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Supervisor’s Foreword

It is a pleasure to write this foreword for the thesis of Balázs Vass. He began his
Ph.D. in September 2016, in the Department of Telecommunications and Media
Informatics (TMIT) at Budapest University of Technology and Economics (BME),
Hungary, with me as his supervisor, and was awarded his Ph.D. in February 2022
with the highest honors.

Balázs was one of my best students, whom I have known since his M.Sc. studies
in my capacity as a professor. He has an outstanding background in computer
science (especially in combinatorics and computational geometry), combined with
a good ability to understand engineering problems. Balázs is an active, result-driven
researcher, who has a good sense of judgment and ability to think critically, and
I am incredibly proud of the progress he made throughout his years of Ph.D. We
worked very intensively on survivable network designmethods to identify the vulner-
ability against natural disasters. He demonstrated his great ability in conducting high-
quality research in teamwork. The results have been published in top-tier journals and
conferences in the field, such as IEEE Journal on Selected Areas in Communications
(JSAC), IEEE-ACM Transactions on Networking (ToN), and IEEE INFOCOM.

Balázs’s thesis begins with presenting a solid contribution according to which
the locally most vulnerable regions of telecommunications are provably “few”. He
then presents a polynomial algorithm for enumerating these regions. In practice, this
algorithm has an optimal near-linear runtime complexity. To further this work, in the
second contribution chapter, he deals with the former problem in case when the exact
geometric embedding of the network is not known (that is typical when the topology
is rented). Inspired by former combinatorial geometric results, he proves that, even
in these circumstances, the most vulnerable regions are few, and can be determined
in low polynomial time.

Balázs finally focuses on the probabilistic extension of the former problem, where
each possible disaster has a related probability of striking. He is the first to propose
a failure model that explicitly takes into account the correlation among failures
of nearby network elements. According to the simulations, with this model, the
seismic threat on a telecom network can be easily precomputed and stored in small,
easy-to-query data structures.
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His work serves as theoretical background, e.g., for the disaster-disjoint routing
problems, or determining precisely the availability of internet services.

In summary, it has been a pleasure to work with Balázs. I thank him for being an
exceptional student and congratulate him on his excellent thesis.

Budapest, Hungary
June 2021

Dr. János Tapolcai
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Chapter 1
Introduction

The Internet has become a topmost critical infrastructure. Due to the importance of
telecommunication services (as a base for stock market, telesurgery, etc.), improving
the preparedness of networks to regional failures is becoming a key issue [1–14].
The majority of severe network outages happen because of a disaster (such as an
earthquake, hurricane, tsunami, tornado, etc.) taking down a lot of (or all) equipment
in a given geographical area. Such failures are called regional failures. Many studies
have touched the problem of how to prepare networks to survive regional failures,
where the first solutions have assumed that fibers in the same duct or within 50 km
of every network node fail simultaneously (namely, in a single regional failure) [15,
16]. These solutions were further improved by examining the historical data of the
different type of disasters (e.g., seismic hazardmaps for earthquakes) and identifying
the hotspots of the disasters [2, 5, 6, 8, 9, 11]. The weak point of these approaches
is that, during network equipment deployment, many of the risks are considered and
compensated (e.g., an earthquake-proof infrastructure in areas with larger seismic
intensity), implying that the historical data does not represent the current deploy-
ments, and therefore, not the current risks. Thus, it may be more realistic to assume
that any physically close-by equipment has a higher chance to fail simultaneously.
More recent studies are purely devoted to this particular problem and adapt computa-
tional geometric based approaches to capture all of the regional failures and represent
them in a compact way [10, 17–22], where the major challenge is that regional fail-
ures can have arbitrary locations, shapes, sizes, effects, etc. Unfortunately, regional
failures are not self-discoverable in practice [23]; this, together with the high number
of severe network outages witnessed in the last decades [24–30]1 present clear evi-
dence that selecting the proper list of regional failures is still a challenging problem

1 A recent example is a few days long telecom outage during Cyclone Amphan in West Bengal in
May of 2020 as a result of around 100 fiber cuts due to the falling of trees by the wind speeding up
to 190km/h.
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2 1 Introduction

to solve [2, 3, 5–11]. To fill this gap in reliable network design, my Ph.D. research
is devoted to enhancing the state of the art and suggests unified definitions, notions,
and terminology.

The output of the approaches discussed in this Thesis can serve as the input of the
network design and management tools. Currently, network recovery mechanisms are
implemented to protect a small set of pre-defined failure scenarios. Each recovery
plan corresponds to the failure of some equipment. Informally speaking, when a
link (or link set) fails, the network has a ready-to-use plan on how to recover itself.
Technically, a set of so-called Shared Risk Link Groups (SRLGs)2 are defined by the
network operators, where each SRLG is a set of links whose joint failure the recovery
mechanism should be prepared for. The first part of this Thesis purely focuses on how
to define and enumerate SRLGs that cover all types of disasters. In the second part of
my Thesis, I address the question of defining a realistic and applicable Probabilistic
SRLG (PSRLG) failure model.

It turns out that, surprisingly, in practice, only a small number of SRLGs or
PSRLGs are needed to serve as inputs for the higher-layer network management
tools. Informally speaking, methods offering lists of SRLGs and PSRLGs translate
the composed geometric problem of protecting telecommunication networks against
regional failures to small-sized purely combinatorial and probabilistic problems,
respectively. These findings open up the possibility of leveraging regional (P)SRLG
lists for enhancing network preparedness against disasters.

1.1 Example Use-Cases of SRLG and PSRLG Lists

Two basic use-cases of SRLG and PSRLG lists are the resilient routing [32, 33], and
determining service availabilities depicted in Figs. 1.1 and 1.2, respectively.

In Fig. 1.1a, we can see a pair of imagined primary and backup paths stretching
between Central Europe and California. By demanding a distance of several hundred
km between the two paths (except their endpoints), we ensure they have a negligible
probability of failing together. Figure 1.1b depicts the state of the routers during
Hurricane Sandy that was considered a severe disaster. In Fig. 1.1c, a maximal
number (here, 7) of s-t paths are shown, such that there are no two paths that are
hit at the same time by any position (outside of the yellow regions) of the red disk
depicted in the bottom right corner. Here, in the input, instead of storing the possible
disasters and the geometric embedding of the network, one can simply use a list of
SRLGs indicating the link sets that can be hit by the same disaster: if path p1 goes
through SRLG S, then path p2 is forbidden to do so.

The example depicted in Fig. 1.2 underlines difficulty of estimating service avail-
abilities. There, userU reaches her data either in cloudC1 or in cloudC2. At the next
disaster, the connections to C1 and C2 may fail in regions V1 and V2, respectively,
with an equal chance of P(V1) = P(V2) = 0.001. If V1 and V2 are far from each

2 An SRLG is a set of links that are considered to have a significant chance of failing together. First
introduced in [31].



1.2 Problem Statement 3

(a) (b)

(c)

Fig. 1.1 a To avoid most disasters, ensuring several hundred km distance between the primary and
the backup paths is enough. b The status of the routers during Hurricane Sandy, 2012. Most of
the routers in NYC are not functioning, Boston also has problems. c For disaster-disjoint routing,
storing the disasters and the geometric embedding of the network can be replaced by a short list of
SRLGs indicating the link sets that can be hit by the same disaster. Picture credits to [34–36]

other (as in Fig. 1.2a), we may suppose the connections fail independently, meaning
an unavailability of P(V1) · P(V2) = 0.000001 of the cloud. If V1 and V2 are at the
same place (same bridge, valley, etc., Fig. 1.2b), the unavailability of the cloud will
be P(V1) = P(V2) = 0.001. If V1 and V2 are ‘close’ to each other, but not in the
same place, the availability of the cloud under the next disaster is difficult to estimate
(that could be anything between three- to six-nines). Easing the service availabil-
ity queries demands the investigation of probabilistic extension of the SRLGs, and
designing a realistic probabilistic regional failure model.

1.2 Problem Statement

In this Thesis, I study both the deterministic and probabilistic versions of the problem
of representing the effect of regional disasters on telecommunication networks. In
the first part, I purely focus on how to define and enumerate the most lifelike (deter-
ministic) SRLGs that cover all types of disasters. Figure 1.3 depicts the most natural
strategies for guaranteeing a level of separation between the primary and the backup
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Fig. 1.2 User U reaches his data either in cloud C1 or in cloud C2. At the next disaster, the
connections to C1 and C2 may fail in regions V1 and V2, respectively, with an equal chance of
P(V1) = P(V2) = 0.001. If V1 and V2 may be hit by the same disaster, but are not co-located, the
cloud availability under the next disaster is hard to estimate

Fig. 1.3 Strategies for separating the primary and backup paths in increasing strength (the more
right the better the separation is)

path in the absence of the simultaneous presence of both a precise knowledge of the
physical positions of the network elements and expertise on possible disasters.

Without any requirements, theremight be no separation at all between these paths.
A common practice is to ensure link-disjointness on the paths via enumerating all
the single link failures as SRLGs. Compared to this, node-disjointness (except for
the source and destination nodes s and t) ensures resiliency to any single element
failure. An SRLG list providing node-disjointness consists of link sets incident to
each network node.

To enhance the preparedness granted by node-disjointness, one has to leverage
some background information on the geographical embedding of the network. Typi-
cally, communication networks have few edge crossings, and links are a few hundred
kilometers long. Thus it makes sense to grant a given h hops distance between the
primary and backup paths.3 For this, one may list the links in the vicinity of every

3 Vendor specification of core network equipment suggests to ensure that the primary and backup
paths assigned to a connection are edge or node disjoint (e.g., Huawei [37, Sect. 4.5.4], Alcatel-
Lucent [38, pp. 46–50], Cisco Systems [39, Chap. 19], Juniper [40, Chap. 3], Infinera [41]). With
node-disjointness, operators ensure that the distance between the nodes of the primary and backup
paths (except at the terminal nodes) are at least 1-hop-distance from each other.
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network link or node as SRLGs.4 Unfortunately, a distance of h hops does not nec-
essarily protect the failure of links crossing the same bridge or a bunch of close
nodes.

Knowing the exact geographic embedding of the network topology solves this
issue: supposing that a disaster may damage the network equipment within a radius
r around its epicenter (and the rest of the network is left intact), one only has to list
all the maximal link sets which can be hit by a circular disk with radius r in a list
Mr . Here the challenge is giving fast polynomial algorithms for determining Mr and
showing that Mr has a manageable size so that we can provide r -disjointness for
large network topologies too. Chapter 5 (and Thesis 1) is devoted for this issue.

Inmany cases, one has only a rough idea of the physical embedding of the network,
e.g., when the topology is rented fromaPhysical Infrastructure Provider [42]. In other
words, they have a schematic map of the network, where the scale is not necessarily
preserved over the area, and routes of links are only known to be within certain areas.
In such circumstances, one can provide a separation which is weaker compared to
Mr , but still better than relying only on hop-count: in a list Mk , one can gather the
maximal link sets which can be hit by a circular disk hitting k nodes. In Chap. 6
(and Thesis 2), I provide a model to handle this case together with theoretical and
experimental upper bounds on the size and construction time of Mk .

Regarding the prior state of the art, there was no PSRLG model, which would
take into count that link failures are not independent when a disaster happens. Also,
they did not represent the possible disasters as accurately as possible. In the second
part of my Thesis (Chap. 7, Thesis 3), I aimed to define a realistic and applicable
Probabilistic PSRLG failure model, which takes into count the failures correlation.
In the evaluation, we use a seismic hazard representation, which preserves more
information on possible future earthquakes than usual hazard maps.

1.3 Overview of this Thesis

At first, in Chap. 2, the (P)SRLG problems studied in this Thesis are formally intro-
duced.

Chapter 3 presents an overview of the state-of-the-art for (P)SRLG modeling and
enumeration. In Chap. 4 the necessary algorithmic background for this Thesis is
given.

As discussed in the former Subsection,Chaps. 5 and 6presentmy studies onSRLG
modeling an enumeration in case of precise and schematic maps of the network
topology given as input, respectively. Chapter 7 presents a stochastic model for
PSRLG enumeration. The evaluation of the model is based on real-world seismic
data. Finally, Chap. 8 concludes the Thesis.

4 To ensure an odd number of hops, for every node v,Mh=2k−1 contains the edges of a tree of shortest
paths to v from the nodes not further from v than k hops. Similarly, for every link e = {u, v}, Mh=2k
contains the edges of a tree of shortest paths to e from the nodes not further from u or v than k hops.
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1.4 Contributions of this Thesis

The contributions of this Thesis are two-fold. Firstly, it offers provably short lists of
SRLGs covering all the failures caused by regional disasters. For this, both a model
where the exact geographical embedding of the network is known and another model
where only a schematic map of the topology is available is given. Fast polynomial
algorithms calculating the above lists are offered.

On the other hand, this Thesis provides a model for PSRLG enumeration that
produces realistic failure probabilities, the computed data structure can be stored in
provably small space in case of circular disasters, and it handles the correlation of
link failures better than the prior state-of-art.
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Chapter 2
Formal Problem Statement

In the current chapter, I give a general definition of the models and terms covering
the remainder of the Thesis. However, since the motivations and models of different
parts of this Thesis slightly differ, I will restate or detail some of the notions for
the sake of a more fluent first reading of the Thesis. Throughout the dissertation,
it will be assumed that basic arithmetic functions (+,−,×, /,

√ ) have constant
computational complexity.

2.1 Definition of (Probabilistic) Shared Risk Link Groups

When several network elements may fail together as a result of a single event, they
are often characterized by Shared Risk Groups (SRGs). Each SRG has a corre-
sponding failure event (or events); when such an event occurs, all elements in the
SRG fail together. Specifically, the communication network is modeled as a graph
G = (V, E), whose vertices are routers, PoPs,1 optical cross-connects (OXC), and
users, while the edges are communication links (mostly optical fibers). SRGs are
then defined as subgraphs (V ′, E ′), where V ′ ⊆ V and E ′ ⊆ E ′.

In many cases, it is sufficient to consider only links in SRGs, and in this case,
these groups are called Shared Risk Link Groups (SRLGs). For example, an SRLG
may contain one edge (to capture a single-link failure) or all edges that touch one
vertex (to capture a single-node failure). SRLGsmay be more complex and represent
simultaneous failures of multiple network elements. In particular, in this chapter, we
focus on geographically-correlated failures in which links within a specific region
fail together.

1 A point of presence (PoP) is an artificial demarcation point or interface point between communi-
cating entities.
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A set M of SRLGs can be used as an input to network design and network
recovery/protection mechanisms to ensure these mechanisms withstand the failures
corresponding to these SRLGs. For example, to ensure connectivity between a spe-
cific pair of nodes, protection mechanisms may construct two edge-disjoint paths
when M = {{e} |e ∈ E}, two node-disjoint paths when M = {{(u, v) ∈ E} |v ∈ V },
or two paths that do not traverse the same geographical region when M corresponds
to all sets of links that are physically close-by.

The following definition captures the notion of SRLG introduced by regional
failures, such as a natural disaster or an attack. For ease of presentation, we will call
these failure events disasters, regardless of their cause.

Definition 2.1.1 (SRLG) A set of links S ⊆ E is an SRLG if we may assume there
will be a disaster that can cause all edges in S to fail together. If the disaster can
be characterized by a bounded geographical area D, and S is the set of edges that
intersect with D, then S is called the regional SRLG that represents D, and is denoted
by S = SRLG(D). If D is a circular disk, we call SRLG(D) a circular SRLG.

Circular SRLGs, which are the most common in literature, can also be charac-
terized by the failure epicentre p ∈ R

2 and the failure radius r ∈ R. In this case
S = {e ∈ E |d(e, p) ≤ r}, where d(e, p) is the Euclidean distance between edge e
and point p.

The likelihood of a disaster to occur is not the same at all points of the plane.
For example, earthquakes are more likely to occur in rupture zones than in other
places, and regions with lower altitudes are more likely to suffer from floods. Thus,
the probability of an event occurring is essential. This probability is sometimes given
in the form of an epicenter distribution map, which gives for each location p ∈ R

2,
the probability that a disaster happened with epicenter p. Moreover, the size (or
radius) of the disaster can also be a random variable (e.g., earthquakes with a larger
magnitude are less likely to happen than earthquakes with smaller magnitude, even
if their epicenters are the same). Thus, it is customary to consider a setD of disasters
D (that can be of infinite size), and attach a probabilistic measure to this set. For
simplicity, let us assume that D is finite, and let pD = Pr[D ∈ D occurs].2 We note
that an SRLG S can represent more than one disaster in D ; thus, we denote by the
support(S) = {D ∈ D |S = SRLG(D)}.

Definitions 2.1.2 and 2.1.3 capture the probabilistic nature of disasters and their
effect on SRLGs. An FP (Definition 2.1.2) tells the probability that the failed link
set will be exactly S, while a CFP (Definition 2.1.3) tells the probability that at least
S will fail:

Definition 2.1.2 (FP)Given a setD of disasters D, a probability pD for each disaster
in D , and a link set S ⊆ E , the Link Failure State Probability (FP) of S is FP(S) =∑

D∈support(S) pD . We note that if a disaster in support(S) actually occurs, then all

2 For infinite sets, one can use the corresponding integrals or use discretization and consider only
a finite number of sets, albeit with a small error.
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links in S fail. For a graph G, the collection of all (S,FP(S)) pairs is denoted by
FP[G].
Definition 2.1.3 (CFP)Given a setD of disasters D, a probability pD for each disas-
ter inD , and a link set S ⊆ E , the Cumulative Link Failure Probability (CFP) of S is
CFP(S) = ∑

T⊇S

∑
D∈support(T ) pD . We note that if a disaster in

⋃
T⊇S support(T)

occurs, then all links in S fail. For a graph G, the collection of all (S,CFP(S)) pairs
is denoted by CFP[G].

For simplicity, wherever it does not cause any confusion, FP(S) and CFP(S) will
also refer to the set-probability couples (S,FP(S)) and (S,CFP(S)), respectively.

Clearly FPs and CFPs are closely interconnected. In a sense, FPs are like prob-
ability density functions (PDFs), while CFPs are like their cumulative distribution
functions (CDFs).

2.2 Physical Embedding of the Network Topology

As written before, the network is modeled as a geometric graph G(V, E), whose
vertices are routers, PoPs, OXCs, and users, while the edges are communication
links (mostly optical fibers).

For simplicity, in most cases, G is considered to be embedded in the plane R2,
but in some cases, for accuracy, I use its spherical representation. When not clear
out of context, I indicate the type of geometry with parameter g ∈ {p, s}, p and s
standing for ‘planar’ and ‘spherical’, respectively. For simplicity, in the remainder of
this Thesis, the terms used in the Euclidean plane might refer to their counterpart in
spherical geometry too. That is, ‘line segment’, ‘polygonal chain’ (or ‘polyline’), and
‘containing polygon’, will refer to ‘geodesic’,‘chain of geodesics’, and ‘containing
closed chain of geodesics’ in case of spherical geometry.

Another issue is the geometric embedding of the network links. In this Thesis, I
use three different models: (1) links are line segments (sometimes called intervals)
between their endpoints, (2) links are polygonal chains between their endpoints, and
(3) the exact route of each link e ∈ E is not known, but contained in a polygonal
region pe (and e is considered to fail if the disaster hits pe). Mathematically, (3) is
more general than (2), which is more general than (1). I use parameter γ to indicate
the maximum number of line segments a link or its containing region stands of.

2.3 Disaster Families and Related Induced Failures

Throughout the SRLG enumeration part of my Thesis, I assume that no detailed
information is available on the disasters, and I overestimate the disaster areas by
circular disks. In both cases of geometries g ∈ {p, s} in which the topology can be
embedded, let the set of all circular disks in g be denoted by C .
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2.3.1 SRLG Enumeration: Disasters with Limited Size

If the embedding of the network is known precisely (as in Chap. 5), I am interested
in the maximal link sets, which can be hit by a c ∈ C with a given radius. For this,
let Cr := {c ∈ C |radius of c = r}, and Mr be the set of SRLGs that can be hit by a
c ∈ Cr . I distinguish lists Mr of the planar and spherical embedding as Mp

r and Ms
r ,

respectively.

2.3.2 SRLG Enumeration: Disasters for Schematic
Embeddings

If only a schematic map of the network is known (as in Chap. 6), I am interested
in the maximal link sets, which can be hit by a c ∈ C which hits a previously fixed
k number of nodes. For this, let Ck := {c ∈ C |c hits k nodes}, and Mk be the set of
SRLGs that can be hit by a c ∈ Ck .

2.3.3 PSRLG Failure Modeling

In Chap. 7, I aim to define a generic PSRLG model. Thus, in the model, any disaster
shapes are allowed, the disaster does not even need to be a connected subset of the
plane/sphere. However, I give theoretical upper bounds on the number of FPs and
CFPs supposing that the disasters have a shape of a circular disk (in any given Lp
metric). In the simulations, earthquakes also are considered to destroy the network
in circular regions.

2.4 General Practices for SRLG Enumeration

As the size of SRLG list S determines the run-time and complexity of the mecha-
nisms that use it, an important goal is to keep S as small as possible. For example,
when two sets S1, S2 are in S and S1 ⊆ S2, it is sufficient to include only S2 in S ;
omitting S1 from S usually does not affect the outcome of the underlying mech-
anisms.3 This is due to the monotonicity of network design/recovery mechanisms,
where we say, a mechanism is monotone if for any S1, S2 such that S1 ⊆ S2, the
actions the mechanism takes in response to S1 is a subset of the actions it takes in
response to S2.

Moreover, some works use over-approximation to reduce the size of S : S ′
overapproximates S is for every S ∈ S there exists S′ ∈ S ′ such that S ⊆ S′. As

3 This is true for communication networks, but not for networks in which there is no monotonicity
in failures. When attaching probability to the SRLGs, this no longer holds.
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an over-approximation, instead of including two sets S1, S2, one can include a single
set S1 ∪ S2 (this is especially appealing if S1 ∩ S2 is of non-negligible size); suchover-
approximation, however, can degrade the outcome of the underlying mechanisms.
For regional SRLGs, over-approximation is achieved by taking a larger failure region.
The most common practice is to take a simpler shape that completely contains the
original failure region, e.g., circular disks, or fixed shape bounded by segments and
arcs. The presented algorithms are conservative bothwith the number of listedSRLGs
and with the degree of over-approximation in the case of different classes of realistic
inputs.

Another widespread practice is to assume that in the investigated time period,
there will be at most one disaster. If one can enumerate the set S of SRLGs of
single disasters, it is straightforward to compute SRLGs of multiple disaster events.
For example, if two disaster can happen simultaneously, one might look at S ′ =
{S1 ∪ S2|S1, S2 ∈ S }.

2.5 Problem Statement

The somewhat formal statements of the problems I am investigating in this Thesis
are the following.

For SRLG enumeration, the problem is defining a model and related algorithms
so that, based on the resulting SRLG list, the operators should prepare the network
for only a small number of possible regional failure events that cover all the possible
disasters. In some cases, the precise embedding of the network is given as part of the
input, while in others, only a schematic map is known. With the definitions of this
chapter, these problems translate to the following questions:

• Is there a fast polynomial algorithm for enumerating Mp
r ? Can tight theoretical

upper bounds be given on |Mp
r |? Is there an algorithm that, in practice (i.e., for real

network topologies), calculates Ms
r efficiently? Is there a significant difference

between Mp
r and Ms

r in practice, i.e., in case of real network topologies, and
realistic disaster radii (≤∼ 500km)?

• Can a justifiable model be specified for regional failures if only a schematic map
of the network topology is given? Is there a polynomial algorithm for calculating
Mk , and related theoretical upper bound on |Mk |?
For PSRLG enumeration, the problem is defining a model that yields PSRLG lists

that can serve, e.g., service availability queries with great accuracy. This translates
to the following questions:

• For PSRLG enumeration, can a failure model be defined such that (1) it produces
realistic failure probabilities, (2) correctly captures link failure correlation patterns,
(3) the size of the output structures is manageable in practice? Can low theoretical
upper bounds be given on the number of the PSRLGs needed to describe the
random effect of the next disaster?
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2.6 Model Extensions

2.6.1 Segment Link Representation to Polylines, Polylines to
Containing Polygons

The network embedding model varies in our papers. In some of them, links are
considered as line segments, in others, they are polygonal chains, or even only known
to lie in a polygonal region.

Suppose we have an algorithm As for the line segment link model. The polygonal
chain case can also be handled in polynomial time based on As via splitting the
polygonal chains up into line segments, running As for the resulting problem instance,
merging the line segments of each polygonal chain, and finally, filtering out the non-
maximal sets.

Now suppose we have an algorithm Ac for the polygonal chain link model. Then,
the containing polygon can also be handled in polynomial time using a slight mod-
ification of Ac: if in case of a link e, a disaster d is not hitting the boundary of pe,
one has to decide if d is in the interior of pe or in its exterior. Fortunately, this can
be done in polynomial time (see, e.g., proof of Claim 6.6.1).

2.6.2 Different Link Types

Most of the optical backbone networks consist of multiple types of links, e.g. aerial,
buried and submarine. In case of a disaster, these link types have different failure
patterns, for example, in case of an earthquake, aerial cables fail in a different region
than buried cables, while submarine cables tend to be cut at rupture zones. With this
in mind, we can extend our model in the following way. Let L be the set of different
link types. For disaster D, let r(D, l) denote the area where links with type l fail in
case of D.

Note that I have not paid particular attention to the algorithmic side of more
sophisticated failure models in this Thesis. One approach to constructing (P)SRLG
lists in the case of these models is taking a sufficiently fine discretization of the
original problem [1, 2].

2.6.3 Mixed Link Types

Different parts of a link e in the input network topology may have different types,
e.g., there is a link that is mainly buried, but crosses a river above the water. Such
a link can be divided into sections with homogeneous types and fails if one of its
section fails. More formally, each link e ∈ E is partitioned to sections e1, . . . , eK
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with types l1, . . . , l K , respectively. For disaster D, section ei fails if it has a common
point with r(D, li ), and link e fails if at least one of its sections fails.

2.6.4 Nodes Also Considered Vulnerable

Network nodes have different failure patterns than links, and their probabilistic fail-
ures can be represented by (P)SRLGs as follows. For a node v ∈ V that can fail, the
edges incident to v have mixed link types, and in a small vicinity of v are considered
to have a type lv ∈ L specific to the node, i.e., that tiny parts of the links fail exactly
then when the node would have failed. This approach translates to (P)SRLGs as
following in the end. We consider that the set of links S incident to v fails because
the disaster hits every l ∈ S or node v.
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1. Pašić A, Girão-Silva R, Mogyorósi F, Vass B, Gomes T, Babarczi P, Revisnyei P, Tapolcai J, Rak
J (2021) eFRADIR: an enhanced FRAmework for DIsaster resilience. IEEE Access 9:13125–
13148

2. Vass B, Németh L, Tapolcai J (2020) The Earth is nearly flat: precise and approximate algorithms
for detecting vulnerable regions of networks in plane and on sphere. Networks, Wiley



Chapter 3
Related Work

3.1 Charting the Landscape of (P)SRLG Enumerating
Problems

To have a better overview of the problem versions tackled by both other researchers
and our group, in the following, a charting of the (PSRLG) enumerating problems is
given based on the input data quality/precision.

Informally speaking, the most important input information parts are the (1) geo-
metric embedding of the network, and the (2) (probabilistic) disaster effects. Unfor-
tunately, in practice, it is far not obvious that this information is available with high
precision. As depicted in Fig. 3.1, we might distinguish three levels of information
quality both on the geographic embedding and on the disaster effects, and classify
the offered (P)SRLG approaches according to these. I briefly depict and reference
all the related problems.

In case of the geographic embedding, we may encounter the following cases:

• no information on the embedding: this can happen, e.g., when dealing with a
network rented from a Physical Infrastructure Provider. In this case, one may list
the links in the h-neighborhoods of every node or link as an SRLG for a given h.
These lists Mh will ensure some hops distance between primary and the backup
paths, hopefully translating to a decent physical distance (see [1, Sect. 1.3.2A]).

• little information on the embedding: in many cases, one has a schematic map of
the physical topology. Using these, we can compute SRLG list Mk of links sets
hit by disks hitting k nodes. Compared to Mh , Mk also protects failures of close
nodes and parallel (close) links (see Chap. 6).

• good information on embedding: if a precise map of the network topology is part
of the input, one can leverage his knowledge on disaster effects too:

– no information on disasters: one can suppose a disaster will do harm only within
a disk of radius r around its epicenter, and compute the list Mr of maximal link
sets hit by disks with radius r (see Chap. 5). Alternatively, one may assume that

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
B. Vass, Regional Failure Events in Communication Networks, Springer Theses,
https://doi.org/10.1007/978-3-031-14256-7_3
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Fig. 3.1 A mind map of SRLG and PSRLG problems related to the quality of input data. For a
graph G, (C)FP[G] stores PSRLGs, while lists M∗ consists of SRLGs. Problems studied in this
Thesis (Mk nodes, Mr radius, (C)FP[G]) are highlighted with purple rectangles

the disaster has a fixed shape, e.g., an equilateral triangle of any orientation, and
calculate list Mshape of maximal link failures caused by this shape [2]. Another
possibility is that a setD of disaster areas is given,1 and computes the list MD of
maximal SRLGs caused by these disasters (see, e.g., a non-probabilistic version
of [3]).

– good information on disasters: having detailed probabilistic disaster data allows
us to compute PSRLG lists. Here the challenge is to create amodel that correctly
captures the joint failure probabilities of network elements while producing an
output of affordable size (see Chap. 7 or [4]).

Having a list of PSRLGs enables collecting those SRLGs that have a failure
probability above a threshold T . From among these, one can collect the maximals in
a list MT [5].

We note that in the natural condition when the vulnerability metric or a protection
mechanism is monotone,2 the worst SRLG fulfilling a given criteria c (e.g., SRLGs
that can be hit by circular disks with a range r or hitting k nodes) will be part of the
set of exclusion-wise maximal SRLGs fulfilling c. Thus a worst SRLG can be found
by simply searching for the worst SRLG in the list of maximal SRLGs fulfilling c
(e.g., in Mr , Mk) [1]. This way, the results presented in this Thesis are firm base
ground for solving a whole family of related problems.

Computational complexity and precision are two additional criteria along which
the studies of the field can be separated. In case of complexity, clearly, polynomial
algorithms outperform their super-polynomial counterparts. Sometimes, to achieve
a manageable problem space, studies take discretized input data, e.g., they take
a sufficiently fine grid over the topology and assume the disasters can have their
epicenter in these grid points. The discretization yields some imprecision, but given

1 Where in the interior of the disaster area, everything is damaged, while in the exterior, no failure
happens.
2 We say vulnerability metric or protection mechanism μ is monotone, if, according to μ, for any
link set E1 ⊆ E2, the failure of E2 is worse than the failure of E1.



3.2 (P)SRLG Enumeration or Finding Worst (P)SRLG 19

our knowledge, e.g., on seismic hazard, this imprecision is often affordable [6]. In the
following, I will refer to algorithms using this kind of discretization as ‘approximate’
algorithms.

3.2 (P)SRLG Enumeration or Finding Worst (P)SRLG

Tables3.1 and 3.2 give an overview on studys dedicated to different versions SRLG
and PSRLG enumeration, respectively. Note that [1] gives an overview on these
papers.

3.2.1 SRLG Enumeration

Table3.1 lists SRLG enumerating papers. I marked papers used as a material for this
Thesis with ✓in the second column (in rows 2, 3, 5). Algorithmically, determining
Mh is not challenging (row 1). Once we have a disaster set D , enumerating MD is
straightforward too (row 4, see e.g., [1]).

A problem closely related to (regional) SRLGs is investigated in [13] (row 6 of
Table3.1). The paper proposed to call a pair of fibers spatially-close if their distance
is at most r ′, i.e., they can be covered with a circular disk of radius r ′

2 . They propose
to define SRLGs as sets of fibers where any pair of fiber are spatially-close, in
other words, any pair of fibers can be covered with a circular disk of radius r ′

2 .
Unfortunately, [13] ends up at an NP-complete problem while grouping all fibers
that are spatially close to each other, such that the number of distinct link sets is
minimized. Furthermore, the resulting link sets may not be even possible to hit by
the samedisaster (i.e., they are not necessarily SRLGs according toDefinition 2.1.1).3

See Fig. 3.2 highlighting the difference between this model and the one presented in
[13].

In [2, 14], polynomial algorithms are given for finding the most vulnerable point
(called the critical region) of the network in case of disasters with a fixed polygonal
or elliptic shape and size. Although some arguments of the paper are inaccurate or
even conflicting, its reasonings could be healed.

With somewhat differentmotivations, similar computational geometric ideaswere
used in papers focusing on the most vulnerable points (worst SRLGs) of physical
infrastructure (communication networks or power grids [18]) to regional failures or
attacks. In this Thesis, our objective is more general as we want to enumerate all (the
maximal) candidate failures instead of searching for the most vulnerable according
to some metric. In these works, the network is embedded in the Euclidean plane and
the failures are modeled either as a disk around its epicenter (circular) [4, 16], line

3 Note that based on Mr=r ′/2, treating the corner points as degree 2 nodes, the grouping of the
spatially-close fiber segments can be directly computed.
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Table 3.2 Papers enumerating regional PSRLGs

Paper In this
Thesis

Goal Correlated link
failures
inside the disaster

Natural
disaster/attack

Oostenbrink
et al. [3]

✗ FP list (✓) –

Tapolcai,
Valentini,
Vass et al.
[25–27]

✓ FP list +
CFP list

✓ Natural disaster
(earthquake)

Agarwal
et al. [4, 24]

✗ Most vulnerable
point

✗ Attack

Fig. 3.2 Example SRLGs according to a Definition 2.1.1, and b [13]

segments [16], ellipse [14] or polygons (rectangle, square, or equilateral triangle)
[14]. Technically these papers also list the candidate failures (SRLGs) and evaluate
the vulnerability metric of the residual network in case of each candidate failure.

For (implicit) worst SRLG computation, the following vulnerability metrics were
investigated. (1) the point with the maximum number of affected links [4, 16], which
is ρr . (2) the point with the maximum average two terminal reliability between every
node-pair [4, 14, 16]. Here the max-flow algorithm runs O(nm) [19] which we need
to run for O(n) in practice. (3) the point with the maximum average all-terminal
reliability [20], which allows the identification of network areas that can disconnect
any component in the network. (4) the point with the maximum average value of
the maximum flow between a given pair of nodes [16]. (5) the point with maximal
average shortest path length between every pair of nodes [20]. (6) the point with
maximal average shortest path length between every pair of nodes [14, 20], (7)
survivability as a measure of the weighted spectrum based on the eigenvalues of the
normalized Laplacian of a graph [20], (8) network criticality, which is determined
from the trace of the inverse of the Laplacian matrix and can be related to the node
and link betweenness [20], (9) momentary chance of cable cut caused by a landslide
in case of heavy rain [21, 22].

It is a natural idea to list in a container MT the (maximal) link sets, which have a
probability of failing together higher than a given threshold T (like in [5] or [23]).
Obviously, for this, as an intermediate step, one has to generate a set of probabilistic
SRLGs. More precisely, CFP is the most useful structure in this context, since,
by definition, for a link set S, the Cumulative Failure Probability CFP(S) is the
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probability that at least the links of S will fail. The advantage of this approach is that
SRLG lists can be generated based on sophisticated objectives.

3.2.2 PSRLG Enumeration

Table3.2 depicts papers dedicated to PSRLG enumeration. Reference [3] assumes
there is a setD of disasters given, each disaster D ∈ D is associatedwith a probability
of happening, and based on this, calculates link failure state probabilities FP(S)
straightforward, naming them simply as PSRLGs. Although papers [4, 24] aim only
to find the most vulnerable point of the network, their tools are suitable for PSRLG
enumeration. Our papers [25–27] are, up to my knowledge, the first to explicitly take
into count the correlated nature of link failures in the presence of a disaster. Also,
alongside our book chapter [1], these works are the first to offer a unified terminology
on PSRLGs.

The tools presented in papers cited in the previous Subsection for determining a
worst SRLG can be used for PSRLG enumeration (like in the case of [4, 24]). Addi-
tional related papers implicitly listing (P)SRLGs addressed specific sub-problems in
network planning, like finding the most vulnerable part(s) of the network [20, 28],
studying the impact on the network of a randomly placed disaster [29, 30], designing
a network and its services with disaster resiliency in mind [31], and (re)routing of
connections to minimize service impact due to a disaster [32]. Some work has con-
sidered probabilities, either in the context of a disaster having a certain probability of
disconnecting a link, e.g., [4], or in the context of only having partial (probabilistic)
information on the geographical layout of a network, e.g., [33].

While the above-mentioned papers considered geographically correlated failures,
a common property of the targeted sub-problems is to search for the location(s) where
a disaster will cause the maximum expected damage to the network. This is a crude
averaging process that is unable to exhibit correlations amongmany important failure
events. The problem of precisely and quickly calculating the correlations between
link failures to conduct a more thorough network vulnerability assessment had been
insufficiently addressed in the past.

3.3 (P)SRLGs as Input

There are several papers refraining from making up their own failure models and,
instead, taking lists of (P)SRLGs as input. A good example of this is [34], providing
diverse routing algorithms and being the first paper to introduce PSRLGs. In the
field of fault-tolerant virtual network mappings, (k)-content connectivity is calcu-
lated based on SRGs in [35–37]. Papers [38–40] offer SRLG-disjoint routing. Other
examples are [41–44].
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There are a number of studies that could have taken (P)SRLGs as input, especially
if their failure modeling is less realistic than the state-of-the-art. Some of the prob-
lems tackled in these studies are the following. SRLG disjoint routing [45], content
connectivity against double-link failures [46], logical survivable topologies against
multiple failures [47], flow availability in two-layer networks [48], tunable protection
for single and dual link failures, respectively [49, 50], evaluating geographic vulner-
abilities of multilayer networks [51, 52], network virtualization design for regional
disaster resiliency [53], increasing availability between two nodes after disaster [30],
improving connectivity resilience through third-party networks[54], survivable net-
work design [31, 55].

Some surveys, summaries or tutorials tackling (P)SRLGs are [1, 56–59]. A recent
comprehensive guide book for the broader topic of disaster resilience of communi-
cation networks is [60] (that also includes our chapter [1]).

3.4 Computational Geometry and Seismology

The work presented in the Thesis heavily relies on computational geometry. Books
[61, 62] cover most of the used background of this field. In [61], the concept of
sweep line algorithms is discussed in detail. Reference [62] is a survey on Voronoi
diagrams and Delaunay triangulations, two related classes of geometric proximity
graphs that are in great service of regional failure modeling.

Some of our advanced questions in this field are answered in recent papers. These
are like the edge count of k-Voronoi diagrams for line segments [63], or construction
time and edge number of higher-order Delaunay graphs (for a point set) [64, 65].
Some of the computational geometric tools used in our research were developed in
our papers, like the sweep-disk algorithm for Thesis 2.

More related topics are Stereographic projection [66] combinedwith the theApol-
lonius problems [67], or the smallest intersecting ball problem [68, 69], which has
its origins in the classical 19th-century problem of Sylvester [70] about the smallest
enclosing circle for a given set of points in the plane.

The other related field worth mentioning is seismology, however, I only use it in
Sect. 7.6.1, to represent the seismic hazard less blurry than the usual hazard maps.
The approach presented in Sect. 7.6.1 for transforming the raw earthquake catalogs
to earthquake activity rate maps is essentially the same as the one used to create
the SHARE European Earthquake Catalogue [71]. Additional references will be
provided in the mentioned subsection.
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Chapter 4
Algorithmic Background

4.1 The Big O Notation

Let FN = [N → N] denote the space of all functions on natural numbers and let
f : N → N ∈ FN be a specific function. We employ the Landau symbol O to denote
the following class of functions:

O ( f ) =
{
g ∈ FN

∣∣∣ lim sup
n→∞ g(n)/ f (n)

< ∞
}

.

Writing ‘g = O ( f )’ instead of ‘g ∈ O ( f )’ is also widespread. To bypass this
issue, in the followings, mostly we will simply say ‘g is O ( f )’. If g is O ( f ), we
say f is �(g). Additionally, if both f is O (g) and g is O ( f ), we say f is �(g)
and g is �( f ) to denote that these are asymptotically equal.

4.2 Time and Space Complexity

The worst-case time complexity (or simply, complexity, or running time) of an algo-
rithm is estimated by counting the maximum number of elementary operations per-
formed by the algorithm, given an input of an arbitrary size s. In this Thesis, I prove
theoretical bounds on running time and output size of algorithms that are polynomial,
that is, there exists a constant c such that they perform at most O(sc) elementary
operations. Sometimes I prove bounds that leverage some parameters depending on
the input. E.g., by Corollary 5.1.14, the number |Mr | of maximal link sets that can
be hit by a disaster with radius r is O((|V | + x)ρr ), where x is the number of link
crossings, and ρr is the maximum number of links such a disaster can hit in the
particular problem input.
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4.3 Computational Geometry: Sweep Line Algorithms

In our studies, we rely on multiple computational geometric tools. In the following,
we briefly depict the principle of sweep line algorithms, one of those tools which are
used repeatedly in later chapters.

In computational geometry, a sweep line algorithm or plane sweep algorithm is
an algorithmic paradigm that uses a conceptual sweep line or sweep surface to solve
various problems in Euclidean space. It is one of the key techniques in computational
geometry.

In sweep line algorithms, it is imagined that a line is moved across the plane,
keeping its orientation and stopping at some event points. Geometric operations
are restricted to the immediate vicinity of the sweep line whenever it ends, and the
complete solution is available once the line has passed over all objects. This principle
is mostly manifested with the help of efficient data structures based on binary search
trees or similar.

As an example, given a set E of line segments embedded in the Euclidean plane,
the line segment intersection problem asks whether there exist two intersecting line
segments in E . Clearly, the question can be answered in polynomial time (in the
function of |E |), the challenge is to answer it ‘as fast as possible’. A bound is given
as follows:

Proposition 4.3.1 (Theorem5of [1]) All k pairwise intersections amongn segments
in the plane can be computed in O(n log n + k) time. The running time is optimal.
The storage requirement is O(n + k). If so desired, the algorithm will compute the
vertical map of the set of segments within the same time and space bounds.

We can conclude that the fastest algorithm deciding whether there exist any line
segment intersection runs in �(|E | log |E |). A former and simpler algorithm called
Bentley-Ottmann [2] also solves the problem. This algorithm, loosely speakingwhile
swiping a vertical line from left to right maintains an ordered balanced binary search
tree storing the line segments e ∈ E according to their ordinates ye at the current
abscissa x . It has the following complexity:

Proposition 4.3.2 (Theorem 2.4 of [2]) All intersection points of E, together with
the segments giving the intersection, can be reported in O((m + I ) logm) time and
O(m) space, where I is the number of intersection points.1

We can see that both [1] and the Bentley-Ottmann algorithm solve a more difficult
problem: report the line segment intersections. This can be seen as a special case of
the problem of reporting the maximal link sets, which can be hit by a circular disk
(shaped disaster) of radius r , which we study in Sect. 5.1. In Chap. 6, we also rely
on the concept of sweep surface algorithms. We note that although the algorithm of
[1] is asymptotically faster than the Bentley-Ottmann in some settings, it looses its
competitive edge if k is �(I log n).

1 Note that in Proposition 4.3.2, in each intersecting point, an arbitrary number of line segments
can intersect each other.
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Another fieldwhere sweep line algorithms are useful is the construction ofVoronoi
diagrams [3] and Delaunay triangulations, two closely related classes of geometric
proximity graphs that we will leverage throughout this Thesis.
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Chapter 5
Maximal SRLGs Induced by Disks
with Radius r

5.1 Planar Regional Link Failures Caused by Disasters
with Radius r

5.1.1 Problem Definition and Basic Results

The input is a real number r ≥ 0 and an undirected connected graph G = (V, E)

embedded in the 2D plane, where V denotes the set of nodes and E the set of edges
(which are also called links). Let n := |V | andm := |E |. I assume n ≥ 3. The edges
of G are embedded as line segments, which I call intervals in the geometric proofs1.
A disk with centre point p hits an edge e if its distance to p is at most r (Table5.1).

Definition 5.1.1 A regional failure F is a non-empty subset of E , for which there
exists a disk with radius r hitting every edge in F .2

Note that the failure of node v is modeled as the failure of all edges incident to node
v. Therefore listing the failed nodes beside listing failed edges would not give us
additional information from the viewpoint of connectivity.

Definition 5.1.2 Let Fr be the set of regional failures of a network for a given
radius r .

According to Definition 5.1.1, a subset of a regional failure is also a regional
failure. Thus, Fr is a downward closed set minus the empty set.

Recall the network can recover if an SRLG or a subset of links (and nodes) in
the SRLG fail simultaneously. In other words, if a regional failure F is listed as an

1 The case, when edges are considered to be embedded as polygonal chains between their endpoints
consisting of at most a constant number of line segments, can also be handled in polynomial time
based on the presented results via splitting the polygonal chains up into line segments, running the
presented proposed algorithm (sketched in Table5.2) for the resulting problem instance, merging
the line segments of each polygonal chain, and finally, filtering out the non-maximal sets.
2 Thus, what we call a regional failure is the worst-case outcome of a disaster damaging an area. F
can be seen a compact representation of all of its subsets.
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Table 5.1 Table of symbols for Sect. 5.1

Notation Meaning

General

G(V, E) The network modeled as an undirected connected geometric graph

n, m Number of nodes |V | ≥ 3 and edges |E |, respectively
r Disaster range (r ≥ 0)

F Regional failure, i.e.is a non-empty subset of E , for which there exists a
disk with radius r hitting every edge in F

Fr Set of regional failures of a network for a given radius r

Mr F is in Mr if it is is a regional failure and there is no regional failure F ′
such that F ′ � F

cF Smallest hitting disk of F , where a disk c is smaller than disk c′, if c has a
smaller radius than c′, or if they have equal radius and the center point of c
is lexicographically smaller than the center point of c′

X Set of points p which are not in V and there exist at least 2 non-parallel
edges crossing each other in p

Ew := {e ∈ E | d(w, e) ≤ 3r}; the edges in Ew are in sorted order with respect
to the lexicographic ordering of their endpoints

Ve := {w ∈ V ∪ X | d(e, w) ≤ 3r}
Cr,w The set of the following disks: for e, f ∈ Ew , disks c of radius r (if exist)

according to Theorem5.1.2: either case (a) applies if e and f are not
parallel, and c intersects them in two different points, or case (b) when c
intersects e and f in two different points, one being an endpoint of e, or
case (c) when c touches e at an endpoint; moreover we require that
formerly computed disks c have centers not farther than 2r from w

Lr,w List of set of edges hit by an element of disk set Cr,w

Parameter

ρr Link density of the network, which is measured as the maximal number of
links that could be hit by a circular disk shaped disaster of radius r

x Number of link crossings of the network G

μ Square mean of numbers ve for all e ∈ E , where ve is the number of
w ∈ V ∪ X such that d(w, e) ≤ 3r

φr Maximum number of nodes in the 3r -neighborhood of a link of the input
graph G

SRLG, then there is no need to list any subset of the links F ′ � F as a new SRLG.
The goal is to define a set of SRLGs which covers every possible regional failure
and which is of minimal size.

Definition 5.1.3 Let Mr ⊆ 2E denote the set of SRLGs, for which

Mr = {F is a regional failure and there is no regional failure F ′ such that F ′ � F} .

(5.1)
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e1 e2 e3

Fig. 5.1 In the figure above, the solid circular disks are disasters with radius r , d(e1, e2) =
d(e2, e3) = 2r , while d(e1, e3) = 4r . The set of regional failures is Fr = {{e1}, {e2}, {e3}, {e1, e2},
{e2, e3}}. The set of maximal regional failures is Mr = {{e1, e2}, {e2, e3}}

In other words, the set of SRLGs Mr is a set of failures caused by disks with
radius at most r in which none of the failures is contained in another. Figure5.1
illustrates Definitions 5.1.1–5.1.3. Note that Fr is the set of regional failures, which
is the downward closed extension of Mr minus the empty set. A family of sets from
the power set of E in which none of the sets is contained in another is called an
antichain (in the inclusion lattice over 2E ). This antichain is also sometimes called a
Sperner system, independent system or a clutter. Note that, Mr is an antichain. Due
to the minimality of SRLGs, the following holds.

Proposition 5.1.1 For each SRLG F ∈ Mr, F ⊆ E, there is a circular disk c of
radius r such that F is exactly the set of edges hit by c.

Let r be a tiny positive number. In this case, the list of possible regional failures
consists of every single link or node failure and link crossings. In other words, this
model is a generalization of the ‘best practice.’ The corresponding antichain can be
the set of single node failures, i.e., |Mr | = n + x , where x is the number of edge
crossings. Informally speaking, protecting node failures is sufficient to protect link
failures as well.

In the following, the aim is to determine the set Mr . At first glance, it is not clear
that the cardinality of Mr is ‘small.’ I will prove polynomial upper bounds on |Mr |.

To estimate the size of the SRLG list, let ρr denote the maximum number of edges
a disk with radius r can hit in the plane, i.e., for every failure F caused by a disk with
radius r , |F | ≤ ρr . An observation is that if ρr = O(log n) then there is a polynomial
blowup when switching from Mr to Fr , as |Fr | ≤ |Mr |2ρr . Mr can be treated as a
compact representation for Fr . It is also immediate that from Fr one can obtain Mr

by O(|Fr |2) comparisons of subsets of E .
I say a disk c hits a set of edges Ec if it hits all the edges in Ec. Note that several

disks can hit the same set of edges.
First, a slight variant of Lemma 9 from [1] is given. This study’s assumptions

allow somewhat more general topologies with more than 2 collinear points. The
segments e ∈ H are assumed to be nondegenerate.

Theorem 5.1.2 Let r be a positive real, and H be a nonempty set of intervals (i.e.,
edges) from R2 which is hit by a circular disk of radius r . Then there is a disk c of
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Fig. 5.2 Case a, b and c of Theorem5.1.2 and the neighbourhood N (e, r) of an edge e

radius r which hits the intervals of H such that at least one of the following holds
(see Fig.5.2 for illustrations).

(a) There are two non-parallel intervals in H such that c intersects both of them
in a single point. These two points are different.
(b) There are two intervals in H such that c intersects both of them in a single point.
These two points are different, and one of them is an endpoint of its interval.
(c) Disk c touches the line of an interval e ∈ H at an endpoint of e.

Proof For a line segment e on the plane and a nonnegative real number r the r-
neighborhood3 N (e, r) of e is defined as the set of all points P on the plane which
have distance at most r to (some point of) e. It is immediate that N (e, r) is a closed
convex subset (see Fig. 5.2d) of the plane.

Consider the boundary B of the intersection

∩e∈H N (e, r). (5.2)

The points of B are obviously in the union of the boundaries of the neighborhoods
N (e, r), where e ∈ H . The union is composed of a finite number of line segments
and half circles. The circular arcs belong to circles of radius r centered at endpoints
of line segments e ∈ H . We distinguish two cases.

(1) B has a point R which is on a halfcircle arc of the boundary on N (e, r) for some
e ∈ H . Let cR be the disk of radius r centered at R. If R is an endpoint (P1 or P2 in
Fig. 5.2d) of the halfcircle, then (c) is satisfied for cR . We can thus assume that R is
an inner point of the halfcircle connecting P1 and P2, and Pi /∈ B. From the fact that
B is closed, we obtain that there exists a point R′ on the circular arc RP2 which is in
B, but no point of the open R′P2 arc is in B. Then there must be an f ∈ H such that
N ( f, r) passes through R′ but does not contain a larger arc R′R′′ from R′P2. Then
R′ is on the boundary of N ( f, r). We argue that (b) holds for cR′ and the intervals
e, f . This is immediate if the tangent lines to N (e, r) and N ( f, r) at R′ are different.
If they are the same line � then e and f must be in different halfplanes defined by
�, hence e ∩ f = ∅ and hence (b) holds for cR′ . This reasoning settles the case (1).
Note that we can also assume now that |H | > 1.

3 Called hippodrome in [2].
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(2) No point of B is on a circular arc form the boundary of N (e, r), with e ∈ H . Then
B is a (possibly degenerate) polygon composed of some line segments. Let R be a
vertex of polygon B, and e ∈ H be a segment such that R is an interior point of one
of the line segments on the border of N (e, r). Let � be the line of this latter segment.
The fact that R is a vertex of B implies that there must be another segment f ∈ H
such that one of the line segments on the boundary of N ( f, r) passes through R and
the line �′ of this segment is different from �. Indeed, otherwise, for every g ∈ H
there would be an open interval form � containing R in N (g, r), which contradicts
the extremality of R. As e is parallel to � and f is parallel to �′, we infer that (a)
holds for cR . �

5.1.2 Bounds on the Number of SRLGs

Lemma 5.1.3 Let H ′ be a set of intervals from R2, |H ′| ≤ 2, and r be a positive
real number. Then every circular disk described in Theorem5.1.2 for H = H ′ can
be determined in O(1) time.

Proof Easy elementary geometric discussion of cases (a), (b) and (c) of Theo-
rem5.1.2. See Fig. 5.3 for illustration. Note that there can be at most 4 circles that
intersect two line segments, as shown in Fig. 5.3a, and atmost two circles intersecting
a line segment and a single point, as shown in Fig. 5.3b, and four circles can touch a
line at endpoints, as shown in Fig. 5.3c. �

From Theorem5.1.2 and the argument of Lemma 5.1.3 we obtain the following
upper bound on the number of SRLGs.

Corollary 5.1.4 |Mr | ≤ 4
(m
2

) + 4m + 2mn.

Note that, the graphs of Claim 5.1.5 demonstrate that the above bound is asymp-
totically tight.

Fig. 5.3 The circular disasters examined in Theorem5.1.3
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Fig. 5.4 An example
topology (k = 4) where the
number of maximal SRLGs
hit by circular disk shaped
disasters is �(m2) or
�((n + x)ρr )

5.1.2.1 Worst Case Graph

Claim 5.1.5 The graph sketched in Fig. 5.4 has at least n2

64 maximal regional failures
of a radius k.

Proof Herewe construct a set of n segments whose graph is planar (there are no edge
intersections), and for a suitable radius r it has at least n2

64 , in particular a quadratic
number of, incomparable failure events.4

Let k be a positive integer. We consider a collection of 4k axis parallel line seg-
ments in R2. We start out with the four edges of the square of edge size k whose
bottom left corner is at the origin O = (0, 0). We consider the bottom edge connect-
ing O to (k, 0), and put its copies translated i units downwards, for i = 1, . . . , k into
our set of segments. For example for i = 2 we obtain the segment from (0,−2) to
(k,−2). This way we obtained k segments. Similarly we translate the upper edge
(from (0, k) to (k, k)) of the square by i units upwards for i = 1, . . . , k. These are
k additional horizontal segments. We do the same in the vertical direction: we con-
sider k translates to the left of the left edge of our starting square, and k translates
to the right of the right edge of the square. We have 4k nonintersecting line seg-
ments of length k. The configuration for k = 4 is shown in Fig. 5.4. Consider now
a disk c = c(i, j) of radius k centered at the point (i, j), where i, j are integers,
0 ≤ i, j ≤ k. We readily see that c intersects exactly i of the right vertical segments
and k − i of the left vertical segments. Similarly, c intersects exactly j of the upper
horizontal edges and k − j of the lower horizontal edges. We infer that no two disks
of the form c(i, j) can hit the same set of edges. This implies that there are at least
(k + 1)2 maximal failure events with radius k. The number of vertices is n = 8k.
The number of such maximal failures is at least n2

64 (Fig. 5.5). �

4 No attempt has been made to optimize the constant. In fact, a more elaborate variant of the

preceding construction gives n2
16 maximal failures.
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Fig. 5.5 The set of SRLGs of a 5 × 5 grid network

5.1.2.2 Circular Disk Failures with Radius at Most r

In this subsection, we take a more general model and assume that the radius of the
failure is not a network-wide parameter but depends on the area. Our goal is to
enumerate every circular disk failure for any radius at most r .

Definition 5.1.4 Let a disk c be smaller than disk c′, if c has a smaller radius than
c′, or if they have equal radius and the centre point of c is lexicographically smaller
than the centre point of c′.

Definition 5.1.5 Let F ⊆ E be a finite nonempty set of edges (not necessarily a
failure). We denote the smallest disk among the disks hitting F by cF , and we say
cF is the smallest hitting disk of F .

It is not difficult to see that cF always exists. The key idea of our approach that
we can limit our focus only on the smallest hitting disks cF , for F ∈ Fr , and ignore
the rest of the disasters. The consequence of the next theorem is that the number of
smallest hitting disks cF , F ∈ Fr is not too large.

Theorem 5.1.6 Let H be a nonempty set of intervals fromR2 with smallest covering
disk cH . Then there exists a subset H ′ ⊆ H with |H ′| ≤ 3 such that cH = cH ′ .

Theorem5.1.6 would be trivial if the smallest hitting disks were defined on sets
of nodes because a triplet of non-collinear nodes defines a circle. In the proof in
Sect. 5.1.4.1 we show that this property holds for edges (considered as line segments)
too. Compared to the algorithm of Theorem5.1.2 here we not only shift the disks but
also shrink them.

Corollary 5.1.7

∣∣
∣∣∣

⋃

0<r<∞
Mr

∣∣
∣∣∣
≤

(
m

3

)
+

(
m

2

)
+ m = m3

6
+ 5m

6
.

Theorem 5.1.8 (Theorem28 of [3]) Let H be a set of intervals from R2, |H | ≤ 3.
Then cH can be determined in O(1) time.
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Remark. Theorem5.1.8 outlines an efficient algorithm for cH in an exact symbolic
computational setting. A good numerical algorithm for approximating the radius
r of cH and the center P of cH is also possible: for a positive real number r ′ we
can efficiently test if N (e1, r ′) ∩ N (e2, r ′) ∩ N (e3, r ′) 
= ∅. Indeed N (ei , r ′) is a
union of two half disks and a rectangle, and the intersection of such objects is easily
computable. Using such tests for emptiness, r can be approximated by binary search
as the smallest r ′ providing nonempty intersection.

Since the smallest hitting disk of a triplet of edges can be calculated in O(1) time,
we could solve the problem by processing O(m3) triplets of edges. However, we will
achieve better upper bounds on the running time and of |Mr | with the help of some
further observations.

5.1.3 Improved Bounds and Algorithm to Enumerate the Set
of SRLGs

Next, we define five practical parameters of the input to better estimate the number
of SRLGs and computing time.

ρr is the link density of the network, which is measured as the maximal number of
links that could be hit by a circular disk shaped disaster of radius r .

x is the number of link crossings of the network G.
μ is the square mean of numbers ve for all e ∈ E , where ve is the number of

w ∈ V ∪ X such that d(w, e) ≤ 3r .

In backbonenetworks, x is a small number as typically a networknode is also installed
on each link crossings [4], while the link density ρr practically should not depend
on the network size. We also know that ρr is at least the maximal nodal degree in the
graph. For simplicity, we assume that edges intersect in at most one point.

Definition 5.1.6 Let X be the set of points p which are not in V and there exist at
least 2 non-parallel edges crossing each other in p. Let x = |X |.

As mentioned before, in backbone network topologies, typically x � n. This is
because a switch is usually installed if two cables are crossing each other.5 It gives
us the intuition that G is “almost” planar, and thus it has few edges.

Claim 5.1.9 The number of edges in G is �(n) and O(n + x).

Proof Since G is connected, m = �(n) is immediate. The upper bound was proved
in [3] as follows. Let G ′(V ∪ X, E ′) be the planar graph obtained from dividing the
edges ofG at the crossings. Since every crossing increases the number of edges by at
least two, |E ′| ≥ m + 2x . On the other hand, |E ′| ≤ 3(n + x) − 6 sinceG ′ is planar.
Thus m ≤ |E ′| − 2x ≤ 3n + x − 6. �

5 Recent experimental studies give empirical evidence that real-world road networks typically have
�(

√
n) edge crossings [5].
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Here we add a note on the Crossing Lemma giving a lower bound on x in function
of n and m. For a given graph G, let cr(G) the minimum number of edge crossings
over the planar embeddings of G. Theorem6. of [6] states that cr(G) ≥ 1

29
m3

n2 − 35
29n,

and if m ≥ 6.95n, then cr(G) ≥ 1
29

m3

n2 .

5.1.3.1 Lower Bound on Computing the Maximal Failures

Now we present a straightforward lower bound on the time needed to determine Mr .
As it will turn out (in Corollary5.1.19), in specific circumstances, this lower bound
is asymptotically tight.

Corollary 5.1.10 The complexity of computing Mr is �(n log n).

Proof By combining Proposition4.3.1 (Lemma 4 of [7]) and Claim 5.1.9, we get
that reporting that there are no intersecting line segments takes �(n log n). In other
words, this means that computing Mr in the special case of r = 0 needs �(n log n)

time. �

5.1.3.2 Upper Bounds and Algorithm for Computing the Maximal
Failures

The set of link intersections X can be computed in near-linear time, for example,
with the help of algorithm Bentley-Ottmann [8] briefly explained in Chap.4.

Claim 5.1.11 X can be reported in O((n + x) log n) time and O(n + x) space.

Proof To easily distinguish nodes and edge intersections geometrically, edges are
shortened in both directions with a tiny fraction of their length. The statement follows
by using Proposition 4.3.2 (Theorem 2.4 of [8]) and Claim 5.1.9 by noting also that
O(log(n + x)) is O(log n). �

The next theorem states, it is enough to process the edge triplets in the neighbor-
hood with radius 3r of every point in V ∪ X .

Theorem 5.1.12 (Theorem 32 of [3]) For every failure H ∈ Fr there exists a disk
c of radius at most r hitting H with centre point at distance at most 2r from V ∪ X.

Theorem 5.1.13 Let r be a positive real number, F ∈ Mr be a set of line segments
which can be hit by a disk of radius r . Then there exists a segment e ∈ F and a disk
c described in Theorem5.1.2 (disk c has radius r , hits F, intersects e in a single
point Q, and (a), or (b), or (c) holds with H = F), such that the centre point of c is
at distance at most 2r from either an endpoint of e or a point of crossing (of e and
another segment f ∈ F).
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Fig. 5.6 Illustration to
Theorem5.1.12

Proof We proceed along the lines of the proof of Theorem5.1.2. If we are in case (1)
of the proof of Theorem5.1.2, then (b) or (c) holds for the statement of the theorem,
as Q can be an endpoint of a segment e ∈ F .

We may turn our attention to case (2) from Thm. 5.1.2. Then K = ∩e∈F N (e, r)
is a closed bounded convex set on the plane whose boundary is a polygon composed
of line segments. If K has no interior points in the plane, then r is an optimal hitting
radius for F . Then c = cF will be a suitable disk. The proof of Theorem5.1.12 can
be extended to show that the requirements of Theorem 5.1.2 will be valid for cF in
the place of c. This follows from a simple but tedious analysis of the Cases 1–4 of
Theorem 5.1.8, which we omit here.

We may, therefore, assume that K has an interior point (see also Fig. 5.6). Then
K is a proper convex k-gon for some k ≥ 3, hence there exists a vertex R of K with
angle α ≥ π

3 . The circle of radius r centered at R will meet the requirements of the
theorem. Indeed, there will be then two segments e, f ∈ F such that their supporting
lines are tangent to c, and c is seen at angle α from their point of intersection. Q
will be the point of tangency of e or f with c. See the last case in the proof of
Theorem5.1.12 for further details. �

Next,wewill give better upper bounds on the number of SRLGs.As a consequence
of Theorem 5.1.13, when considering circular disasters of radius r , then in a sense,
we may ignore the points on the edges e ∈ E which are more than 3r away from
V ∪ X . Consider the pairs (e, v) where e ∈ E , v ∈ V ∪ X , and v ∈ e. If we have
an SRLG of radius r as in Theorem 5.1.13 with edge e such that the distance of c
is at most 2r from v, then the edges of this SRLG must intersect the disk of radius
3r centered at v. This gives at most 15ρr possibilities for the other edge besides e
in Theorem 5.1.13(a) or (b) (see Fig. 5.7, where 15 circular disks of radius r cover
a disk of radius 3r ). The number of pairs (e, v) can be counted by looking at the
contribution of node v: it will be deg v, where deg is the degree in the planarized
graph. The sum of the degrees is twice the number of the edges of the latter graph,
which is O(n + x). Thus we have the following bound:

Corollary 5.1.14 |Mr | = O((n + x)ρr ) .

This bound is asymptotically tight6 on the graphs in Claim 5.1.5 because ρr = n
2

for r = k. Next, we discuss the algorithm to generate the list of SRLGs.
Theorem5.1.13 togetherwith other formerly presented results inspire an improved

algorithm with a running time near linear in n described in Table5.2. The main idea

6 No attempt have been made to optimize the constant.
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Fig. 5.7 A disk with radius
3r can be covered with 15
disks with radius r .
Generally, covering a disk
with a radius ε with the
fewest possible number of
disks with radii 1 is called the
disk covering problem [9]

Table 5.2 Algorithm for determining Mr and complexity of its tasks

# Task Complexity

1 Determine X O((n + x) log n)

2 For w ∈ V ∪ X determine Ew O((n + x)(log n + ρ2
r ))

3 For e ∈ E determine Ve O((n + x)(log n + ρ2
r ))

4 For w ∈ V ∪ X determine Lr,w O((n + x)ρ3
r )

5 For e ∈ E for w1, w2 ∈ Ve compare Lw1

with Lw2

O((n + x)μρ5
r )

6 Merge resulting lists in Mr O(n + x)

is to build up local data structures, pre-compute the lists of candidate members of
Mr , then merge these lists, all in nearly linear time. With this aim, we make the
following definitions.

Definition 5.1.7 For a given r and w ∈ V ∪ X , let Ew := {e ∈ E | d(w, e) ≤ 3r};
and let the edges in Ew be given in sorted order with respect to the lexicographic
ordering of their endpoints. For a given e ∈ E , let Ve := {w ∈ V ∪ X | d(e, w) ≤ 3r}.
Theorem 5.1.15 All the sets Ew for w ∈ V ∪ X can be determined in O((n +
x)(log n + ρ2

r )). Similarly, all the sets Ve for e ∈ E can be computed in the same
time complexity.

The proof of Theorem5.1.15 is relegated to Sect. 5.1.4.2.

Lemma 5.1.16 The set of SRLGs for circular disk shaped disasters of radius r can
be computed in O((n + x)(log n + ρ3

r )).

Proof Based on Claim 5.1.11 and Theorem5.1.15, Ew can be determined in the
proposed complexity for all w ∈ V ∪ X .

Then for every node w, we compute list Lr,w containing the set of edges hit by
an element of disk set Cr,w defined as follows: for e, f ∈ Ew we compute disks c
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of radius r (if exist) according to Theorem5.1.2: either case a) applies if e and f
are not parallel, and c intersects them in two different points, or case b) when c
intersects e and f in two different points, one being an endpoint of e, or case c)
when c touches e at an endpoint; moreover we require that formerly computed disks
c have centres not farther than 2r from w. These disks are collected in Cr,w. This
takes O((n + x)ρ3

r ) time, since there are O(ρ2
r ) disks c to determine and store in

Cr,w, and for each c ∈ Cr,w the set of edges hit by c can be determined in O(ρr ) time
based on Ew. It follows readily from Theorem5.1.13 that for every F ∈ Mr there
exists a w ∈ V ∪ X such that F is a subset of an element of listLr,w. �

Please note that listsLr,w together may contain duplicates and non-maximal sets
as well, those will be eliminated later at a subsequent phase.

Finally, based on Corollary5.1.7 we give an upper bound on the total number of
circular disk failures with radius at most r .

Proposition 5.1.17

∣∣
∣∣∣

⋃

0<r ′<r

Mr ′

∣∣
∣∣∣
is O((n + x)ρ2

r ) .

Proof We can use Theorems 5.1.6 and 5.1.12 and the fact that a disk of radius 3r hits
O(ρr ) segments. From Theorem 5.1.6, we see that it suffices to construct disks of the
form cH , for sets of segments H of size atmost 3. Then byTheorem5.1.12 it is enough
to calculate for every v ∈ V ∪ X the smallest hitting disk of every set H containing
an edge going through v and containing 1 or 2 edges from the 3r neighborhood of
v. For a fixed v we have O(deg v · ρ2

r ) SRLGs, and the claim follows. �

As mentioned after Lemma 5.1.16, the final task for determining Mr is to merge
lists Lr,w by eliminating duplicates and non-maximal elements. To do this in sub-
quadratic time in n, one must avoid comparing all pairs of listsLr,w1 ,Lr,w2 .

Definition 5.1.8 Let μ be the mean square of numbers |Ve| for all e ∈ E , i.e. μ :=∑
e∈E |Ve|2
m .

Theorem 5.1.18 The maximal circular disk failures with radius exactly r can be
computed in time O((n + x)(log n + μρ5

r )) and this is tight in n.

Proof According to Lemma 5.1.16, all sets of failures Lr,w can be determined in
time O((n + x)(log n + ρ3

r )).
We observe that it is enough to compare listsLr,w1 andLr,w2 for possible contain-

ment or duplicates only if Ew1 ∩ Ew2 
= ∅, or in other words there exists an e ∈ E
for which {w1, w2} ⊆ Ve. We deduce that it is enough to compare for all e ∈ E and
w1, w2 ∈ Ve list pairs Lr,w1 ,Lr,w2 . This means comparing at most

∑

e∈E

|Ve|(|Ve| − 1)

2
< m

∑
e∈E |Ve|2
m

= mμ
Claim 5.1.9= O((n + x)μ)

pairs of lists, with each list having O(ρ2
r ) elements. Taking into consideration that

a comparison of two elements (SRLG candidates) can be done in O(ρr ), we obtain
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a complexity of O((n + x)μρ5
r ), confirming the claim for the total complexity. The

lower bound is provided by Corollary 5.1.10. �
Table5.2 summarizes the steps of our proposed algorithm. Note that parameters

ρr , x , and μ are theoretically upper bounded by m, m(m−1)
2 , and (n + x)2, respec-

tively, meaning that our algorithm for determining Mr is clearly polynomial in n
or m. Furthermore, based on Theorem5.1.18 using that x is O(n) in practice, and
that ρr is more or less proportional to 2r

diamm ([10])) in the interval (0, diam/2],
where diam is the geometric diameter of the network, we get a complexity bound
of O

(
n(log n + μ( r

diam )5)
)
for determining Mr . Also, as in practice x = O(n), and

for r much smaller than network diameter, ρr = O(1), and μ = log(n) we can state
that:

Corollary 5.1.19 If ρr = O(1),μ = O(log n), and x is O(n), Mr can be calculated
in O(n log n) optimal time. These assumptions hold in practice when r is much
smaller than the geographical network diameter.

Proof Combining Theorem5.1.18 and Corollary5.1.10 yields the proof. �
In the phrasing of Thesis 1.1, instead of μ, I use a more intuitive parameter,

namely, φr :

Definition 5.1.9 Parameter φr denotes the maximum number of nodes in the 3r -
neighborhood of a link of the input graph G.

Corollary 5.1.20 Mp
r can be determined in O

(
(|V | + x)

(
log |V | + φ2

r ρ
5
r

))
.

Proof Combining Theorem5.1.18 and the definition of parameters μ and φr com-
pletes the proof. �

5.1.4 Auxiliary Proofs of Section 5.1

5.1.4.1 Proof of Theorem 5.1.6

We need the following simple lemma.

Lemma 5.1.21 Let C1,C2,C3 be convex subsets of the plane R2 such that t =
C1 ∩ C2 ∩ C3 is a line segment with more than 1 point. Then there exist two indices
i, j such that Ci ∩ C j is collinear.

Proof Let R, S be two different points of t . If the statement is false, then the pairwise
intersectionsCi ∩ C j all contain points not on the line of t . Without loss of generality
we may assume that C1 ∩ C2 and C1 ∩ C3 contain points P2 and P3 from the same
open halfplane defined by the line of t . If P3 = P2 then we obtain P2 ∈ t which is
a contradiction. We infer that P3, P2, R, S are four different points. Radon’s lemma
(Theorem 1.3.1 in [11]) can be applied to them. The Radon point X will be on one
hand on the open halfplane defined by the line of t and containing the Pi . On the
other hand X ∈ C1 ∩ C2 ∩ C3. This gives a contradiction. �
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Proof of Theorem 5.1.6. Let r be the radius of cH . We have then

∩e∈H N (e, r) 
= ∅, (5.3)

but ∩e∈H N (e, r ′) = ∅ for any r ′ < r .
The statement of the theorem is immediate if H has at most 2 sets. Suppose now

that |H | ≥ 3. If for every 3-element subset H ′ of H there exists a radius rH ′ < r
such that ∩e∈H ′ N (e, rH ′) 
= ∅, then with r∗ = max rH ′ we have ∩e∈H N (e, r∗) 
= ∅

by the planar Helly’s theorem (Theorem 1.3.2 in [11]) applied to the convex sets
N (e, r∗), hence H can be hit by a disk of radius r∗, which is impossible. We obtain
that there exists a 3 element subset H ′ of H such that the radius of cH ′ is r .

Note also, that the intersection on the left of (5.3) is necessarily a (possibly degen-
erate) nonempty closed bounded line segment s. This follows from the fact that the
intersection is a nonempty closed bounded convex subset without an interior point.
Indeed an interior point would allow a hitting radius for H , which is less than r . Note
also that the lexicographically smallest (end)point P of s is the center of cH .

We observe next that for H ′ above the hitting radius r is also minimal, hence the
intersection∩e∈H ′ N (e, r) = s ′ is also a line segment which contains s. If the smallest
point of s ′ is P then we are done, as P will be the center of cH ′ . We may therefore
suppose that s ′ contains a point Q smaller than P .

Suppose that H ′ = {e1, e2, e3}. We verify that there exist i, j , 1 ≤ i < j ≤ 3,
such that the intersection N (ei , r) ∩ N (e j , r) is a subset of the line of s ′. Indeed, this
follows from Lemma 5.1.21 applied to the neighborhoods N (ei , r) and t = s ′.

We conclude by noting that there exists an edge f ∈ H such that N ( f, r) does
not have a point on the line of s ′ which is smaller than P (otherwise s itself had
such a point). These imply that the lexicographically smallest point of N (ei , r) ∩
N (e j , r) ∩ N ( f, r) is P and the proof is complete. �

5.1.4.2 Proof of Theorem5.1.15

We need the following three simple lemmas.

Lemma 5.1.22 Let A = (x, y) be a point in the plane of distance at most 3 from
the origin. Then, any line going through A intersects either the x- or the y-axis not
farther than 3

√
2 from the origin.

Proof Without loss of generality, we can assume A is in the first quadrant of the
plane. Let B = (0, 3

√
2) andC = (3

√
2, 0), respectively. Then line of BC is tangent

to the circle centered at the origin O and having radius 3 (at the point
(

3√
2
, 3√

2

)
,

see Fig. 5.8). Now any line � passing through A must intersect a side of the triangle
OBC , hence it intersects at least two sides (Pasch’s axiom), therefore � intersects
either OB or OC . �
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Fig. 5.8 Illustration for
proof of Lemma 5.1.22

Definition 5.1.10 Let ρ ′ be the maximum number of edges of E ′ intersecting a disk
with radius 3r .

Lemma 5.1.23 ρ ′ is O(ρr ).

Proof For any point p, the number of edges of G ′ hit by the disk with radius r and
center point p is less or equal to the number of edges of G hit by the disk with radius
(1 + 3

√
2)r and center point p, which is O(ρr ) since a disk with radius (1 + 3

√
2)r

clearly can be covered by a constant number of disks with radius r . �

Lemma 5.1.24 There are O((n + x)ρ2
r ) intersecting link pairs in link set E

′ result-
ing from elongating each edge of E by 3

√
2r in both directions.

Proof Let {e, f } ∈ E be two links such that only their elongated versions {e′, f ′} ∈
E ′ are crossing in a point z. We claim that this z is on the elongated part of at
least one of e′ or f ′, i.e., considering the edges as geometric intervals, z ∈ e′ \ e
or z ∈ f ′ \ f . Also, for each e′ ∈ E ′, there are O(ρr ) edges of E ′ that cross e′ \ e,
since, for an edge f ′ ∈ E ′ to cross e′ \ e, d(e′ \ e, f ) has to be ≤ 3

√
2r , and the

3
√
2r neighborhood of e′ \ e (where e′ \ e stands of two 3√2r long intervals) can be

covered with a constant number of disks with radius r . Based on these, and using that
|E ′| is O(n + x) (Claim 5.1.9), we can deduce that there are O((n + x)ρr ) newly
appearing crossing link pairs in E ′ in addition to those that are crossing in E in a
point of V ∪ X . Regarding to the number of these ‘old crossings’, in each point of
V ∪ X , there are at most ρr links of E crossing (and those links of E ′ that cross
in V ∪ X , were already counted), meaning O((n + x)ρ2

r ) crossing link pairs. This
means a total of O((n + x)ρ2

r ) crossing link pairs in E ′. �

Proof of Theorem 5.1.15 First, let us concentrate on determining sets Ew for w ∈
V ∪ X . LetG ′(V, E ′) be the graph resulting from elongating the edges of E by 3

√
2r

in both directions. For reporting link intersections in some slightly modified versions
of G ′, we shall use the Chazelle algorithm [7] that, out of m links, reports all the k
intersecting pairs in O(m logm + k) (Proposition 4.3.1).

The most important observation is that, based on Lemma 5.1.22, if an edge e ∈ E
is also part of Ew for a w = (x, y) ∈ V ∪ X , then the corresponding edge e3r in
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E ′ (that was extended in length by 3
√
2r in both directions) intersects either I |

w :=
[(x − 3

√
2r, y), (x + 3

√
2r, y)] or I−

w := [(x, y − 3
√
2r), (x, y + 3

√
2r)]. Herewe

use also the simple fact that the diameter of a square (the length of the longest segment
within the square) of side length 3r is 3

√
2r .

Let G ′| be the graph resulting by adding intervals I |
w to G ′ for every w ∈ V ∪ X

as edges of the graph. Let E ′|
w denote the set of edges (of E ′) intersecting I |

w. G
′−
w and

E ′−
w can be defined similarly. It is easy to see that E ′|

w ∪ E ′−
w contains all the edges,

which in the original graphG are not farther fromw than 3r , however, it may contain
some outliers. Thus in order to get Ew, one can check the distance of the original
(i.e., not extended) edges from w, which correspond to edges in E ′|

w ∪ E ′−
w from w.

It is easy to see thatG ′| has still O(n + x) edges.We count the number of pairwise
intersections in G ′| as follows. By Lemma 5.1.24, in G ′, there are O(n + x)ρ2

r link
pairs crossing. In addition to these, each of the (n + x) new edges (intervals) in G ′|
intersect O(ρr ) other edges (since the 3

√
2r neighborhood of each of these 6

√
2r

long edges can be covered with a constant number of disks of radius r , and in case
of an e ∈ E elongated as e′ ∈ E ′, e′ crossing a | ∈ E ′| means d(e, |) ≤ 3

√
2r ). This

sums up to O((n + x)ρ2 + (n + x)ρr ), that is O((n + x)ρ2
r ). Thus, by Proposition

4.3.1, the intersections of G ′| can be determined in O((n + x) log n + (n + x)ρ2
r ),

that is O((n + x)(log n + ρ2
r )) time, alongside with the sets E ′|

w forw ∈ V ∪ X . The
same reasoning applies to the sets E ′−

w .
For any given w ∈ V ∪ X , E ′|

w ∪ E ′−
w contains ≤ 2ρ ′ edges, this way based on

Lemma 5.1.23, Ew can be determined in O(ρr log ρr ) time in such a way that the
edges are given in Ew in sorted order with respect to the lexicographic ordering of
their endpoints. This means a total complexity of O((n + x)ρr log ρr ) for this second
phase.

The inverse mapping, i.e., sets of nodes Ve for e ∈ E , can be done in the course
(or after) the preceding algorithm. Let Ve be initialized as empty set for all edges e,
then, when an Ew is confirmed, w is added to sets Ve for all e ∈ Ew. Clearly, this
also can be done in the proposed complexity. �

5.2 Spherical Regional Link Failures of Disasters
with Radius r

5.2.1 Model and Assumptions

However, in the Section, we are more interested in the spherical representations,
throughout the Section, we will consider two types of embeddings of the network:
embedding in Euclidean planar and spherical geometry. Thus, the Section will pro-
vide, in fact, a heuristic algorithm for determining both the planar and spherical
maximal link failures caused by disaster zones having a radius of r .

The network is modeled as an undirected connected geometric graphG = (V, E)

with n = |V | ≥ 3 nodes and m = |E | edges stored in a lexicographically sorted list.
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Fig. 5.9 Input graph G(V, E) with polylines, n = 17, γ = 4

The nodes of the graph are embedded as points in the Euclidean plane or sphere, and
their precise coordinates are considered to be given in 2Dand3DCartesian coordinate
system in the planar and spherical case, respectively.Note that if coordinates are given
in polar system (in the case of spherical geometry), one can easily transform them
to Cartesian at the very beginning.

When speaking of planar geometry, for each edge e there is a polygonal chain (or
simply polyline) ep in the plane in which the edge lies (see Fig. 5.9). Parameter γ will
be used to indicate the maximum number of line segments a polyline ep can have.
Naturally, in spherical case, the polyline of an edge refers to a series of geodesics.
Note that this model covers special cases when edges are considered as line segments
(geodesics).

For simplicity, I assume that nodes of V and the corner points of the containing
polygons defining the possible route of the edges are all situated in general positions
of the plane, i.e., there are no three such points on the same line and no four points on
the same circle, and in the spherical case there are no antipodal nodes or breakpoints
and no great circles of geodesics of polylines cross the North pole.

In this study, my goal is to generate a set of SRLGs, where each SRLG is a set
of edges. Note that from the viewpoint of connectivity, listing failed nodes besides
listing failed edges has no additional information.
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5.2.1.1 Model for Circular Disk Shaped Disasters

In most of this study, it will be assumed that disasters are either having a shape of a
circular disk or they are overestimated by a circular disk.

I will often refer to circular disks simply as disks, and I assume that all network
elements that intersect the interior of a circle c are failed, and all other network
elements are untouched.

Definition 5.2.1 A circular disk disaster c hits an edge e if the polyline of the edge
ep intersects disk c. Similarly node v is hit by disk c if it is in the interior of c. Let
Ec (and Vc) denote the set of edges (and nodes, resp.) hit by a disk c.

I emphasize that in this model, when I say e is hit by c, it does not necessarily
mean that e is destroyed indeed by c, instead, it means that there is a positive chance
for e being in the destroyed area. In other words, this modeling technique does not
assume that the failed region has a shape of a disk but overestimates the size of the
failed region in order to have a tractable problem space (Table5.3).

Definition 5.2.2 Let C p and C s denote the set of all disks in the plane and the set
of all disks on the sphere, respectively. For both geometry types g ∈ {p, s}, let C g

r

denote the set of disks part of C g having radius at most r .

Based on the above definition, I define the set of failure states that a network may
face after a disaster with a maximal radius.

Definition 5.2.3 For all geometry types g ∈ {p, s}, let set F(C g
r ) denote the set of

edges which can be hit by a disk c ∈ C g
r , and let Mg

t = M(C g
r ) denote the set of

maximal edge sets in F(C g
r ).

5.2.2 Heuristic Algorithm for Enumerating Maximal
Circular Disk Failures

In this Section, we present a heuristic approach suitable for computing both Mp
r and

Ms
r .

Definition 5.2.4 For a point P (in the plane or on the sphere) and node v ∈ V , let
the node-distance couple be [v, d(v, P)], where d(v, P) is the distance of v and P .
Let e(P) be the list consisting of the link-distance pairs of all links e ∈ E , sorted
according to the lexicographical order of the links. Let e(P)hit be the sorted list of
links not further from P than r .

Proposition 5.2.1 For a given point P, both e(P) and e(P)hit can be computed in
O((n + x)γ ). �
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Table 5.3 Table of symbols for Sect. 5.2

Notation Meaning

General

G(V, E) The network modeled as an undirected connected geometric graph,
E stored as an ordered list

n, m Number of nodes |V | ≥ 3 and edges |E |, respectively
ep For edge e, in case of planar geometry, there is a polygonal chain

(or simply polyline) ep in the plane in which the edge lies (see
Fig. 5.9); on the sphere ep is a similar region enclosed by a closed
sequence of geodesics

Ec and Vc Set of edges and nodes, resp. hit by a disk c, where a circular disk
disaster c hits an edge e if the polyline of the edge ep intersects
disk c. Similarly node v is hit by disk c if it is in the interior of c

C p and C s Set of all disks in the plane and the set of all disks on the sphere,
respectively; for both geometry types g ∈ {p, s}, let C g

r denote the
set of disks part of C g having radius at most r

C
g
r For both geometry types, denotes the set of disks part of C g having

radius at most r

F(C
g
r ) Set of edges which can be hit by a disk c ∈ C

g
r

Mg
t Set of maximal edge sets in F(C

g
r )

[v, d(v, P)] Node-distance couple for a point P (in the plane or on the sphere)
and node v ∈ V , where d(v, P) is the distance of v and P

e(P) List consisting of the link-distance pairs of all links e ∈ E , sorted
according to the lexicographical order of the links

e(P)hit Sorted list of links not further from P than r

P Set of points P for which we want to construct the link-distance
lists e(P)

dP Maxim al distance of any geometric location from the (closed)
convex hull of the geometric embedding of graph G to the closest
point of set P

� Taken two set of sets E1 and E2, we denote the relationship of the
sets with E1 � E2 if and only if for all e2 ∈ E2 there exists an
e1 ∈ E1, such that e1 ⊇ e2

Hg
r Output of Algorithm 1 (a failure list approximating Mg

r )

Parameter

γ Maximum number of line segments (geodesics) a polyline ep can
have

λ Maximum cardinality of the list of candidate maximal failures
detected so far in Algorithm 1
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Clearly, both node-distance lists and edge-distance lists can bedeterminedquickly.
Informally speaking, the plan is to determine these lists for a point set that is ‘dense
enough’ to be able to determine themaximal SRLG lists based on these node-distance
and edge-distance lists.

Definition 5.2.5 Let P denote the set of points P for which we want to construct
the link-distance lists e(P).

Let us stick to planar geometry for a moment. Intuitively, we can calculate Mp
r

by including the grid points of a sufficiently fine grid (let’s say containing 1km ×
1km squares) inP . On the sphere, we should choose a similar nice covering7.

Definition 5.2.6 Let dP be the maximal distance of any geometric location from
the (closed) convex hull of the geometric embedding of graph G to the closest point
of setP , i.e. dP := maxt∈conv(G) minp∈P dist(p, t).

Definition 5.2.7 Taken two set of sets E1 and E2, we denote the relationship of the
sets with E1 � E2 if and only if for all e2 ∈ E2 there exists an e1 ∈ E1, such that
e1 ⊇ e2.

Algorithm1 is an example heuristic algorithm for determiningMg
r .Wewill refer to

the output of the algorithm as Hg
r . Starting from Theorem5.2.2, we use an additional

parameter λ:

Definition 5.2.8 Let λ be the maximum cardinality of the list of candidate maximal
failures detected so far in Algorithm 1.

The intuition behind defining λ is, that in practice, |Mg
r | is O(n) (as presented

in planar case in [3]), thus in Algorithm 2 typically there has to be done only O(n)

comparisons.

Algorithm 1: Heuristic algorithm for
determining the maximal r -range SRLG
lists
Input: G(V, E), r , P , geometry type g,
coordinates of nodes and polylines of edges
Output: Hg

r
begin

1 for P ∈ P do
2 determine e(P)hit
3 if e(P)hit 
= ∅ then
4 refresh Mg

r with e(P)hit
// according to Alg. 2

5 return Hg
r

Algorithm 2: Refreshing
SRLG list M with failure
f
Input: SRLG list M , failure f
Output: M refreshed with f
begin

1 maximal:=True
2 for fM ∈ M do
3 if f ⊆ fM then
4 maximal:=False
5 if maximal then
6 M := M ∪ { f }
7 for fM ∈ M do
8 if f ⊃ fM then
9 M := M \ { fM }

10 return M

7 In other words, P is an ε-net [12] of the network area, for some ε > 0, and the range space of
the network area paired with the set of closed circular disks. Here, to design an approximation
algorithm, we exploit that the network area has a finite Vapnik–Chervonenkis (VC) dimension [13]
both in the plane and on the sphere.
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Theorem 5.2.2 Algorithm 1 determines Hg
r in O(|P|[(n + x)γ + λρr ]). Further-

more, Mg
r � Hg

r � Mg
r−dP

.

Proof Regarding to the complexity, for an element P of P we have to construct
e(P)hit, which can be done in O((n + x)γ ), then refresh the list of suspected max-
imal failures with e(P)hit in O(λρr ), since the list contains at most λ ordered lists
consisting of at most ρr edges.

On the other hand, Mg
r � Hg

r is immediate, since the algorithm investigates only
a subset of disks with radius r , while for every point t in the r -neighborhood of
conv(G), there exists a p ∈ P such that disk c(t, r − dP ) ⊆ c(p, r), yielding Hg

r �
Mg

r−dP
, from where the proof follows. �

Using the fact that the shape of the disasters is a closed disk we get the following
corollary:

Corollary 5.2.3 lim
dP →0

Hg
r = Mg

r , for any fixed network.

Corollary 5.2.4 (of Theorem 5.2.2) Mg
r � Hg

r � Mg
r−dP

. Furthermore, if both of
x and λ is O(n), the resulting list Hg

r of running Algorithm 1 is determined by the
algorithm in O(|P|n(γ + ρr )). If in addition, γ is O(1), and ρr is O(r/diam), Hg

r

is determined by Algorithm 1 in O(|P|n r
diam ).

Based on Theorem5.2.2, if one wants to protect disasters caused by disks with
radius r (i.e., over-approximate the failures caused by them), it is only needed to
run Algorithm 1 initializing the radius as r + dP . This way, adding the fact that
λ ≤ |P|, we have:
Corollary 5.2.5 (of Theorem 5.2.2)Mg

r+dP
� Mg

r � Hg
r . Trivially, ifP is such that

Hg
r+dP

= Hg
r , then Algorithm 1 calculates Mg

r in O(|P|[(n + x)γ + λρr ]), that is
O(|P|[(n + x)γ + |P|ρr ]).

This gives us a heuristic way to calculate Ms
r : if, forP , Hg

r+dP
= Hg

r , Algorithm
1 calculates Mg

r in polynomial time; else, we provide a denser P , and try again.

5.3 Are SRLG Lists for Spherical and Planar Network
Representation the Same?

In many works, regional failures are computed by transforming the geographical
coordinates of an existing network into a plane, which introduces distortion. Depend-
ing both on the geographical area of the network and on the transforming procedure,
this distortion can vary from negligible to significant. For example, the backbone
network of a small-to-medium size country is not suffering a significant distortion
when compared with the uncertainty of the available geographical data, but when
turning to networks covering a large country, a continent, or evenmultiple continents,
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(a) Transverse Mercator Projection (b) Lambert Conformal Conic Projection

(c) Oblique Stereographic Projection

Fig. 5.10 Distortion patterns on common conformal map projections. Projections are shown with
a reduction in scale along the central meridian or at the center of projection, respectively. Each of
the projections has >3% scale error over the US. Picture taken from [14]

there is no projection which can hide the spherical-like geometry of the Earth’s sur-
face (see Fig. 5.10 taken from [14]). E.g., while the territory of continental US can
be mapped onto a plane with 4% distortion [14], if we want to investigate bigger
networks, clearly there is no projection that can hide the spherical-like geometry of
the Earth.

There are reasons why one should analyze the global communication network
as a whole: Electromagnetic storms induced by the Sun’s Coronal Mass Ejections
(CMEs) could cause severe simultaneous failures of electric and communication
networks all over the Earth.

An important question is that, in practice, under which geographic extension of
the network can one say that, in the viewpoint of SRLG enumeration, it is practically
indifferentwhetherwe consider a spherical or a planar representation of the network8.
In other words, focusing now on lists Mr , the question is that under which size of the
physical network will Mp

r and Ms
r (maximal link sets which can be hit by a single

circular disk with radius r , in the plane and on the sphere, resp.) be precisely the
same. The answer depends not only on the physical size but also on the characteristics
of the network itself: it can represent a dense metropolitan backbone network with

8 Note that in case of disasters hitting a big fraction of theEarth’s surface (similarly to theCarrington-
event [15]), planar and spherical SRLG lists of fixed disaster shapes differ greatly [16].
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Fig. 5.11 Simulation results for comparing SRLG lists resulting from the planar and spherical
representation of networks

multiple nodes close to each other, but it can also be geographically very sparse. Let
τ be the distance of the closest non-adjacent and non-intersecting link of the network,
and let D be the diameter of the smallest hitting disk of the network G. We can see
that there can be any difference between Ms

r and Mp
r only if 2r ∈ [τ, D] for either

the spherical or the planar representation. Practical radii of circular disasters range
from a couple of kilometers to a couple of hundreds of kilometers, which means they
might be so small that there cannot be any difference between the SRLG sets (i.e.,
2r < τ means Ms

r = Mp
r ). If τ is smaller than the disaster diameter, then it is easy

to find settings, where Ms
r 
= Mp

r .
To study the phenomenon more in details, I used two similarity metrics of the

SRLG lists: (1) the ratio of SRLGs, which are present in only one of Mp
r and Ms

r ,
i.e., M (r) := |Mp

r �Ms
r |/(|Mp

r | + |Ms
r |) ∈ [0, 1], and 2) the average and maximal

Hamming distance of an SRLG from Ms
r to its closest counterpart in Mp

r . I depicted
the values of thesemetrics in Fig. 5.11a–c, respectively.As a base of evaluation, I took
an Italian topology (Fig. 5.11d, with a diameter D = 1180km), and itsmagnified ver-
sions such that the resulting networks have diameters D = 100, 200, . . . , 1500km
on the sphere. It can be seen that, in most cases, all of these metric values are 0
(i.e., Mp

r = Ms
r ), but one can witness high spikes of big ratios of different SRLGs

(Fig. 5.11a), or spherical SRLGs which have a symmetric difference of 3 links with
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their closest planar counterpart. This latter phenomenon happens when there are
some nodes u, v ∈ V such that d(u, v) ≤ 2r exactly in one of the spherical and
planar representations.

The small and inconsistent ratio of different SRLGs in the two studied SRLG
lists is due to the fact that though the Earth’s surface is curved, this curvature is
not practically significant in case of a backbone topology of a small to medium-
size country. For example, the maximum distance distortion of the Orthographic
projection over Hungary and Italy (having diameters< 530 and< 1250km) is< 0.1
and < 0.5%, respectively (Fig. 5.11e). Even the contiguous US can be mapped with
< 4% of distance distortion (Fig. 5.10c [14]).

Since the calculation time of Ms
r was approximately twice of the Mp

r in my
experience, I concluded as follows. Ms

r and Mp
r can differ, thus it makes sense to

compute the SRLG lists with the more precise spherical representation. However, in
many of the cases, the distortion yielding from representing the network in the plane
causes less inaccuracy than the lack of knowledge on the disaster characteristics,
e.g., there can be as much as 10% inaccuracy in determining the disaster radius. In
those cases, the planar representation can serve the purpose of SRLG listing well
enough.

5.4 Thesis Summary

Thesis 1 ([10, 16–18]) I proposed polynomial algorithms for enumerating lists M p
r

and Ms
r of maximal link sets (SRLGs) which can be hit by a disaster overestimated by

a shape of a circular disk with an arbitrary given radius r , in case of embedding the
network in the Euclidean plane and on the sphere, respectively. I gave theoretical
upper bounds on the cardinality of both M p

r and Ms
r . I proved that the proposed

algorithm for planar embeddings has a computational complexity which is tight in
the number of network nodes. Finally, I compared the similarity of M p

r and Ms
r in

practice.

Thesis 1.1 ([10, 18]) I proposed an algorithm, which, in case of representing a
connected network topology G(V, E) in the Euclidean plane with links considered
as line segments, computes the list M p

r of maximal link sets hit by a circular disk with
radius r in O

(
(|V | + x)

(
log |V | + φ2

r ρ
5
r

))
, where x is the number of link crossings,

ρr is the maximum number of links which are hit by a circular disk with radius r ,
and finally, φr is the maximum number of nodes in the 3r-neighborhood of a link.
I proved that the complexity of the proposed algorithm is tight in |V |. I proved that
the cardinality of M p

r is O ((|V | + x) ρr ), and that this bound is tight. I proved that∣∣⋃
0<r ′<r M

p
r ′
∣∣ is O((|V | + x)ρ2

r ).

Thesis 1.2 ([16, 17]) I proposed a heuristic algorithm, which, considering a con-
nected network topology G(V, E) on a sphere with links considered as chains of
geodesics, and considering a related sufficiently dense set P of disaster center
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points, computes list Ms
r of maximal link sets hit by a circular disk with radius r

in O(|P|[(|V | + x)γ + |P|ρr ]), where x is the number of link crossings, γ is the
maximal number of geodesics a link stands of, and ρr is the maximum number of
links which are hit by a circular disk with radius r . Through simulations, I showed
that Ms

r and M p
r can differ in practice, thus it is more precise to compute the SRLG

lists with the spherical representation. However, in many of the cases, the distortion
yielding from representing the network in the plane causes less inaccuracy than the
lack of knowledge on the disaster characteristics. I concluded that, in those cases,
the planar representation can serve the purpose of vulnerable region detection well
enough.
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Chapter 6
Maximal SRLGs Caused by Circular
Disks Hitting k Nodes

6.1 The Limited Geometric Information Failure
Model - Informally

In resilient routing, the current best practice is to ensure that the primary and backup
paths assigned to a connection are node disjoint. Compared to edge-disjointness, in
this way operators ensure that the distance between the nodes of the primary and
backup paths (except at the terminal nodes) are at least 1-hop-distance from each
other. The intuitive reasoning is that a link in a backbone network is typically a few
hundred kilometers long, while natural disasters are never larger than a few hundred
kilometers. The root of the outages is usually because the following.

(I) close nodes when two nodes are placed close to each other; for example, in
highly populated areas. (II) parallel links when two links are placed close to each
other because of some geographic reasons; for example, they traverse the same bridge
over a large river or cross a mountain range through the same valley.

We have the following design goals in defining the limited geometric information
failure model.

• Do not underestimate the set of links involved in a possible regional failure. We
believe the operator’s damage in case of an unprotected regional failure is much
greater than the extra cost of protecting networks against larger SRLGs.

• Relative link distances are given, the exact route of the cables are unknown, and
the nodes are embedded in a schematic map.

• Provide a fast and space efficient way of calculating the set of SRLGs.

According to the first design goal, we deal with circular disk failures and define
the size of the regional failure through the number of nodes it covers. Although the
regional failures can have any location, size, and shape, without any background
information on the regional failures, it is a common practice to overestimate the
size of the regional failure by ignoring its shape and rather focus on its radius only
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(see [1] and Chap. 5).1 According to our second design goal, the scaling of the
topology map is not known, thus we cannot define a fixed maximum radius for the
regional failures, but instead, we define a limit on the number of nodes interior to
the circular disk.

Now we can define the limited geometric information failure model, which is
based on the following assumptions:

• The network is a geometric graph G(V, E) embedded in a 2D plane.
• The exact route of the conduits of the network links are not known, but contained
by a polygonal region.

• The shape of the disaster is a circular disk with arbitrary radius and center position.
• We focus on regional link k-node failures, failures that hit k nodes for
k ∈ {0, |V | − 2}.
The detailed model description can be found in Sect. 6.2. We argue this fail-

ure model can reasonably represent the possible regional failures, without actually
requiring to know the scaling of the topology map.

Based on our output, operators can generate SRLG-disjoint primary and backup
paths to protect the connection against natural disasters.2 The distance between the
primary and backup paths is a straightforward metric to compare the failure models.
Based on the logical topology, the conventional approach to defining the distance
is the hop-distance between the nodes traversed by the primary path and the nodes
traversed by the backup path, except the terminal nodes. Based on this definition, we
can list the failure models in increasing order of their strength (see Sect. 6.6.3 for
the proof):

• Single link failures (≥ 0-hop-distance),
• Single node failures (≥ 1-hop-distance),
• Single regional link 0-node failures,
• Single regional link 1-node failures,
• Single regional link 2-node failures, etc.

Note that, in our experiments with practical network topologies protecting against
single regional link 0-node failures resulted in at least 2-hop-distance between the
nodes of the primary and backup paths, except the terminal nodes. We believe the
proposed approach well captures the possible regional network failures based on the
little geographic information available at network devices.

1 Of course, extreme overestimation of the failed link set should be avoided.
2 The routing algorithmsmodify the SRLGs,whose failure isolates the source and destination nodes:
those SRLGs are replaced with a smaller non-isolating SRLG according to the failure model.
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6.2 Model and Assumptions

The network is modeled as an undirected connected geometric graph G = (V, E)

with n = |V | ≥ 3 nodes and m = |E | edges.3 The nodes of the graph are embedded
as points in the Euclidean plane, and their exact coordinates are considered to be
known. In contrast to this, precise positions of edges are not known, instead we
assume that for each edge e there is a containing polygon (or simply polygon) ep in
the plane in which the edge lies (see Fig. 6.2a). Parameter γ will be used to indicate
the maximum number of sides a containing polygon ep can have (Table 6.1). Note
that this model covers special cases when edges are considered as polygonal chains
or line segments (thus at first reading, for ease, the reader may consider the edges as
line segments and γ equals two).

For simplicity we assume that nodes of V and the corner points of the containing
polygons defining the possible route of the edges are all situated in general positions
of the plane, i.e., there are no three such points on the same line and no four on the
same circle.4

We will often refer to circular disks simply as disks. The disk failure model will
be adapted, which overestimates the area of a disaster such that all network elements
that intersect the interior of a circle c may fail, and all other network elements are
untouched. It is important to note that this modeling technique does not assume that
the failed region has a shape of a disk, but overestimates the size of the failed region
to have a tractable problem space.

Definition 6.2.1 A circular disk failure c hits an edge e if the polygon of the edge
ep intersects the interior of disk c. Similarly node v is hit by failure c if it is in the
interior of c. Let Ec (and Vc) denote the set of edges (and nodes, resp.) hit by a disk
c.

We emphasize that in this model when we say e is hit by c, it does not necessarily
mean that e is destroyed indeed by c, instead, it means that there is a positive chance
for e being destroyed.

Definition 6.2.2 Let C denote the set of all circular disks in the plane, and let
Ck ⊆ C denote the set of those hitting exactly k nodes from V .

Based on the above we can define the set of failure states the network may face
after a disk failure hitting exactly k nodes.

Definition 6.2.3 Let set F (Ck) denote the set of edge sets which can be hit by a
disk c ∈ Ck , and let Mk = M (Ck) denote the set of maximal edge sets in F (Ck).

3 Graph G = (V, E) is not necessarily planar.
4 All of the results of this chapter could be extended to geometric objects in non-general position,
however this would complicate our arguments lowering the readability of the Thesis, while by an
insignificant perturbation of the data one can make sure that the geometric objects are in general
position.



62 6 Maximal SRLGs Caused by Circular Disks Hitting k Nodes

Table 6.1 Table of symbols for this chapter

Notation Meaning

General

G(V, E) The network modeled as an undirected connected geometric graph

n, m The number of nodes |V | ≥ 3 and edges |E |, respectively
ep The containing polygon of edge e (see Fig. 6.2a)

Vc, Ec Set of nodes and edges, resp., hit by a disk c

C The set of all circular disks in the plane

Ck The set of circular disks in the plane hitting exactly k nodes

F(Ck) The set of edge sets which can be hit by a disk c ∈ Ck

Mk The set of maximal edge sets in F(Ck)

M2
k The set of maximal failures which can be hit by a disk from Ck having

2 nodes on its boundary

M1
k The set of maximal failures which can be caused by a half-plane

having a node on its boundary hitting exactly k nodes

C u,v
k The set of disks from Ck having nodes u, v on their boundary

C u,v The set of disks from C having nodes u, v on their boundary

Mu,v
k The set of failures which contain exactly the elements of Mk that can

be hit by a disk c ∈ C u,v
k

Parameter

k We are interested in circular disk shaped disasters hitting k nodes

γ The maximum number of sides a containing polygon ep can have

ρk The maximum number of edges hit by a disk hitting k nodes

Apple

Ek The set of node-pairs {u, v} ⊂ V for which C u,v
k �= ∅

Dk(V, Ek) The k-Delaunay graph induced by node set V and edge set Ek

c(x),
h+,
h−

For u, v ∈ V , a Cartesian coordinate system is placed in the plane such
that line uv be identical to the vertical axis y, u and v have ordinates (y
coordinates) 1 and −1, respectively (see Fig. 6.3). In this coordinate
system, h+ and h+ are the right and left open half plane determined by
line uv, respectively, and c(x) = c(x, u, v) denotes the unique disk c
in C u,v , which has centre point (x, 0), and c(+∞) := h+ and
c(−∞) := h−, respectively

I u,v
k The set of those numbers x , for which c(x) ∈ C u,v

k

xmax The maximum of I u,v
k , if exists, else if I u,v

k �= ∅, xmax = +∞
xmin The minimum of I u,v

k , if exists, else if I u,v
k �= ∅, xmin = −∞

Ec(xmax ),
Ec(xmin )

The edge sets hit by c(xmax ) and c(xmin), respectively

� For u, v ∈ V , the right side of c(xmax ) cut by the vertical line uv

� For u, v ∈ V , the left side of c(xmin) cut by the vertical line uv

x+(e) For edge e, the leftmost disk which hits ep ∩ �
x−(e) For edge e, the rightmost disk which hits ep ∩ �

(continued)
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Table 6.1 (continued)

Notation Meaning

x+(v),
x−(v)

For nodes w+ ∈ h+ and w− ∈ h−, let x+(w+) and x−(w−) denote the
abcissa of the centre point of circle going
through u, v and w+ or w−, respectively

E+ The list of edges hit by � ordered descending by the x+ values

E− The list of edges hit by �ordered descending by the x− values

V+ The list of nodes hit by � ordered descending by the x+ values

V− The list of nodes hit by �ordered descending by the x− values

V ′+ The list of nodes w in h+ ordered decreasingly by the abscissa x+(z)
of their leftmost hitting circles
(going through u, v, z)

V ′− The list of nodes z in h− ordered decreasingly by the abscissa x−(z) of
their rightmost hitting disk
(going through u, v, z)

Au,v
k For an edge {u, v} ∈ Ek , apple Au,v

k is an ordered system
Au,v
k = (V+, V−E+, E−). For each element of each list its

appropriate x+() or x−() value is also stored

Ak The set of apples Au,v
k

Seesaw (only in Sect. 6.5.1)

For data structure Seesaw for determining M1
k , please check Sect. 6.5.1

Note that for every l ∈ {0, . . . , k − 1} and f ∈ Ml there is an f ′ ∈ Ml+1 such
that f ⊆ f ′, because any disk hitting l ≤ k nodes could be overestimated by a disk
hitting k nodes.

As mentioned before, only the maximal edge sets will be listed as SRLGs. This
study aims to offer fast algorithms computing this list for various values of k, more
precisely, throughout the chapter we will assume k ∈ {0, n − 2} since if a failure hits
n − 1 nodes, there is no node pair to communicate.

6.3 Algorithm for Enumerating Maximal Failures

In this section, a polynomial time algorithm is presented for computing Mk . The
basic idea is that determining Mk can be decomposed into several simpler tasks, as
illustrated in Fig. 6.1. Informally, after determining the so-called k-Delaunay graph
(Definition 6.3.4 in Sect. 6.3.2), data structures apple (Sect. 6.3.3) and seesaw (Sect.
6.5.1) are computed, and finally Mk is determined by merging lists Mu,v

k and Mw
k

resulting from querying the apples and seesaws.
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Fig. 6.1 Visual sketch of Algorithm 5 for determining Mk

6.3.1 Basic Observations

Our first observation is the following.

Claim 6.3.1 For every f ∈ Mk (k ≤ n − 2) there exists a disk c ∈ Ck such that f
is hit by c, and c has at least one node of V on its boundary.

Proof Let f be hit by a disk c0 ∈ Ck with centre point p. Since there are nodes of V
not inside c0, c0 can be magnified from p until its boundary reaches a node u from
V . This disk c1 is also from Ck and has at least one point on its boundary, still hitting
f . �

Disk c1 described in the proof can be further magnified while keeping its center
point on ray [up. Here we consider two cases: either there exists a node v ∈ V , which
gets on the boundary while magnifying disk c1 ∈ Ck , or the open half plane h having
p inside, u on the boundary, and having the normal vector �up hits k nodes.

Definition 6.3.1 Let M2
k be the set of maximal failures which can be hit by a disk

fromCk nodes having 2 nodes on its boundary. Let M1
k be the set of maximal failures

which can be caused by a half-plane having a node on its boundary hitting exactly k
nodes.

Proposition 6.3.2 Mk is the set maximal sets in M1
k ∪ M2

k . �

In the followings, we will present a way of computing M2
k in details using a data

structure called apple defined in the studies this Thesis is based on. Determining M1
k

can be done using similar ideas, thus we present it only briefly in Sects. 6.5.1–6.5.2,
where the same data structure called seesaw is defined.
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6.3.2 Connection with the k-Delaunay Graphs

Definition 6.3.2 For a node pair u, v ∈ V let C u,v
k denote the set of disks from Ck

having nodes u, v on their boundary. Let C u,v denote the set of disks from C having
nodes u, v on their boundary. Let Mu,v

k = M
(
C u,v
k

)
be the the set of failures which

contain exactly the elements of Mk that can be hit by a disk c ∈ C u,v
k .

Discussion after Claim 6.3.1 suggests the following simple method to compute
M2

k . First, for every node pair {u, v} ⊂ V , we compute a set of failures Mu,v
k .

Definition 6.3.3 Let Ek denote the set of node-pairs {u, v} ⊂ V forwhichC u,v
k �= ∅.

Figure 6.2 shows an example of the input topology G and the corresponding set
of node-pairs Ek for k = 0, 1, 2.

We can observe that by definition, M2
k can be computed by merging these sets

Mu,v
k , formally M2

k is the set of maximal elements from the union of sets Mu,v
k .

Our second observation is that Ek is the edge set of the so-called k-Delaunay
graph [2].

Definition 6.3.4 Let Dk = (V, Ek) denote the k-Delaunay graph induced by node
set V and edge set Ek .

In other words, a node pair {u, v} ⊆ V is a k-Delaunay edge (i.e., {u, v} ∈ Ek)
if there exists a circle through u and v that has at most k points of the node set V
inside. The k-Delaunay graph Dk is a so-called geometric proximity graph. There
is continuous research on a wide variety of geometric proximity graphs, where two
vertices are connected by an edge if and only if the vertices satisfy particular geomet-
ric requirements. For example, in [3] the construction time of the k-Gabriel graph is
studied, which is known to be a subgraph of Dk . In that paper, the k-Delaunay graph
is determined as an intermediate step from the k-Voronoi diagram while determining
the k-Gabriel graph in polynomial time. From a theorem in [4] an upper bound on
|Ek | can be derived. These statements are the following:

Theorem 6.3.3 (Theorem 2.4 of [3]) Graph k-Delaunay Dk = (V, Ek) can be con-
structed in time complexity O

((
k2 + 1

)
n log n

)
.

Fig. 6.2 Input topology and k-Delaunay graphs Dk for k = 0, 1, 2
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Theorem 6.3.4 (Theorem 2 of [4]) |Ek | ≤ 3(k + 1)n − 3(k + 1)(k + 2).

These theorems give that for small values of k graph Dk is sparse (in other words,
C u,v
k = ∅ for most node pairs u, v), and it can be computed fast.

6.3.3 Data Structure Apple

Let node pair {u, v} ∈ Ek be given. Let us place a Cartesian coordinate system in
the plane such that line uv be identical to the vertical axis y, u and v have ordinates
(y coordinates) 1 and −1, respectively (see Fig. 6.3). Obviously, this way the centre
point of any disk c ∈ C u,v

k has ordinate 0.

Definition 6.3.5 For a given node pair {u, v}, the previously described coordinate
system and real number x , let c (x) denote the unique disk c inC u,v , which has centre
point (x, 0).

Trivially, c () is a bijective function between R and C u,v .
Let I u,v

k denote the set of those numbers x , for which c(x) ∈ C u,v
k . If C u,v

k is
empty, then trivially I u,v

k is empty too. In the case when C u,v
k is not empty, we can

observe that I u,v
k is the union of closed intervals.

If the number of nodes in both half planes determined by line uv is not equal
to k, then there exists a rightmost and a leftmost element of C u,v

k , i.e. there is a

Fig. 6.3 Illustration of an apple with k = 2. Apple Au,v
k consists of ordered lists of nodes V+

and V− and ordered lists of edges E+ and E−, where V+ = {n4, n3}, V− = {n2, n1}, E+ =
{e4, e3, e2} and E− = {e3, e2, e1}. Given G = (V, E) and {u, v} ⊆ V , Au,v

k can be determined in
O (nρ0γ + k log k + ρk log ρk) (proof of Lemma 6.4.4). By querying Au,v

k , Mu,v
k can be computed

in O
(
ρ3
k

)
(proof of Lemma 6.4.6)
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maximum xmax and minimum xmin real number in I u,v
k , that is xmax = max I u,v

k , and
xmin = min I u,v

k . Disks c (xmax ) and c (xmin) have a third node w+ and w− on their
boundary, respectively. If there are exactly k nodes on the right side of uv, then let
h+ be the right open half-plane determined by line uv, and let xmax be sufficiently
large to Ec(xmax ) to contain all the edges having polygon having a point with positive
abscissa. For simplicity, sometimes xmax = +∞ and c (xmax ) = h+ is used. The
same applies to the left side of uv.

Let Ec(xmax ) and Ec(xmin) denote the edge sets hit by c (xmax ) and c (xmin), respec-
tively. To compute Mu,v

k we use the following observation.

Claim 6.3.5 For all f ∈ F(C u,v
k ), f ⊆ Ec(xmax ) ∪ Ec(xmin).

Proof It is easy to see that for every disk c ∈ C u,v
k , c ⊆ c (xmax ) ∪ c (xmin). �

According to Claim 6.3.5, a first step towards computing Mu,v
k is to determine

the edge sets hit by c (xmax ) and c (xmin). Trivially, this can be done in O (mγ ). The
remaining question is how to calculateMu,v

k from Ec(xmax ) ∪ Ec(xmin). Some additional
notations and definitions precede the presentation of the solution.

Let �denote the right side of disk c (xmax ) cut by the vertical line uv, and let�denote the left side of disk c (xmin) cut by the vertical line uv. For each edge
e ∈ Ec(xmax ) ∪ Ec(xmin) wewill compute twodisks: the leftmost diskwhich hits ep ∩ �
and the rightmost disk which hits ep ∩ �, which have centre points x+(e) and x−(e)
respectively.

Let E+ denote the list of edges hit by �, and similarly, let E− be the list of edges
hit by �. Thus, we have E+ ⊆ Ec(xmax ) and E− ⊆ Ec(xmin), and also E+ ∪ E− =
Ec(xmax ) ∪ Ec(xmin).

Let E+ and E− be ordered descending by the x+ and x− values of their elements,
respectively. Note that according to Claim 6.6.1 from Sect. 6.6.1, both x+ (e) and
x− (e) can be computed in O (γ ).

For nodes w+ ∈ h+ and w− ∈ h−, let x+ (w+) and x− (w−) denote the abscissa
of the centre point of circle going through u, v and w+ or w−, respectively. We
introduce V+ and V− similarly to E+ and E−, but instead of edges we store nodes
hit by � ordered descending by their x+ values, while in V− nodes in �are stored
ordered also descending, but by their x− values. Trivially, for a node v ∈ V both
x+ (v) and x− (v) can be determined in O (1).

Note that while every node v ∈ V is part of at most one of lists V+ and V−, edges
can be part of both E+ and E−.

Nowwe can define the data structure apple for each edge of the k-Delaunay graph.

Definition 6.3.6 For an edge {u, v} ∈ Ek , apple Au,v
k is an ordered system Au,v

k =
(V+, V−E+, E−), where its composing lists are as described in the subsection before.
For each element l of each list we also store its appropriate x+ (l) or x− (l) value.
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6.3.4 Sweep Disk Algorithms

6.3.4.1 Concept

In this subsection, we introduce the paradigm of sweep disk algorithms, which is
similar to the algorithmic paradigm of sweep line (sweep surface) algorithms in
computational geometry, briefly presented in Chap. 4.

Our sweep disk algorithms will scan through disk sets C u,v . In this sense, in
contrast to the sweep surface paradigm, our disks have different diameters, and
instead of keeping orientation, the invariant will be that all disks have u and v on
the boundary. Thus our disk to sweep is “elastic,” in the sense that it can change its
diameter, but not its shape.

6.3.4.2 Example

Our first sweep disk algorithm is used for determining xmax and xmin for a given Au,v
k .

The algorithmworks as follows. Starting from a disk c (x) ∈ C u,v having centre point
with abscissa x = +∞ (or sufficiently large), c is swept throughout the elements of
C u,v until x = −∞ (or sufficiently small). Meanwhile the number of nodes hit is
followed. Numbers xmax and xmin can be determined at the first and last state when
c hits exactly k nodes, respectively. (Non-existence of such moments would mean
that {u, v} /∈ Ek .)

Technically this can be done as follows. Let V ′+ ⊆ V be the list of nodes w from
h+ ordered decreasingly by the abscissa x+ (z) of their leftmost hitting circles (going
through u, v, z). Similarly, let V ′− be the list of nodes z in h− ordered decreasingly by
the abscissa x− (z) of their rightmost hitting disk (going through u, v, z). Applying
the fact that a node pair z+ ∈ V ′+ and z− ∈ V ′− can be hit by the same disk c ∈ C u,v

iff x+ (z+) ≥ x− (z−), sweeping can be imitated as in Algorithm 3. Note that for
every node z in V ′+ or V ′−, x+ (z) or x− (z) is stored as part of function x+ or x−.

From the following Proposition 6.3.6, one can check that the number of hit nodes
can be easily followed with the help of an additional variable.

Proposition 6.3.6 Let c ∈ C u,v . If V ′+[i − 1] is not hit by c, then all the preceding
elements in V ′+ are not hit by c. If V ′+[i] is hit by c, then all the following elements
in V ′+ are hit by c.

Similarly, if V ′−[i − 1] is hit by c, then all the preceding elements are hit by c. If
V ′−[i] is not hit by c, then all the following elements are not hit by c. �

Claim 6.3.7 For a given edge {u, v} ∈ Ek, both xmax and xmin can be determined
in O (n log n).



6.3 Algorithm for Enumerating Maximal Failures 69

Algorithm 3: Determining xmax and xmin while sweeping through C u,v

Input: V and u, v ∈ V
Output: xmax and xmin
begin

1 Compute ordered lists V ′+ and V ′−
2 Merge V ′+ and V ′− into descending ordered list V ′± using values x+ for V+ and x− for V−
3 n+, n− ← 0
4 for l ∈ {1, . . . , |V ′±|} do
5 if V ′±[l] ∈ V ′+ then n++= 1

else n−+=1
6 #l := |V ′+| − n+ + n− // # currently hit nodes

7 if |V ′+| = k then z+ = v∅; xmax = +∞
else w+ := V ′±[min l : #l = k]; xmax := x+ (w+)

8 if |V ′−| = k then z− = v∅; xmin = −∞
else w− := V ′±[max l : #l = k]; xmin := x− (w−)

9 return xmax and xmin

Proof According to those written in this subsection, both V ′+ and V ′− can be deter-
mined in O (n log n) the dominant step being a sorting algorithm. Sweeping can be
trivially done in O (n); meanwhile, both xmax and xmin can be determined. �

Proposition 6.3.8 Both V+ and V− can be determined in O (n log n). �

6.3.5 Determining Apples

Claim 6.3.9 For a given {u, v} ∈ Ek, apple Au,v
k can be determined in

O (m (logm + γ )).

Proof If {u, v} ∈ Ek , then xmax , xmin , V+ and V− can be determined in O (n log n)

according to Claim 6.3.7 and Proposition 6.3.8, thus it remains to determine E+ and
E−. With this aim it is enough to compute the x+(e) and x− (e) values for every
edge, then collect in E+ those edges e for which x+ (e) ≤ xmax and similarly in E−
those edges e for which x− (e) ≥ xmin . Finally, edges in E+ and E− have to be sorted
descending according to their x+ and x− values, respectively. m polygons of edges
(each having at most γ sides) have to be checked and sorted which gives a total
complexity of O (m (γ + logm)). �

Definition 6.3.7 Let Ak be the set of apples A
u,v
k .

Corollary 6.3.10 For a given k, knowing Ek, the set of apples Ak can be determined
in time complexity O ((k + 1) nm (γ + logm)).

Proof Since by Theorem 6.3.4 |Ek | < 3 (k + 1) n, we deduct that O ((k + 1) n)

apples have to be determined. According to Claim 6.3.7, an apple can be constructed
in O (m (logm + γ )), which completes the proof. �
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Algorithm 4: Querying an apple

Input: Apple Au,v
k Output: Set Mu,v

k of locally maximal failures. begin
1 Merge V+, V−, E+ and E+ into descending ordered list G using values x+ for V+ and

E+ and x− for V− and E−;
2 n+, n−, e+, e− ← 0;
3 for l ∈ {1, . . . , |G|} do
4 if l ∈ V+ then n++=1;
5 if l ∈ V− then n−+=1;
6 if l ∈ E+ then e++=1;
7 if l ∈ E− then e−+=1;
8 #n,l := |V+| − n+ + n− // # curr. hit nodes
9 #e,l := |E+| − e+ + e− // # curr. hit edges

10 e+,l := e+ // E+[i] is hit iff i ≥ e+,l
11 e−,l := e− // E−[i] is hit iff i ≤ e−,l

12 Det. L , the set of indexes l, for which #n,l = k;
13 Det. Ie, the sequence of numbers #e,l : l ∈ L;
14 Det. Me, the set of indexes l of local maximums of Ie;
15 (Mu,v

k )′ := hit edge sets in l ∈ Me disk positions;
// Can be det. using E+, E−, e+,l , e−,l

16 Mu,v
k ← maximal elements of (Mu,v

k )′;
17 return Mu,v

k

6.3.6 Computing the Set of SRLGs by Sweeping Through
Each Apple

Claim 6.3.11 Let e ∈ E+, and f ∈ E−. They can be hit by the same c ∈ C u,v
k if

x+(e) ≤ x−( f ) or x+( f ) ≤ x−(e).

Proof An edge e can be hit by circle c(x) if x+(e) ≤ x or x ≤ x−(e). �

Determining Mu,v
k from apple Au,v

k can be done with the help of a sweep disk
algorithm as a subroutine of Algorithm 4 similar to Algorithm 3, the only difference
is that here we have to check both the set of currently hit edges and the number of
currently hit nodes at the same time.

On the one hand, while sweeping through C u,v with c(x) (while x decreasing),
nodes are also getting hit or not hit by the actual c(x), thus it is not necessarily
permanently part of C u,v

k during the sweep disk algorithm. On the other hand, any
edge e having ep intersecting segment [u, v] or for which x+(e) ≤ x−(e) should be
stored exactly once in any element of Mu,v

k .

Claim 6.3.12 Querying Au,v
k , Algorithm 4 calculates Mu,v

k in O(m3).

Proof The correctness of the algorithm can be easily checked. Since while sweeping
an edge can get hit or unhit at most once on one side of line uv, there are at most
O(m) failures with locally maximal cardinalities, each of them having O(m) edges,
thus (Mu,v

k )′ has O(m) elements of O(m) size. Trivially, the number of currently
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Algorithm 5: Algorithm for computing Mk with a table on time complexities.
(Refer to Table 6.1 for notations.)

Input: G(V, E), k Output: Mk begin
Determining M2

k ;
1 Determine Ek ;
2 Determine set Ak of nonempty apples;
3 Query apples from Ak ;

4 Merge lists Mu,v
k into M2

k ;

Determining M1
k // See Sec. 6.5

for details
5 Determine set Sk of nonempty seesaws;
6 Query seesaws from Sk ;

7 Merge lists Mw
k into M1

k ;

8 Merge lists M2
k and M1

k into Mk ;
9 return Mk

Complexity Non-parametrized Parametrized

STEP 1 O((k2 + 1)n log n) O((k2 + 1)n log n)

STEP 2 O(n(k + 1)m(logm + γ )) O ((k + 1) n (nρ0γ + k log k + ρk log ρk))

STEP 3 O(n(k + 1)m3) O(n(k + 1)ρ3
k )

STEP 4 O(n2(k2 + 1)m3) O(n2(k2 + 1)ρ3
k )

STEP 5 O(nmγ logm) O(n2ρ0γ log(nρ0))

STEP 6 O(nm3) O(nρ0 + ρ3
k )

STEP 7 O(n2m3) O(n2ρ3
k )

STEP 8 O(n2(k + 1)m3) O(n2(k + 1)ρ3
k )

Total for γ = O(1) O(n2(k2 + 1)m3) O(n2((k2 + 1)ρ3
k + ρ0 log(nρ0)))

hitting nodes can be monitored in O(n) total time as in Algorithm 3. Since we have
an ordering of the edges, every pair of sets from (Mu,v

k )′ can be compared in O(m).
This means that from (Mu,v

k )′, Mu,v
k can be determined in O(m3). It can be checked

that all the other operations have complexity at most O(m3). �

Corollary 6.3.13 Known Ek, lists Mu,v
k for all {u, v} ∈ Ek, can be determined in

O
(
(k + 1) nm3

)
. �

Here we use the assumption that the corner points of the polygons of the edges
are in general position.

6.3.7 Algorithm for Computing Maximal Failures

As presented before M2
k can be calculated by determining and querying the apples,

and finally merging the obtained lists Mu,v
k in M2

k . Note that there is a valid need of
comparing lists of locally maximal failures (see Fig. 6.4). M1

k can be computed very
similarly to M2

k (as shown in Sects. 6.5.1–6.5.2). Finally, in order to get Mk , M2
k and

M1
k have to be merged. This way the scheme of our algorithm could be written as in

Algorithm 5.

Fig. 6.4 In the setting
above, circle cABC hits the
whole link set E , while no
c ∈ C B,D

0 hits link f . Thus,

however MB,D
0 is not empty,

it does not contain any
elements of M0
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Complexity bounds on the non-parametrized computing time and length of Mk

are summarized as part of the table in Algorithm 5. Although in Sect. 6.6.2 it is shown
that there are some artificial networks where these asymptotic bounds are relatively
good estimations, we would like to focus on the running time and output size on the
real networks, which are nearly planar. Thus, after introducing a new parameter, we
present parametrized bounds proven in Sects. 6.4.1–6.5.2.

Intuitively, a c ∈ Ck cannot hit too many edges. Thus we introduce graph density
parameter ρk , which describes this phenomenon.

Definition 6.3.8 For all i ∈ {0, n − 2}, let ρi be the maximum number of edges hit
by a disk from Ci .

The parametrized bounds are the following:

Lemma 6.3.14 M2
k can be computed in O

(
n2

((
k2 + 1

)
ρ3
k + (k + 1) (ρ0γ )

))
. M2

k
has O (n (k + 1) ρk) elements with at most ρk edges.

Proof of Lemma 6.3.14 can be found in Sect. 6.4.4.
Besides computing M2

k , one have to deal with computing M1
k . When computing

M1
k , the vague idea is to give a geometric algorithm in a way similar to the sweep

disk algorithm for querying the apples. Now instead of imaginary sweeping a disk,
we rotate a half-plane around every node v ∈ V until it makes a total turn, and
meanwhile, check for hit edge sets with locally maximal cardinalities hit by half-
planes hitting exactly k nodes. After this, the maximal elements of the obtained lists
are collected in M1

k . Now follows Lemma 6.3.15 for computing M1
k . We kindly refer

the reader to Sects. 6.5.1–6.5.2 for its detailed proof.

Lemma 6.3.15 M1
k can be constructed in O(n2(ρ0γ log nρ0 + ρ3

k )) and has O(nρk)

elements, each containing at most ρk edges.

Theorem 6.3.16 Mk can be computed in O
(
n2

((
k2 + 1

)
ρ3
k + ρkγ+

(k + 1 + log(nρ0)) ρ0γ )). Mk has O (n (k + 1) ρk) elements with at most ρk edges.

Proof Based on Lemmas 6.3.14 and 6.3.15, both M2
k and M1

k can be computed in
the proposed time, have at most the proposed amount of elements containing at most
ρk edges. The proof will be completed by showing that the merger of M2

k and M1
k can

be done in O(n2(k + 1)ρ3
k ), which is true because of the following. We only have

to compare all the pairs {p2, p1} made up of a p2 ∈ M2
k and p1 ∈ M1

k , which means
O((n(k + 1)ρk)(nρk)) pairs. Each comparison can be made in O(ρk),5 which gives
the proposed complexity. �

5 Since link sets are ordered lexicographically.
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Corollary 6.3.17 If ρk is O(k + 1), then Mk has O (n (k + 1)) elements. If in addi-
tion γ is upper bounded by a constant, Mk can be computed in O(n2(k5 + log(nk +
1) + 1)).6

6.4 Parametrized Complexity Bounds for Enumerating
SRLGs of M2

k

6.4.1 Parametrized Complexity Bounds for Determining
Apples

Up to this point, the fact thatG(V, E) is, in fact, a graph of a communication network,
and thus it is ‘almost planar’ was not used. Intuitively, an almost planar graph has
O(n) edges. Parameters ρi (i ∈ {0, . . . , n − 2}) denote the maximum number of
edges hit by a disk from Ci (Definition 6.3.8), thus they help in formalizing this
intuition.

Since parameters ρi measure local properties of the networks, often it will be
assumed that these parameters are not exceeding a constant. For example, ρ0 is not
going to be large since physically close edges are likely to be connected through a
node.

Observation 6.4.1 For any 0 ≤ i < j ≤ n − 2, ρi ≤ ρ j . �

Claim 6.4.2 In any apple Au,v
k ∈ Ak, |E+| ≤ ρk and |E−| ≤ ρk .

Proof All edges in E+ are hit by c (xmax ) which by definition hits at most ρk edges.
Similar for E−. �

Lemma 6.4.3 The number of edges is O(nρ0), more precisely m ≤ (2n − 5)ρ0.

Proof Consider the Delaunay triangulation D0, which is a planar graph, and thus
|E0| ≤ 3n − 6. Since every Delaunay triangle has 3 Delaunay edges and a Delaunay
edge is the edge of at most 2 Delaunay triangles, and there are at least 3 Delaunay
edges on the convex hull of V , the number of Delaunay triangles is at most

2|E0| − 3

3
≤ 2

3
(3n − 6) − 1 = 2n − 5.

Since the polygon of every edge in E intersects at least one triangle, and every
triangle can be covered by a disk c ∈ C0, which intersects at most ρ0 polygon of
edges of the network, we get that the number m of edges cannot be larger than ρ0

times the number of the Delaunay triangles. We get m ≤ (2n − 5)ρ0. �

6 To be exact, γ = O(max{1, k5+1
k+log n }) still yields the proposed complexity.
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Lemma 6.4.4 If Ek is given, set Ak of apples can be built in O ((k + 1) n (nρ0γ+
k log k + ρk log ρk)).

Proof There are |Ek | ≤ 3(k + 1)n apples to determine (Theorem 6.3.4). For each,
V+ and V− can be determined in O(n + k log k), then (based on Lemma 6.4.3)
O(nρ0) edges have to be checked if they are in the apple, each in O(γ ) time. After
this, based on Claim 6.4.2, there are O(ρk) edges to order, which gives the proposed
complexity. �

Corollary 6.4.5 If ρk and γ is upper bounded by a constant and Ek is given, then
Ak can be determined in O

(
n2 (k + log n)

)
. �

6.4.2 Parametrized Bound for Determining Mu,v

k for Apple
Au,v

k

Lemma 6.4.6 For all the apples Au,v
k in Ak, sets Mu,v

k can be determined in
O

(
n (k + 1) ρ3

k

)
.

Proof Based on Theorem 6.3.4, there are |Ek | ≤ 3n(k + 1) apples to query. We
claim that each of them can be queried in O(ρ3

k ). Knowing apple Au,v
k , (Mu,v

k )′ can
be determined in O(ρ2

k ), following the steps of Algorithm 4. After this, Mu,v
k can

be determined by comparing each pair of elements of (Mu,v
k )′ and eliminating its

non-maximal and redundant members. With this purpose, O(ρ2
k ) comparisons have

to be made, each of them has O(ρk) complexity. �

6.4.3 Parametrized Complexity Bound on Merging Lists
Mu,v

k

Lemma 6.4.7 M2
k can be computed in O

(
n2

(
k2 + 1

)
ρ3
k

)
from lists Mu,v

k .

Proof By Theorem 6.3.4, there are |Ek | ≤ 3n(k + 1) lists containing O(ρk) sets
containing O(ρk) edges. First determine an ordering on the set of edges E , and sort
all the candidate sets of edges according to this ordering, each in O(ρk log ρk) time.
M2

k can be computed by comparing all the set pairs (and eliminating the redundant or
non-maximal elements), which means O(n2(k2 + 1)ρ2

k ) comparisons. Since (due to
the ordering) comparing two sets takesO(ρk) time, the total complexity isO(n2(k2 +
1)ρ3

k ). �
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6.4.4 Parametrized Complexity for Computing M2
k

Below is the proof of Lemma 6.3.14 stating that Mk can be computed in
O

(
n2

((
k2 + 1

)
ρ3
k + (k + 1) ρ0γ

))
and Mk has O (n (k + 1) ρk) elements with at

most ρk edges.

Proof As presented previously (Theorem 6.3.3 and Lemmas 6.4.4, 6.4.6 and 6.4.7),
eachof the corresponding four phases ofAlgorithm5canbe examined in theproposed
complexity. There are |Ek | ≤ 3n(k + 1) listsMu,v

k tomerge, each of them has at most
ρk edges, completing the proof. �

6.5 Parametrized Algorithm for Enumerating SRLGs in
M1

k

In this section a sketch of an algorithm will be presented for proving Lemma 6.3.15,
which states that M1

k can be constructed in O
(
n2

(
ρ0γ log (nρ0) + ρ3

k

))
and has

O (nρk) elements, each containing O (ρk) edges.

6.5.1 Data Structure Seesaw

For every node w ∈ V , a data structure is built containing both the direction of every
node z ∈ V \ {w} related to v and the interval of directions where the polygon of
each edge can be seen from w. Nodes and edges also have to be sorted according
to this information (similarly to data structure apple). Let us call this data structure
seesaw, and let Sw

k denote the previously described seesaw. For a given k, let the set
of seesaws be denoted by Sk . Let the list of locally maximal failures resulting from
querying seesaw Sw

k be denoted by Mw
k .

Claim 6.5.1 Any seesaw Sw
k can be calculated in O (nρ0γ log (nρ0)) and has a total

length of O (nρ0).

Proof Trivially, the direction of nodes from z ∈ V \ {w} can be determined and
sorted in O(n log n). Also, as by Lemma 6.4.3, the number of edges is O(nρ0),
intervals of directions corresponding to polygons of edges can be calculated and
sorted both by their minimum andmaximum values on O(nρ0γ log(nρ0)). The proof
follows. �
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6.5.2 Querying Seesaws

Claim 6.5.2 Mw
k can be determined from Sw

k in O
(
nρ0 + ρ3

k

)
, and has at most 2ρk

elements, each of them containing at most ρk edges.

Proof Since each set in Mw
k can be hit by a disk in Ck having w on the boundary,

the fact that the elements of Mw
k contain at most ρk edges is trivial by definition.

Now we prove |Mw
k | ≤ 2ρk . If there is no half-plane having w on the boundary

hitting exactly k nodes, then the claim is trivial, otherwise, let hw
0 be such a half-plane.

Let hw+ be the unique half-plane which satisfies the followings: it is the rotation of
hw
0 with ∠ ≤ π , it covers exactly k nodes, and no other half-plane covers exactly k

nodes which is the rotation of hw+ with an angle ∈ [∠, π ]. Let hw− be similar, but with
rotating towards the negative direction. This way, every half-plane going through w

covering exactly k nodes is part of hw− ∪ hw+, which altogether hit at most 2ρk edges.
Since while turning a half-plane aroundw, edges are getting hit or not hit one by one,
and an edge at most 2 times, there can exist at most 2ρk hit edge sets with locally
maximal cardinalities.

Determining Mw
k can be done by simply turning the half-plane around w. Check-

ing currently hit edge sets, node sets and cardinalities can be done in a total O(nρ0)

time, list Mw
k can be created in O(ρ3

k ). �

Proof of Lemma 6.3.15: Trivially, every element of M1
k contains at most ρk ele-

ments. Based on Claims 6.5.1 and 6.5.2, lists Mw
k can be determined in

O(n2ρ0γ log(nρ0) + nρ3
k ) for all w ∈ V . M1

k can be calculated by merging the pre-
vious lists. O(n2ρ2

k ) comparisons have to be done, each has a complexity of O(ρk).
Thismeans a total complexity of O(n2(ρ0γ log(nρ0) + ρ3

k )), completing the proof.�

6.5.3 Connection Between Seesaws and Apples

It is known that the inverse of the stereographic projection from the North Pole,
which maps geometric objects from the plane to the surface of the sphere, has the
property that the image of lines and line segments on the plane are great circles and
geodesics on the sphere, respectively (corollary of Theorem in [5]). Known this, if
we projected our network topology (back) to a spherical surface, and if we defined
the spherical apple and spherical seesaw data structure, we could see that a spherical
seesaw Mw

k is just a spherical apple Mw,z
k , z being the North Pole, thus sweeping

through a spherical apple is the same thing as tilting a spherical seesaw, meaning
that on the sphere there would not emerge the need to treat separately these two
connected data structures.



6.6 Miscellaneous 77

Fig. 6.5 Illustration for
Sect. 6.6.1

6.6 Miscellaneous

6.6.1 Computational Geometry: Determining x+ (e)
and x− (e) in O (γ )

Claim 6.6.1 For any edge e = {a, b} and node pair {u, v} ⊂ V , both x+ (e) and
x− (e) can be calculated in O (γ ).

Proof Let us concentrate on calculation of x+(e), because x−(e) can be determined
similarly.

Extreme hitting disk of line: First, let us compute the leftmost hitting circle inC u,v

of a point W part of a given line ab (Fig. 6.5). Let {A} = uv ∩ ab and let x+(W ) be
the abscissa of the center point of the leftmost hitting disk ofW . Clearly, the function
x+(W ) is unimodal in both rays (R+ and R−) defined by line ab and point A (i.e.,
both R+ and R− are consisting of an interval where it is strictly monotone increasing
and another interval where strictly monotone decreasing).

Let the two points on the line where the local minimum is reached be W+ on the
right side and W− on the left side of uv. Let the centre point of disks c(uvW+) and
c(uvW−) be X+ and X−, respectively. X+ is located on the x axis of the coordinate
system of apple Au,v

k . On the other hand, X+ is located equidistant from u and line
ab, thus it is on parabola pu defined by point u and line ab. Similarly, let pv be the
parabola defined by v and line ab.

Since pu and pv can be characterized with quadratic expressions, which can be
solved in O(1), abscissa of X+ can be found in constant time by determining their
common root.

X− can be determined similarly. Finally, the center point of the desired leftmost
hitting disk is the one from X+ and X− with smaller abscissa.
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Extreme hitting disk of line segment: When restricting the domain of a uni-
modal function, extremes can appear on the new boundary, thus for segment [a, b],
x+([a, b]) = min

(
x(X+), x(X−), x(A), x(B)

)
.

Extreme hitting disk of the polygon of edge: For an arbitrary e ∈ E we consider
two cases regarding the respective position of [uv] and ep.

In the first case segment [uv] is entirely in the interior of ep. Trivially, in this case
x+(e) = −∞.

In the second case, segment [uv] is not entirely in the interior of ep. Since in this
model a polygon of edge ep consists of at most γ line segments, for determining
x+(e) one can determine x+ for all the line segments that take the minimum value
of them in O(γ ) total time.

Finally, it remains to prove that one can distinguish between the former two cases
in O(γ ). Recall that u and v have ordinates 1 and −1, respectively, both lying on
the y axis. Let C be the set of ordinates of the intersection points of axis y and
the line segments generating the polygonal chain. If C ∩ [0, 1] �= ∅, than segment
[u, v] is neither entirely inside nor entirely outside of the polygon. Otherwise if
|C ∩ (1,+∞)| is an even or odd number, than [uv] is outside or inside the polygon,
respectively. Note that all the required operations can be done in O(γ ). �

6.6.2 Extreme Cases: Maximum Number of Maximal
Failures

In the followings, I restate [6, Theorem 4] without proof7 showing that there are some
networks for which the running times are asymptotically not significantly better than
our non-parametrized bounds. Thismotivates the introduction of parameterρk , which
captures the properties of real-life networks.

Proposition 6.6.2 ([6], Theorem 4) max
N

|Mk | = �
(
n3

)
if k = O (1), whereN is

the set of all networks on n points.

Although |Mk | can be �(n3), according to this study, in case of many real-life
networks it is O((k + 1)n).

By combining of Proposition 6.6.2 and Lemma 6.3.14, we have:

Proposition 6.6.3 |Mk | is O(n(k + 1)ρk), this boundbeing tight in these parameters
for k = O(1). �

7 The reason I omit the proof here is that the proof of [6, Theorem 4] is only a tiny generalization
of the lengthy arguments behind [7, Claim 5].
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6.6.3 Protecting Regional Link 0-Node Failures Ensures
Node Disjointness

Claim 6.6.4 Let P and B be an SRLG-disjoint primary and backup paths according
to regional link 0-node failures. The paths P and B are node disjoint, apart from the
terminal nodes.

Proof Assume indirectly that P and B have a common node v in their interior. Let
us pick two edges ep ∈ P and eb ∈ B of G that are adjacent of v. Let p denote the
closest corner point of ep with node v if there is any, otherwise its endpoint on P .
Similarly we define b for eb. Note that points v, b and p are not on the same line
according to our assumptions in Sect. 6.2; thus, the is a circular disk of any size that
covers both ep and eb but not node v. We can select a small enough radius for this
circular disk, which covers both ep and eb and does not have any other nodes interior.
The proof follows. �

6.7 Simulation Results

In this section, we present numerical results that validate our model and demon-
strate the use of the proposed algorithms on some realistic physical networks. The
algorithms were implemented in Python version 3.5 using various libraries. No spe-
cial efforts were made to make the algorithm space or time optimal. The output of
the algorithm is a list of SRLGs so that no SRLG contains the other. The network
topologies with the obtained list of SRLGs for various k are available online.8

First, we interpret the input topologies in two ways:

polygon where links are polygonal chains, and
line where the corner points of the polygonal links are substituted with nodes

(of degree 2). Here links are line segments.

The second interpretation is artificial, andwemainly use it for verification. Intuitively,
the two interpretations result in very different results, as the latter has much more
nodes in the network, and thus the regional failures with k nodes interior must be
smaller. Figure 6.6 shows example results for both interpretations of the US ATT-L1
network. The US fiber network has 126 nodes and 208 links as polygonal chains,
where the links have 36 corner nodes in total. After transforming it into a network
of line segments, we will have a larger network with 162 nodes and 244 links.
The transformed network has 30% more nodes; however, the number of SRLGs
required for k = 0 is just 14% more, which is a sub-linear increase. Surprisingly,
after the transformation, the SRLGs became a bit smaller (average number of links
2.98 → 2.79), and the variance in the size of SRLGs is increased from 0.7 to 0.83.

8 https://github.com/jtapolcai/regional-srlg.

https://github.com/jtapolcai/regional-srlg
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Fig. 6.6 The SRLGs of k = 0 are visualized for the two cases a links are polygonal line segments,
and b the corner points of the polygonal line segments are treated as degree two nodes and all links
are straight lines. In order to have a perspicuous illustration, each SRLG is drawn with the smallest
possible circular disk that covers all of its links, even if the disk has nodes interior

It is because, in the transformed, a great number of very small SRLGs appeared,
having the two adjacent links for most of the degree 2 nodes.

6.7.1 The List of SRLGs in Practice

Table 6.2 shows a comparison for k = 0 and k = 1 among eleven physical backbone
topologies taken from [8]. The columns are: network name, the number of nodes, the
number of links, the number of SRLGs, all for both cases where links are polygonal
line segments or each corner point of the polygonal links are substitutedwith a degree
2 node.

The 126-node US (ATT-L1) network was covered with 190 SRLGs, which is
less than listing every single node and link as an SRLG. Figure 6.6 shows these
SRLGs, intuitively each corresponds to a mid-size regional failure. The SRLGs
meet our intuition that there are more network nodes in the crowded areas, and thus
it generates more SRLGs for them, while in the less crowded areas are covered with
SRLGscorresponding to bigger areas. In practice, it is important to have small SRLGs
because it strongly influences the performance of the survivable routing algorithms.
On Fig. 6.6 the SRLGs are relatively small, each SRLG contains a bit less than 3
links on average. Figure 6.8c shows how the average size of SRLGs with respect to
k for all networks. It has a slightly sub-linear increase with k. Note that the length of
the list of SRLGs never exceeded 6000 items in any networks and parameter settings
examined.

Next, we have evaluated what would be the radius of the circular disk with k =
0, 1, 2, 3 nodes when we know the GPS positions of the nodes (in case of network
US ATT-L1). We have performed a Monte Carlo simulation where we pick random
locations and compute the maximum radius with k = 0, 1, 2, 3 nodes, which is the
distance of the closest, the second, third, and fourth closest nodes. Figure 6.9 shows
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Table 6.2 Results of physical backbone topologies of [8]

Name |V | |E | # SRLG k = 0 # SRLG k = 1

Polygon Line Polygon Line Polygon Line Polygon Line

Pan-EU 10 16 16 22 14 19 27 35

EU (Optic) 17 22 40 45 44 59 57 71

EU (Nobel) 19 28 32 41 36 46 53 81

US [9] 21 24 39 42 48 49 57 64

N.-American 28 39 50 61 65 76 83 97

US (NFSNet) 44 79 73 108 88 124 128 172

US (Fibre) 81 170 141 230 137 189 177 249

US (Deltacom) 103 103 302 302 158 158 218 218

US (Sprint-Phys) 111 264 160 313 156 232 208 307

US (ATT-L1) 126 162 208 244 190 216 255 285

US (Att-Phys) 209 383 314 488 256 352 322 457

Fig. 6.7 Comparison of the two interpretation of the input topologies: links are polygonal line
segments, or the corner points of the polygonal line segments are treated as degree two nodes and
all links are straight lines

the cumulative distribution function of the actual radius of the circular disk failures.
For example, if we cut the smallest and largest 20% the SRLGs generated for k = 0
nodes corresponds to diameter 80–200km (Fig. 6.9).

6.7.2 Tightness of Corollary 6.3.17

In this subsection we compare the presented parameterized worst case analysis with
the obtained simulation results. Corollary 6.3.17 assumes that ρk increases linearly
with (k + 1) for all networks. Figure 6.8a shows that the edge density increases
linearly with (k + 1) as we expected. The corollary provides a linear upper bound on
the number of SRLGswith respect to the network size n for fixed k. It is also reflected
in Fig. 6.7a which is a graphical illustration for k = 0, where we may even have the
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Fig. 6.8 The edge density, number and size of SRLGs for each network and k = {0, . . . , 5} in case
of polygonal chain links

Fig. 6.9 The cumulative
distribution function of the
radius of the disk having a
given k number of nodes
interior

intuition of a sub-linear growth. Based on Table 6.2 the slope of the curve can be
estimated as the number of SRLGs is roughly≈ 1.2n for k = 0, and≈ 2.2n for k = 1.
Corollary 6.3.17 provides a linear upper bound on the number of SRLGswith respect
to k if the network (n) is fixed.This is illustrated inFig. 6.7bwhere the average number
of SRLG is shown for all networks for small k. Here we can experience a slightly
sub-linear increase. Figure 6.8b shows the increase in the number of SRLGs for each
network independently for the same range of k. We experienced sub-linearity for
all networks, which we further discuss later. Overall, numerical evaluation supports
the parameter selection used in the parametrized complexity analysis. We conjecture
that Corollary 6.3.17 is close to the experienced performance, and there is little hope
for further improving it analytically.

To reveal the reasons why the number of SRLGs increases sub-linearly with
respect to k, Fig. 6.7c shows the function graphs of both |Mk | and |Ek |

3 for all k values
on Network US Deltacom, respectively. As we can see, for k ≤ 15, |Mk | ≈ |Ek |

3 ,
while for bigger k values |Mk | <

|Ek |
3 . We can deduct that |Mk | ≤ |Ek |

3 for every
k ∈ {0, . . . , n − 2}. In other words, the average number of SRLG-s per apple is≤ 1

3 .
By Theorem 6.3.4, this also means that |Mk | is O((k + 1)(n − k)), which induces a
sub-linear growth of |Mk | with respect to k.
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6.8 Thesis Summary

Thesis 2 [6, 10–12] To ensure geographic distance between primary and backup
paths when the geographical embedding the network topology is approximate, I
proposed a model for enumerating regional SRLGs relying only a schematic map of
the network topology. For networks described in this model, I proposed a polynomial
algorithm for enumerating list Mk of maximal link sets (SRLGs) which can be hit by
a disaster overestimated by a shape of a circular disk hitting an arbitrary number k
of nodes. I gave theoretical upper bounds on the cardinality of Mk. Evaluating the
model and data structure, I showed that in case of real network topologies as input
combined with practical (small) k values, Mk is a reasonably short list of link sets.

Thesis 2.1 (The Limited Geometric Information Failure Model) [6] To ensure geo-
graphic distance between primary and backup paths when the geographical embed-
ding the network topology is approximate, I proposed the following model. The (not
necessarily planar) network is modelled as an undirected connected geometric graph
G = (V, E) with |V | ≥ 3 nodes. The nodes of the graph are embedded as points in
the Euclidean plane, and their exact coordinates are considered to be known. In con-
trast to this, precise positions of edges are not known, instead, it is assumed that for
each edge e there is a containing polygon (or simply polygon) ep in the plane inwhich
the edge lies. The disasters are assumed to have a shape of a circular disk with an
arbitrary radius and centre position, but hitting at most k nodes for k ∈ {0, |V | − 2}.
The failures caused by these disasters are called regional link k-node failures.

Thesis 2.2 [6] I proposed an algorithm, which, in case of representing a net-
work topology G(V, E) in the Euclidean plane with each link e ∈ E being part
of a related polygonal region ep having at most γ sides, computes the list Mk of
maximal link sets which can be hit by a circular disk hitting at most k nodes in
O

(|V |2 ((
k2 + 1

)
ρ3
k + ρkγ + (k + 1 + log(nρ0)) ρ0γ

))
, whereρk denotes themax-

imal number of links hit by a circular disk hitting at most k nodes. I proved that list
Mk has O (n (k + 1) ρk) elements, this bound being tight in these parameters for
k = O(1).

Thesis 2.3 [6] In case of real network topologies, with their edges considered
polygonal chains and line segments between their endpoints, respectively, list Mk

of maximal link sets which can be hit by a circular disk hitting at most k nodes has
≈ 1.2 · |V | and≈ 2.2 · |V | elements for k = 0 and k = 1, respectively. Additionally,
|Mk | increases sublinearly in function of k. Parameter ρk representing the maximal
number of hit links by a disaster hitting k nodes was ≤ 10 for all the investigated
networks for k = 0, 1, and grew to only to < 25 for k = 5. I concluded that list Mk

has a reasonably small size for practical k values.
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Chapter 7
PSRLGs Modeling Correlated Link
Failures Caused by Disasters

7.1 Network Model and Framework to Compute Service
Availability

At the very beginning, I would like to include Fig. 7.1 summarising the three layers
of the contributions of this Chapter. On the top, there are two data structures analog
of the CDF and PDF of the functions, which we believe should be the standard for
describing the joint failure probability of network resource sets. The second layer is
a stochastic model that explicitly takes into count the correlation between the failures
of geographically close network elements in case of disasters. In the third layer, as
a concrete example of dealing with a disaster type, we use earthquake catalogs to
provide proper input for our model. This way, we describe a method of computing
PSRLGs of a network from end to end.

7.1.1 Network Model

The network is modeled as an undirected connected geometric graph G = (V, E),
with n = |V | nodes and m = |E | links embedded in the Euclidean plane denoted by
R

2. The links can be either line segments or polygonal chains (also called ‘polylines’)
built up from at most γ adjacent line segments (where γ is a parameter of our model).
The number of link crossings is denoted by x . The geometric density of the network
topology is the maximum number of links that can be hit by a single disaster and is
denoted by ρ. The set of links E is lexicographically sorted, any S ⊆ E is stored as
a sorted list (Table7.1).
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Fig. 7.1 Main contributions: We offer (1) standard data structures (for graph G, CFP[G] and
FP[G]) for storing joint failure probabilities of link sets, (2) a tractable stochastic model of network
element failures caused by disasters, and finally (3) providing the seismic hazard data represented
it in a more precise way than the usual hazard maps. Note that our stochastic model can handle the
combined inputs of an arbitrary number of disaster families (e.g., tornadoes, earthquakes, tsunamis,
etc.). Structures CFP[G] and FP[G] could be established using other models too

7.1.2 Framework to Compute Service Availability

We aim to develop a service availability computation engine, where the task is basi-
cally to translate the compound problem of simultaneous network failures into a
scalar. When setting up an SLA between the user and network provider, the avail-
ability of a massive number of network services must be evaluated. Therefore, we
need to avoid committing resource-intensive computations at every query. Intuitively,
there is much redundancy in these queries. The main idea behind our general frame-
work (depicted in Fig. 7.2a) is to exploit this redundancy by pre-computing some
numerical integrals representing failure probabilities of sets of network elements.
This, out of the compound geometric and stochastic problem, extracts all the rele-
vant information to a static data set. This data set can addressmany service availability
queries, each of which requiring only lookups and summation.

Fig. 7.2 Computing service availability via a pre-computed data set: while the disaster hazard can
be represented more succinctly using FP[G] for a graph G, with CFP[G] one can achieve lower
query times
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Table 7.1 Table of symbols for Chap. 7
Notation Meaning

General

G(V, E) The network modeled as an undirected connected geometric graph, E stored as an ordered list

n, m Number of nodes |V | ≥ 3 and edges |E |, respectively
R
2 Euclidean plane

CFP(S)
Given S ⊆ E , the cumulative failure probability (CFP) of S, denoted by CFP(S), is the probability that
all links S fail simultaneously (and possibly other links too)

FP(S)
Given S ⊆ E , the link failure state probability (FP) of S, denoted by FP(S), is the probability that
exactly the links of S fail simultaneously (and no other links)

FP[G], CFP[G] The collection of all (S,FP(S)) and (S,CFP(S)) pairs with FP(S) > 0 and CFP(S) > 0, respectively

Parameter

γ Maximum number of line segments a (polygonal chain shaped) link can have

x Number of link crossings

ρ Maximum number of links that can be hit by a disaster

Stochastic model

p Epicenter of a disaster, that is a point in the plane R2

s Shape (and relative size) parameter of a disaster, a real value in [0, 1]
h(p) Hazard of a point p ∈ R

2, representing the probability that p becomes the epicenter of the next disaster

r(p, s)
represents a closed region on the plane (the actual shape of the destroyed area) as a function of epicenter
p and the shape/size parameter s; every link having a nonempty intersection with r(p, s) fails

R(p, s) The set of links having a nonempty intersection with r(p, s); set of failed links

s(p, e) Smallest size s for which a failure at point p can cover link e

f (e, p) Probability that link e fails if a disaster with epicenter p happens

IR(p,s)(e) indicates whether e ∈ R(p, s)

P(e) Probability of the failure of link e in the next disaster

f (S, p) Probability that a set of links S ⊆ E fail simultaneously, given that the disaster epicenter is p ∈ R
2

Precomputation of CPFs and FPs

P Set of points p of the plane such that dist(p, e) �= dist(p, e′) whenever e �= e′ are different segments
from E .

S (p) Sequence of link failures for epicenter p ∈ P , that is an ordered set of links (e1, e2, . . . , el ), such that
s(p, e1) ≤ s(p, e2) ≤ · · · ≤ s(p, el ), where l = |R(p, 1)|

S j (p) First j links of S (p)

j (S,S (p)) Ordinal number of set S within S (p): i , if S �⊂ S i−1(p) and S ⊆ S i (p), 0 otherwise

f (S, p) The conditional probability of a set of links S ⊆ S (p) failing together, that is f (e j (S,S (p)), p)

R 1, …, R k regions, where each point p ∈ R i has the same sequence S i of link failures (see Fig. 7.7)

S i For any point p ∈ R i , S (p) ≡ S i , i = 1, . . . , k.

ei, j j th link of S i

Pi, j := ∫
p∈R i

h(p) f (ei, j , p)dp i = 1, . . . , k, j = 1, . . . , |S i |
With these, CFP(S) = ∑k

i=1 P
i, j (S,S i ) , and FP(S) = ∑

i, j (P
i, j − Pi, j+1)

Seismic hazard representation

ci, j epicenter, which represents a latitude-longitude cell on the Earth’s surface, taken from a grid of cells
over the network area

Mw Moment magnitude ∈ {4.6, 4.7, . . . , 8.6} =: M
Ei, j,Mw set of earthquakes with centre point in ci, j and magnitude in (Mw − 0.1, Mw]
pi, j,Mw Probability that the next earthquake is in Ei, j,Mw

ri, j,Mw Activity rates, i.e., arrival rate of earthquakes in Ei, j,Mw

t
Intensity threshold: in case of a shaking intensity above the threshold, network elements fail;
t ∈ {VI,VII,VIII,IX,X,XI,XII} := T

disk(ci, j , R(Mw, t)) The area of destroyed physical infrastructure after each earthquake Ei, j,Mw
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We propose two standard PSRLG definitions, with different meanings on the
probabilities associated with the link sets, to store the failure probabilities of sets of
network elements: (1) the Cumulative Failure Probability (CFP), and (2) the Link
Failure State Probability (FP).While in this Chapter we focus on failure probabilities
of link sets, if necessary, these structures can store failure probabilities of both links
and node failures (following Sect. 2.6). These data structures were already defined
(Definitions 2.1.2 and 2.1.3, resp.) in Chap.2, although the definitions implicitly
included the disaster and failure models. In the following, we re-define these models
from scratch.

Definition 7.1.1 (CumulativeFailureProbability (CFP)) Given a set of links S ⊆ E ,
the cumulative failure probability (CFP) of S, denoted by CFP(S), is the probability
that all links S fail simultaneously (and possibly other links too).

Definition 7.1.2 (Link Failure State Probability (FP)) Given a set of links S ⊆ E ,
the link failure state probability (FP) of S, denoted by FP(S), is the probability that
exactly the links of S fail simultaneously (and no other links).

Sometimes we will refer as ‘CFP’ to (1) the tuple (S,CFP(S)) for a link set S,
or simply, (2) to CFP(S). For a graph G, we will denote the collection of CFPs with
strictly positive probability by CFP[G]. The same applies to the Failure Probabilities
(‘FP’s). We note that the reason behind not referring the tuple of a link set S and
CFP(S) or FP(S) simply as PSRLGs is that, throughout this Chapter, we need to
make a distinction between these two data structures.

Although for some practical tasks, FP[G] may be a practical input, in the stand-
point of availability queries, we mainly look at FP[G] as a compact representation
of structure CFP[G] (the space complexity of the proposed structures will be inves-
tigated in detail in Sect. 7.4).

The space complexity of our availability computation engine based on either
CFPs or FPs is proportional to the number of link sets S with CFP(S) > 0 (resp.,
FP(S) > 0). The engine’s time complexity (namely, its query time) is the time needed
to determine the cumulative failure probability of a given link set.

As it turns out, data structures CFP[G] and FP[G] present a space-time trade-off:
There are more link sets with non-zero CFP than FP, since FP(S) > 0 implies that
CFP(S′) > 0 for all 2|S| − 1 nonempty sets such that S′ ⊆ S. On the other hand,
availability queries need to address fewer PSRLGs if they are all expressed as CFPs,
and computing these from FPs requires iterating over all FPs in the data set. In
Sect. 7.4, we study this trade-off in more detail and give formal bounds on the space
complexity and query time for both data structures (see Fig. 7.2b) when applied to
our regional failure model.
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7.1.3 On Availability Queries When Risk Failures Are
Correlated

Any availability query can be evaluated by iteratively calling CFP(S) , i.e., the
probability of simultaneous failure of all elements in any arbitrary set S. Con-
sider the example network and corresponding CFPs in Fig. 7.3 (non-listed link
sets have CFPs of 0). Suppose we need to establish a high-availability connection
from the top right node through a working path c and protection path f − d − e.
The unavailability of the working path is CFP({c}) = 0.0113, and the unavailabil-
ity of the protection path is CFP({ f }) + CFP({d}) + CFP({e}) − CFP({ f, d}) −
CFP({ f, e}) − CFP({d, e}) + CFP({ f, d, e}) 
 0.0275, by the inclusion-exclusion
principle. The total connection availability is 1 − CFP({c, d}) − CFP({c, f }) −
CFP({c, e}) + CFP({c, f, d})+CFP({c, f, e}) + CFP({c, d, e}) − CFP({c, f, d, e})

 0.99872. We can observe that, based on CFP[G], the connection availability can
be computed with the help of CFPs of subsets of {c, d, e, f }, that is, the union of the
links of the working and protection paths.

In contrast, for computing the total connection availability, the FP[G] data set
requires considering a larger number of data set entries. For example, the availability
of working path c can be computed as is 1 − ∑

{c}⊆S⊆{a,...,e} FP(S), i.e., we have
to subtract the FP of every link set containing c from 1. Furthermore, to compute
the total availability of the connection, we need to address all nonempty subsets
of {a, b, c, d, e}. The number of links is not part of neither the working nor the
protection path; this means up to exponentially more FP[G] queries than CFP[G]

Fig. 7.3 An illustration of the problem inputs and outputs. We note that the earthquake failure
model depicted here, detailed in Sect. 7.6.1, and used in our simulations, is a special case of our
general model presented in Sect. 7.2, that can handle a wide variety of disaster types (including
tornadoes, tsunamis, etc.), possibly describing their combined effect
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queries. Structure FP[G] has an advantage though: it has provably less elements than
CFP[G].

By considering joint failure probabilities, we have found that the total connec-
tion availability is < 0.9987, i.e., below three nines. For comparison, traditional
approaches that assume link failures to be independent,would have estimated the total
connection availability to be 1 − CFP({c})(CFP({d}) + CFP({e}) + CFP({ f }) −
CFP({d}) · CFP({e}) − CFP({d}) · CFP({ f }) − CFP({e}) · CFP({ f }) + CFP({d}) ·
CFP({e}) · CFP({ f })) > 0.99951, i.e., well above three nines. Even if they correctly
compute the availability of each path but assume independent path failures, they esti-
mate the availability by 1 − 0.0113 · 0.0275 > 0.99968, i.e., even more above three
nines. Here, by not considering joint failure probabilities, the traditional approaches
significantly overestimate the total connection availability, which can lead to more
frequent SLA violations and a financial burden on the CSP.

Unfortunately, (correlated) network failures are hard to compute and predict.
Nonetheless, to evaluate the expected availability of a service, a network administra-
tor should consider all possible failure scenarios under the specific service availability
model stipulated in the corresponding SLA.

7.1.4 Denomination Issues of Probabilistic SRLGs

Probabilistic extensions of SRLGs are called Probabilistic SRLGs, PSRLGs. The
probabilistic refinement can be defined in multiple ways, thus, in the literature, there
are multiple definitions of PSRLGs. E.g., in the first paper considering probabilistic
extensions SRLGs (whichwas [1]), each PSRLGevent r ∈ R occurswith probability
πr , and once a PSRLG event r occurs, link (i, j) will fail independently of the other
linkswith probability pri, j ∈ [0, 1]. Thus,we could call the [1]-PSRLGs as ‘two-stage
PSRLGs’. In contrast with this paper, [1] does not tackle the issue of computing the
PSRLGs.

Since both FPs and CFPs are probabilistic extensions of SRLGs, we say that, col-
lectively, these structures are PSRLGs. Moreover, since any version of probabilistic
SRLGs can be described with the help of either CFPs or FPs, and due to their natural
simplicity, we believe (C)FPs are the right standard way of defining PSRLGs. In
the following, we present a model for calculating CFP[G] and FP[G] describing the
correlated failure patterns of networks.

7.2 The Regional Failure Model

To compute service availabilities, we need to answer the following question:what is
the probability that a set of links S fails simultaneously? In other words, we need
to find the cumulative failure probability of S, i.e., CFP(S), which has a complicated
relationshipwith the correlation structure of link failures. Links that lie close together
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more often fail simultaneously, while further apart links rarely do. To find CFP(S),
we first propose a general stochastic model of possible network failure events. After
some pre-computation, this will allow us to build a succinct representation of the
joint probability distribution of link failures described in the previous section.

In our model, failures are considered to come solely from disasters affecting a
bounded geographical area. This chapter focuses only on link failures (node failures
can be translated to the joint failure of the set of all links adjacent to the node). The
model could be extended to incorporate node failures as well based on the techniques
described in Sect. 2.6.

While traditional approaches focus on single-point failures, which represent hard-
ware/node failures, cable/link cuts, etc., we adopt a model for regional failures and
focus on computing the conditional probability CFPd(S) that, in a given time period,
a set of links S fail together under a disaster of type d (e.g., a tornado, earthquake,
Electromagnetic Pulse (EMP), etc.).

Assumption 7.2.1 We assume that, in the investigated time period, there will be at
most one disaster of any type.1

In such a case, to obtain the availability values, we need to build a model for each
disaster type, and the resulting availability of S can be expressed as 1 − ∑

d∈D pd ·
CFPd(S), where D denotes the set of modeled failure types and pd is the probability
of disaster d. From now on, for ease of notation, we will consider a fixed failure type
d, and, therefore, the subscript d is omitted hereafter.

7.2.1 Stochastic Modeling of Regional Failures

In the remainder of the Chapter, we will call events that bring down the network in
a geographic area simply as disasters, indifferent to their cause. We model regional
failures caused by a disaster with the following parameters with randomly chosen
values:

epicenter p, which is a point in the plane R2,
shape (and size) s, which is a real value in [0, 1].
Each point p ∈ R

2 is assigned a hazard h(p) representing the probability that p
becomes the epicenter of the next disaster (see Fig. 7.4a). Specifically, h(p) is a
probability density function on the area R2, and therefore,

∫

p∈R2
h(p)dp = 1 . (7.1)

After a disaster of the examined type, the physical infrastructure (such as optical
fibers, amplifiers, routers, and switches) in some areas is destroyed. The possible

1 The case, when more disasters are expected to happen simultaneously, can be handled by defining
a new mixed disaster type, see also [2].
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Fig. 7.4 Example of real-world inputs

shapes for this area are defined by a set r(p, s) that represents a closed region on
the plane (the actual shape of the destroyed area) as a function of epicenter p and
the shape/size parameter s. This is a general disaster model, where several possible
damage areas can be defined by r(p, s).

Definition 7.2.2 (Regional disaster) We assume a regional disaster of epicenter
p and shape/size s will result in the failure of exactly those links of network G that
have a point in r(p, s).

Our next assumption is that r(p, s) is monotone increasing in the relative size s,
that is, a more severe version of a disaster hits at least the same region of the network,
as a weaker disaster (see Fig. 7.4b for an example).2 While this assumption holds in
general for a variety of disasters, we only use it to achieve ‘nicer’ equations.

Assumption 7.2.3

r(p, s) ⊆ r(p, s ′) if s < s ′ ∀p ∈ R
2, 0 ≤ s, s ′ ≤ 1 . (7.2)

For simplicity, we assume r(p, s) for a given p is a result of uniform sampling of
damage areas. Namely, for a given p, s has a uniform distribution over interval [0, 1],
i.e., the probability of the failure to be of size at most s is exactly s. Thus, s is called
relative size in the remainder of the paper.

Note that, given the disaster epicenter and relative size, the outcome of the attack
is deterministic. In other words, any link e within r(p, s) fails with probability 1, if a
failure event with parameters p and s occurs. Let us denote the set of failed links by
R(p, s). Definition 7.2.2 together with Assumption 7.2.3 imply that, given a point
p, R(p, s) ⊆ R(p, s ′) if s ≤ s ′. Let s(p, e) denote the corresponding smallest size

2 Various failure shapes were studied so far [4–19], mainly in the form of circular regional disasters
or line-segment failures, but in some cases also more general geometric shapes [6, 7]. All of these
models meet Assumption 7.2.3.
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s for which a failure at point p can cover link e. Furthermore, we denote by ρ the
maximum number of links that can be affected by a single failure (of maximum size
s = 1):

ρ = max
p∈R2

|R(p, 1)| . (7.3)

7.2.2 The Failure Probability of a Link Set

We first explain how to compute the probability CFP(S) that a set of links S ⊆ E
will fail simultaneously in the next disaster.

Let f (e, p) be the probability that link e fails if a disaster with epicenter p
happens. Note that by Assumption 7.2.3, f (e, p) > 0 can occur iff e ∈ R(p, 1).
f (e, p) can be computed from R(p, s), where s is in the range [0, 1]. Hence,

f (e, p) =
∫ 1

s=0
IR(p,s)(e)ds , (7.4)

where the indicator function IR(p,s)(e) indicates whether e ∈ R(p, s). Thus,

IR(p,s)(e) =
{
1 if e ∈ R(p, s) ,

0 otherwise.
(7.5)

By Assumption 7.2.3, if IR(p,s)(e) = 1, then IR(p,s ′)(e) = 1, for s ≤ s ′.
We now extend our notation to capture the probability of the failure of link e in

the next disaster:

P(e) :=
∫

p∈R2
h(p) f (e, p)dp. (7.6)

We denote the probability that a set of links S ⊆ E fail simultaneously, given that
the disaster epicenter is p ∈ R

2:

f (S, p) :=
∫ 1

s=0

∏

e∈S
IR(p,s)(e)ds . (7.7)

In other words, if the sequence of links is S = (e1, e2, . . . , e|S|) ⊆ R(p, 1) and
s(p, e1) ≤ s(p, e2) ≤ · · · ≤ s(p, e|S|), then

∏
e∈S IR(p,s)(e) = 1 iff s ≥ s(p, e|S|),

otherwise the product is 0. This implies that

f (S, p) = f (e|S|, p) = min
e∈S f (e, p) . (7.8)
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Finally, using the above results3:

CFP(S) =
∫

p∈R2
h(p) f (S, p)dp =

∫

p∈R2
h(p)min

e∈S f (e, p)dp . (7.9)

For example, on the right of Fig. 7.3, the results of applying the formula to the
5-node network are shown for all the non-zero joint link failure probabilities. In this
example, r(p, s) is always a circular disk with a radius computed according to the
historical seismic information. Potentially there are exponentially many joint failure
events in terms of the network size; however, links far from each other have zero
probability of failing jointly because of a single disaster. For example, this holds for
links f and b, whose smallest distance is more than the radius of the largest destroyed
area.

Former works (e.g., [6, in the proof of Lemma 8]) expressed the joint failure
probability of a set S by multiplying the failure probabilities of the links in S, thus
implicitly assuming these failures are independent. Unlike [6], our model assumes
a deterministic failure outcome (once its epicenter and shape are set). This implies
that, in ourmodel, failures are dependent. For example, two lines in the same location
(e.g., within the same conduit) always fail together (e.g., when the conduit is cut).

7.2.3 Example of the Geographical Correlation of Failures

In this Subsection, we first consider a simple linear and discrete model for some of
the ideas presented so far. We assume that the ground set of our simplified world
is the set of 1000 integer points of a line with coordinates between zmin = −499,
zmax = 500 and we have two links e0 and ez , which themselves are integer points
from the interval [−499, 500], e0 is at position 0, and ez is at position z. Let the
probability that i is the location of a disaster be hi = 10−3 for i = −499, . . . 500 so
that

∑500
i=−499 hi = 1. According to Eq. (7.9), the probability of the failure of link e0

is

P(e0) :=
500∑

i=−499

hi f (e0, i) , (7.10)

where f (e0, i) is the conditional probability that link e0 fails if the failure is at
position i . According to Eq. (7.9), the joint probability of the failure of both links e0
and ez is

P({e0, ez}) :=
500∑

i=−499

hi min( f (e0, i), f (ez, i)) . (7.11)

3 Without Assumption 7.2.3, we would have CFP(S) = ∫
p∈R2 h(p)

∫ 1
s=0

∏
e∈S IR(p,s)(e)dsdp.
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Fig. 7.5 An example of fi (0) at different i positions and the corresponding P(ez |e0) depending
on z. Former models assumed the link failures are independent given an epicenter of the disaster

Let P(ez|e0) denote the conditional probability that ez fails, on the condition that e0
fails. By definition we have

P(ez|e0) := P({e0, ez})
P(e0)

. (7.12)

This is a function of z in our setting. Intuitively, P(ez|e0) is close to 1 if the two links
are exactly in the same location (i.e. z = 0).

Additionally, P(ez |e0) should be a decreasing function of z in the range of [0, 500].
See Fig. 7.5 for an example of f (e0, i) values and the corresponding P(ez|e0).

7.3 Pre-Computation to Speed up Queries

In the previous section, we have described a model that generates a regional disaster
according to a hazard density h(p) and a failure shape function r(p, s). Recall that
our task is to return CFP(S) for a set of links S ⊆ E , which is the probability that
links S fail together in case of disaster d.

Unfortunately, the calculation of integrals (7.9) can be a computationally-intensive
process. One solution is to calculate some FPs in advance so that when a query comes
on the CFP of an arbitrary set of links S, then the task would be summing up some
of the pre-computed FP values.

As Lemma 7.4.1 will show, a full list of FPs with non-zero probabilities has
O((n + x)ρ2γ 4) items. Every CFP can be derived by summing up

CFP(S) =
∑

T⊇S

FP(T ), ∀S ⊆ E . (7.13)
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7.3.1 Precomputation of CFPs and FPs

In this subsection, we still rely on Assumption 7.2.3 and make the following addi-
tional assumptions to apply some computational geometry results. We emphasize
that the second and third additional specifications are technical assumptions to avoid
lengthy discussions (see Sect. 7.7).

• Shapes r(p, s) are limited to circular disks centered at p. This corresponds to the
case where the failure of a link e depends on the Euclidean distance dist(p, e) of e
to the epicenter of the disaster p. In this case, instead of r(p, s), the input is given
by radius d as a function of s.

• In our geometric reasoning, we will transform the links of the graph into line
segments by slightly shortening them to ensure that no two segments share a
common endpoint (see the details of the transformation in Sect. 7.7). We also
assume that no more than two links intersect in the same point, and no more than
two endpoints lie on the same line.

• The relative size s is a uniformly Lipschitz continuous function of radius d. That
is, there exists a positive number K such that for every point p in the plane, if
we have neighborhoods r(p, s ′) and r(p, s) with respective radii d ′ and d, then
|s ′ − s| ≤ K |d ′ − d| holds.
For ease of presentation,we slightly reduce the domainwe are integrating over. Let

P denote the set of points p of the plane such that dist(p, e) �= dist(p, e′)whenever
e and e′ are different segments from E .Wehave thatR2 \ P is ofmeasure zero, hence
in our considerations, integrating over the plane R2 can be replaced by integrating
over P .

Inspired by (7.8), we can now define the sequence of possible link failures (see
Fig. 7.6), when the epicenter of the attack is at p:

Definition 7.3.1 The sequence of link failures for epicenter p ∈ P is an ordered
set of linksS (p) = (e1, e2, . . . , el), such that s(p, e1) ≤ s(p, e2) ≤ · · · ≤ s(p, el),

Fig. 7.6 Illustration of link failure sequences
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where l = |R(p, 1)|. Let S j (p) denote the first j links of S (p), i.e. S j (p) =
(e1, e2, . . . , e j ).

Furthermore, the ordinal number of a set S withinS (p) is defined as follows:

Definition 7.3.2

j (S,S (p)) =
{
i, if S �⊂ S i−1(p) and S ⊆ S i (p)

0, otherwise.

Due to Assumption 7.2.3 and using also (7.9), if there is a disaster at point p, the
conditional probability of a set of links S ⊆ S (p) failing together is

f (S, p) = f (S j (S,S (p))(p), p) = f (e j (S,S (p)), p) . (7.14)

Finally, we use two practical input parameters, x , and ρ, in estimating the space
complexity of our approaches. Let x be the number of link crossings in the network
G. For backbone networks, x is a small number, as typically, a switch is also installed
on each link crossing [20]. The second parameter is ρ, the link density of the network,
which is defined as the maximal number of links that could fail together (i.e., could
be covered by a circle of radius r ). The link density ρ, practically, does not depend
on the network size. Moreover, ρ is at least the maximal nodal degree in the graph.

Let us divide the plane into disjoint regionsR1, …,Rk , where each point p ∈ Ri

has the same sequence Si of link failures (see Fig. 7.7, and [21] for efficient algo-
rithms calculating these regions). Here, k is the number of possible failure sequences.
For any point p ∈ Ri , we introduce notation S (p) ≡ Si , i = 1, . . . , k.

Based on Equation (7.14), it is sufficient to pre-compute and store the following
integrals:

Pi, j =
∫

p∈R i

h(p) f (ei, j , p)dp i = 1, . . . , k, j = 1, . . . , |Si |, (7.15)

Fig. 7.7 An example of different partitions of the plane into regions used in Lemma 7.4.1
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where ei, j denotes the j-th link inSi .
Finally, since the regions aremutually disjoint as subsets ofP and cover it entirely,

Eq. (7.9) can be written as a sum and, according to (7.14), the failure probability of
any link set S ⊆ E can be evaluated as

CFP(S) =
k∑

i=1

∫

p∈R i

h(p) f (S, p)dp =
k∑

i=1

Pi, j (S,S i ) , (7.16)

where we define Pi,0 := 0 for every i = 1, . . . , k. Based on Eqs. (7.13) and (7.16),
one can derive that:

FP(S) =
∑

i, j

(
Pi, j − Pi, j+1

)
, (7.17)

where the summation is for those pairs (i, j) for which 1 ≤ i ≤ k and j (S,Si ) =
|S| > 0. As a default, we set Pi,|S i |+1 = 0.

7.4 Space and Time Complexity of Structures CFP[G]
and FP[G]

7.4.1 Cardinality of Structures FP[G] and CFP[G]

In our basic model, considering the case of the disaster shapes being circular disks
in a given L p metric, (where, for p = 2, we get back the usual Euclidean circles,
for p = 1 or p = ∞, we have a family of parallel-sided squares, and, for p = 2/3,
astroids, that are specific 4-cornered stars), the number of FPs can be upper bounded
as follows.4.

Lemma 7.4.1 In case of a set of circular disk shaped disasters (i.e., r(p, s) is cir-
cular) in a given L p metric, and the edges of the network being in general position,
there are O((n + x)ρ2γ 4) FPs with non-zero probability.

Proof Let us concentrate on line segment links for a moment. According to Claim
5.1.9, the number of links, m, is O(n + x) for line segment links. We know from
[23, Theorem 6] that the number of k-Voronoi cells in L p norm for line segments
is O(k(m − k) + x), or alternatively, O(k(n + x − k) + x) thus disasters hitting k
links can hit at most this many link sets. Since a circular disk can hit at most ρ links,
this sums up to O(ρ2(n + x + x), which is O(ρ2(n + x)).

4 We note that a similar upper bound can be shown for a more general family of disaster sets for
the joint failure probability of the nodes. Specifically, taking a set V of points of the plane (i.e.,
the nodes instead of the links), it is known that, for any convex compact S subset of the plane, the
number of subsets V ′ of V with cardinality k fulfilling V ′ = V ∩ S′ for some homothetic copy of
S (i.e., S′ is a copy of S shrinked/enlarged and shifted) is less than (2k − 1)|V | − k2 [22].
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If links can be polygonal chains consisting of at most γ line segments, there are
O(γ (n + x)) segments with O(γ 2x) crossings, meaning O(kγ 2(n + x)) k-Voronoi
regions. By counting the k-Voronoi regions for k ∈ {1, . . . , γρ}, this yields an upper
bound of O((n + x)ρ2γ 4) for the number of FPs. �

In the same setting, the number of CFPs can be very large:

Lemma 7.4.2 The number of CFPs with non-zero probabilities is lower-bounded
by �(2ρ). In case of a set of circular disk shaped disasters in a given L p metric,
and the edges of the network being in general position, the number of CFPs with
non-zero probabilities is upper-bounded by O(2ρ(n + x)ρ2γ 4).

Proof By the definition of ρ, there is a link set S with CFP(S) > 0 and |S| = ρ. As,
for any S′ ⊆ S, CFP(S) > 0 implies CFP(S′) > 0, implying the lower bound. By
Lemma 7.4.1, there are at most O((n + x)ρ2γ 4) non-zero FPs, each having at most
2ρ subsets, yielding the upper bound. �

Every FP and CFP can be stored in O(ρ) space, since it contains a link set of at
most ρ links, alongside with a related probability. This way, the space requirement of
FP[G] and CFP[G] is upper bounded by O((n + x)ρ3γ 4) and O(2ρ(n + x)ρ3γ 4),
respectively.

7.4.2 Query Time of Structures FP[G] and CFP[G]

When storing the non-zero FPs in a list, by Eq. (7.13), querying the FP[G] structure
for CFP(S) requires iterating over all non-zero FPs and summing up all FP(T ) such
that T ⊇ S. Thus, S has to be compared with O((n + x)ρ2γ 4) (Lemma 7.4.1) other
sets, and each comparison can be made in O(ρ). The number of possible additions is
also O((n + x)ρ2γ 4), thus the query time of the FP[G] structure is upper-bounded
by O((n + x)ρ3γ 4). Alternatively, if we stored the FPs in an ordered balanced binary
tree, we would need to lookup all the exponential number of T ⊇ S.

The query time of CFP[G] also depends on the data structure used for storing
CFPs. For example, if we store all non-zero CFPs in a list, the query time would
be �(2ρ) (Lemma 7.4.2). In contrast, by hashing all CFP(S) on S, we reduce the
query time a constant with very high probability. Last, when storing all non-zero
CFPs in a self-balancing binary tree, the worst-case query time would be O(ρ +
log((n + x)ργ )) (Lemma 7.4.2). Although the CFP structure can achieve impressive
query times, this comes at the cost of its space complexity (�(2ρ)), which makes it
inefficient for larger network densities.
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7.5 Implementation Issues

The approaches and performance guarantees we gave in Sects. 7.3 and 7.4 are valid
under the assumption that the shape of a regional failure is always a circular disk. In
this section, we propose a heuristic that (1) can accommodate any disaster shape; (2)
does not require advanced geometric algorithms; and (3) is more suitable for digital
inputs, as it uses discrete functions instead of continuous ones.

We discretize the problem by defining a sufficiently fine grid over the plane such
that for each grid cell c, the disaster regions r(p, s) and hit link sets R(p, s) are
“almost identical”5 for all p ∈ c. This reduces the integration problem from Sect. 7.2
to a summation.6

We consider R2 as a Cartesian coordinate system. Let r denote the absolute max-
imum range of a disaster in km. Let (xmin, ymin) be the bottom left corner and
(xmax , ymax ) the top right corner of a rectangular area in which the network lies. It is
sufficient to process each c in the rectangle of bottom left corner (xmin − r, ymin − r)
and top right corner (xmax + r, ymax + r), and we denote by ci, j the grid cell in the
i-th column and j-th row of this rectangle. We assume we are given the probability
hi, j of the next disaster epicenter p lying in cell c: hi, j = ∫

p∈ci, j h(p)dp.
Now, for each c, we can compute the sequence of link failures and store the link

sets as follows.

7.5.1 Structure CFP[G]

For our CFP[G] structure, we use an associative array CFP[G], which can be
addressed by a set of links S = {�1, �2, . . . , �k} and returns its cumulative failure
probability. In the pre-computation process, we have to extract the contribution of ci, j
to the failure probability of every subset S of links. To do so, we process the sequence
of link failures Si, j = (e1, e2, . . . , el) attached to disaster epicenters which are in
ci, j ,7 and increment theCFP[G] values accordingly: CFP({e1})+ = hi, j · f (e1, ci, j ),
CFP({e2})+ = hi, j · f (e2, ci, j ), CFP({e1, e2})+ = hi, j · f (e2, ci, j ), etc. By default,
for every link set S, we set initially CFP(S) = 0.

To obtain CFP(S), we look it up in the associative array. If S is not found, then
CFP(S) = 0.

5 In particular, we may assume that f (e, p) is independent of p as long as it is in c and denote this
common value by f (e, c).
6 [16] uses a similar grid approach.
7 Here, we represent ci, j by its center p. According to Definition 7.3.1, for i < j , link ei is closer
to p than e j , i.e., s(p, ei ) < s(p, ei ).
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7.5.2 Structure FP[G]

For our FP[G] structure, we take a similar approach as for the CFP[G] structure and
use a list of ‘S, FP(S)’ set-failure probability pairs.

In the pre-computation process, we have to extract the contribution of ci, j to the
link failure state probability of every subset S of links. As in the case of the CFPs, we
do so by iterating over the sequence of link failuresSi, j = (e1, e2, . . . , el) and incre-
menting the FP values accordingly: FP({e1})+ = hi, j · (

f (e1, ci, j ) − f (e2, ci, j )
)
,

FP({e1, e2})+ = hi, j · (
f (e2, ci, j − f (e3, ci, j )

)
, FP({e1, e2, e3})+ = hi, j · ( f (e3,

ci, j − f (e4, ci, j )
)
, etc.

To obtain CFP(S), we sum up
∑

T⊇S
FP(T ).

7.6 Model Evaluation Based on Seismic Hazard Data

In this section, we present numerical results that validate our model and demonstrate
the use of the proposed algorithms on real backbone networks (taken from [24] )
accompanied with real seismic hazard inputs. The algorithms were implemented
in Python 3.6., using its various libraries,8 respecting the regional failure model
presented in Sect. 7.2, and following the implementation principles of Sect. 7.5. Run-
times were measured on a commodity laptop with a Core i5 CPU at 2.3GHz with 8
GiB of RAM.

As a practical scenario, the simulations presented in this paper focus on trans-
forming the seismic hazard on network topologies to PSRLGs. As a first step, we
need to convert the historical seismic hazard data into a regional failure model for our
framework. Section7.6.1 discusses our earthquake representation based on epicenter
and moment magnitude. In a nutshell, the model translates the seismic hazard data to
a set of circular disk shaped disaster areas with radii depending on the actual moment
magnitude (Fig. 7.8). Note that the epicenter distribution is non-uniform here.

We are taking this probabilistic earthquake set as input, Sect. 7.6.2 presents our
simulation results validating our PSRLG model.

7.6.1 Seismic Hazard Representation

We are investigating the failures caused by the next earthquake within a given geo-
graphic area; thus, we assume there is exactly one earthquake in the investigated
period. Each earthquake is uniquely identified by its epicenter and moment magni-
tude [25]:

8 The simulation data can be downloaded from [24].
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Fig. 7.8 Seismic input data

epicenter ci, j , which represents a latitude-longitude cell on the Earth’s surface,
taken from a grid of cells over the network area.

moment magnitude Mw ∈ {4.6, 4.7, . . . , 8.6} =: M .

We index the grid cells such that i ∈ {1, . . . , imax } =: Ii , j ∈ {1, . . . , jmax } =: I j .
Let Ei, j,Mw

denote the set of earthquakes with centre point in ci, j andmagnitude in
(Mw − 0.1, Mw]. As cells and magnitude intervals are small enough that the failures
caused by each earthquake in Ei, j,Mw

will often be identical,9 we will represent
all Ei, j,Mw

with a single earthquake having a center point in the center of ci, j and a
magnitude ofMw. Let the probability that the next earthquake is in Ei, j,Mw

be pi, j,Mw
.

Note that these probabilities add up to 1, i.e.
∑

i, j∈I i×I j

∑
Mw∈M pi, j,Mw

= 1.
Our initial input are the activity rates ri, j,Mw

of earthquake types (see Fig. 7.8a)
instead of the pi, j,Mw

values, so we first have to translate these rates to probabilities.
We claim that under the assumption that each kind of earthquake Ei, j,Mw

arrives
according to independent Poisson arrival processes with parameters ri, j,Mw

, the rates
of earthquakes Ei, j,Mw

can be transformed to probabilities pi, j,Mw
as follows:

pi, j,Mw
= ri, j,Mw

/ ∑

i, j∈I i×I j

∑

Mw∈M
ri, j,Mw

. (7.18)

We assign each network element e an intensity threshold t (e). If the intensity I
of the ground shaking reaches this threshold (I ≥ t (e)) at any point of the physical
embedding of e, the element fails. In our simulation, every network element has the
same threshold t (e) := t , where t ∈ {VI,VII,VIII,IX,X,XI,XII} := T according to
the Mercalli-Cancani-Sieberg (MCS) scale [27].10

After each earthquake, Ei, j,Mw
, the physical infrastructure (such as optical fibers,

amplifiers, routers, and switches) in an area disk(ci, j , R(Mw, t)) of a circular disk
is destroyed. The center point of disk(ci, j , R(Mw, t)) is the center of ci, j , while its

9 The sides of grid cells used in our simulations were 0.05◦ long in the Italian rate map, and 0.1◦ in
case of the EU and the USA, meaning 4–10km of cell side length.
10 Intensity I ≤V does not cause structural damage, while I =XII means total damage.
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radius R(Mw, t) is monotone increasing in the magnitude Mw, and decreasing in
the intensity threshold t (see Fig. 7.8b, c). As earthquakes can occur anywhere in the
cell, we increase the radius by the distance between the center of the cell and its outer
corners. This way, the disk is always an overestimate of an earthquake’s damaged
area in cell ci, j with magnitude Mw.

7.6.1.1 Earthquake Activity Rates

These are the occurrence rates of earthquake events as a function of space, time, and
magnitude. To obtain them, we need to define an earthquake source model, defined
as an area or an active fault that could host earthquakes as testified by instrumental
seismic activity, historical seismicity, geomorphological evidence, and regional tec-
tonics. The choice of the earthquake source model is strongly driven by the available
knowledge of the area and by the scale of the problem. It may range from well-
defined active faults, especially when working at a local scale, to less understood
and wider scale seismotectonic provinces. When the catalog of earthquakes covers a
long period, it can be used to compute earthquake activity rates without any informa-
tion of seismotectonic provinces and/or active faults, via, for example, a smoothed
seismicity approach. In this work, we evaluated the earthquake source model for
Italy and the USA from the most recent published earthquakes catalogs ([26, 28], for
Italy and the USA, respectively) that cover a long period and can be used to obtain
earthquake source model without other information. Although earthquakes can be
clustered in time and space with their distribution that is over-dispersed if compared
to the Poisson law [29], a common way to treat this problem (i.e., cluster in time and
space) is to de-cluster the earthquake catalog, i.e., removing all events not consid-
ered mainshocks, via a declustering filter [30]. Here, both catalogs are considered
de-clustered. The standard methodology to estimate the density of seismicity in a
grid, and used in this work, is the one developed by [31]. The smoothed rate of events
in each cell is determined as follows:

Sri =
∑

j r j exp
(−d2(ci ,c j )

d2
c

)

∑
j exp

(−d2(ci ,c j )
d2
c

) , (7.19)

where r j is the cumulative rate of events with magnitudes greater than the com-
pleteness magnitude Mc in each cell ci of the grid and computed from the historical
catalogue of earthquakes, d(ci , c j ) is the distance between the centers of grid cells
ci and c j . The parameter dc is the correlation distance (for Italy, 30km [32] and for
the USA, 75km [33]). Then, the earthquake activity rates for each node of the grid
are computed following the Truncated Gutenberg-Richter model [34]:

λ(M) = λ0
exp (−βM) − exp (−βMu)

exp (−βM0) − exp (−βMu)
(7.20)
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for all magnitudes M between M0 (lower or minimum magnitude) and Mu (upper
or maximum magnitude); otherwise λ(M) is 0. The upper and lower magnitude
bounds represent, respectively, the maximum magnitude, or the largest earthquake
considered for a particular source model, which depends on the regional tectonic
context (in our case, Mw is at most 8.1, 8.6 and 8.3 for Italy, Europe, and the US,
respectively), and the minimum magnitude, or threshold value, below which there is
no engineering interest or lack of data (in this study, Mw > 4.5).11 Additionally, λ0

is the smoothed rate Sri of earthquakes at Mw = 4.5 and β = bln(10), where b is
the b-value of the magnitude-frequency distribution. For Italy, we calculated the b-
value of the distribution on a regional basis using the maximum-likelihood method
from [35], while for the USA, it comes from [28]. While for Italy and the USA,
we computed the earthquake rates (Fig. 7.8a) following this approach and with the
referenced data, for Europe, we used the already published SEIFA model [36, 37],
a kernel-smoothed, zonation-free stochastic earthquake rate model that considers
seismicity and accumulated fault moment. In this model, activity rates are based
on the SHARE European Earthquake Catalogue frequency-magnitude distribution
model. The spatial distribution of model rates depends on the density distributions
of earthquakes and fault slip rates. A magnitude-frequency distribution indicates the
probability that an earthquake of a size within the upper and lower bound of the
distribution may occur anywhere inside the source during a specified period.

While this does give us the rates for all combinations of epicenters and magni-
tudes for Italy, the USA, and Europe (Fig. 7.8a), we still need the relation between
magnitude and disaster area to be able to apply these rates to the network resiliency
models.

7.6.1.2 The Radius of the Damaged Zone

The only earthquake effect that can be quantified at the scale of the whole coun-
try is ground shaking because quantifying any other earthquake effects requires a
site investigation. Shaking intensity is localized and is generally diminishing with
distance from the earthquake’s epicenter. At the scale of a whole country, we can
assume that soil and topographic conditions are relatively homogeneous. The seismic
intensity only depends on the distance from the earthquake epicenter.

Here, we assume all links (and nodes) inside the area with a given MCS intensity
I ≥ t (where t ≥VI) are damaged, while all components outside of this area remain
functioning. Thus, to obtain all disaster areas, we now only need the disaster area
radius for each magnitude Mw ∈ {4.6, 4.7, . . . , 8.6}. For this purpose, we used the
intensity prediction equation of [38, 39], for Italy/Europe, and the USA, respectively,
where the expected intensity I at a site located at epicentral distance R is:

IIt,EU = 1.621 · Mw − 1.343 − 0.0086(D − h) − 1.037(ln D − ln h), (7.21)

11 Figure7.8a shows that, in the investigated range of magnitudes, the global rate of earthquakes
dips exponentially in the function of the magnitude.
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Table 7.2 The investigated network topologies

Network
name

n m # CFPs at
t =VI

# FPs at
t =VI

# CFPs at
t =VII

# FPs at
t =VII

Optic EU 22 45 6377 202 1369 135

Italian 25 34 12106 308 676 200

US 26 43 946 246 260 164

Nobel EU 28 41 3867 149 680 94

EU 37 57 5634 212 745 133

N.-
American

39 61 2024 394 556 257

NFSNET 79 108 14199 969 1762 523

IUS = 0.44 + 1.70 · Mw − 0.0048 · D − 2.73 · log10 D, (7.22)

where D = √
R2 + h2 is a sort of hypocentral distance, and h represents the hypocen-

tral depth, whichmay be viewed as the average depth of the apparent radiating source
[38], h equaling 3.91 and 10km for Italy/Europe and the USA, respectively. In this
way, it is possible to compute for each Mw and intensity threshold t the site-distance
R(Mw, t) from the epicenter of the desired intensity threshold level. It is worth noting
that Eq. (7.21) has been obtained using only the Italian earthquake historical catalog,
and so it is not entirely correct to use it for the entirety of Europe. However, the
Italian catalog is one of the more complete catalogs in Europe. There is no similar
equation in the literature for the entire continent (to the best of our knowledge), and
its development is beyond the paper’s scope. We assume that the application of Eq.
(7.21), as a first approximation, can be considered correct for entire Europe.

7.6.2 Simulation Results

We consider seven topologies: one Italian topology, three other European topolo-
gies, and another three US topologies. Unless otherwise stated, we set the intensity
tolerance threshold, t , to VI according to the MCS scale. The node and link counts,
as well as the number of CFPs and FPs with non-zero probability, of all topologies
are given in Table7.2 both for t = VI and t = VII.

Interestingly, although the US network has slightly more nodes and links than the
Italian network, it has much less CFPs (946 compared to 12106). This difference
is easily explainable when we consider our theoretical results from Sect. 7.4: the
number of non-zero CFPs is lower-bounded by �(2ρ) (Lemma 7.4.2), which means
an exponential growth with the maximal number of hit links, ρ. Since the Italian
network has much shorter links than the American network, its hit link sets tend to
be larger. We can observe this same exponential increase with the maximal number
of hit links when we decrease the threshold from t = VII to t = VI. For example, the
number of CFPs of NFSNET is 1762 at t = VII, but explodes to 14199 if we decrease
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Fig. 7.9 The space and complexity of the data structures for the examined network topologies

this threshold to t = VI. In contrast, the number of FPs makes a much smaller jump,
from 523 to 969.

By only storing the x largest CFPs, we can trade in some precision in exchange
for a significant reduction in memory usage. Figure7.9a shows the precision of this
approach versus x . For the Italian topology, the highest probability among the omit-
ted edge sets is 5.4 × 10−4 or 1.7 × 10−5 if we store only the top 100 or 1000 CFPs
respectively. Furthermore, increasing the precision by order of magnitude requires
only a bit more than an order of magnitude more CFPs. Similarly, in the case of
the other networks, storing the first 100 or 1000 CFPs means that the highest prob-
ability among the omitted edge sets is below 5 × 10−4 or 1 × 10−5, respectively;
and increasing the number of CFPs by order of magnitude is more than enough for
increasing the precision by a factor of 10.

Speaking of the precision-memory trade, omitting some of the FPs is also possible.
In this case, the imprecision in the value of CFP(S) for some S can be upper bounded
by the sum of probabilities stored in the omitted FPs. On Fig. 7.9b, we can see the
probability assigned to the x th most probable FP. Fortunately, the highest number
of non-zero FPs was low, 969 in our experience, meaning that, most probably, no
omission is needed.
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Asmentioned before, the difference in the number of non-zero CFPs can partly be
explained by a difference in hit link set sizes. Figure7.9c shows the maximal number
of hit links, ρ, versus the intensity threshold, t . We can confirm that, at t =VI, the
Italian network has a much higher density than the US network (13 compared to 7).

We have also investigated the average CFP of a set of links with given car-
dinality. Figure7.9 shows the average failure probability concerning the number
of links failing together. Single links have an average failure probability between
[4.2 × 10−4, 2.1 × 10−3], depending on the network topology. The average failure
probability for double and triple link failures lies in [1.2 × 10−5, 3.9 × 10−4] and
[1.9 × 10−6, 9.3 × 10−5], respectively. These averages meet our expectations that
the correlation between link failures is significant. By our observations, the combi-
nation of link failures with the highest CFPs is predominantly the combined failure
of links incident to a single node.

Figure7.10 further investigates the relationship between the space requirements
of CFP[G] and FP[G]. In Fig. 7.10a, we show the space requirement of structures
CFP[G] and FP[G] as a function of the intensity threshold t . As expected, the number
of CFPs drops quickly with the intensity threshold. Our results show that, especially
at lower thresholds, choosing the FP structure can significantly reduce space require-
ments. This phenomenon is even stronger in case of Italy_995, a network with 32
nodes and 70 links over Italy, that we decided to exclude frommost of the simulation
presentations. The reason for this is its unusually high density: at intensity tolerances
of t = VI and ρ = VII, it has densities ρVI = 31 and ρVII = 19, yielding > 109 and
1153294 CFPs, while the number of its FPs is only 2011 and 1090, respectively.

Figure7.10b depicts the number of CFPs and FPs with given cardinality for the
Italian. Since there is a link set of cardinality 13 with positive FP, there must be over

Fig. 7.10 Comparison of space efficiency of structures CFP[G] and FP[G]
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Fig. 7.11 CFP comparison of single, double and triple link failures for Italian

1700 subsets of cardinality 6 with non-zero CFP. In comparison, the number of FPs
peaks at 71 for cardinality 4.

Continuing our study of the cardinality of failed link sets, Fig. 7.11a investigates
the dependency between CFP(S) and |S| in detail, for |S| = 1, 2 and 3. There are 34
single link failures in the Italian networkwhoseCFPs range between [0.0003, 0.019];
it has 205 dual link failures with non-zero probabilities between [7 × 10−8, 0.0037],
and there is a number of 648 triple link failures with strictly positive probabilities,
ranging between [7 × 10−8, 0.0019]. Here we can see that some CFPs with size l are
less probable than some other CFPs containing l + 1 links. Thus, only storing CFPs
with at most l links rarely yields the same result as only storing the most probable
CFPs. Also, we can observe that the CFPs of the most probable triple link sets are
not much smaller than the CFPs of the most probable link pairs. This is another sign
that the most probable double and triple link failures are failures of the links incident
to the same network node.

7.7 An End Note on the Geometric Transformation
of the Network

In the geometric reasonings of the currentChapter,we transform the links of the graph
into line segments. We also need to ensure that no two segments share a common
endpoint. In the network, the adjacent links terminate in a single node; thus, we need
to perform a minor transformation as follows.

Let S ⊆ E be a set of segments and ε > 0 a small number. Suppose that we
shorten some segments e of S, in a way that we delete ε long subsegment from both
ends, in such a way that the deleted intervals do not overlap. Let S′ denote the set of
segments S after shortening.
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Lemma 7.7.1 We have f (S, p) ≥ f (S′, p) and f (S, p) − f (S′, p) ≤ εK hold for
every point p.

Proof For the first inequality note that

f (S, p) =
∫ 1

s=0

∏

e∈S
IR(p,s)(e)ds ≥

∫ 1

s=0

∏

e′∈S′
IR(p,s)(e

′)ds = f (S′, p) (7.23)

because IR(p,s)(e) ≥ IR(p,s)(e′) holds for every s, whenever e ∈ S.
We turn now to the second inequality. Let s be the smallest value such that∏
e∈S IR(p,s)(e) = 1 (if there is any), and set s ′ = s + εK . Let d and d ′ be the radii

of r(p, s) and r(p, s ′), resp. By the Lipschitz property we have εK = s ′ − s ≤
K (d ′ − d) giving that d ′ > d + ε. We know by the definition of s that r(p, s) inter-
sects every segment e ∈ S in some point Qe. But then r(p, s ′) intersects e′. This
holds, because the larger disk r(p, s ′) clearly contains the disk of radius ε centered
at Qe, and the latter disk must intersect e′ because we deleted disjoint subintervals of
length at most ε from e to obtain e′. We have therefore

∏
e′∈S′ IR(p,s ′)(e′) = 1, hence

f (p, S) − f (p, S′) =
1∫

y=0

(
∏

e∈S
IR(p,y)(e) −

∏

e′∈S′
IR(p,y)(e

′)

)

dy

≤
s ′∫

y=s

1dy = εK . (7.24)

�

We transform our set of segments into one, where no segment e has an endpoint A
on any other segment. If we have such a segment, thenwe carry out the transformation
by deleting an ε long subsegment of e starting at A. Lemma 7.7.1 gives that if we set
ε sufficiently small, then all the values f (p, S) and f (p, S′) will be very close to
each other, hence CFP(S) and CFP(S′) will be very close to each other. Moreover,
for any two segments e1, e2 ∈ E , we have that either e1 ∩ e2 = ∅, or e1 ∩ e2 is an
interior point of both segments.

As a simple example illustrating the Lipschitz condition (2) from Sect. 7.3.1,
suppose that r(p, s) is a disk centered at p having radius sRp, where Rp is the radius
of r(p, 1). Then for radii d = sRp and d ′ = s ′Rp we have |s ′ − s| = 1

Rp
|d ′ − d|.

The Lipschitz condition then holds if there exists a k > 0 such that Rp ≥ k for every
p.
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7.8 Thesis Summary

Thesis 3 ([40–42]) I defined a stochastic model of link failures caused by disasters,
which considers the correlation between failures of links which are geographically
close to each other. To unify the notions and terminology on Probabilistic SRLGs, I
proposed standard data structures for containing the disaster probabilities. In case
of circular disk shaped disasters, for the size and query time of these data structures,
I proposed theoretical upper bounds. Evaluating the model and data structures, I
showed that in case of taking real seismic data as input, these data structures have
a manageable size.

Thesis 3.1 ([40–42]) Inspired by earthquake behaviours, I defined a stochastic
model of link failures caused by disasters. This model is the first to explicitly consider
the correlation between failures of links which can be subject to the same disaster.

To unify the notions and terminology linked to probabilistic extensions of Shared
Risk Link Groups, I proposed two standard data structures for describing the disaster
probabilities. Namely, for a graph G, these structures are called FP[G] andCFP[G],
respectively. In FP[G], for each link set S, the probability that exactly S will fail is
stored as FP(S) , while in CFP[G], the probability that at least S will fail is stored
as CFP(S) .

Thesis 3.2 ([40–42]) In case of disasters having shapes of circular disks in a given
L p metric, representing the network topology G(V, E) in the Euclidean plane with
links considered as polygonal chains consisting of at most γ line segments, denoting
the number of link crossings by x, and the maximum number of links which are hit
by one of the disasters by ρ, I proved the followings. There are O((|V | + x)ρ2γ 4)

FPs with nonzero probability. The number of CFPs with positive probability is lower
bounded by �(2ρ) and upper bounded by O(2ρ(|V | + x)ρ2γ 4). Storing all the
positive CFPs in a balanced binary tree, the worst-case query time of the CFP of
a given link set is O(ρ log((|V | + x)ργ )). Storing all the positive FPs in a list, the
query time of the CFP of a given link set is O((|V | + x)ρ2γ 4).

Thesis 3.3 ([40–42]) Using real-world seismic hazard data combined with Italian,
European and contiguous US network topologies, I found the followings. Assuming
network equipment fails only at a shaking of intensity VIII of the MCS scale, there is
no significant difference in the cardinality of CFPs and FPs with positive probability.
The number of CFPs becomes unacceptably large and slow to compute only at the
combinedpresence of strong earthquakes (with Mw ≥ 8), short network links (≤∼ 50
km), and network resources poorly resistant to ground shaking (failing at intensity
VI). Structure FP has a low cardinality and can be computed in someminutes in these
circumstances too, even on a commodity laptop. Finally, listing CFPs with at most l
links rarely yields a list equivalent to keeping some of the most probable CFPs.
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Chapter 8
Conclusion

8.1 Summary

This Thesis is dedicated to prove that the effect of regional disasters (natural on man-
made) can bemodeledwith a lownumber of SRLGs or PSRLGs. These carefully con-
structed lists of (P)SRLGs can be used as input for e.g., network recovery/planning
mechanisms.

In Chap. 5 (Thesis 1), I showed that, known the geometric embedding of the
network topology, and overestimating the disaster area by a circular disk with radius
r , the listMp

r ofworst-case SRLGs can be calculated in low-polynomial time, and has
O(|V |ρr ) elements. In case of spherical embedding I also proved low-polynomial
bounds on the size and computing time of Mr . I showed that in case of real-world
network topologies and disasters with a radius ≤∼ 500km, the difference between
lists Ms

r and Mp
r is often less than the difference due to the disaster size estimation.

Chapter 6 (Thesis 2) offered a regional failure model for the case when only a
schematic map of the network is given as input. The resulting list Mk of maximal
failures caused by circular disks hitting at most k nodes has at most O(|V |kρk)

elements, and can be calculated in low-polynomial time.
Lastly, Chap. 7 (Thesis 3) presented (1) a unified terminology on PSRLGs, (2) a

tractable stochasticmodel of disaster failures explicitly taking in count the correlation
on the link failures, and 3) an evaluation of the model based on seismic data. I
concluded that the risk induced by the seismicity on backbone topologies can be
encoded in and quickly looked up from a small-sized CFP or FP list.

These lists of vulnerable regions can be used as input of various problems arising in
the field of network resiliency. Some of these problems are resilient (geodiverse) rout-
ing, (k-)content connectivity, network failure detection, service availability queries,
resilient backbone network planning, disaster avoidance control, resilient SDN, etc.
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8.2 Open Problems

I believe for Mp
r , there is little room for making the created algorithms faster for

its enumeration. Also, theoretical upper bounds on |Mp
r | are tight. Contrary to this,

inspired by the lessons learned on Mp
r , there are some low-hanging fruits for a faster

algorithm enumerating Ms
r , and better upper bounds on |Ms

r |.
In case of Mk , the presented algorithm computes it in O(

n2
(
k5 + k log (nk + 1) + 1

))
(if γ is constant and ρk is O(k + 1)). A natural

question is whether it is possible to compute Mk quicker. For k = 0 the answer
is yes in case of usual networks: as presented in [1, 2], M0 can be determined
in O(n(log n + ρ3

0τ0)), where τ0 is an additional parameter depending on local
properties of the embedding of the network in the plane (and edges are consid-
ered as line segments). In other words, there exists an algorithm to compute M0 in
f (ρ0, τ0)O(n log n). I believe that there exist similar algorithms for determining Mk

in f (k, ρk, γ, . . . ) O (n log n), where f depends only on k and on ’local’ properties
of the embedding. This near-linear complexity in n would allow Mk to be computed
even quicker in case of huge networks too. Due to the limits of my research, this
remained an open problem.

It is also an open question if one can enhance the preciseness of our probabilistic
disaster failuremodel presented inChapter 7whilemaintaining its relative simplicity.

8.3 Possible Future Work

Possible future directions of this research include but not restrict to:

• better integration of failuremodeling into disaster resilience approaches (FRADIR
[3–5]-like studys),

• proving our conjecture that the regional SRLG-disjoint routing problem is in P ,
• evaluating our probabilistic failure model with more complex real-world inputs,
• as a side-track of a future SRLG list comparing study, creating the ‘SRLG-Zoo’,
a webpage similar to Topologyzoo [6], from where one could download network
topologies and related (P)SRLG lists.

The reason I did not mention designingmore elaborated SRLGmodels is twofold.
In many cases, the data on the network and its environment is very limited, thus, in
my opinion, designing more complex SRLG failure models than the state-of-the-art
would be an overkill (e.g., embedding the network to a hyperbolic space). On the
other hand, if we do have abundant data, thenwe should aim for increasingly accurate
probabilistic models.
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Afterword

PTTR—Post, Telephone, Telegraph, Radio: this good old Romanian telecom brand
is still written in front of a post office in Seklerland in 2021 when half of the western
civilization is in home office or learns online and 5G networks are being installed
worldwide. The speed of technological transformation is never anticipated, indeed.
My parents are telling mind-boggling stories of the telecommunication possibilities
of the communist Romania of the ’80s. They had to wait for hours in a crowded
room to get access to a telephone line to home, and when they finally got it, they had
to listen to and answer the frequent question of the operator: ‘Still speaking?’. The
way of sending birthday wishes would also be peculiar today: the post transferred
dispatches charged per characters counted by hand.

After the revolution of ’89, my father applied for an international telephone line
for his freshly founded company. Surprisingly at that time, he got it, and a number
of people could manage their foreign affairs at him—with a little bit of luck since
successful dials were rare. In the ’90s, Romania made a huge leap forward in the
technology applied and closed up to the state of the art. The Internet arrived in cities,
towns, and lucky villages of the country, and in the absence of regulations enforced,
in the 2000s, the country was told to host a major pool of hackers.

By now, the Internet has become a topmost critical infrastructure all over theworld
that allows not only companies to rely on it and send money instantaneously but also
scientists to collaborate in a way unseen before. On 31st July 2019, for example, we
were finalizing an INFOCOM submission, working at the same time on the same file
from Madrid, Zurich, Vienna, Berlin, and Székelyudvarhely, respectively. I have to
admit that despite our work was smooth and effective, I had to use my mobile net
because the regular (wired) Internet connection was down in the town. They rumor
that the power supply of a nearby router is getting wet at local storms (if that is a
common feature of our local infrastructure, then even a mild storm can cause here a
regional failure). Maybe it was just a simple cable cut. That is not unanticipated in
local level either: when they built the sewer pipe to the local spa in 2018, according
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to the rule, they planned its route to avoid all kind of infrastructure, apparently but
for the optical cable of the Internet: they cut it in the first hour of digging.

Conform to the arising requirements, it is likely that the telecommunication net-
workswill continue to evolve to such an extent that in some decades, our global status
in 2021 would seem as obsolete as the telecom possibilities of the ’80s Romania. As
discussed in this Dissertation, my findings are part of the work for this vision.
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