊗ [3̄]= [8]⊕ [1], yielding the qq̄ SU(3) multiplets. As a result of quantum mechanical mixing, the quark

content of the points labeled a, b, and c has not been assigned.
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Table 7.12 Table of the qqq combinations, along with their total

charge Q, isospin component T3, strangeness S, and hypercharge

Y . The resulting baryon resonances with B=+1 and J=+3/2 are
identified in the last column. The corresponding table of q̄q̄q̄

combinations can be readily obtained by putting a bar over each q

symbol, and by inverting the signs of every Q, T3, S, and Y

quantum number.

qqq Q T3 S Y Baryon Resonance

uuu +2 +3/2 0 +1 �++

uud +1 +1/2 0 +1 �+

udd 0 −1/2 0 +1 �0

ddd −1 −3/2 0 +1 �−

uus +1 +1 −1 0 �∗+

uds 0 0 −1 0 �∗0

dds −1 −1 −1 0 �∗−

uss 0 +1/2 −2 −1 �∗0

dss −1 −1/2 −2 −1 �∗−

sss −1 0 −3 −2 �−

When the spins of the three quarks are aligned, the total spin equals J = +3/2,

which corresponds to the spin of the baryon resonances (cf. Table 7.4). By comparing

the values for Q, S, Y , and T3 in the Tables 7.12 and 7.4, we can bring the various qqq

combinations into correspondence with the ten baryon resonances, as summarized in

Table 7.12. (The corresponding antiparticles are once again obtained by turning every

quark into an antiquark.)

Let us end this section by determining the process of baryon formation out of three

quarks. To do this, we have to form the direct product of three quark triplets, and

see which hadron multiplets result from the process. Because the reduction of the

resulting product representation is more involved than that for mesons, let us simplify

the process by first combining two quarks. After superimposing a quark triplet on top

of each state of another quark triplet, a total of nine qq combinations are obtained that

fall into a triangular array, as illustrated in Figure 7.16.

Notice that the sites on the corners of the triangle are occupied singly whereas the

others are occupied doubly. We therefore reduce the product representation to a direct

sum of a sextet and an antitriplet, which we recognize as the fundamental antiquark

triplet. Symbolically, this is written as

[3]⊗ [3]= [6]⊕ [3̄]. (7.197)

We are now in a position to add the third and final quark to the qq combinations.

Using Eq. (7.197), this yields

[3]⊗ [3]⊗ [3]= [3]⊗ ([6]⊕ [3̄])
= ([3]⊗ [6])⊕ ([3]⊗ [3̄]). (7.198)

We already know from Eq. (7.196) that the direct product of a quark triplet and an

antiquark triplet results in an octet and a singlet. It thus remains to be investigated



FIGURE 7.16 Weight diagrams illustrating the reduction of the tensor product [3]⊗ [3]= [6]⊕ [3̄], yielding qq SU(3) multiplets. As a result of quantum mechanical mixing, the quark

content of the points labeled a, b, c, e, f , and g has not been assigned.
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which SU(3) multiplets are formed during the process of adding a third quark to the

sextet, which is illustrated in Figure 7.17. The scheme of points thus obtained can be

decomposed into a decuplet and an octet:

[3]⊗ [6]= [10]⊕ [8]. (7.199)

We then obtain the final equation:

[3]⊗ [3]⊗ [3]= [10]⊕ [8]⊕ [8]⊕ [1]. (7.200)

The assignment of the quark content to every hadron from the baryon octets and

decuplet is gravely complicated by the quantum mechanical mixing of quarks and

antiquarks, and will not be pursued here.

7.6.4 Symmetry from the quark perspective

It follows from Tables 7.11 and 7.12 that the strangeness charge S is a measure for

the number of strange quarks in hadrons. Every strange quark s imparts a strangeness

S =−1 to the quantum system, whereas every strange antiquark s̄ yields S =+1.

Another observation is that isospin is the symmetry under the interchange of the

u and d quarks. Because the u and d quark have nearly the same mass (cf. Table

7.10), isospin symmetry is a good symmetry. This also explains the near equality of

the proton and neutron masses.

Similarly, SU(3) turns out to be the symmetry under the interchange of the three

flavors of quarks u, d, and s; it is therefore termed flavor SU(3). If the three quarks

had identical masses, flavor SU(3) would be an exact symmetry. However, the s quark

is nearly 100 MeV/c2 heavier than the u and d quarks (cf. Table 7.10). Kaons, which

are known to contain an s quark or s̄ antiquark (cf. Table 7.11), are, for that reason,

nearly four times as heavy as the π-mesons (see Table 7.1). As a consequence, the

SU(3) symmetry is badly broken. One says that the symmetry of the eightfold way is

broken by the mass differences between the u, d, and s quarks.

Realism versus instrumentalism: To be or not to be?

The power of the quark hypothesis has been demonstrated amply in the previous

sections. Yet, most physicists were at first reluctant to adopt Gell-Mann’s attractive

conjecture. During the 1960s and early 1970s, widespread skepticism reigned within

the physics community. For one thing, the fractional charges of the u, d, and s quarks

(Table 7.10) challenged the preconceived views of electric charge as occuring in integral

units of the elementary charge e.

Another embarrassing fact was the following: despite the efforts of particle

physicists, no one had ever succeeded to produce a free, individual quark in the heart

of particle accelerators. However hard a hadron was hit, its constituent quarks did not

bob up. This conveyed the impression that the quarks were somehow imprisoned in

the baryons and mesons—a notion referred to as quark confinement.

The reasoning behind this ran along the following lines: quarks are held together

in hadrons by gluons. Whenever someone tries to separate a bound state of two

quarks—that is, whenever one attempts to rip a meson apart—gluon matter builds

up in between the quarks and acts as some sort of glue holding the quarks together

even more tightly. The further we try to separate the two quarks, the more energy we



FIGURE 7.17 Weight diagrams illustrating the reduction of the tensor product [6]⊗ [3]= [10]⊕ [8]. As a result of quantum mechanical mixing, the quark content has not been indicated in

this figure.
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have to pump into the system. Clearly, the forces acting on the quark level are of a

completely different nature than, say, Coulomb’s electromagnetic force or Newton’s

gravitational force, where both are known to diminish quadratically with distance,

rather than increase indefinitely as in the quark case.

The mysteries surrounding the phenomenon of quark confinement raised the

question whether quarks were actually real. Instead of adopting a realist point of view,

perhaps quarks should be considered as mere theoretical constructs that could be used

only in an instrumentalist way to rationalize the symmetries of the eightfold way?

However, during the late 1960s, deep inelastic scattering experiments were performed

at the Stanford Linear Accelerator Center (SLAC) to probe the interior of the proton.

The experiments revealed that the proton contained three smaller pointlike particles,

thus adding further support to the quark model.

Flavor SU(3) versus color SU(3)

Given that quarks are fermions (as a result of their half-integer spin of J = 1/2), they

must be subject to Pauli’s exclusion principle. That is, no two identical quarks can

occupy the same quantum state simultaneously in a hadron. Oddly enough, three s

quarks (in identical quantum states) were known to coexist inside the �− particle

(�− = sss; cf. Table 7.12).29 How was this possible without violating Pauli’s principle?

As a way out of this problem, American physicist Oscar Greenberg (b. 1932) postulated

the existence of yet another quantum number in 1964; quarks were said to possess

color.30

Each flavor of quarks (u, d, or s) was believed to occur in three color varieties:

red (r), green (g), or blue (b). The corresponding antiquarks (ū, d̄, or s̄) were colored

antired (r̄), antigreen (ḡ), or antiblue (b̄). When forming the�− particle (or any other

baryon for that matter), one simply had to combine one red, one green, and one blue

quark. Then, the three s quarks in the�− particle would all be colored differently and

would therefore be distinguishable (�− = sr sg sb); Pauli’s principle would no longer be

violated.

Quarks are, of course, not really colored, but the color terminology offered an

interesting analogy to the field of optics. Back in the 1670s, Newton demonstrated

how to combine light of three primary colors to obtain a beam of white (i.e., colorless)

light. In complete analogy, the r, g , and b quarks were thought to combine to form

a “colorless” baryon. Mesons, which are qq̄ combinations, could be made colorless

as well by combining an r (g or b) quark with a r̄ (ḡ or b̄) antiquark. Finally, a

combination of three antiquarks, each with a different color charge, would result in

a white antibaryon. Greenberg therefore advanced the idea that all naturally occuring

hadrons were color-neutral particles. Note that this also offered a plausible explanation

for the orgin of the quark confinement.

Recall that the three quark flavors (u, d, and s) were seen to form a flavor triplet

transforming under the fundamental representation of the flavor SU(3) group (or

SU(3)f for short); correspondingly, the three color charges (r, g , and b) now formed a

color triplet transforming under the fundamental representation of the color SU(3)

group (abbreviated SU(3)c). However, although both systems are described by the

29 In the same vein, the�++ consists of three u quarks, and the�− consists of three d quarks.
30 Hence the name quantum chromodynamics for the theory describing the strong force.



Table 7.13 Table of the properties of the high-mass quark flavors (charm c, bottom or beauty b, and top or truth t) and their
corresponding antiquarks (anticharm c̄, antibottom b̄, and antitop t̄). All quarks and antiquarks have spin J= 1/2; because of
their half-integer spin, quarks are classified as fermions. The total isospin T = 0 for c, b, and t. The symbols C, B′, and T ′

denote the quantum numbers charm, bottomness, and topness. Antiquarks have the same mass as their respective quarks,
but the signs of all the flavor quantum numbers B, C, B′, T ′, and Q are reversed. The baryon number B=+1/3 for all quarks
whereas B=−1/3 for the antiquarks. The indicated rest masses are only approximate. Note that the top mass is nearly as
great as a gold atom; the high-mass quarks are therefore highly unstable and can only be produced in particle accelerators.

Symbol
Baryon

Number (B)
Charm (C) Bottomness (B′) Topness (T ′) Charge (Q) Rest Mass (MeV/c2)

c +1/3 +1 0 0 +2/3 ±1270

b +1/3 0 −1 0 −1/3 ±4190

t +1/3 0 0 +1 +2/3 ±172,000

c̄ −1/3 −1 0 0 −2/3 ±1270

b̄ −1/3 0 +1 0 +1/3 ±4190

t̄ −1/3 0 0 −1 −2/3 ±172,000
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same SU(3) symmetry, flavor SU(3) is an approximate symmetry (vide supra) whereas

color SU(3) is believed to be an exact symmetry.

SU(4) and beyond

With the introduction of the other quark flavors—charm (c) by Sheldon Lee Glashow,

John Iliopoulos, and Luciano Maiani in 1970, and beauty (b) and truth (t) by Makoto

Kobayashi and Toshihide Maskawa in 1973—even higher symmetries were searched

for to accommodate these quarks in a unifying scheme (see Table 7.13). Models

based on an SU(4), SU(5), or SU(6) symmetry were proposed in the years following

Gell-Mann’s pioneering work. However, for n> 3 (with n being the number of quark

flavors), the flavor SU(n) symmetry is increasingly broken. The reason for this can,

once again, be traced to the masses of the quarks: the c, b, and t quarks are significantly

heavier than the u, d, and s quarks, with the top quark being nearly as heavy as a gold

atom (cf. Table 7.13).



8 SU(2) and electron spin

Thus, we arrive at the conclusion, that the Dirac particle and the quantum mechanical rotor

are identical dynamic systems. In other words: a Dirac particle is neither more nor less than

a particle, for which it is possible to talk about an orientation in space.

–Jens Peder Dahl (1977)1

8.1 FROM SU(3) TO SU(2)

In the previous chapter, we saw that SO(3) is a subgroup of SU(3). The subduction was

based on the angular momentum operators, which are common to both groups. There

is, however, another more subtle way in which rotational symmetry can be retrieved in

SU(3): a path via the subgroup SU(2), which takes us to the quantum mechanics of the

spinning electron. The path starts by reducing SU(3) to SU(2). This simply consists of

taking out one of the degrees of freedom. By removing the az and a†
z operators, only

three of the eight Ô(λ) operators survive:

Ô (λ1)= a†
xay + a†

y ax ;

Ô (λ2)= 1

i

(
a†

x ay − a†
y ax

)
;

Ô (λ3)= a†
xax − a†

y ay .

(8.1)

1 From J. P. Dahl. “The spinning electron.” Det Kongelige Danske Videnskabernes Selskab

Mathematisk-fysiske Meddelelser, 39.12 (1977), pp. 1–33. See: http://gymarkiv.sdu.dk/MFM/kdvs/

mfm%2030-39/mfm-39-12.pdf.

http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-39-12.pdf
http://gymarkiv.sdu.dk/MFM/kdvs/mfm%2030-39/mfm-39-12.pdf
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We can think of these operators as acting in an abstract two-dimensional space that

allows complex transformations. The Ô (λ) operators are closed under commutation:[
Ô (λ1) ,Ô (λ2)

]
= 2iÔ (λ3),[

Ô (λ2) ,Ô (λ3)
]
= 2iÔ (λ1),[

Ô (λ3) ,Ô (λ1)
]
= 2iÔ (λ2),

(8.2)

which may be rewritten in a concise form by using the Levi-Civita symbol[
Ôk , Ôl

]
= 2iεklmÔm. (8.3)

Here k, l, and m are permutations of the values 1, 2, and 3. The rule is entirely similar

to the commutation rule for angular momenta in units of h̄:[
L̂k , L̂l

]
= iεklmL̂m, (8.4)

where k, l, and m stand for permutations of x, y, and z. The only difference is a simple

but nontrivial factor of two. We can of course eliminate this factor by renormalizing

the operators by a factor of 1/2. The resulting operators are then denoted as the spin

operators Ŝ. We define the three components as follows:

Ŝx = 1

2
Ô (λ3);

Ŝy = 1

2
Ô (λ1);

Ŝz = 1

2
Ô (λ2).

(8.5)

The choice to associate the z-component with Ô (λ2) is based on the fact that

this operator acts as the z-component of the angular momentum in the Cartesian

�(x,y)-plane. This choice also fixes the remaining Ŝx and Ŝy operators in view of

Eq. (8.2). The spin operators have the same commutation relations as the angular

momentum operators, and form the generators of the SU(2) group, yielding the

commutation relations [
Ŝk , Ŝl

]
= iεklmŜm. (8.6)

The Ŝ spin operators reconstruct SO(3) in a two-dimensional space.

8.2 SPINORS AND HALF-INTEGER ANGULAR MOMENTUM

The two-dimensional vector space in which the Ŝ operators act, may be recast in a

complex form that diagonalizes the Ŝz operator. These canonical components are said

to form a spinor. Its components are labeled as α and β . We have:

a†
α =

1√
2

(
a†

x + ia†
y

)
;

a†
β =

1√
2

(
a†

x − ia†
y

)
.

(8.7)

The corresponding annihilation operators are then given by

aα = 1√
2

(
ax − iay

)
;

aβ = 1√
2

(
ax + iay

)
.

(8.8)
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2 The internal structure of the electron can be described by such a spinor, which thus

gives rise to two states denoted as |α〉, or spin-up state, versus |β〉, or spin-down state.

These states are created from the vacuum by the respective a† operators.

The spin operators can now be recast in terms of the spin variables by substituting

the x and y operators in Eq. (8.1). We can also introduce h̄ as the unit of action,

obtaining

Ŝx = h̄

2

(
a†
αaβ + a†

βaα
)

;

Ŝy = h̄

2i

(
a†
αaβ − a†

βaα
)

;

Ŝz = h̄

2

(
a†
αaα − a†

βaβ
)

.

(8.9)

As an example, the effect of the Sz operator on the spin creation operators is given by[
Ŝz ,a†

α

]
= h̄

2

(
a†
αaαa†

α − a†
αa†
αaα

)= h̄

2
a†
α ;[

Ŝz , a†
β

]
= h̄

2

(
−a†

βaβa†
β + a†

βa†
βaβ

)
=− h̄

2
a†
β .

(8.10)

The spin states are thus eigenstates of the Ŝz operator that, in analogy with the L̂z

operator, yields the value of the z-component of angular momentum as

Ŝz |α〉 = h̄

2
|α〉;

Ŝz |β〉 = − h̄

2
|β〉.

(8.11)

We can thus assign to each spin state a quantum number ms , which adopts the values

±1/2. The mathematical treatment in Chapter 4, and even the electronic wavefunction

of Möbius molecules in Chapter 5, which led to the conclusion that SO(3) also allows

for angular momentum states with half-integer values of ml , now materializes in the

effective spin momenta of the electron. Similarly, we have for the x- and y-components

Ŝx |α〉 = h̄

2
|β〉;

Ŝx |β〉 = h̄

2
|α〉;

(8.12)

Ŝy |α〉 = i
h̄

2
|β〉;

Ŝy |β〉 = −i
h̄

2
|α〉.

(8.13)

These results may be recast in matrix form by using three traceless 2 × 2 matri-

ces known as the Pauli spin matrices, which were introduced by Wolfgang Pauli in

1925 in his quantum mechanics of the electron. They are defined as follows:

σz =
[

1 0

0 −1

]
;

σy =
[

0 −i

i 0

]
;

σx =
[

0 1

1 0

]
.

(8.14)
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We may now rewrite the spin operators, acting on the spinor basis (in row vector

notation), in terms of the spin matrices:

Ŝz = h̄

2
σz ;

Ŝy = h̄

2
σy ;

Ŝx = h̄

2
σx .

(8.15)

Along these lines, we can also produce the total spin operator, which is nothing else

than the Casimir operator of SU(2):

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z . (8.16)

Application of this operator to, for example, the spin-up state yields

Ŝ2 |α〉 = 3

4
h̄2 |α〉 = 1

2

(
1+ 1

2

)
h̄2 |α〉. (8.17)

The ms states thus belong to a multiplet with a spin quantum number s, which for

the electron equals 1/2, and characterizes the total spin momentum as s (s+ 1) h̄2, in

perfect analogy with the orbital angular momentum states.

The Casimir operator can also be obtained by forming the square norm of the spin

matrices, which yields

Ŝ2 = h̄2

4

(
σ 2

x +σ 2
y +σ 2

z

)
= 3

4
h̄2

[
1 0

0 1

]
, (8.18)

and confirms the previous result. The 2× 2 unit matrix is referred to as σ0. We will

return to these matrices in the second scholium, where they will appear in connection

with the quaternion algebra. Extensions of Eq. (8.18) to multiparticle systems are

provided in Appendix H.

8.3 THE RELATIONSHIP BETWEEN SU(2) AND SO(3)

Although the Ŝ and L̂ operators give rise to the same Lie algebra, the corresponding

groups are not completely identical. In fact, the relationship between the SU(2) and

SO(3) groups is a homomorphism instead of an isomorphism, and it is interesting to

explore this relationship in more detail because it also helps to clarify the nature of

the electron spin. The following treatment is inspired by, for example, the treatment

by Griffith,2 and is based on the interactions in the spinor space.3 An alternative

treatment makes use of the coupling of two spins, as seen, for example, in Altmann.4

The interaction Hamiltonian in the space formed by the two spin components is

described by a Hermitian matrix—say, H–which, in its most general form, requires

three real parameters and can always be written as a linear combination of the

2 J. S. Griffith. The Theory of Transition-Metal Ions. Cambridge: Cambridge University Press, 1961.
3 A. Ceulemans. Group Theory Applied to Chemistry. Dordrecht: Springer, 2013.
4 S. L. Altmann. Rotations, Quaternions, and Double Groups. Oxford: Clarendon Press, 1986.
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corresponding to the labels of the spin matrices:

H= xσx + yσy + zσz =
[

z x− iy

x+ iy −z

]
. (8.19)

In principle, we could add a fourth (time)-component in σ0, but we have taken H to be

traceless because the trace does not introduce an interaction inside the spin space, but

simply shifts the barycenter of the two levels with respect to an external reference. An

example of a Hamiltonian is the Zeeman interaction of an isolated spin in a magnetic

field. The x, y, and z parameters in this case are proportional to the magnitude of the

magnetic field in the three Cartesian directions.

The interaction operator, which gives rise to the Hamiltonian matrix, can be

expressed in the spinor basis as

Ĥ = z (|α〉 〈α|− |β〉 〈β|)+ x (|α〉 〈β|+ |β〉〈α|)+ iy (|β〉 〈α|− |α〉 〈β|). (8.20)

This result can also be recast in matrix form as

Ĥ =
[
|α〉 |β〉

]
H

[
〈α|
〈β|

]
, (8.21)

or inversely as

H=
[
〈α|
〈β|

]
Ĥ
[
|α〉 |β〉

]
. (8.22)

The labeling of the parameters in the Hamiltonian matrix suggests a connection

between the two-dimensional complex spin space and a real three-dimensional vector

space. To establish this connection between the spinor and the vector, we now need

to verify how transformations in the spinor are showing up as transformations in the

vector.

Consider a finite element of SU(2), represented by a matrix U. In the special

unitary group SU(2), the most general form this matrix can take involves two complex

parameters, a and b, subject to the condition that their squared norm, |a|2 + |b|2,

equals unity. These parameters are known as the Cayley-Klein parameters. We get

U=
[

a b

−b∗ a∗

]
. (8.23)

The determinant of U is unity because of the norm condition; hence, U belongs to the

special unitary group SU(2), of all unitary 2 × 2 matrices with determinant +1. The

transformation Û transforms the spinor as follows:

Û
[
|α〉 |β〉

]
=
[ ∣∣α′〉 ∣∣β ′〉 ]= [ |α〉 |β〉

]
U. (8.24)

To apply the transformation to the interaction operator, we must also consider the

effect of Û on the column of bra functions. This simply requires the inverse of

the matrix, which for a unitary matrix is nothing else than its complex conjugate

transposed:

Û

[
〈α|
〈β|

]
=
[ 〈
α′
∣∣〈

β ′
∣∣
]
=U†

[
〈α|
〈β|

]
. (8.25)
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The transformation of the spinor thus changes the interaction matrix as follows:

H′ =
[ 〈
α′
∣∣〈

β ′
∣∣
]

Ĥ
[ ∣∣α′〉 ∣∣β ′〉 ]

=U†

[
〈α|
〈β|

]
Ĥ
[
|α〉 |β〉

]
U

=U†HU.

(8.26)

The transformed Hamiltonian matrix can again be decomposed into the Pauli

matrices using a new set of parameters
(
x′,y′,z ′

)
:

H′ = x′σx + y′σy + z ′σz . (8.27)

Note that the connection between the spinor and vector transformation is made

possible by the requirement that the interaction operator itself, Ĥ , is invariant

under the transformation. In this way, the transformation of the spinor (|α〉 , |β〉)→(∣∣α′〉 , ∣∣β ′〉) induces a transformation of the vector
(
x, y, z

)→ (
x′,y′,z ′

)
.

In the vector space, this transformation is described by a matrix O (U ). This matrix

can be derived by combining the previous two equations. We get(
x′,y′,z ′

)= Ô (U )
(
x, y, z

)= (x, y,z
)
O (U ), (8.28)

where the transformation matrix is given by

O (U)=
⎡⎣ 1

2

(
a2 + a∗2 − b2 − b∗2

) − i
2

(
a2 − a∗2 + b2 − b∗2

) −ab− (ab)∗
i
2

(
a2 − a∗2 − b2 + b∗2

)
1
2

(
a2 + a∗2 + b2 + b∗2

) −i
(
ab− (ab)∗

)
ab∗ + a∗b −i (ab∗ − a∗b) |a|2 −|b|2

⎤⎦. (8.29)

We can now invoke the infinitesimal operators of the SU(2) Lie group to obtain

the general expression for the U matrix. The operator form makes use of the spin

operators and reads as follows:

Û = exp

(
−i
ω

h̄
n · Ŝ

)
. (8.30)

The corresponding matrix is given by

U= exp
(
−i
ω

2

(
nxσx +nyσy +nzσz

))= exp
(
−i
ω

2
Y

)
. (8.31)

Here, Y is the SU(2) equivalent of the SO(3) Z matrix:

Y=
[

nz nx − iny

nx + iny −nz

]
. (8.32)

We can then easily verify that

Y2 =
(

n2
x +n2

y + n2
z

)
I= I, (8.33)

where use was made of the fact that the sum of the squared directional cosines is equal

to unity. The matrix exponential thus becomes

U= cosω/2I− i sinω/2 Y

=
[

cosω/2− inz sinω/2
(−inx −ny

)
sinω/2(−inx +ny

)
sinω/2 cosω/2+ inz sinω/2

]
,

(8.34)
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6 from which the Cayley-Klein parameters are identified as

a = cosω/2− inz sinω/2;

b = (−inx − ny
)

sinω/2.
(8.35)

Inserting these results into Eq. (8.29) yields

O (U)=⎡⎢⎢⎣
1− 2

(
n2

y +n2
z

)
sin2 (ω/2) −nz sinω+ 2nxny sin2 (ω/2) ny sinω+ 2nz nx sin2 (ω/2)

nz sinω+ 2nxny sin2 (ω/2) 1− 2
(
n2

z +n2
x

)
sin2 (ω/2) −nx sinω+ 2ny nz sin2 (ω/2)

−ny sinω+ 2nz nx sin2 (ω/2) nx sinω+ 2ny nz sin2 (ω/2) 1− 2
(

n2
x +n2

y

)
sin2 (ω/2)

⎤⎥⎥⎦.

This matrix is exactly the general rotation matrix, which was introduced in Chapter 5

(Eq. 5.45), and it describes a rotation over an angle ω about an axis with directional

cosines nx , ny , and nz . This results establishes the connection between the unitary

transformation of a spinor and the orthogonal transformation of a vector.

The mapping O (U) is not an isomorphism, though, but a homomorphism.

Indeed, for the rotations in the spinor space, the angles are halved with respect to

the concomitant rotations in the vector space. Hence, although a rotation over 2π in

ordinary space corresponds to a return to the original orientation, in spinor space it

converts each component into minus itself; the U (2π)matrices are therefore identical

to minus the identity matrix, −I, and the mapping between SU(2) and SO(3) is a

two-to-one mapping. Each element of the rotation group in three-dimensional space

is the image of two elements in SU(2). For this reason, SU(2) is also called the covering

group of SO(3).

Let us now examine the correspondence between elements of SU(2) and their

counterparts in SO(3) for a few canonical examples. First, consider a finite transfor-

mation generated by Ŝz . Following the method of the Lie exponential, we get

Ûz (ω)= exp

(
−i
ω

h̄
Ŝz

)
, (8.36)

or, in matrix form,

Uz (θ)=
[

exp(−iω/2) 0

0 exp(iω/2)

]
. (8.37)

Substituting this result in Eq. (8.29) yields a finite transformation in vector space,

which we denote as O(Uz):

O (Uz)
(
x,y,z

)= (x,y,z
)⎡⎢⎣ cosω − sinω 0

sinω cosω 0

0 0 1

⎤⎥⎦, (8.38)

which is recognized as a rotation around the z-direction over an angle ω. Similar

mappings can be found for a rotation around the x-axis:

Ux (ω)=
[

cosω/2 −i sinω/2

−i sinω/2 cosω/2

]

O (Ux)=
⎡⎢⎣ 1 0 0

0 cosω − sinω

0 sinω cosω

⎤⎥⎦ .

(8.39)
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8.4 THE SPINNING ELECTRON

The special relationship between SU(2) and SO(3) implies that any vector in ordinary

space can be considered as a composite entity based on an underlying and more

fundamental spinor space. The electron has an intrinsic spinor structure defined by

two spin states. When it performs an orbital motion, the intrinsic spin momentum

can couple to the angular momentum of the orbital motion based on the common

structure of SU(2) and SO(3). As long as the coupling between spin and orbital motion

is not included, the symmetry group of the atom remains a formal direct product

between whatever dynamic symmetry we apply and SU(2). In the current treatment,

we will not be concerned with the fine details of the spin–orbit coupling. Hence,

we will not dwell on the internal structure of the electron, but rather concentrate

on the grand structure of the atomic shells. Nevertheless, as the next chapter will

demonstrate, a role is written for SU(2) in this script as well.



9 The SO(4) group

In One Dimension, did not a moving Point produce a Line with two terminal points? In Two

Dimensions, did not a moving Line produce a Square with four terminal points? In Three

Dimensions, did not a moving Square produce—did not this eye of mine behold it—that

blessed Being, a Cube, with eight terminal points? And in Four Dimensions shall not a

moving Cube—alas, for Analogy, and alas for the Progress of Truth, if it be not so—shall

not, I say, the motion of a divine Cube result in a still more divine Organization with sixteen

terminal points?

–Edwin Abbott Abbott (1884)1

On January 17, 1926, the Zeitschrift für Physik received a paper from Austrian

theoretical physicist Wolfgang Pauli (1900–1958).2 In his article “On the Hydrogen

Spectrum from the Standpoint of the New Quantum Mechanics,” Pauli exploited

Heisenberg’s matrix mechanics to derive the spectrum of atomic hydrogen. Besides

angular momentum, Pauli also introduced the quantum mechanical analogue of the

classical Laplace-Runge-Lenz vector, which we will study in §9.3.4. The invariance of

the Hamiltonian under these operators proved to be sufficient to explain the complete

degeneracy of the hydrogen spectrum. Moreover, the corresponding algebra could be

1 E. A. Abbott. Flatland: A Romance of Many Dimensions. London: Seely & Co., 1884.
2 See W. Pauli. “Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik.”,

Zeitschrift für Physik 36 (1926), pp. 336–363. An English translation of Pauli’s paper appeared in

W. Pauli. “On the Hydrogen Spectrum from the Standpoint of the New Quantum Mechanics.” In:

Sources of Quantum Mechanics. Ed. B. L. van der Waerden. New York: Dover Publications, 1967,

pp. 387–415.
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identified as the Lie algebra of the rotational group in four dimensions, isomorphic to

the special orthogonal group SO(4). In this chapter, we will reconstruct Pauli’s scheme

and relate it to the generators of the so(4) algebra.3

It is amazing to note how Pauli’s approach led to the energy eigenvalues of the

hydrogen atom, and many of its constraints and features—free from the Schrödinger

wave equation, and the accompanying conditions of square integrability. At the time,

neither Werner Heisenberg (1901–1976) nor Pauli expected that the whereabouts

of the electron in the attractive potential of a proton could be represented by a

continuous field, as Erwin Schrödinger’s (1887–1961) wave equation was about to

show. Schrödinger’s first paper on the new wave mechanics arrived at the editorial

office of the Annalen der Physik only ten days later, January 27, 1926.4

9.1 THE HYDROGEN ATOM

Since Schrödinger, the standard way to solve the problem of the hydrogen atom has

been by brute calculation and by explicit separation of the variables in the governing

Schrödinger equation:

Ĥ |nlm〉 =
(
− h̄2

2m
∇2 − Ze2

4πε0r

)
|nlm〉 = En |nlm〉. (9.1)

This equation is quite involved, but fortunately, during the preceding era,

French mathematicians Pierre-Simon Laplace (1749–1827), Adrien-Marie Legendre

(1752–1833), and Edmond Laguerre (1834–1886) had provided all the analytic tools

required to solve the eigenvalue problem for the bound states.

9.1.1 A quartet of quantum numbers

The corresponding eigenstates of the Hamiltonian, denoted by the ket |nlm〉 presented

earlier, are uniquely characterized by the quantum numbers n, l, and ml ; the principal

quantum number n refers to the energy level, and l and ml are the spherical symmetry

labels resulting from the rotational SO(3) group (vide infra Chapter 11).5 The orbital

3 Two monographs that deal especially with the symmetries of the hydrogen atom are M. J. Engle-

field. Group Theory and the Coulomb Problem. New York: Wiley-Interscience, 1972; and V. Guillemin

and S. Sternberg. Variations on a Theme by Kepler, vol. 42. American Mathematical Society

Colloquium Publications. Providence: American Mathematical Society, 1990. For a review on group

theory and the hydrogen atom, see M. Bander and C. Itzykson. “Group Theory and the Hydrogen

Atom (I).” Reviews of Modern Physics 38.2 (1966), pp. 330–345 and M. Bander and C. Itzykson.

“Group Theory and the Hydrogen Atom (II).” Reviews of Modern Physics 38.2 (1966), pp. 346–358.

See also C. E. Burkhardt and J. J. Leventhal. Topic in Atomic Physics. New York: Springer, 2006;

and W. Greiner and B. Müller. Quantum Mechanics: Symmetries. Berlin: Springer-Verlag, 2001,

pp. 477–496. Other short accounts appear in M. I. Petrashen and E. D. Trifonov. Applications

of Group Theory in Quantum Mechanics. New York: Dover Publications, 1969, pp. 185–196;

A. W. Joshi. Elements of Group Theory for Physicists. New Delhi: Wiley Eastern, 1977, pp. 171–176;

and H. F. Jones. Groups, Representations and Physics. New York: Taylor & Francis, 1998, pp. 124–127.

As a mathematical supplement, consider S. Frank Singer. Linearity, Symmetry, and Prediction in the

Hydrogen Atom. New York: Springer, 2005.
4 E. Schrödinger. “Quantisierung als Eigenwertproblem.” Annalen der Physik 386.18 (1926),

pp. 109–139.
5 The principal quantum number n is defined as the sum n ≡ nr + l + 1, with nr being, the radial

quantum number (cf. Chapter 11).



Sh
at
te
re
d
Sy
m
m
et
ry

21
0 angular momentum quantum number l is a measure for the magnitude of the orbital

angular momentum L:

L =√l (l+ 1)h̄. (9.2)

In a shell of principal quantum number n, l can take on values from zero to a

maximum value that is n− 1 in integer steps. There are, as a result, n different values

of l for a given value of n:

l = 0, 1, 2, 3, . . . , n− 1.

s, p, d, f , . . . .
(9.3)

States with different values of l are distinguished by the lowercase Latin letters s, p, d,

and f , as described earlier. A state with n = 3 and l = 1, for example, is denoted as

3p. The orbital angular momentum of an electron is complicated further by the fact

that it is a vector (instead of a scalar) and it can therefore point in some direction in

space. In quantum mechanics, the orientation of the orbital angular momentum vector

around an arbitrary axis (e.g., the z-axis) is quantized as well. So, for any value of l, the

measured value of the angular momentum along the chosen axis (e.g., the z-direction)

is given by

Lz =mlh̄, (9.4)

where ml is called the magnetic quantum number, which can take on 2l + 1 different

values, ranging from −l to +l in integer steps:

ml =−l, −l+ 1, −l+ 2, . . . , l− 2, l− 1, l. (9.5)

Finally, of quintessential importance, the electron itself has an internal (intrinsic)

angular momentum, called spin, that is simply a part of the electron. According

to quantum mechanics, an electron can have either of two states, spin up or spin

down, represented by the arrows ↑ and ↓ or the Greek letters α and β, respectively

(cf. Chapter 8). These two spin states are distinguished by a fourth quantum

number, the spin magnetic quantum number ms , as first introduced by Wolfgang Pauli

(1900–1958). This quantum number can have only two values; +1
/

2 indicates an ↑
electron and −1

/
2 indicates a ↓ electron.

9.1.2 “Accidental” degeneracies and the Fock (n) rule

The corresponding energy eigenvalue of the hydrogenic system is quantized with

En =− mZ2e4

8h2ε0
2n2

for n= 1, 2, 3, 4, . . . , (9.6)

with m the reduced mass, Z the atomic number (Z = 1 for hydrogen), e the unit

of electric charge, h Planck’s constant (the logo of quantum mechanics), and ε0 the

vacuum permittivity. It is evident that this spectrum is manifold degenerate in l and

ml , dependent only on the quantum number n (Figure 9.1). The total degeneracy (or

multiplicity) for the principal quantum number n is equal to n2, according to

n−1∑
l=0

(2l+ 1)= (0+ (n− 1))n+
n−1∑
l=0

1= (n− 1)n+n = n2. (9.7)

Although the Schrödinger equation can be solved exactly for the hydrogen atom, the

traditional derivation offers no insight as to the origin of this n2-fold degeneracy. In
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s p d f g

1

2

3

4
5
6

n2-folddegeneracy

(2l+1)-fold

degeneracy

FIGURE 9.1 Energy-level diagram for atomic hydrogen. The n = 1 state is referred to as the ground

state, whereas the higher states (n = 2→ 7) are known as excited states.

this chapter, we will therefore seek further physical insight into this important system

by examining the conditions and conserved properties that lead to this remarkable

degeneracy. For the moment, we observe that the energy rule in Eq. (9.6) gives rise to

the following orbital sequence for the hydrogen atom:

n=1︷︸︸︷
{1s}︸︷︷︸

dim=2

#
n=2︷ ︸︸ ︷{

2s = 2p
}︸ ︷︷ ︸

dim=8

#
n=3︷ ︸︸ ︷{

3s = 3p= 3d
}︸ ︷︷ ︸

dim=18

#
n=4︷ ︸︸ ︷{

4s = 4p= 4d = 4f
}︸ ︷︷ ︸

dim=32

# . . . . (9.8)

We can summarize this sequence of levels of increasing energy by the simple Fock (n)

rule.

Definition 9.1 (The Fock (n) rule): With increasing nuclear charge Z , the nl-orbitals are

filled in order of increasing n. ◾

9.2 DYNAMICAL SYMMETRIES

The three pillars depicted in Figure 6.6 will form a central theme in this chapter. We

already saw that systems with spherical symmetry are (2l+ 1)-fold degenerate with

respect to the z-component of the orbital angular momentum L̂. The fact that states

of the same l but different m have the same energy is thus accounted for by this

symmetry. The degeneracy of the three 2p-orbitals (2px , 2py , and 2pz with l = 1 and

m=−1, 0, 1), as illustrated in Figure 9.1, is thus a consequence of the hydrogen atom

possessing rotational symmetry, as described by the SO(3) group. Since the SO(3)

group is generated by the angular momentum operators L̂i (i= 1, 2, 3), this symmetry

manifests itself to us as the conservation of angular momentum L. In brief,

Conservation of

Angular Momentum
←→ Spherical

Symmetry
←→ (2l+ 1) -fold

Degeneracy
(9.9)
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2 Interestingly, the hydrogen atom has additional degeneracy beyond that associated

with rotational symmetry; that is, states of the same n but different l possess the

same energy as well. This leads to an n2-fold degeneracy, rather than the (2l+ 1)-fold

degeneracy described above. The 2s-orbital, for instance, (with n = 2 and l = 0)

belongs to the same energy level as the 2px , 2py , and 2pz , orbitals (with n = 2 and

l = 1). Initially, these degeneracies were said to be accidental because physicists had

no clue as to their exact origin. But, as Harold V. McIntosh recounted in the 1970s:

“There [had] always been a feeling that accidental degeneracy might not be so much

of an accident after all, in the sense that there might actually have been a larger group

which would incorporate . . . the overt [i.e., geometrical] symmetry group.”6

The idea is thus to look for an additional symmetry of the system, above and

beyond the spherical symmetry, that could account for the increased degeneracy

of the hydrogen atom. It is clear this symmetry cannot be of a geometric nature.

Rather, the hydrogen atom seems to be endowed with a hidden symmetry, which

arises from the particular 1/r form of the Coulomb potential. That is to say, although

all systems with a central potential V (r) = V (r) are spherically symmetric and thus

exhibit the familiar (2l+ 1)-fold degeneracy, the n2-fold degeneracy is unique for

the hydrogen atom, and inherent to the Coulomb potential. This is referred to as an

internal symmetry or a dynamical symmetry.7 We also expect to find an extra constant

of the motion associated with this additional dynamical symmetry. In short,

Extra Constant

of the Motion
←→ Dynamical

Symmetry
←→ n2-fold

Degeneracy
(9.10)

We are thus faced with the following two interrelated questions: First, what is the

nature of this dynamical symmetry that contains the SO(3) group as a subgroup? And

second, which observable, other than the angular momentum L, is conserved in time

for the hydrogen system?

In the case of geometric symmetries, the nature of a symmetry group can usually be

inferred from the corresponding classical system. But, for dynamical symmetries, this is

not generally the case because most quantum systems have no classical analogue (think

of the electron spin in Chapter 8, or the nuclear isospin in Chapter 7). The hydrogen

atom, however, represents a special case in that it does have a classical analogue under

the form of the so-called Kepler problem. We thus expect the dynamical symmetries

and conserved properties of the hydrogen atom to manifest themselves in a classical

formulation of the Kepler problem, and this is why we start this chapter with an

in-depth investigation of the hydrogen atom from a classical point of view.

9.3 CLASSICAL KEPLER PROBLEM

We start this section with a brief consideration of central forces and potentials.

Definition 9.2 (Central force): A force F that is radially directed from the center of force

O, and whose magnitude F only depends on the distance r from the object to the center,

6 H. V. McIntosh. “Symmetry and Degeneracy.” In: Group Theory and Its Applications, vol. II. Ed. E.

M. Loebl. New York: Academic Press, 1971, p. 79 (emphasis added).
7 For multielectron systems, the nucleus gets shielded as a result of the presence of inner electrons.

The effective nuclear Coulomb potential therefore differs from the attractive 1/r potential for

hydrogen, and the dynamical symmetry gets broken, with the degeneracy lowering to 2l+ 1.
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is called a central force. If we take the origin of a coordinate system as the center of force,

and let r denote the position vector of the object, then

F(r)= F (r)er , (9.11)

where er is a unit vector in the radial direction. Moreover, this implies that the force field

is spherically symmetric. ◾

The general relationship between a force F and the potential energy V in Cartesian

coordinates x, y, and z is given by

F≡−∇V =−∂V

∂x
ex − ∂V

∂y
ey − ∂V

∂z
ez , (9.12)

where ∇ is the del operator (or gradient operator)8 and ex , ey , and ez are the unit

vectors along the three Cartesian directions. Each of the partial derivatives in Eq. (9.12)

can be written in terms of the spherical coordinates r, θ , and φ by the multivariable

chain rule. For example,

∂V

∂x
= ∂V

∂r

∂r

∂x
+ ∂V

∂θ

∂θ

∂x
+ ∂V

∂φ

∂φ

∂x
. (9.13)

However, when dealing with a central force, the corresponding potential is spherically

symmetric: V (r)= V (r). Therefore,

∂V

∂θ
= 0 and

∂V

∂φ
= 0, (9.14)

which simplifies Eq. (9.13) to
∂V

∂x
= dV

dr

∂r

∂x
. (9.15)

Rewriting ∂r/∂x as

∂r

∂x
= ∂

(
x2 + y2 + z2

)1/2

∂x

= 1

2

(
x2 + y2 + z2)−1/2

2x = x

r
,

(9.16)

yields
∂V

∂x
= x

r

dV

dr
. (9.17)

We similarly obtain
∂V

∂y
= y

r

dV

dr
and

∂V

∂z
= z

r

dV

dr
. (9.18)

Substituting these results in Eq. (9.12) gives

F=−x

r

dV

dr
ex − y

r

dV

dr
ey − z

r

dV

dr
ez

=−1

r

dV

dr

(
xex + yey + zez

)
,

(9.19)

or

F=−dV

dr

r

r
, (9.20)

with r/r = er , the unit vector in the r direction, confirming that a central force is always

radially directed.

8 The squared del operator ∇2 =∇ ·∇ =�= ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 is called the Laplacian.
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In classical Newtonian mechanics, the Kepler problem (named after Johannes Kepler,

see §9.3.6) is a special case of the two-body problem, where two bodies interact via a

central force with a strength F that varies as the inverse square of the distance r between

the two bodies:

F (r)= k

r2
, (9.21)

where k is a constant proportional to the strength of the force. The Kepler problem

arises in numerous situations, but is especially important in celestial mechanics

because Newtonian gravity obeys an inverse square force law:

F (r)= G
m1m2

r2
, (9.22)

where G is the gravitational constant, m1 and m2 are the masses of the two bodies, and

r is the distance between them. Examples include a satellite revolving around a planet

(like the moon orbiting Earth), a planet moving about its sun, or binary stars moving

about each other.

The Kepler problem is also applicable to the motion of two charged particles, as

given by Coulomb’s law of electrostatics:

F (r)= 1

4πε0

q1q2

r2
, (9.23)

where ε0 is the permittivity of the vacuum, and q1 and q2 are the two point charges.

The most important example here is the motion of an electron around a proton in the

hydrogen atom.

The quantum mechanics of the hydrogen atom, and the celestial mechanics of

our solar system, clearly belong to two different realms of reality; they inhabit, so to

speak, different (microscopic vs. macroscopic) worlds. Yet, there is a deep connection

between both systems in that both are subject to an inverse square force law. We will

make great use of this connection. After describing the Kepler problem for the classical

hydrogen atom, we will then translate our results in quantum mechanical terms and

apply them to the quantum hydrogen atom and its discrete spectrum of energy states.

The hydrogen atom

The electrostatic interaction between the electron e− and the hydrogen nucleus p+ can

be described with the aid of Coulomb’s law in Eq. (9.23). Since the scalar definition

of the law merely describes the magnitude of the electrostatic force, the vector form

is used instead, describing both the magnitude and the direction of force F. From

Eqs. (9.11) and (9.23), we have

F (r)= 1

4πε0

(+Ze)(−e)

r2
er =− k

r2
er , (9.24)

where er is a unit vector along the line connecting the nucleus with the electron (i.e.,

the force F points in the radial direction) and

k = Ze2

4πε0
> 0. (9.25)

The charge of the electron is denoted by−e whereas the nuclear charge of the hydrogen

atom equals +e or, more generally, +Ze for a hydrogen-like ion with a nucleus
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containing Z protons. The distance between the two charges is given by r. The minus

sign in Eq. (9.24) refers to an attractive force, providing a potential well centered at the

origin; a plus sign, on the other hand, corresponds to a repulsive force, such as the force

between two charges of equal sign, pushing the interacting particles to infinity. Since

we are dealing with the hydrogen atom, let us restrict ourselves to a consideration of

the attractive force.

Upon comparison of Eq. (9.20) with Eq. (9.24), we see that

dV

dr
= k

r2
. (9.26)

Integration then yields ∫
dV = k

∫
1

r2
dr (9.27)

or

V =−k

r
+C, (9.28)

where C is the integration constant. We will put this constant equal to zero so that the

zero point of the Coulomb potential V corresponds to the two charges being infinitely

separated.

Since er = r/r (where r is the position vector of the electron), Eq. (9.24) can be

rewritten as follows:

F =− k

r2
er =− k

r3
r. (9.29)

Following Newton’s second law, F =ma, the Coulombic force can also be written as

F=ma=m
dv

dt
= dp

dt
. (9.30)

Equating Eq. (9.29) with Eq. (9.30) results in the following differential equation of

motion:
dp

dt
=−k

r

r3
. (9.31)

Whether we study the behavior of planets or the properties of hydrogen, the problem

in each of these cases consists of finding the positions and velocities of the two

interacting bodies over time. Using classical mechanics, the solution to Eq. (9.31) can

then be expressed as a Kepler orbit.

A derivation of the equations of motion are deferred to §9.3.5. For now, let us

be content with a brief statement of the main results. The solutions to the Kepler

problem are conic sections: circles, ellipses, parabolas, and hyperbolas. Most familiar

among those mathematical curves are the elliptical orbits that the planets in our solar

system trace through space (Figure 9.2). The following properties of ellipses can be

introduced.

Definition 9.3 (Apoapsis and periapsis): The apoapsis or apocenter A of an ellipse is

defined as the point on the ellipse for which the distance to one of the two foci is greatest;

the periapsis or pericenter P, conversely, represents the point of closest approach to the

focus.9 ◾

The straight line AP, connecting the apoapsis with the periapsis, is referred to as the

line of apsides. This is the major axis of the ellipse, which runs through both foci.

9 The terms perihelion and aphelion can be used when describing the revolution of a planet around

the sun, located at one of the foci.
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FIGURE 9.2 Elliptical orbit of a planet

circling the sun. The sun is located in

one of the two foci of the ellipse. The

pericenter and apocenter are denoted P

and A, respectively, and the semimajor

and semiminor axes are labeled a and b.

Definition 9.4 (Semimajor and semiminor axes): The semimajor axis, denoted a in

Figure 9.2, is equal to half the distance from pericenter to apocenter. The semiminor

axis b is perpendicular to the semimajor axis a. ◾

9.3.2 Hamiltonian formulation

We are now in a position to derive the classical Hamiltonian H for the hydrogen

system. Denoting the masses of the proton and the electron by mp and me , and their

velocities by vp and ve , respectively, we have

H ≡ T +V = mpvp
2

2
+ meve

2

2
− k

r
. (9.32)

The first two terms represent the kinetic energy T of the proton and the electron,

whereas the last term V is the contribution of the Coulomb potential, as given in

Eq. (9.28).

Reduction to a one-body problem

This two-body system can now be reduced to a one-body problem in a central potential;

that is, the motion of the two particles can be separated in the uniform motion of the

center of mass and the relative motion of a single effective particle with respect to the

mass center of both. The position of the center of mass is given by

R= mprp +mere

mp +me
. (9.33)

The velocity of the mass center is thus given by

d R

dt
= mpvp +meve

mp +me
. (9.34)
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The corresponding kinetic energy TR is

TR = mp +me

2

(
d R

dt

)2

= mp +me

2

(
mpvp +meve

mp +me

)2

= mp +me

2

(
mp

2vp
2 +me

2ve
2 + 2mpmevp · ve

)(
mp +me

)2

= mp
2vp

2 +me
2ve

2 + 2mpmevp · ve

2
(
mp +me

) .

(9.35)

When we subtract the kinetic energy of the mass center from the total kinetic energy

T, we obtain the kinetic energy associated with the relative motion:

T −TR = mpvp
2

2
+ meve

2

2
− mp

2vp
2 +me

2ve
2 + 2mpmevp · ve

2
(
mp +me

)
= mpmevp

2 +mpmeve
2 − 2mpmevp · ve

2
(
mp +me

)
= mpme

(
vp

2 + ve
2 − 2vp · ve

)
2
(
mp +me

)
= 1

2

mpme(
mp +me

) (vp − ve
)2

.

(9.36)

The factor mpme/mp +me is called the reduced mass, which we denote for simplicity as

m. It represents the mass of an effective particle associated with the relative motion of

the electron with respect to the proton. The associated velocity is the relative velocity

vp−ve and is denoted as v. Since the potential energy term only depends on the relative

position of the particles with respect to each other, the motion of the center of mass

can be separated out effectively, and the Hamiltonian reduces to

H = T +V = mv2

2
− k

r
= p2

2m
− k

r
. (9.37)

9.3.3 Constants of the motion

Our main interest in the Kepler problem concerns the constants of motion (i.e., con-

served quantities) that will find operator equivalents in the quantum mechanics of the

hydrogen problem in §9.4.1.

Conservation of angular momentum L

Evidently, since H possesses rotational symmetry, the orbital angular momentum

L = r×p is a constant of the motion, as mentioned in Chapter 4:

dL

dt
= d

dt

(
r×p

)= r× dp

dt
+ dr

dt
×p = 0. (9.38)

This results from the fact that dp/dt is parallel to r according to Eq. (9.31), and dr/dt

is parallel to p since p = mv = mdr/dt . In fact, the invariance of angular momentum

implies no less than three conservation laws, because each of the three Cartesian

components of this vector is conserved. Notice also that the angular momentum is

conserved for any central force problem.
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The total energy E itself, given by H in equation (9.37), is also independent of time

(dH /dt = 0) and therefore represents another constant of the motion. This can be

shown by calculating the time derivative of the Hamiltonian:

dH

dt
= d

dt

(
p2

2m
− k

r

)
= 1

2m

dp2

dt
− k

d

dt

(
1

r

)
. (9.39)

Using Leibniz’s law to find the derivatives of products of functions, as well as the

quotient rule to find the derivatives of quotients of functions,

d

dx

(
f .g
)= df

dx
g + f

dg

dx
; (9.40)

d

dx

(
f

g

)
=

df
dx g − f dg

dx

g2
. (9.41)

Eq. (9.39) can be rewritten as

dH

dt
= 1

2m

[
dp

dt
·p+p · dp

dt

]
+ k

r2

dr

dt

= p

m

dp

dt
+ k

r2

dr

dt
.

(9.42)

To solve the previous equation further, the following equality will prove very useful:

r · dr

dt
= 1

2

(
dr

dt
· r+ r · dr

dt

)
= 1

2

d

dt
(r · r)= 1

2

d

dt
r2 = 1

2

(
dr

dt
r + r

dr

dt

)
= r

dr

dt
. (9.43)

With the help of Eqs. (9.43) and (9.31), Eq. (9.42) can be rewritten as

dH

dt
= mv

m

(
−k

r

r3

)
+ k

r

r3

dr

dt

=−k
r

r3

dr

dt
+ k

r

r3

dr

dt
= 0,

(9.44)

proving that the energy is indeed a constant of the motion.

9.3.4 The Laplace-Runge-Lenz vector

The conservation of angular momentum, which is a result of the rotational symmetry

of the central attraction force, locks the orbit into a plane through the origin O,

perpendicular to the direction of L. For convenience, let us take the xy-plane as the

orbital plane, with L pointing in the z-direction.

The Kepler orbits in this plane are subject to additional constraints, however.

Indeed, the orbiting particle is confined to an ellipse that is fixed in space; that is,

the major and minor axes of the ellipse retain a fixed orientation in the plane. There

is, in other words, no precession of the orbit, implying that the ellipse is closed. After a

full turn, the orbiting particle always returns to its original starting point, retracing its

own path ad infinitum.

Although the planarity of the orbits is a common feature for any central force

system, the closure of the Keplerian orbits only occurs for the particular form of the

central potential for Newtonian attraction, where V (r) ∝ 1/r. Any departure from
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FIGURE 9.3 Precession of the perihelion (I). Any

departure from the 1/r potential destroys the

conservation of the Laplace-Runge-Lenz (LRL)

vector. As a consequence, the LRL vector starts

to rotate slowly, causing the elliptical orbit to

precess.

y

x

FIGURE 9.4 Precession of the perihelion (II).

Over time, a rosette is formed, and the orbits are

said to be space-filling.

this magical potential destroys the closure of the orbits.10 That is to say, even the

smallest deviation of the potential energy from the Newtonian form V (r) = −k/r

(to V (r)=−k/r1.1, say) would cause the major axis PA of the ellipse to precess slowly.

Although the orbit would remain roughly elliptical, it would no longer be closed and a

“rosette” would be traced out over time (Figures 9.3 and 9.4). The orbits are then said

to be space-filling, which is the case for most central forces.

In the words of McIntosh: “The orbits of the Kepler problem are thus almost

unique among all the central force problems in that the bounded orbits are simple

closed curves.”11 This strongly suggests that there is some additional constant of the

motion, other than H and L, that can be used to characterize the orientation of the

major axis in the orbital plane, thus closing the orbit. We expect this to be a constant

vector, which we will denote by M and which should lie along the major axis, pointing

from O to P or from O to A.

10 The harmonic oscillator potential V (r) = 1/2kr2 is the only other central potential for

which the orbits are closed. This is referred to as Bertrand’s theorem in honor of the French

mathematician Joseph Louis François Bertrand (1822–1900). See also J. Bertrand. “Théorème

Relatif au Mouvement d’un Point Attiré vers un Centre Fixe.” Comptes Rendus des Séances de

l’Academie des Sciences 77 (1873), pp. 849–853.
11 McIntosh, “Symmetry and Degeneracy,” p. 81.
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0 Such a vector has indeed been discovered and rediscovered a number of times

throughout the history of classical mechanics (see §9.3.7). Among others, the names of

Jacob Hermann, Johann Bernoulli, Pierre-Simon Laplace, and William Rowan Hamil-

ton are all associated with this vector. Since Pauli, the name Laplace-Runge-Lenz vector

(or simply LRL vector) is mostly in use. We write it in the somewhat peculiar form12

M ≡ p×L−mk
r

r
. (9.45)

Conservation of the LRL vector M

The fact that the LRL vector is a constant of the motion is perhaps a little bit more

difficult to prove. Taking the time derivative of M yields

d

dt
M = d

dt

(
p×L

)−mk
d

dt

r

r

=
[(

dp

dt
×L

)
+
(

p× dL

dt

)]
−mk

1

r2

[
dr

dt
r − r

dr

dt

]
= F×L− mk

r3

[
dr

dt
r2 − rr

dr

dt

]
,

(9.46)

where in the third line, the conservation of angular momentum (Eq. (9.38)) was used,

and the fact that F= dp/dt (Eq. (9.30)). It will prove interesting to look at the problem

for the most general case, where F can denote any central force (not necessarily of an

inverse square nature). Then, by Eq. (9.11),

d

dt
M = F (r)

r

r
×L− mk

r3

[
r2 dr

dt
− r

(
r · dr

dt

)]
= F (r)

r
r× (r×p

)− k

r3

[
r2p− r

(
r ·p

)]
,

(9.47)

where the identity in Eq. (9.43) was invoked in the first line, and p = mv = mdr/dt

and L = r×p in the second line. With the help of the vector relation

a× (b× c)= (a · c)b− (a ·b)c, (9.48)

we can rewrite Eq. (9.47) as

d

dt
M= F (r)

r

[(
r ·p

)
r− (r · r)p

]− k

r3

[
r2p− r

(
r ·p

)]
= F (r)

r

[(
r ·p

)
r− r2p

]+ k

r3

[(
r ·p

)
r− r2p

]
= [(r ·p

)
r− r2p

][F (r)

r
+ k

r3

]
.

(9.49)

It follows that

d

dt
M = 0 ⇔ F (r)

r
=− k

r3
⇒ F (r)=− k

r2
. (9.50)

That is to say, the LRL vector is a constant of the motion if and only if the force F

varies as the inverse square of the distance r, which is the case for the Kepler problem,

as shown in Eq. (9.24). Actually, because M is a vector, it represents no less than three

12 The exact definition of the LRL vector tends to vary from author to author. Some define it as

M= 1/mk p×L− r/r. Others, such as Pauli, prefer the form M= 1/mk L×p+ r/r.
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conserved quantities through its three Cartesian components Mx , My , and Mz . In view

of Eq. (9.50), the LRL vector is said to be a dynamical invariant because it depends on

the particular form of the force law. The angular momentum L and the energy E, in

contrast, are geometric invariants because they depend on the geometries of Euclidean

space and time.

With our elucidation of the LRL vector as a new constant of the motion, an

important piece of the puzzle in Eq. (9.10) falls into place:

Conservation of

the LRL vector
←→ Dynamical

Symmetry
←→ n2-fold

Degeneracy
(9.51)

From Noether’s theorem, we expect M to be related to an additional dynamical

symmetry of the Kepler problem, beyond the spherical symmetry of all central force

problems. The question remains, however: What is the exact nature of this hidden

symmetry? We will return to this point in §9.5.

Direction of the LRL vector M

Since M is conserved for the Kepler problem, its direction in space is fixed. To

determine in which direction the LRL vector points, we first note that the vector p×L

in Eq. (9.45) is perpendicular to both p and L. Given that the momentum vector p is

tangential to the orbit, and that L is perpendicular to the plane of the orbit, p×L must

lie in the xy-plane. Since the unit vector er = r/r also lies in the plane, M is forced to

lie in the xy-plane.

To determine its position in the xy-plane, we write down the x- and y-components

of M (Mz is, of course, equal to zero). We thus have

M = p×L−mk
r

r

=

∣∣∣∣∣∣∣
ex ey ez

px py pz

Lx Ly Lz

∣∣∣∣∣∣∣−
mk

r

(
xex + yey

)
.

(9.52)

This then yields

Mx =
(
pyLz − pzLy

)− mk

r
x; (9.53)

My =
(
pz Lx − pxLz

)− mk

r
y. (9.54)

Since the angular momentum vector L points in the z-direction, Lx = Ly = 0. This

simplifies the previous equations further to

Mx = pyLz − mk

r
x; (9.55)

My =−pxLz − mk

r
y. (9.56)

Now, let us consider the situation when the orbiting particle (planet or electron)

crosses the x-axis. Obviously, y = 0 at this point. Also, the momentum vector p (being

tangential to the orbit) points in the y-direction, and thus px = 0. Substitution in

Eq. (9.56) then shows that My = 0; that is, when crossing the x-axis, the LRL vector M

is pointing in the x-direction. But, because the direction of M never changes over time,

according to Eq. (9.50), this implies that for the elliptical orbit of a classical particle,
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0

FIGURE 9.5 The orientation of the LRL vector M at four different points (denoted by the position

vectors r1 → r4) on a bound elliptical orbit. Since L is conserved, M lies in the xy-plane of a

Cartesian coordinate system with the center of attraction as the origin O. The coplanar vectors

p×L and mker are indicated for each of the four positions. The momentum vectors p are

tangential to the orbit. Notice that M is constant in both direction and magnitude; that is, M is a

constant of the motion for the Kepler problem.

M is always pointing from the focus O to the periapsis P along the major axis of the

ellipse (see Figure 9.5).

Note that for any central force, other than the inverse square force, d/dt M �= 0

according to Eq. (9.50). Since the LRL vector is no longer conserved, it starts rotating

in the xy-plane and the orbit is seen to precess slowly. This is actually the case in our

solar system because the planets are not only attracted to the sun, but they also feel the

influence of each other, thus causing a slight deviation of the central potential from

the perfect 1/r form.13

Important relations with the LRL vector

The following two relations will have a direct bearing on the quantum mechanical

treatment of the hydrogen atom in §9.4:

L ·M = 0; (9.57)

M2 = 2mH L2 +m2k2. (9.58)

13 The anomalous precession of the perihelion of the planet Mercury, however, hinted that

Newtonian mechanics might not be the entire picture. Although the precession could indeed be

explained to a certain extent by the gravitational action of the other planets on Mercury, about

43 arcseconds per century remained unexplained. This opened the doors for Einstein’s theory of

general relativity, which triumphantly described the precessing perihelion of Mercury.
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The orthogonality of L and M is a direct consequence of their orientation. The vector

L is defined as the vectorial product
(

r×p
)

and is thus orthogonal to the orbital

plane defined by the radius vector and the displacement of the particle. The vector

M lies entirely in this plane; its first part,
(

p×L
)
, is orthogonal to L; its second part,

−mk er , is along the radius vector. The second proposition in Eq. (9.58) can be proved

as follows:

M2 =
[

p×L−mk
r

r

]2

= [p× (r×p
)]2 − 2mk

r

[
p× (r×p

)] · r+m2k2 r · r

r2
.

(9.59)

Expanding the triple product p× (r×p
)

with the help of Eq. (9.48) yields

M2 = [(p ·p
)

r− (p · r
)

p
]2 − 2mk

r

[(
p ·p

)
r− (p · r

)
p
] · r+m2k2. (9.60)

Working out the brackets,

M2 =
[

p4r2 − 2
(

p · r
)2

p2 + (p · r
)2

p2
]
− 2mk

r

[
p2r2 − (p · r

)2
]
+m2k2

= 2m

[
p2

2m
− k

r

][
p2r2 − (p · r

)2
]
+m2k2.

(9.61)

After introducing the Hamiltonian (Eq. (9.37)) and the square of the angular

momentum L2 = p2r2 − (p · r
)2

(as derived in Eq. (5.135)), we finally obtain

M2 = 2mH L2 +m2k2. (9.62)

9.3.5 Equations of motion

In what follows, the classical equations of motion will be derived. With the definition

of the LRL vector in Eq. (9.45), this becomes a straightforward matter. Taking the

scalar product of the LRL vector M with the position vector r yields

M · r =
(

p×L−mk
r

r

)
· r

= (p×L
) · r−mk

r · r

r

= (r×p
) ·L−mk

r2

r

= L ·L−mkr.

(9.63)

In the third line of Eq. (9.63), we used the following vector identity:

(a×b) · c = (c× a) ·b = (b× c) · a. (9.64)

We can also write

M · r =Mr cosθ , (9.65)

where M = |M| is the magnitude of the LRL vector and θ is the angle between the two

vectors M and r. Equating Eq. (9.63) with Eq. (9.65), we obtain

L2 =Mr cosθ +mkr

= (M cosθ +mk)r,
(9.66)
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4 or

r = L2

M cosθ +mk
. (9.67)

Dividing the numerator and the denumerator by mk yields

r =
L2

mk
M
mk cosθ + 1

. (9.68)

After defining
L2

mk
≡ α and

M

mk
≡ ε, (9.69)

the previous equation reduces to

r = α

1+ ε cosθ
. (9.70)

Quite remarkably, this turns out to be the formula for a conic section in polar

coordinates, with the origin O at one of the foci. In particular, when Eq. (9.70)

is applied to the planets in our solar system, the variables r and θ form the polar

coordinates (r,θ) of a vector that points from the sun (in one of the foci) to the planet,

and traces an ellipse, as shown in Figure 9.6. We have, in other words, obtained a most

elegant and simple proof of Kepler’s first law of planetary motion.

Definition 9.5 (Kepler’s first law): The orbit of every planet is an ellipse with the sun at

one of the two foci. ◾

The parameter α in Eq. (9.70) is called the semilatus rectum, whereas ε is known as

the orbital eccentricity of the ellipse. The eccentricity is a measure for the “ellipticity”

of the orbit; it tells you, in other words, how much the planetary orbit deviates from

a perfect circle. An orbit is entirely circular when the eccentricity equals zero: ε = 0.

This can be easily seen by expressing the variables r and θ in terms of the Cartesian

coordinates x and y. From Eq. (9.70), we have

α = r + εr cosθ . (9.71)

Given that r cosθ = x, we get

r = α− εx. (9.72)

F1

y

xP AF2

r

θ

α

0 < ε < 1

FIGURE 9.6 Ellipse in polar

coordinates. Each point on the ellipse

is defined by the length of the position

vector r and the angle θ . For an ellipse

the orbital eccentricity ε obeys the

relation 0< ε < 1. The semilatus

rectum is denoted α.
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Squaring yields

r2 = α2 − 2εαx+ ε2x2. (9.73)

By Pythagoras, r2 = x2 + y2, yielding the equation for the orbit in Cartesian

coordinates: (
1− ε2)x2 + 2εαx+ y2 = α2. (9.74)

Setting ε = 0, the previous equation reduces to

x2 + y2 = α2, (9.75)

which is indeed the equation of a circle with radius α, centered at the origin. Usually,

however, 0 < ε < 1, and the orbit becomes elliptical; that is, as ε tends toward 1,

the orbit gets more and more elongated.14 To see this, we can multiply each term in

Eq. (9.74) by 1− ε2:(
1− ε2)2

x2 + 2εα
(
1− ε2)x+ (1− ε2)y2 = α2 (1− ε2), (9.76)

and add the term ε2α2 on both sides of the equation:(
1− ε2)2

x2 + 2εα
(
1− ε2)x+ ε2α2 + (1− ε2)y2 = α2 (1− ε2)+ ε2α2. (9.77)

When divided by
(
1− ε2

)2
, we obtain

x2 + 2
εα(

1− ε2
) x+ ε2α2(

1− ε2
)2
+ 1(

1− ε2
) y2 = α2(

1− ε2
)2

. (9.78)

This can be rewritten as[
x+ εα(

1− ε2
)
]2

+ 1(
1− ε2

) y2 = α2(
1− ε2

)2
, (9.79)

or [
x+ εα

(1−ε2)

]2

α2

(1−ε2)
2

+ y2

α2

(1−ε2)

= 1. (9.80)

The expression in Eq. (9.80) corresponds to the equation for an ellipse in Cartesian

coordinates:
(x− a)2

c2
+
(
y− b

)2

d2
= 1, (9.81)

where a, b, c and d are parameters. It represents, in other words, the Cartesian

equivalent of Eq. (9.70) for 0 < ε < 1, and describes an ellipse centered at the point(−εα/(1− ε2
)

, 0
)
. The minor radius along the x-axis has a length of α/

(
1− ε2

)
,

whereas the major radius along the y-axis equals α/
√

1− ε2.

In a similar vein, it can be shown that Eq. (9.74) describes a parabola for

ε = 1, and a hyperbola for ε > 1.15 Furthermore, there is an interesting relationship

14 The eccentricities of the planets in our solar system are as follows: εMercury = 0.20563069, εVenus =
0.00677323, εEarth = 0.01671022, εMars = 0.09341233, εJupiter = 0.04839266, εSaturn = 0.05415060,

εUranus = 0.04716771, and εNeptune = 0.00858587. With the exception of εMercury, all eccentricities are

close to zero, accounting for the near circularity of most planetary orbits. Many asteroids, on the

other hand, have eccentricities between 0 and 0.30, and Halley’s comet has an eccentricity of 0.967.
15 Some comets entering our solar system, for instance, have been observed to follow near-parabolic

orbits, or even hyperbolic paths. When ε < 1, the comets trace an ellipse and return periodically;

they are called periodic comets. Comets with ε ≥ 1, however, are referred to as nonperiodic comets.
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6 Table 9.1 Dependency of

eccentricity ε on total energy E of the

system

Energy Eccentricity Conic Section

E < 0 ε < 1 Ellipse

E = 0 ε = 1 Parabola

E > 0 ε > 1 Hyperbola

between the eccentricity ε and the energy E of the system. To this end, we rewrite

Eq. (9.58) as

M2 = 2mEL2 +m2k2, (9.82)

or on dividing by m2k2, (
M

mk

)2

= 2

(
L2

mk2

)
E+ 1. (9.83)

With the help of the defining relation for eccentricity ε in Eq. (9.69), we obtain

ε2 = 2βE+ 1, (9.84)

where β = L2/mk2 ≥ 0. The dependency of ε on the total energy E of the system is

summarized in Table 9.1. It follows that closed elliptical orbits occur only for bound

states where E < 0. When, in contrast, E > 0, the object in question traces a hyperbola

and we see a scattering state. For a hydrogen atom in its ground state, for instance, the

electron is bound to the proton and the energy E < 0 (E = −13.6 eV, to be exact).

We also say that the electron is trapped inside the potential well formed by the electro-

magnetic field that surrounds the positively charged nucleus. By pumping energy into

the system, the electron gets excited to higher energies, tracing increasingly elongated

orbits. As soon as E > 0, the hydrogen atom loses its electron forever and gets ionized

(H→H+ + e−).

We end the classical description of the hydrogen atom by noting that the magnitude

M of the LRL vector M is proportional to the eccentricity of the orbit, following

Eq. (9.69):

M = εmk. (9.85)

For this reason, the LRL vector can be rescaled to yield the so-called eccentricity vector:

ε ≡ M

mk
= 1

mk
p×L− r

r
. (9.86)

9.3.6 History of the Kepler problem

The Kepler problem is named after the German mathematician and astronomer

Johannes Kepler (1571–1630). While a student at the University of Tübingen,

Kepler became an ardent advocate of the heliocentric ideas of Nicolaus Copernicus

(1473–1543). In his first major work on astronomy, the Mysterium Cosmographicum

(published in 1596),16 Kepler presented a model of the solar system with the sun at

the center. Like so many of the notable figures of the seventeenth-century scientific

16 J. Kepler. Mysterium Cosmographicum. Tübingen, 1596.
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FIGURE 9.7 Kepler’s Platonic solid model of the solar system from his Mysterium Cosmographicum

(1596).

revolution, Kepler, too, was deeply influenced by the musings of the great philosophers

of Classical Antiquity. Impressed by the supreme beauty and perfection of the Platonic

solids, Kepler attempted to nest these polyhedra into one another like a Russian

matryoshka doll (Figure 9.7). By inscribing and circumscribing the five Platonic solids

by spherical orbits, Kepler obtained six layers that (quite miraculously) corresponded

to the planetary orbits of the planets Mercury, Venus, Earth, Mars, Jupiter, and Saturn.

It should not come as a surprise that Kepler assumed the planetary orbits to be

perfectly circular. After all, the circle represented the Platonic ideal of symmetry and

perfection.

Kepler’s work soon attracted the attention of Danish astronomer and alchemist

with brass nose, Tycho Brahe (1546–1601), who was known far and wide for his

impressive accumulation of astronomical data during the last few decades of his life.

Although a disbeliever of the Copernican system, Brahe was deeply impressed by the

mathematical skills of Kepler, and invited him to come and work at his research

institute Uraniborg on the island of Hven. Brahe hoped Kepler would prove his

own Tychonic system, but Kepler decided otherwise. When Tycho unexpectedly died

in 1601, Kepler took hold of Tycho’s empirical data and started analyzing Tycho’s

observations of the planet Mars, which had plagued astronomers for centuries.

Kepler’s meticulous calculations were deeply troublesome, however. Try as he

might, Kepler was unable to fit Mars’ orbit in a perfect circle. In 1605, Kepler finally

stumbled on the idea that the planetary orbits might not be circles after all, but ellipses,

with the sun in one of the two foci! His first two laws of planetary motion were

published in 1609 in his Astronomia Nova17 and marked the end of Kepler’s cherished

belief in the perfect circularity of the planetary orbits. Giving up this idea—grounded

in the crystalline symmetries of Greek philosophy—did not come easily. It took Kepler

eight entire years of work with hundreds of pages of painstaking calculations before

he was convinced of the truth of his newfangled idea. And yet, Kepler’s initial belief

17 J. Kepler. Astronomia Nova. Heidelberg: G. Voegelinus, 1609.
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8 in perfect circles was not completely unfounded. Nearly 250 years later, Sir William

Rowan Hamilton (1805–1865) found a way to regain the circularity of the planetary

orbits. We will come back to this intriguing insight in §9.6.3.

9.3.7 History of the LRL vector (I)

It is somewhat of an irony that the LRL vector was named after Laplace, Runge, and

Lenz, given that none of these scholars actually discovered it. The LRL vector never

became as well established in scientific circles as, say, the more familiar momentum

or angular momentum vectors, which probably explains why it was discovered and

rediscovered a number of times throughout the centuries.18

The inverse Newton problem

In any case, it seems that the LRL vector made its first appearance in summer 1710 in

a letter that Jakob Hermann (1678–1733) wrote to the eminent Swiss mathematician

Johann Bernoulli (1667–1748). Both Hermann and Bernoulli were familiar with

Newton’s demonstration of the inverse square force law of gravitational attraction

from Kepler’s three laws of planetary motion—an extraordinary tour de force that

came to be known as “le problème direct” (or the direct problem). But, Hermann set

forth to solve “le problème inverse” which he considered even more challenging and

mind-bending than the direct problem. The aim, then, was to derive Kepler’s laws

from Newton’s force law. To be more specific, Hermann attempted to prove that conic

sections were the only solutions to the planetary orbits under the 1/r2 attraction of

the sun. In brief, the situation looked as follows:

Newton’s Force Law
inverse−−−⇀↽−−−
direct

Kepler’s Laws

In his derivation, there were signs of what was later recognized as the LRL vector,

and Hermann showed it was a constant of the motion for the Kepler problem. His

letter, dated July 12, 1710, was sent from Padua to Basel, where Bernoulli spent his

later years as a professor of mathematics. Bernoulli, in turn, generalized the results

obtained by Hermann and derived the direction and magnitude of the LRL vector.

Both Hermann’s letter and Bernoulli’s answer (dated October 7, 1710) were later sent

to the Paris Academy for publication in the Histoire de l’Académie Royale des Sciences.19

Laplace’s Traité de Mécanique Céleste

Toward the end of the century, the LRL vector surfaced again in a monumental

five-volume exposition on celestial mechanics: the Traité de Mécanique Céleste by

Pierre-Simon de Laplace (1749–1827).20 Throughout his work, Laplace applied the

18 For a detailed account, see H. Goldstein. “Prehistory of the Runge-Lenz Vector.” American Journal

of Physics 43.8 (1975), pp. 737–738 and H. Goldstein. “More on the Prehistory of the Laplace or

Runge-Lenz Vector.” American Journal of Physics 44.11 (1976), pp. 1123–1124.
19 See J. Hermann. “Extrait d’Une Lettre de M. Herman à M. Bernoulli, Datée de Padoüe le 12. Juillet

1710.” Histoire de l’Académie Royale des Sciences (1732), pp. 519–521 and J. Bernoulli. “Extrait de la

Réponse de M. Bernoulli à M. Herman, Datée de Basle le 7. Octobre 1710.” Histoire de l’Académie

Royale des Sciences (1732), pp. 521–533.
20 P. S. Laplace. Traité de Mécanique Celeste, vol. I. L. Paris: J. B. M. Duprat, 1799.
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tools of differential calculus, approaching the solar system in an analytic, rather than a

geometric, way as Newton had done in his Principia.21 In the first volume, Laplace

determined the seven constants of the motion for the Kepler problem—L, M and

E—and used them to derive Kepler’s laws in much the same way as we did in §9.3.5.22

About fifty years later, in July 1845, William Rowan Hamilton (1805–1865) derived

the eccentricity vector in an article titled “Applications of Quaternions to Some

Dynamical Questions”.23 In a closely related article, he also introduced the concept

of a hodograph, which will be discussed in §9.6.3.24

The first formulation of the LRL vector in its modern vector notation had to await

the Vector Analysis, by Josiah Willard Gibbs (1839–1903), published in 1901.25 About

twenty years later, Carl Runge published his popular monograph Vektoranalysis, in

which he offered a derivation of the Kepler orbits in Laplace style.26 This formed the

main source for Lenz’s and Pauli’s use of the LRL vector in their quantum mechanical

study of the hydrogen-atom (see §9.6.2).

In conclusion, it seems to be more correct to use the name Hermann-Bernoulli-

Laplace-Hamilton-Runge-Lenz vector (as one author actually did27). Nevertheless, let

us opt for the more familiar term Laplace-Runge-Lenz vector.

9.4 QUANTUM MECHANICS OF THE HYDROGEN ATOM

We have seen that the classical Kepler problem carries seven invariants: besides the

energy H and the three components Lx , Ly , and Lz of the angular momentum vector L

(representing the geometric invariants for any central problem), the Kepler/Coulomb

problem is characterized by three additional conserved quantities (i.e., the dynamical

invariants), which we identified as the components Mx , My , and Mz of the LRL vec-

tor M. In 1926, Pauli constructed the corresponding quantum mechanical equivalents

of these constants of the motion, and he subsequently derived the hydrogen spectrum

from their commutation algebra, as we shall see in this and the following sections.

21 I. Newton. The Principia, Mathematical Principles of Natural Philosophy: A New Translation by

I. B. Cohen and Anne Whitman. Berkeley: University of California Press, 1999.
22 Referred to as the French Newton, Laplace’s genius soon attracted the attention of Napoleon

Bonaparte, who met him at a reception in Josephine Bonaparte’s rose garden. “Someone had told

Napoleon that the book contained no mention of the name of God; Napoleon, who was fond

of putting embarrassing questions, received it with the remark, ‘M. Laplace, they tell me you

have written this large book on the system of the universe, and have never even mentioned its

Creator.’ Laplace, who, though the most supple of politicians, was as stiff as a martyr on every

point of his philosophy, drew himself up and answered bluntly, ‘Je n’avais pas besoin de cette

hypothèse-là.’ (‘I had no need of that hypothesis.’) Napoleon, greatly amused, told this reply to

Lagrange, who exclaimed, ‘Ah! c’est une belle hypothèse; ça explique beaucoup de choses.’ (‘Ah! It is

a fine hypothesis; it explains many things.’) Quoted from W. W. Rouse Ball. A Short Account of the

History of Mathematics. New York: Dover Publications, 1960, p. 343.
23 W. R. Hamilton. “Applications of Quaternions to Some Dynamical Questions.” Proceedings of the

Royal Irish Academy 3 (1847), pp. xxxvi–l.
24 W. R. Hamilton. “The Hodograph or a New Method of Expressing in Symbolic Language the

Newtonian Law of Attraction.” Proceedings of the Royal Irish Academy 3 (1847), pp. 344–353.
25 J. W. Gibbs and E. B. Wilson. Vector Analysis. New York: Scribners and Sons, 1901, p. 135.
26 C. Runge. Vektoranalysis, vol. 1. Leipzig: Verlag S. Hirzel, 1919.
27 See P. R. Subramanian. “Hermann-Bernoulli-Laplace-Hamilton-Runge-Lenz Vector.” Physics

Education 7.4 (1991), pp. 323–327.
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To treat the hydrogen atom, the foregoing quantities r, p, L, and M must all be

translated into quantum mechanical terms by converting these vectors into Hermitian

operators. This has already been done before for r and p, where r̂ = r is the position

operator, and p̂ is the momentum operator, given by

p̂ ≡−ih̄∇ = h̄

i

(
∂

∂x
ex + ∂

∂y
ey + ∂

∂z
ez

)
. (9.87)

Position and momentum are conjugate operators and they obey Heisenberg’s canonical

commutation relations: [
r̂i , p̂j

]= ih̄δij , (9.88)

where δij is the Kronecker delta, as derived in Appendix I.

Naturally, H , L, and M will become operators as well within the quantum

mechanical description of the hydrogen atom. We obtain Ĥ by using Eq. (9.37):

Ĥ = p̂2

2m
− k

r
=− h̄2

2m
∇2 − k

r
. (9.89)

The components of the angular momentum operator were defined previously in

Chapter 4. When attempting to find a quantum analogue for the classical LRL vector

M, however, a new problem arises since L̂ and p̂ do not commute (see Appendix I):[
L̂i , p̂j

]
= ih̄εijk p̂k . (9.90)

In view of this, it is not immediately clear in which order the operators L̂ and p̂ have to

be placed in the definition of the LRL operator M̂ since L̂× p̂ is different from−p̂× L̂.

If we simply take the operator equivalent of the classical definition

M̂ = p̂× L̂−mk
r̂

r
, (9.91)

the operator M̂ is not Hermitian; that is, M̂ �= M̂†. Neither is the alternative operator

M̂=−L̂× p̂−mk
r̂

r
. (9.92)

Pauli solved this “ordering ambiguity” by symmetrizing the previous expressions to

ensure Hermiticity.28 In this way, the classical equation (9.45) debouches into the

following definition of the quantum mechanical LRL operator M̂:

M̂ = 1

2

(
p̂× L̂− L̂× p̂

)
−mk

r̂

r
. (9.93)

It is clear that this definition transforms into the classical LRL vector (Eq. (9.91)) if the

operators L̂ and p̂ commute. The operator M̂ also reduces to Eq. (9.91) in the classical

limit as h̄→ 0.

28 Jones, Groups, Representations and Physics, p. 125.
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The Hermiticity of the LRL operator M̂

The Hermiticity of M̂, as defined in Eq. (9.93), is as follows. First, let us consider the

x-component of M̂:

M̂x = 1

2

[(
p̂× L̂

)
x
−
(

L̂× p̂
)

x

]
−mk

x

r

= 1

2

[(
p̂y L̂z − p̂z L̂y

)
−
(

L̂y p̂z − L̂z p̂y

)]
−mk

x

r
.

(9.94)

The Hermitian conjugate of M̂x then equals

M̂†
x =

1

2

[(
p̂y L̂z

)† −
(

p̂z L̂y

)† −
(

L̂y p̂z

)† +
(

L̂z p̂y

)†
]
−mk

x†

r

= 1

2

[
L̂†

z p̂†
y − L̂†

y p̂†
z − p̂†

z L̂†
y + p̂†

y L̂†
z

]
−mk

x†

r
.

(9.95)

Since the position, momentum, and angular momentum operators are all Hermitian,

we obtain

M̂†
x =

1

2

[
L̂z p̂y − L̂y p̂z − p̂z L̂y + p̂y L̂z

]
−mk

x

r

= 1

2

[(
p̂y L̂z − p̂z L̂y

)
−
(

L̂y p̂z − L̂z p̂y

)]
−mk

x

r
= M̂x .

(9.96)

The Hermiticity of M̂y and M̂z can be demonstrated analogously.

Relations between L̂, M̂, and Ĥ

Pauli furthermore established the quantum analogues of Eqs. (9.57) and (9.58) (see

Appendix I):

L̂ · M̂ = M̂ · L̂ = 0; (9.97)

M̂2 = 2mĤ
(

L̂2 + h̄2
)
+m2k2. (9.98)

Notice that the second equation reduces to Eq. (9.58) in the classical limit as Planck’s

constant tends toward zero: h̄ → 0. This is an example of Bohr’s “celebrated”

correspondence principle.

9.4.2 Conservation laws

The classical conservation laws for the hydrogen atom were described in §9.3.3 and

§9.3.4. The constants of the motion were found to be the energy E (represented

by the Hamiltonian H ), the components of the angular momentum vector L,

and the components of the LRL vector M. Using his matrix mechanics approach,

Pauli demonstrated that the corresponding quantum entities were constant in time

as well. Translating this in operator terminology, we recall from §6.3.2 that the

associated operators of conserved quantities in quantum mechanics commute with

the Hamiltonian. That is, if an operator Â, corresponding to the observable physical

quantity A, commutes with the Hamiltonian (i.e.,
[

Â,Ĥ
]
= 0), then A is a conserved

quantity (i.e., d 〈A〉/dt = 0). It can therefore be postulated that[
L̂i ,Ĥ

]
= 0, ∀i = 1→ 3, (9.99)
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M̂i ,Ĥ
]
= 0, ∀i = 1→ 3. (9.100)

Demonstrating the validity of these assertions is far from trivial, and the actual

computations have been relegated to Appendix I for the aficionado.29 Notice that the

previous equations are the quantum analogues of Eqs. (9.38) and (9.50).

Following the discussion in Chapter 6, the operator components of L̂ and M̂ can

be seen as the generators of a particular Lie algebra. The corresponding Lie group

can then be invoked to rationalize the degeneracies of the hydrogen system. In the

following section, we will turn directly to the appropriate Lie group algebra, which

incorporates all the operators concerned, and obtain the atomic spectrum of hydrogen

as a consequence.30

9.5 THE SPECIAL ORTHOGONAL GROUP SO(4)

9.5.1 The generators of SO(4)

The three components of M̂ are generators of infinitesimal transformations in much

the same way that the three components of L̂ were regarded as generators of

infinitesimal rotations about the three orthogonal axes. We thus proceed by working

out the algebra of the six generators L̂i and M̂i (i = 1 → 3), which consists of

all possible commutation relations among the generators. The different elementary

commutation relationships on which these results are based are summarized in

Appendix I.

Three of these have already been given before and constitute the angular

momentum algebra: [
L̂i , L̂j

]
= ih̄εijkL̂k . (9.101)

Nine additional commutation relations between the components of M̂ and L̂ are

given by [
M̂i , L̂j

]
= ih̄εijkM̂k , (9.102)

establishing M̂ as a vector operator. The last three commutators are even more

cumbersome to calculate, but lead to the simple result[
M̂i , M̂j

]
= ih̄

(
−2mĤ

)
εijk L̂k . (9.103)

The components of L̂ by themselves constitute the closed angular momentum algebra

and generate the group SO(3), as we saw in Chapter 5. The L̂ and M̂ together, however,

do not form a closed algebra. Although the commutators in Eq. (9.102) involve

only L̂ and M̂, Eq. (9.103) brings in Ĥ as well. However, as McIntosh recounted:

“Since the energy is a constant of the motion, too serious a problem does not arise

when it appears in the commutation rules, since it can always be replaced by its

value, classically, and its eigenvalues, quantum mechanically.”31 That is, since Ĥ is

independent of time and commutes with L̂ and M̂, we can work in the subspace

29 Of course, the energy is conserved as well since
[
Ĥ ,Ĥ

]
= 0 obvisously holds.

30 Pauli went even further and explained the term splitting in an electric field, as observed in the

Stark effect. However interesting, we will not consider this aspect any further.
31 McIntosh, “Symmetry and Degeneracy”, p. 84.
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H(E) of the Hilbert space H that corresponds to a particular energy eigenvalue E

of the Hamiltonian Ĥ . Then, Ĥ may be replaced in Eq. (9.103) by the restricted

Hamiltonian Ĥ |H(E) = E, which for bound states is a negative quantity (E < 0).32 In

this way, the energy can be absorbed into a normalization factor. We thus define a new

normalized Laplace-Runge-Lenz vector Â by

Â ≡ M̂√−2mE
. (9.104)

The commutation relations in Eq. (9.102) hold as well for Â

[
Âi , L̂j

]
=
[

M̂i√−2mE
, L̂j

]

= 1√−2mE

[
M̂i , L̂j

]
= ih̄εijk

M̂k√−2mE[
Âi , L̂j

]
= ih̄εijk Âk .

(9.105)

The commutators in Eq. (9.103), on the other hand, are replaced by

[
Âi , Âj

]
=
[

M̂i√−2mE
,

M̂k√−2mE

]

=− 1

2mE

[
M̂i ,M̂j

]
=− 1

2mE
ih̄ (−2mE)εijk L̂k[

Âi , Âj

]
= ih̄εijkL̂k .

(9.106)

The six generators L̂i and Âi clearly constitute a closed Lie algebra, as can be seen from

Table 9.2. But which symmetry group are they generating? One of the clues we can use

in answering this question is the number of generators. Among the classical Lie groups

are the (special) orthogonal groups in n dimensions O(n) and SO(n), and the (special)

unitary groups in n dimensions U(n) and SU(n). The number of generators for these

groups is dependent on the dimensionality n of the group. In Table 9.3 are the number

of generators for the Lie groups SO(n), U(n), and SU(n) for n = 2 → 5. Glancing

briefly over the numbers in this table reveals that the special orthogonal group in four

dimensions, SO(4), is the only Lie group with six generators. Indeed, as we shall see

in the next section, the algebra {L̂1, L̂2, L̂3, Â1, Â2, Â3} can be identified with the so(4)

32 However, from a strictly mathematical perspective, this replacement is an ad hoc solution that

calls for a deeper algebraic treatment. See, for example, J. Daboul, P. Slodowy, and C. Daboul.

“The Hydrogen Algebra as Centerless Twisted Kac-Moody Algebra.” Physics Letters B 317.3 (1993),

pp. 321–328; C. Daboul, J. Daboul, and P. Slodowy. “The Dynamical Algebra of the Hydrogen Atom

as a Twisted Loop Algebra.” In: Proceedings of the XX International Colloquium on “Group Theoretical

Methods in Physics.” Eds. A. Arima, T. Eguchi, and N. Nakanishi. Singapore: World Scientific, 1995,

pp. 175–178.
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subspaceH(E) of the Hilbert spaceH with E < 0. The commutator

[X̂i, X̂j] (i, j= 1→ 6) is listed in the ith row and jth column. The

commutation table is skew-symmetric as a consequence of the

fundamental commutation relation
[
X̂i, X̂j

]=−[X̂j, X̂i]
L̂1 L̂2 L̂3 Â1 Â2 Â3

L̂1 0 ih̄L̂3 −ih̄L̂2 0 ih̄Â3 −ih̄Â2

L̂2 −ih̄L̂3 0 ih̄L̂1 −ih̄Â3 0 ih̄Â1

L̂3 ih̄L̂2 −ih̄L̂1 0 ih̄Â2 −ih̄Â1 0

Â1 0 ih̄Â3 −ih̄Â2 0 ih̄L̂3 −ih̄L̂2

Â2 −ih̄Â3 0 ih̄Â1 −ih̄L̂3 0 ih̄L̂1

Â3 ih̄Â2 −ih̄Â1 0 ih̄L̂2 −ih̄L̂1 0

Lie algebra. Having thus uncovered the hidden symmetry of the hydrogen atom as the

SO(4) symmetry, we are led to

Conservation of

the LRL vector
←→

Four-Dimensional

Rotation

Symmetry

←→ n2-fold

Degeneracy
(9.107)

Before embarking on our voyage to the fourth dimension, we should note one more

thing. In the previous treatment, E was required to be negative to ensure a real

outcome of
√−2mE. This requirement is absolutely crucial to have an so(4) algebra.

It is the operator equivalent of the boundary condition in the Schrödinger wave

mechanical treatment. According to this boundary condition, the wave function must

be square integrable, which means that it must vanish asymptotically when the distance

between the electron and the proton goes to infinity. This condition keeps the electron

attracted to the proton and traps it in the potential well, which gives rise to the bound

state. Without this condition, there are no quantized energies, no quantum levels, no

hydrogen spectrum.

9.5.2 The so(4) Lie algebra

Before we turn to the fourth dimension, let us first consider our familiar

three-dimensional Euclidean space R3, and label the coordinate and momentum

vectors as follows:

r = (r1, r2, r3) and p = (p1, p2, p3
)
. (9.108)

The angular momentum vector in this space consists of three components that

from now on may be conveniently labeled by two integer numbers that refer to the

coordinate and momentum components involved:

Lij ≡ ripj − rjpi . (9.109)

Notice that, evidently: Lij = −Lji . We thus obtain the natural indices for the angular

momentum vector L:

L = (L23, L31, L12). (9.110)



Table 9.3 Table with the number of generators for the Lie groups SO(n), U(n), and SU(n) with n= 2→ 5. Notice that the O(n) groups
have the same number of generators as the SO(n) groups.

Dimension n Group SO(n) Generators n(n− 1)/2 Group U(n) Generators n2 Group SU(n) Generators n2 − 1

2 SO(2) 1 U(2) 4 SU(2) 3

3 SO(3) 3 U(3) 9 SU(3) 8

4 SO(4) 6 U(4) 16 SU(4) 15

5 SO(5) 10 U(5) 25 SU(5) 24
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introducing a fourth component to the coordinate and momentum vectors:

r = (r1, r2, r3, r4) and p = (p1, p2, p3, p4
)
. (9.111)

In this space, the angular momentum vector L consists of not less than six

components,33 which we assign the natural indices:

L = (L23, L31, L12, L14, L24, L34). (9.112)

Turning to the corresponding quantum mechanical operators, the position and

momentum operators are seen to obey Heisenberg’s canonical commutation relations

(see Appendix I): [
r̂i , p̂j

]= ih̄δij . (9.113)

It is then a straightforward matter to obtain the commutation relations for the six

components of L̂ (see Appendix I again):[
L̂ij , L̂ik

]
= ih̄L̂jk ,

[
L̂ij , L̂kl

]
= 0 i �= j �= k �= l. (9.114)

The results are shown in the commutation Table 9.4. A remarkable observation can

now be made. On comparison of the commutation Tables 9.2 and 9.4, we can see

that both are isomorphic to one another. Worded somewhat differently, we see that

the six operators we obtained in the quantum mechanical treatment of the hydrogen

atom may, in fact, be identified with the six rotational operators (or conserved angular

momenta) in four dimensions. The following representation can thus be made:

L̂1 = L̂23; L̂2 = L̂31; L̂3 = L̂12

Â1 = L̂14; Â2 = L̂24; Â3 = L̂34.
(9.115)

We can easily verify that the commutators in Eq. (9.114) indeed match the

commutation relations in Eqs. (9.101), (9.105), and (9.106).

The six generators L̂ij obviously constitute the generalization of the three gener-

ators L̂1, L̂2, and L̂3 from three to four dimensions. The group they generate is the

Table 9.4 Commutation table for the generators of the so(4) Lie

algebra in the basis {L̂23, L̂31, L̂12, L̂14, L̂24, L̂34}. Note that the so(4) Lie

algebra is closed under commutation and that it is isomorphic to the

commutation Table 9.2

L̂23 L̂31 L̂12 L̂14 L̂24 L̂34

L̂23 0 ih̄L̂12 −ih̄L̂31 0 ih̄L̂34 −ih̄L̂24

L̂31 −ih̄L̂12 0 ih̄L̂23 −ih̄L̂34 0 ih̄L̂14

L̂12 ih̄L̂31 −ih̄L̂23 0 ih̄L̂24 −ih̄L̂14 0

L̂14 0 ih̄L̂34 −ih̄L̂24 0 ih̄L̂12 −ih̄L̂31

L̂24 −ih̄L̂34 0 ih̄L̂14 −ih̄L̂12 0 ih̄L̂23

L̂34 ih̄L̂24 −ih̄L̂14 0 ih̄L̂31 −ih̄L̂23 0

33 Given that the indices i and j both range over four values (1→ 4), and that i �= j must hold, there

are 4× 3= 12 different combinations. And since Lij =−Lji , the number of independent generators

halves to six.
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proper rotation group or orthogonal group in four dimensions, designated SO(4), which

is the set of all 4× 4 real orthogonal matrices with determinant equal to +1 that leave

the quadratic form r2
1 + r2

2 + r2
3 + r2

4 invariant. Each of the L̂ij operators generates

an infinitesimal rotation in one of the six coordinate planes r1r2, r1r3, r2r3, r1r4, r2r4,

or r3r4.34 This, evidently, does not represent a geometric symmetry of the hydrogen

atom, because the fourth components r4 and p4 are fictitious and cannot be identified

with spatial variables. For this reason, SO(4) is said to describe a dynamical symmetry

of the hydrogen atom. It does, of course, contain the geometric symmetry SO(3) as a

subgroup:

SO (4)⊃ SO (3). (9.116)

It is important to note that the so(4) generators were obtained by restricting our

considerations to bound states. For continuum (or scattering) states, E is positive, and

the sign inside the square root of Eq. (9.104) must be changed for A to be Hermitian.

Then, the sign on the rhs of Eq. (9.106) is changed (i.e.,
[
Âi , Âj

] = −ih̄εijkL̂k), and

the identifications in Eq. (9.115) are no longer valid. It turns out that the dynamical

symmetry group in this case is isomorphic to the group of Lorentz transformations

in one time and three space dimensions, rather than to the group of rotations in

four space dimensions. This group is denoted SO(3,1) and is especially important

in Einstein’s theory of special relativity.35 If, instead, the energy is zero, then the

appropriate symmetry group is the Euclidean group in four dimensions, denoted E(4).

The relations between the energy E and the corresponding symmetry group are listed

in Table 9.5.

The factorization of so(4)

The structure of the so(4) algebra is of an amazing simplicity. By forming the sum and

the difference of the L̂ and Â operators,

Ĵ1 = 1

2

(
L̂+ Â

)
, Ĵ2 = 1

2

(
L̂− Â

)
, (9.117)

Table 9.5 Relation between the total

energy E of the system and the

corresponding symmetry group.

Energy Symmetry group Symbol

E < 0 Orthogonal group SO(4)

E = 0 Euclidean group E(4)

E > 0 Lorentz group SO(3,1)

34 A rotation in one of the two-dimensional planes rirj can then be denoted by the rotation operator

Û
(
θij

)= exp
(
− i

h θij L̂ij

)
, with 0≤ θij ≤ 2π .

35 As John Baez amusingly observed, “Who’d have thought [Einstein’s theory of special relativity]

was lurking in Newtonian gravity?” Quoted from J. Baez. Mysteries of the Gravitational 2-Body Prob-

lem. March 16, 2015. Posted on: math.ucr.edu/home/baez/gravitational.html. The two-dimensional

analogue of the Lorentz group, denoted SO(2,1) will be discussed in Chapter 11. The SO(3,1) group

will also appear in our examination of the periodic system in Chapter 14.
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8 we can see that these two linear combinations of L̂ and Â are fully commutative:[

Ĵ1, Ĵ2

]
= 0, (9.118)

where the vector notation in the commutator means that any component of the Ĵs can

be chosen [
Ĵ1i , Ĵ2j

]
= 0, ∀i, j = 1→ 3. (9.119)

This can be shown as follows:[
Ĵ1i, Ĵ2j

]
=
[

1

2

(
L̂i + Âi

)
,

1

2

(
L̂j − Âj

)]
= 1

4

([
L̂i , L̂j

]
+
[

Âi , L̂j

]
−
[

L̂i , Âj

]
−
[

Âi , Âj

])
= 1

4

(
ih̄εijk L̂k + ih̄εijkÂk − ih̄εijkÂk − ih̄εijkL̂k

)
[

Ĵ1i, Ĵ2j

]
= 0.

(9.120)

Furthermore, the Ĵ1 and Ĵ2 operators themselves obey the standard commutation

relationships for angular momentum:[
Ĵ1i , Ĵ1j

]
= ih̄εijk Ĵ1k ; (9.121)[

Ĵ2i , Ĵ2j

]
= ih̄εijk Ĵ2k . (9.122)

The proof for Eq. (9.121) goes as follows:[
Ĵ1i , Ĵ1j

]
=
[

1

2

(
L̂i + Âi

)
,

1

2

(
L̂j + Âj

)]
= 1

4

([
L̂i , L̂j

]
+
[

L̂i , Âj

]
+
[

Âi , L̂j

]
+
[

Âi , Âj

])
= 1

4

(
ih̄εijkL̂k + ih̄εijk Âk + ih̄εijkÂk + ih̄εijkL̂k

)
= ih̄εijk

1

2

(
L̂k + Âk

)
[

Ĵ1i , Ĵ1j

]
= ih̄εijk Ĵ1k .

(9.123)

Eq. (9.122) can be proved along the same lines. The commutation relations in

Eqs. (9.121) and (9.122) show that the operators Ĵ1 and Ĵ2 each constitute an su(2)

algebra, which we denote by su(2)1 and su(2)2, respectively for further convenience.

In view of Eqs. (9.118) and (9.119), these two algebras are completely decoupled. This

is especially clear from commutation Table 9.6, where the two su(2) algebras are

separated from each other by two squares of zeroes. The so(4) algebra is then seen

to be locally isomorphic to the direct sum of these two separate algebras:

so(4)= su(2)1 ⊕ su(2)2. (9.124)

This is reminiscent of the factorization of the U(n) group as the direct product SU(n)

⊗ U(1). The U(3) group, for instance, can be factorized into the direct product SU(3)

⊗U(1), and the same applies to their corresponding Lie algebras: u(3)= su(3) ⊕ u(1).
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Table 9.6 Commutation table for the generators of the so(4) Lie

algebra in the basis {Ĵ1x, Ĵ1y , Ĵ1z, Ĵ2x, Ĵ2y , Ĵ2z}. The generators
Ĵ1 =

(
Ĵ1x, Ĵ1y , Ĵ1z

)
and Ĵ2 =

(
Ĵ2x, Ĵ2y , Ĵ2z

)
each constitute an su(2)

subalgebra, denoted su(2)1 and su(2)2, respectively:

so(4)= su(2)1⊕ su(2)2. Both subalgebras are located in a square

region, separated from one another by two squares of zeros.

Ĵ1x Ĵ1y Ĵ1z Ĵ2x Ĵ2y Ĵ2z

Ĵ1x 0 ih̄Ĵ1z −ih̄Ĵ1y 0 0 0

Ĵ1y −ih̄Ĵ1z 0 ih̄Ĵ1x 0 0 0

Ĵ1z ih̄Ĵ1y −ih̄Ĵ1x 0 0 0 0

Ĵ2x 0 0 0 0 ih̄Ĵ2z −ih̄Ĵ2y

Ĵ2y 0 0 0 −ih̄Ĵ2z 0 ih̄Ĵ2x

Ĵ2z 0 0 0 ih̄Ĵ2y −ih̄Ĵ2x 0

9.5.3 The Cartan subalgebra of so(4)

In this section we continue by deriving the Cartan subalgebra H and corresponding

Weyl diagram of the so(4) Lie algebra. This necessitates a change of basis: from the

{Ĵ1x , Ĵ1y , Ĵ1z , Ĵ2x , Ĵ2y , Ĵ2z} basis to the more useful Cartan-Weyl basis. To this end, we

proceed once again along the threefold path as outlined in Chapter 6, §6.4. Our work

will be greatly simplified, however, by the fact that the so(4) algebra is composed

of two commuting su(2) subalgebras, both of which are isomorphic to the familiar

angular momentum algebra as described in Chapter 5.

Step 1: The Cartan subalgebra and Cartan generators

In a first step, we identify the maximal subset of mutually commuting generators of

the so(4) Lie algebra. Since each of the constitutive su(2) subalgebras is an algebra of

rank 1, we expect to find a maximum of two commuting generators. Indeed, on closer

inspection of Table 9.6, we can see that no more than two Ĵ ’s can be diagonalized

simultaneously—one from the su(2)1 algebra and a second one from the su(2)2
algebra.

From the nine possible pairs of commuting generators {Ĵ1i , Ĵ2j} (i, j = x, y, z), let us

choose the pair {Ĵ1z , Ĵ2z} as our commuting set with[
Ĵ1z , Ĵ2z

]
= 0. (9.125)

The set {Ĵ1z , Ĵ2z} thus forms a basis for the maximal Abelian Cartan subalgebra H ⊂
so(4), as indicated by the bold zeros in Table 9.7. The operators Ĵ1z and Ĵ2z are Cartan

generators, and the dimension 2 of H defines the rank of the so(4) Lie algebra.

Step 2: Weyl generators

In the second step, we arrange the remaining generators Ĵ1x , Ĵ1y , Ĵ2x , and Ĵ2y of so(4)

into linear combinations to form a linearly independent set of ladder operators or Weyl
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0 Table 9.7 Commutation table for the generators of the so(4) Lie

algebra in the Cartan-Weyl basis {Ĵ1z, Ĵ1+, Ĵ1−, Ĵ2z, Ĵ2+, Ĵ2−}. The
Cartan subalgebra H= {Ĵ1z, Ĵ2z} forms a maximal Abelian subalgebra

of so(4), as indicated by the zeros.

Ĵ1z Ĵ1+ Ĵ1− Ĵ2z Ĵ2+ Ĵ2−

Ĵ1z 0 h̄J1+ −h̄Ĵ1− 0 0 0

Ĵ1+ −h̄J1+ 0 2h̄Ĵ1z 0 0 0

Ĵ1− h̄Ĵ1− −2h̄Ĵ1z 0 0 0 0

Ĵ2z 0 0 0 0 h̄Ĵ2+ −h̄Ĵ2−
Ĵ2+ 0 0 0 −h̄Ĵ2+ 0 2h̄Ĵ2z

Ĵ2− 0 0 0 h̄Ĵ2− −2h̄Ĵ2z 0

generators. Since so(4) is composed of two su(2) subalgebras, this problem reduces to

finding the raising and lowering operators for each su(2) algebra. Analogous to the

angular momentum algebra, we thus define

Ĵ1+ ≡ Ĵ1x + iĴ1y ; Ĵ1− ≡ Ĵ1x − iĴ1y ;

Ĵ2+ ≡ Ĵ2x + iĴ2y ; Ĵ2− ≡ Ĵ2x − iĴ2y .
(9.126)

The four Weyl generators in Eq. (9.126), along with the two Cartan generators Ĵ1z and

Ĵ2z , form the Cartan-Weyl basis for the so(4) algebra:

{Ĵ1z , Ĵ2z , Ĵ1+, Ĵ1−, Ĵ2+, Ĵ2−}. (9.127)

By virtue of their function as step operators, the Weyl elements act as eigenoperators of

the Cartan generators. That is, they satisfy the general commutation relation[
Ĥi , Êα

]
= αi Êα , ∀i = 1,2, α = 1 → 4, (9.128)

where we have denoted the Cartan generators by the general symbol Ĥi (i = 1,2) and

the Weyl generators by the symbol Êα (α = 1 → 4). The different eigenvalues αi are

referred to as the roots of Êα with respect to Ĥi ; their values can be read in Table 9.7.

Step 3: Casimir invariants

Finally, following Racah’s theorem and the fact that the so(4) Lie algebra is of rank

2, we expect to find two independent Casimir invariants Ĉμ that commute with

all the generators of the so(4) algebra, including—in particular—the two Cartan

elements Ĥi : [
Ĉμ,Ĥi

]
= 0, ∀μ= 1→ 2, i = 1→ 2. (9.129)

Once again, the problem of finding the Ĉμs reduces to finding the Casimir invariant of

each su(2) subalgebra separately. Proceeding in analogy with the angular momentum

algebra, we define the Ĉμs as follows:

Ĉ1 ≡ Ĵ 2
1 =

1

4

(
L̂+ Â

)2
; (9.130)

Ĉ2 ≡ Ĵ 2
2 =

1

4

(
L̂− Â

)2
. (9.131)
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In view of Eqs. (9.125) and (9.129), there exists a complete set of states in the subspace

H(E) of H that includes simultaneous eigenstates of Ĵ 2
1 , Ĵ 2

2 , Ĵ1z , and Ĵ2z . If we denote

their eigenvalues by j1, j2, mj1, and mj2, respectively, we can represent the common

eigenstates by the ket ∣∣j1, j2,mj1,mj2
〉
. (9.132)

Eigenvalues of the Casimir operators Ĵ 2
1 and Ĵ 2

2 are then characterized by integer

or half-integer angular quantum numbers j1, j2 ∈
{

0, 1
2 ,1, 3

2 , . . .
}

, such that J1
2 =

j1
(
j1 + 1

)
h̄2 and J2

2 = j2
(
j2 + 1

)
h̄2. That is,

Ĵ 2
1

∣∣j1, j2,mj1, mj2
〉= j1

(
j1 + 1

)
h̄2
∣∣j1, j2,mj1, mj2

〉
; (9.133)

Ĵ 2
2

∣∣j1, j2,mj1, mj2
〉= j2

(
j2 + 1

)
h̄2
∣∣j1, j2,mj1, mj2

〉
. (9.134)

Each SO(4) manifold, denoted
(
j1, j2

)
, contains

(
2j1 + 1

)(
2j2 + 1

)
components ac-

cording to the standard relationships:

Ĵ1z
∣∣j1, j2,mj1,mj2

〉= h̄mj1
∣∣j1, j2, mj1, mj2

〉
, (9.135)

Ĵ2z
∣∣j1, j2,mj1,mj2

〉= h̄mj2
∣∣j1, j2, mj1, mj2

〉
, (9.136)

with mj1 ∈
{−j1,−j1 + 1, . . . , j1 − 1, j1

}
and mj2 ∈

{−j2,−j2 + 1, . . . , j2 − 1, j2
}

. The mj1

and mj2 eigenvalues are referred to as the weights of the Cartan generators Ĵ1z and Ĵ2z .

SO(4) Weyl diagrams

The Weyl diagrams of SO(4) are based on the Cartan subalgebraH of the two operators

Ĵ1z and Ĵ2z , which form the basis for a two-dimensional orthogonal frame. In these

diagrams, the weights mj1 and mj2 (in units of h̄) are used as coordinates to plot (and

thus label/distinguish) every state of the SO(4) multiplet in the J1z−J2z -plane; that is,

they form the components of a two-dimensional weight vector h = (mj1,mj2
)
, which

points from the origin to the state
∣∣j1, j2,mj1, mj2

〉
. Every multiplet is characterized by

the constant eigenvalues j1 and j2 of the Casimir invariants. An SO(4) manifold
(
j1, j2

)
is thus represented in the Weyl diagram by

(
2j1 + 1

)(
2j2 + 1

)
points. An example is

given in Figure 9.8 for the (1,1)manifold.

+1

–1

J1z

J2z

–1/2

+1/2

–1/2 +1–1 +1/2

|1,1>|–1, 1> |0, 1>

|0, 0>

|0, –1>

|–1, 0>

|–1, –1>

|1,0>

|1,–1>

0

FIGURE 9.8 Weyl diagram of the

(1,1)manifold of the SO(4) group.

Each point in the diagram

corresponds to a given state of the

SO(4) multiplet, as indicated by the

kets
∣∣mj1,mj2

〉
.
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2 When a Weyl diagram has been set up as in Figure 9.8, the Weyl generators enable

us to move between the states of the SO(4) manifold by shifting the eigenvalues mj1

and mj2 of any ket
∣∣j1, j2,mj1,mj2

〉
by an amount given by the roots α1 and α2 of that

Weyl generator with respect to the Cartan generators Ĵ1z and Ĵ2z :

Êα
∣∣j1, j2,mj1, mj2

〉→ ∣∣j1, j2, mj1 +α1, mj2 +α2
〉
. (9.137)

Let us examine this by considering the action of the shift operator Ĵ1+ on the state∣∣j1, j2,mj1,mj2
〉
. By Eqs. (9.128), (9.135), and the results in Table 9.7, we have

Ĵ1z Ĵ1+
∣∣j1, j2, mj1, mj2

〉= ([Ĵ1z , Ĵ1+
]
+ Ĵ1+ Ĵ1z

)∣∣j1, j2, mj1,mj2
〉

=
(

h̄Ĵ1++ h̄mj1 Ĵ1+
)∣∣j1, j2, mj1, mj2

〉
= h̄

(
mj1 + 1

)
Ĵ1+

∣∣j1, j2, mj1,mj2
〉
.

(9.138)

The operator Ĵ1+ is seen to raise the eigenvalue h̄mj1 by an amount +h̄, which is the

root of Ĵ1+ with respect to Ĵ1z according to Table 9.7. Similarly, using Eq. (9.136), we

obtain

Ĵ2z Ĵ1+
∣∣j1, j2, mj1, mj2

〉= ([Ĵ2z , Ĵ1+
]
+ Ĵ1+ Ĵ2z

)∣∣j1, j2, mj1,mj2
〉

=
(

0+ h̄mj2 Ĵ1+
)∣∣j1, j2,mj1, mj2

〉
= h̄mj2 Ĵ1+

∣∣j1, j2,mj1,mj2
〉
,

(9.139)

where the step operator Ĵ1+ leaves the eigenvalue h̄mj2 untouched. Summarizing the

previous results yields

Ĵ1+
∣∣j1, j2,mj1, mj2

〉→ ∣∣j1, j2, mj1 + 1, mj2
〉
, (9.140)

in units of h̄. The actions of the other three Weyl generators can be deduced

analogously and are given by

Ĵ1−
∣∣j1, j2,mj1, mj2

〉→ ∣∣j1, j2,mj1 − 1, mj2
〉
; (9.141)

Ĵ2+
∣∣j1, j2,mj1, mj2

〉→ ∣∣j1, j2,mj1,mj2 + 1
〉
; (9.142)

Ĵ2−
∣∣j1, j2,mj1, mj2

〉→ ∣∣j1, j2,mj1,mj2 − 1
〉
. (9.143)

SO(4) root diagram

Let us illustrate these actions graphically in a root diagram. To this end, we take the

roots α1 and α2 of every Weyl element Êα as the components of a two-dimensional root

vector α = (α1,α2) and position them in the two-dimensional weight space formed by

the J1z−J2z -plane. This yields the root diagram of the so(4) Lie algebra, as depicted in

Figure 9.9, where the different root vectors α are denoted by their corresponding Weyl

operator symbol Êα for simplicity’s sake.

Clearly, the Ĵ1− and Ĵ1+ operators enable us to move one step to the left and

to the right, respectively, whereas one can move up and down by the Ĵ2+ and Ĵ2−
operators, respectively. The states of an SO(4) multiplet can thus be interconverted

by the repeated action of these ladder operators, an example of which is given in the

next section.

We can also position the Cartan generators in the SO(4) root diagram. However,

in view of their commuting property (Eq. (9.125)), the roots of the Cartan generators
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+1

–1

J1zJ1+

J2z

–1/2

+1/2

–1/2 +1–1 +1/20

^J1–
^

J2–
^

J2+
^

FIGURE 9.9 Root diagram of the

so(4) Lie algebra. The action of

every Weyl generator is shown in

the J1z−J2z -plane. The Cartan

generators Ĵ1z and Ĵ2z are positioned

at the origin of the Weyl diagram.

Ĵ1z and Ĵ2z are all zero; both Cartan elements are therefore located at the origin of the

graph.

With the so(4) generators positioned in Figure 9.9, it becomes evident that they

correspond to two different manifolds. The Ĵ1 operators Ĵ1z , Ĵ1+, and Ĵ1− (forming the

su(2)1 subalgebra) correspond to a (1,0) manifold, whereas the Ĵ2 operators Ĵ2z , Ĵ2+,

and Ĵ2− are seen to form a (0,1) manifold in the root diagram (corresponding to the

su(2)2 subalgebra).

Shattering the four-dimensional symmetry

We saw that SO(3) is a subgroup of SO(4) in Eq. (9.116). When reducing the rotation

group in four dimensions to the spherical symmetry group in real space, the following

symmetry breaking occurs:

SO(4)⊃ SO(3). (9.144)

This corresponds to a transition from the so(4) Lie algebra to the so(3) subalgebra,

which is described by the standard angular momentum operators L̂x , L̂y , and L̂z .

Interestingly, this appears as a projection onto the diagonal direction in the root

diagram,36 since

L̂z = Ĵ1z + Ĵ2z , (9.145)

in view of Eq. (9.117). It can be similarly shown that

L̂+ = Ĵ1+ + Ĵ2+ and L̂− = Ĵ1− + Ĵ2−. (9.146)

Figure 9.10 illustrates the breaking of the sextet of SO(4) generators into two triplets

of SO(3) generators.

36 For more information on this projection theorem, see A. P. Stone. “Semisimple Subgroups of

Semisimple Groups.” Journal of Mathematical Physics 11.1 (1970), pp. 29–38.
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+1

J1z

J2z

+1/2

–1/2

+1–1 +1/2–1/2

J2+
^

J2–
^

J1+
^

J1-
^

0

Lz

+1–1 –1/2 +1/20

Lzxxx x xx

(A)

(B)

–1

FIGURE 9.10 (A) Root diagram

showing the reduction of the so(4) Lie

algebra to the so(3) subalgebra via a

projection on the diagonal Lz-axis.

(B) The breaking of the sextet of SO(4)

generators results in two triplets of

SO(3) generators, as shown by the x’s

on the horizontal Lz-axis.

9.6 THE ORIGIN OF ACCIDENTAL DEGENERACIES

9.6.1 Energy levels of the hydrogen atom

The energy eigenvalues for the hydrogen atom can now be found with practically no

further effort. Taking the sum and difference of the two Casimir operators Ĵ 2
1 and Ĵ 2

2

yields, by Eq. (9.130):

Ĵ 2
1 + Ĵ 2

2 =
1

4

(
L̂+ Â

)2 + 1

4

(
L̂− Â

)2

= 1

4

(
L̂2 + Â2 + L̂ · Â+ Â · L̂

)
+ 1

4

(
L̂2 + Â2 − L̂ · Â− Â · L̂

)
= 1

2

(
L̂2 + Â2

)
;

(9.147)

Ĵ 2
1 − Ĵ 2

2 =
1

4

(
L̂+ Â

)2 − 1

4

(
L̂− Â

)2

= 1

4

(
L̂2 + Â2 + L̂ · Â+ Â · L̂

)
− 1

4

(
L̂2 + Â2 − L̂ · Â− Â · L̂

)
= 1

2

(
L̂ · Â+ Â · L̂

)
.

(9.148)

In view of Eq. (9.97), which is a special property of the LRL vector for the hydrogen

atom, the scalar products L̂ · Â and Â · L̂ vanish, yielding for Eq. (9.146):

Ĵ 2
1 − Ĵ 2

2 = 0 ⇒ Ĵ 2
1 = Ĵ 2

2 . (9.149)

This implies that the hydrogen levels are characterized by the equality of the two

Casimir operators. Hence, we get

j1 = j2. (9.150)
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The eigenstates of the hydrogen atom thus always correspond to a
(
j, j
)

SO(4)

manifold. Note that the other manifolds of the SO(4) group are of no further interest

to us. Given Eq. (9.149), we rewrite Eq. (9.147) as

2Ĵ 2
1 =

1

2

(
L̂2 + Â2

)
or 4Ĵ 2

1 = L̂2 + Â2. (9.151)

The eigenvalues of this operator are then

4J2
1 = 4j

(
j+ 1

)
h̄2 for j = 0,

1

2
, 1,

3

2
, . . . . (9.152)

Rewriting Eq. (9.98) as
M̂2

2mE
= L̂2 + h̄2 + mk2

2E
, (9.153)

we obtain, together with Eq. (9.104),

L̂2 + Â2 = L̂2 − M̂2

2mE
=−mk2

2E
− h̄2. (9.154)

Combining this relation with Eqs. (9.151) and (9.152) gives

4j
(
j+ 1

)
h̄2 =−mk2

2E
− h̄2, (9.155)

or (
4j2 + 4j+ 1

)
h̄2 =−mk2

2E
, (9.156)

which finally yields the spectral result:

Ej =− mk2

2h̄2 (2j+ 1
)2 for j = 0,

1

2
, 1,

3

2
, . . . . (9.157)

The negative eigenvalues of the hydrogenic Hamiltonian Ĥ are in a one-to-one

correspondence with the eigenvalues j
(
j+ 1

)
h̄2 of Ĵ 2

1 . Notice also that Eq. (9.157)

agrees with the wave equation result with which we started this chapter:

En =− mZ2e4

8h2ε0
2n2

for n = 1, 2, 3, 4, . . . , (9.158)

if we remember that k = Ze2/4πε0, h̄= h/2π , and make the natural identification

n≡ 2j+ 1, (9.159)

which gives the principal quantum number n the sequence of values 1, 2, 3, . . . .

It is important to note that there is no objection to using half odd-integer values for

j. The only physical restriction is that L2 = l (l+ 1) h̄2 has only integer values of l. But,

since L = J1 + J2 from Eq. (9.117), the triangle rule shows that l can have any value

ranging from 2j= n−1 down to j− j = 0, by integer steps. Thus, l not only is restricted

to integer values, but it also has the correct range of values with respect to the total

quantum number n. The degeneracy of this energy level is also given correctly since

J1z and J2z can each have 2j + 1 = n independent eigenvalues, and there are therefore

n2 possible states altogether.

In Figure 9.11, we see the SO(4) Weyl diagrams for the first few eigenlevels of

hydrogen, indicating their orbital quantum characteristics by tracking the projections

along the diagonal. For n= 2, for example, we have j = (2−1)/2= 1/2 by Eq. (9.159).

The (1/2,1/2) manifold thus corresponds to the n = 2 level. Its multiplicity equals
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FIGURE 9.11 SO(4) Weyl diagrams for the first few eigenlevels of hydrogen. (A) For n= 2, j = 1/2. We therefore associate the (1/2,1/2)manifold with the n = 2 level with multiplicity n2 = 4.

A projection of these degenerate states on the diagonal Lz -axis result in a singlet (2s) and a triplet (2px , 2py , and 2pz), as indicated by the x’s on the horizontal Lz -axis. (B) Similarly, for n= 3,

j = 1 and a (1,1)manifold is obtained. The nine degenerate states result in one singlet (3s), one triplet (3px , 3py , and 3pz ), and one quintet (3dxy , 3dxz , 3dyz , 3dx2+y2 , and 3dz2 ) when projected

along the diagonal. (C) For n= 4, j = 3/2. The (3/2,3/2)manifold contains n2 = 16 states that break into a singlet (4s), a triplet (4px , 4py , and 4pz ), a quintet (4dxy , 4dxz , 4dyz , 4dx2+y2 , and

4dz2 ), and a septet (fz3 , fxz2 , fyz2 , fxyz , fz(x2−y2), fx(x2−3y2), and fy(3x2−y2)).
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n2 = 4. A projection of these four points on the diagonal Lz -axis results in a singlet

and a triplet, which we identify as the 2s-orbital and the three 2p-orbitals (2px , 2py ,

and 2pz ). Similarly, for n= 3, j = (3−1)/2= 1. The (1,1)manifold has a multiplicity

of n2 = 9. Projecting the nine degenerate states onto the diagonal results in one singlet

(3s), one triplet (3px , 3py , and 3pz ), and one quintet (3dxy , 3dxz , 3dyz , 3dx2+y2 , and

3dz2 ). When the (3/2,3/2) multiplet on the rhs of Figure 9.11 is broken to the SO(3)

symmetry, a septet is formed as well, corresponding to the 4f -orbitals. It should be

noted that, within an SO(4) multiplet, all the orbitals are related to one another.

A 4s-orbital can thus be converted into a 4dxz-orbital, for example, and a 3pz -orbital

into a 3dz2 -orbital.

9.6.2 History of the LRL vector (II)

Pauli’s algebraic approach

As noted in the introduction to this chapter, the year 1926 was a milestone in the

history of quantum mechanics. Not only did Schrödinger’s wave mechanics see the

light, but also Heisenberg’s matrix mechanics gained widespread acceptance among

physicists. One of the principal reasons for this was Wolfgang Pauli’s successful

derivation of the hydrogen spectrum in purely algebraic terms.37

When drawing the correspondence between the classical Kepler system and the

quantum mechanical Coulomb system, Pauli constructed a set of operators Ĥ , L̂,

and M̂ that mirrored the constants of the motion H , L, and M of the Kepler problem.

As the editors of Pauli’s Collected Works observed: “For Pauli, the invariants in physics

were the symbols of ultimate truth which must be attained by penetrating through

the accidental details of things.”38 With the operators at hand, Pauli set out to apply

the operational methods as laid down in Heisenberg’s matrix mechanics, and thus

accounted for the n2 multiplicity of the experimentally observed hydrogen spectrum.

It seems that Pauli’s familiarity with the work of German physicist Wilhelm Lenz

(1988–1957) had provided the impetus to exploit the powers of the LRL vector.39

Lenz had published an article in 1924 in which he applied the LRL vector to a

quantum mechanical treatment of the hydrogen atom to derive the classical Kepler

trajectories.40 This work was still performed within the framework of the old quantum

theory, in which an exquisite mixture of both classical and quantum ideas were

cross-fertilizing one another. As Lenz had referred to Runge’s famous treatise on

Vektoranalysis as the source for the “little known” vector, the vector M came to be

known as the Runge-Lenz vector.

37 See Pauli, Über das Wasserstoffspektrum vom Standpunkt der neuen Quantenmechanik,”

translated as Pauli, “On the Hydrogen Spectrum from the Standpoint of the New Quantum

Mechanics.”
38 R. Krong and V. F. Weisskopf. “Preface.” In: W. Pauli. Collected Scientific Papers by Wolfgang Pauli,

vol. 1. Eds. R. Kronig and V. F. Weisskopf. New York: Interscience Publishers, 1964, p. viii.
39 Pauli had served as Lenz’s assistant at Hamburg in 1922, and he discussed Lenz’s work at length

in his monograph on the old Quantentheorie. See W. Pauli. “Quantentheorie.” In: Handbuch der

Physik, vol. 23. Eds. H. Geiger and K. Scheel. Berlin: Springer, 1926, pp. 1–278.
40 W. Lenz. Über den Bewegungsverlauf und die Quantenzustände der gestörten Keplerbewegung.”

Zeitschrift für Physik 24.1 (1924), pp. 197–207.
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8 Fock’s analytic approach

At the time, Pauli did not yet have the necessary group theoretical tools at hand to

reflect on the symmetries of the hydrogen atom.41 But, in 1935, a groundbreaking

paper appeared in the Zeitschrift für Physik.42 Written by Soviet physicist Vladimir

Aleksandrovich Fock (1898–1974) and titled “Zur Theorie des Wasserstoffatoms,” the

article started with these authoritative words:

It has long been known that the energy levels of the hydrogen atom are degenerate

with respect to their azimuthal quantum number l; one speaks occasionally of an

“accidental” degeneracy. But every degeneracy in the eigenvalues is in correspondence

with a transformation group: as for example, the degeneracy with respect to the

magnetic quantum number m is in connection with the ordinary rotation group.

However, the group which corresponds to the “accidental” degeneracy of the hydrogen

atom was, up to now, unknown.43

Fock’s rationalization of the accidental degeneracies in the hydrogen spectrum

revolved around the central idea of a supersymmetry —hidden in the fourth

dimension. In a nutshell, Fock represented the hydrogenic wave equations in

momentum space (rather than position space).44 These wave functions were then

projected stereographically from our familiar three dimensions onto the surface of

a four-dimensional hypersphere (or 3-sphere S3, see also §9.6.4). This is where all

the magic happened: the projected wavefunctions were seen to satisfy Schrödinger’s

equation for a free particle on S3; that is, the description of the bound states of the

electron in the presence of a Coulomb field turned out to be mathematically equivalent

to the motion of a free point particle, confined to the surface of a 3-sphere. Both

systems were, in other words, isomorphic to one another.45

The connection between Fock’s analytic approach and Pauli’s algebraic approach

was drawn six months later in 1936 by Valentine Bargmann (1908–1989), who

noticed that the operators L̂ and M̂ in Pauli’s article functioned as the generators of

infinitesimal rotations of the four-dimensional hypersphere, giving rise to the SO(4)

group as outlined by Fock.46 Since the angular momentum components were known

to generate the familiar three-dimensional rotation group SO(3), the components of

41 He dealt with the four-dimensional rotation group thirty years later in a series of lectures on

continuous groups and reflections in quantum mechanics, delivered in Copenhagen, Zürich and

CERN.
42 V. Fock. “Zur Theorie des Wasserstoffatoms.” In: Zeitschrift für Physik 98.3 (1935), pp. 145–154.
43 Ibid., p. 145.
44 In general, a wave function �

(
p
)

in momentum space is related to the same function  (x) in

position space via a Fourier transform.
45 The scattering states of hydrogen, with E > 0, are mapped onto a hyperboloid, which is preserved

under the symmetry transformations of the homogeneous Lorentz group SO(3,1). For E = 0,

the wave functions are projected onto a hyperplane, as described by the Euclidean group in four

dimensions E(4).
46 See V. Bargmann. “Zur Theorie des Wasserstoffatoms.” Zeitschrift für Physik 99.7 (1936),

pp. 576–582. In a postscript to his paper, Bargmann noted that Oskar Klein (1894–1977)

and Lamek Hulthén (1909–1995) had made similar comments in 1933 by indicating that the

components of L̂ and M̂ formed a Lie algebra isomorphic to so(4). See also L. Hulthén. “Über die

quantenmechanische Herleitung der Balmerterme.” In: Zeitschrift für Physik 86 (1933), pp. 21–23.
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the LRL vector were deemed responsible for the additional symmetry and accidental

degeneracy of the hydrogen atom.

Fock’s analytic treatment of the hydrogen atom—although mysterious and incom-

prehensible at first sight—can be motivated by a consideration of the analogous Kepler

problem in classical physics. This necessitates two crucial steps. First, a shift has to

be made from position space to momentum space. This will be done in §9.6.3. By

considering the Kepler problem in momentum space, the importance of the LRL

vector (as noted by Bargmann) will also become more obvious. In a second step,

the Kepler problem will be analyzed in terms of hyperspheres and stereographic

projections (see §9.6.4). Finally, an attempt will be made to explain Fock’s research

in a more intuitive way (see §9.6.5).

9.6.3 Hodographs in momentum space

We have seen in §9.3.6 how Kepler was forced to overthrow the Platonic ideal of

circular orbits (as expounded in his “Mysterium Cosmographicum”)47 to introduce

the elliptical trajectories of the planets. And yet, Kepler had been right, in a certain

sense, to maintain that the planets move in circles around the sun; one just has to

consider the Kepler problem in momentum space (or velocity space, if you like), rather

than in position space.

Let us see how this works. For each position vector r in configuration space, there

is a corresponding momentum vector p directed tangentially to the spatial trajectory.

As the planet orbits the sun, both the direction and the magnitude of p are seen to

change continuously (Figure 9.12A). By plotting all the momentum vectors from a

py

px

pP

1

F2 xF1

pA

y
pP12

3

5

6

4

3

4
5 6

2

Position space(A) (B) Momentum space

pA

FIGURE 9.12 (A) The elliptical orbit of a planet in position space. At each position r on the orbit,

there is a momentum vector p directed tangentially to the spatial trajectory, as illustrated for a

number of momentum vectors p at equal time intervals. According to Kepler’s second law, the

magnitude of the momentum vector is greatest at the perihelion P (see pP ). The vector p reaches

its smallest value at the aphelion A (see pA). (B) When the momentum vectors are plotted from a

common origin O, the tips of the vectors generate a circle in momentum space. This is called a

hodograph. Notice that each vector in momentum space is parallel to the corresponding vector in

position space and is of equal magnitude. (Illustration adapted from E. I. Butikov. “The Velocity

Hodograph for an Arbitrary Keplerian Motion.” European Journal of Physics 21 (2000), p 2).

47 J. Kepler. Mysterium Cosmographicum. 1596.
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0 common origin, the tips of these vectors trace out a curve in momentum space, which

(quite miraculously) turns out to be a perfect circle under an inverse square central

force, as depicted in Figure 9.12B.

This remarkable fact was first discovered by Sir William Rowan Hamilton

(1805–1865), who called the orbit in momentum space a hodograph, from the Greek

words oδóς for way and γράφειν for to write or to describe. His “Law of the Circular

Hodograph” was first communicated before the Royal Irish Academy on December 14,

1846, and was subsequently published in the Proceedings of the Royal Irish Academy in

1847.48 In his demonstration of the circularity of the hodographic curve, Hamilton

used the conserved LRL vector. We can see this easily from the definition of the LRL

vector in Eq. (9.45), if we rewrite it as

mk
r

r
= (p×L

)−M (9.160)

and take the dot product of both sides with itself:

m2k2 r · r

r2
= [(p×L

)−M
] · [(p×L

)−M
]

, (9.161)

or

m2k2 = (p×L
) · (p×L

)− 2M · (p×L
)+M ·M

= (p×L
)2 − 2L · (M×p

)+M2,
(9.162)

where we have used the vector identity from Eq. (9.64) in the last line. The vector

product in the first right-hand term of Eq. (9.162) can be written as
∣∣p∣∣ |L|sinθ , with

θ the angle between p and L. Given that p and L are orthogonal vectors (cf. §9.3.4), we

obtain (
p×L

)2 =
(∣∣p∣∣ |L| sin

π

2

)2 = (pL
)2 = p2L2. (9.163)

The second term in Eq. (9.162) reads

L · (M×p
)= Lx

(
M×p

)
x +Ly

(
M×p

)
y +Lz

(
M×p

)
z . (9.164)

We know from §9.3.4 that the angular momentum vector L is pointing in the

z-direction; that is, L = (0,0,L), which yields

L · (M×p
)= Lz

(
M×p

)
z = Lz

(
Mxpy −Mypx

)= LMpy , (9.165)

where we have used the fact that the LRL vector M = (M , 0,0) is directed along the

x-axis. Substitution of these results in Eq. (9.162) gives

m2k2 = p2L2 − 2LMpy +M2. (9.166)

Division by L2 and substitution of p2 for p2
x + p2

y finally yields the locus equation for

p = (px ,py , 0
)
:

m2k2

L2
= p2

x + p2
y − 2

M

L
py + M2

L2
, (9.167)

48 See Hamilton, “The Hodograph or a New Method of Expressing in Symbolic Language the

Newtonian Law of Attraction.” 1847. The concept of a hodograph was also used by Richard

Feynman (1918–1988) in a lecture titled “The Motion of Planets Around the Sun.” Delivered on

March 13, 1964, to the Caltech freshman class, Feynman’s “lost lecture” was later published in book

form by David L. Goodstein and Judith R. Goodstein. See D. L. Goodstein and J. R. Goodstein.

Feynman’s Lost Lecture: The Motions of Planets Around the Sun. New York: W. W. Norton, 1996.
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py

px
ηM/L

p0

mk/L

FIGURE 9.13 Depiction of a circular

hodograph in momentum space,

centered at the point (0,M/L), with

radius mk/L. The angle η is related to

the eccentricity ε of the orbit via the

equation cosη= ε. The intersection of

the hodograph with the px-axis is

denoted by the points

±p0 =±√−2mE.

or (
mk

L

)2

= p2
x +

(
py − M

L

)2

. (9.168)

In other words, the momentum vector p traces a circle in momentum space, centered

at (0,M/L) on the py-axis and with radius mk/L (Figure 9.13). The cosine of the angle

η corresponds to the eccentricity ε of the orbit as

cosη= (M/L)

(mk/L)
= M

mk
= ε. (9.169)

By changing the values of M and L, different circular hodographs can be obtained. A

closer inspection of Figure 9.13 also reveals that the hodograph intersects the px-axis

at two points at a distance denoted p0. The magnitude of p0 can be determined by

setting py = 0 in Eq. (9.168), yielding

p2
0 ≡ p2

x =
m2k2

L2
− M2

L2
, (9.170)

and from the identity in Eq. (9.58) for M2 =M2, we obtain

p2
0 =

m2k2

L2
− 2mEL2

L2
− m2k2

L2
=−2mE, (9.171)

or

p0 =
√−2mE. (9.172)

Clearly, all the hodographs (with differing M and L) that intersect the px-axis at

these two points, have the same value for p0 and thus share the same energy E.

They form a degenerate set of hodographs (Figure 9.14). Because degeneracy is a

sign of symmetry, the hodographs can be used to illustrate the symmetry of the

Kepler-Coulomb problem. Worded somewhat differently, the multiple hodographs of

energy E are related to one another and can be transformed into one another under a

particular symmetry transformation. To find out the exact nature of this symmetry, we

have to lift the hodographs into the fourth dimension via a stereographic projection.

The relevant definitions and theorems are introduced in the next section.
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2 py

px

p0

FIGURE 9.14 A family of degenerate

hodographs for a given energy E. Each

of the hodographs passes through the

same two points ±p0 =±√−2mE on

the px -axis.

9.6.4 Stereographic projections in hyperspace

Hyperspheres

In Chapter 3, we started our journey with the circle, and then quickly moved on to

the sphere, symbol of perfection in the three-dimensional world. But as the present

chapter shows, physical phenomena can realize symmetries that are even more perfect.

They lead us into higher dimensional spaces, where we meet so-called hyperspheres.

Definition 9.6 (The unit n-sphere): Let n ∈ N represent any natural number. The

n-sphere of radius 1 Sn is then defined as the subset of Rn+1, for which

Sn = {x ∈Rn+1 | x2
1 + x2

2 + . . .+ x2
n+1 = 1

}
, (9.173)

with x a position vector in (n+ 1)-dimensional Euclidean space Rn+1. ◾

The n-sphere represents, in other words, the n-dimensional surface of an n +
1-dimensional object. Topologically, the n-sphere corresponds to an n-dimensional

manifold. Familiar examples include the unit circle S1 in two-dimensional space R2,

and the unit sphere S2 in three-dimensional space R3. For n > 2, we generally speak

of hyperspheres. In dealing with the Kepler problem, we are primarily concerned with

the 3-sphere S3 (also known as a glome), which is suspended in four-dimensional

Euclidean space R4.49

Great circles

Let an n-sphere Sn be intersected by a plane II. Then, a circle c on the sphere is formed

by the set of all points x = (x1,x2, . . . , xn+1) of Sn that also lie on the plane II. When

the slicing plane passes through the center of the sphere, it traces a great circle on the

49 This space should not be confused with Minkowski space-time (as encountered in Einstein’s

special theory of relativity), because this space consists of three spatial dimensions and one time

dimension, and therefore has a different metric than R4.
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FIGURE 9.15 Stereographic projection of the sphere S2 onto the plane R2.

sphere. Examples of great circles are the equator and the meridians of longitude; the

parallels of latitude, on the other hand, are small circles (with the exception of the

equator).

Definition 9.7 (Great circles): A great circle (or a Riemannian circle) on the n-sphere Sn

is defined as the intersection of Sn with a two-dimensional plane II that passes through

the center of the sphere in (n+ 1)-dimensional Euclidean space Rn+1. ◾

Stereographic projections

The 2-sphere S2, embedded in three-dimensional space, can be mapped onto a

two-dimensional plane via a stereographic projection (think of a map representing

Earth). This can be generalized to n + 1 dimensions, where the n-sphere in

(n+ 1)-dimensional space is mapped onto an n-dimensional hyperplane via the same

stereographic principles. Let us see how this works in our familiar three dimensions

(see also Figure 9.15).

Definition 9.8 (Stereographic projection in 3-space): Let S2 = {
x= (x,y,z

) |
x2 + y2 + z2 = 1

}
represent the unit sphere in 3-space and let n̂ = (0,0,1) ∈ R3 denote

the north pole. Construct the two-dimensional plane R2 = {(
x, y, 0

) ∈R3
}

, which cuts

the 2-sphere in half. The intersection R2∩S2 defines the equator of S2.50 Given any point

m = (
mx ,my , mz

) ∈ S2, other than the north pole n̂, there is a unique line connecting

m with n̂ that intersects the equatorial xy-plane R2 at a point m′ =
(

m′
x , m′

y , 0
)

. The

stereographic projection of S2 is then defined as the map:

ξ : S2\{n̂}→R2 : m �→m′, (9.174)

where m′ is the projection of m. Here, the notation S2\{n̂} denotes all points of S2 except

n̂. Note that the map ξ is not defined for the projection point n̂.51 ◾

50 In some cases, the unit sphere S2 is placed on top of the plane R2; R2 is then tangent to S2 at the

south pole: ŝ = (0,0,−1) (see, for example, Figure 9.17), which is presented later in the chapter.
51 Alternatively, n̂ could be said to map to infinity in the plane; that is, ξ

(
n̂
)=∞, in which case the

stereographic projection is defined as the map ξ : S2 →R2 ∪ {∞} : m �→ m′.
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4 One way of picturing what happens during a stereographic projection is to imagine

a light source placed at the north pole n̂. For any point m ∈ S2\{n̂}, there is a light

ray emanating downward from the north pole and passing through the sphere at m.

The ray finally meets the plane R2 at the point ξ (m) = m′. Note that points on the

southern hemisphere are projected inside the equator.

It is also possible to work the other way around and to map the point m′ in the

plane R2 onto the point m of the unit sphere S2. The inverse stereographic projection is

thus defined as the map

ξ−1 : R2 → S2\{n̂} : m′ �→m. (9.175)

Let us elucidate the nature of the map ξ−1. To this aim, consider Figure 9.15 once

again. Note that the vector μ = (
mx ,my , 0

)
is the component of m in the plane R2.

The triangles△ONM ′ and△PMM ′ both have a right angle and share the angle α.

They are, therefore, similar:

△ONM ′ ∼△PMM ′. (9.176)

On account of Eq. (9.176), we have

PM ′

OM ′ =
PM

ON
. (9.177)

Since PM ′ = ∣∣m′ −μ
∣∣, OM ′ = ∣∣m′∣∣, PM =mz , and ON = 1, we obtain∣∣m′ −μ

∣∣
|m′| = |mz |

1
. (9.178)

Next consider the right-angle triangle△PMO. Given that the hypothenuse starts at

O and ends at M on the sphere, its length equals one. By Pythagoras,

12 =m2
z + |μ|2 ⇒ |mz | =

√
1−|μ|2. (9.179)

Substitution of Eq. (9.179) in Eq. (9.178), then squaring yields∣∣m′∣∣2 +|μ|2 − 2
∣∣m′∣∣ |μ|

|m′|2 = 1−|μ|2 , (9.180)

or

|μ|
[
|μ|− 2

∣∣m′∣∣+ ∣∣m′∣∣2 |μ|]= 0. (9.181)

Since |μ|> 0, the expression in square brackets must be zero, and thus

|μ|
[

1+ ∣∣m′∣∣2]= 2
∣∣m′∣∣ ⇒ |μ| = 2

∣∣m′∣∣
1+|m′|2 . (9.182)

The vectors μ and m′ have the same direction

μ= 2m′

1+m ′2 , (9.183)

with
∣∣m′∣∣=m ′. Substitution of Eq. (9.182) in Eq. (9.179) then squaring gives

m2
z = 1−

[
2
∣∣m′∣∣

1+|m′|2
]2

= 1+ ∣∣m′∣∣4 + 2
∣∣m′∣∣2 − 4

∣∣m′∣∣2[
1+|m′|2]2

=
[∣∣m′∣∣2 − 1

|m′|2 + 1

]2

, (9.184)

and thus

mz = m ′2 − 1

m ′2 + 1
. (9.185)
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On account of Eqs. (9.183) and (9.185), the map ξ−1 : R2 → S2\{n̂} : m′ �→ m is

given by

mx = 2m′
x

1+m ′2 ; my =
2m′

y

1+m ′2 ; mz = m ′2 − 1

1+m ′2 . (9.186)

In general

x = 2x′

1+ x ′2 + y ′2
; y = 2y′

1+ x ′2 + y ′2
; z = x ′2 + y ′2 − 1

1+ x ′2 + y ′2
. (9.187)

Do not disturb my circles!

One particularly interesting property of stereographic projections, which we will need

later, is the following.

Theorem 9.1 Great circles on the unit sphere S2 are mapped onto circles in the plane R2

(and vice versa) under the stereographic projection ξ . ◾

Proof. 1. Plane equation: Recall from Definition 9.7 that a circle c on S2 is defined as

the intersection S2 ∩ II of the sphere with a slicing plane II. The equation of the plane

can be determined as follows. Let N= (Nx , Ny ,Nz
)

denote a normal vector of the plane

II (i.e., N is perpendicular to II), which goes through the point x0 =
(
x0, y0,z0

)
of II.

In addition, let x = (x, y, z
)

be the position vector of any other point on the plane II.

Then, x− x0 is a vector that connects both points and lies in the plane II:

x− x0 =
(
x− x0, y− y0, z − z0

)
. (9.188)

Since x−x0 and the normal vector N are perpendicular to each other, their dot product

should be zero

N · (x− x0)= 0. (9.189)

Expanding gives

Nx (x− x0)+Ny
(
y− y0

)+Nz (z − z0)= 0, (9.190)

or

Nxx+Nyy+Nzz − (Nxx0 +Nyy0 +Nz z0
)= 0. (9.191)

Substitution of the constant term −(Nxx0 +Nyy0 +Nzz0
)

for N0 finally yields the

equation for the plane II:

Nxx+Nyy+Nz z +N0 = 0. (9.192)

2. Circle equation: A circle in the xy-plane with radius ρ and center
(
x0,y0

)
is defined

by the equation

(x− x0)
2 + (y− y0

)2 = ρ2. (9.193)

3. Stereographic projection: To obtain the equation for the projection of a circle c

onto the xy-plane under a stereographic projection, we substitute Eq. (9.187) into

Eq. (9.192), yielding

Nx
2x′

1+ x ′2 + y ′2
+Ny

2y′

1+ x ′2 + y ′2
+Nz

x ′2 + y ′2 − 1

1+ x ′2 + y ′2
+N0 = 0. (9.194)

Multiplying through by 1+ x ′2 + y ′2 gives

Nx2x′ +Ny2y′ +Nz
(
x ′2 + y ′2 − 1

)+N0
(
x ′2 + y ′2 + 1

)= 0, (9.195)
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6 or

Nx2x′ +Ny2y′ + (x ′2 + y ′2
)
(Nz +N0)=Nz −N0. (9.196)

Dividing by Nz +N0 gives us

x ′2 + y ′2 + 2Nx

Nz +N0
x′ + 2Ny

Nz +N0
y′ = Nz −N0

Nz +N0
. (9.197)

Completing the square finally yields(
x′ + Nx

Nz +N0

)2

+
(

y′ + Ny

Nz +N0

)2

= N 2
x +N2

y +N2
z −N 2

0

(Nz +N0)
2

. (9.198)

On comparison with Eq. (9.193), we notice that this is the equation for a circle

in the xy-plane with radius ρ =
√
(N2

x +N 2
y +N 2

z −N2
0 )
/
(Nz +N0)

2, centered at(−Nx/(Nz +N0),−Ny/(Nz +N0)
)

This completes our proof that circles on S2 map

onto circles in the plane. Reversibly, circles in R2 project onto circles of S2, because

the mappings ξ and ξ−1 are one to one and continuous. ◾

The Kepler problem in four dimensions

To find the symmetry transformations that connect the degenerate hodographs to one

another, we first need to introduce an extended momentum space in four dimensions

R4 by taking the three momentum vector components p1, p2, and p3, and adding

a fourth component p4 to it. A hodograph in momentum 3-space R3 can then be

represented within momentum 4-space R4 via an inverse stereographic projection of

the hodograph onto a 3-sphere S3. It is of crucial importance to project a hodograph

with given p0 onto a hypersphere with radius equal to p0.

Definition 9.9 (Inverse stereographic projection in momentum 4-space): Let S3 ={
p = (p1, p2, p3, p4

) | p2
1 + p2

2 + p2
3 + p2

4 = p2
0

}
represent a hypersphere in momentum

4-space with radius p0 = √−2mE and let n̂ = (
0,0,0, p0

)
denote the north pole.

Construct the three-dimensional hyperplane R3 = {(p1,p2,p3,0
) ∈R4

}
, which cuts the

3-sphere in half. The intersection R3 ∩ S3 defines the equator of S3. Given any point

p = (
p1, p2, p3, p4

) ∈ S3, other than the north pole n̂, there is a unique line connecting

p with n̂ that intersects the equatorial hyperplane R3 at a point p′ = (p′1, p′2, p′3,0
)
. The

inverse stereographic projection of S3 is then defined as the map

ξ−1 : R3 → S3\{n̂} : p′ �→ p, (9.199)

where p is the inverse projection of p′. ◾

Fortunately, the hodographs for the Kepler problem were seen to be circular (§9.6.3).

On account of Theorem 9.1, we expect the hodographs in momentum 3-spaceR3 to be

sent into circles of the hypersphere S3 under the inverse stereographic projection ξ−1.

To be more explicit, the hodographs project onto great circles of the hypersphere.52

52 Notice that a free particle, constrained to the surface of a hypersphere S3, traces great circles as

classical trajectories. This explains Fock’s assertion that the motion of a particle bound in a Coulomb

field in flat three-dimensional space R3 is mathematically equivalent to the motion of a free particle

on a hypersphere S3.
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It follows that a degenerate set of hodographs (with the same value for p0)

corresponds to a set of great circles on the 3-sphere S3 of radius p0. The great

circles can be simply rotated into one another via a rigid rotation of the hyper-

sphere about its origin. This, in turn, when reprojected stereographically onto the

three-dimensional hyperplane R3, manifests itself by a continuous mapping of the

degenerate hodographs onto one another, while keeping the energy E invariant.

Schematically,53

Circle in R3 ξ−1

−−→ Circle in S3 SO(4)−−−→ Circle in S3 ξ−→ Circle in R3. (9.200)

We have thus identified the hidden symmetry of the Kepler problem as the rotation

group in four dimensions SO(4).

9.6.5 Peeking at the fourth dimension

Quantum mechanically, the mapping in Eq. (9.200) of the hodographs onto one

another under the SO(4) group corresponds to a mixing of the degenerate orbitals

belonging to the same n-level. Let us study this important point by way of the

following example.

Consider the set of hydrogenic orbitals with n = 2: 2s, 2px , 2py , and 2pz . Since the

energy of these four orbitals is the same, they are said to be degenerate, and Noether’s

theorem informs us that there should be a symmetry that relates these orbitals by

transforming them into one another. Another way of stating this is by saying that these

symmetry-related orbitals are equivalent ; they simply represent two sides of the same

coin.

However, an s-orbital is spherical and a p-orbital has two lobes; so, although it is

easy to see that one p-orbital can be rotated into another p-orbital under the symmetry

operations of the SO(3) group, it is far from obvious how a p-orbital can be “rotated”

into an s-orbital. Although the (2l+ 1)-fold degeneracy is a logical consequence of

the rotational symmetry of the Coulomb potential, the n2-degeneracy seems to be

completely accidental. We are thus forced to postulate the existence of an additional

symmetry, hidden from direct observation, that relates the s-orbitals to the p-orbitals.

In our quest for this dynamical symmetry, we discovered that the Coulomb

potential has rotational symmetry not only in three dimensions, but also in four!

Indeed, when viewed from the perspective of the SO(4) group, all the atomic orbitals

of fixed n are grouped together in one multiplet of dimension n2. This means that

there are rotations in four dimensions that transform the different varieties of orbitals

into one another, thus explaining the n2-degeneracy.54

Imagining the fourth dimension is not an easy task, however. Many artists and

writers alike have attempted to picture the fourth dimension in one way or another.

In 1884, a schoolmaster in the city of London whose name was Edwin Abbott

Abbott (1838–1926) published a satirical novella titled Flatland: A Romance of Many

Dimensions.55 It recounted the story of Arthur Square, an ordinary square who lived

53 See R. Gilmore. Lie Groups, Physics, and Geometry: An Introduction for Physicists, Engineers and

Chemists. Cambridge: Cambridge University Press, 2008, p. 265.
54 See S. M. Blinder. “Quantum Alchemy: Transmutation of Atomic Orbitals.” Journal of Chemical

Education 78.3 (2001), pp. 391–394.
55 E. A. Abbott. Flatland: A Romance of Many Dimensions, 1884.
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FIGURE 9.16 A three-dimensional sphere intersecting Flatland’s two-dimensional

world. Illustration from E. A. Abbott. Flatland: A Romance of Many Dimensions. Seely & Co., 1884.

FIGURE 9.17 An illustration of how it is possible to “rotate” s- and p-orbitals into one another by

stepping up a dimension. The orbitals are pictured by different patterns on the two-dimensional

plane. The circular pattern represents an s-orbital, and the remaining two patterns, two p-orbitals.

Acknowledging that these patterns result from projections of a three-dimensional sphere onto the

two-dimensional space, we can see how the patterns in two dimensions can be interchanged by

rotating the sphere. The Kepler-Coulomb potential has four-dimensional symmetry and permits

this type of rotation. Adapted from P. Atkins. Galileo’s Finger: The Ten Great Ideas of Science.

Oxford: Oxford University Press, 2003, pp. 173–175.

in a two-dimensional world called Flatland. One day, Arthur was visited by a sphere

from the third dimension—a magical creature with mind-blowing, almost God-like

powers. The sphere could talk to Arthur while remaining invisible by hovering

above Flatland. When traveling through Flatland, the sphere seemed to appear from

nowhere, growing in size and then shrinking again, finally to disappear (Figure 9.16).

At one point, the sphere bumped into Arthur and catapulted him into the third

dimension: Spaceland. Being introduced in this way to the third dimension, Arthur

used the idea of dimensional analogy to imagine what the fourth dimension would

be like. We can use a similar analogy to picture what happens when an s-orbital is

“rotated” into a p-orbital.

Imagine a sphere resting on a two-dimensional surface (Figure 9.17). In ordinary

3-space, the sphere could represent Earth, which is projected stereographically onto

the plane to obtain a two-dimensional map of the world, in much the same way

as Flemish cartographer Gerardus Mercator (1512–1594) compiled the first modern

atlas. Now imagine stepping up one dimension. The plane now represents our familiar

three-dimensional world, which is assumed to be a projection of an even higher
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four-dimensional world, as represented by the sphere. Notice also that the northern

hemisphere is dark and the southern hemisphere is light. When projecting the surface

of the sphere onto the plane, one obtains a light circle centered on a dark background.

Imagine next rotating the sphere through 90◦ to obtain the sphere in the second part

of the illustration. A projection of this sphere bisects the plane in two halves: one light

and another dark. A further rotation of the sphere through another 90◦ yields the third

part of Figure 9.17, which has a similar projection as the second sphere, although the

map has been rotated by 90◦.

Now let the first orientation of the sphere represent an s-orbital, and the remaining

two, two different p-orbitals—say, a px-and a py-orbital. We Flatlanders, who are stuck

in the three-dimensional plane, have no difficulty in seeing that the two p-orbitals are

related to one another. After all, a mere rotation of the plane transforms both orbitals

into one another. We are baffled, however, by the thought that the s-orbital, with its

circular shape, could be “rotated” somehow into one of the two p-orbitals. We have

great difficulties, in other words, understanding that the s-orbital has the same energy

as the two p-orbitals. Superhumans living in the four dimensions do not face these

troubles. They see all our Flatland patterns as projections of a sphere, which are related

by simple rotations in the fourth dimension. As Peter Atkins observed: “the equality

of energies of apparently unrelated orbitals is a consequence of there being symmetry

hidden away in a fourth dimension.”56

56 P. Atkins. Galileo’s Finger: The Ten Great Ideas of Science, p. 175.



10 Scholium II

“There are in my opinion three possibilities . . .:

1. Brinton Jr. wants to harm his father, and everything he has told me is nothing but

comedy.

2. Seaburry’s amiability is only feigned, he is in reality a satanic evildoer.

3. Brinton Sr. is only imagining things. Admittedly, the world-renowned Dundalk has

rejected this possibility, but why couldn’t he be wrong for once?"

“There are, my dear Watson, not three possibilities, but two key questions. The first: with

whose mouth does Shiva speak? The second: why does Shiva speak?”

–Clifford Semper1

The treatment of the hydrogen atom has yielded a connection between orthogonal

and unitary groups. In the first part of this scholium, our detective work will trace

the geometric form of this connection, making use of a transformation introduced

in 1964 by Finnish astronomer and mathematician Paul Kustaanheimo (1924–1997)

and further developed in collaboration with Swiss mathematician Eduard Stiefel

(1909–1978). This again offers the possibility to witness a symmetry shattering, this

time from SU(4) to SU(2) ⊗ SU(2).

1 Translated from C. Semper. “De Goden van Brinton Hall.” In: De Nalatenschap van Sherlock

Holmes. Amsterdam: Andries Blitz.
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10.1 OSCILLATOR ROOTS OF THE HYDROGEN PROBLEM

In quantum chemistry the hydrogen atom and the harmonic oscillator are usually

represented as two separate problems. However, the factorization of the so(4) Lie

algebra of the hydrogen Hamiltonian into two separate su(2) oscillator algebras

indicates the existence of a deep connection between the two problems. As we shall

see in this scholium, an explicit construction of this connection can be achieved

by means of the so-called Kustaanheimo-Stiefel (KS) transformation, which was

originally developed in the context of celestial mechanics. Although in the Fock

analysis the momentum space was extended to a four-dimensional space, where the

Kepler problem appears as a projection, the KS transformation acts in coordinate space

and resolves it into an underlying set of spinors, which also form a four-dimensional

space. In both cases, a constraint appears that implies the sacrifice of the extra

dimension. As a preliminary, let us first explore the possible correspondence between

orthogonal and unitary Lie algebras from a purely dimensional point of view.

10.1.1 Dimensional considerations

As indicated earlier, the orders of the respective Lie algebras are given by

so(n) :
n (n− 1)

2
;

su(m) : m2 − 1.

(10.1)

For both algebras to be isomorphic to each other, the minimal requirement is that the

two orders are equal:

m=
√

n (n− 1)

2
+ 1. (10.2)

This is a so-called Diophantine equation; in other words, for a given integer n, only

integer solutions for m are allowed. Table 10.1 contains a list of the first few integers

for which this equation holds.

In Chapter 8, we saw the equivalence so(3) ∼ su(2). Interestingly, as Table 10.1

indicates, there is a further homomorphism between so(6) and su(4),2 but for the

Table 10.1 Special orthogonal and unitary algebra’s

of the same order

so(n) su(m) m2 − 1 Homomorphism

so(3) su(2) 3 Yes

so(6) su(4) 15 Yes

so(16) su(11) 120 No

so(33) su(23) 528 No

so(91) su(64) 4095 No

2 In Chapter 12, we will make use of the SO(6) symmetry in its dynamical form as SO(4,2), which

is isomorphic to SU(2,2).
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2 other cases in the table the Lie algebras are not equivalent. Hence, the connection

between rotational and unitary symmetries is limited to special cases.3

10.1.2 The SU(4) oscillator

As mentioned, the SO(4) symmetry group is structurally equivalent to the product

of two SU(2) oscillator groups. The four-dimensional oscillator, SU(4), constitutes a

convenient covering group to embed these two SU(2) oscillators. The corresponding

Hamiltonian equation reads

−h̄2

2m

(
∂2

∂u2
1

+ ∂2

∂u2
2

+ ∂2

∂u2
3

+ ∂2

∂u2
4

)
|ψ〉+ 1

2
mω2 (u2

1 + u2
2 +u2

3 +u2
4

) |ψ〉
= h̄ω

4∑
i=1

(
ni + 1

2

)
|ψ〉.

(10.3)

Here, the ui coordinates are components of a four-dimensional vector. Each com-

ponent contributes to the total energy by h̄ω(ni + 1/2), where ni is the excitation

quantum number along this component. Let us now group the components together

in two subsets (u1, u2) and (u3, u4), and rewrite them in cylindrical coordinate form as

u1 = u cosβ;

u2 = u sinβ;
(10.4)

u3 = v cosγ ;

u4 = v sinγ .
(10.5)

The Hamiltonian can be easily expressed in these cylindrical coordinates. According

to the chain rule, we have for the derivative operators

∂

∂u1
= ∂u

∂u1

∂

∂u
+ ∂β

∂u1

∂

∂β
;

∂

∂u2
= ∂u

∂u2

∂

∂u
+ ∂β

∂u2

∂

∂β
,

(10.6)

and similarly for u3 and u4. To obtain the required partial derivatives, we need the

inverse transformations:

u2 = u2
1 +u2

2;

tanβ = u2

u1
.

(10.7)

By differentiating, we obtain

∂

∂u1
u2 = 2u

∂u

∂u1
= 2u1;

∂

∂u2
u2 = 2u

∂u

∂u2
= 2u2;

(10.8)

3 It is striking that for three cases in Table 10.1, with m = 2,4,64, the dimension of the oscillator

algebra is a power of two. A century ago, in 1913, the mathematical genius Srinivasa Ramanujan,

with his gift for number patterns, conjectured that only a few cases with m= 2p would exist. In 1948,

Trygve Nagell proved that, indeed, in addition to the trivial case with p = 0 and the equivalence

so(2)∼ u(1), the only allowed values of p correspond to p= 1, 2, and 6. See Y. Pavlyukh and A. R. P.

Rau. “1-, 2-, and 6-Qubits, and the Ramanujan–Nagell Theorem.” International Journal of Quantum

Information 11.06 (2013), article no. 1350056.
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∂

∂u1
tanβ = 1

cos2β

∂β

∂u1
=−u2

u2
1

;

∂

∂u2
tanβ = 1

cos2β

∂β

∂u2
= 1

u1
.

(10.9)

The derivative operators then become,

∂

∂u1
= cosβ

∂

∂u
− sinβ

u

∂

∂β
,

∂

∂u2
= sinβ

∂

∂u
+ cosβ

u

∂

∂β
,

(10.10)

and entirely similar for u3 and u4. The cylindrical form of the Laplacian is then easily

obtained:

4∑
i=1

∂2

∂u2
i

= ∂2

∂u2
+ 1

u

∂

∂u
+ 1

u2

∂2

∂β2

+ ∂2

∂v2
+ 1

v

∂

∂v
+ 1

v2

∂2

∂γ 2
.

(10.11)

10.1.3 The Kustaanheimo-Stiefel transformation

The Kustaanheimo-Stiefel (KS) transformation provides a connection between the

four-dimensional vector (u1,u2, u3,u4) and the three-dimensional vector
(
x,y,z

)
.

Our treatment follows the geometric algebraic approach as outlined by Bartsch.4

The transformation is based on the rotation of a spinor. Consider the basis spinor,

represented by the Pauli matrix σz :

σz =
[

1 0

0 −1

]
. (10.12)

A rotation of this spinor to an arbitrary direction in space, corresponding to the

Cartesian coordinates x, y, and z, can be achieved by a unitary matrix transformation:

xσx + yσy + zσz =UσzU
†, (10.13)

where the unitary matrix is expressed in the usual Cayley-Klein parameters:

U=
[

a b

−b∗ a∗

]
;

U† =
[

a∗ −b

b∗ a

]
.

(10.14)

The matrix product is thus given by[
a b
−b∗ a∗

][
1 0
0 −1

][
a∗ −b
b∗ a

]
=
[ |a|2 −|b|2 −2ab

−2a∗b∗ −|a|2 +|b|2
]

. (10.15)

This result can be expressed in Pauli matrices as

UσzU
† = (−ab− (ab)∗

)
σx − i

(
ab− (ab)∗

)
σy +

(|a|2 − |b|2)σz . (10.16)

4 T. Bartsch. “The Kustaanheimo-Stiefel Transformation in Geometric Algebra.” Journal of Physics

A: Math. Gen. 36 (2003), pp. 6963–6978.
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4 Note that, because σz is traceless, the transformed result is traceless as well, so that the

unit matrix σ0 does not appear. From this result we immediately obtain expressions

for the Cartesian components:

x =−ab− (ab)∗;

y =−i
(
ab− (ab)∗

)
;

z = |a|2 − |b|2 .

(10.17)

Here, we can recognize immediately the final column of theO (U)matrix in Chapter 8,

Eq. (8.29), which indeed corresponds to the transformation of the z-component.

Because the Cayley-Klein parameters are, in principle, complex quantities, the

expressions involve four real parameters that are identified with the {ui}i=1,4

components of a 4-vector.5 In this way, the three Cartesian components are connected

to a set of four coordinates. For a rotation, these coordinates are normalized to unity,

but in the KS transformation this condition is relaxed so that the four coordinates

can be identified with the four degrees of freedom of the SU(4) oscillator. This means

that the transformation, in fact, combines a standard rotation with a dilatation. The

conventional form of the KS transformation is obtained by defining the real and

imaginary parts of the Cayley-Klein parameters as follows:

a = 1√
2
(−u1 + iu2);

b = 1√
2
(u3 − iu4).

(10.18)

The resulting KS transformation thus reads

x = u1u3 − u2u4;

y = u1u4 + u2u3;

z = 1

2

(
u2

1 +u2
2 − u2

3 −u2
4

)
.

(10.19)

A simple interpretation of the KS transformation views the rotation of the spinor as a

telescope slew (Figure 10.1). The σz spinor represents the telescope orientation toward

the zenith. To view a particular star at angular direction (θ ,φ), we have to slew the

telescope to this view line. One way to perform this is by using a rotation axis halfway

along the great circle joining the zenith to the star direction, and rotating around this

axis over an angle of π . In standard SO(3) axis-angle notation, this rotation axis is

parametrized as follows:

nx = sin
1

2
θ cosφ;

ny = sin
1

2
θ sinφ;

nz = cos
1

2
θ .

(10.20)

According to Eq. (8.34), the corresponding Cayley-Klein parameters are given by

a =−inz ;

b =−ny − inx .
(10.21)

5 The four components of the rotation matrix delineate the four quaternions, which were conceived

by Sir William Rowan Hamilton on October 16, 1843, as he walked by Broome Bridge near Dublin.
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x
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φ

θ
2

y

z zenith

star

nx ny nz

FIGURE 10.1 Telescope slew from the zenith to a star at angular position (θ ,φ) can be performed by

a rotation over 180◦ about the halfway axis at θ/2.

This corresponds to the oscillator coordinates:

u1 =−√2�(a)= 0;

u2 =
√

2 ((a)=−√2cos
1

2
θ ;

u3 =
√

2�(b)=−√2sin
1

2
θ sinφ;

u4 =−√2 ((b)=√
2sin

1

2
θ cosφ.

(10.22)

The corresponding Cartesian coordinates are then given by the KS transformation:

x = 2cos
1

2
θ sin

1

2
θ cosφ = sinθ cosφ;

y = 2cos
1

2
θ sin

1

2
θ sinφ = sinθ sinφ;

z = cos2
(

1

2
θ

)
− sin2

(
1

2
θ

)
cos2φ− sin2

(
1

2
θ

)
sin2φ = cosθ .

(10.23)

These are, of course, precisely the Cartesian coordinates corresponding to the angular

position of the star. The analogy also clarifies the inherent redundancy of the KS

transformation, which is inevitable in view of the reduction of a 4-vector to a 3-vector.

Indeed the slew operation is not uniquely defined by the position of the star. As

an example the rotation axis could also be taken perpendicular to the great circle

joining the zenith to the star orientation, in which case the rotation angle would be

θ instead of π . This would alter the ui coordinates, but it does not affect the Cartesian

coordinates. In the next section, this angular freedom will be shown to provide a

convenient condition to connect the hydrogen atom to the four-dimensional oscillator.
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6 10.2 THE TRANSFORMATION OF THE HYDROGEN

HAMILTONIAN

Let us now resume the standard Schrödinger equation for the hydrogen atom, applied

to a wave function with principal quantum number n:

−h̄2

2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
|ψn〉− Ze2

4πε0r
|ψn〉 = − Z2me4

8h2ε0
2n2

|ψn〉. (10.24)

Subsequently, we apply the KS transformation to the Cartesian coordinates, writing

the ui coordinates in polar form:

z = 1

2

(
u2 − v2);

x = uv cos (β+ γ );
y = uv sin (β+ γ );

r =
√

x2 + y2 + z2 = 1

2

(
u2 + v2).

(10.25)

These coordinates are sometimes denoted as the squared parabolic coordinates. Note

that the angles of the u and v oscillator planes only appear as a sum. This sum

corresponds to the spherical coordinate angle φ in the x, y-plane:

φ = β+ γ . (10.26)

In this way, one degree of freedom is removed. We define this degree as the difference

angle and denote it as χ :

χ = β− γ . (10.27)

As we will see later, this angle plays an important role because it introduces a constraint

when mapping the hydrogen atom on the four-dimensional oscillator.

To transform the Hamiltonian to parabolic coordinates, we need inverse transfor-

mations for the calculation of the required partial derivatives. We have

u2 = z + r;

v2 =−z + r;

φ = arctan
y

x
.

(10.28)

From these expressions, the first-order partial derivatives are easily obtained by

applying the chain rule:

∂

∂z
= u

2r

∂

∂u
− v

2r

∂

∂v
;

∂

∂x
= v cosφ

2r

∂

∂u
+ u cosφ

2r

∂

∂v
− sinφ

uv

∂

∂φ
;

∂

∂y
= v sinφ

2r

∂

∂u
+ u sinφ

2r

∂

∂v
+ cosφ

uv

∂

∂φ
.

(10.29)

When squaring these expressions, we must, of course, take into account that the factors

preceding the partial derivatives are functions of the parabolic coordinates and thus

must be derived as well. We finally obtain for the Laplacian:

�2 = 1

2r

(
∂2

∂u2
+ 1

u

∂

∂u
+ ∂2

∂v2
+ 1

v

∂

∂v

)
+ 1

u2v2

∂2

∂φ2
. (10.30)
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The φ part of this expression corresponds to the unique φ-dependent term of the

hydrogen Hamiltonian in spherical coordinates, which reads

1

r2 sin2 θ

∂2

∂φ2
. (10.31)

This term may be rewritten as

1

u2v2

∂2

∂φ2
= 1

2r

(
1

u2

∂2

∂φ2
+ 1

v2

∂2

∂φ2

)
. (10.32)

The Laplacian thus becomes

�2 = 1

2r

(
∂2

∂u2
+ 1

u

∂

∂u
+ ∂2

∂v2
+ 1

v

∂

∂v
+ 1

u2

∂2

∂φ2
+ 1

v2

∂2

∂φ2

)
. (10.33)

When comparing this result with the Laplacian for the general SU(4) oscillator in

Eq. (10.11), we note, apart from the overall division by 2r, a difference for the angular

parts, with the second derivatives in the oscillator angles β and γ being replaced by a

uniform second derivative in φ. The relationship between these angular derivatives

may be expressed via partial differentiations of the expressions for the sum and

difference angles:

∂

∂β
= ∂φ

∂β

∂

∂φ
+ ∂χ
∂β

∂

∂χ

= ∂

∂φ
+ ∂

∂χ
;

∂

∂γ
= ∂

∂φ
− ∂

∂χ
.

(10.34)

Accordingly, the second-order derivatives in the angles of the oscillator planes become

∂2

∂β2
= ∂2

∂φ2
+ 2

∂2

∂φ∂χ
+ ∂2

∂χ2
;

∂2

∂γ 2
= ∂2

∂φ2
− 2

∂2

∂φ∂χ
+ ∂2

∂χ2
.

(10.35)

The angular terms in the hydrogen Laplacian may then be rewritten as

1

u2

∂2

∂φ2
= 1

u2

(
∂2

∂β2
− 2

∂2

∂φ∂χ
− ∂2

∂χ2

)
;

1

v2

∂2

∂φ2
= 1

v2

(
∂2

∂γ 2
+ 2

∂2

∂φ∂χ
− ∂2

∂χ2

)
.

(10.36)

Finally, we obtain

2r �2 =
4∑

i=1

∂2

∂u2
i

+ 2
u2 − v2

u2v2

∂2

∂φ∂χ
− u2 + v2

u2v2

∂2

∂χ2
. (10.37)

This result can be replaced by the SU(4) Laplacian under the condition that the wave

function is not dependent on the difference angle χ :

∂

∂χ
|ψn〉 ≡ 0. (10.38)

This condition puts a constraint on angular momenta in the u1,u2 and u3,u4 planes

of the four-dimensional oscillator. Since χ is the difference between the polar angles

in both planes, we have
∂

∂β
= ∂

∂γ
, (10.39)
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8 or, in coordinate terms,

u1
∂

∂u2
− u2

∂

∂u1
= u3

∂

∂u4
− u4

∂

∂u3
. (10.40)

This constraint breaks the SU(4) symmetry into two coupled SU(2) oscillators. In the

next section, we will see how this gives rise to the SO(4) symmetry of the hydrogen

atom. For now, let us continue with the Schrödinger equation for hydrogen. By

multiplying both sides of the equation with 2r and applying the constraint, we finally

obtain

−h̄2

2m

4∑
i=1

∂2

∂u2
i

|ψn〉− Ze2

2πε0
|ψn〉 = − Z2me4

8h2ε0
2n2

(
u2

1 +u2
2 +u2

3 +u2
4

) |ψn〉. (10.41)

This is precisely the four-dimensional oscillator equation, with the following equiva-

lences for frequencies and energy:

1

2
mω2 ⇐⇒ Z2me4

8h2ε0
2n2

;

h̄ω
4∑

i=1

(
ni + 1

2

)
⇐⇒ Ze2

2πε0
.

(10.42)

These identities reduce to a very simple relationship between the respective quantum

numbers:
1

2

4∑
i=1

(
ni + 1

2

)
= n. (10.43)

The remarkable feature of the KS transformation is the appearance of the radius as a

common denominator to the kinetic and potential energy parts. By multiplying this

denominator the singularity of the Coulomb hole in the origin, r = 0, is lifted and a

much more tractable differential equation of oscillator type is obtained.

As noted earlier, the SU(4) symmetry is reduced because of the angular momentum

constraint of Eq. (10.40). As a result, not all combinations of the ni quantum numbers

are allowed. In the next section, we will consider the symmetry reduction from SU(4)

to SU(2) × SU(2), which ultimately will reproduce the hydrogen quantum numbers.

10.3 SHATTERING SU(4) SYMMETRY

The constraint introduced in Eq. (10.40) affects the SU(4) symmetry. Let {Ûx ,Ûy , Ûz}
represent the three Lie generators of the SU(2) subgroup acting in the subspace

formed by {u1,u2}, and similarly {V̂x , V̂y , V̂z} represent the three Lie generators of the

SU(2) subgroup acting in the subspace formed by {u3, u4}. The constraint requires the

equality

Ûz = V̂z . (10.44)

In view of this equality, generators from complementary subspaces might not

commute. For example, [
Ûy , V̂z

]
= iÛx . (10.45)

This is not compatible with SU(4) symmetry, because this symmetry requires the two

subspaces to be independent, and thus their generators should certainly commute. As a

result, the constraint gives rise to an extra quantum condition that limits the quantum

states of SU(4). To determine this condition, we first define creation and annihilation
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operators for boson states along the four degrees of freedom of SU(4). So a†

1 creates an

excitation of the oscillator according to the coordinate u1, and a4 annihilates a boson

excitation along u4, and so on. The Ûz and V̂z generators may be expressed in these

operators as indicated in Chapter 8:

Ûz = h̄

2i

(
a†

1a2 − a†
2a1

)
;

V̂z = h̄

2i

(
a†

3a4 − a†
4a3

)
.

(10.46)

Since these operators rotate the boson excitations, it is convenient to change the

basis to spinor form, which diagonalizes these operators. Following the procedure of

Chapter 8, we define the corresponding spinors as follows:

a†
α =

1√
2

(
a†

1 + ia†
2

)
;

a†
β =

1√
2

(
a†

1 − ia†
2

)
;

(10.47)

b†
α =

1√
2

(
a†

3 + ia†
4

)
;

b†
β =

1√
2

(
a†

3 − ia†
4

)
.

(10.48)

We can do the same for the annihilation operators:

aα = 1√
2
(a1 − ia2);

aβ = 1√
2
(a1 + ia2);

(10.49)

bα = 1√
2
(a3 − ia4);

bβ = 1√
2
(a3 + ia4).

(10.50)

In this new basis, the generators become

Ûz = h̄

2

(
a†
αaα − a†

βaβ
)

;

V̂z = h̄

2

(
b†
αbα − b†

βbβ
)

.

(10.51)

As explained in Appendix H, a general quantum state of SU(4) may be written as

a boson excitation along all four degrees of freedom and is defined by the integer

quantum numbers p, q, r, and s:∣∣p,q, r, s
〉= 1√

p!q!r!s!
(
a†
α

)p
(

a†
β

)q (
b†
α

)r
(

b†
β

)s |0〉. (10.52)

Applying the angular momentum operators of Eq. (10.51) to this state yields

Ûz
∣∣p,q, r, s

〉= h̄

2

(
p− q

)∣∣p, q, r, s
〉
;

V̂z
∣∣p,q, r, s

〉= h̄

2
(r − s)

∣∣p, q, r, s
〉
.

(10.53)
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0 The equality in Eq. (10.44) thus yields an extra quantum condition:

p− q = r − s. (10.54)

This equation may be reordered to yield

p+ s = q+ r. (10.55)

This seemingly very simple rearrangement has a far-reaching group theoretical

consequence. It defines another SU(2)× SU(2) cross-section, formed by the respective

operator pairs {a†
α ,b†

β } and {a†
β ,b†

α}. The basic generators for both subgroups are

denoted as the respective vectors Ŝ and T̂, and they are given by

Ŝx = h̄

2

(
a†
αbβ + b†

βaα
)

;

Ŝy = h̄

2i

(
a†
αbβ − b†

βaα
)

;

Ŝz = h̄

2

(
a†
αaα − b†

βbβ
)

;

(10.56)

T̂x = h̄

2

(
a†
βbα + b†

αaβ
)

;

T̂y = h̄

2i

(
a†
βbα − b†

αaβ
)

;

T̂z = h̄

2

(
a†
βaβ − b†

αbα
)

.

(10.57)

We can easily check that these operators form SU(2) algebras, and that the

commutators of the Ŝ and T̂ components vanish. The constraint in Eq. (10.55) does

not introduce a mixing between the two groups; it only requires the number operators

for both to be the same. In this way, this is a genuine symmetry breaking of SU(4)

in a product of two separate SU(2) factors. Accordingly, the quantum states can be

rewritten as ∣∣p, q, r, s
〉= ∣∣p, s

〉 ∣∣q, r
〉
. (10.58)

As is explained in Appendix H, the SU(2) eigenfunctions can be characterized by a

spin momentum quantum number j, which is given by

j = 1

2

(
p+ s

)= 1

2

(
q+ r

)
. (10.59)

So, the symmetry restriction on the quantum states means that only SU(2) states with

the same j can be transformed into the hydrogen wave functions. This is exactly what

was obtained in Chapter 9, in which the SO(4) states were constructed as products

of SU(2) states with the same j-value. Let us now introduce this condition into

Eq. (10.43) for the n principal quantum number of hydrogen:

n= 1

2

(
p+ q+ r + s+ 2

)= 2j+ 1. (10.60)

With this result, which reproduces Eq. (9.159) exactly, we are now prepared to leave the

cozy world of compact invariance groups and head for the open-ended noninvariance

groups of Part III.
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11 The SO(2,1) group

Jacob left Beersheba, and went toward Haran. He came to the place and stayed there that

night, because the sun had set. Taking one of the stones of the place, he put it under his head

and lay down in that place to sleep. And he dreamed, and behold, there was a ladder set

up on the earth, and the top of it reached to heaven; and behold, the angels of God were

ascending and descending on it!

–Genesis 28:10–19.

The radial wave equation of the hydrogen atom contains a deep symmetry that relates

eigenstates with different principal quantum number n, but equal orbital quantum

number l. Under this peculiar symmetry, any nl-orbital can thus be turned into

any other n′l-orbital (with n �= n′ and l fixed, see Figure 11.1). Such a symmetry is

truly spectrum generating, because its ladder operators run through the entire energy

spectrum, from eigenstate to eigenstate.

Given that the energy E changes during such transformations, the Hamiltonian

Ĥ no longer remains invariant under these operations (i.e., Ĥ does not commute

with all the generators of the group), and the symmetry group is therefore called a

noninvariance group, as will be explained in §11.1.

The spectrum-generating symmetry of the radial Schrödinger equation corre-

sponds to the noncompact pseudo-orthogonal group SO(2,1). In §11.2, we will

examine how this symmetry is related to its compact sister, the spherical rotation group

SO(3). As a result of their similar structure, the algebraic treatment of the so(2,1)

algebra will closely resemble the approach used for the so(3) algebra in Chapter 5.
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4 FIGURE 11.1 Consider a deck of

playing cards. There is exactly one card

of any rank (1–10) in each suit (♥, ♦,

♣, or ♠). Let the suit represent the

value of l (s, p, d, or f ) and let the rank

stand for the quantum number n

(1–10). Then, with the help of the

so(2,1) generators, we can turn the

cards of a given suit into one another,

but cannot relate cards of different

suits. The 2♠, 5♠, and 7♠ gardeners,

depicted in this picture, are thus

related to one another under the

SO(2,1) group, but they can never rise

in social class to become soldiers (♣),

courtiers (♦), or members of the royal

family (♥). In orbital language, any

nl-orbital can be turned into any other

n′l-orbital with the same value of l.

One of the fundamental differences between the SO(3) and SO(2,1) groups, to

be outlined in §11.2, is that the unitary irreducible representations (or unirreps)

of the so(2,1) algebra are infinite-dimensional, whereas the unirreps of so(3) are

finite-dimensional. This sounds reasonable, given that for each value of l there are

an infinite number of nl-orbitals (with n = l + 1 → ∞) that form a basis for an

infinite-dimensional representation of the so(2,1) Lie algebra.

For this, we will have to investigate how the so(2,1) algebra emerges in the case of

the radial equation in §11.3. To this aim, a realization of the so(2,1) generators T̂1,

T̂2, and T̂3 will be given in terms of the radius r̂ and conjugate momentum p̂r . By a

clever scaling transformation, the radial Schrödinger equation can then be turned into

an eigenvalue problem for one of the so(2,1) generators, and the Bohr formula for the

energy levels can be derived in an algebraic way, without recourse to the traditional

differential equation approach in terms of series solutions.

Our examination of the SO(2,1) group will be based on the book chapter by

Shi-Hai Dong on the Lie algebra’s SU(2) and SU(1,1).1 This is also in line with the

treatment by Adams and colleagues, and their notation will be used throughout.2

1 S.-H. Dong. Factorization Method in Quantum Mechanics. Dordrecht: Springer, 2007, pp. 17–32.
2 B. G. Adams, J. Čížek, and J. Paldus. “Representation Theory of so(4, 2) for the Perturbation

Treatment of Hydrogenic-Type Hamiltonians by Algebraic Methods.” International Journal of

Quantum Chemistry 21.1 (1982), pp. 153–171 and B. G. Adams, J. Čížek, and J. Paldus. “Lie

Algebraic Methods and Their Application to Simple Quantum Systems.” In: Advances in Quantum

Chemistry, vol. 19. Ed. Per-Olov Löwdin. San Diego: Academic Press, 1988, pp. 1–84, reproduced

in B. G. Adams, J. Čížek, and J. Paldus. “Lie Algebraic Methods and Their Application to Simple

Quantum Systems.” In: Dynamical Groups and Spectrum-Generating Algebras, vol. 1. Eds. Y.

Ne’eman, A. Bohm, and A. O. Barut. Singapore: World Scientific Publishers, 1988, pp. 103–208. See

also B. G. Adams. Algebraic Approach to Simple Quantum Systems. Berlin: Springer-Verlag, 1994, and



275
The

SO
(2,1)group

11.1 THE ROAD TO NONINVARIANCE GROUPS

Before we can deal with the SO(2,1) group, we have to acquaint ourselves with

the notion of noninvariance groups. Although symmetry groups had been used in

quantum mechanics since the groundbreaking work of Eugene Wigner and Weyl

during the 1920s,3 the idea to look for noninvariance groups under which all energy

eigenstates of a system would fall in one irreducible representation had to wait another

40 years. As a matter of fact, the use of noninvariance groups was pioneered by Wigner

as early as 1939 in relation to his study of the inhomogeneous Lorentz group.4 Yet,

it was only around 1965 that noninvariance groups first attracted the attention of a

handful of high-energy physicists.

11.1.1 Historical prelude

Noninvariance groups made their first appearances in elementary particle physics.

After Gell-Mann and Ne’eman’s introduction of the SU(3) flavor group,5 numerous

theoretical physicists embarked on a quest for broader groups that would enable them

to classify ever-larger numbers of elementary particles in so-called supermultiplets.

Notorious examples were the SU(4) group, which took the newly discovered charm

quark into account, or the spin-dependent SU(6) group, which accounted for both

SU(3) flavor and SU(2) spin. As George Sudarshan noted with respect to the latter

group, “its multiplet structure [was] remarkable.”6 No less than fifty-six baryons fell

into one supermultiplet (or 56-plet), whereas the mesons were seen to constitute

a 35-plet, both of which could be identified as irreducible representations of the

spin-flavor SU(6) group.

But with the introduction of these symmetry groups, new problems inevitably

surfaced. According to orthodox group theory, when different particles are grouped

in one multiplet of a given symmetry group, they should be degenerate (read: have

the same mass). From this point of view, the isospin SU(2) group was fairly accurate

in nature because the proton and neutron have nearly equal mass. But, even within

the SU(3) multiplets, significant differences in mass were observed. As a general

rule, the higher the symmetry proposed, the more approximate it became. Sudarshan

summarized the situation with the following words:

While the multiplet structure is thus striking, there is a problem. If we thought of

the group as an invariance group, we would have expected that the particles which

J. Čížek and J. Paldus. “An Algebraic Approach to Bound States of Simple One-Electron Systems.”

International Journal of Quantum Chemistry 12.5 (1977), pp. 875–896.
3 E. P. Wigner. Group Theory and Its Applications to the Quantum Mechanics of Atomic Spectra. New

York: Academic Press, 1959, translated from the original E. P. Wigner. Gruppentheorie und ihre

Anwendung auf die Quantenmechanik der Atomspektren. Braunschweig: F. Vieweg & Sohn, 1931,

and H. Weyl. The Theory of Groups and Quantum Mechanics. New York: Dover Publications, 1950,

translated from the original H. Weyl. Gruppentheorie und Quantenmechanik. Leipzig: S. Hirzel,

1931.
4 E. P. Wigner. “On Unitary Representations of the Inhomogeneous Lorentz Group.” Annals of

Mathematics 40.1 (1939), pp. 149–204.
5 M. Gell-Mann and Y. Ne’eman. The Eightfold Way. Boulder, CO: Westview Press, 2000.
6 E. C. G. Sudarshan. “What Are Elementary Particles Made Of?” In: Symposia on Theoretical Physics

and Mathematics, vol. 6. Ed. Alladi Ramakrishnan. New York: Plenum Press, 1968, p. 61.



Sh
at
te
re
d
Sy
m
m
et
ry

27
6 constitute a single representation all have equal mass. On the other hand, if the group

is not an invariance group, then it is not clear why the particles should constitute

the representation of the group. There was a departure from the precise equality of

masses for the SU(2) multiplets, but these differences were always blamed on the

electromagnetic interaction. We thus have a paradoxical situation: On the one hand,

the group seems to be basic in predicting the particle multiplets; on the other hand, the

group does not seem to be an invariance group for the system.7

Instead of using these badly broken symmetries, the idea originated of looking for

another kind of symmetry group—one that could relate all the particles in one

multiplet, yet without forcing them to be degenerate. This is where noninvariance

groups came into play. Scientists postulated a rather small symmetry group for the

Hamiltonian and then embedded this group in a larger noninvariance group.8

Soon after the first successes in elementary particle physics, noninvariance groups

began to be applied in the field of atomic physics. Sudarshan, Asim Orhan Barut,

Yossef Dothan, Gell-Mann, and Ne’eman (among others), who had first pioneered

the use of noninvariance groups in high-energy physics, now turned to a study of

some familiar potentials, such as the rigid rotator, the harmonic oscillator (in three or

more dimensions), and the hydrogen atom. In the latter case, the different (ground and

excited) energy eigenstates were related to one another under the noninvariance group.

Although these investigations were not of great intrinsic interest, both the harmonic

oscillator and the hydrogen atom provided excellent test cases for noninvariance

groups, and their study helped immensely in achieving a better understanding of their

defining characteristics.

Noninvariance groups have been termed differently by various scientists: Sudar-

shan introduced the term noninvariance group (this term will also be adopted in the

present chapter).9 Gell-Mann, Ne’eman, and Dothan, on the other hand, preferred the

name of spectrum-generating groups,10 whereas Barut referred to them as dynamical

groups, thus causing some confusion with our own use of that term for the SO(4)

group (cf. Chapter 9, vide infra).11

Not only did terminological confusions abound during the 1960s and 1970s, the

very concept of a noninvariance group was also seldom defined in a precise manner. As

Octavio Castaños et al. noted, “[I]n contrast to the well-known prescription defining

the elements of the symmetry algebra, . . . no unique prescription for the dynamical

7 Sudarshan, “What are Elementary Particles Made of?,” p. 61.
8 J. G. Kuriyan and E. C. G. Sudarshan. “Noninvariance Groups in Particle Physics.” Physical Review

162.5 (1967), pp. 1650–1662.
9 N. Mukunda, L. O’Raifeartaigh, and E. C. G. Sudarshan. “Characteristic Noninvariance Groups

of Dynamical Systems.” Physical Review Letters 15.26 (1965), pp. 1041–1044. See also E. C. G.

Sudarshan. “Concluding Remarks.” In: Non-Compact Groups in Particle Physics. Proceedings of the

1966 Conference held at the University of Wisconsin, Milwaukee. Ed. Y. Chow. New York: Benjamin,

1966. pp. 207–212.
10 Y. Dothan, M. Gell-Mann, and Y. Ne’eman. “Series of Hadron Energy Levels as Representations

of Non-compact Groups.” Physics Letters 17.2 (1965), pp. 148–151.
11 A. O. Barut and C. Fronsdal. “On Non-compact Groups: II. Representations of the 2+ 1 Lorentz

Group.” Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences

287.1411 (1965), pp. 532–548.
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[sic] group generators is [generally] provided.”12 Some definitions are therefore in

place before we start our exploration of the SO(2,1) group and its relation to the

hydrogen atom.

11.1.2 Invariance groups

We will distinguish between two kinds of groups: invariance groups and noninvariance

groups. The invariance groups will be further classified as geometrical groups and

dynamical groups.

Geometrical groups

Geometrical groups describe symmetries based on invariance properties of space and

time. Recall that a Hamiltonian Ĥ is said to be invariant under a Lie group G
(or to have the symmetry G) when it commutes with all the generators X̂i of the

corresponding Lie algebra g: [
Ĥ , X̂i

]
= 0. (11.1)

The generators X̂i are Hermitian operators (X̂†
i = X̂i) that correspond to the different

constants of motion Xi of the system under consideration.13 The Lie algebra g, spanned

by the generators X̂i , is called the symmetry algebra, or degeneracy algebra of the

symmetry group G, and is closed under commutation. That is to say, the commutator

of any two generators X̂i and X̂j can be written as a linear combination of the

generators of the Lie algebra: [
X̂i , X̂j

]
=
∑
k=1

fijk X̂k ∈ g, (11.2)

where fijk are the different structure constants. As a consequence of Eq. (11.1),

degeneracies will arise in the energy eigenspectrum. That is, if |ψ〉 is an eigenstate of

Ĥ with energy E, then X̂i |ψ〉 is also an eigenstate of Ĥ with the same energy E since

Ĥ X̂i |ψ〉 = X̂iĤ |ψ〉 = EX̂i |ψ〉.
The Casimir operators of the Lie algebra g, denoted Ĉm in this chapter,14 commute

with all the generators X̂i: [
Ĉm, X̂i

]
= 0. (11.3)

Since the Hamiltonian operator commutes with all the generators (cf. Eq. (11.1)), it

can be expressed in terms of the Casimir operators. That is, either Ĥ turns out to be

12 O. Castaños, A. Frank, and R. Lopez-Pena. “Noether’s Theorem and Dynamical Groups in

Quantum Mechanics.” Journal of Physics A: Mathematical and General 23.22 (1990), p. 5141–5151.
13 In classical Lagrangian mechanics, these constants of motion are often referred to as conserved

charges or currents. The connection between conserved charges and continuous symmetries has

been given before by Noether’s theorem (cf. §6.3.1).
14 The index m refers to the order of the Casimir operator in the different X̂i . For example, the

Casimir operator of the so(3) algebra is usually expressed as L̂2 = L̂2
x + L̂2

y + L̂2
z , with L̂x , L̂y , and L̂z

the generators of so(3). Since L̂2 is written in terms of the second orders of the L̂i , we denote it as Ĉ2

and call it a Casimir operator of order 2.
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8 one of the Casimir operators Ĉm of G, or it can be written as a polynomial function in

the Casimir operators Ĉm of various orders:

Ĥ = f
(

Ĉm

)
=
∑

i

εiĈi +
∑

i,j

εij Ĉi Ĉj + . . . . (11.4)

Most symmetry groups are compact and result in finite-dimensional multiplets for each

energy eigenvalue E. Examples include the SO(3) and SO(4) groups, considered before

in Chapters 5 and 9. The degenerate eigenstates of a particular multiplet can then be

related to one another via the ladder operators of the Cartan-Weyl basis. That is, the

eigenstates form a basis for a finite-dimensional unirrep of the symmetry group G.

Dynamical groups

A dynamical symmetry (not to be confounded with an internal symmetry) refers to

any symmetry larger than the geometrical one. The Hamiltonian of the hydrogen

atom, for instance, is invariant under the SO(4) group, which goes beyond the familiar

rotational symmetry of other central potentials (Chapter 9).

Since dynamical groups are just another kind of invariance group, all the generators

X̂i of the corresponding Lie algebra g commute with the Hamiltonian Ĥ of the

system (vide supra). Note, however, that for dynamical symmetries, the group

generators typically commute with the total Hamiltonian, rather than with its (kinetic

and potential) components separately, as is the case for most symmetry groups

(cf. Chapter 9). Dynamical groups are usually compact, and the multiplets thus

obtained remain finite-dimensional and degenerate.

11.1.3 Noninvariance groups

In the previous chapters, many invariance groups have been brought into play to

explain the energy degeneracy of a system; that is, degenerate states can be transformed

into one another under the action of the generators of the invariance group. It would

be interesting to find a group capable of rationalizing not only the energy degeneracy

for each level, but also the entire (discrete or continuous) energy spectrum (or mass

spectrum) of the system—that is to say, a group with generators that link states

with different energy eigenvalues, thus yielding the energy level formula as well as

the energetic ordering of the levels.15 To this aim, we will need the concept of a

noninvariance group.

In this case, at least some of the generators X̂i of the corresponding Lie algebra g

will no longer commute with the Hamiltonian. The commutator
[
Ĥ , X̂i

]
is, however,

an operator in the universal enveloping algebra U (g) of g, where U (g) is defined as the

algebra of all polynomials in the generators X̂i
16:[

Ĥ , X̂i

]
= f

(
X̂i

)
∈U (g). (11.5)

15 O. Sinanoğlu. “Remarks on Dynamical and Noncompact Groups in Physics and Chemistry.”

International Journal of Quantum Chemistry 7.S7 (1973), pp. 45–52.
16 Every Casimir operator Ĉm of a Lie algebra g is thus an element of the universal enveloping algebra

U (g).
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In some cases, Ĥ can be written as one of the generators X̂i ∈ g. This is the case for

the Hamiltonian of the radial Schrödinger equation described in this chapter. In other

cases, Ĥ is more complicated and belongs to U (g). Every noninvariance group (NIG)

is required to contain as a subgroup the largest invariance group (IG) that can be built

from the constants of the motion of the system under consideration17:

NIG⊃ IG. (11.6)

All the subgroup multiplets are therefore contained in one supermultiplet of the

noninvariance group, which restricts the Casimir operators Ĉm of noninvariance

group to constant numbers.18

Since the Hamiltonian no longer commutes with every generator X̂i , the energy is

no longer conserved. This raises the possibility of altering the energy of the system by

repeated application of raising and lowering operators. The entire energy spectrum of

states can thus be generated, and it is for this reason that the corresponding Lie algebra

g is often referred to as a spectrum-generating algebra (SGA), with the symmetry

algebra (SA) as a subalgebra:

SGA⊃ SA. (11.7)

Noninvariance groups can be both compact or noncompact. As a general rule, a finite

(infinite) number of states calls for a compact (noncompact) group description. In the

case of the hydrogen atom, for instance, noncompact groups are required to relate the

infinite number of energy levels and states |nlm〉.
Noncompact groups give rise to infinite-dimensional multiplets. In the words of

Dothan, “one poses a problem of embedding all the spaces of states which are

irreducible under the symmetry algebra in a space which is irreducible under a larger

Lie algebra, namely, the SGA.”19 All the energy eigenstates thus form a basis for a

single infinite-dimensional unirrep of the noninvariance group.20 Although invariance

groups can be exploited to calculate the matrix elements for transitions connecting

degenerate states, noninvariance groups can yield expressions for the various transition

probabilities between states of different energy.

11.2 THE PSEUDO-ORTHOGONAL GROUP SO(2,1)

11.2.1 From SO(3) to SO(2,1)

The SO(3) group is the group of transformations that leaves a spherical surface

invariant. Let a function F be defined as

F = x2 + y2 + z2 − a2. (11.8)

The equation of a sphere, with radius a and centered at the origin, is then given by

F = 0. (11.9)

17 A. Simoni, F. Zaccaria, and B. Vitale. “Dynamical Symmetries as Function Groups on Dynamical

Spaces.” Il Nuovo Cimento A 51.2 (1967), pp. 448–460.
18 Ibid., p. 450.
19 Y. Dothan. “Finite-Dimensional Spectrum-Generating Algebras.” Physical Review D 2.12 (1970),

p. 2944.
20 Noncompact groups can have finite-dimensional representations as well, but their nonunitarity

renders them of little use in quantum mechanics. See Sinanoğlu, “Remarks on Dynamical and

Noncompact Groups in Physics and Chemistry,” p. 48.



Sh
at
te
re
d
Sy
m
m
et
ry

28
0

x1

x3

x2

T3
^

T1
^

FIGURE 11.2 A three-dimensional hyperboloid

surface. The x1 and x2 coordinates are spacelike,

and the x3 coordinate is timelike. The operator

T̂3 induces infinitesimal rotations in the

x1x2-plane, whereas T̂1 and T̂2 are boost

operators that generate a flow in the x2x3- and

x1x3-planes, respectively.

The angular momentum operators L̂x , L̂y , and L̂z induce infinitesimal rotations

around the x-, y-, and z-axes, which leave the transformed point on the sphere. Their

action on F is thus given by

L̂iF = 0, ∀i = x, y, z. (11.10)

Let us relabel the x-, y-, and z-coordinates as x1, x2, and x3 to remove the link

with the three Cartesian directions of coordinate space. Now, when one of the

coordinates—say, x3—is substituted by an imaginary coordinate ix3, the equation of

the sphere is turned into the equation of a hyperboloid (Figure 11.2)21:

F = x2
1 + x2

2 − x2
3 − a2 = 0. (11.11)

The cross-section of this surface for a given value of x3, is a circle with radius
√

a2 + x2
3

in the x1x2-plane:

x2
1 + x2

2 = a2 + x2
3 , (11.12)

whereas in the planes x1x3 and x2x3, it is a hyperbole22:

x2
1 − x2

3 = a2 − x2
2 ; (11.13)

x2
2 − x2

3 = a2 − x2
1 . (11.14)

We could thus construct the hyperboloid surface by rotating one of the hyperbolas in

Eqs. (11.13) or (11.14) around the x3-axis. In a sense, the hyperboloid surface can be

viewed as a distorted sphere in which the north and south poles have been inflated to

infinity.

Notice also that the hyperboloid expression in Eq. (11.11) is a two-dimensional

analogue of the Lorentz equation of special relativity, in which the geodesic distance s

between two events in four-dimensional Minkowski space-time is measured as

(�x)2 + (�y)2 + (�z)2 − c2(�t)2 = s2. (11.15)

21 The general formula for this kind of three-dimensional surface is given by

x2

a2
+ y2

b2
− z2

c2
= 1.

22 The general formula for a hyperbole is given by

x2

a2
− y2

b2
= 1.
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Here, c is the velocity of light, which relates the units of space coordinates (in meters)

and the time coordinate (in seconds), but reduces to unity on our hyperboloid surface

so that x3 and x1, x2 are measured in the same units. In this sense, we can say that

the new x3-coordinate in Eq. (11.11), which has opened up the sphere to infinity, is

timelike, whereas x1 and x2 are spacelike coordinates.

11.2.2 The so(2, 1) Lie algebra

The operators that leave the hyperboloid invariant are directly obtained from the

conventional angular momentum operators by applying the x3/ix3 substitution. As

an example, the L̂1 operator becomes

L̂x =−ih̄

(
y
∂

∂z
− z

∂

∂y

)
→ L̂1 =−h̄

(
x2
∂

∂x3
+ x3

∂

∂x2

)
.

While in SO(3), L̂x generates rotations on the sphere around the x-axis, the new form

L̂1 generates a flow on the hyperboloid in the x2x3-plane (Figure 11.2). The operator

L̂1 is still anti-Hermitian however (i.e., L̂†
1 =−L̂1). To procure Hermiticity, we divide

the L̂1 operator through i, and similarly for the conversion of the L̂2 operator. The

resulting canonical operators are denoted as T̂-components and are then given by

T̂1 =− h̄

i

(
x2
∂

∂x3
+ x3

∂

∂x2

)
;

T̂2 = h̄

i

(
x3
∂

∂x1
+ x1

∂

∂x3

)
;

T̂3 = h̄

i

(
x1
∂

∂x2
− x2

∂

∂x1

)
.

(11.16)

Clearly, the T̂3 operator still equals L̂z , because cross-sections perpendicular to x3

remain circles. The other operators T̂1 and T̂2 are boost operators along the x2x3 and

x1x3 hyperboles. The substitution x3/ix3 gives rise to a nontrivial sign change in the

commutation relations. To compare:[
L̂x , L̂y

]
= ih̄L̂z ;

[
T̂1, T̂2

]
=−ih̄T̂3;[

L̂y , L̂z

]
= ih̄L̂x ;

[
T̂2, T̂3

]
= ih̄T̂1;[

L̂z , L̂x

]
= ih̄L̂y ;

[
T̂3, T̂1

]
= ih̄T̂2.

(11.17)

The sign or signature of the commutation relations is different. For the so(3) algebra

it is {+,+,+}, whereas for the T̂ algebra it is {−,+,+}. The Lie algebra formed by

the T̂i operators is therefore denoted so(2,1), signifying it has two spacelike, or closed,

components and one timelike, or open, component. The corresponding symmetry

group SO(2,1), which in fact represents the plane Lorentz symmetry, is called a

noncompact symmetry because one of the coordinates involved is unbounded. That

is, although x1 and x2 are bounded, x3 ∈ ]−∞,+∞[ is obviously not.

11.2.3 The Cartan-Weyl basis of so(2, 1)

For the so(3) algebra, the Casimir operator is the square of the angular momentum

vector L̂. In the noncompact so(2,1) algebra, the equivalent of the angular momentum
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2 is the T̂ vector. In view of the sign difference of the commutators, the corresponding

Casimir operator is given by23

T̂ 2 = T̂ 2
3 − T̂2

1 − T̂ 2
2 . (11.18)

This operator can be shown to commute with the three generators T̂1, T̂2, and T̂3 of

the Lie algebra: [
T̂2, T̂i

]
= 0, ∀i = 1,2,3. (11.19)

As an example, we can work out the commutators of each of the three terms of T̂2

with T̂1: [
T̂ 2

3 , T̂1

]
= T̂3T̂3T̂1 − T̂1T̂3T̂3

= T̂3T̂1T̂3 + ih̄T̂3T̂2 − T̂3T̂1T̂3 + ih̄T̂2T̂3

= ih̄
(

T̂2T̂3 + T̂3T̂2

)
;

(11.20)

[
T̂ 2

1 , T̂1

]
= 0; (11.21)[

T̂ 2
2 , T̂1

]
= T̂2T̂2T̂1 − T̂1T̂2T̂2

= T̂2T̂1T̂2 + ih̄T̂2T̂3 − T̂2T̂1T̂2 + ih̄T̂3T̂2

= ih̄
(

T̂2T̂3 + T̂3T̂2

)
.

(11.22)

Combining the left-hand sides of these equations yields[
T̂2, T̂1

]
= 0. (11.23)

An eigenstate can now be characterized by two scalar values, denoted |Q, m〉, where

Q represents the value of the Casimir operator T̂ 2 and m refers to the value of the T̂3

component; hence,24

T̂2 |Q,m〉 =Qh̄2 |Q, m〉;
T̂3 |Q,m〉 =mh̄ |Q,m〉.

(11.24)

Following the same procedure as for SO(3), we now ask the question: What are

the boundaries of these quantum labels? To this aim, ladder operators are defined

in exactly the same way as before. The upward shift is represented by T̂+, and the

downward one by T̂−, where

T̂± = T̂1 ± iT̂2. (11.25)

23 The Casimir operator for so(2,1) can be found as follows. Let Ĵ1 = iT̂1, Ĵ2 = iT̂2, and Ĵ3 = T̂3.

We can easily verify that the Ĵi form an so(3) algebra. Their Casimir operator is therefore Ĵ 2 = Ĵ 2
1 +

Ĵ2
2 + Ĵ2

3 . When written in terms of T̂ , we obtain the corresponding Casimir operator for the so(2,1)

algebra: T̂2 = T̂ 2
3 − T̂2

1 − T̂ 2
2 . Notice that despite the notation, T̂ 2 does not denote the ordinary scalar

product of a vector T̂ with itself. Instead, the scalar product is modified by the metric of the operator

space.
24 Notice that in view of the noncyclic symmetry of the commutation relations in Eq. (11.17), the

choice of a T̂i component is no longer completely equivalent. The sets of commuting operators

{T̂ 2, T̂1} or {T̂ 2, T̂2} are more suitable for a study of the continuum (or scattering) states of the

hydrogen atom, whereas the set {T̂2, T̂3} will prove more useful in our study of the bound states

of the hydrogen atom.
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Notice that T̂+ and T̂− are Hermitian adjoints of each other. They form the

Cartan-Weyl basis {T̂3, T̂+, T̂−} of so(2,1), along with the Cartan generator T̂3. This

gives rise to the following set of commutation relations:[
T̂+, T̂−

]
=−2h̄T̂3; (11.26)[

T̂3, T̂±
]
=±h̄T̂±. (11.27)

With the help of Eq. (11.27), it is easily seen that T̂+ and T̂− indeed act as ladder

operators in m:

T̂3T̂± |Q, m〉 =
([

T̂3, T̂±
]
+ T̂±T̂3

)
|Q,m〉

=
(
±h̄T̂± +mh̄T̂±

)
|Q,m〉

= (m± 1) h̄T̂± |Q, m〉.

(11.28)

In Figure 11.3, these operators are presented in a Cartan-Weyl diagram based on the

T̂3 operator. The Casimir operator can be easily expressed in the shift operators as

follows:

T̂2 = T̂ 2
3 −

1

2

[
T̂+T̂− + T̂−T̂+

]
. (11.29)

This expression can be further rewritten as

T̂2 = T̂ 2
3 − T̂+T̂− − h̄T̂3, (11.30)

or also as

T̂2 = T̂ 2
3 − T̂−T̂+ + h̄T̂3. (11.31)

The expectation values of the ladder operator terms in these expressions can be shown

to be real positive or zero:

〈Q,m| T̂+T̂− |Q,m〉 =
〈
T̂−Q, m|T̂−Q, m

〉
≥ 0, (11.32)

〈Q,m| T̂−T̂+ |Q,m〉 =
〈
T̂+Q, m|T̂+Q, m

〉
≥ 0, (11.33)

where we have used the Hermitian conjugation between T̂+ and T̂−. From this follows

〈Q, m|
(

T̂2 − T̂ 2
3 + h̄T̂3

)
|Q, m〉 = (Q−m2 +m

)
h̄2

=−〈Q, m| T̂+T̂− |Q, m〉
≤ 0;

(11.34)

–5/2 –3/2 –1/2 1/2 3/2 5/2

T–^ T3
^ T+^

+1–1 0

T3(B)

(A)

+∞–∞

+|q0|–|q0|
/

FIGURE 11.3 Root diagram of the so(2,1) algebra. The T̂3 operator lies in the center of the graph

and is used to label the eigenkets of a given multiplet. The T̂+ and T̂− operators act as shift

operators.
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4 〈Q, m|

(
T̂ 2 − T̂2

3 − h̄T̂3

)
|Q,m〉 = (Q−m2 −m

)
h̄2

=−〈Q,m| T̂−T̂+ |Q, m〉
≤ 0.

(11.35)

In line with the earlier treatment of SO(3) we now redefine the Q-parameter by the

parameter expression j
(
j+ 1

)
:

Q ≡ j
(
j+ 1

)
. (11.36)

Note that for a given value of Q, two solutions for j are possible: either j or

−j − 1. Inserting this parameter definition in the previous inequalities yields two

requirements that j and m have to fulfill:

Q−m2 +m= j
(
j+ 1

)−m2 +m= (j+m
)(

j−m+ 1
)≤ 0; (11.37)

Q−m2 −m= j
(
j+ 1

)−m2 −m= (j−m
)(

j+m+ 1
)≤ 0. (11.38)

Now let us consider a representation space based on the symmetry quantities j and m.

The inequality requirements define regions of existence in this space. These regions are

delineated by four straight lines, corresponding to the zeros of the four monomials in

Eqs. (11.37) and (11.38). In Figure 11.4, these lines are indicated by lowercase letters.

We get

line a : j−m= 0;

line b : j+m= 0;

line c : j−m+ 1= 0;

line d : j+m+ 1= 0.

(11.39)

Above line a, the monomial j−m is positive, whereas below the line it is negative. This

line thus divides the representation space into two parts with opposite signs for the

–1

m

j = –1/2

+1–1

–2

–2 +2

VIIIIV

VIII

IXI V

III

VII

ab cd j

FIGURE 11.4 The sign requirements of Eqs. (11.37) and (11.38) divide the jm-plane in nine sectors.
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determining conditions. The set of four lines together forms a mesh that partitions

the plane in no less than nine sectors, denoted by Roman numerals. An overview of

the signs of the four monomials in these sectors is provided in Table 11.1.

From the table, it is clear that there are only three sectors in which both

requirements of Eqs. (11.37) and (11.38) are fulfilled: I, V, and IX. Hence, these are

the only regions with allowed combinations of j and m. They are marked as SO(2,1)

regions in the table. In addition, there are two regions in which both conditions are

greater than or equal to zero—namely, III and VII. These are marked as SO(3). We

will return to these later.

The dashed line in Figure 11.4 at j =−1/2 is a line of reflection symmetry. A given

point
(
j, m

)
is mirrored through this symmetry line in a point

(−j− 1, m
)
. Because

the values j and −j − 1 yield the same Q-value, both points refer to the same

eigenket—meaning, only one half of the representation space has to be considered.

For the case of SO(2,1), we consider the lower part, with j ≤ −1/2. A detailed view

of this part is shown in Figure 11.5. As can be seen from the diagram, this space

Table 11.1 Sign analysis of the monomial delimiters of the sectors in

the SO(2,1) weight diagram.

j+m j−m+ 1 × j−m j+m+ 1 ×
I − + − + − − SO(2,1)

II − + − + + +
III + + + + + + SO(3)

IV − + − − − +
V − + − − + − SO(2,1)

VI + + + − + −
VII − − + − − + SO(3)

VIII − − + − + −
IX + − − − + − SO(2,1)

–1

m

+1/2

–1/2

–3/2

–3/2 –1/2 +3/2+1/2 +1–1

–2

j

–2 +2

m0m0 – 1 m0 m0 + 1 

FIGURE 11.5 Detailed view of the SO(2,1) sectors in the jm-plane.
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6 contains two principal branches: a positive one corresponding to sector IX and a

negative branch in the opposite sector, I. These branches enclose the central diamond

sector V. Now consider a point
(
j, m

)
in the sector corresponding to the positive

branch. Applying the T̂− operator to this point displaces it on a horizontal line to

the left over a unit distance, reaching
(
j, m − 1

)
. Similarly the T̂+ operator displaces

it to the right to
(
j, m + 1

)
. Although the displacements to the right can go on

forever, the displacements to the left are bounded by the b line, corresponding to

j + m = 0. Let
(
j, m0

)
be the point with the smallest m-value. From Eq. (11.30), we

can infer

T̂+T̂− |Q,m0〉 =
(
−T̂ 2 + T̂2

3 − h̄T̂3

)
|Q,m0〉

= (j+m0
)(−j+m0 − 1

)
h̄2 |Q, m0〉.

(11.40)

Since the lowering operator must destroy the m0 eigenket, T̂− |Q,m0〉 = 0, it is

required that m0 = −j. Hence, the representations corresponding to the positive

branch start precisely at the b line and run horizontally in unit steps, corresponding to

m=−j,−j+ 1, −j+ 2, . . . . (11.41)

Similarly for the negative branch, the representation starts on the a line and runs to

the left in unit steps to −∞; hence,

m= j, j− 1, j− 2, j− 3, . . . . (11.42)

Both branches are disconnected because the gap between the two cannot be bridged

by the ladder operators. Note that until now, it was not required that j itself be integer

or half-integer. In the subsequent quantum problem, however, only representations

with integer values of j will appear.

A special case occurs for
(
j, m

)
combinations that fall inside the central diamond

region. In this case, ladder operators extend these points both to the left and to the

right, and generate truly unbound representations.

11.2.4 SO(3) revisited

As already indicated, the
(
j, m

)
representation space also accommodates the SO(3)

representations. In this case, the defining conditions are very similar to the SO(2,1)

conditions in Eqs. (11.37) and (11.38), except that the expressions should now be

greater or equal to zero: (
j+m

)(
j−m+ 1

)≥ 0; (11.43)(
j−m

)(
j+m+ 1

)≥ 0. (11.44)

As can be seen from Table 11.1, there are two sectors for which both requirements

are fulfilled: III and VII. The mirror symmetry of the representation space permutes

these sectors; hence, they refer to identical representations. In line with the previous

treatment of SO(3), we will consider sector III, with j ≥ 0 (Figure 11.6). Now
(
j, m

)
points in this sector are displaced by the ladder operators horizontally in between

the boundary lines a and b. Hence, in contrast to the SO(2,1) representations, the

SO(3) manifolds have a lower and an upper boundary. Because the ladder operators

cannot displace components outside the boundaries, the monomials
(
j+m

)
and
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–1

m

j = –1/2

+1–1–2 +2

j

+1/2

+3/2

p

d

FIGURE 11.6 Detailed view of the SO(3) sectors in the jm-plane.(
j−m

)
must vanish on the left and right boundaries, respectively. This implies that the

components with minimal and maximal m-values must be situated on the boundary

lines:

mmin =−j; (11.45)

mmax =+j. (11.46)

Or,

mmax −mmin = 2j. (11.47)

Since the distance between the two boundaries is bridged by an integer number of unit

steps, it follows that 2j must be integer, precisely as we derived in Chapter 5.

11.3 HYDROGENIC REALIZATION OF THE SO(2,1) GROUP

Around the first half of the twentieth century, group theory seemed to be “the

wave of the future.”25 One of the first scientists to champion its importance was

British astronomer Sir Arthur Eddington (1882–1944) who (as early as 1934) likened

the theory of groups with “a super-mathematics in which the operations are as

unknown as the quantities they operate on.”26 Eddington meant by this that abstract

group theory deals with a set of abstract elements that combine according to an

25 F. J. Dyson. “Applications of Group Theory in Particle Physics.” SIAM Review 8.1 (1966), p. 1.
26 A. Eddington. New Pathways in Science (Messenger Lectures delivered at Cornell in April and May,

1934). Cambridge: Cambridge University Press, 1935, pp. 255–277.
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FIGURE 11.7 “Beware the

Jabberwock!”27

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgabe.

“Jabberwocky” is considered one of

the greatest nonsense poems written

by Lewis Carroll. As the late Sir

Arthur Eddington observed, “it is

certainly descriptive of some kind of

activity; but what the actors are, and

what kind of actions they are

performing, remain an inscrutable

mystery.” In a similar vein, Eddington

likened group theory to a Jabberwocky

of “unknowable actors executing

unknowable actions,” and awaiting a

physical realization in terms of

concrete operators.

abstract multiplication rule, the (physical) nature of which is unknown and irrelevant

mathematically (cf. Chapter 2, §2.2).28

The power of group theory, then, lays in the fact that one abstract group could be

realized in an infinite number of ways by different sets of concrete elements that make

their appearance in a range of physical applications (Figure 11.7). The SO(4) group,

for example, was seen to occur in both the classical Kepler and quantum mechanical

Coulomb problem. The abstract SO(2,1) symmetry, on the other hand, makes its

appearance in the radial Schrödinger equation of the hydrogen atom. In this section,

a concrete set of operators will be associated with each abstract basis vector T̂i of the

so(2,1) Lie algebra to obtain a hydrogenic realization of the so(2,1) algebra.

11.3.1 The radial Schrödinger equation

We start by expressing the kinetic energy of a single particle with mass m in terms of

its spherical components as (cf. Eq. (5.146))

T̂kin = 1

2m
p̂2

r +
1

2mr2
L̂2. (11.48)

27 Lewis Carroll. Jabberwocky and Other, Nonsense, Collected Poems. Ed. Gillian Beer. London:

Penguin. The poem was included in the 1871 edition of: Through the Looking Glass and What Alice

Found There.
28 “We must therefore seek a knowledge which is neither of actors nor of actions,” continued

Eddington, “but of which the actors and actions are a vehicle. The knowledge we can acquire is

knowledge of a structure or pattern contained in the actions” [emphasis added]. Ibid., p. 256.
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Here, p̂r is the radial momentum operator, which is given by

p̂r = 1

r
r̂ · p̂− ih̄

r
= h̄

i

(
∂

∂r
+ 1

r

)
. (11.49)

The square of this operator reads

p̂2
r =−h̄2

(
∂2

∂r2
+ 2

r

∂

∂r

)
. (11.50)

The total Hamiltonian for the hydrogen atom is obtained by adding to Eq. (11.48) the

potential energy operator, yielding

Ĥ = T̂kin − e2

4πε0r
. (11.51)

Since the potential energy operator only depends on the radius, the angular part of

the kinetic energy operator can be solved separately. To this aim, the hydrogenic wave

functions ψ are written in spherical coordinates and separated as a product of a radial

function Rn,l and a spherical harmonic Y m
l :

ψ (r,θ ,φ)= Rn,l (r)Y
m
l (θ ,φ). (11.52)

As we saw in Chapter 5, the angular part gives rise to SO(3) angular momentum states

characterized by the orbital quantum number l, with

L̂2 |l, m〉 = l (l+ 1) h̄2 |l, m〉. (11.53)

Substitution of this result in the operator part allows us to factorize out the angular

part completely, yielding the so-called radial equation of the hydrogen atom:

Ĥrad = 1

2m
p̂2

r +
l (l+ 1) h̄2

2mr2
− e2

4πε0r
. (11.54)

The term l (l+ 1) represents the “centrifugal” potential that provides an outward

pressure on the electron cloud as a result of its rotatory motion. Only for l = 0 (i.e., for

s-type orbitals that present a static cloud) does this term vanish.

11.3.2 The spectrum-generating so (2,1) algebra

The previous equation incorporates the so(2,1) algebra as a spectrum-generating

algebra, as will be shown here. The basic radial operators are the radius r itself and the

conjugate momentum p̂r . With these, the following three operators are constructed:

Q̂1 = 1

2

(
rp̂2

r

a
− ar + b

r

)
;

Q̂2 = rp̂r ;

Q̂3 = 1

2

(
rp̂2

r

a
+ ar + b

r

)
.

(11.55)

Here, a and b are real scaling parameters that introduce extra degrees of freedom.

Quite remarkably, these operators embody precisely the Lie algebraic commutators of

the SO(2,1) group: [
Q̂1,Q̂2

]
= −ih̄Q̂3;[

Q̂2,Q̂3

]
= ih̄Q̂1;[

Q̂3,Q̂1

]
= ih̄Q̂2.

(11.56)



Sh
at
te
re
d
Sy
m
m
et
ry

29
0 The proof of this result again boils down to working out the commutators between the

radial operators. These can be determined from Eqs. (11.49) and (11.50):

[
rp̂r , rp̂2

r

]= ih̄ rp̂2
r[

rp̂r , r
]=−ih̄r[

rp̂r ,
1

r

]
= ih̄

1

r[
rp̂2

r , r
]=−2ih̄rp̂r .

(11.57)

A few manipulations are now sufficient to express the radial Eq. (11.54) in terms

of these basic Q̂ operators. Let us first write the radial Schrödinger equation as(
Ĥ −E

)
| 〉 = 0, where E is the total energy and | 〉 represents a radial eigenstate

Rn,l(r):

(
1

2m
p̂2

r +
l (l+ 1) h̄2

2mr2
− e2

4πε0r
− E

)
| 〉 = 0. (11.58)

Now we multiply (on the left) with mr:

(
rp̂2

r

2
+ l (l+ 1) h̄2

2r
− me2

4πε0
−mrE

)
| 〉 = 0. (11.59)

Subsequently, we introduce a real parameter a that is defined by

a2 =−2mE. (11.60)

We then divide the radial equation by a and obtain

[
1

2

(
rp̂2

r

a
+ l (l+ 1) h̄2

ar
+ ar

)
− me2

4πε0a

]
| 〉 = 0. (11.61)

The operator part in this expression is now recast in a form that is immediately

recognized as the Q̂3 operator, with

l (l+ 1) h̄2

a
= b. (11.62)

The parameter a can be incorporated as a scaling parameter into a rescaled radius R.

The conjugated momentum, P̂R, is rescaled accordingly by 1/a:

R = a r, P̂R = 1

a
p̂r . (11.63)
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This yields [
1

2

(
RP̂2

R +
l (l+ 1) h̄2

R
+R

)
− me2

4πε0a

]
| 〉 = 0. (11.64)

We should keep in mind that the parameter a is a function of the energy. Eq. (11.60)

can be rewritten as

a =±√−2mE. (11.65)

Since a is real, it is required that the total energy E be negative. So, we retrieve

the quantization condition for bound hydrogen states. We further assume that a be

positive, since it serves as a radial scaling parameter. The radial equation can then be

rewritten in terms of the SO(2,1) operator as(
Q̂3 − me2

4πε0a

)
| 〉 = 0. (11.66)

The eigenstates of the radial equation are thus eigenstates of the Q̂3 operator:

Q̂3 | 〉 = me2

4πε0a
| 〉. (11.67)

The total momentum operator can be expressed in radial operators as follows:

Q̂
2 = Q̂2

3 − Q̂2
1 − Q̂2

2

=
(

Q̂3 − Q̂1

)(
Q̂3 + Q̂1

)
−
[

Q̂3,Q̂1

]
− Q̂2

2

= ar

(
rp̂2

r

a
+ b

r

)
− ih̄Q̂2 − Q̂2

2

= R2P̂2
R + ab− ih̄RP̂R −RP̂RRP̂R

= ab,

(11.68)

where in the final line we have made use of the commutator [P̂R, R] =−ih̄, which leads

to

RP̂RRP̂R = R2P̂2
R − ih̄RP̂R. (11.69)

In this way, all variables vanish. The remaining constant term for the case of the

hydrogen equation reduces to

ab = l (l+ 1) h̄2. (11.70)

We thus harvest the important conclusion that the value associated with the squared

total momentum Q̂
2

is equal to the value of the squared angular momentum L̂
2
. This

implies that the states of an infinite-dimensional SO(2,1) multiplet, characterized by

a constant value of j, share the same value of l. The transformations, induced by the

ladder operators Q̂± = Q̂1 ± iQ̂2, are therefore restricted to transformations that link

states with the same value of l. An s-orbital, for example, can be transformed into any

other s-orbital, but cannot be related to p-, d-, or f -orbitals.

Now we have to examine the two different SO(2,1) representations. As indicated,

we chose the scaling factor a in Eq. (11.65) to be positive, so that R retains the

characteristics of a distance. As a result, the eigenvalues for the Q̂3 operator in
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2 Eq. (11.67) are found to be positive as well. This puts us in the positive branch of

the SO(2,1) representations, corresponding to sector IX in Figure 11.5. We then have

j
(
j+ 1

)= l (l+ 1) ;

j =−l− 1;

m0 =−j = l+ 1.

(11.71)

Hence, the Q3 components start at l + 1 and increase in steps of unity along the

horizontal line in the diagram. The Q̂+ ladder operator takes the ground level
∣∣j, m0

〉
to the higher floors

∣∣j, mj
〉
, with

mj =m0 +nr = 1+ l+nr with nr = 0, 1, 2, . . . . (11.72)

Here, nr is the radial quantum number. It counts the number of radial nodes. Since the

radial solutions were found to be eigenstates of Q̂3, we can also identify the eigenvalues

with the mj quantum numbers. This, finally, yields the quantized energy levels of the

hydrogen atom:

h̄mj = me2

4πε0a
= h̄ (1+ l+nr). (11.73)

Combining these expressions we obtain

me2

4πε0
√−2mE

= h̄ (1+ l+nr), (11.74)

or

E =− me4

8h2ε2
0 n2

with n= 1+ l+nr = 1, 2, 3, . . . . (11.75)

If we had started by the (nonphysical) assumption that the radial scaling parameter

would be negative, the mj values would have been negative as well, and we would have

situated the ladder in the negative branch, corresponding to sector I. This would not

have altered the resulting expressions.

11.4 DYNAMICAL TREATMENT OF THE RADIAL
WAVE EQUATION

Consider the positive branch, sector IX, in the Cartan-Weyl diagram (Figure 11.4).

The Lie algebra shows that the Q̂− operator destroys the lowest component
∣∣j, m0

〉
of

an SO(2,1) manifold. If this is applied to the radial equation, the annihilation of the

lowest component becomes(
Q̂1 − iQ̂2

)∣∣j,m0
〉= [1

2

(
RP̂2

R −R+ l (l+ 1) h̄2

R

)
− iRP̂R

]∣∣j,m0
〉= 0. (11.76)

For simplicity let us restrict ourselves to the case l = 0, which also implies j =−1. The

equation then reduces to

R

2

[
P̂2

R − 1− 2iP̂R

]∣∣j,m0
〉= 0(

P̂R − i
)2 ∣∣j,m0

〉= 0.

(11.77)

Introducing in this equation the explicit form of the radial momentum operator, we

obtain a second-order differential equation in the radial wave function(
−h̄2 ∂

2

∂R2
− 2h̄2 1

R

∂

∂R
− 1− 2h̄

∂

∂R
− 2h̄

1

R

)∣∣j,m0
〉= 0. (11.78)
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To solve this equation, we use the Ansatz:∣∣j,m0
〉= f exp

(
−R

h̄

)
, (11.79)

where f is a function of R. When this form is inserted into the differential equation, a

simplified equation in f is obtained:

−h̄2
[

2

R

∂ f

∂R
+ ∂2f

∂R2

]
exp

(
−R

h̄

)
= 0, (11.80)

which reduces to
2

R

∂f

∂R
=− ∂

2f

∂R2
. (11.81)

By integrating this equation, we see that the function f can be either constant or equal

to 1/R. In the first case, the fundamental radial function of the 1s ground level reads

 1s = exp

(
−R

h̄

)
, (11.82)

which still has to be normalized. Recall that R is a scaled radius ar. For the lowest level

(n = 1), the value of a is given by

a = me2

2hε0
. (11.83)

Note that the a for the 1s ground level is related to the so-called Bohr radius, a0, which

is the atomic unit of length:

a0 = h2ε0

πme2
= h̄

a
. (11.84)

We thus recover the familiar form of the 1s wave function as

 1s = exp

(
− r

a0

)
. (11.85)

In addition, we also learn that there may be a second solution given by 1/r exp

(−r/a0). This solution brings us to the foundations of quantum mechanics. Although

it is sound mathematically, it has to be rejected on physical grounds. As stated by Dirac,

when the wave function approaches the origin as 1/r, it implies that the probability

of finding the particle at the origin is infinitely favored over all other positions, which

is physically unacceptable.29 Dirac went on to prove that the product r should tend

toward zero as one approaches the origin.

11.5 DIRAC’S HARMONIC OSCILLATOR REVISITED

Our first encounter with ladder operators that do not conserve energy occurred

during the quantum mechanical treatment of the harmonic oscillator in Chapter 7.

The symmetry group that hosts the creation and annihilation operators a† and a

clearly must be a noninvariance group, but what is the corresponding Lie algebra? So

far, we have identified only one commutation relation. In the following, we put the

energy parameter h̄ω equal to unity. Hence,[
a, a†]= I. (11.86)

29 P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford: Clarendon Press, 1930, p. 156.
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as the Casimir operator of the entire space of operator states. The Hamiltonian, on the

other hand, is neither of these. It brings into play a relation of a different nature—the

symmetrized combination of creation and annihilation operators, which is known as

the anticommutator. This is the opposite of a commutator and it is usually denoted by

curly brackets:

Ĥ = 1

2

(
a†a+ aa†)= 1

2

{
a†, a

}
. (11.87)

We thus stumble across a combination of commutator and anticommutator brackets.

Evidently, two more anticommutators come into play as well: {a,a} and
{

a†,a†
}

.

The combination of all these forms a structure that extends the Lie algebra to a

superalgebra. The elements of this superalgebra are the creation and annihilation

operators, and their anticommutators. The proper definitions are as follows:

Q̂ = 1√
2

a;

Q̂† = 1√
2

a†;

K̂3 = 1

4

{
a†, a

}
;

K̂+ = 1

4

{
a†, a†};

K̂− = 1

4
{a, a}.

(11.88)

Brackets in this superalgebra now appear in two varieties. Brackets in which both

entries are odd powers of the Q operators are anticommutators whereas other

brackets are commutators: {
Q̂†,Q̂

}
= 2K̂3 = Ĥ ;{

Q̂†, Q̂†
}
= 2K̂+;{

Q̂,Q̂
}
= 2K̂−;[

K̂3,Q̂†
]
=+1

2
Q̂†;[

K̂3,Q̂
]
=−1

2
Q̂;[

K̂+,Q̂†
]
= 0;[

K̂+,Q̂
]
=−Q̂†;[

K̂−,Q̂†
]
=+Q̂;[

K̂−,Q̂
]
= 0;[

K̂3, K̂±
]
=±K̂±;[

K̂+, K̂−
]
=−2K̂3.

(11.89)

This algebra is known as the orthosymplectic Lie superalgebra, osp(1|2). Comparison

with the SO(2,1) Lie algebra shows that the commutation relations for the K̂ operators
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are identical to the commutation relationships for the T̂-operators in Eq. (11.27). The

so(2,1) Lie algebra is thus a subgroup of the orthosymplectic superalgebra:

so(2,1)⊂ osp(1|2). (11.90)

The Casimir operator for this subgroup is defined as in Eq. (11.29):

K̂ 2 = K̂ 2
3 −

1

2

[
K̂+K̂− + K̂−K̂+

]
. (11.91)

Since the K̂± ladder operators involve double excitations, the harmonic oscillator spec-

trum forms two separate multiplets of this SO(2,1) group: one multiplet consisting

of all even excitations and one consisting of all odd excitations. As indicated in

Appendix H, a normalized eigenstate of n excitations is given by

| n〉 = 1√
n! (a

†)n |0〉. (11.92)

Application of the K̂ operators (in units of h̄ω) on this state yields

K̂ 2
3 | n〉 =

(
n+ 1

2

)2

4
| n〉;

K̂+K̂− | n〉 = n (n− 1)

4
| n〉;

K̂−K̂+ | n〉 = (n+ 2) (n+ 1)

4
| n〉.

(11.93)

The resulting Casimir operator then yields

K̂ 2 | n〉 = − 3

16
| n〉. (11.94)

Expressing this eigenvalue as k0 (k0 − 1) results in a value of k0 = 1/4 or k0 = 3/4. As

opposed to the SO(2,1) subgroup, the full orthosymplectic supergroup allows single

excitations as well and thus unites the even and odd multiplets into one eigenspace.

The extended Casimir operator for this supermultiplet can be expressed as

Ĉ = K̂ 2 +
[

Q̂,Q̂†
]

. (11.95)

Since the Q-commutator yields a constant (see Eq. (11.86)), this combined operator

is merely a trivial extension of the SO(2,1) Casimir operator.

Interestingly, as Eq. (11.89) shows, the Q̂ operators themselves transform irre-

ducibly in the SO(2,1) subgroup. It can indeed be shown that these operators commute

with the K̂ 2 Casimir operator. We have[
K̂ 2

3 ,Q̂
]
=
[

K̂3,Q̂
]

K̂3 + K̂3

[
K̂3, Q̂

]
=−1

2
Q̂K̂3 − 1

2
K̂3Q̂ = 1

4
Q̂− Q̂K̂3;[

K̂+K̂−,Q̂
]
=
[

K̂+,Q̂
]

K̂− + K̂+
[

K̂−, Q̂
]

=−Q̂†K̂−[
K̂−K̂+, Q̂]

]
=
[

K̂−,Q̂
]

K̂+ + K̂−
[

K̂+, Q̂
]

=−K̂−Q̂† =−Q̂− Q̂†K̂−.

(11.96)
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Casimir operator: [
K̂ 2,Q̂

]
= 3

4
Q̂− Q̂K̂3 + Q̂†K̂− = 0, (11.97)

and similarly for Q̂†. Clearly the creation and annihilation operators form a spin

1/2 doublet in SO(2,1). As Tristan Hübsch pointed out, “amusingly thus, although

the operators a and a† are bosonic, the superalgebra relations use anticommutators

for odd powers of a and a† precisely as if they were fermionic, anticommuting

annihilation and creation operators.”30

30 T. Hubsch. “Spectrum-Generating Superalgebra for Linear Harmonic Oscillators.” In: arXiv. No.

1203.5103 [math-ph] (2012), p. 4.



12 The SO(4,2) group

The universe {which others call the Library} is composed of an indefinite and perhaps

infinite number of hexagonal galleries, with vast air shafts between, surrounded by very low

railings. From any of the hexagons one can see, interminably, the upper and lower floors. The

distribution of the galleries is invariable. Twenty shelves, five long shelves per side, cover all

the sides except two; their height, which is the distance from floor to ceiling, scarcely exceeds

that of a normal bookcase. One of the free sides leads to a narrow hallway which opens onto

another gallery, identical to the first and to all the rest.

–Jorge Luis Borges.1

In 1896, two students from New Zealand were awarded the 1851 Exhibition Scholar-

ship to undertake university studies abroad. One was John Angus Erskine (1873–1960)

and the other Ernest Rutherford (1871–1937). Rutherford went to Manchester, where

he would discover the atomic nucleus. Erskine became an engineer and later left to the

University of Canterbury, Christchurch, New Zealand, a munificent bequest to enable

teaching staff to travel overseas and bring specialists in the same fields to lecture at the

university.

In 1971, the names of the two scholarship holders appeared again in connection

with our subject. In that year, theoretical physicist Asim Orhan Barut (1926–1994)

from the University of Colorado was the visiting Erskine Fellow, and he also attended

1 J. L. Borges. “The Library of Babel.” In: Labyrinths, Selected Stories and Other Writings by Jorge Luis

Borges. Eds. Donald A. Yates and James E. Irby. New York: New Directions, 1962, p. 51. The story

was originally published in Borges’ 1941 collection of stories El Jardín de Senderos Que se Bifurcan.

Buenos Aires: Sur, 1941.
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8 the Rutherford centennial symposium on the structure of matter, which was held in

Christchurch from July 7 to 9, 1971. His visit to New Zealand yielded two important

documents about the group structure of the Periodic Table. One is a contribution

in the proceedings of the Rutherford Symposium.2 The other is a little-known

booklet containing notes of the lectures Barut gave in the same year as Erskine

Fellow.3

In these lectures on “Dynamical Groups and Generalized Symmetries in Quantum

Theory,” Barut explained the construction of the noncompact Lie group SO(4,2),

which is the covering spectrum-generating group for the hydrogen problem. The

spectrum of bound states of hydrogen turns out to be one single representation of

the group SO(4,2). This representation was later named the baruton,4 because it can

be viewed as a single particle that manifests itself in the Periodic Table of the elements.

We will come back to this important point in the final chapter.

The SO(4,2) group unites all the knowledge about the hydrogen spectrum we

have gathered so far in the preceding chapters. In Chapter 5, we introduced the

spherical symmetry group SO(3), which describes the spatial symmetry of the angular

equation and is applicable to any central field problem in three dimensions. In Chapter

9, we obtained the hyperspherical group SO(4), which turned out to explain the

degeneracy of the hydrogen levels. Finally, in Chapter 11, the covering group SO(2,1)

was obtained, which describes the dynamical symmetry of the radial Schrödinger

equation for the hydrogen atom.

The combination of all these symmetries provides shift operators that allow us to

run through the entire set of bound states of hydrogen; any state |nlm〉 can thus be

obtained from the ground state |100〉 by the subsequent application of the appropriate

ladder operators. The SO(3) group contains ladder operators that change the magnetic

quantum number m; the SO(4) group allows us to shift the orbital quantum number

l in a given n-shell; and last, but not least, the spectrum-generating group SO(2,1)

yields shift operators that go up and down the principal quantum number n, thereby

changing the energy.

The respective algebras taken together yield nine infinitesimal operators: six from

the so(4) Lie algebra (L̂1, L̂2, L̂3, Â1, Â2 and Â3), and three more from the so(2,1)

algebra (Q̂1, Q̂2, and Q̂3). In order to merge both algebras to obtain a larger unified

Lie algebra, it should be verified whether these nine operators form a closed set under

commutation. As will be shown in this chapter, the nine operators do not close, and

six additional operators have to be invoked to close the commutation relations. This

completes the merging process and yields a six-dimensional so(4,2) Lie algebra of

order r = 15 and rank l = 3.

In this chapter we will examine how all these operators can be combined to yield

the spectrum-generating symmetry group SO(4,2). In the first section, we will look

2 A. O. Barut. “Group Structure of the Periodic System.” In: The Structure of Matter: Rutherford

Centennial Symposium. Ed. B. G. Wybourne. Christchurch, New Zealand: University of Canterbury

Press, 1972, pp. 126–136.
3 A. O. Barut. Dynamical Groups and Generalized Symmetries in Quantum Theory (With Applications

in Atomic and Particle Physics) Christchurch, New Zealand: Bascands, 1972.
4 C. E. Wulfman. “Dynamical Groups in Atomic and Molecular Physics.” In: Recent Advances in

Group Theory and Their Application to Spectroscopy. Ed. J. C. Donini. New York: Plenum Press,

1978, pp. 329–403.
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at the construction of this symmetry group, along the lines set out by Barut. In the

second section, we will present weight and root diagrams for the baruton of hydrogen

states and consider the Casimir invariants. The final section is devoted to the moves of

the ladder operators in a hydrogenic basis.

12.1 THE PSEUDO-ORTHOGONAL GROUP SO(4,2)

12.1.1 From SO(6) to SO(4,2)

The special orthogonal group in six dimensions, SO(6), corresponds to the group of

rotations in six-dimensional Euclidean space R6, or—what is equivalent—the set of

real 6× 6 orthogonal matrices R, which leave the quadratic form

F (r)= x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6 = rTr (12.1)

invariant, where r is the column vector [x1,x2,x3, x4,x5,x6]T and rT is its dual

transpose row vector. To see this, consider a general matrix transformation Rr that

preserves the quadratic form F (r):

F (Rr)= (Rr)T (Rr)= rTRTRr= rTr =F (r). (12.2)

This holds only if R is orthogonal:

RTR= I, (12.3)

where I is the 6× 6 identity matrix.

Definition 12.1 (The SO(6) Lie group): The set of proper rotation matrices

SO(6)=
{

real 6× 6 matrices R :
RTR=RRT = I

detR= 1

}
(12.4)

forms a group under matrix multiplication. This group is called the special orthogonal

group in six dimensions and is denoted by the symbol SO(6). ◾

The structure of the corresponding so(6) algebra just builds on a generalization of

the familiar angular momentum operators, which we already encountered in our

examination of the so(2), so(3), and even so(4) Lie algebras. The momenta may be

conveniently labeled by a row and column index that refer to the entries in a 6× 6

matrix. The operators L̂ab are then given by the formula

L̂ab = h̄

i

(
xa
∂

∂xb
− xb

∂

∂xa

)
, ∀a, b = 1→ 6. (12.5)

These operators are Hermitian and they form a basis for the so(6) Lie algebra. The

number of independent generators is easily found. Out of the thirty-six possible

combinations of the indices a and b, six vanish in view of the fact that L̂aa = 0

(for a = 1 → 6), which decreases the number of generators to thirty. Moreover, an

interchange of the row and column indices corresponds to a sign change; hence,

L̂ab =−L̂ba. (12.6)
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0 As a result, only fifteen independent generators remain, the number of which is

also given by the formula n (n− 1)/2, where n is the dimension of the group (see

Chapter 5):

L=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 L̂12 L̂13 L̂14 L̂15 L̂16

0 L̂23 L̂24 L̂25 L̂26

0 L̂34 L̂35 L̂36

0 L̂45 L̂46

0 L̂56

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (12.7)

Notice that this matrix can be extended to the lower half using the antisymmetry

relation in Eq. (12.6). Each of the L̂ab operators generates a rotation in the xaxb-plane.

The commutation relations are[
L̂ab, L̂ac

]
=−h̄2

(
xc
∂

∂xb
− xb

∂

∂xc

)
= ih̄L̂bc . (12.8)

The latter equation can be rewritten in a more formal way as[
L̂ab , L̂ac

]
= gaaih̄L̂bc , ∀a �= b �= c, no sum on a. (12.9)

The g factors are structure factors that determine the metric of the space. For the

compact SO(6) group, the metric or curvature is positive everywhere; hence, the

row of g ’s may be represented as [+,+,+,+,+,+]. That is, the metric matrix G =
diag(1,1,1,1,1,1):

G=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (12.10)

which can be identified with the 6× 6 identity matrix I.

12.1.2 Hydrogenic realization of the so (4,2) Lie algebra

In Chapter 9, we identified the degeneracy group of the hydrogen atom as the SO(4)

group. In the full spectrum-generating symmetry group, this group must be present

and we can immediately take over the identification we made in Chapter 9:

L̂1 = L̂23; L̂2 = L̂31; L̂3 = L̂12;

Â1 = L̂14; Â2 = L̂24; Â3 = L̂34.
(12.11)

In analogy with Eq. (12.7), this correspondence can also be represented as:

L⇐⇒

⎛⎜⎜⎜⎝
0 L̂3 −L̂2 Â1

0 L̂1 Â2

0 Â3

0

⎞⎟⎟⎟⎠. (12.12)

Note the negative sign for L̂2, which is identified by cyclic permutation as L̂31, and thus

corresponds to −L̂13. Their defining commutation relations are repeated here:[
L̂i , L̂j

]
= iεijk L̂k ; (12.13)
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[
L̂i , Âj

]
= iεijk Âk ; (12.14)[

Âi , Âj

]
= iεijkL̂k . (12.15)

In addition, we have to include into the covering group the dynamical so(2,1) algebra

of the radial wave equation introduced in Chapter 11, which contains three more

operators Q̂i (i = 1 → 3). Recall that the hydrogenic wave functions can be written

as a product of a radial function with a spherical harmonic function:

ψ (r,θ ,φ)= Rn,l (r)Y
m
l (θ ,φ). (12.16)

Since the Q̂i operators act on the radial part of the hydrogenic wave functions only,

whereas the angular momentum components operate on the angular part, both

operators are expected to commute: [
L̂i , Q̂i

]
= 0. (12.17)

Therefore, we must accommodate the subalgebra of Q̂i operators in a three-by-three

block that has no common indices with the angular momentum block. To this end,

we must extend the matrix with two additional indices, 5 and 6, to form a 456 block

separate from the 123 block. The entries may be identified as

Q̂1 = L̂46; Q̂2 = L̂45; Q̂3 = L̂56. (12.18)

When written in the form of Eq. (12.7), we obtain

L⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 L̂3 −L̂2 Â1 · ·
0 L̂1 Â2 · ·

0 Â3 · ·
0 Q̂2 Q̂1

0 Q̂3

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (12.19)

However since SO(2,1) is noncompact, the metric factors g55 and g66 have to be

negative:[
Q̂1, Q̂2

]
=−ih̄Q̂3 →

[
L̂46, L̂45

]
= ih̄g44L̂65 =−ih̄L̂56;[

Q̂2, Q̂3

]
= ih̄Q̂1 →

[
L̂45, L̂56

]
=−ih̄g55L̂46 = ih̄L̂46;[

Q̂3, Q̂1

]
= ih̄Q̂2 →

[
L̂56, L̂46

]
= ih̄g66L̂54 = ih̄L̂45.

(12.20)

We thus obtain a noncompact group, with metric [+,+,+,+,−,−], that we have

to denote as SO(4,2) instead of SO(6). The metric matrix is then written as

G= diag(1,1,1,1,−1,−1):

G=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (12.21)
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2 With this metric, the commutation relations in Eq. (12.9) give rise to the commutation

Table 12.1. The Q̂ operators contain two parameters, a and b, that we identified in the

previous chapter as follows:

a =√−2mE; (12.22)

b = l (l+ 1) h̄2

a
. (12.23)

This parametrization should raise some concern, because the operators of the algebra

rely on the energy of the states on which they are acting. However, this problem can

be solved in a consistent way by a uniform rescaling of the radial distance, as we shall

now see. Since the radial and angular momenta in the expression for the Q̂ operators

are scaled by the same factor, we can reintroduce the total momentum p̂ as follows:

rp̂2
r

a
+ b

r
= 1

a

(
rp̂2

r +
l (l+ 1) h̄2

r

)
= rp̂2

a
. (12.24)

In this way, the Q̂ operators become

Q̂1 = 1

2

(
rp̂2

a
− ar

)
;

Q̂2 = rp̂r;

Q̂3 = 1

2

(
rp̂2

a
+ ar

)
.

(12.25)

Note that the parameter b is now fully absorbed in the momentum operator. The

parameter a can also be reset to unity by simply scaling the radius ar to R. This scaling

will also replace the expressions a−1p̂r and a−2p̂2 by P̂R and P̂2, respectively. Hence,

under this scaling, the Q̂s are simplified to

Q̂1 = 1

2

(
RP̂2 −R

)
;

Q̂2 = RP̂R;

Q̂3 = 1

2

(
RP̂2 +R

)
.

(12.26)

Recall that the LRL vector contains the energy as a parameter:

Â = 1√−2mE

(
1

2
r̂p̂2 − p̂

(
r̂ · p̂

)+mEr̂

)
. (12.27)

Using the expression for a, this becomes

Â = r̂p̂2

2a
− p̂

(
r̂ · p̂

)
a

− 1

2
ar̂. (12.28)

Here, too, a rescaling by a absorbs this parameter completely in the radial distance,

and the LRL becomes

Â = 1

2
R̂P̂2 − P̂

(
R̂ · P̂

)
− 1

2
R̂. (12.29)

On the other hand, the angular momentum operators L̂1, L̂2, L̂3 remain invariant

under this scaling. In this way, all parameter dependence can be eliminated from the

operator algebra and we obtain nine momentum operators that are dependent only

on the coordinates and associated momenta.

However, with six indices, a total of fifteen L̂ij operators can be formed. The

remaining six operators can be easily obtained by forming the required commutators



Table 12.1 Commutation table for the generators of the so(4,2) Lie algebra in terms of generalized angular momentum operators L̂ab. The commutator [X̂i, X̂j] is listed in
the ith row and jth column.

L̂23 L̂31 L̂12 L̂14 L̂24 L̂34 L̂15 L̂25 L̂35 L̂16 L̂26 L̂36 L̂46 L̂45 L̂56

L̂23 0 ih̄L̂12 −ih̄L̂31 0 ih̄L̂34 −ih̄L̂24 0 ih̄L̂35 −ih̄L̂25 0 ih̄L̂36 −ih̄L̂26 0 0 0

L̂31 −ih̄L̂12 0 ih̄L̂23 −ih̄L̂34 0 ih̄L̂14 −ih̄L̂35 0 ih̄L̂15 −ih̄L̂36 0 ih̄L̂16 0 0 0

L̂12 ih̄L̂31 −ih̄L̂23 0 ih̄L̂24 −ih̄L̂14 0 ih̄L̂25 −ih̄L̂15 0 ih̄L̂26 −ih̄L̂16 0 0 0 0

L̂14 0 ih̄L̂34 −ih̄L̂24 0 ih̄L̂12 −ih̄L̂31 ih̄L̂45 0 0 ih̄L̂46 0 0 −ih̄L̂16 −ih̄L̂15 0

L̂24 −ih̄L̂34 0 ih̄L̂14 −ih̄L̂12 0 ih̄L̂23 0 ih̄L̂45 0 0 ih̄L̂46 0 −ih̄L̂26 −ih̄L̂25 0

L̂34 ih̄L̂24 −ih̄L̂14 0 ih̄L̂31 −ih̄L̂23 0 0 0 ih̄L̂45 0 0 ih̄L̂46 −ih̄L̂36 −ih̄L̂35 0

L̂15 0 ih̄L̂35 −ih̄L̂25 −ih̄L̂45 0 0 0 −ih̄L̂12 ih̄L̂31 ih̄L̂56 0 0 0 −ih̄L̂14 ih̄L̂16

L̂25 −ih̄L̂35 0 ih̄L̂15 0 −ih̄L̂45 0 ih̄L̂12 0 −ih̄L̂23 0 ih̄L̂56 0 0 −ih̄L̂24 ih̄L̂26

L̂35 ih̄L̂25 −ih̄L̂15 0 0 0 −ih̄L̂45 −ih̄L̂31 ih̄L̂23 0 0 0 ih̄L̂56 0 −ih̄L̂34 ih̄L̂36

L̂16 0 ih̄L̂36 −ih̄L̂26 −ih̄L̂46 0 0 −ih̄L̂56 0 0 0 −ih̄L̂12 ih̄L̂31 −ih̄L̂14 0 −ih̄L̂15

L̂26 −ih̄L̂36 0 ih̄L̂16 0 −ih̄L̂46 0 0 −ih̄L̂56 0 ih̄L̂12 0 −ih̄L̂23 −ih̄L̂24 0 −ih̄L̂25

L̂36 ih̄L̂26 −ih̄L̂16 0 0 0 −ih̄L̂46 0 0 −ih̄L̂56 −ih̄L̂31 ih̄L̂23 0 −ih̄L̂34 0 −ih̄L̂35

L̂46 0 0 0 ih̄L̂16 ih̄L̂26 ih̄L̂36 0 0 0 ih̄L̂14 ih̄L̂24 ih̄L̂34 0 −ih̄L̂56 −ih̄L̂45

L̂45 0 0 0 ih̄L̂15 ih̄L̂25 ih̄L̂35 ih̄L̂14 ih̄L̂24 ih̄L̂34 0 0 0 ih̄L̂56 0 ih̄L̂46

L̂56 0 0 0 0 0 0 −ih̄L̂16 −ih̄L̂26 −ih̄L̂36 ih̄L̂15 ih̄L̂25 ih̄L̂35 ih̄L̂45 −ih̄L̂46 0
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4 between the upper and lower blocks in the matrix. By combining the LRL operators

Âi with Q̂2, we obtain the series L̂15, L̂25, L̂35, which we will denote by the symbol B̂i :[
Q̂2, Âi

]
= iB̂i . (12.30)

The three B̂i operators are the components of a vector B̂ that is, in a sense, conjugate

to the LRL vector. We get:

B̂ = 1

2
R̂P̂2 − P̂

(
R̂ · P̂

)
+ 1

2
R̂, (12.31)

which is identical to the expression for Â, except for a plus sign in the last term.

Similarly, the upper three rows in the sixth column of Eq. (12.7) L̂16, L̂26, L̂36 are

obtained by the commutators of the LRL vector with Q̂1:[
Q̂1, Âi

]
= i�̂i . (12.32)

The three operators �̂i are the components of another vector, which Barut called �̂,

and which appears to be proportional to the linear momentum:

�̂ = RP̂. (12.33)

In this way, fifteen operators are finally obtained, which may be verified to form an

so(4,2) algebra. The operators can be written in matrix form as

L⇐⇒

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0 L̂3 −L̂2 Â1 B̂1 �̂1

0 L̂1 Â2 B̂2 �̂2

0 Â3 B̂3 �̂3

0 Q̂2 Q̂1

0 Q̂3

0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (12.34)

The resulting commutation table is given in Table 12.2 and is clearly isomorphic to

Table 12.1.

12.2 THE CARTAN-WEYL BASIS

Following our general strategy, we will now derive the Cartan subalgebra H and

corresponding Weyl diagrams of the so(4,2) algebra. This will necessitate a change of

basis—from the {L̂, Â, B̂, �̂,Q̂} basis, introduced earlier, to the Cartan-Weyl basis. To

this aim, we will follow the three steps from the first Scholium (Chapter 6), albeit in a

slightly modified order. We will also be helped by the fact that the so(4) algebra of the

hydrogen atom (Chapter 9) forms a subalgebra of the spectrum-generating so(4,2)

algebra. The results in this section are easily verified on the basis of the elementary

commutation rules in Table 12.2; most of the computations are therefore left to you.

12.2.1 Cartan subalgebra and Cartan generators

Let us start, as usual, with the identification of the maximal subset of commuting

generators of the so(4,2) algebra. This is easily identified in view of the simple

commutation relationship in Eq. (12.9), which says that two operators commute only



Table 12.2 Commutation table for the angular momentum operators L̂i, LRL operators Âi, radial momentum operators Q̂i, and vector operators B̂i and �̂i (i= 1→ 3). The
commutator [X̂i, X̂j] is listed in the ith row and jth column. When compared with Table 12.1, it is clear that these fifteen operators form a realization of the so(4,2) Lie algebra.

L̂1 L̂2 L̂3 Â1 Â2 Â3 B̂1 B̂2 B̂3 �̂1 �̂2 �̂3 Q̂1 Q̂2 Q̂3

L̂1 0 ih̄L̂3 −ih̄L̂2 0 ih̄Â3 −ih̄Â2 0 ih̄B̂3 −ih̄B̂2 0 ih̄�̂3 −ih̄�̂2 0 0 0

L̂2 −ih̄L̂3 0 ih̄L̂1 −ih̄Â3 0 ih̄Â1 −ih̄B̂3 0 ih̄B̂1 −ih̄�̂3 0 ih̄�̂1 0 0 0

L̂3 ih̄L̂2 −ih̄L̂1 0 ih̄Â2 −ih̄Â1 0 ih̄B̂2 −ih̄B̂1 0 ih̄�̂2 −ih̄�̂1 0 0 0 0

Â1 0 ih̄Â3 −ih̄Â2 0 ih̄L̂3 −ih̄L̂2 ih̄Q̂2 0 0 ih̄Q̂1 0 0 −ih̄�̂1 −ih̄B̂1 0

Â2 −ih̄Â3 0 ih̄Â1 −ih̄L̂3 0 ih̄L̂1 0 ih̄Q̂2 0 0 ih̄Q̂1 0 −ih̄�̂2 −ih̄B̂2 0

Â3 ih̄Â2 −ih̄Â1 0 ih̄L̂2 −ih̄L̂1 0 0 0 ih̄Q̂2 0 0 ih̄Q̂1 −ih̄�̂3 −ih̄B̂3 0

B̂1 0 ih̄B̂3 −ih̄B̂2 −ih̄Q̂2 0 0 0 −ih̄L̂3 ih̄L̂2 ih̄Q̂3 0 0 0 −ih̄Â1 ih̄�̂1

B̂2 −ih̄B̂3 0 ih̄B̂1 0 −ih̄Q̂2 0 ih̄L̂3 0 −ih̄L̂1 0 ih̄Q̂3 0 0 −ih̄Â2 ih̄�̂2

B̂3 ih̄B̂2 −ih̄B̂1 0 0 0 −ih̄Q̂2 −ih̄L̂2 ih̄L̂1 0 0 0 ih̄Q̂3 0 −ih̄Â3 ih̄�̂3

�̂1 0 ih̄�̂3 −ih̄�̂2 −ih̄Q̂1 0 0 −ih̄Q̂3 0 0 0 −ih̄L̂3 ih̄L̂2 −ih̄Â1 0 −ih̄B̂1

�̂2 −ih̄�̂3 0 ih̄�̂1 0 −ih̄Q̂1 0 0 −ih̄Q̂3 0 ih̄L̂3 0 −ih̄L̂1 −ih̄Â2 0 −ih̄B̂2

�̂3 ih̄�̂2 −ih̄�̂1 0 0 0 −ih̄Q̂1 0 0 −ih̄Q̂3 −ih̄L̂2 ih̄L̂1 0 −ih̄Â3 0 −ih̄B̂3

Q̂1 0 0 0 ih̄�̂1 ih̄�̂2 ih̄�̂3 0 0 0 ih̄Â1 ih̄Â2 ih̄Â3 0 −ih̄Q̂3 −ih̄Q̂2

Q̂2 0 0 0 ih̄B̂1 ih̄B̂2 ih̄B̂3 ih̄Â1 ih̄Â2 ih̄Â3 0 0 0 ih̄Q̂3 0 ih̄Q̂1

Q̂3 0 0 0 0 0 0 −ih̄�̂1 −ih̄�̂2 −ih̄�̂3 ih̄B̂1 ih̄B̂2 ih̄B̂3 ih̄Q̂2 −ih̄Q̂1 0
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6 if they do not have indices in common. In this way, we obtain three commuting

operators, which we may choose as L̂12, L̂34, and L̂56 (i.e., L̂3, Â3, and Q̂3, respectively):[
L̂3, Â3

]
=
[

L̂3,Q̂3

]
=
[

Â3,Q̂3

]
= 0. (12.35)

The triplet {L̂3, Â3,Q̂3} forms a basis for the maximal Abelian Cartan subalgebra H

of so(4,2). The three operators L̂3, Â3, and Q̂3 are called Cartan generators, and the

dimensionality of H defines the rank of the so(4,2) Lie algebra. As a consequence, all

weight and root diagrams (introduced later) will be three-dimensional.

12.2.2 Casimir invariants

In view of Racah’s theorem, and the fact that the so(4,2) algebra is of rank 3, we expect

the SO(4,2) group to exhibit three independent Casimir invariants Ĉμ (μ = 1 → 3)

that commute with all the generators of the so(4,2) algebra. The most important

Casimir operator is the trace operator Ĉ2, which is a second-order combination of

the invariants for the various subgroups:

Ĉ2 = L̂2 + Â2 − B̂2 − �̂2 + Q̂2
3 − Q̂2

1 − Q̂2
2. (12.36)

Here, L̂2 + Â2 and Q̂2
3 − Q̂2

1 − Q̂2
2 are already familiar as the Casimir operators of the

SO(4) and SO(2,1) groups, respectively. The remaining B̂2 and �̂2 refer to the squares

of the B̂ and �̂ vectors, respectively. These terms are subtracted in Ĉ2 in line with

their negative metric. For the hydrogenic realization, these scalar products can all be

expressed in the Q̂ operators, as follows:

L̂2 = Q̂2
3 − Q̂2

1 − Q̂2
2;

Â2 = Q̂2
1 + Q̂2

2 − 1;

B̂2 = Q̂2
3 − Q̂2

2 + 1;

�̂2 = Q̂2
3 − Q̂2

1 + 1.

(12.37)

The first expression was obtained in Chapter 11, Eq. (11.68). The expressions for

Â2, B̂2, and �̂2 are obtained in a similar way by direct calculation, starting from the

radial expressions for these operators. Inserting these results into the expression for

the Casimir operator yields an invariant that characterizes all the hydrogenic levels by

a single integer:

Ĉ2 |nlm〉 = −3 |nlm〉. (12.38)

The remaining two Casimir operators are third- and fourth-order polynomials in the

generators. Here are their definitions for completeness sake:

Ĉ3 = 1

48
εabcdef L̂abL̂cdL̂ef = 0; (12.39)

Ĉ4 = L̂abL̂bc L̂cdL̂da = 0, (12.40)

where ε is the completely antisymmetric tensor on six covariant indices with ε123456 =
1 and

L̂ab = gacgbdL̂cd with gab = gab, (12.41)

where the Einstein summation convention has been used. The Casimir operators are

used to label irreducible representations (or multiplets) of the SO(4,2) group. Because

all of them are reduced to a constant value, there is only one unitary irreducible
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representation for the SO(4,2) group in the hydrogenic basis. That is to say, all the

(ground and excited) states of the hydrogen atom |nlm〉 are contained in a single

unirrep of so(4,2).

12.2.3 Weyl generators

The remaining twelve non-Cartan operators can be recombined to yield commuting

eigenoperators of the subalgebra H. The derivation of these Weyl generators will be

presented in this section, along with the construction of a root diagram for the so(4,2)

algebra that hosts the Cartan and Weyl elements.

Weyl generators in the L3A3-plane

For each generator of the subalgebra H, there are six operators that do not have indices

in common. For example, for L̂56 (Q̂3) the six off-diagonal elements are L̂12, L̂23, L̂31,

L̂14, L̂24, and L̂34. In view of Eq. (12.9), these operators all commute with L̂56 and they

will be positioned in the horizontal plane of the root diagram. They correspond to the

components L̂i and Âi of the angular momentum vector L̂ and the LRL vector Â, and

generate an so(4) invariance algebra, as seen in Chapter 9. We can therefore take over

our analysis of the so(4) algebra from §9.5.3, which leads to a square root diagram in

the horizontal L3A3-plane, as depicted in Figure 9.9.

Weyl generators in the L3Q3-plane

Let us see if a similar analysis can be pursued for the root diagrams in the vertical

L3Q3- and A3Q3-planes. We start with a study of the L3Q3-plane. The six off-diagonal

elements of L̂34 (Â3) are L̂12, L̂15, L̂25, L̂16, L̂26, and L̂56. These operators correspond

to the hydrogenic operators L̂3, B̂1, B̂2, �̂1, �̂2, and Q̂3 and are positioned in

the L3Q3-plane. It will prove useful to rewrite them into the following linear

combinations:

M̂11 = 1

2

(
B̂1 + �̂2

)
; M̂21 = 1

2

(
B̂1 − �̂2

)
;

M̂12 = 1

2

(
B̂2 − �̂1

)
; M̂22 = 1

2

(
B̂2 + �̂1

)
;

M̂13 = 1

2

(
L̂3 + Q̂3

)
; M̂23 = 1

2

(
L̂3 − Q̂3

)
.

(12.42)

It can then be shown that the components of the M̂1 and M̂2 operators mutually

commute: [
M̂1i ,M̂2j

]
= 0, ∀i, j = 1→ 3. (12.43)

The components of M̂1 commute among themselves to form an so(2,1) algebra:[
M̂11, M̂12

]
=−ih̄M̂13,

[
M̂12, M̂13

]
= ih̄M̂11,

[
M̂13, M̂11

]
= ih̄M̂12, (12.44)

and similarly for the components of M̂2:[
M̂21, M̂22

]
=−ih̄M̂23,

[
M̂22, M̂23

]
= ih̄M̂21,

[
M̂23, M̂21

]
= ih̄M̂22. (12.45)

We will denote these two algebras by so(2,1)1 and so(2,1)2, respectively, for further

convenience. The commutation Table 12.3 shows that both algebras are completely
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8 Table 12.3 Commutation table for the generators of the so(2,2) Lie

algebra in the basis {M̂11,M̂12,M̂13,M̂21, M̂22,M̂23}. The generators
M̂1 =

(
M̂11,M̂12, M̂13

)
and M̂2 =

(
M̂21,M̂22,M̂23

)
each constitute an so(2,1)

subalgebra, denoted so(2,1)1 and so(2,1)2, respectively: so(2,2)=
so(2,1)1⊕ so(2,1)2. Both subalgebras are located in a square region,

separated from one another by two squares of zeros.

M̂11 M̂12 M̂13 M̂21 M̂22 M̂23

M̂11 0 −ih̄M̂13 −ih̄M̂12 0 0 0

M̂12 ih̄M̂13 0 ih̄M̂11 0 0 0

M̂13 ih̄M̂12 −ih̄M̂11 0 0 0 0

M̂21 0 0 0 0 −ih̄M̂23 −ih̄M̂22

M̂22 0 0 0 ih̄M̂23 0 ih̄M̂21

M̂23 0 0 0 ih̄M̂22 −ih̄M̂21 0

decoupled in view of Eq. (12.43). Notice, however, that instead of obtaining an so(4)

algebra as in Chapter 9 (which can be factorized into a direct sum of two so(3)

algebras), we now obtain an so(2,2) Lie algebra, which is locally isomorphic to the

direct sum of two so(2,1) algebras:

so(2,2)= so(2,1)1 ⊕ so(2,1)2. (12.46)

Despite this difference, the so(2,2) root diagram is similar to the one obtained in

Figure 9.9. To see this, the two commuting operators M̂13 and M̂23 can be taken as

a basis {M̂13,M̂23} for the Cartan subalgebra of so(2,2). The remaining generators

M̂11, M̂12, M̂21, and M̂22 are then rearranged into the following linear combinations:

M̂1+ ≡ M̂11 + iM̂12, M̂1− ≡ M̂11 − iM̂12,

M̂2+ ≡ M̂21 + iM̂22, M̂2− ≡ M̂21 − iM̂22,
(12.47)

which form a linearly independent set of Weyl generators. By virtue of their function

as ladder operators, these Weyl elements act as eigenoperators of the Cartan generators:[
Ĥi , Êα

]
= αi Êα , ∀i = 1,2;α = 1→ 4, (12.48)

where we have denoted the Cartan generators by the general symbol Ĥi (i = 1,2) and

the Weyl generators by the symbol Êα (α = 1 → 4). The roots α1 and α2 of every

Weyl element Êα can be read off from the commutation Table 12.4. They form the

components of a two-dimensional root vector α = (α1,α2) that can be positioned in a

two-dimensional weight space formed by the M11M21-plane. The root vectors are

α
(

M̂1+
)
= (h̄, 0), α

(
M̂1−

)
= (−h̄, 0),

α
(

M̂2+
)
= (0, h̄), α

(
M̂2−

)
= (0,−h̄),

(12.49)

and the corresponding root diagram is depicted in Figure 12.1. The mutually

commuting Cartan generators M̂13 and M̂23 are at the origin of the diagram.

Weyl generators in the A3Q3-plane

The off-diagonal elements of L̂12 (L̂3) are L̂34, L̂35, L̂36, L̂45, L̂46, and L̂56. They

correspond to the operators Â3, B̂3, �̂3, Q̂2, Q̂1, and Q̂3. Since they commute with L̂3,
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Table 12.4 Commutation table for the generators of the so(2,2) Lie

algebra in the Cartan-Weyl basis {M̂13,M̂1+,M̂1−,M̂23, M̂2+, M̂2−}. The
Cartan subalgebra H= {M̂13,M̂23} forms a maximal Abelian subalgebra

of so(2,2), as indicated by the zeros in bold type in the table.

M̂13 M̂1+ M̂1− M̂23 M̂2+ M̂2−

M̂13 0 h̄M1+ −h̄M̂1− 0 0 0

M̂1+ −h̄M1+ 0 −2h̄M̂13 0 0 0

M̂1− h̄M̂1− 2h̄M̂13 0 0 0 0

M̂23 0 0 0 0 h̄M̂2+ −h̄M̂2−
M̂2+ 0 0 0 −h̄M̂2+ 0 −2h̄M̂23

M̂2− 0 0 0 h̄M̂2− 2h̄M̂23 0

+1

–1

M1z

M2z

+1/2

+1–1 + 1/2– 1/2

M1–
^ M1+

^

M2+
^

M2–
^

0

–1/2

FIGURE 12.1 Root diagram

of the so(2,2) Lie algebra.

The action of every Weyl

generator is shown in the

M13M23-plane. The Cartan

generators M̂13 and M̂23 are

positioned at the origin of

the Weyl diagram.

they will all be positioned in the A3Q3-plane. If we rewrite them in the following linear

combinations

N̂11 = 1

2

(
�̂3 − Q̂2

)
; N̂21 = 1

2

(
B̂3 − Q̂1

)
;

N̂12 = 1

2

(
B̂3 + Q̂1

)
; N̂22 = 1

2

(
�̂3 + Q̂2

)
;

N̂13 = 1

2

(
Â3 + Q̂3

)
; N̂23 = 1

2

(
Â3 − Q̂3

) (12.50)

a completely analogous analysis can be performed as in the last subsection. The

components of N̂1 and N̂2 will thus mutually commute, and they will form a basis
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0 for two so(2,1) algebras. This gives rise to an overall so(2,2) Lie algebra, with a root

diagram identical to the one in Figure 12.1, but where the M̂ij operators are replaced

by the N̂ij operators.

12.2.4 SO(4,2) root diagram

Having analyzed the root structure of the so(4) and so(2,2) subalgebras of so(4,2) in

each of the orthogonal planes L3A3, L3Q3, and A3Q3, we are now in a position to bring

together all the results and construct the root diagram for the so(4,2) Lie algebra.

Notice that a total of eighteen operators have been introduced in the previous

sections. The Ĵj3, M̂j3, and N̂j3 (with j = 1 or 2) are, however, not linearly independent,

and they are therefore replaced by the operators L̂3, Â3, and Q̂3. This reduces the

number of generators to fifteen as required by the so(4,2) algebra.

The three commuting operators L̂3, Â3, and Q̂3 are then selected as generators

of the Cartan subalgebra H ⊂ so(4,2). They form a basis for a three-dimensional

orthogonal frame and are at the origin of the root diagram, in view of Eq. (12.35).

Along with the remaining twelve Weyl generators Ĵj±, M̂j±, and N̂j± (with j = 1 or 2),

they constitute the Cartan-Weyl basis for the so(4,2) algebra.

Let the general symbols Ĥi (i = 1 → 3) and Êα (α = 1 → 12) denote the

different Cartan and Weyl elements, respectively. To position the different Êα ’s in

the root diagram, the roots αi of each Weyl element will have to be determined

with respect to the three Cartan generators, according to the general Eq. (12.48).

Notice that in the previous sections, the roots were taken with respect to Ĵj3, M̂j3,

and N̂j3 (with j=1 or 2), not with respect to L̂3, Â3, and Q̂3. The new root vectors thus

obtained are

α
(

Ĵ1+
)
= (+h̄,+h̄, 0); α

(
M̂1+

)
= (+h̄, 0,+h̄); α

(
N̂1+

)
= (0,+h̄,+h̄);

α
(

Ĵ1−
)
= (−h̄,−h̄, 0); α

(
M̂1−

)
= (−h̄, 0,−h̄); α

(
N̂1−

)
= (0,−h̄,−h̄);

α
(

Ĵ2+
)
= (+h̄,−h̄, 0); α

(
M̂2+

)
= (+h̄, 0,−h̄); α

(
N̂2+

)
= (0,+h̄,−h̄);

α
(

Ĵ2−
)
= (−h̄,+h̄, 0); α

(
M̂2−

)
= (−h̄, 0,+h̄); α

(
N̂2−

)
= (0,−h̄,+h̄);

α
(

L̂3

)
= (0,0,0); α

(
Â3

)
= (0,0,0); α

(
Q̂3

)
= (0,0,0).

It is evident that the four Ĵj± operators give rise to the characteristic SO(4) square, with

vertex points (±1, ±1) in the L3A3-plane (in units of h̄). Similar results are obtained

for the M̂j± and N̂j± operators, each of which gives rise to a square of operators in

the L3Q3-and A3Q3-planes, respectively. The presentation of the fifteen generators

in the root diagram of the so(4,2) algebra thus consists of three generators at the

origin and three squares in three perpendicular coordinate planes. The resulting figure

is a cuboctahedron, as shown in Figure 12.2, with the Cartan generators located at the

center and each Weyl generator pointing at one of the twelve vertices.

The cuboctahedron belongs to the thirteen semiregular Archimedean solids.5 It has

twelve vertices, fourteen faces and twenty-four edges, and is obtained in one of two

5 These solids are composed of at least two different types of regular polygons. In this sense,

Archimedean solids are different from the five Platonic solids, which are composed of only one type

of polygon.
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L3

A3

Q3

J1+
^

J2–
^

M1+1+
^

M1–1–
^

M1+
^

M1–
^

J1–
^

M2–
^

N2–
^

M2+
^

N1+
^

N1–
^

J2+
^

N2+
^

FIGURE 12.2 Root diagram of the so(4,2) Lie

algebra. The action of every Weyl generator is

shown in the L3–A3–Q3 space. The Cartan

generators L̂3, Â3, and Q̂3 are positioned at

the origin of the Weyl diagram.

FIGURE 12.3 M. C. Escher’s 1947 mezzotint, titled Crystal. The intersection of the cube with the

octahedron is a cuboctahedron. Reprinted with permission of the Escher Foundation, Den Haag.

ways: either by truncating a cube or by truncating an octahedron (hence, also the

contraction cuboctahedron). That is, if the eight vertices of a cube are cut off by

planes that bisect the edges meeting at each vertex, one obtains a polyhedron with

eight equilateral triangular faces and six square faces. Alternatively, the six vertices

of an octahedron can be cut off in a manner analogous to the truncated cube. A

cuboctahedron is thus looked upon as the intersection of a cube with an octahedron,

as shown in Escher’s lithograph Crystal (Figure 12.3).

12.2.5 SO(4,2) weight diagrams

In a final step, a weight diagram can be constructed for the SO(4,2) group. The weight

space is defined by the three Cartan generators L̂3, Â3, and Q̂3, which function once

again as a basis for a three-dimensional orthogonal frame.

The horizontal planes formed by the first two operators L̂3 and Â3 host the different

so(4)manifolds. In Chapter 9, these manifolds were based on the operators Ĵ13 and Ĵ23,

which in the current diagram correspond to the diagonal directions in view of their
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2 defining property:

Ĵ13 = 1

2

(
L̂3 + Â3

)
; Ĵ23 = 1

2

(
L̂3 − Â3

)
. (12.51)

The vertical direction, formed by the eigenvalues of the operator Q̂3, adds the radial

ladder operator to the manifold. In this way, all the bound states of hydrogen are

reunited in one single infinite-dimensional degeneracy space of SO(4,2). This space

has been denoted by Carl E. Wulfman as the baruton, in honor of Barut.6 Filling all

the states with electrons leads to all the elements of the periodic system, and in this

way the baruton can be looked upon as a massive particle that covers the full Periodic

Table (see Chapter 13). The graphical representation shown in Figure 12.4 resembles a

square pyramid placed upside down. This construction is also referred to as an SO(4,2)

tower.

For a further study of the Periodic Table, the standard SO(4,2) tower is not really

adequate because the SO(4) “floors” on which it is built are not really appropriate

for the heavier elements. An alternative presentation makes use of the |nlm〉 orbitals,

which are arranged in a triangular tower, as indicated in Figure 12.5. A given floor is

characterized by the principal quantum number n. The horizontal stripes correspond

to the different l subshells, and the dots are the individual m components. The allowed

moves on this tower will be discussed in the next section.

The collection of all bound quantum levels in a single degenerate SO(4,2) manifold

may be attributed to the scaling of the radial distance. The scaling parameter a is

proportional to the square root of the energy. The ground level, which has the largest

binding energy, is characterized by the smallest mean radius but is expanded most

Q3

(0, 0)

(1/2, 1/2)

(1, 1)

FIGURE 12.4 Weight diagram of the so(4,2) Lie algebra, depicting the (0,0), (1/2,1/2), (1,1) and

(3/2,3/2)manifolds from Figure 9.11. The action of the twelve Weyl generators is shown in the

SO(4,2) tower by arrows pointing from the central state in the (1,1)manifold.

6 C. E. Wulfman. “Dynamical Groups in Atomic and Molecular Physics,” p. 382.



313
The

SO
(4,2)group

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

Q+
^

A+
^

FIGURE 12.5 Triangular weight diagram of the so(4,2) Lie algebra. The shaded triangles represent

different SO(4) multiplets (for n= 1→ 6). The horizontal lines correspond to different l-values,

and the dots are the individual m components. The Q̂± operators connect states of different n but

fixed l, as indicated for the upper states with n= 1 or 2, l = 0, and m= 0. The Â± operators, on the

other hand, link states of different l within a given n-multiplet. The L̂± operators, finally, allow us

to move along a horizontal line, keeping n and l fixed and varying m. [Adapted from B. G. Adams,

J. Čížek, and J. Paldus. “Representation Theory of SO(4, 2) for the Perturbation Treatment of

Hydrogenic-Type Hamiltonians by Algebraic Methods.” International Journal of Quantum

Chemistry 21.1 (1982), pp. 153–171, p. 167.]

because it has the largest scaling factor. In this way the gradual extension of the bound

levels with the higher principal quantum number n is compensated exactly by the

rescaling, and all levels end up at the same quantum state.

12.3 QUANTUM ALCHEMY

In SO(4,2), the infinite number of hydrogen orbitals form the galleries of a universal

library. In this section, we will construct the staircases and air shafts that allow

us to move from one orbital to another. The term quantum alchemy refers to the

transmutation of chemical elements that results from changing valence orbitals.7

12.3.1 Raising and loweringm

As discussed in Chapter 5, the ladder operators of angular momentum theory are

designed to raise or lower the m quantum number. This may be denoted as follows:

L̂+ |nlm〉 = ωl+m |nl(m+ 1)〉; (12.52)

L̂− |nlm〉 = ωl−m |nl(m− 1)〉. (12.53)

For our purposes, let us go one step further and identify the unknown coefficients

ωl±m in these equations. This can be achieved by the algebraic properties of the

7 S. M. Blinder, “Quantum Alchemy: Transmutation of Atomic Orbitals.” Journal of Chemical

Education 78.3 (2001). pp. 391–394.
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4 operators themselves, in conjunction with normalization. The Casimir operator L̂2

may be written in four different forms:

L̂2 = L̂2
x + L̂2

y + L̂2
z

= 1

2

(
L̂+L̂− + L̂−L̂+

)
+ L̂2

z

= L̂+L̂− + L̂2
z − h̄L̂z

= L̂−L̂+ + L̂2
z + h̄L̂z .

(12.54)

The total angular momentum is given by the diagonal matrix element of L̂2. This can

be worked out with the help of the previous expressions as

〈nlm| L̂2 |nlm〉 = 〈nlm| L̂−L̂+ + L̂2
z + h̄L̂z |nlm〉

= 〈nlm| L̂−L̂+ |nlm〉+ h̄2 (m2 +m
)

=
〈
L̂+nlm|L̂+nlm

〉
+ h̄2 (m2 +m

)
=
∣∣∣ωl+m

∣∣∣2 + h̄2 (m2 +m
)

= h̄2l (l+ 1).

Hence, we have ∣∣∣ωl+m

∣∣∣2 = h̄2 [l (l+ 1)−m (m+ 1)], (12.55)

and similarly for the lowering operator:∣∣∣ωl−m

∣∣∣2 = h̄2 [l (l+ 1)−m (m− 1)]. (12.56)

Since absolute values should be real positive or zero, these equations imply require-

ments on l and m that are precisely the ones we derived in the previous chapter for

SO(3) representations (with l = j); hence,

(l∓m)(l±m+ 1)≥ 0. (12.57)

For the actual values of the coefficients, we have to add a phase. Here, the choice of

phase is a matter of selecting the relative phase between the hydrogenic functions. We

follow the convention of B. G. Adams and colleagues, who simply took the coefficients

to be positive.8 Hence, we get

ωl±m = h̄
√
(l∓m)(l±m+ 1). (12.58)

8 B. G. Adams, J. Čížek, and J. Paldus. “Representation Theory of SO(4, 2) for the Perturbation

Treatment of Hydrogenic-Type Hamiltonians by Algebraic Methods.” International Journal of

Quantum Chemistry 21.1 (1982), pp. 153–171 and B. G. Adams, J. Čížek, and J. Paldus. “Lie

Algebraic Methods and Their Application to Simple Quantum Systems.” In: Advances in Quantum

Chemistry, vol. 19. Ed. Per-Olov Löwdin. San Diego: Academic Press, 1988, pp. 1–84, reproduced

in B. G. Adams, J. Čížek, and J. Paldus. “Lie Algebraic Methods and Their Application to Simple

Quantum Systems.” In: Dynamical Groups and Spectrum Generating Algebras, vol. 1. Ed. Y. Ne’eman,

A. Bohm, and A. O. Barut. Singapore: World Scientific Publishers, 1988, pp. 103–208. See also

B. G. Adams. Algebraic Approach to Simple Quantum Systems. Berlin: Springer-Verlag, 1994, and

J. Čížek and J. Paldus. “An Algebraic Approach to Bound States of Simple One-Electron Systems.”

International Journal of Quantum Chemistry 12.5 (1977), pp. 875–896.
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By repeated application of the L̂± operators, we are able to generate the entire ladder

of states, with m varying from−l to +l. Note that the raising operator coefficient van-

ishes for m= l; it is thus impossible to raise m above that threshold. Similarly, the low-

ering operator coefficient vanishes when m has reached the m=−l lower boundary.

12.3.2 Raising and lowering n

In view of the structural correspondence between the compact SO(3) and noncompact

SO(2,1) groups, the application of raising and lowering operators for the principal

quantum number n is very similar to the ladder operations in m. The creation and

annihilation operators are defined as in Chapter 11:

Q̂+ = Q̂1 + iQ̂2; (12.59)

Q̂− = Q̂1 − iQ̂2. (12.60)

These operators raise and lower the principal quantum number n, respectively, while

keeping the lm labels fixed. This can be expressed as follows:

Q̂+ |nlm〉 = ω+n
l |(n+ 1)lm〉; (12.61)

Q̂− |nlm〉 = ω−n
l |(n− 1)lm〉. (12.62)

The ω±n
l coefficients can be found in a way that is entirely similar to the derivation of

the ωl±m coefficients. First, the total momentum Q2 is analyzed in its components, as

was shown in Chapter 11, and is resumed here:

Q̂2 = Q̂2
3 − Q̂2

1 − Q̂2
2

=−1

2

(
Q̂+Q̂− + Q̂−Q̂+

)
+ Q̂2

3

=−Q̂+Q̂− + Q̂2
3 − h̄Q̂3

=−Q̂−Q̂+ + Q̂2
3 + h̄Q̂3.

(12.63)

We then evaluate the matrix element of Q̂2, making use of the Hermiticity of the

raising and lowering operators, and keeping in mind that the total Q2 momentum

is equal to the angular momentum:

〈nlm| Q̂2 |nlm〉 = 〈nlm|− Q̂−Q̂+ + Q̂2
3 + h̄Q̂3 |nlm〉

= −〈nlm| Q̂−Q̂+ |nlm〉+ h̄2 (n2 + n
)

=−
〈
Q̂+nlm|Q̂+nlm

〉
+ h̄2 (n2 +n

)
(12.64)

=− ∣∣ω+n
l

∣∣2 + h̄2 (n2 +n
)

= h̄2l (l+ 1).

Hence, we have

∣∣ω+n
l

∣∣2 = h̄2 [n (n+ 1)− l (l+ 1)] (12.65)
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6 and, similarly for the lowering operator,∣∣ω−n

l

∣∣2 = h̄2 [n (n− 1)− l (l+ 1)]. (12.66)

These absolute values should be real positive or zero; hence, they imply requirements

on l and n that are precisely the ones we derived in the previous chapter for SO(2,1)

representations (with l = j and n=m). Hence,

(l∓n)(l± n+ 1)≤ 0. (12.67)

Again, only the absolute values of these coefficients are fixed by this expression, and

the phase can be chosen freely. We have adopted here the simplest positive square root,

following Adams9 and colleagues, which leads to

ω±n
l = h̄

√
(n∓ l) (n± l± 1). (12.68)

The lowest level one can reach by consecutive application of the lowering operator Q̂−
is the 1s ground level (with n = 1, l = 0), at which point the ω−n

l coefficient vanishes.

On the other hand, because the maximal l-value of a given level is equal to n− 1, the

ω+n
l coefficient is never zero, and thus there is no upper bound to n. We can continue

to climb up in energy by applying the raising operator Q̂+ ad infinitum.

12.3.3 Raising and lowering l

The raising and lowering of the orbital quantum number l is less straightforward.

Note that SO(4,2) contains the angular momentum operator L̂2 that yields l (l+ 1),

but is lacking an operator that yields l itself.10 This makes a difference with the

treatment of the m and n quantum numbers in the previous sections. The action of

the LRL operators in the |nlm〉 manifold was derived in Chapter 9. The result is

Â2 |nlm〉 = h̄2 (n2 − l (l+ 1)− 1
) |nlm〉. (12.69)

Raising and lowering operators are now defined in the same way as for angular

momentum: Â± = Âx ± iÂy . In Table 12.5, we see the commutation relations for these

operators. From these results, we may rewrite the squared operator as follows:

Â2 = 1

2

(
Â+Â− + Â−Â+

)
+ Â2

z

= Â−Â+ + Â2
z + h̄L̂z

= Â+Â− + Â2
z − h̄L̂z .

(12.70)

Another useful relation is the orthogonality of the LRL and angular momentum

vectors: Â · L̂ = 0. This yields

Â · L̂ = 1

2

(
Â+L̂− + Â−L̂+

)
+ Âz L̂z = 0. (12.71)

Since, in this expression, the lowering operator Â− is associated with the raising

operator L̂+, it is clear that Â− lowers m by 1 unit, and vice versa for the raising

operator Â+, which must increase m by 1 unit. This is obvious from the commutation

relations of Â± with L̂z in Table 12.5. However, it is not so that they also lower or

increase l accordingly.

9 B. G. Adams, J. Čížek, and J. Paldus. “Representation Theory of SO(4, 2) for the Perturbation

Treatment of Hydrogenic-Type Hamiltonians by Algebraic Methods.” 1982.
10 In Chapter 14, we will introduce an extra operator Ŝ for this purpose. However, this operator

does not belong to SO(4,2).
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Table 12.5 Commutation table for the L̂ and Â operators in ladder format.

L̂+ L̂− L̂z Â+ Â− Âz

L̂+ 0 2h̄L̂z −h̄L̂+ 0 2h̄Âz −h̄Â+
L̂− −2h̄L̂z 0 h̄L̂− −2h̄Âz 0 h̄Â−
L̂z h̄L̂+ −h̄L̂− 0 h̄Â+ −h̄Â− 0

Â+ 0 2h̄Âz −h̄Â+ 0 2h̄L̂z −h̄L̂+
Â− −2h̄Âz 0 h̄Â− −2h̄L̂z 0 h̄L̂−
Âz h̄Â+ −h̄Â− 0 h̄L̂+ −h̄L̂− 0

The required l ladder operators must combine operators that have the same effect

on m. Let us for the moment construct ladder operators that change l but leave m

unchanged. As we have seen, there are three such operators: Â−L̂+, Â+L̂−, and Âz . In

view of Eq. (12.71), these three operators are not linearly independent. However, we

can easily project two orthogonal operators, because the difference, Â−L̂+ − Â+L̂−, is

linearly independent of Âz . Hence, the two operators {1/2
(

Â−L̂+ − Â+L̂−
)

, Âz} form

an orthogonal operator basis. The operator that will raise l by 1 unit will be denoted

as �̂+
l and is expressed as the linear combination in the resulting operator basis:

�̂+
l = 1

2

(
Â−L̂+ − Â+L̂−

)
+ xh̄Âz . (12.72)

Here, x is an unknown coefficient to be determined from the commutator of L̂2 and

�+
l . To raise l by 1 unit, this commutator must be equal to

[
L̂2,�̂+

l

]
= 2h̄2 (l+ 1)�̂+

l . (12.73)

This requirement guarantees that the result of applying the raising operator to an l

wave function is indeed an (l+ 1) wave function, since

L̂2�̂+
l |nlm〉 = �̂+

l

(
L̂2 + h̄2 (2l+ 2)

)
|nlm〉

= h̄2 (l (l+ 1)+ 2(l+ 1))�̂+
l |nlm〉

= h̄2 (l+ 1)(l+ 2)�̂+
l |nlm〉.

(12.74)

The commutator can now be calculated using the results in Table 12.5. The L̂2 operator

can be expanded as L̂2
z + h̄L̂z + L̂−L̂+. Since the operators under consideration

commute with L̂z , as they leave m unchanged, we only have to consider commutators

with L̂−L̂+. We have for the component operators:

[
L̂−L̂+, Â−L̂+

]
=−2h̄Â−L̂+L̂z + 2h̄Âz L̂−L̂+;[

L̂−L̂+, Â+L̂−
]
= 2h̄Â+L̂−L̂z − 2h̄Âz L̂−L̂+ − 4h̄2Âz L̂z ;[

L̂−L̂+, Âz

]
= h̄

(
Â−L̂+ − Â+L̂−

)
+ 2h̄2Âz .

(12.75)
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8 The commutator requirement of Eq. (12.74) can then be expressed as[

L̂2,�̂+
l

]
= 2h̄Âz L̂2

z + 2h̄Âz L̂−L̂+ + 2h̄2Âz L̂z

+ xh̄2
(

Â−L̂+ − Â+L̂−
)
+ 2xh̄3Âz

= 2h̄2 (l+ 1)

(
1

2

(
Â−L̂+ − Â+L̂−

)
+ xh̄Âz

)
.

(12.76)

Since the l raising operator was designed specifically for its action on the |nlm〉
hydrogenic ket, we can replace the angular momenta in this expression by their

eigenvalues:

L̂z → h̄m;

L̂−L̂+ → h̄2 (l−m)(l+m+ 1).
(12.77)

The commutator equation then is turned into a linear equation in the operator basis.

Since the basis is orthogonal, this equation splits into two separate requirements:

one on the coefficients preceding 1/2
(

Â−L̂− − Â+L̂−
)

and one on the coefficients

preceding Âz . These are

2x = 2 (l+ 1);

2l2 + 2l+ 2x = 2x (l+ 1).
(12.78)

These equations are consistent and have as unique solution: x = l + 1. Hence, the

raising operator reads

�̂+
l = 1

2

(
Â−L̂+ − Â+L̂−

)
+ (l+ 1)h̄Âz . (12.79)

Note that this is not an ordinary Lie operator because it contains the l quantum

number as a parameter. To apply this operator to a given function, the l characteristic

number of this function should already be known in advance! So, this treatment is

limited to the hydrogen eigenspace, with components |nlm〉.
To construct the inverse operator, which lowers l by 1 unit, we apply Hermitian

conjugation to the raising operator, yielding

�̂−
l = 1

2

(
L̂−Â+ − L̂+Â−

)
+ yh̄Âz . (12.80)

Note that this conjugation cannot be fully executed, because it is not defined what will

become of the numerical parameter x of the previous expression.11 So, we keep an

unknown coefficient, which is again to be determined from the commutation relation

with L̂2. Indeed, for �−
l to lower l by 1 unit, its commutator with L̂2 should be as

follows: [
L̂2,�̂−

l

]
=−2lh̄2�̂−

l . (12.81)

This implies that �̂−
l lowers l by one:

L̂2�̂−
l |nlm〉 = �̂−

l

[
L̂2 − 2h̄2l

]
|nlm〉

= h̄2 [l (l+ 1)− 2l]�̂−
l |nlm〉

= h̄2l (l− 1)�̂−
l |nlm〉.

(12.82)

11 A rigorous commutation conjugation requires the additional Ŝ operator, which is outside

SO(4,2). It will be discussed in Chapter 14.
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To work out the commutators, we note that the lowering operator can first be

rewritten as

�̂−
l =−1

2

(
Â−L̂+ − Â+L̂−

)
+ (y− 2

)
h̄Âz . (12.83)

Making use of Eq. (12.75), we then find[
L̂2,�̂−

l

]
=−2h̄Âz L̂2

z − 2h̄Âz L̂−L̂+ − 2h̄2Âz L̂z

+ (y− 2
)

h̄2
(

Â−L̂+ − Â+L̂−
)
+ 2

(
y− 2

)
h̄3Âz

=−2lh̄2
(
−1

2

(
Â−L̂+ − Â+L̂−

)
+ (y− 2

)
h̄Âz

)
.

(12.84)

Again, this expression has a unique solution for the y-parameter, given by

y = l+ 2. (12.85)

The ladder operators for l are thus found to be

�̂+
l = 1

2

(
Â−L̂+ − Â+L̂−

)
+ (l+ 1)h̄Âz ; (12.86)

�̂−
l =−1

2

(
Â−L̂+ − Â+L̂−

)
+ lh̄Âz . (12.87)

The action of the �̂±
l operators on the triplet of quantum numbers (nlm) introduces

two unknown coefficients, c+nlm and c−nlm, according to

�̂+
l |nlm〉 = c+nlm |n(l+ 1)m〉; (12.88)

�̂−
l |nlm〉 = c−nlm |n(l− 1)m〉. (12.89)

The rest of this section will be devoted to finding these two unknown coefficients. To

this aim, let us start by evaluating how the component operators Âz , Â+, and Â− act

on the wave function. The action of Âz can be found easily. We simply have to add the

two �̂±
l operators, as is shown here:

h̄Âz |nlm〉 = c+nlm

2l+ 1
|n (l+ 1)m〉+ c−nlm

2l+ 1
|n (l− 1)m〉. (12.90)

To find out how Â± act on the wave function, we use a sum and difference equation

based respectively on Eq. (12.71) and the weighted difference of the �̂±
l :

1

2

(
Â−L̂+ + Â+L̂−

)
=−Âz L̂z =− 1

h̄ (2l+ 1)
�̂+

l L̂z − 1

h̄ (2l+ 1)
�̂−

l L̂z ;

1

2

(
Â−L̂+ − Â+L̂−

)
= l

2l+ 1
�̂+

l −
l+ 1

2l+ 1
�̂−

l .

(12.91)

Addition of the results yields an expression for the Â−L̂+ operator:

Â−L̂+ |nlm〉 = c+nlm (l−m)

2l+ 1
|n(l+ 1)m〉− c−nlm (l+m+ 1)

2l+ 1
|n(l− 1)m〉. (12.92)

Now we apply L̂− to both sides of this equation. Since the two lowering operators

commute,
[
L̂−, Â−

]= 0, we can easily derive the desired action of Â−:

Â− |nlm〉 = c+nlm

2l+ 1

√
l−m+ 2

l+m+ 1
|n(l+ 1)(m− 1)〉

− c−nlm

2l+ 1

√
l+m− 1

l−m
|n(l− 1)(m− 1)〉.

(12.93)
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0 An entirely similar procedure also yields the Â+ operator:

Â+L̂− |nlm〉 = − c+nlm (l+m)

2l+ 1
|n (l+ 1)m〉+ c−nlm (l−m+ 1)

2l+ 1
|n(l− 1)m〉 . (12.94)

Operating now left and right with the angular momentum raising operator L̂+, and

making use of the fact that the Â+ and L̂+ raising operators commute, we obtain

A+ |nlm〉 = − c+nlm

2l+ 1

√
l+m+ 2

l−m+ 1
|n(l+ 1)(m+ 1)〉

+ c−nlm

2l+ 1

√
l−m− 1

l+m
|n(l− 1)(m+ 1)〉.

(12.95)

Armed with these expressions for the three components of Â, we can now set up two

master equations from which the two unknown coefficients can be obtained. The first

equation is based on the evaluation of the Â2 operator, which must yield the result

from Eq. (12.69):

〈nlm| Â2 |nlm〉 = 〈nlm|
(

Â+Â− + Â2
z − L̂z

)
|nlm〉

=
〈
Â−nlm|Â−nlm

〉
+
〈
Âz nlm|Âz nlm

〉
−m

= n2 − 1− l (l+ 1).

(12.96)

Substituting the matrix elements then yields the first master equation:(
c+nlm

2l+ 1

)2(
l−m+ 2

l+m+ 1
+ 1

)
+
(

c−nlm

2l+ 1

)2(
l+m− 1

l−m
+ 1

)
= n2 − 1− l (l+ 1)+m.

(12.97)

For the second equation, let us express the commutator of the raising and lowering

operators in terms of the c coefficients. This commutator reads
[
Â+, Â−

] = 2L̂z .

Putting this result inside a matrix element yields

〈nlm|
(

Â+Â− − Â−Â+ − 2L̂z

)
|nlm〉

=
〈
Â−nlm|Â−nlm

〉
−
〈
Â+nlm|Â+nlm

〉
− 2m= 0.

(12.98)

On substitution, we obtain(
c+nlm

2l+ 1

)2(
l−m+ 2

l+m+ 1
− l+m+ 2

l−m+ 1

)

+
(

c−nlm

2l+ 1

)2(
l+m− 1

l−m
− l−m− 1

l+m

)
− 2m= 0.

(12.99)

This set of two equations yields the absolute values of the c coefficients. At this point,

a phase choice must be made to obtain a fixed form for the raising and lowering

operations. We have adopted here the phase choice made by Adams12 and colleagues,

12 B. G. Adams, J. Čížek, and J. Paldus. “Representation Theory of SO(4, 2) for the Perturbation

Treatment of Hydrogenic-Type Hamiltonians by Algebraic Methods.” 1982.



Table 12.6 Action of the step operators on the |nlm〉 ket functions. Notice that cl =
√

n2−l2√
4l2−1

.

L̂2 |nlm〉 = h̄2l (l+ 1) |nlm〉
L̂z |nlm〉 = h̄m |nlm〉

L̂+ |nlm〉 = h̄
√
(l−m)(l+m+ 1) |nl (m+ 1)〉

L̂− |nlm〉 = h̄
√
(l+m)(l−m+ 1) |nl (m− 1)〉

Q̂2 |nlm〉 = h̄2l (l+ 1) |nlm〉
Q̂z |nlm〉 = h̄n |nlm〉

Q̂+ |nlm〉 = h̄
√
(n− l)(n+ l+ 1) |(n+ 1) lm〉

Q̂− |nlm〉 = h̄
√
(n+ l)(n− l− 1) |(n− 1) lm〉

Â2 |nlm〉 = h̄2 (n2 − l (l+ 1)− 1
) |nlm〉

Âz |nlm〉 = h̄
√
(l−m)(l+m)cl |n (l− 1)m〉+ h̄

√
(l−m+ 1)(l+m+ 1)cl+1 |n(l+ 1)m〉

Â+ |nlm〉 = h̄
√
(l−m)(l−m− 1)cl |n(l− 1)(m+ 1)〉− h̄

√
(l+m+ 2)(l+m+ 1)cl+1 |n (l+ 1)(m+ 1)〉

Â− |nlm〉 = −h̄
√
(l+m)(l+m− 1)cl |n(l− 1)(m− 1)〉+ h̄

√
(l−m+ 2)(l−m+ 1)cl+1 |n (l+ 1)(m− 1)〉
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2 yielding

c+nlm

2l+ 1
=√(l+ 1−m)(l+ 1+m)

√
n2 − (l+ 1)2

4 (l+ 1)2 − 1
;

c−nlm

2l+ 1
=√(l−m)(l+m)

√
n2 − l2

4l2 − 1
.

(12.100)

Note that the second expression in this equation is immediately obtained from the first

by simply replacing l+ 1 with l. This reflects the unitary relationship between the �̂+
l

and �̂−
l+1 operators. Finally, Table 12.6 summarizes the action of all the step operators

that allows us to change the hydrogenic quantum numbers.



13 The periodic table

The elements, if arranged according to their atomic weights, exhibit an apparent periodicity

of properties.

–Dmitrii Ivanovich Mendeleev (1869)1

The periodic system represents a classification of the manifold of chemical elements.

It was proposed by the Russian chemist Dmitrii Ivanovich Mendeleev (1834–1907)

on February 17, 1869.2 In addition to bringing order among the plethora of chemical

and physical properties, the periodic table encouraged discussion in atomic physics

and helped forging the early theories of quantum mechanics. As of 2017, Mendeleev’s

chart has been elevated to a polychromatic icon emblematic of the successes of modern

science.

And yet, during the ∼150 years that have elapsed since Mendeleev’s initial

proposition, the overall structure of the periodic table has never been derived from

1 D. I. Mendeleev. “On the Correlation Between the Properties of the Elements and Their Atomic

Weights.” Zhurnal Russkogo Khimicheskogo Obshchestva 1.2–3 (1869), pp. 35, 60–77.
2 D. I. Mendeleev. An Attempted System of the Elements Based on Their Atomic Weights and Chemical

Analogies. 1869. See: M. Kaji. “D. I. Mendeleev’s Concept of Chemical Elements and the Principles

of Chemistry.” Bulletin for the History of Chemistry 27.1 (2002), pp. 4–16. D. I. Mendeleev. “Versuch

eines Systems der Elemente nach ihren Atomgewichten und chemischen Funktionen.” Journal für

praktische Chemie 106 (1869), p. 251; D. I. Mendeleev. “Über die Beziehungen der Eigenschaften zu

den Atomgewichten der Elemente.” Zeitschrift für Chemie 5 (1869), pp. 405–406; D. I. Mendeleev.

“Die periodischen Gesetzmässigkeit der chemischen Elemente.” Annalen der Chemie und Pharmacie

8 (Suppl.) (1871), pp. 133–229.
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4 first principles, nor has the origin of the periodic law been completely understood from

a quantum mechanical perspective.

Chapter outline

This chapter provides a general overview of the current state of our understanding

of the periodic law. The chemical periodicity phenomena that induced Mendeleev

to construct his periodic table will be introduced in §13.1. Special emphasis will be

laid, however, on the explanations provided by the latest physical and mathematical

research. A brief review of the quantum mechanics of atomic systems appears in §13.2,

and is followed in §13.3 by a discussion of the periodic system’s overall structure from

an atomic physics point of view.

Two crucially important features of the Mendeleev chart will be revealed in this

way: (1) the Madelung (n+ l, n) rule, which is believed to rationalize the orbital filling

order in many-electron systems and (2) the doubling of the periods, which emerges as

a natural consequence of the Madelung rule. Both concepts are of such paramount

importance to the periodic table that an entire section. §13.4, will be devoted to their

study. A modified format of the periodic system with a distinctive stepped profile will

be proposed on their basis, and will be referred to as the left-step or Janet Periodic Table.

One of the principal reasons for the current lack of understanding of the periodic

law is the absence of an ab initio derivation of the Madelung rule. Many claims for

a successful derivation have appeared in the scientific literature, but most have been

dismissed. As a result, the (n+ l, n) rule has fallen into disrepute among many chemists

and physicists alike. Its utility in describing the electronic structure of neutral atoms

has been called into question, and its universal validity has been disputed. Indeed,

most quantum mechanical interpretations of the (n+ l, n) rule are found lacking in

many respects, as will be explained in §13.5.

Instead therefore, a group theoretical articulation of the (n+ l,n) rule will be

proposed in this chapter. A concise and nontechnical description of this approach will

be provided in §13.6. Both the philosophical and methodological implications of this

approach will also be discussed. This will set the scene for a detailed treatment of the

symmetries of the periodic table in Chapter 14.

13.1 CHEMICAL PERIODICITY

A two-step process is needed to build a periodic table from scratch. First, all

the elements have to be ordered according to increasing atomic number Z . This

primary classification results in a long horizontal sequence of elements, and has

been called the Mendeleev line.3 It will be noted that certain chemical and physical

properties of the elements recur periodically (i.e., after regular intervals). These

periodicity phenomena are best exhibited by plotting some chemical or physical

property of the elements versus the ordinal (atomic) number Z . Typical examples

include plots of the atomic radii, electronegativities, or first ionization energies of

the atoms.

3 H. A. Bent. New Ideas in Chemistry from Fresh Energy for the Periodic Law. Bloomington, IN:

AuthorHouse, 2006.
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In a second step, termed the secondary classification, the Mendeleev line is partitioned

at certain well-defined loci, and the resulting sections (i.e., periods) are then placed

underneath each other so that elements with similar properties fall into the same

vertical columns, thus forming natural groups and representing the periodic law

graphically (Figure 13.1). In this sense, the periodic system of the elements can be

said to embody the periodic law.

Definition 13.1 (The periodic law): The physical and chemical properties of the

chemical elements recur periodically as their atomic number increases. ◾
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FIGURE 13.1 Short-form (A), medium-longform (B), and long-form (C) depiction of the periodic table. Notice that the periods in the short form table have been subdivided in a and b series

(the lanthanides and actinides are not included).
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Quasiperiodicity and period lengths

The observed periodicity is of a quasiperiodic nature. Systems exhibiting mathematical

(instead of chemical) periodicity are typically characterized by a single period length.4

Mendeleev’s system, on the contrary, contains period lengths that vary and increase

along the table. The standard periodic table (Figure 13.1B), for instance, consists

of seven periods with the following cardinalities (i.e., number of elements within a

period)5:

2− 8− 8− 18− 18− 32− 32. (13.1)

The set in Eq. (13.1) represents a crucial feature of the periodic system. Notice also

that all period lengths occur in pairs, except for the very first period of dimension 2.

We will come back to this point in §13.4.

13.2 QUANTUM MECHANICS OF ATOMIC SYSTEMS

The construction of the periodic table by Mendeleev revealed the existence of an

integer number regularity [Eq. (13.1)], which hinted at the compound nature of the

atom. This was an open invitation to explore the deeper structure of atomic matter.

It would, nonetheless, take several decades before the idea of the indivisible atom was

abandoned and nuclei and electrons were identified as the atomic constituents.

With the advent of quantum mechanics at the beginning of the twentieth

century, the aforementioned periodicity phenomena received a quantum mechanical

underpinning. Historically, the first pioneering work in this direction was pursued by

Niels Bohr (1885–1962). As early as 1913, Bohr used the old quantum theory to provide

a theoretical explanation for the periodicity phenomena on the basis of the electronic

configurations of atoms. Most of his theoretical findings have now entered mainstream

textbook knowledge. However, on a deeper level, many characteristic features of the

periodic system are still in need of explanation.

The goal of this section is to provide a brief summary of the (nonrelativistic)

quantum mechanics of atomic systems. We will build up the complexity by starting

with a consideration of one-electron (hydrogenic) systems in §13.2.1, which will set

the scene for a treatment of many-electron systems in §13.2.2. This will provide the

necessary background to tackle the periodic table in the next section, §13.3.

13.2.1 One-electron systems

Recall that the energy eigenvalues of hydrogenic systems (H, He+, Li++, and so on)

are quantized according to the following energy formula:

En =− mZ2e4

8h2ε0
2n2

for n= 1, 2, 3, 4, . . . , (13.2)

where m is the reduced mass, Z is the atomic number (Z = 1 for hydrogen), e is the

unit of electric charge, h is Planck’s constant (the logo of quantum mechanics), and ε0

4 Think of sinusoidal functions, a planet tracing its orbit around the sun, the start of a new day

every twenty-four hours, or the return of the winter season every new year.
5 The completion of the seventh period dates from December 30, 2015, when the International

Union of Pure and Applied Chemistry (IUPAC) announced in a Press Release the discovery and

assignment of elements with atomic numbers 113, 115, 117, and 118.
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8 is the vacuum permitivity. It is evident that this spectrum is many-fold degenerate in l

and ml , dependent only on the quantum number n (Figure 9.1). The total degeneracy

(or multiplicity) for the principal quantum number n is equal to n2, according to

n−1∑
l=0

(2l+ 1)= (0+ (n− 1))n+
n−1∑
l=0

1= (n− 1)n+n = n2. (13.3)

The energy rule in Eq. (13.2) gives rise to the following orbital sequence for

the hydrogen atom (taking into account the spin degeneracy, which doubles the

multiplicity to 2n2):

n=1︷︸︸︷
{1s}︸︷︷︸

dim=2

#
n=2︷ ︸︸ ︷{

2s = 2p
}︸ ︷︷ ︸

dim=8

#
n=3︷ ︸︸ ︷{

3s = 3p = 3d
}︸ ︷︷ ︸

dim=18

#
n=4︷ ︸︸ ︷{

4s = 4p = 4d = 4f
}︸ ︷︷ ︸

dim=32

# . . . . (13.4)

We can summarize this sequence of levels of increasing energy by the simple Fock (n)

rule.

Definition 13.2 (The Fock (n) rule): With increasing nuclear charge Z , the nl-orbitals

are filled in order of increasing n. ◾

13.2.2 Many-electron systems

The quantum mechanical description of a multielectron atom (with atomic

number Z) is compounded by the inception of nuclear shielding effects and

interelectronic interactions which dramatically change the hydrogenic order

(Eq. (13.4)) of nl orbitals.6 Moreover, these factors render the exact analytic solution

of the Schrödinger equation

Ĥ  (r1,r2, . . . ,rZ )= E (r1,r2, . . . ,rZ ) , (13.5)

with

Ĥ =−
Z∑

i=1

h̄2

2m
∇2

i −
Z∑

i=1

Ze2

ri
+

Z−1∑
i=1

Z∑
j>i

e2

rij
, (13.6)

impossible. Hence, the theoretical chemist is forced to use approximate numerical

methods. The first term in Eq. (13.6) contains the kinetic energies for the Z electrons,

the second sum is the potential energy for the attractions of each electron toward the

nucleus of charge Ze, and the last term gives the potential energy of the electronic

repulsions. Notice that an infinitely heavy point nucleus is assumed.

The orbital approximation

Within the hydrogenic limit (or single-particle approach), the Z electrons are assumed

to behave independently of one another by suppressing the interelectronic repulsion

6 For a hydrogenic system (H, He+, Li++, and so on), the energy is independent of l so that levels with

larger values of n invariably have higher energies. For many-electron systems, on the other hand, the

energy is dependent on both n and l, and a level with n= 4 and l = 0 (i.e., 4s-orbital), for example,

can lie below the level with n = 3 and l = 2 (i.e., 3d-orbital). See §13.3.
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term in Eq. (13.6):

Ĥ =
Z∑

i=1

(
− h̄2

2m
∇2

i −
Ze2

ri

)
=

Z∑
i=1

Ĥi . (13.7)

The total wave function  can then be treated as a determinental product of Z

one-electron wave functions ψi (spin orbitals).7

The self-consistent field approximation

The self-consistent field approximation assumes that each electron moves in the

average, self-consistent field created by the other electrons and the atomic nucleus. As a

result, it is actually subject to an effective one-electron potential Veff (ri). On account of

the spherical symmetry of this potential, this approach is also known as the central field

approximation. To each orbitalψi then corresponds a particular energy value, denoted

εnl , according to the analytically solvable time-independent Schrödinger equation for

one-electron systems8:

Ĥiψi (ri)=
[
− h̄2

2m
∇2

i +Veff (ri)

]
ψi (ri)= εnlψi (ri) (13.8)

Note that a screening function ζ (ri) can be defined that specifically accounts for the

screening of the nuclear Coulomb potential −Ze2/ri by writing Veff in the form

Veff (ri)=−ζ (ri)
Ze2

ri
. (13.9)

Following Bohr’s Aufbauprinzip (or building-up principle), an atom of atomic number

Z is considered to be the end result of a process of adding Z electrons in succession to

the bare atomic nucleus. During this building-up process, the electrons tend to occupy

the one-electron levels ψi of lowest energy εnl first. Because the number of electrons

per orbital is limited by Pauli’s exclusion principle, more and more spin orbitals are

progressively occupied with increasing atomic number Z .9 The order in which these

orbitals are sequentially occupied is known as Bohr’s Aufbau scheme, and the final

orbital occupation is referred to as the atom’s electronic ground state configuration.

13.3 QUANTUM MECHANICS OF THE PERIODIC SYSTEM

Having reviewed the quantum mechanics of atomic systems briefly in §13.2, all

ingredients are in place for a quantum mechanical description of the periodic system.

This description is based on the following three principles:

7 The total wave function is also called the Hartree wave function.
8 The atomic energy levels εnl are also referred to as the spectral terms of the atom.
9 As a reminder, the Pauli exclusion principle follows from the indistinguishability of the electrons

(or fermions, in general). That is, the act of exchanging two electrons should remain hidden from

direct observation. A more accurate statement of the Pauli principle therefore enounces that the

wave function  should be antisymmetrized under the permutation of electrons. The electrons

consequently lose their individuality, and the quantum numbers n, l, ml , and ms no longer “belong”

to any individual electron, but label the one-electron orbitals ψi instead. Ostrovsky thus stressed

that “using atomic configurations does not mean that an orbital, or set of quantum numbers are

ascribed to any particular electron.” See V. N. Ostrovsky. “What and How Physics Contributes to

Understanding the Periodic Law.” Foundations of Chemistry 3.2 (2001), pp. 145–182.
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0 1. The quantum numbers n and l: Many-electron atoms are characterized by a set of

principal and orbital quantum numbers {n, l} that label occupied one-electron

wave functions (orbitals).

2. The Pauli exclusion principle: No two electrons can share the same set of four

quantum numbers n, l, ml , and ms . Each orbital can accommodate at most two

electrons, which differ in their spin projection ms =±1/2: one with spin up and

the other with spin down.

3. The Aufbau principle: One-electron wave functions are filled sequentially with

electrons in order of increasing energy.

Based on these three principles, the ground state configurations of the elements can be

determined, and a periodic table can be constructed in which elements with the same

electronic valence shell configuration are grouped together into the same column. The

periodic system thus reflects the order of filling of the electron nl (sub)shells.

The ground state configuration of each element is dependent on the nature of

the Aufbau scheme, the outline of which is given by the energetic distribution of the

one-electron levels within a neutral atom. This energetic order is determined by the

form of the atomic potential Veff in Eq. (13.8). A variety of periodic tables with

radically different periodicity patterns (i.e., set of period lengths) can thus be obtained,

depending on the exact form of the potential Veff.10

The search for a generalized effective potential Veff that rationalizes the structure

of the standard periodic table has posed severe challenges to quantum chemists. To

arrive at an insightful explanation for the oddly shaped periodic chart, it will be

important to keep the subject matter simple. In the following sections, three effective

one-electron potentials Veff of increasing complexity will be reviewed, and we will

ascertain whether the corresponding Aufbau schemes (or energy ordering rules) are

capable of yielding the correct sequence of energy levels to account for the structure

of the periodic system.

13.3.1 The Fock (n) rule

Many chemists intuitively assume Veff (r) to be described by the pure hydrogenic

Coulomb potential −Ze/r. This yields the Aufbau scheme in Eq. (13.4) as described

by the Fock (n) rule (Definition 13.2).

Based on this scheme and the three principles, the electron in atomic hydrogen (H,

Z = 1) goes to the 1s-orbital with n = 1, l = 0, ml = 0, and ms = +1
/

2. Its ground

state configuration is therefore 1s1. Moving on to helium (He, Z = 2), a second electron

with opposite spin (i.e., ms = −1
/

2) is added to the 1s-orbital, yielding the electron

configuration 1s2. This exhausts all the possibilities for the n = 1 state and results in a

closed shell (a shell with its full complement of electrons), denoted [He] when it occurs

as a core in other atoms.

Next comes lithium (Li, Z = 3), which has three electrons. After the first two

electrons huddle in the n = 1 state, the third electron must go into the n = 2 state.

But there, a problem arises! According to the Aufbau scheme (Eq. (13.4)), both the

2s-orbital and the three 2p-orbitals have the same energy. So, the question arises

whether the third electron should occupy a 2s-orbital or one of the three 2p-orbitals?!

10 ibid., p. 154, and V. N. Ostrovsky. “Physical Explanation of the Periodic Table.” Annals of the New

York Academy of Sciences 988 (2003), pp. 182–192.
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13.3.2 The hydrogenic (n, l) rule

The Fock (n) rule thus fails to account for the ground state electronic configurations

of the elements. It does so because it completely ignores the presence of other electrons

that typically screen the nuclear charge. In a first, crude approximation, we could

therefore assume the Coulomb potential to be slightly distorted; that is, we could

postulate that Veff corresponds to a weakly perturbed Coulomb potential. Let us see

how far this assumption can lead us in the next few sections.

Screening effects

The energy with which an electron is held in a hydrogenic atom is, we repeat,

proportional to Z2/n2:

En =− mZ2e4

8h2ε0
2n2

for n = 1, 2, 3, 4, . . . . (13.10)

This formula can be used to calculate the nth ionization energy In(X) of a

many-electron atom X in the gaseous phase. For the ground state configuration of the

hydrogen atom (Z = 1), for instance, the electron is located in the 1s-orbital (n = 1),

with an energy of E1 = −13.6 eV, thus yielding an ionization energy of I1(H) = 13.6

eV. This value is remarkably close to the experimentally obtained ionization energy of

hydrogen I1(H)= 13.59844 eV (see Table 13.1).

Similar calculations can be performed on the other elements. Helium (Z = 2) and

lithium (Z = 3), for example, have their outermost valence electron located in the 1s-

and 2s-orbital, respectively, which yields the following ionization energies:

I1(He)= 4

1
I1(H)= 54.4 eV; (13.11)

I1(Li)= 9

4
I1(H)= 30.6 eV. (13.12)

Table 13.1 Calculated (calc.) and observed (obs.) ionization energies for the first five

elements: hydrogen (Z= 1), helium (Z= 2), lithium (Z= 3), beryllium (Z= 4), and boron

(Z= 5). The discrepancy between the observed and calculated values is due to a

screening of the nuclear charge by the other electrons. The effective nuclear charge Zeff
and shielding constant σ are listed for the outermost valence electron.

I1 I2 I3 I4 I5 Zeff σ

H calc. 13.6 eV — — — — 1.00 0.00

obs. 13.6 eV — — — — 1.00 0.00

He calc. 54.4 eV 54.4 eV — — — 2.00 0.00

obs. 24.6 eV 54.4 eV — — — 1.34 0.66

Li calc. 30.6 eV 122.4 eV 122.4 eV — — 3.00 0.00

obs. 5.39 eV 75.6 eV 122.5 eV — — 1.26 1.74

Be calc. 54.4 eV 54.4 eV 217.6 eV 217.6 eV — 4.00 0.00

obs. 9.32 eV 18.2 eV 153.9 eV 217.7 eV — 1.65 2.35

B calc. 85.0 eV 85.0 eV 85.0 eV 340.0 eV 340.0 eV 5.00 0.00

obs. 8.30 eV 25.2 eV 37.9 eV 259.4 eV 340.2 eV 1.56 3.44
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2 Admittedly, such calculations only yield approximate values for In. Table 13.1

illustrates that the experimentally observed ionization energies are always less than

the theoretically deduced values.

This discrepancy can be explained by the fact that in many-electron systems, the

presence of the other electrons causes the atomic nucleus to be screened. Each electron

therefore experiences an effective nuclear charge,11 denoted Zeff, which is smaller than

the actual nuclear charge Z by a factor σ according to

Zeff = Z − σ ≤ Z , (13.13)

where σ is the shielding or screening constant (see Table 13.1). The nuclear charge, as

felt by the valence electrons of He, Li, and Be, for instance, gets reduced from 2, 3, and

4 to 1.34, 1.26, and 1.65, respectively. From this point of view, the shielding constant

stands for the average number of electrons between the nucleus and the electron in

question.12

The orbital penetration effect

Let us briefly consider the case of the lithium atom (Z = 3) with which we ended

the last section, which has a groundstate configuration that is known to be 1s22s1.

Figure 13.2 exhibits the radial probability distribution for various hydrogenic atomic

orbitals. It follows from this graph that the electron density of the 2s valence electron

is situated predominantly outside the 1s-orbital, which suggests that the +3 nuclear

charge of lithium is screened by two 1s-electrons, yielding a Zeff of +1.13 The reason

why Zeff(Li) = 1.26 rather than 1.00 (cf. Table 13.1) is because of another (smaller)

bump in the radial probability plot of the 2s-orbital, the peak of which coincides with

the maximum of the 1s-curve (see Figure 13.2). This implies that the 2s electron

slightly penetrates the 1s-orbital, causing its effective nuclear charge to increase

a little.

This penetrating power P of an orbital is dependent on the orbital quantum number

l—a phenomenon referred to as the orbital penetration effect. The penetrating power

is greatest for an s-orbital (l = 0) and decreases with increasing l: Ps > Pp > Pd > Pf .

As a result of this variation in penetrating power, electrons with different l-values also

experience different shieldings. An electron in an s-orbital, for example, is screened

less effectively by the electrons in the other orbitals and it experiences a larger effective

nuclear charge because of its highly penetrating power. This also means, conversely,

that an s electron has greater shielding power than electrons in a p-, d-, or f -orbital of

the same n-shell. As a general rule, the shielding constant σ increases with increasing

l (σs < σp < σd < σf ), and Zeff decreases with increasing l according to Eq. (13.13).

11 The effective nuclear charge is also called the core charge or kernel charge; the kernel being defined

as the ensemble of the nucleus with the shielding electrons.
12 Values of the shielding constant can be determined via the semiempirical Slater rules or via

quantum mechanical calculations. See J. C. Slater. “Atomic Shielding Constants.” Physical Review

36.1 (1930), pp. 57–64, and E. Clementi and D. L. Raimondi. “Atomic Screening Constants from

SCF Functions.” The Journal of Chemical Physics 38.11 (1963), pp. 2686–2689, as well as E. Clementi,

D. L. Raimondi, and W. P. Reinhardt. “Atomic Screening Constants from SCF Functions: II. Atoms

with 37 to 86 Electrons.” The Journal of Chemical Physics 47.4 (1967), pp. 1300–1307.
13 In electrostatics, Gauss’s law shows that for a point outside a charged sphere, the entire electrical

charge can be treated as a point charge situated at the origin of the sphere.
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FIGURE 13.2 Radial probability distribution for various hydrogenic atomic orbitals. The radial

probability 4πr2R2
n,l has been plotted as a function of the radial distance r from the nucleus in

atomic units.

The hydrogenic (n, l) rule

As a consequence of the previously mentioned screening effects, the degeneracy in the

orbital quantum number l is lifted for orbitals in multielectron atoms and, as a general

rule, εs < εp < εd < εf within an n-shell. This leads to an important modification of

the (Fock) orbital sequence in Eq. (13.4):

n=1︷︸︸︷
{1s}︸︷︷︸

dim=2

#
n=2︷ ︸︸ ︷{

2s < 2p
}︸ ︷︷ ︸

dim=8

#
n=3︷ ︸︸ ︷{

3s < 3p< 3d
}︸ ︷︷ ︸

dim=18

#
n=4︷ ︸︸ ︷{

4s < 4p< 4d < 4f
}︸ ︷︷ ︸

dim=32

# . . . , (13.14)

which can be summarized by the hydrogenic (n, l) rule.

Definition 13.3 (The hydrogenic (n, l) rule): With increasing nuclear charge Z , the

orbitals are filled in order of increasing n; for fixed n, the orbitals are filled according

to increasing l. ◾
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4 The first part of this rule corresponds to the Fock (n) rule for a pure, unscreened

Coulomb field, whereas the second part accounts for the screening effects that lift

the degeneracy over l. The orbitals in Eq. (13.14) are grouped according to the same

value of n. Taking into account the possible values for the magnetic and spin magnetic

quantum numbers ml and ms , this leads to the following series of dimensionalities for

the above sequence:

2− 8− 18− 32− 50− . . . , (13.15)

as summarized by the Stoner formula 2n2.

According to the Aufbau scheme in Eq. (13.14), the 2s-orbital is lying lower in

energy than the 2p-orbital, which accounts for the [He] 2s1 configuration of lithium

(Li, Z = 3). As a matter of fact, the (n, l) rule correctly describes the electronic

configurations of the first eighteen elements (H → Ar). However, it radically fails to

account however for the ground state configurations of the elements with Z ≥ 19. For

example, based on the energy sequence in Eq. (13.14), we would expect the electronic

configuration of potassium (K, Z = 19) to be [Ne] 3s23p63d1, whereas spectroscopic

research has revealed its configuration to be [Ne] 3s23p64s1! Clearly, then, the (n, l)

rule “generates an incorrect periodicity pattern [for neutral atoms]” and another

filling rule will have to be invoked.14

13.3.3 The Madelung (n+ l,n) rule

The reason behind the total breakdown of the (n, l) rule after Z = 18 lies in the

erroneous assumption that with the potential deepening at intermediate and small

r, the corresponding lowering of the nl energy levels remains small enough so as

not to affect the major n-grouping.15 That is, although the typical order of energies

εns < εnp < εnd < εnf within an n-shell can be rationalized by assuming Veff to be

a weakly perturbed Coulomb potential, this simple (qualitative) picture falls short in

yielding an explanation for the fact that ε4s < ε3d , for instance.

In reality, the effective one-electron potential Veff for neutral atoms is seen to

deviate so strongly from the pure Coulomb potential −Ze/r, that it would be better

to describe it by a new (non-Coulomb) potential altogether. As a result, a dramatic

rearrangement of the nl levels is effected with substantial overlap between levels of

different n (thus explaining ε4s < ε3d , for instance). Despite this fact, “a new type of

regularity emerges in the form of the Madelung rule [emphasis added].”16

Definition 13.4 (The Madelung (n+ l, n) rule): With increasing nuclear charge Z ,

one-electron orbitals are filled according to increasing N = n + l, being the sum of

the principal quantum number n and the orbital quantum number l. For fixed N , the

orbitals are filled in order of increasing n. ◾

The [Ne] 3s23p64s1 configuration of potassium can now be explained on the basis of

the lower n+ l value for the 4s-orbital (n = 4, l = 0 → n+ l = 4) as compared to the

3d-orbital (n= 3, l = 2→ n+ l = 5). A full application of the (n+ l,n) rule gives rise

14 Ostrovsky, “What and How Physics Contributes to Understanding the Periodic Law,” p. 186.
15 V. N. Ostrovsky. “The Periodic Table and Quantum Physics.” The Periodic Table: into the 21st

Century. Eds. D. H. Rouvray and R. B. King. Baldock, UK: Research Studies Press, 2004, pp. 331–370.
16 Ostrovsky, “What and How Physics Contributes to Understanding the Periodic Law,” p. 156.
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Table 13.2 Application of the empirical (n+ l,n) rule (also known as the Madelung

rule) according to which the orbitals in neutral atoms are filled in order of increasing

n+ l, and n for fixed n+ l. The exact filling sequence is obtained by reading the

quantum map from left to right and top to bottom.

n+ l l = 3 l = 2 l = 1 l = 0 N max
n+l Zi → Zf Xi → Xf

1 — — — 1s2 2 1→ 2 H → He

2 — — — 2s2 2 3→ 4 Li → Be

3 — — 2p6 3s2 8 5→ 12 B → Mg

4 — — 3p6 4s2 8 13→ 20 Al → Ca

5 — 3d10 4p6 5s2 18 21→ 38 Sc → Sr

6 — 4d10 5p6 6s2 18 39→ 56 Y → Ba

7 4f 14 5d10 6p6 7s2 32 57→ 88 La → Ra

8 5f 14 6d10 7p6 8s2 32 89→ 120 Ac → 120

to the following orbital sequence (see also the data shown in Table 13.2):

n+l=1︷ ︸︸ ︷
{1s}︸︷︷︸

dim=2

#
n+l=2︷ ︸︸ ︷
{2s}︸︷︷︸

dim=2

#
n+l=3︷ ︸︸ ︷{

2p< 3s
}︸ ︷︷ ︸

dim=8

#
n+l=4︷ ︸︸ ︷{

3p< 4s
}︸ ︷︷ ︸

dim=8

#
n+l=5︷ ︸︸ ︷{

3d < 4p< 5s
}︸ ︷︷ ︸

dim=18

#

n+l=6︷ ︸︸ ︷{
4d < 5p< 6s

}︸ ︷︷ ︸
dim=18

#
n+l=7︷ ︸︸ ︷{

4f < 5d < 6p< 7s
}︸ ︷︷ ︸

dim=32

#
n+l=8︷ ︸︸ ︷{

5f < 6d < 7p< 8s
}︸ ︷︷ ︸

dim=32

# . . . ,

(13.16)

with grouping according to constant N = n + l. This corresponds to the following

series of repeated “double squares”17:

2− 2− 8− 8− 18− 18− 32− 32− . . . . (13.17)

Interestingly, when compared with Eq. (13.15), the hydrogenic dimensions are seen to

appear exactly twice in the Madelung sequence—a phenomenon known as the period

doubling. Both the Madelung rule and the period doubling are of such paramount

importance to the periodic system that the next section will be devoted to their detailed

description.

13.4 THE MADELUNG (n+ l,n) RULE

The (n+ l,n) rule predicts the onset of all atomic subshell occupations in the Aufbau

sequence of the periodic system. That is, it effectively foretells the beginning of

the transition metals, and lanthanide and actinide series. It rationalizes, in other

words, the overall structure of the periodic system by providing us with a recipe for

laying out the different s-, p-, d-, and f -blocks in the table. As a welcome extra, the

Madelung rule also discloses the period doubling as an essential feature of the periodic

system (§13.4.2). In this sense, the power of the (n+ l, n) rule lies in its architectural

description of the Mendeleev chart.

17 Per-Olov Löwdin. “Some Comments on the Periodic System of Elements.” International Journal

of Quantum Chemistry S3A (1969), pp. 331–334.
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FIGURE 13.3 The overall stucture of the periodic table of chemical elements.

The previous section revealed the existence of a particular Madelung order

(Eq. (13.16)) among the nl orbitals of many-electron systems. The Madelung (n+ l,n)

rule thus holds the promise of yielding a deeper explanation for the periodicity

phenomena described in §13.1. It is indeed sufficient to glance at the periodic table

in Figure 13.3 to see that the Madelung (n+ l, n) rule faultlessly accounts for its overall

structure. As Samuel A. Goudsmit and Paul I. Richards observed, the (n+ l,n) rule

“is remarkably well obeyed throughout the periodic table.”18 It correctly accounts for

the first occurrence of the atomic subshell occupations in the Aufbau sequence of the

periodic system, predicting the inset of the transition metal block (3d-block) after the

4s-block, as well as the start of the lanthanide and actinide series (f -block elements)

after the 6s- and 7s-elements, respectively.

13.4.1 The left-step periodic table

The quantum map in Table 13.2 can be used as a framework for a new representation of

the periodic system, as depicted in Figure 13.4. This form, known as the eight-period or

left-step periodic table (LSPT), was first devised by the engineer and amateur biologist

Charles Janet (1849–1932) in 1929 (Figure 13.5).19 Janet had originally designed

18 S. A. Goudsmit and P. I. Richards. “The Order of Electron Shells in Ionized Atoms.” Proceedings

of the National Academy of Sciences of the United States of America 51 (1964), p. 664.
19 C. Janet. Considérations sur la Structure du Noyau de l’Atome. Beauvais: Imprimerie Départe-

mentale de l’Oise, 1929. A preliminary helical version of the LSPT was published by Janet in 1927.

See C. Janet. La Structure du Noyau de l’Atome Considérée dans la Classification Périodique des

Eléments Chimiques. Beauvais: Imprimerie Départementale de l’Oise, 1927. This also explains Janet’s

preferred use of the term hélicoïdale (helicoid) for the LSPT, notwithstanding his later adoption

of the adjective scalariforme (stepped). Various other geometric forms of the LSPT were designed

in subsequent years. See, for example, C. Janet. Essais de Classification Hélicoïdale des Èléments

Chimiques. Beauvais: Imprimerie Départementale de l’Oise, 1928, and C. Janet. La Classification

Hélicoïdale des Èléments Chimiques. Beauvais: Imprimerie Départementale de l’Oise, 1928. For a

detailed account of Janet’s periodic systems, see P. J. Stewart. “Charles Janet: Unrecognized Genius

of the Periodic System.” Foundations of Chemistry 12 (2010), pp. 5–15. A biography of Janet



Lr

Lu

Y

Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr

Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe

Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn

Rf Db Sg Bh Hs Mt Ds Rg Cn Nh Fl Mc Lv Ts Og

Ar

Ne

Cl

F

S

O

P

N

Si

C

Al

B

Yb

No

Tm

Md

Er

Fm

Ho

Es

Dy

Cf

Tb

Bk

Gd

Cm

Eu

Am

f-block d-block p-block s-block

Sm

Pu

Pm

Np

Nd

U

Pr

Pa

Ce

Th

La

Ac

1

2

3

4

5

6

7

H He

Li Be

Na Mg

K Ca

Rb Sr

Cs Ba

Fr Ra

8

FIGURE 13.4 Left-step periodic table. In this representation, the f -block consists of fourteen groups of f -elements with lanthanum (La) and actinium (Ac) as the first representatives of each

row, and ytterbium (Yb) and nobelium (No) as the last ones. Lutetium (Lu) and lawrencium (Lr) are accommodated as d-block elements in the periodic table, below scandium (Sc) and

yttrium (Y). The left-step periodic table is in perfect agreement with the Madelung rule.



57

G
én

ér
at

ri
ce

 d
e 

ta
ng

en
ce

 4
.1

G
én

ér
at

ri
ce

 d
e 

ta
ng

en
ce

 3
 . 

4

G
én

ér
at

ri
ce

 d
e 

ta
ng

en
ce

 2
 . 

3

G
én

ér
at

ri
ce

 d
e 

ta
ng

en
ce

 1
 . 

2

G
én

ér
at

ri
ce

 d
e 

ta
ng

en
ce

  4
.1

Spires
élémentaires:

13 . 14 . 15 . 16

17 . 18 . 19 . 20

58 59 60 61 62 63 64 65

Spires élémentaires . 7 . 8 . 9
21
Sc Ti Va Cr Mn Fe Co Ni Cu Zn

Y Zr Nb Mo Ma Ru Rh Pd Ag Ca

22 23 24 25 26 27 28 29 30

5

13
Al Si P S Cl A

14 15 16 17 18

31
Ga Ge As Se Br Kr

32 33 34 35 36

49
In Sn Sb Te I X

50 51 52 53 54

81

113 114 115 116 117 118
Ti Pb Bi Po Em

82 83 84 85 86

B

H
Spire élémentaire : 1

: 2

1

Periodes
on Spires entières

Numérotage

N
om

br
e 

de
 C

om
-

pa
rt

im
en

ts
N

om
br

e 
de

 S
pi

re
s

él
ém

en
ta

ir
es

3

11

19

37

55

87

119

1 2

1

56

88

120

Numérotage des Familles
Numérotage des Blocs de Familles
ou Nappes du Cylindre

38

20

12

4

2 2 1 1

2 1 2

8 2 3

8 2 4

18 3 5

18 3 6

32 4 7

32 4 8
4

3

2

1

1

2

1

Pé
ri

od
es

D
ya

de
s

Té
tr

ad
es

O
ct

ad
e

He

Li Be

Na Mg

K Ca

Rb Sr

Cs Ba

Ra

C N O F Ne
6 7 8 9 10

39 40 41 42 43 44 45 46 47 48

Lu
103 104 105 106 107 108 109 110 111 112

Ct Ta W Re Os Ir Pt Au Hg
71 72 73 74 75 76 77 78 79 80

Spire élémentaire: 3 . 4

: 5 . 6

:10 . 11 . 12

66 67 68 69 70
La Ce Pr Nd Fr Sm Eu Gd Tb Dy Ho Er Tu Ny
89

19 20 21 22 23 24 25 26
4 3

27 28 29 30 31 32 9 10 11 12 13 14 15 16 17 18 3 4 5 6 7 8
2

90 91 92 93 94 95 96 97 98 99 100 101 102
Ac Th Pa U

FIGURE 13.5 Charles Janet’s left-step periodic table (1928). [From: C. Janet. La Classification Hélicoidale des Eléments Chimiques. 1928, Fig. 5. Reprinted with permission of the Société

Académique de l’Oise, Beauvais, France. Courtesy of Loïc Casson.]
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FIGURE 13.6 Graph produced by Janet exhibiting the sequential building-up of electronic shells in

terms of the quantum numbers n and k. [From: C. Janet. Concordance de l’Arrangement Quantique

de Base, des Electrons Planetaires des Atomes, avec la Classification Scalariforme, Hélicoïdale, des

Eléments Chimiques. 1930. Reprinted with permission of the Société Académique de l’Oise,

Beauvais, France. Courtesy of Loïc Casson.]

his LSPT without taking into account the old quantum theory of Bohr, Edmund

C. Stoner, and Arnold Sommerfeld. One year later, however, Janet did notice the

perfect agreement between his LSPT and Bohr’s planetary atomic model.20 Anteceding

Madelung by six years, Janet recognized the importance of the n+ l rule, as can be

seen from a graph that he produced in 1930 (Figure 13.6).21 He also adopted the

actinide and transactinide classification, which is usually attributed to Glenn Seaborg

(1912–1999).

Despite the power and elegance of Janet’s scheme, his classifications failed to attract

the attention of the scientific community until this century. In recent times, Eric

Scerri, Gary Katz, Henry A. Bent, and Valery Tsimmerman have all advocated the use

can be found in L. Casson. “Sur le Fil Rouge de Charles Janet. Approche Épistémologique et

Biographique,” Mémoires de la Société d’Archéologie, Sciences et Arts du Département de l’Oise 37

(2015), pp. 163–197.

20 C. Janet. Concordance de l’Arrangement Quantique de Base des Électrons Planétaires des Atomes

avec la Classification Scalariforme Hélicoïdale des Éléments Chimiques. Beauvais: Imprimerie

Départementale de l’Oise, 1930.
21 Ibid. This also explains the alternative names fdps table or n+ l ordinal table for the LSTP.
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0 of the LSPT, arguing that it offers certain advantages in comparison with the more

conventional medium-long form of the periodic system22:

1. The periods in Janet’s table are characterized by a constant value of N = n+ l, and

this is without any exception. In the medium-long form, on the other hand, it

seems the periods are characterized by a constant value of n, but this rule is

violated several times. Examples include the unexpected appearance of the

3d-block in the fourth period and the sudden emergence of a 4f -block in the sixth

period. The LSPT is therefore in better agreement with the Madelung (n+ l, n)

rule, and suggests the possibility of elevating N = n+ l to a new quantum number

for the periodic table.

2. By organizing the elements in periods of constant n+ l and groups of constant l,

ml , and ms , the period doubling occurs naturally as an essential feature of the

periodic system. The pairing of the periods is responsible for the distinctive

stepped profile of the LSPT and it leads to the following set of cardinalities:

2− 2− 8− 8− 18− 18− 32− 32. (13.18)

This should be contrasted with the more artificial sequence of cardinalities in

Eq. (13.1) for the traditional seven-period periodic table.23

3. The ordering of the blocks is, in a sense, more “natural” in the LSPT than in the

conventional long form periodic table because it follows the natural filling of the

orbitals (compare f -d-p-s with s-f -d-p). This ordering leads to a gradual change

from strong horizontal relationships within the lanthanide and actinide series at

the left of the chart, to pronounced vertical relationships among the main block

elements at the right.24

A disadvantage, according to many chemists, is the placement of helium among the

alkaline earth metals in group IIA. Despite its agreement with quantum mechanics,

numerous chemists have advocated against this placement on the basis of empirical

data—a conduct referred to as the tyranny of the chemist.25

13.4.2 Period doubling

In the previous discussion, the period doubling emerged as a characteristic feature of

the periodic system. This section offers some empirical evidence to support this claim.

The doubling of the periods leads to important secondary periodicity phenomena.

Secondary trends in the periodic table have long been recognized and include, among

others, the d-block contraction, lanthanide contraction, tetrad effects, gadolinium

break, diagonal relationships, Knight’s Move, and inert-pair effects.

22 See, for example, E. R. Scerri. “Chemistry, Spectroscopy, and the Question of Reduction.” Journal

of Chemical Education 68.2 (1991), pp. 122–126; G. Katz. “The Periodic Table: An Eight Period Table

for the 21st Century.” Chemical Educator 6 (2001), pp. 324–332; E. R. Scerri. “Some Aspects of the

Metaphysics of Chemistry and the Nature of the Elements.” HYLE 11.1–2 (2005), pp. 127–145; Bent,

New Ideas in Chemistry from Fresh Energy for the Periodic Law.
23 Katz, “The Periodic Table: An Eight Period Table for the 21st Century,” p. 325.
24 L. M. Simmons. “A Modification of the Periodic Table.” Journal of Chemical Education 24.12

(1947), pp. 588–591.
25 E. R. Scerri. “The Tyranny of the Chemist.” Chemistry International 28.3 (2006), p. 11.
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FIGURE 13.7 The electronegativity of the main block elements is plotted for each chemical group as

a function of N = n+ l. The oscillatory behavior is especially pronounced for the group III

elements. [Adapted from D. Neubert. “Double Shell Structure of the Periodic System of the

Elements.” Zeitschrift für Naturforschung 25a (1970), p. 212.]

In the case of the period doubling, the manifold of chemical elements splits

naturally into two sets, with n + l even or odd. Elements from the same (even or

odd) set are, as a result, chemically more similar than elements from different sets.

This phenomenon was first brought to the attention of the chemical community by

Sanderson in 1952.26 Numerous examples can be cited:

1. Among the hydrides of the third group, B2H6 and Ga2H6 are volatile, but (AlH3)x

is nonvolatile.

2. SiH4 is more readily oxidized and hydrolyzed than CH4 and GeH4.

3. N(III) and As(III) are weaker reducing agents than P(III).

An important implication of the period doubling is that the properties of the

congeners within a major group do not vary in a regular and continuous manner, but

in a harmonically alternating way. Following Sanderson, this can be easily visualized

by plotting some atomic property X of the elements as a function of N = n+ l for

constant values of l, ml , and ms . An oscillatory trend is then observed, which can be

seen as a superposition of two continuous functions for n+ l odd or even.27

Similar plots were produced by Karl-Dietrich Neubert in 1970 for the electronega-

tivity and first ionization energy of the main block elements (Figure 13.7).28 Neubert

referred to this discontinuous behavior as evidence for a double shell structure in the

26 R. T. Sanderson. “An Explanation of Chemical Variations within Periodic Major Groups.” Journal

of the American Chemical Society 74.19 (1952), pp. 4792–4794.
27 See Sanderson, “An Explanation of Chemical Variations within Periodic Major Groups,” p. 4793

as well as R. T. Sanderson. Chemical Periodicity. New York: Reinhold, 1960, p. 35.
28 D. Neubert. “Double Shell Structure of the Periodic System of the Elements.” Zeitschrift für

Naturforschung 25a (1970), pp. 210–217.
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2 periodic table. Not only is there a doubling of the states in the horizontal direction

resulting from the electronic spin s = ±1/2, a second doubling seems to occur in

the vertical direction, which Neubert attributed to a new quantum number, denoted

c =±1/2.

The doubling of the periods and their empirical ramifications were studied further

by Halis Odabaşi (1931–2011).29 Once again, the ionization potentials for neutral

atoms and singly ionized ions were observed to be separated into two groups according

to whether n+ l is even or odd. For each group, a smooth curve was obtained, and

with the help of curve fitting procedures, Odabaşi extrapolated these curves to regions

where Z > 120.

The above discussion highlights the importance of the period doubling as a

characteristic feature of the left-step periodic system. Accordingly, this property will

have to be explained if a deeper understanding of the periodic law is ever to be

archieved.

13.4.3 Ab initio derivation of the (n+l, n) rule

Despite the rising popularity of the (n+ l,n) rule, the Madelung rule remains a

purely empirical (or lexicographic) rule. Allen and Knight have called it a “somewhat

mysterious algorithm,”30 whereas Ostrovsky wondered about the “dynamical origin

of the sum of principal n and orbital l quantum numbers.”31 In 1969, during the

centennial anniversary of Mendeleev’s discovery, Per-Olov Löwdin published Some

Comments on the Periodic System of the Elements, noting how remarkable it was that “in

axiomatic quantum theory, the simple (n+ l,n) energy rule has not yet been derived

from first principles.”32 He concluded his paper by saying,

It would certainly be worth while to study the (n+ l,n) energy rule from first principles,

i.e. on the basis of the many-electron Schrödinger equation.33

The quest for an ab initio derivation of the Madelung rule became known as the

Löwdin challenge —the “oldest and largest standing problem in quantum chemistry.”34

One must be careful to distinguish this Löwdin challenge from a high-precision

calculation on an individual atomic element. The latter is aimed at reproducing

the specific atomic properties of that element, whereas the former concerns the

understanding of the periodic system as a whole.35

The goal of the Löwdin challenge, in other words, is to solve the many-electron

Schrödinger equation and obtain the particular linear combination of n and l

29 H. Odabaşi. “Some Evidence about the Dynamical Group SO (4,2). Symmetries of the Periodic

Table of Elements.” International Journal of Quantum Chemistry 7.S7 (1973), pp. 23–33. See also E.

U. Condon and H. Odabaşi. “The Order of Electron Shells for Atoms and Ions.” In: Atomic Structure.

Cambridge: Cambridge University Press, 1980, pp. 514–525.
30 L. C. Allen and E. T. Knight. “The Löwdin Challenge: Origin of the n + l,n (Madelung) Rule

for Filling the Orbital Configurations of the Periodic Table.” International Journal of Quantum

Chemistry 90.1 (2002), p. 83.
31 Ostrovsky, “What and How Physics Contributes to Understanding the Periodic Law,” p. 158.
32 Löwdin, “Some Comments on the Periodic System of the Elements,” p. 332
33 Ibid., p. 334
34 Allen and Knight, “The Löwdin Challenge”, p. 83.
35 Ostrovsky, “Physical Explanation of the Periodic Table.”
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quantum numbers as a result.36 Since Löwdin’s plea, many claims to a successful

derivation have appeared in the scientific literature, but most have been dismissed—an

issue to which we turn in the next section.

13.5 MISAPPLYING THE MADELUNG RULE

13.5.1 The n+l blunder

The validity and utility of the (n+ l,n) rule has recently been under severe attack by

Eugen W. H. Schwarz.37 He remarked that “it has been deplored from time to time

that the Madelung rule has not yet been derived quantum-theoretically” (§13.4.3), but

added, “this is of course impossible since this approximate rule of thumb is at variance

with too many facts.”38 According to Schwarz “no general convincing theoretical

derivation exists because the Madelung rule does not hold in general for the atomic

valence shells, and not at all for the core shells” (vide infra).39

In his opinion, the (n+ l,n) rule represents “a nonrealistic and chemically

misleading order of atomic orbitals,”40 which “is of limited value in chemistry.”41

Referring to it as “the n+ l blunder,”42 Schwarz concluded that all “previous wisdom

of the periodic system has suffered from the invention of such scientific facts.”43

Let it be clear at the outset that we do not agree with Schwarz’s conclusions.

Although the (n+ l, n) rule might be “at variance with many facts,” its explanatory

power should not be underestimated, as we intend to explain in what follows. Having

said this, we admit that Schwarz has raised a number of important issues that would

benefit from closer scrutiny, and which shows the need for a correct interpretation of

the (n+ l,n) rule.

13.5.2 The concept of an element

Before offering two possible interpretations of the (n+ l,n) rule in §13.5.3, the aim

of this section is to show that the applicability of the Madelung rule greatly depends

on the definition given to the concept of a chemical element. A distinction should

36 Ostrovsky, “What and How Physics Contributes to Understanding the Periodic Law,” p. 158.
37 S. G. Wang and W. H. E. Schwarz. “Icon of Chemistry: The Periodic System of Chemical Elements

in the New Century.” Angewandte Chemie International Edition 48 (2009), pp. 3404–3415; W. H. E.

Schwarz and S. G. Wang. “Some Solved Problems of the Periodic System of Chemical Elements.”

International Journal of Quantum Chemistry 110.8 (2010), pp. 1455–1465; W. H. E. Schwarz and R.

L. Rich. “Theoretical Basis and Correct Explanation of the Periodic System: Review and Update.”

Journal of Chemical Education 87.4 (2010), pp. 435–443; W. H. E. Schwarz. “The Full Story of the

Electron Configurations of the Transition Elements.” Journal of Chemical Education 87.4 (2010), pp.

444–448.
38 Schwarz and Rich, “Theoretical Basis and Correct Explanation of the Periodic System,” p. 441.
39 Schwarz and Wang, “Some Solved Problems of the Periodic System of Chemical Elements,” p.

1461.
40 Ibid., p. 1457.
41 Schwarz and Rich, “Theoretical Basis and Correct Explanation of the Periodic System.”
42 Wang and Schwarz, “Icon of Chemistry: The Periodic System of Chemical Elements in the New

Century,” p. 3412.
43 Ibid., p. 3404. He conjectured, however, that “since the rule occurs in all textbooks and is absorbed

by all students and teachers, it will die out only very slowly.” (p. 3412).
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4 be made with respect to the kind of atoms corresponding to a given element. We will

distinguish between (1) free and bound atoms, (2) neutral atoms and ionic species,

and (3) atoms in their ground and excited state. By way of example, this section will

focus on the element nickel (Ni, Z = 28).

Free versus bound atoms

Ni0 as a free atom has a ground state electronic configuration [Ar] 3d84s2, whereas the

dominant configuration for Ni0 in nickel metal (as a bounded atom) or in tetracarbonyl

nickel Ni(CO)4 is [Ar] 3d10.44 Manifestly, free atoms and bound atoms are very

different. The (n+ l,n) rule correctly determines the configuration for Ni as a free

atom, but does not apply to the configuration of Ni as a bound atom.

The origin of these dissimilar configurations can be traced back to a destabilization

of the (n+ 1) s atomic orbital (AO) in compounds. An (n+ 1) s AO is more extended

spatially than an nd-orbital. When the atom is surrounded by other atoms in a

chemical compound, the (n+ 1) s AO overlaps with the AOs of the other atoms and

becomes destabilized as a result of the Pauli exclusion principle. As a consequence,

nd # (n+ 1)s energetically, which explains the pure dg s0 configuration for transition

metals in compounds (where g is the group number).45

Neutral atoms versus charged ions

The ground state configurations for all free transition metals Mi (i = 0,+1,+2) from

the 3d-to 5d-block are given in Table 13.3.46 Among the neutral transition metal atoms

M0, only one, palladium (Pd), has a dg s0 configuration with empty s AO (where g is the

group number). Nearly half the transition metal cations M+, on the other hand, have

pure d ground states dg−1s0 with empty s shell; and among the higher charged cations

Mi+ (i> 1), practically all have ground state configurations dg−is0 with empty s AOs.

This indicates that, for higher ionic charges (and thus larger Zeff), nd < (n+ 1)s

energetically. This is in agreement with the hydrogenic (n, l) rule, but is in stark

contrast with the Madelung (n+ l, n) rule. The Madelung rule therefore applies only

to neutral atoms whereas, for ions, different filling rules apply.47

Ground versus excited states

Finally, it must be emphasized that all traditional periodic systems represent the

electronic configurations of the elements in their (stable) ground state, and not in a

(metastable) excited state. Based on this, and the last two sections, we can conclude

that the validity of the (n+ l,n) rule is limited to ground state electronic configurations

of neutral atoms as free gas-phase species in a vacuum. (Although most interesting,

44 For this reason, transition metal chemistry is often termed “pure d–shell chemistry.” See also G.

Frenking and N. Fröhlich. “The Nature of the Bonding in Transition-Metal Compounds.” Chemical

Reviews 100.2 (2000), pp. 717–774, §III.
45 Wang and Schwarz, “Some Solved Problems of the Periodic System of Chemical Elements,” p.

3406.
46 See also C. E. Moore. Atomic Energy Levels as Derived from the Analyses of Optical Spectra.

Washington, DC: US. Government Printing Office, 1949, 1952, 1958.
47 See Goudsmit and Richards, “The Order of Electron Shells in Ionized Atoms.”



Table 13.3 Ground state electronic configurations for all free transition metals Mi from the 3d-to 5d-block, with i= 0,+1,+2. [Data obtained from the National Institute of
Standards and Technology (NIST) Atomic Spectra Database. Available at: http://physics.nist.gov/asd]

M M0 M+ M2+ M M0 M+ M2+ M M0 M+ M2+

Sc [Ar] 3d4s2 [Ar] 3d4s [Ar] 3d Y [Kr] 4d5s2 [Kr] 5s2 [Kr] 4d Lu [Xe] 4f 145d6s2 [Xe] 4f 146s2 [Xe] 4f 146s

Ti [Ar] 3d24s2 [Ar] 3d24s [Ar] 3d2 Zr [Kr] 4d25s2 [Kr] 4d25s [Kr] 4d2 Hf [Xe] 4f 145d26s2 [Xe] 4f 145d6s2 [Xe] 4f 145d2

V [Ar] 3d34s2 [Ar] 3d4 [Ar] 3d3 Nb [Kr] 4d45s [Kr] 4d4 [Kr] 4d3 Ta [Xe] 4f 145d36s2 [Xe] 4f 145d36s [Xe] 4f 145d3

Cr [Ar] 3d54s [Ar] 3d5 [Ar] 3d4 Mo [Kr] 4d55s [Kr] 4d5 [Kr] 4d4 W [Xe] 4f 145d46s2 [Xe] 4f 145d46s [Xe] 4f 145d4

Mn [Ar] 3d54s2 [Ar] 3d54s [Ar] 3d5 Tc [Kr] 4d65s [Kr] 4d55s [Kr] 4d5 Re [Xe] 4f 145d56s2 [Xe] 4f 145d56s [Xe] 4f 145d5

Fe [Ar] 3d64s2 [Ar] 3d64s [Ar] 3d6 Ru [Kr] 4d75s [Kr] 4d7 [Kr] 4d6 Os [Xe] 4f 145d66s2 [Xe] 4f 145d66s [Xe] 4f 145d56s

Co [Ar] 3d74s2 [Ar] 3d8 [Ar] 3d7 Rh [Kr] 4d85s [Kr] 4d8 [Kr] 4d7 Ir [Xe] 4f 145d76s2 [Xe] 4f 145d76s [Xe] 4f 145d7

Ni [Ar] 3d84s2 [Ar] 3d9 [Ar] 3d8 Pd [Kr] 4d10 [Kr] 4d9 [Kr] 4d8 Pt [Xe] 4f 145d96s [Xe] 4f 145d9 [Xe] 4f 145d8

Cu [Ar] 3d104s [Ar] 3d10 [Ar] 3d9 Ag [Kr] 4d105s [Kr] 4d10 [Kr] 4d9 Au [Xe] 4f 145d106s [Xe] 4f 145d10 [Xe] 4f 145d9

Zn [Ar] 3d104s2 [Ar] 3d104s [Ar] 3d10 Cd [Kr] 4d105s2 [Kr] 4d105s [Kr] 4d10 Hg [Xe] 4f 145d106s2 [Xe] 4f 145d106s [Xe] 4f 145d10

http://physics.nist.gov/asd
http://physics.nist.gov/asd
http://physics.nist.gov/asd
http://physics.nist.gov/asd
http://physics.nist.gov/asd
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6 we will not pursue the naturally arising question of whether free atoms in a vacuum

represent the elements as basic substances.) Conversely, in some cases, the ground

state occupation may differ from the Hartree-Fock configuration average as a result

of electron correlations beyond the self-consistent field approximation. This effect

is most pronounced near half-filled or closed d-shells. As an example, for Cr, the

lowest average energy configuration is 3d44s2. Nevertheless, the ground state is the
7S multiplet based on 3d54s1 as a result of its favorable spin pairing energy.

13.5.3 Two interpretations of the (n + l, n) rule

The (n + l, n) rule as the Aufbau principle

Among the most common interpretations of the (n+ l,n) rule is the assumption that

the Madelung rule affords us with a correct ordering of the different nl states in terms

of increasing energy

ε(1s)# ε(2s) < ε(2p)# ε(3s) < ε(3p)# ε(4s) < ε(3d) < ε(4p)# . . . . (13.19)

This order is assumed to be fixed and universal.48 That is, the energetic order ε(4s) <

ε(3d), for example, is asserted to hold at all times. We will challenge this interpretation

(1) by a brief consideration of the famous 3d/4s issue and (2) by putting the Madelung

sequence in the broader context of AO sequences.

The 3d/4s issue. Let us verify the validity of Eq. (13.19) by building a scandium (Sc)

atom from scratch. We start with a bare 45
21Sc nucleus, consisting of twenty-one protons

(p+) and twenty-four neutrons (n0), and proceed by adding a total of twenty-one

electrons (e−) to form a neutral Sc atom. This addition happens in a stepwise manner

(one electron at a time); each electron is accommodated in an nl-orbital according to

the Aufbau principle (Eq. (13.19)), while keeping Pauli’s exclusion principle in mind.

After the addition of eighteen electrons, a Sc3+ ion is formed with an argon

configuration [Ar] = [Ne] 3s23p6. The next electron is placed in the 4s-orbital, in

accordance, with Eq. (13.19), to yield a Sc2+ cation with configuration [Ar] 4s1. The

4s-shell is then completed by the addition of the twentieth electron, resulting in a

Sc+ ion with [Ar] 4s2 configuration. The twenty-first and last electron ends up in a

3d-orbital, yielding a neutral Sc atom with configuration [Ar] 3d14s2. This Aufbau

process can be summarized as follows:

Sc3+→ Sc2+ (4s1)→ Sc+ (4s2)→ Sc (3d14s2). (13.20)

This, however, is contradicted by the experimental data (Table 13.3), which shows that

Sc3+ → Sc2+ (3d1)→ Sc+ (3d14s1)→ Sc (3d14s2). (13.21)

Here, the first valence electron goes into the energetically lower 3d-shell, contrary to

the (13.19) ordering. A second difference concerns the 3d14s1 configuration of Sc+,

which is explained by the fact that the 3d AO is spatially more compact than the 4s

AO. The electron–electron repulsion is therefore much higher in the 3d-orbital than

in the larger 4s-shell, and this favors the 3d14s1 configuration energetically, with a

48 The universality of Eq. (13.19) has already been disputed in §13.5.2.
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second valence electron being placed in the higher 4s AO, where it experiences smaller

repulsion.49

The common textbook dictum “4s is occupied first, but 4s is also ionized

first,” which, according to Schwarz, “seems to violate the principle of microscopic

reversibility,”50 should thus be corrected by saying that in a transition metal atom,

3d is occupied before 4s, wherefore 4s is logically easier to ionize.51 It bears repeating

that this is at variance with the energy sequence in Eq. (13.19), and it challenges the

previously mentioned interpretaton of the (n+ l,n) rule as an Aufbau principle.

Different AO sequences. According to Schwarz, this misinterpretation is a result of the

fact that “most chemistry textbooks teach one single AO sequence, corresponding to

the Madelung rule,” whereas at least five sequences are known to exist.52 The Fock (n)

sequence (without screening by other electrons)

1s # 2s = 2p # 3s = 3p = 3d # 4s = 4p= 4d = 4f # 5s = 5p= 5d = . . . , (13.22)

and the Madelung (n+ l,n) sequence (with a strongly screened nucleus)

1s # 2s < 2p# 3s < 3p# 4s < 3d < 4p # 5s < 4d < 5p# 6s < 4f < .. . , (13.23)

represent two limiting cases, with the (actual) realistic sequences lying in between these

two extremes as intermediates.53 The AO sequence for the inner atomic core shells, for

instance, follows the hydrogenic (n, l) rule:

1s # 2s < 2p # 3s < 3p< 3d # 4s < 4p< 4d < 4f # 5s < 5p< 5d < .. . , (13.24)

49 Wang and Schwarz, “Icon of Chemistry: The Periodic System of Chemical Elements in the New

Century,” p. 3407.
50 Ibid., p. 3406.
51 See also S. G. Wang, Y. X. Qiu, H. Fang, and W. H. E. Schwarz. “The Challenge of the

So-Called Electron Configurations of the Transition Metals.” Chemistry: A European Journal 12.15

(2006), pp. 4101–4114; and J. B. Mann, T. L. Meek, E. T. Knight, J. F. Capitani, and L. C. Allen,

“Configuration Energies of the d-Block Elements.” Journal of the American Chemical Society 122.21

(2000), pp. 5132–5137. The seemingly preferential occupation of the 4s-level before the 3d-level,

according to Eq. (13.19), has been the source for numerous heated discussions in the scientific

literature. See F. L. Pilar. “4s Is Always Above 3d! or, How to Tell the Orbitals from the Wave

Functions.” Journal of Chemical Education 55.1 (1978), pp. 2–6; T. S. Carlton. “4s Sometimes

Is below 3d.” Journal of Chemical Education 56.11 (1979), p. 767; F. L. Pilar. “4s Sometimes

Is below 3d (the Author Replies).” Journal of Chemical Education 56.11 (1979), p. 767; E. R.

Scerri. “Transition Metal Configurations and Limitations of the Orbital Approximation.” Journal of

Chemical Education 66.6 (1989), pp. 481–483; L. G. Vanquickenborne, K. Pierloot, and D. Devoghel.

“Electronic Configuration and Orbital Energies: The 3d-4s Problem.” Inorganic Chemistry 28.10

(1989), pp. 1805–1813; L. G. Vanquickenborne, K. Pierloot, and D. Devoghel. “Transition Metals

and the Aufbau Principle.” Journal of Chemical Education 71.6 (1994), pp. 469–471; M. P. Melrose

and E. R. Scerri. “Why the 4s Orbital Is Occupied before the 3d.” Journal of Chemical Education 73.6

(1996), pp. 498–503; J. L. Bills. “Why the 4s Orbital Is Occupied before the 3d.” Journal of Chemical

Education 74.6 (1997), p. 616; M. P. Melrose and E. R. Scerri. “Why the 4s Orbital Is Occupied

before the 3d (the Authors Reply).” Journal of Chemical Education 74.6 (1997), p. 616; J. L. Bills.

“Experimental 4s and 3d Energies in Atomic Ground States.” Journal of Chemical Education 75.5

(1998), pp. 589–593.
52 Wang and Schwarz, “Icon of Chemistry: The Periodic System of Chemical Elements in the New

Century,” p. 3407. See also Schwarz and Wang, “Some Solved Problems of the Periodic System of

Chemical Elements.”
53 Wang and Schwarz, “Icon of Chemistry: The Periodic System of Chemical Elements in the New

Century,” p. 3409.
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8 where, as a general rule, ns < np # nd ≪ nf as a result of a difference in angular

momentum L = √
l (l+ 1)h̄ and shielding/penetrating power (see §13.3.2). This

has been verified experimentally via X-ray spectroscopy and quantum mechanical

calculations.

For the outer valence shells, these shifts become even more pronounced, as de-

termined by ultraviolet/visible spectroscopy, resulting in the following AO sequence:

1s # 2s < 2p# 3s < 3p # 3d < 4s < 4p # 4d < 5s < 5p# 4f < 5d < .. . . (13.25)

Notice how, compared with (Eq. (13.24)), the 3d-level approaches 4s, and how the

4f -orbitals are shifted above the 5s and 5p AOs.

These screening effects are largest for the alkali and alkaline earth metals of group

1 and 2 because of the large ratio of screening core electrons to valence electrons. This

yields a slightly modified AO sequence for the valence electrons of the electropositive

elements:

1s # 2s < 2p # 3s < 3p # 4s < 3d < 4p# 5s < 4d < 5p # 6s < 4f . . . , (13.26)

where the (n+ 1) s AOs move down below the nd AOs.54 The Madelung sequence in

Eq. (13.23) is most similar to this last sequence. This induced Schwarz to downgrade

the universality of the Madelung rule as applying “only to the first two groups of the

periodic system.”55

Conclusion. The sheer variety of AO sequences and the induced configurational reorga-

nizations when adding electrons to a bare nucleus refute the simplistic interpretation

of the (n+ l,n) rule as a fixed energy-ordering principle. The change in the order of

nl-orbitals when moving from the inner core to the outer valence regions of the atom

reduces the Madelung sequence to an overly simplistic summary of the spectroscopic

results and calls for an alternative interpretation (vide infra).

The (n+l,n) rule as a tool for predicting electron configurations

Although the (n+ l,n) rule fails to accurately describe the entire building-up process

of an atom (as exemplified by the Sc case presented earlier), it does seem to correctly

predict the overall (final) electronic ground state configuration of a neutral atom.

Stated somewhat differently, the (n+ l,n) rule establishes in which nl spin orbital the

differentiating electron should go.56

Yet, many exceptions are known to exist that undermine this second interpretation

of the Madelung rule. Terry L. Meek and Leland C. Allen have listed a total of nineteen

elements (ten d-block and nine f -block elements) exhibiting anomalous configurations

that differ from those predicted by the (n+ l, n) rule (Table 13.4).57 It is interesting

to note that the configurations of the ten d-block elements present a deviation from

the first (n + l) part of the Madelung rule, whereas the configurations of the nine

f -block elements violate the second (n) part. Seventeen of these “non-Madelung”

54 Ibid., p. 3408.
55 Schwarz and Rich, “Theoretical Basis and Correct Explanation of the Periodic System: Review

and Update”, p. 436.
56 The differentiating electron is defined as that electron by which two successive elements differ.
57 T. L. Meek and L. C. Allen. “Configuration Irregularities: Deviations from the Madelung Rule

and Inversion of Orbital Energy Levels.” Chemical Physics Letters 362.5–6 (2002), pp. 362–364.
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Table 13.4 Ground-state electronic configurations for

nineteen elements exhibiting anomalous configurations that do

not obey the (n+ l,n) rule. [Data obtained from the National

Institute of Standards and Technology (NIST) Atomic Spectra

Database. Available at: http://physics.nist.gov/asd]

Element Predicted Madelung Experimentally obtained

ground state configuration ground state configuration

Cr [Ar] 3d44s2 [Ar] 3d54s1

Cu [Ar] 3d94s2 [Ar] 3d104s1

Nb [Kr] 4d35s2 [Kr] 4d45s1

Mo [Kr] 4d45s2 [Kr] 4d55s1

Ru [Kr] 4d65s2 [Kr] 4d75s1

Rh [Kr] 4d75s2 [Kr] 4d85s1

Pd [Kr] 4d85s2 [Kr] 4d10

Ag [Kr] 4d95s2 [Kr] 4d105s1

La [Xe] 4f 16s2 [Xe] 5d16s2

Ce [Xe] 4f 26s2 [Xe] 4f 15d16s2

Gd [Xe] 4f 86s2 [Xe] 4f 75d16s2

Pt [Xe] 4f 145d86s2 [Xe] 4f 145d96s1

Au [Xe] 4f 145d96s2 [Xe] 4f 145d106s1

Ac [Rn] 5f 17s2 [Rn] 6d17s2

Th [Rn] 5f 27s2 [Rn] 6d27s2

Pa [Rn] 5f 37s2 [Rn] 5f 26d17s2

U [Rn] 5f 47s2 [Rn] 5f 36d17s2

Np [Rn] 5f 57s2 [Rn] 5f 46d17s2

Cm [Rn] 5f 87s2 [Rn] 5f 76d17s2

configurations differ from the predicted configurations by a single electron; whereas

palladium (Pd) and thorium (Th) differ by two electrons (see also Figure 13.8).

Being subject to no less than ninenteen exceptions, many an author has called

into doubt the lawfulness of the (n+ l, n) rule. J. F. Ogilvie, for instance, downgraded

the (n+ l,n) rule to an “ad hoc rule . . . of quite limited utility.”58 Benjamin Carroll

and Alexander Lehrman, on the other hand, considered these exceptions “relatively

unimportant to the chemist.”59 After all, the nineteen “anomalous atoms” have excited

states near the ground state that do satisfy the (n+ l,n) rule.

In this regard, Yury N. Demkov and Valentin N. Ostrovsky offered an interesting

comparison of the hydrogenic (n, l) and Madelung (n+ l,n) rules (Figures 13.8

and 13.9).60 An exact implementation of one of these rules would result in a

perfectly triangular diagram. The (n+ l, n) filling rule (Figure 13.8) shows some minor

58 J. F. Ogilvie. “The Nature of the Chemical Bond–1990: There Are No Such Things as Orbitals!”

Journal of Chemical Education 67.4 (1990), p. 282.
59 B. Carroll. “The Electron Configuration of the Ground State of the Elements.” Journal of Chemical

Education 25.12 (1948), p. 662.
60 Yu. N. Demkov and V. N. Ostrovsky. “n + l Filling Rule in the Periodic System and Focusing

Potentials.” Soviet Physics JETP 35.1 (1972), pp. 66–69. Original Russian publication: Yu. N.

Demkov and V. N. Ostrovsky. “n+ l Filling Rule in the Periodic System and Focusing Potentials.”

http://physics.nist.gov/asd
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FIGURE 13.8 Madelung filling scheme illustrating the empirical ground state configurations of the

chemical elements (with Z = 1→ 120). The vertical axis represents the atomic number Z ; the

one-electron nl orbitals are ordered along the horizontal axis according to the (n+ l,n) rule.

Blackened areas correspond to filled states. An ideal realization of the (n+ l,n) rule results in a

perfectly triangular diagram. Minor deviations from the triangular shape are observed,

corresponging to the nineteen anomalous configurations of §13.5.3. These are also indicated in the

rightmost column. [Adapted from Yu. N. Demkov and V. N. Ostrovsky. “n+l Filling Rule in the

Periodic System and Focusing Potentials.” In: Soviet Physics JETP 35.1 (1972), p. 66.]

deviations from the triangular shape that correspond to the nineteen anomalous

configurations of Table 13.4. Yet, the overall triangular shape is clearly visible and,

as Ostrovsky noted, “hardly any objective observer would deny that the rule describes

well the major trend and thus organizes our knowledge about electron configurations

in atoms.”61

This becomes particularly evident when we compare the (n+ l, n) filling scheme

with the alternative hydrogenic (n, l) scheme (Figure 13.9). Although both rules work

just as fine for low atomic numbers (Z < 19), a complete breakdown of the (n, l) rule is

observed for higher ordinal numbers (Z ≥ 19). Unmistakably, then, the (n+ l, n) rule

quite successfully describes the electronic structure of the periodic system (notwith-

standing the few imperfections), whereas the (n, l) rule fails over the entire line.

Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki (ZhÉTF) 62 (1972), pp. 125 –132. See also

Ostrovsky, “The Periodic Table and Quantum Physics,” pp. 342–345.

61 Ibid., p. 342.
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FIGURE 13.9 Hydrogenic (n, l) filling scheme. In this case, the grouping of the nl states is carried out in accordance with the hydrogenic (n, l) rule. Although the (n, l) rule works perfectly fine

for low atomic numbers (Z < 19), a complete breakdown occurs for higher ordinal numbers (Z ≥ 19). [Adapted from Yu. N. Demkov and V. N. Ostrovsky. “n + l Filling Rule in the Periodic

System and Focusing Potentials.” In: Soviet Physics JETP 35.1 (1972), p. 67.]
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2 13.6 GROUP THEORY AND THE PERIODIC SYSTEM

In this section, a group theoretical articulation of the global group structure of the

periodic system will be suggested. This raises many questions: In which sense can we

speak of the symmetries of the periodic system? How are these symmetries described by

a group? And how does one get from these symmetry groups to an actual classification

of the elements and a rationalization of the Madelung (n+ l,n) rule and period

doubling? Answering these questions will be the aim of the remainder of this chapter.

Two major challenges lie ahead if we want to rationalize the degeneracy patterns

in the left-step periodic system: (1) provide a symmetry-based interpretation of

the period doubling and (2) reinterpret the Madelung (n+ l,n) rule in a group

theoretical way.

The group theoretical approach to the periodic table has been criticized by

numerous authors. According to Pekka Pyykkö, there is “no deep group-theoretical

principle” behind the apparent symmetry of the periodic system.62 Schwarz argued

that this approach reduces to the “design of a symmetry group that just fits to

the Madelung [atomic orbital] order.”63 Finally, Scerri and colleagues regretted that

this approach yields explanations that are “based on symmetry groups, which, by

themselves, have to be chosen empirically.” This “defeats the original purpose” to

obtain a “fundamental explanation of the periodic table, that is not based on empirical

evidence, but on first principles [emphasis in original].”64

These criticisms will be countered in the next section, §13.6.1, by making a clear

distinction between the elementary particle approach (EPA), which is phenomenolog-

ical in nature, and the atomic physics approach (APA), which is more “fundamental”

in the above sense. A description of the methodology and philosophy of the group

theoretical approach will then be given in §13.6.2, and we will end the chapter in §13.7

with an overview of the literature on this topic.

13.6.1 APA versus EPA

An important distinction can be made between two types of group theoretical

approaches.65 So far, the only quantum systems under study have been the hydrogen

atom and the harmonic oscillator, with Hamiltonians that are known exactly.

Historically, when group theory started to be applied in atomic and molecular physics,

62 P. Pyykkö. “Relativistic Effects on Periodic Trends.” The Effects of Relativity in Atoms, Molecules

and the Solid-State. Eds. S. Wilson, I. P. Grant, and B. L. Gyorffy. New York: Plenum, 1991, p. 3. See

also P. Pyykkö and Y. Zhao. “The Elements of Flatland: Hartree-Fock Atomic Ground States in Two

Dimensions for Z = 1–24.” International Journal of Quantum Chemistry 40.4 (1991), pp. 527–544;

P. Pyykkö. “A Note on Nodal Structures, Partial Screening, and Periodic Trends among Alkali Metals

and Alkaline Earths.” International Journal of Quantum Chemistry 85.1 (2001), pp. 18–21.
63 Schwarz and Wang, “Some Solved Problems of the Periodic System of Chemical Elements,”

p. 1461.
64 E. Scerri, V. Kreinovich, P. Wojciechowski, and R. R. Yager. “Ordinal Explanation of the Periodic

System of Chemical Elements.” International Journal of Uncertainty, Fuzziness and Knowledge-Based

Systems 6.4 (1998), p. 6.
65 V. N. Ostrovsky. “Group Theory Applied to the Periodic Table of the Elements.” In: The

Mathematics of the Periodic Table. Eds. D. H. Rouvray and R. B. King. New York: Nova Science

Publishers, 2006, pp. 268–269. See also V. N. Ostrovsky. “Group Theory and Periodic System

of Elements”, p. 196, and Ostrovsky, “What and How Physics Contributes to Understanding the

Periodic Law,” p. 165.
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this was typically the case. Following Ostrovsky’s terminology, let us refer to this as the

atomic physics approach, or APA.

When it comes to the periodic system, however, it is much harder to construct

a Hamiltonian, let alone to study its symmetries. This situation could be compared

with the status of elementary particle physics during the late 1950s. Because the

internal dynamics of the hadrons were shrouded in mist, an exact knowledge of

the Hamiltonian system was unavailable.66 This rendered it naturally impossible to

study the symmetry group that would leave the Hamiltonian invariant. Instead, a

phenomenological approach was adopted; symmetry groups were no longer derived

from first principles, but were simply postulated on the basis of the available

empirical data (such as mass properties, conservations laws, and so on). This

approach is referred to as the elementary particle approach, or EPA, and as we saw

in Chapter 7, it ultimately led to a successful classification of the hadrons in the

eightfold way.67

A similar phenomenological approach can be adopted in the study of the periodic

table. The structure of the left-step periodic system will serve as empirical input ; that

is, the set of period lengths in Eq. (13.17) will be assumed to represent the dimensions

of the unirreps of a particular symmetry group, which will have to be uncovered in

the final chapter. A more in-depth study of the internal dynamics of many-electron

systems would of course yield additional insights into the physical origin of the

observed symmetries in the periodic table.

13.6.2 Group theoretical classification of the elements

In the previous chapters (9–12), the symmetries of the hydrogen atom were studied in

great detail. Starting from the spherical SO(3) group, a traditional symmetry ascent

process was followed that culminated in a derivation of the noninvariance group

SO(4,2).68

The reason so much space was devoted to the hydrogenic symmetries is because

the SO(4,2) group provides a window to the whole of chemistry. It not only establishes

from first principles the units of length and energy for atomic phenomena, but it also

provides an excellent starting point for a group-theoretical study of the periodic table,

based on integer quantum numbers. Of course, whereas the degeneracies of the SO(4)

hydrogen shells run as a sequence of squares:

1, 4, 9, 16, . . . , (13.27)

the actual magic numbers of the periodic table run as a sequence of double squares.

But, this difference can be easily explained a posteriori by the introduction of the

66 The theory of strong interactions, quantum chromodynamics, was developed only after the

discovery of quarks.
67 M. Gell-Mann and Y. Ne’eman. The Eightfold Way. Boulder, CO: Westview Press, 2000.
68 A second approach to the SO(4,2) group has been proposed by Kibler and Négadi, who followed

a symmetry descent process starting from the real symplectic group Sp(8). See M. R. Kibler and

T. Negadi. “On the Connection between the Hydrogen Atom and the Harmonic Oscillator: The

Continuum Case.” Journal of Physics A: Mathematical and General 16.18 (1983), pp. 4265–4268. M.

R. Kibler. “Connection between the Hydrogen Atom and the Harmonic Oscillator: The Zero-Energy

Case.” Physical Review A 29.5 (1984), pp. 2891–2894. See also M. R. Kibler. “On the Use of the Group

SO(4,2) in Atomic and Molecular Physics.” Molecular Physics 102.11–12 (2004), pp. 1221–1229.
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4 additional spin quantum numbers, which are responsible for the doubling of the

occupation numbers (see Chapter 8). More troublesome are the actual lengths of the

periods, which show a further doubling. Clearly, as far as the periodic structure is

concerned, the entrance into the promised land will not be immediate.

The principles of particle classification will be applied to the system of chemical

elements. The following sections offer a short description of (1) the different states

α, β , γ , and so on of (2) the system S and (3) the symmetry group G, with (4) its

chain of subgroups. A refinement of the current approach will then be proposed to

deal with quantum systems (rather than with classical systems). Finally, a justification

will be offered for the phenomenological approach that will be taken.

The concept of an atom

In the elementary particle approach that will be adopted in the following pages, the

concept of an atom differs significantly from the commonplace conception of an atom

as defined in mainstream chemistry or quantum mechanics. Its most distinguishing

properties are enumerated here:

1. The atoms of the chemical elements are treated as structureless particles; the

traditional conception of an atom as consisting of a central nucleus surrounded by

a cloud of electrons is thus excluded from our consideration. Instead, the atoms

are assumed to be noncomposite. As Byakov and colleagues emphasized, the group

theoretical approach “is not a [quantum] theory of electronic shells” [emphasis in

original].69 Any talk of orbitals, quantum numbers, or ground state electronic

configurations, is considered meaningless and devoid of explanatory power, and the

internal dynamics of atoms can thus be safely ignored.

You might wonder whether such an approach is justified. After all, there is no

disputing that atoms do have a complex structure, so why ignore it? An answer to

this question will be formulated in a later section.

2. Instead, the atoms of all the different chemical elements will be considered to be

various states α, β , γ , and so on, of a single system S , which in turn will be

treated as a kind of superparticle.70 The system S has been variously named.

Rumer and Fet called S a Coulombian system,71 or a superparticle, whereas Barut

preferred the term atomic matter.72 Let us follow Barut’s terminology and adopt

the term atomic matter or primary matter. Following a proposition made by

69 V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet Group-Theoretical Classification of

Chemical Elements: I. Physical Foundations. Moscow: Preprint of the Institute of Theoretical and

Experimental Physics, ITEP-26, 1976. p. 3.
70 It should be emphasized that this notion of a superparticle has no relation to the supersymmetric

partners of bosons and fermions, the existence of which has been postulated in particle physics as

the result of a supersymmetry.
71 Yu B. Rumer and A. I. Fet. “Gruppa Spin(4) i Tablitza Mendeleeva.” Teoreticheskaya i

Matematicheskaya Fizika 9.2 (1971), pp. 203–210. Translated from the Russian: Yu B. Rumer and

A. I. Fet. “The Group Spin (4) and the Mendeleev System.” Theoretical and Mathematical Physics

9.2 (1971), pp. 1081–1085.
72 A. O. Barut. “Group Structure of the Periodic System.” The Structure of Matter: Rutherford

Centennial Symposium. Ed. B. G. Wybourne. Christchurch, New Zealand: University of Canterbury

Press, 1972, pp. 126–136.



355
The

periodic
table

Table 13.5 Comparison of the spectrum generating

symmetries in the hydrogen atom and in atomic matter.

Quantum system (S ) ↔ Different states (α,β, . . .)

Hydrogen atom ↔ Ground and excited states

Atomic matter ↔ Chemical elements as states

Wulfman in 1978, this pseudoparticle, with a spectrum that is Barut’s atomic

supermultiplet, can also be denoted by the name baruton.73

It is important to contrast this approach with the group theoretical treatment

of the hydrogen atom in Chapters 5 through 12, where only one atom was studied,

and where the different ground and excited states of that single atom represented

the different states of the quantum system (see Table 13.5).

The different states (or elements) will thus be represented by ket vectors |α〉,
|β〉, |γ 〉, and so on, that form a basis for an infinite-dimensional Hilbert space H
of the system S .

3. All allotropes (e.g., graphite vs. diamond), isotopes (e.g., 12
6 C vs. 14

6 C), atoms, ions

(e.g., C vs. C4+), and ground and excited states of an element will be treated as

one and the same state of the system S . The atom of a chemically specific element

is thus nothing more than the carrier of all possible chemical properties. 74 Its

only characteristic properties are the atomic number Z and a set of four

“quantum numbers” that label the atom.

Atomic matter

The system S is treated as a superparticle with states that are the different elements.

From this point of view, S resembles the proto hyle of the ancient Greek philosophers.

Otherwise known as Aristotle’s materia prima, the proto hyle was considered to be the

prime matter from which emanated all material manifestations. Being itself without

substantial form, the primordial matter could be impressed with different kinds of

form to yield all the different “stuff ” of our universe.75 In a sense, the proto hyle was

the bearer of all chemical and physical properties, while being itself devoid of any

properties. It had, in other words, the potentiality of being imbued with any form,

but remained denuded from any property as long as no particular form was actualized

and a specific compound materialized.76 In short:

Matter (hyle) + form (morphe) → (hylomorphic) compound.

73 C. E. Wulfman. “Dynamical Groups in Atomic and Molecular Physics.” In: Recent Advances in

Group Theory and Their Application to Spectroscopy. Ed. J. C. Donini. New York: Plenum Press,

1978, pp. 329–403.
74 V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet, “Group-Theoretical Classification of

Chemical Elements. I. Physical Foundations,” pp. 3, 19.
75 These manifestations were called hylomorphic compounds—compounds of matter (hyle) and

form (morphe).
76 “Prime matter is matter in the unqualified sense.” Quoted from J. F. Wippel. “The Distinction

between Matter and Form.” The Metaphysical Thought of Thomas Aquinas: From Finite Being

to Uncreated Being. Washington D.C.: Catholic University of America Press, 2000, p. 298. The

primordial substance derives its name from the Latin substantia, which literally means “that which

stands under” (i.e., underlies).
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6 We can conceive of the system S in a similar vein as representing the primary (atomic)

matter that contains the potentiality of materializing into every possible element when

impressed with the appropriate form. Later on, the system S will also be called the

baruton in honor of the Turkish-American theoretical scientist Asim Orhan Barut

(1926–1994), who initiated the quest for a group theoretical understanding of the

periodic system (§ 13.7.1).

The symmetry group G
In analogy with the example of the triangle in §1.2.2, the system S is subject to a

symmetry group G. This group will later be identified with the direct product group

SO(4,2) ⊗ SU(2). A thorough description of this noncompact spectrum-generating

dynamical Lie group appeared in the preceding chapters.

At this point, it suffices to state that the symmetry group G consists of operators

Â, B̂, Ĉ, and so on, that act on the states of S to transform them into one

another. Worded somewhat more concretely, the group G is said to be capable of

transmuting every element into every other. It could, on this account be compared

with the philosophers’ stone (or lapis philosophorum) of the Medieval alchemists—a

legendary substance that had the ability to turn base metals (e.g., lead) into noble

metals (e.g., gold or silver). It should be emphasized however, that this analogy

is merely used as a convenient metaphor; the transformations, induced by G, are

abstract mathematical transformations that have no real counterpart in our physical

world.

Returning, for a moment, to the hylomorphic doctrine of Aristotle, the symmetry

group G possesses the power to inform the primary matter with any form to

create whatever element. It is the common cause of all elemental transformations by

annihilating one particular form (i.e., reducing the element to the proto hyle) and

creating another.

The periodic system

The periodic system results from a systematic breaking of the symmetry group G
into smaller subgroups G1, G2, G3, and so on. As will be expounded in the following

chapter, the periodic system is described by the decreasing chain of subgroups:

SO(4,2)⊗ SU(2) ⊃ SO(4,2) ⊃ SO(3,2) ⊃ SO(4)′ ⊃ SO(3). (13.28)

With each subsequent symmetry-breaking act, the states of the system S break down

into multiplets and submultiplets until a complete classification of the states has been

obtained.

From phase space to Hilbert space

For a classical system, such as the triangle in §1.2.2, the states of the system S could

be represented by points in phase space. The superparticle S , in contrast, will be

represented in a Hilbert space, and the states α, β, γ , and so on, are considered to

be vectors in this linear vector space R (see Table 13.6).
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Table 13.6 Classical versus quantum space.

System (S ) ↔ State representation

Classical ↔ Points in phase space

Quantum ↔ Vectors in vector space

To distinguish states in phase space from states in Hilbert space let us adopt Paul

Dirac’s bra-ket notation and represent every quantum state by a ket vector |α〉, |β〉,
|γ 〉, and so on in the vector space R. The vector space R is said to be:

1. Linear: If |α〉 and |β〉 are vectors in R, then |α〉+ |β〉 also belongs to R.

2. Complex: Let c be a complex number; then, c |α〉 is also a vector of R.77

3. Infinite-dimensional: The different chemical elements form a basis for the vector

space R. Since the number of elements is denumerably infinite (at least

theoretically), R will be infinite-dimensional.

The probability of a transition from |α〉 to |β〉 can be determined by defining the inner

product of two states, denoted 〈α|β〉.78 This turns the vector space R into a Hilbert

space H. Then, if both |α〉 and |β〉 are normalized, the probability of a transition from

|α〉 to |β〉 is given by the squared probability amplitude |〈α|β〉|2.

Transitions are still effected under the action of operators T̂A, T̂B, T̂C , and so

on, that form a representation {Tg } of the group G called the symmetry group of the

system S . In this monograph, G will always be a Lie group. The representation {Tg }
is operative in the space R of the quantum system and is defined by the action of the

operators T̂A, T̂B, and so on, on the basis vectors |α〉, |β〉, and so on. That is, the basis

vectors are said to form a basis for an infinite-dimensional irreducible representation

(or unirrep) of the dynamical symmetry group G.

All quantum transitions are carried out under the action of operators of the form

T̂A + iT̂B, where T̂A and T̂B are generators of the Lie algebra g (corresponding to the

Lie group G), and where the operators T̂A + iT̂B constitute ladder operators from the

complex hull of this Lie algebra.79 As an example of such ladder operators, the raising

and lowering operators L̂x ± iL̂y of the angular momentum algebra so(3), which shift a

state |nlm〉 to the new state |nl(m± 1)〉, could be mentioned.

Justification of the EPA

Earlier, the question was raised whether it is justified to ignore the atomic substructure

completely. We argue in favor of the aforementioned approach inasmuch as it parallels

the course taken in elementary particle physics during the 1960s. Neither Murray

Gell-Mann nor Yuval Ne’eman (or any other physicist for that matter) had any clue

regarding the possible substructure of the hadrons. Yet, this did not prevent them from

proposing a group theoretical classification of the particle zoo (§13.7.1).

77 Technically, |α〉 and c |α〉 (with c a complex number) represent the same quantum state. It is

therefore better to speak of rays c |α〉 rather than vectors |α〉 as representing quantum states.
78 The left part 〈α| is called a bra vector, and the inner product is called a bracket.
79 The complex hull of a Lie algebra g is obtained by taking the tensor product of g with the complex

field C. This is also referred to as the complexification of g.
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8 Admittedly, the eightfold way did point to a hadronic substructure that later

led to the quark hypothesis. In much the same way, it is desirable to interpret our

group theoretical analysis as pointing to the underlying quantum mechanics of

many-electron systems.

But, “what is the gain of ignoring the detailed description of [the] atom? [emphasis

added],” inquired Byakov and colleagues.80 The EPA offers two important advantages:

1. First of all, the entire set of chemical elements is treated as a whole; they are

considered to be states of a single quantum system, whereas quantum mechanics

treats each element as a separate quantum system. In exactly the same sense did

Gell-Mann’s eightfold way consider families of baryons or mesons as states of a

single quantum system.

2. Second, because there is no talk about quantum numbers, this approach might

circumvent the problems encountered in the quantum mechanical analysis of the

periodic system (see, in particular, §13.5).

13.6.3 System and system states

In the group theoretical approach adopted in this chapter, the different chemical

elements are treated as structureless particles; atoms are assumed to be noncomposite

and their internal dynamics can thus be ignored. Instead, the chemical elements are

considered to be various states of a single quantum system S , which in turn is treated

as a kind of superparticle. Following a proposition made by Wulfman in 1978, this

pseudoparticle, with a spectrum that is Barut’s atomic supermultiplet, is denoted by

the name baruton.81 The different states (or elements) are represented by ket vectors

|α〉, |β〉, |γ 〉, and so on, that form a basis for an infinite-dimensional Hilbert space H.

Within the EPA, a set of group theoretical labels n, l, ml , and ms are then introduced

to identify each of the different ket vectors, denoted |nlmlms〉. These internal quantum

numbers are not to be confounded with the one-electron quantum numbers of

hydrogenic systems, unless additional hypotheses are introduced.82 Rather, the labels

n, l, ml , and ms find their origin in the postulation of a particular symmetry group

G of the periodic table. Since the range of variation of these formal EPA labels is the

same as for the physical APA quantum numbers of the hydrogen atom, the conformal

SO(4,2) group serves as a natural candidate for our study of the global group structure

of the periodic system.

In order not to be prejudiced about the hydrogenic quantum numbers, Barut

introduced the symbols ν, λ,μλ, andμσ .83 Ostrovsky similarly distinguished between

the conventional quantum numbers and the abstract SO(4,2) labels by denoting the

latter ones with a tilde: ñ, l̃, m̃l , and m̃s .84 Although this symbolism breaks the link with

quantum mechanics explicitly, we will not adopt this notation, but use the traditional

n, l, ml , and ms labels instead.

80 V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet, “Group-Theoretical Classification of

Chemical Elements. I. Physical Foundations,” p. 4.
81 Wulfman, “Dynamical Groups in Atomic and Molecular Physics.”
82 Ostrovsky, “Group Theory Applied to the Periodic Table of the Elements,” p. 269.
83 Barut, “Group Structure of the Periodic System.”
84 Ostrovsky, “Group Theory and Periodic System of Elements,” p. 196.
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It should be emphasized, however, that even without this quantum mechanical

underpinning, the numbers n, l, ml , and ms serve as natural labels for the elements.

Their value can be inferred from the position of an element in the periodic table, and

from this point of view, the ket |nlmlms〉 serves as an address for the different elements.

13.6.4 Symmetry and symmetry breaking

As indicated previously, the overall symmetry group G of the periodic table will

be identified with the direct product group SO(4,2) ⊗ SU(2). The special real

pseudo-orthogonal group in 4 + 2 dimensions (or conformal group) SO(4,2) was

introduced in Chapter 12 as a semisimple Lie group of order r = 15 and rank l = 3.

This group provides the labels n, l, and ml . To introduce the fourth variable, ms ,

the direct product is formed between SO(4,2) and the special unitary group in two

dimensions, SU(2). This semisimple Lie group of order r =3 and rank l= 1 then serves

to label the spin state of an element. The introduction of this additional “spin” group

thus leads to a doubling of the dimensions of the different unirreps of the SO(4,2)

subgroups.

The chemical elements form a basis for an infinite-dimensional unitary irreducible

representation denoted h ⊗ [2], of the SO(4,2) ⊗ SU(2) group, where h is the

unirrep of SO(4,2) and [2] stands for the fundamental representation of the spectral

SU(2) group. The entire set of chemical elements is, in this way, housed in a single

(infinite-dimensional) manifold of the symmetry group. From the point of view of

the SO(4,2)⊗ SU(2) group, the chemical elements are thus perfectly equivalent and

interrelated.

To see this, raising and lowering operators can be constructed from the generators

of the corresponding spectrum-generating Lie algebra so(4,2)⊕ su(2). The resulting

shift operators are able to transform any state |nlmlms〉 into any other state
∣∣n′l′m′

lm
′
s

〉
.

When written in the Cartan-Weyl basis, the action of these ladder operators can

be depicted in a root diagram. This was pursued in Chapter 12 and resulted in a

cuboctahedral arrangement of the Weyl generators. To put it more poetically, the

so(4,2)⊕ su(2) root diagram represents the philosophers’ stone of quantum alchemy; it

enables one to transmute every element into every other.

Shattered symmetry

Only when the philosophers’ stone is shattered—that is to say, when the group G =
SO(4,2) ⊗ SU(2) is broken into smaller subgroups G1, G2, G3, and so on—does the

infinite-dimensional manifold (i.e., the baruton) break up into smaller multiplets.

In this sense, the baruton can be said to represent the primeval atom, at the point of

the Big Bang, when all energies were degenerate. As its symmetry broke, the universe

unfolded and phenomena appeared. Following Pierre Curie’s dictum, it is precisely

because the symmetry is broken that we are able to distinguish the phenomena. The

observable manifestations of the baruton are the different chemical elements, which

are arranged together in the periodic system. This implies that the structure of the

periodic table is to be found in a particular symmetry breaking of the SO(4,2)⊗SU(2)

group, which involves the identification of the different subalgebras of so(4,2). The

degeneracy pattern of the periodic system thus follows from the decomposition of the

global multiplet over the subgroup unirreps.
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0 13.6.5 Mass formulas

In the APA to the hydrogen atom, formulas could be derived for the system’s energy.

With the EPA, this is no longer possible and additional formulas have to be introduced

to describe the energy-level ordering. These formulas find their origin outside the

group theoretical scheme. A distinction can be made between ordering formulas, which

yield the relative order of the energy levels as a function of their group theoretical

labels, and mass formulas, which quantify the energy (or mass) of each degeneracy

level.

The resulting mass operator M̂ (known variously as a symmetry-breaking operator)

belongs to the universal enveloping algebra U(g) of the system’s symmetry group G;

it is typically expressed as a polynomial in the Cartan generators Ĥi of g (written

in its Cartan-Weyl basis) and Casimir operators Ĉμ of the subgroups G1, G2, and so

on. The eigenkets of M̂ are all the vectors |nlmlms〉; their corresponding eigenvalues

are the positive integer numbers 1, 2, 3, and so on of multiplicity 1.85 This implies

a one-to-one correspondence between the set of quantum numbers n, l, ml , ms and

the eigenvalues of M̂ , which are identified with the atomic number Z . Each chemical

element with atomic number Z is thus ascribed an address in terms of the group

theoretical labels of the symmetry group G:

Z ↔{n, l, ml ,ms}. (13.29)

Based on this association, each chemical element can be accommodated in a group

theoretical version of the periodic system, which can then be compared with the

conventional Mendeleev chart. This procedure is similar to the approach taken in

hadron physics, in which mass operators have been analogously defined for the SU(3)

and SU(6) groups (cf. Gell-Mann–Okubo mass formula). It should be emphasized

once more that the obtained mass formulas are purely phenomenological; they

are often superseded as theoretical research in quantum mechanics (or quantum

chromodynamics) advances.

It should also be noted that mass formulas can be cast as model Hamiltonians

expressed in terms of the generators of the spectrum-generating algebra.86 The

construction of such formal Hamiltonians differs from the physical Hamiltonians in

the APA.

13.7 LITERATURE STUDY

Several authors have attempted to provide a group theoretical articulation of the

periodic system of chemical elements. Various groups and chains of subgroups have

been proposed to this aim, and they are enumerated in Table 13.7.

13.7.1 Historical prelude

The mathematical theory of abstract groups had been used as a classificatory tool in

the 1960s by Murray Gell-mann and Yuval Ne’eman to classify the zoo of elementary

particles. This group theoretical approach led to the eightfold way and the discovery

85 A. I. Fet. “Conformal Symmetry of the Chemical Elements.” Theoretical and Mathematical Physics

22.3 (1975), pp. 227–235.
86 Ostrovsky, “Group Theory Applied to the Periodic Table of the Elements,” p. 269.



Table 13.7 Proposed symmetry groups of the periodic system, along with their chain of subgroups. The different entries have been grouped according to the four schools
introduced in the literature study. Later developments by Kibler and Thyssen and colleaguesa are also included.

Author Year Chain of subgroups

Barut 1972 SO(4,2) ⊃ SO(3,2) ⊃ SO(3)⊗O(2)

Odabaşi 1973, 2010 SO(4,2) ⊃ SO(3,2) ⊃ SO(3)⊗O(2)

Ostrovsky 1980, 1981, 2006 O(4,2)⊗ SU(2)S ⊗ SU(2)T ⊃ O(4,2)⊗ SU(2)S ⊃ O(4)⊗ SU(2)S ⊃ O(3)

Novaro and Berrondo 1972 SU(2)⊗ SU(2)⊗ SU(2) ⊃ O(4) ⊃ SO(3)

Berrondo and Novaro 1973, 1989, 2006, 2010 E(4) ⊃ SU(2)⊗ SU(2)⊗ SU(2) ⊃ O(4) ⊃ SO(3)

Rumer and Fet 1971 Spin(4) ⊃ SU(2)M, SU(2)C
Konopel’chenko 1972 SO(2,4)+R ⊃ SO(2,4) ⊃ SO(4) ⊃ SO(3) ⊃ SO(2)

Fet 1974, 1975 SO(4,2)⊗ SU(2) ⊃ Spin(4)⊗ SU(2) ⊃ SU(2)C ⊗ SU(2)

Byakov et al. 1976, 1977 SO(4,2)⊗ SU(2) ⊃ Spin(4)⊗ SU(2) ⊃ SU(2)C ⊗ SU(2)

Fet 1979, 1980, 1981 O(4,2)⊗ SU(2)⊗Z2

Fet 1989, 1992, 1996, 2010 O(4,2)⊗ SU(2)⊗ SU(2)

Kibler and Negadi 1989, 2004, 2006, 2007 SO(4,2)⊗ SU(2) ⊃ SO(4)⊗ SU(2) ⊃ SO(3)⊗ SU(2) ⊃ SU(2)

Thyssen and Ceulemans 2013 SO(4,2)⊗ SU(2) ⊃ SO(3,2)⊗ SU(2) ⊃ SO′(4)⊗ SU(2)

aP. Thyssen. “Symmetry and Symmetry Breaking in the Periodic Table: Towards a Group-Theoretical Classification of the Chemical Elements.” PhD diss., Katholieke Universiteit Leuven, 2013.
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2 of the quark structure of hadrons, both of which were described by the unitary SU(3)

group.87

Following the particle physics tradition, a handful of scientists deemed it probable

that there existed a more sophisticated, symmetry-based way of understanding how the

chemical elements should be accommodated in the periodic table. Some even believed

that group theory could shed some light on the way the periodic law emerges from its

quantum mechanical foundations.

The phenomenological study of the global group structure of the periodic system

thus originated during the 1970s with the pioneering work of a small group

of theoretical physicists. As so often happens in the history of science, multiple

independent discoveries typically occur when the time is ripe.88 The application of

group theory to the periodic system was no exception; at least four independent

research groups in Novosibirsk (USSR), Boulder (Colorado), Mexico City (Mexico),

and St. Petersburg (USSR) simultaneously saw the potential uses of group theory to

explain the structure of Mendeleev’s table.

A very first (but rather vague) suggestion in this direction came, however, from

German physicist D. Neubert, who believed that “the high symmetry of the [periodic

system could] be of interest from different point of views.”89

Rumer, Fet, and Konopel’chenko (Novosibirsk, USSR)

In the same year, the renowned Soviet physicist Yurij Borisovich Rumer (1901–1985)

and mathematician Abram Ilyich Fet (1924–2007) published a book on The Theory of

Unitary Symmetry Groups.90 Rumer had been an assistant of Max Born (1882–1970)

during his internship at the University of Göttingen from 1929–1932. After serving as

a professor at the Moscow State University from 1932 untill 1938, Rumer was arrested

as an accomplice of Lev Landau (1908–1968) and was sent to Soviet camps. More

than a decade later, Rumer finally moved to Novosibirsk, where he intended to apply

the principles of group theory and representation theory to problems in biology and

chemistry.91

In the field of biology, Rumer studied the symmetries of the genetic code, along

with B. G. Konopel’chenko. Around the same time, Rumer wrote his book with Fet

on unitary symmetry groups, dedicated to the symmetries of elementary particle

physics. The writing of this monograph stimulated Rumer and Fet to embark on

a “non-traditional [project]—the group theoretical description of the system of

87 Gell-Mann and Ne’eman, The Eightfold Way.
88 According to Robert K. Merton, these multiples, rather than singletons (i.e., a discovery made

by a single individual), represent the common pattern in science. See R. K. Merton. “Singletons and

Multiples in Scientific Discovery: A Chapter in the Sociology of Science.” Proceedings of the American

Philosophical Society 105.5 (1961), pp. 470–486. Or, to put it more poetically: “When the time is ripe

for certain things, these things appear in different places in the manner of violets coming to light in

early spring.” As remarked by Farkas Bolyai, letter to his Janos, dated spring 1825.
89 Neubert, “Double Shell Structure of the Periodic System of the Elements,” p. 216.
90 Yu B. Rumer and A. I. Fet. Teoriya Unitarnoi Simmetrii [The Theory of Unitary Symmetry].

Moscow: Nauka, 1970, p. 400. Another result of their fruitful collaboration was the book Yu B.

Rumer and A. I. Fet. Group Theory and Quantum Fields. Moscow: Nauka, 1977, p. 248.
91 A. I. Fet. Symmetry Group of Chemical Elements. Ed. R. G. Khlebopros. Novosibirsk: Nauka, 2010

[in Russian].
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chemical elements.”92 Inspired by the group theoretical classification schemes in

hadron physics, based on the unitary symmetries SU(3) and SU(6),93 Rumer and Fet

wanted to apply the same EPA principles to the manifold of chemical elements. Their

first article appeared in 1971 in the journal Theoretical and Mathematical Physics and

offered a detailed description of the periodic system based on a two-sheeted covering

of the SO(4) group94:

GRF = Spin(4). (13.30)

Notice that, with this choice, Rumer and Fet did not yet invoke noninvariance

groups. The Spin(4) group was first introduced by Brauer and Weyl in 1935,95 and

it corresponds to the group of orthogonal transformations (with det = 1) that leave

the metric form ξ2
1 + ξ2

2 + ξ 2
3 + ξ2

4 invariant in four-dimensional Euclidean space R4

(Chapter 10). Two different subgroups, denoted SU(2)M and SU(2)C, were considered:

Spin(4) ⊃ SU(2)M; (13.31)

Spin(4) ⊃ SU(2)C, SU(2)′C. (13.32)

The first reduction gives rise to the mechanical subgroup SU(2)M, which corresponds

to the proper rotation subgroup SO(3) of SO(4), and is defined in the subspace

R3 formed by the ξ1, ξ2, and ξ3 coordinates. The corresponding su(2)M algebra is

generated by the components of the angular momentum vector L̂.

The second reduction in Eq. (13.32) yields one of two equivalent chemical sub-

groups, denoted SU(2)C or SU(2)C′ , with Lie algebras that are generated, respectively,

by the components of the Ĵ1 and Ĵ2 operator, with Ĵ1i = 1/2
(
L̂i+Âi

)
and Ĵ2i = 1/2

(
L̂i−

Âi
)
, as defined in Chapter 9. Both algebras appear in the direct sum decomposition of

the so(4) algebra: so(4)= su(2)C ⊕ su(2)C′ .
Rumer and Fet maintained that the hydrogenic states form a representation

with respect to the first reduction, yielding the familiar quantum numbers n, l,

and ml . The chemical elements, on the other hand, were taken as basis states for

an infinite-dimensional unitary representation of the covering group Spin(4) with

respect to the second reduction. This representation was termed a Coulomb system

for obvious reasons, and the obtained classification of the elements was claimed to be

in accordance with their natural grouping in the periodic system.

This description, however, suffers from the following shortcomings:

1. First, the representations are reducible. Because the chemical elements are grouped

in different pairwise, disjoint multiplets of the Spin(4) group, the Coulomb system

cannot be regarded as elementary in the group theoretical sense.96

92 Quoted from a letter Rumer wrote to academician M. A. Leontovich. Ibid., p. 4.
93 This was described by the authors in Rumer and Fet, Teoriya Unitarnoi Simmetrii [The Theory of

Unitary Symmetry].
94 Rumer and Fet, “The Group Spin (4) and the Mendeleev System.”
95 R. Brauer and H. Weyl. “Spinors in n Dimensions.” American Journal of Mathematics 57.2 (1935),

pp. 425–449.
96 Fet, “Conformal Symmetry of the Chemical Elements,” p. 227.
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4 2. Second, both subalgebras, su(2)M and su(2)C, are algebraically identical, as

indicated by Ostrovsky.97 Within the EPA, these subalgebras are indistinguishable,

and it is not clear in which sense su(2)C could be related to the periodic system,

and su(2)M to the hydrogen atom, as long as their generators are not realized in

terms of physical operators, as indicated earlier.

3. Finally, and most important, albeit a one-to-one correspondence is established

between the group labels and the elements, no mass formula is provided, and

neither does the proposed description rationalize (or even mention) the doubling

of the periods or the degeneracy pattern resulting from the Madelung

(n+ l, n) rule.

These initial ideas were further developed by Fet during the following ten years in a

number of papers and conference proceedings, which greatly improved his description

of the periodic system. The SO(4) group was broadened to the conformal SO(4,2)

group by Konopel’chenko in 1972,98 and in 1975, Fet proposed the direct product

group SO(4,2) ⊗ SU(2).99 To be correct, Fet proposed the group

GF = SÕ(4,2)⊗ SU(2), (13.33)

with SÕ(4,2) the universal covering of the conformal group.100 The introduction of

this noninvariance group eliminated the first shortcoming mentioned previously. This

97 Ostrovsky, “Group Theory Applied to the Periodic Table of the Elements,” p. 278.
98 B. G. Konopel’chenko. “Gruppa SO(2,4)+R i Tablitza Mendeleeva [The SO(2,4)+R Group and

Mendeleev’s Table].” Novosibirsk: Preprint of the Institute of Nuclear Physics IYaF-40.72, 1972 [in

Russian]. See also B. G. Konopel’chenko and Yu B. Rumer. “Atomy i Adrony (Problemy Klassifikacii)

[Atoms and Hadrons (Classification Problems)].” Soviet Physics Uspekhi 22.10 (1979), pp. 837–840.

Translated from the Russian: B. G. Konopel’chenko and Yu B. Rumer. “Atoms and Hadrons

(Classification Problems).” Uspekhi Fizicheskikh Nauk 129 (1979), pp. 339–342.
99 Fet, “Conformal Symmetry of the Chemical Elements.” A popular account of Fet’s work appeared

in V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet. “Group-Theoretical Classification of

Chemical Elements. I. Physical Foundations.”; V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I.

Fet. “Group-Theoretical Classification of Chemical Elements: II. Description of Applied Groups.”

Moscow, 1976; V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet. “Group-Theoretical

Classification of Chemical Elements. III. Comparison with the Properties of Elements.” Moscow,

1977. Fet laid special emphasis on A. I. Fet. The System of the Elements from the Group-Theoretic

Viewpoint. 1979. Novosibirsk: Preprint of the Institute of Nuclear Physics IYaF-40.72. This is a

preprint of the Institute of Inorganic Chemistry, Siberian Branch of the USSR Academy of Sciences,

1979, No 1. This preprint was later reproduced in A. I. Fet. “The System of Elements from the

Group-Theoretic Viewpoint.” In: Periodic Systems and Their Relations to the Systematic Analysis of

Molecular Data. Ed. Ray Hefferlin. Lewiston, NY: The Edwin Mellen Press, 1989, pp. 41–86.
100 A. I. Fet. “Konformnaja Gruppa i Himicheskoe Srodstovo [Conformal Group and Chemical

Affinity],” JETP Letters 20.1 (1974), pp. 10–11. Translated from the Russian: A. I. Fet. “Conformal

Group and Chemical Affinity.” Pis’ma v ZhETF 20.1 (1974), pp. 24–26. See also Fet, “Konformnaja

Simmetrija Himicheskih Jelementov [Conformal Symmetry of the Chemical Elements],” translated

from the Russian: Fet, “Conformal Symmetry of the Chemical Elements.” The same group

description also appeared in three semipopular preprints ITEP-26, ITEP-90, and ITEP-7 of the

Moscow Institute of Theoretical and Experimental Physics. See V. M. Byakov, V. I. Kulakov, Yu.

B. Rumer, and A. I. Fet., “Group-Theoretical Classification of Chemical Elements: I. Physical

Foundations;” V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet. “Group-Theoretical

Classification of Chemical Elements: II. Description of Applied Groups;” Byakov, V. I. Kulakov, Yu.

B. Rumer, and A. I. Fet. “Group-Theoretical Classification of Chemical Elements: III. Comparison

with the Properties of Elements.”
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group was subsequently reduced over the following chain of subgroups:

SÕ(4,2)⊗ SU(2) ⊃ Spin(4)⊗ SU(2) ⊃ SU(2)C ⊗ SU(2). (13.34)

At this point, Fet had also become acquainted with Barut’s paper,101 which was

likewise based on the SO(4,2) group and which explicitly mentioned the Madelung

rule and period doubling. When Fet introduced the mass operator Â, he thus referred

to the lexicographical ordering of the quantum numbers according to the mass formula

A= 1

6
d
(
d2 − 1

)+ 1

2
(d+ 1)2 − 1

2
κ (d) · (d+ 1)− 2

(
λ2 + 1

)+ 2μ+ s3 + 3

2
, (13.35)

where d = n+λ, and κ(d) is 0 for odd d and 1 for even d. The quantum numbers n,

λ, μ, and s3 are defined similarly to n, l, ml , and ms .

The periodic system, proposed by Fet, is nevertheless hardly satisfying. The

grouping based on the reduction in Eq. (13.34) yields SO(4)-like multiplets of

dimension n2, which are labeled by n rather than n + λ. The chemical elements

are consequently forced into artificial periods of constant n, which are laid out in a

horizontal way, with λ varying in the vertical direction. As a result, the Madelung

order is not read from top to bottom and left to right, but in a slanted way, which is

far from transparent. The introduction of an (n,λ) framework, although natural for

a classification of the hydrogenic states, is utterly inadequate for the construction of a

periodic table, which necessitates an (n+λ,λ) skeleton instead.

What is more, in using a classification founded on the quantum numbers n and λ

(rather than n+λ and λ), the spectral SU(2) group in Eq. (13.33) is merely invoked to

double the number of states within each multiplet (comparable with the doubling of

energy levels in the hydrogen spectrum resulting from the electronic spin). Although

Fet referred to this as being a result of the chemical spin s3, it clearly fails to account for

the doubling of the periods (see also §13.4.2).102 The later developments by Fet will be

examined in §13.7.2.

In 1984, Fet wrote a complete monograph on the Symmetry Group of Chemical

Elements.103 After the entire book had been linotyped by the Siberian division of the

Nauka publishing house, it was suddenly withdrawn from printing by an order of

some academic functionary.104 According to the author’s widow, this order was solely

political and had no relation to science. R. G. Khlebopros believed the reasons were to

be found in Fet’s personality:

A talented mathematician and physicist, a very well-educated and intelligent person

with a sense of dignity and independence, he was of course envied and hated by ungifted

science bureaucrats.105

Two years later, Fet was fired from the institute “for lack of publications.” In 1992, the

book came out in abridged form in the collected works of Mathematical Modelling

101 Barut, “Group Structure of the Periodic System.”
102 Fet seems to have been on the right track, though, because he claimed that s3 “must be related

to the well-known difference between the chemical properties of even and odd elements.” Quoted

from Fet, “Conformal Symmetry of the Chemical Elements,” p. 230.
103 As far as we can judge, this is the only book ever written on the group theory of the periodic

system.
104 Private communication with Ludmila Petrova-Fet, the author’s widow. See also Fet, Symmetry

Group of Chemical Elements, p. 6.
105 Ibid., p. 6.
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6 in Biology and Chemistry.106 Only after Fet’s death, and thanks to the efforts of Prof.

Khlebopros, was the book finally published in its entirety as it was supposed to be in

1984.107

Barut (Boulder, Colorado, USA)

Undoubtedly Asim O. Barut (1926–1994) from the University of Colorado played

a major role in the development of noninvariance groups, or “spectrum-generating

groups,” as he called them. As mentioned in Chapter 12, his visit to New Zealand

in 1971 as an Erskine Fellow at the University of Canterbury, in Christchurch, New

Zealand, yielded two important documents that explain the construction of SO(4,2)

as the noninvariance group of hydrogen, and discuss its application to the Aufbau

principle of the periodic table. The SO(4,2) construction is presented in a booklet

containing notes of the lectures Barut gave as an Erskine Fellow.108 In his contribution

to the proceedings of the Rutherford symposium,109 Barut considered symmetry

breakings of SO(4,2), associated with the Aufbau principle. He noted the importance

of the symmetry breaking of SO(4,2) to its subgroup SO(3,2). On reducing the

SO(4,2) parent group to its subgroup SO(3,2), the infinite representation h, which

contains all |nlml〉 states, splits into exactly two representations of SO(3,2). The state

vectors |nlm〉 (i.e., chemical elements) with n + l even (respectively, odd) span an

infinite-dimensional unirrep of SO(3,2), denoted he (respectively, ho).110 This yields

the following branching rule:

h= he ⊕ ho. (13.36)

This explanation goes back to an earlier study by Barut and Bohm, in which the

different representation classes of the SO(4,2) group were studied, along with their

reduction over the chain111:

SO(4,2) ⊃ SO(3,2) ⊃ SO(3)⊗ SO(2). (13.37)

It offers an attractive explanation for the doubling of the periodic table. Nonetheless,

this approach has been criticized by Ostrovsky, who noted that “according to

this reduction the O(4) subgroup completely loses its significance.”112 Ostrovsky

continued: “the label n and the [unirrep] dimension n2 are ultimately related to the

106 A. I. Fet. “Gruppa Simmetrii Khimicheskikh Elementov [Symmetry Group of Chemical

Elements].” Matematicheskoe Modelirovanie v Biologii i Khimii [Mathematical Modelling in Biology

and Chemistry]. Ed. R. G. Khlebopros. Novosibirsk: Nauka Publishers, 1992, pp. 118–203 [in

Russian].
107 Fet, Symmetry Group of Chemical Elements [in Russian].
108 A. O. Barut. Dynamical Groups and Generalized Symmetries in Quantum Theory (With Appli-

cations in Atomic and Particle Physics). Ed. A. N. Brooks. University of Canterbury, Christchurch,

New Zealand: Bascands Ltd., 1972. Barut published his first paper on SO(4,2) together with Hagen

Kleinert back in 1967. A. O. Barut and H. Kleinert. “Transition Probabilities of the Hydrogen Atom

from Non-compact Dynamical Groups. Physical Review 156(1967) 1541–1545.
109 Barut, “Group Structure of the Periodic System.”
110 Here, we have adopted the notation introduced by Kibler in Kibler. “On the Use of the Group

SO(4,2) in Atomic and Molecular Physics.”
111 See Barut. “Group Structure of the Periodic System.” and A. O. Barut and A. Böhm. “Reduction

of a Class of O(4,2) Representation with Respect to SO(4,1) and SO(3,2).” Journal of Mathematical

Physics 11.10 (1970), pp. 2938–2945.
112 Ostrovsky. “Group Theory Applied to the Periodic Table of the Elements,” p. 277.
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O(4) group. They are critically important for the description of the periodic table; and

yet they do not appear in Barut’s scheme” [emphasis in original].113

In defense of Barut’s approach, it should be emphasized that it is not the principal

quantum number n, but the Madelung quantum number N = n + l that is of

importance to the periodic system. Admittedly, the different n+ l multiplets exhibit

the same hydrogenic dimensions (2, 8, 18, 32, . . . ), but they cannot be related to a

straightforward SO(4) group, as will be explained in Chapter 14.

On a more positive note, Novaro referred to Barut’s approach as “the most

successful group-theoretical explanation of the Aufbau scheme.”114 He considered

the chain of groups in Eq. (13.37) promising enough to provide it with a geometric

interpretation in terms of an axially symmetric top in three dimensions.115 This,

however, did not withhold Novaro from submitting Barut’s results to a critical

examination. It is interesting to note that Novaro rewrote Eq. (13.37) as

SO(4,2) ⊃ SO(3,2) ⊃ O(4), (13.38)

claiming that “Barut’s chain of subgroups does contain the symmetry group O(4).”116

As Ostrovsky noted, this equation cannot be correct because the SO(3,2) group does

not contain SO(4) as a subgroup. The so(4) algebra is generated by the L̂ and Â

operators, but the components of Â are lost in the reduction of so(4,2) over the

so(3,2) Lie algebra.

Impressed by Barut’s group theoretical treatment of the periodic system, Halis

Odabaşi (1931–2011) felt inclined to explore these ideas somewhat further. At the

Sanibel Symposium of 1973,117 which was held in honor of Edward Uhler Condon

(1902–1974), Odabaşi presented convincing evidence for the chain of subgroups that

had been proposed by Barut back in 1971.118

Novaro, Wolf, and Berrondo (Mexico City)

The Mexican scientist Octavio Novaro, who was also present at the Sanibel Sympo-

sium, picked up the thread where Odabaşi had left off and provided “geometrical

images” for Barut’s chain of groups.119 Novaro had obtained his doctoral degree in

physics under the supervision of Marcos Moshinsky (1921–2009) in 1969. His first

attempts at a group theoretical justification of Bohr’s Aufbau scheme started in 1971,

when he convinced his office colleague Bernardo Wolf to team up with him.120

113 ibid., 277.
114 O. Novaro. “Group Theoretical Aspects of the Periodic Table of the Elements.” Journal of

Molecular Structure: THEOCHEM 199 (1989), p. 109.
115 O. Novaro. “Comment on the Group Theoretical Justification of the Aufbau Scheme.”

International Journal of Quantum Chemistry 7.S7 (1973), pp. 53–56.
116 Novaro, “Group Theoretical Aspects of the Periodic Table of the Elements,” p. 109.
117 The Sanibel Symposium was an international scientific conference on atomic, molecular, and

solid-state physics and quantum biology. It was founded by Per-Olov Löwdin in 1960 and was held

every winter on Sanibel Island off the Gulf Coast of Florida.
118 Odabaşi. “Some Evidence about the Dynamical Group SO (4,2): Symmetries of the Periodic

Table of Elements.” and Condon and Odabaşi, “The Order of Electron Shells for Atoms and Ions.”
119 Novaro, “Comment on the Group Theoretical Justification of the Aufbau Scheme.”
120 All historical recollections in this section are taken from O. Novaro. “Symmetries of the Periodic

System.” AIP Conference Proceedings 1323.1 (2010), pp. 244–256.
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8 Starting from the groundbreaking work of Soviet physicist Vladimir A. Fock

(1898–1974), who had explained the accidental degeneracy of the hydrogen atom in

terms of a four-dimensional symmetry (Chapter 9), Novaro and Wolf subsequently

tried to break this O(4) symmetry.121 Despite the cold reaction from Moshinsky,

Novaro’s work attracted the attention of Per-Olov Löwdin who invited him to speak at

the previously mentioned symposium.122

With the help of Carl Wulfman, Elpidio Chacón, and A. Freyre, Novaro forged

ahead and elucidated in which way the O(4) and U(3) symmetries were broken in the

first and second periods of Mendeleev’s table.123 However fascinating, this research

only galvanized Novaro’s curiosity as to whether there existed a global symmetry for

the periodic system. Being familiar with Barut’s work, Novaro felt it lacking in its

description of the period doubling, as he considered the period doubling to be of type

2, 8, 8, 18, 18, 32, 32, and so on, instead of 2, 2, 8, 8, 18, 18, 32, 32, and so on.

Around that time, Manolo Berrondo returned to Mexico after obtaining a PhD

with Löwdin. Soon after, Novaro and Berrondo embarked on their quest for the

hidden symmetries of the periodic system, which they approached in a manner similar

to the EPA discussed earlier.124 They essentially considered the breaking of the O(4)

symmetry of the Coulomb potential, which, we recall, is locally isomorphic to the

product group SU(2)⊗ SU(2). A generalization of this led to the proposition of the

direct product group

GNB = SU(2)⊗ SU(2)⊗ SU(2), (13.39)

which resulted from three mutually commuting “angular momenta,” denoted P̂, Q̂

and R̂, and obeying the following commutation rules:[
P̂i , P̂j

]
= iεijkP̂k ,

[
Q̂i ,Q̂j

]
= iεijkQ̂k ,

[
R̂i , R̂j

]
= iεijkR̂k ,[

P̂i , Q̂j

]
=
[

Q̂i , R̂j

]
=
[

R̂i , P̂j

]
= 0, ∀i, j = 1,2,3.

(13.40)

This group was then reduced over the chain of groups:

SU(2)⊗ SU(2)⊗ SU(2) ⊃ O(4) ⊃ SO(3). (13.41)

121 O. Novaro and K. B. Wolf. “A Model Hamiltonian for the Periodic Table.” Revista Mexicana de

Fisica 20 (1971), pp. 265–268.
122 In his reminiscences of that period, Novaro later wondered whether Moshinsky’s close friendship

with Vladimir Fock might have explained his reservations. Perhaps he felt “we didn’t do justice to

[Fock’s] elegant and esthetic theory,” said Novaro, in Novaro. “Comment on the Group Theoretical

Justication of the Aufbau Scheme,” p. 244.
123 O. Novaro. “Validity of O( 4) Symmetry in 2nd Row Atoms.” Physics Letters A 33.2 (1970),

pp. 109–110; E. Chacon, M. Moshinsky, O. Novaro, and C. Wulfman. “O(4) and U(3) Symmetry

Breaking in the 2s-2p Shell.” Physical Review A 3.1 (1971), pp. 166–179; O. Novaro and A.

Freyre. “O(4) and U(3) Symmetry Breaking in the Second Row of the Periodic Table.” Molecular

Physics: An International Journal at the Interface Between Chemistry and Physics 20.5 (1971),

pp. 861–871.
124 O. Novaro and M. Berrondo. “Approximate Symmetry of the Periodic Table.” Journal of Physics

B: Atomic and Molecular Physics 5.6 (1972), pp. 1104–1110. These and other results have been

reviewed in a number of other papers. See Novaro, “Group Theoretical Aspects of the Periodic

Table of the Elements”; O. Novaro. “Group Theory of the Periodic Table.” In: The Mathematics of

the Periodic Table. Eds. Dennis H. Rouvray and R. Bruce King. New York: Nova Science Publishers,

2006, pp. 217–235; Novaro, “Symmetries of the Periodic System.”
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Table 13.8 Unitary irreducible representations of the group

GNB = SU(2)⊗SU(2)⊗SU(2) and its subgroups O(4) and SO(3). The dimensions

of the GNB unirreps are listed in the last column.

unirrep unirrep unirrep

GNB ⊃ O(4) ⊃ SO(3) Degeneracy(
0, 0, 0

) (
0, 0

)
l = 0 1( 1

2 ,0, 1
2

) ( 1
2 , 1

2

)
l = 0, 1 4( 1

2 , 1
2 ,0
) (

1, 0
)+ ⊕ (0, 0

)
l = 0, 1 4(

1, 0, 1
) (

1, 1
)

l = 0, 1, 2 9(
1, 1, 0

) (
2, 0

)+ ⊕ (1, 0
)+ ⊕ (0, 0

)
l = 0, 1, 2 9( 3

2 ,0, 3
2

) ( 3
2 , 3

2

)
l = 0, 1, 2, 3 16

Adapted from O. Novaro and M. Berrondo. “Approximate Symmetry of the Periodic Table.” Journal of

Physics B: Atomic and Molecular Physics 5.6 (1972), pp. 1104–1110, p. 1108.

The unirreps of GNB are written as
(
p,q, r

)
with p, q, and r arising from the eigenvalues

of the Casimir operators P̂2, Q̂2, and R̂2, and taking integer and semi-integer values.

The unirreps of the O(4) subgroup can be introduced by coupling the first two angular

momenta according to P̂+ Q̂ = M̂′. The resulting vector M̂′ is then coupled with the

original R̂ to yield L̂= M̂′ + R̂. The vectors M̂ and R̂ generate the O(4) group, and the

components of L̂ form the SO(3) subgroup in Eq. (13.41).

To obtain the degeneracy structure of the periodic table, two physical restrictions

have to be imposed. First, the vector L̂ must be interpreted as the total angular

momentum of the system. This limits l to integer values. Second, each value of l is

allowed to occur only once in each GNB multiplet. The number of admitted unirreps(
p,q, r

)
is severely restricted under these conditions. The physically allowed unirreps

are of one of two forms:
(
p, p, 0

)
or
(
p, 0,p

)
.125 A list of the first few unirreps is given

in Table 13.8. Three disadvantages of this approach can be mentioned:

1. First, the chemical elements form a reducible representation under GNB, as was the

case with the Spin(4) group proposed by Rumer and Fet. Instead of being grouped

in a single infinite-dimensional manifold of some noncompact noninvariance

group, the elements belong to an infinitude of finite-dimensional multiplets of the

compact SU(2)⊗ SU(2)⊗ SU(2) invariance group.

2. Second, the dimensions of the GNB unirreps in Table 13.8 are doubled, except for

the very first multiplet, with a dimension 2 that occurs only once. The series

2, 8, 8, 18, 18, 32, 32 thus obtained corresponds to the cardinalities of the

chemical periods in most conventional periodic tables.126 In this book, however,

the format of the left-step table is favored with period lengths

2, 2, 8, 8, 18, 18, 32, 32 that are doubled over the entire line. The doubling of the

125 This is reminiscent of the unirreps
(
j, j
)

of the SO(4) group, which were obtained for the

hydrogen atom under the restriction j1 = j2 (cf. Chapter 9).
126 In this way, the atomic magic numbers can be derived, corresponding to the atomic numbers of

the noble gases: He (Z = 2), Ne (Z = 10), Ar (Z = 18), Kr (Z = 36), Xe (Z = 54), and Rn (Z = 86).
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0 first period cannot be explained by the group theoretical scheme proposed by

Novaro and Berrondo.127

3. Finally, to obtain the previously mentioned dimensions, two physical restrictions

had to be imposed that necessarily lie outside the EPA.

The first point was later remedied by the introduction of the Euclidean group in

four dimensions, E(4), which contains GNB as a subgroup.128 With regard to the

third point, Novaro is essentially facing the challenges posed in §13.6.5: How can

one make the step from EPA to APA? It is as yet unclear how the proposed scheme

relates to the internal dynamics of atomic physics. The quantum numbers obtained

from the chain in Eq. (13.41), as well as their corresponding operators P̂, Q̂, R̂ lack a

physical interpretation, and the dynamics of the symmetry-breaking mechanism are

unknown, although the breaking is most probably a result of electron correlations and

spin–orbit coupling effects. Novaro and Berrondo resolved this problem in part by

constructing an effective model Hamiltonian in terms of the Casimir operators of the

group GNB
129:

Ĥeff =
− 1

2 Z2

2

[(
αP̂+βQ̂

)2 +βR̂2

]
+ 1

, (13.42)

which corresponds to the Hamiltonian of a quantal symmetric top in 4-space.

Despite this joint effort, they did not settle the entire issue. In 1989, Novaro

concluded that “despite many attempts and some advances, it is still necessary to

accept that Löwdin’s call for a more sustained effort to understand the periodic system

of the elements is still a valid challenge for theoretical chemists and physicists.”130

Although Novaro had hoped to revive his efforts with Berrondo in 2009 to obtain a

final answer to Löwdin’s plea, his hopes were not fulfilled.131

As has been observed before, Novaro provided a group theoretical interpretation

of the cardinalities of the chemical periods, as given by the series of atomic magic

numbers 2, 8, 8, 18, 18, 32, 32. “These magic numbers are not merely a duplication

of hydrogen closed shells,” remarked Novaro, “[because] the number 2 only appears

once, for helium.”132 The doubling of the Aufbau scheme, as proposed by Barut, by

invoking two different representations of the SO(3,2) group, was therefore considered

by Novaro to be a “fatal flaw.”133 The obtained dimensionalities do not “correspond

to the magic numbers” and “as this chain of groups has been used implicitly by several

authors, all [these] studies . . . necessarily lack this important aspect.”134

127 Novaro and Berrondo were certainly aware of this fact, but they considered the conventional

format of the periodic table to be more fundamental.
128 M. Berrondo and O. Novaro. “On a Geometrical Realization of the Aufbau Scheme.” Journal of

Physics B: Atomic and Molecular Physics 6.5 (1973), pp. 761–769.
129 Novaro and Berrondo. “Approximate Symmetry of the Periodic Table,” p. 1109. and Berrondo

and Novaro. “On a Geometrical Realization of the Aufbau Scheme.” See also Novaro and Wolf. “A

Model Hamiltonian for the Periodic Table.”
130 Novaro, “Group Theoretical Aspects of the Periodic Table of the Elements,” p. 117.
131 Novaro, “Symmetries of the Periodic System,” p. 245.
132 Novaro, “Group Theoretical Aspects of the Periodic Table of the Elements,” p. 104.
133 Ibid., p. 110.
134 Ibid., p. 112.



371
The

periodic
table

Kibler (Lyon, France)

Although Kibler cannot be counted among the pioneers who started the group

theoretical study of the periodic system, he has been an ardent advocate of using

the SO(4,2) ⊗ SU(2) group as a starting point for all group theoretical articulations

of the periodic law.135 Kibler has been instrumental in disseminating this research

among a broader scientific audience. His articles typically have an educational

flavour—introducing the many group theoretical concepts needed to tackle the

periodic system.

Kibler heavily relied on the results obtained by the Russian school and thus

proposed the symmetry group

GK = SO(4,2)⊗ SU(2), (13.43)

with the following chain of subgroups:

SO(4,2)⊗ SU(2) ⊃ SO(4)⊗ SU(2) ⊃ SO(3)⊗ SU(2) ⊃ SU(2). (13.44)

The periodic system offered by Kibler is identical to Fet’s table, but has been rotated

over 90◦. It thus suffers the same shortcomings as Fet’s suggestion. Ostrovsky likewise

referred to the “highly irregular” filling and “inappropriate character” of Kibler’s

table.136 He noted that “the shape of this chart does not reflect the (n+ l,n) rule

with its characteristic period doubling . . .; the latter is actually lost at this stage in

the construct.”137

Kibler is probably one of the few researchers who insisted that group theory should

not only be used in a qualitative sense to identify the overall structure of the periodic

table, but also implies quantitative results. The associated Casimir operators indeed

provide quantitative measures characterizing the states of the system, and these should

be related to physical and chemical properties. This program was referred to as the

KGR program because it was discussed at the Brewster’s Kananaskis Guest Ranch in

Canada during the 2003 Harry Wiener International Conference.138

135 M. R. Kibler. “The Periodic System of Chemical Elements: Old and New Developments.” Journal

of Molecular Structure: THEOCHEM 187 (1989), pp. 83–93; M. R. Kibler. “On a Group-Theoretical

Approach to the Periodic Table of Chemical Elements.” arXiv: quant-ph 0408104. August 16, 2004.

M. R. Kibler. “Classifying Chemical Elements and Particles: From the Atomic to the Sub-Atomic

World.” In: The Periodic Table: Into the 21st Century. Eds. D. H. Rouvray and R. B. King. Baldock:

Research Studies Press, 2004, pp. 297–329; M. R. Kibler. “A Group-Theoretical Approach to the

Periodic Table: Old and New Developments.” The Mathematics of the Periodic Table. Eds. D. H.

Rouvray and R. B. King. New York: Nova Science Publishers, 2006, pp. 237–263; M. R. Kibler. “From

the Mendeleev Periodic Table to Particle Physics and Back to the Periodic Table.” Foundations of

Chemistry 9.3 (2007), pp. 221–234; M. R. Kibler. “Sur la Route de Mendeleïev: De la Chimie à

la Physique des Particules.” La G@zette de l’IPNL 14 (2007), pp. 7–8. See also M. R. Kibler and

T. Negadi. “On the q-Analogue of the Hydrogen Atom.” Journal of Physics A: Mathematical and

General 24.22 (1991), pp. 5283–5289. T. Negadi and M. R. Kibler. “The Periodic Table in Flatland.”

International Journal of Quantum Chemistry 57.1 (1996), pp. 53–61; Kibler, “On the Use of the

Group SO(4,2) in Atomic and Molecular Physics.”
136 Ostrovsky. “Group Theory Applied to the Periodic Table of the Elements,” p. 280.
137 Ibid. p. 279.
138 Kibler, “A Group-Theoretical Approach to the Periodic Table of the Chemical Elements: Old and

New Developments.”
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2 Later developments

In July 2003, the second International Conference on the Periodic Table was held

in Banff (Canada).139 A whole session was devoted to the group theoretical aspects

of the periodic law, with three presentations by Novaro, Ostrovsky, and Kibler.140

In Novaro’s words, “the different approaches and conclusions of these three papers

[showed] that the subject is far from exhausted.”141 Although most research on the

symmetry of the periodic table was concentrated in these “schools,” several other

researchers have occasionally alluded to the importance of symmetry principles in

understanding the periodic law.142 The paper by Jørgensen and Katriel provides a

simple but most useful graphic representation of SO(4,2) symmetry breaking, which

will be a basic ingredient of our analysis in Chapter 14. Recently, L. I. Gurskiĭ and

colleagues also studied the SO(4,2) group and its subsequent breaking as a tool to

classify the chemical elements.143

13.7.2 Demkov and Ostrovsky (St. Petersburg, Russia)

All approaches reviewed so far fall short in providing a convincing explanation

of Madelung’s rule. The SO(4,2) group is a powerful instrument to deal with

the hydrogen states; it also provides a natural splitting scheme to quantize period

doubling, but, ultimately, it fails to impose the Madelung order. Other approaches,

such as Novaro’s, are based on artificial group extensions that do not yield a convincing

explanation either. The treatment of Ostrovsky and Demkov is of a quite different

nature and therefore deserves a separate section. From 1975 to 1991 Yury N. Demkov

(1926–2010) was head of the Quantum Mechanics Division of the physics department

in St. Petersburg. This division was founded by academician Vladimir A. Fock,

who was one of the pioneers of quantum mechanics and the first to explain the

hypergeometric origin of the hydrogen spectrum as discussed in Chapter 9. Valentin

N. Ostrovsky (1945–2006) obtained his PhD in St. Petersburg in 1972 under the

direction of Demkov. He would eventually succeed his supervisor as head of the

division from 2002 until his premature death in 2006. In 1972, the year he attained

139 The first International Conference on the Periodic Table celebrated the centennial of Mendeleev’s

discovery and was held in Turin and Rome during the third week of September 1969. The list of

contributors included some of the greatest and most distinguished academicians of that time: J. P.

Elliott, G. N. Flerov, M. Gell-Mann, M. Haïssinsky, L. A. Radicatti, T. Regge, E. Segré, I. Talmi,

V. F. Wiesskopf, and J. A. Wheeler, to name just a few. For the conference proceedings, see M.

Verde, ed. Atti del Convegno Mendeleeviano: Periodicità e Simmetrie Nella Struttura Elementaire Della

Materia. Turin: Accademia Delle Scienze di Torino, 1971. Quite recently, in August 2012, the third

International Conference on the Periodic Table was held in Cusco, Peru.
140 See Novaro, “Group Theory of the Periodic Table”; Kibler, “A Group-Theoretical Approach to

the Periodic Table: Old and New Developments”; Ostrovsky. “Group Theory Applied to the Periodic

Table of the Elements.”
141 Novaro, “Symmetries of the Periodic System,” p. 255.
142 See, for example, J. Katriel and C. K. Jørgensen. “Possible Broken Supersymmetry behind the

Periodic Table.” Chemical Physics Letters 87.4 (1982), pp. 315–319; W. B. Jensen. “Classification,

Symmetry and the Periodic Table.” Computers & Mathematics with Applications 12B.1/2 (1986),

pp. 487–510.
143 L. I. Gurskiĭ, L. I. Komarov, and A. M. Solodukhin. “Group of Symmetry of the Periodic System

of Chemical Elements.” International Journal of Quantum Chemistry 72.5 (1999), pp. 499–508.
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his PhD, Ostrovsky, together with Demkov, published an atomic physics approach

to the Aufbau problem based on a rather peculiar family of one-electron spherically

symmetric potentials:

Veff (r)=− 2v

r2R2
[( r

R

)−μ+ ( r
R

)μ]2
, (13.45)

where v, μ, and R are constant parameters.144 This potential is different from the

spherical oscillator or the Coulomb hole, and the associated Schrödinger equation

cannot be integrated in closed form. Neither does a classical particle moving in

this central field describe closed orbits, as Bertrand’s theorem keeps reminding us

(see Chapter 9). Nonetheless, this potential has some intriguing characteristics that

appear only for certain specific values of the parameters. When μ is equal to one, this

potential is known as the Maxwell fish-eye potential, with applications in geometric

optics. Our interest, however, is in the field of classical and quantum mechanics.

The Schrödinger equation for a particle with mass m moving in this potential

thus reads (
− h̄2

2m
∇2 +Veff

)
 = E . (13.46)

However, Demkov and Ostrovsky did not study the bound states of this equation, but

instead focused on the particular solutions associated with zero energy:(
− h̄2

2m
∇2 +Veff

)
 = 0. (13.47)

Quite remarkably, for quantized values of the v-parameter, this equation has analytic

solutions described by Gegenbauer polynomials. The quantization condition reads

v = R2μ2(N + 1

2μ
)(N + 1

2μ
− 1), (13.48)

with N = n+ ((1/μ)− 1)l. Obviously, the μ-value of interest here is μ = 1/2, since

then N reduces to n+ l, as in the Madelung rule. For a given quantized value of N ,

a set of N2 states emerges at zero energy that covers the n, l states of a given n + l

Madelung sum. Ostrovsky and Demkov thus leave the Schrödinger perspective and

vary the potential by increasing the value of v. Whenever v meets the quantization

condition, a Madelung manifold arises at zero energy. If v then continues to rise,

the potential deepens and these levels at zero energy move downward into the bound

region. When v passes through the next N quantum, the next set of Madelung levels

appears. In this way, we obtain the Madelung spectrum, not as a function of energy,

but as a function of the potential parameter. This is represented in the diagram of

Figure 13.10.

Ostrovsky claims nothing less than that this result solves the Löwdin challenge,

because it provides an atomic physics model that reproduces the Madelung order.

The underlying rationale is that, although at larger distances the Veff potential does

not show the 1/r dependence of the Coulomb hole, its general form resembles the

Thomas-Fermi potential, which provides an approximate model for multielectron

atoms.

144 Demkov and Ostrovsky, “n+ l Filling Rule in the Periodic System and Focusing Potentials.”
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4 E

Z1 Z2 Z3 Z4 Z5 Z6 Z (or v)
o

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s

FIGURE 13.10 Schematic plot of the energy levels entering the Demkov-Ostrovsky potential well as

a function of the potential strength v. Note that the s-levels (l = 0) are tangential to the

zero-energy bound, whereas the curves for l > 0 cross the zero-energy line. This explains why the

s-levels of a Madelung multiplet are well separated from the other levels. From V. N. Ostrovsky.

“Dynamic Symmetry of Atomic Potential.” Journal of Physics B: Atomic and Molecular Physics 14

(1981), pp. 4425–4439.

Apparently, the chemists were not really convinced by these claims. The compu-

tational chemists did not understand Löwdin’s challenge in the first place, because

they were able to calculate all desirable properties of any given element with great

accuracy. So why bother about a general model that generates the structure of the

whole periodic table? The theoretical chemists, on the other hand, were expecting an

entirely different answer (i.e., in the form of a Schrödinger equation with bound states

that formed a Madelung–type spectrum). Instead, they got a series of zero-energy

states that were called into existence, one by one, by gradually deepening the potential

well. What they also did not appreciate was that the Demkov-Ostrovsky model did

retain a quantization condition. Schrödinger extracted physically sound solutions

from his equation by requiring that the wave function be “finite” and single-valued,

which later on would be rephrased as the requirement for square integrability of

the wave function. In the Pauli’s hydrogen atom, the analogue of this condition was

the requirement of negative energies for the bound states. In the Demkov-Ostrovsky

model, there is still a condition: only quantized values of N are considered to give rise

to physically meaningful solutions.

The person who really grasped the significance of this potential, was theoretical

physicist and cosmologist John Archibald Wheeler (1911–2008). In fact, his interest in

the Madelung rule predates the Demkov-Ostrovsky model by three years. In 1969, at

the first International Conference on the Periodic Table, Wheeler delivered a lecture

titled “From Mendeleev’s Atom to the Collapsing Star,” in which he considered the

consequences of the Madelung rule on the orbit of a classical particle inside an

atom.145 He compares and contrasts this orbit to the elliptical orbits imposed by an

oscillator or Coulomb potential. The results are summarized in Table 13.9.

To explain this table we must make use of a result from Chapter 11, where it was

shown that the principal quantum number in the SO(2,1) algebra could be written as

a sum of a radial quantum number nr (which corresponds to the number of nodes in

the radial part of the wave function) and the angular quantum number l:

E(n)= E(nr + l+ 1). (13.49)

A classical particle in a central Coulomb field describes an elliptical orbit in which the

circular frequency of revolution is the same as the frequency of oscillation in the radial

145 J. A. Wheeler. “From Mendeleev’s Atom to the Collapsing Star.” Atti del Convegno Mendeleeviano,

Accademia delle Scienze di Torino, Accademia Nazionale dei Lincei, Torino- Roma, 15–21 Settembre

1969. Ed. M. Verde. Torino: Vincenzo Bona, 1971, pp. 189–233.



Table 13.9 The “chemical orbit” as compared to orbits in a simple harmonic oscillator and Coulomb potential.

Potential Orbit Features of orbit Reaches rmaxhow Passes starting direction

preserved over entire many times per how many times

semiclassical range circuit of the orbit? per circuit of the orbit?

of nr and l?

Oscillator Centered ellipse Yes 2 1

Coulomb Kepler ellipse Yes 1 1

Atom Chemical orbit Restricted range 1 2

From J. A. Wheeler, “From Mendeleev’s Atom to the Collapsing Star.” In: Atti del Convegno Mendeleeviano, Accademia delle Scienze di Torino,

Accademia Nazionale dei Lincei, Torino-Roma, 15–21 Settembre 1969. Ed. M. Verde. Torino: Vincenzo Bona, 1971, pp. 189–233.
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6 FIGURE 13.11 The double

necklace, or chemical orbit.

One complete radial

oscillation from perihelion

to aphelion and back

involves two revolutions.

From J. A. Wheeler. “From

Mendeleev’s Atom to the

Collapsing Star.” In: Atti del

Convegno Mendeleeviano,

Accademia delle Scienze di

Torino, Accademia

Nazionale dei Lincei,

Torino-Roma, 15–21

Settembre 1969. Torino:

Vincenzo Bona, 1971,

pp. 189–233.

direction. Considering a single circuit around the nucleus, starting at the perihelion,

it passes through the aphelion once and returns to the starting direction. In contrast,

for a spherical oscillator, the energy is given by146

E = (2nr + l+ 3/2) h̄ω. (13.50)

The corresponding orbit is a centered ellipse, hence the nucleus is located in the

center between the two foci. A single circuit in this case passes through the maximal

radius twice. For a particle that follows Madelung’s rule, the energy is dependent

on n+ l, or

E(n+ l)= E(nr + 2l+ 1). (13.51)

Such an orbit in the classical approximation implies that the circular frequency of

revolution is twice the frequency of excursions in the radial direction. Hence, when

a particle starts (e.g., in its perihelion), it reaches the aphelion only after one full

turn, and returns to the perihelion after two turns. The result is a double necklace

trajectory, as shown in Figure 13.11. Wheeler and his assistant Robert T. Powers147

coined the term chemical orbit to describe this motion. In view of Bertrand’s rule,

the oscillator and the Kepler problem are the only two cases with bound orbits that

are closed after a single revolution. But while the rule forbids the existence of other

closed, bound orbits, it cannot prevent the fact that there are some periodic orbits

at peculiar energies. In 1976, Princeton University Press issued a volume of studies

in mathematical physics dedicated to essays in honor of Valentine Bargmann. In that

volume, Wheeler returned to the Madelung atom and took the opportunity to discuss

146 For this result, see Chapter 14.
147 R. T. Powers. “Frequencies of Radial Oscillation and Revolution as Affected by Features of

a Central Potential.” In: Atti del Convegno Mendeleeviano, Accademia delle Scienze di Torino,

Accademia Nazionale dei Lincei, Torino-Roma, 15–21 Settembre 1969. Ed. M. Verde. Torino:

Vincenzo Bona, 1971, pp. 235–242.
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the Demkov-Ostrovsky potential.148 With μ= 1/2, the potential can be rewritten as

Veff (r)=−R(n+ l+ 1)(n+ l)

2r (r+R)2
. (13.52)

Wheeler noted that this potential describes rather well the interactions that an elec-

tronic comet would feel when visiting an atomic solar system. At larger distances, the

potential is determined by a polarization effect, but when the electron penetrates what

Wheeler calls the main region, where the electron cloud becomes dense, the comet

would experience a Thomas-Fermi potential that is close to the Demkov-Ostrovsky

model. Deep inside the atom, close to the nucleus, the 1/r Coulomb potential becomes

dominant, as is the case for Veff with an appropriate radial scaling constant. Similarly,

by slowly decreasing the value of the potential, the energy of each bound state is slowly

increased until it reaches the continuum limit at the top of the atomic sea, where it is

expelled into the continuum. The remarkable feature of the Demkov-Ostrovsky model

is that this happens simultaneously for an entire Madelung manifold. In retrospect, by

approaching the Madelung rule from a semiclassical perspective, Wheeler was able

to anticipate some characteristics of the chemical orbit that were later confirmed

to be present in the Demkov-Ostrovsky potential. This has contributed to the

credibility of this approach. Nonetheless, it should be kept in mind that this approach

focuses on the levels at zero energy and it does not describe the bound states of

the atom.

Returning to Ostrovsky, in 2003 during a lecture on the physical explanation

of the periodic table at a meeting of the New York Academy of Sciences, he

repeated his claim to have solved the Löwdin challenge. On several occasions, he

had reproached Rumer and Fet, Barut, Novaro and Berrondo, and Konopel’chenko

of not having made the connection with the inner dynamics of many-electron

systems when proposing the SO(4,2) ⊗ SU(2) group, but during the New York

lecture his attack on the EPA-inspired group theoretical approaches was particularly

vehement149:

It seems that the abstract group-theoretical approach, as currently developed,

amounts to a translation of empirical information on the periodicity pattern for atoms in

a specialised mathematical language—but no other output is produced. Probably this

approach would have explanatory power only within a community which speaks this

language.

This viewpoint is reminiscent of Dirac’s attitude toward the group theoretical

developments that led to the eightfold way. He kept repeating that one should continue

to look for Hamiltonians, no matter how difficult that might be. As Graham Farmelo

recounts150:

At the Lindau meeting, Dirac mounted one of his last attacks on renormalisation theory

in front of an audience of some two hundred students and Nobel laureates. Looking

148 J. A. Wheeler. “Semi-Classical Analysis Illuminates the Connection between Potential and Bound

States and Scattering”. In: Studies in Mathematical Physics. Eds. E. H. Lieb, B. Simon, and A. S.

Wigthman. Princeton, NJ: Princeton University Press, 1976, pp. 351–422.
149 Ostrovsky, “Physical Explanation of the Periodic Table,” p. 188.
150 G. Farmelo. The Strangest Man: The Hidden Life of Paul Dirac, Mystic of the Atom. New York:

Basic Books, 2009, p. 405.
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8 as fragile as a cut-glass figurine, Dirac stood at the rostrum giving a speech almost

identical to ones he had been giving for almost fifty years; he had no praise for the

Standard Model or any other successes of particle physics. A microphone amplified

his trembling voice, [with] each letter ‘s’ accompanied by a whistle from his ill-fitting

dentures. Current theories were “just a set of working rules” he said; physicists should

go back to basics and find a Hamiltonian description of nature free from infinities.

“Some day,” he said with a gentle and weary defiance, “people will find the correct

Hamiltonian.”

Returning to Ostrovsky, his own negative experience with group theory might well

have been at the basis of his categorical opinion on group theory. In 1981, his study

of the dynamic group of the Demkov-Ostrovsky equation from an atomic physics

point of view was published.151 Interestingly, Ostrovsky’s research only revoiced the

phenomenological claim that the group theoretical aspects of the Demkov-Ostrovsky

potential O(4,2) ⊗ SU(2) was, indeed, the symmetry group for the periodic system.

Besides the usual SU(2) spin group, however, Ostrovsky introduced an extra SU(2)

group, analogous to the isospin, to account for the period doubling. His full group

thus read

GO =O(4,2)⊗ SU(2)S ⊗ SU(2)T. (13.53)

Its subgroup, O(4) ⊗ SU(2)S ⊗ SU(2)T, contains an O(4) symmetry that yields

representations of dimension n2.152 By enlarging this invariance group to

O(4)⊗ SU(2)S, the unirrep dimensions are doubled to 2n2. The subscript S refers

to the physical origin of the SU(2) group, which arises from the electron spin

ms =±1/2. Ostrovsky referred to this “horizontal” doubling of period lengths as spin

doubling.

The “vertical” doubling of period lengths, which is known as the actual period

doubling in the periodic system, was given a group theoretical articulation by

Ostrovsky by introducing a second SU(2) group, denoted SU(2)T, and was formally

analogous to the isospin group. This leads to two copies of the O(4,2) ⊗ SU(2)S
unirreps, which are realized in two different Hilbert spaces.153 The basis kets can

be denoted as |nlmlmsτ 〉, where n, l, ml , and ms are defined as usual, and τ = ±1.

The value of τ then distinguishes the two Hilbert spaces from one another. To see

this, Ostrovsky introduced the operators T̂+, T̂−, and T̂3, which were defined by the

following relations154:

T̂+ |nlmlms−〉→ |nlmlms+〉 , T̂+ |nlmlms+〉 = 0; (13.54)

151 V. N. Ostrovsky. “Dynamic Symmetry of Atomic Potential.” Journal of Physics B: Atomic and

Molecular Physics 14 (1981), pp. 4425–4439. See also Ostrovsky, “Group Theory and Periodic

System of Elements”; Ostrovsky, “What and How Physics Contributes to Understanding the Periodic

Law”; Ostrovsky, “Physical Explanation of the Periodic Table”; Ostrovsky, “The Periodic Table and

Quantum Physics.”
152 V. N. Ostrovsky. “Teoretiko-Gruppovye Aspekty Periodicheskoi Sistemy Elementov.” In: Group

Theoretical Methods in Physics, Proceedings of International Symposium, vol. 1. Ed. M. A. Markov.

Moscow: Nauka, 1980, pp. 181–188; Ostrovsky, “Dynamic Symmetry of Atomic Potential.”
153 Although we have not adopted the dynamic group O(4,2)⊗ SU(2)S ⊗ SU(2)T in this chapter,

it is interesting to note that to rationalize the Madelung (n+ l,n) rule, two different so(4,2) copies

are needed to construct the necessary Madelung operators (cf. Chapter 14).
154 Ostrovsky, “Group Theory Applied to the Periodic Table of the Elements,” p. 286.
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T̂− |nlmlms−〉= 0, T̂− |nlmlms+〉→ |nlmlms−〉; (13.55)

T̂3 |nlmlms±〉=±1/2 |nlmlms±〉 . (13.56)

The T̂ operators can then be shown to commute as[
T̂3, T̂±

]
=±T̂±, (13.57)[

T̂+, T̂−
]
= 2T̂3, (13.58)

which are the defining commutation relations for the su(2)T algebra of the SU(2)T

group. In this way, Ostrovsky was able to split the entire Hilbert space H into

two subspaces, H+ and H−, where the T̂3 operator acts as a Cartan generator

distinguishing states from both subspaces, and where the ladders T̂± act as shift

operators between H+ and H−.

Although this phenomenological construction accounts for the period doubling, it

is clear in the light of Barut’s discussion of the period doubling that the introduction of

the SU(2)T group is excessive and unfounded physically. That is, Ostrovsky’s abstract

group theoretical label τ = ±1 does not have a physical counterpart in the quantum

mechanics of the periodic table and should be rejected on this basis. In contrast to

the ms =±1/2 label, which is identified as the spin magnetic quantum number in the

nonrelativistic treatment of the hydrogen atom, the label τ = ±1 does not represent

a new quantum number. It is also unclear whether a realization of the T̂i operators

could be obtained in terms of physical operators (expressed as analytic functions of

the coordinates xi and momenta −ih̄∂/∂xi).155

The introduction of new quantum numbers to motivate the period doubling is not

an uncommon theme in the literature on the periodic table. Neubert, for example,

tentatively postulated an additional quasispin property for the periodic system in

terms of the topical quantum number c = ±1/2 to account for the double-shell

structure of Mendeleev’s chart.156

Extensions of the dynamic O(4,2)⊗ SU(2)S group, similarly, have been proposed

more than once to justify the period doubling. Following a reasoning similar to

Ostrovsky’s, Fet interpreted the period doubling by including the cyclic group Z2

in the spectrum-generating group O(4,2) ⊗ SU(2)S.157 Although this permutation

group leads to a doubling of the Aufbau scheme, it does not yield ladder operators

to connect the two disjoint representations of the O(4,2)⊗ SU(2)S group, as noted

before by Ostrovsky.158

Similar objections have been raised against Konopel’chenko’s postulation of the

SO(2,4) + R group, where the discrete R operator was called forth to produce the

observed period doubling.159 It should be noted that in his later publications, Fet

155 Admittedly, this criticism arises from an atomic physics (APA) point of view. With the EPA,

Ostrovsky’s alternative construction is not as easily challenged.
156 Neubert. “Double Shell Structure of the Periodic System of the Elements.”
157 Fet, The System of the Elements from the Group-Theoretic Viewpoint ; A. I. Fet. “Numbers and the

System of Chemical Elements.” Group Theoretical Methods in Physics, Proceedings of International

Symposium, vol. 1. Ed. M. A. Markov. Moscow: Nauka, 1980, pp. 327–336.
158 Ostrovsky. “Group Theory Applied to the Periodic Table of the Elements,” p. 279.
159 Konopel’chenko. “Gruppa SO(2,4)+R i Tablitza Mendeleeva [The SO(2,4)+R Group and

Mendeleev’s Table].”
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0 adopted the same O(4,2)⊗ SU(2)S ⊗ SU(2)T group as Ostrovsky.160 In each of these

cases, the same objections can be made as presented previously.

The final blow to Ostrovsky’s findings came from A. O. Barut and Y. Kitagawara,

who demonstrated that his potential well did not admit the SO(4,2) ⊗ SU(2)

symmetry.161 Although modeling the (n+ l, n) rule, Ostrovsky’s potential did not

yield an SO(4,2) symmetry. Kitagawara and Barut did not stop there, but undertook a

new symmetry analysis of the Demkov-Ostrovsky potential, and dug up something

more intricate and no less intriguing than SO(4,2). They discovered an algebraic

structure that was quite similar to the Lie algebra SO(4), but this algebra was not closed

in the strict sense. Indeed, some of the structure constants had become functions of

the Hamiltonian and L̂2, and thus were no longer constants. Barut and Kitagawara

were somewhat bewildered by this finding and wrote:

The degeneracy algebra of this type has not been known before, and it deserves a

detailed analysis . . .. This fact may suggest a possibility of establishing a new theory

which generalizes the theory of Lie algebras. Future research will clarify these

points.162

In a subsequent paper published in 1984, Kitagawara and Barut launched a further

attempt to transform the Demkov-Ostrovsky equation into a Schrödinger–like form,

without, however, changing the special algebra they had discovered. Unfortunately,

their earlier promise to clarify the nature of this algebra could not be pursued.163

13.8 CONCLUSION

In this chapter, a group theoretical articulation was provided of the global group

structure of the periodic system. The main results are summarized in the following

four points:

1. The overall symmetry group of the bound states of the hydrogen atom has been

identified with the direct product group SO(4,2) ⊗ SU(2). All possible (n, l)

combinations, representing the different chemical elements, are considered to

160 Fet, “The System of Elements from the Group-Theoretic Viewpoint”; Fet, “Gruppa Simmetrii

Khimicheskikh Elementov” [“Symmetry Group of Chemical Elements”]; A. I. Fet and L. Romanov.

“Prediction of Properties of Chemical Elements and Combinations. In: High-Perfomance Computing

and Networking. Eds. H. Liddell, A. Colbrook, B. Hertzberger, and P. Sloot. Dordrecht: Springer,

1996, pp. 379–386; Fet, Symmetry Group of Chemical Elements.
161 Y. Kitagawara and A. O. Barut. “Period Doubling in the n + l Filling Rule and Dynamical

Symmetry of the Demkov-Ostrovsky Atomic Model.” Journal of Physics B: Atomic and Molecular

Physics 16.18 (1983), pp. 3305–3327. See also Y. Kitagawara and A. O. Barut. “On the Dynamical

Symmetry of the Periodic Table: II. Modified Demkov-Ostrovsky Atomic Model.” Journal of Physics

B: Atomic and Molecular Physics 17 (1984), pp. 4251–4259.
162 Kitagawara and Barur. “Period Doubling in the n+ l Filling Rule and Dynamical Symmetry of

the Demkov-Ostrovsky Atomic Model,” p. 3326.
163 In a personal communication to the authors, dated January 5, 2015, Dr. Yutaka Kitagawara recalls

that, at first, the discovery of a nonlinear algebra in relation to the Madelung rule sounded odd to

him. Later, he realized that the linear SO(4) algebra applicable to hydrogen was exceptional, and

that one should welcome a generalized version of a Lie algebra. However, to develop such an algebra

further, one should have a real physical system that can be approximated by this symmetry.
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form a basis for an infinite-dimensional unirrep, denoted h⊗[2], of the SO(4,2)

⊗ SU(2) group.

2. A symmetry-based interpretation of the period doubling has been provided by

Barut in terms of the reduction of the SO(4,2) group to the anti-de Sitter SO(3,2)

group. The infinite-dimensional manifold of the chemical elements splits into two

sets under this symmetry-breaking step: one set with n+ l odd and one with n+ l

even. This leads to the required doubling of the Aufbau series, as observed in the

left-step periodic system.

3. The EPA approach did not succeed in finding a group theoretical structure for the

Madelung (n+ l,n) order. The apparent SO(4)-like pattern of the Madelung levels

cannot be embedded in the SO(3,2) subgroup.

4. Demkov and Ostrovsky developed an atomic physics model that incorporates the

Madelung rule, but by replacing the quantization of level energies with the

quantization of coupling constants at zero energy.

Clearly, the time has come to launch a renewed EPA attack on the Madelung problem,

which will be the content of our next and final chapter.



14 SO(4,2) and the rules
of atomic chess

The future belongs to he who has the bishops.

–Siegbert Tarrasch1

14.1 FROM THE EIGHTFOLD WAY TO THE PERIODIC TABLE

In this last chapter, we finally arrive at the group theory of the periodic table. Our

approach is inspired by the successful EPA that gave rise to the eightfold way. The

derivation of a group structure for the periodic table will be based on three pillars:

• The period doubling;

• The Madelung rule;

• The noninvariance group SO(4,2) of the hydrogenic orbitals.

The first two are empirical observations about the periodic table; the third delineates

the playing field in which the group has to be defined.

Unlike hydrogen, all heavier atoms carry more than one electron and thus

incorporate an additional interelectronic repulsion energy. This effect changes the

simple Coulombic central field potential responsible for the SO(4) degeneracy group

of the Kepler problem (see Chapter 9). Hence, it should not be surprising that the strict

hydrogenic order is no longer obeyed. In fact, the shell sequence in multielectronic

1 Siegbert Tarrasch (1862–1934) was a prominent chess player and writer of the chess classic:

S. Tarrasch. The Game of Chess. New York: Dover, 2011, p. 389. [Translated from the German:

S. Tarrasch. Das Schachspiel. Berlin: Deutsche Buch-Gemeinschaft, 1931.]
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atoms no longer only depends on the principal quantum number; it is a function of

both the n and l quantum numbers. What is surprising, however, is that instead of

the hydrogen sequence based on the principal quantum number, a new Madelung

order seems to be imposed, which in essence remains hydrogenic, but which is

based on the n + l quanta. This suggests that some hitherto unknown symmetry

group is taking over. The main characteristic of this symmetry group is that it traces

diagonal paths through the hydrogen sequence, rather than the horizontal paths of

SO(4) and the vertical paths of SO(2,1). It is precisely on this point that the existing

group theoretical approaches are deficient, because they neglect the operators that

correspond to diagonal moves. The iconic representation of the SO(4,2) space, which

does justice to these characteristic moves, is the chessboard, as will be developed

further on.

14.1.1 The atomic chessboard

Let us represent the basic nl states in a two-dimensional diagram in the form of a

chessboard, with the principal quantum number n along the vertical axis and the

orbital quantum number l along the horizontal axis. Since l < n, a triangular array

is obtained (e.g., refer to Figure 14.5):

n\ l 0 1 2 3 4 5 6

7 7s 7p 7d 7f 7g 7h 7i

6 6s 6p 6d 6f 6g 6h

5 5s 5p 5d 5f 5g

4 4s 4p 4d 4f

3 3s 3p 3d

2 2s 2p

1 1s

(14.1)

Each entry in the table represents a manifold of 2 (2l+ 1) substates, which form a

tower in the third dimension. All elements belonging to a given nl configuration are

thus grouped together on the same entry in the diagram. A given row (labeled by

n = 1, 2, 3, . . .) contains 2n2 elements; the columns (labeled by l = 0, 1, 2, . . .)

are bounded from below and contain an infinite number of elements as n =
1 → +∞. This implies that the periodic system contains (at least theoretically)

an infinite number of elements; in practice, only 118 elements are known to date

(with Z = 1→ 118). The elements with Z > 118 have not yet materialized in our

physical world.

The periodic table has been previously compared with a city with west–east streets

in the l direction (labeled by n), and north–south avenues in the n direction (labeled

by l). The nth street contains n blocks, labeled by l = 0, 1, . . . , n − 1. Each block,

with address (n, l), contains 2 (2l+ 1) houses with addresses given by the quartet

(n, l,ml ,ms). Chemical elements belonging to the same nl configuration are housed

in the same block, and the SO(3) ⊗ SU(2) ladder operators act as bus lines that

take us from one house to another in that same l-block. The SO(4) ⊗ SU(2) and
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FIGURE 14.1 To understand the structure of the periodic system, we have to find out the rules of

atomic chess. On the chess board in this illustration, the principal quantum number n increases as

we walk toward the horizon. The orbital quantum number l increases from left to right.

SO(2,1) bus lines allow us to move along the streets and avenues, respectively, and the

SO(4,2)⊗SU(2) taxis bring us from any house to any other house in Mendeleev city.2

However, since the relevant moves are not restricted to horizontal and vertical

displacements, we will compare the diagram to a chess board, rather than a city map!

To reconstruct the structure of the periodic table, we will have to find out the rules of

this atomic chess (Figure 14.1).

14.1.2 Correlation diagram

The moves on a chessboard trace out the relations between the n and l quantum

numbers. An overview of the significant filling rules can be presented graphically in

a correlation diagram, as shown in Figure 14.2. This diagram goes back to an early

study by Friedrich Hund (1896–1997), who drew a schematic correlation diagram

between the discrete eigenvalues of the three-dimensional isotropic harmonic oscillator

and the Schrödinger hydrogenic levels. The diagram was later expanded by Jörgensen

and Katriel. In Figure 14.2, an n, l state is represented by a straight line, described as

y = n+ lx. (14.2)

2 The image of streets, avenues, and houses in a city was first used by Byakov and colleagues in

V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet “Group-Theoretical Classification of

Chemical Elements: I. Physical Foundations.” Moscow: Preprint of the Institute of Theoretical

and Experimental Physics, 1976; V. M. Byakov, V. I. Kulakov, Yu. B. Rumer, and A. I. Fet

“Group-Theoretical Classification of Chemical Elements: II. Description of Applied Groups.”

Moscow: Preprint of the Institute of Theoretical and Experimental Physics, 1976; V. M. Byakov,

V. I. Kulakov, Yu. B. Rumer, and A. I. FET “Group- Theoretical Classification of Chemical Elements:

III. Comparison with the Properties of Elements.” Moscow: Preprint of the Institute of Theoretical

and Experimental Physics 1977. The Mendeleev city metaphor has been further popularized by

Maurice Kibler in a number of works. See, for example, M. R. Kibler. “On a Group-Theoretical

Approach to the Periodic Table of Chemical Elements.” arXiv: quant-ph 0408104. August 16, 2004;

M. R. Kibler. “From the Mendeleev Periodic Table to Particle Physics and Back to the Periodic Table.”

Foundations of Chemistry 9.3 (2007), pp. 221–234.
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n–l n–l/2 n n+l/2 n+l
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E
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1s
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3d

5s

6g

7g 5p

4f

5d
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8g
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FIGURE 14.2 Qualitative correlation diagram. The energy dependence of the nl-orbitals on the

quantum numbers n and l is depicted for five different orbital filling rules. The diagram is

suggestive of a possible relation between the Madelung (n+ l), hydrogenic (n) and harmonic

(n− l/2) orbital orderings and degeneracies. [Adapted from J. Katriel and C. K. Jørgensen.

“Possible Broken Supersymmetry behind the Periodic Table.” Chemical Physics Letters 87.4 (1982),

pp. 315–319.]

Table 14.1 Degeneracy points in the n, l correlation

diagram.

x fn,l System Symmetry group

−1 n− l Regge Sequence ?

− 1
2 n− l

2 Isotropic oscillator SU(3)

0 n Hydrogen atom SO(4)

+ 1
2 n+ l

2 Reflected oscillator ?

+1 n+ l Madelung Sequence ?

Hence, n denotes the vertical scale in the origin and l is taken as the slope; s states with

l= 0 are represented by horizontal lines. This equation should not be confounded with

an energy scale. It is a linearized representation of the addition of energy (or “mass”

as expressed by the principal quantum number) and momentum (as expressed by the

orbital quantum number) in terms of a coupling constant x. By changing the coupling

constant from −1 to +1, the variation of mass and momentum can be followed

along the correlation lines as the filling rule changes. The critical points correspond to

integer and half-integer values of x, which give rise to multiple crossings between the

correlation lines. At these points, different sets of nl-orbitals are degenerate, which is a

hallmark of the existence of higher dynamical symmetries. In this way, the graph offers

a useful chart of the possible symmetries of the central field potential. In Figure 14.2,

no less than five special cases can be identified, and they are listed in Table 14.1.
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6 Hund considered the hydrogen atom in the center of the diagram, corresponding

to x = 0, and the harmonic oscillator system, corresponding to n− l/2 with x =−1/2.

Jørgensen and Katriel later extended the diagram to the n + l case, with x = +1,

which represents the Madelung rule. This extension also passes through the n + l/2

point, which is the reflection of the oscillator. To complete the diagram, one more

case has been added to the left, corresponding to the n− l anti-Madelung (or Regge)

rule. The Aufbau rule for monoatomic ions with charges of +2 converges back to

the hydrogenic order with SO(4) symmetry in the center of the diagram. This is an

important observation that confirms that an increase of the relative importance of

nuclear attraction versus electronic repulsion reinforces the central Coulomb hole and

diminishes the symmetry breaking due to interelectronic repulsions.

14.2 THE RULES OF ATOMIC CHESS

Each of the degeneracy spaces, identified in the correlation diagram (Figure 14.2),

represents a particular move on the chessboard of the baruton, which happens to

be in accordance with the traditional rules of chess. This section offers a detailed

description of the different chess pieces and their associated symmetries. The allowed

moves for each piece will be reviewed, along with a discussion of the corresponding

ladder operators in the so(4,2) Lie algebra. A summary is provided in Table 14.2.

14.2.1 The king and queen

Let us start our discussion of the chess pieces with the royals: the king K and queen Q.

The king (Figure 14.3) is allowed to move one square at a time in any possible direction

(horizontally, vertically, or diagonally). The queen, on the other hand, can reach out

Table 14.2 The rules of atomic chess. The symbol and allowed moves of each chess

piece are summarized, along with their corresponding symmetry group and filling

rule. Notice that a distinction should be made between the black and white bishops, for

which n+ l is even and odd, respectively. The pawn is a monster; it can move upward

on the chessboard only, and is thus identified with the Q̂+ operator. Because there is

no “inverse pawn,” the pawn cannot be represented by a symmetry group.

Chess piece Symbol Moves Symmetry group Filling rule

King K ↔/ ⤡⤢ SO(4,2) —

Queen Q ↔/ ⤡⤢ SO(4,2) —

Rook R ↔/ SO(4) ⊗ SO(2,1) —

Horizontal rook — ↔ SO(4) n

Vertical rook — / SO(2,1) —

Knight N ↩�↪� ? n± l/2

Main knight — ↩� SU(3) n− l/2

Second knight — ↪� ? n+ l/2

Bishop (2x) B ⤡⤢ SO(3,2) n± l

Regge bishop ⤡ SO(3,1)? n− l

Madelung bishop ⤢ SO(4)? n+ l

Pawn p ↑ Q̂+



387
SO

(4,2)and
the

rules
ofatom

ic
chess

FIGURE 14.3 The king K can

move in any possible direction

by one square. It thus

corresponds to the conformal

SO(4,2) group.

FIGURE 14.4 The queen Q

can move in all direction

through any number of

squares, and also corresponds

to the covering SO(4,2)

group.

in all directions through any number of squares (Figure 14.4). In our metaphor, the

royals represent the moves allowed by the baruton itself.

14.2.2 The rook

Of greater interest is the rook, which will be denoted by the symbol R. Variously known

as the castle or tower, the rook is allowed to move horizontally and vertically through

any number of unoccupied squares on the board (Figure 14.5).
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7s 7p 7d 7f 7g 7h 7i

FIGURE 14.5 The rook R can move horizontally and vertically through any number of squares. The

horizontal moves yield SO(4) multiplets of constant n; the vertical moves give rise to SO(2,1)

multiplets.

Horizontal moves of the rook on the atomic chessboard correspond to variations

of l over the interval [0, n− 1]. Orbitals with the same principal quantum number

n, but different values of l, can be related in this way. The horizontal rook is therefore

associated with the n rule in the center of the correlation diagram, for which the orbital

energies depend uniquely on the principal quantum number n. In this sense, the rook

rationalizes the accidental n2-degeneracy of the hydrogen atom, as described by the

SO(4) dynamical symmetry of the Coulomb hole (Chapter 9).

Vertical moves of the rook correspond to excitations in n, while keeping l fixed.

The operators that correspond to this motion are the raising and lowering operators

Q̂± = Q̂1 ± iQ̂2 of the radial group SO(2,1).

The combined horizontal and vertical moves of the rook cover the entire

chessboard and allow one to reach every possible square. This is described by the direct

product group SO(4)⊗ SO(2,1), which includes SO(4) and SO(2,1) as subgroups. It is

itself a subgroup of the parent spectrum-generating group SO(4,2):

SO(4,2) ⊃ SO(4)⊗ SO(2,1) ⊃ SO(4),SO(2,1). (14.3)

The corresponding Lie algebra, so(4)⊕ so(2,1) is generated by the operators L̂i , Âi ,

and Q̂i (i= 1→ 3). An intermediate SO(4,1) group, formed by the L̂ab operators from

Chapter 12 with indices 1 to 5, is also spectrum generating. It is known as the de Sitter

group and it contains the horizontal moves of the rook, along with the Q̂2 operator,

which is a linear combination of the raising and lowering operators Q̂±:

Q̂2 = i

2

(
−Q̂+ + Q̂−

)
. (14.4)
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This implies that Q̂2 turns an |nlm〉 state into a linear combination of |(n+ 1)lm〉 and

|(n− 1)lm〉 kets:

Q̂2 |nlm〉 = − i

2
h̄
√
(n− l)(n+ l+ 1) |(n+ 1)lm〉

+ i

2
h̄
√
(n+ l)(n− l− 1) |(n− 1)lm〉.

(14.5)

Moving away from the central point in the correlation diagram introduces a

dependence on l and corresponds to the breaking of the original SO(4) symmetry.

Individual energy levels originating from the hydrogen shell will now be functions of

both n and l. The appropriate symmetry group can be written as the direct product

group SO(3) ⊗ SO(2). The SO(3) group describes the spherical symmetry of the

central field, which gives rise to the angular l quantum number, whereas the SO(2)

group contains the single Q̂3 generator that identifies the principal quantum number

n.

14.2.3 The knight

The next chess piece to be discussed is the knight, which will be represented by the

symbol N (Figure 14.6). The knight moves in an unusual manner; it can “jump”

over the other pieces on the chessboard. It can move either two squares horizontally

and one square vertically or two squares vertically and one square horizontally. The

jumps, consequently, resemble the letter L. The intermediate n± l/2 rules are easily

identified as the jumps of the knight. Although in principle the knight can reach out

to eight different fields, in each of these rules only two fields on opposite sides can

be addressed. The n + l/2 knight connects a given (n, l) state with the (n+ 1, l− 2)

and (n− 1, l+ 2) states, whereas the n − l/2 knight jumps to the (n+ 1, l+ 2) and

(n− 1, l− 2) states. As an example,

n+ l/2 knight 3d ↔ 4s

4f ↔ 5p
(14.6)

FIGURE 14.6 The knight N can “jump” to

one of eight possible squares by moving two

squares horizontally (vertically) and one

square vertically (horizontally). The knight

explains the degeneracy spaces that result

from the intermediate n± l/2 rules.
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0 n− l/2 knight 2s ↔ 3d

3p ↔ 4f

3s ↔ 4d ↔ 5g

(14.7)

The n− l/2 knight is identified as the harmonic isotropic oscillator. Since there is no

group–subgroup relationship between SU(3) and SO(4), there is no direct branching

rule for the correlation between the eigenstates in both systems. However, both systems

share the spherical symmetry group SO(3) as largest common denominator. On this

basis, we can determine the n, l quantum numbers in a given SU(3) multiplet. The

angular momenta of spherical oscillator states can be worked out easily with the

help of the Cartan-Weyl diagrams. The eigenstates of the Schrödinger equation for

the harmonic oscillator are represented by triangulated triangles. Let N denote the

number of excitations of the oscillator. The number of nodes in the triangular diagram

for the N th excitation is equal to (N + 1)(N + 2)/2, as we derived in Chapter 7 (see

Eq. 7.73). The basis of each triangle contains N + 1 nodes. In Figures 14.7 and 14.8

we can see the first few excitations, for N = 0,1,2,3. As we have seen before, the

L̂z operator of the SO(3) subgroup of SU(3) simply corresponds to the horizontal

axis in these diagrams. Hence, the ml-values of the spherical levels can be found as

projections of the nodes on the horizontal axis in this diagram. If a state with angular

momentum quantum number l is present, it must give rise to a complete sequence of

2l+ 1 components, with ml =−l,−l+ 1, . . . , l− 1, l. In this way, we can immediately

identify the spherical ingredients of each excitation. The SO(3) levels are labeled by

their angular momentum quantum number l and a radial quantum number—say,

ν—starting from 1, which enumerates the levels with the same l in increasing order,

as shown in Figure 14.7. Hence, the figure reveals the following branching scheme:

N = 0→ 1s

N = 1→ 1p

N = 2→ 2s+ 1d

N = 3→ 2p+ 1f (14.8)

These results can be easily generalized by considering odd and even excitations

separately. The ground level (N = 0) is a single point and thus trivially corresponds

FIGURE 14.7 Cartan-Weyl diagrams for N boson excitations of the SU(3) harmonic oscillator, with

N = 0,1,2. Projections on the horizontal axis denote the ml magnetic quantum numbers of SO(3).
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FIGURE 14.8 Cartan-Weyl diagrams for N boson excitations of the SU(3) harmonic oscillator, with

N = 3. Projections on the horizontal axis denote the ml magnetic quantum numbers of SO(3).

to 1s. The second excitation (N = 2) then adds to this ground level two horizontal

strata, containing respectively N + 2 and N + 3 nodes. Note that the total number of

nodes for this N + 2 excitation obeys the general dimensional formula

(N + 2)+ (N + 3)+ (N + 1)(N + 2)

2
= [(N + 2)+ 1][(N + 2)+ 2]

2
. (14.9)

Together, the five extra points for N = 2 give rise to five equidistant projections on the

horizontal axis, ranging from ml = −2 to ml = +2. This implies the existence of an

extra d-level. We thus have a s + d composition, which is labeled as 2s + 1d, because

this is the second s-level and the first d-level. Two more excitations add another two

layers, now containing nine extra points, ranging from ml =−4 to ml =+4. The result

thus corresponds to 3s+2d+1g , and so on. Hence, the ground level is at the basis of a

spectral series where each double excitation adds an l=N+2 level, with N being even.

On the other hand, for odd values of N, the first excited state (N = 1) is represented

by a single triangle, yielding three ml components corresponding to the first 1p-level.

Exactly as in the even N case, this first excited state is at the origin of a manifold, where

each double excitation adds two horizontal layers, giving rise to an additional orbital

with l = N + 2, with N being odd. Hence, 1p is followed by 2p+ 1f , which upon a

further double excitation gives rise to 3p+ 2f + 1h and so on.

As we saw in Chapter 7 on the oscillator, the energy of the excited states depends

on N only, as it is given by

E(N)=
(

3

2
+N

)
h̄ω. (14.10)



Sh
at
te
re
d
Sy
m
m
et
ry

39
2 We can easily verify that there is a simple relationship between this N and the radial,3

and angular quantum numbers nr and l:

N = 2nr + l. (14.11)

To match these levels to the hydrogenic orbitals, we must realize that the principal

hydrogenic quantum number n is defined differently. As indicated in Chapter 11, we

have

n = nr + l+ 1. (14.12)

Hence, the relationship between the N and n quantum numbers is given by

N = 2n− l− 2. (14.13)

States belonging to an oscillator multiplet thus share the same value of n− l/2, which

means that they are converted into each other precisely by the n− l/2 knight jumps.

14.2.4 The bishop

The final chess piece to pass our review is the bishop, denoted B. The bishop is allowed

to move diagonally through any number of unoccupied squares on the chessboard

(Figure 14.9). As a consequence, the moves of the bishop relate substates located along

diagonals of the atomic chessboard. The bishop can therefore be associated with the

Madelung n+ l and anti-Madelung n− l rules. To separate these two cases, we have to

define a chiral bishop that can move along one diagonal direction only (see §14.4).

The symmetry group that corresponds precisely to such diagonal moves is the

anti-de Sitter group, denoted SO(3,2). This pseudo-orthogonal group of order r = 10

and rank l = 2 is a subgroup of the conformal group SO(4,2), and leaves invariant the

quadratic form

F = x2
1 + x2

2 + x2
3 − x2

5 − x2
6 , (14.14)

which defines a five-dimensional space with signature [+,+,+,−,−]. The corre-

sponding so(3,2) Lie algebra is therefore based on the generalized angular momentum

operators L̂ab of Chapter 12, with indices 1, 2, 3 and 5, 6, as summarized by the matrix

L=

⎛⎜⎜⎜⎜⎜⎝
0 L̂12 L̂13 L̂15 L̂16

0 L̂23 L̂25 L̂26

0 L̂35 L̂36

0 L̂56

0

⎞⎟⎟⎟⎟⎟⎠. (14.15)

The hydrogenic realization of this group includes the L̂i , B̂i , and �̂i vectors, along with

the Q̂3 operator. Notice that the LRL vector Â, as well as the Q̂1 and Q̂2 components,

are not included in the so(3,2) algebra. Since the shift operators Q̂± = Q̂1 ± iQ̂2

raise and lower n, whereas the Âi components alter l, horizontal and vertical moves

are no longer possible under SO(3,2), and the moves are restricted to diagonals, as

characteristic of the bishops.

3 The radial quantum number, nr , denotes the number of radial nodes. For 1s, 1p, 1d, and so on,

this number is 0.
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FIGURE 14.9 The bishop B can move diagonally through any number of squares. It represents the SO(3,2) group and rationalizes the n+ l Madelung and n− l anti-Madelung rules.
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4 To study the moves of the bishop in greater detail, let us represent the B̂i and �̂i

operators in ladder operator form as

B̂± = B̂1 ± iB̂2; (14.16)

�̂± = �̂1 ± i�̂2. (14.17)

The action of these operators on a ket function |nlm〉 is easily obtained from the

various shift operations derived in Chapter 12. We simply need to express these

operators in the known ladder operators through the following commutation rules

for B̂i :

B̂3 =−1

2

[
Q̂+ − Q̂−, Â3

]
; (14.18)

B̂± =−1

2

[
Q̂+ − Q̂−, Â±

]
; (14.19)

and similarly for �̂i :

�̂3 = i
[

Q̂3, B̂3

]
; (14.20)

�̂± = i
[

Q̂3, B̂±
]

. (14.21)

Using the expressions from Chapter 12 leads, without further difficulty, to the explicit

form of the actions of the B̂ and �̂ operators on a ket function |nlm〉. For the B̂

operators,

B̂3 |nlm〉 = +αl
mun

l |(n− 1) (l− 1)m〉
+αl

mvn
l |(n+ 1) (l− 1)m〉

+αl+1
m vn−1

l+1 |(n− 1) (l+ 1)m〉
+αl+1

m un+1
l+1 |(n+ 1) (l+ 1)m〉 ,

(14.22)

B̂± |nlm〉 = ±β l−1±m un
l |(n− 1) (l− 1) (m± 1)〉

±β l−1±m vn
l |(n+ 1) (l− 1)(m± 1)〉

∓ γ l+1±m vn−1
l+1 |(n− 1) (l+ 1)(m± 1)〉

∓ γ l+1±m un+1
l+1 |(n+ 1) (l+ 1)(m± 1)〉 ;

(14.23)

and for the �̂ operators,

�̂3 |nlm〉 = − iαl
mun

l |(n− 1) (l− 1)m〉
+ iαl

mvn
l |(n+ 1) (l− 1)m〉

− iαl+1
m vn−1

l+1 |(n− 1) (l+ 1)m〉
+ iαl+1

m un+1
l+1 |(n+ 1) (l+ 1)m〉 ,

(14.24)

�̂± |nlm〉 = ∓ iβ l−1±m un
l |(n− 1) (l− 1)(m± 1)〉

± iβ l−1±m vn
l |(n+ 1) (l− 1)(m± 1)〉

± iγ l+1±m vn−1
l+1 |(n− 1) (l+ 1) (m± 1)〉

∓ iγ l+1±m un+1
l+1 |(n+ 1) (l+ 1)(m± 1)〉.

(14.25)
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The parameters in these expressions are defined as in Adams’ Algebraic Approach to

Simple Quantum Systems4:

αl
m = √

(l−m)(l+m); (14.26)

β l
m = √

(l−m+ 1)(l−m); (14.27)

γ l
m = √

(l+m+ 1)(l+m)= β l−m; (14.28)

un
l = 1

2

√
(n+ l− 1)(n+ l)

(2l− 1) (2l+ 1)
; (14.29)

vn
l = 1

2

√
(n− l)(n− l+ 1)

(2l− 1) (2l+ 1)
. (14.30)

Since the B̂3 and �̂3 operators commute with L̂3 (cf. Chapter 12), they do not change

the ml quantum number; so, in terms of the towers on the chessboard, we remain on

the same floor. Instead, the B̂± and �̂± operators raise or lower the magnetic quantum

number by 1 unit, in accordance with the commutation rules:[
L̂3, B̂±

]
=±B̂±; (14.31)[

L̂3, �̂±
]
=±�̂±. (14.32)

For a proper description of the moves of the bishop, this is an unwanted extra,

which can be easily undone by preceding these operators with the inverse L̂± ladder

operators. After taking out this ml dependence, it remains true that both B̂± and �̂±
are sending a given state on the chessboard into a linear combination of the four

adjacent states along the diagonals, as shown in Figure 14.9.

14.3 THE ORIGIN OF PERIOD DOUBLING

There is a simple but highly relevant feature to the diagonal moves. In chess, the

bishop is the only monochromatic piece, which means it can relate fields of the same

color only. For this reason, every player has two bishops to his disposition: one tied

to the white fields and another one tied to the black fields. By limiting the allowed

moves to diagonals, the SO(3,2) group naturally divides the baruton into two sets:

one set with n + l odd and one with n + l even, just like the white and black fields

on the chessboard, as represented in Figure 14.9. Not unlike spin, then, SO(3,2) adds

an additional quantum characteristic that can take two values only: even and odd.

4 B. G. Adams. Algebraic Approach to Simple Quantum Systems. Berlin: Springer-Verlag, 1994.

See also B. G. Adams, J. Čížek, and J. Paldus. “Representation Theory of so(4, 2) for the

Perturbation Treatment of Hydrogenic-Type Hamiltonians by Algebraic Methods.” International

Journal of Quantum Chemistry 21.1 (1982), pp. 153–171; and B. G. Adams, J. Čížek, and J. Paldus.

“Lie Algebraic Methods and Their Application to Simple Quantum Systems.” In: Advances in

Quantum Chemistry, vol. 19. Ed. Per-Olov Löwdin. San Diego: Academic Press, 1988, pp. 1–84,

reproduced in B. G. Adams, J. Čížek, and J. Paldus. “Lie Algebraic Methods and Their Application

to Simple Quantum Systems.” In: Dynamical Groups and Spectrum Generating Algebras, vol. 1. Eds.

Y. Ne’eman, A. Bohm, and A. O. Barut. Singapore: World Scientific Publishers, 1988, pp. 103–208.
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6 The resulting splitting of the supermultiplet into two subspaces leads to a doubling of

the Aufbau series. We thus arrive at the following important conclusion: The period

doubling, observed in the periodic system, is nothing more than a manifestation of a

symmetry breaking from SO(4,2) to SO(3,2). This origin of the period doubling was

noted by Barut in his lecture for the Rutherford centennial. Nonetheless, subsequently

several authors have continued to postulate other mechanisms often based on the

introduction of artificial spin operators.

SO(3,2) is also interesting for another reason. Although SU(3) is not a subgroup

of SO(4,2), there is a group theoretical relation between SU(3) and SO(3,2). This may

be seen directly in the chessboard of Figure 14.9 by leaving out either the white or the

black fields. If, in the remaining halved board, we consider horizontal lines, they are

seen to correspond precisely to SU(3) multiplets, as explained in the previous section.

This is not a mere coincidence. Bohm has showed that the groups can be related by

the operation of contraction.5

14.4 THE QUEST FOR THE CHIRAL BISHOP

In the correlation diagram (Figure 14.2), the diagonal moves of the bishop are found

left and right of the center as the n− l and n+ l rules respectively. Although the SO(3,2)

group unites both cases, the separate cases represent a further symmetry breaking that

forces the bishop to move along a single diagonal direction: either along the diagonals

descending from left to right or along the diagonals ascending from left to right. On

the chessboard, such moves reflect chirality (Figure 14.9).

14.4.1 The Madelung sequences

Diagonals descending from left to right on the chessboard link states with the same

n + l values, such as 5s, 4p, 3d. Each diagonal forms a finite-dimensional multiplet

on the board, which coincides with the periods in Janet’s left-step periodic system

(Figure 14.9). A study of these diagonal sequences is thus instrumental in obtaining a

group theoretical interpretation of the Madelung rule. Accordingly, we will call these

Madelung sequences.

The n + l multiplets are grouped together in a single unirrep of the conformal

group SO(4,2), which splits into two separate manifolds under the anti-de Sitter

group SO(3,2), depending on whether n+ l is even or odd. The first few multiplets

for both manifolds are listed in Table 14.3. Their dimensions increase as perfect

squares and suggest the presence of a particular SO(4) group with multiplets that are

labeled, not by the principal quantum number n, as in the case of the hydrogen atom,

but by the sum of the principal and orbital quantum numbers n + l. However, the

relationship between this SO(4) group and the SO(3,2) parent group turns out to be

more complicated than we would expect.

5 During the process of contraction, some Lie operators are multiplied by a numerical factor.

By letting this factor tend toward zero, while keeping the resulting operators finite, some of the

structure constants of the Lie algebra vanish, resulting in a contraction from SO(3,2) to SU(3). For

more details, see A. Bohm, M. Loewe, P. Magnollay, M. Tarlini, R. R. Aldinger, L. C. Biedenharn, and

H. van Dam. “Quantum Relativistic Oscillator: III. Contraction between the Algebras of SO(3,2)

and the Three-Dimensional Harmonic Oscillator.” Physical Review D32 (1985), pp. 2828–2834.
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Table 14.3 The entire set of nl-orbitals belongs to a single unirrep

of the SO(4,2) group. Under the SO(3,2) group, this manifold splits

in two subsets according to whether n+ l is even (right) or odd

(left). A further breaking of the symmetry leads to

finite-dimensional multiplets with dimensions (dim) 1, 4, 9, 16, as

summarized by the formula dim= (n+ l)2. This suggests the

presence of a particular SO(4) group.

n+ l Dim Multiplet n+ l Dim Multiplet

1 1 1s 2 1 2s

3 4 3s, 2p 4 4 4s, 3p

5 9 5s, 4p, 3d 6 9 6s, 5p, 4d

7 16 7s, 6p, 5d, 4f 8 16 8s, 7p, 6d, 5f

14.4.2 The Regge sequences

The diagonals ascending from left to right, the so-called counterdiagonals, form infinite

sequences that can be viewed as excitations of ns ground states:

1s, 2p, 3d, 4f , 5g , . . . ; (14.33)

2s, 3p, 4d, 5f , 6g , . . . ; (14.34)

3s, 4p, 5d, 6f , 7g , . . . . (14.35)

We will call them Regge sequences, in analogy with similar hadronic sequences in

elementary particle physics.6 In 1959–1960, Tullio Regge (1931–2014) introduced

the concept of Regge trajectories in scattering theory. In this theory, resonances

correspond to hadronic particles, and it was soon noted that a simple linear

dependence existed between the squared mass of these particles and their angular

momentum:

m2 =m2
0 + aJ , (14.36)

where a is the Regge slope. Later on, these so-called “particles” were identified as

angular and radial excitations of bound di-quark or tri-quark elementary particles,

corresponding to mesons and baryons, respectively. Barut and Kleinert soon realized

that the sequence of linearly rising Regge states could be identified as towers of a

SO(3,1) spectrum-generating Lorentz group.7

In analogy, we call the principal counterdiagonal sequence Eq. (14.33) starting

from the lowest 1s-level in the correlation diagram a Regge–like trajectory. It

corresponds to the line

n = l+ 1 (14.37)

6 Consider, for instance, the weight diagrams presented by A. Bohm. “Possible Evidence for

Dynamical Supersymmetry in the Hadron Spectrum.” Physical Review D 33.11 (1986), pp.

3358–3367.
7 A. O. Barut and H. Kleinert.” Resonance Decays from O(3,1) Dynamics: A Regularity in the

Partial Decay Widths. Physical Review Letters, 18, pp. 754–756. See also M. Noga and C. Cronström

“Dynamical Model Leading to Linearly Rising Regge Trajectories.” Physics Letters 29B (1969),

pp. 442–444.
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FIGURE 14.10 Somewhat surprisingly, Carroll never mentioned the bishop in his story of Alice

Through the Looking Glass, perhaps out of deference to the clergy. This curious omission formed

the creative source for Isaac Asimov’s mystery story The Curious Omission. Moreover, it finds a

parallel in our quest for the chiral bishop. Notice, however, that despite Carroll’s failure to

integrate this chess piece in the story, Tenniel did include him in one of his drawings.

and forms an infinite-dimensional supermultiplet. The parallel sequences in

Eqs. (14.34) and (14.35) are called daughter trajectories, and they correspond to

the lines

n= l+ 2; (14.38)

n= l+ 3. (14.39)

Subsequently, we will attempt to describe the spectrum-generating symmetry breaking

from the SO(3,2) parent group to an SO(3,1) Regge trajectory. As we shall soon see, the

relationship between this group and the SO(3,2) parent is not as simple as we would

expect, and we are in for a surprise.

In summary, in order to further explain the symmetry breaking in Madelung and

Regge sequences, we face the problem of embedding the finite diagonal sequences,

such as 5s, 4p, 3d, as well as the infinite diagonal sequences of hydrogenic states,

corresponding to, for example, 1s, 2p, 3d, 4f , 5g , and so on, in the SO(4,2) group. In

the following sections, this quest for the chiral bishops will be undertaken by looking

for SO(3,1) and SO(4) subgroups of the SO(4,2) group (Figure 14.10).

14.5 THE ALGEBRA OF CHIRAL BISHOPS

The potential energy function that would give rise to the Madelung or Regge sequences

is unknown. So, our treatment will be purely algebraic—meaning that we start from

the known expressions for the action of the SO(4,2) operators in the n, l basis and

aim to derive subalgebras that correspond to the Madelung or Regge sequences. First

we investigate how SO(3,2) can be reduced to an SO(3,1), which would perform the

counterdiagonal moves of the Regge sequence.
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14.5.1 Standard embedding of SO(3,1) in SO(3,2)

Both the {L̂i , B̂i} and {L̂i , �̂i} subsets form an SO(3,1) subgroup of the parent SO(3,2)

and offer a natural starting point in our search for diagonal ladders. The angular

momentum operators L̂i and boosting operators B̂i or �̂i follow the standard so(3,1)

commutation rules: [
L̂i , L̂j

]
= iεijk L̂k ; (14.40)[

L̂i , K̂j

]
= iεijk K̂k ; (14.41)[

K̂i , K̂j

]
=−iεijk L̂k , (14.42)

where K̂i stands for B̂i or �̂i , with i = 1,2,3. These expressions can be reformulated in

ladder operators as [
L̂z , L̂±

]
=±L̂±; (14.43)[

L̂+, L̂−
]
= 2L̂z ; (14.44)[

L̂±, K̂z

]
=∓K̂±; (14.45)[

K̂z , K̂±
]
=∓L̂±; (14.46)[

K̂+, K̂−
]
=−2L̂z . (14.47)

Other standard embeddings of the SO(3,1) subgroup in the SO(3,2) group can be

obtained by forming linear combinations of the B̂ and �̂ vectors. The diagram in

Figure 14.11 shows the action of the B̂i and i�̂i operators. Both operators act in an

identical manner, except for some sign differences, as indicated by the different arrow

colors. When corresponding arrows in the B̂i and i�̂i diagram have the same white

or black filling, it means they have the same sign; if the colors are different, they

have opposite signs. The diagram thus suggests the possibility of further controlling

the moves of the bishop by taking appropriate linear combinations of the B̂i and i�̂i

components. This holds the promise of yielding new ladders that could take us up and

down the Regge and Madelung trajectories.

Consider as an example the combinations B̂α ± i�̂α , where α can be 3, +, or −.

The plus combination here lowers n uniquely (Figure 14.11), whereas the minus

combination can only raise n, in accordance with the commutation rule:[
Q̂3, B̂α ± i�̂α

]
=∓

(
B̂α ± i�̂α

)
. (14.48)

B

BB

B

n, l n, l+

i Γ

i Γ

i Γ

i Γ

n, l=

B + i Γ B + i Γ

FIGURE 14.11 Additive combination of the B̂α and i�̂α operators (α = 3,+,−) induces transitions

of the central (n, l) state to (n− 1, l− 1) and (n− 1, l+ 1) states.
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0 The detailed expressions for the action of these operators on the standard ket are easily

obtained from Eqs. (14.22) through (14.25). The plus combinations act as(
B̂3 + i�̂3

)
|nlm〉 = +2αl

mun
l |(n− 1)(l− 1)m〉

+ 2αl+1
m vn−1

l+1 |(n− 1)(l+ 1)m〉 ,
(14.49)

(
B̂−+ i�̂−

)
|nlm〉 = −2β l−1−m un

l |(n− 1)(l− 1)(m− 1)〉
+ 2γ l+1−m vn−1

l+1 |(n− 1)(l+ 1)(m− 1)〉 ,
(14.50)

(
B̂++ i�̂+

)
|nlm〉 = +2β l−1

m un
l |(n− 1)(l− 1)(m+ 1)〉

− 2γ l+1
m vn−1

l+1 |(n− 1)(l+ 1)(m+ 1)〉,
(14.51)

whereas the minus combinations yield(
B̂3 − i�̂3

)
|nlm〉 = +2αl

mvn
l |(n+ 1)(l− 1)m〉

+ 2αl+1
m un+1

l+1 |(n+ 1)(l+ 1)m〉 ,
(14.52)

(
B̂− − i�̂−

)
|nlm〉 = −2β l−1−m vn

l |(n+ 1)(l− 1)(m− 1)〉
+ 2γ l+1−m un+1

l+1 |(n+ 1)(l+ 1)(m− 1)〉 ,
(14.53)

(
B̂+ − i�̂+

)
|nlm〉 = +2β l−1

m vn
l |(n+ 1)(l− 1)(m+ 1)〉

− 2γ l+1
m un+1

l+1 |(n+ 1)(l+ 1)(m+ 1)〉.
(14.54)

Notice that the m dependence of the B̂± ± i�̂± operators can be taken out again by

preceding their action by the inverse operator L̂±:(
B̂− + i�̂−

)
L̂+ |nlm〉 = −2ωl

mβ
l−1
−m−1un

l |(n− 1)(l− 1)m〉
+ 2ωl

nγ
l+1
−m−1vn−1

l+1 |(n− 1)(l+ 1)m〉 ,
(14.55)

(
B̂+ + i�̂+

)
L̂− |nlm〉 = +2ωl−mβ

l−1
m−1un

l |(n− 1)(l− 1)m〉
− 2ωl−mγ

l+1
m−1vn−1

l+1 |(n− 1)(l+ 1)m〉 ;
(14.56)

(
B̂− − i�̂−

)
L̂+ |nlm〉 = −2ωl

mβ
l−1
−m−1vn

l |(n+ 1)(l− 1)m〉
+ 2ωl

mγ
l+1
−m−1un+1

l+1 |(n+ 1)(l+ 1)m〉 ,
(14.57)

(
B̂+ − i�̂+

)
L̂− |nlm〉 = +2ωl−mβ

l−1
m−1vn

l |(n+ 1)(l− 1)m〉
− 2ωl−mγ

l+1
m−1un+1

l+1 |(n+ 1)(l+ 1)m〉 ;
(14.58)

with

ωl
m = √

(l+m+ 1)(l−m). (14.59)

From these results, it is also easy to check that the following sum rule applies:

2
(

B̂3 ± i�̂3

)
L̂3 +

(
B̂+ ± i�̂+

)
L̂− +

(
B̂− ± i�̂−

)
L̂+ = 0. (14.60)
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This sum rule is a direct consequence of the vanishing scalar products:

B̂ · L̂ = 0; (14.61)

�̂ · L̂ = 0. (14.62)

This relationship also solves the apparent dilemma that we have six operators to link

a given state to only four neighbors on the diagonal. In view of the sum rule, the

operators, in fact, reduce to only four independent ones.

Although we have obtained one-sided combinations, they always involve a mixture

of diagonal and counterdiagonal paths. It should be clear that it is impossible to form

chiral ladders along either diagonal or counter diagonal directions on the chess board

unless we introduce combinations that depend explicitly on l. The standard embedding

of the SO(3,1) group in SO(3,2) does not provide an operator that yields the value of

l and thus cannot yield the chiral bishops we are looking for. The same need for an

additional operator that is linear in l was already noted while deriving the raising and

lowering operators for l in Chapter 12.

14.5.2 The Ŝ operator

A solution in terms of a tilted or distorted SO(3,1) group will be offered in this section

by introducing an additional operator Ŝ, the nature of which will first be elucidated.

In his book Group Theory and the Coulomb Problem, Englefield drew attention to an

additional angular momentum operator that is not contained in the so(4,2) algebra.8

This operator, denoted Ŝ, arises in the o(3,2) algebra of the spherical harmonics Y m
l

and yields the first power of the angular momentum quantum number l:

ŜY m
l = (l+ 1/2)Y m

l . (14.63)

Notice that Ŝ acts on the angular part of the wave function ψ = Rn,lY
m
l only.9 As

Englefield points out, this operator is related algebraically to the angular momentum

operator L̂2 by

Ŝ2 = L̂2 + 1

4
. (14.64)

In fact, twice this operator yields 2l+1, which is the degeneracy of a given l manifold,

so that 2Ŝ may be considered a counting operator.

Although Ŝ commutes with the angular momentum operators, L̂, and radial

momentum operators, Q̂, of SO(4,2), it does not commute with the LRL, Â, nor does

it commute with the remaining vector operators B̂ and �̂. It thus opens a way to a

further supersymmetry beyond the original SO(4,2) symmetry. As will be shown in

the following section, the Ŝ operator provides the required flexibility to obtain chiral

ladders.

Let us first examine how the Ŝ operator affects the original SO(4,2) symmetry.

Based on this knowledge, Regge ladder operators and Madelung ladder operators

8 M. J. Englefield. Group Theory and the Coulomb Problem. New York: Wiley-Interscience, 1972, pp.

19–20.
9 The other o(3,2) operators are not symmetry operators of the hydrogen states because they shift

only the spherical harmonics Y m
l , without affecting the radial part Rn,l simultaneously (in contrast

to, for instance, the LRL vector Â). The Ŝ operator thus forms an exception because it leaves the

spherical harmonics intact, and it is also for this reason that we take the Ŝ operator onboard to see

how it affects the SO(4,2) group.
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2 can be constructed that correspond to chiral bishops. The structure of their resulting

algebras will then be studied in §§14.5.4–14.5.5.

The Ŝ operator commutes with the components of L̂ and Q̂, but not with the

nine other operators of the so(4,2) algebra. Let us denote these non-vanishing

commutators
[
Ŝ, X̂

]
, where X̂ represents a component of Â, B̂, or �̂, by the symbol

X̂ ′. Conversely, the commutator of Ŝ with one of the primed operators X̂ ′ yields the

original operator X̂ again:

X̂ ′ =
[

Ŝ, X̂
]

↔ X̂ =
[

Ŝ, X̂ ′]. (14.65)

The primed operators X̂ ′ have exactly the same action on a ket |nlm〉 as X̂ , with the

only difference that moves to the left in the nl diagram, which lower l, have a different

sign. The leftmost panel in Figure 14.12, for example, represents the commutator

B̂′ = [
Ŝ, B̂

]
.

We can easily demonstrate that the commutation relations of the primed operators

Â′, B̂′, and �̂
′

with operators L̂ and Q̂ are similar to the commutators in the so(4,2)

algebra. In Appendix L, the commutators between the primed operators, of type[
X̂ ′, Ŷ ′], are derived and we show how they can be cast in a form that makes their

algebra isomorphic to the original so(4,2) algebra.

The introduction of the Ŝ operator also enables us to obtain rigorous expressions

for the �̂±
l operators introduced in Chapter 12: The original form of the �̂+

l operator

was as follows:

�̂+
l = 1

2

(
Â−L̂+ − Â+L̂−

)
+ (l+ 1)h̄Â3. (14.66)

We can now replace the explicit value of l by the Ŝ operator:

�̂+
l = 1

2

(
Â−L̂+ − Â+L̂−

)
+ h̄Â3

(
Ŝ+ 1

2

)
. (14.67)

n, l n, l

n, l n, l

n, l

n, l

+ =
iΓ iΓ

iΓiΓ

+ =
–iΓ

–iΓ

–iΓ
–iΓ

(A) Madelung ladder operators

(B) Regge ladder operators

B’ B’ +  iΓ

B’ – iΓ

B’ – iΓ

B’ + iΓ

B’

B’B’

B’ B’

B’B’

FIGURE 14.12 (A). Additive combination of the B̂′ and i�̂ operators induces diagonal transitions of

the central (n, l) state to (n+ 1, l− 1) and (n− 1, l+ 1) states. (B). Additive combination of the B̂′

and −i�̂ operators, on the other hand, yields ladder operators for the Regge sequence.
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These two expressions have exactly the same effect on the standard ket. Their action is

to raise l by 1 unit, and it is given by

�̂+
l |nlm〉 = (2l+ 1)αl+1

m cn
l+1 |n(l+ 1)m〉 . (14.68)

However, since we have now a full operator expression, we can define the lowering

operator at once as its Hermitian conjugate, just like
(
L̂+
)† = L̂−. Note that

conjugation reverses the order of the products, which is indeed important because

the operators Â3 and Ŝ do not commute! Thus, we obtain:(
�̂+

l

)† = 1

2

(
L̂−Â+ − L̂+Â−

)
+ h̄

(
Ŝ+ 1/2

)
Â3. (14.69)

When Â3 raises the l-value to l+ 1, the subsequent Ŝ+ 1/2 operator returns the value

l+2, which is indeed the y-coefficient preceding the Â3 operator in the expression for

the�−
l operator in Chapter 12:

�̂−
l = 1

2

(
L̂−Â+ − L̂+Â−

)
+ (l+ 2)h̄Â3. (14.70)

So, when raising the l-value of the standard ket, both
(
�̂+

l

)†
and �̂−

l act in exactly

the same way: they annihilate the ket. However, when projecting the ket to a ket with

a lower l-value, there is a difference in the coefficients, because now the subsequent

Ŝ + 1/2 operator is equal to l, compared with the fixed value of l + 2 for the �̂−
l

operator of Chapter 12. The results for the lowering action are

(�̂+
l )

† |nlm〉 = (2l− 1)αl
mcn

l |n(l− 1)m〉;
�̂−

l |nlm〉 = (2l+ 1)αl
mcn

l |n(l− 1)m〉.
(14.71)

These results clearly indicate the power of the Ŝ operator, which cures the anomaly

between the �̂±
l operators by providing exact Hermitian conjugation between raising

and lowering operators.

14.5.3 Construction of Regge and Madelung operators

The sign alternations resulting from the commutators with Ŝ make it possible to form

tilted combinations that act as ladder operators in the Regge or Madelung sequences.

A convenient way to introduce these ladders is by considering the operators Q̂3 ± Ŝ,

which yield the sum or difference of both the n and l quantum numbers:(
Q̂3 ± Ŝ

)
|nlm〉 = (n± l± 1/2) |nlm〉. (14.72)

We can now define the components of two new vectors, R̂ and M̂, from the

commutation relations between Q̂3 ± Ŝ and B̂. The R̂ operators are called Regge

operators and are given by the following set of equations:

R̂3 = 1√
2

[
B̂3,Q̂3 + Ŝ

]
; (14.73)

R̂± = 1√
2

[
B̂±,Q̂3 + Ŝ

]
. (14.74)
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4 Similarly, the Madelung operators M̂ are defined as

M̂3 = 1√
2

[
B̂3, Q̂3 − Ŝ

]
; (14.75)

M̂± = 1√
2

[
B̂±, Q̂3 − Ŝ

]
. (14.76)

The normalization factor 1/
√

2 is introduced to obtain conformity with the structure

constants in the SO(3,1) and SO(4) Lie algebras. The action of these commutators on

the hydrogen states can be obtained from the preceding equations. We obtain for the

Regge operators

R̂3 |nlm〉 = −√2αl+1
m un+1

l+1 |(n+ 1)(l+ 1)m〉
+√

2αl
mun

l |(n− 1)(l− 1)m〉 ,
(14.77)

R̂± |nlm〉 = ±√2γ l+1±m un+1
l+1 |(n+ 1)(l+ 1)(m± 1)〉

±√
2β l−1±m un

l |(n− 1)(l− 1)(m± 1)〉,
(14.78)

and for the Madelung operators

M̂3 |nlm〉 = −√2αl
mvn

l |(n+ 1)(l− 1)m〉
+√

2αl+1
m vn−1

l+1 |(n− 1)(l+ 1)m〉 ,
(14.79)

M̂± |nlm〉 = ∓√2β l−1±m vn
l |(n+ 1)(l− 1)(m± 1)〉

∓√
2γ l+1±m vn−1

l+1 |(n− 1)(l+ 1)(m± 1)〉.
(14.80)

It is clear that the Regge operators act as counterdiagonal ladders in the hydrogen

spectrum, raising and lowering n and l simultaneously by 1 unit. The Madelung

operators, conversely, act as diagonal ladders, and keep the sum N = n+ l invariant.

Notice that the R̂ and M̂ vectors can also be expressed as
√

2R̂=
[

B̂, Q̂3 + Ŝ
]
= i�̂− B̂′ = −

(
B̂′ − i�̂

)
; (14.81)

√
2M̂ =

[
B̂, Q̂3 − Ŝ

]
= i�̂+ B̂′ = B̂′ + i�̂. (14.82)

The formation of the required ladder operators thus necessitated the combination of

elements from the so(4,2) and so′(4,2) algebras. This is illustrated in Figure 14.12,

where the diagrams for B̂′α and i�̂α are combined according to B̂′α ± i�̂α (with

α = 3,+,−).

Before using these operators to construct an algebra, let us examine their Hermitian

character. From Eqs. (14.77) through (14.80), it follows that both operators are

anti-Hermitian. For example, for R̂3 we have

〈(n− 1)(l− 1)(m)| R̂3 |nlm〉 =√
2αl

mun
l〈

nlm|R̂3|(n− 1)(l− 1)(m)
〉
=−√2αl

mun
l . (14.83)

Since this matrix element is real, the sign change on conjugation points out that the

operator is anti-Hermitian. As another example, for the M̂+ operator we have:

〈(n+ 1)(l− 1)(m+ 1)|M̂+ |nlm〉 = −√2β l−1
m vn

l〈
nlm|M̂−|(n+ 1)(l− 1)(m+ 1)

〉
=+√2γ l−m−1vn

l . (14.84)
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Here, too, in view of the equality γ l−m−1 = β l−1
m , the two elements are equal, except for

a sign. A similar anti-Hermitian character was noted for the prime operators, as shown

in Appendix L. It can be easily reversed to Hermitian by multiplying the operators

with the imaginary unit. The resulting Hermitian Regge and Madelung operators are

defined as follows:

R̂j = iR̂j

M̂j = iM̂j . (14.85)

14.5.4 Regge–like algebras

In this section, the commutation relations formed by the operators L̂ and R̂ will be

considered. The aim is to verify whether the set of operators {L̂,R̂} forms an so(3,1)

Lorentz algebra. The commutators of type
[
L̂i , L̂j

]
and

[
L̂i ,R̂j

]
follow the standard

rules for SO(3,1), since the L̂i operators commute with Q̂3 + Ŝ. That is,[
L̂i , L̂j

]
= iεijkL̂k ; (14.86)

[
L̂i ,R̂j

]
= 1√

2

[
L̂i ,
[

B̂j , i
(

Q̂3 + Ŝ
)]]

= 1√
2

[[
L̂i , B̂j

]
, i
(

Q̂3 + Ŝ
)]

= iεijk
1√
2

[
B̂k , i

(
Q̂3 + Ŝ

)]
= iεijkR̂k .

(14.87)

The crucial point to confirm the presence of a Lorentz SO(3,1) algebra concerns the

internal commutation relations of the R̂i components. As an example, we can work

out the consecutive actions of R̂3 and R̂±:

R̂3R̂± |nlm〉 = +ξ1 |(n+ 2)(l+ 2)(m± 1)〉
+ ξ2 |nl(m± 1)〉
+ ξ3 |(n− 2)(l− 2)(m± 1)〉 ;

(14.88)

R̂±R̂3 |nlm〉 = +ξ4 |(n+ 2)(l+ 2)(m± 1)〉
+ ξ5 |nl(m± 1)〉
+ ξ6 |(n− 2)(l− 2)(m± 1)〉.

(14.89)

The first operator raises and lowers the original (n, l) state to the immediately

preceding and following states in the Regge sequence: (n+ 1, l+ 1) and (n− 1, l− 1).

The second operator then takes these terms further outward to (n+ 2, l+ 2) and

(n− 2, l− 2), but also projects them back to the (n, l) center. During the process, the

angular momentum component is also raised or lowered by one to (m± 1). The ξ

coefficients in this expression are given by

ξ1 =±2αl+2
m±1γ

l+1±m un+2
l+2 un+1

l+1 ; (14.90)

ξ2 =±2αl
m±1β

l−1±m

(
un

l

)2 ∓ 2αl+1
m±1γ

l+1±m

(
un+1

l+1

)2
; (14.91)
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ξ3 =∓2αl−1
m±1β

l−1±m un−1
l−1 un

l ; (14.92)

ξ4 =±2αl+1
m γ l+2±m un+2

l+2 un+1
l+1 ; (14.93)

ξ5 =∓2αl
mγ

l±m

(
un

l

)2 ± 2αl+1
m β l±m

(
un+1

l+1

)2
; (14.94)

ξ6 =∓2αl
mβ

l−2±m un−1
l−1 un

l . (14.95)

When substituting the coefficients in these expressions, it is gratifying to find that

ξ1 = ξ4 and ξ3 = ξ6. These results are a result of the following identities:

αl+2
m±1γ

l+1±m = αl+1
m γ l+2±m ; (14.96)

αl−1
m±1β

l−1±m = αl
mβ

l−2±m . (14.97)

This implies that when these results are combined to form the action of the

commutators
[R̂3,R̂±

]
, the outer terms will vanish and the commutators will only

yield the |nl(m± 1)〉 kets, which corresponds to the action of the angular momentum

ladder operators L̂±. We have[
R̂3,R̂±

]
|nlm〉 = (ξ2 − ξ5) |nl(m± 1)〉. (14.98)

This is very close to the behavior of the standard kets in the Lorentz multiplet. The

factor in the equation is given by

ξ2 − ξ5 =∓2
(
n+ l+ 1

2

)√
(l∓m)(l±m+ 1)

2l+ 1
. (14.99)

The square root in this equation is the usual prefactor of the L̂± ladder operators, so

that the commutators can be rewritten as[
R̂3,R̂±

]
=∓

(
n+ l+ 1

2

)
l+ 1

2

L̂±. (14.100)

The coefficients in this result can be further replaced as

[
R̂3,R̂±

]
=∓

(
Q̂3 + Ŝ

)
Ŝ

L̂±. (14.101)

A completely analogous calculation leads to the third commutation relation:

[
R̂+,R̂−

]
=−

2
(

Q̂3 + Ŝ
)

Ŝ
L̂3. (14.102)

Clearly, these results point to a new kind of algebra. The result in the right-hand side

of this equation is not the expected product of a constant structure factor and an

operator. Instead, the factor preceding the L̂ operator has become a function of Q̂3

and Ŝ. We will analyze this unusual result in more detail later, but let us first repeat the

calculation for the operators representing the Madelung rule.

14.5.5 Madelung–like algebras

The commutation relations for the operators L̂ and M̂ will be considered to verify

whether this set of operators should comply with an so(4) or Lorentz algebra. The
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commutators of type
[
L̂i , L̂j

]
and

[
L̂i ,M̂j

]
follow the standard rules for SO(4), since

the L̂i operators commute with Q̂3 − Ŝ. That is,[
L̂i , L̂j

]
= iεijkL̂k ; (14.103)

[
L̂i ,M̂j

]
= 1√

2

[
L̂i ,
[

B̂j , i(Q̂3 − Ŝ)
]]

= 1√
2

[[
L̂i , B̂j

]
, i(Q̂3 − Ŝ)

]
= iεijk

1√
2

[
B̂k , i(Q̂3 − Ŝ)

]
= iεijkM̂k .

(14.104)

As before, the crucial relationships concern the internal commutation relations of

the M̂i components. As an example, let us work out the consecutive actions of M̂3

and M̂±:

M̂3M̂± |nlm〉 = +η1 |(n+ 2)(l− 2)(m± 1)〉
+η2 |nl(m± 1)〉
+η3 |(n− 2)(l+ 2)(m± 1)〉;

(14.105)

M̂±M̂3 |nlm〉 = +η4 |(n+ 2)(l− 2)(m± 1)〉
+η5 |nl(m± 1)〉
+η6 |(n− 2)(l+ 2)(m± 1)〉.

(14.106)

The first operator raises and lowers the original (n, l) state to the immediately preced-

ing and following states in the Madelung sequence: (n+ 1, l− 1) and (n− 1, l+ 1).

The second operator then takes these terms further outward to (n+ 2, l− 2) and

(n− 2, l+ 2), but also projects them back to the (n, l) center. During the process, the

angular momentum component is also raised or lowered by one to (m± 1). The η

coefficients in this expression are given by

η1 =∓2αl−1
m±1β

l−1±m vn
l vn+1

l−1 ; (14.107)

η2 =±2αl
m±1β

l−1±m

(
vn

l

)2 ∓ 2αl+1
m±1γ

l+1±m

(
vn−1

l+1

)2
; (14.108)

η3 =±2αl+2
m±1γ

l+1±m vn−1
l+1 vn−2

l+2 ; (14.109)

η4 =∓2αl
mβ

l−2±m vn
l vn+1

l−1 ; (14.110)

η5 =∓2αl
mγ

l±m

(
vn

l

)2 ± 2αl+1
m β l±m

(
vn−1

l+1

)2
; (14.111)

η6 =±2αl+1
m γ l+2±m vn−1

l+1 vn−2
l+2 . (14.112)

When substituting the coefficients in these expressions, it is gratifying to find that η1 =
η4 and η3 = η6. These results are a result of exactly the same equalities as for the Regge

case (see Eqs. (14.96) and (14.97)). This implies that as these results are combined to

form the action of the commutators
[
M̂3, M̂±

]
, the outer terms will vanish and the

commutators will only yield the |nl(m± 1)〉 kets, which correspond to the action of
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M̂3,M̂+
]
|nlm〉 = (η2 −η5) |nl(m± 1)〉. (14.113)

This is very close to the behavior of the standard kets in the Lorentz multiplet. The

factor in the equation is given by

η2 −η5 =±2
(
n− l− 1

2

)√
(l∓m)(l±m+ 1)

2l+ 1
. (14.114)

The square root in this equation is the usual prefactor of the L̂± ladder operators, so

that the commutators can be rewritten as[
M̂3,M̂±

]
=±

(
n− l− 1

2

)
l+ 1

2

L̂±. (14.115)

The coefficients in this result can be further replaced as

[
M̂3,M̂±

]
=±

(
Q̂3 − Ŝ

)
Ŝ

L̂±. (14.116)

A completely analogous calculation leads to the third commutation relation:

[
M̂+,M̂−

]
=

2
(

Q̂3 − Ŝ
)

Ŝ
L̂3. (14.117)

Clearly, these results parallel the results for the Regge operators. In fact Eq. (14.116) is

obtained directly from Eq. (14.101) by substituting Ŝ with −Ŝ.

14.5.6 Casimir operators

The algebraic structures obtained both for the Regge and Madelung cases are close to

the standard forms of SO(3,1) and SO(4) algebras. Indeed, the results can be rewritten

as follows: [
L̂i , L̂j

]
= iεijkL̂k , (14.118)[

L̂i , R̂j

]
= iεijkR̂k , (14.119)[

R̂i ,R̂j

]
=−iεijkζRL̂k ; (14.120)[

L̂i , L̂j

]
= iεijkL̂k , (14.121)[

L̂i , M̂j

]
= iεijkM̂k , (14.122)[

M̂i ,M̂j

]
=+iεijkζM L̂k ; (14.123)

with

ζR = Q̂3 + Ŝ

Ŝ

ζM = Q̂3 − Ŝ

Ŝ
. (14.124)
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Superficially, these resemble so(3,1) and so(4) Lie algebras respectively, were it not

for the appearance of the ζ -factors, which depend on invariants of the subalgebras.

The algebraic structure we have obtained is said to be nonlinear in the sense that the

structure factors are functions rather than constants.10 This nonlinearity also implies

an alteration of the expressions for the Casimir operators. Let us first examine this for

the Regge operators.

Casimir operators for the Regge algebra

The ζR structure constant for the Regge algebra can be rewritten as follows:

ζR = Q̂3 + Ŝ

Ŝ
= a−1

(
1

S

)
+ a0, (14.125)

where a−1 = Q̂3− Ŝ and a0 = 2. The parameter a−1 is a constant for a given Regge–like

sequence. As an example, in the fundamental sequence 1s, 2p, 3d, 4f , 5g , and so on, this

factor equals 1/2. In the daughter sequence 2s, 3p, 4d, 5f , 6g , and so on, it equals 3/2,

and so on. The nonlinear so(3,1) algebra which we have obtained is associative and

obeys the Jacobi identity. Following Racah’s theorem and the fact that we are dealing

with an algebra of order r = 6 and rank l = 2, we expect to find two Casimir operators

Ĉμ that commute with all the generators L̂i and R̂i . One of these is straightforward:

Ĉ2 = L̂ · R̂= 0. (14.126)

The other Casimir invariant requires the use of the same scaling factor ζR as appeared

in the commutation relationships. First, we calculate the length of the R̂ vector:

R̂2 = R̂2
3 +

1

2

(
R̂+R̂− + R̂−R̂+

)
. (14.127)

The products of R̂ operators turn the starting |nlm〉 ket into doubly raised and lowered

(n± 2, l± 2) combinations, but also project it back onto itself. It can be easily shown

that the resulting coefficients of the doubly excited and annihilated states vanish, as

we observed for the commutators in the previous section. The diagonal coefficients

for the (n, l) state are as follows:

〈nlm|R̂2
3 |nlm〉 = 2

(
αl

m

)2 (
un

l

)2 + 2
(
αl+1

m

)2 (
un+1

l+1

)2

〈nlm|R̂+R̂− |nlm〉 = 2β l−1−mβ
l−m+1

(
un

l

)2 + 2β l+1
m β l

m−1

(
un+1

l+1

)2

〈nlm|R̂−R̂+ |nlm〉 = 2β l−1
m β l

m+1

(
un

l

)2 + 2β l+1−mβ
l−m−1

(
un+1

l+1

)2
. (14.128)

10 A nonlinear deformation of a Lie algebra has generators T̂i for which the commutator
[
T̂i , T̂j

]
is

not expressed as a linear combination of the generators T̂k , but as a sum over terms fijk

(
T̂l

)
T̂k , where

fijk are polynomials in the generators T̂l :[
T̂i , T̂j

]
=
∑

k

fijk

(
T̂l

)
T̂k .

See, for example, J. Fuchs and C. Schweigert. “Open and Non-linear Algebras.” In: Symmetries, Lie

Algebras and Representations: A Graduate Course for Physicists. Cambridge: Cambridge University

Press, 1997, pp. 60–61.
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0 Combining these results in accordance with Eq. (14.127) yields

〈nlm|R̂2 |nlm〉 = l(n+ l)(n+ l− 1)

2(2l+ 1)
+ (l+ 1)(n+ l+ 1)(n+ l+ 2)

2(2l+ 1)
(14.129)

In operator form, this can be rewritten as

R̂2 = 3

8
+ 1

2

Q̂3 + Ŝ

Ŝ
+ 1

2

(
Q̂3 + Ŝ

)2
. (14.130)

The nonlinearity of the algebra requires us to look for a modified Casimir invariant

Ĉ1 of the form f
(

L̂2
)
− R̂2, where

f
(

L̂2
)
=
(

Q̂3 + Ŝ

Ŝ
− 1

)(
1+ 2L̂2

)
. (14.131)

The first Casimir operator then becomes

Ĉ1 = f
(

L̂2
)
− R̂2 =−7

8
− 1

2

(
Q̂3 − Ŝ

)2
. (14.132)

As we saw earlier, the Regge sequences are characterized by a constant value for Q̂3− Ŝ,

and thus are eigenfunctions of the Ĉ1 operator. It is easily verified that the eigenvalue

of this operator is a negative integer. For the principal series, starting at 1s, Ĉ1 equals

−1; for the daughter series, starting at 2s, Ĉ2 equals −2. In general, for the nth series,

starting at ns, Ĉ1 is given by:

Ĉ1 =−
(

n2 −n

2
+ 1

)
. (14.133)

Casimir operators for the Madelung algebra

An analogous treatment can also be pursued for the Madelung operators M̂i . The ζM

factor can be rewritten as follows:

ζM = Q̂3 − Ŝ

Ŝ
= b−1

(
1

S

)
+ b0, (14.134)

where b−1 = Q̂3 + Ŝ and b0 = −2. The parameter b−1 is a constant for a given

Madelung sequence. As an example, in the sequence 4f , 5d, 6p, 7s, this factor equals

15/2. In the sequence 4d, 5p, 6s, it equals 13/2, and so on. The nonlinear so(4) algebra

we obtained is associative and obeys the Jacobi identity. Following Racah’s theorem and

the fact that we are dealing with an algebra of order r = 6 and rank l = 2, we expect to

find two Casimir operators Ĉμ that commute with all the generators L̂i and M̂i . One

of these is straightforward:

Ĉ2 = L̂ ·M̂= 0. (14.135)

The other Casimir invariant requires the use of a similar scaling factor ζ as appeared

in the commutation relationships. First, we calculate the length of the M̂ vector:

M̂2 = M̂2
3 +

1

2

(
M̂+M̂− +M̂−M̂+

)
. (14.136)
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As for the Regge case, this operator turns the starting |nlm〉 ket onto itself. The

coefficients for the (n, l) state are as follows:

〈nlm|M̂2
3 |nlm〉 = 2

(
αl

m

)2 (
vn

l

)2 + 2
(
αl+1

m

)2 (
vn−1

l+1

)2

〈nlm|M̂+M̂− |nlm〉 = 2β l−1−mγ
l
m−1

(
vn

l

)2 + 2β l
m−1γ

l+1−m

(
vn−1

l+1

)2

〈nlm|M̂−M̂+ |nlm〉 = 2β l−1
m γ l−m−1

(
vn

l

)2 + 2β l−m−1γ
l+1
m

(
vn−1

l+1

)2
. (14.137)

Combining these results in accordance with Eq. (14.127) yields

〈nlm|M̂2 |nlm〉 = l(n− l)(n− l+ 1)

2(2l+ 1)
+ (l+ 1)(n− l− 1)(n− l− 2)

2(2l+ 1)

= 1

2
(n− l− 1/2)2 − n− l− 1/2

2l+ 1
+ 3

8
.

(14.138)

In operator form, this can be rewritten as

M̂2 = 3

8
− 1

2

Q̂3 − Ŝ

Ŝ
+ 1

2

(
Q̂3 − Ŝ

)2
, (14.139)

where we have taken into account the rescaling in Eqs. (14.121),(14.122), and (14.123).

The nonlinearity of the algebra requires us to look for a modified Casimir invariant

Ĉ1 of the form f
(

L̂2
)
+M̂2, where

f
(

L̂2
)
=
(

Q̂3 + Ŝ

Ŝ
− 1

)(
1+ 2L̂2

)
. (14.140)

The first Casimir operator then becomes

Ĉ1 = f
(

L̂2
)
+M̂2 = 7

8
+ 1

2

(
Q̂3 + Ŝ

)2
. (14.141)

As we have seen, the Madelung sequences are characterized by a constant value for

Q̂3 + Ŝ, and thus are eigenfunctions of the Ĉ1 operator. It can be easily proved that as

a result of the applied scaling, the eigenvalue of this operator is a positive integer. For

the principal series, starting at 1s, Ĉ1 = 2; for the daughter series, starting at 2s, Ĉ2 =

4. In general, for the nth series, starting at ns, Ĉ1 is given by

Ĉ1 =
(

n2 +n

2
+ 1

)
. (14.142)

14.6 NONLINEAR LIE ALGEBRAS

The commutation of the Q̂3 operator with the diagonal B̂i operators introduces

into the chessboard of hydrogenic states an upper/lower reflection whereas the

additional Ŝ operator is responsible for a left/right reflection (Figures 14.11, 14.12).

The combination of both is needed to generate sequences that run along the diagonals.

The resulting Regge and Madelung algebras are peculiar in the sense that they are

nonlinear, while maintaining the angular momentum algebra as an so(3) subalgebra.

Various similar extensions of the traditional Lie algebraic framework have started

to play an increasingly important role in many branches of quantum physics.

Quantum algebras (such as q-deformed Lie [super]algebras) and other quantum de-

formations with nonlinear structure functions are increasingly applied to many-body
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2 quantum physics and hold the promise of shedding new light on their internal

dynamics.11

The algebras of the chiral bishops bear a close resemblance to the nonlinear

extensions of the so(3,1) and so(4) algebras that have been discussed by Quesne.12

Quesne considered deformations in which the structure constants are power series

in the group generators, fulfilling the associativity and Jacobi requirements, and that

contract to a linear algebra for some limiting values of the parameters. Compared with

the power series law considered by Quesne, the current structure functions present

an inverse power dependence on the angular momentum through the ζR and ζM

factors in Eq. (14.124). So far, such a case has not yet been discussed in the specialized

literature.

In their analysis of the Demkov-Ostrovsky potential, as described in Chapter 13,

Barut and Kitagawara stumbled onto a “new algebra” that resembled the so(4) algebra,

but was not closed in the strict sense. This was in 1983, at a time when the importance

of non-linear Lie algebra’s was not yet recognized, and the expressions were quite

complicated because the Casimir operators involved the fish-eye potential itself. In

contrast, the current treatment is focused uniquely on the EPA approach, and yet

arrives at the converging result that the Madelung order requires a distortion of the

hydrogenic SO(4) symmetry by a non-linearity. The expressions are more simple than

the ones of Barut and Kitagawara because they contain only the SO(4,2) operators and

their commutators with the Ŝ operator.

14.7 CONCLUSION

In this chapter, a group theoretical articulation was provided of the global group

structure of the periodic system. The main results can be summarized in the following

three points:

1. The overall symmetry group of the bound states of the hydrogen atom is given by

the direct product group SO(4,2) ⊗ SU(2), where SU(2) accounts for the spin

part. All possible (n, l) combinations, representing the different chemical

elements, are considered to form a basis for an infinite-dimensional unirrep,

denoted h⊗[2], of the SO(4,2) ⊗ SU(2) group.

2. A symmetry-based interpretation of the period doubling is provided in terms of

the reduction of the SO(4,2) group to the anti-de Sitter SO(3,2) group. The

infinite-dimensional manifold of the chemical elements splits into two sets under

this symmetry-breaking step: one set with n+ l being odd and one with n+ l

being even. This leads to the required doubling of the Aufbau series, as observed

in the left-step periodic system.

11 See, for instance, M. R. Kibler and T. Negadi. “On the q-Analogue of the Hydrogen Atom.”

Journal of Physics A: Mathematical and General 24.22 (1991), pp. 5283–5289; M. R. Kibler and

T. Negadi. “A q-Deformed Aufbau Prinzip.” Journal of Physics A: Mathematical and General 25.4

(1992), pp. L157–L160; T. Negadi and M. R. Kibler. “The Periodic Table in Flatland.” International

Journal of Quantum Chemistry 57.1 (1996), pp. 53–61; T. Negadi. “On the Planar Periodic Table.”

International Journal of Quantum Chemistry 78.4 (2000). pp. 206–211.
12 C. Quesne. “On Some Nonlinear Extensions of the Angular Momentum Algebra.” Journal of

Physics A: Mathematical and General 28.10 (1995), pp. 2847–2860.
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3. The Madelung (n+ l, n) rule was described in a group theoretical manner by

invoking an Ŝ operator that yields a new so′(4,2) algebra under commutation with

the original so(4,2). This enabled the construction of Madelung operators M̂i by

combining generators from both algebras. The M̂i commute with the angular

momentum vectors L̂i to form a nonlinear so(4) algebra. The nonlinearity of this

algebra reflects the screening of the Coulomb potential in many-electron systems.

Although repulsion modifies the hydrogen potential, and thus breaks the SO(4)

symmetry, the truly fascinating aspect of the sequences in the periodic table, is that,

after all, the periodicity continues to respect the magic number series of SO(4), but

now traces diagonal paths instead of horizontal ones. This altered but still hydrogenic

structure finds its group theoretical expression in the replacement of the SO(4) algebra

by a nonlinear congener.



Epilogue

Mathematics is about existence. A regular polyhedron is defined as a closed body for which

all vertices, all edges, and all faces are the same. The doctrine of the Platonic solids claims

that in three dimensions there exist five regular polyhedra—and only five. The fact that

no other solutions can exist did not put the Greek mathematicians to rest, though. By

sacrificing the requirement that all faces be the same, a new family of regular polyhedra

was called into existence: the Archimedean solids, of which there are exactly thirteen. They

include the truncated icosahedral structure, which is realized in Buckminsterfullerene,

and the cuboctahedron, which is the root diagram of SO(4,2). As this history shows, the

judicious removal of a specific constraint, without doing harm to the core concept, can

lead to new discoveries.

Similar tricks were played in number theory. In antiquity, the Pythagoreans as well as

Indian mathematicians were aware of the existence of irrational numbers that could not be

expressed as the ratio of integers. The resulting set of the real numbers marks an end point

of number theory. It almost put the mathematics of number systems to rest. But, after a

long dormant period, the number theory was “reborn” during the Renaissance with the

discovery of complex numbers. The change of paradigm that triggered this discovery was

to give up the implicit requirement that numbers be one-dimensional. Complex numbers

have a real and an imaginary component; hence, they live on a two-dimensional plane but

nevertheless form an algebra (i.e., they can be added, multiplied, and divided, and they can

be characterized by a “length,” or norm, such that the norm of a product of two complex

numbers is the product of their norms). When the dimensional constraint had fallen, the

hunt was on for number systems in more dimensions. In 1843, Hamilton, on his famous

walk, came to meet the quaternions: a number system with four components. They, too,

form a so-called division algebra, but only at the expense of giving up commutativity of

the product of quaternions. One more number system remained to be discovered: the

so-called octonions, or Cayley numbers, which have eight components. In this case, the

requirement of associativity had to surrender. And then, in 1898, Hurwitz published his

famous theorem that, with this final surrender, the list of solutions of these normed algebras

was complete and no other such algebras could exist. A century-long program had reached

its completion.13

Also, group theory has known its own heroic history. Finite groups can be broken up in

so-called simple groups much in the same way as numbers can be decomposed into products

of prime numbers. The pioneering work of Galois and Lie had laid the foundation for the

classification of simple groups in a periodic system of a kind. Throughtout the twentieth

century, this periodic system continued to grow. Would this growth continue forever? Or

13 F. Gürsey. “Quaternionic and Octonionic Structures in Physics. Episodes in the Relation between

Physics and Mathematics.” In: Symmetries in Physics (1600–1980), First International Meeting on

the History of Scientific Ideas (Sant Feliu de Guixols, Catalunya, September 20–26, 1983). Eds. M. G.

Doncel, A. Hermann, L. Michel, A. Pais. Barcelona: University Press, 1987, pp. 557–592.
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6 would it reach completion? The final verdict came during the 1980s. The hunt for new

classes of finite groups stopped; the classification scheme was complete. This conclusion

is the result of a worldwide effort of mathematicians and ran over tens of thousands of

pages spread throughout the mathematical literature, with echoes extending until 2008. It

terminates a long period of intense work on group structures, but at the same time opens

the gate to new challenges.14

In this book, which we now leave behind, a similar story of opening and closing was

read. As mentioned in Part II, Joseph Bertrand showed, in 1873, that in classical mechanics

there exist two, and only two, central force potentials that give rise to closed bound orbits:

the inverse square law of the gravitation and electrostatics, and Hooke’s law of the radial

oscillator. Much of the success of quantum mechanics is a result of the omnipresence of

these potentials in physics and chemistry: the radial oscillator for the quark model and

the inverse square law for the hydrogen atom. Both cases are marvelously described by Lie

algebras, as we saw in Chapters 7 and 9. They form, in a sense, the apogee of Lie algebra, but

at the same time also show its limits. If it comes to the periodic table, the hydrogenic order

breaks down. The potential becomes more involved as a result of interelectronic repulsion,

and it is natural to claim a breakdown of SO(4) symmetry, leaving behind a shattered Lie

symmetry. But, this is not the full story. As we saw in the final chapters, a new hydrogenic

order is installed, which is described as a tilting across the (n, l) chessboard, corresponding

to the diagonal moves of the bishops. We derived the corresponding operators and observed

that they form a nonlinear Lie algebra. Giving up the requirement of linearity should not

be deplored as a loss, but welcomed as a new opportunity.

14 M. Du Sautoy. Finding Moonshine: A Mathematician’s Journey through Symmetry. London: Fourth

Estate, Harper Collins Publishers, 2008.



Appendix A
Vector algebra

A.1 CONCEPTUAL DEFINITION
Some physical quantities, such as mass, volume, density, length, temperature, energy, and

charge, are determined entirely by their magnitude and possibly a sign. They are called

scalars. Physical quantities that have both magnitude and direction are termed vectors.

Examples include velocity, acceleration, force, linear momentum, and angular momentum.

A.1.1 Notation
Vectors are often represented by a directed line segment (or an arrow) that connects an

initial point A with a final point B. The vector’s magnitude and direction are then specified

by the length and orientation of the line segment. Line segments are often denoted as
−→
AB,

with A the tail and B the head of the arrow. In this book, however, all vectors are denoted

by lowercase boldface symbols, such as a. The length or magnitude of a vector a is denoted

by the symbol |a|.

A.2 REPRESENTATION
Vectors are commonly represented in a Cartesian coordinate system. Consider a vector a in

three-dimensional Euclidean space R3 with a tail that coincides with the origin O= (0,0,0)

of a Cartesian�
(
x, y, z

)
system, and with an end point that is given by the set of coordinates(

ax ,ay , az
)
. This is usually called a position vector or a displacement vector. The scalars ax ,

ay , and az are termed the scalar components of a, and a is said to be fully characterized by a

specification of this ordered list of three components:

a = (ax ,ay ,az
)
. (A.1)

If the components in Eq. (A.1) are all real, a is said to be a real vector; if the components are

complex numbers, a is called a complex vector. A null vector 0 is a vector with all components

equal to zero. If all the components of a vector a are equal to one, a is called a unitary vector.

Two vectors, a and b, are said to be equal when all their components are identical: ax =
bx , ay = by , and az = bz . As a result, the vectorial equation a= b corresponds to three scalar

equations.

Now let us draw three unit vectors, ex , ey , and ez , of unit length (i.e., |ex | =
∣∣ey
∣∣ =

|ez | = 1) along the positive x-, y-, and z-axes. Since the scalar components ax , ay , and

az of a are obtained by a projection of a on the x-, y-, and z-axes (Figure A.1), each

three-dimensional vector a can be represented as follows:

a = ax ex + ay ey + az ez , (A.2)

where we followed the rules of vector addition and scalar multiplication, as defined in the

following section (§A.3).
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ax

x

y

z

ex
ey

ez

ay

az

a

FIGURE A.1 Representation

of a three-dimensional vector

a = ax ex + ay ey + az ez in a

Cartesian �
(
x,y,z

)
reference

frame (with ax = 2, ay = 3,

and az = 3).

Vector addition

x

y

0

a

bb

a + b

Scalar multiplication

x

y

0

ab

2a

–2bc

d

c + d

FIGURE A.2 Examples of vector addition and scalar multiplication. When written in terms of their

components, we obtain a+b = (3ex + 1ey

)+ (−1ex + 1ey

)= 2ex + 2ey for the first addition, and

c+d= (−1ex − 2ey

)+ (3ex + 1ey

)= 2ex − 1ey for the second. For scalar multiplication, this

yields 2a = 2
(

ex + ey

)= 2ex + 2ey for the first multiplication, and −2b=−2
(−ex + ey

)=
2ex − 2ey for the second.

A.3 VECTOR OPERATIONS
The sum of two vectors a and b is obtained by sliding the first vector a in such a way that,

while keeping its direction fixed, its head touches the tail of vector b. The sum a+b is then

defined as a new vector with an origin and an end point that coincide with the tail of a and

the head of b, respectively. This is called vector addition (Figure A.2).

The product of a vector a with a scalar c results in a new vector ca with a length that is

|c| times the magnitude of a and with a direction that is the same as a when c is positive, or

opposite to the direction of a when c is negative. We say that vector a has been rescaled by

a factor of c. This is called scalar multiplication (Figure A.2).

The representation of a vector in terms of its components in Eq. (A.2) allows us to

derive analytic expressions for both vector addition and scalar multiplication. The sum of
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two vectors a and b is thus

a+b = (ax ex + ay ey + az ez
)+ (bx ex + by ey + bz ez

)
= (ax + bx)ex +

(
ay + by

)
ey + (az + bz)ez .

(A.3)

Vector addition is both commutative (i.e., a+b = b+ a) and associative (i.e., (a+b)+ c=
a+ (b+ c)). The difference between a and b, called vector subtraction, is similarly defined:

a−b = ax ex + ay ey + az ez −
(
bx ex + by ey + bz ez

)
= (ax − bx)ex +

(
ay − by

)
ey + (az − bz)ez .

(A.4)

Finally, a scalar multiplication of a by c results in the new vector

ca = c
(
ax ex + ay ey + az ez

)= caxex + cay ey + caz ez . (A.5)

When c = 0, the null vector 0 is obtained; if c =−1, the vector a is said to be reflected about

the origin and its direction is reversed: (−1)a =−a.

A.4 THE INNER PRODUCT
The dot product or inner product of two vectors, a and b, is defined as

a ·b = |a| |b|cosφ, (A.6)

where φ is the angle between a and b, and where |a| and |b| are the magnitude of a and b.

Since |a|, |b|, and cosφ are all scalars, the result of a ·b is also a scalar—hence the alternative

name scalar product. Note also that a ·b = b · a; the dot product is said to be commutative.1

Based on this definition, the scalar product of a vector a with itself gives the squared

magnitude of a:

a · a = |a| |a|cos0= |a|2 = ‖a‖. (A.7)

The squared magnitude of a is also called the Euclidean norm of a, denoted by the symbol

‖a‖. Two vectors, a and b, are said to be orthogonal when their inner product equals

zero—that is, when they form a right angle:

a ·b = |a| |b|cosπ
/

2= 0. (A.8)

When two vectors, a and b, are orthogonal and of unit length (|a| = |b| = 1), then a and b

are said to be orthonormal. Since the unit vectors ex , ey , and ez are mutually perpendicular

and all of length 1, their inner products equal

ex · ex = ey · ey = ez · ez = 1; (A.9)

ex · ey = ex · ez = ey · ez = 0. (A.10)

The set of pairwise orthogonal vectors in Eq. (A.10) is said to form an orthogonal set ; this is

denoted as ex ⊥ ey ⊥ ez . Since all vectors in this set are of unit length, Eq. (A.9) holds and

the set is said to be orthonormal.

Following Eqs. (A.9) and (A.10), the dot product in Eq. (A.6) can be rewritten in terms

of the components of a and b:

a ·b = (ax ex + ay ey + az ez
) · (bxex + by ey + bz ez

)
= axbxex · ex + ayby ey · ey + az bz ez · ez

= axbx + ayby + az bz .

(A.11)

1 This applies to real vectors only. For complex vectors, we have a ·b=∑i a∗i bi = (b · a)∗.
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0 In complete analogy, the dot product in Eq. (A.7) of vector a with itself equals

a · a= (ax ex + ay ey + az ez
) · (axex + ay ey + az ez

)
= a2

x + a2
y + a2

z = |a|2 = ‖a‖.
(A.12)

The magnitude of a is therefore given by

|a| =
√

a2
x + a2

y + a2
z , (A.13)

which is just an extension of the Pythagorean theorem for the three sides of a right-angle

triangle. A vector a with length |a| = 1 is said to be normalized.

A.5 THE OUTER PRODUCT
Another kind of vector product, denoted a × b and termed the cross product or outer

product, has to be defined within three-dimensional Euclidean space R3. The vector

product of two vectors, a and b, yields another vector a × b (rather than a scalar a · b),

with magnitude

|a×b| = |a| |b| sinφ, (A.14)

where φ is the angle between the vectors a and b. The vector a × b is perpendicular to

the plane formed by the vectors a and b, and its direction is given by the right-hand rule

(Figure A.3) to form a right-handed system with a and b (just as the x-, y-, and z-axes also

form a right-handed system). As a result, the cross product is anticommutative:

a×b =− (b× a). (A.15)

Based on this definition, the cross products of the unit vectors ex , ey , and ez can be easily

calculated:
ex × ex = 0; ey × ey = 0; ez × ez = 0;

ex × ey = ez ; ey × ez = ex ; ez × ex = ey ;

ey × ex =−ez ; ez × ey =−ex ; ex × ez =−ey .

(A.16)

According to this set of equations, the outer product of a and b can be written in terms of

its scalar components:

a×b = (ax ex + ay ey + az ez
)× (bx ex + by ey + bz ez

)
= axby ex × ey + axbz ex × ez + aybx ey × ex

+ aybz ey × ez + az bxez × ex + az by ez × ey

= axby ez − axbz ey − aybxez + ay bz ex + az bxey − az by ex

= (aybz − az by
)

ex + (az bx − axbz)ey +
(
axby − aybx

)
ez .

(A.17)

a

b

a × b

ϕ

FIGURE A.3 The right-hand rule. Curl your fingers in such

a way that it represents the rotation of vector a to vector b.

Your thumb then points in the direction of the vector

product a × b, which is perpendicular to the plane

formed by the vectors a and b. Notice that the vector

product b× a points in the opposite direction.
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To avoid making this cumbersome calculation over and over again, a useful mnemonic

consists of representing the cross product a×b as a 3× 3 determinant and expanding it as

follows:

a×b =

∣∣∣∣∣∣∣
ex ey ez

ax ay az

bx by bz

∣∣∣∣∣∣∣
=
∣∣∣∣∣ ay az

by bz

∣∣∣∣∣ex −
∣∣∣∣∣ ax az

bx bz

∣∣∣∣∣ey +
∣∣∣∣∣ ax ay

bx by

∣∣∣∣∣ez

= (aybz − az by
)

ex + (az bx − axbz)ey +
(
axby − ay bx

)
ez .

(A.18)

A.6 HIGHER DIMENSIONAL VECTORS
So far, the discussion of vector algebra has been restricted to three-dimensional real vectors.

Within the realm of abstract mathematics, however, there is no intrinsic difficulty in

working with higher dimensional vectors. Therefore, let us start by generalizing Eq. (A.2) to

vectors in n-dimensional Euclidean space Rn (also called hyperspace). Denoting the scalar

components of an n-dimensional vector a by a1, a2, . . . ,an and the n unit vectors by the

symbols e1,e2, . . . ,en,

a = a1e1 + a2e2 + . . .+ anen. (A.19)

In summation notation,

a =
n∑

k=1

akek . (A.20)

As shorthand for this last expression, use can be made of Einstein’s summation convention,

according to which Eq. (A.20) is written simply as akek (without the summation

symbol
∑

); repeated indices imply summation over all possible values of these indices

(in this case, k). This notation was introduced by Albert Einstein (1879–1955) in 1916 in

his ground breaking publication The Foundation of the General Theory of Relativity.2

Furthermore, we refer to the number n in Eq. (A.20) as the order of a; vectors of order 1

are called scalars. For reasons of compactness, vectors of order n are also termed n-vectors;

a vector in three-dimensional space, for instance, is called a 3-vector.

Two vectors, a and b, of order n are said to be equal (i.e., a = b) when their

corresponding scalar components are equal: a1 = b1, a2 = b2, . . . , an = bn. One vector

equation is therefore equivalent to n scalar equations.

The sum of two n-dimensional vectors a and b is defined as

a+b = (a1e1 + a2e2 + . . .+ anen)+ (b1e1 + b2e2 + . . .+ bnen)

= (a1 + b1)e1 + (a2 + b2)e2 + . . .+ (an + bn)en

=
n∑

k=1

(ak + bk)ek .

(A.21)

The difference of a and b is defined along the same lines. Also, the product of an

n-dimensional vector a with a scalar s gives

sa = s (a1e1 + a2e2 + . . .+ anen)=
n∑

k=1

sakek . (A.22)

2 A. Einstein. “The Foundation of the General Theory of Relativity. [Grundlage der allgemeinen

Relativitätstheorie].” Annalen der Physik IV.49 (1916), pp. 769–822.
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2 Generalizing from Eq. (A.11), the inner product a ·b of two n-dimensional vectors a and b

is given by

a ·b =
n∑

k=1

akbk . (A.23)

Two vectors a and b are said to be orthogonal when a · b = 0. Analogous to Eq. (A.13), the

magnitude |a| of an n-dimensional vector a is defined as

|a| =√
a · a = (a2

1 + a2
2 + . . .+ a2

n

)1/2 =
[

n∑
i=1

a2
i

]1/2

. (A.24)



Appendix B
Matrix algebra

B.1 CONCEPTUAL DEFINITION
In mathematics, a matrix is defined as a rectangular array of (real or complex) numbers.

All matrices in this book are denoted by uppercase blackboard bold symbols, such as A. Let

A be a matrix consisting of m rows and n columns:

A=

⎡⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n

...
...

...
. . .

...

am1 am2 am3 · · · amn

⎤⎥⎥⎥⎥⎥⎥⎦. (B.1)

A is said to be an m × n (read: m by n) matrix; m and n are called the dimensions of A. It is

convenient in some cases to list the dimensions of a matrix underneath the matrix symbol;

the matrix in Eq. (B.1) is then denoted as A
m×n

.

Each entry (number) in a matrix is termed a matrix element and is denoted by the

general symbol aij , with the subscripts i = 1,2, . . . , m and j = 1,2, . . . ,n, referring to the row

and the column of that particular element. For an m× n matrix A, there are, in total, mn

matrix elements enclosed in square brackets.

B.2 SPECIAL MATRICES
Analogous to vectors, the matrix A in Eq. (B.1) is called a real matrix if all its matrix

elements are real. If, on the other hand, the matrix elements are complex numbers, then

A is said to be a complex matrix (see §B.6).

A matrix of dimension 1× n is called a row matrix; similarly, a matrix of dimension

m × 1 is termed a column matrix. Matrices with an equal number of rows and columns

(n = m) are called square matrices of order n. The n components aii of a square matrix

run from the upper left to the bottom right and are said to form the main diagonal of that

matrix. The cross diagonal runs in the opposite direction, from the bottom left to the upper

right:

[
a11 a12 · · · a1n

]
⎡⎢⎢⎢⎢⎣

a11

a21

...

am1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

an1 an2 · · · ann

⎤⎥⎥⎥⎥⎦
1× n row matrix m× 1 column matrix n× n square matrix

Square matrices for which aij = aji ∀i, j = 1,2, . . . , n are symmetric about the main

diagonal and are therefore termed symmetric matrices. Square matrices for which aij =−aji
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4 ∀i, j = 1,2, . . . , n are said to be antisymmetric or skew-symmetric. Based on this definition,

it follows that the diagonal elements aii of a skew-symmetric matrix have to be zero since

aii =−aii .

Matrices with elements that are all zero are called null matrices and are denoted by the

symbol O. The unit matrix, or identity matrix I, is a square matrix of order n with main

diagonal elements that are all 1 and with off-diagonal elements equal to 0. When all the

off-diagonal elements of a square matrix A of order n are 0, then A is called a diagonal

matrix.

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0

0 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

a11 0 0 · · · 0

0 a22 0 · · · 0

0 0 a33 · · · 0
...

...
...

. . .
...

0 0 0 · · · ann

⎤⎥⎥⎥⎥⎥⎥⎦
Null matrix O Identity matrix I Diagonal matrix A

B.3 MATRIX OPERATIONS

B.3.1 Equality
Two matrices, A and B, are said to be equal when they have the same dimensions—say,

m rows by n columns—and when each matrix element aij of A equals the corresponding

element bij of B: aij = bij ∀i = 1,2, . . . , m; j = 1,2, . . . , n. The matrix equation A = B is

therefore equivalent to mn scalar equations. Note that matrices of different dimensions

cannot be compared.

B.3.2 Matrix transposition
Let us proceed by considering a number of basic matrix manipulations called matrix

transposition, matrix addition, matrix subtraction, and scalar multiplication. The transpose

of an m × n matrix A is defined to be an n × m matrix, written AT, and is obtained by

changing all rows (columns) ofA into columns (rows) ofAT. Denoting the matrix elements

of AT by aT
ij , we obtain the following relationship between the elements of A and AT:

aT
ij = aji ∀i = 1,2, . . . , m; j = 1,2, . . . , n. (B.2)

For example, transposing a 4× 3 matrix A, results in a 3× 4 matrix AT:

A=

⎡⎢⎢⎢⎣
a b c

d e f

g h i

j k l

⎤⎥⎥⎥⎦; AT =
⎡⎢⎣ a d g j

b e h k

c f i l

⎤⎥⎦. (B.3)

Clearly, when a transposed matrix AT is transposed a second time, the initial matrix A

is reobtained—that is,
(
AT
)T = A. The transpose of a square matrix of order n is another

square matrix of order n. Transposition of a symmetric matrix results in the original matrix

(i.e., AT =A); the transpose of a skew-symmetric matrix is equal to this matrix multiplied

by minus one (i.e., AT =−A).
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B.3.3 Matrix addition and subtraction
The sum of two m× n matrices, A and B, is obtained by adding the elements of A to the

corresponding elements of B:

A+B=

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤⎥⎥⎥⎥⎦+
⎡⎢⎢⎢⎢⎣

b11 b12 · · · b1n

b21 b22 · · · b2n

...
...

. . .
...

bm1 bm2 · · · bmn

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
a11 + b11 a12 + b12 · · · a1n + b1n

a21 + b21 a22 + b22 · · · a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 · · · amn + bmn

⎤⎥⎥⎥⎥⎦.

(B.4)

The result is a new m× n matrix, denoted A+B. It follows naturally that matrix addition

is defined exclusively for matrices of the same dimension. Now suppose C = A+ B; the

previous equation can then be rewritten in terms of the matrix elements of A, B, and C:

cij = aij + bij ∀i = 1,2, . . . , m; j = 1,2, . . . ,n. (B.5)

Matrix addition is said to be commutative (i.e., A+B = B+A) since aij + bij = bij + aij .

Moreover, matrix addition is associative: (A+B)+C = A+ (B+C). Two matrices can

also be subtracted. That is, if C=A−B, then

cij = aij − bij ∀i = 1,2, . . . , m; j = 1,2, . . . ,n. (B.6)

B.3.4 Scalar multiplication
The scalar multiplication of an m× n matrix A with a scalar c is obtained by multiplying

each entry aij of A by c:

cA= c

⎡⎢⎢⎢⎢⎣
a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎤⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎣

ca11 ca12 · · · ca1n

ca21 ca22 · · · ca2n

...
...

. . .
...

cam1 cam2 · · · camn

⎤⎥⎥⎥⎥⎦. (B.7)

In other words, if D= cA, then dij = caij ∀i = 1,2, . . . , m; j = 1,2, . . . , n. Multiplying matrix

A with c is often referred to as scaling, analogous to the scalar multiplication of vectors. The

null matrix O is obtained when A is multiplied by zero.

B.4 MATRIX PRODUCTS
B.4.1 Definition
A pair of matrices A and B can also be multiplied, provided that the number of columns

in A is equal to the number of rows in B. When this is the case, the matrices A and B are

said to be product conforming. That is to say, if A is a matrix of dimension m×n and B is of

dimension n×p, then A and B conform and matrix multiplication is defined. The resulting

matrix product, denoted1

A
m×n

× B
n×p

= C
m×p

, (B.8)

1 For notational simplicity, the explicit multiplication sign is omitted most of the time. That is, an

expression with consecutive matrices is automatically understood to be a matrix product.
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6 is an m× p matrix with elements given by the following formula:

cij = ai1b1j + ai2b2j + ai3b3j + . . .+ ainbnj

=
n∑

k=1

aikbkj , ∀i = 1,2, . . . , m; j = 1,2, . . . , p.
(B.9)

The matrix element cij is thus obtained by multiplying each element aik of the ith row

of A with the corresponding element bkj of the jth column of B and then adding these n

products. In matrix notation,⎡⎢⎢⎢⎢⎣
· · · · · ·

ai1 ai2 · · · ain

...
...

. . .
...

· · · · · ·

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

· b1j · · · ·
· b2j · · · ·
...

...
. . .

...

· bnj · · · ·

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
· · · · · ·
· cij · · · ·
...

...
. . .

...

· · · · · ·

⎤⎥⎥⎥⎥⎦
m× n matrix A n× p matrix B m× p matrix C

. (B.10)

Alternatively, the previous matrix product can also be represented with the help of Falk’s

scheme, which is constructed as follows: ⎡⎢⎢⎢⎢⎣
· b1j · · · ·
· b2j · · · ·
... ↓ . . .

...

· bnj · · · ·

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

· · · · · ·
ai1 ai2 → ain

...
...

. . .
...

· · · · · ·

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

· · · · · ·
· cij · · · ·
...

...
. . .

...

· · · · · ·

⎤⎥⎥⎥⎥⎦
. (B.11)

B.4.2 Properties of matrix products
Matrices are highly relevant for group theory. The reason is that their products obey some

simple properties, which represent the abstract combination rules in groups.

1. Commutativity. Although the product A
m×n

× B
n×p

in Eq. (B.8) is warranted, the reverse

product B
n×p

× A
m×n

is not necessarily defined since p might be different from m. Even

when p =m, the product BA is usually different from AB. That is, matrix

multiplication is, in general, not commutative—in other words, AB �= BA. If

AB= BA, then A and B are said to commute; diagonal matrices always commute.

2. Associativity. However, matrix multiplication obeys the rules of associativity:

(AB)C=ABC=A (BC). (B.12)

3. Distributivity. Both left and right distributivity are also seen to hold true:

A (B+C)=AB+AC;

(A+B)C=AC+BC.
(B.13)

B.4.3 The inner product in matrix notation
An important connection can be made at this point with the inner product of vectors,

defined in §A.4. Since an n-dimensional vector a = (a1, a2, . . . ,an) is completely specified
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by its scalar components a1, a2, . . . , an, a vector a can be represented as a 1× n row matrix

or as an n×1 column matrix with matrix elements that correspond to the n components of

a. Row and column matrices are therefore synonymously termed row and column vectors.

Both ways of representing a vector are used in this book. Coordinate vectors are written as

column matrices; function spaces are written as row matrices.

Transposing an n× 1 column vector gives a 1× n row vector, and vice versa. Now, let a

be an n-dimensional vector represented by an n×1 column matrix. We may then associate

with this column vector a corresponding dual vector, denoted aT, which is defined as the

transposed form, or row form, of a and which has dimensions of 1× n:

a =

⎡⎢⎢⎢⎢⎣
a1

a2

...

an

⎤⎥⎥⎥⎥⎦ ; aT =
[

a1 a2 · · · an

]
. (B.14)

According to Eq. (B.9), the matrix product of a and b is given by

aTb =
[

a1 a2 · · · an

]
⎡⎢⎢⎢⎢⎣

b1

b2

...

bn

⎤⎥⎥⎥⎥⎦=
n∑

k=1

akbk = a ·b. (B.15)

This is nothing else than the dot product of a and b. It follows that, in general, the matrix

product AB=C in Eq. (B.10) is equivalent to mp dot products. That is, each element cij in

C is obtained by making the inner product of the ith row vector of A with the jth column

vector of B.

B.4.4 The transpose of a matrix product
An important property of matrix multiplication is that the transpose of a matrix product

is equal to the product of the transposes written in reverse order:

(AB)T =BTAT. (B.16)

This statement may look counterintuitive at first; many of you may, quite naturally, expect

(AB)T to equal ATBT instead. There is, however, a logical explanation for the reversal in

Eq. (B.16). Let A be an m× n matrix and B be an n× p matrix. Denoting the result of the

matrix product AB by C gives

A
m×n

B
n×p

= C
m×p

. (B.17)

The transpose of AB is then (AB)T = CT, with CT a p×m matrix. Following Eq. (B.16)

leads to the equation

BT

p×n
AT

n×m
= CT

p×m
, (B.18)

which clearly holds true. The intuitively more natural (but erroneous) option, according to

which (AB)T =ATBT yields

AT

n×m
BT

p×n
= CT

p×m
, (B.19)

which does not hold because m is usually different from p, and matrix multiplication is

therefore not defined for Eq. (B.19). Even if m = p, the result of ATBT is an n× n matrix,

which is different from the p×m matrix CT.
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8 B.5 TRACE AND DETERMINANT OF A SQUARE MATRIX

The algebra of square matrices is controlled by two important characteristics: the trace and

the determinant. These respectively conserve the sum and product operations.

B.5.1 The trace of a square matrix
The trace of a square matrix, denoted Tr, is defined as the sum of the diagonal elements. So,

for A being an n× n square matrix, we have

Tr (A)=
n∑

i=1

aii . (B.20)

The trace of a sum of matrices is equal to the sum of their traces. In other words, the trace

conserves matrix summation:

Tr(A+B)=
n∑

i=1

(aii + bii)=
n∑

i=1

aii +
n∑

i=1

bii = Tr (A)+Tr(B). (B.21)

We can also verify that the trace is immune for matrix transposition, since transposition

leaves the matrix diagonal unchanged:

Tr
(
AT
)
= Tr (A). (B.22)

B.5.2 The determinant of a square matrix
The determinant of a square matrix is perhaps one of the most important matrix

characteristics, because it is an indispensable tool to solve systems of linear equations. Its

definition relies on the concept of permutations. The permutation of an ordered set is an

operation that only rearranges the order in this set. Hence, a permutation is a one-to-one

mapping of a given set onto itself. So, a permutation σ on the set (1,2,3, . . . ,n) may be

defined as

σ =
(

1 2 . . . n

σ1 σ2 . . . σn

)
, (B.23)

where the {σi} set is simply a rearrangement of the numbers 1,2, . . . , n. As an example, in

Chapter 5, we make use of a cyclic permutation of the indices x, y, z. For this set of three

elements, two cyclic permutations are possible:

π1 =
(

x y z

y z x

)
, (B.24)

π2 =
(

x y z

z x y

)
. (B.25)

In π1, x becomes y, y becomes z, and z is replaced with x, thereby closing the cycle. In π2,

the cycle is traversed in the opposite sense: z goes back to y, y goes back to x, and x goes

back to z. Hence, both operations are the inverse of each other.

In general, to every permutation there corresponds an inverse permutation that puts

the elements back in the starting order. There is also a unit permutation that simply maps

each element onto itself. Applying two permutations in succession is again a permutation,

and the combination of permutations is associative; in short, permutations form a group

that is called the symmetric group, denoted Sn. This group is discrete of order n! Only n− 1

of its elements are cyclic permutations (or n if you include the unit permutation).
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A permutation that interchanges two elements only is called a transposition. As an

example, the transposition of the elements i and j is given by

Pij =
(

1 2 . . . i . . . j . . . n

1 2 . . . j . . . i . . . n

)
. (B.26)

Every permutation can be obtained as the result of a sequence of transpositions. As

an example, to change the sequence (1,2,3,4) to (2,3,4,1), we need at least three

transpositions:

(1,2,3,4)
P12−→ (2,1,3,4)

P13−→ (2,3,1,4)
P14−→ (2,3,4,1). (B.27)

The same result may be realized by other transposition pathways; but, in any case, we

always need an odd number of transpositions to achieve the overall permutation. Hence, a

permutation can be characterized by a parity or sign that refers to the parity of the number

of transpositions in the overall permutation. This parity is denoted as sgn(σ ), and is defined

as follows:

Parity of σ even: sgn(σ )=+1;

parity of σ odd: sgn(σ )=−1.
(B.28)

The definition of the determinant of an n×n square matrix A is based on the permutations

of the n indices (1,2, . . . , n). The determinant is denoted as det (A) or as |A| and is given by

det(A)=
∑
σ∈Sn

sgn(σ )a1σ1 a2σ2 a3σ3 . . .anσn. (B.29)

The terms in this sum may be visualized as paths through the matrix, starting at some

position in the top row and going down gradually, row by row, to the bottom row, thereby

making sure that every column is visited only once. There are exactly n! of such paths. For a

2 × 2 matrix there are only two paths: one along the diagonal and the other, with opposite

sign, along the cross diagonal:∣∣∣∣∣ a11 a12

a21 a22

∣∣∣∣∣= a11a22 − a12a21. (B.30)

For a 3 × 3 matrix, a convenient expression is offered by the minor expansion. The minor

of a given element aij is equal to the determinant of the submatrix obtained by deleting the

ith row and the jth column. The cofactor is the “signed” minor, multiplied by (−1)i+j . The

determinant is then equal to the sum of the products obtained by multiplying the elements

of the first row by their respective cofactors:∣∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣= a11

∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣− a12

∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣
+ a13

∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31

+ a13a21a32 − a13a22a31.

(B.31)

This expansion appears in Appendix A to express the outer product of two vectors (see

Eq. A.18). It is a particular case of the Laplace expansion formula for determinants. A more

general form of this formula is discussed in Appendix E.



Sh
at
te
re
d
Sy
m
m
et
ry

43
0 An important property of the determinant is that it conserves the matrix product.

Hence, the determinant of a product of matrices is equal to the product of the respective

determinants:

det (A×B)= det(A)det(B). (B.32)

The determinant literally “determines” whether a matrix has an inverse. In fact, for a matrix

to be invertible, it is sufficient that its determinant be nonzero. Matrices with this property

are called nonsingular. Appendix E elaborates this point.

Finally, the determinant does not change under transposition:

det
(
AT
)
= det(A). (B.33)

This property can be easily understood from the definition of the determinant. The role of

the permutations of the column labels in this definition was to generate all the paths from

the top row to the bottom row that were visiting each column only once. It is clear that this

collection of paths will equally well contain all the paths that are traced when going from

the column on the left to the column on the right, that visit every row only once. Hence, in

the definition, the permutations can be applied equally well to the row indices:

det(A)=
∑
σ∈Sn

sgn(σ )aσ11aσ22aσ33 . . .aσnn, (B.34)

from which Eq. (B.29) follows.

B.6 COMPLEX MATRICES
A complex matrix C of dimension m × n is a matrix with complex matrix elements cij

(i = 1,2, . . . , m and j = 1,2, . . . , n). Since every complex number c can be put in the form

c = R+ iI , with R and I real numbers and i =√−1, the matrix C can be written as

C=

⎡⎢⎢⎢⎢⎢⎢⎣

R11 + iI11 R12 + iI12 R13 + iI13 · · · R1n + iI1n

R21 + iI21 R22 + iI22 R23 + iI23 · · · R2n + iI2n

R31 + iI31 R32 + iI32 R33 + iI33 · · · R3n + iI3n

...
...

...
. . .

...

Rm1 + iIm1 Rm2 + iIm2 Rm3 + iIm3 · · · Rmn + iImn

⎤⎥⎥⎥⎥⎥⎥⎦, (B.35)

where Rij and Iij are the real and imaginary parts, respectively, of the matrix elements cij .

The complex conjugate matrix C∗ is obtained by changing the sign of all imaginary parts:

C∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

R11 − iI11 R12 − iI12 R13 − iI13 · · · R1n − iI1n

R21 − iI21 R22 − iI22 R23 − iI23 · · · R2n − iI2n

R31 − iI31 R32 − iI32 R33 − iI33 · · · R3n − iI3n

...
...

...
. . .

...

Rm1 − iIm1 Rm2 − iIm2 Rm3 − iIm3 · · · Rmn − iImn

⎤⎥⎥⎥⎥⎥⎥⎦. (B.36)

In terms of its matrix elements,

c∗ij = Rij − iIij ∀i = 1,2, . . . , m; j = 1,2, . . . , n, (B.37)

where c∗ij denotes the complex conjugate of cij . Finally, the conjugate transpose (or Hermitian

ajdoint , or adjoint for short) of C, denoted C†, is obtained by transposing the rows and

columns of the conjugate matrix C∗:

C† = (C∗)T
. (B.38)
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In terms of its matrix elements, (
cij
)† = c∗ji ;(

Rij + iIij
)† = Rji − iIji .

(B.39)

B.7 ORTHOGONAL MATRICES
An orthogonal matrix Q is a square matrix of dimension n× n, with real matrix elements

qij (i, j = 1,2, . . . , n), that satisfies the condition

QTQ=QQT = I, (B.40)

where I is the n × n identity matrix and QT is the transpose of Q, as defined in §B.3.2. In

other words, a real matrix Q is said to be orthogonal whenever its transpose is equal to its

inverse:

QT =Q−1. (B.41)

What is more, since the identity matrix has unit determinant, we obtain

det
(
QTQ

)
= detQT detQ

= detQdetQ

= (detQ)2

= detI= 1,

(B.42)

where we have used the matrix properties det(AB)= detAdetB and detAT = detA. It fol-

lows that the determinant of an orthogonal matrix Q can only assume the values+1 or−1:

detQ=±1. (B.43)

B.8 UNITARY MATRICES
A unitary matrix U is a square matrix of dimension n× n with complex matrix elements

uij = Rij + iIij (i, j = 1,2, . . . , n) satisfying the condition

U†U=UU† = I, (B.44)

where I is the n × n identity matrix and U† is the conjugate transpose of U, as defined

in Eqs. (B.38) and (B.39). Note that if U is a matrix with only real matrix elements (i.e.,

U∗ =U), then

U† = (U∗)T =UT, (B.45)

and Eq. (B.44) reduces to

UTU=UUT = I. (B.46)

That is, U is an orthogonal matrix (see §B.7). The set of unitary matrices thus contains all

orthogonal matrices, but it is more general because matrices with complex elements are

included as well. It follows from Eq. (B.44) that the conjugate transpose of a unitary matrix

is equal to the inverse matrix:

U† =U−1. (B.47)

Also, since the identity matrix has unit determinant, we obtain

det
(
U†U

)= detU† detU

= det
(
U∗)T

detU

= detU∗ detU

= |detU|2

= detI= 1,

(B.48)
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2 where we have used the matrix properties det (AB) = detAdetB, and detAT = detA. It

follows that for a unitary matrix with complex matrix elements, the determinant can be

any complex number with unit modulus (i.e., a complex number with absolute value or

norm 1):

|detU| = 1. (B.49)

Matrices satisfying this condition are said to be unimodular.



Appendix C
Taylor and Maclaurin series

The process of expanding a function into a Taylor series was first devised by the English

mathematician, Brook Taylor (1685–1731) in 1715.

Theorem C.1 (Taylor series): In mathematics, an arbitrary analytic function f can be

represented as an infinite sum of terms calculated from the values of its derivatives at a

single point a. This is called a Taylor series:

f (x)=
∞∑

n=0

(x− a)n

n!
dnf (x)

dxn

∣∣∣∣
x=a

, (C.1)

where n! denotes the factorial of n and dnf (x)
/

dxn
∣∣

x=a
denotes the nth derivative of f

evaluated at point x = a. The zeroth derivative of f is defined to be f itself and (x− a)0

and 0! are both defined to be one. ◾

Corollary C.1 (Maclaurin series): If the Tailor series is centered at the origin (a = 0),

the series is also termed a Maclaurin series after Scottish mathematician Colin Maclaurin

(1698–1746). In sigma notation,

f (x)=
∞∑

n=0

xn

n!
dnf (x)

dxn

∣∣∣∣
x=0

, (C.2)

where n! is the factorial of n and dnf (x)
/

dxn denotes the nth derivative of f evaluated

at the origin x = 0. ◾

Proof (Maclaurin series). Let us start by representing an arbitrary function f by a power

series:

f (x)=
∞∑

n=0

anxn = a0 + a1x+ a2x2 + a3x3 + . . . . (C.3)

Evaluating at x = 0, we have

f (0)= a0. (C.4)

Differentiating the function,

d f (x)

dx
= a1 + 2a2x+ 3a3x2 + 4a4x3 + . . . . (C.5)

Evaluating at x = 0,
d f (x)

dx

∣∣∣∣
x=0

= a1. (C.6)

Differentiating the function again,

d2f (x)

dx2
= 2a2 + 6a3x+ 12a4x2 + . . . . (C.7)
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4 Evaluating at x = 0,

1

2!
d2f (x)

dx2

∣∣∣∣
x=0

= a2. (C.8)

Generalizing,

an = 1

n!
dnf (x)

dxn

∣∣∣∣
x=0

, (C.9)

where dnf (x)
/

dxn is the nth derivative of f (0). Substituting the respective values of an in

the power expansion,

f (x)= f (0)+ x
df (x)

dx

∣∣∣∣
x=0

+ x2

2!
d2f (x)

dx2

∣∣∣∣
x=0

+ x3

3!
d3f (x)

dx3

∣∣∣∣
x=0

+ . . . , (C.10)

which is a particular case of the Taylor series (also known as a Maclaurin series), and which

can be written in the more compact sigma notation:

f (x)=
∞∑

n=0

xn

n!
dnf (x)

dxn

∣∣∣∣
x=0

. (C.11)

The zeroth derivative of f is defined to be f itself and x0 and 0! are both defined to be one.

This derivation can be easily generalized to prove the expression for a Taylor series as given

in Eq. (C.1). ◾

We have thus shown that any function f can be represented as an infinite sum of terms

calculated from the values of its derivative at the origin. This is a fascinating conclusion to

say the least, because it is sufficient to consider a single point of the function (in this case,

the origin) to evaluate the function at any other point. As Richard Feynman poetically said

during the Messenger Lectures of 1964: “Nature uses only the longest threads to weave her

patterns, so each small piece of her fabric reveals the organization of the entire tapestry.”1

It must be noted, however, that a Taylor expansion still necessitates an infinite amount of

knowledge about the function and its infinite number of derivatives at that particular point

to represent the function completely. Of course, it is possible to end the summation at some

point and to use only the first terms of the Taylor series, in which case the actual function f

is approximated by the truncated Taylor series. Since the higher order terms become smaller

and smaller as a result of the gradually increasing value of the factorial n! and decreasing

value of xn (for |x| < 1), the approximation of f by using only a finite number of terms

should be a reasonably good one. It is therefore useful to write the Taylor series in a slightly

different format:

f (x)= f (0)+ x
df (x)

dx

∣∣∣∣
x=0

+ x2

2!
d2f (x)

dx2

∣∣∣∣
x=0

+O
(
ω3), (C.12)

where we introduce the order of a Taylor series by the general symbol O (ωn), which

indicates at which point the series is truncated. So, all the terms of order n or

higher—denoted by the symbol O (ωn)—are ignored in the expansion of f . In the example

just given, for instance, the terms of order ω2 or lower are the only ones considered.

As an example, let us expand the function f (x)= ex into a Maclaurin series. Since ex is

its own derivative,
d

dx
ex = ex (C.13)

and e0 = 1, this generalizes to

dn

dxn
ex

∣∣∣∣
x=0

= ex
∣∣
x=0 = e0 = 1, (C.14)

1 R. Feynman. The Character of Physical Law. Cambridge, Massachusetts: The M.I.T. Press, 1985,

p. 34.
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and Eq. (C.2) can be rewritten as follows:

f (x)= ex =
∞∑

n=0

xn

n!
dn

dxn
ex

∣∣∣∣
x=0

=
∞∑

n=0

xn

n! = 1+ x+ 1

2!x
2 + 1

3!x
3 + 1

4! x
4 + . . . .

(C.15)



Appendix D
Quantum mechanics in
a nutshell

D.1 WAVE MECHANICS: THE INTUITIVE APPROACH
According to Felix Bloch’s recollections of his student days in Zürich, colloquia were being

held alternatively in the departments of the University of Zürich and the Eidgenössische

Technische Hochschule:1

Once at the end of a colloquium I heard Debye saying something like: “Schrödinger,

you are not working right now on very important problems anyway. Why don’t you

tell us some time about that thesis of de Broglie, which seems to have attracted

some attention?” So in one of the next colloquia,2 Schrödinger gave a beautifully clear

account of how de Broglie associated a wave with a particle and how he could obtain the

quantization rules of Niels Bohr and Sommerfeld by demanding that an integer number

of waves should be fitted along a stationary orbit. When he had finished, Debye casually

remarked that this way of talking was rather childish. As a student of Sommerfeld he

had learned that, to deal properly with waves, one had to have a wave equation. It

sounded quite trivial and did not seem to make a great impression, but Schrödinger

evidently thought a bit more about the idea afterwards. Just a few weeks later,3 he

gave another talk in the colloquium which he started by saying: “My colleague Debye

suggested that one should have a wave equation; well I have found one!” And then he

told us essentially what he was about to publish under the title “Quantization as an

Eigenvalue Problem” as the first paper of a series in the Annalen der Physik.4

Schrödinger was an adept of eastern philosophies with their fascination for waves

permeating all beings.5 He considered particles to be merely “epiphenomena” traveling

on the crests of the waves. His efforts to explain the behavior of an electron attracted to

a proton gave rise to the wave mechanics of the hydrogen atom. Let us reconstruct the

mechanics here in an intuitive way. As a starting point, consider a standing sinusoidal wave

in one dimension:

 = A sin
2πx

λ
, (D.1)

1 F. Bloch. “Reminiscences of Heisenberg and the Early Days of Quantum Mechanics.” Physics Today

29 (1976), p. 23.
2 According to Moore, this was probably on November 23, 1925. See W. Moore. Schrödinger, Life

and Thought. Cambridge: Cambridge University Press, 1989.
3 This must have been in January 1926, after his winter holidays in Arosa.
4 E. Schrodinger. “Quantization as an Eigenvalue Problem. [Quantisierung als Eigenwertproblem].”

Annalen der Physik 79(1926), pp. 361–376.
5 Moore. Schrödinger, Life and Thought.
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where A is the amplitude, corresponding to the maximal value of the wave function. The

constant λ is the wavelength. This measure is equal to the repeat length of the sinusoidal

pattern. Whenever the position coordinate x runs through an integer number of λ’s, the

sine function runs through zero and begins another period. The function  describes a

standing wave. To forward this wave in the positive x direction with a constant speed v, we

have to substitute x with x− vt , yielding the expression for a running sinusoidal wave:

 = A sin

(
2π

λ
(x− vt)

)
. (D.2)

The equivalent of the wavelength in position space is the period, T , on the time axis. The

period measures the time interval (in seconds) for the passage of a complete wavelength.

The inverse of the period is the frequency, ν. It is expressed in Hertz (1Hz = 1s−1) and

counts the number of oscillations per second. These quantities are related as follows:

v = �s

�t
= λ

T
= νλ. (D.3)

The wave may thus be rewritten as

 = A sin

(
2πx

λ
− 2πνt

)
. (D.4)

Taking the second derivative of the wave function in the x-coordinate yields

d2

dx2
 =−4π2

λ2
A sin

(
2πx

λ
− 2πνt

)
=−4π2

λ2
 . (D.5)

The wave thus obeys a second-order differential equation in position space, which is termed

the wave equation. In three dimensions, this equation reads(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
 =−4π2

λ2
 . (D.6)

Schrödinger compared the motion of an electron near the atomic nucleus to a

three-dimensional wave wrapped around the nucleus. To obtain an explicit form of

this equation, it was necessary to insert a value for the wavelength. In the beginning of

the twentieth century, two apparently unrelated expressions had become available, both

involving energies. In 1900, Planck postulated a relationship between the energy and

frequency of light, known as Planck’s relation:

E = hν. (D.7)

On the basis of this expression, Planck could obtain a derivation of Wien’s law, which

describes the radiation of a black body as a function of temperature. Planck’s relation is

usually considered to be the starting point of quantum mechanics because it was claimed

that energy changes could only be achieved in quanta. In 1905, Einstein applied Planck’s

relation to the photoelectric effect and came to the conclusion that light has a dual nature: it

can be represented as an electromagnetic wave, but also as a stream of particles or photons.

On colliding with electrons in a metal, the photons are able to eject electrons from the

metal. In that same year, Einstein published his iconic formula expressing the equivalence

between mass and energy, where c is the velocity of light:

E =mc2. (D.8)

The context of both equations is clearly different, but both are concerned with energies, so

let us see what results when we, naively, combine them:

hν =mc2. (D.9)
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becomes mc:

hc

λ
=mc2

h

λ
=mc. (D.10)

Note that this derivation stands for photons only. It can, however, be generalized to massive

particles such as an electron with mass me and velocity v, yielding

h

λ
=mev = p. (D.11)

Here, p is the impulse or momentum. It corresponds to the product of the mass with

the velocity and refers to a property of a moving body, as defined in classical Newtonian

mechanics. In contrast, the left-hand side contains a wavelength and thus refers to a

wavelike phenomenon. This relation is named after Louis de Broglie, who introduced it

in his doctoral dissertation in 1924.6 The connection between waves and particles is a

key relation expressing the duality of elementary particles such as electrons. The nature

of electrons provides evidence both for wavelike properties, such as interference, and for

corpuscular aspects, such as the photoelectric effect. Although duality as a concept seems

to defy understanding, the duality relation itself is a simple, practical tool to continue the

calculation of the wave equation. The factor preceding in the right-hand side of Eq. (D.5)

may thus be replaced with

4π2

λ2
= 4π2p2

h2
= p2

h̄2 , (D.12)

where we have made use of the symbol h̄ = h/2π . Newtonian mechanics provides a

relationship between momentum and kinetic energy:

Ekin = 1

2m
p2. (D.13)

Finally, we can introduce the total energy by taking into account the potential energy, which

for the case of the hydrogen atom is based on the Coulomb attraction between the electron

and the nucleus:

E = Ekin +Epot = 1

2m
p2 − e2

4πε0r
. (D.14)

On substitution, we then obtain the famous nonrelativistic wave equation for the hydrogen

atom:

− h2

8π2me

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
 − e2

4πε0r
 = E . (D.15)

In this succession of substitutions, the original parameter for the wavelength is finally

replaced with the parameter for the total energy, which for the moment is as equally

unknown as the wavelength. The so-called mathematical solutions of the equation thus

consist of finding the functions  for any value of E. Most of these solutions are not

relevant from a physical point of view. What is needed to filter out the physically relevant

solutions are additional boundary conditions defining the physical situation of an electron

in the attraction of a proton. To derive this condition, we can make use of a statistical

6 L. de Broglie. “Investigations on the Theory of Quanta. [Recherches sur la théorie des Quanta.

Thèse de doctorat soutenue à Paris, le 25 Novembre 1924].” Annales de Physique III.10 (1925),

pp. 22–128.
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interpretation to connect the wave back to the particle. In this interpretation, the absolute

square  ∗ is interpreted as the probability density. In other words, the probability, dP,

that the electron is in a volume dV is given by

dP

dV
= ∗ . (D.16)

This relation is known as the Born relation. A bound electron should be found in the vicinity

of the nucleus, and the corresponding probability should decrease steadily when one is

moving away from the nucleus. This implies that the total density, obtained by integrating

dP over space, is finite.7 Functions that obey this criterion are said to be square integrable.

P =
∫

dP =
∫∫∫

 ∗ dV <∞. (D.17)

Combining this condition with the wave equation filters out a series of quantized energies

that match the energy levels observed in the spectrum of a hydrogen atom. The results

rely only on fundamental constants: the mass and charge of the electron, and the

proportionality constants in Planck’s and Coulomb’s law. On a more general level, wave

mechanics made it possible to derive from first principles the fundamental atomic units of

length and energy, corresponding to the Bohr radius and the Hartree energy, respectively.

All these aspects are examined in more detail in Chapter 9 on SO(4) symmetry. Last but

not least, the fundamental symmetries of the smallest atom seemed to imply the Aufbau

structure of the entire periodic table. This claim is examined in Chapter 13.

The intuitive combination of classical physics (with Newton and Coulomb), statistics

(Born), and the particle–wave duality relation (Planck, Einstein, de Broglie) led to the

creation of wave mechanics. For further development, a more formal structure had to be

established. In the following section, we will examine its basic elements.

D.2 QUANTUM MECHANICS: THE FORMAL STRUCTURE
Several textbooks provide a thorough introduction to quantum mechanics.8 Here, we limit

ourselves to the basic aspects that have a bearing on the main text.

D.2.1 Operators and eigenfunctions
The central concept of quantum mechanics is the wave function, which describes the

physical state of a system. In fact, all information that can be obtained about the system

is included in the wave function. The wave function is the solution of the wave equation,

which appears as a linear equation in  , where on the left-hand side the wave function

is preceded by a function of coordinates and their derivatives, whereas on the right-hand

side it is preceded by the energy constant. Such a type of equation is called an eigenvalue

equation. The functional factor to the left is the energy operator, or Hamiltonian, H ,

whereas the energy to the right is the eigenvalue of this operator. The function that solves

the equation for a given E is the associated eigenfunction. The concise form of the equation

thus reads

H  = E . (D.18)

7 In the original paper, Schrödinger stated he was looking for a finite and single-valued function

that was twice differentiable. See E. Schrödinger. “Quantization as an Eigenvalue Problem,” p. 363.
8 C. Cohen-Tannoudji, B. Diu, and F. Laloe. Mécanique Quantique. Paris: Hermann, 1973.
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0 The Hamiltonian is based on the classical energy expression E = p2/2m + Epot . To turn

this expression into operator form, the distance dependence in the potential energy part is

simply rendered as the radius r, which is given by the coordinate function
√

x2 + y2 + z2.

Hence, the operator associated with a coordinate is just the multiplication with that

coordinate function:

x̂ = x;

r̂ = r. (D.19)

Here we use the hat notation to explicitly refer to the operator form. In the kinetic energy

part, the momenta are replaced by differential operators in the coordinates:

p̂x = h̄

i

∂

∂x
. (D.20)

The total kinetic energy operator then becomes

1

2m

(
p̂2

x + p̂2
y + p̂2

z

)
=− h2

8π 2me

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
. (D.21)

The set of eigenfunctions of the Hamiltonian forms a space known as the Hilbert space.

Especially, the standard work of Dirac has been instrumental in constructing the algebraic

framework of quantum mechanics.9 For reasons that will become clear in a moment, Dirac

denotes the wave function as a ket vector in the Hilbert space, or simply a ket, with symbol

| 〉. Using ket vector notation, Schrödinger’s wave equation may now be rewritten as

H | 〉 = E| 〉. (D.22)

This result can be generalized to any physical observable. In quantum mechanics, a physical

observable is represented by an operator. The allowed values this observable can acquire are

the eigenvalues of the corresponding eigenvalue equation:

Â|ak〉 = ak|ak〉. (D.23)

Here, Â is the operator corresponding to a physical observable and |ak〉 is an eigenfunction

of this operator with associated eigenvalue ak . If the system is in the state |ak〉, the

measurement of the physical property will yield the eigenvalue ak . But, what if the system

is in a different state? Say, for instance, the ground state of the Hamiltonian, | 0〉? What

is the result of the measurement of the property Â in this case? To answer this question,

we first need to extend the framework to “bra” functions and determine the Hermiticity of

quantum mechanical operators.

D.2.2 The bra-ket formalism
The space of eigenvectors has a dual space that Dirac called the bra vectors, with symbol

〈 |. The bra combines with the ket to form a scalar product or bracket, hence the

terminology bra and ket to denote its constituents. The combination between the bra 〈�|
and the ket | 〉 is written as 〈�| 〉. This combination is nothing more than the overlap of

� and  . We may thus write

〈�| 〉 =
∫∫∫

�∗ dV . (D.24)

Hence, we also have

〈�| 〉 = 〈 |�〉∗. (D.25)

9 P. A. M. Dirac. The Principles of Quantum Mechanics. Oxford: Clarendon Press, 1930.
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The integral of the density  ∗ thus corresponds to the bracket of 〈 | and | 〉. This

bracket is the norm of the wave function:

|N |2 = 〈 | 〉. (D.26)

In accordance with the Born interpretation, this bracket represents the probability that the

particle is found in space. By dividing the wave function through N , we obtain a normalized

wave function for which the total probability is equal to one. Note that such rescaling of the

wave function does not interfere with the eigenvalue equation because this is linear in | 〉.
Henceforth, ket functions are assumed to be normalized.

The duality between bras and kets allows us to determine the action of an operator on

the bra functions. Consider the action of an operator Â on a function |f 〉, which turns this

function into some other function |f ′〉:

Â|f 〉 = |f ′〉. (D.27)

Transposing this expression to the bra part would read

〈Âf | = 〈f ′|. (D.28)

This expression is rewritten as

〈Âf | = 〈f |Â†. (D.29)

Here, the operator Â† is called the adjoint operator of Â. It is acting on the bras from the

right-hand side and is defined as the operator that transforms the bras in a way that is

conjugate to the action of the original operator on the kets. Hence, we also have

〈�|Â†| 〉 = 〈 |Â|�〉∗. (D.30)

Note that on the right-hand side of this equation, the notation 〈 |Â|�〉 is equivalent to

〈 |Â�〉. Taking the adjoint of the adjoint returns the original operator, and the adjoint of

a product is the transposed product of the adjoints:(
Â†
)† = Â;(

ÂB̂
)† = B̂†Â†. (D.31)

D.2.3 Hermitian and unitary operators
In quantum mechanics we encounter two important special types of operators: Hermitian

and unitary.

Hermitian operators
For Hermitian operators, the adjoint is equal to the operator itself. Hence, the following

equations hold:

Â† = Â;

〈�|Â| 〉 = 〈 |Â|�〉∗. (D.32)

For�= , this equation thus becomes

〈 |Â| 〉 = 〈 |Â| 〉∗. (D.33)
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〈ak|Â|ak〉 = ak〈ak|ak〉 = ak ;

〈ak |Â|ak〉∗ = a∗k 〈ak|ak〉∗ = a∗k . (D.34)

In view of Eq. (D.33), it is implied that ak = a∗k ; hence, the eigenvalue of a Hermitian

operator is a real number. This is precisely what is required for physical observables, which

are determined by quantitative measurements. It can thus be stated:

Operators, corresponding to physical observables, must be Hermitian.

Now consider two eigenstates |ak〉 and |al〉 of a Hermitian operator Â, with different

eigenvalues:

〈ak |Âal〉 = al〈ak|al〉
= 〈Âak|al〉
= ak〈ak|al〉. (D.35)

Or,

(ak − al)〈ak |al〉 = 0. (D.36)

If ak �= al , this result implies that the overlap between the two eigenvectors must vanish.

The eigenvectors are said to be orthogonal. A set of eigenvectors that are normalized and

also orthogonal to each other form an orthonormal basis:

〈ak |al〉 = δkl . (D.37)

The action of an operator in a basis is described by the brackets 〈ak |Ôal〉. These brackets

are called the matrix elements Okl of a matrix O, describing the action of the operator. For

Ô being a Hermitian operator, the associated matrix is a Hermitian matrix:

Oij =O∗
ji . (D.38)

Unitary operators
Another important class of operators includes the unitary operators, which we denote as Û .

They fulfill the requirement that the adjoint is equal to the inverse:

Û † = Û−1;

〈Û�|Û 〉 = 〈�|Û−1Û 〉 = 〈�| 〉. (D.39)

Hence, unitary operators conserve an orthonormal basis. The matrix elements of unitary

operators thus obey:

〈�|Û−1| 〉 = 〈 |Û |�〉∗. (D.40)

This implies that unitary operators are represented by unitary matrices, defined in

Appendix B. As we demonstrate in Chapter 6, symmetry transformations are unitary

operators. Now suppose that | u〉 is an eigenfunction of a unitary operator, with

eigenvalue u:

Û | u〉 = u| u〉;
〈 u|Û † = u∗〈 u|. (D.41)
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Then, we have

〈 u|Û †Û | u〉 = 〈 u| u〉 = u∗u= 1. (D.42)

This result implies that eigenvalues of unitary operators must be unimodular. Finally, it can

be proven that if Â is Hermitian, then T̂ = exp(iÂ) is unitary. We have

T̂† = e−iÂ† = e−iÂ. (D.43)

This implies: T̂ T̂† = T̂†T̂ = Ê, where Ê is the unit operator. This proves that the adjoint is

the inverse operator—meaning, T̂ is unitary:

T̂† = T̂−1. (D.44)

D.2.4 The spectral decomposition postulate
We can now return to our question: What is the result of a measurement of property Â on a

state described by an eigenfunction of another operator—say, | 0〉 of H ? We first expand

this eigenstate in the basis of the Â operator, with ck being the expansion coefficient:

| 0〉 =
∑

k

ck|ak〉. (D.45)

The expansion coefficient can also be expressed as a bracket because it corresponds to the

overlap between | 0〉 with the basis function |ak〉:
ck = 〈ak| 0〉. (D.46)

In view of the conjugation relation between bra and ket, the corresponding bra is then

given by

〈 0| =
∑

k

〈ak|c∗k . (D.47)

Since the basis is orthonormal and | 0〉 is normalized, we have

〈 0| 0〉 =
∑

kl

c∗l ck〈al |ak〉 =
∑

kl

c∗l ckδlk =
∑

k

|ck|2 = 1. (D.48)

As indicated earlier, the measurement can yield only one of the eigenvalues of the

corresponding operator. Now, according to the postulate of spectral decomposition, the

probability of measuring the particular eigenvalue ak , P(ak), is given by

P(ak)= |ck |2. (D.49)

Hence, if the measurement is applied to a large set of systems, the outcome is a spectrum

of discrete eigenvalues of the operator, which is distributed according to the statistics in

Eq. (D.49). Conversely, the average value of the measurement can be evaluated from the

bracket 〈 0|Â| 0〉 as

〈Â〉 = 〈 0|Â| 0〉

=
〈∑

k

ckak|
∑

l

(
Â clal

)〉

=
∑
k,l

c∗k clal〈ak |al〉

=
∑
k,l

c∗k clalδk,l

=
∑

k

ak|ck|2. (D.50)

In some cases, special results may be obtained depending on the operators involved, as we

will see in the next section.
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From the point of view of classical physics, the process of measurement in quantum

mechanics is perhaps the most problematic and least comprehensible aspect of the new

physics. The spectral decomposition theorem tells us that the outcome of the measurement

for a physical property associated with an operator Â on a quantum state of an operator

H is unpredictable and can be known only with a certain probability. Moreover, when the

measurement has been performed, the system has adopted the corresponding eigenstate of

Â. This implies that, immediately afterward, remeasuring the same property again yields

the same result.

There is, however, a possibility that two physical quantities are compatible (i.e., that a

system can be in a state that is simultaneously an eigenstate of both). The compatibility

requirement is simply that both associated operators commute. Consider as an example

the commutator of H and Â. It is indicated by square brackets and is defined as follows:[
Â,H

]
= ÂH −H Â. (D.51)

Note that the product of operators simply means that they should be acting on the ket

function to the right in consecutive order. Now let us consider the specific case when this

commutator vanishes:
[
Â,H

]= 0. For simplicity, let us further assume that the eigenvalues

of Â are non-degenerate. In this case, we can write

H Â|ak〉 = akH |ak〉
= ÂH |ak〉. (D.52)

Hence,

ÂH |ak〉 = akH |ak〉. (D.53)

Eq. (D.53) shows that H |ak〉 is an eigenfunction of Â with the same eigenvalue as |ak〉.
But, because there is only one such eigenfunction in case of nondegeneracy, we must have

H |ak〉 ∼ |ak〉. (D.54)

This proves |ak〉 is also an eigenfunction of H .

If the commutator is nonzero, the operators are no longer compatible. In this

case, a given state cannot, in general, be an eigenstate of both. An important case of

non-commutation is between the momentum and the coordinate:[
p̂x , x̂

]= h̄

i

(
∂

∂x
x− x

∂

∂x

)
= h̄

i
. (D.55)

Hence, both the position and the momentum of a particle cannot have a definite eigenvalue

simultaneously. Let us examine both aspects for the extreme cases of a free particle moving

along the x direction versus an immobile particle at a given position. The eigenvalue

equation for the momentum operator is given by

p̂x | 〉 = p0| 〉. (D.56)

The solution of this equation reads

| 〉 = eip0x/h̄ = eik0x . (D.57)

Here, k0 = p0/h̄. The resulting eigenfunction with definite momentum p0 is a continuous

wave along the x direction, that has everywhere the same density.10 Hence, the position

10 Since this wave has the same amplitude everywhere in space, it cannot be normalized.
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of the particle is completely undetermined. Conversely, the eigenvalue equation for the

position operator is given by

x̂|�〉 = x0|�〉. (D.58)

The resulting eigenfunction is a function that exists only at the point x = x0, and it vanishes

everywhere else. This function can be defined as the limiting case of a Gaussian function

that is becoming infinitely sharp:

δ(x− x0)= lim
a→0

1

a
√
π

e−(x−x0)
2/a2

. (D.59)

Although in this way the position of the particle is determined accurately at x = x0, its

momentum is completely undetermined. Indeed, if we decompose this function in plane

waves by means of a Fourier transformation, the entire spectral range for p is required.

This type of inverse relationship between coordinates and momenta has found an accurate

expression in the Heisenberg uncertainty principle. One of the manifestations of this

principle states that the product of the uncertainty of the position of a particle, �x,

multiplied by the uncertainty of its momentum, �px , is bounded from below by Planck’s

constant according to

�x.�px ≤ h̄

2
. (D.60)

Note that this relationship is not an additional external constraint, but is an intrinsic

property resulting from the noncommutation of the corresponding operators. It is

noteworthy that Lie algebras as well, which are a common thread in this book, are based

essentially on commutation relations.

D.4 TIME DEPENDENCE
So far, we have not been concerned with the time dependence of the wave function.

Instead, we have only looked at stationary states of systems subject to time-independent

interactions. Returning to the classical expression for a propagating wave in Eq. (D.4),

differentiation with respect to time yields the following second-order equation:

∂2

∂t2
 =−4π2ν2 . (D.61)

The transition to a quantum wave equation in this case is not straightforward because the

frequency, and hence the energy, appears as a second power. However, we can turn this

equation into a first-order differential equation, the solutions of which are the complex

combinations of the cosine and sine waves:

i
∂

∂t
 = 2πν , (D.62)

with

 = ei(2πx/λ−2πνt). (D.63)

Making use of Planck’s equation, we now obtain

ih̄
∂

∂t
 = E . (D.64)

The quantum mechanical equation, which is known as Schrödinger’s time-dependent

equation, is then obtained by replacing the energy with the corresponding Hamiltonian

operator:

ih̄
∂

∂t
 =H  . (D.65)
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actions that may occur in the Hamiltonian.11 In case the Hamiltonian is time-independent,

Schrödinger’s first wave equation applies and the right-hand side of Eq. (D.65) can be

replaced again wither E , where this time E is the stationary eigenenergy for which  

is an eigenfunction. Integration of the time-dependent equation then yields

 (t)= (t0)e
−iE(t−t0)/h̄. (D.66)

Hence, time dependence in this case is limited to a dynamic phase factor. The phase is

pulsating with a frequency that corresponds to E/h, exactly as in Planck’s law.

11 Note that the momentum operator is preceded by h̄/i whereas the time operator is preceded by

ih̄. These factors differ by a minus sign, which can be traced back to the minus sign in the argument

x− vt , which appears in the description of the running wave.



Appendix E
Determinant of an
orthogonal matrix

The derivation in Eq. (5.29) is a corollary of a more general relationship for the derivative

of a determinant known as Jacobi’s formula. The minor associated with the element aij of

a square matrix A is defined as the determinant of the submatrix, which is obtained by

removing row i and column j from A. The minor multiplied by the phase factor (−1)i+j is

called the cofactor and is denoted as αij . As an example, for a 3× 3 matrix, we have

α11 =+
∣∣∣∣∣ a22 a23

a32 a33

∣∣∣∣∣= a22a33 − a23a32;

α12 =−
∣∣∣∣∣ a21 a23

a31 a33

∣∣∣∣∣=−a21a33 + a23a31;

α13 =+
∣∣∣∣∣ a21 a22

a31 a32

∣∣∣∣∣= a21a32 − a22a31.

(E.1)

According to the well-known Laplace expansion, the determinant of the full matrix can

then be obtained by the scalar product of a given row with its respective cofactors:

detA= a11α11 + a12α12 + a13α13. (E.2)

A more general result reads ∑
k

aikαjk =
∑

k

αikajk = δij detA. (E.3)

We can now define the classical adjoint or adjugate matrix B= adj(A) as the transpose of

the matrix of cofactors:

bij = αji . (E.4)

The result in Eq. (E.3) can thus be rewritten as

A×B= B×A= (detA) I. (E.5)

The Laplace result detA=∑k aikαik further shows that the determinant is a linear function

of any given matrix element, because the only term in the determinant containing a given

ail is the k = l term in the Laplace expansion, with the expansion coefficient being the

corresponding cofactor αil , which is a polynomial. Hence, we can write

∂ detA

∂aij
= αij . (E.6)
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d detA=
∑

i,j

∂ detA

∂aij
daij

=
∑

i,j

αij daij

=
∑

ij

bji daij

=
∑

j

(B× dA)jj

= Tr (B× dA) .

(E.7)

Or, in summary,

d detA= Tr
(
adj(A)×dA

)
. (E.8)

This is the Jacobi formula. Now we can derive the corollary we used in Chapter 5. If the

matrix under consideration is nonsingular, Eq. (E.5) implies a simple relationship between

the inverse matrix and the adjugate:

A−1 = adj(A)

detA
. (E.9)

Inserting this in Jacobi’s formula we obtain

d detA= detA Tr
(
A−1 × dA

)
. (E.10)

At this point, we can express matrix A in exponential form, in line with Eq. (5.22):

A= expC;

A−1 = exp(−C).
(E.11)

Here, C can be any complex square matrix of the same dimension as A. The derivation is

thus not limited to skew-symmetric matrices, as it is in case of orthogonal matrices. This

also implies

dA= expC dC. (E.12)

Combining these results together, and using Tr (dC)= d Tr C, we can rewrite Eq. (E.10) as

d detA= detA Tr
(
exp (−C+C)× dC

)
= detA Tr (I× dC)

= detA d Tr C

(E.13)

or

d ln(detA)= d Tr C. (E.14)

Integration of this formula finally yields the desired result:

detA= exp (Tr C), (E.15)

where A= expC. The final result thus reads

det
(
expC

)= exp(Tr C). (E.16)



Appendix F
Lie bracket

The Lie bracket was introduced in Definition 5.3 as the combination rule of a Lie algebra.

But, where does this definition come from? The full answer to this question takes us to a

special branch of mathematics called differential geometry. Several books have developed

this subject with endless care for generality and abstraction. A lively account can be found

in the book by Michael Spivak.1 In this appendix, however, let us use a more intuitive

approach aimed at maximal understanding with minimal introduction of new concepts.

Our discussion will be focused on the particular case of the SO(3) group, but the extension

to unitary groups is straightforward. The advantage of working with the SO(3) group is

that we can explain the concept of the Lie bracket by drawing vectors on the surface of a

globe (Figure F.1).

A Lie operator is a derivative of a symmetry operation, and as such it has a vectorial

meaning. It may be represented as a tangent vector to the surface of a sphere in the direction

of the rotation. As an example, an infinitesimal rotation around the z-axis, as described

by the X̂3 operator, can be represented in every point of the globe by a small displacement

vector, tangent to the parallel circles on the globe and oriented in the direction of increasing

longitude. In Figure F.1, such a vector is drawn at a point somewhere in the Atlantic Ocean

on the Equator, midway between Brazil and Africa. Note, however, that such vectors are

defined at all points of the sphere with the exception of the rotational poles. They are said

to form a vector field. At each point of the globe, the vector field tells you where to go to and

at what speed.

The action of a second Lie operator in this vector field then means to take the derivative

of the vector field corresponding to the first operator. As an example, to act on our equatorial

vector by an infinitesimal rotation about the x-axis, represented by X̂1, means to rotate

this vector in the direction of the Tropic of Cancer, along the dashed circle. As a result,

the rotated vector (shown in dark gray) makes a small angle with the original equatorial

direction (shown in light gray), and this gives rise to a vectorial difference, which for

an infinitesimal rotation angle corresponds to the differential of the original vector. The

derivative of a vector field thus evaluates the change of one vector field along the flow of

another vector field.

Let us represent this right-justified combination of two operators by the symbol[
X̂1, X̂3

]
. As indicated, the meaning of this combination rule is, precisely, to differentiate

the X̂3 operator by an infinitesimal rotation about the x direction:

[
X̂1, X̂3

]
= lim

dω→0

R̂x (dω)− Ê

dω
X̂3. (F.1)

1 M. Spivak. A Comprehensive Introduction to Differential Geometry, vol. I, 3rd ed. Houston, TX:

Publish or Perish 1999.
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FIGURE F.1 The vector v

represents the displacement of

a point on the Equator by a

rotation around the z-axis.

R (x)v indicates the action of a

second rotation around the

x-axis on v.

To work out this expression, we must determine how to take the derivative of a Lie operator.

As we derived in Chapter 4, the operators can be expressed in matrix form by multiplying

the X matrices to the left by a row vector of the coordinate functions, and to the right by

the column vector of their derivative operators:

X̂i =
[

x y z
]
Xi

⎡⎢⎢⎢⎢⎣
∂

∂x
∂

∂y
∂

∂z

⎤⎥⎥⎥⎥⎦. (F.2)

We have not yet determined how the differential operators in the column vector on the

right transform under rotation. For simplicity, let us study the functional transformations

of the differential operators ∂
∂x and ∂

∂y under rotation around the positive z-axis.2 To find

the transformed operators, we have to work out expressions such as ∂
∂x′ , where x′ is the

rotated form of the x-coordinate function. The chain rule provides a convenient way to

relate both coordinate functions:

∂

∂x′
= ∂x

∂x′
∂

∂x
+ ∂y

∂x′
∂

∂y
. (F.3)

From Eqs. (3.36) and (3.37),we already have the primed functions as linear combinations

of the unprimed ones:

x′ = x cosα+ y sinα; (F.4)

y′ = −x sinα+ y cosα. (F.5)

By inverting these equations, we obtain

x = x′ cosα− y′ sinα; (F.6)

y = x′ sinα+ y′ cosα. (F.7)

The partial derivatives, needed in the chain rule, can now be obtained by direct derivation:

∂x

∂x′
= cosα; (F.8)

2 This derivation follows the treatment by Ceulemans. See A. Ceulemans. Group Theory Applied to

Chemistry. Dordrecht: Springer, 2013, p. 8–9.
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∂y

∂x′
= sinα; (F.9)

∂x

∂y′
= − sinα; (F.10)

∂y

∂y′
= sinα. (F.11)

Hence, the transformation of the derivatives is entirely similar to the transformation of the

x- and y-functions themselves:

R̂

[
∂

∂x

∂

∂y

]
=
[
∂

∂x

∂

∂y

][
cosα − sinα

sinα cosα

]
. (F.12)

This result is easily generalized to a general element of the SO(3) group:

R̂

[
∂

∂x

∂

∂y

∂

∂z

]
=
[
∂

∂x

∂

∂y

∂

∂y

]
R (ωn). (F.13)

Alternatively, we can swap this matrix transformation to a column format, which is what

we need:

R̂

⎡⎢⎢⎢⎢⎣
∂

∂x
∂

∂y
∂

∂z

⎤⎥⎥⎥⎥⎦=RT (ωn)

⎡⎢⎢⎢⎢⎣
∂

∂x
∂

∂y
∂

∂z

⎤⎥⎥⎥⎥⎦. (F.14)

The result of a general symmetry operation on the operators then follows immediately

from the rotation of the row and column vectors, with the X matrix in the middle being a

constant:

R̂ X̂i =
[

x y z
]
R (ωn) Xi R

T (ωn)

⎡⎢⎢⎢⎢⎣
∂

∂x
∂

∂y
∂

∂z

⎤⎥⎥⎥⎥⎦. (F.15)

Remember that the infinitesimal generator of a general rotation is a linear combination of

the three generators of the SO(3) group, with the directional cosines as coefficients. The

resulting matrix is precisely the Z matrix:

d

dω
R (dωn)

∣∣∣∣
ω=0

= nxX1 +nyX2 + nyX3 = Z. (F.16)

Let us represent the corresponding operator form as Ẑ . As shown in the vectorial

representation, the action of this operator on X̂i is to take the derivative of the X̂i vector

field by rotating it through an infinitesimal angle dω about an axis oriented along the n

direction:[
Ẑ , X̂i

]
= lim

dω→0

R̂ (dωn)− Ê

dω
X̂i

= lim
dω→0

1

dω

[
x y z

] {
R (dωn)Xi R

T (dωn)−Xi

}
⎡⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤⎥⎥⎥⎥⎦.

(F.17)

The infinitesimal rotation takes us to the immediate vicinity of the unit element and is

given by

R(dωn)= I+ dωZ; (F.18)
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2 RT (dωn)= I+ dωZT = I− dωZ. (F.19)

Here we have used the fact that Z is an antisymmetric matrix. Combination of these results

in the matrix product yields

R (dωn)Xi R
T (dωn)−Xi = dωZXi − dωXiZ+O(2). (F.20)

Here, O(2) is the second-order contribution, which may be neglected. Introducing this

result in the product rule leads to

[
Ẑ , X̂i

]
=
[

x y z
]
{ZXi −XiZ}

⎡⎢⎢⎢⎢⎣
∂

∂x
∂

∂y
∂

∂z

⎤⎥⎥⎥⎥⎦. (F.21)

To transform this matrix expression back into an operator expression, we use the result

from Chapter 4, §4.3.2, that the product of the column of coordinate derivatives multiplied

by the row of coordinate functions be equal to the unit matrix:⎡⎢⎢⎢⎢⎣
∂

∂x
∂

∂y
∂

∂z

⎤⎥⎥⎥⎥⎦
[

x y z
]
= I. (F.22)

Inserting this result between the Z and Xi matrices allows us to change the matrix forms

back to operator forms, finally yielding[
Ẑ , X̂i

]
= ẐX̂i − X̂iẐ . (F.23)

The product of Lie operators thus naturally appears as a commutator, which is the famous

Lie bracket.



Appendix G
Laplacian in radial
and angular momentum

A tedious but straightforward procedure to find the radial and angular parts of the

Laplacian boils down to expressing L̂2 in its Cartesian components using Eq. (5.66) and

working out the brackets:

L̂2 =
∣∣∣L̂∣∣∣2 = L̂2

x + L̂2
y + L̂2

z

=−h̄2

[ (
y
∂

∂z
− z

∂

∂y

)2

︸ ︷︷ ︸
A

+
(

z
∂

∂x
− x

∂

∂z

)2

︸ ︷︷ ︸
B

+
(

x
∂

∂y
− y

∂

∂x

)2

︸ ︷︷ ︸
C

]
.

(G.1)

The first term, denoted A, equals

A=
(

y
∂

∂z
− z

∂

∂y

)(
y
∂

∂z
− z

∂

∂y

)
=
(

y
∂

∂z

)(
y
∂

∂z

)
︸ ︷︷ ︸

A1

−
(

y
∂

∂z

)(
z
∂

∂y

)
︸ ︷︷ ︸

A2

−
(

z
∂

∂y

)(
y
∂

∂z

)
︸ ︷︷ ︸

A3

+
(

z
∂

∂y

)(
z
∂

∂y

)
︸ ︷︷ ︸

A4

,
(G.2)

with

A1= y
∂y

∂z

∂

∂z
+ y2 ∂

∂z

∂

∂z
= 0+ y2 ∂

2

∂z2
;

A2= y
∂z

∂z

∂

∂y
+ yz

∂

∂z

∂

∂y
= y

∂

∂y
+ yz

∂2

∂z∂y
;

A3= z
∂y

∂y

∂

∂z
+ zy

∂

∂y

∂

∂z
= z

∂

∂z
+ zy

∂2

∂y∂z
;

A4= z
∂z

∂y

∂

∂y
+ z2 ∂

∂y

∂

∂y
= 0+ z2 ∂

2

∂y2
.

(G.3)

Substituting Eq. (G.3) in Eq. (G.2) yields

A= y2 ∂
2

∂z2
− y

∂

∂y
− yz

∂2

∂z∂y
− z

∂

∂z
− zy

∂2

∂y∂z
+ z2 ∂

2

∂y2
. (G.4)

The second and third term in Eq. (G.1), denoted B and C, are found by twice performing

the cyclic permutation of the indices x → y → z → x in Eq. G.4 yielding

B = z2 ∂
2

∂x2
− z

∂

∂z
− zx

∂2

∂x∂z
− x

∂

∂x
− xz

∂2

∂z∂x
+ x2 ∂

2

∂z2
; (G.5)

C = x2 ∂
2

∂y2
− x

∂

∂x
− xy

∂2

∂y∂x
− y

∂

∂y
− yx

∂2

∂x∂y
+ y2 ∂

2

∂x2
. (G.6)
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L̂2 =−h̄2
[

y2 ∂
2

∂z2
− y

∂

∂y
− yz

∂2

∂z∂y
− z

∂

∂z
− zy

∂2

∂y∂z
+ z2 ∂

2

∂y2
+ z2 ∂

2

∂x2
− z

∂

∂z
− zx

∂2

∂x∂z

− x
∂

∂x
− xz

∂2

∂z∂x
+ x2 ∂

2

∂z2
+ x2 ∂

2

∂y2
− x

∂

∂x
− xy

∂2

∂y∂x
− y

∂

∂y
− yx

∂2

∂x∂y
+ y2 ∂

2

∂x2

]
.

(G.7)

Now, let us compare this result with the operator form of r2p2 − (r ·p
)2

from Eq. (5.134).

Given that r̂2 = x2 + y2 + z2 and p̂2 =−h̄2
(
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)
, we have

r̂2p̂2 =−h̄2 (x2 + y2 + z2)( ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
=−h̄2

[
x2 ∂

2

∂x2
+ x2 ∂

2

∂y2
+ x2 ∂

2

∂z2
+ y2 ∂

2

∂x2
+ y2 ∂

2

∂y2
+ y2 ∂

2

∂z2

+z2 ∂
2

∂x2
+ z2 ∂

2

∂y2
+ z2 ∂

2

∂z2

]
.

(G.8)

Also, r̂ · p̂= h̄/i
(
x∂/∂x+ y∂/∂y+ z∂/∂z

)
, and thus(

r̂ · p̂
)2 =−h̄2

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
=−h̄2

[(
x
∂

∂x
x
∂

∂x

)
+
(

x
∂

∂x
y
∂

∂y

)
+
(

x
∂

∂x
z
∂

∂z

)
+
(

y
∂

∂y
x
∂

∂x

)
+
(

y
∂

∂y
y
∂

∂y

)
+
(

y
∂

∂y
z
∂

∂z

)
+
(

z
∂

∂z
x
∂

∂x

)
+
(

z
∂

∂z
y
∂

∂y

)
+
(

z
∂

∂z
z
∂

∂z

)]
=−h̄2

[(
x
∂x

∂x

∂

∂x
+ x2 ∂

∂x

∂

∂x

)
+
(

x
∂y

∂x

∂

∂y
+ xy

∂

∂x

∂

∂y

)
+
(

x
∂z

∂x

∂

∂z
+ xz

∂

∂x

∂

∂z

)
+
(

y
∂x

∂y

∂

∂x
+ yx

∂

∂y

∂

∂x

)
+
(

y
∂y

∂y

∂

∂y
+ y2 ∂

∂y

∂

∂y

)
+
(

y
∂z

∂y

∂

∂z
+ yz

∂

∂y

∂

∂z

)
+
(

z
∂x

∂z

∂

∂x
+ zx

∂

∂z

∂

∂x

)
+
(

z
∂y

∂z

∂

∂y
+ zy

∂

∂z

∂

∂y

)
+
(

z
∂z

∂z

∂

∂z
+ z2 ∂

∂z

∂

∂z

)]
=−h̄2

[
x
∂

∂x
+ x2 ∂

2

∂x2
+ xy

∂2

∂x∂y
+ xz

∂2

∂x∂z
+ yx

∂2

∂y∂x
+ y

∂

∂y

+y2 ∂
2

∂y2
+ yz

∂2

∂y∂z
+ zx

∂2

∂z∂x
+ zy

∂2

∂z∂y
+ z

∂

∂z
+ z2 ∂

2

∂z2

]
. (G.9)

Combining the last two equations yields

r̂2p̂2 − (r̂ · p̂
)2 =−h̄2

[
x2 ∂

2

∂y2
+ x2 ∂

2

∂z2
+ y2 ∂

2

∂x2
+ y2 ∂

2

∂z2
+ z2 ∂

2

∂x2
+ z2 ∂

2

∂y2
− x

∂

∂x

− xy
∂2

∂x∂y
− xz

∂2

∂x∂z
− yx

∂2

∂y∂x
− y

∂

∂y

− yz
∂2

∂y∂z
− zx

∂2

∂z∂x
− zy

∂2

∂z∂y
− z

∂

∂z

]
. (G.10)

Finally, comparing Eq. (G.7) with Eq. (G.10), we find the result of Eq. (5.136):

L̂2 = r̂2p̂2 − (r̂ · p̂
)2 + h̄2

(
x
∂

∂x
+ y

∂

∂y
+ z

∂

∂z

)
= r̂2p̂2 − (r̂ · p̂

)2 + ih̄
(

r̂ · p̂
)
.

(G.11)



Appendix H
Quantum states of the
SU(2) oscillator

As explained in Chapter 7, the nth quantum state of a one-dimensional oscillator is

obtained by applying the creation operator n times to the vacuum state. Let us use the

simple ket notation |n〉 to denote the normalized result:

|n〉 =N
(
a†)n |0〉, (H.1)

where n denotes the number of excitations and N is a normalizing factor. The correspond-

ing bra is given by

〈n| =N∗ 〈0| (a)n. (H.2)

The normalizer N is obtained from

〈n|n〉 = |N |2 〈0|(a)n (a†)n |0〉 = 1. (H.3)

This bracket can be determined from the commutation relationships of the creation and

annihilation operators. We have

a
(
a†)n |0〉 = n

(
a†)n−1 |0〉

(a)n
(
a†)n |0〉 = n! |0〉.

(H.4)

The normalized eigenstates thus read

|n〉 = 1√
n!
(
a†)n |0〉. (H.5)

This state can be viewed as the creation of n particles. It is clear that the interchange of

two creation operators does not change the state, so the quantum state is symmetric under

particle exchange. The corresponding particles are therefore called bosons, and the state

may be seen as the excitation of n bosons.

For a two-dimensional oscillator, two degrees of freedom can be excited. Following

Chapter 8, we label these as the two spinor components {α,β}. The only nonzero

commutation relations are between the creation and annihilation operators of the same

component; hence, [
aα ,a†

α

]= h̄ω; (H.6)

[
aβ ,a†

β

]
= h̄ω. (H.7)

All commutators between operators for different components vanish. For example,[
aα ,a†

β

]
= 1

2

[(
ax − iay

)
,
(

a†
x − ia†

y

)]
= 1

2

([
ax , a†

x

]− [ay , a†
y

])
= 0. (H.8)
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6 As a result, the quantum states of SU(2) simply reduce to the product of two oscillator

states. Let us denote the resulting ket function as |n, m〉, where n α-particles and m

β-particles are created:

|n, m〉 = 1√
n!m!

(
a†
α

)n
(

a†
β

)m |0〉. (H.9)

Application of the Dirac operators to this state can be worked out easily. For example,

a†
α |n, m〉 = 1√

n!m!
(
a†
α

)n+1
(

a†
β

)m |0〉 =√
n+ 1 |n+ 1, m〉; (H.10)

aβ |n, m〉 = 1√
n!m!

(
a†
α

)n
aβ
(

a†
β

)m |0〉 =√
m |n,m− 1〉. (H.11)

In Chapter 8 we studied the spin operators acting on a basic spinor, with components

{α,β}:

Ŝx = h̄

2

(
a†
αaβ + a†

βaα
)

;

Ŝy = h̄

2i

(
a†
αaβ − a†

βaα
)

;

Ŝz = h̄

2

(
a†
αaα − a†

βaβ
)

.

(H.12)

These operators are complemented by the trace or number operator that appears in the

Hamiltonian. We define

N̂ =
(

a†
αaα + a†

βaβ
)

. (H.13)

This operator counts the total number of boson excitations. Using the results from

Eqs. (H.10) and (H.11), we obtain

N̂ |n, m〉 = a†
αaα |n,m〉+ a†

βaβ |n,m〉 = (n+m) |n, m〉. (H.14)

This expression indicates that all states with the same n+m excitation total are degenerate.

In addition, the |n, m〉 quantum states are also eigenfunctions of the Ŝz operator:

Ŝz |n,m〉 = h̄

2
a†
αaα |n,m〉− h̄

2
a†
βaβ |n, m〉 = h̄

2
(n−m) |n, m〉. (H.15)

We can define raising and lowering operators exactly as in the case of angular momentum:

Ŝ+ = Ŝx + iŜy = h̄ a†
αaβ ; (H.16)

Ŝ− = Ŝx − iŜy = h̄ a†
βaα . (H.17)

These raise or lower the value of the z-component by one quantum. We have

Ŝ+ |n,m〉 = h̄
√
(n+ 1)m |n+ 1,m− 1〉; (H.18)

Ŝ− |n,m〉 = h̄
√

n (m+ 1) |n− 1,m+ 1〉. (H.19)

Combining these expressions, we can now calculate the total spin associated with a given

SU(2) multiplet. Exactly the same as total angular momentum, spin momentum may be

expressed with the help of the component operators as follows:

Ŝ2 = Ŝ2
x + Ŝ2

y + Ŝ2
z = Ŝ−Ŝ+ + Ŝ2

z + h̄Ŝz = h̄2 N̂

2

(
N̂

2
+ 1

)
. (H.20)

Hence, the square of the total spin associated with the n, m quantum states is given by

〈n, m| Ŝ2 |n,m〉 = h̄2 n+m

2

(
n+m

2
+ 1

)
. (H.21)
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FIGURE H.1 Diagram of the |n,m〉 oscillator states of SU(2), with mj = 1/2(n−m) and

j = 1/2(n+m). The diagonal lines represent j-multiplets with j = 0,1/2,1,3/2,2, . . ..

Since this result also corresponds to h̄2 j
(
j+ 1

)
, the j quantum number and its mj

companion are given by

j = 1

2
(n+m); (H.22)

mj = 1

2
(n−m). (H.23)

In Figure H.1, j-multiplets as a function of n and m are displayed.



Appendix I
Commutation relations

A complete derivation of the commutation relations between L̂, M̂, and Ĥ is not easily

found in the scientific literature. All too many books leave their readers mystified regarding

how they might obtain the given results.1 The reason for this is that the proofs, despite

the relatively simple mathematics involved, are rather lengthy and tedious. This appendix

incorporates all the derivations necessary to obtain the relevant commutation relations,

which are listed in Table I.1 for easy reference.

Table I.1 Overview of the most important commutation relations.

1.
[
r̂i , p̂j

] = ih̄δij 2.
[
r̂i , r̂j

] = 0

3.
[
p̂i , p̂j

] = 0 4.
[

L̂i , r̂j

]
= ih̄εijk r̂k

5.
[
L̂i , p̂j

]
= ih̄εijk p̂k 6.

[
L̂i , L̂j

]
= ih̄εijkL̂k

7.
[
p̂i,

r̂j

r

]
= −ih̄

(
δij

1
r −

r̂i r̂j

r3

)
8.

[
L̂i ,

r̂j

r

]
= ih̄εijk

r̂k
r

9.
[
M̂i , L̂j

]
= ih̄εijkM̂k 10.

[
M̂i , M̂j

]
= ih̄

(
−2mĤ

)
εijk L̂k

11.
[
L̂i ,Ĥ

]
= 0 12.

[
M̂i ,Ĥ

]
= 0

I.1 CANONICAL COMMUTATION RELATIONS

I.1.1 Commutation relations for
[
r̂i, p̂j

]
Position and momentum are conjugate operators and obey Heisenberg’s canonical

commutation relations, as will be established in this section. Before we get down to business,

we must remember that working with operators can be a tricky thing; mistakes are bound

to slip into the calculations when we forget that operators always act on a function. In

this light, the concept of a test function f might come in handy. Let us examine its use by

deriving the commutator for the x-components of the r̂ and p̂ operators:

[
x, p̂x

]= [x,
h̄

i

∂

∂x

]
. (I.1)

1 Notable exceptions are Greiner and Müller’s Quantum Mechanics: Symmetries and Burkhardt

and Leventhal’s Topics in Atomic Physics, which we closely follow in the following derivations. See

W. Greiner and B. Müller. “Dynamical Symmetries”. In: Quantum Mechanics: Symmetries. Berlin:

Springer-Verlag, 2001, pp. 477–496; and C. E. Burkhardt and J. J. Leventhal. Topics in Atomic Physics.

New York: Springer, 2006. The latter does not delve into group theory, however.
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Since the commutator of two operators is itself an operator, we let it act on our test

function f :

[
x, p̂x

]
f =

[
x,

h̄

i

∂

∂x

]
f

= h̄

i

(
x
∂

∂x
f − ∂

∂x
xf

)
= h̄

i

(
x
∂ f

∂x
− dx

dx
f − x

∂ f

∂x

)
= ih̄f .

(I.2)

At this point, we can drop the test function, to obtain

[
x, p̂x

]= ih̄. (I.3)

Note that in this, and most of the following computations, we will no longer write down

the test function explicitly, so be warned! By substitution of y and z for x, we can generalize

Eq. (I.3) to

[
r̂i , p̂i

]= ih̄, (I.4)

where the index i stands for x, y, or z, and r̂x = x, r̂y = y, and r̂z = z. However,

[
x, p̂y

]= [x,
h̄

i

∂

∂y

]
= h̄

i

(
x
∂

∂y
− ∂

∂y
x

)
= h̄

i

(
x
∂

∂y
− 0− x

∂

∂y

)
= 0; (I.5)

[
x, p̂z

]= [x,
h̄

i

∂

∂z

]
= h̄

i

(
x
∂

∂z
− ∂

∂z
x

)
= h̄

i

(
x
∂

∂z
− 0− x

∂

∂z

)
= 0. (I.6)

Generalizing by two cyclic permutations of x, y, and z, we obtain

[
r̂i , p̂j

]= 0, for i �= j. (I.7)

Combining the commutation relations in Eq. (I.4) and Eq. (I.7) then leads to the canonical

commutation relations for position and momentum:

[
r̂i , p̂j

]= ih̄δij . (I.8)

I.1.2 Commutation relations for
[
r̂i, r̂j

]
and

[
p̂i, p̂j

]
We find analogously that the position operators r̂i mutually commute:

[
r̂i , r̂j

]= 0. (I.9)

The linear momentum operators also commute among themselves:

[
p̂i , p̂j

]= 0. (I.10)
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0 I.2 ANGULAR MOMENTUM COMMUTATION RELATIONS

I.2.1 Commutation relations for
[
L̂i, r̂j

]

Let us now evaluate the commutators of the components of the angular momentum

operator L̂ and the position operator r̂. To this end, we write[
L̂x , x

]
= [yp̂z − zp̂y , x

]= [yp̂z , x
]− [zp̂y , x

]
= [y, x

]
p̂z + y

[
p̂z , x

]− [z, x] p̂y − z
[
p̂y , x

]
= 0.p̂z + y.0− 0.p̂y − z.0= 0,

(I.11)

[
L̂x , y

]
= [yp̂z − zp̂y , y

]= [yp̂z , y
]− [zp̂y , y

]
= [y, y

]
p̂z + y

[
p̂z , y

]− [z, y
]

p̂y − z
[
p̂y ,y

]
= 0.p̂z + y.0− 0.p̂y + z.ih̄= ih̄z,

(I.12)

[
L̂x ,z

]
= [yp̂z − zp̂y , z

]= [yp̂z ,z
]− [zp̂y ,z

]
= [y, z

]
p̂z + y

[
p̂z , z

]− [z,z] p̂y − z
[
p̂y , z

]
= 0.p̂z − y.ih̄− 0.p̂y − z.0=−ih̄y,

(I.13)

where we have applied Eq. (I.8) and Eq. (I.9), as well as the commutation relation2[
ÂB̂, Ĉ

]
=
[

Â, Ĉ
]

B̂+ Â
[

B̂, Ĉ
]

. (I.15)

Generalizing Eqs. (I.11) and (I.12) via two successive cyclic permutations leads to[
L̂i , r̂j

]
= ih̄εijk r̂k , (I.16)

where εijk is the Levi-Civita antisymmetric tensor.

I.2.2 Commutation relations for
[
L̂i, p̂j

]

The commutation relations between the components of the angular momentum operator

L̂ and the linear momentum operator p̂ can be obtained analogously. We thus write[
L̂x , p̂x

]
= [yp̂z − zp̂y , p̂x

]= [yp̂z , p̂x
]− [zp̂y , p̂x

]
= [y, p̂x

]
p̂z + y

[
p̂z , p̂x

]− [z, p̂x
]

p̂y − z
[
p̂y , p̂x

]
= 0.p̂z + y.0− 0.p̂y − z.0= 0,

(I.17)

[
L̂x , p̂y

]
= [yp̂z − zp̂y , p̂y

]= [yp̂z , p̂y
]− [zp̂y , p̂y

]
= [y, p̂y

]
p̂z + y

[
p̂z , p̂y

]− [z, p̂y
]

p̂y − z
[
p̂y , p̂y

]
= ih̄p̂z + y.0− 0.p̂y − z.0= ih̄p̂z ,

(I.18)

2 The commutation relation in Eq. (I.15) is proved as follows:[
ÂB̂, Ĉ

]
= ÂB̂Ĉ − ĈÂB̂

= ÂB̂Ĉ − ĈÂB̂+ ÂĈB̂− ÂĈB̂

= Â
(

B̂Ĉ− ĈB̂
)
+
(

ÂĈ− ĈÂ
)

B̂

= Â
[

B̂, Ĉ
]
+
[

Â, Ĉ
]

B̂.

(I.14)
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[

L̂x , p̂z

]
= [yp̂z − zp̂y , p̂z

]= [yp̂z , p̂z
]− [zp̂y , p̂z

]
= [y, p̂z

]
p̂z + y

[
p̂z , p̂z

]− [z, p̂z
]

p̂y − z
[
p̂y , p̂z

]
= 0.p̂y + y.0− ih̄p̂y − z.0=−ih̄p̂y ,

(I.19)

where we have used Eqs. (I.8) and (I.10), and the commutation relation in Eq. (I.15). After

two more successive cyclic permutations, we obtain an expression for the commutator of L̂

and p̂: [
L̂i , p̂j

]
= ih̄εijk p̂k , (I.20)

where εijk is the Levi-Civita antisymmetric tensor.

I.2.3 Commutation relations for
[
L̂i, L̂j

]

The angular momentum commutation relations were derived in Chapter 5:[
L̂i, L̂j

]
= ih̄εijkL̂k . (I.21)

For the sake of completeness, let us derive them once again using the canonical

commutation relations of §I.1. We thus write[
L̂i, L̂j

]
=
[(

r̂× p̂
)

i ,
(

r̂× p̂
)

j

]
. (I.22)

The cross products in Eq. (I.22) can be written in tensor notation, following Eq. (K.21):[
L̂i , L̂j

]
= [εikl r̂k p̂l ,εjmnr̂mp̂n

]= εiklεjmn
[
r̂k p̂l , r̂mp̂n

]
. (I.23)

Recalling the elementary commutator identities
[
ÂB̂, Ĉ

] = [
Â, Ĉ

]
B̂ + Â

[
B̂, Ĉ

]
and[

Â, B̂Ĉ
]= [Â, B̂

]
Ĉ + B̂

[
Â, Ĉ

]
, we have[

r̂k p̂l , r̂mp̂n
]= [r̂k p̂l , r̂m

]
p̂n + r̂m

[
r̂k p̂l , p̂n

]
= [r̂k , r̂m

]
p̂l p̂n + r̂k

[
p̂l , r̂m

]
p̂n

+ r̂m
[
r̂k , p̂n

]
p̂l + r̂mr̂k

[
p̂l , p̂n

]
=−ih̄δlmr̂kp̂n + ih̄δknr̂mp̂l .

(I.24)

Substitution in Eq. (I.23) yields[
L̂i , L̂j

]
= εiklεjmn

(−ih̄δlmr̂k p̂n + ih̄δknr̂mp̂l
)

=−ih̄εiklεjlnr̂k p̂n + ih̄εiklεjmkr̂mp̂l .
(I.25)

The products of Levi-Civita symbols (εiklεjln and εiklεjmk) can be written in terms of

Kronecker deltas with the help of the contracted epsilon identities in Eq. (K.5):

εiklεjln = εlikεlnj = δinδkj − δijδkn, (I.26)

εiklεjmk = εkliεkjm = δljδim − δlmδij , (I.27)

yielding [
L̂i , L̂j

]
=−ih̄

(
δinδkj − δijδkn

)
r̂k p̂n + ih̄

(
δljδim − δlmδij

)
r̂mp̂l

=−ih̄
(
r̂j p̂i − δij r̂k p̂k

)+ ih̄
(
r̂i p̂j − δij r̂l p̂l

)
= ih̄

(
r̂i p̂j − r̂j p̂i

)
.

(I.28)

We want to prove that
[

L̂i , L̂j

]
= ih̄εijkL̂k . Rewriting ih̄εijk L̂k as

ih̄εijk L̂k = ih̄εijk
(

r̂× p̂
)

k = ih̄εijkεklmr̂l p̂m, (I.29)
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2 and using the contracted epsilon identity from Eq. (K.5) to write

εijkεklm = εkijεklm = δilδjm − δimδjl (I.30)

finally yields

ih̄εijk L̂k = ih̄
(
δilδjm − δimδjl

)
r̂l p̂m = ih̄

(
r̂i p̂j − r̂j p̂i

)
, (I.31)

which is identical to Eq. (I.28) and finalizes our proof.

I.3 AUXILIARY COMMUTATORS
Before determining

[
M̂i , L̂j

]
and

[
M̂i , M̂j

]
, let us first derive a number of auxiliary

commutators.

I.3.1 Commutation relations for
[
p̂i, r̂j/r

]
The simplest way to obtain a general expression for the commutator

[
p̂i , r̂j/r

]
is to first

compute it explicitly for its components in a number of cases, and then generalize. We

therefore start by deriving an expression for
[
p̂i, r̂j/r

]
when i �= j and then move on to the

case where i = j.

Case 1: The commutator
[
p̂i , r̂j/r

]
for i �= j

Let us derive, by way of example, the commutator
[
p̂x , y

r

]
. We have[

p̂x ,
y

r

]
= p̂x

y

r
− y

r
p̂x

=−ih̄
∂

∂x

( y

r

)
− ih̄

y

r

∂

∂x
+ ih̄

y

r

∂

∂x

=−ih̄
∂

∂x

(
yr−1).

(I.32)

The partial derivative in the previous equation can then be written as

∂

∂x

(
yr−1)= 1

r

∂y

∂x
+ y

∂r−1

∂x

= 0+ y
∂
(
x2 + y2 + z2

)− 1
2

∂
(
x2 + y2 + z2

) ∂
(
x2 + y2 + z2

)
∂x

=−1

2
y

1

r3
2x =− xy

r3
.

(I.33)

Substituting this result in Eq. (I.32) leads to[
p̂x ,

y

r

]
= ih̄

xy

r3
. (I.34)

This can be easily generalized to[
p̂i ,

r̂j

r

]
= ih̄

r̂i r̂j

r3
, ∀i �= j. (I.35)

Case 2: The commutator
[
p̂i , r̂j/r

]
for i = j

In a next step, let us determine the commutator
[
p̂x ,x/r

]
:[

p̂x ,
x

r

]
= p̂x

x

r
− x

r
p̂x

=−ih̄
∂

∂x

( x

r

)
− ih̄

x

r

∂

∂x
+ ih̄

x

r

∂

∂x

=−ih̄
∂

∂x

(
xr−1).

(I.36)
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We can rewrite the partial derivative as

∂

∂x

(
xr−1)= 1

r

∂x

∂x
+ x

∂r−1

∂x

= 1

r
+ x

∂
(
x2 + y2 + z2

)− 1
2

∂
(
x2 + y2 + z2

) ∂
(
x2 + y2 + z2

)
∂x

= 1

r
− 1

2
x

1

r3
2x = 1

r
− x2

r3
,

(I.37)

which leads to [
p̂x ,

x

r

]
=−ih̄

(
1

r
− x2

r3

)
. (I.38)

Similarly, we obtain [
p̂y ,

y

r

]
=−ih̄

(
1

r
− y2

r3

)
; (I.39)

[
p̂z ,

z

r

]
=−ih̄

(
1

r
− z2

r3

)
. (I.40)

Generalization
Combining the results of both cases leads to the following expression for the commutator[

p̂i ,
r̂j

r

]
: [

p̂i ,
r̂j

r

]
=−ih̄

(
δij

1

r
− r̂i r̂j

r3

)
. (I.41)

I.3.2 Commutation relations for
[
L̂i, r̂j/r

]

As in the preceding section, it will prove convenient to first evaluate this commutator for

its components in a number of cases. Let us proceed by deriving an expression for
[
L̂i , r̂j/r

]
when i �= j and then move on to the case where i = j.

Case 1: The commutator
[
L̂i, r̂j/r

]
for i �= j

Let us, by way of example, derive the commutator
[
L̂x ,y/r

]
. We have[

L̂x ,
y

r

]
= L̂x

y

r
− y

r
L̂x

= (yp̂z − zp̂y
) y

r
− y

r

(
yp̂z − zp̂y

)
= yp̂z

y

r
− zp̂y

y

r
− y2

r
p̂z + yz

r
p̂y .

(I.42)

The first term can be written as follows:

yp̂z
y

r
=−ih̄y

∂

∂z

y

r
− ih̄y

y

r

∂

∂z

=−ih̄y
∂

∂z

y

r
+ y2

r
p̂z .

(I.43)

Analogously, for the second term of Eq. (I.42),

zp̂y
y

r
=−ih̄z

∂

∂y

y

r
− ih̄z

y

r

∂

∂y

=−ih̄z
∂

∂y

y

r
+ yz

r
p̂y .

(I.44)
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4 Substitution of these results in Eq. (I.42) yields[

L̂x ,
y

r

]
=−ih̄y

∂

∂z

y

r
+ ih̄z

∂

∂y

y

r
. (I.45)

The first partial derivative can be written as

∂

∂z

y

r
= 1

r

∂y

∂z
+ y

∂r−1

∂z

= 0+ y
∂
(
x2 + y2 + z2

)− 1
2

∂
(
x2 + y2 + z2

) ∂
(
x2 + y2 + z2

)
∂z

=−1

2
y

1

r3
2z =− yz

r3
.

(I.46)

Similarly, for the second derivative,

∂

∂y

y

r
= 1

r

∂y

∂y
+ y

∂r−1

∂y

= 1

r
+ y

∂
(
x2 + y2 + z2

)− 1
2

∂
(
x2 + y2 + z2

) ∂
(
x2 + y2 + z2

)
∂y

= 1

r
− 1

2
y

1

r3
2y = 1

r
− y2

r3
.

(I.47)

The commutator in Eq. (I.45) then reduces to[
L̂x ,

y

r

]
= ih̄

y2z

r3
+ ih̄z

(
1

r
− y2

r3

)
= ih̄

y2z

r3
+ ih̄

z

r
− ih̄

y2z

r3[
L̂x ,

y

r

]
= ih̄

z

r
.

(I.48)

Two successive cyclic permutations of x, y, and z yield two more commutators:[
L̂y ,

z

r

]
= ih̄

x

r
,

[
L̂z ,

x

r

]
= ih̄

y

r
. (I.49)

Case 2: The commutator
[
L̂i, r̂j/r

]
for i = j

Next, let us determine the commutator
[
L̂x , x/r

]
:[

L̂x ,
x

r

]
= L̂x

x

r
− x

r
L̂x

= (yp̂z − zp̂y
) x

r
− x

r

(
yp̂z − zp̂y

)
= yp̂z

x

r
− zp̂y

x

r
− xy

r
p̂z + xz

r
p̂y .

(I.50)

After rewriting the first and second terms as

yp̂z
x

r
=−ih̄y

∂

∂z

x

r
− ih̄y

x

r

∂

∂z

=−ih̄y
∂

∂z

x

r
+ xy

r
p̂z ,

(I.51)

and

zp̂y
x

r
=−ih̄z

∂

∂y

x

r
− ih̄z

x

r

∂

∂y

=−ih̄z
∂

∂y

x

r
+ xz

r
p̂y ,

(I.52)
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we obtain [

L̂x ,
x

r

]
=−ih̄y

∂

∂z

x

r
+ ih̄z

∂

∂y

x

r
. (I.53)

Rewriting the two partial derivatives as

∂

∂z

x

r
= 1

r

∂x

∂z
+ x

∂r−1

∂z

= 0+ x
∂
(
x2 + y2 + z2

)− 1
2

∂
(
x2 + y2 + z2

) ∂
(
x2 + y2 + z2

)
∂z

=−1

2
x

1

r3
2z =− xz

r3

(I.54)

and

∂

∂y

x

r
= 1

r

∂x

∂y
+ x

∂r−1

∂y

= 0+ x
∂
(
x2 + y2 + z2

)− 1
2

∂
(
x2 + y2 + z2

) ∂
(
x2 + y2 + z2

)
∂y

=−1

2
x

1

r3
2y =− xy

r3
,

(I.55)

finally leads to [
L̂x ,

x

r

]
= ih̄

xyz

r3
− ih̄

xyz

r3
= 0. (I.56)

Generalization
The remaining commutation relations can be determined by cyclic permutation of x, y,

and z, and results in the generalized commutation relation[
L̂i ,

r̂j

r

]
= ih̄εijk

r̂k

r
, (I.57)

where εijk is the Levi-Civita antisymmetric tensor.

I.4 REFORMULATION OF THE LRL VECTOR
When evaluating the commutators

[
M̂i , L̂j

]
and

[
M̂i , M̂j

]
, it is convenient to express the

Laplace-Runge-Lenz (LRL) vector in a slightly different form. To this aim, recall that the

operator form of the LRL vector was defined as

M̂= 1

2

(
p̂× L̂− L̂× p̂

)
−mk

r̂

r
. (I.58)

Given Eq. (K.21), the ith component of the cross product L̂× p̂ can be written in tensor

notation: (
L̂× p̂

)
i
=
∑

jk

εijk L̂j p̂k . (I.59)

From the commutation relations
[
L̂j , p̂k

]= ih̄εjkl p̂l , as derived in Eq. (I.20), we can write(
L̂× p̂

)
i
=
∑

jk

εijk p̂kL̂j + ih̄
∑
jkl

εijkεjkl p̂l . (I.60)

The product of Levi-Civita symbols εijkεjkl in Eq. (I.60) can be written in terms of

Kronecker deltas with the help of the contracted epsilon identity in Eq. (K.6):

εijkεjkl = εjkiεjkl = 2δil , (I.61)
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6 yielding (

L̂× p̂
)

i
=−

∑
jk

εikj p̂k L̂j + 2ih̄
∑

l

δil p̂l

=−
(

p̂× L̂
)

i
+ 2ih̄p̂i

(I.62)

or

L̂× p̂ =−
(

p̂× L̂
)
+ 2ih̄p̂. (I.63)

Hence, the LRL vector from Eq. (I.58) can be reformulated as

M̂= 1

2

(
p̂× L̂+ p̂× L̂− 2ih̄p̂

)
−mk

r̂

r

= p̂× L̂− ih̄p̂−mk
r̂

r
.

(I.64)

I.5 COMMUTATORS WITH THE LRL OPERATOR

I.5.1 Commutation relations for
[
M̂i, L̂j

]
As in the preceding cases, let us compute the commutator

[
M̂i, L̂j

]
explicitly for its

components in a number of cases. We start again by deriving an expression for
[
M̂i , L̂j

]
when i �= j and then move on to the case where i = j.

Case 1: The commutator
[
M̂i, L̂j

]
for i �= j

Let us compute the commutator
[
M̂x , L̂y

]
. We have, using the new form of the LRL vector

obtained in Eq. (I.64),[
M̂x , L̂y

]
=
[(

p̂× L̂− ih̄p̂
)

x
−mk

x

r
, L̂y

]
=
[(

p̂× L̂
)

x
, L̂y

]
−
[

ih̄p̂x , L̂y

]
−
[

mk
x

r
, L̂y

]
=
[

p̂y L̂z − p̂z L̂y , L̂y

]
+ ih̄

[
L̂y , p̂x

]
+mk

[
L̂y ,

x

r

]
.

(I.65)

We then get [
M̂x , L̂y

]
=
(

p̂y L̂z L̂y − p̂z L̂y L̂y − L̂y p̂y L̂z + L̂y p̂z L̂y

)
+ ih̄

[
L̂y , p̂x

]
+mk

[
L̂y ,

x

r

]
.

(I.66)

Using the commutation relations
[
Li, Lj

] = ih̄εijkLk and
[
L̂i, p̂j

] = ih̄εijk p̂k , as derived in

§I.2, we can rewrite the term p̂y L̂z L̂y as

p̂y

(
L̂z L̂y

)
= p̂y

(
L̂y L̂z − ih̄L̂x

)
= p̂y L̂y L̂z − ih̄p̂y L̂x

= L̂y p̂y L̂z − ih̄p̂y L̂x ,

(I.67)

and the term p̂z L̂y L̂y as (
p̂z L̂y

)
L̂y =

(
L̂y p̂z − ih̄p̂x

)
L̂y

= L̂y p̂z L̂y − ih̄p̂x L̂y .
(I.68)
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After substituting these results in the first term of Eq. (I.66), and canceling, we obtain[

M̂x , L̂y

]
= ih̄

(
p̂x L̂y − p̂y L̂x

)
+ ih̄

[
L̂y , p̂x

]
+mk

[
L̂y ,

x

r

]
. (I.69)

Using the commutation relations in Eq. (I.20) and Eq. (I.57), we can rewrite the second

and third terms as [
L̂y , p̂x

]
=−ih̄p̂z (I.70)

and [
L̂y ,

x

r

]
=−ih̄

z

r
. (I.71)

We thus obtain [
M̂x , L̂y

]
= ih̄

(
p̂x L̂y − p̂y L̂x

)
+ ih̄

(−ih̄p̂z
)− ih̄mk

z

r

= ih̄
[(

p̂× L̂− ih̄p̂
)

z
−mk

z

r

]
[

M̂x , L̂y

]
= ih̄M̂z .

(I.72)

Case 2: The commutator
[
M̂i, L̂j

]
for i = j

In complete analogy, let us now derive the commutator
[
M̂x , L̂x

]
:[

M̂x , L̂x

]
=
[(

p̂× L̂− ih̄p̂
)

x
−mk

x

r
, L̂x

]
=
[(

p̂× L̂
)

x
, L̂x

]
−
[

ih̄p̂x , L̂x

]
−
[

mk
x

r
, L̂x

]
=
[
p̂y L̂z − p̂z L̂y , L̂x

]
+ ih̄

[
L̂x , p̂x

]
+mk

[
L̂x ,

x

r

]
.

(I.73)

That is, [
M̂x , L̂x

]
=
(

p̂y L̂z L̂x − p̂z L̂y L̂x − L̂x p̂y L̂z + L̂x p̂z L̂y

)
+ ih̄

[
L̂x , p̂x

]
+mk

[
L̂x ,

x

r

]
.

(I.74)

Following Eq. (I.20) and Eq. (I.21), we can rewrite the terms p̂y L̂z L̂x and p̂z L̂y L̂x as

p̂y L̂z L̂x = p̂y L̂x L̂z + ih̄p̂y L̂y

= L̂x p̂y L̂z − ih̄p̂z L̂z + ih̄p̂y L̂y

(I.75)

and

p̂z L̂y L̂x = p̂z L̂x L̂y − ih̄p̂z L̂z

= L̂x p̂z L̂y + ih̄p̂y L̂y − ih̄p̂z L̂z .
(I.76)

Substituting these results in the first term of Eq. (I.74), and canceling yields

p̂y L̂z L̂x − p̂z L̂y L̂x − L̂x p̂y L̂z + L̂x p̂z L̂y = 0, (I.77)

so that [
M̂x , L̂x

]
= ih̄

[
L̂x , p̂x

)
+mk

[
L̂x ,

x

r

]
. (I.78)

Following Eq. (I.20) and Eq. (I.57),
[
L̂x , p̂x

]
= 0 and

[
L̂x , x

r

]
= 0. We thus obtain[

M̂x , L̂x

]
= 0. (I.79)
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8 Generalization

The remaining commutation relations can be computed by cyclic permutation of x, y, and

z, and they result in the generalized commutation relation[
M̂i , L̂j

]
= ih̄εijkM̂k , (I.80)

where εijk is the Levi-Civita antisymmetric tensor.

I.5.2 Commutation relations for
[
M̂i,M̂j

]

Although frequent recourse will be needed to the commutation relations
[
r̂i, r̂j

]= [p̂i , p̂j
]=

0 and
[
L̂i , p̂j

]= ih̄εijk p̂k , obtained in §I.1 and §I.2, no explicit mention will be made of their

application in the following derivation.

Case 1: The commutator
[
M̂i,M̂j

]
for i �= j

Let us evaluate, by way of illustration, the commutator
[
M̂x , M̂y

]
:[

M̂x , M̂y

]
= M̂xM̂y − M̂yM̂x

=
((

p̂× L̂− ih̄p̂
)

x
−mk

x

r

)((
p̂× L̂− ih̄p̂

)
y
−mk

y

r

)
−
((

p̂× L̂− ih̄p̂
)

y
−mk

y

r

)((
p̂× L̂− ih̄p̂

)
x
−mk

x

r

)
=
(

p̂y L̂z − p̂z L̂y − ih̄p̂x −mk
x

r

)(
p̂z L̂x − p̂x L̂z − ih̄p̂y −mk

y

r

)
−
(

p̂z L̂x − p̂x L̂z − ih̄p̂y −mk
y

r

)(
p̂y L̂z − p̂z L̂y − ih̄p̂x −mk

x

r

)
,

(I.81)

where we have used the alternative form of the LRL operator, as derived in §I.4. Working

out the brackets yields[
M̂x , M̂y

]
=
(

p̂y L̂z − p̂z L̂y − ih̄p̂x

)(
p̂z L̂x − p̂x L̂z − ih̄p̂y

)
(I.82)

−
(

p̂z L̂x − p̂x L̂z − ih̄p̂y

)(
p̂y L̂z − p̂z L̂y − ih̄p̂x

)
(I.83)

−mk
((

p̂y L̂z − p̂z L̂y − ih̄p̂x

) y

r
+ x

r

(
p̂z L̂x − p̂x L̂z − ih̄p̂y

))
(I.84)

+mk
((

p̂z L̂x − p̂x L̂z − ih̄p̂y

) x

r
+ y

r

(
p̂y L̂z − p̂z L̂y − ih̄p̂x

))
(I.85)

+m2k2 xy

r2
−m2k2 yx

r2
, (I.86)

where the terms in Eq. (I.86) are seen to cancel. Performing the multiplication in Eq. (I.82)

yields nine terms:

p̂y L̂z p̂z L̂x − p̂y L̂z p̂x L̂z − ih̄p̂y L̂z p̂y

− p̂z L̂y p̂z L̂x + p̂z L̂y p̂x L̂z + ih̄p̂z L̂y p̂y

− ih̄p̂x p̂z L̂x + ih̄p̂x p̂x L̂z − h̄2p̂x p̂y .

(I.87)

After commuting the third and the eighth terms that is:

ih̄p̂y L̂z p̂y = ih̄p̂y

(
p̂y L̂z − ih̄p̂x

)
= ih̄p̂y p̂y L̂z + h̄2p̂y p̂x ;

(I.88)
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and

ih̄p̂x p̂x L̂z = ih̄p̂x

(
L̂z p̂x − ih̄p̂y

)
= ih̄p̂x L̂z p̂x + h̄2p̂x p̂y ,

(I.89)

and rearranging the sixth, seventh, and ninth terms, we obtain

p̂y L̂z p̂z L̂x − p̂y L̂z p̂x L̂z − ih̄p̂y p̂y L̂z

− p̂z L̂y p̂z L̂x + p̂z L̂y p̂x L̂z + ih̄p̂y p̂z L̂y

− ih̄p̂z L̂x p̂x + ih̄p̂x L̂z p̂x − h̄2p̂y p̂x .

(I.90)

The multiplication in Eq. (I.83) yields nine more terms:

p̂z L̂x p̂y L̂z − p̂z L̂x p̂z L̂y − ih̄p̂z L̂x p̂x

− p̂x L̂z p̂y L̂z + p̂x L̂z p̂z L̂y + ih̄p̂x L̂z p̂x

− ih̄p̂y p̂y L̂z + ih̄p̂y p̂z L̂y + i2h̄2p̂y p̂x .

(I.91)

Subtraction of Eq. (I.91) from Eq. (I.90) leaves, after canceling,

p̂y L̂z p̂z L̂x − p̂y L̂z p̂x L̂z − p̂z L̂y p̂z L̂x + p̂z L̂y p̂x L̂z

− p̂z L̂x p̂y L̂z + p̂z L̂x p̂z L̂y + p̂x L̂z p̂y L̂z − p̂x L̂z p̂z L̂y .
(I.92)

Let us simplify this expression by rewriting the first, fourth, sixth, and seventh terms in the

following form:

p̂y L̂z p̂z L̂x = p̂y p̂z L̂x L̂z + ih̄p̂y p̂z L̂y

= p̂z L̂x p̂y L̂z + ih̄p̂y p̂z L̂y − ih̄p̂z p̂z L̂z ;
(I.93)

p̂z L̂x p̂z L̂y = p̂z p̂z L̂x L̂y − ih̄p̂z p̂y L̂y

= p̂z p̂z L̂y L̂x − ih̄p̂z p̂y L̂y + ih̄p̂z p̂z L̂z

= p̂z L̂y p̂z L̂x − ih̄p̂z p̂y L̂y + ih̄p̂z p̂z L̂z − ih̄p̂z p̂x L̂x ;

(I.94)

p̂x L̂z p̂y L̂z = p̂x p̂y L̂z L̂z − ih̄p̂x p̂x L̂z

= p̂y L̂z p̂x L̂z − ih̄p̂x p̂x L̂z − ih̄p̂y p̂y L̂z ;
(I.95)

p̂z L̂y p̂x L̂z = p̂z p̂x L̂y L̂z − ih̄p̂z p̂z L̂z

= p̂x L̂z p̂z L̂y − ih̄p̂z p̂z L̂z + ih̄p̂x p̂x L̂x .
(I.96)

Substitution in Eq. (I.92) yields, after canceling,

ih̄
(

p̂y p̂z L̂y − p̂2
z L̂z − p̂z p̂y L̂y + p̂2

z L̂z − p̂z p̂x L̂x

− p̂2
x L̂z − p̂2

y L̂z − p̂2
z L̂z + p̂z p̂x L̂x

)
=−ih̄

(
p̂2

x L̂z + p̂2
y L̂z + p̂2

z L̂z

)
=−ih̄p̂2L̂z ,

(I.97)

for Eq. (I.82) and Eq. (I.83). In a following step, we perform the multiplications in Eq. (I.84)

and Eq. (I.85):

mk
[
− p̂y L̂z

y

r
+ p̂z L̂y

y

r
+ ih̄p̂x

y

r
− x

r
p̂z L̂x + x

r
p̂x L̂z + ih̄

x

r
p̂y

+ p̂z L̂x
x

r
− p̂x L̂z

x

r
− ih̄p̂y

x

r
+ y

r
p̂y L̂z − y

r
p̂z L̂y − ih̄

y

r
p̂x

]
.

(I.98)
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0 Collecting terms, we obtain

mk
[
− p̂y L̂z

y

r
+ p̂z L̂y

y

r
− x

r
p̂z L̂x + x

r
p̂xL̂z + p̂z L̂x

x

r
− p̂x L̂z

x

r

+ y

r
p̂y L̂z − y

r
p̂z L̂y + ih̄

(
p̂x

y

r
+ x

r
p̂y − p̂y

x

r
− y

r
p̂x

)]
.

(I.99)

Following the commutation relations
[

p̂i ,
r̂j

r

]
= −ih̄

(
δij

1
r −

r̂i r̂j

r3

)
, as derived in §I.3.1, we

can rewrite the last term as

p̂x
y

r
+ x

r
p̂y − p̂y

x

r
− y

r
p̂x =

(
p̂x

y

r
− y

r
p̂x

)
−
(

p̂y
x

r
− x

r
p̂y

)
=
[

p̂x ,
y

r

]
−
[

p̂y ,
x

r

]
= ih̄

xy

r3
− ih̄

yx

r3
= 0.

(I.100)

The expression in Eq. (I.99) can be simplified further using the commutation relations[
p̂i , r̂j/r

]=−ih̄
(
δij1/r − r̂i r̂j/r3

)
and

[
L̂i , r̂j/r

]= ih̄εijk r̂k/r. Rewriting the first four terms as

−p̂y L̂z
y

r
=−p̂y

y

r
L̂z + ih̄p̂y

x

r

=− y

r
p̂y L̂z + ih̄

(
1

r
− y2

r3

)
L̂z + ih̄p̂y

x

r
,

(I.101)

p̂z L̂y
y

r
= p̂z

y

r
L̂y = y

r
p̂z L̂y + ih̄

yz

r3
L̂y , (I.102)

− x

r
p̂z L̂x =−p̂z

x

r
L̂x + ih̄

xz

r3
L̂x =−p̂z L̂x

x

r
+ ih̄

xz

r3
L̂x , (I.103)

x

r
p̂xL̂z = p̂x

x

r
L̂z + ih̄

(
1

r
− x2

r3

)
L̂z

and

= p̂x L̂z
x

r
− ih̄p̂x

y

r
+ ih̄

(
1

r
− x2

r3

)
L̂z , (I.104)

yields for Eq. (I.99)

mk

[
− y

r
p̂y L̂z + ih̄

(
1

r
− y2

r3

)
L̂z + ih̄p̂y

x

r
+ y

r
p̂z L̂y + ih̄

yz

r3
L̂y − p̂z L̂x

x

r

+ ih̄
xz

r3
L̂x + p̂x L̂z

x

r
− ih̄p̂x

y

r
+ ih̄

(
1

r
− x2

r3

)
L̂z + p̂z L̂x

x

r
− p̂x L̂z

x

r

+ y

r
p̂y L̂z − y

r
p̂z L̂y

]
.

(I.105)

On canceling, this reduces to

ih̄mk

[
p̂y

x

r
− p̂x

y

r
+ yz

r3
L̂y + xz

r3
L̂x +

(
1

r
− y2

r3

)
L̂z +

(
1

r
− x2

r3

)
L̂z

]
. (I.106)

We can rewrite the first two terms as follows:

p̂y
x

r
− p̂x

y

r
= x

r
p̂y + ih̄

xy

r3
− y

r
p̂x − ih̄

yx

r3

= 1

r

(
xp̂y − yp̂x

)= 1

r
L̂z .

(I.107)
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The third and fourth terms equal

yz

r3
L̂y + xz

r3
L̂x = z

r3

[
yL̂y + xL̂x

]
= z

r3

[
y
(
zp̂x − xp̂z

)+ x
(
yp̂z − zp̂y

)]
= z

r3

[
yzp̂x − xyp̂z + xyp̂z − xzp̂y

]
=− z

r3

[
z
(
xp̂y − yp̂x

)]
=− z2

r3
L̂z .

(I.108)

Substitution of these results in Eq. (I.106) yields

ih̄mk

[
1

r
L̂z − z2

r3
L̂z +

(
1

r
− y2

r3

)
L̂z +

(
1

r
− x2

r3

)
L̂z

]
= ih̄mk

[
3

r
L̂z − 1

r3

(
x2 + y2 + z2) L̂z

]
= ih̄mk

[
3

r
L̂z − r2

r3
L̂z

]
= ih̄mk

2

r
L̂z .

(I.109)

After inserting the results from Eq. (I.97) and Eq. (I.109) into Eqs. (I.82) through (I.86),

we end up with the following commutation relation:[
M̂x , M̂y

]
=−ih̄p̂2L̂z + ih̄mk

2

r
L̂z

= ih̄ (−2m)

(
p̂2

2m
− k

r

)
L̂z

= ih̄ (−2mH ) L̂z ,

(I.110)

where we have introduced the Hamiltonian H in the last line. Naturally,
[
M̂x , M̂x

] = 0.

The remaining commutation relations can be determined by cyclic permutation of x, y,

and z, and they result in the generalized commutation relation[
M̂i, M̂j

]
= ih̄ (−2mH )εijkL̂k . (I.111)

I.6 MORE AUXILIARY COMMUTATORS
In our evaluation of the commutators

[
L̂i,Ĥ

]
and

[
M̂i ,Ĥ

]
(see §I.7), recourse will be

needed to two more auxiliary commutators, which we need to derive first.

I.6.1 Commutation relations for
[
p̂i,Ĥ

]

The commutation relations for
[
p̂i ,Ĥ

]
are easily derived. The Hamiltonian for the

Coulomb problem was given in Eq. (9.37) and can be used to write

[
p̂i ,Ĥ

]
=
[

p̂i ,
p̂2

2m
− k

r

]
= 1

2m

⎡⎣p̂i ,
3∑

j=1

p̂2
j

⎤⎦− k

[
p̂i ,

1

r

]
. (I.112)

Given that the momentum operators commute with themselves (i.e.,
[
p̂i , p̂j

]= 0), the first

commutator in Eq. (I.112) vanishes. The second commutator yields[
p̂i ,

1

r

]
= p̂i

1

r
− 1

r
p̂i =−ih̄

∂

∂ r̂i

1

r
− ih̄

1

r

∂

∂ r̂i
+ ih̄

1

r

∂

∂ r̂i
=−ih̄

∂

∂ r̂i

1

r
, (I.113)
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2 where ∂/∂ r̂i(1/r) can be written as

∂

∂ r̂i

1

r
=
∂
(∑3

j=1 r̂2
j

)− 1
2

∂
∑3

j=1 r̂2
j

∂
∑3

j=1 r̂2
j

∂ r̂i

=−1

2

(∑3

j=1
r̂2
j

)− 3
2

2r̂i =− r̂i

r3
. (I.114)

Substitution of these results in Eq. (I.112) yields the following commutation relations for[
p̂i ,Ĥ

]
: [

p̂i ,Ĥ
]
=−ih̄k

r̂i

r3
. (I.115)

I.6.2 Commutation relations for
[
p̂2i , r̂j/r

]

From the commutator identity
[

ÂB̂, Ĉ
]
=
[

Â, Ĉ
]

B̂+ Â
[

B̂, Ĉ
]

, we can write[
p̂2

i ,
r̂j

r

]
=
[

p̂i ,
r̂j

r

]
p̂i + p̂i

[
p̂i,

r̂j

r

]
. (I.116)

Following Eq. (I.41), we obtain[
p̂2

i ,
r̂j

r

]
=−ih̄

(
δij

1

r
− r̂i r̂j

r3

)
p̂i − ih̄p̂i

(
δij

1

r
− r̂i r̂j

r3

)
. (I.117)

Acting with the second term on a test function f yields

−ih̄p̂i

(
δij

1

r
− r̂i r̂j

r3

)
· f =−ih̄

(
−ih̄

∂

∂ r̂i

)(
δij

1

r
− r̂i r̂j

r3

)
· f

=−h̄2
[
∂

∂ r̂i

(
δij

1

r
· f
)
− ∂

∂ r̂i

(
r̂i r̂j

r3
· f
)]

.

(I.118)

The first partial derivative in Eq. (I.118) can be written as

∂

∂ r̂i

(
δij

1

r
· f
)
= δij

1

r

∂ f

∂ r̂i
+ δij f

∂

∂ r̂i

1

r

= δij
1

r

∂ f

∂ r̂i
− δij

r̂i

r3
f ,

(I.119)

where use was made of Eq. (I.114). The second derivative in Eq. (I.118) gives

∂

∂ r̂i

(
r̂i r̂j

r3
· f
)
= 1

r3

∂

∂ r̂i

(
r̂i r̂j · f

)+ r̂i r̂j f
∂

∂ r̂i

1

r3

= r̂i r̂j

r3

∂ f

∂ r̂i
+ 1

r3
f
∂

∂ r̂i

(
r̂i r̂j
)− r̂i r̂j f

3

2
r−52r̂i

= r̂i r̂j

r3

∂ f

∂ r̂i
+ r̂i

r3
f
∂ r̂j

∂ r̂i
+ r̂j

r3
f
∂ r̂i

∂ r̂i
− 3

r̂2
i r̂j

r5
f

= r̂i r̂j

r3

∂ f

∂ r̂i
+ δij

r̂i

r3
f + r̂j

r3
f − 3

r̂2
i r̂j

r5
f .

(I.120)

Substitution of these results in Eq. (I.118), and removal of f , yields

−ih̄p̂i

(
δij

1

r
− r̂i r̂j

r3

)
=−h̄2

[(
δij

1

r
− r̂i r̂j

r3

)
∂

∂ r̂i
− 2δij

r̂i

r3
− r̂j

r3
+ 3

r̂2
i r̂j

r5

]
, (I.121)

where

−h̄2
(
δij

1

r
− r̂i r̂j

r3

)
∂

∂ r̂i
=−ih̄

(
δij

1

r
− r̂i r̂j

r3

)(
−ih̄

∂

∂ r̂i

)
=−ih̄

(
δij

1

r
− r̂i r̂j

r3

)
p̂i .

(I.122)
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Substitution of Eq. (I.121) and Eq. (I.122) into Eq. (I.117) finally yields the commutation

relations for
[

p̂2
i ,

r̂j

r

]
:

[
p̂2

i ,
r̂j

r

]
=−2ih̄

(
δij

1

r
− r̂i r̂j

r3

)
p̂i + h̄2

(
2δij

r̂i

r3
+ r̂j

r3
− 3

r̂2
i r̂j

r5

)
. (I.123)

When i = j, this becomes[
p̂2

i ,
r̂i

r

]
=−2ih̄

(
1

r
− r̂2

i

r3

)
p̂i + h̄2

(
3r̂i

r3
− 3r̂3

i

r5

)
. (I.124)

For i �= j, on the other hand, we have[
p̂2

i ,
r̂j

r

]
= 2ih̄

r̂i r̂j

r3
p̂i + h̄2

(
r̂j

r3
− 3

r̂2
i r̂j

r5

)
. (I.125)

I.7 COMMUTATORS WITH THE HAMILTONIAN
I.7.1 Commutation relations for

[
L̂i,Ĥ

]

We want to prove that the components L̂i of the angular momentum operator L̂ commute

with the Hamiltonian Ĥ for the Kepler problem:[
L̂i,Ĥ

]
= 0, ∀i = 1→ 3. (I.126)

From Eq. (9.37), we can write

[
L̂i ,Ĥ

]
=
[

L̂i ,
p̂2

2m
− k

r

]
= 1

2m

⎡⎣L̂i ,
3∑

j=1

p̂2
j

⎤⎦− k

[
L̂i,

1

r

]
. (I.127)

Let us therefore verify the validity of Eq. (I.126) by investigating the commutation relations

for the components of L̂ with the kinetic energy operator T̂ and the potential energy

operator V̂ listed previously.

The commutator with the kinetic energy operator is easily obtained. As an example, for

Lx , we have [
L̂x , p̂2

]
=
[

L̂x , p̂2
x + p̂2

y + p̂2
z

]
=
[

L̂x , p̂2
x

]
+
[

L̂x , p̂2
y

]
+
[

L̂x , p̂2
z

]
.

(I.128)

From the commutator identity
[
Â, B̂Ĉ

]
=
[

Â, Ĉ
]

B̂ + Ĉ
[

Â, B̂
]

, and the commutation

relations of Eq. (I.20), we obtain[
L̂x , p̂2

]
=
[

L̂x , p̂y

]
p̂y + p̂y

[
L̂x , p̂y

]
+
[

L̂x , p̂z

]
p̂z + p̂z

[
L̂x , p̂z

]
= ih̄p̂z p̂y + ih̄p̂y p̂z − ih̄p̂y p̂z − ih̄p̂z p̂y = 0.

(I.129)

Similarly, we can prove that L̂x commutes with the potential energy operator:[
L̂x ,

1

r

]
=
[

yp̂z − zp̂y ,
1

r

]
= y

[
p̂z ,

1

r

]
− z

[
p̂y ,

1

r

]
= ih̄

yz

r3
− ih̄

zy

r3
= 0,

(I.130)

where we have used Eq. (I.113) and Eq. (I.114) in the second line. Substitution of Eq. (I.129)

and Eq. (I.130) into Eq. (I.127) shows that L̂x indeed commutes with the Hamiltonian. This

can be generalized via cyclic permutation of x, y, and z to yield Eq. (I.126).
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4 I.7.2 Commutation relations for

[
M̂i,Ĥ

]

To derive the commutation relations between the LRL vector M̂ and the Hamiltonian Ĥ ,

it will be convenient to use the alternative form of M̂, as given in Eq. (I.64). Our aim is to

demonstrate the commutativity of the components of M̂ with the Hamiltonian Ĥ for the

Kepler problem: [
M̂i ,Ĥ

]
= 0, ∀i = 1→ 3. (I.131)

Let us, by way of example, evaluate the commutator of the Hamiltonian with the

x-component of the LRL vector:[
M̂x ,Ĥ

]
=
[(

p̂× L̂− ih̄p̂
)

x
−mk

x

r
,Ĥ

]
=
[(

p̂× L̂
)

x
,Ĥ

]
− ih̄

[
p̂x ,Ĥ

]
−mk

[ x

r
,Ĥ

]
.

(I.132)

Let us compute each of the three terms individually. The first commutator in Eq. (I.132)

can be written as[(
p̂× L̂

)
x

,Ĥ
]
=
[

p̂y L̂z − p̂z L̂y ,Ĥ
]

=
[
p̂y L̂z ,Ĥ

]
−
[

p̂z L̂y ,Ĥ
]

=
[
p̂y ,Ĥ

]
L̂z + p̂y

[
L̂z ,Ĥ

]
−
[

p̂z ,Ĥ
]

L̂y − p̂z

[
L̂y ,Ĥ

]
,

(I.133)

where we have used the commutator identity
[
ÂB̂, Ĉ

] = [
Â, Ĉ

]
B̂ + Â

[
B̂, Ĉ

]
in the last

line. We also know from the previous section that the Hamiltonian commutes with the

components of the angular momentum—that is,
[
L̂z ,Ĥ

] = [L̂y ,Ĥ
] = 0. This simplifies

Eq. (I.133) to [(
p̂× L̂

)
x

,Ĥ
]
=
[

p̂y ,Ĥ
]

L̂z −
[

p̂z ,Ĥ
]

L̂y . (I.134)

The remaining two commutators were determined in §I.6. From Eq. (I.115), we thus obtain[(
p̂× L̂

)
x

,Ĥ
]
=−ih̄k

y

r3
L̂z + ih̄k

z

r3
L̂y

=−ih̄k
[ y

r3

(
xp̂y − yp̂x

)− z

r3

(
zp̂x − xp̂z

)]
=−ih̄k

[
xy

r3
p̂y − y2

r3
p̂x − z2

r3
p̂x + xz

r3
p̂z

]
.

(I.135)

Addition and subtraction of x2

r3 p̂x inside the brackets finally yields

[(
p̂× L̂

)
x

,Ĥ
]
=−ih̄k

[
xy

r3
p̂y + xz

r3
p̂z + x2

r3
p̂x −

(
y2

r3
p̂x + z2

r3
p̂x + x2

r3
p̂x

)]
=−ih̄k

[
xy

r3
p̂y + xz

r3
p̂z + x2

r3
p̂x − 1

r
p̂x

]
.

(I.136)

The second commutator in Eq. (I.132) equals, by Eq. (I.115),[
p̂x ,Ĥ

]
=−ih̄k

x

r3
. (I.137)

The third and final commutator in Eq. (I.132) can be evaluated as follows:[
x

r
,Ĥ

]
=
[

x

r
,

p̂2

2m
− k

r

]
=
[

x

r
,

1

2m

(
p̂2

x + p̂2
y + p̂2

z

)]
−
[

x

r
,

k

r

]
= 1

2m

{[
x

r
, p̂2

x

]
+
[

x

r
, p̂2

y

]
+
[

x

r
, p̂2

z

]}
.

(I.138)



475
A
ppendix

I:C
om

m
utation

relations
The three commutators in Eq. (I.138) were derived in §I.6. From Eq. (I.124) and Eq. (I.125),

and the fact that
[

Â, B̂
]
=−

[
B̂, Â

]
, we obtain[

x

r
,Ĥ

]
= 1

2m

{
2ih̄

(
1

r
− x2

r3

)
p̂x − h̄2

(
3x

r3
− 3x3

r5

)
− 2ih̄

xy

r3
p̂y − h̄2

(
x

r3
− 3

xy2

r5

)
− 2ih̄

xz

r3
p̂z − h̄2

(
x

r3
− 3

xz2

r5

)}
.

(I.139)

This can be written as[
x

r
,Ĥ

]
= 1

2m

{
2ih̄

(
1

r
− x2

r3

)
p̂x − h̄2

[
5x

r3
− 3x

r5

(
x2 + y2 + z2)]

− 2ih̄
xy

r3
p̂y − 2ih̄

xz

r3
p̂z

}
,

(I.140)

and since r2 = x2 + y2 + z2, we obtain[
x

r
,Ĥ

]
= 1

2m

{
2ih̄

(
1

r
− x2

r3

)
p̂x − 2h̄2 x

r3
− 2ih̄

xy

r3
p̂y − 2ih̄

xz

r3
p̂z

}
= ih̄

m

{
1

r
p̂x − x2

r3
p̂x − xy

r3
p̂y − xz

r3
p̂z + ih̄

x

r3

}
.

(I.141)

Substitution of Eq. (I.136), Eq. (I.137), and Eq. (I.141) into Eq. (I.132) finally yields[
M̂x ,Ĥ

]
=− ih̄k

[
xy

r3
p̂y + xz

r3
p̂z + x2

r3
p̂x − 1

r
p̂x

]
− h̄2k

x

r3

− ih̄k

[
1

r
p̂x − x2

r3
p̂x − xy

r3
p̂y − xz

r3
p̂z + ih̄

x

r3

]
= 0.

(I.142)

The remaining commutation relations can be determined by cyclic permutation of x, y,

and z, and they result in the generalized commutation relations[
M̂i ,Ĥ

]
= 0, ∀i = 1→ 3. (I.143)

This validates our assertion of the commutativity of M̂ and Ĥ .

I.8 ANGULAR MOMENTUM COMMUTATION RELATIONS
Given the defining relation L̂ij = r̂i p̂j − r̂j p̂i , we can write[

L̂ij , L̂kl

]
= [(r̂i p̂j − r̂j p̂i

)
,
(
r̂k p̂l − r̂l p̂k

)]
. (I.144)

Expanding yields[
L̂ij , L̂kl

]
= [r̂i p̂j , r̂k p̂l

]− [r̂j p̂i , r̂k p̂l

]
− [r̂i p̂j , r̂l p̂k

]+ [r̂j p̂i, r̂l p̂k

]
. (I.145)

The four terms in Eq. (I.145) can be expanded further using the commutator identities[
Â, B̂Ĉ

]= [Â, B̂
]
Ĉ+ B̂

[
Â, Ĉ

]
and

[
ÂB̂, Ĉ

]= [Â, Ĉ
]
B̂+ Â

[
B̂, Ĉ

]
, as well as the commutation

relations
[
r̂i, r̂j

]= [p̂i , p̂j
]= 0 (see §I.1):[

r̂i p̂j , r̂k p̂l
]= [r̂i p̂j , r̂k

]
p̂l + r̂k

[
r̂i p̂j , p̂l

]
= [r̂i , r̂k

]
p̂j p̂l + r̂i

[
p̂j , r̂k

]
p̂l + r̂k

[
r̂i , p̂l

]
p̂j + r̂k r̂i

[
p̂j , p̂l

]
=−r̂i

[
r̂k , p̂j

]
p̂l + r̂k

[
r̂i , p̂l

]
p̂j .

(I.146)
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6 Given Heisenberg’s canonical commutation relations

[
r̂i , p̂j

]= ih̄δij , this becomes[
r̂i p̂j , r̂k p̂l

]=−ih̄δjk r̂i p̂l + ih̄δil r̂k p̂j . (I.147)

Substitution in Eq. (I.145) finally yields[
L̂ij , L̂kl

]
= ih̄

[
δjk
(
r̂l p̂i − r̂i p̂l

)+ δil
(
r̂k p̂j − r̂j p̂k

)
+ δik

(
r̂j p̂l − r̂l p̂j

)+ δjl
(
r̂i p̂k − r̂k p̂i

)]
.

(I.148)

Clearly, if i �= j �= k �= l, then [
L̂ij , L̂kl

]
= 0. (I.149)

If, instead, i = k, we have [
L̂ij , L̂il

]
= ih̄

(
r̂j p̂l − r̂l p̂j

)= ih̄L̂jl . (I.150)

Changing the dummy variable l into k, we obtain[
L̂ij , L̂ik

]
= ih̄L̂jk . (I.151)

Summarizing: [
L̂ij , L̂ik

]
= ih̄L̂jk ,

[
L̂ij , L̂kl

]
= 0 if i �= j �= k �= l. (I.152)



Appendix J
Identities of the
Laplace-Runge-Lenz vector

J.1 THE SCALAR PRODUCT L̂ · M̂
Here, we want to prove the quantum mechanical relation

L̂ · M̂= 0. (J.1)

To this aim, we can write, with the help of Eq. (9.93),

L̂ · M̂= L̂ ·
(

1

2

(
p̂× L̂− L̂× p̂

)
−mk

r̂

r

)
= 1

2
L̂ ·
(

p̂× L̂− L̂× p̂
)
−mkL̂ · r̂

r
.

(J.2)

The first term can be written as

L̂ ·
(

p̂× L̂− L̂× p̂
)
=

3∑
i=1

L̂i

((
p̂× L̂

)
i
−
(

L̂× p̂
)

i

)

=
3∑

i,j,k=1

εijk L̂i

(
p̂j L̂k − L̂j p̂k

)
,

(J.3)

where the tensor notation in Eq. (K.21) for the cross product of p̂ and L̂ has been used

twice. This can be further expanded as

L̂ ·
(

p̂× L̂− L̂× p̂
)
=
∑
ijk

εijk L̂i

(
p̂j
(

r̂× p̂
)

k −
(

r̂× p̂
)

j p̂k

)
=
∑
ijklm

L̂iεijk
(
εklmp̂j r̂l p̂m − εjlmr̂l p̂mp̂k

)
.

(J.4)

Eq. (J.4) contains two products of Levi-Civita symbols (εijkεklm and εijkεjlm), which can be

written in terms of Kronecker deltas with the help of the contracted epsilon identity from

Eq. (K.5):

εijkεklm = εkijεklm = δilδjm − δimδjl ; (J.5)

εijkεjlm = εjkiεjlm = δklδim − δkmδil . (J.6)

Substitution in Eq. (J.4) yields

L̂ ·
(

p̂× L̂− L̂× p̂
)
=
∑
ijlm

L̂i
(
δilδjm − δimδjl

)
p̂j r̂l p̂m

−
∑
iklm

L̂i (δklδim − δkmδil) r̂l p̂mp̂k ,
(J.7)

which can be written as

L̂ ·
(

p̂× L̂− L̂× p̂
)
=
∑

ij

L̂i
(
p̂j r̂i p̂j − p̂j r̂j p̂i

)−∑
ik

L̂i
(
r̂k p̂i p̂k − r̂i p̂k p̂k

)
. (J.8)
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8 After changing the dummy index k into j in the second term, we obtain

L̂ ·
(

p̂× L̂− L̂× p̂
)
=
∑

ij

L̂i
(
p̂j r̂i p̂j − p̂j r̂j p̂i − r̂j p̂i p̂j + r̂i p̂j p̂j

)
. (J.9)

Rewriting L̂i in tensorial notation finally yields

L̂ ·
(

p̂× L̂− L̂× p̂
)
=
∑
ijkl

εikl r̂k p̂l
(
p̂j r̂i p̂j − p̂j r̂j p̂i − r̂j p̂i p̂j + r̂i p̂j p̂j

)
. (J.10)

Let us now separately evaluate the four terms in the right-hand side of Eq. (J.10). Given the

canonical commutation relations for position and momentum
[
r̂i , p̂j

]= ih̄δij , as derived in

Eq. (I.8), the four terms can be written as

r̂k p̂l
(
p̂j r̂i

)
p̂j = r̂k

(
p̂l r̂i

)
p̂j p̂j − ih̄δij r̂k p̂l p̂j

= r̂k r̂i p̂l p̂
2
j − ih̄δil r̂k p̂2

j − ih̄δij r̂k p̂l p̂j ;
(J.11)

r̂k p̂l p̂j
(
r̂j p̂i

)= r̂k p̂l p̂j p̂i r̂j + ih̄δij r̂k p̂l p̂j

= r̂k p̂i p̂l p̂j r̂j + ih̄δij r̂k p̂l p̂j ;
(J.12)

r̂k p̂l
(
r̂j p̂i

)
p̂j = r̂k p̂l p̂i r̂j p̂j + ih̄δij r̂k p̂l p̂j

= r̂k p̂i p̂l p̂j r̂j + ih̄δij r̂k p̂l p̂j ;
(J.13)

r̂k
(
p̂l r̂i

)
p̂j p̂j = r̂k r̂i p̂l p̂

2
j − ih̄δil r̂k p̂2

j . (J.14)

Substitution in Eq. (J.10) then yields

L̂ ·
(

p̂× L̂− L̂× p̂
)
=
∑
ijkl

εikl

(
2r̂k r̂i p̂l p̂

2
j − 2r̂k p̂i p̂l p̂j r̂j

− 2ih̄δil r̂k p̂2
j − 3ih̄δij r̂k p̂l p̂j

)
.

(J.15)

The first term in Eq. (J.15) vanishes since
∑3

i,k=1 εikl r̂i r̂k = 0 for all l in view of the fact that[
r̂i , r̂k

]= 0. This can be seen most easily by explicit computation; for l = 3, for instance,

3∑
i,k=1

εik3 r̂i r̂k = r̂1 r̂2 − r̂2r̂1 = 0, (J.16)

and similarly for l = 1 and l = 2. The same applies to the second term of Eq. (J.15), where∑3
i,l=1 εikl p̂i p̂l = 0 for all k since

[
p̂i , p̂l

]= 0. The third term in Eq. (J.15) also vanishes since∑
ijkl εiklδil =∑ijk εiki = 0. We are thus left with the following expression:

L̂ ·
(

p̂× L̂− L̂× p̂
)
=−

∑
ijkl

3ih̄εiklδij r̂k p̂l p̂j

=−
∑
ikl

3ih̄εikl r̂k p̂l p̂i = 0,
(J.17)

since, once again,
∑3

i,l=1 εikl p̂i p̂l = 0 for all k. The second term in Eq. (J.2) can be written as

L̂ · r̂

r
=

3∑
i=1

L̂i
r̂i

r
=

3∑
i=1

(
r̂× p̂

)
i

r̂i

r
=

3∑
i,j,k=1

εijk r̂j p̂k
r̂i

r
, (J.18)



479
A
ppendix

J:Identities
ofthe

Laplace-R
unge-Lenz

vector
where we have used the tensor notation of Eq. (K.21) for the cross product of r̂ and p̂. From

the commutation relations
[
r̂j , p̂k

]= ih̄δjk , this can be rewritten as

L̂ · r̂

r
=

3∑
i,j,k=1

εijk p̂k r̂j
r̂i

r
+

3∑
i,j,k=1

ih̄εijkδjk
ri

r

= 1

r

3∑
k=1

p̂k

3∑
i,j=1

εijk r̂j r̂i + ih̄
3∑

i,j=1

εijj
ri

r
.

(J.19)

The first term in Eq. (J.19) vanishes since
∑3

i,j=1 εijk r̂j r̂i = 0 for all k in view of the fact that[
r̂i , r̂j

]= 0. The second term in Eq. (J.19) also vanishes since εijj = 0, and thus

L̂ · r̂

r
= 0. (J.20)

Substitution of Eq. (J.17) and Eq. (J.20) in Eq. (J.2) finally yields the desired result:

L̂ · M̂= 0. (J.21)

J.2 THE SCALAR PRODUCT M̂2

The second identity of the LRL vector that we want to prove reads

M̂2 = 2mĤ
(

L̂2 + h̄2
)
+m2k2. (J.22)

It is convenient, in this case, to use the alternative form of the LRL vector, as derived in

Eq. (I.64). We can thus write

M̂2 =
((

p̂× L̂− ih̄p̂
)
−mk

r̂

r

)2

=
(

p̂× L̂− ih̄p̂
)2 −mk

(
p̂× L̂− ih̄p̂

)
· r̂

r

−mk
r̂

r
·
(

p̂× L̂− ih̄p̂
)
+m2k2 r̂2

r2
.

(J.23)

The first quadratic term in Eq. (J.23) can be written as(
p̂× L̂− ih̄p̂

)2 =
(

p̂× L̂
)2 − ih̄

(
p̂× L̂

)
· p̂− ih̄p̂ ·

(
p̂× L̂

)
− h̄2p̂2. (J.24)

Let us evaluate each of the four terms individually. The first term yields(
p̂× L̂

)2 =
3∑

i=1

(
p̂× L̂

)
i

(
p̂× L̂

)
i

=
∑
ijklm

εijkεilmp̂j L̂k p̂l L̂m,

(J.25)

where we have used the tensorial notation of Eq. (K.21) for the cross product of p̂ and L̂.

The product of Levi-Civita symbols εijkεilm can now be written in terms of Kronecker deltas

with the help of the contracted epsilon identity from Eq. (K.5):(
p̂× L̂

)2 =
∑
jklm

(
δjlδkm − δjmδkl

)
p̂j L̂k p̂l L̂m

=
∑

jk

(
p̂j L̂k p̂j L̂k − p̂j L̂k p̂kL̂j

)
.

(J.26)

From the commutation relations
[
L̂k , p̂j

] = ih̄εkjl p̂l , as derived in Eq. (I.20), we obtain for

the first term ∑
jk

p̂j

(
L̂k p̂j

)
L̂k =

∑
jk

p̂2
j L̂2

k + ih̄
∑
jkl

εkjl p̂j p̂l L̂k = p̂2L̂2, (J.27)
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0 since

∑3
j,l=1 εkjl p̂j p̂l = 0 for all k. The second term in Eq. (J.26) can be expanded by writing

L̂k in tensor notation: ∑
jk

p̂j L̂k p̂kL̂j =
∑

jk

p̂j
(

r̂× p̂
)

k p̂kL̂j

=
∑
jklm

εklmp̂j r̂l p̂mp̂kL̂j = 0,
(J.28)

which is seen to vanish as a consequence of the fact that
∑3

k,m=1 εklmp̂mp̂k = 0 for all l, thus

yielding the overall result for Eq. (J.26):(
p̂× L̂

)2 = p̂2L̂2. (J.29)

Next, let us evaluate a part of the second term of Eq. (J.24):(
p̂× L̂

)
· p̂=

3∑
i=1

(
p̂× L̂

)
i
p̂i =

∑
ijk

εijk p̂j L̂k p̂i . (J.30)

Following
[

L̂k , p̂i

]
= ih̄εkil p̂l , this becomes(

p̂× L̂
)
· p̂=

∑
ijk

εijk p̂j p̂i L̂k + ih̄
∑
ijkl

εijkεkil p̂j p̂l . (J.31)

The first term vanishes since
∑3

i,j=1 εijk p̂j p̂i = 0 for all k. The product of Levi-Civita symbols

εijkεkil in the second term can be rewritten using the second contracted epsilon identity

from Eq. (K.6),

εijkεkil = εkijεkil = 2δjl , (J.32)

yielding (
p̂× L̂

)
· p̂= 2ih̄

∑
jl

δjl p̂j p̂l = 2ih̄
∑

j

p̂j p̂j = 2ih̄p̂2. (J.33)

The third term in Eq. (J.24) can be evaluated in much the same vein. That is,

p̂ ·
(

p̂× L̂
)
=

3∑
i=1

p̂i

(
p̂× L̂

)
i
=
∑
ijk

εijk p̂i p̂j L̂k = 0, (J.34)

which is seen to vanish in view of the fact that
∑3

i,j=1 εijk p̂i p̂j = 0 for all k. After collecting

all the partial results in Eq. (J.29), Eq. (J.33), and Eq. (J.34), we obtain for Eq. (J.24) the

following result:(
p̂× L̂− ih̄p̂

)2 =
(

p̂× L̂
)2 − ih̄

(
p̂× L̂

)
· p̂− ih̄p̂ ·

(
p̂× L̂

)
− h̄2p̂2

= p̂2L̂2 + 2h̄2p̂2 − h̄2p̂2

= p̂2
(

L̂2 + h̄2
)

.

(J.35)

The second term to be evaluated in Eq. (J.23) yields

(
p̂× L̂

)
· r̂

r
=

3∑
i=1

(
p̂× L̂

)
i

r̂i

r
=
∑
ijk

εijk p̂j L̂k
r̂i

r
. (J.36)

From the commutation relations
[

L̂k , r̂i/r
]
= ih̄εkil r̂l/r, as derived in Eq. (I.57), we obtain(

p̂× L̂
)
· r̂

r
=
∑
ijk

εijk p̂j
r̂i

r
L̂k + ih̄

∑
ijkl

εijkεkil p̂j
r̂l

r
. (J.37)
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The first term can be evaluated further with the help of the commutation relations[
p̂j , r̂i/r

]=−ih̄
(
δij1/r − r̂i r̂j/r3

)
(see Eq. (I.41)):∑

ijk

εijk p̂j
r̂i

r
L̂k =

∑
ijk

εijk
r̂i

r
p̂j L̂k − ih̄

∑
ijk

εijk

(
δij

1

r
− r̂i r̂j

r3

)
L̂k . (J.38)

The second term in Eq. (J.38) vanishes completely since
∑

ijk εijkδij =∑
ik εiik = 0 and∑3

i,j=1 εijk r̂i r̂j = 0 for all k. The first term can be rewritten as∑
ijk

εijk
r̂i

r
p̂j L̂k = 1

r

∑
k

(
r̂× p̂

)
k L̂k = 1

r

∑
k

L̂kL̂k = 1

r
L̂2. (J.39)

Let us now compute the second term of Eq. (J.37). The product of Levi-Civita symbols

εijkεkil can be reduced to 2δjl by Eq. (J.32), yielding∑
ijkl

εijkεkil p̂j
r̂l

r
=
∑

jl

2δjl p̂j
r̂l

r
=
∑

j

2p̂j
r̂j

r
= 2p̂ · r̂

r
. (J.40)

Substitution of Eq. (J.38), Eq. (J.39), and Eq. (J.40) into Eq. (J.37) finally yields(
p̂× L̂

)
· r̂

r
= 1

r
L̂2 + 2ih̄p̂ · r̂

r
. (J.41)

The third and last term to be evaluated in Eq. (J.23) contains the product

r̂

r
·
(

p̂× L̂
)
=

3∑
i=1

r̂i

r

(
p̂× L̂

)
i
=
∑
ijk

εijk
r̂i

r
p̂j L̂k = 1

r
L̂2, (J.42)

by Eq. (J.39). Combining the results obtained in Eq. (J.41) and Eq. (J.42) enables us to

rewrite the second and third terms of Eq. (J.23) as(
p̂× L̂− ih̄p̂

)
· r̂

r
+ r̂

r
·
(

p̂× L̂− ih̄p̂
)
= 1

r
L̂2 + 2ih̄p̂ · r̂

r
− ih̄p̂ · r̂

r

+ 1

r
L̂2 − ih̄

r̂

r
· p̂

= 2

r
L̂2 + ih̄

(
p̂ · r̂

r
− r̂

r
· p̂

)
.

(J.43)

The second term can be written as

p̂ · r̂

r
− r̂

r
· p̂=

3∑
i=1

(
p̂i

r̂i

r
− r̂i

r
p̂i

)
=

3∑
i=1

[
p̂i ,

r̂i

r

]
, (J.44)

and with the help of
[

p̂i ,
r̂i
r

]
=−ih̄

(
δii

1
r − r̂i r̂i

r3

)
, this becomes

p̂ · r̂

r
− r̂

r
· p̂=−ih̄

3∑
i=1

(
1

r
− r̂i r̂i

r3

)
=−ih̄

(
3

r
− r̂2

r3

)
=−2ih̄

1

r
. (J.45)

We then obtain for Eq. (J.43):(
p̂× L̂− ih̄p̂

)
· r̂

r
+ r̂

r
·
(

p̂× L̂− ih̄p̂
)
= 2

r

(
L̂2 + h̄2

)
. (J.46)

With the results obtained in Eq. (J.35) and Eq. (J.46), Eq. (J.23) finally yields the desired

result:

M̂2 = p̂2
(

L̂2 + h̄2
)
− 2m

k

r

(
L̂2 + h̄2

)
+m2k2

= 2m

(
p̂2

2m
− k

r

)(
L̂2 + h̄2

)
+m2k2

M̂2 = 2mĤ
(

L̂2 + h̄2
)
+m2k2.

(J.47)



Appendix K
Indicial notation

The aim of this appendix is to provide a short introduction to the indicial notation in vector

algebra, also commonly known as tensor notation or subscript notation. Central within this

notational system are the two key symbols δij and εijk , which are defined first.

K.1 THE KRONECKER DELTA δij

The Kronecker delta, denoted δij , is defined as follows:

δij =
{
+1 if i = j

0 if i �= j
, (K.1)

where i and j are dummy indices that can take on any value from 1 to 3 when working in

three-dimensional space R3. Note also that

δij = δji . (K.2)

The value of δii can now be determined. Recall that, according to Einstein’s summation

convention, repeated indices imply summation over the range of possible values of these

indices. In our case, we need to sum over all values of i from 1 to 3—that is,

δii = δ11 + δ22 + δ33 = 1+ 1+ 1= 3. (K.3)

K.2 THE LEVI-CIVITA TENSOR εijk

Another useful indicial notation goes by the name Levi-Civita symbol, in honor of the

Italian mathematician and physicist Tullio Levi-Civita (1873–1941). The elements of this

antisymmetric three-dimensional tensor are defined by the permutation symbol εijk , where

εijk =

⎧⎪⎨⎪⎩
+1 if (i, j, k)= (1,2,3), (2,3,1) or (3,1,2)

−1 if (i, j, k)= (1,3,2), (2,1,3) or (3,2,1)

0 if i = j, j = k or k = i

. (K.4)

K.2.1 Contracted epsilon identities
In this section, we will derive three useful identities that relate the Kronecker delta with the

Levi-Civita symbol. These are known as the contracted epsilon identities:

εijkεimn = δjmδkn − δjnδkm, (K.5)

εijkεijn = 2δkn, (K.6)

εijkεijk = 6, (K.7)
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where i, j, k, m, and n take any value from 1 to 3. As another reminder, Einstein summation

over repeated indices is implied. In the first identity, for instance, the index i is repeated

and is thought of as being summed over–that is,

3∑
i=1

εijkεimn = δjmδkn − δjnδkm. (K.8)

To prove these identities, we start by expressing the general product of two Levi-Civita

symbols εijk and εlmn as a function of Kronecker deltas:

εijkεlmn = δilδjmδkn + δimδjnδkl + δinδjlδkm

− δimδjlδkn − δinδjmδkl − δilδjnδkm,
(K.9)

the validity of which can be verified by explicit computation. Rewriting Eq. (K.9) as

δil
(
δjmδkn − δjnδkm

)+ δim
(
δjnδkl − δjlδkn

)+ δin
(
δjlδkm − δjmδkl

)
, (K.10)

yields the determinental expression

εijkεlmn =

∣∣∣∣∣∣∣
δil δim δin

δjl δjm δjn

δkl δkm δkn

∣∣∣∣∣∣∣. (K.11)

Now, for the special case where i = l, Eq. (K.9) reads

εijkεimn = δiiδjmδkn + δimδjnδki + δinδjiδkm

− δimδjiδkn − δinδjmδki − δiiδjnδkm,
(K.12)

which can be written as

εijkεimn = δii
(
δjmδkn − δjnδkm

)+ δimδjnδki + δinδjiδkm

− δimδjiδkn − δinδjmδki

= 3
(
δjmδkn − δjnδkm

)+ δkmδjn + δjnδkm − δjmδkn − δknδjm

= δjmδkn − δjnδkm,

(K.13)

thus proving the first identity in Eq. (K.5). Notice that the first delta in the right-hand side

of Eq. (K.13) contains the inner indices from both epsilons, whereas the second delta uses

both outer indices. The third delta, on the other hand, contains the inner index from the first

epsilon and the outer index from the second epsilon—and conversely for the fourth delta.

The order of the indices on the right-hand side of Eq. (K.13) can thus be remembered by:

inner-inner outer-outer − inner-outer outer-inner. (K.14)

Of course, the order of the deltas within each term can be reversed, as can the order of the

indices within each delta.

The final two identities are now easily obtained from the first one. Setting j = m in

Eq. (K.5) yields the second identity in Eq. (K.6):

εijkεijn = δjjδkn − δjnδkj

= 3δkn − δkn

= 2δkn.

(K.15)

The third identity in Eq. (K.7) is finally obtained by setting k = n in Eq. (K.6):

εijkεijk = 2δkk = 2 · 3= 6. (K.16)
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4 K.2.2 Indicial notation for cross products

The cross product a × b of two vectors a = {a1, a2, a3} and b = {b1,b2, b3} can also be

represented with the help of the Levi-Civita symbol. Given the determinental form of the

cross product (see Appendix B)

a×b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣, (K.17)

the components of a×b can be written as

(a×b)1 = a2b3 − a3b2; (K.18)

(a×b)2 = a3b1 − a1b3; (K.19)

(a×b)3 = a1b2 − a2b1. (K.20)

Using the Levi-Civita symbol, this can be expressed more simply as

(a×b)i =
3∑

j=1

3∑
k=1

εijkajbk . (K.21)

Finally, using Einstein’s summation convention, this becomes

(a×b)i = εijkajbk . (K.22)



Appendix L
Ŝ-transform of the so(4,2)
algebra

The derivations in this appendix are no longer based on the functional form of the

operators, but on their actions in a basis set of |nlm〉 orbitals. For convenience, the actions

of the so(4,2) generators on a ket |nlm〉 are grouped here together:

L̂3 |nlm〉 =m |nlm〉,
L̂± |nlm〉 =ωl±m |nl (m± 1)〉,
Â3 |nlm〉 = αl

mcn
l |n (l− 1)m〉

+αl+1
m cn

l+1 |n(l+ 1)m〉,
Â± |nlm〉 = ±β l−1±m cn

l |n(l− 1)(m± 1)〉
∓ γ l+1±m cn

l+1 |n (l + 1)(m± 1)〉,
B̂3 |nlm〉 = αl

mun
l |(n− 1)(l− 1)m〉

+αl
mvn

l |(n+ 1)(l− 1)m〉
+αl+1

m vn−1
l+1 |(n− 1)(l+ 1)m〉

+αl+1
m un+1

l+1 |(n+ 1)(l+ 1)m〉,
B̂± |nlm〉 = ±β l−1±m un

l |(n− 1)(l− 1)(m± 1)〉
±β l−1±m vn

l |(n+ 1)(l− 1)(m± 1)〉
∓ γ l+1±m vn−1

l+1 |(n− 1)(l+ 1)(m± 1)〉
∓ γ l+1±m un+1

l+1 |(n+ 1)(l+ 1)(m± 1)〉,
�̂3 |nlm〉 = −iαl

mun
l |(n− 1)(l− 1)m〉

+ iαl
mvn

l |(n+ 1)(l− 1)m〉
− iαl+1

m vn−1
l+1 |(n− 1)(l+ 1)m〉

+ iαl+1
m un+1

l+1 |(n+ 1)(l+ 1)m〉 ,

�̂± |nlm〉 = ∓iβ l−1±m un
l |(n− 1)(l− 1)(m± 1)〉

± iβ l−1±m vn
l |(n+ 1)(l− 1)(m± 1)〉

± iγ l+1±m vn−1
l+1 |(n− 1)(l+ 1)(m± 1)〉

∓ iγ l+1±m un+1
l+1 |(n+ 1)(l+ 1)(m± 1)〉.

Q̂3 |nlm〉 = n |nlm〉,
Q̂± |nlm〉 =ω±n

l |(n± 1) lm〉,

(L.1)
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6 where αl

m =√(l −m)(l+m); (L.2)

β l
m =

√
(l −m+ 1)(l−m); (L.3)

γ l
m =√(l +m+ 1)(l+m); (L.4)

ωl
m =√(l −m)(l+m+ 1); (L.5)

cn
l =

√
(n− l)(n+ l)

(2l− 1)(2l+ 1)
; (L.6)

un
l =

1

2

√
(n+ l− 1)(n+ l)

(2l− 1)(2l+ 1)
; (L.7)

vn
l =

1

2

√
(n− l)(n− l+ 1)

(2l− 1)(2l+ 1)
. (L.8)

The Ŝ operator plays the role of a transformation operator, under which the generators of

so(4,2) transform into new operators. Since Ŝ commutes with L̂i and Q̂i (i = 1 → 3), the

operators L̂i and Q̂i remain the same. The other operators of so(4,2) are transformed into

primed equivalents, which are defined as follows:[
Ŝ, Âi

]
= Â′i , (L.9)[

Ŝ, B̂i

]
= B̂′i , (L.10)[

Ŝ, �̂i

]
= �̂′i , (L.11)

with i = 3,+,−. Their actions on a ket |nlm〉 are then given by

Â′3 |nlm〉 = −αl
mcn

l |n(l− 1)m〉
+αl+1

m cn
l+1 |n(l+ 1)m〉;

Â′± |nlm〉 = ∓β l−1±m cn
l |n (l− 1)(m± 1)〉

∓ γ l+1±m cn
l+1 |n (l+ 1)(m± 1)〉;

B̂′3 |nlm〉 = −αl
mun

l |(n− 1)(l− 1)m〉
−αl

mvn
l |(n+ 1)(l− 1)m〉

+αl+1
m vn−1

l+1 |(n− 1)(l+ 1)m〉
+αl+1

m un+1
l+1 |(n+ 1)(l+ 1)m〉;

B̂′± |nlm〉 = ∓β l−1±m un
l |(n− 1)(l− 1)(m± 1)〉

∓β l−1±m vn
l |(n+ 1)(l− 1)(m± 1)〉

∓ γ l+1±m vn−1
l+1 |(n− 1)(l+ 1)(m± 1)〉

∓ γ l+1±m un+1
l+1 |(n+ 1)(l+ 1)(m± 1)〉;

�̂′3 |nlm〉 = +iαl
mun

l |(n− 1)(l− 1)m〉
− iαl

mvn
l |(n+ 1)(l− 1)m〉

− iαl+1
m vn−1

l+1 |(n− 1)(l+ 1)m〉
+ iαl+1

m un+1
l+1 |(n+ 1)(l+ 1)m〉;

(L.12)
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�̂′± |nlm〉 = ±iβ l−1±m un

l |(n− 1)(l− 1)(m± 1)〉
∓ iβ l−1±m vn

l |(n+ 1)(l− 1)(m± 1)〉
± iγ l+1±m vn−1

l+1 |(n− 1)(l+ 1)(m± 1)〉
∓ iγ l+1±m un+1

l+1 |(n+ 1)(l+ 1)(m± 1)〉.
These actions are identical to the original ones effected under Âi , B̂i , and �̂i , except

for sign changes whenever l is lowered to l − 1. This has an important consequence,

though. Consider a matrix element in one of these operators—say, B̂′3—between states

with different l-values. In the matrix elements where the l-value of the bra is lower than the

l-value of the ket, the primed operator lowers the angular momentum of the ket function

on which it is acting. Hence, it introduces an extra minus sign compared with the action

of its unprimed analogue, B̂3. However, for the conjugate element, the change of angular

momentum is in the opposite sense, from l − 1 back to l. Hence, the angular momentum

is raised and there is no extra minus sign. From Eq. (L.12), this is, indeed, verified, for

example, in the case of the B̂′3 operator:

〈(n− 1)(l− 1)(m) |B̂′3|nlm〉 = −αl
mun

l

〈B̂′3(n− 1)(l− 1)(m) |nlm〉 = αl
mun

l . (L.13)

Since the matrix elements are real and have opposite sign, the result implies that the B̂′
operators are anti-Hermitian, and similarly for the Â′ operators. For the �̂′ operators, the

equivalent result reads

〈(n− 1)(l− 1)(m) |�̂′3|nlm〉 = iαl
mun

l

〈nlm |�̂′3|(n− 1)(l− 1)(m)〉 = iαl
mun

l . (L.14)

In this case, the matrix elements are equal, with the same sign. However, they are both

entirely imaginary, thus indicating that this operator is anti-Hermitian too.

To ensure that the transformed operators obey the proper so(4,2) commutation

relations, we must multiply them by the imaginary unit, which renders Hermiticity. Let

us denote these Hermitian transforms as follows:

Âk = iÂ′k
B̂k = iB̂′k
Ĉk = i�̂′k . (L.15)

The newly obtained operators Âk , B̂k , and Ĉk , along with the original L̂i and Q̂i , form

a reflected so′(4,2) Lie algebra. It can be verified that the commutation relations in the

transformed algebra mimic precisely the ones in the original algebra. Let us examine this

by working out a few commutators. For the commutator
[Â±,Â3

]
, the consecutive actions

of Â3 and Â± are

Â±Â3 |nlm〉 = λ±1 |(n)(l− 2)(m± 1)〉
+λ±2 |nl(m± 1)〉
+λ±3 |(n)(l+ 2)(m± 1)〉;

(L.16)

Â3Â± |nlm〉 = λ±4 |(n)(l− 2)(m± 1)〉
+λ±5 |nl(m± 1)〉
+λ±6 |(n)(l+ 2)(m± 1)〉.

(L.17)
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8 The coefficients in this equation can be identified with the help of Eq. (L.12):

λ±1 −λ±4 =∓cn
l cn

l−1

(
αl

mβ
l−2±m −αl−1

m±1β
l−1±m

)
= 0

λ±3 −λ±6 =±cn
l+1cn

l+2

(
αl+1

m γ l+2±m −αl+2
m±1γ

l+1±m

)
= 0

λ±2 −λ±5 =∓(cn
l

)2
(
αl

mγ
l±m +αl

m±1β
l−1±m

)
± (cn

l+1

)2
(
αl+1

m β l±m +αl+1
m±1γ

l+1±m

)
=∓ωl±m

(
n2 − l2

2l+ 1
− n2 − (l+ 1)2

2l+ 1

)
=∓ωl±m. (L.18)

Hence, the commutator is expressed as

[
Â±,Â3

]
=∓L̂±. (L.19)

This result is identical to the commutation relations between the components of the LRL

vector: [
Â±, Â3

]
=∓L̂±. (L.20)

As a final example, let us compute the commutator between Ĉ+ and Ĉ3. These operators

can only change the sum of n + l by an even number, and their product gives rise to nine

different combinations:

(
n

l

)
→

(
n± 2

l± 2

)
,

(
n± 2

l∓ 2

)
,

(
n± 2

l

)
,

(
n

l± 2

)
,

(
n

l

)
. (L.21)

A lengthy calculation shows that all these contributions vanish, except for the diagonal

element. The separate contributions involve summations over several paths. The simulta-

neous change of n and l by 2 units can be done only in one way, the raising or lowering of

either n or l by 2 units can be achieved by two paths, and, finally, the diagonal element is

the summation over four coupling paths. The four elements with single coupling paths are

as follows:

〈 n+ 2

l+ 2

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
= un+1

l+1 un+2
l+2

(
αl+1

m γ l+2
m −αl+2

m+1γ
l+1
m

)
= 0;

〈 n+ 2

l− 2

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
= vn

l vn+1
l−1

(
αl

mβ
l−2
m −αl−1

m+1β
l−1
m

)
= 0;

〈 n− 2

l+ 2

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
=−vn−1

l+1 vn−2
l+2

(
αl+1

m γ l+2
m −αl+2

m+1γ
l+1
m

)
= 0;

〈 n− 2

l− 2

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
= un

l un−1
l−1

(
αl

mβ
l−2
m −αl−1

m+1β
l−1
m

)
= 0. (L.22)
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For the matrix elements that involve two alternative pathways, we have〈 n+ 2

l

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
= un+2

l vn
l

(
αl

mγ
l
m +αl

m+1β
l−1
m

)

−un+1
l+1 vn+1

l+1

(
αl+1

m β l
m +αl+1

m+1γ
l+1
m

)
= 0;

〈 n− 2

l

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
=−un−1

l+1 vn−1
l+1

(
αl+1

m β l
m +αl+1

m+1γ
l+1
m

)

+un
l vn−2

l

(
αl

mγ
l
m +αl

m+1β
l−1
m

)
= 0;

〈 n

l+ 2

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
= un+1

l+1 vn
l+2

(
αl+1

m γ l+2
m −αl+2

m+1γ
l+1
m

)

+un
l+2vn−1

l+1

(
αl+1

m γ l+2
m −αl+2

m+1γ
l+1
m

)
= 0;

〈 n

l− 2

m+ 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉
=−un+1

l−1 vn
l

(
αl

mβ
l−2
m −αl−1

m+1β
l−1
m

)

−un
l vn−1

l−1

(
αl

mβ
l−2
m −αl−1

m+1β
l−1
m

)
= 0.

(L.23)

The first of these zeros is a result of the following interesting sum rule:

un+2
l vn

l (2l− 1)= un+1
l+1 vn+1

l+1 (2l+ 3) . (L.24)

Finally, the diagonal element involves four coupling pathways, covering all combinations of

changing both n and l by ±1. We have〈 n

l

M + 1

∣∣∣∣∣∣∣
[
Ĉ+, Ĉ3

]∣∣∣∣∣∣∣
n

l

m

〉

=
(

un+1
l+1

)2(
αl+1

m β l
m +αl+1

m+1γ
l+1
m

)
− (vn

l

)2
(
αl

mγ
l
m +αl

m+1β
l−1
m

)
+
(

vn−1
l+1

)2 (
αl+1

m β l
m +αl+1

m+1γ
l+1
m

)
− (un

l

)2
(
αl

mγ
l
m +αl

m+1β
l−1
m

)
=ωl

m.

(L.25)

Hence, the commutator reduces to [
Ĉ+, Ĉ3

]
= L̂+. (L.26)

This result is a perfect match of the commutator between �̂+ and �̂3.
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applicability, 343–346

definition, 334

interpretation

quantum mechanical, 346–350

Madelung trajectory, 396, 399

magic number, 155

many-electron system, 328

Mars, 227

mass formula, 360, 365

materia prima, see prime matter

matrix

addition, 425

column, 423

complex, 423, 430–431

determinant, 428–430

diagonal, 424

Hermitian, 430

identity, 424

null, 424

orthogonal, 431

product, 425–426
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6 matrix (Cont.)

real, 423

row, 423

scalar multiplication, 425

skew-symmetric, 424

square, 423

subtraction, 425

symmetric, 423

trace, 428

transposition, 424

unit, 424

unitary, 431–432

Mendeleev, 142, 182–184, 323, 327

Mendeleev city, 384

Mendeleev line, 324

Mercury, 222, 225, 227

meson, 137, 190–191

pseudo-scalar, 137

pseudoscalar, 177–179, 191

vector, 138, 179–180, 191

metric, 252, 281, 300, 301

minor, 429

model Hamiltonian, 370

molecule

aromatic, 71–76

globular, 104

momentum space, 248, 249, 256–257

multiplet, 179

muon, 137

Muster Mark, 185

Ne’eman, 177

neutrino, 136

Newton’s law of gravity, 214

Nilson, 183

Nishijima, 141

noble gas rule, 104

Noether, 108–110

Noether’s theorem, 221, 257

noninvariance group

definition, 278–279

history, 275–277

nonlinear algebra, see Lie algebra,

nonlinear

Novaro, 367–370

nuclearity, 155

observable

invariance, 113

octonions, 415

Odabaşi, 367

Okubo, 182

operator

adjoint, 441

annihilation, 149–150, 185

boost, 281

counting, 401

creation, 149–150, 185

Hermitian, 120, 441–442

ladder, 94, 125, 150

lowering, 149

Madelung, 403–404

raising, 149

Regge, 403–404

Unitary, 442–443

orbital approximation, 328

orbital eccentricity, 224, 226, 251

orbital penetration effect, 332

orbital sequence, see filling rule

ordering formula, 360

Ostrovsky, 372–380

outer product, 420

parabola, 225

particle

decay, 137–139

delta, 139

eta, 180, 183

lambda, 139, 141

omega minus, 183–184

sigma, 139

xi, 139

particle physics, 275–276, 353, 357, 362

parton, 185

Pauli, 136, 247

Pauli exclusion principle, see exclusion

principle

pawn, see atomic chess

penetration effect, see orbital penetration

effect

pentaphyrin, 74

periapsis, 215

pericenter, 215

perihelion, 215

period, 145

doubling, 335, 340–380, 396

length, 327, 335, 340, 353, 369, 370

periodic law, 325

periodic table

double shell structure, 341, 379
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format

eight-period, 336

helicoid, 336

left-step, 336–340, 353, 369, 396

periodicity

chemical, 324–327

quasi-periodicity, 327

secondary, 340

phase, 314, 316

phase factor, 163

phase space, 356

phasor, 144

phenomenological approach, see

elementary particle approach

philosophers’ stone, 356, 359

philosophy

of approximations, 330

pion, 136, 137, 139, 177, 179, 181

planets, 225, 227

Plato, 9

Platonic solid, 9, 227, 310

Poisson, 5

porphyrin, 72, 74

positron, 136

potential

central, 213, 218, 222

Coulomb, 212, 215, 330, 368, 382

perturbed, 331, 413

effective one-electron, 212, 329, 330, 334

fish-eye, 372–380

harmonic oscillator, 145, 219

Powell, 136

precession, see Kepler orbit

primary matter, 354

prime matter, 355

proto hyle, see prime matter

pyramid

square, 312

triangular, 312, 313

pyrrole, 73

quantum algebra, 411

quantum chromodynamics, 185

quantum deformation, 411

quantum number

Madelung, 340, 342, 367, 396

magnetic, 210, 313–315, 358

orbital, 209, 316, 358, 401

principal, 209, 245, 292, 315–316, 358,

367

radial, 209, 292

spin, 210, 342, 354, 358, 379

topical, 379

vibration, 152

quark, 184–199

beauty, 185, 198

bottom, 185, 198

charm, 185, 198

confinement, 195

down, 185–189

strange, 185–189

top, 185, 198

truth, 185, 198

up, 185–189

queen, see atomic chess

Rabi, 138

radial function, 289, 301

radial momentum operator, 289

radial Schrödinger equation, 288–289, 301

reduced mass, 217

Regge operator, 403–404, 408

Regge trajectory, 397–399

Riemannian circle, 253

Rodrigues, 79

rook, see atomic chess

Root diagram

so(2,1), 283

root diagram

so(2,2), 309

so(3), 129

so(4), 244

so(4,2), 311

su(3), 173

so(4), 242–243

so(4,2), 310–311, 359

rosette, 219

Rumer, 362–366

Runge, 229

S operator, 401–402

scaling transformation, 290, 302, 312

scandium, 183

screening

constant, 332

effect, 212, 328, 331–332, 348, 413

function, 329

self-consistent field approximation, 329

semi-latus rectum, 224

semi-major axis, 216, 225

semi-minor axis, 216, 225
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8 shell, 71

harmonic, 155–156

shielding

constant, see screening constant

effects, see screening effects

single-particle approach, see orbital

approximation

Spaceland, 258

special relativity, 237

spectrum generating algebra, 153

spectrum-generating group, see

noninvariance group

spherical harmonic, 289, 301, 401

spin doubling, 359, 365, 378

spring constant, 143

stereographic projection, 248,

251–257

Stiefel, 260

Stoner formula, 334

strangeness, 141, 177, 184

strong force, 141, 178, 197

structure constant, 118

structure function, 409, 411

superatom, 155

supermultiplet, 178, 179, 275, 355, 358,

396, 398

supersymmetry, 248, 354, 401

symmetric top, 367, 370

symmetry

continuous, 13

discrete, 13

flavour, 177

hidden, 212, 221

mirror, 110

symmetry breaking, 24, 181, 356, 359, 370

SO(4) ⊃ SO(3), 237, 243, 246, 247

telescope slew, 264

tetractys, 180

theorem

Bertrand, 219

Ehrenfest, 123

Noether, 221, 257

Timaeus, 9

tower, see atomic chess

truncated cube, see cuboctahedron

universal enveloping algebra, 278, 360

vacuum state, 151–152, 187

Vitruvian Man, 7, 10

weak force, 141, 184

weight diagram

so(4), 246

so(4,2), 312, 313

so(4), 241–242

so(4,2), 311–313

Weinberg, 8

Weyl, 9–11

Weyl generator

so(2,1), 282

so(2,2), 308

so(4), 239–240

so(4,2), 307–310

su(3), 170–173

Wheeler, 374

Winkler, 183

Wolf, 367–370

Yukawa, 137

zero-point energy, 151

Zweig, 185
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