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Foreword

The theme of this book is borders in mathematics pre-service teacher education. 
The chapter authors have identified curricular, programmatic, and societal borders 
that not only serve to separate and divide but can also inspire and challenge us when 
they are crossed. The notion of border crossing reminded me of the National Science 
Foundation’s (NSF) emphasis on convergence research, which defined it as collabo-
ration around compelling, vexing problems that address societal needs (https://
www.nsf.gov/od/oia/convergence/index.jsp). While NSF’s focus was on research, 
the notion applies equally well to teacher education. Certainly, improving mathe-
matics pre-service teacher education is a vexing problem that addresses the great 
societal need of improving the teaching and learning of mathematics. Many aspects 
of this vexing problem are related to the borders that are identified in this book (such 
as borders between research and practice, borders between mathematics and other 
disciplines, and borders between different demographic and cultural groups). And 
solutions are likely to be found in convergence—the coming together of people with 
different histories, perspectives, experiences, knowledge, and theories. This coming 
together across borders for sustained collaborations can result in new knowledge, 
frameworks, and ways of thinking that would not be possible without border cross-
ing. The grand challenges of our time are going to be solved through convergence. 
And the work of educating future mathematics teachers is all about the grand chal-
lenges of our time—contributing to a well-educated and equitable society. When we 
come together across all sorts of boundaries as described in this book, we can create 
something new through collaboration, which leads to innovation.

The authors of chapters in this book provide a glimpse into many ways that 
mathematics teacher educators can cross boundaries and the professional growth 
and innovation that emerge from this border crossing. I offer a few additional 
thoughts about ways we might challenge ourselves to cross borders to improve 
mathematics pre-service teacher education. For example, in my college, graduating 
students in all teacher education programs regularly tell us that they feel unprepared 
for classroom management. Rather than assume that this topic is the province of 
other colleagues in teacher preparation or that future teachers will learn to manage 
a classroom from their field experiences, we might collaborate with peers in 
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 cognitive science to expand our knowledge of classroom management and social 
and emotional learning, among other topics. This border-crossing collaboration 
could lead to mathematics educators being more aware of what contemporary 
research tells us about classroom management and current trends in schools, and we 
could then strategically integrate this information into our mathematics method 
courses. This collaboration might also help cognitive science colleagues see par-
ticular examples from mathematics education that could be used in their educational 
foundation courses, which would help our mathematics education students see the 
value of these classes that are often taken before they reach a mathematics education 
course. A more radical outcome might be a co-taught course that addresses a range 
of issues covered in a typical educational foundation course in a manner particular 
to mathematics education. It is worth having the conversation about what topics 
might best be covered in what venues and knowing what our colleagues are teaching 
so that we might reference it or build upon it in our courses. Similar border crossing 
collaborations might involve our colleagues in special education, Teaching English 
to Speakers of Other Languages, gifted education, speech pathology, school psy-
chology, or counselor education and those who teach foundational courses often 
labeled as “diversity courses.” Or we might look for places of intersection with our 
colleagues in literacy, science, social studies, art, music, physical education, and 
other educator preparation fields. For instance, most teacher educators, regardless of 
discipline, are preparing future teachers to engage students in the type of learning 
that leads to conceptual understanding. Although called different things in different 
fields, we have similar objectives and could benefit from understanding how others 
approach the task of helping future teachers think differently about teaching and 
learning.

It is also worth considering the “grain size” at which we cross borders. There are 
many ways we can cross borders as individuals—reaching out to a colleague, 
attending a conference (or sessions at conference such as the American Educational 
Research Association) in another field, or doing some independent research. In 
other cases, we may be part of a small group of faculty (such as a mathematics edu-
cation program faculty) actively working to build bridges with colleagues in other 
areas, such as a mathematics department. We might also consider what it means to 
cross borders as a field of mathematics teacher education. How are we inviting oth-
ers to cross into our bordered land? Who comes to our conferences? Who reads our 
publications? Who do we invite to speak at our conferences? Who do we include 
when we build professional learning teams, research teams, and instructional teams?

In a similar vein, some instances of border crossing occur by happenstance, 
while others are more deliberate. What would it mean for us as individuals or groups 
to be intentional about crossing borders? How do we hold ourselves accountable for 
reading broadly for our own professional knowledge, providing our students with 
readings from a diverse array of sources, visiting a colleague’s classroom, or invit-
ing our P-12 education partners into conversations about our pre-service teacher 
education programs? How often do we (as individuals and as a collective) glance 
across a border and decide not to cross without even giving it a try to see what we 
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might learn or contribute? To be sure, we will cross some borders and decide that it 
is not fruitful and will decide to stay within our own boundaries. But it is more 
likely that most border crossings will leave us, and ultimately our students, enriched.

This book offers us—as individuals and as a field—multiple examples of border 
crossing and the challenges and benefits of doing so. I hope these examples inspire 
readers to examine borders in which they find themselves and to step outside those 
borders for the purpose of improving mathematics pre-service teacher education.

Department of Mathematics  
and Science Education 

Denise A. Spangler
dspangle@uga.edu

University of Georgia 
Athens, GA, USA
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Introduction

Borders are ubiquitous in our world(s). They can be used to define, classify, orga-
nize, make sense of, and control. They can also be used to unite or divide. There are 
many ways that the concept of a border illuminates the field of mathematics educa-
tion, more specifically mathematics pre-service teacher education. As a conse-
quence, researchers and practitioners also react to the borders in many ways. Within 
the field of mathematics education, borders are explored in many different contexts, 
such as exploring mathematics across topics (e.g., geometry, algebra, and probabil-
ity) and blurring the boundaries between them (e.g., Jagger, 2018; Radakovic & 
McDougall, 2012); exploring borders between mathematics and other disciplines 
such as science, the arts, and social studies (e.g., Austin, Thompson, & Beckmann, 
2005; Gerofsky, 2013; Lesser, 2014); and challenging gender, cultural, and racial 
borders (e.g., Esmonde, 2011; Larnell, 2016).

The concept of borders emerges from educational theory and research, and we 
see it as a powerful way to examine current trends in mathematics pre-service 
teacher education. Borders are often discussed in relation to wider mathematics 
education research. Yet, there is a need for additional investigation, particularly in 
the context of pre-service teacher education, given the impact that teacher education 
programs have on PSTs’ future practice. This edited collection was born out of 
this need.

As we embarked on this project, we identified some possible borders that we see 
in our work, have experienced, and recognize from the existing literature. In addi-
tion to inviting scholars at various stages of their career, we specifically reached out 
to individuals whose work delves (previously or currently) into the areas related to 
borders. In our invitations, we outlined the borders that we had identified; however, 
we encouraged contributors to reflect on what borders mean in their work and to 
identify and explore borders beyond our suggestions in a way that was meaningful 
and authentic to them. As such, although we had some ideas about the organizing 
principle for the book, the final structure emerged from the contributions.

This book consists of four parts that offer varied perspectives on borders in 
mathematics pre-service teacher education. In the remainder of this chapter, we 
outline each part. We use these four parts as an organizational tool to guide the 
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reader through the themes identified by us, as editors, and by the authors. These 
parts are not mutually exclusive. We acknowledge that by delineating parts, we, as 
editors, have in fact created borders in our book. Thus, we encourage readers to 
imagine/challenge our “borders” and consider how the chapters may be extended 
beyond them.

 Part I: Opening: “En La Lucha/In the Struggle 
for Mathematics Teacher Education Without Borders”

Sandra Crespo’s chapter was originally presented as a keynote address at the 38th 
Annual Meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education (PME-NA), one of the largest conferences 
for mathematics education researchers in North America. The chapter serves as an 
opening to this book because it outlines some borders in mathematics education 
(including mathematics pre-service teacher education) while optimistically hoping 
that these borders will cease to exist. Specifically, Crespo reflects on three intel-
lectual divides that drive her research and practice, namely, mathematics/mathe-
matics education, expert/novice, and research/teaching divides. Here in “En La 
Lucha/In the Struggle for Mathematics Teacher Education Without Borders,” 
Crespo argues that these divides are widespread and far more dangerous than are 
acknowledged in our field of mathematics education. She suggests a reflexive and 
collaborative approach to identifying and problematizing the intellectual divides in 
order to make a difference in communities that mathematics educators serve.

Furthermore, we selected this chapter to open our book as it is an exemplar of the 
complexity and contradictions of the current historical, political, and social context 
in which mathematics education takes place. For context, the 38th PME-NA confer-
ence took place in Tucson in November 2016, a couple of days before Donald 
Trump won the presidential election running on a platform that was largely about 
drawing borders between peoples and nations. The official title of the conference 
was “Sin Fronteras: Questioning Borders With(in) Mathematics Education,” and 
both the spirit of the conference and organizational principles around choosing the 
keynote speakers focused on challenging, describing, transforming, and erasing 
borders (Wood, Turner, & Civil, 2016). Consistent with the conference’s theme, 
presenters were invited to present in Spanish, and Spanish/English interpretation 
services were available. The intention and hope was that this practice would con-
tinue at future conferences.1

1 Although conference papers are accepted in all of the three major languages in North America 
(English, French, and Spanish), to our knowledge, there have not been presentations or interpreta-
tion/translation in French, an official language in Canada, at any of the PME-NA conferences. This 
includes instances when the conference took place in Canada (e.g., 2004  in Toronto, ON, and 
2014 in Vancouver, BC).
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 Part II: Curricular Borders in Mathematics Pre-service 
Teacher Education

This part explores curricular borders that exist in mathematics pre-service teacher 
education. Specifically, we see that these borders can be classified in two ways: (1) 
within mathematics (e.g., geometry, number sense, and probability) and (2) between 
mathematics and other subjects (e.g., science, social studies, and the arts).

In schools, mathematics is often presented as a collection of disconnected themes 
and topics. Mathematics learners often experience mathematics content as a series 
of disconnected facts (Boaler, 2015). For example, students may have procedural 
fluency to perform symbolic calculations such as 32 + 42. Yet, they are not able to see 
how this calculation relates to the combined area of two squares. Similarly, Skemp 
(2006) describes how students may see and be taught about the areas of various 
figures (e.g., triangles, rectangles, and parallelograms) as disconnected facts with-
out seeing an underlying connection, namely, relating each area to the area of the 
rectangle. These occurrences signal that the students have compartmentalized infor-
mation about mathematical procedures without conceptual understanding (Lai, 
Kinnear, & Fung, 2017). Similarly, research indicates that when students are unable 
to make connections across mathematical representations, this may also indicate 
that students lack a depth of mathematical understanding (Pape & Tchoshanov, 
2001). It is not solely children (as mathematics learners and doers) who have these 
problems; pre-service teachers also face similar challenges (Livy, Muir, & Maher, 
2012; Stohlmann, Moore, Cramer, & Maiorca, 2015; Tirosh, 2000).

“Continuous Directed Scaling: How Could Dynamic Multiplication and Division 
Diagrams Be Used to Cross Mathematical Borders?” delves deeper into one 
approach to disrupt borders within mathematics. Specifically, Justin K. Dimmel and 
Eric A. Pandiscio challenge typical representations of multiplication and division as 
presented in US curriculum standards. This is done through bridging analytic geom-
etry concepts with the concepts related to numbers and operations.

Borders between mathematics and other subjects have also existed and, more 
recently, have been an area of growth and attention. First, the need for interdis-
ciplinary fields has led to the development of science, technology, engineering, 
and mathematics (STEM) education (Breiner, Harkness, Johnson, & Koehler, 
2012; Mohr-Schroeder, Cavalcanti, & Blyman, 2015). Additionally, an increased 
importance of interdisciplinary education has prompted the development of 
STEAM (A for the arts) education. From one perspective, arts educators have 
reacted to the prioritizing of educational initiatives and policies to incorporate 
STEM into the curriculum by advocating for STEAM (Bequette & Bequette, 
2012; Guyotte, Sochacka, Costantino, Kellam, & Walther, 2015; Land, 2013). 
From another perspective, STEM educators (including mathematics educators) 
see STEAM as a way to more authentically explore curriculum (Madden et al., 
2013; Radziwill, Benton, & Moellers, 2015; Yakman & Lee, 2012). Furthermore, 
the urgency of dealing with the need for quantitative literacy has influenced 
some jurisdictions (e.g., Australia) to consider numeracy across the curriculum 
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(Geiger, Forgasz, & Goos, 2015; Goos, Dole, & Geiger, 2012). Similarly, soci-
etal crises, such as climate change, require transdisciplinary solutions that con-
nect and transcend disciplines. Thus, schools need to create curricula and 
educational opportunities for students to explore connections between disci-
plines including the connection between mathematics and other subjects 
(Peterson, 2013). Given the importance of interdisciplinary teaching and learn-
ing, teacher education programs have the responsibility of ensuring that pre-
service teachers are prepared to incorporate these approaches into their future 
practice. The remaining three chapters in this part explore relationships between 
mathematics and other subjects.

In “Crossing Disciplinary Borders in Pre-service Teacher Education: Historical 
Consciousness as a Tool to Develop Awareness of Mathematical Positionality to 
Achieve Epistemic Change,” Marta Kobiela and Paul Zanazanian present an 
approach to connect mathematics and history. Their chapter describes how pre-ser-
vice teachers can engage with historical cases to make sense of mathematics and 
themselves as mathematics learners and teachers.

Next, Jennifer Hall and Helen Forgasz present a case of when mathematics is 
introduced across the curriculum. “Secondary Pre-service Teachers’ Experiences in 
a Numeracy Course” describes how numeracy is interwoven throughout the teacher 
education program at Monash University for all pre-service teachers to reinforce the 
importance of numeracy across grade levels and subject areas. Indeed, there are 
many ways to integrate mathematics with other disciplines.

Finally, in “Mathematics Crossing Borders: A Comparative Analysis of Models 
for Integrating Mathematics with Other Disciplines in Pre-service Teacher 
Education,” Merrilyn Goos shares some models of integration that she has used or 
observed in pre-service teacher education courses. These include mathematical 
modeling, curriculum integration, and numeracy across the curriculum approaches.

In summary, authors in this part advocate for and/or present ways of addressing 
curricular borders in mathematics pre-service teacher education. They reinforce an 
urgent need for mathematics to be meaningfully integrated in teacher education 
programs in order to ensure that pre-service teachers see relationships and connec-
tions within mathematics and a crucial component of our complex/connected 
reality.

 Part III: Programmatic Borders in Mathematics Pre-service 
Teacher Education

There exists a wide variety of structures and formats of teacher education programs 
as there is no universal understanding and/or agreement as to the best way to train 
pre-service teachers. In addition, contextual variables and constraints (e.g., location, 
resources, and institutional requirements) result in specific programmatic decisions 
and further contribute to the variance in programs from institution to institution. The 
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chapters in this part explore programmatic borders that exist in mathematics pre- 
service teacher education.

Decisions made about the structure of teacher education programs create bor-
ders. For example, many programs for mathematics pre-service teachers are orga-
nized into coursework focused on content knowledge or teaching methods and 
practica. There is also a division created between teachers specializing to teach 
various populations such as emergent bilinguals, students with disabilities, etc. 
The first two chapters in this part speak to the borders that are created by the struc-
ture of teacher education programs and how these borders may hinder the devel-
opment of pre-service teachers. The chapters also suggest ways to respond to 
these borders.

In “Bridging the Gap Between Coursework and Practica: Secondary Mathematics 
Pre-service Teachers’ Perceptions About Their Teacher Education Program,” Limin 
Jao, Nakita Rao, and Alexandra Stewart give voice to secondary mathematics pre-
service teachers in order to understand their experiences with various components 
of their program (i.e., coursework and practica). Their experiences provide insight 
into the nature of the “bordered” reality of their program and possible ways for 
teacher education program stakeholders to challenge these borders and create better 
connections between the components.

Next, Annette Bagger and Helena Roos explore challenges of collaborations 
occurring between special education teachers in mathematics and mathematics 
teachers for primary school in the Swedish context. Here in “The Shared Duty of 
Special Educational Support in Mathematics: Borders and Spaces in Degree 
Ordinances for Pre-service Teachers,” the authors explore the origin of these chal-
lenges and suggest how existing programmatic borders could be addressed in order 
to encourage more fruitful collaboration.

While structural borders in teacher education may have a negative impact on 
pre- service teachers’ development, their prior experiences with mathematics also 
may be a hindrance. Authentic mathematics education presents mathematics as a 
powerful, creative, and social activity (Yeh, Ellis, & Koehn Hurtado, 2017), yet 
many pre-service teachers have not had personal experience with this kind of 
mathematics. Rather, pre-service teachers typically have only experienced mathe-
matics through mastery of a set of procedures (Bekdemir, 2010; Lewis, 2014). 
Thus, it is important for teacher education programs to provide opportunities for 
pre-service teachers to experience learning mathematics in a different way. Yet, 
merely experiencing mathematics in new ways is not enough to support pre-ser-
vice teachers’ development. Pre-service teachers need to reflect on these experi-
ences and make sense of how their new personal experiences can inform their 
future practice. For example, pre-service teachers can consider ways in which they 
found their new experiences to be challenging as mathematics learners and (as 
future teachers) in which they could mitigate their challenges for their future 
students.

The next two chapters highlight the value of pre-service teachers experiencing 
and reflecting upon these experiences as mathematics learners. First, in “Blurring 
the Border Between Teacher Education and School Classrooms: A Practical 
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Testing Activity for Both Contexts,” Tina Rapke, Marc Husband, and Heather 
Bourrie present a testing activity. In this activity, pre-service teachers take turns 
developing test questions and take tests created by their peers. The  participating 
pre-service teachers’ reflections of their experiences provide insight into the 
implications of such an activity in both teacher and K–12 education contexts.

“Teaching the Hungarian Mathematics Pedagogy to American Pre-service 
Teachers” describes the approach of the Budapest Semesters in Mathematics 
Education program that has students experiencing common teaching approaches 
and activities used in the Hungarian mathematics education. Péter Juhász, Anna 
Kiss, Ryota Matsuura, and Réka Szász share how, in the program, pre-service teach-
ers experience Hungarian mathematics as both learners and educators as they solve 
and design rich mathematical tasks. The program also challenges cultural and geo-
graphic borders, as participants are typically pre-service teachers from the 
United States.

Teacher education programs provide an opportunity for pre-service teachers to 
join and/or be enculturated into a community of educators. Typically, pre-service 
teachers form a community with their peers through face-to-face interactions in 
classes/coursework and through shared experiences throughout their program. Yet, 
communities may also be organically formed in other spaces. For example, a 
Facebook group is created by a group of pre-service teachers to make sense of a 
class assignment, or social media pages centered around prominent members of the 
mathematics or mathematics education community (e.g., Francesco Daddi, Dan 
Meyer, Marian Small, and Eddie Woo) or educational trends (e.g., educational tech-
nology, problem-based learning, and STEAM) could inspire the creation of a com-
munity. These are spaces where pre-service teachers gather to make sense of their 
practice and distinct from the teacher education programs. Therefore, there is a bor-
der between traditional spaces and informal spaces often led by pre-service teachers.

In order to understand their affordances and challenges that they create, the 
mathematics teacher education community should make an effort to understand 
informal online spaces. In “Mathematics Education Communities: Crossing Virtual 
Boundaries,” Josh T. Hertel, Nicole M. Wessman-Enzinger, and Justin K. Dimmel 
present a framework for understanding virtual mathematics education communities 
based on the theoretical work of communities of practice and boundary crossings. 
The authors test their framework on several North American communities in order 
to understand them and the boundaries associated with them and outline ways that 
understanding virtual mathematics communities may benefit mathematics pre- 
service teachers and their practice.

The authors in this part address borders that exist within teacher education pro-
grams such as structural borders, borders created by pre-service teachers’ tradi-
tional mathematics learning experiences, and borders between traditional and 
emerging spaces for the development of professional communities. Their chapters 
may serve as inspiration for mathematics pre-service teacher education stakehold-
ers to revisit and/or reimagine the structure of their programs.
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 Part IV: Societal Borders in Mathematics Pre-service Teacher 
Education

Like any type of education, mathematics pre-service teacher education has the 
tendency/capacity to replicate the same inequities and societal divisions/borders 
that exist in the wider society such as sexism and racism (Dubbs, 2016; Martin, 
2009). Mathematics and mathematics education are gendered, heteronormative, 
and Eurocentric spaces (Greer & Mukhopadhyay, 2012). Yet, mathematics class-
rooms are typically seen as objective and value-neutral, and mathematics is often 
thought of as a “universal language” (D’Ambrosio & D’Ambrosio, 1994). 
Traditionally, bringing in different identities, voices, and perspectives into these 
spaces has not been allowed. This is why teachers and teacher educators often 
avoid topics and content that include different identities, voices, and perspectives 
(Simic-Muller, Fernandes, & Felton-Koestler, 2015).

The chapters in this part suggest ways of challenging borders by bringing forth 
the identities in different ways. “Queering Mathematics: Disrupting Binary 
Oppositions in Mathematics Pre-service Teacher Education” challenges heteronor-
mative and gendered space by suggesting how to queer the space. Indeed, queering 
is a way to erase the border between different identities by including these identities 
in the conversations. In this chapter, Cathery Yeh and Laurie Rubel draw on existing 
theories to recognize and challenge borders around gender, sexuality, and other 
identity categories in mathematics teacher education. The authors suggest ways of 
working toward the opportunities to blur and queer the borders and to challenge 
heterosexism and genderism.

In the second chapter in the part, Mahtab Nazemi brings forth student racial 
identities and suggests implications for this in pre-service teacher education. 
“Persisting Racialized Discourses Pose New Equity Demands for Teacher 
Education” explores the ways in which classroom teachers can support students to 
negotiate and navigate their racial identities while learning mathematics. Here, 
Nazemi uses a case of an Advanced Placement Statistics classroom to underline 
the importance of teachers reflecting upon their students’ identities in relation to 
their own identities. Furthermore, she asserts that teacher educators are responsi-
ble for encouraging pre-service teachers to develop this awareness/disposition 
even before having a mathematics classroom of their own. The scope of “Queering 
Mathematics: Disrupting Binary Oppositions in Mathematics Pre-service Teacher 
Education” and “Persisting Racialized Discourses Pose New Equity Demands for 
Teacher Education” goes beyond pre-service teacher education by considering 
mathematics education more generally; however, both describe the critical role 
that pre-service teacher education has for shaping the future of mathematics 
education.

Another voice that has yet to be adequately represented in the field of mathe-
matics pre-service teacher education is that of the immigrant voice. mutindi 
ndunda and Nenad Radakovic, two immigrant teacher educators, frame the issue 
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of standardization from their own point of view by respecting their own experi-
ences that often get erased in environments that tend to be US-centric and often 
xenophobic. Their chapter “Standardization and Borders in Mathematics Pre-
service Teacher Education: A Duoethnographic Exploration” presents the authors’ 
take on duoethnographic methodology in order to make sense of their teaching 
practice as immigrant professors in the American South. ndunda and Radakovic 
use a political border metaphor to understand possible responses to borders cre-
ated by standardization.

The authors in Part IV make the issues of identity salient, thus revealing the bor-
ders that are created in Eurocentric and heteronormative spaces. Their chapters pro-
vide a blueprint for including voices in mathematics pre-service teacher education 
that have historically been silenced.

In conclusion, we hope that this book provides a space for much needed reflec-
tion on borders and hope to motivate the community to consider the role that bor-
ders play in mathematics pre-service teacher education and their own research and 
practice. It is important to note that this book serves to provoke questions, and we 
understand that there are many perspectives, and this is just one. This book is not 
meant to provide (all of the) answers. Although we have tried to offer diverse per-
spectives and approaches to challenging, blurring, erasing, and addressing borders, 
we acknowledge that the book presents only a subsection of the vast and complex 
concept of borders in mathematics pre-service teacher education. In a way, we see 
this is a conversation, and we want our community to be part of the conversation. 
We hope that this book inspires our community/colleagues to continue to engage in 
the concept/discussion about borders. We are reminded of Argentinian writer Jorge 
Luis Borges’ observation that a book changes every time it is read and that the book 
gives birth to infinite dialogues between the book and its readers (Borges, 1966). 
Our hope is that our book will have many lives and that the dialogues and conversa-
tions will motivate mathematics education researchers to further understand exist-
ing borders and their role in our field.

Department of Integrated Studies in Education Limin Jao
limin.jao@mcgill.caMcGill University 

Montreal, QC, Canada

Department of Teacher Education Nenad Radakovic
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En La Lucha/in the Struggle 
for Mathematics Teacher Education 
Without Borders

Sandra Crespo

1  Introduction

The conference theme of the PME-NA 2016 Sin Fronteras!—Without Borders gave 
me the opportunity to reflect on the main struggles I have faced as a mathematics 
educator seeking to make a difference within our field of mathematics education. As 
someone who is constantly crossing geographical, cultural, linguistic, and intellec-
tual borders, I am sensitive to how cultural norms and ideologies are used to justify 
membership and exclusions of people. This is reflected in my work as a mathemat-
ics educator who strives to contribute to improving mathematics education in ways 
that align with the goals and values of democratic and anti-oppressive education. I 
am especially interested in learning and teaching practices that redistribute power 
and challenge stereotypes and hierarchies in the mathematics classroom, and this 
has pushed me to see social interactions from multiple perspectives and theoretical 
lenses. I approach my work in collaboration with colleagues, schools, and teachers 
committed to social change. I do this work by crossing national boundaries across 
the Dominican Republic, Canada, and the USA by straddling the worlds of elemen-
tary/secondary education, of formal/informal mathematics, of theory/practice, and 
of equity/excellence debates and debacles. More importantly, I have learned to 
embrace the tension and burden of working within and across these many communi-
ties and boundaries.

This chapter is a revised version of Crespo, S. (2016). En la lucha/In the Struggle!: Researching 
What Makes a Difference in Mathematics Education. In M. B. Wood, E. E. Turner, M. Civil, & 
J. A. Eli (Eds.), Proceedings of the 38th annual meeting of the North American Chapter of the 
International Group for the Psychology of Mathematics Education (pp. 2–14). Tucson, AZ: The 
University of Arizona.
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While it is true that my work crosses boundaries, this is not unique to my scholar-
ship. I would argue that we are all in some way or another navigating multiple per-
sonal and professional communities that require us to negotiate interactions that 
challenge us and that nurture us. Therefore, I am not claiming that I have something 
unique to share or to stake claim to a piece of intellectual property that is solely my 
own. To the contrary, the work I have done over the past 20+ years as a mathematics 
educator has been possible because it has taken a whole village of collaborators who 
have helped me to keep front and center my commitment to anti-oppressive educa-
tion and to remain hopeful that as math educators we can make a difference. My 
approach here is to reflect on the kinds of boundaries I have had to cross throughout 
my career to make visible intellectual divides that I consider dangerous and worthy 
of bridging and eventually take down.

I use “in the struggle/en la lucha” in the title of this chapter to remind myself of 
Paulo Freire’s (1970) pedagogy of hope in which he discusses our struggle as edu-
cators to work within the system that oppresses us and that we seek to change. I am 
also channeling bell hooks’ (1994) idea of teaching to transgress, where she calls on 
educators to find new ways of thinking about teaching and about learning so that our 
work “does not reinforce systems of domination, imperialism, racism, sexism, elit-
ism” (p. xx). It is in that spirit that I use this opportunity to reflect on my own work 
and how it has been challenged by pernicious intellectual divides that create adver-
sarial relationship and unwarranted hierarchies in our field and among ourselves.

2  Fronteras Intelectuales and Dangerous Divides

One way to understand intellectual divides is through the ideology of the two cul-
tures, a phenomenon that was discussed by a prominent scholar in the middle of last 
century. Snow (1959) spoke as a participant in both literary and scientific communi-
ties about the deep-rooted divide between two fields—the literary intellectuals and 
the scientists—and how each exalted its own virtues by vilifying the other’s values. 
He described them as two polar groups: the literary intellectuals at one pole and at 
the other the scientists—“Between the two a gulf of mutual incomprehension. They 
have a curious distorted image of each other” (Snow, 1959, p. 4). Snow’s character-
ization highlighted that the literary intellectuals value nuance, subtlety, depth, 
responsiveness, and imagination, whereas scientists will talk about those qualities 
as touchy-feely and fuzzy-minded subjectivism. Similarly, the scientists value ratio-
nality, objectivity, and functional prose, while literary scholars consider those quali-
ties dull, literal minded, and lacking depth of understanding.

A similar analysis is offered in “Disciplinary Cultures and Tribal Warfare,” a 
chapter in the book Scandalous Knowledge by Herrstein Smith (2006), who also 
explains the dangers of creating intellectual camps and hierarchies. She revisits 
C. P. Snow’s two cultures, adding that the tendency to polarize, compare, and rank 
ourselves is part of what all social groups do, including academics and intellectuals. 
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In academic circles, this is known as the ideology of the two cultures and refers to 
our tendency to identify ourselves with one or more social groups (e.g., religious, 
ethnic, political, professional), to experience that identity through contrast and com-
parison to one or more other groups—or, in other words, to experience the world in 
terms of “us” and “them.” This is known as a tendency to self-standardize and other- 
pathologize, said another way “to see the practices, preferences and beliefs of one’s 
own group as natural, sensible and mature and to see the divergent practices, prefer-
ences and beliefs of members of other groups, especially those considered as the 
‘other,’ as absurd, perverse, undeveloped or degenerate” (Herrstein Smith, 2006; 
p. 113). Another consideration is that this tendency to pathologize the other is self- 
perpetuating, in that these are invoked and circulated as ideological narratives 
within and across various communities.

In mathematics education, there are numerous intellectual divides to choose 
from (see Davis, 2004; Davis, Sumara, & Luce-Kapler, 2014; Stinson & Bullock, 
2012). In the 1980s, the quantitative/qualitative debate took center stage as did the 
constructivism vs. social theories of learning. The 1990s witnessed the cognition 
vs. communication, and acquisition vs. participation debates (Sfard, 1998), while 
the 2000s experienced the sociocultural vs. sociopolitical divide (Gutiérrez, 
2013). These debates have been played out in the intellectual domain and among 
academics and eventually have slipped into the everyday conversations of schools 
and universities as ideological narratives that cast polar opposite characters 
(reform vs. traditional) battling out intellectual wars. Although these debates have 
faded, they still frame current conversations and practices in mathematics educa-
tion. Furthermore, they fall into the dualistic intellectual tradition that Snow 
(1959) characterized as the ideology of the two cultures and that Herrstein Smith 
(2006) describes in her writings as the tendency to self-standardize and 
other-pathologize.

I focus here on three enduring divides that have not had as much play as those 
named above but are ever present in our everyday practices as mathematics educa-
tors and fuel an “us vs. them” mentality as described in the ideology of the two 
cultures. These are (a) Mathematics/Education, (b) Expert/Novice, and (c) Research/
Teaching. I contend that these divides may seem innocuous but are nevertheless 
more dangerous than they appear to be. As I look back at my work with these three 
divides in mind, I can see how these have been and still continue to be a challenge 
in my own scholarship but also to our field more broadly. Looking more specifically 
at my published work within the PME and PME-NA proceedings, I can see all three 
divides in each of those articles. When considering which divide was most fore-
grounded, the following groupings emerged—seven articles foregrounding (a) [the 
mathematics/education divide], five of them foregrounding (b) [the expert/novice 
divide], and six articles foregrounding (c) [the research/teaching divide]. Rather 
than synthesizing the three groupings, I use one representative article to springboard 
the discussion on each intellectual divide. I purposefully picked articles that are 
6–7  years apart, so that they represent broadly the scholarship that I have been 
engaged in over the past 20 years.

En La Lucha/in the Struggle for Mathematics Teacher Education Without Borders
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2.1  The Mathematics/Education Divide

Looking back at my very first PME-NA presentation and paper, I can see a clear 
pushback to the mathematics/education divide by prominently highlighting and 
questioning the separation between where and how teacher candidates can learn 
mathematics in their teacher preparation programs. I experienced this divide in my 
own undergraduate education as I traveled from one side of campus, where I was 
studying mathematics and physics to the other side of campus where I was taking 
education classes. This structural divide continues to persist and is very present in 
my own practice as a mathematics teacher educator. The very structure of teacher 
preparation programs in general continues to reaffirm the mathematics/education 
divide by locating the learning of mathematics content in designated math courses 
and separating it from the learning of teaching methods contained in education 
courses. Embedded within the structure is the assumption that learning to teach 
entails learning the content first and the teaching methods second (rather than 
concurrently).

In Learning mathematics while learning to teach: Mathematical insights pro-
spective teachers experience when working with students (Crespo, 2000), I argued 
that prospective teachers engage in mathematical inquiry within their education 
courses and in particular when working directly with students. I provided three 
examples—posing tasks, analyzing students’ work, and providing mathematical 
explanations—where teacher candidates could gain mathematical insights while 
learning educational methods and theories. This surely is no longer a controversial 
point, but at the time mathematics educators were just beginning to consider Ma’s 
(1999) and Ball and Bass’ (2000) work describing the profound understanding of 
mathematics entailed in the work of elementary mathematics teaching. The push-
back from mathematics educators who dug their feet firmly into the mathematics 
side of the divide was intense, making anything that they did not recognize as math-
ematical sound crazy or simply stupid. Therefore, the process of selecting examples 
that were recognizable as mathematical by those holding dominant perspectives 
about mathematics was a challenge but key to navigating this divide.

Let me provide a few illustrations. In Crespo (2000), I included several examples 
to illustrate the ways in which mathematical questions and insights arise when pro-
spective teachers work on teacher preparation course projects that have them explor-
ing mathematics with students. In one example, I shared how, when interviewing a 
second grader about her strategies for sharing cookies among different number of 
people, a prospective teacher found her student conjecturing that if the number of 
cookies was even, it could be shared evenly among people, and that if the number 
of cookies was odd, it could not. The young student concluded this after having 
shared several even numbers of cookies, such as sharing 30 cookies among 3 and 
then 5 people. In this situation, the prospective teacher found herself in a position of 
exploring this student’s conjecture by offering her several more examples to have 
the student test her conjecture and see whether or not it does or does not work for 
other cases.

S. Crespo
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In another example, a prospective teacher had adapted a mathematics problem 
(Watson, 1988) we had explored in our university class to try it out with fifth graders 
in her field placement. This problem read:

Three tired and hungry monsters went to sleep with a bag of cookies. One monster woke up 
and ate 1/3 of the cookies, then went back to sleep. Later a second monster woke up and ate 
1/3 of the remaining cookies, then went back to sleep. Finally, the third monster woke up 
and ate 1/3 of the remaining cookies. When she was finished there were 8 cookies left. How 
many cookies were in the bag originally?

The prospective teacher chose to rescale the problem by changing the fractional 
number in the problem from 1/3 to 1/2. By doing so, she made an interesting discov-
ery, that is, that her students were able to arrive at the correct answer by using a 
restrictive solution method that in fact does not work for the original version of the 
problem. Students had approached the problem by multiplying the leftover cookies 
by 2 (8×2×2×2), basically doubling the leftover cookies three times. Yet, even 
though this method works for halves, it yields an incorrect answer for thirds, fourths, 
and any other fractional part. This unexpected outcome launched the prospective 
teacher into her own mathematical investigation into the reasons for how and why 
such a minor numerical change could alter the nature of the original problem 
(Crespo, 2000).

I have made similar and related arguments about mathematics as a practice that 
occurs and is learned everywhere not solely inside mathematics classrooms and 
most definitely not solely in coursework offered in mathematics departments. I 
recognize the history of why and how disciplinary knowledge broke off and was 
elevated from the everyday knowledge and practices and the privileges that this 
affords to those of us in the field of mathematics education. However, to me, math-
ematics is a human practice that belongs to all of us not solely to mathematicians 
(Bishop, 1990). Hence throughout my career, I have argued that it is especially 
important for prospective teachers to consider their teaching as a site for mathemat-
ical inquiry and for problem posing with their students and to find ways to explore 
the mathematics that students learn in their communities and in out-of-school con-
texts. I have continued to address the mathematics/education divide in multiple 
ways and especially as I have increasingly foregrounded educational equity within 
the curriculum and pedagogy of the mathematics education courses for future ele-
mentary and secondary mathematics teachers. If concerns and pushback about 
“where is the mathematics?” or “how is this mathematics?” were raised with regard 
to learning mathematics through learning mathematics pedagogy, the pushback to 
infusing educational equity in the teaching of mathematics has been even that more 
forceful.

The divide between mathematics and education continues to be reflected in the 
intellectual but also in the physical divide found on most university campuses. This 
divide contributes to the lack of coherence and continuity in the curriculum and 
pedagogy of teacher preparation (Feiman-Nemser, 2001). Mathematics courses are 
offered in mathematics departments, taught by instructors who do not address ques-
tions that concern educators. Education courses in turn are offered in colleges of 
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education and are typically focused on educational issues without attending to spe-
cific content issues. The mathematics methods course is also influenced by this 
divide. Instructors of these courses often assume that teacher candidates have to 
“unlearn” oppressive approaches to the teaching and learning of mathematics that 
they have picked up in the math courses they have taken. The rift between mathe-
matics educators who work in colleges of natural science and mathematics educa-
tors who work in colleges of education is very palpable at my current institution and 
I suspect across many other institutions as well.

As a mathematics educator who has colleagues in the college of natural science 
and in the college of education, I am constantly challenged by both sides to see their 
perspective while neither side seems to see their own biases and entrenched ideolo-
gies. One side asks and insists on raising the question of “where is the math” when-
ever the conversation is focused on educational issues that transcend the narrow 
particulars of the discipline of mathematics as constructed and practiced by research 
mathematicians. I constantly hear the “where is the math” question raised in faculty 
meetings, in students’ comprehensive exams, in dissertations, and in colloquia. My 
education colleagues, on the other hand, ask and insist on raising questions about 
whether mathematics as a discipline can be trusted to embrace democratic ideals 
when so much of what is wrong and objectionable about today’s public schooling 
can be attributed to the way mathematics is used to exclude and deny access to col-
lege to a large majority of non-White students, not to mention the oppressive ways 
in which mathematics continues to be taught and learned in schools.

To be clear, I consider the mathematics/education divide as dangerous because it 
shapes interactions among ourselves with colleagues on our campuses and members 
of various other communities. It instantiates the tendency to self-standardize and 
other-pathologize discussed earlier. It forcefully comes into play when faculty is 
engaged in doctoral admissions or discussing prospective colleagues who have or 
do not have a so-called “strong” mathematical background or do not have a so- 
called “substantial” classroom teaching experience. With each side digging their 
heels more deeply into their own camp, they continue to reproduce their perspec-
tives and pathologize the other. The danger lies in how this divide breeds toxic and 
deficit discourses within our own academic communities which, not surprisingly, is 
expressed outwardly through our research onto the very communities we are hoping 
to help (Shields, Bishop, & Mazawi, 2005). This intellectual divide becomes nor-
malized and replicated in our teacher preparation programs and travels to our part-
ner schools. It undermines our goals to make mathematics a subject that many and 
more diverse groups of students engage with and enjoy, and a subject that supports 
the democratic values and ideals of public education. Not challenging this divide 
propagates the ideology that one field of study is more important than the other. It 
generates categories of students that are liberally applied to elementary prospective 
teachers and breeds the dominant narrative about elementary teacher candidates’ 
“lack of knowledge” of mathematics. This issue speaks to the next divide—the 
expert/novice divide—which I discuss next.

S. Crespo
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2.2  The Expert/Novice Divide

Another divide always present in mathematics education is the categorization of 
experts and novices. I consider this to be another dangerous divide because the 
experts become the norm by which everyone else is judged and evaluated. It creates 
a hierarchy and a social reward system that promotes a rush to mastery, which 
undermines and shortchanges the process of learning. Additionally, if the category 
of expert is associated with natural talent as it is often the case for mathematics and 
for teaching, gaining such expertise becomes unattainable for novices—let those be 
elementary-age students or teacher candidates in undergraduate mathematics con-
tent or methods courses. Worse still, it suggests that only a few can ever be experts 
in the teaching and learning of mathematics.

The expert/novice divide results in students, teachers, and schools getting cut in 
the crossfire. In Crespo (2006) and elsewhere, I have argued that prospective teach-
ers are most likely learning mathematics teaching practices that have not yet been 
documented in the mathematics education literature because the dominant research 
frames and tools are focused on a very narrow set of desirable teaching practices. If 
the window for what constitutes an expert performance is narrowly defined, then the 
bulk of what can and will be observed would be classified as not meeting expert 
quality, and by default, they become novice performances or worse considered as 
examples of not very good teaching.

In a 2007 PME-NA research presentation (and at a later PME-NA presentation in 
Crespo, Oslund, Brakoniecki, Lawrence, & Thorpe, 2009), I discussed how and 
why we decided to revise our initial assumptions about expert/novice enactments of 
teaching practice. As a member of another research project, the Teachers for New 
Era (TNE) project (Battista et al., 2007), I was able to use similar research tools in 
order to explore the relation between mathematics knowledge for teaching (MKT) 
and a practice-focused posing-interpreting-responding (PIR) framework (see 
Table 1). Working on both these projects at the same time allowed me to see quite a 
few strange results that called into question assumptions about what experts and 
novices do/do not know and can/cannot do in their teaching of mathematics. Results 
from the TNE-Math surveys, for example, which were administered concurrently to 
prospective teachers at different stages in the program (studying math content and 
study math methods), had us looking at a number of very strange results such as a 
decline in mathematics knowledge for teaching (MKT), as prospective teachers 
transitioned from learning about content to learning about teaching practice.

Another curious result was uncovered when the PIR team compared the prospec-
tive teachers’ MKT and PIR responses to tasks such as those in Table 1. In his 2009 
PME-NA presentation, Brakoniecki (2009), then a graduate research assistant to 
both projects, reported on prospective teachers who had participated in both the 
TNE and PIR projects. He showcased three prospective teachers who had correctly 
addressed the MKT question about generalizing a student subtraction algorithm 
using negative numbers (see Table 2). All three teacher candidates showed that they 
could apply the alternative algorithm to a new example. However, their instructional 
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responses to the PIR teaching scenario were all very different (see Table 2) and 
raised all sorts of questions for the PIR team about the relationship between MKT 
and PIR practices. So here we have three novices, Dean, Becky, and Lisa (all pseud-
onyms), who demonstrate that they can do the mathematics that is required to assess 
the validity and generalizability of an alternative computation algorithm that a stu-
dent may offer in their classroom, but each of them responds quite differently to a 
hypothetical teaching scenario. Becky disapproves and does not seem to appreciate 
the value of this algorithm; Dean seems willing to accept students’ algorithms as 
long as they can show and explain their work; and Lisa makes connections between 

Table 1 TNE and PIR teaching scenarios focused on two-digit subtraction

TNE project—MKT scenario PIR project—teaching practice scenario

W1. Imagine that one of your 
students shows you the 
following strategy for 
subtracting whole numbers.

 37
−19
−2
20
18

W1a. Do you think that this 
strategy will work for any two 
whole numbers?
Yes No I don’t know
W1b. How do you think the 
student would use this strategy 
in the problem below?

423
−167

PIR2a. Imagine you are teaching a lesson about two-digit 
subtraction and you ask the class to explore different ways to 
solve the following subtraction.
The students look puzzled. What do you imagine saying and 
doing next?

37
−19

PIR2b. After giving students some time to work on the task you 
call on their attention and ask for volunteers to share their 
strategies. Imagine that one of the students shows the following 
strategy. What can you imagine saying and doing? Say a bit 
about what you would want to accomplish by saying and doing 
so.

 37
−19
−2
20
18

Table 2 Three prospective teachers’ responses to MKT task and PIR teaching scenario

Responses to 
MKT task

Dean Response to PIR 
task

Becky Response 
to PIR task Lisa Response to PIR task

Correct 
response 
to the TNE 
task

423
−167
−4
−40
300
256

This strategy can work.
I would ask the student 
to rewrite the problem 
and show each step 
they took to get to their 
answer.

I do not like this 
way—Math for 
higher on is going 
to be a lot harder 
if they learn this 
now.

The student knows that we start in 
the ones column. 7–9 = –2. The 
tens column is also correct, as 
30–10 = 20. Now what the student 
did was combine – with 2 and 20 to 
get 18. We got the same answer.

I would want the 
students to learn the 
importance of showing 
their work and how 
they can use it to 
retrace their steps in a 
problem

I would want to let the class know 
that there is more than one way to 
solve a problem, and it is important 
to remember that subtraction of 
multiple digit numbers involve 
multiple subtractions, depending on 
how many places are in the number

S. Crespo
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the standard and alternative algorithms as she expresses her view that there is “more 
than one way to solve a problem.”

So what is a mathematics educator to do with these prospective teachers’ 
responses, classify them as high MKT but then low (Becky), medium (Dean), and 
high (Lisa) with respect to their instructional practice? What are we to do with pro-
spective teachers like Becky in our teacher preparation courses? Fail them and tell 
them they are not qualified to teach students? We seem to be willing to do so when 
they do not know the mathematics and not so willing to take such a stance when 
they do not know teaching practice. These initial insights made it clear to us that 
without reframing our assumptions about expert and novice performances of PIR 
practices, we would continue to recreate and reinforce the same type of instruments 
and make the same kinds of claims about prospective elementary teachers. This 
would mean and we would continue to propagate the circular and dead-end deficit 
discourse about students and their teachers (Comber & Kamler, 2004).

In Crespo, Oslund, and Parks (2007), we shared our revised definitions, which 
then led us to design new kinds of teaching scenario instruments, ones that invited 
teacher candidates to provide multiple not just one response to the teaching sce-
narios and ones that invited a more dialogical representation of their practice (see 
Crespo, Oslund, & Parks, 2011). In the PIR project, we were then able to document 
more of prospective teachers’ strengths (could do and were able to do) than deficits. 
More importantly, it led us to propose another type of teaching scenario tasks that 
positioned prospective teachers as creators (not just as reproducers) of teaching 
practice. In this new type of teaching scenario instrument, prospective teachers rep-
resented a whole class mathematical discussion in the form of a classroom dialogue. 
I argue that these kinds of dialogical scenarios elicit different kinds of representa-
tions from prospective teachers that make visible more of the complex and nuanced 
ways in which they imagine mathematics teaching practice. Unlike much of the 
research on prospective and practicing teachers of elementary school mathematics, 
my PIR project documented many ways in which prospective teachers take up the 
student-centered and equity-oriented pedagogies they are studying during teacher 
preparation. I argued that by researching dialogical representations of mathematics 
teaching, researchers and teacher educators can learn more about how prospective 
teachers transform what they are studying in teacher preparation courses into pur-
poseful and principled teaching actions. This new insight would not have been pos-
sible without challenging and questioning the expert/novice divide that is so 
engrained within mathematics education’s research/teaching practices, which is 
another divide I discuss next.

2.3  The Research/Teaching Divide

The research/teaching divide has been in the education research landscape for a 
long time as educational research was initially conceived as research on teaching 
and not with or by teachers. The animosity and distrust between teachers and 
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researchers in the past and still in the present is reminiscent of Snow’s (1959) char-
acterization of the two cultures and it can be related to the longstanding divide 
between the theoretical and the practical. Researchers characterize teaching as 
resisting change and teachers characterize educational research as irrelevant to their 
problems of practice. The research/teaching divide became even more heated when 
some educational researchers proposed the notion of the teacher as researcher, 
which raised all sorts of debates, pushback, and controversy (Cochran-Smith & 
Lyttle, 1990, 1999). As someone who studies her own teaching practice and who 
collaborates with teachers and students in the research process, I have had to negoti-
ate this divide and address questions about whether my scholarship counts as 
research or whether my research has made any impact in the everyday practice of 
teachers. These are questions rooted in the process of self-standardizing and other- 
pathologizing that I alluded to earlier. The tendency to vilify other perspectives 
rather than embrace the diversity in our field is very much alive and well in our own 
academic backyards.The research/teaching divide has always puzzled me. As a 
teacher, I have always considered myself a researcher of the mathematics I was 
teaching and of my students’ learning, simply stated I considered myself a student 
of my students’ mathematical thinking and learning. Therefore, I find the divide 
between education practitioners and researchers to be unhelpful and unnecessarily 
elitist. As a doctoral student, I wrote a comprehensive exam paper titled What does 
research got to do with teaching? where I explored the contentious relationship 
between research and teaching and argued that the two had more things alike than 
things that were different. To me, learning, teaching, and researching are similar 
practices rooted in people’s desire to inquire and understand what they do not know. 
Hence, research is no more than another learning practice that has been uprooted 
from the everyday practices of people and their communities (this is a similar point 
to the one I made earlier in relation to the mathematics and education divide).

As a researcher interested in educational experiences that are empowering and 
transformational for students and their teachers, I see the boundary between teach-
ing and researching as an unproductive divide. In my work, teaching involves 
research and research involves teaching, the two are deeply intertwined. In Getting 
smarter together about complex instruction in the mathematics classroom (Crespo, 
2013), I describe an example in my scholarship where research and teaching seam-
lessly collaborate to advance the goal of promoting equity in the mathematics class-
room. Complex instruction (CI) is a collaborative teaching method that addresses 
inequitable teaching and learning. Applying the theory of status generalization to 
classroom interactions, Elizabeth Cohen (1994) interpreted students’ unequal par-
ticipation in the classroom as a problem of unequal status. Unequal status breeds 
competitive behavior, which, in turn, undermines everyone’s learning. Status issues 
are rooted in societal expectations of competence for students who fit and do not fit 
the dominant culture’s views about who is and not intellectually capable. In the 
mathematics classroom, status issues become visible when students from non- 
dominant groups seem reluctant to  participate in learning activities. Rather than 
seeing students who under participate in the classroom as either disengaged or 
unmotivated, Cohen (1994) saw these students as systematically excluded from 
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learning opportunities not only by their teacher but also their peers, but more impor-
tantly by the classroom structures which endorsed rather than disrupt competitive 
forms of interactions among students.

In contrast, complex instruction seeks to not only understand unequal participa-
tion in the classroom, it seeks to engineer instructional structures and practices that 
could disrupt unequal peer interactions in the classroom and to promote a more 
collaborative learning environment. Rather than setting up the classroom as a com-
petitive space for learning where some students rise to the top and some sink to the 
bottom, complex instruction sets up the classroom for collaboration and as a place 
where everyone is expected to succeed and to contribute to a greater understanding 
than it would be possible by one person alone. In a complex instruction classroom, 
no one is seen as more or less smart. Instead, everyone’s capacities, abilities, and 
experiences are acknowledged, valued, and nurtured as resources in the classroom.

Consistent with CI’s theory about collaborative participatory learning—that no 
one is as smart as all of us together—my complex instruction colleagues and I have 
engaged in this work in ways that require and value each other’s perspectives. We 
realize that simply talking about these issues and becoming aware of them is not 
enough. This work entails inviting practicing and prospective teachers to work with 
us on these ideas in the context of learning about lesson studies, which is unsurpris-
ingly also a collaborative approach to teachers’ professional learning. We design 
together complex instruction math lessons and investigate together questions about 
students’ access, participation, and learning in collaborative mathematics lessons 
(see Crespo & Featherstone, 2012 and Featherstone et al., 2011). This has created a 
collaborative network of researchers and practitioners with a common goal and who 
share teaching and research insights across institutional settings using all sorts of 
communication outlets including social media, teacher blogs, research and practi-
tioner journal articles, book chapters and books, workshops, talleres, and commu-
nity forums.

3  En La Lucha/In the Struggle: Mathematics Educators 
Sin Fronteras

I return now to the theme of “Sin Fronteras/Without Borders” and how it might be 
possible to value and embrace diversity of perspectives in light of the issues I have 
raised here about the intellectual divides we manage to erect in the process of ratio-
nalizing and justifying our work as mathematics teacher educators. Here I conclude 
with two approaches I have taken to counter my own tendency to self-standardize 
and other-pathologize by pursuing instead a more reflexive and collaborative math-
ematics education scholarship. A reflexive approach to mathematics education 
entails holding the mirror back to ourselves to identify ways in which we are com-
plicit in the very things we criticize and seek to change. A reflexive researcher 
bluntly asks themselves whether their research is making things better or worse 
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(Kleinsasser, 2010). In this case, consider how it is that we create intellectual divides 
with our own scholarship and practices. As I consider, for example, the extent to 
which my research reflects my commitments to anti-oppressive mathematics educa-
tion, I have to wonder how to best represent these commitments through my research 
methods and practices and whether my choices and approaches are making things 
better or worse.

For example, one important commitment I made early on in my career was to 
write and speak in ways that are accessible, inviting, and free of academic jargon 
inasmuch as that is possible. This was partially rooted in my own experiences as a 
speaker of English as an additional language  and the challenges of reading aca-
demic papers in a non-dominant language. Additionally, as a teacher of mathemat-
ics, I worked hard to demystify the aura of super human intellect that is associated 
with the very compressed shorthand of mathematical symbolism that keeps so many 
students in the dark and excluded from using and conversing in mathematics. More 
importantly, I am continually reminded to question my motives and my hopes for 
the educational research I choose to pursue, by the words of Elliott (1989) one of the 
authors I read in graduate school.

Rather than playing the role of theoretical handmaiden of practitioners by helping them 
clarify, test, develop, and disseminate the ideas which underpin their practices, academics 
tend to behave like terrorists. We take an idea which underpins teachers’ practices, distort it 
through translation into academic jargon, and thereby “highjack” it from its practical con-
text and the web of interlocking ideas which operate in that context. (Elliott, 1989; p. 7)

Yet as I hold on to this commitment, I also consider the critiques other scholars raise 
about taking what seems to be a reductionist and simplistic route to explaining com-
plex educational issues. In their view, such an approach to scholarship feeds into 
rather than challenge the distrust people have of academics and anything that sounds 
too intellectual or overly complex, whether those ideas come from science or the 
humanities (e.g., Davis et al., 2014). I also understand that our words are critical and 
that how we name and talk about people, communities, and students matter and 
shape our thinking and practices. Therefore, I also participate in discussions that 
seek to clarify, object, and subvert particular terms and language commonly used in 
research and in practice, especially language that is offensive and degrading to mar-
ginalized students and communities. 

The point here is that I have come to accept that there is inherent tension and 
contradictions within the work we do as researchers in mathematics education and 
appreciate Elbow’s (1983, 2000) notion of embracing contraries as a way to see 
beyond our tendency to polarize and take sides without fully understanding and 
considering opposing views. Sfard’s (1998) discussion of two metaphors for learn-
ing (as acquisition and participation) also takes a similar stance about opposing and 
contradictory perspectives. I have tried out Elbow’s ideas in a recent editorial 
(Crespo, 2016a) for the Mathematics Teacher Educator journal (of which I served 
as editor from 2014–2018), in order to promote a more educative rather than adver-
sarial approach to reviewing manuscript submissions to the journal. I also explored 
Elbow’s embracing of contraries in a recent publication (Crespo, 2016b) focusing 
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on the challenge to disrupt our tendency to polarize mathematics teaching practice 
when selecting and using video representations of mathematics teaching. This is an 
issue that the National Council of Teachers of Mathematics (NCTM) Research 
Committee (2016) recently discussed and identified as a pernicious storyline that 
circulate and influence the public perception about mathematics education.

Collaborative research is another way in which I have chosen to pursue research 
in mathematics education. This is one approach that discourages me from building 
intellectual divides. I have come to the point of realizing that educational problems 
are much too big for any one of us to take on and solve by ourselves and that it will 
take literally a whole village of committed mathematics educators to make the kinds 
of changes we are all striving to make. All this within a world of higher education 
and academia that  is often  driven by competitive policies and reward systems. 
Although this can create hostile working environments for faculty, it is worth invest-
ing in developing collaborative networks with colleagues. Operating under the 
tenets of complex instruction that together we can learn more than individually, and 
that each collaborator needs to be willing to learn from each other’s perspectives, I 
continually renew my belief and commitment in collaborative mathematics educa-
tion research. And as I alluded to earlier, my work is only possible by collaborating 
with colleagues from all walks of life that are committed to social change.

In addition to the example I offered earlier with my complex instruction col-
leagues with whom I wrote the book Smarter Together (Featherstone et al., 2011), I 
have also collaborated with another network of educators committed to identifying 
and challenging oppressive forms of mathematics education research and to making 
our field more inclusive of diverse perspectives and practices (see Herbel-Eisenmann 
et al., 2013). Another more recent collaboration is a book of cases for mathematics 
teacher educators (White, Crespo, & Civil, 2016), which includes a collection of 19 
cases from different authors, highlighting dilemmas they experienced while teach-
ing about inequities in mathematics education in the contexts of content and meth-
ods courses and professional development contexts. Each case includes commentaries 
from three different authors. Altogether the perspectives of over 80 mathematics 
educators are included in this book. The conversations that we have had and that 
we will continue to have around these cases are very exciting to me and give me 
hope that together we can and will make a difference in shaping the future of math-
ematics education research. I am also hopeful that the future generation of mathe-
matics educators will engage with diverse perspectives by embracing contraries and 
engaging in collaborative research.

To close, I highlight four key commitments that have helped me to not simply 
navigate borders in mathematics teacher education but to take steps toward chal-
lenging them. I invite readers to consider, and add to these commitments, and work 
toward re-imagining mathematics teacher education without divisive borders. One 
first step is awareness and a second step is creating a community that will help us 
reflect on and be accountable to our commitments. Since my plenary in 2016, there 
have been many more conversations all over the country, at conferences, at our 
institutions, among educational leaders, and in our professional organizations focus-
ing on the challenges we face as mathematics teacher educators. This makes me 
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increasingly hopeful that our field can move forward and live up to its potential and 
commitment to preparing future generations of mathematics teachers who will 
choose: (a) strengths over deficit in a system that rewards other-pathologizing; (b) 
collaboration in a system that rewards competition; (c) to embrace contraries in a 
system that rewards divisiveness; and (d) to humanize in a system that rewards 
dehumanization.
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Dynamic Multiplication and Division 
Diagrams Be Used to Cross Mathematical 
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1  Introduction

Mathematics, as represented in US schools, is a collection of topics that are arranged 
in a sequence, through which children are expected to make steady, linear progress. 
A glance through the table of contents of any US elementary mathematics textbook 
encapsulates the subject-progression structure. In third grade,1 for example, one 
might find lessons on place value for numbers of different orders of magnitude; les-
sons on adding two- and three-digit numbers; lessons on multiplication and division 
by specific numbers; and lessons about more general techniques for adding, sub-
tracting, multiplying, and dividing, among other lessons. US elementary students 
experience mathematics as a sequence of topics from their first days in class through 
high school and even into college.

Separation is an organizing principle of US school mathematics: arithmetic is a 
separate subject from geometry, which in turn is separate from subjects like algebra, 
probability, or trigonometry. Within these broad mathematics subject headings 

1 Such as would be found in My Math, Grade 3, Vol. 1 (2017, McGraw-Hill).
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students experience over the course of their education are finer distinctions still—
for example, whole numbers and their operations are different from integers which 
are different from fractions which are different from real numbers. To study math-
ematics in school is to be continually negotiating the borders between its various 
subject domains.

The organization of mathematics into a sequence of distinct subjects has utility 
for mathematics education at the K-16 levels. Topics can be arranged so that stu-
dents develop more basic mathematical skills before they are required to use those 
skills to solve more challenging problems. Colleges can use the math-subject expe-
riences of its newly admitted students to sort them into various introductory courses. 
Disciplines that require specific mathematical skills, such as engineering, the physi-
cal sciences, and the life sciences, can recommend courses for their students to 
acquire those skills. And the standard mathematical subject sequence at the K-12 
levels provides an organizing structure for student mathematical experiences in 
schools that facilitates the design, validation, and widespread use of high stakes 
tests (Au, 2011).

The utility of the topical divisions within school mathematics notwithstanding, 
sorting mathematics, a broad field of human knowledge, into different subjects pres-
ents an overly fractured view of the discipline to students. There has been extensive 
research documenting how students’ experiences of mathematics in schools can 
reinforce unproductive beliefs about and dispositions toward mathematical activity 
(e.g., Boaler, 2002; Crawford, Gordon, Nicholas, & Prosser, 1994; Schoenfeld, 
1988). The artificial yet tangible borders erected between various subjects, present-
ing them as distinct when in fact they are inextricably connected, serve as meta-
phorical borders that impede students’ deep learning and dispositions. What can we, 
as mathematics educators, do to blur, bypass, or otherwise break down the borders 
between the different subject areas of mathematics?

In this chapter, we explore what is possible by probing the mathematical borders 
that are typically encountered by US pre-service elementary teachers. We consider 
first how number systems and their operations are represented as subject areas in 
elementary mathematics, with a specific focus on the development of multiplicative 
reasoning. We then consider how the border between arithmetic and geometry could 
be blurred and softened through the development of dynamic, diagrammatic models 
of multiplication and division. We conclude with a consideration of how dynamic 
representations, which are typically considered in the context of geometry, could be 
used to represent arithmetic ideas in pre-service teacher education.

2  Representations of Multiplication 
in Elementary Mathematics

Students spend a great deal of their mathematics education learning about number 
systems and their operations. In the USA, the Common Core State Standards 
Initiative—a national set of curricular benchmarks that are linked to standardized, 

J. K. Dimmel and E. A. Pandiscio



23

end-of-year tests—provides one record of the dominant place of number systems 
and their operations throughout K-12 mathematics. Mastering the fundamentals of 
counting lays a foundation for adding and subtracting single-digit whole numbers, 
then adding and subtracting multi-digit whole numbers. Multiplication and division 
of whole numbers follow, after which students are ready to extend what they know 
of these operations to different types of numbers—integers, percents, and the ratio 
and decimal representations of rational numbers. As they continue their mathemat-
ics education into US middle and secondary schools (typically ages 12–18), the 
picture is filled in for irrational and complex numbers. In school mathematics, oper-
ations such as multiplication and division are represented as ever-growing lists of 
procedural rules that apply in different circumstances.

Concordantly, investigating how students understand number systems and their 
operations has been a focus of mathematics educationresearch since its inception as 
a discipline. Brownell (1947) examined the conditions under which it could be said 
that children know the mathematical meanings of arithmetical procedures. 
Erlwanger (1973) described the case of Benny, a student enrolled in an individual-
ized program of instruction (IPI). Benny developed his own set of idiosyncratic 
procedures for solving problems that often resulted in correct responses but that 
were inconsistent with arithmetic principles. Brown and Burton (1978) developed 
diagnostic models for identifying and repairing procedural bugs students enact 
when working through arithmetic algorithms. Recent work has documented ele-
mentary students’ and pre-service elementary teachers’ difficulties with under-
standing multiplication and division—especially the multiplication and division of 
fractions (Ma, 2010) and division by zero (Ball, 1990; Cankoy, 2010; Quinn, 
Lamberg, & Perrin, 2008).

Multiplicative thinking has been a focus of the research on how children develop 
their early number sense (Larsson, Pettersson, & Andrews, 2017). Researchers have 
investigated students’ intuitive models of multiplication (Fischbein, Deri, Nello, & 
Marino, 1985), the schemes they use for solving multiplication problems (Steffe, 
1988), the conceptual foundations of multiplication in children’s thinking, and 
whether various models of multiplication (e.g., multiplication as repeated addition, 
multiplication as correspondence) are more or less effective at helping students rea-
son multiplicatively in other settings (Thompson & Saldanha, 2003). In the course 
of the mathematical preparation of pre-service teachers, it is typical to account for 
this broad research base by introducing different conceptualizations of multiplica-
tion that can be used in different situations. For example, Sowder, Sowder, and 
Nickerson (2017) identify four views of multiplication in their elementary mathe-
matics textbook, Reconceptualizing Mathematics for Elementary SchoolTeachers.

The first is the repeated addition view: “When a whole number of quantities, 
each with value q, are combined, the resulting quantity has a value of q + q + q 
+…(n addends), or n × q” (Sowder et al., 2017, p. 57). The repeated addition repre-
sentation of multiplication has a long history in the mathematics educationresearch 
literature (e.g., Bechtel & Dixon, 1967; Fischbein et  al., 1985; Kouba, 1989; 
Mulligan & Mitchelmore, 1997; Rappaport, 1968; Weaver, 1967). In elementary 
schools, multiplication as repeated addition is generally the first view of 
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multiplication children encounter, suitable as it is for representing the multiplication 
of whole numbers. A second view of multiplication is the array or area view: The 
product of two numbers is represented “as a rectangle n units across and m units 
down,” resulting in a product of m × n (Sowder et al., 2017, p. 58). This representa-
tion is more general than the repeated-addition model and can be used to describe 
integer, rational, or real number multiplication. It connects an arithmetic idea, mul-
tiplication, to a geometric idea, area, and is a clear departure from the conception of 
multiplication as repeated addition.

A third view of multiplication is the fractional part-of-a-quantity view, also 
referred to as the operator view of multiplication, which “is useful for finding a 
fractional part of one of the two quantities” (Sowder et al., 2017, p. 59). This is the 
view of multiplication that links multiplying by a fraction to division—for example, 
to find the (1/2) part of some whole quantity, multiply the quantity by (1/2), which 
is the same as dividing the quantity by 2. The fractional part-of-a-quantity view is 
useful when students are operating with the ratio representations of rational num-
bers. A fourth view is the fundamental counting principle view of multiplication: 
“In a case where two acts can be performed, if Act 1 can be performed m ways, and 
Act 2 can be performed in n ways…then the sequence Act 1-Act 2 can be performed 
in m × n ways” (Sowder et al., 2017, p. 60).

This list of views of multiplication in elementary mathematics is not intended to 
be comprehensive, but rather is meant to be illustrative of the representations of 
multiplication that are typically encountered in elementary mathematics class-
rooms. In addition to these theoretical representations of multiplication, physical or 
virtual manipulatives also play a prominent role in helping students to develop flu-
ency with number systems and their operations in elementary mathematics class-
rooms. Base 10 blocks, Cuisenaire rods, Fraction tiles, or virtual manipulatives, 
such as virtual area rectangles, are routinely used in elementary mathematics class-
rooms to help young learners explore arithmetic concepts. Like the various views of 
multiplication described above, different manipulatives have utility in different cir-
cumstances (Carbonneau, Marley, & Selig, 2013; Laski, Jordan, Daoust, & Murray, 
2015; Moyer, Bolyard, & Spikell, 2002; Moyer-Packenham & Westenskow, 2013), 
though, with the exception of virtual manipulatives, they are generally limited to 
discrete—rather than continuous—numerical contexts.

While all four views of multiplication have utility in different situations, each is 
an incomplete representation of multiplication as a binary relationship between real 
numbers. For example, a key affordance of the repeated addition view is that it 
grounds multiplication in a process that is familiar to children (Fischbein et  al., 
1985) and for the natural numbers, multiplication as repeated addition is adequate 
to facilitate calculation. But the repeated addition view of multiplication has been 
the subject of criticism (e.g., Steffe, 1988; Thompson & Saldanha, 2003) for being 
a source of stubborn misconceptions about multiplication that students and even 
teachers carry throughout their experiences with mathematics. Since the repeated 
addition view is only sufficient for describing multiplication among natural num-
bers, some argue that teaching it to students is a disservice that has the potential to 
do lasting harm (Devlin, 2008). Array or area representations of multiplication 
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avoid the pitfall of defining multiplication as repeated addition and can be used to 
describe multiplying rational or irrational numbers. However, the area representa-
tion has also been critiqued precisely because it blends multiplication with area, 
which could contribute to the misconception that area cannot be defined indepen-
dently of multiplication (McLoughlin & Droujkova, 2013).

Another limitation that applies to all four views concerns signed multiplication. 
In the case of the fundamental counting principle view: What constitutes a negative 
act? How could two such acts be counted so as to produce a positive product? For 
the operator view: What is a negative part of a negative whole? Why would a nega-
tive part of a negative whole yield a positive product? For the area view: How would 
one construct a rectangle that has negative side lengths? How would the product of 
negative lengths produce a positive area? For the repeated addition view: How 
would one repeatedly add a negative number a negative number of times in such a 
way that the result would be a positive number? These are examples of questions 
students could ask of these representations. What would satisfactory answers to 
these questions look like, and would such answers be clear and convincing to stu-
dents? Developing a visual representation of multiplication that accounts for the 
products of signed numbers is a principal motivator for the diagrammatic model of 
multiplication we describe below.

3  Multiplication as Continuous Directed Scaling

We consider here a  continuous directed scaling, model of multiplication that is 
rooted in geometry. The version of the model we develop below was adapted from 
McLoughlin and Droujkova (2013). The model we develop is continuous, in the 
sense that it is defined for all real numbers, as opposed to discrete representations 
(e.g., repeated addition) that are only defined for natural numbers. The model is 
directed, in that positive and negative numbers are represented as directions on a set 
of coordinate axes. The model shows how one directed length can be scaled by a 
second directed length, using techniques from compass-and-straightedge 
constructions.

Compass and Straightedge Multiplication Given a unit length and a procedure 
for constructing parallel lines, it is possible to scale any segment by any other seg-
ment, using compass and straightedge (McLoughlin & Droujkova, 2013). One pro-
cedure works as follows: Let AB  and CD  be the segments to be multiplied, and let 
u  be a unit length (Fig. 1).

Construct two perpendicular lines. Copy segments AB  and CD  to create seg-
ment A B′ ′  on one line and segment C D′ ′  on the other so that they are at right 
angles to each other. Copy segment u  to create u′  (Fig. 2).

The unit segment provides a reference for scaling one segment by the other. To 
complete the construction of the product, join the segment from D′ to the end of 
the unit length—call this segment m . Then, construct the line through B′ parallel 
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to m . The point where the parallel line intersects the vertical line defines the seg-
ment that is the product of A B′ ′  and C D′ ′ . In Fig.  3, the product is the 
segment C P′ .

To see that the product of the A B′ ′  and C D′ ′  is C P′ , we can reason from the 
similarity of the two triangles. Let the triangle with u’ as a leg be A and the triangle 
with A B′ ′  as a leg be B. Then:

Fig. 2 The segments are copied so that they are perpendicular to each other, and a unit length is 
marked off at the end of one of the segments. In this figure, the ends of the segments coincide at A′ 
and C′. The unit length, u′ , overlaps A B′ ′

Fig. 1 Segments to be multiplied by compass and straightedge construction
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 A B A B C D C P∼ → ′ ′ ′ ′ ′ ′ ′µ : & :  

Since u’  is a unit length, the scale factor that maps A B′ ′  to u′ is A B′ ′ . Thus,

 ′ ′ ′ ′ ′= ∗C P A B C D  

Similarly, one could use a compass-and-straightedge procedure to construct the 
quotient of two segments. In the case of division, the procedure once again begins 
by copying the dividend and divisor onto perpendicular lines and adjoining a unit 
length to the end of the divisor. To find the quotient, construct the segment between 
the endpoints of the dividend and divisor ( D B′ ′  in Fig. 4). Then, construct the line 
parallel to that segment through the end of the unit length. The quotient is defined 
as the point where that parallel line intersects the vertical line (see Fig. 4).

For the division diagram, it is also possible to reason from the similarity of the 
triangles to see that C P′  is, in fact, equal to C D′ ′  divided by A B′ ′ . Let A′B′D′ be 
triangle A and let the triangle that has u′  as a side be B. Then,

Fig. 3 Where the line parallel to m intersects the vertical line (point P) defines the segment that is 
the product of A′B′ and C′D′
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 A B A B A D A P∼ → ′ ′ ′ ′ ′ ′ ′: & :µ  

As with the multiplication diagram, since u′  is a unit length, the scale factor that 
maps A B′ ′  to u' is (1/ A B′ ′ ). Thus,

 
′

′ ′
′ ′

=C P
C D

A B  

The Multiplication and Division Diagrams as Virtual Manipulatives From the 
pedagogic viewpoint, it would be impracticable to use a compass and straightedge 
to physically construct the product or quotient of two numbers—especially for 
younger students that are still developing their fine motor skills. But in a dynamic 
geometry environment, the diagrammatic models of multiplication and division can 
be used to create virtual manipulatives (Moyer et al., 2002), where a continuously 
variable segment, aligned with the x-axis, and a continuously variable segment, 
aligned with the y-axis, yield a segment aligned with the y-axis as their product or 
quotient. Figure  5 shows the diagrammatic model of multiplication as a virtual 
manipulative realized in GeoGebra. The yellow dot and the blue dot can be slid 
along the x and y axes to display different products. The diagram in Fig. 6 shows 2 
times 3.

Fig. 4 A diagram that shows C D′ ′  divided by A B′ ′ . The quotient is C P′
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We used variations in color, stroke weight, and point gauge to visually highlight 
key features of the dynamic diagram: the heavier stroke weights for the multipli-
cand, multiplier, and product segments help to make these parts of the display more 
prominent than the axes, product line, or unit length; variations in color were 
designed to visually underscore the mathematical operation of the diagram (Dimmel 
& Herbst, 2015)—that is, yellow and blue combine to produce green; and the larger 
gauge for the yellow, blue, and green points give them greater emphasis than the 
other points of their respective segments. Students interact with the diagram by 

Fig. 5 The diagrammatic model of multiplication as a virtual manipulative in GeoGebra. The blue 
point and yellow point can be varied to display different products

Fig. 6 A diagram showing that 2 times 3 is 6
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dragging the yellow point or the blue point back and forth across the x- or y-axes 
(respectively).

The dynamic diagrams represent multiplication and division as continuous 
directed scaling of one quantity by another. The diagrams are thus models of multi-
plication and division that can visually represent the product of any two real num-
bers—positive or negative, rational or irrational. Below, we consider how the 
diagrammatic models differ from the views of multiplication that are typically pre-
sented in elementary mathematics classrooms. We suggest activities with the dia-
grammatic models that could complement the activities students do with other 
representations of multiplication.

Continuous The diagrammatic models of multiplication and division are continu-
ous in the sense that they are not discrete and can represent the product of any two 
real numbers. Whole numbers, integers, rational numbers, or irrational numbers are 
each handled the same way by the diagrammatic models. They present unified mod-
els of multiplication and division that do not need to be revised, qualified, or other-
wise modified for different number systems. This is significant because in elementary 
mathematics classrooms, learning how to make sense of different number systems 
is a border that students continually need to cross as they advance in their education. 
Children learn one set of concepts for characterizing whole numbers, new concepts 
for integers, new concepts for rational numbers, and new concepts still for real num-
bers. It is important for students to learn the properties that distinguish natural num-
bers from integers or rational numbers from irrational numbers. But the differences 
among the number sets that are highlighted in the elementary mathematics curricu-
lum can obscure the underlying mathematical unity that these are each real numbers 
that can be located on a number line. The diagrammatic models of multiplication 
and division could help to blur the borders between different numbers and highlight 
that multiplication is defined in the same way over all of them.

That the dynamic diagram defines multiplication for all real numbers is also 
significant because of natural number bias—the tendency to attribute “characteris-
tics and properties of the natural numbers to different kinds of non-natural num-
bers” (Christou, 2015, p.  748). For example, the idea that multiplication makes 
bigger has been cited as a misconception about multiplication that has its roots in 
natural number bias (Van Hoof, Vandewalle, Verschaffel, & Van Dooren, 2015). 
This misconception is not necessarily directly taught to students, but it is nonethe-
less a property of multiplication that children infer as a result of their years of expe-
rience doing arithmetic with natural numbers in elementary mathematics classrooms 
(Van Hoof et al., 2015). Other properties of the natural numbers—for example, that 
the set of natural numbers is discrete, that every natural number has a unique prede-
cessor and unique successor—also bias how students conceptualize the arithmetic 
operations (Christou, 2015). The causes of natural number bias are not yet fully 
understood, but researchers have argued that children’s experiences with arithmetic 
in schools likely play some role in fostering or sustaining the bias (Ni & Zhou, 
2005). We describe below how the multiplication diagram could be used to chal-
lenge natural number bias.

J. K. Dimmel and E. A. Pandiscio



31

Directed The second feature of the diagrammatic models is that they represent 
multiplication and division as operations on directed lengths. They thus provide 
natural ways to interpret multiplication or division by positive or negative numbers. 
For example, the yellow and blue segments shown in Figs. 7 and 8 are aligned with 
the negative x and y axes, respectively. They show that the product (Fig. 7) or quo-
tient (Fig. 8) of two negative numbers is a positive number.

In the case where the multiplicand/multiplier or dividend/divisor have mixed 
signs, the product or quotient would be negative, as shown in Fig. 9. These results 
are intrinsic features of the diagram. It is true that the behavior of the diagrams do 
not, on their own, provide an explanation or reason or justification for why this 

Fig. 7 A multiplication diagram that shows that the product of negative 2 and negative 1 is 
positive 2

Fig. 8 A division diagram that shows that the negative 3 divided by negative 1.5 is positive 2
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occurs, but they nonetheless provide visual models of multiplication and division 
that are consistent with the procedures for calculating signed products and quotients.

The sign rules for multiplying and dividing by positive and negative numbers 
have proven to be challenging for students to grasp in conceptually meaningful 
ways. The typical representations of multiplication and division that are presented 
in elementary classrooms have no consistent ways of making sense of why multipli-
cation of negative numbers results in a positive number, or why multiplication of 
numbers with mixed signs results in a negative number.

For example, the yellow chip/red chip representation of integers uses yellow 
chips to represent positive quantities and red chips to represent negative quantities 
(Sowder et  al., 2017). But representing signed multiplication with discrete chips 
involves conceptualizing multiplication as repeated addition. Furthermore, state-
ments such as (2 × −4) and (−2 × 4) require different interpretations under the chip 
model, even though each represents the same product. In the first case, the repeated 
addition view states that the quantity (−4) is repeated two times, which results in 
(−8). But then in the second case, if the repeated addition view were applied in the 
same way, the result would be that the quantity (4) is repeated (−2) times, which is 
nonsensical (Sowder et al., 2017).

A way around this is to reinterpret the multiplication-as-repeated addition view 
with signed numbers to follow one set of rules if the signed number appears second 
(these are the standard multiplication as repeated addition rules) and a different set 
of rules—that is, multiplication as repeated subtraction—if the signed number 
appears first. In that case, the example of (−2 × 4) could be interpreted as stating, 
“subtract 4 twice.” 

It is unclear how the ad hoc stipulations that are necessary to extend the domain 
of the representations to include signed multiplication would be clear to or convinc-
ing for students. 

Fig. 9 A multiplication diagram that shows that the product of negative 3 and positive 4 is 
negative 12
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 The root issue  is that the behavior of the real numbers under signed multiplica-
tion is a deep feature of the structure of the real number system. There is no natural- 
language explanation for this fact, nor is there a compelling physical representation 
that can illuminate why this is the case. It is the case, in particular, because the field 
structure of the real numbers requires that it be the case. The multiplication and 
division diagrams are well behaved under signed products and quotients because 
they are mathematical models of those operations in ways that collections of physi-
cal things cannot be.

Scaling The third feature of the diagrammatic models of multiplication and divi-
sion is that they represent multiplication and division as scaling of one number by 
another. From the start, then, the diagrammatic models define multiplication as an 
operation that is distinct from addition. The diagrams help to visually convey what 
it means to scale one quantity by another, as the implicit triangles in the diagram 
provide a visual cue for the concept of proportionality. The scaling that is repre-
sented in the diagrammatic models is different from the geometric representation of 
multiplication that is evident in the array or area representations.

In the area representation, the product of two one-dimensional quantities is a 
two-dimensional quantity. When viewed from a geometric standpoint, this is a rea-
sonable way to describe area, and, in fact, it helps to illustrate the need to use two- 
dimensional units when measuring area. But the area that results from the 
multiplication of two real numbers needs to be re-interpreted as a linear, one- 
dimensional quantity in order for the area representation of multiplication to be well 
defined (McLoughlin & Droujkova, 2013). The area representation does not capture 
the idea of multiplication-as-scaling so much as it introduces a new geometric inter-
pretation for multiplication.

Other Properties of the Models In addition to representing multiplication (and 
division) as continuous directed scaling, the diagrammatic model has other proper-
ties that are mathematically significant. Dynamic geometry software environments, 
such as GeoGebra, have made possible new modes of mathematical inquiry, new 
conceptions of geometric relationships, and new activities for the teaching and 
learning of geometry (Hollebrands, 2007). The capacity to explore, via continuous 
transformation, a range of diagrammatic realizations of the same underlying figure 
has been shown to be a powerful affordance of DGS that helps students develop and 
test geometric conjectures (González & Herbst, 2009).

Algebra solvers, spreadsheets, graphing calculators, or other software applica-
tions have enhanced our capacity for operating with numerical representations in 
comparably transformative ways. For example, arrays of numbers with thousands of 
entries can be rendered as dynamic graphs and complex surfaces defined analyti-
cally by families of curves can be visualized as two- or three-dimensional figures. 
But such visual representations of numerical information preserve the standard 
modes of interaction between graphs and the data they are determined by—numbers 
(or equations) as inputs into a renderer that produces a visual output. The dynamic, 
diagrammatic model of multiplication we have described here is distinct in that the 
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inputs and outputs are visual representations of numeric quantities. It thus makes it 
possible to use the modes of interactivity that have proven to be so transformative in 
dynamic geometry environments to explore arithmetic relationships.

The diagrammatic model of multiplication has different affordances than other 
physical or virtual manipulatives or calculating tools. The purpose of the dynamic, 
diagrammatic model is not to facilitate the evaluation of any specific multiplication 
problem, but rather to facilitate continuous comparisons of multiplication problems 
by dynamic transformation of the multiplication diagram. Base-10 blocks, 
Cuisenaire rods, and calculators are more practical resources for children to use to 
explore discrete sets of specific products and quotients, but they are incapable of 
modeling the continuous transformation that happens when one segment of variable 
length is used to scale another. The potential to represent families of quotients and 
products and to explore how multiplication and division, as binary operations, 
change as their inputs are continuously varied is a key affordance of the multiplica-
tion and division diagrams.

Numbers Between 0 and 1 One activity that is possible with the diagrammatic 
model of multiplication is investigating how multiplication operates on different 
sets of numbers, such as numbers that are between 0 and 1. A common misconcep-
tion held by students and teachers in elementary mathematics courses is that multi-
plication results in a product that is larger than either factor and that division results 
in a number that is smaller than the dividend (Graeber, 1993; Graeber, Tirosh, & 
Glover, 1989). With the dynamic diagrams, students can drag the factors across 
continuous sets of values between 0 and 1 to explore how such products and quo-
tients challenge these misconceptions. The models also highlight the role that the 
multiplicative unit plays as a boundary that defines different classes of products.

Investigating Products Between 0 and 1 with Pre-service Teachers We tested this 
activity with pairs of pre-service elementary teachers during a task-based interview 
study (Dimmel & Pandiscio, 2017). We recruited elementary pre-service teachers 
that were enrolled in geometrycontent courses at a public university in New England. 
Pairs of participants completed a brief orientation to GeoGebra, where they were 
shown how to drag a point back and forth along a line and how to change the scale 
(zoom in/out) and span (scroll left/right/up/down) of the display window. Following 
the orientation, pairs of participants were audio-recorded as they described their 
explorations of the dynamic diagrams and their dynamic manipulations of the dia-
gram were screen-recorded. The purpose of the study was to document how pre- 
service teachers explored and made sense of the diagrams. The pairs of pre-service 
teachers we interviewed showed how the multiplication model could be used to 
explore the “multiplication makes larger” misconception.

One pair of participants, Sally and Karen,2 demonstrated how specific states of 
the diagram could help to visually convey that it is possible for multiplication to 

2 Pseudonyms.
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result in a number that is smaller than at least one of the numbers that is multiplied. 
As they did so, it seemed that they themselves were using the diagram to discover 
the conditions under which multiplication could make a number smaller. They 
began with the diagram shown in Fig. 10, which they indicated was an example of 
multiplication making a number smaller.

For this part of the discussion, Sally and Karen stated that by “smaller” they were 
describing the lengths of the segments, not their direction. Next, they moved the 
yellow point to between −1 and −2 (see Fig. 11), at which time Karen observed, 
“That’s bigger….so it has to be less than--”; as Karen says “less than,” Sally moves 
the blue point so that the blue segment is between 0 and 1 (see Fig. 12). Sally stated, 
“Also, if you do this one,” Sally pauses for a second as she moves the yellow point 
to between −3 and −4, “the yellow is going to be more than the green” (see Fig. 13).

The researchers then asked, “What happens if both yellow and blue are between 
0 and 1? What happens to the green?” The participants used the diagram to answer 
this question. They moved the yellow point to be between 0 and −1 before giving 
their answer (see Fig. 14).

Once the blue and yellow points were in position, Sally observed, “It gets smaller 
than both of them.” As Sally and Karen considered the products of numbers between 
0 and 1, they dragged the yellow and blue points through ranges of cases within the 
[−1,0] and [0, 1] intervals. They did not fixate on specific products but were instead 
focused on trying to describe a property of multiplication that would apply to all 
possible products within that range. This type of exploration is an example of an 
activity that could potentially help pre-service teachers expand their conception of 
multiplication beyond the natural numbers.

Signed Multiplication We described above how visually representing the structure 
of signed multiplication is a feature of the model. The diagrammatic model provides 
a means to explore how the structure of multiplication requires that a negative num-
ber times a negative number would produce a positive product. Figure 15 shows a 

Fig. 10 A multiplication diagram that shows that the product of 2 and −0.25 is −0.5
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multiplication diagram for a negative number times a positive number. As the posi-
tive factor approaches 0 and then becomes a negative factor (Fig. 16), the diagram 
shows the product moving from a negative number to a positive number (Fig. 17).

In this example, the diagram shows how small changes in the value of the inputs 
of the multiplication model—in this case, the blue segment continually decreases—
yield correspondingly small changes in the output of the model—the green segment 
gradually increases as the blue segment gradually decreases. This continuous varia-
tion proceeds apace as the blue factor passes through the origin and becomes a nega-
tive number, thereby visually demonstrating that for multiplication to be 
well- behaved (i.e., continuous), the product of two negative numbers is a posi-
tive number.

Fig. 11 Karen moves the yellow point and observes that the product is bigger

Fig. 12 Sally moves the blue point to between 0 and 1
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This structural argument is similar to an argument that can be made by compar-
ing the products of different pairs of numbers and looking for a pattern. But the 
numerical realization of the argument amounts to, at best, a discrete collection of 
specific instances. The multiplication diagram, by contrast, illustrates the idea by 
allowing a student to pass through a continuous range of cases. By analogy to 
dynamic diagrams in the context of geometry—where continuous variation has 
helped students gain insight about the relationships among geometric figures—the 
multiplication diagram makes the structure of multiplication accessible to investiga-
tion from a visual perspective.

Fig. 13 Sally moves the yellow point to between −3 and −4; then observes, “the [absolute value 
of] yellow is going to be more than the [absolute value of] green”

Fig. 14 The participants used the diagram to investigate the products of two numbers that are 
between 0 and 1
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One hypothesis underlying our work to develop the diagrammatic models is that 
more deliberate efforts to foster visual literacy could aid pre-service teachers in 
mathematical sense-making. We recognize that exploring that the diagram repre-
sents multiplication does not necessarily mean that pre-service teachers will come 
to understand, conceptually, how the diagram represents multiplication. But the 
visual structure of the diagram could be conceptually accessible to pre-service ele-
mentary teachers. Dake (2007) argues that developing visual literacy can lead to 
new ways of thinking and communicating; it is akin to learning to think in a new 
language. The diagrammatic models provide visual resources that could help pre-
service teachers understand multiplication as uniform scaling—similar to the notion 

Fig. 15 A positive number (blue segment) times a negative number (yellow segment) is a nega-
tive number

Fig. 16 The positive number approaches 0 and the product increases
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of enlarging or shrinking an image by projection, with the parallel line effecting the 
change in scale. The interview study we conducted with pairs of pre-service teach-
ers did not focus on explaining the model to the participants, but investigating how 
pre-service teachers would explain/justify how the model works to elementary stu-
dents is an area for future work.

Division by Zero One final affordance of the diagrammatic models is that they 
provide a visual representation that division by zero is undefined (Dimmel & 
Pandiscio, 2020). Students and teachers alike have been shown to have difficulties 
knowing that or explaining why division is undefined for a zero divisor (Crespo & 
Nicol, 2006; Tirosh & Graeber, 1989; Tsamir & Sheffer, 2000). With the diagram-
matic representation of division, continuous transformations of the diagram can be 
used to investigate what happens to the quotient as the divisor goes to zero. 
Figures 18 and 19 show that the quotient grows without bound as the divisor gets 
closer to zero.

When the divisor is at zero (Fig. 20), the quotient line is parallel to the y-axis. 
Thus, there is no point of intersection, and the quotient is undefined at that point. 
Learners could keep the divisor at zero and continuously vary the dividend to see 
that division by zero is undefined for all real numbers.

The diagram provides a visual representation of what it means for division by 
zero to be undefined. Furthermore, even though division by zero is undefined, it 
is nonetheless a particular state of the diagram. The visual representation of divi-
sion by zero could help students appreciate what it means for a quotient to be 
undefined.

Fig. 17 The positive number becomes a negative number and the product becomes a posi-
tive number
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4  Diagrammatic Multiplication and Mathematical Borders

We have considered how the elementary mathematics curriculum can seem like 
crossing a series of borders that separate different sets of numbers, different math-
ematical topics, and different subjects within the field of mathematics. Arithmetic is 
a distinct subject area from geometry, and—short of doing calculations with the 
measurement properties of figures—there are scant opportunities to blur, soften, or 
otherwise break down the border that keeps them separated. The diagrammatic 
models of multiplication and division we described here could provide opportuni-
ties for students to cross the border between arithmetic and geometry and to use 
dynamic exploration practices to investigate the structure of the real number system.

Fig. 18 The quotient increases as the divisor approaches 0

Fig. 19 The quotient continues to increase
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Beyond blurring the border between arithmetic and geometry in elementary 
mathematics, the multiplication and division diagrams could facilitate blurring the 
border between elementary and disciplinary mathematics. Elementary mathemat-
ics, as represented in schools, is enigmatic. The seemingly basic concepts that ele-
mentary teachers are expected to develop in their students have deep mathematical 
roots whose subtleties are challenging for teachers to teach and learners to learn. 
Elementary students can make observations, ask questions, or share ideas that are 
vague, unclear, or strange, but that are nonetheless full of mathematical potential.

A well-known example of such a student comment is the case of Sean’s Numbers 
(Ball, 1993; Ball, Lewis, & Thames, 2008). Sean was a third grader in a class taught 
by Deborah Ball. Ball (1993) described how one day, during a class discussion of 
even and odd numbers, Sean observed that some numbers could be considered to be 
both even and odd. Sean offered the number 6 as an example of such a number: It 
was even because it could be split into two groups without splitting a number in half 
(this was the definition of even the class had developed); but it could also be consid-
ered odd, because it contained three groups of two. After some deliberation, Ball 
(1993) decided to validate Sean’s observation about 6 and stated to the class that 
Sean had “invented another kind of number that we had not known before” (p. 387).

The case of Sean’s numbers is often described as an illustration of the tension 
between what is expected to be taught—six is not an odd number—and children’s 
ideas—six is both even and odd. We see another tension in Sean’s numbers. The 
language that Sean used to describe the number 6 as both “even and odd” is non- 
standard, but Sean’s recognition that there is something special about 6 and other 
numbers like it is not trivial. As a third grader, Sean grasped the distinction between 
singly-even and doubly-even numbers. A singly-even number is an even number that 
is congruent to 2 mod 4 (Weisstein, 1996). A doubly-even number is an even num-
ber that is divisible by 4 (Weisstein, 1996). The distinction between singly- and 

Fig. 20 The divisor is at 0, and the quotient line is parallel to the y-axis. The quotient is undefined 
because there is no point of intersection
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doubly-even numbers is significant in several branches of mathematics. For exam-
ple, in manifold theory, the Euler characteristic (Χ) of an orientable manifold is 
even if the dimension of the manifold is singly-even—that is, if the dimension of the 
manifold is a Sean number (Hoekzema, 2018). The distinction between singly-even 
and doubly-even integers has its own Wikipedia page that surveys how the distinc-
tion is pertinent to topics in pure and applied mathematics.3 Sean’s observation 
about the number 6 thus captures the tension between disciplinary mathematics and 
school mathematics; it exemplifies how children can have insights that allow them 
to peer over the border that separates the math they are expected to learn in schools 
from the open field of mathematical inquiry.

School may erect borders between elementary and disciplinary mathematics, but 
Sean’s observation about the number 6 shows how students’ mathematical imagina-
tions can bypass those borders. As mathematics educators, one of our goals is to 
establish learning environments where students’ mathematical creativity and inquiry 
can flourish. We believe the diagrammatic models of multiplication and division 
bring the affordances of dynamic geometry software to bear on students’ investiga-
tions of the arithmetic structure of the real numbers. Concepts like the rules for 
signed multiplication or that division by zero is undefined are difficult to motivate 
or elucidate with real-world things and everyday language. As an additional tool, 
the visual representations of multiplication and division in dynamic diagrams pro-
vide models of these concepts that could help elementary pre-service teachers 
glimpse their deep mathematical structure.

5  Diagrammatic Models and Pre-service Teacher Education

The diagrammatic models of multiplication and division visually show products 
and quotients. We see the dynamic diagrams as complementary with the representa-
tions of multiplication and division that are typically used in elementary pre-service 
teacher education. The mathematical structure of the multiplication and division 
diagrams is conceptually more advanced than other models, in that understanding 
the diagrammatic models entails facility with compass-and-straightedge construc-
tions and also the capacity for following geometric and proportional reasoning argu-
ments. Still, we do not believe that grasping the mathematical structure of the 
models is beyond pre-service teachers. On the contrary, we see investigations of 
why the models work as opportunities to develop pre-service teachers’ mathemati-
cal reasoning, especially as it relates to the conception that multiplication is scal-
ing—that is, a distinct mathematical process that cannot be reduced to repeated 
addition.

We envision using diagrammatic investigations of multiplication and division 
after pre-service teachers have had the opportunity to investigate these operations 

3 See: https://en.wikipedia.org/wiki/Singly_and_doubly_even
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using other, more traditional, models or manipulatives. We see a role for the dia-
grammatic models in helping pre-service teachers to develop robust concept images 
of multiplication and division that can help mitigate natural number bias, repair 
misconceptions about multiplying/dividing numbers between zero and one, and 
demystify division by zero. Once elementary pre-service teachers have experience 
using the models to refine their own understanding of multiplication and division, 
they would be in a position to use the models with elementary students. We have not 
yet explored using the model with elementary students directly, although we envi-
sion that as a natural next step in this line of inquiry.
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In this chapter, we use Zanazanian’s (2015, 2019) conceptualization of historical 
consciousness as a framework to support mathematics pre-service teachers in 
achieving epistemic change about mathematics and mathematics teaching and 
learning – a change where teachers’ beliefs are aligned with approaches to teaching 
mathematics for meaning. By teaching mathematics for meaning, students develop 
a range of mathematical competencies, including understanding: Why mathemati-
cal ideas are true or valid, how to use a range of procedures and tools, when to use 
those tools, and how to communicate mathematical reasoning (Kilpatrick, Swafford, 
& Findell, 2001). Teaching mathematics for meaning requires that teachers shift 
away from traditional views of mathematics teaching as focused solely on proce-
dures and memorization. This shift necessitates change in individuals’ epistemic 
beliefs, that is, their beliefs “about the nature of knowledge and knowing” (Muis, 
Bendixen, & Haerle, 2006, p. 4). We believe this change can come about through 
raising awareness of their epistemic cognition, that is, “the processes in which indi-
viduals engage in order to consider the criteria, limits, and certainty of knowing” 
(Maggioni & Parkinson, 2008, p. 446) and the workings of their thinking patterns 
when engaging with mathematics. Such change is essential to provide students 
greater autonomy, action, and mathematical understanding – ensuring that they have 
the skills to cultivate positive relationships with mathematics and have access to 
engage critically with social and economic issues in our developing world. On this 
view, epistemic change, for purposes of this chapter, refers to a process where 
change in epistemic beliefs (the stability, structure, and source of knowledge) results 
from raising awareness of one’s regular (incognizant) thinking patterns when mak-
ing sense of the world to then make a concerted effort to transform the workings of 
one’s epistemic cognition.
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Our approach is based on Zanazanian’s (2015, 2017, 2019) conceptualization of 
historical consciousness. We consciously present our work in a normative way to 
provide explicit guidance on how to use historical consciousness as a means or 
methodology for connecting individuals’ mental functioning to their ability to navi-
gate social reality. This is done purposefully in order to reach out to a wider reader-
ship beyond academia and into school classrooms and the realm of teaching and 
learning. In using meanings assigned to the past to navigate social reality, historical 
consciousness can be the vehicle for epistemic change by allowing pre-service 
teachers to examine how everyday people use history to think and act in the world, 
and how they specifically construct social reality to such ends (Zanazanian, 2015, 
2017, 2019). We draw upon Zanazanian’s (2015, 2019) definition of historical con-
sciousness as rooted in human action – as a way of thinking about one’s position in 
relation to events in time (past, present, future) and as situated in broader social and 
cultural understandings and contexts. One consequence of this, if steered carefully 
by a teacher educator, is that pre-service teachers can learn to take critical distance 
from their knowledge claims when making statements about the world in order to 
gain awareness of their positionality in relation to their epistemic cognition. Critical 
distance refers to the extent to which individuals – in our case, pre-service teach-
ers – (Zanazanian, 2019, p. 857). The aim of such an approach is to see the extent to 
which pre-service teachers seek such fuller understandings of mathematical reality, 
all the while knowing that it is not possible to do so concretely. Our guiding assump-
tion is that once pre-service teachers gain awareness of the thinking behind their 
positionality, it will be easier for them to gradually achieve epistemic change  – 
change in their epistemic thinking and positioning – over longer periods of time 
through sustained reflexive self-analysis.

In this chapter, we ask: How can historical consciousness be used as an approach 
to support elementary and secondary pre-service teachers to achieve epistemic 
change regarding mathematics, where epistemic beliefs become aligned with 
approaches to teaching mathematics for meaning? Our focus in this chapter is situ-
ated within the Canadian and US context. We start by providing an overview of the 
context of educational reform in mathematics education in these countries; how this 
context has created a need for pre-service teachers’ epistemic changes; and what 
those changes involve. We then describe how history has been used in mathematics 
teacher education and elaborate on why the historical consciousness framework we 
propose is a promising approach for supporting epistemic changes in pre-service 
teachers. Next, we outline a set of design considerations, drawn from the literature 
on history in mathematics education, to provide guidance for how to implement our 
historical consciousness approach within a mathematics education context. In the 
second half of this chapter, we describe what the historical consciousness approach 
that we propose encompasses and provide a case example – in the context of multi- 
digit multiplication – of how it might be implemented in a mathematics methods 
course. We conclude with practical and research considerations in this area. Given 
that our approach and examples are limited to a euro-centric view, we also discuss 
limitations and needed areas for future research to expand beyond euro-centrism 
when integrating mathematics and history.
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1  Problem: The Need for Achieving Epistemic Change 
for Pre-service Teachers

In this section, we justify why pre-service teachers may need support in changing 
their epistemic beliefs. To do so, we elaborate on why policy changes have moved 
towards a mathematics-for-meaning approach and away from traditional approaches 
to teaching mathematics. We then elaborate on our conceptualization of epistemic 
change, epistemic beliefs, and epistemic cognition and describe what kinds of epis-
temic beliefs pre-service teachers need to adopt to teach mathematics for meaning.

1.1  The Move Away from Traditional Approaches Towards 
Mathematics for Meaning

Over the last several decades, numerous reform and policy documents have called 
for a shift in how mathematics is treated in schools – away from traditional methods 
of instruction focused solely on procedures and memorization towards a focus on 
learning mathematics for meaning (Ministère de L’Éducation, du Loisir et du Sport, 
2006; National Council of Teachers of Mathematics [NCTM], 2000; National 
Governors Association Center for Best Practices & Council of Chief State School 
Officers [NGA & CCSSO], 2010). Reforms focused on mathematics for meaning 
encourage students to engage in a range of mathematical practices in which they 
actively construct mathematical knowledge, including problem solving, posing con-
jectures and questions, inventing strategies, explaining and justifying claims, iden-
tifying patterns, generalizing, and more (Boaler, 2002a; NGA & CCSSO, 2010). 
The overall aim of these approaches is for students to develop deeper, more robust 
understandings of mathematics and become aware of their mathematical action – or 
ability to think and act upon mathematical problems/ideas  – with the hopes of 
becoming autonomous and self-sufficient thinkers and critical contributors to soci-
ety. Students should ultimately learn skills that will help them engage with the 
increasing knowledge demands of our society, learning to think critically when 
solving real, complex problems, when engaging with data from media, and when 
presented with opposing arguments.

The changes towards mathematics for meaning, at least in the United States, 
were largely motivated by poor student performance in international exams and by 
a growing body of research on students’ mathematical thinking that provided evi-
dence for the negative effects of traditional instruction (Schoenfeld, 2004). 
Traditional approaches have been shown to have negative effects on students’ math-
ematical understanding, attitudes towards mathematics, and views of themselves as 
mathematics learners (Boaler, 1998; Schoenfeld, 2004). For example, through tra-
ditional methods, students often misremember definitions or struggle to interpret 
definitions provided to them (e.g., Dickerson & Pitman, 2016; Roh, 2008). Moreover, 
mathematical content is cumulative – that is, the content at each grade level builds 
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directly on the previous grade level. Because of this, students’ unresolved struggles 
multiply with each successive grade level. This can have dire consequences: As 
Moses and colleagues (Moses, Kamii, Swap, & Howard, 1989) describe, mathemat-
ical subjects such as algebra can become a “gateway” (p. 424) for higher education 
and, in turn, economic and social upward mobility. Mathematics success is espe-
cially consequential for minority groups, who consistently perform lower on assess-
ments of mathematics proficiency (Schoenfeld, 2004). Traditional mathematics 
instruction thus jeopardizes efforts to obtain educational and – ultimately – societal 
and economic equity.

In contrast, mathematics-for-meaning approaches help students overcome the 
negative consequences of traditional instruction by helping them develop positive 
relationships with mathematics: Instead of viewing teachers and textbooks as the 
sole authority, students learn to become authors of mathematics and to see them-
selves as mathematical actors capable of seeking out, critiquing, and constructing 
mathematical knowledge (Ball, 1993; Boaler, 2002b; Kobiela & Lehrer, 2015; 
Lampert, 1990). Teachers can help to cultivate students’ action – and, consequently, 
their positive relationships with mathematics – by inviting and responding to the 
varied methods and solutions that they bring to their classrooms. Countless studies 
have shown that through such approaches, students develop deeper and more lasting 
understandings of content (e.g., Boaler, 1998; Kobiela & Lehrer, 2015; Lehrer & 
Pritchard, 2002). Moreover, recent research has shown that a mathematics-for- 
meaning approach carries long-term benefits compared to the traditional approach: 
Students who were provided opportunities to learn mathematics in these ways in 
secondary school maintained positive attitudes towards mathematics in adulthood 
and had higher economic upward mobility, compared to students who had experi-
enced traditional forms of mathematics (Boaler & Selling, 2017).

However, despite the well-documented benefits of teaching mathematics for 
meaning, traditional methods of instruction still persist today for a number of rea-
sons. To begin, meaningful teaching is challenging – it requires teachers to be atten-
tive, responsive, and welcoming to the range of ideas students bring to class (Ball & 
Cohen, 1999). Adding to this challenge, these approaches are often unfamiliar to 
teachers because they differ from their own experiences with learning mathematics 
(Ball, 1988). Moreover, the reform has often received pushback from parents, teach-
ers, and politicians who feel strongly that students should focus on learning their 
basic mathematics facts (Schoenfeld, 2004).

1.2  Conceptualizing Epistemic Change Towards Mathematics 
for Meaning

In order to move away from traditional forms of instruction and instead implement 
mathematics for meaning, teachers need to achieve epistemic change. As described 
previously, epistemic change first involves changes in epistemic beliefs. These 
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occur when “individuals actively construct or make meaning of their experiences” 
(Muis et al., 2006, p. 30), becoming aware of their regular (incognizant) thinking 
patterns through their social interactions. Throughout their education, teachers 
experience many classroom environments, each of which provide a particular epis-
temic climate that, through direct and indirect signals, send messages about the 
nature of knowledge and knowing (Muis & Duffy, 2013). Teachers’ epistemic 
beliefs are thus constructed over many years of interaction and social enculturation 
through both their life and work experiences. To shift these deeply held beliefs, 
teachers must engage in and develop their epistemic cognition (Maggioni & 
Parkinson, 2008). This includes a process where they become aware of and con-
sciously transform the workings of their epistemic cognition by deliberately reflect-
ing on their thinking, patterns, and, by extension, their epistemic beliefs. In the 
remainder of this section, we describe the epistemic beliefs that teachers must 
reflect on to align with a mathematics-for-meaning approach.

According to Muis and colleagues (Muis et  al., 2006; Muis & Duffy, 2013), 
epistemic beliefs can be conceptualized along four dimensions. First, individuals 
may view knowledge as certain or uncertain – that is, as fixed versus unknown and 
changing  – and as simple versus complex. In line with this dimension, to move 
towards a mathematics-for-meaning approach, teachers must view mathematics as 
an evolving discipline rather than a static, unchanging entity with fixed and absolute 
truths about knowledge (Chrysostomou & Philippou, 2010). At the same time, 
teachers must come to see mathematics as a humanistic discipline – that is, one in 
which humans construct and create mathematical knowledge through social 
exchanges  – often a messy, non-linear process. These perspectives reflect how 
mathematics is treated in the discipline of mathematics. For example, in his histori-
cal analysis of the development of the proof for the Euler Characteristic, Lakatos 
(1976) illustrated how members of the larger mathematical community shifted the 
direction of discovery through introducing new counterexamples to the initial con-
jecture. These counterexamples led to re-examination of the proof. The “zig-zag” 
(p. 42) between proofs and counterexamples yielded suggestions for an improved 
conjecture.

The second dimension of the epistemic beliefs framework highlights individuals’ 
views of how knowledge is justified – through expert authorities or through one’s 
own opinion and experience. Similarly, the third dimension captures individual’s 
understandings of whether knowledge originates from authority figures or from 
oneself. Both of these dimensions reflect what individuals believe in terms of who 
has the authority to engage in and construct mathematics. To move towards a 
mathematics- for-meaning approach, teachers must shift away from seeing the 
teacher’s role as a disseminator of knowledge – as the sole authority – to one who 
guides students in developing reasoning (Cross, 2009). In this perspective, mathe-
matical expertise is not innate, but is subject to change and growth (Chrysostomou 
& Philippou, 2010). Thus, students can become actors and authors of mathematics 
and have the potential, with the teachers’ support, to become mathematical experts. 
This requires teachers to view mathematics as encompassing forms of reasoning 
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that students can cultivate rather than just formulas and arithmetic operations that 
are predetermined by external authorities.

Finally, the fourth dimension of epistemic beliefs refers to whether individuals 
believe that truth is always attainable or not. To align with a mathematic-for- 
meaning approach, teachers must move away from traditional views of mathematics 
instruction as always leading to one absolute answer or method and instead believe 
that there are multiple ways to approach mathematical problems (Chrysostomou & 
Philippou, 2010). This view is important for understanding the cultural roots of 
mathematics – as not existing solely as a western enterprise, but as originating in 
many cultures – each of equal value (Stedall, 2012).

Although shifting teachers’ epistemic beliefs in the ways described above is 
important, this cannot be done without also engaging in and developing their epis-
temic cognition to become attentive to their thinking processes about the “criteria, 
limits, and certainty of knowing” (Maggioni & Parkinson, 2008, p. 446). As we 
describe next, history of mathematics provides a promising epistemic climate for 
teachers’ engagement in epistemic cognition.

2  The Promise of a History of Mathematics Approach 
to Achieve Pre-service Teachers’ Epistemic Change 
Through Transforming Epistemic Cognition

In this section, we draw upon the literature on history in mathematics education to 
justify why history of mathematics has the potential for supporting changes in pre- 
service teachers’ epistemic thinking/cognition and to describe how it has been 
implemented in teacher education programs. History can provoke epistemic cogni-
tion by encouraging pre-service teachers to rethink their understandings of and rela-
tionships to mathematics – important for achieving change in epistemic thinking 
towards mathematics for meaning. Integrating history into teacher education pro-
grams can support pre-service teachers to understand how mathematical ideas 
develop (Furinghetti, 2007; Povey, 2014), to gain increased confidence in teaching 
mathematics (Charalambous, Panaoura, & Philippou, 2009), to acquire deeper and 
expanded understandings of mathematics (Youchu, 2016), to improve their confi-
dence in their understanding of mathematical topics (Clark, 2012; Fenaroli, 
Furinghetti, & Somaglia, 2014; Galante, 2014), and to develop an increased open-
ness towards mathematics and empathy towards mathematics learners 
(Guillemette, 2017).

The history of mathematics has been integrated into both classroom and teacher 
education contexts for some time now (Jankvist, 2009). In his review, Jankvist 
(2009) describes two reasons that researchers suggest for integrating history into 
mathematics learning environments. The first, history as a goal, suggests that inte-
gration of history can support learners to understand aspects of the history of 
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mathematics, including how mathematics has evolved and developed over time and 
the role of humans and different cultures in its development. In contrast, the second 
reason, history as a tool, suggests that integration of history can help learners make 
sense of mathematics in new ways, can motivate and inspire learners to apply math-
ematics differently, or can help learners (in particular, teachers) understand particu-
lar developmental struggles that students might experience.

To achieve these goals within teacher education contexts, history has been inte-
grated using a variety of methods. One common approach has been to ask pre- 
service teachers to solve historical mathematics problems to help them experience 
mathematics in a different way (Charalambous et al., 2009; Clark, 2012; Galante, 
2014). Similarly, researchers often provide pre-service teachers with original 
sources to analyze, such as historical textbooks or mathematical papers (Fenaroli 
et al., 2014; Guillemette, 2017). Other researchers have asked pre-service teachers 
to complete reflective journals in which they consider connections between a his-
torical topic and mathematics teaching and learning (Galante, 2014) or connections 
to their own learning (Clark, 2012). In some courses, pre-service teachers conducted 
extensive research projects to investigate a historical topic in mathematics 
(Furinghetti, 2007; Galante, 2014). Pre-service teachers also developed lesson plans 
in which they were required to integrate what they had learned about the history of 
mathematics for a particular topic (Fenaroli et al., 2014; Furinghetti, 2007; Youchu, 
2016). Teacher education programs often leverage more than one of these methods, 
sometimes complementing these learner-centered approaches with lectures on his-
torical topics (e.g., Charalambous et al., 2009; Fenaroli et al., 2014).

Despite these positive results, studies also highlight cases in which pre-service 
teachers maintain their traditional epistemic beliefs of mathematics, despite having 
opportunities to solve mathematical historical problems and to consider connec-
tions to the curriculum (e.g., Charalambous et al., 2009). In the following section, 
we draw upon lessons learned from this body of research to outline considerations 
for integrating history into mathematics teacher preparation.

3  Design Considerations for Integrating History  
into Mathematics Teacher Preparation to Achieve 
Epistemic Change

In order to design effective epistemic climates for achieving epistemic change in 
pre-service teacher education, we drew upon the research literature on integrating 
history of mathematics into elementary and secondary teacher education. We iden-
tify four considerations for designing activities to help provoke pre-service teach-
ers’ engagement in epistemic cognition: (1) pre-service teachers need training to 
incorporate history into mathematics; (2) teacher educators should consider pre- 
service teachers’ backgrounds when selecting historical excerpts; (3) historical texts 

Crossing Disciplinary Borders in Pre-service Teacher Education: Historical…



54

need to provide connections for empathy; and (4) historical analysis should incor-
porate experiencing mathematics. These considerations are not meant to be all 
encompassing, but highlight some dominant themes in the literature that are relevant 
to achieving epistemic change towards mathematics for meaning. Moreover, as we 
elaborate on in the Concluding Thoughts section, one limitation of these consider-
ations is that they are grounded in a euro-centric vision of history, mathematics, and 
history of mathematics. However, because they are based on existing empirical 
research on integrating history into mathematics teacher education, we are limited 
by the foci of that research literature. We elaborate on each of these considerations 
next. Our proposition below of an anthropocentric and cultural understanding of 
history’s uses for making sense of the world – which once made aware of – can take 
these considerations further. Based on individuals’ everyday thinking of history, 
they provide input into one’s intentions and decision making when faced with math-
ematical problems of an historical nature.

3.1  Consideration 1: Teachers Need Training to Incorporate 
History into Mathematics

The first design consideration for integrating history into mathematics teacher train-
ing is that it is necessary to train teachers on how to make sense of history. Because 
mathematics pre-service teachers often have limited experience with thinking like 
historians (Furinghetti, 2007), they may not be able to engage with the materials in 
a way that could provoke epistemic cognition. In secondary teacher education pro-
grams, although pre-service teachers may take an entire course in the history of 
mathematics (e.g., Clark, 2012; Youchu, 2016), such courses often use tools from 
history without providing teachers proper training in how to use those tools (Fauvel, 
1991). In elementary teacher education programs, pre-service teachers must take 
courses from a range of disciplines. However, this may leave little space for 
mathematics- specific courses, including those focused on history of mathematics. 
This is concerning given that elementary pre-service teachers may have little experi-
ence with the history of mathematics. For example, in a survey of 100 pre-service 
and in-service elementary teachers on their understanding of key figures and cul-
tures in the history of mathematics, Gazit (2013) found that both groups lacked in 
their understanding of these topics, scoring an average of only 40.1% correct on the 
items. Thus, in order to integrate history of mathematics to provoke epistemic cog-
nition, both elementary and secondary mathematics teacher training programs need 
to provide opportunities for pre-service teachers to learn how to analyze historical 
texts and apply forms of historical reasoning. Here, however, we focus on everyday 
individuals’ thinking of history, and not historians’.
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3.2  Consideration 2: Teacher Educators Should Consider 
Pre-service Teachers’ Backgrounds When Selecting 
Historical Excerpts

As a second consideration, pre-service teachers need to find the mathematical con-
tent in the historical examples accessible. As discussed previously, many efforts to 
integrate history and mathematics in teacher training include opportunities for pre- 
service teachers to examine, analyze, or re-create examples from the history of 
mathematics. If the content is not accessible, pre-service teachers may struggle to 
connect to and make sense of the historical example  – creating a barrier to the 
reflection needed for engaging in and changing epistemic cognition. For example, 
Charalambous et al. (2009) found that elementary pre-service teachers felt that the 
content in the historical examples examined in a course was too challenging, and, as 
a result, experienced a lack of confidence. In addition, the pre-service teachers in the 
study reported that they felt that the content in the historical examples was not rel-
evant to what they would be teaching in elementary school. It is possible that these 
elements had negative effects on how pre-service teachers interpreted and related to 
the historical examples. The researchers found that by the end of the course, pre- 
service teachers had stronger beliefs of mathematics as rule-based, lessened beliefs 
of mathematics as constructivist and dynamic, and felt more negatively towards 
mathematics – showing trends towards epistemic beliefs that reflected traditional 
mathematics instruction instead of mathematics for meaning. Thus, in order for pre- 
service teachers to position themselves and their teaching in relation to historical 
examples, the mathematical content must feel accessible and relevant to them.

3.3  Consideration 3: Historical Texts Need to Provide 
Connections for Empathy

Third, in addition to being mathematically accessible, historical texts should be 
selected to encourage pre-service teachers to develop empathy towards people of 
the past. Some scholars suggest that original sources (e.g., original textbooks, math-
ematician’s papers) can be one way to attain empathy. For example, Guillemette 
(2017) found that by making sense of the original texts of mathematicians, pre- 
service teachers were able to develop empathy for the struggles that mathematicians 
expressed in their writings. The pre-service teachers also came to see mathematics 
in new ways – as open and encompassing different ways of thinking, perspectives 
that they hoped to share with their future students.

Developing empathy for historical actors can impact how pre-service teachers 
approach their teaching in two ways. First, pre-service teachers may be motivated to 
foster empathy in similar ways in their future students. One way of doing so can be 
to have pre-service teachers reflect on the implications of the historical mathematics 
for students’ learning. For example, as part of a history of mathematics course, 
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Clark (2012) asked pre-service teachers to read an historical excerpt of a mathemat-
ical explanation. Pre-service teachers were asked to develop the mathematical argu-
ment, report to the whole class, consider how using the historical excerpt might 
impact students’ learning of the topic, and reflect on how they might approach their 
teaching. In their reflective journals, several pre-service teachers noted that they 
would want to incorporate history into their teaching to impact students’ interest in 
mathematics and to develop their awareness of other cultures in mathematics. Thus, 
the combination of reading historical texts and considering implications for stu-
dents’ learning allowed these pre-service teachers to consider how they could foster 
empathy within their future students. Second, by developing empathy for people of 
the past, pre-service teachers may come to understand and empathize with their 
future students in new ways. For example, in the study described above by 
Guillemette (2017), by developing new perspectives on the struggles experienced 
by mathematicians of the past, pre-service teachers were able to reflect on the expe-
riences that their future students might have when learning mathematics.

3.4  Consideration 4: Historical Analysis Should Incorporate 
Experiencing Mathematics

Finally, as a fourth consideration, when engaging with historical texts, teachers 
should have opportunities to experience the mathematics of the past. Doing so pro-
vides pre-service teachers opportunities to be able to grapple with mathematics and 
develop expanded understandings (Povey, 2014) that move beyond epistemic beliefs 
of mathematics as traditional. For example, in her study, Furinghetti (2007) found 
that by having pre-service teachers make sense of the mathematics in historical 
texts, pre-service teachers placed themselves in the perspective of the mathemati-
cians who authored or contributed to the texts. This perspective in turn impacted 
how they wrote and carried out their lesson plans. In contrast, in the study by 
Charalambous et al. (2009) described earlier, in which pre-service teachers left the 
course with more traditional views of mathematics, in their interviews, pre-service 
teachers acknowledged that they did not have enough opportunities to engage with 
and experiment with the mathematical content, despite being asked to solve histori-
cal mathematics problems. The lack of opportunity to do so may have contributed 
to their difficulties in accessing mathematics. These results suggest that the ways in 
which pre-service teachers are asked to engage in mathematics must provide them 
with opportunities to experience mathematics from the perspective of the histori-
cal actors.

The four instructional considerations we outline in this section, which emerge 
from the mathematics education literature, are intended to guide how teacher educa-
tors use history to support pre-service teachers to achieve epistemic change towards 
mathematics for meaning. As we argue in the next section, historical consciousness 
can be one approach that surpasses these considerations and supports change in 
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pre-service teachers’ epistemic beliefs. We thus illustrate how the four instructional 
considerations can be integrated with an historical consciousness approach in a 
mathematics methods course. By engaging in self-analysis through reflection and 
justification, historical consciousness can allow pre-service teachers to take critical 
distance from their knowledge claims when making mathematical statements about 
the world in order to become aware of their differing positionalities when engaging 
with mathematics (Zanazanian, 2019).

4  Historical Consciousness: An Approach to Encouraging 
Epistemic Change

In following Zanazanian’s (2015, 2017, 2019) theorization, historical conscious-
ness, as an object of inquiry, permits examining how everyday people use history to 
think and act in the world, and how they specifically construct social reality to such 
ends. As part of the larger study of human memory, historical consciousness none-
theless stands out from other memory frameworks because of its focus on the indi-
vidual and how they provide order and meaning to temporal change. As a form of 
cultural production, history’s reach expands here to account for its everyday life 
uses, with historical consciousness constituting the resulting ideas that emanate 
when making historical sense of the past (Rüsen, 2017). Connecting everyday peo-
ple’s thinking to the cultural, institutional, and historical contexts of their lives, 
individuals employ conceptual resources to make meaning and to ultimately attain 
their historical consciousness’ end-point configurations (Wertsch, 1998; Zanazanian, 
2015, 2017, 2019). Embedded in the differing epistemologies of their respective 
thought communities, individuals’ uniqueness and autonomy in their thinking and 
acting arise according to the manner in which they employ the conceptual resources 
that exist at their disposal in their personal repertoires or cultural toolkits for doing 
so (Zanazanian, 2015, 2017, 2019).

At a general level, these conceptual resources include both the narrative configu-
rations of the past and the interpretive filters used to make sense of that same past. 
Located in larger social processes and in the collective consciousness of individu-
als’ groups and broader cultures of belonging, these resources trickle down, mingle, 
and mix in everyday people’s thinking when giving meaning to the past. The more 
they are prevalent among people, the more they risk being interiorized as the correct 
way to proceed. Individuals (incognizantly) employ the conceptual resources they 
deem the most appropriate for the specific contexts they find themselves in (Wertsch, 
1998; Zanazanian, 2015, 2017, 2019). Based on Zanazanian’s (2015, 2017, 2019) 
theorization, memory frames underlying the past’s narrative configurations help 
structure understandings of the content of the past that form the “stuff” of collective 
memory and history – key dates, places, actors, settings as well as sequences of 
events – whereas history-as-interpretive-filter’s memory frames invoke those intel-
lectual functions assigned to history as a mode of thought for reading, organizing, 
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and explicating social reality. If individuals unreflexively instead of reflexively rely 
on these pre-given memory frames, conventional means for making sense of the 
past risk arising (Zanazanian, 2015, 2017, 2019). In the latter instance, historical 
consciousness holds the potential of encouraging open attitudes regarding history’s 
intellectual uses for reading reality and engaging in it. Of importance is the degree 
to which individuals take critical distance from their resulting knowledge claims 
when enacting their history-as-interpretive-filter memory frames. The more critical 
distance they take when doing so, the more the chances that they transcend their 
own positionalities and self-imposed limits for grasping the world around them 
(Zanazanian, 2015, 2017, 2019).

Of interest for our chapter, grasping individuals’ uses of history-as-interpretive- 
filter can help seize the role historical consciousness plays in the production of 
knowledge (Zanazanian, 2019). For analytical purposes, this permits one to see how 
individuals actually use history for solving life/social (mathematical) problems of a 
historical nature and the extent to which they consequently develop positive – criti-
cal, self-reflexive – mindsets in that regard. Based on this logic, the idea is to develop 
mindsets that encourage individuals to seek nuances in how they exercise their his-
torical consciousness when constructing understandings of social reality. What this 
raises is the issue of promoting an understanding for a need for self-reflexivity in 
how pre-service teachers use history when producing (mathematical) knowledge 
and when teaching mathematics. This can be done by answering guided reflection 
questions when having pre-service teachers read about different historical contexts 
or case studies for using math, as will be elaborated below. On this view, the ulti-
mate end goal is to obtain and develop a clearer understanding of how history is 
employed and promoted and what this can do for raising pre-service teachers’ 
awareness of their mathematical action and, by extension, their pedagogical abili-
ties when teaching mathematics. By reflecting on their uses of history-as- 
interpretive- filter, the end result for pre-service teachers is to gain the necessary 
mechanisms for organizing their understandings of mathematics and its cultural 
potentials for life purposes in meaningful ways, to then independently channel their 
ideas to decentralize their thinking for using mathematics more openly and inclu-
sively, mindful of its many possibilities for positive change.

5  Problematizing Pre-service Teachers’ Positionality 
Regarding Multi-digit Multiplication Algorithms: A Case 
Example of Epistemic Change Through 
Historical Consciousness

To illustrate how historical consciousness can be used as a self-reflexive tool to 
promote pre-service teachers’ epistemic change, we present three phases of our 
pedagogical approach. The aim across each phase is to encourage self-analysis 
through reflection and justification with the end goal of writing self-portraits that 
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pre-service teachers can expand on through their teacher education. The three 
phases are (1) developing one’s positionality regarding history and mathematics by 
having pre-service teachers take ownership of historical ideas from an historical 
text; (2) engaging autonomously with historical cases to use history to make sense 
of a mathematical or teaching problem that emerges in social reality; and (3) foster-
ing the habit of taking critical distance when positioning themselves through sus-
tained practice. Phases 1 and 2 involve writing narrative texts that pre-service 
teachers store until Phase 3, where they analyze and code their thinking inductively. 
Through this practice, key components that underlie their epistemic cognition can 
be identified and transformed to promote epistemic change.

We illustrate each step with a hypothetical example grounded in the context of 
multi-digit multiplication algorithms. A multi-digit algorithm refers to a repeatable 
method or process for solving arithmetic problems involving numbers with more 
than one digit (e.g., 23 × 41) (Kilpatrick et al., 2001). Our example is grounded 
within the US and Canadian context. As we describe in more detail later, in the 
United States and Canada, the algorithm for solving multi-digit multiplication 
involves a process of sequentially multiplying each digit of one number with each 
digit of the other number. These values are added to determine the final product. For 
example, the procedure for multiplying 23 by 41 using this algorithm is shown in 
Fig. 1. We begin by justifying why multi-digit multiplication algorithms serve as a 
rich context for cultivating pre-service teachers’ epistemic change towards mathe-
matics for meaning. Because of the centrality of multi-digit algorithms in US and 
Canadian mathematics curricula and because pre-service teachers have had ample 
experiences with US and Canadian standard multi-digit algorithms, this topic pro-
vides a familiar and thus accessible means for pre-service teachers to make sense of 
historical cases (Design Consideration 2). By rethinking what it means to learn and 
teach mathematics within the context of multi-digit multiplication, pre-service 
teachers can learn to value their students’ varied methods and to invite students to 
develop action as authors of these algorithms – approaches in line with mathematics 
for meaning.

1
23

´ 41
23

+ 920
943

Fig. 1 Example of the US 
and Canadian standard 
algorithm for multi-digit 
multiplication
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5.1  Justifying Multi-digit Multiplication as a Context 
for Cultivating Epistemic Change

Across all operations, the treatment of multi-digit algorithms in Canadian and US 
schools has been a topic of reoccurring debate. Traditional approaches to mathemat-
ics in these countries have focused on asking students to memorize and use the 
standard algorithm, often using the steps demonstrated by the teacher. In contrast, 
mathematics reform efforts aligned with mathematics for meaning suggest that stu-
dents should invent and make sense of a range of algorithms (e.g., NCTM, 2000). 
As seen more broadly, students who have such opportunities show stronger mathe-
matical understanding than students who learn via traditional approaches (e.g., 
Hiebert & Wearne, 1993). Moreover, many teachers experienced traditional forms 
of mathematics instruction during their schooling, in which they were told to follow 
the standard algorithms, without exposure to other algorithms. This experience can 
mislead teachers to perceive the standard algorithm as the sole, correct, and/or 
“best” way to solve multi-digit arithmetic problems  – reinforcing their views of 
mathematics as involving one singular, formulaic approach to solving problems. 
Yet, across the world, different cultures use different algorithms, many of which 
have made their way into North American homes with waves of immigrant popula-
tions (Philipp, 1996). In order to cultivate students’ positive relationships with 
mathematics, teachers must position their students as mathematical actors by invit-
ing and responding to the varied algorithms that students might bring to their 
classrooms.

In addition, when students have the opportunity to make sense of a wide range of 
methods, they develop greater confidence in mathematics (e.g., Carpenter, Fennema, 
Peterson, Chiang, & Loef, 1989). Being able to come up with multiple strategies to 
solve mathematical problems and to approach problems flexibly is a key aspect of 
mathematical competency (Kilpatrick et  al., 2001). Research suggests that when 
teachers use their understanding of children’s diverse strategies when teaching, their 
students’ conceptual understanding and problem-solving abilities improve 
(Fennema et al., 1996). Thus, teachers must be able to recognize and make sense of 
the validity of a wide range of algorithms – both in order to respond to the diverse 
methods that students might bring to class and to encourage students to invent and 
explore different methods. Doing so places students in a position to develop math-
ematics for meaning – cultivating their autonomy and action as mathematical know-
ers and thinkers. In what follows, we describe three phases of an instructional 
sequence that may be used with pre-service teachers. These three phases are illus-
trated in Table 1.
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Table 1 Phases of instructional sequence

Phase Purpose Overview of steps for the phase

1. Developing one’s 
positionality 
regarding history 
and mathematics

To provide pre-service 
teachers opportunities to 
consider the intellectual uses 
of history for making sense of 
mathematics. This goes 
beyond thinking like historians 
to employing everyday 
individual’s uses of history as 
a mode of thought.

1. Pre-service teachers read an initial text 
that outlines issues of the history of 
mathematics.
2. Pre-service teachers write a reflection 
piece (Guided Reflection Piece 1) in 
which they apply the ideas from the text 
to construct an episode as a hypothetical 
teaching situation where they connect the 
importance of history for thinking about 
mathematics to teaching mathematics for 
meaning.
3. Pre-service teachers respond to 
follow-up questions that encourage them 
to delve deeper into the connections 
between their epistemic views of 
mathematics and mathematics teaching 
and a historical perspective on 
mathematics (Zanazanian, 2019).

2. Engaging 
autonomously with 
historical cases to 
use history to make 
sense of problems

To provide pre-service 
teachers opportunities to apply 
what they gained from Phase 1 
to a different situation in a 
more autonomous manner by 
using information in cases 
exterior to their experiences.

1. Pre-service teachers read historical 
cases provided to them.
2. Pre-service teachers explain the 
mathematics in each case and 
individually write a second guided 
reflection piece (Guided Reflection Piece 
2) using provided prompts.

3. Fostering the 
habit of taking 
critical distance 
when positioning 
oneself through 
sustained practice

To provide pre-service 
teachers opportunities to step 
back and critically examine 
their thinking in their two 
reflection pieces and follow-up 
ideas to consider their 
positionality in relation to 
mathematics, history, and 
teaching mathematics for 
meaning.

1. Pre-service teachers review their 
narratives from Phases 1 and 2 to code 
what they have written according to 
questions provided to them.
2. Pre-service teachers synthesize key 
ideas by completing a set of prompts 
about the nature of mathematics, history, 
teaching mathematics for meaning, using 
history to teach mathematics for 
meaning, and justifications for each of 
these points.
3. Pre-service teachers interpret 
connections across their analyzed “data.”
4. Pre-service teachers write a summary 
of their findings in a brief descriptive 
report.
5. Pre-service teachers analyze and 
interpret the reflections and follow-up 
questions for two other classmates. 
Within this group, they should then 
compare their analyses and 
interpretations for each individual’s set of 
reflections and follow-up questions and 
come to a final consensus.
6. Pre-service teachers write a reflection 
in which they use the agreed upon 
analyses and interpretations to develop a 
self-portrait of themselves as a 
mathematics person or as a mathematics 
teacher.
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5.2  Phase 1: Developing One’s Positionality Regarding History 
and Mathematics

In order to support pre-service teachers to use history in thinking about mathematics 
(Design Consideration 1), they first need opportunities to consider the intellectual 
uses of history for making sense of mathematics. This goes beyond thinking like 
historians to employing everyday individual’s uses of history as a mode of thought. 
This is based on Zanazanian’s (2015, 2017, 2019) approach developed to measure 
the impact of individual’s historical consciousness on their positioning when mak-
ing sense of social reality – the extent to which they take critical distance from their 
knowledge claims when making statements about the world through thinking his-
torically. Thus, the first phase of our instructional approach provides opportunities 
for pre-service teachers to develop their positionality in relation to history, to math-
ematics, and to mathematics teaching and learning through self-analysis related to 
an historical text. Important here is that pre-service teachers have opportunities to 
reflect on and justify their thinking to help develop awareness of their positionality 
in relation to their general epistemic beliefs about mathematics and the implications 
of those beliefs for mathematics teaching and learning.

To help provoke their thinking about their epistemic beliefs, Phase 1’s first step 
thus requires teacher educators to ask pre-service teachers to read an initial text that 
outlines issues of the history of mathematics, including the nature of mathematics 
as an evolving and changing discipline, the multiple cultural roots of mathematics, 
the spread of mathematics, and the role of humans as actors in mathematics. For 
example, pre-service teachers may read the book, The History of Mathematics: A 
Very Short Introduction, by Jacqueline Stedall (2012). In there, Stedall chronicles 
the history of mathematics thematically, attending to the stories of a range of people 
from a variety of places. The chapters consider issues such as the meaning of math-
ematics, who counts as a mathematician, the spread of mathematical ideas, and the 
history of mathematics education.

After reading the text, as a second step, the teacher educator should ask pre- 
service teachers to write a reflection piece in which they apply the ideas from the 
text to construct an episode as a hypothetical teaching situation where they connect 
the importance of history for thinking about mathematics to teaching mathematics 
for meaning. An episode, although reflective in nature, should communicate a nar-
rative. Here, it is important that pre-service teachers go beyond simply summarizing 
ideas from the text and instead apply those ideas through their own cognizant think-
ing to explain how history can be used to make sense of the nature of mathematics 
and/or its purpose when teaching. Of key importance here is that pre-service teach-
ers elaborate on the rationale or reasoning behind what they are saying (Zanazanian, 
2019). Following Zanazanian (2019), it is through justifying their ideas that we can 
gain insight into pre-service teachers’ thinking processes and what they believe or 
say about knowledge construction when using history to understand mathematics 
and to teach it for meaning. In writing this episode, pre-service teachers should 
develop a narrative that tells a story with details about what individuals were doing 
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and saying in order to position themselves as actors within the story. By “actors,” we 
mean that pre-service teachers should able to imagine themselves as engaging in the 
roles of the individuals within the story. To accomplish this, pre-service teachers 
might be asked: Based on your reading of Stedall (2012), develop a fictive episode 
where you would use history to inform how you approach your understanding of 
mathematics and its teaching. Please write the episode to communicate the story 
from beginning to end with as much detail as possible (e.g., include what individu-
als in your story say and do). To get at their spontaneous thinking, pre-service 
teachers should write this reflection during class time, with approximately 40 min 
to do so. This should be done on the spot without access to the readings, to notes or 
to the Internet. The objective is for them to see how they spontaneously apply 
knowledge to concrete situations to make meaning without having to search for 
information on how to do so, but to use what they already know automatically. The 
reading should help initiate their thinking, but should not be a crutch in their reflec-
tive process. It is thus important to make sure that pre-service teachers understand 
the importance of reading the text beforehand.

Following their reflections, as a third step, the teacher educator should ask pre- 
service teachers to respond to follow-up questions that encourage them to delve 
deeper into the connections between their epistemic views of mathematics and a 
historical perspective on mathematics (Zanazanian, 2019). The key here is to see 
how they view history as a mode of thought and knowledge construction and to see 
how they apply this thinking to mathematics. The aim is to get at their epistemic 
thinking to understand how we can help transform it (towards mathematics for 
meaning). For example, pre-service teachers may be asked: (1) Why did you select 
the episode that you did? What were you trying to say/do? (2) Based on what you 
have read, what is history and how does it work? (3) How can history help us to 
better understand mathematics and its key principles and uses? (4) How can history 
help us teach mathematics to better support sense-making and meaning? (5) Do you 
think a traditional approach to teaching mathematics (memorization of formulas 
and patterns) has more value/is more efficient? Why? (6) What do you see as the 
purpose of mathematics? (7) What is your role as a mathematics teacher? They 
should answer these questions in writing and archive them for their upcoming self- 
portraits in Phase 3.

5.3  Phase 2: Engaging Autonomously with Historical Cases 
to Use History to Make Sense of Problems

After their initial self-analysis, as the second phase in our pedagogical approach, 
pre-service teachers should then zoom into a particular problem related to using 
history for better grasping the nature and function of mathematics and for teaching 
mathematics for meaning. To do so, pre-service teachers should be presented with 
one or more historical cases in mathematics. The purpose here is for pre-service 
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teachers to apply what they gained from Phase 1 to a different situation in a more 
autonomous manner by using information in cases exterior to their experiences. 
Within the teacher education course, teacher educators may ask pre-service teachers 
to read the cases and, in approximately 40 min, explain the mathematics in each 
case (Design Consideration 4) and individually write a second guided reflection 
piece (Guided Reflection Piece 2) using provided prompts. Prompts for Guided 
Reflection Piece 2 require pre-service teachers to again write a narrative essay, 
whereby in writing their episode, they situate their thinking in relation to the past, 
present, and future (Zanazanian, 2015, 2017, 2019). The prompts must again 
encourage pre-service teachers to justify and account for their choices, with the 
intended aim of seeing the extent to which they take critical distance from their 
knowledge claims when they later analyze their data. For example, for the two cases 
we describe in the next paragraph, pre-service teachers might be asked to reflect on 
the following: Using what you read in the book, look at the two cases provided. 
Write a fictive episode in which you explain how you would use the historical ideas 
within the cases to teach students multi-digit multiplication in a way that goes 
beyond memorizing the standard multiplication algorithm and that shows how 
mathematical knowledge is constructed. Please write the episode to communicate 
the story from beginning to end with as much detail as possible (e.g., include what 
individuals in your story say and do). The purpose of this question is to encourage 
pre-service teachers to consider the past (i.e., the historical cases) in connection to 
their future positionality as a teacher and to question their existing (present) assump-
tions about what mathematics should count as valid in their mathematics classrooms.

To illustrate, we selected two cases to provoke students’ positionality in relation 
to teaching the standard multiplication algorithm: Russian Peasant Multiplication 
and a method created by Italian abacists that resembles the standard US/Canadian 
algorithm. The goal here is to see how pre-service teachers apply the historical 
knowledge gained through their readings and applied in their guided reflection piece 
and follow-up questions to an episode where they have to use these historical cases 
to teach mathematics for meaning and to show how mathematical knowledge is 
constructed. By justifying their thinking within their episodes, pre-service teachers 
would be able to uncover their positionalities in relation to their epistemic beliefs 
about multi-digit multiplication algorithms, and ultimately, mathematics more gen-
erally. Because most Canadian and US teachers have experiences seeing the stan-
dard US/Canadian algorithm as the sole method, the cases can help them see that 
there can be alternate approaches to solving the mathematical problem developed 
by humans based on their social needs of the time – a key aspect to reflect on in their 
written piece.

Each case shows a valid method for solving multi-digit multiplication problems. 
Both methods served distinct purposes in commerce and satisfied the needs of the 
individuals who used them at the time. The first case is intended to help pre-service 
teachers see the validity of an approach that might be less familiar to them, but that 
is relatively accessible for students and thus can provide students opportunities for 
developing their autonomy and action as mathematicians. This method relies on 
recomposing the groups – a core idea in multiplication. Moreover, given that it is a 
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method developed and used by peasants, this method can help to encourage empa-
thy for peoples of the past among pre-service teachers (Design Consideration 3) and 
disrupt their existing views of mathematics as being an innate skill, reserved for 
elite mathematicians. The second case will be more familiar to pre-service teachers 
in North America, but the historical context may not be. This case is intended to 
help pre-service teachers re-examine their assumptions about what the standard 
Canadian/US multiplication algorithm is, why it exists, and who it is for. Through 
their analysis, we hope that pre-service teachers will come to see the standard algo-
rithm not as the sole approach to multiplication, but as one approach that served a 
particular historical purpose in a given context based in social reality issues, during 
a time when modern technologies were not accessible for facilitating computations 
during commerce. Here, the mathematics was connected to human action and their 
need to adapt to the changing times – a point to help pre-service teachers reflect on 
the evolving nature of mathematics. By making sense of the human aspects of both 
cases, pre-service teachers may also see mathematics as more than purely proce-
dural, and instead as developed through reasoning and problem solving.

The first case received the name “Russian Peasant Multiplication” because it was 
used by Russian peasants for many years and is still used by some in Russia today 
(Philipp, 1996). To use the method, a person writes down the two numbers to be 
multiplied. For example, if multiplying 7 × 22 (Fig. 2), one would write 7 next to 
22. Next, the person should double the first number (e.g., 7) and halve the second 
number (e.g., 22) and write these quantities directly underneath the original quanti-
ties. In our example, 7 doubled results in 14. This value should be written directly 
underneath the 7, creating a first column. The 22 halved results in 11. This value 
should be written directly under the 22, creating a second column. The person 
should continue by doubling the value in the first column and halving the value in 
the second column until the value in the second column is 1, as pictured in Fig. 2. 
To find the product, all the quantities in the left column with a corresponding odd 
number in the second column are summed. Thus, in our example, we sum 
112 + 28 + 14 because the numbers to the right of them are odd numbers (1, 5, and 
11, respectively). This results in 154, the final result of 7 × 22. Because the method 
only requires one to understand how to double and halve, something that can be 
done with tools – as illustrated by the pebbles in the example, it is accessible to a 
large number of people.

The second case dates back to the Italian Renaissance and shows a method cre-
ated by Italian abacists who were tasked to develop methods that could allow mer-
chants to more quickly and efficiently keep track of money in their business 
exchanges. This method closely resembles the standard North American algorithm 
often taught in schools. Here, a digit in one number is multiplied by each digit in the 
second number and then repeated with remaining digits. For example, as illustrated 
in Fig. 3, to multiply 9876 × 6789, we first multiply the “9” from 6789 by the “6” 
from 9876 to result in 54. The “4” is written underneath the rightmost column. The 
“5” is reserved. We then multiply 9 × 7 to result in 63. The “5” from the 54 is added 
to the “3” from the 63 to result in 8. This is written underneath the second rightmost 
column. The “6” from the 63 is reserved. We then multiply 9 × 8 to result in 72 and 
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add the “2” from this quantity to the “6” from the 63. This sum of 8 is written under-
neath the third rightmost column and the “7” from the 72 is reserved. The 9 is then 
multiplied by the 9 to result in 81. Because there are no more values to multiply 9 
by, we add 81 to the “7” from the 72 to result in 88. The 88 is written underneath the 
leftmost column. This process continues by multiplying the “8” from the 6789 by 
each digit in the 9876, creating a row of values (79008) underneath the first com-
puted row of values (88884). As illustrated in Fig. 3, this row is shifted one digit to 
the left. This process then continues with the remaining digits. Finally, the values in 
all the rows are summed to result in the final product of 67,048,164. Unlike the 
Russian Peasant algorithm, to comprehend why this method works, students need to 
understand what each digit in the numbers represent in terms of place value (i.e., the 
meaning of each position within a numeral), why that results in shifting the com-
puted rows, and why the values are summed at the end. Although more easily appli-
cable to high values of numbers, the method provides more opportunities for error. 
Once done, students should keep a record of their second narrative for purposes of 
self-analysis, which is done in Phase 3 to develop their self-portraits.

Case 1:

Dating back before the twentieth century, Russian peasants needed a method for commercial
exchange. Their method needed to be accessible and easy to use without great mathematical
understanding. They developed an approach that likely involved use of pebbles to keep track
of quantities. For example, imagine two peasants who wish to exchange goods. One wants to
buy seven animals from the other. Each animal costs 22 coins, leaving them with the challenge
to determine how much the buyer owed the seller. The seller of the animals created two
columns of holes. In the first row, the seller placed 7 pebbles in 1 hole and 22 in the other.
He then proceeded to change the numbers of pebbles in each column in the following way:

7 22
14 11
28 5
56 2
112 1

The seller then combined the 14 pebbles, the 28 pebbles, and the 112 pebbles. He used this 
to determine that the cost of the animals should be 154 coins. The buyer, following the steps, 
agreed and was able to proceed with the exchange.

Fig. 2 Case 1: Russian peasant multiplication. The case above was adapted from Ogilvy and 
Anderson (1988). Although the story about the two peasants is fictive, it is written to reflect the 
purpose of the use of the algorithm
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5.4  Phase 3: Fostering the Habit of Taking Critical Distance 
When Positioning Oneself Through Sustained Practice

In the third and final phase, pre-service teachers step back and critically examine 
their thinking in their two reflection pieces and follow-up ideas to consider their 
positionality in relation to mathematics, history, and teaching mathematics for 
meaning. To assist with this process, pre-service teachers should engage in an in- 
depth self-analysis of their reflections – much like inductive coding in qualitative 
analysis where categories are developed from the data  – in which they identify 
dominant themes related to their perspectives on mathematics, history, and the par-
ticular mathematical topic (Zanazanian, 2019). By interpreting their coded data, 
pre-service teachers will develop a self-portrait of themselves as a mathematics 
actor and, by extension, as a mathematics teacher – a reflection of their epistemic 
beliefs regarding the construction of mathematical knowledge that they can then 
continue to revisit throughout their program.

For example, to develop core themes for their self-analysis based on their reflec-
tion piece and follow-up questions, as a first step for Phase 3, teacher educators 
should ask pre-service teachers to review their narratives to code what they have 
written according to these questions: (1) What perspectives emerge regarding math-
ematics and its workings? (2) What perspectives emerge regarding history and its 
workings? (3) What perspectives emerge regarding the teaching of mathematics for 
meaning? (4) What perspectives emerge about how history can help inform 

Case 2:

During the Renaissance, commercial exchange shifted from one based on barter to one 
based on money. Due to improvements in shipping technology, merchants began running 
larger businesses in which they delegated shipping to their employees. They now needed to 
keep track of the exchange of money. This led to the development of a new type of 
mathematician, called an abacist, and new methods of computation. Whereas before, barter 
just required an exchange, merchants now needed to determine the quantitative value of 
objects. Abacist schools were developed to teach merchants methods of computation. This 
generated the need to have algorithms that could be communicated and replicated on paper 
(Radford, 2003). Numerous texts were generated. For example, in Summa Arithmetica 
(1494), Pacioli provided eight methods of calculation for multiplication. One that had the
most success he illustrated with the following:

9 8 7 6
6 7 8 9

8 8 8 8 4
7 9 0 0 8

6 9 1 3 2
5 9 2 5 6
6 7 0 4 8 1 6 4

Fig. 3 Case 2: Italian abacist multiplication
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teaching mathematics for meaning? (5) What perspectives emerge regarding the 
justifications behind your reasoning? Once all these questions are answered, the 
emerging information for each can be compared and reduced into representative 
codes (themes) that account for the students’ thinking until the point of saturation. 
As a second step, pre-service teachers can then synthesize key ideas by completing 
the following prompts related to each of the above questions: According to the 
author, (a) Mathematics is… (b) History is… (c) Teaching mathematics for meaning 
is… (d) Using history to teach mathematics for meaning refers to… and (e) The 
justifications for their reasoning include….

To help pre-service teachers further reflect on their claims in their self-analysis, 
as a third step, teacher educators should ask them to interpret connections across 
their analyzed “data.” For example, they can complete the following prompt: 
According to the author, multiplication, math, and history connect in the following 
ways…and then answer: What evidence does the author provide for these connec-
tions? Once they code their data, as a fourth step, teacher educators should have 
pre-service teachers write a summary of their findings in a brief descriptive report – 
which would basically comprise the core text or ideas of their portraits (to be devel-
oped below).

Following the self-analysis, it is essential to bring in additional perspectives to 
help pre-service teachers take critical distance from their knowledge claims. To do 
so, as a fifth step, teacher educators should task them to analyze and interpret the 
reflections and follow-up questions for two other classmates. Within this group, 
they should then compare their analyses and interpretations for each individual’s set 
of reflections and follow-up questions and come to a final consensus. By being 
placed in a position where they have to clarify and defend their claims, this step 
should provide pre-service teachers with an alternate perspective to their claims and 
require them to respond to those perspectives.

As a final step, the teacher educator should ask pre-service teachers to write a 
reflection in which they use the agreed-upon analyses and interpretations to develop 
a self-portrait of themselves as a mathematics person or as a mathematics teacher. 
They should use the first person in their writing (“I am…,” “my….”). For example, 
pre-service teachers may be prompted in the following way: Using the analyses of 
your reflections and follow-up questions, develop a portrait of yourself as a knower 
of mathematics and as a mathematics educator. Use the first person when writing 
your portrait.

Although the process we describe above may be implemented in a teaching 
methods course, it should not be treated as a quick solution for achieving epistemic 
change towards mathematics for meaning. Most pre-service teachers come to their 
teacher training with a long history of experiencing traditional mathematics (which 
they should also keep in mind during their self-analysis). These experiences pro-
vided distinct epistemic climates that have shaped their epistemic beliefs towards 
seeing mathematics as certain, simple, originating in external authority, and always 
attainable. Uprooting these beliefs requires time. The process we describe here is 
intended to help provoke pre-service teachers to develop awareness of their epis-
temic beliefs and positionality as a mathematics teacher. This should only be the 
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start of a sustained self-reflexive conversation. Throughout their teacher education 
program, teacher educators should encourage pre-service teachers to continue to 
examine their epistemic cognition’s workings by revisiting and re-examining their 
self-portraits through additional reflections and opportunities to examine other his-
torical cases. By doing so, the aim is for pre-service teachers to develop epistemic 
beliefs about mathematical knowledge aligned with approaches for teaching math-
ematics for meaning through an evolutionary process where they are self-reflexive, 
changing and updating their portrait as they go along.

6  Concluding Thoughts

In this chapter, we have attempted to illustrate how historical consciousness, as an 
emerging concept in the area of history education, can be used as a tool to support 
shifts in pre-service teachers’ epistemic understandings of the nature of mathemat-
ics, of learning mathematics, and of teaching mathematics. We have argued that 
historical consciousness provides pre-service teachers with a framework for exam-
ining history’s impact on their thinking (Design Consideration 1) and allows pre- 
service teachers to consider their positionality as mathematics learners and teachers. 
In our example, we showed how a historical consciousness approach may allow 
pre-service teachers to question and re-examine their epistemic views of mathemat-
ics, which, in turn, may inform their teaching. By changing the historical cases and 
the reflection questions, this approach can be generalized to help pre- service teach-
ers re-examine their positionality in relation to different aspects of teachers’ epis-
temic beliefs of mathematics, which can impact teaching and learning.

The bulk of research to date has examined the integration of history into second-
ary mathematics pre-service teacher contexts (e.g., Clark, 2012; Fenaroli et  al., 
2014; Furinghetti, 2007; Guillemette, 2017; Povey, 2014; Youchu, 2016). Because 
elementary teachers are trained as generalists and must take courses within both 
mathematics and social studies, the elementary context provides a unique setting for 
integrating historical consciousness into pre-service teacher mathematics methods 
courses. Social studies and mathematics teacher educators can collaborate to intro-
duce historical consciousness within social studies methods courses and then lever-
age historical consciousness as a tool within mathematics methods courses to help 
pre-service teachers take critical distance from the claims they make when con-
structing mathematical knowledge. Such an approach would allow both teacher 
educators and pre-service teachers to cross-disciplinary borders within the tradi-
tionally silo-ed teacher education context. Research could then investigate ques-
tions of pre-service teacher learning across these contexts.

In secondary mathematics methods teacher education programs, pre-service 
teachers generally have more time allocated to studying mathematics and teaching 
mathematics. For example, several studies highlight contexts where pre-service 
teachers have entire courses dedicated to the study of the history of mathematics 
(e.g., Fenaroli et al., 2014; Gazit, 2013; Youchu, 2016). Despite the additional time, 
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teacher educators still need to make room for understanding historical approaches 
within such courses (Design Consideration 1). We suggest that historical conscious-
ness provides an accessible means for mathematics teacher educators to help pre- 
service teachers use history to take critical distance from the mathematical 
knowledge claims they make in order to develop their positionality in relation to 
mathematics and mathematics teaching.

Although not the focus of this chapter, we anticipate that historical conscious-
ness can also be used in adult education and K-12 education contexts to support 
mathematics learners to develop positive and productive relationships with math-
ematics. Through examining historical texts, learners can come to position them-
selves and their struggles in relation to mathematicians (Fauvel, 1991; Jankvist, 
2009). If pre-service teachers learn about the relevance of history of mathematics 
in their teacher education courses through an historical consciousness approach, 
this can serve as a model for how they might then incorporate the same approach 
into their classrooms. Methods courses can then provide opportunities for pre-ser-
vice teachers to plan lessons using such a framework. Through incorporating his-
torical consciousness within teacher education, teachers will hopefully not only 
become aware of their own positionality in relation to mathematics, but will pro-
vide supportive environments where students can develop positive and productive 
relationships with mathematics and achieve access to engage critically with 
social issues.

One limitation of our approach, the examples provided and the underlying design 
considerations, is that they are grounded in a euro-centric vision of history, mathe-
matics, and history of mathematics. As Zanazanian’s (2015, 2019) framework 
already makes room for non-Western experiences and epistemologies, it can easily 
attend to different, yet specific, knowledge and learning contexts. With the develop-
ment of research that highlights how to leverage non-European perspectives in inte-
grating history and mathematics in teacher education, we nonetheless anticipate that 
our design considerations may be expanded or revised. For example, one consider-
ation might highlight how historical analysis should go beyond euro-centrism to 
champion historical contributions from underrepresented groups. In addition, 
design considerations might incorporate other research literatures. At the same 
time, it is unlikely that simply adding non-European examples to historical analysis 
will be enough to move beyond a euro-centric vision. More research is also needed 
to understand how historical consciousness might be expanded or altered to encom-
pass non-euro-centric historical and mathematical ways of thinking, which 
Zanazanian’s (2019) framework already intends to do. We thus hope that our 
approach is an initial, small step towards larger discussions about how to integrate 
not only historical and mathematical content, but also historical and mathematical 
ways of thinking across a range of cultures and contexts to better support pre-service 
teachers in achieving epistemic changes in their thinking and beliefs.
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1  Introduction

In recent years, numeracy has become an increasing focus of Australian education,  
from the school level to teacher education programs. Although the focus on numer-
acy is contemporary, the concept of numeracy has a long history, dating back 
60 years, when Crowther (1959) defined numeracy as the mirror image of literacy. 
Nearly two decades later, similar to Crowther’s (1959) idea, Ehrenberg (1977) sug-
gested that numeracy is comprised of “two facets – reading and writing, or extract-
ing numerical information and presenting it” (p.  277, emphasis in original). 
Furthermore, Cockcroft (1982) suggested that numeracy teaching should be the 
responsibility of all teachers, not simply those who teach mathematics. These ideas 
are echoed in the current Australian Curriculum, where numeracy is one of seven 
general capabilities, alongside other capabilities such as literacy and information 
and communication technology (Australian Curriculum, Assessment and Reporting 
Authority [ACARA], n.d.-a).

Numeracy has been framed within the national goals for schooling in Australia 
since the Hobart Declaration on Schooling, released in 1989 (Education Council, 
2014b), in which numeracy and literacy were among 10 goals endorsed by all state/
territory ministers of education. Ten years later, in the Adelaide Declaration of 
National Goals for Schooling in the Twenty-first Century (Education Council, 
2014a), three main goals and 17 sub-goals were agreed upon. In Goal 2.2, it is stated 
that “Students should have attained the skills of numeracy and English literacy; such 
that, every student should be numerate, able to read, write, spell and communicate 
at an appropriate level” (Education Council, 2014a). In 2008, two major goals were 
put forward in the Melbourne Declaration on Educational Goals for Young 
Australians (Ministerial Council on Education, Employment, Training and Youth 
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Affairs [MCEETYA], 2008): schooling of excellence and for equity, and promoting 
successful learners, confident and creative individuals, and active and informed citi-
zens. Numeracy is referred to in the second goal, linked to developing successful 
learners who “have the essential skills in literacy and numeracy… as a foundation 
for success in all learning areas” (MCEETYA, 2008, p. 8). A commitment to action 
was included: “The curriculum will include a strong focus on literacy and numeracy 
skills” (MCEETYA, 2008, p. 13). ACARA was established in May 2008 to oversee 
the implementation of the nationwide curriculum. More information on the devel-
opment of the Australian Curriculum can be found at ACARA (2016).

Within the Australian Curriculum, developing students’ general capabilities is 
the responsibility of teachers at all grade levels and of all subject areas. According 
to ACARA (n.d.-b), numeracy “encompasses the knowledge, skills, behaviours and 
dispositions that students need to use mathematics in a wide range of situations” 
(para. 1). Additionally, being numerate “involves students recognising and under-
standing the role of mathematics in the world and having the dispositions and 
capacities to use mathematical knowledge and skills purposefully” (ACARA, n.d.-
b, para. 1). Therefore, as conceptualised in the Australian Curriculum, numeracy is 
not simply about having the mathematical skills to be able to apply mathematics in 
everyday life; students also need to value mathematics and have the dispositions to 
want to use mathematics.

In order to be prepared for the numeracy demands of their profession, pre-service 
teachers (PSTs) in Australia are required to meet two requirements: the Australian 
Professional Standards for Teachers (APST) and the Literacy and Numeracy Test 
for Initial Teacher Education (LANTITE). The APST, developed by the Australian 
Institute of Teaching and School Leadership (AITSL), are a series of standards that 
graduating and practising teachers must meet. In order to be accredited, universities 
that provide teacher education programs must demonstrate that the programs offered 
prepare PSTs to meet the “graduate” level standards (AITSL, 2017c). The seven 
broad, multi-part standards of the APST are organised into three domains of teach-
ing: professional knowledge, professional practice, and professional engagement. 
Additionally, the APST are offered at four levels of the teaching profession – gradu-
ate, proficient, highly accomplished, and lead – reflecting career stages (AITSL, 
2017b). There are two professional standards that are relevant to the numeracy 
demands of being a teacher:

• Standard 2.5 (Literacy and numeracy strategies): “Know and understand literacy 
and numeracy teaching strategies and their application in teaching areas”

• Standard 5.4 (Interpret student data): “Demonstrate the capacity to interpret stu-
dent assessment data to evaluate student learning and modify teaching practice” 
(AITSL, 2017a)

In 2016, the LANTITE test was introduced in order to assess PSTs’ personal 
literacy and numeracy capabilities. PSTs must pass both components of the 
LANTITE in order to graduate from a teacher education program in Australia 
(Australian Council for Educational Research [ACER], 2018c). Passing indicates 
that PSTs are in the top 30% of the adult population in Australia with regard to 
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personal literacy and numeracy (Australian Government Department of Education 
and Training, 2017). The numeracy component of the LANTITE is a 2-hr-long 
computer- based test that contains 65 questions, of which 52 can be completed using 
a calculator and 13 must be completed without a calculator (ACER, 2018a). The 
numeracy component addresses the three strands in the Australian Curriculum: 
Mathematics – Number and Algebra, Measurement and Geometry, and Statistics 
and Probability – as well as three numeracy contexts that are relevant to being a 
teacher: personal and community, schools and teaching, and further education and 
professional learning (ACER 2018b).

As discussed, PSTs in Australia need to be prepared for a profession that has 
many numeracy requirements, both within and outside the classroom. Before facing 
the day-to-day numeracy demands of the teaching profession, PSTs must demon-
strate that they have sufficient numeracy capabilities, as demonstrated on the 
LANTITE and by the APST. Unfortunately, according to Klein (2008), while “pre-
service teachers are expected to teach their students for numerate participation in a 
global world… they themselves oftentimes lack the necessary mathematical foun-
dations and strategic and critical skills” (p. 321).

Since numeracy is a general capability in the Australian Curriculum (ACARA, 
n.d.-a), teachers of all subject areas and of all grade levels must be prepared to meet 
this expectation. As mentioned, numeracy, by definition, involves taking mathemat-
ics beyond mathematics lessons and crossing borders into other subject areas. This 
border crossing places new demands on teachers. Although Australian elementary 
school teachers have always been generalists who need to teach mathematics among 
the many subject areas for which they were responsible, the numeracy requirement 
of the Australian Curriculum means that these teachers need to develop the skills 
and confidence to seize opportunities to incorporate mathematics into other contexts 
and across subject areas. In contrast to elementary school teachers, secondary 
school teachers have typically been subject area specialists, teaching within their 
disciplines of expertise. However, the challenges for these teachers are similar to 
those for the elementary school teachers, that is, developing the capabilities and 
confidence to incorporate mathematical dimensions into other subject areas, par-
ticularly those that may not have had such a focus in the past (e.g., drama, English, 
foreign languages). The challenges for secondary teachers in STEM (science, tech-
nology, engineering, and mathematics) fields, particularly mathematics teachers, 
are the reverse of the aforementioned groups. While mathematics teachers presum-
ably have very strong mathematical skills, they may not have the understandings of 
the other aspects of numeracy, particularly the focus on a critical orientation and the 
application of mathematics in social and community contexts. Hence, in line with 
Klein’s (2008) concerns, we believe that there may be different aspects of numeracy 
(e.g., mathematical skills, critical thinking) that may pose challenges for a range of 
teachers as they endeavour to meet the expectations of the Australian Curriculum.

In this chapter, we discuss the numeracy beliefs, confidence, and capabilities of 
PSTs at Monash University, a prestigious university in Melbourne, Australia. We 
consider how a required numeracy course, Numeracy for Learners and Teachers 
(NLT), influenced their views on numeracy and levels of confidence to incorporate 
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numeracy into their teaching. Importantly, we consider whether there are differ-
ences between the groups just discussed: elementary versus secondary school PSTs, 
and STEM versus non-STEM subject area specialists (secondary school PSTs).

1.1  Numeracy for Learners and Teachers

In 2015, the numeracy course, Numeracy for Learners and Teachers (NLT), was 
introduced at Monash University in the Master of Teaching (MTeach) program. 
This 2-year teacher preparation program is undertaken by students who have already 
completed an undergraduate degree. During the MTeach program, students com-
plete one teaching placement and four courses per semester, resulting in four teach-
ing placements (60 days in schools or other educational settings, such as museums 
or zoos) and 16 courses that must be completed successfully in order for students to 
graduate from the program. Additionally, students must pass the mandatory, exter-
nally set LANTITE test in order to graduate.

The NLT course is mandatory for all PSTs in the MTeach program, save for those 
preparing to be Early Years teachers (birth to age 8) who complete an alternative 
numeracy course. Hence, the PSTs who complete NLT are preparing to be Early 
Years/Primary1 teachers (birth to Grade 6), Primary teachers (Foundation to Grade 
6), Primary/Secondary teachers (Foundation to Grade 10), or Secondary teachers 
(Grades 7–12). Primary/Secondary PSTs have one subject area specialism (e.g., 
mathematics, history), whereas Secondary PSTs have two subject area specialisms. 
For the purposes of this chapter, we will consider Early Years/Primary and Primary 
PSTs to be “elementary” PSTs, while we will consider Primary/Secondary and 
Secondary PSTs to be “secondary” PSTs.

NLT focuses on a different numeracy topic each week. In 2017, there were 
9 weeks of class, whereas in 2018, there were 10 weeks of class. The first week of 
the course is an introduction to the concept of numeracy and its relationship to 
mathematics, as well as its place in Australian education. In the first class, we also 
introduce students to the 21st Century Numeracy Model (Goos, Geiger, & Dole, 
2014), the conceptual framework for numeracy that underpins the course. In this 
model, contexts (work, citizenship, and personal/social life) are at the heart of 
numeracy. Furthermore, to be numerate, individuals need to have mathematical 
knowledge (e.g., estimation skills), particular dispositions (e.g., flexibility), and the 
ability to use relevant tools (e.g., digital tools like spreadsheets). Importantly, 
numerate individuals must have a critical orientation, which means that they “evalu-
ate whether the results obtained make sense and are aware of appropriate and inap-
propriate uses of mathematical thinking to analyze situations and draw conclusions” 
(Goos et al., 2014, p. 85).

1 In Australia, Primary refers to the first 7 years of school, Foundation to Grade 6.
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The remaining weeks of the course focus on school subjects (e.g., the arts, his-
tory), combined with numeracy. Students learn about the links between the subject 
areas and numeracy, and participate in activities where they explore these connec-
tions. Some classes pertain to numeracy demands for students and for teachers, such 
as the class about financial literacy, where students’ skills and understandings of 
this topic, the links to subjects such as economics and history, and teachers’ finan-
cial literacy demands (e.g., budgeting, planning field trips, understanding pension 
plans), are addressed. There is also a class focused on statistical literacy for teaching 
and assessment, which pertains to teachers’ numeracy demands outside the class-
room. In 2018, the topic of the additional class was large-scale numeracy assess-
ments (the Australian National Assessment Program  – Literacy and Numeracy 
[NAPLAN] and LANTITE).

Starting in the first year of the NLT course being offered, we decided to under-
take a research project to learn about the students’ understandings of, and capabili-
ties in, numeracy, as well as their experiences in the NLT course, beyond the 
information that we would typically receive from university mandated course evalu-
ations. In all 4 years of NLT (2015–2018), students have completed voluntary pre- 
course and post-course online questionnaires. In 2015 and 2016, individual 
interviews were also conducted after the course concluded. However, the interviews 
did not provide any meaningful additional information, so we only continued with 
the questionnaires.

Here, we report on findings from the pre- and post-course questionnaires from 
2017 and 2018. In addition to discussing general trends, we make comparisons 
between those students who are preparing to be elementary school teachers and 
those who are preparing to be secondary school teachers. Furthermore, within the 
secondary PST group, we make comparisons between those with STEM special-
isms and those with non-STEM specialisms. In so doing, we address whether there 
are differences between these groups in terms of their numeracy capabilities, under-
standings, and confidence levels.

2  Methodology

Survey methods were adopted in the study. There were two questionnaires adminis-
tered online, one prior to the commencement of NLT and the other at the end of the 
course. The invitation to complete each questionnaire was announced on the NLT 
(Moodle) website. Participation was voluntary and anonymous. Hence, there is no 
way to know if the same students participated in both iterations (i.e., pre-course and 
post-course) of the questionnaire. The questionnaires have been completed each 
year since the course began (2015). However, in the first 2 years of NLT, only sec-
ondary (2015) or elementary (2016) PSTs were enrolled, so there were no compari-
son group data to analyse. Hence, we are only using the 2017 and 2018 datasets, 
when both elementary and secondary PSTs were enrolled simultaneously.
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2.1  Data Collection Instruments

Both questionnaires included demographic questions (e.g., gender, age, course 
information) and featured questions with closed- and open-ended response formats. 
Some of the closed items had categorical response formats (e.g., yes/unsure/no); 
others had 5-point Likert-type response formats (e.g., 1  =  strongly disagree to 
5 = strongly agree). Open-ended items included, for example, requests to explain 
answers to closed items, as well as answers to mathematical skills items.

The two questionnaires were different, although there were some items that were 
repeated on both. The pre-course questionnaire contained 57 questions and typi-
cally took 15–20 min to complete while the post-course questionnaire contained 29 
questions and typically took 10 min to complete. The pre-course questionnaire, but 
not the post-course questionnaire, included items aimed at gauging students’ appre-
ciation of numeracy, as well as items to assess the respondents’ mathematical skills. 
Items aimed to assess the impact of studying NLT were only included on the post-
course questionnaire.

2.2  Participants

In Table 1, the characteristics of the pre- and post-course questionnaire respondents 
are summarised by year of administration. It should be noted that not all students 
who commenced the questionnaires responded to all of the items; hence, the sub- 
group (e.g., gender) totals do not always sum to the total number of participants.

From Table 1, it can be seen that in both years, there were far fewer respondents 
to the post-course questionnaires than to the pre-course questionnaires; this was 
unsurprising, given that the post-course questionnaires were completed at the end of 
the semester, when students were busy with assignments. Specifically, in 2017, 

Table 1 Pre-course and post-course questionnaire participants

2017 2018

Pre-course questionnaire
n = 81 n = 124
Elementary Secondary Elementary Secondary
23 52 32 83
Men Women Men Women Men Women Men Women
3 20 15 37 1 30 25 58
Post-course questionnaire
n = 30 n = 34
Elementary Secondary Elementary Secondary
11 17 8 26
Men Women Men Women Men Women Men Women
4 7 4 13 1 7 7 19
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when 485 students were enrolled in the course, 16.7% completed the pre-course 
questionnaire, while only 6.2% completed the post-course questionnaire. Similarly, 
in 2018, when 578 students were enrolled in the course, 21.5% completed the pre- 
course questionnaire, while only 5.9% completed the post-course questionnaire. 
Consistent with the enrolment patterns across the MTeach program, there were 
more secondary than elementary respondents and far more women than men respon-
dents. Due to the small number of men respondents, subsequent data analyses pre-
sented in this chapter are not reported by respondent gender.

Due to the relatively small number of participants in the post-course question-
naires and in the elementary groups in both years, the 2017 and 2018 data were 
combined in subsequent analyses. This enabled some statistical exploration of dif-
ferences in beliefs and numeracy skill levels between elementary and secondary 
respondents, as well as between STEM and non-STEM secondary students.

2.2.1  Secondary Pre-service Teachers’ Teaching Specialisms

Elementary PSTs in the MTeach program are generalists; that is, they teach all dis-
ciplines covered in the school curriculum and do not have a teaching specialism. In 
the pre- and post-course questionnaires, the secondary PSTs were asked to indicate 
which of the 24 teaching specialisations offered through the MTeach program they 
were studying. If mathematics, physics, chemistry, biology, or information technol-
ogy was indicated, the student was categorised as a STEM student. Information 
about the STEM and non-STEM students from the pre- and post-course question-
naires is summarised in Table 2.

As shown in Table 2, there were higher proportions of non-STEM than STEM 
students who participated in each questionnaire, with just under 30% of respondents 
to both questionnaires being STEM students.

2.3  Analysis

Due to the different question types, the questionnaire data were analysed in various 
ways. To begin, descriptive statistics (e.g., means, percentages) were calculated. As 
appropriate, group comparisons (elementary vs. secondary and STEM vs. 

Table 2 Frequencies and percentages of secondary pre-service teachers’ specialisms, by 
questionnaire

Pre-course questionnaire Post-course questionnaire
n = 135a n = 43

STEM Non-STEM STEM Non-STEM
36 (29%) 88 (71%) 11 (27%) 30 (73%)

aNot all participants answered this item
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non-STEM) were completed through t-tests and chi-square analyses. The open- 
ended responses to the mathematical skills questions were first coded as correct or 
incorrect. Then, codes were applied to indicate the type of response within the 
“incorrect” category.

3  Findings

In the following sections, we discuss the findings from our analyses of the pre- 
course and post-course questionnaires. The pre-course questionnaire included 
mathematical skills questions as well as general questions about the participants’ 
views of numeracy, mathematics, and teaching. The post-course questionnaire 
included similar general questions, plus questions about the NLT course. As men-
tioned, the 2017 and 2018 datasets were combined, and comparisons were made 
between students with STEM and non-STEM specialisms, as well as between those 
preparing to be elementary school teachers and those preparing to be secondary 
school teachers. First, we discuss differences in the pre- and post-course question-
naire responses for the combined 2017 and 2018 cohorts to see what influence the 
course, NLT, had on the PSTs’ beliefs and confidence levels. Then, we make com-
parisons by the aforementioned groups. Specifically, we compare the participants’ 
accuracy and confidence on three mathematical skills questions, as well as their 
perceptions of their mathematics capabilities more generally.

3.1  Effect of NLT on Pre-service Teachers’ Beliefs 
and Confidence Levels

To determine the effect of studying NLT on the PSTs’ beliefs about numeracy, two 
items appearing on the pre- and post-course questionnaires were of interest:

• Do you believe that there are differences between mathematics and numeracy? 
(Yes/Unsure/No)

• Are there mathematical demands on teachers in schools apart from what is taught 
to students? (Yes/Unsure/No)

To explore whether there were differences in the response patterns to these items on 
the pre-and the post-course questionnaires, chi-square tests were conducted. The 
results are shown in Table 3.

In Table 3, it can be seen that a higher proportion of students on the post-course 
questionnaire (82%) than on the pre-course questionnaire (61%) agreed that there 
were numeracy demands on teachers apart from what is taught to students (p < 0.05). 
Although not statistically significant, there was also an increase in the proportion of 
participants believing that there were differences between mathematics and 

J. Hall and H. Forgasz



83

numeracy (from 77% to 84%). These differences may suggest that studying NLT 
positively changed students’ views. In the post-course questionnaire, students were 
specifically asked if NLT had influenced the way that they viewed numeracy. Of the 
students responding to this item, 31 (80%) indicated that it had.

The post-course questionnaire also included two items aimed at gauging the 
PSTs’ change in confidence about incorporating numeracy into their teaching:

• Before commencing NLT, how confident were you about incorporating numer-
acy into the teaching of your subject area(s)?

• After completing NLT, how confident are you about incorporating numeracy into 
the teaching of your subject area(s)?

The reported levels of confidence to incorporate numeracy into teaching before and 
after studying NLT are illustrated in Fig. 1.

As shown in Fig. 1, before studying NLT, about a quarter of the students (26%) 
reported that they lacked confidence to incorporate numeracy into their teaching. 

Table 3 Chi-square results for two items, by questionnaire timing

Item Response Pre- course Post- course χ2, df, p-level

Do you believe there are 
differences between mathematics 
and numeracy?

Yes 102 (77%) 31 (84%) ns

Unsure 22 (17%) 4 (11%)
No 8 (5%) 2 (5%)

Are there numeracy demands on 
teachers in schools apart from 
what is taught to students?

Yes 75 (61%) 31 (82%) 6.1, 2, 0.047
Unsure 41 (33%) 5 (13%)
No 8 (7%) 2 (5%)

Fig. 1 Levels of confidence to incorporate numeracy into teaching, before and after NLT
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After studying NLT, none of the students felt that they lacked confidence and 87% 
of the students were at least somewhat confident to do so.

3.1.1  Open-Ended Responses About the Impact of NLT

The post-questionnaire included the following open-ended item:

• What is the biggest message you will take away from NLT?

Twenty-six PSTs (11 elementary, 15 secondary [3 STEM/12 non-STEM]) provided 
responses; only two comments were negative.

Sample responses illustrating the impact of the course on beliefs about numer-
acy, its place in the curriculum, and on the pre-service students’ future responsibili-
ties as teachers are provided below:

Anyone can teach numeracy in the class – dance teachers, musicians, health teachers – we 
all have the skills, just need to build our confidence. (Elementary)

I found that after the tutorials I attended it was somewhat eye-opening for me in a sense that 
incorporating numeracy into teaching isn’t just based upon mathematical formulas and 
questions but rather there are many ways of introducing numeracy into classrooms activi-
ties such as reading articles and identifying the maths within it. (Secondary, non-STEM)

Don’t be intimidated by numeracy, you’re actually doing it without realising a lot of the 
times. (Elementary)

Be aware of the potential of maths in lessons. (Secondary, non-STEM)

Numeracy is everywhere. You just need to see it to use it. (Secondary, STEM)

In summary, NLT appears to have had a positive effect on the PSTs’ views of 
numeracy and its role in their teaching and their work as teachers. Furthermore, as 
reported by the post-course respondents, NLT increased their confidence to incorpo-
rate numeracy into their teaching.

3.2  Comparisons by Teaching Qualification Level 
and Specialism Groups

We were also interested in whether there were any differences in the participants’ 
numeracy capabilities and confidence/self-perceptions by teaching level groups 
(elementary vs. secondary) and by specialism groups (STEM vs. non-STEM). In 
the following sections, we report on these groups’ outcomes on two types of ques-
tions: mathematical skills questions and a question regarding the participants’ gen-
eral perceptions of their mathematics capabilities.
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3.2.1  Mathematical Skills Questions

On the pre-course questionnaire only, participants completed six mathematical 
skills questions, some with multiple parts. Some of these questions had multiple- 
choice answers, while others had text boxes in which respondents typed their 
answers. After each question, the participants were asked to rate their confidence in 
the accuracy of their response (right, wrong, or unsure). We report on findings from 
three of the questions, selected based on 2015 and 2016 participants’ accuracy rates: 
a question that has generally been done very well (Box Question), one that has been 
completed with a moderate rate of accuracy (Distance Question), and one that has 
been done poorly (Code Question).

Box Question In this question, participants had to calculate the mass of the lid for 
a box shown in a diagram (with and without the lid). The mass of the lid and box 
together was provided (232 g), as was the mass of the box by itself (186 g). Response 
options were 46 g (the correct response), 56 g, 144 g, and 54 g. Past participants 
have completed this question with high levels of accuracy and confidence, and the 
combined 2017 and 2018 group was no different: 95% of the respondents (n = 122) 
were correct, compared to 90% who thought that they were correct. The proportions 
of all participants who were correct and of all participants who were confident in 
their answers are shown in Table 4, separately by teaching qualification levels and 
by secondary specialism groups.

As shown in Table  4, all groups had similar accuracy rates for this question. 
However, the non-STEM group was much less confident in their response accuracy, 
compared to either the STEM group or the elementary group. Note that both the 
“accuracy” and the “confidence” percentages apply to each group as a whole; hence, 
some of the participants who were confident that they were correct were not, and 
vice versa.

Distance Question In this question, participants had to determine which of the fol-
lowing was the longest distance: 0.1203 km, 123 m (the correct response), 1230 cm, 
or 12,030 mm. The participants were generally 10% less accurate on the Distance 
Question than they were on the Box Question, which is perhaps unsurprising since 
the latter simply involved subtraction of whole numbers, whereas the former 
involved unit conversions. Overall, 82% of the participants (n = 123) were correct, 
compared to 83% who thought that they were correct. The accuracy and confidence 
levels of each group as a whole are shown in Table 5.

Table 4 Accuracy and confidence rates for the Box Question, by group

Group n Provided the correct answer Confident that answer is correct

Elementary 32 97% 94%
Secondary 89 94% 89%
STEMa 26 96% 96%
Non-STEM 59 95% 85%

aNot all Secondary participants provided information their subject area specialism(s)
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As with the Box Question, the groups all had similar levels of accuracy on the 
Distance Question. However, the STEM students were overconfident that their 
answers were correct: 92% thought that they were correct, but only 80% were actu-
ally correct. Hence, several of the STEM students who gave incorrect answers were 
confident that their answers were correct.

Code Question This question differed from the other two questions discussed, as it 
was not a multiple-choice question; rather, participants had to type their responses 
into a text box and therefore could not simply make a guess by selecting one of the 
provided answers. In the question, an image of a 10-digit (0–9) keypad was shown. 
The question stated, “Helen’s office has a security alarm. To turn it off, Helen has to 
type her 4-digit code into this keypad. Helen’s code is 0051. Including Helen’s code, 
how many four-digit codes are possible?”

Participants’ responses were first coded as being correct (10,000, 10^4, or some 
other equivalent statement) or incorrect (any other numeric response, or a response 
like “I have no idea” or “Lots”). We also included responses of 9,999 in the “cor-
rect” category. Participants providing this response appeared to have understood the 
concept, but may have interpreted the question to ask for potential combinations 
other than the sample code; alternatively, they may have omitted the option of 0000, 
which may not have been considered to be a potential usable code. Within the 
“incorrect” category, we coded the responses as “10^x, x ≠ 4” (e.g., “100,000”, 
“1,000”), “other number” (e.g., “3,628,800”, “40 million”), and “no numeric answer 
provided” (e.g., “lots”, “Too many”). In total, 109 participants responded to this 
question, a lower response rate than for the multiple-choice questions discussed 
earlier. Only 51% of those who responded were correct, and an even smaller propor-
tion (48%) thought that they were correct; of the other (incorrect) answers, the most 
common response was another number (28% of the question respondents), followed 
by no numeric answer (12%), and 10^x, x ≠ 4 (8%). The cross-tabulation comparing 
the response codes with the participants’ reported confidence levels is shown in 
Table 6, with percentages applying to each row.

Interestingly, all five of the participants who provided a response of 9,999 (i.e., 
misread the question but appeared to understand the concept) thought that they were 
correct. Hence, if we only consider those who provided an answer of 10,000, 39 
(76%) were confident that they were correct, while 12 (24%) were unsure. The par-
ticipants who provided the correct response (i.e., either 9,999 or 10,000) were gen-
erally quite confident that they were correct. Conversely, participants who provided 

Table 5 Accuracy and confidence levels for the Distance Question, by group

Group n Provided the correct answer Confident that answer is correct

Elementary 34 82% 85%
Secondary 88 82% 82%
STEM 25 80% 92%
Non-STEM 59 81% 78%
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incorrect responses generally lacked confidence about the accuracy of their 
responses. It is encouraging to see that so many participants showed awareness of 
the accuracy of their answers.

When considering the responses by the sub-groups on this question, the response 
patterns were very similar. Similar proportions of the elementary (48%) and second-
ary (47%) participants answered this question correctly and thought that they were 
correct (47% and 45%, respectively). However, the differences between the STEM 
and non-STEM secondary groups were much more pronounced, with more than a 
20% difference in both confidence and accuracy between the groups, favouring the 
STEM group (40% of non-STEM participants were correct and were confident of 
their answers, compared to 63% of the STEM group on both measures). Although 
the percentages were equal for both measures for each group, recall that not all of 
those who were correct thought that they were, and vice versa.

3.2.2  Perceptions of Mathematics Capabilities

The participants’ general perceptions of their mathematical capabilities were que-
ried on the pre-course questionnaire with the following question:

• How good are you at mathematics? (1 = weak, 2 = below average, 3 = average, 
4 = good, 5 = excellent) 

T-tests by teaching level (elementary/secondary) groups and by STEM/non-STEM 
groups were conducted. The mean scores and t-test results are shown in Table 7.

Overall, the PSTs considered themselves to have above-average mathematical 
achievement (x̅ = 3.54). As shown in Table 7, there was no difference in the mean 
perceived mathematical achievement levels of elementary and secondary students. 
However, on average, compared to the non-STEM students (x̅ = 3.45), the STEM 
students believed that they had better mathematical capabilities (x̅ = 3.81); the dif-
ference was statistically significant (p = 0.02). Although not tested statistically, it 

Table 6 Cross-tabulation of Code Question response codes and reported accuracy

Response Yes Unsure No

Correct response: 10,000a 44 (79%) 12 (21%) 0 (0%)
10^x, x ≠ 4 0 (0%) 4 (44%) 5 (56%)
Other number 6 (19%) 21 (68%) 4 (13%)
No numeric answer 2 (15%) 5 (39%) 6 (46%)

aThis code includes responses of 9,999

Table 7 Pre-service teachers’ perceptions of their mathematics capabilities, by group

Mean scores

t, p-level

Mean scores

t, p-level
Elementary
(n = 33)

Secondary
(n = 92)

STEM
(n = 26)

Non-STEM
(n = 62)

3.55 3.54 ns 3.81 3.45 2.45, 0.02
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was noteworthy that the mean score for the non-STEM secondary students (3.45) 
was lower than for the elementary PSTs (3.55).

4  Concluding Remarks

As demonstrated by the findings presented, we believe that completing Numeracy 
for Learners and Teachers (NLT) helped the PSTs to gain an understanding of 
numeracy as a general concept and of the numeracy demands of teaching. 
Furthermore, as shown by the post-course questionnaire data, the PSTs reported 
that they gained confidence in their abilities to incorporate numeracy into the sub-
ject areas that they will be qualified to teach. In so doing, the PSTs should be able 
to meet the numeracy general capability expectations of the Australian Curriculum. 
The knowledge and confidence that the PSTs gained by completing NLT helped 
them to understand that, by definition, numeracy involves taking mathematics out of 
the mathematics classroom and crossing borders not only into other subject areas, 
but also to broader multidisciplinary issues, such as sustainability, and the world 
outside of school.

The mathematical capabilities and confidence of elementary PSTs is a well- 
researched issue (e.g., Ball, Hill, & Bass, 2005; Beilock, Gunderson, Ramirez, & 
Levine, 2010; Bursal & Paznokas, 2006). In this study, we did not find any mean-
ingful differences in either confidence or mathematical capabilities between the 
elementary and secondary participants overall. It is possible that the elementary 
PSTs in the course who strongly disliked and/or were very lacking in confidence in 
their mathematical abilities would not have voluntarily participated in such a study. 
Hence, the elementary PSTs who took part may have been had stronger mathemat-
ics capabilities and confidence than the average elementary pre-service (or practis-
ing) teacher. Additionally, it is important to remember that all of the PSTs who 
participated in this study have already completed an undergraduate degree in another 
field and have met the high entrance standards of the Master of Teaching program at 
Monash University, a prestigious university.

In comparison to the well-developed research base about elementary teachers, 
the mathematical capabilities and confidence of secondary PSTs who are not math-
ematics specialists is an under-researched area of study. While this may have been 
for good reason in the past (i.e., such teachers presumably did not have a large focus 
on mathematics/numeracy in their teaching), with numeracy being a general capa-
bility in the Australian Curriculum, it is now the responsibility of all Australian 
teachers to identify and incorporate pertinent mathematical skills development 
across all non-mathematics subject areas. Hence, our study contributes to the extant 
literature as we provide insight into the challenges presented by this border cross-
ing, particularly for non-STEM pre-service secondary teachers’ experiences, capa-
bilities, confidence levels, and views.

When comparing the STEM and non-STEM groups of secondary PSTs, we 
found little difference in their mathematical capability, other than on the Code 
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Question (which addressed the challenging mathematical topic of combinatorics, 
even though in a common everyday context). However, there were marked differ-
ences in confidence. While the STEM group tended to be overconfident in their 
answers to some questions, the non-STEM group was not. There are many factors 
that may have contributed to these findings. For instance, there were proportionally 
more men than women (relative to the dataset as a whole) in the STEM group than 
in the non-STEM group. It is well documented (e.g., Bench, Lench, Liew, Miner, & 
Flores, 2015; Ellis, Fosdick, & Rasmussen, 2016) that boys and men tend to be 
overconfident about their mathematics capabilities, whereas girls and women are 
more likely to be realistic or underrate those capabilities. Additionally, societal 
biases may come into play. Those in the STEM group may be more likely to assume 
that they are “math people” and thus able to answer the questions, compared to the 
non-STEM group who may be more likely to presume the opposite.

The border crossings that are expected by the numeracy demands placed on 
teachers in Australia – per the APST and the Australian Curriculum – require a dif-
ferent type of preparation for PSTs, particularly those in subject areas where numer-
acy has not typically been a focus. All teachers in Australia need to be confident and 
capable of incorporating numeracy into all the subject areas that they teach. As we 
have discussed, the secondary PSTs with non-STEM specialisms may lack confi-
dence in their mathematical capabilities, both in general and as demonstrated on the 
mathematical skills questions that they completed, relative to the secondary PSTs 
with STEM specialisms. While this finding is not surprising, it is concerning. If 
these PSTs do not feel confident in their own mathematical capabilities, they may 
be hesitant to introduce a numeracy focus in their subject area specialisms. As we 
have shown, completing NLT helped the participants (in general) to become more 
confident about incorporating numeracy into their teaching, an encouraging out-
come that augurs well for the future. However, the lower levels of confidence in 
their mathematical capabilities shown by the non-STEM secondary PSTs remain a 
concern. Further research into this area is needed.
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1  Introduction

Teacher education is replete with borders that define and divide different sites for 
learning, knowledge categories and people who contribute to the formation of future 
teachers. Perhaps the most frequently identified border is that which separates the-
ory from practice, symbolised by the separation of the university from the school as 
sites for learning to teach. The university component of teacher education also 
involves clearly marked boundaries between the types of knowledge to be gained by 
future teachers. In Australia, for example, university programs preparing secondary 
school teachers must include discipline studies providing knowledge of the content 
to be taught together with professional studies comprising discipline-specific cur-
riculum and pedagogical studies (“methods” courses), general education studies 
(typically drawing on psychology, sociology, history and philosophy of education) 
and professional experience in schools (Australian Institute for Teaching and School 
Leadership [AITSL], 2016).

This chapter looks beyond the well-known divides mentioned above to explore 
ways in which mathematics crosses disciplinary borders in the context of pre- 
service teacher education. Disciplinary border crossing in mathematics education is 
sometimes conceived of in terms of making connections between mathematics, 
other disciplines and the real world. Mathematics curriculum documents in many 
countries stress the value of such connections. In the USA, the National Council of 
Teachers of Mathematics (2000) describes Standards that outline the processes of 
school mathematics, stating that students’ understanding of mathematics is enriched 
by seeing mathematical connections in contexts that relate mathematics to other 
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subjects. One of the aims of the Australian Curriculum: Mathematics (Australian 
Curriculum, Assessment and Reporting Authority [ACARA], n.d.) is for students to 
recognise connections between mathematics and other disciplines.

Rather than giving priority to connections, an alternative view defines the border 
between disciplines and disciplinary communities as a marker of sociocultural dif-
ference, giving rise to a discontinuity that needs to be negotiated. This view draws 
on sociocultural theories of learning in communities of practice (Wenger, 1998) and 
boundary crossing between communities (Akkerman & Bakker, 2011). Boundaries 
and boundary crossing are thought to carry potential for learning involving dialogi-
cal interactions between multiple perspectives and multiple actors. Taking a bound-
ary crossing theoretical perspective permits a deeper and more critical investigation 
of the types of connections and discontinuities that might exist between mathemat-
ics, other disciplines and the real world.

This chapter is organised in the following sections. First, a brief overview of the 
sociocultural perspective on boundary crossing and four potential learning mecha-
nisms that can operate at the boundaries between disciplines or domains is pro-
vided: identification, coordination, reflection and transformation (Akkerman & 
Bakker, 2011). These mechanisms provide the framework for comparing different 
models of integrating mathematics with other disciplines in pre-service teacher edu-
cation. Subsequent sections outline key features of three models of integration: 
mathematical modelling, curriculum integration and numeracy across the curricu-
lum. For each model, I identify its theoretical and philosophical rationale, position-
ing of mathematics and assumptions about the relationship of mathematics to other 
disciplines and barriers to and enablers of integration. The final section summarises 
the comparison between models in terms of learning mechanisms at the boundary 
between disciplines and discusses implications for teacher education and classroom 
practice more generally.

2  A Sociocultural Perspective on Boundary Crossing

There is an emerging body of research on learning mechanisms involved in inter-
disciplinary work on shared problems. This type of work is becoming increasingly 
important because of growing specialisation within domains of expertise that 
requires people to collaborate across boundaries between disciplines and institu-
tions. Akkerman and Bakker’s (2011) review of this research literature emphasised 
that boundaries are markers of “sociocultural difference leading to discontinuity in 
action or interaction” (p. 133). Boundaries are thus dynamic constructs that can 
shape new practices through revealing and legitimating difference, translating 
between different world views and confronting shared problems. Akkerman and 
Bakker argued that, as a consequence, boundaries carry potential for learning.

Akkerman and Bakker (2011) proposed four potential mechanisms for learning 
at the boundaries between domains. The first is identification, which occurs when 
the distinctiveness of established practices is challenged or threatened because 
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 people find themselves participating in multiple overlapping communities. 
Identification processes work either by emphasising the differences and tensions 
between different domains or by legitimising their coexistence. Identification 
reconstructs the boundaries between practices by delineating more clearly how the 
practices differ, so that discontinuities are not necessarily overcome. A second 
learning mechanism involves coordination of practices or perspectives via dialogue 
in order to accomplish the work of translation between two worlds. The aim is to 
overcome the boundary by facilitating a smooth movement between domains, com-
munities or sites. Reflection is the third learning mechanism discussed by Akkerman 
and Bakker. Boundary crossing can promote reflection on differences between 
practices that leads to new insights on the nature of one’s own and others’ practices. 
Reflection differs from identification, in that it results in an expanded set of per-
spectives and construction of new identities, whereas identification instead rein-
forces current practices and identities. The fourth learning mechanism is described 
as transformation, which can lead to a profound change in practice, “potentially 
even the creation of a new, in-between practice, sometimes called a boundary prac-
tice” (p. 146).

Learning at the boundary between domains can be understood by examining the 
roles of people and objects that cross boundaries. While boundary crossing might 
evolve spontaneously, it can also be facilitated by brokers who build bridges between 
worlds and connect disciplinary paradigms. Wenger (1998) explained that the job of 
brokering requires the ability to “cause learning by introducing into a practice ele-
ments of another” (p.  109). Brokering is acknowledged to be a complex and an 
ambiguous role that can leave brokers feeling uncertain about their positioning “in- 
between” practices and domains.

Objects, as well as people, can facilitate boundary crossing between domains. 
Star and Griesemer (1989) introduced the idea of boundary objects to explain the 
role of artefacts in simultaneously inhabiting intersecting worlds. Although bound-
ary objects have different meanings within the worlds they connect, they are flexible 
enough to be accessed by people in separate worlds and to enable these groups to 
work together. In the context of mathematics crossing disciplinary borders in pre- 
service teacher education, brokers might be found amongst mathematics teacher 
educators who collaborate with colleagues in other disciplines to explore models of 
integration, while the models they create might serve as boundary objects that estab-
lish continuity across the disciplines.

3  Mathematical Modelling

3.1  Rationale and Positioning of Mathematics in Modelling

The use of mathematical modelling is often advocated in curriculum documents that 
encourage teachers to connect mathematics with the real world. While there are 
many different interpretations of modelling, it is common to refer to a modelling 
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cycle that begins with analysing the real-world situation, then specifying assump-
tions associated with mathematical concepts or the real-world context, formulating 
the problem in mathematical terms, solving the mathematical problem, interpreting 
the solution within the real-world context, validating the solution and using the 
model to report, explain, predict or design. A simplified version of the modelling 
cycle is shown in Fig. 1. In practice, modelling is an iterative process that involves 
interconnections between the phases rather than a sequential progression. Thus, the 
modelling process involves crossing and re-crossing the boundary between the 
mathematical world and the real world, and the modelling cycle can be viewed as a 
boundary object facilitating coordination of perspectives and translation between 
the two worlds (Akkerman & Bakker, 2011).

Various perspectives on mathematical modelling have been identified in the lit-
erature, with each implying a particular role for mathematics and its relationship 
with the real world. Kaiser and Sririman (2006) distinguished between pragmatic, 
pedagogical, psychological, subject-related and science-related perspectives: for 
example, a pragmatic-utilitarian perspective informs realistic modelling where the 
central aim is to solve practical real-world problems, while educational modelling 
is aligned with pedagogical and subject-related perspectives to improve students’ 
understanding of the world while they learn mathematical concepts and methods. 
The contexts for educational modelling can also come from disciplines other than 
mathematics, such as science, economics, sport or art.

Real-world
problem

Make 
assumptions

Formulate the 
mathematical 

problem

Report, 
explain, 

predict, design

Interpret the 
solution

Solve the 
mathematical 

model
Verify the 

model

Fig. 1 The modelling cycle

M. Goos



95

3.2  Impetus for Addressing Mathematical Modelling 
in Pre- service Teacher Education

Until the recent introduction of a national curriculum for Australian schools (e.g. 
ACARA, n.d.), each state and territory produced its own curriculum and assessment 
policies, and several of these jurisdictions had incorporated mathematical model-
ling into their secondary school mathematics curricula. The state of Queensland 
introduced modelling into mathematics syllabuses published in 1992, with revisions 
in 2001 and 2008 that increasingly refined the explicit focus on modelling 
(Queensland Studies Authority, 2008).

Modelling was progressively embedded into senior secondary mathematics cur-
ricula (Grades 11 and 12, students aged 15–17 years) in Queensland via a series of 
syllabus revisions. However, an analysis of mathematics textbooks used in 
Queensland and two other jurisdictions found that, although these resources offered 
many opportunities for students to develop underpinning mathematical competen-
cies for modelling, there was more emphasis on technical skills and application of 
learned models and procedures than on understanding the modelling process and 
developing a critical understanding of the social or cultural concerns surrounding 
the situation being modelled (Stillman, Brown, Faragher, Geiger, & Galbraith, 
2013). Consequently, pre-service teachers who rely on textbooks as a teaching 
resource are unlikely to develop their students’ – or their own – capacity to model 
real-world situations using mathematics. This observation prompts a question of 
how best to prepare pre-service teachers to teach mathematical modelling.

3.3  Examples of Mathematical Modelling in Pre-service 
Teacher Education

Two examples from my experience as a teacher educator will illustrate some of the 
challenges and benefits of preparing future teachers to incorporate mathematical 
modelling into their classroom practice. The first example takes advantage of the 
increasing availability of portable digital technologies for data collection and analy-
sis. Graphics calculators can be connected to data logging equipment such as motion 
detectors and probes that measure temperature, light intensity, pH, dissolved oxy-
gen, heart rate and the frequency of sound waves to investigate physical phenomena 
and the mathematical models that describe them. A task that engages pre-service 
teachers in modelling the periodic motion of a pendulum requires them to use a 
motion detector to collect distance versus time data. The data points can be graphed 
as a scatter plot, with the aim of finding a function to fit the data (as in Fig. 2).

Pre-service teachers will typically choose the function y = A cos[B(x – C)] + D 
and then use their knowledge of the meaning of the parameters A, B, C and D to 
estimate values based on the data they have recorded. They might also notice that 
the value of the amplitude A decreases with each successive period, so a refinement 
to the model is needed in order to represent the amplitude’s decay as an exponential 
function. Inevitably, some pre-service teachers will instead resort to the graphics 
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calculator’s regression function to fit an equation to the data, using the R-squared 
value to justify the goodness of fit of the resulting model. This data-driven approach 
can be used to motivate a discussion about the modelling cycle and how it empha-
sises the need for mathematical reasoning in the formulation of a model instead of 
deferring to the calculator’s “black box” algorithms. One of the challenges for 
teachers using technology in mathematical modelling, then, is to adopt a critical 
orientation to the role of technology as a boundary object linking the mathematical 
and real worlds.

While the pendulum task can help teacher educators introduce pre-service teach-
ers to the modelling process, it does not necessarily develop a disposition to view 
the world through a mathematical lens. This task would typically be used in a school 
classroom where students are learning about trigonometric functions, and so, it pre-
supposes that they will draw on this specific knowledge, moving from the mathe-
matical world to the real-world application. Instead, the modelling cycle begins 
with a real-world situation that provokes mathematisation, and so, teacher educators 
also need to provide these kinds of experiences to pre-service teachers – as in my 
second example.

An assessment task for pre-service secondary mathematics teachers involved 
creating a Maths Trail around the university campus. A Maths Trail is a sequence of 
outdoor activities and investigations that takes mathematics – and students – out of 
the classroom into the real world. Maths Trails can promote learning by increasing 
motivation, inviting students to apply mathematics to real-world situations, creating 
opportunities for group work and developing students’ modelling and problem- 
solving skills in practical situations (French, 1994). A task from one of the Maths 
Trails developed by pre-service teachers is shown in Fig. 3, which represents the 
real-world problem.

A solution to this task offered by the pre-service teachers requires investigating 
the relationship between the sun’s position and the amount of sunlight that falls on 
people seated beneath the pergola. Exposure to the sun will be a maximum when the 

Fig. 2 Modelling the 
motion of a pendulum with 
a trigonometric function
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sun is highest in the sky. The size, spacing and thickness of the slats comprising the 
pergola roof are of particular importance. It is also helpful to make some simplify-
ing assumptions:

 1. The slats are positioned lengthwise in a north/south direction.
 2. The sun is at its highest point in the sky at noon.
 3. There are 12 h between sunrise and sunset.

From these assumptions, it follows that the sun moves through 15° every hour 
(180° in 12 h). Figure 4 represents the generalised situation when the sun is posi-
tioned at an angle of α degrees to the vertical. The pergola is made up of repeating 
units, and direct measurement reveals that the slats have a width of 4.5 cm with a 
gap between slats of 7.0 cm. The amount of sunlight that gets through to people 
beneath the pergola can be expressed as the ratio of distance DC (width of the 
sunbeam that penetrates for each repeating unit) to distance EB (width of the 
repeating unit). This represents the proportion of the area under the pergola in 
sunlight.

Some sample calculations illustrate the changing penetration of sunlight:

At noon, α = 0 degrees and DC = DB, so the sunlight proportion = 7/11.5 = 61%.

There is a pergola positioned adjacent to the university’s Social Sciences and Humanities Library. 
This is a place where staff and students can relax and get some protection from the sun’s harmful UV 
rays. Study the pergola and note that the amount of sunlight that gets through depends on the location 
of the sun in the sky. How does the amount of sunlight penetrating the pergola vary with time of day? 
How could you design a pergola, using the same roofing materials as in this one, which would 
provide full shade at 3 p.m.?

Fig. 3 Pergola task

E D C B

A

4.5cm

4.5cm 7.0cm

a

Fig. 4 Sunshine penetrating pergola roof
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At 11  a.m. and 1  p.m., α  =  15°, BC  =  4.5 tan α  =  1.2  cm, so the sunlight 
proportion = (7 − 1.2)/11.5 = 50%.

At 8 a.m. and 4 p.m., α = 60°, BC = 4.5 tan α = 7.8 cm. Clearly, this is physically 
impossible in the context of the problem, since BC cannot be less than DB or 
7.0 cm. This means that no sunlight is penetrating the pergola.

These calculations can be extended to produce a table of values for the function

 
y

x
=

−7 4 5

11 5

. tan

.  

where y is the sunlight proportion (in decimal form) and x the angle of inclination 
of the sun from the vertical. This function formulates the mathematical model of the 
real-world situation.

A graphics calculator or spreadsheet can be used to plot this function and see 
how the sunlight proportion varies with the sun’s angle and hence time of day. (It 
makes sense to restrict the domain to values of x between 0° and 60°, since we know 
that the sunlight proportion drops to zero before the sun reaches this angle.) Figure 5 
thus represents a graphical solution to the mathematical model.

By observing where the graph cuts the x-axis, it is possible to estimate the sun’s 
angle (and hence times of day) when the area beneath the pergola is in full shade. 
Alternatively, the time can be calculated exactly by solving the equation 7 − 4.5 tan 
α = 0 (for values of α between 0° and 90°), which gives α = 57.3°. Since we assume 
the sun moves through 15° every hour, the time frame of interest is 57.3/15 = 3.82 h 
before and after midday. Thus the interpretation of the solution suggests that people 
can sit beneath the pergola in full shade before 8:11 a.m. and after 3:49 p.m.

Fig. 5 Graphical solution to the mathematical model
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The model can now be used to design a pergola, made from the same roofing 
materials, that gives full shade at 3 p.m. To do this, we can investigate altering the 
gap between slats, and real-world knowledge suggests the need to place the slats 
closer together. At 3  p.m., the sun is at an angle of 45°. Let the new distance 
between slats be d. Then we want to find the value of d such that d −  4.5 tan 
45° = 0. Hence d = 4.5 cm, and the distance between slats would be reduced to the 
width of the slats. The model, and assumptions underpinning it, can be validated 
by sitting under the pergola at different times of day and comparing the actual and 
predicted sunlight proportions. This practical validation might result in adjusting 
the assumptions and reformulating the model to give a more accurate representa-
tion of sunlight conditions.

To assess the pre-service teachers’ work, I took the whole class outdoors to try 
out the Maths Trails they had created and followed this with a peer feedback ses-
sion when we returned to our classroom. We then created two Maths Trail book-
lets, one for junior secondary students (Grades 8–10, students aged 12–15 years) 
and the other for senior secondary students (Grades 11–12, students aged 
15–17  years), each comprising seven or eight of the activities the pre-service 
teachers had developed that could be completed by school students in a day’s 
excursion to the university. The activities were supported by an educational ratio-
nale and links to relevant syllabuses and included sample solutions and teaching 
notes. We subsequently used these Maths Trail booklets as the basis for a whole 
day professional development event attended by 50 practising teachers, in which 
the pre-service teachers acted as presenters and Maths Trail guides (Goos 
et al., 2004).

3.4  Barriers and Enablers for Mathematical Modelling 
in Pre- service Teacher Education

Australia provides an interesting case study of attempts in different educational 
jurisdictions to embed mathematical modelling into the secondary school curricu-
lum. In the state of Queensland, introduction of mathematical modelling pro-
ceeded gradually through a series of syllabus revisions over an extended period of 
time. The state had also abolished high-stakes external examinations in the early 
1970s and introduced a system of externally moderated school-based assessment, 
which led to increased teacher professionalism with regard to curriculum and 
assessment design. Teachers were already accustomed to designing and assessing 
extended tasks that students undertook in class or at home, an approach that was 
consistent with mathematical modelling. Although teachers were unfamiliar with 
mathematical modelling when it was first introduced, the state curriculum author-
ity tolerated a slow evolutionary process in teaching and assessing of modelling 
that was facilitated by advice from moderation panels of experienced teachers 
who monitored task design and assessment judgements.
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The situation with regard to modelling and its assessment was quite different in 
the Australian state of Victoria, which had undertaken a major review of the school 
curriculum at around the time mathematical modelling was introduced in 
Queensland. Until this time, assessment in Victorian schools had been conducted 
solely via external examinations, but it was now proposed to introduce a mix of 
external examinations and school-based assessment in all subjects. At the same 
time, an innovative mathematics curriculum was introduced that incorporated math-
ematical modelling activities, all of which had to be formally assessed. According 
to Stillman’s (2007) analysis of this implementation effort, both the extent and pace 
of change threatened the ability of Victoria’s education system to sustain curriculum 
innovation. Within a few years, school-based assessment of extended modelling 
tasks was replaced by more traditional assessment of coursework, signalling the end 
of an assessment-driven educational experiment with a genuine focus on mathemat-
ical modelling.

Mathematical modelling can promote learning through crossing boundaries back 
and forth between the mathematics world and the real world, where the learning 
mechanism involves coordination and translation between these two worlds 
(Akkerman & Bakker, 2011). The modelling cycle could be regarded as a boundary 
object facilitating and enabling this coordination. The existence of a syllabus that 
mandates the teaching and assessment of mathematical modelling in the senior sec-
ondary school is another important enabler, since without this systemic support, 
teachers and teacher educators would find it difficult to justify the inclusion of mod-
elling into their curriculum planning.

4  Curriculum Integration

4.1  Rationale and Positioning of Mathematics in Curriculum 
Integration

Curriculum integration has long been proposed as a way of helping students to 
develop richly connected knowledge and discover how this knowledge is used in 
real-world contexts. Approaches to curriculum organisation differ according to the 
type of connections made between subject areas. At one extreme is a subject- 
centred approach and at the other is full curriculum integration, where knowledge 
from relevant disciplines is brought to bear on problem-solving situations 
(Woodbury, 1998). In between lie a variety of interdisciplinary approaches that 
connect subject areas in different ways, for example, by planning separate subjects 
around a common theme or problem or by unifying some subjects into a single 
course taught by two or more teachers. Huntley (1998) discusses these variations 
in terms of three broad categories. She describes an intradisciplinary curriculum 
as one that focuses on a single discipline, such as mathematics. An interdisciplin-
ary curriculum still has its focus on one discipline, but it uses other disciplines to 
support the content of the first domain (e.g. by establishing relevance or context). 
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In an integrated curriculum, disciplinary boundaries dissolve completely, as  
concepts and methods of inquiry from one discipline are infused into others.

Huntley (1998) illustrated these different approaches to curriculum integration 
by proposing a continuum to clarify the degree of overlap between disciplines 
during instruction. Figure 6 represents the continuum for integrating mathematics 
and science, with intradisciplinary curricula at either extreme. Huntley defined an 
interdisciplinary “mathematics with science” course as one teaching mathematical 
topics (represented by the circle filled with horizontal lines) under the cover of a 
science context (circle filled with vertical lines). On the other hand, in a fully 
integrated “mathematics and science” course, the two disciplines interact and sup-
port each other in ways that result in students learning more than just the mathe-
matics and science content (circles overlap completely to form a new pattern). In 
terms of Akkerman and Bakker’s (2011) boundary crossing taxonomy, an interdis-
ciplinary curriculum is likely to promote learning via identification with the sepa-
rate disciplines leading to better understanding of their distinctive features, 
whereas an integrated curriculum aims for transformation and creation of new 
practices.

4.2  Impetus for Addressing Curriculum Integration 
in Pre- service Teacher Education

Curriculum integration was one of a number of related reforms to middle schooling 
implemented in schools in the Australian state of Queensland as part of the Education 
Department’s New Basics Project (Luke et al., 2000). The design of this new cur-
riculum framework began with three questions:

• What are the characteristics of students who are ideally prepared for future econ-
omies, cultures and society?

• What are the everyday life worlds that they will have to live in, interact with and 
transform?

• What are the valuable practices that they will have to “do” in the worlds of work, 
civic participation, leisure and mass media?

mathematics for 
the sake of 

mathematics
(intradisciplinary)

mathematics with 
science

(interdisciplinary)

mathematics 
and science
(integrated)

science with 
mathematics

(interdisciplinary)

science for the 
sake of science

(intradisciplinary)

Fig. 6 Mathematics/science integration continuum. (Adapted from Fig.  1 in Huntley (1998, 
p. 322))
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The resulting framework proposed four curriculum organisers to assist teachers, 
curriculum planners and schools to move towards a critical engagement with new 
social, technological and economic conditions. These organisers were labelled as 
life pathways and social futures, multiliteracies and communications media, active 
citizenship and environments and technologies. These curriculum categories were 
intended to draw on and combine a range of knowledge categories and disciplines 
within the traditional school curriculum. The New Basics project was trialled in 20 
schools over 4 years, and this initiative provided an innovative context for engaging 
pre-service teachers in planning curriculum units and assessment tasks that inte-
grated mathematics with other disciplines.

4.3  Examples of Curriculum Integration in Pre-service 
Teacher Education

In pre-service teacher education, curriculum specialisations are usually taught as 
discrete “methods” courses  – a practice that mirrors the situation in secondary 
schools, where disciplinary boundaries are preserved. Attempting to breach these 
boundaries requires changes to organisational structures that not only address time-
tabling and staffing arrangements, but also encourage professional dialogue between 
teachers in different subject areas. It could be argued that similar priorities apply to 
pre-service teacher education programs that aim to prepare graduates for new school 
environments, such as those anticipated by the New Basics curriculum reform. A 
history teacher education colleague and I decided to model this kind of professional 
dialogue by investigating curriculum integration in secondary school mathematics 
and history (Goos & Mills, 2001). We planned a group assessment task in which 
mathematics and history pre-service teachers were to work in groups to produce an 
integrated curriculum unit.

Joint meetings of the mathematics and history curriculum classes took place 
during a 9-week block at the start of the year, before pre-service teachers began 
their first practicum placement. Both curriculum groups continued to meet sepa-
rately throughout this period for subject-specific workshops. The combined classes, 
which lasted 1 h, were relatively unstructured and designed to provide pre-service 
teachers with time together to work on their curriculum units; however, we did 
address topics relevant to this task, in particular, by providing information about 
the theoretical and policy background to the New Basics reform. An important 
feature of this project was our desire to model the kind of cross-disciplinary dia-
logue and intellectual risk taking that we hoped our pre-service students would 
embrace. We also used questions and feedback from the pre-service teachers to 
help us design the assessment task, which was comprised of group and individual 
components. The curriculum unit plan was originally conceived as a group task; 
however, we soon recognised pre-service teachers’ need to evaluate their individ-
ual contributions and to comment on the process of working as a cross-curricular 
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group. To this end, we asked individuals to write a brief reflective analysis of the 
benefits and difficulties they experienced, and how problems were dealt with in 
their group, and to identify implications for collaboration between teachers across 
different curriculum areas.

The sequence of lessons in the curriculum unit designed by the pre-service 
teachers was to lead to an assessment task with real-world value and use that would 
allow junior secondary students (Grades 8–10, students aged 12–15 years) to dem-
onstrate the mathematics and history knowledge and skills they had developed. 
One such assessment task, for a curriculum unit on the pyramids of Egypt, is repro-
duced below.

You have been declared Pharaoh of Egypt! As a monument to your reign, you choose to 
build a pyramid in your honour. Determine resources required, list environmental impacts, 
forecast problems that may occur, and construct a scale model of your pyramid. Conduct a 
feasibility study and report on your findings.

Table 1 summarises the subject matter of this curriculum unit, and Fig. 7 shows 
sample learning activities that were devised by the pre-service teachers.

4.4  Barriers and Enablers for Curriculum Integration 
in Pre- service Teacher Education

The existence of a large-scale school reform initiative, represented by the New 
Basics project in the Australian state of Queensland, provided an authentic context 
for teacher educators to explore curriculum integration with pre-service teachers. 
Since that time, a new national curriculum has been introduced in Australia 
(ACARA, n.d.) with a return to strong disciplinary boundaries in the secondary 
school years. It is difficult to envisage how this curriculum structure could support 
the type of disciplinary boundary crossing involved in the integrated curriculum 
approach described above.

Even when curriculum organisation is conducive to integration, barriers remain 
to be overcome. One of the major obstacles faced by the mathematics pre-service 
teachers was the realisation that the mathematical aspects of the curriculum unit 

Topic History content Mathematics content

Pyramids of Egypt When were the pyramids built? 
Political/social structure of ancient Egypt
Geography of Egypt
Hieroglyphics
Mathematics of ancient Egyptians
Religious/burial practices and beliefs
Pyramid construction methods

Mass
Ratio and proportion
Plane and 3D shapes
Measurement (length, area, 
volume, angle, time)
Number study and operations
Statistics

Table 1 Topic and subject matter for the pyramids of Egypt curriculum unit
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played a secondary role to the history material. One described this as “feeling as if 
we had to let the history people come up with ideas first, so that we could build 
from them. It didn’t feel as if we were able to suggest maths ideas first ….” As a 
counterpoint to these concerns about collaboration, practising teachers sometimes 
express fears about curriculum integration requiring generalist teachers, working 
as individuals, to teach cross-disciplinary units such as those prepared by the pre-
service teachers. On the contrary, however, Wallace, Rennie, and Malone (2000) 
have argued that an integrated curriculum should not be taught by one person since 
instead it can enable team teaching by disciplinary specialists. Subject-specific 
expertise therefore becomes more, not less, important, if potentially rich connec-
tions are to be made between curriculum areas.

Another barrier to curriculum integration involves organisational constraints 
within the school, such as timetabling, lesson duration and allocation of teachers to 
classes. In the project described above, pre-service teachers were allowed to assume 
that adequate time, resources and personnel would be available to implement their 
teaching plan. This was a deliberate choice on the part of the teacher educators in 
order to challenge assumptions about existing school structures and the organisation 
of secondary teacher education.

Participation in the integrated curriculum project required the mathematics and 
history pre-service teachers to examine their professional values and disciplinary 
beliefs. Some groups, defeated by the logistics of collaboration, “atomised the task 
and worked substantially in isolation”. Other individuals reported learning “valu-
able lessons about diplomacy, compromise and exchange of ideas between 

Activity #1: Size of the Pyramids of Giza

Pyramid Side (m) Height (m) Base area (m2)
Khufu 230 146.5
Khafre 216 140.5

Menkaure 108 66.5

How many Olympic-sized swimming pools would fit into the base of Khufu’s pyramid?
How many football fields would fit into the base of Khufu’s pyramid?
If Khafre’s pyramid were as tall as this classroom, how tall would you be?

Activity #2: Construction of the pyramids of Giza
If the density of limestone is 2280 kg/m3, what is the total weight of Khufu’s pyramid?
If the average weight of a limestone block is 2.5 tons, how many blocks comprise Khufu’s 
pyramid? (1 ton = 1016 kg)
Khufu reigned for a minimum of 23 years. How many blocks of limestone needed to be 
delivered to the pyramid every hour for the pyramid to be completed within Khufu’s 
lifetime:

if work continued all year round
if work took place only during the 3 months annual inundation of Egypt.

Fig. 7 Sample learning activities for the pyramids of Egypt curriculum unit
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 teachers”. There was some evidence from their written reflections of a growing 
appreciation of the value of each subject. For example, one mathematics pre-ser-
vice teacher commented that she “finally began to appreciate that mathematics is 
instrumental in explaining and extending concepts in other areas and real-world 
contexts. Rather than making it a lesser subject, this characteristic of mathematics 
is one of its greatest virtues”. The relationship between mathematics and history 
achieved in this project suggests that the pre-service teachers created an interdisci-
plinary, rather than integrated, curriculum (Huntley, 1998), with history providing 
the primary context for teaching selected mathematical concepts. Crossing the 
boundaries between disciplines led to learning through increased identification 
with one’s own discipline, reinforcing disciplinary identities while enabling and 
legitimating coexistence of mathematics and history within the curriculum unit. 
The interdisciplinary curriculum units, and the teacher education assessment task 
that led to their creation, could be considered as boundary objects enabling disci-
plinary boundary crossing, while the two teacher educators – each with an intel-
lectual commitment to their own discipline as well as to interdisciplinary 
collaboration – acted as brokers working to connect the disciplines.

5  Numeracy Across the Curriculum

5.1  Rationale and Positioning of Mathematics in Numeracy 
Across the Curriculum

In many countries, the notion of mathematical literacy as a twenty-first century 
competency has emerged from international studies such as the OECD’s 
Programme for International Student Assessment (PISA; OECD, 2016). In some 
English- speaking countries, however, it is more common to speak of numeracy 
rather than mathematical literacy. Being numerate involves more than mastering 
basic mathematics, because numeracy connects the mathematics learnt at school 
with out-of- school situations that additionally require problem-solving, critical 
judgement and making sense of the non-mathematical context.

By the late 1990s, educators and policymakers in Australia had embraced a 
broad interpretation of numeracy similar to the OECD definition of mathematical 
literacy: “To be numerate is to use mathematics effectively to meet the general 
demands of life at home, in paid work, and for participation in community and 
civic life” (Department of Employment, Education, Training and Youth Affairs, 
1997, p. 15). This definition became widely accepted in Australia and formed the 
basis for much numeracy-related research and curriculum development.

The Quantitative Literacy Design Team (2001) has argued that for numeracy to 
be useful to students, it must be learnt in multiple contexts as an integral part of all 
school subjects, not just mathematics. They distinguished between mathematics and 
numeracy by explaining:
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Mathematics climbs the ladder of abstraction to see, from sufficient height, common pat-
terns in seemingly different things. Abstraction is what gives mathematics its power; it is 
what enables methods derived from one context to be applied in others. But abstraction is 
not the focus of numeracy. Instead, numeracy clings to specifics, marshalling all relevant 
aspects of setting and context to reach conclusions. (pp. 17–18)

The relationship between mathematics, numeracy, other subjects taught in school 
and real-world contexts is more complex than can be described by the language of 
“connection” or “integration”. My colleagues and I have attempted to capture these 
multi-faceted relationships by developing the numeracy model shown in Fig.  8 
(Goos, Geiger, Dole, Forgasz, & Bennison, 2019).

The model consists of four core elements: attention to real-life and curricular 
contexts; application of mathematical knowledge; use of physical, representational 
and digital tools; and promotion of positive dispositions towards the use of mathe-
matics to solve real-world problems. A fifth overarching element – a critical orienta-
tion  – requires the appropriate selection and application of mathematics to a 
real-world problem as well as the interpretation and critique of results.

The numeracy model was designed to be readily accessible to teachers as an 
instrument for planning and reflection. It has been validated through several research 
and development projects involving Australian teachers in primary and secondary 
schools and across many subject domains. It has been effective in providing a 
framework for auditing the numeracy demands of the school curriculum, in helping 
teachers to recognise the numeracy demands and opportunities in different school 
subjects and to design numeracy tasks, and in enabling us to trace teachers’ own 
growing understanding of numeracy across the curriculum (Geiger, 2016; Geiger, 
Goos, & Dole, 2011; Goos, Dole, & Geiger, 2012; Goos, Geiger, & Dole, 2014). 

Fig. 8 Numeracy model
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The numeracy model functions as a boundary object that connects the intersecting 
worlds of the school curriculum and its constituent disciplines – including mathe-
matics – with real-world contexts.

5.2  Impetus for Addressing Numeracy Across the Curriculum 
in Pre-service Teacher Education

In Australia, there has been acknowledgement for many years that numeracy is an 
across the curriculum commitment. This commitment was first formalised in a 
national numeracy policy (Department of Education, Training, and Youth Affairs, 
2000) and later reinforced by a national numeracy review (Council of Australian 
Governments, 2008). Inclusion of numeracy as a general capability in the Australian 
curriculum endorses the expectation that all teachers will be responsible for devel-
oping their students’ numeracy, no matter what subjects they teach. Yet, the national 
curriculum for Australian schools is not explicit in setting out how all teachers 
should achieve this goal. Despite the success of research and development projects 
that have helped teachers to recognise the numeracy demands and opportunities of 
the subjects they teach (e.g. Goos et al., 2014; Thornton & Hogan, 2003), numeracy 
is still widely regarded as the responsibility of the mathematics teacher or depart-
ment (Carter, Klenowski, & Chalmers, 2015).

In Australia, teacher preparation policies and standards require pre-service teach-
ers to demonstrate competence in understanding and applying numeracy teaching 
strategies appropriate to their subject area (AITSL, 2017). However, these standards 
are weakly framed and lack specific detail as to what teachers must know and be 
able to do in order to achieve curricular goals for numeracy. A variety of approaches 
can be observed in Australia for developing knowledge of numeracy teaching strate-
gies in pre-service teacher education programs. Such approaches range from 
semester- long courses to no specific courses at all and instead an effort to incorpo-
rate numeracy across the whole teacher education curriculum.

5.3  Example of Numeracy Across the Curriculum 
in Pre- service Teacher Education

The release of Australia’s national numeracy policy in 2000 prompted some early 
interest in developing numeracy across the curriculum courses for pre-service 
teacher education students (e.g. Groves, 2001). However, it is likely that such 
courses will become more common, as universities are now required to meet 
national accreditation standards that expect graduate teachers will be able to embed 
numeracy into the subjects they teach (see Forgasz & Hall, 2016, for an evaluation 
of one such course).
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A full description of a current course on numeracy across the curriculum can be 
found at https://www.courses.uq.edu.au/student_section_loader.php?section=1&pr
ofileId=96602 (The University of Queensland, 2014). This course is compulsory for 
pre-service secondary teachers across all specialist curriculum domains. The topics 
addressed in each week of the course are presented in Table 2.

A brief case study from Week 7 of the course, showing how a teacher created a 
numeracy learning opportunity within the subject of Health and Physical Education, 
is presented in the box below. The case study is intended to be used as a stimulus for 
secondary pre-service teachers to recognise numeracy learning opportunities within 
the subjects they will teach.

Pre-service teachers can be asked to analyse the numeracy opportunities created 
by this teacher in terms of the numeracy model shown in Fig. 8. Their response 
might point to measurement (estimation and converting units), number (ratio) and 
chance and data (collection, organising and representing data) as the mathematical 
knowledge used in this lesson. The students’ learning was situated in the real-world 

Case Study of Numeracy Across the Curriculum
An experienced teacher in a small rural school was assigned to teach math-
ematics, English and health and physical education to a group of Grade 8 
students who were in their first year of secondary school (aged 12–13 years). 
While participating in a research and development project, centred on the 
numeracy model depicted in Fig. 8, she decided to adapt an activity she had 
used for several years in order to enhance students’ numeracy learning 
opportunities. The task required students to investigate their level of physical 
activity over 1 week by using a pedometer. Each student recorded the num-
ber of paces taken each day and recorded this information in a shared Excel 
spreadsheet projected onto an electronic whiteboard at the front of the class-
room. At the end of the week, the teacher wanted students to learn how to 
convert their total number of paces to the distance they had walked over a 
week. She took the class outside and asked students to estimate 100 m from 
a common starting point and then walk to this position. She followed the 
students while laying out a measuring tape to mark off 100 m. Students were 
asked to walk back to the starting point, 100 m away, and count the number 
of paces they took. Once back in the classroom, the teacher introduced a 
template, displayed via the electronic whiteboard, which was designed to 
assist students to convert paces to kilometres. She modelled the conversion 
by filling in her own result – 119 paces in 100 m. Students were amazed to 
find that their teacher had walked 98.8 km in a week, and they eagerly worked 
on their own personal calculations. They also spontaneously produced Excel 
graphs to compare distances walked by different students, by boys and girls, 
and on different days of the week.

M. Goos
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context of an outdoor activity that required them to convert personal information – 
paces walked in a week – into standard measures (kilometres), which in turn were 
used to compare each student’s level of activity with that of others. The teacher 
used a range of tools through the lesson: physical tools such as tape measures to 
mark out 100 m, representational tools in the form of the template she designed in 
order to scaffold the conversion of paces into kilometres, and digital tools in the 
form of electronic calculators and the Excel spreadsheet used for recording stu-
dents’ data. By embedding learning in an outdoor activity that made use of stu-
dents’ personal information, she was attempting to encourage positive dispositions 
towards learning mathematics. This lesson also incorporated aspects of critical 
orientation as students were asked to consider why the distances they had walked 
differed from each other in relation to both pace length and to students’ different 
levels of activity over a week.

Week Topic

1 Understanding numeracy. Exploring definitions of numeracy; differences between mathematics and 
numeracy; personal conceptions of numeracy; exploring what a numerate person knows and can do.

2 Numeracy across the curriculum. History of the idea of numeracy in Australia and beyond; 
numeracy as a general capability in the Australian Curriculum.

3 Numeracy in the twenty-first century. A theoretical model and framework for curriculum planning
and task design, considering its use to plan and design numeracy activities. 

4 The role of ICTs in numeracy. Exploring a range of ICTs, including websites, programs, apps to 
support the teaching and learning of numeracy. 

5 Numeracy as a critical orientation. Re-visiting the numeracy model and exploring ways to promote 
critical numeracy in students. 

6 Numeracy demands of the curriculum. Using the numeracy model to audit the numeracy demands of 
learning areas in the Australian Curriculum.

7 Numeracy opportunities across the curriculum. Recognising numeracy opportunities in learning 
areas; case studies of tasks that teachers have developed and used to create numeracy learning 
opportunities; identifying a numeracy teaching opportunity in a learning area.

8 Principles of numeracy task design. Research examples of numeracy tasks and pedagogical 
approaches to engaging students in numeracy tasks; designing a numeracy task.

9 Planning for numeracy across the curriculum. Mapping numeracy in curriculum areas, using 
planning templates, creating rich numeracy tasks in different learning areas.

10 Assessing numeracy learning. Critical analysis of what can be learnt from PISA and national
numeracy testing.

11 Challenges and dilemmas. Research on the experiences of Australian teachers in embedding 
numeracy across the curriculum.

12 Whole school approaches to numeracy. Focus on curriculum leadership approaches to engage 
colleagues, parents, cross-curricular teams and making school links to enhance numeracy.

Table 2 Weekly outline of topics in a pre-service teacher education course on numeracy across 
the curriculum
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5.4  Barriers and Enablers for Numeracy Across 
the Curriculum in Pre-service Teacher Education

Education policies that require teachers to develop numeracy in all school sub-
jects, and teacher educators to prepare graduates who can meet this challenge, 
are key enablers of numeracy across the curriculum in pre-service teacher educa-
tion. But policies alone will not ensure that secondary pre-service teachers expe-
rience productive boundary crossing between mathematics and their “home” 
discipline. Also needed are models of integration that act as boundary objects 
connecting numeracy, mathematics and other disciplines with the real world. The 
numeracy model described in this section is a boundary object that serves this 
purpose.

Tensions can also exist within curricula that maintain strong disciplinary 
boundaries while simultaneously promoting numeracy as a cross-curricular prior-
ity – as is the case in Australia. Teachers of subjects other than mathematics can 
easily form the view that numeracy is not their responsibility. For these teachers, 
the challenge is to recognise and attend to the numeracy demands of their subject 
as a means of enhancing students’ disciplinary understanding.

When Australian teachers participated in our research and development proj-
ects on numeracy across the curriculum, they were asked to identify the element 
of the numeracy model, which represented their initial focus at the beginning of 
the project and also to indicate those elements that assumed greater importance to 
them as the project progressed. Providing teachers with a copy of the numeracy 
model they could annotate allowed our research team to gather data on their pro-
fessional  learning trajectory (Geiger et al., 2011). Interviews with teachers also 
yielded perceptions of learning that resonate with Akkerman and Bakker’s (2011) 
mechanisms for learning at the boundary between domains. One teacher described 
her learning in the following way:

During the initial project meeting, where the model was described for what it was to be 
numerate, exemplar activities were provided that helped me with knowing about numer-
acy. Returning to school and trying out initial ideas was part of me doing in relation to 
numeracy. Eventually, though, the continued interaction of my developing knowing and 
doing led to my present state where my approach to teaching numeracy had become part 
of my being. I felt that my involvement in the project has changed who I am, both profes-
sionally and personally.

This transition from knowing to doing to being is indicative of reflection as a learn-
ing mechanism that leads to new insights and construction of a new teacher identity 
resulting from crossing boundaries between disciplines in search of numeracy 
opportunities.

M. Goos
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6  Comparison of Models and Implications for Pre-service 
Teacher Education

Mathematics can cross disciplinary borders in a variety of ways in pre-service 
teacher education, and this chapter has explored three such approaches: mathemat-
ical modelling, curriculum integration and numeracy across the curriculum. 
Table 3 summarises key features of each approach, facilitating comparison of their 
rationales and positionings of mathematics, the impetus for their inclusion in 
teacher education programs and barriers and enablers for implementation. In addi-
tion to these pragmatic considerations, theoretical comparisons can be made 
between the mechanisms for learning at the boundaries between domains in each 
approach and the roles of boundary objects and brokers identified.

It appears that the most common rationale for integrating mathematics with 
other disciplines emphasises connections that motivate student learning in real-
world contexts, and the impetus for addressing this goal in pre-service teacher 
education derives from changes to the school curriculum or accreditation stan-
dards for teacher education programs. However, a boundary crossing theoretical 
perspective allows us to see discontinuities and differences between domains that 
should not be ignored. While these discontinuities can offer potential for learning, 
they also pose challenges for teachers and teacher educators who are discipline-
based specialists. The summary of barriers and enablers presented in Table 3 
points to some of these challenges. Interestingly, curriculum reform and educa-
tional policies are identified as both an impetus and a barrier to boundary crossing, 
which suggests there is a gap between rhetoric and reality in this space. However, 
teachers’ beliefs, values and perceptions also influence their experience of bound-
ary crossing between domains.

It is possible to conceive of all four learning mechanisms proposed by Akkerman 
and Bakker (2011) coming into play when teacher educators experiment with 
 integrating mathematics with other disciplines. In my own work with pre-service 
teachers, I emphasise that mathematical modelling requires coordination between 
mathematics and the real world, while developing numeracy across the curriculum 
can lead to learning through reflection on differences between mathematics and a 
teacher’s primary subject discipline. I would argue that curriculum integration 
rarely results in transformation and creation of new boundary practices, because of 
the practical difficulties in fully blending the concepts and methods of inquiry of 
separate disciplines. Instead, it might be more common to experience enhanced 
identification with one’s own primary discipline as a result of working with teacher 
colleagues in another discipline.

In all three integrated approaches in pre-service teacher education, boundary 
objects facilitated crossing between domains, and, in the case of the integrated cur-
riculum and numeracy across the curriculum projects, brought together pre-service 
and practising teachers from these different domains. Only in the former project 
was it possible to identify brokers who deliberately worked to connect disciplinary 
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paradigms, in the form of the two teacher educators from the disciplines of mathe-
matics and history. However, it is possible to imagine how brokers might play a role 
in the other two approaches. For example, a mathematics and a science teacher 
educator might decide to work with their pre-service students on modelling tasks in 
the context of chemistry, physics or biology, or a mathematics teacher educator 
given responsibility for coordinating a course on numeracy across the curriculum 
might call on teacher education colleagues for insights into the numeracy demands 
of other areas of the school curriculum. This observation highlights another signifi-
cant issue when mathematics crosses borders in pre-service teacher education  – 
mathematics teacher educators themselves need to embrace their roles as brokers in 
modelling productive collaboration with colleagues in other disciplines.
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Secondary-level mathematics pre-service teacher (PST) education programs typi-
cally have various components such as university-based coursework (including 
mathematics content and mathematics teaching methods courses) and school-
based practice teaching blocks (field experiences/practica). Oftentimes, rather 
than being visibly interlinked, there are logistical and practical borders between 
these components, making it difficult for PSTs to see the connections between 
them (Bain & Moje, 2012; Ebby, 2000). As educators and researchers continue to 
better understand the impact that teacher education programs have on PSTs, it is 
pertinent to explore these components and their role in PSTs’ development.

While some teacher education programs make noteworthy efforts to integrate 
the programmatic components and endeavor to help PSTs see the relationships 
between them (Ebby, 2000), most programs  are organized by distinctly sepa-
rate components that rarely overlap. In this chapter, we use the case of a Canadian 
teacher education program to explore PSTs’ experiences in, and perceptions of, 
this common, “bordered” model of teacher education programs. Gathering first-
hand accounts of PSTs’ experiences in teacher education programs has proven to 
be particularly meaningful with regards to improving the programs them-
selves (Clift & Brady, 2005; Ralph, Walker, & Wimmer, 2009). As such, we asked 
the following research questions: (1) According to secondary mathematics PSTs, 
what is the purpose and value of each component of their teacher education pro-
gram? (2) In what ways did these components influence their development as 
future secondary mathematics teachers? (3) What (if any) connections did the 
PSTs make between the components of their program?
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1  Components of a Secondary Mathematics Teacher 
Education Program

In Canada, there are many programs leading to certification as a secondary math-
ematics teacher. In some cases, PSTs enter their teacher education program having 
already completed a degree in their subject of specialization (e.g., Bachelor of 
Mathematics). These programs1 assume that the PSTs have the required subject- 
area content knowledge; thus, the only subject-specific components of their pro-
grams are mathematics teaching methods courses and field experiences (in 
secondary mathematics classes).2 In other cases, typically for those who have not 
previously completed a specialist degree, teacher education programs require 
PSTs take mathematics content courses in addition to the components described 
earlier. In this chapter, we focus on the latter format of teacher education programs 
and, in the following sections, describe these subject-specific components in 
more detail.

1.1  Mathematics Teaching Methods Courses

Mathematics teaching methods courses are usually taken by mathematics PSTs 
early in their teacher education program and may be coupled with a practicum 
component (Abell, 2006; Higher Education Commission, 2012). In general, the 
purpose of teaching methods courses is to improve PSTs’ knowledge and provide 
them with experience of actual classroom teaching through both student and 
teacher lenses (Kiliç, 2011; Wilkins & Brand, 2004). Through a student lens, 
mathematics teaching methods courses provide PSTs with the opportunity to 
explore mathematics subjects (e.g., numbers, geometry, statistics and probability, 
algebra, and measurement) via manipulatives, problem solving and other investi-
gative approaches (Albayrak & Unal, 2011; Baroody & Coslick, 1998). Through 
a teacher lens, specific goals of mathematics teaching methods courses include 
cultivating positive dispositions toward mathematics, developing PSTs’ mathe-
matics pedagogy, and establishing why mathematics knowledge is taught 
(Hodge, 2011).

Although there are a variety of goals for PSTs in mathematics teaching methods 
courses, a big focus is also on that of introducing different teaching methods for 
mathematics (Albayrak & Unal, 2011). More specifically, a large part of these 
courses is supporting PSTs’ development of mathematical knowledge for teaching 

1 This format of teacher education program may be at an undergraduate, graduate, or certificate 
level.
2 In these programs, PSTs also take general education courses (e.g., assessment and evaluation, 
educational psychology).
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(MKT) (Ball, 1990; Ball, Thames, & Phelps, 2008; Tirosh, 2000). MKT is the 
“mathematical knowledge that teachers use in classrooms to produce instruction 
and student growth” (Hill, Ball, & Schilling, 2008, p. 374) and is composed of 
both subject matter knowledge and pedagogical content knowledge (PCK). While 
subject matter knowledge is an understanding of how teaching mathematics is 
similar and yet different from other fields using mathematics (e.g., engineering), 
PCK is the knowledge held by teachers that allows them to connect what they 
know about pedagogy with what they know about content and curricula (An, 
Kulm, & Wu, 2004; Hill et al., 2008).

More than the intended purposes and structure of the courses, mathematics 
teaching methods courses allow for PSTs to experience a mathematical commu-
nity that is different from what is experienced elsewhere in the program (Ebby, 
2000). With “the assumption that experiencing mathematics differently as learners 
will cause teachers to reconstruct their beliefs, assumptions, and ultimately their 
practice” (Ebby, 2000, p. 70), the experiences in the methods courses also aid in 
the development of new perspectives of PSTs themselves, their peers, and of the 
subject by giving opportunities for active instruction (Albayrak & Unal, 2011). 
This is important as secondary mathematics PSTs typically enter their teacher 
education program, having mostly experienced traditional approaches to teaching 
and learning mathematics, characterized by teacher-centered and rote learning 
(Jao, 2018). Yet, research advocates for a reformed approach which involves stu-
dent-centered and exploratory learning, and strengthening students’ mathematical 
understanding (Hunter, Hunter, Jorgensen, & Choy, 2016; National Council of 
Teachers of Mathematics, 2014). Mathematics teaching methods courses have 
been found to support change in PSTs’ beliefs toward reform-based ideals (Jao, 
2017; Wilkins & Brand, 2004).

In contrast, despite the positive learning outcomes from the mathematics 
teaching methods courses, some challenges remain. Some instances show PSTs 
to have trouble taking on the teacher role after these courses, stating a difficulty 
in transitioning from what they have learned in the courses to their application in 
the classroom (Stickles, 2015). In other cases, the newly acquired skills and 
knowledge from the courses get “wiped out” by conflicting situations in PSTs’ 
practica or within the first years of teaching (Wilkins & Brand, 2004). It has been 
suggested that this is in part because the understandings that PSTs develop from 
their program’s coursework is dependent on their beliefs, dispositions, and expe-
riences (Ebby, 2000). For example, PSTs may not consolidate and solidify their 
learning if they experience situations in practica, where mentors (e.g., university 
supervisors, cooperating teachers) encourage teaching approaches that are con-
tradictory to those learned in the teaching methods courses (e.g., teacher-cen-
tered approached vs. student- centered approaches). However, it has been found 
that taking multiple mathematics teaching methods courses in their program (i.e., 
interspersed throughout their program between other coursework and practica) 
helps PSTs to reinforce and maintain beliefs and attitudes acquired from these 
courses (Hart, 2002).
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1.2  Mathematics Content Courses

At  their core, mathematics content courses provide PSTs with subject-specific 
content knowledge for teaching. Mathematics content courses are taken mainly by 
two categories of students: Science, Technology, Engineering, and Mathematics 
(STEM) majors, and secondary PSTs whose subject of specialization is mathemat-
ics (Hodge, Gerberry, Moss, & Staples, 2010). These courses are typically taught 
by mathematicians, which, when teaching PSTs, inevitably results in the mathe-
maticians adopting roles as teacher educators (Leikin, Meller, & Zazkis, 2017). 
Secondary mathematics PSTs typically take almost as many mathematics content 
courses as a mathematics major would: various calculus courses along with several 
linear algebra, differential equations, real analysis, and abstract algebra courses.

For secondary mathematics PSTs, the purpose of these content courses is to 
provide PSTs with advanced and robust mathematical content knowledge (MCK), 
often going beyond the curricula that they are required to teach at the secondary 
level (Plotz, Froneman, & Nieuwoudt, 2013). Although more advanced than sec-
ondary curricula, the mathematical knowledge gained in these content courses is 
beneficial and facilitates success for both these future teachers and their future 
students (Leikin et  al., 2017). In addition to developing PSTs’ MCK, content 
courses also have many different goals including: supporting PSTs with learning 
to make connections between various fields of mathematics in order to see the “big 
picture” (Williams, 2001), and providing opportunities for PSTs to learn about the 
history of mathematics and what it is like to be a mathematician (Hodge et al., 
2010; Leikin et al., 2017). Furthermore, content courses support PSTs’ develop-
ment of mathematical processes (e.g., logical reasoning and problem-solving 
skills) as well as mathematical communication; provide the ability to solve unique, 
open-ended, and hypothetical problems, and identify poorly proposed questions; 
and facilitate the development of confidence and self-assurance in PSTs through 
the mastery of their content knowledge (Williams, 2001).

Despite the rigorous mathematics education content  courses provide, PSTs 
have difficulty transferring what they learn into the classroom (Dreher, Lindmeier, 
Heinze, & Niemand, 2018). Specifically, research indicates that there is often a 
disconnect between content knowledge and relevant teaching methods (i.e., PSTs’ 
MKT) in many teacher education programs (Ball et al., 2008; Wu, 2011). Similar 
to mathematics teaching methods courses, PCK has been shown to be a major 
component typically missing from mathematics content courses. As such, research-
ers have questioned the validity of mixing PSTs with STEM majors in these 
courses (Hill et  al., 2008). Although both groups need to develop abstract and 
higher mathematics content knowledge, PSTs require the additional component of 
PCK to fulfill their MKT and better apply their knowledge for teaching at the sec-
ondary school level (Hodge et al., 2010).
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1.3  Field Experiences

Typically, field experiences (practica) are partnerships between teacher education 
programs and host schools to allow for PSTs to experience the role of the teacher in 
contexts similar to those that they will be working in the future (Borman, 
Mueninghoff, Cotner, & Frederick, 2009). While PSTs have their own personal 
experiences as students, and therefore have experienced the acculturation effects of 
attending school, this “apprenticeship of observation” (Lortie, 1975) is incomplete. 
Being a student does not allow for reflection or rationales in teaching to be shared 
or discussed. Therefore, practica allow for PSTs to experience authentic apprentice-
ships prior to starting their own careers (Bullock & Russell, 2009). Generally, prac-
tica are aimed to have PSTs experience and practice instructional tasks (e.g., 
developing and carrying out lessons) and all other facets of school life (e.g., admin-
istrative tasks, extra-curricular activities) (Begum & Yarmus, 2013).

Given their in situ and lived experience nature, practica provide opportunities for 
PSTs to experiment and self-reflect and apply theory learned in coursework to prac-
tice (Ralph et  al., 2009). Yet, research shows that PSTs alone cannot bridge this 
“theory-practice gap” (Dillon & O’Connor, 2009). PSTs benefit from explicit links 
to their practica in different program components (Bain & Moje, 2012; Baumgartner, 
Koerner, & Rust, 2002). For example, providing PSTs with opportunities for discus-
sions in related concurrent courses has been shown to allow for further professional 
growth (Begum & Yarmus, 2013).

The placement and frequency of practica within teacher education varies. In 
some cases (typically programs that focus more on the practical aspects of the 
profession and assume prior teaching experience), practica occur at the beginning 
of the program (ECS Educational Policy Site: Teaching Quality, 2007). In con-
trast, most teacher education programs disperse practica throughout the entire 
program (Dillon & O’Connor, 2009). In these cases, the practica are often scaf-
folded such that the practica which take place toward the beginning of the pro-
gram have PSTs focus on classroom observation and experience working 
one-on-one with students. Later practica have PSTs take on additional responsi-
bilities culminating in practica during which PSTs take on full teaching responsi-
bilities (Ontario Teachers’ Federation, 2010). Other programs may have longer 
practica, which begin with a short observational period and progressively allow 
for longer and more involved teaching duration (Begum & Yarmus, 2013; Ontario 
Teachers’ Federation, 2010). Research shows that for practica to yield fruitful 
reflections and significant growth, they must also be varied in context and setting 
(Borman et al., 2009).

At host schools, PSTs are typically paired with in-service teachers (cooperat-
ing teachers). Cooperating teachers act as mentors and supervise, guide, and facil-
itate PSTs’ induction into the profession (Hobson, Ashby, Malderez, & Tomlinson, 
2009). Cooperating teachers play an important role in the socialization of PSTs 
into the teaching profession by helping PSTs manage their workload and day-to-
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day tasks (Bullough & Draper, 2004; Lindgren, 2005; Maldarez, Hobson, Tracey, 
& Kerr, 2007; Moor et al., 2005; Wang & Odell, 2002). PSTs can also benefit from 
the feedback provided to them by their cooperating teachers. Whether through 
informal discussions between classes or formal written assessments of teaching 
performance, PSTs value specific and timely feedback from their cooperating 
teachers (Broad & Tessaro, 2009). Research shows that cooperating teachers’ 
mentorship and feedback may result in PSTs feeling less isolated, more confident, 
and more capable in reflecting on difficult situations and problems (Bullough, 
2005; Johnson, Berg, & Donaldson, 2005; Lindgren, 2005; Marable & 
Raimondi, 2007).

While cooperating teachers can have a positive effect on PSTs, tensions may 
arise due to the amount of responsibility that is given to the host schools and the 
cooperating teachers (Breunig, 2005). Views and aims of cooperating teachers 
may not align with those of the teacher education program, requiring PSTs to 
navigate conflicting and confusing expectations (Bain & Moje, 2012; Vick, 2006). 
Similarly, PSTs may find it challenging if their cooperating teachers advocate for 
and model teaching practices that counter those espoused in their teacher educa-
tion programs.

2  Research Context and Approach

Our study took place within the context of a 4-year undergraduate teacher educa-
tion program (Bachelor of Education) at a Canadian university. Graduates of the 
program are certified to teach at the secondary school level and choose one subject 
as an area of expertise – in the case of our participants (n = 6), mathematics. The 
teacher education program is comprised of coursework and school-based practica. 
Courses include subject-specific content courses, subject-specific teaching meth-
ods courses, and general education courses taken by all PSTs (e.g., assessment, 
educational psychology, diverse learners). PSTs have one practicum per academic 
year each with an increased level of responsibility (i.e., the first practicum is 
observational and the final practicum has the PSTs taking on close to a full teach-
ing load).

Informed by the exploratory case method (Yin, 2009), a qualitative approach 
was used to explore secondary mathematics PSTs’ experiences in their teacher 
education program. Data were collected through semi-structured interviews. 
Specifically, participants were each interviewed by a member of the research team 
once at the end of their teacher education program and were asked to reflect on 
their experiences in each of the different components of their teacher education 
program that had explicit connections to mathematics (i.e., mathematics teaching 
methods courses, mathematics content courses, and practica). Examples of ques-
tions include: How did the practica shape your development as a secondary math-
ematics PST? Which component was the most meaningful? What did the courses 
have in common? How were they different? Interviews were audio recorded and 
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transcribed verbatim. To analyze the interviews, we identified quotes in which par-
ticipants specifically spoke about one of our foci components of their teaching 
education program: mathematics content courses, mathematics teaching methods 
courses, and practica. Through an iterative process, we reread the quotes with the 
intention of seeking and grouping emerging patterns and themes (Saldaña, 2009). 
We present these themes in the sections that follow. All names are pseudonyms.

3  PSTs’ Perspectives About Mathematics Teaching Methods 
Courses

PSTs noted that mathematics teaching methods courses were valuable to their 
development as future teachers. PSTs described the teaching methods courses’ 
impact on their teaching views, development as mathematics PSTs, as well as how 
the teaching methods courses offered them a supportive and safe environment to 
explore their understandings of  mathematics teaching. PSTs recounted how the 
teaching methods courses reflected what they had seen in the field and what they 
expected to experience as soon-to-be teachers. As Domino noted,

[Y]ou know how the university is preparing you for the future and for your job and all that – 
those [two methods courses] were the most useful [courses] towards preparing me for my 
job, apart from your field experiences – in terms of class work – [the mathematics teaching 
methods courses were the] most useful.

PSTs also felt that the teaching methods courses acted as the main precursor to both 
their practica and future jobs as teachers. As Zorra described, “we learn all this 
content, and, in the methods course, it’s really focused on how you can deliver the 
content and how can you get students to think about mathematics.” Indeed, the PSTs 
felt that what they learned in the teaching methods course could be applied into their 
teaching practice during practica. Later, when we share PSTs’ perspectives about 
their field experiences, we further elaborate on how the PSTs made connections 
between these two components of their teacher education program.

3.1  A Different Hands-On Experience

PSTs expressed that the teaching methods courses offered a hands-on experience 
that was unique from the rest of their courses. In these courses, PSTs were intro-
duced to and engaged with various mathematics activities. These included rich 
learning tasks (e.g., The Popcorn Box Task, where students find the maximum 
volume for a movie theater snack container in the shape of an open-topped box 
given certain parameters) and mathematics games and puzzles (e.g., an arithmetic 
maze, where students were challenged to achieve the highest result of a series of 
calculations based on the route taken in the maze). Magda highlighted this part of 
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the course and explained how her experience of these hands-on activities shaped 
how she wanted to conduct her future practice:

My favorite moments…I definitely liked activities. It was a lot of fun, I didn’t know there 
were that many games out there with math. It’s true! I never had them in classes…I want to 
apply them like once every two weeks or…once a month even. It’s a lot of fun and really 
cool to get [students] moving and doing something with math that’s just not paper and 
pencil.

Similarly, James shared how, through hands-on activities in the teaching methods 
courses, he started becoming conscious of his understandings as both a PST and 
mathematics learner. “We did [practical hands-on activities] and I became sort of 
acutely aware of both what’s going on in my mind and what might be going on in a 
student’s mind as they’re doing something like this.” From a student perspective 
during an activity, James continued, “I remember…we were just like – no idea. I 
love that, because I’m like, you know, students probably feel like this most of the 
time.” Similarly, Zorra explained that one useful aspect of the teaching methods 
courses was how assignments from the courses allowed for her to continue “devel-
oping [her] content knowledge.”

Other PSTs described the methods courses as being the course-based component 
of their teacher education program that most closely related to their future practice. 
In particular, Domino described the methods courses as “the most useful class of 
[my] degree – most useful [courses].” She explained, “[The courses are useful] in 
terms of what I’m going to be doing. In terms of my actual job.” Through the experi-
ences provided within the teaching methods courses, she stressed that “[the courses] 
provide you with actual experiences… it’s sort of a safe space where you can 
develop as a teacher and refine your teaching skills.” Magda explained where she 
utilized teaching techniques from the teaching methods courses saying, “A lot of the 
activities we do in [the methods courses] - I try and adapt them to use them in my 
field experience and my tutoring so it’s […] super essential.” Ruby reinforced this 
statement when she spoke about her views on the teaching methods courses: 
“Everything we talked about was specific to what we were doing.” Indeed, while 
PSTs valued the hands-on learning that took place in their methods courses, the 
relevance of these experiences to their future careers was particularly appreciated. 

3.2  Allowing for Supported Practice

The teaching methods courses offered PSTs a hands-on experience of both teaching 
and learning mathematics, as well as a safe and open context to do so. The teaching 
methods courses were useful to PSTs, in that their classmates (fellow PSTs) and 
course instructors supported their practice of newly acquired techniques. As 
expressed by Ruby, “Had I not taken this course, I would not be using…I probably 
would have tried dropping [different teaching practices], or maybe saying like, 
‘That doesn’t work…’.” Domino emphasized this by adding that the teaching meth-
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ods courses “give you practice and allow you to develop as a teacher in a safe envi-
ronment where you can reflect and grow.”

Specifically, the Cycle of Enactment and Investigation (Lampert et al., 2013), 
during which PSTs engaged in a teaching rehearsal, was particularly meaningful. 
In the rehearsals, PSTs taught a segment of a mathematics lesson that they had 
 developed to their classmates who played the role of “students”. As the “facilita-
tor”, the course instructor “paused” the rehearsals in moments where the “teacher” 
could refine their teaching approach, and led discussions during which all PSTs 
could collectively considered alternative ways that the “teacher” could have 
attended to challenging moments in the rehearsal. Ruby described the significance 
of this experience saying: 

There were things that we discussed [in my rehearsal]…which I wouldn’t have caught 
before I did my Cycle of Enactment. […] When I was stopped, [another PST] said “I feel 
like you’re talking a lot” and I was like, “Oh my God, I’m doing everything I didn’t want to 
be doing”. If I hadn’t had that moment I probably would have gone into my [practica] and 
did exactly that.

Indeed, the PSTs emphasized that the teaching methods courses allowed them to 
test out different mathematics activities and refine their teaching approaches before 
implementing them in a secondary mathematics classroom during their practica. As 
Magda said, teaching methods courses are “where you actually get to practice it 
before applying it in a real live scenario.”

3.3  Re-orientating Their Teaching Repertoire

PSTs found the teaching methods courses shifted their beliefs about mathematics 
teaching. James mentioned that, through these courses, “we’re cracking the percep-
tion of what’s expected of you as a mathematics teacher.” PSTs described changes 
in their perspectives as more student oriented. James continued by identifying the 
teaching methods courses as having the most impact in terms of the 
program’s coursework:

[W]hat I thought that those (mathematics teaching) methods courses sort of imparted on 
me the most is re-orienting yourself to what’s going on in the students’ minds…it made 
me sort of think about was, okay, when I’m lecturing up at the board, what are my students 
doing…I thought mathematics methods courses, more than any other course – so of all the 
other education courses  – tends to try to get us to think about, like, student-centered 
approach.

Similarly, Ruby said that the teaching methods courses were critical to reframing 
her beliefs about mathematics teaching. She shared that in “the rest of [her univer-
sity] career, [the mathematics PSTs] were never addressed. So, any of the ways to 
approach math, or different ways of presenting student work. Like, different ways 
of approaching students who have questions [were not important].” Thus, through 
these courses, not only did PSTs select and add new strategies they had experi-
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enced to their repertoire of teaching approaches, but they also started thinking 
about these strategies from different perspectives.

4  PSTs’ Perspectives About Mathematics Content Courses

PSTs shared that mathematics content courses helped them understand what it is 
like to struggle as a mathematics student and strengthened their mathematical 
knowledge. Yet, some PSTs found course content to be superfluous and not neces-
sarily applicable or useable in their future careers as secondary mathematics 
teachers.

4.1  Learning the Struggle

The mathematics content courses were described by PSTs as being the most chal-
lenging component of their program. This difficulty, many of them noted, taught 
them what it is like to be a struggling mathematics student and made them appreci-
ate and understand how their own students might feel. Ruby said that this struggle 
taught her resilience. Domino, who had always been strong in mathematics, 
explained that mathematics content courses:

[H]elped me realize what it is to sort of struggle in math because I think before this I had 
never really struggled like it was smooth sailing. So that was like a positive sort of thing 
that I can relate to now […] what it’s like to struggle, what it’s like to work really, really 
hard and then you still not understand it and go into a test.

It was valuable for Domino to have this unique experience of struggling with math-
ematics. Had she not been required to take mathematics courses in the teacher edu-
cation program, Domino felt that she might not have been able to relate to her future 
students and their troubles.

Ruby recognized that while her own methods of teaching mathematics might 
make sense to her, they might be less clear to her students. Taking mathematics 
content courses and seeing what it is like to have someone else teach content to her 
was valuable and eye-opening:

Being in that student role again…and, knowing how my students feel. Because I can sit in 
my own classroom and watch my own classroom and get everything…because it’s me and 
I know how to explain things so that I understand them. But, to be in a situation where I 
had a really hard time keeping up, or even understanding the way that the teachers were 
presenting the material. So, then, again, like, I put myself in my students’ shoes.
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Recognizing that it could be difficult to learn something due to the approach chosen 
by the teacher was an important realization for Ruby and made her more conscien-
tious of how her students might struggle with the way she taught mathematics. PSTs 
obtained unique experiences about learning the struggle of being a mathematics 
student from mathematics content courses.

4.2  Strengthening Mathematical Knowledge

In spite of the difficulties faced by the PSTs in the mathematics content courses, 
they valued the opportunity to strengthen their mathematical knowledge prior to 
teaching and additionally, learn higher-level mathematics. Ruby believed that 
“Being the master…being very proficient in the subject that you teach. That has its 
value.” Zorra had a predisposition prior to taking the courses that they would not be 
important – that she already had the content knowledge needed to teach secondary- 
level mathematics. She explained, however, that:

Being in this program I realized […] if we don’t have [the courses] our knowledge is very 
basic. And I think you need to at least have an understanding of higher-level mathematics, 
even to have an understanding of what’s going on in [secondary] school. I’ve had courses in 
the higher math classes where in [secondary] school you’re learning the basic idea but with 
the higher one you have a better understanding of it. You understand the above and beyond, 
which I think is very important.

Magda agreed with Zorra that having knowledge mathematical knowledge which 
exceeds what one is required to teach deepens PSTs’ understanding of what it is that 
they are teaching. Additionally, she recognized that students will likely ask ques-
tions that extend beyond the content they are learning, thus requiring the teacher to 
tap into their higher mathematical knowledge. From her own experiences in prac-
tica, Magda recalled:

Sometimes I have a student that talks about something and they’re like “Does this exist?” 
[T]hat’s where you open up…to be like, “You know what? Yeah, this does exist. There’s a 
whole field on this and I can actually show you something.” I had a student in my third field 
experience asking me how to [differentiate] something because his older sibling was doing 
it…so during lunch he came with some friends and I had them do a bit of derivatives and 
they were super excited because they’re like “Oh my God, I’m doing like really high-level 
math.” So, it’s fun to see them do that and it opens up a door for them to explore.

PSTs shared that the higher content knowledge they developed from the mathemat-
ics content courses would be useful in cases where students inquire into higher level 
content and/or seek enrichment. Without this deeper mathematical knowledge, 
PSTs felt that they may not be able to provide their students with the tools and 
resources to work ahead and get inspired by higher mathematics.

Zorra appreciated the solidification of content knowledge gained from mathe-
matics content courses and argued that you never know when you are going to have 
to use some of it, even if it seems irrelevant at the time. Zorra also saw an additional 
benefit of this enhanced content knowledge. In her words:
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I would say that as much as I hate to admit it, I think it helps a lot more with just solidifying 
your own knowledge…I think having all this content knowledge helps you. And that can 
help your students as well. The last thing you want is a teacher who keeps questioning what 
they’re teaching which happened to me a couple times when I had to teach something I’d 
never done in my life.

Here, Zorra described how a strengthened content knowledge can be reassuring and 
support a teacher’s self-confidence.

James shared that the mathematics content courses were the component in which 
he could, above and beyond the mathematics content itself, learn what mathematics 
really is. James said, “math content  – for me, it’s huge.” More specifically, he 
described the courses as allowing him to overcome misconceptions of mathematics 
being a tool to achieve something else rather than its own realm saying:

It’s this language – [math] has its own semantics. Like I said, it has its own topic, right? It’s 
not a methodology. It’s not a thing. It’s not just this thing you build, and then you suddenly 
turn around, go to the world, and then like use it, right? No, no, no. Like I said, it has its own 
subject matter.

For James, while mathematics can be used as a tool to accomplish other things, 
there is also an intrinsic beauty to the essence of mathematics itself that should be 
seen in all content courses.

Participants recognized that mathematics content courses not only inform and 
strengthen PSTs’ knowledge of the material they will be teaching; the courses also 
taught  them higher mathematics that is nonetheless connected to secondary-level 
content and made them more knowledgeable of the “bigger picture” of mathemat-
ics. PSTs also acknowledged that not every class or interaction with students remain 
in the confines of the curricula planned for that day; and many students will ask 
questions that surpass  the curricula requiring teachers to help students  with this 
advancement.

4.3  Relevance Toward Their Future Careers

PSTs shared the belief that at their core, the purpose of the mathematics content 
courses was for PSTs to learn and strengthen mathematical content knowledge. 
However, PSTs questioned whether or not this knowledge would be used in their 
future careers. As described by Domino:

[The content courses were] useless – for the most part. In terms of my degree and like the 
future work environment, how are differential equations going to serve me when I teach 
Grade 9 – that kind of thing. It’s a big negative that comes to mind. It’s sort of something 
that is a stress that – for something that I [know won’t] have a big impact on my career. And 
it’s like, it’s just something that I have to get through. And for classes that I wouldn’t gain a 
lot of insight from for my future teaching career.

Many PSTs believed that while learning higher-level mathematics was not necessar-
ily a bad thing, it did not contribute anything to their future careers.
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Some PSTs suggested modifications to the coursework in the teacher education 
program that they felt would be more beneficial for their development. Zorra said:

Unfortunately, you’re not really using much of the content courses in the field or in teach-
ing secondary mathematics unless you’re doing a pre-analysis course, it’s not directly 
linked…and I think actually what could help is maybe having one content course where 
it’s solely the topics in high school. Maybe we can add an extra option where you can take 
a complimentary course where you focus more on the content of high school 
mathematics.

Here, Zorra suggested a complementary mathematics content course that focuses 
specifically on secondary content that teachers are actually required to teach to 
make their content knowledge more applicable to their future careers.

5  PSTs’ Perspectives About Field Experiences

PSTs shared that the practica played a positive role in their development as future 
teachers. PSTs described this component as “extremely useful” and “super valu-
able.” Many PSTs reflected that the practica were the most important component of 
their teacher education program. As Domino shared, practica are “where you’re 
going to develop and grow the most as a teacher.”

5.1  Learning by Observation

PSTs expressed that practica allowed them the opportunity to observe teachers in a 
secondary school environment. As described by James, the PSTs could “see what 
[teachers] do, how exactly they do it.” He continued by saying, “I used to get to see 
in, like, the other class which I wasn’t teaching…Sometimes seeing things that you 
wouldn’t do, and you know, noticing things, how students react in ways that you 
don’t see when you’re up front.” Magda echoed this when she said, “I like being 
able to observe as many people as I can. It gives you an idea of what you can grab 
and what things you wouldn’t want to do.”

PSTs had also commented on how the observational part of their practicum 
allowed them to make connections between their practice and coursework. Domino 
mentioned how observation allowed her to reflect on what she had learned in the 
mathematics teaching methods courses and subsequently implement these various 
teaching strategies into her practice. She said:

You can sort of remember what the classroom culture is like. You remember, “Okay these 
were some of the kids, some of the attention problems, then these kids were stronger, this is 
how these kids learn” so you’ve observed…you can notice certain things and you sort of 
bring [in strategies from] your methods course…“How could I apply these activities to that 
behavior?” You think about it, and then…you actually get to apply it [when you teach].

Zorra provided a different but complementary perspective. She explained,
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I would think about what we learned in [our teaching methods course]…when I was observ-
ing, especially for the math teachers. I’d be like okay this is what we learned, let’s see if 
they implement it…subconsciously without all these teachers knowing, because maybe 
they did not take this class, they are implementing it and I’m like wow.

As shared by the PSTs, classroom observations allowed them to reflect upon teach-
ing approaches that they learned in the teaching methods courses by considering 
how they might implement these approaches in the context that they were observ-
ing, or observing how a classroom teacher implements these approaches.

5.2  Experiencing Life as a Teacher

In addition to observing secondary school teachers in action, PSTs described prac-
tica as the context for having a chance to practice teaching in an authentic secondary 
school context. This seemed to be the greatest benefit of practica for the PSTs. As 
Domino said, “[Y]ou’re teaching…you’re doing it. Like you’re actually doing the 
job that you have to do and that you will be doing in the future.”

PSTs stressed that having this practical component in their teacher education 
program was important. PSTs shared that they learned about being a teacher in their 
coursework, but it was not until their practica (contexts similar to those that they 
would be teaching in the future) that they could experience being a teacher for them-
selves. As Magda said,

[Practica is where] you get to actually see what works for you and what doesn’t and what 
(teaching) methods you like and what you don’t because it’s good to theorize them and be 
like, “Oh, that sounds like a cool idea”, but then when you practice it you’re like, “Oh my 
God, this is terrible, not for me.” So yeah, the real-life experience is (important).

Similarly, in speaking about her learning in the domain of classroom management, 
Zorra described the importance of practica:

It’s one thing to hear about classroom management (in coursework), it’s another thing to see 
it in practice. So, I think that being in the field, it helps you prepare for that. I learned a lot 
about classroom management in my [education] courses, but we don’t know how it actually 
works until you see it in practice.

Zorra shared that she could develop her practical knowledge about classroom man-
agement, first by observing her cooperating teacher in action, and then was able to 
further develop her skills once “in front of a classroom.” As she said of teaching, 
“Like anything else, you need practice.” Similarly, James spoke of the multiple 
benefits of practica saying, “I got to observe…and teach…it was like the best of 
both worlds.” This idea of scaffolding their learning (through coursework followed 
by experiential learning in practica, both through observation and first-hand experi-
ence) was shared by all PSTs.

PSTs also shared that practica provided them with opportunities to experience 
not only the “teaching” aspect of being a teacher, but all facets of life as a teacher. 
PSTs spoke of a variety of learning experiences including grading, extra-curricular 
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supervision, parent-teacher nights, and field trips. James described these additional 
experiences and their impact saying:

[T]he parent-teacher night was awesome. The parents were just there and trying to, like – 
like, “Okay, what can we do? Like, how do we fix this if they’re not doing well?” It was 
a very helpful situation. And administratively, now, I mean, if I get a job with [this school 
board], I know what system they use to take attendance, I know all these things…[it’s] 
not just the teaching…It’s more like, “Oh, you have to go down there, get that folder, 
bring it up into all these other things.” And so that, of course, that stuff is really 
valuable.

Here, James shared how experiencing the various non-teaching aspects of school 
life was equally as valuable to his development as a future teacher.

5.3  Gaining Confidence and an Identity as a Teacher

While PSTs shared that the “theoretical” knowledge of teaching that they developed 
in coursework served as a good foundation for their development as teachers, lived 
experience in practica was critical to their development of both teaching skills and 
comfort in school environments. As one PST described his feelings before practica, 
“you have this, like, fear” (James). Ruby elaborated on this positive impact of prac-
tica saying: 

I learnt like, so much from being in [practica]. And, I gained more confidence. Like, the 
week before (my first practicum), I was like, shaking. I was so anxious. I was like, “How 
am I ever going to stand in front of 30 people and talk? And, why would they listen to me? 
Like, why would they listen to me? What do I know? I know nothing.” And, I was so 
nervous. And, it was really even hard for me to visualize myself in a classroom with 30 
people. Whereas now, like, that’s not even like, a thing anymore. Like, I enjoy doing that. 
And, had I just been in like, a theory program the whole time, I would still feel that way, 
now going into the job market, right.

Many PSTs shared that prior to practica, they felt nervous and uncertain about their 
abilities as a teacher.

5.4  The Cooperating Teacher as a Key Player

PSTs felt that their cooperating teachers played a critical role in their practica expe-
riences. As previously described, the experience of practica itself supported PSTs’ 
development; however, PSTs shared that their cooperating teacher could enhance or 
hinder this development. As described by Magda: 

If your [cooperating teacher] allows you and is open to you trying a whole bunch of things 
just do it because the more you try the more experience you get and the whole thing is just 
an experience. If your [cooperating teacher] is open to it and they’re willing to let you have 
that rein to try stuff out go for it. I tried so many things and I’m so happy I did because I got 
to see what type of style I would like.
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In this case, Magda believed that the autonomy provided to her by her cooperating 
teacher enhanced her ability to develop as a teacher, specifically with regards to her 
identity and comfort as a teacher.

In practica, not only did the PSTs have a chance to practice teaching, but they 
also received feedback on it. PSTs found the feedback to be invaluable to their 
development as teachers. As one PST said, “Every single piece of constructive criti-
cism I got, I really appreciated” (Ruby). Once again, PSTs shared that their cooper-
ating teachers played an important role in this aspect of the practica. Not just feedback 
providers, cooperating teachers were also a sounding board in subsequent discus-
sions. In speaking of the role of the cooperating teacher, Magda stated, “You have 
someone to give you feedback and…they’re there to bounce ideas off of.” Similarly, 
James described his goals when discussing his teaching with his cooperating teach-
ers as, “What’s wrong with what I do? Like, let’s figure it out.”

Finally, PSTs spoke of cooperating teachers as playing a role in the extent to 
which PSTs got involved in different aspects of school life during practica. While 
there was an expectation that PSTs would primarily take on teaching responsibili-
ties in the classroom, there seemed to be flexibility regarding the amount of teaching 
responsibility that cooperating teachers assigned to the PSTs. PSTs shared that their 
responsibilities ranged between 60% and 100% of their cooperating teachers’ teach-
ing load. PSTs also described additional ways that their workloads varied. Some 
PSTs spoke of having to develop the lesson plans, activities, and assessments to be 
used in the classes for which they were responsible, whereas others were solely 
being responsible for delivering the lessons that were developed by their cooperat-
ing teacher. Domino contrasted her experiences in practica to that of some of her 
peers saying, “I was able to manage [my teaching]…and do extra-curriculars. But I 
think that some people had to do like lesson plans for every class they taught, in 
addition to like taking on 100% of the load.” These varied responsibilities, as deter-
mined by their cooperating teachers, thus had an impact on the range of experiences 
that the PSTs could take advantage of.

6  Concluding Thoughts

In this chapter, we share secondary mathematics PSTs’ perceptions and experiences 
in three different components of their teacher education program: mathematics 
teaching methods courses, mathematics content courses, and practica. Findings sug-
gest that PSTs see each of these components as having a different purpose and 
impact on their development as future teachers.

PSTs described the mathematics teaching methods courses as the context in 
which they could experience exemplary teaching approaches as students and experi-
ment with these approaches in a safe and supportive environment. PSTs spoke of 
gaining a different hands-on experience, which allowed them to engage with varied 
strategies through both student and teacher lenses (Akarsu & Kaya, 2012). When 
speaking of mathematics content courses, PSTs described this component of their 
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teacher education program to be a struggle. Although mostly described as a negative 
experience, PSTs mentioned how this component helped them understand what 
their (struggling) students might experience in math. Finally, the practica was the 
most valued component by the PSTs. PSTs shared that practica scaffolded  their 
learning and allowed them to gain confidence in their teaching practice. As is also 
described in the existing literature, PSTs found one of the most beneficial elements 
of practica to be the lived experience of what everyday school life is like (Cohen, 
Hoz, & Kaplan, 2013).

Whether intentional or not, components of teacher education programs are com-
monly separate, suggesting a “bordered” reality. Coursework (teaching methods 
and content courses) are typically university-based and practica are school-based. 
Teaching methods courses are typically offered by faculties of education, and con-
tent courses are offered by departments of their specific subject areas 
 respectively (e.g., departments of mathematics). Research has shown that the pur-
poses and goals of these components may or may not overlap, an issue echoed by 
the PSTs. This too creates yet another “border” within teacher education programs. 
Yet, the fact that the PSTs made references across components suggests that while 
some borders exist to various extents (e.g., program components having disparate 
goals, as well as taking place in geographically different locations and university 
departments), the components were not fully distinct. Furthermore, a point of com-
parison used by all of the PSTs was the relevancy and practicality of what they 
learned in each component to their future careers. The PSTs regularly described a 
theory and practice divide  – a common challenge described in the literature for 
teacher education programs (e.g., Cheng, Cheng, & Tang, 2010; Korthagen, 2010; 
Zeichner, 2010) – between their experiences in their teacher education program and 
the realities that they would be facing, once in the teaching profession.

The connections that PSTs made between activities, teaching methods, and other 
theories learned in the mathematics teaching methods courses to what they had 
experienced in the field during their practica components suggest that PSTs saw 
relationships between these two components. Although opportunities to understand 
the role of a teacher through a teacher’s lens (e.g., mock-teaching experiences and 
discussions of case studies of teaching scenarios) may occur in methods courses 
(Hodge, 2011; Stickles, 2015), these are still within the confines of a university- 
based context. It is thus reassuring to know that PSTs see similarities in what they 
perceive to be a relatively theoretical component of their program and the compo-
nent which is the most practical.

For the mathematics content courses, findings suggest that there was a paradox 
between PSTs recognizing and appreciating the importance of learning university- 
level mathematics but also finding it inapplicable to their careers as secondary 
mathematics teachers, an issue previously reported in the literature (e.g., Ball et al., 
2008; Dreher et al., 2018; Hodge et al., 2010; Mewborn, 2003; Wu, 2011). Research 
suggests that this perceived “pointlessness” stems from the difficulty that PSTs have 
moving from content theory to their teaching practice (Kari & Lilach, 2005). This 
struggle may have affected the PSTs’ willingness and ease to make further connec-
tions between program components. Nevertheless, the fact that PSTs still speak of 
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other components of their program in relation to the content component suggests 
that PSTs are trying to understand their experiences as a cohesive program.

Finally, it was in the practica component of the teacher education program that 
PSTs seemed to have the most ease in moving from theory to practice. Prior to prac-
tica, the PSTs’ knowledge as a teacher was developed through their theoretical 
learning in coursework. The practica provided the opportunity for PSTs to experi-
ence life as a teacher and allowed them to take the critical step of putting theory into 
practice (Allen & Wright, 2014; Korthagen, 2010). PSTs described their experi-
ences in practica to be characterized by the implementation of different knowledge 
learned in the other components. PSTs shared that this knowledge furthered their 
understanding of their practice (Liljedahl et al., 2009).

The PSTs in our study endeavored to make connections, albeit at times, tenuous, 
between the components of their teacher education program. We wonder on whom 
the responsibility falls to support PSTs in making these connections. What is the 
role of teacher education program administrators and teacher educators, those 
university- based (e.g., teaching methods and content course instructors) or school- 
based (e.g., cooperating teachers)? Although the PSTs themselves seemed to make 
links between program components, how best can the aforementioned stakeholders 
enhance and expedite this process? Moreover, how can the borders between teacher 
education programs  and the realities of the profession be blurred? Yet, research has 
shown that overloading PSTs with information on their future experiences within 
their teacher education program might not be fully absorbed as we expect (Fajet, 
Bello, Leftwich, Mesler, & Shaver, 2005). Perhaps the PSTs’ previous personal 
experiences and readiness to relate to the given information are important to con-
sider (Naylor, Campbell-Evas, & Maloney, 2015). As such, additional questions 
emerge. Are there benefits in having PSTs develop their own connections as a 
means to strengthen their professional growth? Can these connections be fully 
developed when PSTs are left to make them on their own? Perhaps as in most cases, 
it is a question of balance. Indeed, it is not just the individual components but their 
cumulative effects that influence PSTs’ development, thus requiring a thoughtful 
(re-)examination of our approaches to secondary mathematics pre-service teacher 
education (Floden & Meniketti, 2005). Nonetheless, we must remain steadfast in 
efforts to diminish borders and make connections between components to fully 
allow future secondary mathematics teachers reach their full potential.
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1  Introduction

Special education support in mathematics is a duty shared between different profes-
sionals, such as psychologists, special education teachers, mathematics teachers, 
and teaching assistants (see, e.g. Radford, Bosanquet, Webster, & Blatchford, 2015) 
each of whom take responsibility for different areas. Therefore, the duties demand 
collaboration and coordination of different expertise, training, and competencies 
(Roos & Gadler, 2018; Secher Schmidt, 2016; Sherer, Beswick, DeBlois, Healey, & 
Opitz, 2016). The method usually used by special education teachers in order to 
support students is individualised or small-group teaching and supervising the 
classroom mathematics teachers. Special education teachers often have a relational 
perspective on difficulties and an equity discourse on education (Göransson, 
Lindqvist, & Nilholm, 2015).

When it comes to students who face challenges learning mathematics, their 
achievement can be connected to teachers’ skills, and in these cases, research shows 
that there is a need for teacher professional development (Griffin et  al., 2018). 
Furthermore, students’ mathematical development is impacted by teachers’ profes-
sional understanding and knowledge about how to support such struggling students 
(Bottge, Rueda, Serlin, Hung, & Kwon, 2007; Gal & Linchevski, 2010; Hinton, 
Flores, Burton, & Curtis, 2015; Moscardini, 2010; Moscardini, 2015). Professional 
skills, knowledge, and understanding will play out in the classroom through math-
ematics and special education teachers’ shared assignment to support students. For 
example, when they prioritise what is important to do to support students, these 
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teachers should consider who should be involved in the students’ education and 
why. It is also important for the teachers to analyse and evaluate the design of their 
teaching approaches and the assignments given to students in order to understand 
the suitability for different students. We claim that the spaces and borders for the 
shared assignment begin to form during pre-service teacher training. In the long run, 
how the priorities are made determines if and how the school provides and develops 
efficient and appropriate education for every student in mathematics at the local and 
national levels. Some of these students are considered to be students in need of sup-
port in mathematics. There is no consensus on the concept of “students in need” 
(Heyd-Metzuyanim, 2013). For this chapter, we understand students in need of sup-
port in mathematics as not always being about achievement or disabilities, instead 
it is a need emerging in relation to the context and system of education in mathemat-
ics. We thereby agree with Méndez, Lacasa, and Matusov (2008) who state, 
“Disability is regarded as being located in particular types of activity systems and 
learning cultures rather than within an individual” (p. 63). We also assert that differ-
ent education professionals are affected by the structure, routines, and culture of the 
educational system in the classroom and of the school. These systems and cultures 
will have an impact on how and when students experience various aspects of teach-
ing as hindering their learning. The needs are thereby closely connected to situated 
social aspects of teaching and learning: “We have adopted the concept the student 
in need of special education in mathematics in order to emphasise the social aspect. 
The word ‘in’ is here of great importance. The student is in need, not with needs” 
(Bagger & Roos, 2015, p. 34).

At the same time, there seems to be a lack of evaluation of and research on how 
pre-service teacher training contributes to learning regarding these factors in the 
educational goals stated in the degree ordinance, at least in the Swedish context. A 
search was conducted for peer-reviewed journal articles during the last 10 years on 
the ERIC database using the keywords “teacher education”, “special education”, 
“mathematic∗”, and “goal∗”, and only 11 hits were found. After reading the 
abstracts, several were found to focus on the role of special education teachers, how 
to teach mathematical content to students in need of support, or collaboration 
between types of teachers. While articles focused on in-service teachers and their 
work, few focused on pre-service teacher training. For the few concerned with pre- 
service teacher training, none of them focused on the goals of the teacher training 
programs for mathematics or special education students.

Cultural boundaries influence how teacher education prepares teachers on how to 
educate students in need of support as well as how to collaborate with other profes-
sionals to support these students. For example, the knowledge of mathematics 
teachers has been shown to reflect current national debates in some countries. More 
specifically, Blömeke, Suhl, and Döhrmann (2013) describe how this occurred in 
Taiwan, Singapore, Russia, Poland, the USA, and Norway, and state that “the 
knowledge profiles of the future teachers matched the respective national debates. 
This result points to the influences of the cultural context on mathematics teacher 
knowledge” (p. 795).
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National and cultural boundaries need to be acknowledged, explored, and placed 
in an international context in order to be better understood, as well as to create a 
high-quality foundation for developing and guiding teacher education (Blömeke, 
Schmidt, & Hsieh, 2013). This chapter contributes to exploring national and cul-
tural boundaries through the case of Sweden by analysing goals in teacher exams as 
they are stated in the higher education ordinance. The goals are understood as gov-
erning pre-service teachers’ opportunities to learn (OTL). OTL as concept has been 
used in research for approximately half a century and focuses on the goals of educa-
tion, what is afforded to learn, and how these affordances depend on, among other 
things, curricula, culture, and programs in education (Wang & Tang, 2013). OTL 
also goes beyond directions and implementations of curricula and refers to socio- 
political aspects of who the learner is and for whom education functions, which in 
turn derives from the context and system at hand and is connected to issues of equity 
to learn and reach targets (Lester, 2007).

Thus, in this chapter, OTL refers to what is offered through the educational 
goals in regard to what can be learned and how this affects collaboration between 
the professions. OTL will affect how pre-service teachers (both mathematics and 
special education) develop the knowledge needed in their future profession, and 
for their joint assignment to support students in need of support in the subject of 
mathematics. The exploration of country-specific borders of the pre-service teach-
ers OTL may serve as a foundation to explore and reflect on other national settings 
and borders.

1.1  Special Education in Mathematics

Learning in STEM (science, technology, engineering, and mathematics) is often 
debated and a focus within school systems, and sometimes, mathematics is consid-
ered to be the core of these subjects. The development of mathematics has often 
been stressed as urgent in order to protect democracy and success for both individu-
als and countries (Erdogan & Stuessy, 2016; Grek, 2009). Professional development 
in the form of in-service training in specific subjects is often implemented to raise 
standards and goal achievement among students, as well as students’ OTL in these 
subjects (see, e.g. Piasta, Logan, Pelatti, Capps, & Petrill, 2015). OTL has also been 
a focus of research in order to “interpret cross-national patterns of math achieve-
ment” (Bachman, Votruba-Drzal, El Nokali, & Castle Heatly, 2015, p. 896). In sev-
eral countries, the task to support student learning is considered as a challenge for 
teachers and has been identified as the core for further professional development 
(Schleicher, 2012).

Furthermore, students that do not meet standards or lack the desired competen-
cies or knowledge are talked about in neoliberally governed schools as being threats 
to future prospects for individuals, education, and society (Bagger, 2016). One 
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example of this is how the Programme for International Student Assessment (PISA)1 
evaluates the skills and competencies of 15-year-olds that are deemed to be needed 
in adult life (OECD, 2017). This measure involves comparison and ranking between 
countries and engines educational policy change (Grek, 2009; Kim, 2017). This is 
an example of an international, goal-oriented, marketing trend of schooling for con-
necting results with quality and accountability (Rönnberg, 2011). A consequence of 
international monitoring surveys and national testing is adjustments to education 
and policy decisions on a national level (Dreher, 2012; Luke, 2011; Martens, 
Knodel, & Windzio, 2014; Pettersson, 2008; Wrigley, 2010). This reasoning is also 
applied to different pre-service and in-service teacher education programs and poli-
cies in order to improve teachers (Lincove, Osborne, Mills, & Bellows, 2015). To 
summarise, students that do not reach learning targets in the curricula are conse-
quently labelled as “low achieving” students. Subsequently, these students’ results 
are often attributed to flaws in the education system and accountability issues of the 
school and ultimately, teacher education.

There are questions regarding who students in needs of support in mathematics 
really are and what support for these students should or could look like (Lewis & 
Fisher, 2016), as well as how it differs between schools and across countries. 
Nevertheless, disadvantaged groups in mathematics are often connected to identity 
categories, such as gender, race, class, and ethnicity, and there is a challenge for 
teachers and schools to embrace these categories (Bishop, Tan, & Barkatsas, 2015). 
Teacher training is meant to prepare future teachers for fruitful collaboration in 
order to prepare them to support students with special educational needs. Such 
training aims at supporting inclusive settings:

Internationally, standards related to teaching and teacher preparation have reflected the 
expectation that general and special education teachers ought to be prepared to collaborate 
with each other to meet the needs of students with [special educational needs] in inclusive 
settings. (Van Ingen, Eskelson, & Allsopp, 2016, p. 74)

Promoting this inclusive stance has been a challenge for teacher training programs. 
If positive attitudes towards the inclusive approach are not developed, this stance 
will eventually diminish in teachers’ practices in mathematics classrooms (Shade & 
Stewart, 2001). In addition, how well this collaboration plays out will affect how 
students in need of support are educated and is ultimately regulated through the 
goals in the professional exam. For example, preparation on how to collaborate is 
needed and has to be executed in a way that takes both mathematical knowledge and 
special educational knowledge into account at the same time.

How educational professions involved in providing special support are organ-
ised and work together, varies between countries (Göransson, Lindqvist, Möllås, 
Almqvist, & Nilholm, 2017). In Sweden, special education teachers and mathemat-
ics teachers for primary school (MTPs) are the main professionals involved in giv-
ing support to all students (including those in need of support) in mathematics in 

1 PISA is an Organisation of Economic Co-operation and Development (OECD) project that mea-
sures 15-year olds’ knowledge every third year.
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primary school. MTPs are trained as generalists and are responsible for teaching all 
subject areas, not just mathematics. In Sweden, only teachers who have passed an 
exam in mathematics are allowed to assess students’ mathematical knowledge thus 
in all schools, students have at least one teacher who has a mathematical back-
ground. Special education teachers have different specialisations, including math-
ematics, whom we will refer to as special education teachers in mathematics 
(STms). STms have pre-service training in both the subject of mathematics, and to 
a varied degree, special education and knowledge of special needs. STms do not 
have their own classes. They sometimes, but not always, have an office or a room 
in which they collaborate with classroom teachers to work with students in need of 
support. It is also common for STms to co-teach with mathematics teachers in the 
classroom.

A division is typically seen between MTPs and STms for two reasons: (1) STms 
often give support directly to students in order to supplement the teaching provided 
by MTPs and (2) STms also give consultations to MTPs in order to help them to 
develop, adjust, and improve their teaching of students in need of support (Sundqvist 
& Ström, 2015). These are common practices in both Finland and Sweden. In a 
Finnish context, these kinds of consultations were found to consist of mainly three 
different types: consultation as counselling, reflective consultation, and cooperative 
conversations. According to Sundqvist and Ström (2015), the counselling type of 
consultation is a mainly expert driven approach to consulting and consists of class-
room teachers getting transference of special educational knowledge in the shape of 
information, advice, or suggestion. Reflective consultations are instead participant 
driven and are more like a stimulating, exploratory conversation in a search for 
developmental areas and problems to handle through a process of learning that are 
often relational, social, or system-oriented. Cooperative conversations are conversa-
tions in which professional exchange takes place and both parties mutually benefit. 
Sundqvist and Ström (2015) found all three forms of consultation to be beneficial 
for various purposes, and that it was essential that each was used in a knowing and 
reflective way. Consulting counselling are more prominent if the teachers involved 
are recently educated and lack experience. What limits the teachers is the transferral 
of knowledge, the student being in the core rather than a system-oriented approach 
towards challenges, and the risk of the STms’ knowledge and interpretations taking 
over and becoming predominant (Sundqvist & Ström, 2015). Internationally, it has 
also been shown that teacher education programs do not prepare STms and MTPs 
for consultations that focus specifically on mathematics, mathematical contexts, 
and student participation (Van Ingen et al., 2016).

Even in a Swedish context, consultations were found to be important (Roos, 
2015). Here, the different spaces where STms work is understood by using 
Wenger’s (1998) notion of communities of practice (CoP). A CoP is a social prac-
tice with mutual engagement between members. STms have a complex mission, 
they participate in many CoPs at the same time (such as with MTPs and other 
STms), and are brokers between CoPs. Hence, special education teachers struggle 
to find both the time and the space to carry out this brokering and have consulta-
tions with MTPs.
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Holgersson and Wästerlid (2018) revisited the specialised work of the mathemat-
ical development of students in need of support and stated that foundational to 
STms’ duties is to secure organisational prerequisites for all students to learn math-
ematics. They also described the following as important competencies for STms: 
pedagogical content knowledge, knowledge of how mathematics is learned and how 
development in the subject can and should appear, and knowledge about the obsta-
cles encountered by students in need and the ways to overcome these obstacles. 
Accordingly, STms work directly with students in need by providing special sup-
port and facilitating to development of their learning environment. The latter means 
that approaches, relations, teaching materials, and methods are the main focus for 
development, and this occurs at three levels: at the individual, group and organisa-
tional level. Thus, it is important for STms to hold consultations with teachers or 
other school professionals, as well as to make sure that the school has systems for 
monitoring and securing the mathematical development of all students. With this 
said, STms are typically not the ones assessing or analysing individual students’ 
results. Rather, their responsibilities are often organisational. Then again, it is also 
quite common for STms to perform some of the trickier or more difficult cases to 
evaluate or to complete teacher assessments in some way (Holgersson & 
Wästerlid, 2018).

Holgersson and Wästerlid (2018) have further described that the duties at the 
group and organisational levels are not prioritised by the school management in 
terms of developing learning environments and consulting teachers regarding the 
educational methods, content, and strategies. The phenomenon of STms having dif-
ficulties working on organisational issues of development and as consultants has 
also been identified in a survey of special education teacher training and occupation 
(Göransson, Lindqvist, Klang, Magnusson, & Nilholm, 2015). The survey points 
towards this profession as serving a governmental quality function and as a guardian 
of relational approaches towards learning and inclusion in schools in Sweden, but 
lacking in authority. In Sweden, teaching is approximately 50% of the duties of 
special education teachers. Furthermore, the Education Act of Sweden (SFS, 
2010:800) does not mention special education teachers to be a necessary part of 
health care teams, unlike nurses, psychologists, or school social workers. In Sweden, 
school social workers work for students’ well-being on several levels and collabo-
rate with professionals within and outside the school, and are not the same as 
municipality social workers that investigates families, for example. If students need 
someone besides their friend, teacher or parent to listen to them, or if students are 
absent, are involved in bullying or some other disruptive behaviour – the school 
social worker might become involved (for more reading, see, e.g. Isaksson & 
Larsson, 2017). When it comes to the special educational competence that should be 
available in the health care team, it is not made explicit what kind of profession or 
degree, is required. The jurisdiction of special education teachers thus becomes hard 
to identify, and there is a discrepancy between what is expected from schools and 
what is expected from a political stance. Göransson, Lindqvist, Klang, et al. (2015) 
conclude that the role of special education teachers can rather be seen as an expres-
sion of educational policy formulated in terms of a new vocational degree.
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1.2  Aim of This Chapter

Professionals, in this case STms and MTPs, are supposed to collaborate and intersect 
with each other in order to provide support to students in need of support. Aspects 
that constitute and effect the efficacy of this collaboration include the following:

 1. The kinds of knowledge pre-service training affords about the “other” profession 
(MTPs for STms, and vice versa)

 2. Whether the goals in the degree ordinance for the two professions’ pre-service 
training are in harmony with each other

 3. How these goals lead to a shared understanding of the assignment, and a joint 
and solid base of knowledge on the shared assignment to support students in 
need of support in mathematics

Hence, the aim of this chapter is to contribute knowledge of borders, spaces, and 
intersections between two pre-service teacher professions that will cooperate in 
their future teaching: STms and MTPs. This knowledge is constructed by exploring 
some of the prerequisites for the OTL about the shared duties to provide special 
education mathematics to students through the goals of teacher exams in Sweden. 
The research question is, how does the degree ordinance depict the duties of the 
teacher, the “other” profession, and their future shared task of providing support to 
students in need of support?

2  Methodology

The case of Sweden is situated in an educational national context that is framed by 
curricular goals in the Higher Education Ordinance, which create OTL for pre- 
service teachers. OTL are understood as being constituted partly by exams, and the 
goals of the exams constitute borders between different kinds of teachers regarding 
their duties to support students in need of support in mathematics. OTL have been 
connected to how goals in curricula are reached and measured (Stobart, 2009). It 
also includes a stance of caring for equal access to fair and meaningful learning for 
all students, and is then socioculturally constructed as emerging from the interplay 
between learning environment and the individual (Moss, Pullin, Gee, Haertel, & 
Young, 2008). OTL within mathematics education have been researched based on 
the idea that various contexts and systems affect these opportunities (Lester, 2007). 
Early on, the focus of OTL was often on how goals in curricula were possible to 
reach, while later research has focused on effects connected to issues of intersec-
tionality and how different learners and groups of learners are affected by the cur-
ricula and other system-oriented issues (Lester, 2007). This chapter explores the 
patterns, intersections, and borders between goals in the exams for pre-service 
teachers. OTL are provided for pre-service teachers, who are the focus of the goals 
in their exams. At the same time, students in need of support in mathematics are a 
special group of students that could be affected by the explored goals.
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2.1  The Context of the Study

The Swedish context of higher teacher education is briefly described to facilitate the 
contextual reading of the results, conclusions, and discussion. STm and MTP exams 
lead to a Bachelor’s degree. Teacher exams – and other university exams for that 
matter – are regulated by a degree ordinance in which the demands for degrees are 
set in the Higher Education Ordinance (SFS, 1993:100). The ordinance includes the 
following headings: extent, goal, prerequisites, and what is required in order to 
achieve a degree certificate. The requirements for achieving a certificate are speci-
fied as the achievement or demonstration of knowledge in three qualitatively differ-
ent areas: (1) knowledge and understanding, (2) competence and skills, and (3) 
judgement and approach (SFS, 1993:100).

In Sweden, there are two types of teacher education programs for primary school: 
one for preschool-class2 (6-year-old students) to grade 3 (9-year-old students), and one 
from grade 4 (10-year-olds) to grade 6 (12-year-olds). Both are four years long. There 
are also two types of training to become a mathematics teacher in secondary school: 
one for grade 7 (13-year-old students) to grade 9 (16-year-old students), which is 
4.5 years long, and one for upper secondary school, which is 5–5.5 years long (a vol-
untary school in which students are usually 16–19 years old). In Sweden, there are two 
programs for teachers who wish to specialise in special education. One to become a 
special pedagogue and another to become a special education teacher. Each program is 
1.5 years in length (at an advanced level) and results in a different teaching degree. 
Both programs require a prior teaching degree, as well as 3 years of working in the 
profession. The special education teachers program has different specialisations, for 
example, reading and writing development, and mathematics development. The special 
pedagogue program works primarily with development of the school, learning environ-
ment, teachers’ competence – and also with students – but is not specialised within a 
subject or disability. In this paper, we explore the degree program for STms, and the 
MTP exams for preschool-class to grade 3, grades 4–6, and grades 7–9 respectively. In 
other words, these teachers will support and teach students from ages 6 to 16 in math-
ematics. Sometimes, the STms will be labelled more generally as special education 
teachers, since all special education teachers share degree ordinance and thereby most 
of the goals, except for the specialised goals concerning mathematical development.

2.2  Method of Analysis

We have performed a systematic qualitative content analysis (Feucht & Bendixen, 
2010) of the degree ordinance attached to the higher education ordinance. The inves-
tigation of the qualitative goals in these bachelor exams focused on: (1) knowledge 

2 In Sweden, there are two forms of education before formal schooling: (1) a daycare form of pre-
school (for 1–5 year olds) and (2) a preschool-class that is part of the school system (as described 
in this chapter).
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and understanding, (2) competence and skills, and (3) judgement and approach. The 
content was framed in relation to the research questions, and the steps of the analysis 
procedure were taken from Feucht and Bendixen (2010). Statements connected to 
the duties of the teacher, the “other” profession, and the future work description 
regarding the mission to provide support were first selected from the three areas of 
qualitative goals. The statements were then grouped in regard to similarities in con-
tent, and the groups were given explanatory paraphrases as labels signalling what 
was in common, such as assessment, learning, development, disabilities, and organ-
isation. Finally, groups of statements and statements within groups were compared 
in regard to how they constituted borders, spaces, and intersections related to their 
shared duties.

The analysis was performed in close connection to the labelling of goals, or 
levels of knowledge demands, in the degree ordinance, and the result is presented 
accordingly. These labels are in common for all degrees in the Higher Education 
Ordinance, constitute the knowledge deemed to be desirable and needed in order to 
work independently with the actual profession, and thereby depict OTL described 
in this steering document. It is important to pay attention to the nuances in knowl-
edge that are displayed in the goals. For example, nuances might be insights, knowl-
edge, deeper knowledge, or understanding, which could signal a variation in the 
depth or quality of knowledge. Sometimes, the knowledge is something that is sup-
posed to be shown in assignments during their training, while at other times, it is 
something that the teacher is supposed to have. It is also important to remember that 
the STms have always undertaken some basic teacher training, and a teaching 
degree is a prerequisite for undertaking education to become a special education 
teacher. This implies that it is possible for STms to be preschool-class teachers with 
additional mathematics education, subject teachers in mathematics from secondary 
or upper secondary school, or to have completed one of the two teacher exams 
investigated in this chapter, namely, to become preschool-class to grade 3 teachers 
or grades 4–6 teachers.

3  Borders, Spaces, and Intersections

Swedish acts, ordinances, and government agency regulations are published in The 
Swedish Code of Statues (SFS). The references for education acts, Higher Education 
Ordinance etc. is therefore SFS followed by the identification number of the actual 
document.3 Documents in The Swedish Code of Statues (SFS) are digitally pub-
lished without page-numbers.

The results and analysis is built as a narrative of the OTL about special support 
in mathematics within the degree ordinances for STms and MTPs, and between 
those ordinances. The degree ordinances are part of the Higher Education 
Ordinance (SFS, 1993:100). This regulates the teacher training at universities, not 

3 For more information see https://svenskforfattningssamling.se/english.html
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to be confused with the Education Act (SFS, 2010:800), which regulates the edu-
cation in schools. In other words, teacher training is regulated in the Higher 
Education Ordinance and when they thereafter work as teachers in compulsory 
school, their works and the education they provide, is regulated by the 
Education Act.

The identified themes were explored under three levels of knowledge demands, 
or labels of goals, stated in the degree ordinance, which in turn illuminated borders, 
spaces, and intersections between the exams. Important to remember is that all spe-
cial education teachers share the same degree ordinance, there are some but very 
important specific goals within that, that differs in regard to specialisation and that 
decides the specialisation in the program, and what degree is reached by studying it. 
Therefore, when the text depicts things that are in common for all directions of 
special teacher programs, it is marked with the abbreviation “ST” while, if the text 
concerns only the special direction of mathematics, the abbreviation “STm” is used. 
An overview of the main findings is displayed in Table 1.

3.1  Knowledge and Understanding

The goals regarding knowledge and understanding are one of the foundations in 
future professional practice. Three themes emerged: (1) a historical perspective; (2) 
duties to work for learning; and (3) development, assessment, and grading. 
Regardless of professional degree (STms or MTPs), teachers are supposed to have 
insights into relevant research and development work. The criteria for relevance are 
not stated, but they can be assumed to relate to the other goals and the purpose of 
the exam.

Table 1 Overview of analytical strategy and main findings

Area of goals →
Brief overview 
of analysis ↓

Knowledge and 
understanding
Foundation

Competence and 
skills
Direction

Values and judgement
Focal points

Themes in 
common

A historical perspective
Development or learning
Assessment and grading

Foundations
Development of 
practice
Development of 
student knowledge

Focal point of the 
profession hubs
Ethics as a foundation

Interpretation ST Guardian of educational 
discourses and structures. 
Carrier of explicit knowledge 
of disorders. Monitoring the 
process of assessment.
MTP Carrier of present 
knowledge of the individual 
students’ learning (F-3) or 
development (4–6) in math, 
and assessment.

ST To cooperate, 
advise, lead, 
participate, and be 
critical
MTP To cooperate, 
follow, develop, and 
be developed

ST Human rights, 
collaboration with other 
professions and schools
The hub of the 
supportive work
MTP Children’s proper 
and sustainable 
development
The hub of the classroom
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3.1.1  A Historical Perspective

STms should have knowledge regarding students in need of support from a histori-
cal perspective, as well as deeper knowledge regarding learning in mathematics 
(SFS, 1993:100). MTPs should also have knowledge regarding historical aspects, 
but not the explicit history of students in need of support but rather the history of 
schooling (SFS, 1993:100). This situation is interpreted as STms being responsible 
for ways (both successful and not) that have been used to support students in the 
school system and organisation, as well as the ones who foresee future implications 
in terms of teaching approaches, methods, or materials. This is in contrast to MTPs 
who are supposed to know about the history of schooling, but without explicit 
knowledge of the possibilities and pitfalls that might derive from the history and 
culture of the education system. This makes the special education teacher a guard-
ian of sustainable development of the teaching discourses of students in need of 
support and creates a shared area of historical awareness. It also creates a limitation 
between the teaching roles in regard to the focus and possibilities to share under-
standing in their duties to support students in need of support in mathematics.

3.1.2  Learning and Development

MTPs should have knowledge regarding children’s and students’ development, 
needs, and prerequisites required for teaching and learning. However, this is not 
explicitly related to students in need of support, or the subject of mathematics. 
Additionally, this could also be interpreted as the knowledge needed being subject- 
specific. MTPs are also supposed to show knowledge in didactics and methods that 
are required in the subject of mathematics and in general. MTPs of younger students 
(preschool-class to grade 3) should also display deeper knowledge in regard to 
learning mathematics, as well as children’s communication and development in 
general and in language. Teachers of grades 4–6 are not expected to display knowl-
edge of students’ learning; instead, the goal is aimed at reaching deeper knowledge 
regarding mathematics development. Interestingly, MTPs for preschool-class to 
grade 3 are supposed to know about learning in mathematics, while MTPs for grades 
4–6 are supposed to know about development. This indicates that learning comes 
first, and knowledge in mathematics might be developed thereafter, as if there is no 
knowledge in mathematics before that. Of course, knowing about students’ prereq-
uisites for learning and what is demanded for teaching could very well include 
teachers’ knowledge of their mathematical knowledge. But again, this is not stated.

As for STms, the goals are combined in general terms of learning and develop-
ment, although not specifically in relation to the subject of mathematics, but rather 
for students with disabilities: “Demonstrate deeper knowledge of the development 
and learning of children and pupils and demonstrate knowledge of the development 
and learning of children and students with disabilities, including neuropsychiatric 
disorders” (SFS, 1993:100). Additional knowledge about neuropsychiatric disor-
ders was recently added in 2018. This constructs STms as the carrier of knowledge 
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of disabilities, and especially neuropsychological disabilities. Furthermore, there is 
a border between STms and MTPs, since the latter’s goals do not include knowledge 
of students with disabilities but rather subject-specific learning and development. 
Therefore, the professions must combine their knowledge so that both the subject- 
specific knowledge of learning and development and the knowledge of disabilities 
come into play. Very often, STms work together with teachers when a student 
advances from grade 3 to 4, and in those cases, STms become the guardian of the 
progression in learning and development for students with disabilities.

3.1.3  Assessment and Grading

Preschool-class to grade 3 MTPs are supposed to obtain and demonstrate “deeper 
knowledge of the assessment of student learning and development” (SFS, 1993:100), 
which is not explicitly in the context of mathematics but can be compared to what 
these teachers are supposed to know about the students in mathematics, namely, 
deeper knowledge of student learning. However, these MTPs are also supposed to 
have knowledge (if not deeper knowledge) in general regarding students’ develop-
ment. Thus, the assessment is framed in relation to development for the preschool- 
class to grade 3 teachers. For grade 4–6 teachers, however, the assessment is framed 
in relation to grading and as a display of deeper knowledge: “show deeper knowl-
edge in assessment and grading” (SFS, 1993:100). It is relevant to go back to what 
kind of focus that grades 4–6 teachers should have in students’ mathematical learn-
ing: their development. This is not mentioned in relation to assessment and grading, 
as opposed to the knowledge in assessment of learning and development for 
preschool- class to grade 3 teachers. Finally, STms are also supposed to “display 
deeper knowledge of assessment issues and grading” (SFS, 1993:100), implying 
that STms should understand and be able to promote and support the teachers work-
ing with assessment. When looking at issues in assessment, STms appear to exist in 
the shared space of both assessment and grading and can therefore work together 
with MTPs by providing support. At the same time, the words “assessment issues” 
(SFS, 1993:100), imply that STms might be the ones keeping watch over the bor-
ders of the duties to assess and grade.

3.2  Competencies and Skills

The competencies and skills that could be most central for providing support for 
students might be the ones that ensure that this goal is actually a focus in carrying 
out the teacher’s duties. Notably, in regard to the competence and skills of teachers, 
“mathematics” is mentioned only twice, and that is in the STms’ goals and not in the 
MTPs’. If interpreting this positively, the subject and duties to provide support to 
students in need of it, is included in “having the subject knowledge needed to teach” 
and “apply subject didactics and methods needed for teaching and learning” (SFS, 
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1993:100). The goals for preschool-class to grade 3 and grades 4–6 teachers that can 
be connected to the shared duties to give support are the same. We understand the 
STms’ ability to support and develop both students and learning environments inde-
pendently is understood as the core: “show ability to support students and children 
and to develop learning environments in the school” and to “demonstrate the ability 
to independently carry out, follow-up and evaluate as well as lead the development 
of the educational work with the aim of meeting the needs of all children and stu-
dents” (SFS, 1993:100). In the MTP exam, instead of “independent work”, there is 
a strong emphasis on collaboration in the duties to provide support. The task is 
expressed as an act of “handling special needs” (SFS, 1993:100). The goals also 
stress that the teaching duties must derive from and communicate equity in the form 
of core values: “demonstrate the ability to identify and, in collaboration with others, 
handle special educational needs”, “demonstrate the ability to consider, communi-
cate and anchor equality perspectives in the educational activities”, and “demon-
strate the ability to consider, communicate and anchor core values including human 
rights and democratic values in the educational activities” (SFS, 1993:100). There 
are no differences between the preschool-class to grade 3 and grades 4–6 teachers 
in these statements.

The intersection between STms and MTPs is understood here as STms promot-
ing, analysing, developing, and challenging the learning environment, and thus 
challenging MTPs’ practices. MTPs are instead obliged to communicate, cooperate, 
and be receptive in their work in which special needs are handled. Notably, mathe-
matics as a subject is not mentioned explicitly, and the emphasis that MTPs should 
cooperate and communicate does not have a counterpart in the STms’ goals. Overall, 
providing support is depicted as being carried out in two specific directions of 
development: (1) development of the learning environment and (2) development of 
students’ knowledge.

3.2.1  Developing the Learning Environment

The STms’ duties are twofold, and in the part of developing learning environments, 
STms are depicted as free, critical, and able catalysts of change and improvement. 
At the same time, STms are supposed to do this independently, but also while “par-
ticipating” in teaching. The previous section stated that STms should work 
 independently whilst MTPs should cooperate. Participating is not the same as coop-
erating. What is actually meant by the learning environment is not stated, but this 
often means the teachers, teaching methods, materials. As such, STms should “dem-
onstrate the ability to critically and independently initiate, analyse and participate in 
preventive work and help to eliminate obstacles and difficulties in different learning 
environments” (SFS, 1993:100). Correspondingly, this development work rests in 
STms’ abilities to do educational investigations, which seem to be slightly different 
from working on preventive measures and eliminating obstacles and difficulties. 
This is interpreted as an educational investigation being acted out only after difficul-
ties have already happened, and despite all the literature depicting the power of 
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building on what is strong, functional, and works, preventive work has a kind of 
dystopian stance. Furthermore, when the difficulties are already apparent, the stu-
dent is perceived as a passive object and that the student has difficulties, even though 
they appear, or maybe even “come into existence”, in the student’s encounter with 
the environment. STms should “demonstrate [an] in-depth ability to critically and 
independently carry out educational investigations and analyse difficulties for the 
individual in the learning environments where the child or the student is taught and 
staying during preschool-class or school day” (SFS, 1993:100).

These goals of STms stand in contrast with MTPs’ goals regarding competence 
and skills. In this case, the development of the environment rests rather on the abil-
ity to reflect on their own and others experiences. In the following expression of 
“others”, STms are to “demonstrate an in-depth ability to critically and indepen-
dently utilize, systematize and reflect on the experiences of their own and others” 
(SFS, 1993:100). Furthermore, MTPs should work towards deeper learning and 
developing their own knowledge and skills in order to teach and support all stu-
dents, as described by the following: “demonstrate in-depth ability to create the 
conditions for all students to learn and develop” (SFS, 1993:100). Here, it is taken 
for granted that students in need of support in mathematics are included among “all 
students”, in the same way that we took for granted that the STms are included in 
“others”. Interestingly, the STms do not have the target of reflecting on their own 
knowledge and being oriented towards developing it, but rather others’ knowledge. 
This is an aspect of the future shared tasks where the borders between the examined 
occupations (i.e. STms and MTPs) might appear clearest, namely, in regard to their 
perspectives of their own and shared experiences and knowledge.

3.2.2  Developing Students’ Knowledge

STms’ goals are constructed as a mechanism of assessing and reviewing assess-
ments of mathematical development (probably made by teachers). However, math-
ematical knowledge or learning is not mentioned in the assessment perspective: “the 
student should also demonstrate the ability to critically review and apply methods 
for assessing […] children and students’ mathematical development” (SFS, 
1993:100). Furthermore, cooperation on behalf of STms is finally stressed, as it is 
needed in establishing and implementing action plans for supporting students in 
need: “to participate in and in cooperation with stakeholders work to establish and 
implement action plans for individual students” (SFS, 1993:100). Furthermore, 
some part of the action plans or teaching of students in need of support can be the 
duties of STms, as individualised approaches should be a foundation in the knowl-
edge of STms. STms should “demonstrate a profound ability for an individualized 
approach for children and students in need of special assistance” (SFS, 1993:100).

In comparison, MTPs’ duties are to have knowledge to stimulate learning for all. 
Again, it is not certain that this is perceived as also including students in need of 
support in mathematics. As described in the degree ordinance, “MTPs should dem-
onstrate the ability to acquire knowledge of and experience with students to stimu-
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late each student’s learning and development” (SFS, 1993:100). The MTPs’ ability 
to cooperate is also stressed in the process of planning, evaluating, and developing 
teaching for all students and students’ individual learning. They must “demonstrate 
the ability to independently, together with others, plan, implement, evaluate, and 
develop teaching and teaching activities in general to optimally stimulate the learn-
ing and development of each student” (SFS, 1993:100). It can be guessed that in the 
“together with others” part, other school professionals such as STms might be 
included, but this is not explicitly said. Regarding cooperation, parents and students 
are mentioned in the context of supporting the individual students’ learning, but 
other professionals within the school are not required to “demonstrate the ability to 
observe, document, analyse, and assess students’ learning and development in rela-
tion to the goals of the school and to inform and collaborate with students and their 
guardians” (SFS, 1993:100).

To sum up, cooperation is stressed in both STms’ and MTPs’ ordinances, but it 
is not explicitly said whether the “other” profession is included as a partner in this 
cooperation. Although, it can be assumed that this is the case. This is more likely in 
the situation of developing teaching and less likely in the supporting of each student 
(including students in need). According to the goals stated, STms are supposed to 
have the ability to stimulate learning for students in need of support, which can thus 
be understood as a single-handed mission of STms. This contrasts with the consul-
tant conversations that STms are also supposed to be able to hold, as well as the 
critical and developing approach to teaching. In this circumstance, mathematics is 
mentioned for a second time: “demonstrate the ability, depending on the specializa-
tion chosen, to be a qualified call partner and adviser in matters relating to mathe-
matics difficulties”.

3.3  Judgement and Approach

The third area of demands in the exam concerns judgement and approach. Here, the 
values underlying the Swedish Education Act, and which the teachers are assumed 
to work to fulfil when they later are employed at teachers, are put to the fore. These 
values are understood as secured and governed through the decision to educate 
teacher professionals towards them.

There are both similarities and differences between the teacher exams, and they 
manifest under two themes: (1) ethics, which is constructed as an underlying fabric 
in the teacher professions, and (2) hubs, which point towards the connection or 
core in the duties. Mathematics is not mentioned, nor is there any difference 
between the two kinds of MTPs, the ones teaching preschool-class to grade 3 and 
the ones teaching grades 4–6. The MTPs’ goal of developing and reflecting on 
their own knowledge and experiences, as well as that of other professionals, is 
considered to be a competence and skill. For STms, the ability to identify needs to 
develop knowledge and competence is stated as a goal within the area of judge-
ment and approach.
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3.3.1  Ethics

Both STms and MTPs have to be able to “demonstrate self-knowledge and empa-
thetic ability” (SFS, 1993:100). In order to demonstrate empathy, teachers must 
know oneself and be able to self-reflect. This also applies to assessment, in which 
teachers are supposed to exploit, foresee, and detect social and ethical aspects. 
However, a difference is that STms are encouraged to retrieve these ethical insights 
from human rights, whilst MTPs are encouraged to retrieve these ethical insights 
from the students’ rights in particular, and the UN Convention on the Rights of the 
Child (United Nations, 1989)The ethics also relies on the assessment being based 
on a scientific perspective as teachers should: “demonstrate the ability to make 
assessments based on relevant scientific, social and ethical aspects with particular 
regard to […] human rights” or “in particular the child’s rights under the Child 
Convention and sustainable development” (SFS, 1993:100).

3.3.2  Hubs

Connected to judgement and approach is collaboration with other professionals and 
schools, which is stressed as a requirement for STms. Collaboration was already 
highlighted as a competence and skill for MTPs. Since the stakeholders are not 
explicitly defined, it might be assumed that what are intended here are not primarily 
professionals within the school, but other professionals from the student health team 
at the school, which includes school nurses, school psychologists, school social 
workers, principals, and special education teachers. Additional collaborators include 
other types of schools, such as schools for mentally disabled students,4 Sámi 
schools5 or special schools,6 and external medical professionals such as pedagogues 
for visually disabled students, child psychologists or professionals working with 
rehabilitation. Since this aspect of collaboration is not stated for the MTPs, STms 
are designated as the hub connecting organisations and professionals surrounding 
the student, as opposed to the teacher, who is the hub in the classroom at school.

4  Conclusions and Implications

The differences, similarities, and overlaps between the pre-service teacher training 
for STms and MTPs are understood as constituting important borders and spaces in 
future work to give students support in mathematics. These borders and spaces 

4 In Sweden, there are specific schools for mentally disabled students with its own curricula.
5 A school form in parallel with Swedish compulsory school, but with its own curricula, for chil-
dren who are Sámi (the indigenous people of Sweden).
6 In Sweden, there are special schools for students with certain exceptionalities (for example, 
autism). These schools follow the curricula of the Swedish compulsory school.
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impact how well-prepared teachers are to collaborate in the shared task of support-
ing students in need in the subject of mathematics. This study has the potential to 
contribute to a deeper understanding of pre-service teacher training and its opportu-
nities and threats in preparing for a school that can provide equal and high-quality 
teaching of students in need of support in mathematics. The key findings show that 
the borders and intersections are created mainly through placing responsibility, con-
cerns, location of teaching and duties as well as directing ways of relating to their 
own and the “other” profession. Tensions between aspects of teaching and learning 
have emerged, regarding for example the order between learning and knowledge, 
the history and the present, the classroom and schools’ development, assessment as 
a process or product and learning for all or individualised learning. The resulting 
friction and synergy will be briefly discussed below.

On July 3, 2018, there was a change in the Higher Education Ordinance (SFS,  
1993:100) in Sweden regarding the qualitative goals for pre-service STms. This 
change implicates a display of specific knowledge of neuropsychological disabili-
ties. What has not changed is the overall goal of the education, which can be inter-
preted as STms working mainly individually with students. As described in the 
degree ordinance, “The student should demonstrate the knowledge and ability 
demanded in order to work independently as a special education teacher for children 
and students […] in need of support […] in mathematical development” (SFS, 
1993:100). The Education Act (SFS, 2010:800), however, remains the same in regard 
to special education support. In practice, this means that any kind of professional 
with special educational knowledge with 90 credits of specialised education (not just 
STms) might be the one assisting the health care team or MTPs to provide support to 
students in need of support. This is troublesome since earlier research shows that 
development work at the group and organisational levels is needed in order to secure 
inclusion and learning for every student, and at the same time, the authority of the 
special education teacher is weak (Göransson, Lindqvist, Klang, et  al., 2015; 
Holgersson & Wästerlid, 2018). The changes in steering documents are now giving 
STms even more responsibilities and explicit skills, but without strengthening their 
authority through school legislation.

The blurred authority and responsibility of special education teaching implies 
that the borders, intersections, and limits of STms and MTPs must be negotiated 
between the professionals in every municipality and school. The collaboration in 
practice is partly decided by school principals in terms of what tasks should be per-
formed by which professionals. The general and sweeping labels in the higher edu-
cation ordinance regarding the knowledge and cooperation that are needed in 
providing special support do not help with the division of labour. We believe that the 
generalised way of stating the goals in teacher education when it comes to collabo-
ration, roles, and shared responsibilities can actually hinder future collaboration.

Looking at the borders, limitations, and intersections of the goals for pre-service 
teachers, aspects such as the source, direction, and focal points of knowledge appear 
to be essential. STms are defined as someone who has responsibility for the histori-
cal and future perspectives on students in need of support, whilst the MTPs’ respon-
sibilities are placed in the present to a high degree. This creates borders between 
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STms and MTPs by placing them in different spaces in time. This also puts an 
expectation on STms to be a broker between spaces, time, and teachers teaching 
preschool-class to grade 3 and grades 4–6. In addition, it is quite obvious that STms 
are the carriers and guardians of explicit knowledge about special needs and dis-
abilities and that they are assumed to work with, and promote the development of 
mathematical knowledge both with students in need of support, and also supporting 
all students’ learning through promoting development in the organisation. The 
responsibility and ability to carry out these responsibilities are connected to leading, 
working independently, and having a historical and critical perspective of the 
school’s work with these issues. Furthermore, MTPs are also supposed to be chal-
lenged and supported with knowledge about students’ mathematical knowledge, 
obstacles, and ways forward.

Interestingly, STms are not directed to have a critical stance towards their own 
knowledge or to be reflective in their listening to other teachers’ knowledge, which 
is the case with MTPs. A challenge lies in moving from the role of a teacher to the 
role of an expert, especially since teachers are often used to working in teams and 
collaborating, as indicated in the goals of the pre-service teacher training. Something 
that is not highlighted in the degree ordinances is a goal connected to co-teaching 
(see, e.g. Weiss, Pellegrino, Regan, & Mann, 2015; Van Ingen et al., 2016). This 
gives the impression that when collaborating, STms should lead and that perhaps 
MTPs should follow. Then, according to the goals depicted in the degree ordinance, 
the collaborative stance with collegial learning spaces seems to disappear when 
training STms. Hence, the goals create a border of diversity, segregation, and per-
haps loneliness or superiority, which might create socioemotional hindrances for 
future collaborations between these two occupations. Furthermore, the loneliness of 
the STms implies that they need to seek collaborations outside their own school to 
promote their development (since there most often is only one STm at a school), in 
networks in their community, and with universities. Pre-service teacher training 
could give all pre-service teachers a deeper knowledge of each other’s duties and 
also the possibility of taking shared courses, which might help them begin to make 
plans and negotiations, collaboration, learning, teaching, leading, and following. 
This could make teachers’ shared duties to support students in need of support in 
mathematics easier when these pre-service teachers enter into the profession, and 
the possibility to maybe even engage in co-teaching.
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1  Introduction

In this chapter, we focus on the border between school and university mathematics 
education courses by describing a testing activity that can be used in both contexts. 
Many academics (e.g., Ball, 1990; Beswick & Muir, 2013; Gainsburg, 2012; Hart & 
Swars, 2009) are concerned with the divide between reform-based mathematics rec-
ommendations promoted in teacher education courses and what actually happens in 
school mathematics classrooms (often what actually happens in schools is described 
using the word traditional). Academics stress that teachers have difficulty in trans-
lating general pedagogical recommendations to concrete classroom activities 
(Grossman, Smagorinski, & Valencia, 1999) and educators “model[ling] high- 
quality teaching practices becomes paramount” (Schwartz, Walkowiak, Poling, 
Richardson, & Polly, 2018, p. 62) to the education of pre-service teachers (PSTs). It 
is essential that in mathematics teacher education courses, we (mathematics teacher 
educators) practice what we preach and do not default to “do as I say, not as I do” 
(i.e., fall back ourselves to traditional ways). The assessment activities we imple-
ment in mathematics teacher education courses should align with the recommenda-
tions that we make about reform-based mathematics. Even more conducive to PSTs’ 
learning, we can implement activities in mathematics education courses that PSTs 
can use in their future school classrooms. This allows us to offer PSTs extensive 
experience with concrete classroom activities that can be used in schools.

Basically, we consider traditional mathematics classrooms to emphasize the 
teacher’s preferred solution strategies and reform-based classrooms to focus on stu-
dents’ mathematics solution strategies. Traditional activities, such as show & tell 
(Ball, 2001) place the teacher as the main source of mathematical knowledge in 
classrooms. If you were to walk into what we conceptualize as a traditional 
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 mathematics classroom, you would likely see the teacher at the front of the class-
room demonstrating steps of their preferred solution strategy while students sit qui-
etly and passively at their desks. You may also see students working individually at 
their desks completing worksheets that require them to mimic the steps that the 
teacher has demonstrated. In contrast, reform-based mathematics classrooms 
emphasize students’ ideas as a resource for learning (e.g., National Council of 
Teachers of Mathematics [NCTM], 2014). If you were to observe what we classify 
as a reform- based mathematics classroom, you would likely hear a lot of Math Talk 
(Campbell & Bolyard, 2018), i.e., you would likely see students and their teacher 
sharing, comparing, and analyzing students’ mathematical ideas.

The divide between what should be happening (i.e., reform-based mathematics) 
and what is typically happening in mathematics classrooms has been thoroughly 
discussed in the literature (Gainsburg, 2012). Mathematics education academics 
have identified a variety of causes of the problem including teachers’ knowledge 
about mathematics content, the difficulty in enacting reform-based mathematics 
teaching, teachers tending to teach based on their experiences as students, and uni-
versity academics teaching general conceptual/theoretical ideas and assuming edu-
cators can then translate and apply them in their classrooms.

The relationship between being a PST and an in-service teacher within the con-
text of testing becomes extremely relevant when considering the idea of teachers 
reverting back to and using activities that they experienced as students. Officially, 
PSTs are enrolled in an education program and as such are students who are adding 
to their experiences as students. In terms of PSTs and in-service teachers falling 
back to their experiences as students, a traditional mathematics content test that 
PSTs sit may be perpetuating the divide between what is being promoted in teacher 
education courses and what is actually happening in school classrooms. In other 
words, PSTs and in-service teachers reverting to traditional ways may be partially 
due to teacher education programs. Furthermore, this may be particularly true for 
testing experiences, as many Canadian universities have PSTs sit Grade 6 and 7 
mathematics content tests (Brown, 2016). Having PSTs demonstrate their knowl-
edge of elementary mathematics content through traditional testing, is essentially 
offering PSTs more experience with traditional activities to fall back on. Thus, it 
would make more sense to align what happens in education programs with recom-
mendations of reform-based mathematics. Simply put, aligning what PSTs experi-
ence in their education programs with the recommendations that are made about 
reform-based mathematics classrooms serves to bridge the border between what is 
said and done and ultimately what PSTs will do in their in-service teaching.

For teacher education courses, it is often recommended that PSTs have extensive 
experience with concrete classroom activities before learning about general peda-
gogical recommendations. Berliner (1989) suggests that we should offer PSTs 
extensive experience with practical activities that they can use in their future class-
rooms to support closing the gap between research and practice. In a review of the 
literature on the divide between what actually happens in classrooms and what 
research recommends, Gainsburg (2012) presents the case for first offering PSTs 
practical tools and activities, then proceeding to explore general/conceptual 
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 frameworks. Essentially, the argument is about learning from the concrete and then 
moving to the general. At one end of the argument, there is the idea that “[o]nly 
through extensive experience with particular practical tools will teachers derive the 
general educational concept; teachers must do before they understand” (Gainsburg, 
2012, p. 363).

However, researchers also believe that this is difficult because school-based 
practice teaching blocks often come after course work (Gainsburg, 2012). The 
National Council for Accreditation of Teacher Education (NCATE, 2010) suggests 
that teacher education programs have course work “woven around” practicum expe-
riences. This is a way for PSTs to emphasize and gain experience with practical 
applications of course work. Here, we extend the work on offering PSTs concrete 
experiences with classroom activities by detailing a testing activity that can be 
implemented in school classrooms and mathematics teacher education classrooms. 
We detail an activity of having PSTs develop, sit, and assess tests for one another. 
We analyze PSTs’ written reflections about experiencing such a testing activity, and 
situate PSTs’ perceptions of their learning in related literature and recommenda-
tions for reform-based mathematics.

2  Reform-Based Mathematics

The NCTM is a well-established and well-known proponent of reform-based math-
ematics. Their recommendations to support reforms in mathematics include a focus 
on multiple students’ mathematics ideas, use and posing of questions/tasks that 
advance students’ mathematical ideas, ideas about feedback, and collaboration 
(NCTM, 2000, 2014).

The NCTM suggests that reform-based mathematics classrooms should include 
a focus on students’ mathematical ideas. The NCTM (2014) clearly states that effec-
tive teachers “use evidence of student thinking to assess progress toward mathemat-
ical understanding” (p. 3), and that effective teachers encourage discourse among 
students by “analyzing and comparing student approaches and arguments” (p. 3). 
Clearly, there is a focus on students’ ideas in these suggestions, as the suggestions 
would not be possible without students’ approaches to a mathematics problem. 
Furthermore, there is emphasis placed on multiple solution strategies because dis-
course is about analyzing and comparing students’ approaches and arguments (if it 
were singular then comparing could not take place). Indeed, literature supports the 
use of multiple solution strategies in mathematics classrooms. For example, Rittle- 
Johnson and Star (2007) found that students who compared solution methods to the 
same problem outperformed students who used only one solution strategy.

In terms of questions, the NCTM (2014) is clear that in reform-based class-
rooms, teachers are encouraged to use purposeful questions to advance their stu-
dents’ mathematical ideas and draw attention to important mathematics relationships. 
Specific to posing questions in reform-based classrooms, the NCTM (2000) is 
apparent that in addition to solving problems, students are also encouraged to 
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become problem posers. Teachers should work with students to “develop a broad 
range of problem-solving strategies, to pose (formulate) challenging problems, and 
to learn to monitor and reflect on their own ideas in solving problems” (p. 116). 
Problem posing has been associated with creativity and active mathematics class-
rooms that focus on mathematical ideas originating from students (Silver, 1994). 
Yet, posing questions can be challenging for both the creator and the receiver 
(Silver, 1997).

The NCTM believes that feedback “helps students in setting goals, assuming 
responsibility for their own learning, and becoming more independent learners” 
(NCTM, 2000, p. 2). Moreover, the NCTM (2014) suggests that mathematical suc-
cess for all can be achieved through “descriptive, accurate, and timely feedback on 
assessments, including strengths, weaknesses” (p. 5). There is no agreement on the 
definition of feedback within the literature (Evans, 2013) and there are many differ-
ent ways to conceptualize feedback. Feedback can be viewed in a range of ways 
such as: simply as a corrective tool or as a process that provides students with 
opportunities to dialogue and decide how to improve and refine their work. Evans 
(2013) states that:

[T]he emphasis in the literature [in higher education—which would include teacher educa-
tion] is on feedback as a corrective tool, whereas it should also be seen as a challenge tool, 
where the learners clearly understand very well and the feedback is an attempt to extend and 
refine their understandings. (p. 72)

There does seem to be some overlap about effective feedback. For example, there 
are academics (e.g., Andrew, 2009; Lavey & Shriki, 2014) who emphasize that 
effective feedback should be concrete. Precisely, feedback should be about improv-
ing students’ mathematical communication and conceptual understanding rather 
than simply providing general positive affirmations (e.g., “good job”). Embedding 
ideals of NCTM, we believe that feedback is crucial to learning. Indeed, many 
researchers echo the NCTM’s suggestions about feedback and assert that feedback 
is one of the “most critical teaching skills that have been documented as facilitating 
student achievement” (Scheeler, 2008, p. 146). To think about the vast impact feed-
back can have on learning, our ideas include literature about feedback being 
dynamic where the teacher also learns from students through dialogue (e.g., Carless, 
Salter, Yang, & Lam, 2011), and feedback having the potential to change beliefs and 
levels of engagement (Nelson & Schunn, 2009).

The NCTM is also explicit in making recommendations about collaboration in 
reform-based mathematics classrooms. For example, it is asserted that “[w]orking 
in pairs or small groups enables students to hear different ways of thinking and 
refine the ways in which they explain their own ideas” (NCTM, 2000, p. 129). This 
emulates the ideas about analyzing and comparing students’ solution strategies but 
focuses on collaboration. The NCTM extends their recommendations about col-
laboration to include teachers. NCTM (2000) endorses that mathematics teachers 
have much to gain from collaborating with other teachers when it says that mathe-
matics teachers can collaborate with colleagues in creating their own learning 
opportunities. In doing so, they enhance their own mathematical and pedagogical 
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knowledge, to teach their students well. In the end, we consider reform-based math-
ematics activities (including testing activities) to be ones that emulate ideas about 
effective feedback, focus on students’ ideas, embed a lot of Math Talk and collabo-
ration, and involve purposefully selected questions or problem posing.

3  Teacher Learning and Reform-Based Mathematics

The literature about teacher education, feedback, using students’ mathematical 
ideas, and multiple solution strategies is either sparse or point to difficulties. 
Furthermore, some academics (e.g., Ball, Sleep, Boerst, & Bass, 2009; Hiebert, 
Morris, Berk, & Jansen, 2007) suggest that PSTs’ coursework should follow a 
practice- based approach—one where PSTs “do instruction, not just hear and talk 
about it” (Hiebert et al., 2007, p. 459).

It is useful to consider how difficult it can be to enact reform-based methods 
when considering how to educate PSTs to use students’ multiple solutions. 
Gainsburg (2012) points to the difficulty of using students’ ideas because of the 
uncertainty in what ideas students will share. She explains that “[t]eachers must 
continuously monitor and respond to students’ thinking, design active learning tasks 
and environments, and cope with uncertainty” (p. 365). Indeed, others have sug-
gested that teachers should anticipate students’ mathematical ideas before lessons 
(Smith & Stein, 2011). Even with anticipating, it must be pointed out that using 
more than one solution method in mathematics lessons presents a challenge for 
teachers because it requires teachers and students to go beyond show and tell—it 
requires connecting students’ mathematical ideas (Smith & Stein, 2011). In addi-
tion, professional learning opportunities for teachers on using multiple solutions in 
their classrooms have received poor results. Durkin, Star, and Rittle-Johnson (2017) 
reported that despite providing teachers with curriculum materials that were specifi-
cally designed for teachers to get their students to compare multiple strategies, 
teachers rarely implemented these materials. Based on these findings, Durkin and 
her colleagues recommended that additional supports were needed for teachers to 
learn how to use materials that focused on multiple solution strategies. They go on 
to recommend that instructional techniques should be researched in this area, so that 
teachers can effectively do this in their classroom.

Unfortunately, much of the literature about feedback does not focus on educating 
PSTs to provide feedback themselves as teachers. The research regarding feedback 
within the context of teacher education programs tends to investigate the type of 
feedback offered to PSTs. For example, Ellis and Loughland (2017) discussed how 
mentor teachers (in-service teachers of practicum classrooms) offered feedback to 
PSTs. Similarly, Schwartz et al. (2018) examined effective feedback provided to 
PSTs on lessons PSTs taught in school-based practice teaching blocks by examin-
ing occurrences of feedback that was mathematics specific. Thomas and Sondergeld 
(2015) is one of the exceptions, as they focused on PSTs providing feedback in their 
future classrooms through having PSTs practice giving written feedback to school 
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students’ work. Based on their findings, Thomas and Sondergeld (2015) articulated 
that “we cannot assume that [PSTs] will develop skills in best assessment practices 
without deliberate, scaffolded, and guided instruction” (p. 104). Therefore, it is nec-
essary that education programs consider how descriptive and timely feedback could 
be approached for PSTs’ learning. This is an under-researched area and findings 
about how PSTs learn to enact best practices in feedback in their future classrooms 
could not only extend existing research but also be used to inform the design of 
PSTs’ coursework and activities.

In terms of designing courses for PSTs to help them learn about reform-based 
mathematics, there seems to be a push towards pedagogies of enactment (Grossman, 
Hammerness, & McDonald, 2009). This movement goes against the implicit 
assumption that adults (including PSTs) learn differently from children—the 
assumption that PSTs learn from listening and reading, rather than gaining exten-
sive experience with(in) the concrete and then moving to more generalized and 
overarching theories/ideas. For example, Grossman et al.’s (2009) work proposed 
that teacher education “move away from a curriculum focused on what teachers 
need to know” to a “curriculum organized around core practices” (p. 274). Grossman 
and her colleagues (2009) go on to recommend preparing PSTs by offering oppor-
tunities to experience activities “in environments that are less complex than class-
rooms” (p.  279) such as the environment of teacher education courses. The 
conclusion is that learners (PSTs and schoolchildren) benefit from extensive experi-
ences with the concrete and then moving to the general. Ideally, PSTs could learn 
about feedback by providing feedback and learn about using multiple mathematical 
solution strategies by experiencing activities that provoke multiple solutions strate-
gies. Learning from the concrete and moving to the general could be very efficient 
for PSTs through activities that could be used within mathematics teacher education 
courses and within school mathematics classes.

4  Teacher Learning Through Experience

The idea of learning through experience can be found outside of research about edu-
cating PSTs and in the learning of in-service teachers. For example, Mason’s (2002) 
work on noticing is a framework that is well established and used extensively by 
mathematics education researchers (e.g., Chapman, 2015). Mason’s framework 
extends Schön’s (1983) work on the reflective practitioner to include the notion of 
reflecting-through-action. Reflecting-through-action is about “heighten sensitivity to 
notice while engaging in practice” (Mason, 2002, p. 15). Mason (2002) speaks about 
teacher learning in terms of professional noticing. Mason described professional 
noticing as something that one does when they see someone else doing something 
(e.g., gesturing, using certain phrases/questions, a task) in a professional setting such 
as teaching or interacting with a client and they imagine themselves doing something 
similar when they are acting professionally. Mason and Davis’ (2013) perspective 
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on teacher professional learning and noticing is grounded in learning from experi-
ence. They go as far to say that:

[T]he only strategy, the only action that human beings have access to in order to learn from 
experience is to become consciously aware of recent actions that proved fruitful and then to 
imagine themselves having this action come to mind in some similar situation in the future. 
(p. 192)

In the specific case of PSTs, Mason’s work can be interpreted to make claims that 
PSTs learned from their experiences if they can make connections to their future 
classroom by envisioning themselves enacting a similar activity in their own 
teaching.

5  The Study

The testing activity can broadly be described as PSTs developing, sitting, and 
assessing final tests for another. Having students develop tests and solution keys, sit 
each other’s tests, and assess classmates’ solutions to the tests is not a new idea and 
has been implemented in mathematics courses (see Rapke, 2016). Research shows 
that such testing activities promote students to apply deep approaches to learning 
while they prepare to sit the “live/actual” test. Here and in line with the NCTM’s 
focus on feedback, we have specifically added a feedback element to the activity 
(the assessment of classmates’ responses to test questions included directions to 
provide feedback). For ease of description, we say that the feedback portion of the 
enactment of the activity is the period that begins when PSTs return their test 
responses to their colleagues who crafted the test questions. We have also changed 
the context of how PSTs are to craft questions. In mathematics classes, students are 
told to craft and select questions about the mathematical concepts they learned in 
the course. PSTs were told to craft questions based on what they think themselves 
and their classmates should know as future teachers (this may include questions 
focused on mathematics content or those more focused on pedagogy). For example, 
a question that focused on mathematics content might include a prompt to share 
multiple solutions strategies to solve a problem such as “3.5 × 24.” Whereas a more 
pedagogical question might ask about possible prompts a teacher could use to sup-
port students to make connections across solution strategies. Allowing students (in 
this case, PSTs) to choose and craft questions for the test allows their ideas to take 
center stage (focusing on students’ ideas is a crucial component of reform-based 
mathematics classrooms as outlined in our related literature section). The testing 
activity also involves Math Talk, in line with research (Campbell & Bolyard, 2018). 
Math Talk takes place during the crafting of the tests, assessing of the tests, and the 
feedback portion of the activity.

This study took place at a large research-intensive Canadian University. The 
teacher education program requires elementary PSTs to take two mathematics edu-
cation courses during their 2 years of study. The participants in this study were in 
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their first year of the program in two different sections of the same mathematics 
education course. The course is characterized as a teaching methods course for ele-
mentary PSTs. This course is designed to teach PSTs how to teach mathematics in 
primary and junior classrooms (with children of ages 5–12). All students enrolled in 
the course took part in the testing activity. Forty-two PSTs volunteered to partici-
pate in this study and have their work be used for research purposes. The study took 
place during the last two sessions of a course that consisted of 12 sessions. The fol-
lowing provides an overview of the testing activity that took place over 2 days (ses-
sion 11: Day 1 and session 12: Day 2).

5.1  Day 1—Creating Questions and Solution Keys

In session 11, PSTs were separated into groups consisting of 4–5 members and 
spent three hours creating four test questions. Criteria for the test questions took 
place in class and was led by the course instructor who sought agreement on the 
types of questions that would be posed. The content, for example, had to be based 
on topics explored in the course like subtraction. The PSTs also wanted the ques-
tions to be asked in a way that supported a variety of ways they could demonstrate 
their understanding of the mathematics that was being tested. PSTs also had to 
provide a solution key to their questions. They were told that they would use this 
solution key to assess their classmates’ responses and to assign grades (if assigning 
grades is what their individual group decided they were going to do). Requiring 
solution keys was purposefully included in the activity because it is something that 
PSTs seemed to be familiar with, based on their testing experiences in previous 
mathematics courses. It was also hoped that crafting solution keys would provide 
PSTs with the opportunity to anticipate multiple solution strategies for each ques-
tion that they posed. This was a pass/fail activity. The instructor of the course was 
present during the class and was circulating around the room to offer advice/sugges-
tions. PSTs were told that they passed once the instructor deemed their tests and 
solution keys acceptable.

5.2  Between Day 1 and Day 2

In between Day 1 and Day 2, each groups’ test questions and solution keys were 
posted on a class website for everyone in the class to view. To prepare for the test, 
PSTs could practice some or all of the possible questions that could potentially be 
asked on the final day.

T. Rapke et al.



171

5.3  Day 2—Sitting the Test and Assessing Questions

On the final day of the course, each group (that was formed in Day 1) was randomly 
paired with another group for the purpose of exchanging/sitting one another’s tests. 
PSTs were given an hour to individually answer each other’s test questions in a 
traditional manner—no resources, no talking, and only access to paper and pencil/
pen. Upon completion of their test, PSTs submitted their work to the group who 
developed the test. This is when the feedback portion of the activity began. Each 
individual group chose whether or not to assign a grade value or level of achieve-
ment between 1 and 4 (with 4 being the highest) and were told that they had to 
provide feedback that their classmates could use to enhance their work. This facili-
tated a process whereby PSTs naturally wanted to talk to their classmates who wrote 
the test. The PSTs were instructed that they would pass the assessment/feedback 
portion of the test once the PSTs who sat the test were satisfied with the feedback 
they received.

6  Data Collection

As part of the course requirements, PSTs completed a written reflection about their 
experiences with the testing activity. The reflection was guided by the question: 
How has this experience (over two classes) influenced your future teaching? Only 
PSTs reflections that agreed to participate in the study were collected as data and 
analyzed for research purposes. Pseudonyms were given to all PSTs to protect their 
identity. This was also a pass/fail portion of the activity. PSTs were told they would 
have an opportunity to resubmit their reflections and the instructor would provide 
feedback, if the instructor deemed the reflection as unacceptable. No PSTs reflec-
tions were deemed unacceptable.

7  Data Analysis

The data was analyzed by drawing upon a phenomenographic approach, whereby 
data are gathered in order to study participants’ experiences and perceptions of the 
phenomenon being investigated (Marton & Booth, 1997; Mason, 2002). Mason 
(2002) tells us that “[t]he aim [of phenomenography] is to describe and characterise 
different ways of experiencing” (p. 162). Phenomenography is a qualitative research 
approach that has a long history in higher education (e.g., Kinnunen & Simon, 
2012; Marton & Booth, 1997) and takes a second-order approach. This means that 
the focus of the research rests upon how people in the situation experience/perceive 
the phenomenon, rather than how the researcher experiences or understands it. 
Phenomenography is used to develop qualitatively different categories of ways 
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 participants experience/conceptualize a phenomenon. These qualitatively different 
categories are derived from the collected data by means of iterative procedures 
(Kinnunen & Simon, 2012). The premise of phenomenography is that knowledge is 
both subjective and relative (Kinnunen & Simon, 2012). Rich data is derived from 
a wide range of experiences/conceptions of the same phenomenon. This is accom-
plished by asking people to explain in their own words about the phenomenon and 
how they experienced/conceptualized it personally. This research was guided by the 
question: In what ways do PSTs describe the learning that took place through creat-
ing, sitting, and assessing final tests for one another?

The second author started the analysis by identifying statements that related to 
the research question. These comments were re-read by Author 2 and read by Author 
1 to familiarize themselves with the developing ideas. Author 1 and 2 started to 
identify common features within the data to form categories, and then they started 
to examine what made each category different and similar. Author 1 and Author 2 
continued to re-form groups by amalgamating groups and identifying other catego-
ries through the iterative process of revisiting data. Author 3 then read through the 
selected comments and either agreed or disagreed with the categories. Author 3 
agreed with the categories and their descriptions.

8  Findings

PSTs’ experiences of creating, sitting, and assessing final tests with one another 
were sorted and classified into four emergent categories that describe PSTs percep-
tions about:

1. Crafting questions and problem posing
2. Anticipating and making sense of students’ mathematical ideas
3. Feedback
4. Collaboration

Each category of description is outlined and direct quotes are provided to illus-
trate the characteristics of each category and provide insight into the differences 
between categories. The experiences or perceptions may have come from one or all 
the participants. The number of comments in each category is not given because 
phenomenography is concerned with the variety of perceptions and experiences not 
the most typical.

8.1  Crafting Questions and Problem Posing

In this category, PSTs specifically used the word “question” or “questions” and 
spoke about what they learned in regard to what is required to craft/pose questions 
(both test questions and questions PSTs will use in their future  classes and on 
assignments). It was explained that when crafting the text of the question, teachers 
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need to be thoughtful by anticipating how students might interpret the question. 
Advice was given that you need “be very careful with your wording” (Amy) and that 
sometimes “all it takes is one word to change for a question to finally make sense to 
someone” (Amy). Warnings were also given that the language within the question 
can lead “students down the wrong path” (Amy). To clarify, within the comments 
was the idea that the wording of the questions would influence the mathematical 
skills and knowledge that student would demonstrate in their responses. It was 
clearly stated that words and phrases “provoke the use of the certain [mathematical] 
concepts I would like to see in the student’s answers” (Adrian). There was also the 
idea that the clearer the language (including the wording of instructions within the 
question) the greater the chances of students demonstrating the mathematical skills 
and knowledge that the teacher has planned for. Safire said it best when she 
explained, “words and phrases that are used need to be clear or else the students 
might not answer the question how we expected them to.” It is evident that experi-
ences of developing, sitting and assessing tests can lead to an awareness that teach-
ers need to craft questions using language that minimizes misinterpretations and 
influences the use of certain skills and knowledge that the teacher meant for stu-
dents to demonstrate.

PSTs reported that they learned that teachers also “need to be very thoughtful 
about the numbers” (Nancy) within the questions when they are attempting to have 
students demonstrate specific mathematical concepts. The numbers within mathe-
matical questions will allow “students to see a relationship between numbers and 
concepts in math” (Adrian). Moreover, insight was gained that numbers within the 
question can potentially lead to students experiencing negative feelings and devel-
oping negative ideas about mathematics. For instance, Adrian advised, “not choos-
ing numbers that will frustrate students into thinking math is hard.” The idea of 
intentionally choosing numbers within a question becomes apparent, for instance, if 
the teacher is wanting a Grade 2 student to demonstrate equal sharing but asks a 
question that involves sharing 27 items among five people.

Comments indicated that “clear”/(not vague) or “good” test questions are ques-
tions that “require time and attention to create” (Carly). It was explained that teach-
ers need to be very strategic with their use of language and numbers, so that students 
demonstrate the mathematical skills and content the teacher envisioned. 
Furthermore, tests questions should allow the teacher to evidence that students are 
demonstrating specific expectations from the curriculum. The opposite of clear 
questions would be “vague questions” and it was clarified that “if the teacher pro-
vides a vague question, he or she should expect a diverse set of answers and not 
restrict the ‘correct’ answer to a specific answer” (Ed). This means that credit 
should be given to solutions that did not use the concept that the teacher intended 
and wanted students to demonstrate. In summary, when PSTs reflected on their 
experience of the testing activity, they spoke of the following influences: crafting 
the text of a question, choosing the numbers within a mathematical question, the 
extensive time required to develop questions, and how questions on tests can cause 
students to experience negative emotions.
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8.2  Anticipating and Making Sense of Students’ Mathematical 
Ideas

The experiences of this category included challenges associated with anticipating a 
range of students’ ideas and/or spoke to the importance of understanding students’ 
mathematical ideas. Comments alluded to struggles PSTs had with anticipating 
solutions for the answer key that they created to assess their classmates’ tests. An 
idea that appeared within the experiences was about not being able to have a com-
plete answer key because PSTs were unable to anticipate all the responses on the 
tests. For example, Elsa said: “[E]ven though [fellow PSTs] believed they had 
offered all of the possible solutions to a single question, there still existed many 
more ways of mathematical thinking they did not expect.”

Anticipating test responses was deemed challenging because the test responses 
contained different strategies from the preferred/anticipated strategy of the PSTs 
who authored the test. The following statement speaks to why PSTs felt this practice 
was so difficult. Aleeya reported that no matter how specific the instructions are: 
“…they often divert to their own ways of thinking and showing their work and com-
pletely ignoring ours.” Experiencing the difficulties in anticipating how students 
will respond to test questions led to PSTs reporting more general insights into to 
future teaching (i.e., what this means for lesson planning, or being a mathematics 
teacher in general). In terms of preparing for lessons, Crystal acknowledged that: “I 
guess I have to learn that no matter how much I plan, when I teach, students will find 
ways to answer my questions that I can’t plan for.”

Unexpected solutions/answers to test questions prompted PSTs to think about 
how being a mathematics teacher means that they need grapple with having to 
anticipate and that they cannot anticipate everything. For example, one PST said: 
“I knew by the end of the semester to expect the unexpected, but regardless of what 
you expect, the unexpected will still take you by surprise” (Matilda). The experi-
ences about being comfortable with not being able to anticipate everything included 
rationales to why teachers should become comfortable in being uncomfortable. 
Ronny identified the challenge of not being able to anticipate all of his students’ 
ideas but lays important claims to what he feels it means to be a mathematics 
teacher by saying: “Although I won’t be able to anticipate all the answers, I need to 
be able to anticipate the ways in which my students may answer questions so that I 
can connect their answers in meaningful ways” (Ronny). Specifically, Ronny iden-
tified that he thinks that mathematics teachers need to anticipate multiple solutions 
because his job as a teacher requires him to connect students’ mathematical ideas 
in “meaningful” ways. Thus, anticipating how students will respond to a mathe-
matics question is related to being able “to understand what it is they [students] are 
doing” (Aleeya).

Descriptions of PSTs experiences implied that teachers can “Tap into your stu-
dents thinking in order to help them progress in terms of achievement” (Cherry). 
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Mira echoed Cherry’s idea and exemplifies how important she feels it is for teachers 
to understand students’ mathematical ideas by stating: “Once we figure out their 
thinking we can help them with missing steps or help them develop their thinking 
further.” PSTs were motivated by unexpected solutions to move out of their seats 
and to ask their colleagues about their ideas. Based on this experience, PSTs recom-
mended that future classroom activities involve “conferencing to better understand 
student thinking” (Kate).

8.3  Feedback

The statements that fell under this category included the word “feedback” and 
resulted from PSTs reflecting on the feedback portion of the testing activity. The 
feedback portion of the testing activity took place at the end of the activity and 
occurred after PSTs sat the test and submitted their work to the group who made the 
test they sat.

Comments in this category provided insight into how PSTs conceptualize effec-
tive feedback and the complexities of providing effective feedback. It was explained 
that realization was gained about “how much learning can come from good feedback 
even if a child got it completely correct” (Cara). One PST described how she could 
do more than “give check marks or irrelevant comments (ex. good job)” (Mandy) and 
that understanding and meaning making could be supported by focusing feedback on 
students’ solution methods. Providing feedback to students’ solution strategies was 
also mentioned in terms of benefits to students’ learning dispositions. For example, 
Andrea took note of the importance of providing positive feedback, “as it may con-
tribute to students feeling confident about their own ways of solving a mathematics 
problem.” Statements falling in this category indicated how providing feedback can 
be difficult because it involves interpretations. Specific comments eluded to an 
awareness of possible (mis)interpretations students might make based on the nuanced 
language contained within the feedback. For instance, Carmela said, “I realized that 
my language may have hidden meanings for a student. Phrases such as ‘I like how’ 
can lead a student to think that the way they used to solve is the only one the teacher 
‘likes’ and therefore resort to using only one method to solve.” In terms of nuanced 
language and learning specific mathematical topics, Elsa said that she learned that 
“when giving feedbacks [sic] it is helpful to go back and look at the specific curricu-
lum expectations” to help choose words that she can use within feedback.

The difficulty of interpreting and making sense of written feedback can be seen in 
suggestions that the effectiveness of feedback may improve with in-person discus-
sions. This can be observed when Crystal said, “I feel like the feedback would be more 
valuable in person as well, so we could interactively look at the work together. I feel 
like my feedback was not as effective just written on the page like that.” Ann shared in 
experiencing difficulty while communicating about how to enhance students’ mathe-
matical work as she said she plans to “incorporate talk” in her feedback practices.
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In terms of learning to be future teachers, Drake indicated that he learned from 
the feedback he received from fellow PSTs by saying that he will “definitely use 
their [fellow PSTs’] feedback to inform future questions I pose to students.” It is 
interesting to note that a PST said that developing, sitting and assessing tests for one 
another “was the first time that I provided feedback in my marking which included 
meaningful and thought-provoking responses, and I am certainly inspired to do the 
same in my future practice as an educator” (Lisa). PSTs clearly articulated that the 
testing activity provided them with an opportunity to learn about feedback them-
selves, by implementing feedback practices and for some it was the first time in 
their program of study where they had an opportunity to provide meaningful 
feedback.

8.4  Collaboration

PSTs described the benefits they experienced and envisioned for their future stu-
dents and teaching based on the collaborative nature they experienced while devel-
oping, sitting, and assessing final tests for one another. Comments contained specific 
benefits of collaboration that they themselves experienced in the testing process and 
possible benefits of future collaborations with in-service teacher colleagues. The 
benefits included increasing confidence to sit the test, building friendships, and sup-
porting students to take risks.

It was explained that trepidations about taking the test were eased because devel-
oping a test allowed for learning opportunities and confidence building to sit the 
test. There were experiences that described how PSTs could prepare to sit the test 
themselves by developing a test. For example, Steph spoke about her own learning 
of mathematics and pedagogy when she explained that while developing the test “I 
could observe and learn from my peers.”

There were also reports about how the process increased confidence to sit the test 
because they felt they were not sitting a test that was out to trick them. For instance, 
including students in developing test left one PST feeling that the test “isn’t going 
to include a plan to trick the students into making mistakes” (Andrea). Others 
reported how collaborations reduced tension and increased confidence because they 
were able “to witness that although my peers knew more math than I did, I knew 
how to ask the right math questions” (Juan).

Reflections also included perspectives about how and why their experiences of 
the testing activity has encouraged them to involve their future students in develop-
ing, sitting, and assessing tests to build community or provide support. Building 
community can be evidenced in terms of “friendships” in Sherry’s statement: “I 
would try to incorporate this strategy so that new friendships can form in my class-
room.” Other perspectives also included the idea of supporting students to succeed. 
For example, Ainsley said that she would use the testing activity in her future class-
room to “support the students’ development and not setting them up to fail.”
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While other statements indicated that experiencing the testing activity had them 
think about collaborating with future colleagues. Elsa explained that her experience 
helped her “gain insight to the many benefits that can result from collaboration with 
other teachers in the field.” The benefits of future collaboration with other teachers 
were described in terms of coming up with new and unique ideas. It was explained 
that new and unique ideas could take the form of lesson plans or teaching strategies. 
Others described more complex ideas about how students and their mathematics 
teacher should be in collaboration. Some pointed to how the teacher should be in 
dialogue with students instead of making quick judgments about student ideas that 
do not match their own their preferred solution method. The comments gave a sense 
of ways of being open with students by not just assuming they (PSTs) are right 
because they are the teacher:

I don’t think I ever had a teacher ask me to explain how I got an answer before marking it 
… In the future, I hope I remember this in my own teaching and that I’m not quick to judge 
a student’s thinking if it does not match mine (Crystal).

Other comments lined up with these ideas through emphasizing how the responsi-
bilities of teaching should be shared in classrooms. For instance, Steph explained, 
“the teacher teaching the student sometimes flips around to the student teaching the 
teacher.” Others claimed that experiencing the testing activity made them realize 
that “it is beneficial to have students leading the class while the teacher provokes 
conversations though using an inquiry approach” (Sam).

In terms of teachers continuously learning and taking an active role it in the 
learning environment, it was clearly articulated that “as an educator we need to 
continuously learn about how students learn in order to develop optimal opportuni-
ties” (Mandy). Moreover, it is important that “educators are constantly learning 
from their students just as much as their students are learning from them” (Malisa). 
Experiences in this category indicate specific benefits of collaboration that can be 
realized through enacting the testing activity in mathematics and mathematics edu-
cation classrooms. They include the benefits of students collaborating during the 
testing activity and illuminate the collaborative pathways and partnerships between 
students and teachers that are possible.

9  Discussion

Our findings point to the significant benefits of reform-based mathematics activities 
that sit in the milieu of school classrooms and teacher education courses—activities 
that sit on the border because they can be implemented in both contexts and embody 
general constructs of reform-based mathematics recommendations. Our findings 
suggest that such activities allow PSTs to learn about general constructs of reform- 
based mathematics through concrete experience, thus supporting and extending 
 literature about PSTs education (e.g., Gainsburg, 2012). The PSTs perceptions not 
only indicate that they learned about constructs of reform-based mathematics class-
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rooms but also identified and experienced the worth/outcomes of the activity. As a 
result, and in terms of teacher learning as Mason (2002) conceptualizes it, PSTs 
envisioned themselves and their students benefiting from the testing activity in 
future situations.

In terms of PSTs’ learning, our findings point to significant gains that can be 
realized in terms of bridging the divide between school classrooms and what is 
recommended in teacher education courses. Not only did PSTs learn about con-
structs within reform-based mathematics recommendations, but they themselves 
experienced the value of activities that exhibit constructs from reform-based math-
ematics recommendations. In turn, PSTs claimed their intentions of implementing 
the testing activity in their future classrooms. Considering Mason’s (2002) concep-
tualization of learning, many of the PSTs envisioned themselves using the testing 
process in their own classrooms giving rationale of positive aspects from which they 
have benefitted. PSTs said they intend on using the testing process in their future 
classrooms to help their students build friendships and build confidence. There is 
clear evidence that this testing activity provided PSTs with an experience that is 
tangible and will be easily applied in their own classrooms. In terms of teacher 
learning, this should signify that much effort and time should be put towards design-
ing more reform-based mathematics activities that sit in the border between school 
and teacher education courses (i.e., activities can be implemented in teacher educa-
tion courses and school classrooms).

As gaining extensive experience with concrete classroom activities is promoted 
in the literature about mathematics teacher education (e.g., Gainsburg, 2012), our 
findings point to future directions reform-based mathematics activities can play in 
teacher education courses. Specifically, PSTs experiencing a reform-based mathe-
matics testing activity that was implemented within an education course allowed 
PSTs to draw out and learn about conceptual ideas. Some conceptual ideas they 
learned about are found in the NCTM’s (2000, 2014) recommendations for reform- 
based mathematics. For example, the PSTs began to think about focusing on and 
using students’ mathematical approaches—a strategy that researchers have deemed 
difficult (Hiebert, 2013). This is evident in PSTs comments about the challenges in 
using student thinking as a basis for mathematics teaching. They indicated that 
using multiple students’ solutions in classrooms will require them to take risks and 
feel comfortable with uncertainty. More importantly, some PSTs learned about why 
they should be using students’ ideas even though it proves to be challenging. PSTs 
learned that mathematics teaching is about connecting students’ approaches in 
meaningful ways and advancing students’ reasoning by helping them develop their 
thinking further through feedback that focuses on the students’ approaches. Our 
study is significant as researchers (e.g., Durkin et al., 2017; Handal & Herrington, 
2003) posit that using multiple solution approaches is challenging and require more 
research about how to support teachers enact the recommendation (Durkin et al., 
2017). We offer a solution to how PSTs (or in-service teachers) can learn about and 
become comfortable with (1) using multiple solutions in their teaching, and (2) 
knowing they cannot anticipate everything. Implementing reform-based mathemat-
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ics activities that sit in the border between school and teacher education programs 
show notable promise.

Additionally, through experiencing a reform-based mathematics testing activity 
within an education course, PSTs learned about problem posing. Creating and 
implementing questions that focus on students’ mathematical ideas and draw atten-
tion to important mathematics relationships is essential (NCTM, 2014) and problem 
posing is challenging (Silver, 1997). It is quite significant that PSTs in our study 
appreciated the challenge of crafting the text within a question and thoughtfully 
choose numbers within the question to have important concepts and number rela-
tionships emerge.

Feedback was one of the constructs our study participants signaled to be an area 
of significant learning. Our findings about feedback should draw much attention 
because: (1) they extend existing literature about feedback and PSTs, and (2) the 
findings indicate that the activity promoted PSTs to learn about effective feedback. 
The existing literature about feedback mostly involves conceptualizations as feed-
back as corrective (Evans, 2013) or is about feedback provided to PSTs (e.g., Ellis 
& Loughland, 2017; Schwartz et al., 2018). Our chapter adds to the small body of 
literature that investigates implementation of feedback as much more than a correc-
tive tool (e.g., Evans, 2013). Our study participants indicated that through experi-
encing the testing activity they have come to view feedback differently. Participants 
explained that they learned that feedback can be useful, even if students get the 
answer correct. Participants acknowledged that there is much more to be gained 
through feedback that goes past positive comments (such a “good job”). Participants’ 
comments (such as the ones about going back to the curriculum and focusing on 
student approaches) clearly show that they have come to view effective feedback as 
feedback that is specific to the mathematics involved. This finding allows us to con-
clude that the testing activity promotes PSTs to learn about feedback that align with 
ideas about effective feedback in the literature (e.g., Andrew, 2009; Lavey & Shriki, 
2014; Schwartz et al., 2018).

Participants’ experiences about dialogue between the parties involved in feed-
back extends research literature on PSTs and feedback. There is very little research 
about PSTs learning about feedback practices they can implement in their future 
classrooms. Indeed, most of the literature is about feedback provided to PSTs (e.g., 
Schwartz et al., 2018) and not in the service of PSTs learning about providing feed-
back  themselves. PSTs spoke about possible misinterpretations and how they 
needed to be thoughtful about the beliefs they could be endorsing with students (i.e., 
the teacher’s methods is better or the only ways to solve a problem). It is important 
to note, at least one PST believed that the activity was the first time she was able to 
practice giving meaningful feedback. This is a comment that is substantial but not 
surprising, as there is very little literature about providing PSTs experiences in the 
practices of feedback.

Collaboration was another theme that PSTs experienced within the testing activ-
ity and is within recommendations for reform-based mathematics. Significantly, 
PSTs in this study moved beyond experiencing the testing activity as students in a 
teacher education course, and started to envision how collaborations could be ben-
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eficial as future mathematics teachers (e.g., planning lessons with other teachers). 
Some participants went as far as speaking to collaboration and rethinking their per-
spectives as a teacher by providing clear and direct comments about blurring the 
line between them and their future students. They wrote about the “flip flop” 
between the roles and responsibilities of students and teachers. In other words, PSTs 
saw themselves encouraging their future students to own their learning and gain 
independence from the teacher (independence and responsibility are words used by 
the NCTM (2014)—see our section of reform-based mathematics and feedback). 
PSTs talked about how teachers should be constantly learning (about how students 
think mathematically and about new pedagogical strategies). PSTs also talked about 
the need and want to dialogue with the person who wrote the test. They talked about 
not judging the students’ work too quickly. In this sense, they were conceptualizing 
ways of being with students in dialogue where they (as teachers) are learners. The 
notion of teachers learning through dialogue is a complex idea that can be found 
within the literature about best practice in feedback (Carless et al., 2011). Given that 
researchers (e.g., Thomas & Sondergeld, 2015) recommend that we should not 
assume that PSTs can develop ideas about best assessment practices without inten-
tional and thoughtful scaffolds/activities, the testing activity should be of great 
interest. PSTs comments clearly suggest that reform-based mathematics activities 
that can be used in school classrooms and teacher education courses are well worth 
examining and warrants spending time and effort to develop new activities.

Our findings might be considered to be most substantial in regard to having PSTs 
take mathematics content tests to receive teaching credentials. Having PSTs write 
traditional mathematics tests is happening and is a core practice (at least in Ontario, 
Canada). The comments our participants shared about testing and “tricking” should 
create huge concern and at the same time, offer hope. It should be concerning that 
PSTs believed (before experiencing the testing activity) that testing is a punishable 
act and not an opportunity focused on learning. Indeed, the traditional testing of 
PSTs on mathematics content could be reinforcing these beliefs. In terms of hope, 
there is clear indication that PSTs in the study changed their beliefs about testing. 
PSTs described their plan to implement the activity in their own classrooms because 
of an increase in their confidence, opportunities teachers and students to learn and 
providing opportunities for students to build friendships. The changes in these 
beliefs is not surprising as feedback was a major element in testing activity and 
research informs us that effective implementations of feedback can change beliefs 
(Nelson & Schunn, 2009). The testing activity can be put in place of traditional test-
ing and change students’ and teachers’ beliefs about testing from one about “trick-
ing” to thinking about testing as an opportunity to learn and help set up students for 
success.

It is important to keep in mind that the traditional testing of Canadian PSTs is 
occurring out of concern that they do not have adequate knowledge of elementary 
school mathematics (Brown, 2016). The testing activity investigated here was origi-
nally developed and studied in a mathematics course (Rapke, 2016). The testing 
activity exhibits ideas from the literature about learning mathematics (e.g., see 
 previous sections on feedback, collaboration, problem posing, focusing on multiple 
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solution strategies). The testing activity also exhibits the idea that students talking 
about mathematics is very effective for learning (Campbell & Bolyard, 2018). 
Based on PSTs’ comments, they clearly learned through multiple solution strate-
gies, which research has shown to be valuable for the learning of mathematics 
(Rittle-Johnson and Star 2007).

Furthermore, in the context of a mathematics course, research was conducted to 
conclude that the testing activity (without the emphasis of feedback that we added 
in for this research) encourages students to employ deep approaches to learning 
mathematics (Rapke, 2016). The PSTs in the current study indicated that the testing 
activity provided them an opportunity to learn mathematics, due in part to the fact 
that the activity eased their trepidations and had them feel confident about sitting the 
test. Again, it is important to keep in mind that the test was based on what PSTs and 
their colleagues should be able to demonstrate as future mathematics teachers 
(questions that involved mathematical content). PSTs indicated that they prepared 
as students to sit the test through observing their classmates, i.e., they learned math-
ematics. Additionally, PSTs (e.g., Juan and Steph) indicated that they had entry 
points into learning the mathematics on the test by observing their peers and asking 
good questions. PSTs inherently learned mathematics content through the testing 
activity because key ideas from reform-based mathematics (e.g., problem posing, 
comparing and analyzing students’ ideas, feedback, and collaboration) were embed-
ded in the testing activity.

10  Conclusion

The reform-based mathematics testing activity described in this chapter allows for 
instructors of mathematics teacher education courses to simultaneously get away 
from “do what I say, not as I do” and provokes PSTs to learn about constructs within 
recommendation of reform-based mathematics. Specifically, the PSTs in our study 
learned about using multiple students’ solutions strategies, crafting purposeful 
questions, problem posing, feedback, and collaboration—areas that research indi-
cates teachers and students experience difficulty with. Additionally, experiencing 
the testing activity supported re-conceptualization of testing to be much more than 
setting students up to fail.

In line with recommendations about teacher education (Grossman et al., 1999), 
PSTs demonstrated that they learned by moving from the specific/practical (i.e., 
testing activity) to general/conceptual (e.g., focusing on multiple students’ mathe-
matical ideas, crafting questions that advance mathematical reasoning, feedback, 
and collaboration). Our study participants were able to reflect upon their experi-
ences within the testing activity and draw out constructs from reform-based class-
rooms. Our findings further reinforce calls for mathematics teacher educators to 
focus on developing and enacting reform-based mathematics activities that can be 
used in school and teacher education classrooms. These reform-based mathematics 
activities have the potential to bridge the divide between what is actually happening 
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in school classrooms and what should be happening based on research and recom-
mendations made in mathematics teacher education courses. The testing activity 
supports PSTs to re-conceptualize the purpose/affordances of testing and learn 
about constructs within recommendation of reform-based mathematics, both of 
which sets PSTs up for effective reform-based mathematics teaching.

If teacher educators, governing bodies, or policy makers feel the need to test 
PSTs for teaching credential purposes, we strongly recommend that having PSTs 
develop, sit and assess tests for one another is a thoughtful pathway forward. The 
testing activity can be used to help PSTs prepare to sit the exam (learn what they 
need to know as future teachers), and is aligned with reform-based mathematics 
recommendations that mathematics educators are promoting.

In the end, we do not see the border between teacher education courses and 
school classrooms as a being a distinct line between each, but rather we see the 
border more as an overlap. This overlap contains reform-based mathematics activi-
ties that can be implemented within both contexts. The testing activity is an exam-
ple of something that sits on  the border; we visualize many more activities, and 
hope others will direct time and effort to developing and enacting them with us. 
These activities are in line with general recommendations about reform-based 
mathematics, and thus can promote PSTs to learn about the constructs within rec-
ommendations. At the same time, these activities provide extensive experience with 
concrete classroom activities that PSTs can use in their future teaching. The true 
potential of the activities is that they “crack two nuts with one stroke,”

References

Andrew, L. (2009). Creating a proof error evaluation tool for use in the grading of student gener-
ated “proofs”. Primus, 19(5), 447–462.

Ball, D. L. (2001). Teaching, with respect to mathematics and students. In T. Wood, B. S. Nelson, 
& J. Warfeild (Eds.), Beyond classical pedagogy: Teaching elementary school mathematics 
(pp. 11–22). Mahwah, NJ: Erlbaum.

Ball, D. L. (1990). Breaking with experience in learning to teach mathematics: The role of a pre-
service methods course. For the Learning of Mathematics, 10(2), 10–16.

Ball, D. L., Sleep, L., Boerst, T. A., & Bass, H. (2009). Combining the development of practice 
and the practice of development in teacher education. The Elementary School Journal, 109(5), 
458–474.

Berliner, D. C. (1989). Implications of studies of expertise in pedagogy for teacher education and 
evaluation. In Proceedings of the 1988 educational testing service invitational conference, new 
directions for teacher assessment (pp. 39–65). Princeton, NJ: Educational Testing Service.

Beswick, K., & Muir, T. (2013). Making connections: Lessons on the use of video in pre-service 
teacher education. Mathematics Teacher Education and Development, 15(2), 27–51.

Brown, L. (2016). Elementary teachers’ weak math skills spark mandatory crash courses. The 
Toronto Star. May 13.

Campbell, M., & Bolyard, J. (2018). Why students need more ‘math talk’. The Conversation. 
Retrieved from https://theconversation.com/why-students-need-more-math-talk-104034

Carless, D., Salter, D., Yang, M., & Lam, J. (2011). Developing sustainable feedback 
practices. Society for Research into High Education, 36(4), 395–407. https://doi.
org/10.1080/03075071003642449

T. Rapke et al.

https://theconversation.com/why-students-need-more-math-talk-104034
https://doi.org/10.1080/03075071003642449
https://doi.org/10.1080/03075071003642449


183

Chapman, O. (2015). Reflective awareness in mathematics teachers’ learning and teaching. 
Eurasia Journal of Mathematics, 11(2), 313–324.

Durkin, K., Star, J. R., & Rittle-Johnson, B. (2017). Using comparison of multiple strategies in the 
mathematics classroom: Lessons learned and next steps. ZDM, 49(4), 585–597.

Ellis, N. J., & Loughland, T. (2017). “Where to next?” Examining feedback received by teacher 
education students. Issues in Educational Research, 27(1), 51–63.

Evans, C. (2013). Making sense of assessment feedback in higher education. Review of Educational 
Research, 83(1), 70–120.

Gainsburg, J. (2012). Why new mathematics teachers do or don’t use practices emphasized in their 
credential program. Journal of Mathematics Teacher Education, 15(5), 359–379.

Grossman, P., Hammerness, K., & McDonald, M. (2009). Redefining teaching, re-imagining 
teacher education. Teachers and Teaching: Theory and Practice, 15(2), 273–289.

Grossman, P.  L., Smagorinski, P., & Valencia, S.  W. (1999). Appropriating tools for teaching 
English: A theoretical framework for research on learning to teach. American Journal of 
Education, 108, 1–29.

Handal, B., & Herrington, A. (2003). Mathematics teachers’ beliefs and curriculum reform. 
Mathematics Education Research Journal, 15(1), 59–69. https://doi.org/10.1007/BF03217369

Hart, L. C., & Swars, S. L. (2009). The lived experiences of elementary prospective teachers in 
mathematics content coursework. Teacher Development, 13(2), 159–172.

Hiebert, J. (2013). The constantly underestimated challenge of improving mathematics instruction. 
In K. Leatham (Ed.), Vital directions for mathematics education research. New York: Springer.

Hiebert, J., Morris, A. K., Berk, D., & Jansen, A. (2007). Preparing teachers to learn from teaching. 
Journal of Teacher Education, 58(1), 47–61.

Kinnunen, P., & Simon, B. (2012). Phenomenography and grounded theory as research methods in 
computing education research field. Computer Science Education, 22(2), 199–218.

Lavey, I., & Shriki, A. (2014). Engaging prospective teachers in peer assessment as both assessors 
and assesses: The case of geometrical proofs. International Journal of Mathematics Teaching 
and Learning. Retrieved from http://www.cimt.plymouth.ac.uk/journal/lavey2pd

Mason, J., & Davis, B. (2013). The importance of teachers’ mathematical awareness for in-the- 
moment pedagogy. Canadian Journal of Science, Mathematics and Technology Education, 
13(2), 182–197. https://doi.org/10.1080/14926156.2013.784830

Mason, J. (2002). Researching your own practice: The discipline of noticing. Routledge.
Marton, F., & Booth, S. (1997). Learning and awareness. Mahwah, NJ: Lawrence Erlbaum 

Associates.
National Council for Accreditation of Teacher Education [NCATE]. (2010). Transforming teacher 

education through clinical practice: A national strategy to prepare effective teachers. Retrieved 
from http://www.ncate.org on November 18, 2010.

National Council of Teachers of Mathematics. (2014). Principles to actions: Ensuring mathemat-
ics success for all. Reston, VA: National Council of Teachers of Mathematics.

National Council of Teachers of Mathematics. (2000). Principles and standards for school math-
ematics. Reston, VA: National Council of Teachers of Mathematics.

Nelson, M. M., & Schunn, C. D. (2009). The nature of feedback: How different types of peer 
feedback affect writing performance. Instructional Science, 37(4), 375–401. https://doi.
org/10.1007/s11251-008-9053-x

Rapke, T. (2016). A process of students and their instructor developing a final closed-book math-
ematics exam. Research in Mathematics Education, 18(1), 27–42. https://doi.org/10.1080/147
94802.2015.1134342

Rittle-Johnson, B., & Star, J. R. (2007). Does comparing solution methods facilitate conceptual 
and procedural knowledge? An experimental study on learning to solve equations. Journal of 
Educational Psychology, 99(3), 561.

Scheeler, M. (2008). Generalizing effective teaching skills: The missing link in teacher prepara-
tion. Journal of Behavioural Education, 17, 145–159.

Blurring the Border Between Teacher Education and School Classrooms: A Practical…

https://doi.org/10.1007/BF03217369
http://www.cimt.plymouth.ac.uk/journal/lavey2pd
https://doi.org/10.1080/14926156.2013.784830
https://www.google.com/url?q=http://www.ncate.org&sa=D&ust=1563210742793000&usg=AFQjCNE2kKAf8OhhLBXdALi0x54ETDMDQw
https://doi.org/10.1007/s11251-008-9053-x
https://doi.org/10.1007/s11251-008-9053-x
https://doi.org/10.1080/14794802.2015.1134342
https://doi.org/10.1080/14794802.2015.1134342


184

Schön, D. (1983). The reflective practitioner: How professional think in action. London: Temple 
Smith.

Schwartz, C., Walkowiak, T. A., Poling, L., Richardson, K., & Polly, D. (2018). The nature of 
feedback given to elementary student teachers from university supervisors after observations of 
mathematics lessons. Mathematics Teacher Education and Development, 20(1), 62–85.

Smith, M. S., & Stein, M. K. (2011). 5 practices for orchestrating productive mathematics discus-
sions. National Council of Teachers of Mathematics.

Silver, E. (1994). On Mathematical Problem Posing.  For the Learning of Mathematics,  14(1), 
19–28. Retrieved March 21, 2020, from http://www.jstor.org/stable/40248099

Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solv-
ing and problem posing.  Zentralblatt für Didaktik der Mathematik  29,  75–80. https://doi.
org/10.1007/s11858-997-0003-x

Thomas, A., & Sondergeld, T. (2015). Investigating the impact of feedback instruction: Partnering 
preservice teachers with middle school students to provide digital, scaffolded feedback. Journal 
of the Scholarship of Teaching and Learning, 154, 83–109.

T. Rapke et al.

http://www.jstor.org/stable/40248099
https://doi.org/10.1007/s11858-997-0003-x
https://doi.org/10.1007/s11858-997-0003-x


185© Springer Nature Switzerland AG 2020
N. Radakovic, L. Jao (eds.), Borders in Mathematics Pre-Service Teacher 
Education, https://doi.org/10.1007/978-3-030-44292-7_9

Teaching the Hungarian Mathematics 
Pedagogy to American Pre-service 
Teachers

Péter Juhász, Anna Kiss, Ryota Matsuura, and Réka Szász

1  Introduction

Budapest Semesters in Mathematics Education (BSME) is a study abroad program 
for American students to cross cultural and geographic borders between the United 
States and Hungary as part of their journey to become secondary school mathemat-
ics teachers.1 BSME participants spend a semester in Budapest—the capital and 
cultural center of Hungary—and learn about the Hungarian mathematics pedagogy 
that emphasizes problem solving, creativity, and communication. They investigate 
how to bring this pedagogy into their future American classrooms, thus blending 
good practices from the two countries.

At BSME, American pre-service teachers immerse themselves in Hungarian 
mathematics education, as the BSME courses are taught by Hungarian instructors 
who are practicing secondary school teachers. In addition, the pre-service teachers 
observe K-12 classrooms in Budapest, and design and teach their own Hungarian- 
style lessons to Hungarian students (in English). Living in Budapest, BSME partici-
pants also immerse themselves in a beautiful historical city with one of the most 
vibrant cultures in Europe. This chapter focuses on the coursework component of 
the BSME program. For more information about the other aspects of the BSME 
experience, please see the program website www.bsmeducation.com.

The BSME academic experience is also based on crossing another border—
namely, the border between the roles of the student and the teacher. As students, the 
American participants learn mathematics through the Hungarian pedagogy; as 

1 The phrase “secondary school” includes both high school (grades 9–12) and middle school 
(grades 6–8).
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teachers, they reflect on the learning experience and consider how to apply the 
Hungarian pedagogy to their future classrooms.

This chapter is written by the directors and instructors of BSME. We begin by 
describing the history and principles of the Hungarian mathematics pedagogy. We 
then elaborate on the dual roles of the student and the teacher played by BSME 
participants. Next, we examine two particular aspects of the Hungarian pedagogy—
learning through games and learning through problem posing. We conclude by 
describing the impact that the BSME program has had on the participants.

2  Hungarian Mathematics Pedagogy

The National Council of Teachers of Mathematics’ Principles and Standards for 
School  Mathematics (NCTM, 2000) begins with the following vision for high- 
quality and engaging mathematics instruction:

Students confidently engage in complex mathematical tasks chosen carefully by teachers. 
They draw on knowledge from a wide variety of mathematical topics, sometimes approach-
ing the same problem from different mathematical perspectives or representing the mathe-
matics in different ways until they find methods that enable them to make progress. Teachers 
help students make, refine, and explore conjectures on the basis of evidence and use a 
variety of reasoning and proof techniques to confirm or disprove those conjectures. Students 
are flexible and resourceful problem solvers. Alone or in groups and with access to technol-
ogy, they work productively and reflectively, with the skilled guidance of their teachers. 
Orally and in writing, students communicate their ideas and results effectively. They value 
mathematics and engage actively in learning it. (p. 3)

This vision aligns closely with how mathematics is taught in many Hungarian class-
rooms, where a strong and explicit focus is placed on problem solving, creativity, 
and communication. Hungarian students learn concepts by working on mathemati-
cally meaningful problems that emphasize procedural fluency, conceptual under-
standing, logical thinking, and connections between various topics. For every 
lesson, an overarching goal is to learn what it means to engage in mathematics and 
to feel the excitement of discovery (Stockton, 2010).

Mathematical problem solving has had a long tradition in Hungary. The renowned 
Hungarian mathematician George Pólya wrote several books on the topic (1945, 
1954, 1962), including his seminal book How to Solve It (1945), which delineated 
problem-solving heuristics that guide students to discover mathematical concepts 
through their own work.

While Pólya received worldwide acclaim, it was Tamás Varga who introduced 
Pólya’s vision into Hungarian primary and secondary school classrooms (Szendrei, 
2007). During the 1970s, Varga led an educational reform effort that brought new 
curriculum and teacher training methods to Hungary. Some of Varga’s principles 
included an emphasis on problem solving, giving children freedom to argue and 
make mistakes, differentiation, and viewing (and teaching) mathematics as a whole 
discipline rather than as separate sub-fields such as algebra and geometry.
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In many Hungarian classrooms today, the teacher carefully selects and sequences 
problems that bring focus and coherence to each lesson and provide students with 
opportunities to struggle productively towards understanding. These problems do 
more than help students learn the mathematical topics—the teacher sees them as 
vehicles for fostering students’ reasoning skills, problem solving, and proof writing 
(Andrews & Hatch, 2001).

Another hallmark of the Hungarian pedagogy is student presentations. After 
working on problems individually or in small groups, volunteers come to the front 
of class to share their solutions. Given the non-trivial nature of these problems, 
students learn to communicate their thinking with clarity and precision (Andrews & 
Hatch, 2001). When a student gets stuck, others chime in to offer suggestions. The 
teacher creates a welcoming environment conducive to sharing students’ mathemat-
ical experiences.

In such classrooms, the teacher’s role is that of a motivator and facilitator 
(Andrews & Hatch, 2001). The teacher provides encouragement as students engage 
with the task, offers guidance when a student is stuck, and probes when clarification 
is needed. After student investigation, the teacher summarizes students’ findings by 
highlighting important ideas embedded in the problems. This summary makes sense 
and is meaningful, because students already have had the experience of playing 
around with these ideas on their own.

The Hungarian pedagogy also stresses connections between different areas of 
mathematics. Even at the high school level, there are no self-contained subjects 
such as algebra and geometry. These content areas are part of an integrated curricu-
lum focusing on multiple mathematical perspectives. For example, students may 
solve a task using an approach that combines tools from algebra, geometry, and 
statistics (Szendrei, 2007). The problems that teachers pose guide students to 
“develop understanding not only of the topic itself but also its interrelationships 
with other topics” (Andrews & Hatch, 2001, p. 36). Instead of teaching fragmented 
pieces of mathematics, teachers develop students’ understanding of mathematics as 
a discipline, with an explicit focus on their problem-solving ability (Szendrei, 2007).

3  BSME Academic Experience

An effective way to develop pre-service teacher knowledge is exposing them to new 
modes of learning and teaching that challenge their own classroom experiences as 
students (Watson & Mason, 2007). Another method is analyzing tasks from a school 
setting from the teacher’s perspective (Watson & Sullivan, 2008). At BSME, we 
connect these by (1) providing productive struggle to participants by posing them 
challenging secondary school-level mathematical tasks; and (2) having the partici-
pants analyze the tasks and reflect on this problem-solving experience from the 
teacher’s point of view. Thus, BSME participants cross the border between the roles 
of students and teachers.
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BSME participants are immersed in a learning environment that closely resem-
bles the Hungarian pedagogy. The impact of such experience on pre-service teach-
ers cannot be overstated, since teachers’ “professional choices of actions are the 
manifestation of what they have learned or are learning” (Watson & Mason, 2007, 
p. 208). We engage them in rigorous mathematical thinking and challenging math-
ematical tasks to provide them with firsthand understanding of the values of those 
experiences for learners. The reflection component aims to develop their pedagogi-
cal habit of “adapting mathematical tasks so as to enable them to listen to learners 
and to develop sensitivity to learners’ thinking and obstacles to that thinking” 
(Watson & Mason, 2007, p. 207). Such awareness will help pre-service teachers 
make “principled choices of tasks and interaction strategies when working with 
learners” (Watson & Mason, 2007, p. 207).

To see the Hungarian pedagogy “in action,” BSME participants engage in weekly 
observations of K-12 classrooms in Budapest. Thus, they obtain firsthand experi-
ence on how the methods learned in their BSME courses are put into practice. The 
participants also take part in pre- and post-lesson discussions with Hungarian teach-
ers and students. As a capstone project, BSME participants develop and teach their 
own lessons to Hungarian secondary school students, to put into practice what they 
learned and to have further opportunities for reflection.

For the coursework component of the BSME program, participants typically take 
three to four courses in mathematics education. While each course has a different 
focus—problem solving, learning through games, technology, classroom imple-
mentation, for instance—they have a shared goal of engaging participants in the 
Hungarian approach to learning and teaching, as described in Sect. 2. These courses 
are taught by Hungarian instructors who are practicing secondary teachers.

Sections 3.1 and 3.2 describe mathematical tasks and reflection, which form the 
foundation of the BSME coursework. Sections 4 and 5 delve into two BSME courses 
and concretely illustrate how each course provides students with opportunities to 
engage with challenging mathematical tasks (as well as create their own) and to 
reflect on that experience.

3.1  Mathematical Tasks

BSME participants work on mathematical tasks in which the main challenge is the 
thinking involved rather than the content knowledge needed. Thus, although these 
tasks are grounded in secondary school mathematics, the pre-service teachers find 
them challenging and interesting. Examples of such tasks are given in Sects. 4.1 
and 5.2.

For pre-service teachers, benefits of grappling with challenging mathematical 
tasks include the following:

• Learning how to think like mathematicians—they improve in problem solving, 
experimenting, problem posing, definition making, and communication.
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• Developing and refining their view of teaching—this occurs as they experience a 
pedagogical approach that likely differs from what they have seen in their own 
education (Liljedahl et al., 2009).

Cuoco, Goldenberg, and Mark (1996) elaborate on the above notion of thinking 
like mathematicians. They introduce mathematical habits of mind—i.e., the think-
ing, creation methods, and research techniques that mathematicians employ. Habits 
such as exploring, conjecturing, making connections, and posing questions form “a 
repertoire of general heuristics and approaches that can be applied in many different 
situations” (p. 387) and allow students to “experience what goes on behind the study 
door before new results are polished and presented” (p. 376). Bass (2011) also dis-
cusses the value of providing students with “authentic experience of doing mathe-
matics” (p.  3) that helps them develop the habits of mind that are essential in 
generating new mathematical understanding.

The mathematical tasks we pose to pre-service teachers have the following prop-
erties. First, they are “low threshold, high ceiling” in nature, i.e., accessible without 
much prerequisite knowledge, but offering possibilities for rich exploration; this is 
important, since we want pre-service teachers to understand that all students can 
have authentic mathematical experiences. Second, the tasks have multiple entry 
points, or different ways in which they can be approached. Third, the tasks have 
complexity and structure that require students to persevere in solving them and to 
reflect on their strategies. Fourth, in some cases, a task is part of a “thread” of 
tasks—this notion of task thread will be discussed later in this chapter.

In BSME courses, participants also develop their own tasks that are geared 
toward secondary school students. Engaging with challenging tasks provide partici-
pants with firsthand experience in learning through the Hungarian pedagogy. 
However, BSME participants are pre-service teachers. Thus, it is essential that they 
learn to design their own tasks, so they are well equipped to provide similar experi-
ences to their future students. Sample tasks developed by the participants are 
described in Sects. 4.2 and 5.3.

3.2  Reflection

Reflection is an essential component of any learning experience (Mason & Johnston- 
Wilder, 2006). It is particularly important for pre-service teachers, who are learning 
about the learning process itself (Cooney, 1999).

Through the constant shifting between student and teacher they are given the opportunity 
… to recast their initial (preconceived) beliefs about what it means to be a teacher, what it 
means to teach, what it means to learn, and even what it means for something to be math-
ematics. (Liljedahl et al., 2009, p. 29)

BSME participants play dual roles of doing mathematics as students and reflecting 
on that experience as teachers. Since they use authentic tasks from the Hungarian 
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secondary curriculum, reflection takes on particularly powerful meaning for these 
pre-service teachers as:

• They reflect on mathematical content and experience: big underlying ideas, dif-
ferent solution approaches, difficulties faced.

• They analyze the pedagogical context of the task: target student age, prerequisite 
knowledge, common errors, follow-up activities, curricular connections.

• They reflect on pedagogical approaches used.
• They consider possible adaptations for different groups of students by modifying 

the task in content, difficulty levels, and instructional methods.

Through this reflection process, BSME participants internalize their own learn-
ing experience and begin to develop the mathematical and pedagogical knowledge 
needed to design their own tasks. We thus envision American pre-service teachers to 
return from BSME and implement the Hungarian pedagogy with their own future 
students.

4  Concept Building Through Games and Manipulatives—
Learning Through Games

Games and manipulatives are effective tools to arouse students’ curiosity while 
engaging them in powerful mathematical exploration (Malone, 1981), and they play 
an important role in Hungarian mathematics education. Tamás Varga, in his educa-
tional reform in the 1970s, placed games and manipulatives at the core of the middle 
school curriculum (Szendrei, 2007). Zoltán Dienes, the creator of base 10 blocks, 
used games, manipulatives, stories, and even dance, always starting from the spe-
cific students’ culture and interests (Dienes, 1973). Dienes stresses free play as an 
effective means to introduce students to a new mathematical concept (Hirstein, 
2007). A popular course at BSME is Concept Building Through Games and 
Manipulatives, which explores how various areas of secondary mathematics are 
developed as students play with fun mathematical games and hands-on manipula-
tives that maintain the mathematical integrity and rigor of the underlying ideas 
(Matsuura & Szász, 2015). As in other BSME courses, participants play the dual 
roles of the student and teacher. As students, they enjoy playing the various games 
and learn mathematical concepts from them. As teachers, they reflect on how games 
can be used to enhance secondary students’ mathematics learning. Pre-service 
teachers acquire a deeper understanding of how mathematical concepts are interwo-
ven into these games. They learn how to guide the students to uncover these con-
cepts through their own playing and exploration. This includes learning about 
common student misconceptions, and concrete strategies on how to help students 
work through their errors on their own. As a culminating project, pre-service teach-
ers design their own mathematical game and a corresponding lesson.
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4.1  Sample Game: Functions Play Tag

We illustrate the Hungarian approach of learning through games with a sample task 
used in the BSME course Concept Building Through Games and Manipulatives. 
This task was originally designed by a Hungarian educator Éva Szeredi who taught 
middle school in Budapest. Modified versions of the task are used through grades 
5–9. In this section, we first describe the game, and then the reflection questions 
posed to the BSME participants.

Mathematical Task
Two students act as “calculators”. One receives a card with 2x – 1, and the other 
with x – 3. Only the two calculators know these expressions. The following table is 
drawn on the board:

x

Name 1
Name 2

Other students suggest values of x. The calculators compute the corresponding 
values of their expressions and record them on the table. The winner is the student 
who suggests a number x at which the two expressions yield the same result. The 
mathematical aims of the game include the following:

• Finding a number where the two expressions are equal.
• Finding all numbers where the two expressions are equal.
• Finding the expressions that the calculators are using.

Students then repeat the process with more difficult pairs of expressions, e.g., 
abs(x – 1) and sgn(x) + 6.

Reflection
After playing the game, the instructor poses the following reflection questions:

• For what age group would each pair of expressions be appropriate?
• Besides choosing different pairs of expressions, how could the game and its aims 

be modified to suit different age groups?
• To what mathematical topics is the game connected?

Discussing these prompts allows BSME participants to share their experience 
with the game as students, and analyze and reflect on it as teachers. The instructor 
shares her own experiences with the game as a practicing middle school teacher, and 
provides insights on teaching the underlying mathematical topics—e.g., functions, 
function transformations, linear systems, and mental mathematics.

Participants also reflect on the more general process of learning and teaching 
through games. For example, they discuss features of games that not only make 
them fun, but also maintain the mathematical rigor and integrity of the concepts that 
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the teacher wishes to convey. Such discussion is particularly useful when the pre- 
service teachers begin to design their own games.

4.2  Sample Game Designed by a BSME Participant: Slopes, 
Slopes, Slopes

In addition to experiencing existing games used in Hungarian mathematics class-
rooms, BSME participants develop their own mathematics games. In this section, 
we describe a game developed by a pre-service teacher taking the BSME course 
Concept Building Through Games and Manipulatives. Designed for middle and 
early high school students, its mathematical objective is to help students make and 
deepen connections between linear equations, their graphs, the slope, and students’ 
prior knowledge about plotting points. We conclude the section with an excerpt of a 
reflection by the participant who designed this game.

Materials Needed
• Game board (Fig.  1), showing the first quadrant and containing seven lines 

through the origin with slopes 1/3, 1/2, 2/3, 1, 3/2, 2, and 3.
• Seven slope cards corresponding to the seven lines on the game board. The color 

on the back of each slope card matches the color of the corresponding line. A 
slope card is worth one or two points as indicated on the card.

• Red and blue chips, acting as points on the coordinate plane. A chip is worth one 
point.

• Linear equation card ay – bx = 0.

Fig. 1 Game board at the beginning and end of game
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• Red and green dice, whose numbers become the values of the coefficients a and 
b, respectively.

• Regular (white) die.

Game Setup and Overview
• This is a two-person game. Each person chooses his/her own set of chips (red or 

blue).
• Place the slope cards face down, so the slope values are not visible to the 

players.
• A player can earn points by earning a slope card or placing a chip on the game 

board.
• The first person to earn 20 points wins the game.

How to Play

1. The first player (indicated by “he”) rolls the red and green dice. He substitutes 
the values of the dice into the linear equation card, and he calculates the slope of 
that line (e.g., the red and green dice show 4 and 6, respectively; thus the linear 
equation would be 4y – 6x = 0 with slope 3/2). On the game board, the player 
identifies the line that is the graph of his equation. Then he turns over the slope 
card with the same color as his line. He earns that card if he had correctly calcu-
lated the slope and that slope matches the value on the slope card. Otherwise, the 
player loses his turn.

2. The second player (indicated by “she”) proceeds similarly. If after rolling the red 
and green dice, the second player finds a slope already owned by the first player 
(e.g., she rolls 2 and 3, which yields the equation 2y – 3x = 0 with slope 3/2), then 
she loses her turn. The player also loses her turn if she obtains a line that does not 
exist on the game board (e.g., 5y – 4x = 0).

3. Once a player earns one or more slope cards, he may choose to earn points on his 
line. (He may also choose to earn more slope cards, as described in Step 1.) To 
do this, the player selects one of his slope cards with slope m. Then he rolls a 
white die and uses the number as the x value in y = mx. If the corresponding point 
(x, y) is on the game board, then he places a chip on it. Example: Suppose the first 
player selects his card m = 3/2 and rolls 4 on the white die. He obtains the point 
(4, 6), so he can place a chip there. If such point does not exist or already has a 
chip on it, the player loses his turn.

4. If a player has all her lines filled with chips, she may choose another person’s 
line and “steal” his points. To do this, the “thief” selects a line owned by her 
opponent. She then rolls the white die as in Step 3. If the roll yields an empty 
point, she places her chip there. If the point has the opponent’s chip on it, she 
may replace that chip with her own.

Reflection
After designing the game and implementing it with their BSME classmates, partici-
pants reflect on this experience. These reflections (discussed verbally, written, or 
both) are a required part of all BSME courses. The following excerpt was written by 
the participant who developed the game “Slopes, slopes, slopes”. She discusses 
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 possible adaptations to the game and their potential impact on the learning of those 
playing the game. Such reflection strengthens not only her understanding of this 
particular game, but also her capacity to design more games in the future.

I really enjoyed how my game went. I think there are so many adaptations that could be 
made, but I think it was successful as is. [Another participant] suggested that I use negative 
numbers and look into all four quadrants. I think this really complicates the game, and I 
was doing it more for an introductory level practice, but this would make it more difficult. I 
like having it at 20 points because it forces students to try for the slope values. I do like the 
idea of having less points on the m = 1 line to decrease the probability of rolling for a point 
on that line. Overall, I don’t think it took much longer than I was expecting and I think the 
[other participants] enjoyed [playing] it. If I wanted to focus more on slopes, I could create 
a larger board so I could include more slopes, which would mean the students would have 
to calculate more times. (Authors’ note: By using dice, the participant included a luck fac-
tor in hopes of making the game enjoyable for struggling students who may not be as adept 
at finding winning strategies.)

4.3  Pre-service Teachers’ Development in Designing 
Mathematical Games

The instructor of the BSME course Concept Building Through Games and 
Manipulatives felt that pre-service teachers initially struggled in two main areas:

• Their conceptual understanding and visual imagery of mathematical ideas were 
missing, false, or not strong enough despite their theoretical knowledge of the 
ideas.

• Without plenty of support, they could not design games or manipulatives that 
would foster students’ mathematical understanding.

The instructor found that by having participants grapple with activities from sec-
ondary schools that contain manipulation and visualization (e.g., Functions play 
tag), they acquired vivid mental images of concepts, and their problem solving and 
posing skills grew considerably. For example, participants improved in their articu-
lation of the underlying mathematical purpose of each game; they also learned to 
pose questions that were more strongly connected to the intended mathemati-
cal ideas.

BSME participants designed their own activities and taught from these activities 
in micro-teaching lessons with their peers. Through engaging with and reflecting on 
activities incorporating games and manipulatives, they became more proficient in 
designing such activities themselves—they became more creative, they could better 
design activities which illuminate and deepen concepts, and they learned to allow 
students to discover mathematical ideas on their own.

P. Juhász et al.



195

5  Discovery Learning: The Pósa Method—Learning Through 
Problem Posing

Problem posing is an integral component in the work of teaching, since teachers are 
responsible for “planning problems that will give students the opportunity to learn 
important content through their explorations” (NCTM, 2000, p. 341). Furthermore, 
the Hungarian mathematics pedagogy emphasizes problem posing as being crucial 
for students (Pólya, 1954). We not only want students to be able to solve problems, 
but also have the curiosity and know-how to pose good questions as mathematicians 
do. Through problem posing, students become used to thinking about problems 
without knowing or being afraid of how difficult they are; they often learn about and 
are fascinated by the existence of unsolved problems in mathematics.

Problem posing enhances students’ problem solving (Hashimoto, 1987; Perez, 
1986; Silver & Cai, 1996), creativity (Van Harpen & Sriraman, 2013), personal 
understanding (Brown & Walter, 2005), self-confidence (Mason, 2010), and atti-
tudes toward mathematics (Winograd, 1991). Moreover, the NCTM (1989) recom-
mends that students “have some experience recognizing and formulating their own 
problems, an activity that is at the heart of doing mathematics” (p. 138). To provide 
students with authentic mathematical experiences—to help them learn to think like 
mathematicians—problem posing should be an integral part of their learning.

BSME participants learn about problem posing in the course Discovery Learning: 
The Pósa Method (Matsuura & Szász, 2015). This course introduces a method of 
teaching developed by a Hungarian mathematician and educator Lajos Pósa, well 
known in Hungary for his mathematics camps for secondary students. Pósa devel-
oped a particular style of teaching mathematics in which students discover mathe-
matical concepts by working on tasks that build on each other. The method was 
originally developed for gifted students in Pósa’s mathematics camps, but it also has 
been successfully implemented in more general school settings (Győri & 
Juhász, 2017).

In the Discovery Learning course, BSME participants again play the dual roles 
of the student and the teacher. As students, they grapple with tasks from Pósa’s 
mathematics camps—while geared for secondary school students, we have found 
these tasks to be interesting and challenging for pre-service teachers, too. As teach-
ers, participants reflect on this learning experience, and discuss the ways in which 
Pósa’s principles can be applied to their own teaching.

5.1  Pósa’s Method of Teaching

Below, we provide further information on Pósa’s method of teaching. Its main goal 
is the development of students’ mathematical knowledge through their own work 
and discovery. Pósa’s teaching relies on task threads, well-crafted series of mathe-
matical tasks that build on each other, gradually guiding students toward desired 
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understanding (Győri & Juhász, 2017). The conceptual leap between successive 
tasks is adjusted to meet students’ needs. Pósa compares this set of leaps with a 
staircase (to the mathematical goal), where steeper steps may be used with stronger 
students and smaller, more frequent steps may be required for struggling students 
(Stockton, 2010).

Tasks can take different forms: solving problems, posing questions, making up 
or agreeing on definitions, playing games, experimenting, just to name a few. When 
students work on a task thread, they are aware that the tasks build on each other; 
thus, they need to use knowledge developed in the previous task for the next one. To 
avoid this kind of explicit help, students are given tasks within the same thread with 
some time apart—a task thread can span across months or even years—so they often 
do not realize which tasks build on each other. There are multiple task threads run-
ning simultaneously, so students are often working on several tasks belonging to 
different task threads; this also helps the teacher in navigating student differences.

Constant readaptation is crucial. When planning, the teacher adapts the tasks 
based on his former experiences with the tasks and on his knowledge of the current 
students. While teaching, he needs to adjust, as needed, according to students’ 
responses and understanding (Győri & Juhász, 2017).

5.2  Sample Task Thread: Partitioning Points on the Plane

The following task thread comes from the BSME course Discovery Learning: The 
Pósa Method. It consists of five parts and is used with Hungarian gifted students in 
grades 8–10 over five different lessons, with time between lessons (anywhere from 
1 week to 2 months). At BSME, the thread is assigned to the participants over five 
different class sessions. We describe each part below, along with reflection ques-
tions posed to the pre-service teachers. These questions were posed to the partici-
pants immediately after completing the part of the mathematical task. They reflected 
on the questions verbally, facilitated by the instructor. Some questions specifically 
addressed the task at hand (e.g., “What are the main mathematical ideas in this 
problem?”). Other questions pertained more generally to the process of teaching 
and learning through tasks (e.g., “How can teachers use students’ incorrect answer 
to help students learn?”). Again, reflecting on and discussing these questions help 
them become better equipped to design their own task threads.

In addition to helping BSME participants become more familiar with Pósa’s 
pedagogy, the task thread below also emphasizes problem posing. Ability to pose 
questions may be developed by reflecting on problem-posing heuristics. The ques-
tions in this task thread involve two important techniques. One is examining exam-
ples given in a problem and finding common properties (e.g., none of the examples 
are bounded); then we ask, “Is this property necessary? Why?” This heuristic helps 
in exploring a topic deeply. Another technique is considering analogues or related 
concepts (e.g., we start with points of symmetry; then we ask about axes of 
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 symmetry). This heuristic may require subtle intuition, and sometimes results in the 
posing of difficult questions.

Mathematical Task: Part 1
BSME participants are given the following problem, on which they work individu-
ally or in pairs, while the instructor provides feedback: 100 distinct points are on a 
plane. Does there always exist a line so that each of the two half-planes defined by 
the line contain exactly 50 points?

Reflection Questions
• What are the main mathematical ideas in this problem?
• In what settings could the problem be used with students?

Mathematical Task: Part 2
The instructor asks the pre-service teachers: What follow-up questions to the origi-
nal problem could you pose? Below are some of the questions which the partici-
pants developed:

1. Instead of 100 points, what if there are n points (with n even)?
2. With 100 points, do there always exist two intersecting lines so that each of the 

four parts of the plane defined by those two lines contains exactly 25 points?
3. Same as Question 2, but with two perpendicular lines.

The instructor then suggests his own follow-up questions:

4. 100 points are on the plane. Does there always exist a circle so that each of the 
two parts of the plane defined by the circle contains exactly 50 points?

5. Infinitely many points are given on the plane. Does there always exist a line so 
that each of the two half-planes defined by the line contains infinitely many 
points?

Participants solve some of these questions in class, each working at their own 
pace. Some remaining questions are assigned as homework, and some as optional 
challenges.

Reflection Questions
• What are some aims of problemposingin a mathematics classroom?
• What are some appropriate settings for a problem-posing task?

Mathematical Task: Part 3
Participants are encouraged the pose more follow-up questions, and they come up 
with the two below. With Pósa’s method, the teacher must anticipate the questions 
that students might pose, and determine in advance whether or not those questions 
belong in the task thread. Having pre-service teachers pose their own follow-up 
questions not only deepens their understanding of this task thread, but also fosters 
their ability to anticipate student questions.

6. Infinitely many points are given on the plane and no three of them are collinear. 
Does there always exist a line so that each of the two half-planes defined by the 
line contains infinitely many points?
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7. Uncountably many points are given on the plane. Does there always exist a line 
so that each of the two half-planes defined by the line contains uncountably many 
points?

Reflection Questions
• What were some typical incorrect answers that the members of our class gave? 

What are the misconceptions behind these answers?
• How can teachers use students’ incorrect answers to help students learn?

Mathematical Task: Part 4
Participants are again asked to pose a follow-up question. They try to add the restric-
tion that the point-set is bounded. Instead of using the term “bounded,” they use 
imprecise language like it should be finite and it shouldn’t go out to infinity. The 
instructor facilitates a discussion where the participants develop their own definition 
of “bounded” and pose this question:

8. A bounded point-set with infinitely many points are given on the plane. Does 
there always exist a line so that each of the two half-planes defined by the line 
contains infinitely many points?

Reflection Questions
• What is the value of having students develop their own mathematical 

definitions?
• Think of other settings in the secondary curriculum that are conducive to having 

students develop their own definitions.

Mathematical Task: Part 5
Participants pose a follow-up question once more:

9. A bounded point-set with infinitely many points are given on the plane and no 
three of the points are collinear. Does there always exist a line so that each of the 
two half-planes defined by the line contains infinitely many points?

Reflection Questions
In contrast to the previous parts during which participants examined the individual 
parts separately, in this part, participants consider the set of problems in the task 
thread as a whole. They first collect and examine all the problems in the thread, 
including those that they posed themselves. Then they reflect on the following 
questions.

• What does it mean for a set of tasks to form a “thread”? What is the value of 
posing such threads to secondary students?

• How do the problems that were posed in this task threadbuild on each other? 
What happens if students pose different questions, or questions in a different 
order?

• What makes a good follow up question? How can teachers help students take the 
concept to the “next level” by asking such follow-up questions?
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5.3  Task Thread Designed by a Participant: Sets and Subsets

We give an excerpt of a task thread developed by a participant taking the BSME 
course Discovery Learning: The Pósa Method. Designed for mid to late high school 
students, the mathematical objective of the thread is to further students’ understand-
ing of the notion of subsets. We also provide an excerpt of a reflection by this 
participant.

Overview of the Task Thread
These problems have a common underlying theme of sets and subsets. In each prob-
lem, students consider a set of objects (e.g., cards, paths, numbers) and analyze 
properties of its subsets.

The difficulty of the problems generally increases from one problem to the next. 
Since many ideas and solution approaches reappear throughout the thread, the dif-
ficulty of these problems may depend more on each student’s comfort level with the 
sets of objects in the problems, rather than the actual questions being asked.

Excerpt of Tasks:

Problem 2 A magician has 100 cards numbered 1–100. He puts them into three 
boxes, a red one, a white one, and a blue one, so that each box contains at least two 
cards. An audience member chooses a box, takes two cards from that box, and 
announces the sum of the numbers of the chosen cards. Given this sum, the magi-
cian identifies the box from which the cards were chosen. Find a distribution of the 
cards that makes this “magic” happen.

Solution 2 The following is one of several approaches to this problem: place the 
first 33 numbers in the first box, the second 33 numbers in the second box, and the 
last 34 numbers in the third box. If two numbers from the first box are chosen, the 
sum is at most 65. If two numbers from the second box are chosen, the sum is at 
least 69 and at most 131. If two numbers from the last box are chosen, the sum is at 
least 135. Since these sums do not overlap, we can distinguish between the boxes.

Problem 3 Now suppose we have an infinite number of cards, one for each positive 
integer. The magician puts them into three boxes so that each box contains infinitely 
many cards.

 (a) If an audience member selects two cards from one of the three boxes, is there a 
distribution that allows the magician to determine the box from which the cards 
came?

 (b) What if three cards are chosen?

Solution 3a Separate the numbers into the three equivalence classes mod 3, and let 
each box contain an equivalence class. Let the first, second, and third boxes contain 
the numbers congruent to 1, the numbers congruent to 2, and the numbers congruent 
to 0, respectively. The sum of two numbers from the first box is congruent to 2, the 
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sum of two numbers from the second box is congruent to 1, and the sum of two 
numbers from the third box is congruent to 0.

Comment 3a2 The problem has become much more difficult, as we have transi-
tioned from finitely many objects to infinitely many objects. It is not expected that 
the students are familiar with modular arithmetic, so a hint will need to be posed, 
explained using the idea of remainders or considering numbers of the form 3k, 
3k + 1, and 3k + 2.

Problem 4 Consider the map below (Fig. 2).

How many routes are there from A to B so that:

 (a) the sum of the numbers along the route is even?
 (b) the sum of the numbers is divisible by 3?

Solution 4a Observe that the number of routes from A to B is the same as the num-
ber of routes from B to A. Consider the leftmost section of paths with 3 and 10. 
Regardless of the path we take in the other three sections, we can take the 3-path if 
the sum so far is odd and the 10-path if the sum so far is even—then our entire path 
will have an even sum. Since each of the paths through the other three sections 
demands a particular path through the leftmost section, only half of the total paths 
yield an even sum. Thus, there are 

1
2  • 2 • 3 • 4 • 5 = 60 paths.

Solution 4b The second section with 1, 2, and 9 has one path for each equivalence 
class mod 3. Thus, regardless of our path through the other three sections, there is a 
unique path through the second section that makes the sum divisible by 3. Thus 
there are 

1
3  • 2 • 3 • 4 • 5 = 40 paths.

Comment 4a And 4b We change gears back to a set of objects slightly more tan-
gible—paths! This will hopefully be a welcome relief to students who benefit more 
from visualization. When discussing these problems, be sure to note the modular 
arithmetic connection between solutions to this problem and the previous one.

Problem 5 Let H = {1, 2, 3, …, 10}.

 (a) How many subsets of H are there?
 (b) How many subsets contain 1 and 2?
 (c) How many subsets contain an even number of elements?
 (d) How many subsets have a property that the sum of its elements is a multiple of 

4?

Solution 5a To construct a subset of H, we decide whether each element of H is in 
the subset or not in the subset. Thus, there are 210 subsets.

2 These are comments written by the participant who designed the task thread.
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Solution 5b Since we know 1 and 2 are in the subset, we must decide whether or 
not each of the remaining eight elements in H is in the subset. Thus, there are 28 
subsets.

Comment 5a And 5b We return to sets of numbers. Problems 5a and 5b ensure 
that students have a good tool to count numbers of subsets, since counting subsets 
may be more challenging than counting paths.

Solution 5c There are 29 subsets of G = {1, 2, 3, …, 9}. If a subset of G has odd 
cardinality, then include 10 to create a subset of H with an even cardinality. 
Therefore, there are at least 29 subsets of H with even cardinality. However, we can 
make the same argument to conclude that there are at least 29 subsets of H with odd 
cardinality. Since 29 + 29 = 210, there are exactly 29 subsets of H with even cardinal-
ity (and the same number with odd cardinality).

Solution 5d There are 28 subsets of {3, 4, 5, …, 10}. We can include either 1, 2, 1 
& 2, or neither of the numbers to make sure that the sum of the elements is a mul-
tiple of 4. Thus, there are 28 subsets of H with this property.

Comment 5c and 5d We again see modular arithmetic. Problem 5d can be chal-
lenging, since it is the first instance in which two numbers together are used to build 
an equivalence class.

Reflection
In the following excerpt, the participant reflects on the various mathematical themes 
embedded in this task thread. Articulating the purpose of a task thread helps stu-
dents strengthen their understanding of how the different problems are connected to 
form a coherent whole.

The purpose of this thread is to teach students how to work with subsets. The tasks require 
students to construct subsets with desired properties, check that these subsets are maximal, 
and examine why certain types of subsets can or cannot exist. Other key themes appear in 
this thread. First is modular arithmetic, which shows up in Problems 3,4, and 5. Second is 
the notion of a proof—e.g., students learn to prove that certain constructions cannot exist 
or cannot be larger than they already are. (Authors’ note: The various counting strategies 
that were employed, particularly in Problems 4 and 5, also form a theme.)

Fig. 2 Map for Problem 4
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5.4  Pre-service Teachers’ Development in Designing Task 
Threads

The instructor of the BSME course Discovery Learning: The Pósa Method, felt that 
pre-service teachers initially had difficulties in these areas:

• Identifying the main ideas of problems.
• Understanding how different problems connect to and build on each other.

Through experiencing and reflecting on the process of discovery learning with 
the Pósa method, they grew in both areas. Based on the formative evaluation of their 
problem posing and task design, as well as their reflections on those experiences, 
the instructor noted that the participants became more proficient at developing 
threads of tasks that build on each other and have similar underlying ideas across 
different mathematical topics.

As an example of this growth, consider the task thread designed by a participant, 
described in Sect. 5.3. This thread contains problems about cards, paths, and num-
bers. While the problems deal with these varying objects and ask different types of 
questions about them, they all have a common underlying theme of sets and subsets. 
The problems also increase in difficulty and introduce new solutions approaches as 
needed—for example, after working with 100 cards in Problem 2, students are 
asked about infinitely many cards in Problem 3, which requires the use of modular 
arithmetic. This use of modular arithmetic reappears in later problems, allowing the 
students to apply the insights gained while working on Problem 3.

6  Summary and Conclusion

In this chapter, we described an approach to pre-service teacher education founded 
on crossing two types of borders:

• Cultural and geographic borders between the United States and Hungary.
• The border between the roles of the student and the teacher.

At the BSME program, participants (American pre-service teachers) immerse 
themselves in Hungarian mathematics education. The participants learn about the 
Hungarian mathematics pedagogy—that emphasizes problem solving, creativity, 
and communication—from BSME instructors, who are practicing Hungarian sec-
ondary school teachers. While the focus of this chapter was on the coursework com-
ponent of the program, BSME participants make weekly observation visits of K-12 
classrooms in Budapest, where they also engage in discussions with Hungarian 
teachers and students; and they develop and teach their own lessons to Hungarian 
secondary school students as a capstone project. It is, indeed, an immersion experi-
ence in the educational and mathematics culture of Hungary.

P. Juhász et al.



203

In the chapter, we examined two particular aspects of the Hungarian pedagogy—
learning through games and learning through problem posing. Moreover, BSME 
participants play dual roles: as students grappling with the mathematical tasks, and 
as teachers reflecting on their learning experience. Pre-service teachers engaging in 
this approach and instructors facilitating their learning experience all found that 
participants’ teacher knowledge developed extensively—not only did their own 
view of mathematics develop, but through designing and implementing their own 
lessons, they also successfully put into practice the teaching methods that they 
learned.

As (informal) evidence for the value of the BSME approach, we present sample 
feedback from participants. The feedback was collected at the end of the program, 
anonymously and in written form. The feedback speaks to mathematical tasks and 
reflection—the foundation of the BSME coursework—and the two courses described 
in Sects. 4 and 5.

• On Mathematical Tasks: The way in which problems were put together to cre-
ate a cohesive narrative of a problem thread in order to guide students’ (and our) 
learning was masterful. The opportunity and experience of being able to craft a 
problem thread on our own was both a fun experience and one where we could 
really begin to envision how to put this method into action.

• On Reflection: I feel that the content mastery attained by the [BSME] students 
was due in a large part to this fluidity of responsibility [of engaging in tasks as 
students and reflecting on the experience as teachers].

• On Concept Building Through Games and Manipulatives: Being able to par-
ticipate in the activities as a student was one of my favorite parts of this course. 
Even if I don’t remember the particular details of many activities, I know I am 
now better at creating activities in this style.

• On Discovery Learning: The Pósa Method: This class was very hands-on and 
we were made to do active learning, which is much better, as well as somewhat 
think about what it means and takes to be a good math teacher by posing inter-
esting problems and having a map of mathematics in one’s head.

Findings from the Third International Mathematics and Science Study (TIMSS) 
1999 Video Study suggest that American teachers should place more emphasis on 
fostering students’ conceptual understanding by providing them with opportunities 
for “solving challenging problems and discussing the relationships that can be con-
structed among the mathematical facts, procedures, and ideas” (Hiebert & Stigler, 
2004, p. 13). However, Hiebert and Stigler (2004) remind us that teaching is very 
difficult to change, because “most teachers learn to teach by growing up in a culture, 
watching their own teachers teach, and then adapting these methods for their own 
practice” (p. 13).

While BSME participants do not grow up in Hungary, the impact of their cross-
ing the cultural and geographical borders cannot be overstated. These American 
pre-service teachers immerse themselves in Hungarian mathematics education. 
They learn about mathematics and about teaching from Hungarian educators. The 
participants reflect on this learning experience and explore how to adapt the 
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Hungarian pedagogy—which aims to develop students’ conceptual understanding 
through problem solving—for their future classrooms. We believe these are signifi-
cant steps in changing the way these pre-service teachers think about teaching.

Pre-service teachers come to BSME eager to learn and experience a new culture. 
The first thing that often happens is the realization that their assumptions about 
mathematics and teaching may not necessarily be true. They see mathematics they 
“know” in a new light—adding depth to that particular content but also adding rich-
ness to the secondary curriculum as a whole. This business of secondary school 
mathematics is deeper than they suspected, and the practice of teaching is richer and 
more complex than they could have imagined before they start the program.

How these experiences translate into their teaching practice when they return to 
the United States is still an open question. BSME is a fairly new program, and we 
are only beginning to learn about the impact on participants’ practice. For example, 
a former participant, now a high school teacher in New  York, commented that 
BSME gave him the confidence and know-how to incorporate manipulatives into 
his teaching and that he has been able to bring some of the Hungarian pedagogy into 
his classroom (Matsuura & Szász, 2017). We look forward to further investigating 
BSME’s impact on pre-service teachers’ practice, and we anticipate a real opportu-
nity for learning in the field of teacher preparation.
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Mathematics Education Communities: 
Crossing Virtual Boundaries
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The growth of social media has yielded a range of virtual communities focused on 
issues related to education (Carpenter & Krutka, 2014; Hur & Brush, 2009). These 
communities, which operate across a range of different platforms, create an evolv-
ing landscape for users to navigate. Moreover, interactions within and across virtual 
communities has become a norm within society at large as well as within mathemat-
ics education. The Math Twitter Blog-o-Sphere (MTBoS), Mathematics Stack 
Exchange, specialized Facebook groups, and myNCTM are just a few examples of 
communities that are currently popular with mathematics teachers and educators in 
North America. Similarly, students of mathematics use virtual communities to make 
records of information that, in earlier times, would have been available through 
more informal channels. For example, solution clearinghouse sites (e.g., Chegg.
com) allow students to request or post answers to problems sets and teacher-rating 
sites (e.g., RateMyProfessor.com) offer a platform where students can trade infor-
mation about their instructors.

With the ubiquity of internet-enabled devices, negotiating virtual communities 
has become a norm within mathematics teaching and learning. Consequently, edu-
cators, both new and old, who participate in these communities are encountering 
issues and ideas that they likely have limited experience with. This raises a number 
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of questions for mathematics teacher educators seeking to help themselves, pre-
service teachers (PSTs), and current teachers understand these virtual communities. 
For example: How can the differences, similarities, and affordances of communities 
be highlighted? How can the boundaries that define and separate these communities 
be made clear? Within this chapter, we seek to address these and related questions 
by providing a framework for understanding these communities. We then use this 
framework to examine several communities currently popular within North America.

1  Framing Our Discussion

In establishing a foundation for our discussion of virtual communities, we draw 
upon two different areas of theory: communities of practice and boundary crossing. 
As we will discuss, these different theoretical perspectives provide a lens for under-
standing virtual communities as well as tools for understanding the interaction of 
users and platforms.

1.1  Virtual Communities of Practice

Virtual communities have flourished as social media platforms have become inte-
gral to people’s daily lives. We draw a distinction between platforms—the websites 
that facilitate interactions among groups of users—and the virtual communities1 
that reside on such platforms. Virtual communities, as noted by Ellis et al. (2004), 
have different features than traditional social networks:

Virtual communities are both narrow and specialized, in terms of the information posted, 
but at the same time broadly social and supportive. Consistent evidence suggests that many 
individuals go to virtual communities because of these social and supportive characteristics: 
the many weak ties supported by [a] virtual community provide access to a much wider 
network of people than conventional, social networks. The potential for invisibility regard-
ing normal social cues such as gender, race, class, and age opens up the potential for net-
working and interaction that may be inhibited elsewhere. (p. 148).

We conceptualize these virtual communities as types of communities of practice2 
(Lave & Wenger, 1991; Wenger, 1998; Wenger-Trayner & Wenger-Trayner, 2015). 

1 We recognize the concept of virtual communities is itself an area of some discussion and debate 
(Ellis, Oldridge, & Vasconcelos, 2004). In particular, virtual communities may be re-creations of 
existing communities, members of virtual communities may also work within in physical com-
munities, and the interaction between virtual and physical communities is complex.
2 We acknowledge there are inherent differences between physical and virtual communities of 
practice. For example, members of virtual communities of practice may never meet face-to-face, 
share information via artifacts, and may be limited in communication by the context of the plat-
form. Additionally, the situated, co-constructed nature of learning may be different within a virtual 
community of practice from within a physical community of practice (Ellis et al., 2004).
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Within this chapter, we concentrate on virtual communities of practice that are 
focused on the teaching and learning of mathematics and refer to these groups as 
virtual mathematics education communities (vMECs), which we contrast with real- 
world mathematics education communities of practice (rMECs). Although we 
regard mathematics education communities of practice differently, membership 
within one community does not preclude membership in another. Moreover, given 
the interconnected nature of education, we expect that educators are members of 
multiple mathematics education communities with some being real-world and oth-
ers virtual. However, one’s role or status within a community does not necessarily 
transfer to other contexts. For example, an influential old-timer within an rMEC 
may be seen as a relative newcomer within a vMEC. Likewise, a well-known mem-
ber of a vMEC might be on the periphery within an rMEC.

Our goal in focusing on vMECs is to mold a lens for understanding these com-
munities and provide tools to compare vMECs to rMECs be they practitioner 
focused, scholarly focused, or otherwise. Drawing on Wenger-Trayner and Wenger- 
Trayner’s (2015) discussion of communities of practice, we consider the three 
essential characteristics of a vMEC: (1) the community has a shared domain; (2) the 
community is constituted by engaged participants; and (3) the community is focused 
on practice.

Shared Domain Broadly, the shared domain of a community of practice is the 
field, subject matter, and scope of practice around which members cohere. Focusing 
on vMECs, the breadth of the subject matter is large whereas the scope of the prac-
tice is more narrow and centered around actions and routines relevant to the teach-
ing and learning of mathematics. To an outsider, the shared domain of any particular 
vMEC may be apparent as the discussions, interactions, resources, etc., are related 
to the teaching and learning of mathematics. However, larger vMECs may be fur-
ther separated into smaller communities of practice each having a more narrow 
focus (e.g., mathematics content at the elementary level, the professional develop-
ment of mathematics teachers). Thus, collectively vMECs make up a larger group 
that is different from other virtual communities of practice and, at the same time, 
may form smaller communities that are distinct from one another.

Engaged Participants The people who constitute a vMEC share information and 
help each other. Members interact, build relationships, collaborate, and discuss 
ideas from the shared domain. In this way, the shared domain works as an organiza-
tional tool and creates a boundary around the content that is discussed. How engage-
ment occurs, however, is influenced by the structure of the platform on which the 
community resides. In particular, the tools provided by a platform can influence the 
discourse and interaction that occurs.

For example, the Mathematics Stack Exchange (https://math.stackexchange.
com/), a part of the Stack Exchange platform, provides interaction mechanisms that 
support asking and answering well-posed, specific mathematical questions. Users 
can increase their reputation (measured in points) in many ways including asking 
questions that are upvoted or providing answers to questions that are upvoted by 
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other users. An achievement tracking system, in the form of bronze, silver, or gold 
badges, provides more specific measures of the quality and duration of a user’s par-
ticipation within the community. As users gain more reputation, they are also pro-
vided with more tools to structure discourse on the platform. Consequently, the 
interactions of members are guided by community norms, which are upheld by the 
aggregate actions of participants in the community.

Other platforms have more relaxed mechanisms for structuring how users inter-
act with each other. For example, spontaneous communities can materialize in the 
comments sections of online articles. One example of such a phenomenon occurred 
in 2015 when many news outlets, including The New York Times, reported on the 
Cheryl’s Birthday logic puzzle from a Singapore mathematics class that went viral. 
An online article in the Times that outlined a solution to the puzzle generated spir-
ited responses from more than 1000 readers in the comments section (Chang, 2015). 
However, as the engagement mechanisms in the comments portal are minimal (users 
can recommend comments, comments accrue points for being recommended), users 
have limited tools for structuring discourse. In the case of the logic puzzle, the com-
munity as mediated through reader comments did not generate clear, mathemati-
cally vetted answers. Nor was there a larger focus by the community on issues 
related to the teaching and learning of mathematics. Instead, the 1247 responses are 
a haphazard list that includes questions, clarifications, non  sequiturs, misunder-
standings, witty rejoinders, and novel interpretations.

These examples illustrate some of the different possibilities for engagement in 
online spaces. Within highly structured platforms such as Stack Exchange, dis-
course can be shaped as community members work to curate, validate, generate 
discussion, and maintain norms. In contrast, minimally structured systems like the 
comment thread of the Times provide users with limited tools to engage one another 
and give shape to the resulting discourse.

Practice Focused We adopt Wenger’s (1998) perspective that practice is always 
social. As such, it involves not just doing something, but performing that activity 
within a social as well as historical context. Defined in this way, practice includes 
actions and ideas that are explicit and easily recognized as well as those that are 
tacit. As Wenger notes,

[Practice] includes what is said and what is left unsaid; what is represented and what is 
assumed. It includes the language, tools, documents, images, symbols, well-defined roles, 
specified criteria, codified procedures, regulations, and contracts that various practices 
make explicit for a variety of purposes. But it also includes all the implicit relations, tacit 
conventions, subtle cues, untold rules of thumb, recognizable intuitions, specific percep-
tions, well-tuned sensitivities, embodied understandings, underlying assumptions, and 
shared worldviews. Most of these may never be articulated, yet they are unmistakable signs 
of membership in communities of practice and are crucial to the success of their enterprises. 
(Wenger, 1998, p. 47).

Our discussion here focuses on practices related to the teaching and learning of 
mathematics. Some of these practices are specific to mathematics (e.g., proving or 
disproving relationships within geometric figures, methods of solving systems of 

J. T. Hertel et al.



211

linear equations) whereas other practices may be more general to education (e.g., 
formative assessment techniques). Although the explicit and visible practices of a 
virtual community may be quickly recognized and adopted by a newcomer, the 
implicit, untold, underlying assumptions that are part of the community can go 
unnoticed. The ease of access to virtual communities of practice can also create 
room for miscommunication since, unlike physical communities that require a real- 
world connection, participating in virtual communities typically requires no more 
than visiting a publicly viewable website or registering a free account on a plat-
form.3 Thus, newcomers can easily participate without understanding the practices 
of the community and the assumed knowledge base upon which members draw.

1.2  Boundaries

Although passage into and out of different websites appears seamless to the user, we 
conceptualize this engagement as a type of boundary crossing and in doing so take 
Clarke’s (2015) description of a boundary:

[Boundaries] are constructions, built of language through discourse. However, we respond 
to boundaries in different ways. Sometimes the boundary appears as a natural feature, like 
a river, separating one habitat from another; sometimes, as an artefact, like a wall, con-
structed to enclose or to separate; and, sometimes, as the principles by which the members 
of a club or society are distinguished from non-members. Given such variation, the nature 
of boundary crossing itself must take different forms. (p. 170).

Boundary crossing includes describing how professionals who are newcomers in a 
field overcome barriers by creating a hybrid situation (Akkerman & Bakker, 2011; 
Suchman, 1994). In this sense, members of a vMEC can be seen as boundary cross-
ers within social media spaces as well as real-world spaces. For example, university 
professors who are well known within an rMEC may become boundary crossers as 
they begin to engage in online platforms. In doing so, they may broaden their sphere 
of influence and cross the boundaries created by their professional context. Likewise, 
classroom teachers engaged in a vMEC may reshape themselves as experts in pro-
fessional development for mathematics education thereby crossing the perceived 
boundary of the classroom and transitioning into a new role. Importantly, unlike 
boundaries in the real-world, the edges of these virtual boundaries are less apparent, 
which, as noted, can further conceal the norms and assumptions of community 
members. For example, a vMEC focused on a particular area of mathematics edu-
cationresearch may have established ways for communicating about topics and a 
shared knowledgebase that is drawn on when interacting. These norms, which help 

3 As a society we are beginning to wrestle with the hidden costs and challenges of such convenient 
access. For example, one cost is the commercialization of personal user data, which are mined, 
stored, and distributed by the entities—typically private companies—that own the platforms. 
Access to this information can provide any individual or group with insight into the characteristics 
of platform users, which can be used for advertising and promotion.
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unify the vMEC, can also serve as barriers to newcomers who have limited back-
ground knowledge. In conceptualizing this crossing of boundaries, we draw on the 
theoretical lens put forward by Clarke (2015) and consider several methods of 
crossing boundaries.

Methods of Crossing Boundaries Clarke (2015) shares that “one way to cross a 
boundary is to abolish it” (p. 170). In this view, the act of eliminating or putting an 
end to practices or systems of exclusion can be seen as a type of crossing. Since 
social media exists apart from traditional mathematics education communities, it 
provides opportunities to abolish boundaries that are part of these communities. For 
example, one might consider the boundaries between higher education and K–12 
schools, high school and elementary teachers, pre-service and experienced teachers, 
or high school and elementary teachers. In each case, the identified groups are part 
of different systems that have defined boundaries. Social media platforms provide 
spaces of public communication and allow users to develop communities around 
common topics (e.g., teaching fifth grade, number talks). This open, public com-
munication allows practitioners to be leveraged as experts. Whereas in the past, 
communication of pedagogical innovations might have been characterized by dis-
semination through journals, published books, conference presentations, or profes-
sional development sessions conducted by academics, social media allows this 
one-way, “scholarly”-based dissemination to be abolished. Thus, practitioners at all 
levels of education can be the leaders in these spaces as they engage in mathematics 
education conversations that provide evidence from their practice and 
perspectives.

A second means to cross a boundary is to destroy or demolish it (Clarke, 2015). 
Whereas abolishing a boundary refers to putting an end to a practice, demolishing a 
boundary refers to deconstructing a barrier or structure. Although we are concerned 
with virtual communities, there are a number of structures and barriers that exist 
within online spaces. For example, membership in a professional organization 
grants one access to particular resources (e.g., academic journals) and excludes oth-
ers from these materials. Likewise, holding a position at an institution of higher 
education provides access to resources through institutional structures as well as 
through membership in the academic community. Both of these examples highlight 
barriers that have been created to monetize knowledge and prevent it from being 
freely shared. Social media sites have created new paths to demolish these obsta-
cles. For example, sites such as researchgate.net and https://www.academia.edu/ 
allow scholars to network and more easily share their work with others. Similarly, 
the tools provided by social media allow for members of vMECs to more easily 
share resources through avenues outside of traditional publishing (e.g., https://nix-
thetricks.com/, http://www.mathtalks.net/).

Another means of crossing a boundary is by building a bridge. As Clarke (2015) 
notes “A bridge conveys individuals, groups, ideas or artefacts between domains. It 
does not interact with the boundary, but passes over it” (p. 172). Here again, the 
nature of social media spaces make them places that foster this kind of boundary 
crossing since the sites provide tools for actively building bridges between different 
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online communities of practice. For example, hashtags (e.g., #MTBoS, #mathchat, 
#iteachfifth, #estimation180) are used ubiquitously on social media platforms and 
allow members of different physical communities (e.g., novice teachers, expert 
teachers, math coaches, university professors) to interact in new and novel ways. 
These interactions may happen by chance, such as when one stumbles upon a rele-
vant hashtag, or may be intentionally structured. For example, the National Council 
of Teachers of Mathematics supports a monthly Twitter chat around a free preview 
article. This chat is hosted by the author of the featured article and helps to build 
bridges between communities (e.g., authors and readers, professors and teachers, 
math coaches and new teachers).

Finding ideas that are by their nature permeable provides another means to cross 
a boundary (Clarke, 2015). Drawing on the community of practice lens, we might 
consider how ideas from the shared domain of the teaching and learning of mathe-
matics can be seen as these kinds of objects. For example, methods of teaching 
specific mathematical content (e.g., integers, quadratic functions) are permeable 
objects since they can be easily shared between individuals in different educational 
communities. Similarly, pedagogical approaches can be shared easily through text, 
audio, and video. Moreover, social media provides tools to search for and find dis-
cussions of mathematical pedagogy in ways that are different from those that existed 
previously. These permeable ideas present a foundation upon which vMECs 
can form.

A final means to cross a boundary is to “accept responsibility for its construction 
(and deconstruction)” (Clarke, 2015, p. 175). For example, the inherent assumption 
that English is the primary language of mathematics education creates many bound-
aries within vMECs. For example, many of the hashtags that are used on various 
social media platforms (e.g., MTBoS, mathchat), only makes sense if one uses 
English to construct the acronym. Likewise, the practice of establishing a confer-
ence hashtag is now common within the field of mathematics education (e.g., 
AERA19, AMTE2019). Although these hashtags allow for crossing boundaries and 
fostering interaction, they also create barriers for those outside of the community 
and, in particular, for individuals who may not speak English. The duality of this 
boundary crossing and construction is important to recognize. This brings us circu-
itously back to the purpose of this chapter: What are boundaries of mathematics 
education communities? How do individuals cross these boundaries? How are we, 
as mathematics teacher educators, making the boundaries and boundary crossing 
we engage in—both those constructed and deconstructed—visible to students, col-
leagues, and the community?

Coordinating Communities of Practice and Boundary Crossing As discussed, 
we view the virtual communities formed around social media platforms as kinds of 
communities of practice. In addition, we view engagement in these virtual spaces as 
a type of boundary crossing. Membership in a community of practice necessarily 
creates boundaries as discussed by Wenger (1998):
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Participation and reification can both contribute to the discontinuity of a boundary. In some 
cases, the boundary of a community of practice is reified with explicit markers of member-
ship, such as titles, dress, tattoos, degrees, or initiation rites. Of course, the degree to which 
these markers actually act as boundary depends on their effect on participation. Moreover, 
the absence of obvious markers does not imply the absence or the looseness of boundaries. 
The status of outsider can be reified in subtle and not so subtle ways—through barriers to 
participation—without a reification of the boundary itself. On the school playground, the 
unmarked but sharp boundary of a clique can be a cruel reality, one for which well-meaning 
parents and teachers are of little help. The nuances and jargon of a professional group dis-
tinguish the inside from the outside as much as do certificates. Not having the style and 
connections can be as detrimental to an ambitious employee as the lack of a degree from a 
major business school. A “glassceiling” is sometimes more impenetrable in practice than 
any official policy or entrance requirement. (p. 104).

Thus, the ideas of boundary crossing and virtual communities of practice are inter-
twined. As mathematics education communities form within social media spaces, 
they create boundaries that define membership. These boundaries might reflect real- 
world characteristics such as degree or status, but may also be based around knowl-
edge of the shared domain. Moreover, the easy access to social media sites on the 
internet allows for a variety of relationships to form between virtual communities, 
providing opportunities for boundary crossing or ambiguity of boundaries.

Figure 1 provides a visual representation of the relationships between vMECs. 
For example, communities might exist wholly within a larger group as vMEC 1 is 
within vMEC 2. Communities might also intersect with each other as vMEC 2 and 
vMEC 3 or exist completely apart from other communities, as is the case of vMEC 
4. Additionally, the figure shows how mathematics education communities can exist 
within a particular social media platform as is the case with vMEC 4 or span between 
platforms, as is the case with vMEC 2.

Viewing these communities from a high-level, the borders between them are 
most prominent since we visualize them as boundaries. The blurred periphery signi-
fies that the boundary of the vMEC is not well defined and can be easily crossed. 
However, the communities themselves are not free of borders. Within each 

Fig. 1 Relationships 
between vMECs
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community of practice are newcomers, who we describe as occasional participants, 
and old-timers, who we refer to as routine participants. Occasional participants 
reside in the periphery (lighter shading) and participate only sporadically in the 
community. Routine participants, on the other hand, frequently engage in the vMEC 
and may gain status through their participation. Individuals may transition from 
occasional to routine participants through engagement, interaction, and collabora-
tion with other members of the vMEC.

vMECs are dynamic in nature as they continually undergo a process of re- 
formation through changes in membership as well as social media platforms. As 
discussed, the features of a particular platform may shape the nature and extent of 
the discourse within a vMEC. Likewise, the rise or decline of a social media plat-
form creates opportunities and challenges for a vMEC. New social media platforms 
create opportunities for the formation of new vMECs as well as the splintering or 
wholesale migration of existing vMECs. Similarly, the decline of social media plat-
forms may result in the end of a vMEC.

2  A Framework for Understanding vMECs

Within this section, we draw upon the previously discussed theoretical perspectives 
and present a framework for examining mathematics education communities. Our 
goal in creating this framework is to fashion a tool that can be used to compare, 
contrast, and better understand the mathematics education communities that reside 
on different social media platforms as well as the relationships between community 
practices and platform features. We hope that the framework can be used by math-
ematics teachers, educators, and researchers at all levels. The framework has three 
components: Membership Expertise, Communication Practices, and Platform 
Boundaries.

2.1  Component 1: Membership Expertise

The first component that we consider is the expertise level of the membership in a 
vMEC. By distinguishing between communities in this way, we are seeking to iden-
tify characteristics that are shared in general by routine members of the group. 
These are members who frequently engage and form the core of the vMEC. We 
acknowledge that characterizing the community in this way may ignore occasional 
participants and variation among routine members within a group. Within the frame-
work, we consider two degrees of expertise: specialist and generalist.

Specialist communities are built around a narrow focus on a particular idea or 
topic. Consequently, members of communities may be primarily of individuals 
within a specific profession. For example, we might consider scholars who work 
within a specific theoretical framework as a specialized community. Likewise, 
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seventh grade teachers, mathematics coaches at the elementary level, and profes-
sional development directors each make up a different specialist community. 
Members of these communities are distinguished by their expert level knowledge of 
the shared domain. Moreover, the process of becoming a specialist necessarily 
involves crossing boundaries that separate the specialist community from outsiders.

The boundaries of specialist communities function to define, preserve, and gen-
erate expertise. For example, an academically trained mathematician is in a position 
to contribute knowledge to the discipline precisely because of the boundaries that 
were negotiated over the course of their training. Although anyone can have math-
ematical insight about a particular problem, and amateurs can make mathematical 
discoveries, the boundary between those who have specialized training in mathe-
matics and those who do not has been useful to advance the discipline of mathemat-
ics. Thus, specialist communities maintain, by their very nature, boundaries that can 
impede newcomers from participation.

Generalist communities, in contrast, are built around broadly understood ideas 
that, although still specific to a topic or issue, carry far fewer boundaries. The com-
mon interest that connects a generalist community forms a shared domain, but this 
domain is broader in scope than that of specialist communities. Whereas specialist 
communities have a specific interest that establishes boundaries by its very nature, 
generalist communities are formed around broader themes and ideas. This loose 
organization may lead to a more diverse membership in terms of characteristics 
such as backgrounds and ideologies, since there are fewer borders to participation. 
The lack of boundaries also creates more opportunities for miscommunication 
since the norms of the community may not be well established. For example, the 
practice of teaching mathematics serves as a shared domain for a generalist com-
munity. This shared domain is narrow enough to form a community, yet broad 
enough to allow many different perspectives on teaching mathematics to exist 
within its borders. The continued discussion around traditional versus reformed 
teaching approaches within the United States is an example of how members of 
generalist communities may have differing perspectives about many fundamental 
ideas within a shared domain.

Interactions between specialist and generalist communities present many 
 opportunities for boundary crossing as individuals from one community can easily 
interact with members of another. Figure 1 provides a visual of some possible inter-
actions. If we view vMEC 2 as a generalist community and vMEC 1 and vMEC 3 
as specialists, we see that members of a specialist community may reside wholly or 
partially within a larger generalist community or be completely separated. These 
specialist communities might also intersect with each other to form even more spe-
cialized groups. For example, academics working within mathematics education are 
simultaneously members of the generalist community of mathematics educators as 
well as members of more specialized groups focused on their research content. 
Similarly, the generalist group of K–12 teachers of mathematics includes individu-
als who only teach mathematics as well as others who teach subjects in addition to 
mathematics.
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2.2  Component 2: Communication Practices

As individuals transition from occasional to routine participants, they begin to accli-
mate to the practices and norms of the community itself. Here we draw a distinction 
between communities where practices are more educative in nature versus commu-
nities where practices are more transactional. As the name implies, educative prac-
tices or norms are those that are rooted in the notion that the community exists to 
educate and enlighten members. Norms within these communities may include cri-
tiquing and curating community-generated content, seeking out and welcoming 
newcomers, and structuring discussion around central topics within the community. 
Transactional communities, in contrast, have practices and norms based around sup-
plying and consuming content, which does not necessarily foster complex engage-
ment or collaboration. Table  1 provides a summary of some educative and 
transactional practices.

We see the practices of a vMEC as lying on a spectrum from educative to trans-
actional. The degree to which the practices of a particular vMEC are educative or 
transactional is based in part on the features of the platform(s) on which the com-
munity resides. Consider, for example, the differences between the platforms Stack 
Exchange and Pinterest. On Stack Exchange, moderation tools are provided for the 
community to critique and curate content. Members can upvote answers to indicate 
quality. Pinterest, in contrast, provides tools that allow for easy display and sharing 
of content but offers limited mechanisms for collaboration or curation. Additionally, 
monetizing or promoting user-generated content is a feature of the Pinterest plat-
form but is absent from Stack Exchange.

2.3  Component 3: Platform Boundaries

The preceding discussion highlights the interaction and co-constructive nature of 
virtual communities and the platform on which they reside. When viewed through 
the lens of boundaries, it becomes clear that the structure of the site or platform may 

Table 1 vMEC communication practices

Educative practices Transactional practices

• Asking good questions
• The pursuit of knowledge
• Curation of content
• Rich interactions among community members
• Focus on knowledge building
• Moderation of community members
• Enforcement of community norms
•  Community member interactions and content 

generation tend to be closely aligned with the 
shared domain of the community

•  Limited organization or curation of 
content.

•  Shallow interactions between community 
members

•  Focused around identifying resources to 
share

• Monetization or advertisement of content
•  Interactions and content generation that 

are loosely aligned with the shared 
domain of the community
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enable the creation of boundaries that affect the engagement of the vMEC. We focus 
on three aspects of platforms that can create boundaries: access, measurement of 
popularity, and communication structures.

How members of vMECs engage on a particular platform is ultimately a conse-
quence of their access. Access may happen from outside the vMEC, as part of reg-
istration for the social network, or it may be granted by members of the community 
within a platform. Some platforms have a permeable boundary that allows access to 
content by search engines or visitors without restrictions. Stack Exchange and 
Twitter, for example, can each be accessed by anyone outside the community using 
a search engine (e.g., Google)—the boundaries are permeable with access to view-
ing community content available to those outside of the immediate vMEC. However, 
posting and interacting on these platforms does require registering for an account. 
Other social networks, such as Pinterest, may require that users have an account to 
fully view content. Platforms may also allow vMECs to create approval processes 
for members. For example, vMECs active as Facebook groups may have approval 
processes where those seeking to join the group must answer membership ques-
tions. Additionally, the extent to which a user can remain anonymous may create 
boundaries since members may not wish to provide their real information or, con-
versely, interact with individuals whom they cannot identify. Some social media 
platforms, notably Facebook, require that users use their real name and do not allow 
the use of aliases. Other platforms, such as Twitter, allow users to decide whether or 
not they want to use their real name for accounts.

Providing tools to gauge the popularity of content is another feature common on 
social media platforms. The nature of how popularity is measured depends on the 
platform. For example, Twitter posts can be shared through retweeting. Questions 
and answers posted on Stack Exchange can be upvoted or downvoted to signify 
popularity. Pinterest posts can be pinned by users to a board, which is tracked and 
displayed. On Facebook, popularity is measured with emoticons. This idea of col-
lective shared beliefs, or popularity in a post, tweet, etc., represents a boundary 
crossing as it presents a shared, collective unity in thinking.

It is important to note that measurements of popularity are not necessarily mea-
surements of content quality. Features of a platform, however, may intertwine qual-
ity and popularity. For example, on the Stack Exchange platform the number of up 
or down votes a particular question or answer has received can be seen as a measure 
of content quality as judged by community members. In this sense, the Stack 
Exchange platform breaks a boundary in that it provides some measure of content 
validity. However, on other platforms may be no clear association between popular-
ity and quality of content (Hertel & Wessman-Enzinger, 2017). Instead, popularity 
may be a measure of agreement with particular content. For example, the act of 
sharing another user’s content material is an expression that one likely agrees with 
or advocates the content.

As noted, the structuring of discourse is influenced by features of a platform. In 
particular, the interface for viewing content establishes boundaries that affect com-
munication and dissemination of information. For example, Facebook and Twitter 
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provide community feeds, where the most current information is filtered to the top 
of the feed. Individual posts may have comments and discussion within them. Stack 
Exchange, in contrast, blends the idea of a feed with that of a webpage. Questions 
and related discussion take place on individual pages. Searching Stack Exchange, 
however, results in a feed that is comprised of questions.

3  Using the Framework to Understand Current vMECs

We now draw upon the framework and create profiles of several active vMECs. The 
profiles are intended to illustrate the utility of the framework in comparing, con-
trasting, and better understanding the mathematics education communities that 
reside on different social media platforms. These profiles should not be viewed as 
robust characterizations of each vMEC. Moreover, although we view the framework 
as useful in comparing and contrasting specific aspects of each vMEC, we caution 
against reductionism with regard to these communities.

3.1  Profile 1: Math Twitter Blog-o-Sphere (MTBoS)

The Math Twitter Blog-o-Sphere (MTBoS) is a vMEC that interacts across several 
different platforms. It is a subset of the larger education community that resides on 
Twitter (Carpenter, 2015; Visser, Evering, & Barrett, 2014). This intentional use of 
different platforms, including blogs and websites for content creation and Twitter 
for communication and sharing, is a feature of MTBoS that sets it apart from other 
vMECs. For example, members create blog posts, which can then be viewed as web 
pages with organized comments and discussion. Links to these posts can be shared 
within Twitter feeds and then become referents for the original content. The growth 
and popularity of the MTBoS has elevated the status of many mathematics educa-
tors within the field and attracted researchers interested in examining the potential 
of the vMEC for teacher professional development and pre-service teacher educa-
tion (Hsieh, 2017; Larsen, 2016; Larsen & Liljedahl, 2017; Staudt Willet & 
Reimer, 2018).

Another feature of MTBoS is the high degree of organizational structure that has 
been generated by the community itself. For example, there are a number of differ-
ent websites created for the purpose of welcoming new members, compiling 
resources, and organizing community interaction (e.g., https://mtbos.org/, https://
exploremtbos.wordpress.com/, http://mathtwitterblogosphere.weebly.com/). 
Additionally, although the Twitter and blog platforms allow users to remain anony-
mous, the members of the MTBoS tend to use real names and affiliations (Table 2).
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3.2  Profile 2: Mathematics Educators Stack 
Exchange Community

The Mathematics Educators Stack Exchange Community is a vMEC that is hosted 
on the Stack Exchange platform. As discussed previously, the community is a venue 
to ask mathematical questions. These questions are then taken up and answered by 
members of the vMEC. A feature of the vMEC is that the experience and expertise 
of users is measured by platform-based badge and reputation systems. For example, 
a routine participant with thousands of reputation points and multiple gold badges 
signifies a more experienced, expert user than an occasional participant with only a 
few points of reputation. Additionally, the reputation and badge system structures 
the management of the vMEC. Users who have earned sufficient reputation points 
are granted privileges that allow them to actively manage the discussion that takes 
place within the community. This include such actions as closing discussion on a 
question, blocking users who breach the norms of the community, and placing 
bounties on questions they deem worthy of attention—i.e., a reputation point reward 
for other users within the community to provide answers to the question.

Another feature of the vMEC is an emphasis on socializing new users into the 
norms for asking focused, specific questions that are likely to generate clear answers. 
For example, experienced users that have earned moderator privileges regulate how 
questions are posed by revising, flagging off-topic posts, noting duplications, or 
otherwise pointing out how a question could be improved. Thus, the reputation and 
badge features of the Stack Exchange platform provide incentives for members to 
engage with one another and foster productive discourse (Table 3).

Table 2 Unpacking MTBoS with the framework

Math Twitter Blog-o-Sphere

Membership 
expertise

The community is made up of educators at various levels within the K–12 
system, higher education, and in related fields. As such, it is comprised of 
both specialist and generalists.

Communication 
practices

The community has a primarily educative focus with members interactive 
via blog posts, comments, and twitter.

Platform 
boundaries

Access: The boundary between the MTBoS and outside content is 
permeable. Content can be access without restrictions and located using 
search engines.
Popularity measurement: Measures of popularity within the community 
include retweets, replies to posts, and comments.
Communication structures: The use of different platforms provides a variety 
of structures for communication within the vMEC. For example, blog posts 
can be viewed as pages with organized comments and discussion. Links to 
blog posts can be shared within twitter posts. These posts can then generate 
discussion and serve as referents for the original content.
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3.3  Profile 3: Jo Boaler’s How to Learn Math Group

Jo Boaler’s How to Learn Math Group is a vMEC that interacts on the Facebook 
platform. The community is made up Facebook members with an interest in the 
content of the online course created by Jo Boaler. The group description notes “This 
is a place where classmates in Jo Boaler’s online course can share thoughts and 
ideas. We share ideas and articles about teaching math.” (Jo Boaler’s How to Learn 
Math, 2018) As of this writing, the group has over 31,000  members. Individual 
posts structure discussion within the group. Post content typically includes ques-
tions or thoughts related to teaching or reshares of resources from outside the group 
(e.g., videos, images, websites).

Two features of the vMEC are the related to the platform of Facebook. First, 
since Facebook requires that all users use their real name, the identity of group 
members is known. Members may limit the amount of information outside of their 
name that is publicly visible and control the degree to which they can be contacted 
by other platform users. Second, rather than a single popularity measure, the 

Table 3 Unpacking Mathematics Educators Stack Exchange community with the framework

Mathematics Educators Stack Exchange Community
https://matheducators.stackexchange.com/

Membership 
expertise

The community is made up of anyone studying mathematics at any level. The 
norms for posing and responding to questions are enforced by the expert 
users in the community. The vMEC is geared more toward specialists 
because in order to participate in the community one must be able to ask 
clear, specific, well-posed questions that have verifiable answers.

Communication 
practices

The community has an educative focus, in that the aim of the community is 
to assist people that are learning mathematics at any level.

Platform 
boundaries

Access: The boundary is permeable. Content can be accessed without 
restrictions and located using outside search engines. Participating in the 
community beyond browsing content requires creating a free account and 
logging in.
Popularity measurement: There are three measures for the popularity of a 
question: Views, votes, and answers. Views record how many users have 
viewed the full version of a question; upvotes (and downvotes) record the 
number of users that indicated that a question is a ‘good’ question; answers 
indicate the number of answers that have been posted in responses to the 
question. View, votes, and answers measure different aspects of the 
community’s engagement with a question. The popularity of answers to 
questions is measured by votes and by acceptance—i.e., whether the original 
poser of the problem marks the answer as the preferred solution (each 
question has at most one best answer that is determined by the person that 
posed the question). In addition to the metrics for measuring the popularity of 
questions and answers, there are also measures of user’s participation, in the 
form of reputation points awarded and badges earned.
Communication structures: The stack exchange platform supports user 
interactions via the mechanisms for asking, answering, and responding to 
questions. Discourse within the vMEC is managed by members who have 
earned sufficient reputation points through participation.
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Facebook platform has six emotional reactions that users can choose when reacting 
to posted content. These reactions are like, love, ha-ha, wow, sad, or angry. 
Consequently, reactions are able to measure both the popularity of a post, but also 
members to note agreement, disagreement, excitement, etc. and thereby generate a 
rough measure of how members of vMEC feel about posted content (Table 4).

4  Concluding Thoughts

In this chapter, we have presented a framework for understanding virtual communi-
ties focused on the teaching and learning of mathematics. Rather than waiting for 
PSTs to stumble upon one of these vMECs, we believe that active discussion of 
vMECs should be a part of pre-service teacher education. By engaging in discussion 
of vMEC components such as membership expertise, communication practices, and 
platform boundaries, mathematics educators can help PSTs recognize the features 
of a community that may or may not benefit their classroom practice. In doing so, 
PSTs may also come to better recognize the routine participants who comprise a 
community of practice and identify the way that boundaries are crossed or formed 
by the vMEC.

Table 4 Unpacking Jo Boaler’s How to Learn Math Facebook Group with the framework

Jo Boaler’s How to Learn Math Facebook Group

Membership 
expertise

The community is made up of Facebook members who with interest in Jo 
Boaler’s How to Learn Math online course. This includes educators at 
various levels within the K–12 system, higher education, and in related fields. 
As such, the vMEC is comprised of both specialist and generalists.

Communication 
practices

The community has a primarily educative focus with members engaged in 
asking questions, discussing ideas, and sharing relevant content.

Platform 
boundaries

Access: The boundary between this group the rest of Facebook is permeable. 
Anyone on Facebook can find the group, view who is in the group, and see 
what is posted regardless of whether or not they are members. However, the 
boundary between this group and the larger world wide web is rigid, as the 
group cannot be searched from outside of Facebook. As this group is on the 
Facebook platform, all members must use their real names.
Popularity measurement: Measures of popularity include emotional reactions 
to a post or comment (e.g., love, ha-ha, wow, sad, angry), the number of 
comments and replies made on a post, and the number of times a particular 
post is shared by members.
Communication structures: The Facebook platform uses a feed structure. 
Users can display either the most recent posts or the posts with the most 
recent activity appearing first. Members can communicate through comments 
and posts within the group, as well as message each other using the Facebook 
platform. The group administrator has the privileges to structure discourse by 
creating announcements, deleting posts, disabling comments, and managing 
users.
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Discussing vMECs also allows for reflection on how society is coming to terms 
with new streams of information and new avenues for controlling access to informa-
tion. As recently as the early 1990s, searching for information was mediated primar-
ily through physical card catalogues housed in libraries. Similarly, non-local group 
discussions of ideas were mediated through letters to the editor, pamphlets, newslet-
ters, or other limited mailings. The affordances of social media to connect large 
groups of people and provide venues where ideas can be exchanged in real time on 
a worldwide scale has transformed what it means to generate, archive, and share 
information.

The fluidity of expertise, information, and access facilitated by social media has 
also introduced challenges that we are just now coming to terms with. Physically 
bounded stores of information (e.g., libraries, publications) carried with them 
implicit boundaries between known/unknown, verified/unverified, or truth/false-
hood. For example, the New York Times’ slogan, “all the news that’s fit to print” 
highlights how the physical act of printing itself creates a boundary between those 
events that are “newsworthy” and those that are not. However, the old physical 
boundaries have weakened and, in some instances, are now gone. It is unclear what 
will emerge from the ephemera of social media to take their place. Against this 
backdrop, virtual communities of practice can provide guidance and reconfigure 
boundaries that differentiate between truth and falsehood. Consequently, under-
standing these communities and the boundaries they cross, create, or demolish 
should become a focus within our field.
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1  Introduction

Borders – territorial, political, economic, ideological – might seem as if they are 
predetermined and unchangeable, with a function to separate left from right or in 
from out. But we can think of borders differently, such as how, in Theory of the 
Border, Thomas Nail (2016) defines borders as processes of social division. As part 
of this theory, Nail emphasizes that the essence of borders is actually in the “in 
between,” similar to what others, notably Gloria Anzaldúa (1999), have called “bor-
derlands.” Borders monitor and exclude and are regulated, patrolled, maintained, 
and defended by an array of power regimes, but it is the borderlands that are the 
places of movement, agency, and resistance (Anzaldúa, 1999; Nail, 2016).

In this chapter, we draw on this social definition of borders to elaborate on 
processes of social division around gender and sexuality1 in mathematics education. 

1 It is impossible to separate gender and sexuality from race. We are concerned by how this analysis 
and discussion of gender and sexuality in an analysis seem to ignore race and how such an absence 
could be interpreted as a claim that race is somehow separate. We chose to focus this chapter on 
gender and sexuality, most of the time leaving matters of race unstated, but remind readers that 
gender and sexuality always intersect with race (see Joseph, Hailu, & Boston, 2017; Leyva, 2017).

We deliberately listed authors in reverse alphabetical order, in a nod to our subject of queering, but 
this chapter represents the shared work of both authors.
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Our goal in this chapter is to support pre-service teachers in recognizing and chal-
lenging salient borders around gender, sexuality, and other identity categories in 
mathematics education. Ultimately, we look toward opportunities for hybridity cre-
ated by these borders and in the blurring or queering of them. We begin with a 
review of literature, framed by Anzaldúa’s and Nail’s ideas about borders, that doc-
uments the extent to which sexist and heterosexist ideologies patrol, reinforce, and 
perpetuate borders in mathematics that marginalize women and queer people. Next, 
against this backdrop, we present recommendations that will be useful for teachers, 
teacher educators, and mathematics education researchers alike about how to queer 
mathematics education.

2  Theoretical Framing and Related Literature

2.1  Queering Borders

Nail (2016) emphasizes that borders are processes of social division, which exist 
through motions of expansion and expulsion and are “mobile processes designed to 
redirect, recirculate, and bifurcate social motion” (pp. 220–221). These ideas remind 
us of Anzaldúa’s (1999) scholarship, in which she explains that borders are not 
simply a topological divide between here and there or us and them. For Anzaldúa 
and for Nail, borders are spatial divides that separate countries, states, or classrooms 
but can be located inside the minds of individuals, expressed through values, beliefs, 
and ways of knowing that people develop through daily interactions. Seen in this 
way, borders are sites of psychic, social, and cultural marginalization that we inhabit 
and that inhabits us. Based on her experiences living at the juncture between the 
USA and Mexico, originally Mexican land, Anzaldúa uses the construct of “border-
lands” to highlight the inherent in-betweenness of this space, in which she is neither 
fully accepted by White feminist academics as Chicana and at the same time nor by 
the Chicana community as queer. These experiences highlight her personal under-
standing of the psychological, physical, social, cultural, and even spiritual margin-
alization that occurs to those who are situated at social identity borders.

And yet, though enmeshed with power and hierarchy, borders are in a “constant 
place of transition” (Anzaldúa, 1999, p. 36), changing and being changed over time. 
Most relevant to this chapter, we stress that borders around identity categories like 
gender and sexuality are not fixed; since they are socially constructed, these borders 
are in flux, negotiated through practices and discourses across spaces. Yet traditional 
constructions of borders around sex and gender have been formed around fixed, 
binary distinctions, namely, that there are two sexes and genders, that people are 
born with in correspondence, and that normative sexuality is based on a coupling of 
opposites. The traditional construction goes against overwhelming evidence that 
there are more than two genders, that gender does not correspond to sex, and there 
is as wide a variation among people according to their sexuality, preferred gender 
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identity, or choice of gender expression (Hird, 2000; Lorber, 1996). Once sex and 
gender are no longer understood as binary and no longer understood as equivalent, 
then a binary understanding of sexuality no longer makes sense.

Queer theory enables us to interrogate and blur these identity borders, by 
understanding sex, gender, and sexuality as socially and discursively produced, as 
emerging from social, cultural, and economic contexts, and as processes and actions 
that are always relational and intersectional. The term “queer,” once a marginalized 
and marginalizing epithet, has been reclaimed to disrupt processes of marginalization2 
and is not meant only as a signifier that represents gay, lesbian, bisexual, and trans-
gendered identities. Rather, “queer” also functions as a verb, as a challenge to iden-
tity categories more generally, to guide us to remember that what someone does is 
not equivalent to what someone is (Butler, 1990). In other words, our identities are 
not assigned to us at birth, but, instead, we are constantly developing identities 
through social interaction, informed, of course, by existing social constructions 
(Butler, 1990). And so, while traditional binary conceptions function as borders in 
the way that they divide us socially, queer theory highlights how these borders can 
be interrogated, challenged, and even blurred.

2.2  Gender Borderlands in Our Schools

Schools are discursively gendered spaces with their own particular sets of regulated 
processes and regimes of truth about sex, gender, and sexuality that tend to margin-
alize transgender or gender-nonconforming youth (Foucault, 1990; Mellor & 
Epstein, 2006; Miller, 2011). Consider, as an example, how many elementary 
schools across the USA sponsor events like “Daddy-Daughter” dances, events that 
are well meaning yet marginalizing. Beyond the insensitive exclusion of children 
who do not have fathers, this kind of event casts borders around what it might mean 
to be someone’s child or someone’s father. The very social construct of “daughter” 
is a problematic border for many children, such as those for whom gender and sex 
do not correspond, or those who might be seen as someone’s daughter but for whom 
that identity is restrictive and inaccurate. Our argument goes beyond identifying the 
exclusion of genderqueer or transgender children from a school activity. There are 
many young people who identify as girls but might not be comfortable being “dad-
dy’s daughter,” a construct that in and of itself presumes heterosexuality. Furthering 
this same genre of school tradition, most, if not all, high schools in the USA sponsor 
the culminating social event of a senior prom, a ritual event that involves dressing 

2 David Halperin (2003) credits Teresa de Lauretis with coining “queer theory” during a California 
conference because of its shock value. Lauretis intentionally builds on its origin as defamatory, 
intentionally, and “scandalously offensive” (Halperin, 2003, p. 340) to define “queer” as something 
that means to unsettle, disrupt, and transcend what has been socially and politically accepted as 
normative identity categories.
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up in certain styles and is attended by students in heterosexual couples. 
Heterosexuality is emphasized through these proms as normative, with many exam-
ples of prohibition of same-sex couples or of mandating that tuxedos can only be 
worn by boys and dresses can only be worn by girls. These high-profile events either 
exclude the participation of queer youth or put them in the position of having to 
“come out” as queer in a highly public way.

In classrooms, children are required on a daily basis to publicly identify as “girl” 
or “boy” in front of their peers. Teachers typically assign genders to their students 
and often try to balance their groupings of students according to those assigned 
genders (see Rubel, 2016). A common classroom management strategy is to seat 
girls next to vocal boys as a strategy to control or limit the boys’ behaviors (Esmonde, 
Brodie, Dookie, & Takeuchi, 2009; Mellor & Epstein, 2006). Girls and boys are 
expected to inhabit their bodies differentially and spatially, evidenced by how class-
room furniture is spatially arranged in particular ways (e.g., single file, pairs, or 
small groups) in which children are given a space and refused permission to sit in 
other spaces, meaning that their bodies are controlled, in gendered and sexualized 
ways (Gordon, Holland, & Lahelma, 2000; Walkerdine, 1990). Boys, for example, 
are commonly positioned as mischievous and disruptive in school and active in very 
bodily ways, while girls are seen as passive, obedient, and still (Gordon et al., 2000; 
Mellor & Epstein, 2006; Walkerdine, 1990). These positionings in schools contrib-
ute toward the common discursive framing of normative heterosexuality as com-
prising a binary of active masculinity and passive femininity.

Conventional borders around sex, gender, and sexuality maintain these forms of 
marginalization and oppression and often lead to violence in schools. The current 
direction in the USA of definitions of gender and corresponding laws about school 
bathrooms is toward viewing gender only as equivalent to one’s sex “as assigned at 
birth,” even in the face of troves of counterexamples of transgender people. New 
anti-trans legislation is being proposed across the USA, despite how these laws 
effectively deny many young people from feeling comfortable in school and making 
them vulnerable to harassment and physical violence. For example, nearly all (90%) 
gender-nonconforming students indicate that they have received negative remarks 
about their gender expression and more than half reported receiving gender-based 
physical violence in the past year (Kosciw, Greytak, Palmer, & Boeseen, 2014). 
Students who are perceived to be gender nonconforming are significantly less likely 
than their peers to report homophobic and transphobic harassment and assault by 
students and faculty (Swearer, Turner, Givens, & Pollack, 2008). Although not usu-
ally framed as related to borders around gender in schools, school shootings in the 
USA are almost always perpetrated by boys. Rarely is the fact that this violence is 
almost always being perpetrated by males raised as an important issue or that school 
shooting violence is connected to hypermasculinity, homophobia, or violence 
against transgender people (Kimmel & Mahler, 2003; Kosciw et al., 2014).

Where does mathematics education fit in? Nail’s (2016) classification of borders 
shows that some borders contain, protect, and maintain flows while others divide 
and politicize. Indeed, mathematics is employed as a border to support and further 
processes of social division that contain, protect, and maintain flows of access and 
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opportunity, through what Louie (2017, p. 489) has called its persistent and restric-
tive “culture of exclusion.” Various social systems around mathematics, such as 
ability tracking or how mathematical ability is narrowly defined, are hallmarks of 
this restrictiveness and exclusion. Likewise, mathematics is used as a border that 
divides and politicizes. For example, mathematics is racialized as white (Battey & 
Leyva, 2016; Gutiérrez, 2017b; Martin, 2012; Stinson, 2006) as evidenced in the 
historical creation and ongoing use of standardized mathematics assessments as a 
means to justify separation of students within and between schools by race (Berry, 
Ellis, & Hughes, 2013; Ellis, 2008; Yeh, 2018).3 Nail argues (p. 9) that the border is 
“not the result of a spatial ordering, but precisely the other way around – the spatial 
ordering of society is what is produced by a series of divisions and circulations of 
motion made by the border.” We make the same theoretical argument here: we do 
not fault the discipline of mathematics as inherently problematic or claim that math-
ematics itself produces social orderings, but instead, we highlight that processes of 
social division produce orderings of society through and using mathematics.

Another way that Western mathematics has been recruited to support processes 
of social division around gender and sexuality is through its own reliance on binary 
thinking. There is a plethora of examples whereby binary logic dominates: a quad-
rilateral, for example, is a rectangle or not, a number is even or odd but never both, 
a function crosses the x-axis or it does not, and so forth. Since mathematics is posi-
tioned as neutral and ascribed power in supposedly representing an abstract truth 
(Borba & Skovsmose, 1997; Greer & Mukhopadhyay, 2012), its disciplinary 
emphasis of binary logic perpetuates those ways of thinking as normative and justi-
fies this logic as a kind of natural truth (Rubel, 2016). Any attempts at disrupting or 
queering binary thinking can, therefore, be seen as incongruous to or even in con-
flict with mathematics. Instead, mathematics is itself a product of social relations 
(Greer & Mukhopadhyay, 2012; Mukhopadhyay & Roth, 2012), and so, binary per-
spectives that dominate social relations like gender and sexuality extend to it. This, 
of course, suggests that as we blur borders around gender and sexuality in mathe-
matics education, such an expansion will create space for other kinds of logics in 
mathematics.

2.3  Gender and Sexuality in Mathematics Education

Over the past 45  years, the focus in the literature about gender in mathematics 
education has generally been on describing and understanding sex-based differences 
in mathematics achievement and participation (Damarin & Erchick, 2010; Leyva, 
2017; Rands, 2009, 2016). Notably, these studies tend to ignore distinctions between 

3 We remind readers that systems of oppression around gender and sexuality intersect with and 
reinforce systems of oppression around race and class. Our choice in this chapter was to “telescope 
in” (Collins, 1990) on gender and sexuality, despite how these systems of oppression always 
intersect with race and class.
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gender and sex (Leyva, 2017). Many studies explain and justify sex-based achieve-
ment differences favoring males using explanations rooted in biology (e.g., Benbow 
& Stanley, 1982), psychology (e.g., Hyde, Fennema, Ryan, Frost, & Hopp, 1990), 
or social factors like participation (e.g., Hart, 1989). Other studies argue that any 
differences in mathematics achievement by sex are too small to be recognized (e.g., 
Hyde, Fennema, & Lamon, 1990). More recently, Reardon, Fahle, Kalogrides, 
Podolsky, and Zárate (2018) show that on average, across the entire USA, there is 
no gender gap in mathematics achievement. However, when achievement data is 
analyzed to take into account local social contexts and the variability among them, 
their data showed patterns around gender, mathematics achievement, race, and 
socioeconomic status. Whereas in school districts serving poor communities of 
color, girls slightly outperform boys, Reardon and colleagues (2018) show that in 
affluent, White, suburban school districts boys significantly outperform girls in 
mathematics. This finding might seem surprising in the face of the typical outward 
expression of gender equality values in such communities and schools. However, in 
the context of the predominance of traditional gender roles among parents in those 
communities, and in the role that affluent White men play at the top of unequal 
power structures in our society, it becomes less surprising that the system that is 
being maintained is one that favors their sons.

While the set of sex-based achievement gap studies typically show parity, rates 
of participation of men and women in mathematics differ dramatically. In most 
countries, including the USA, female participation drops as soon as mathematics 
becomes optional and further decreases at higher levels (Gray, 1996). In the USA, 
for example, in recent years (2014), while 41% of undergraduate mathematics 
degrees were earned by women, only 29% of mathematics PhDs are women, and 
women constitute 12% of tenured university mathematics faculty (National Science 
Foundation, 2017). We can unpack this steep drop-off and reinterpret it not neces-
sarily as a decline in women’s participation but instead as increasing exclusion, as 
they try higher and more powerful credentials in mathematics.

A mechanism of this exclusion is how mathematics is gendered as masculine. 
Mathematics is constructed as a subject and a field for those who are rational, ana-
lytical, emotionally detached, and competitive. More than any other academic sub-
ject, faculty in mathematics (most of whom are men) believe that mathematical 
abilities are innate (Leslie, Cimpian, Meyer, & Freeland, 2015) and the high status 
of mathematics as a discipline can be attributed in part to its construction as mascu-
line. Mathematical models gain added credibility through the image of mathematics 
as rational and objective – characteristics associated with masculinity – as opposed 
to models that are seen as subjective and value-laden (Borba & Skovsmose, 1997). 
“Pure mathematics,” which is limited to concepts and techniques separated from 
human concern, is elevated to a higher status than applied mathematics (Greer & 
Mukhopadhyay, 2012).

As a consequence of mathematics being gendered as masculine, doing 
mathematics then becomes a part of doing masculinity (Mendick, 2005b). The 
gendering of mathematics as masculine occurs in the context of a constellation of 
other kinds of related gendered and binary oppositions like competitive/collaborative, 
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fast/slow, or analytical/holistic (Esmonde, 2011; Esmonde & Langer-Osuna, 2013; 
Mendick, 2006) and explains, for example, the finding that girls in the USA have a 
greater tendency to believe that mathematics is more suited for boys (Jacobs & 
Eccles, 1985). It is well documented that schoolteachers’ beliefs and biases 
systematically influence student participation and achievement in mathematics and 
that teachers have been shown to generally favor boys in the classroom by giving 
them more extensive answers, attention, reinforcement, and positive feedback 
(Becker, 1981; Fennema, Carpenter, Jacobs, Franke, & Levi, 1998). Teachers (and, 
more often, women teachers) have been found to rate boys as more proficient in 
mathematics, even when compared with girls of similar participation and 
achievement (Lubienski, Robinson, Crane, & Ganley, 2013). Together, these 
findings explain why girls have been found to underestimate their mathematical 
abilities, while boys overestimate theirs (Jones & Smart, 1995).

The masculinization of mathematics can be understood as an exclusionary border 
for girls and women (as well as anyone negotiating other forms of masculinity) 
because to choose to participate in mathematics means to be comfortable and to 
welcome participating and performing in a masculine space (Esmonde, 2011; 
Mendick, 2003; Walshaw, 2001). Barnes (2000) presented a detailed case study that 
shows how doing mathematics as doing masculinity can structure a gendered hier-
archy of mathematics ability that differentially positions individual girls and boys. 
In an investigation of relationships between gender and the social construction of 
mathematical competence in an advanced high school calculus class in Australia 
organized around collaborative learning, Barnes highlighted how students in the 
class were making meaning of mathematics and constructing their own mathemati-
cal identities, as learners of mathematics, relative to one another, and that gender 
was salient in these interactions. Barnes found that the classroom organization 
around collaborative learning was effective and supported students in grappling 
with significant mathematical ideas. However, at certain points of interaction, the 
collaborative groups were less than optimal, and this revelation led to Barnes’ gen-
der analysis of those episodes.

Barnes (2000) found the discursive production of two subgroup of boys, the 
Mates, who performed a dominant form of masculinity, and the Technophiles, who 
were negotiating another nondominant form of masculinity. The Mates were quick-
est to divert the teacher’s attention toward them and were successful by tapping into 
related social capital around athleticism and a sense of “coolness” as well as intel-
lectual capital in the form of problem-solving behavior and academic praise by 
teacher. The Technophiles, on the other hand, were seen as outcasts and were often 
ignored by their peers. The girls in Barnes’ study were often treated as “helpers or 
assistants,” whose role became managing the groups and, especially, managing the 
behavior of the Mates. We see through Barnes’ study that when mathematical abil-
ity or thinking is framed around masculinity and power, the environment becomes 
highly competitive and dissuades girls and other boys from participation.

Though often overlooked, the masculinization of mathematics also presents 
exceptional challenges to queer or gender-nonconforming youth in the ways that 
negotiating masculinity implies negotiating heterosexuality as well. As an example, 
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consider an approach to inviting the participation of girls in mathematics by assur-
ing them that participation in mathematics will not detract from their heterosexual 
appeal. For example, in her top-selling popular book series aimed at girls, Danica 
McKellar (2009, 2011, 2012) pines that “doing mathematics is sexy” and mixes her 
presentation of school geometry as “girls get curves” with “how do you attract 
guys?” If there was any doubt about the premise of heterosexuality or how it is lev-
eraged as part of a promise of attractability to men in the face of participation in 
mathematics, a second book in this series for girls is titled Hot X: Algebra Exposed 
(McKellar, 2011).

One prevalent response to the masculinization of mathematics is to understand 
femininity as inadequate or irrational and ill-suited to mathematics, like framing the 
issue as “the girl problem in mathematics” (Campbell, 1995). An example of this 
kind of “blaming the victim” is the attribution of girls’ reticence to participate in 
mathematics to their characteristics of being less confident or less assertive, which 
are positioned as innate characteristics of girls rather than as responses coproduced 
in relation to their learning environments. The implication becomes, then, instead of 
changing girls to act more like boys or changing the way we parent or educate chil-
dren, perhaps harder to imagine is in changing mathematics itself as the solution to 
gender inequities in mathematics (Damarin & Erchick, 2010). A queer twist on this 
perspective, put forward by Mendick (2005b) citing Butler (1995), premises that 
gender is not something that you are but rather something that people do, and so we 
should not assume only two genders. In addition, we should not assume that male 
bodies are necessarily the only ones who perform or wish to perform masculinity or 
that people consistently choose one, or even any, gender. Yes, we need to challenge 
mathematics as a masculine space to make space for broader participation, but we 
concurrently need to interrogate the very accessibility of masculinity. Who is 
allowed to perform masculinity and what is the cost of transgressing this border?

3  Queering Mathematics Education

Knowledge makes me more aware, it makes me more conscious. Knowing is painful 
because after it happens I can’t stay in the same place and be comfortable. I am no longer 
the same person I was before (Anzaldúa, 1999, p. 70).

There is a growing call for teacher preparation to include a focus on equity, including 
an expectation that beginning teachers understand “the role of power, privilege, and 
oppression in the history of mathematics education and [is] equipped to  question 
existing educational systems that produce inequitable learning experiences and out-
comes for students” (AMTE, 2017, p. 18). Mathematics methods courses are para-
mount ways in which beginning teachers begin to recognize and challenge salient 
borders around gender, sexuality, and other identity categories in mathematics edu-
cation. We argue that Nail’s border theory and Anzaldúa’s notion of borderlands 
provide a framework for the queering of mathematics education during teacher 
preparation. Even though it is the broader society that establishes and negotiates 
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borders around gender, sexuality, and mathematics ability, what teachers do and say 
and how they teach, in social settings like mathematics classrooms, can reproduce 
or interrogate and challenge these borders (Miller, 2011; Yeh & Otis, 2019). Just as 
border security and immigration officers enforce national borders and exclude those 
who appear to be threatening the power regime, as teachers, we monitor the borders 
of what is considered “normal” in our classrooms, what it means to participate, and 
what it looks like to succeed, and we are tasked with having to rank, order, classify, 
and effectively exclude students according to perceived differences (Collins, 2013). 
This means that pre-service teachers hold the promise and ability to support those 
on the margins while simultaneously critiquing marginality (Souto-Manning & 
Lanza, 2019). In this section, we present recommendations about how to identify 
borders in mathematics education during teacher preparation, how to queer those 
borders, and, finally, how to queer mathematics.

3.1  Identifying Borders

Awareness about how mathematics is gendered is essential for teachers to be able to 
recognize and challenge salient borders around gender, sexuality, and other identity 
categories in mathematics education. Dominant discourse around mathematicians 
in social media depicts them as male, boring, and socially awkward (Mendick, 
2005a). As part of their studies of teachers’ conceptions about mathematics and who 
does mathematics, Mewborn and Cross (2007) as well as Lake and Kelly (2014) 
asked pre-service teachers to draw a mathematician. The produced images of math-
ematicians yield insights into teachers’ beliefs and understandings about mathema-
ticians and, in kind, about mathematics. Both studies found that a large number of 
pre-service teachers (mostly female) drew images portraying mathematicians as 
“nerdy, socially inept, middle-aged men working with equations in a lonely room” 
(Mewborn & Cross, p. 263).

In our own practice, building on the work of Zaskis (2015), we have used this 
“personification” prompt with pre-service teachers:

If Math were a person, who would Math be? Write a description (approximately 500 
words). This paragraph should address things such as: How long have you known each 
other? What does Math look like? What does Math act like? How has your relationship with 
Math changed over time? These questions are intended to help you get started and should 
not constrain what you choose to write about.

Through this writing activity, teachers use their own voices and experiences to 
reflect upon power, identity, and the gendering of mathematics. The particular 
method of eliciting personification challenges pre-service teachers to attribute 
human qualities to mathematics, thus allowing them to notice their own relation-
ships with mathematics and the way gender, sexuality, and race play roles in those 
relationships. We have found that through this personification activity, participants 
often identify how mathematics is masculinized, heteronormative, and omnipotent, 
such as:

Queering Mathematics: Disrupting Binary Oppositions in Mathematics Pre-service…



236

Mr. Math is your stereotypical, middle school gym teacher. He is a middle-aged, muscular 
man towering over us as he walked around in his tight, athletic shorts. The very familiar 
whistle is wrapped around his neck so he can easily blow it furiously at all times. His favor-
ite phase is “Go faster!”

In this sample excerpt, we see the discursive framing of normative heterosexuality 
and hypermasculinity: physical strength, aggression, and sexuality.

Similar to results found in the draw-a-mathematician studies, these teachers 
presented mathematics as male and, for most of our teachers (predominantly 
female), different from themselves. Unlike the results of the “draw-a-mathematician” 
studies, interestingly, we have not found teachers presenting “Math” as a socially 
inept “nerd” but instead as men in positions of authority or power, such as the PE 
coach, king, boyfriend, or lover. Perhaps differences can be attributed to the prompt 
itself. Elicited personification targets the relationship with mathematics more 
directly than the draw-a-mathematician task by directly asking about the teacher’s 
own relationship with mathematics, allowing us and the teachers (many self-
identifying as having mathematics anxiety) an opportunity to reflect on the high 
status of mathematics and its power in shaping school experiences. The 
personification writing activity allows pre-service teachers to express and share 
their evolving relationships with mathematics. In our experience, most pre-service 
teachers typically indicate an initial relationship with mathematics as both emotional 
and tumultuous, that is, filled with both joy and isolation. In many cases, they 
describe that relationship turning “sour,” either as mathematics became more 
challenging, more complex, or less connected to their day-to-day lives.

3.2  Queering Borders

Our assumptions about and understandings of gender, sexuality, and families are 
reflected in the stories that we tell, in the things that we mathematize, and how we 
mathematize them. We know that learning is improved when people see relevance 
in mathematics and can use it as a lens or a window through which to better under-
stand the world (Gutiérrez, 2007). Instead of themes of corporate profit, consumer 
thriftiness, or middle-class leisure activities often found in US mathematics text-
books, we could be using mathematics to unpack and redress social justice issues 
around gender and sexuality (e.g., Rands, 2013). Since mathematics includes the 
identification of trends, forming of projections, and the communication and evalua-
tion of solutions, the process of mathematical modeling could be directed toward 
addressing problems such as wage earnings gaps between men and women in the 
workforce and disparities in the rate of hate crimes and police brutality between 
transgender and cisgender populations.

Learning is improved when school mathematics serves not just as a window 
through which to see the outside world but also as a mirror through which people 
see themselves and their families (Gutiérrez, 2007). Such a commitment neces-
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sitates inclusion and representation of gender diversity and of LGBTQ people 
and their families across our mathematics curricula. This means including and 
representing diversities of gender identities, sexualities, kinds of families, kinds 
of couples and how they celebrate, as well as intersections of those diversities. A 
mathematics curriculum that goes beyond reflecting only the experiences of a 
narrow range of people will make mathematics more equitably accessible to 
more people. In addition, such a curriculum will support the dismantling of the 
existing oppressive and rigid binary categories of gender and corresponding 
sexuality.

Identity is developed through reclaiming histories of marginalization and 
violence, articulating oppression’s gendered and heteronormative elements, and 
embracing the fluidity of borders – a concept Anzaldúa (1999) describes as border 
consciousness. We propose that mathematics educators be given and take the space 
to develop this kind of border consciousness, by interpreting and assessing the ways 
that gender and sexuality norms are relegated and naturalized by the contextualized 
realities made available in mathematics curriculum. For example, consider the fol-
lowing prompts used to support pre-service teachers in a process of queering their 
curriculum:

 1. What knowledge (aside from the mathematics) and worldview is assumed by this 
word problem? What are the problem’s assumptions or values?

 2. Does this problem reflect your own experiences?
 3. Whose experiences are reflected or not included?
 4. How could we queer these problems so to reflect a wider number of windows and 

mirrors for our students?
 5. What categories of resistance might you face to these new word problems and 

how will you respond or get support?

The process of collective analysis increases the visibility of and opportunities to 
make “unhidden” the tradition of silence – sexism, heterosexism, classism, and 
consumerism – typically reified through mathematics texts (Bright, 2016). Since 
any group of people has diverse histories and borderland experiences, this leads to 
differing interpretations and discoveries that can overlap or contradict. Collective 
analysis, therefore, enables multivocality, highlights essentialist depictions, and 
provides alternate discourses that would likely be unavailable if individuals con-
ducted curriculum analysis on their own. As shown in the above set of prompts, 
after interrogating a problem in terms of assumptions, values, and whose experi-
ences it valorizes, teachers can then undertake a process of “relabeling” (Souto-
Manning & Lanza, 2019), toward challenging the written boundaries around 
gender and sexuality, pushing back against stated stereotypes, and interrogating the 
problem’s implicit values. School students, too, can be engaged in this process of 
border consciousness and queering word problems, a process whereby they reframe 
mathematics texts to be better mirrors of their identities, experiences, and values 
(Yeh & Otis, 2019).
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3.3  Queering Mathematics

Representation in mathematics communicates to young people what mathematics is 
for and whose problems get to be solved with mathematics. And yet, representation 
and this inclusion approach, as described directly above, or what Rands (2009) has 
called the “add queers and stir” approach, are crucial but not sufficient. Efforts orga-
nized around inclusion and on broader representation of individuals and of gender 
and sexuality more broadly miss an essential element of queer theory, that identity 
is not fixed but is constantly fluid and being performed (Rands, 2009, 2016). In 
other words, we cannot only “mathematize the queer,” or work to ensure that math-
ematics is used as a window that looks out onto social justice issues around gender 
or sexuality, or that there is enough and appropriate representation in mathematics 
for it to function as a mirror for queer people (Rands, 2016, p. 188). Instead, we take 
up Rands’ (2016) call that in addition to mathematizing the queer, as we have dis-
cussed directly above, we must also queer mathematics itself.

The current emphasis in mathematics education imposes the values of 
rationalism, objectivism, and abstraction  – traits that are often associated with 
masculinity (Bishop, 1990; Gutiérrez, 2017a). As Fasheh (1982, p. 3) reminds us, 
although teaching mathematics is often positioned as having the objectives of 
knowing “certain mathematical facts” and “thinking correctly, logically, and 
scientifically,” we could instead organize mathematics education around teaching 
young people “to doubt, to inquire, to discover, to see alternatives, and, most 
important of all, to construct new perspectives and convictions.” Similarly, when 
we take such positions as there is only one right answer (untrue as soon as 
mathematics is applied to reality) or only one right way to carry out a computation 
or express proof (absolutely not true), these actions inflict intellectual abuse by 
discrediting the experiential and mathematical brilliance students possess (Greer, 
Mukhopadhyay, & Roth, 2012). In addition, “mathematical developments in other 
cultures, follow different tracks of intellectual inquiry, hold different concepts of 
truth, different sets of values, different visions of the self, of the Other, of mankind 
of mature and the planet, and of the cosmos” (D’Ambrosio, 1997, p. 15). Neither 
Fasheh, Greer et  al., nor D’Ambrosio uses the language of “queering” in these 
stated challenges to mathematics education, but we argue that in interrogating the 
very foundation of how we think about mathematics and its purposes, these ideas 
are examples of queering mathematics.

Queering mathematics inquires about and questions boundaries, not only around 
social categories of gender and sexuality but also around mathematical categories 
(Sheldon, 2019). Sheldon and Rands (2013) and Sheldon (2019) highlight the pos-
sibility of queering mathematical concepts like time, infinity, space, measurement, 
place-value, and more. Mathematics is not universal, “the same for everyone,” but a 
human activity, enriched by the diverse intellectual activity bound in life. Authentic 
cultural mathematical practices are connected to lived experiences, to bodies, imme-
diate needs, and desires (Greer et al., 2012; Mukhopadhyay & Roth, 2012), imply-
ing that mathematical activity can be multisensory, can involve or benefit from our 
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hands, bodies, or eyes, and can involve direct interaction with the physical and 
social world. Queering mathematics, as well as new kinds of logics and ways of 
thinking about gender and sexuality, implies creating space for new ways of math-
ematical thinking. In other words, queering mathematics will support us to interpret 
existing questions in new ways, ask altogether new questions, challenge premises 
that seem no longer self-evident, develop new kinds of representations and argu-
ments, see patterns that may have been invisible before, and will ultimately support 
us in solving both new and heretofore unsolved problems.

4  Conclusion

Social justice issues around gender and sexuality, along with women’s legal rights, 
bodies, and overall role in society, are and remain a political battleground. From 
differential access to human rights, resources, and professions, inequality in wages 
for work, who controls women’s bodies and their health, to sexual intimidation and 
assault – all of these pressing issues demonstrate the urgency of our blurring and 
renegotiating existing borders around sex, gender, and sexuality. On the one hand, 
pretending that mathematics is somehow separate from these social issues or, on the 
other hand, that mathematics alone can rectify these injustices is both problematic. 
Both of these perspectives ignore the role that mathematics plays in creating and 
justifying borders as social divisions and, as importantly, in creating new or exacer-
bating existing injustices (Pais & Valero, 2012). A way forward is through queering 
mathematics education during teacher preparation or, as we have argued and 
explained here, in identifying borders in mathematics education, queering those 
borders, and in queering mathematics itself.
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Persisting Racialized Discourses Pose New 
Equity Demands for Teacher Education

Mahtab Nazemi

I think it’s important [for teachers to] involve current events that you have your students 
stay on top of what’s going on in the world because it’s important that they know this stuff. 
[M]aybe this idea that they heard in class, this real-life topic will encourage something else. 
Maybe they’ll write a book about it or maybe start a movement around it. You never know 
what you could inspire by just helping kids know what’s going on.  – Leilani, student 
interview

Teachers need to connect their classrooms to real-life events and to students’ lives, 
as the effects can be as far-reaching – as Leilani suggests here – such that students 
might feel encouraged and inspired to use what they have learned to engage with 
and change the world around them. As a mathematics education community, we 
have come to know that equitable mathematics teaching needs to be responsive to 
students and their cultures, as well as affirming to students’ identities both academi-
cally and socially (e.g., Delpit, 2012; Gay, 2000; Gutiérrez, 2013; Gutstein, 2007; 
Ladson-Billings, 2014). Complex instruction (CI, Cohen, 1994) is one example of 
an ambitious and equity-driven form of instruction which has been shown to support 
students’ advancement of conceptual understanding in mathematics and support 
students to develop productive mathematical identities at the same time (Boaler & 
Staples, 2008; Jilk, 2010). In brief, CI is organized around rich and complex, group- 
worthy mathematical tasks. These tasks are conceptual in nature, problem-solving 
oriented, and open-ended (Cohen & Lotan, 1997). Through these tasks, group work 
is encouraged in CI. Students are expected to work together to make meaning of 
concepts and big ideas, rather than one student dominating the conversation or task. 
Students are held accountable for the learning of every student in the group, for 
example, through the teacher’s insistence that all questions are group questions 
(rather than individual questions) and through assessments such as group quizzes 
that require students to support and work with one another (Cohen, Lotan, Scarloss, 
& Arellano, 1999). Despite its promising context, we know very little in regard to 
students’ experiences (in their own words) with equity-driven initiatives such as CI, 
making it challenging to understand if/how these forms of instruction can support 
students’ identities, academic and otherwise.
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Recognizing and affirming students’ identities and experiences are essential, 
especially in the context of an equity-driven mathematics classroom. This means 
putting students and their sense of selves (back) at the center of learning, such that 
our curriculum and teaching practices are built around them. Knowing about the 
racialized experiences of students, from a diversity of racialized student of color 
perspectives, can be advantageous in understanding identity and racial discourse in 
mathematics learning and across racial lines. In this AP1 Statistics classroom – the 
site of this study – the classroom teacher employed CI and was conscious of sup-
porting students and their identities while learning mathematics. While this form of 
instruction, and this classroom teacher, successfully supported students (who were 
by and large of color) to participate and succeed in upper level mathematics, these 
students expressed narratives around learning that were racialized in nature.

This chapter draws upon previous work (Nazemi, 2017) which showed that, in 
this classroom context that is ambitious and equity-driven with a teacher who is 
conscious of race and her students’ identities, racialized discourses and processes of 
racialization persisted. In centering students’ voices  – across various “of color” 
racial identities – I showed that the complexity of understanding students’ racial and 
academic identities has to do with hearing from them about their experiences, as 
embedded in the contexts of learning in which they are situated (Nazemi, 2017). 
Understanding that race and racialization are salient, even in the context of ambi-
tious and equity-oriented mathematics instruction, urges teachers and teacher edu-
cators to consider a new equity demand. Said differently, students’ experiences in 
the mathematics classroom are racialized in nature, a reality that teachers need to be 
aware of and prepared to respond to. The prevalence of assumptions around who 
can and cannot know, do, and succeed in mathematics affects how students interact 
with one another, their classroom teacher, and the mathematics learning they engage 
with. This chapter starts here, in order to suggest implications for pre-service teacher 
education, centered around, and responsive to, students’ identities and racialized 
experiences.

1  Theoretical Underpinnings

This chapter draws on sociocultural theories of learning and identity as well as criti-
cal race theory (CRT), to center and privilege the racialized narratives of six girls of 
color who were enrolled in an AP Statistics class, characterized by high-quality 
implementation of equity-oriented instruction. Specifically, in this section, I describe 
how CRT builds upon sociocultural theories around learning and identity so that we 
can understand all contexts of learning as inherently racialized while also shaping 
our sense of selves.

1 AP stands for Advanced Placement and is a program in the United States and Canada that offers 
college level course curriculum and examinations for high school students. Often, upon successful 
completion of the AP exam, students are able to apply course credit(s) toward their college degree.
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Early sociocultural theorists in education demonstrated that thinking, develop-
ment, and learning depend greatly on the social and cultural contexts in which they 
take place (e.g., Lave & Wenger, 1991; Rogoff, 1990; Rogoff & Lave, 1984; 
Vygotsky, 1978). Specifically, through ethnographic studies, Lave and Wenger 
(1991) showed that learning is “situated” or takes place within social context. This 
means that the contexts in which students are located have everything to do with 
what they are learning, who they are becoming, and how they see themselves. In this 
way, we can think about identity as a never-to-be-complete product of sociocultural 
histories (Hall as cited in Nazemi, 2017) or “being recognized as a certain ‘kind of 
person’ in a given context” (Gee, 2000, p. 99). Wenger (1998) showed us ways in 
which learning and identity are connected, so that participating in the social context 
of learning “shapes not only what we do, but also who we are and how we interpret 
what we do” (p. 4). While sociocultural theory helps to connect learning and identity, 
this approach does not tend to recognize the imminent role of race and racism in all 
learning contexts, a shortcoming some scholars have remarked upon (e.g., Esmonde 
& Booker, 2016; Gutiérrez & Rogoff, 2003; Nasir & Hand, 2006; Nasir & Saxe, 2003).

In order to respond to the shortcomings of sociocultural perspectives, many 
scholars have focused on the identity-related experiences of students of color so as 
to recognize the role of race and racism in learning contexts (e.g., Esmonde, Brodie, 
Dookie, & Takeuchi, 2009; Leyva, 2016; McGee, 2016; Nasir et al., 2013; Oppland- 
Cordell & Martin, 2015; Shah, 2017; Stinson, 2008; Zavala, 2014). Some schol-
ars – including some of the aforementioned – account for the prevalence of race 
and the processes of racialization in learning contexts, through employing a CRT 
lens in education (Ladson-Billings & Tate, 1995; Martin, 2012). CRT helps schol-
ars recognize, center, privilege, and legitimize counter-narratives that speak to the 
lived experiences of students of color in their own words (Delgado & Stefancic, 
1995; Solorzano & Yosso, 2001) while calling out and analyzing the function of 
race and racism both in students’ lives and classrooms, as well as in the educational 
system as a whole (Tate, 1997). In the context of mathematics learning, CRT has 
been used by scholars to examine the complexities of the experiences of students 
of color and to provide a framework for counter-narratives where stories of resil-
ience and success are (re)-centered and shared (e.g., Berry III, 2008; Corey & 
Bower, 2005; Martin, 2012; Stinson, 2008; Zavala, 2014). Few of these studies – 
much like the one described in this chapter – employed both CRT and sociocultural 
theory together (e.g., Esmonde et al., 2009; Leyva, 2016; Zavala, 2014). While a 
large number of these studies focus squarely on African American boy students 
(e.g., Berry III, 2008; Corey & Bower, 2005; Martin, 2012; Stinson, 2008), all of 
these studies, centering the narratives of students of color by way of CRT, allowed 
scholars to uncover and make sense of students’ experiences in mathematics and 
how these students made sense of and navigated their identities, vis-à-vis learning 
mathematics. This work has allowed scholars to show ways in which students of 
color have been successful in mathematics, for example, through resisting, persist-
ing, and carrying positive identities, often in opposition to the dominant narra-
tives about their racial/ethnic identities (e.g., Berry III, 2008; Martin, 2012; 
Stinson,  2008). In this chapter, it is through the uncovering and centering of 
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 students’ racialized narratives, along with navigation and negotiation of their iden-
tities, that we are able to understand the implications these counter-narratives pose 
for teacher education.

2  Research Methods and Context

The data presented here is from a 6-month study exploring how six girls of color 
(Carlin, Gena, Jane, Leilani, Lia, Mya2) navigated and negotiated their identities 
while learning mathematics within an AP Statistics classroom, with a race- 
conscious White3 woman teacher who employs equity-driven forms of instruc-
tion. The overarching goals of the study were to understand how these girls of 
color felt their racial identities played a role in their learning mathematics, how 
they viewed themselves in relation to other students in their classroom, what sort 
of racialized narratives persisted in spite of the equitable forms of instruction tak-
ing place, and how these racialized narratives reflected or ran counter to dominant 
neoliberal ideologies. I employed qualitative interview study methodology (Miles, 
Huberman, Huberman, & Huberman, 1994; Yin, 1994) and drew upon standpoint 
theory (Haraway, 1988) and critical race theory (CRT) along with sociocultural 
theories of learning and identity, to ensure that I was centering the stories of these 
girls of color, in order to understand their experiences in their own words. The 
major data sources for this study included 8 h of interview data, with focal girls 
of color and their classroom teacher, and field notes based on 23 h of classroom 
observations.

Students were asked about their racial and ethnic identities and responded with 
various racial self-identifications. They identified as “South Asian, Cambodian” 
(Jane) and “African American” (Leilani), or “mixed” (Lia), “mixed race” (Mya), 
and “multiracial” (Carlin). Gena’s self-identification stood out in that, while she 
identified as Filipino, she first listed all the ways in which she did not identify yet 
was assumed to by others (Nazemi, 2017). Because of the sensitive nature of asking 
people about their racial identity, I accepted the language that students provided and 
respectfully probed for further clarification when given the opportunity. For exam-
ple, Lia identified as “mixed,” and she expanded on this term to say: “My, umm, my 
mom is White and Black, and then my dad is Black.” Yet, when I asked Mya about 
her racial identity, she said, “Pretty much like mixed race,” and throughout our con-
versation it never felt appropriate or respectful to probe further to know the specifics 
behind her chosen racial identification.

2 All names are pseudonyms to protect participants’ anonymity.
3 To be consistent, I chose to capitalize the word “White” in instances where it marks one’s racial 
identity. For example, “Ms. Williams is a White woman teacher.” In other instances, where it is 
used as a noun or adjective, I do not capitalize it. For example, “Neoliberalism and Institutional 
racism support white supremacy and white hegemony by leaving whiteness as unmarked.”
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Overall analyses took place in two phases, where student level data was first 
examined to explore and center their racialized narratives, and then classroom 
observation data helped describe classroom instruction as well as how students 
interacted with one another, their classroom teacher, and the curriculum. The sec-
ond phase of analysis also situated students and their classroom within the larger 
social context in which these people and places are located – in order to explore how 
students’ narratives ran in support of, or counter to, greater discourses of institu-
tional racism and neoliberalism.

This study grew out of my work as a mathematics instructional coach in a sec-
ondary teacher education program in the Pacific Northwest. I first came to know the 
classroom teacher, Ms. Williams, through her and her school’s partnership with my 
university. I observed and learned quickly that, unlike any other teacher I had met, 
Ms. Williams’ attention to her students and their identities – both academically and 
racially  – was something unique and worth understanding more closely. This in 
addition to the AP Statistics classroom being racially diverse in ways unlike any 
other upper level mathematics classroom4 I had seen, made for a phenomenon I 
wished to further explore. This means that in some ways, this classroom was typical 
of other large urban classrooms in the United States (e.g., Delpit, 1995; Grenfell & 
James, 1998; Howard, 1999; Nieto, 2004; Stiff & Harvey, 1988; Weinstein, 1985; 
Zevenbergen, 2003)  – given the White and woman identifying teacher and the 
majority of students being of color. At the same time, this classroom was atypical 
for an upper level mathematics classroom in terms of the racial composition of stu-
dents, making it a useful site for exploring the experiences of students of color in 
mathematics (Bol & Berry, 2005; Viadero, 2002).

My research identity was central to my relationship with the focal students, the 
classroom teacher, and the school at large. I am a woman of color, who at the time 
of data collection was completing a doctoral degree in education. Because of space 
limitations, and for the purpose of this chapter, I have not further discussed my 
positionality as a researcher here. See Nazemi (2017) for more information about 
my positionality as well as more about the research design of the study.

3  Key Findings

Overall, findings indicate that even within a classroom context that reflects ambi-
tious and equity-oriented instruction and is organized to support students’ academic 
identities and mathematics learning, this classroom is a site in which racialized 
discourse persists regarding how students are positioned as doers of mathematics in 

4 The AP Calculus classrooms at this school were racially diverse as well, but in different ways. 
Briefly speaking, there were a large number of African American or Black and Pacific Islander 
identifying students in this AP Statistics classroom, unlike the AP Calculus that had a large number 
of East Asian identifying students in addition to a much larger number of White students.
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relation to how they racially identify or are identified by others. This section is orga-
nized around three main findings, each one following from the previous one(s). 
These findings, in order, are called Representation Is Not Enough, Attending to 
Student Learning and Students’ Identities, and Even with Equity-Minded and 
Ambitious Instruction, Racialized Narratives Persist.

3.1  Representation Is Not Enough

When Ms. Williams first came to Champlain High School, she noticed right away 
that there was a large number of students of color at this school, and there were 
varying institutional supports – such as an afterschool one-on-one tutoring session – 
in support of all students. With her and the AP Calculus teacher’s help, both AP 
Calculus and AP Statistics started being offered at this school, around the same time 
the school adopted a new attraction as a STEM magnet school.5 Offering AP math-
ematics courses at a racially diverse school such as Champlain is exceptional based 
on usual trends across the United States (Flores, 2007; Oakes, 2005). At the same 
time, Ms. Williams remarked that her AP Statistics classroom looked different than 
her colleague’s AP Calculus classroom. In speaking to her concern about tradition-
ally underserved students, here Ms. Williams contrasted her AP Statistics classroom 
to the AP Calculus classroom at Champlain, expressing that these courses were 
made up of very different populations which could be sending different messages to 
students:

[A]nother thing is that socially, the messages that they’re getting about where they should 
be or who should be there, who belongs. You know? Like even the fact that we have AP 
Stats and we have two sections of it now, and two sections of AP Calculus, it’s so exciting 
to me because when I started here we had neither of those classes, now we have four. So 
that’s really exciting. And then in the last couple years, I mean having kids in any of those 
classes is powerful. However, if you walk into AP Stats or you walk into AP Calc, again you 
will see a divide, you will see a much higher proportion of Asian, Asian-descent students in 
Calc, and a much higher proportion of African American, East African, and still Asian 
American students, but even among the Asian American, like more of the Pacific Islanders 
are showing up, or you know Filipino students are showing up in my AP stats. So there’s 
definitely a divide in the, you know, of the color of the students in my class and so they’re 
getting messages about what they can do and can’t do.

Above, Ms. Williams noted that students were getting messages about who can and 
cannot be successful in mathematics. A message that either comes from, or is 
affirmed through, the contrasting racial composition of AP Statistics versus AP 
Calculus.

5 In the United States, “magnet” schools attract students, across regular boundaries or school zones, 
through providing specialized courses or curricula. In this particular case, the specialized curricu-
lum was in Science, Technology, Engineering, and Mathematics (STEM).
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Through informal conversation with Ms. Billings, the AP Calculus teacher at 
Champlain, I learned her take on the contrast between her and Ms. Williams’ AP 
classes. Ms. Billings, like Ms. Williams, explained that across the mathematics 
department at Champlain, teachers were concerned about status differences between 
AP Statistics and AP Calculus. There was the worry that these two AP classes were 
turning into different streams of mathematics, with AP Statistics being considered 
the “easier than calc” stream (Field Notes, January 26, 2016).

One major challenge that both Ms. Williams and Ms. Billings described to me 
was that many students did not see AP Statistics as an Advanced Placement class, a 
perception confirmed by the fact that compared to AP Calculus, few students took 
the AP exam for Statistics. Ms. Billings added that students looked at their peers 
that ended up taking AP Statistics instead of AP Calculus and based on students’ 
racial identities, “low-status students” were seen as connected to AP Statistics while 
“strong students” were associated with AP Calculus. In response to this concern, 
teachers were trying to send the message to students that both classes, while differ-
ent, are challenging. In fact, the year I collected my data, Ms. Billings said that 
mathematics teachers at Champlain introduced yet another mathematics course 
which supported students to pursue college mathematics by further assisting them 
with precalculus curriculum – with the hopes of supporting students to stay in the 
Calculus/Algebra mathematics stream, rather than assuming AP Statistics was an 
easy way out (Field Notes, January 26, 2016).

In the case of a classroom like this one, at first glance one could assume that 
equity had been achieved as there were a large number of students, engaged in an 
Advanced Placement mathematics course, who identified racially with histori-
cally underserved populations. While having a disproportionate number of people 
of color in a negative circumstance (like low-tracked or remedial mathematics 
courses) can signal inequity, having an appropriate representation of people of 
color in a positive circumstance does not necessarily signal equity. In other words, 
as Gutiérrez (2012a) indicates, access to high-quality mathematics is only one 
aspect of equity, the other aspects being achievement, power, and identity. Access 
refers to the resources and learning opportunities that are made available to stu-
dents, while achievement has to do with access to, participation in, and success 
with mathematics. Identity has to do with attention to oneself and to others with 
the intent of supporting one’s sense of self, and power is about social transforma-
tion (Gutiérrez, 2012a). Even so, in later work Gutiérrez (2012b) pushes these 
aspects of equity even further by recognizing that access and achievement have to 
do with dominant mathematics – which is the mathematics that is upheld in colo-
nial and Eurocentric contexts of learning. When we attend to identity and power, 
we begin to push back against dominant forms of mathematics in support of doing 
critical mathematics – finding ways to engage with and change mathematics, in 
ways that are built around who we are and what we know in our personal and 
academic lives.
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3.2  Attending to Student Learning and Students’ Identities

Given Ms. Williams’ interest in knowing how students identified racially and ethni-
cally, each year at the beginning of the school year, students were expected to write 
an anonymous letter, in which they were prompted to talk about their racial/ethnic 
identities and their experiences with racism. At the same time, Ms. Williams 
designed instruction to make the relationship between race and various social injus-
tices visible. For example, she described how she designed a group-worthy task 
about institutional racism and the death penalty and how this was a context, both 
potentially interesting and relatable for many of her students and useful for showing 
a power of statistical methods. Here she told me about students’ responses about 
their racial identities and experiences of racism. She relayed that she was surprised 
at how varied their responses and their levels of ease in disclosing information 
were – even when it was anonymously done:

I’m very curious about students’ identification, and we try to get some of that out of their 
letter, but some of them don’t open up with that. In stats, we asked a little bit later about 
experience of racism, because we were going to do a task about racism in the justice system 
and like statistics that show, like clearly show, that there [are] more incidents of getting the 
death penalty for African American male, than for White male, and also, based on not just 
the color of your skin but the killer. Getting the death penalty for having killed someone but 
also for who you killed. So, like to get into that task we ended up asking them about racism 
and what do they identify as, and so it was surprising to see what some of them identify as, 
and it was anonymous so it was surprising to see that some of them were very open and then 
others gave such vague responses.

For Ms. Williams, it was important at the start of the year to learn about her stu-
dents’ racial identities, especially in preparation for a task she did with students 
about racism in the US justice system. She found students’ writing about their iden-
tities “surprising,” either because of how forward students were or how vague they 
were. Through her extensive ethnographic study of Columbus High School, Pollock 
(2004) classified students’ race labels or how they described racial identity, as being 
either “matter of fact” or “suppressed” all together (p. 9). Students’ responses about 
their racial identity, in the anonymous letter they wrote to Ms. Williams, follow 
what Pollock (2004) found. Specifically, Ms. Williams’ students’ responses about 
their racial identities tended to be straightforward and open (or very matter of fact) 
or vague (or suppressed) all together.

Throughout our conversations, Ms. Williams expressed how conscious she was 
about her identity as a White teacher vis-à-vis her students’ racial identities. As one 
example, Ms. Williams described the role she felt her racial identity played in how 
she related to students:

Ms. Nazemi: Do you feel that your racial identity plays a role in how you relate to your 
students?

Ms. Williams: Umm I wish that it didn’t, but I’m sure that it does. […T]here’s definitely like 
a White female expectation, there just is, I know there is. I’m not someone 
who tries to take on anything, honestly, that tries to take on anything that’s not 
my own personality but every once in a while when I’ll be, I’ll say something 
silly because it is just my silly, you know? Some kids will definitely get it, and 
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then I’ll just see a look on a face that’s kind of like…um sorry I’m not being 
clear…but it comes, like the look on a face kind of says to me that they don’t 
see something genuine. That’s so…that’s so sad to me that this was my 
moment of really being genuine, but it’s still gonna register with people dif-
ferently based on their identity.

Ms. Williams described here that her identity as a White teacher had a big impact on 
how she related to students and how they might or might not relate to her. She 
expressed the worry that she might be seen as disingenuous when she makes a 
remark or says something humorous that could be culturally nuanced/specific and 
that it might be taken up differently depending on the student and how he/she identi-
fies. At the same time in the following excerpt, we can see that Ms. Williams further 
described white guilt as part of her identity that she tried to be careful about with her 
students.

[O]verdoing the sympathy and guilt thing is another part I think of my identity. I think some 
of my students are tired of that as well. I mean like how much apology do they want? They 
just, they want action, they want to see things in a way that really fits everybody.

Above, Ms. Williams implied that through apologizing to students for her racial 
identity, it was like she was asking for sympathy for her guilt around being White, 
rather than taking the time to adjust to what students’ needs are based on their iden-
tities. An important aspect of understanding whiteness and White teacher identity,6 
according to Paley (2009), is white guilt, as Ms. Williams has shown us.

Pedagogically, Ms. Williams’ AP Statistics classroom, much like the greater 
Champlain High School context, employed CI, a prominent example of equity- 
oriented pedagogy (Cohen, 1994), which takes a stance toward instruction that has 
been shown to support both students’ sense of selves and their opportunities to 
engage in and succeed with ambitious high-quality curriculum (Boaler & Staples, 
2008; Cohen, 1994; Cohen & Lotan, 1997; Cohen et al., 1999; Jilk, 2010). In Ms. 
Williams’ AP classroom, like CI classrooms in general, students were familiar 
with the structures and expectations in place. Since this ambitious and equity-
minded approach was typical across the entire mathematics department, students 
spent years working in groups, supporting one another and/or asking for support 
from one another, as well as asking the teacher group questions and turning in 
group quizzes for assessments. Additionally, because this was an AP classroom, 
students were given the opportunity to write the AP College Board exam in May, 
prior to which the mathematics content was selected and presented in preparation 
for the exam. After the AP exam was administered in May, students spent the 
remainder of the school year working on a group project that involved doing sta-
tistical data analysis around a topic of their choice for which they collected data. 
While this is not within the scope of this chapter, this activity, within a complex 
instruction framework, was both culturally responsive and relevant to the lives of 
these students.

6 A limitation of this study is that I did not engage in a full treatment of the teacher’s racial identity. 
I expect that other work, and future research in mathematics education, takes up issues associated 
with teachers’ racialized identities.
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Elsewhere (Nazemi, 2017) I have explored in great detail the principles of CI and 
how these are implemented at a high-quality level in Ms. Williams’ classroom. I 
described these tenets as Group-Worthy Tasks; Organization of Group Work and 
Establishing Group Norms; and Student Status: Highlighting Multiple Abilities and 
Assigning Competence. It is believed that when simultaneously enacted, these prin-
ciples in CI support equitable participation and increased student learning and suc-
cess (Cohen & Lotan, 1997). For this purpose of this chapter, I will focus on the 
third tenet that deals with student status, as this closely relates to recognizing 
assumptions around students’ abilities  – often following what Martin (2009) 
referred to as the “racial hierarchy of mathematical ability” – and disrupting these 
assumptions.

Drawing on expectation state theory (Berger, Cohen, & Zelditch, 1972) which 
describes status characteristics in group settings, CI recognizes that students come 
with varying (high or low) agreed-upon social ranks, which shape students’ interac-
tions, participation, and learning. Status is based on perceived intelligence among 
groups and tends to mostly affect students based on their less normative and privi-
leged identities  – around race, class, gender, language, religion, etc. (Cohen & 
Lotan, 1997). “[S]tatus characteristics become the basis for the group’s expectations 
for competence for its members: low expectations for low-status students, and high 
expectations for high-status students” (Cohen et al., 1999, p. 7). As an example of a 
status problem, Cohen (1994) found that popular students and students who are 
expected to do well academically tended to dominate and influence group discus-
sions. Research has shown that through addressing status problems, CI can “pro-
mote equal-status interactions amongst students, creating opportunities for all 
students to engage with and learn from rigorous math tasks within a cooperative 
learning environment” (Jilk, 2010, p. 6).

I observed Ms. Williams publicly assigning competence to students seen as hav-
ing low status in the classroom. For example, in an interview, Jane, who was not 
routinely seen as a top student, describes here how CI practices supported her to feel 
successful in Ms. Williams’ class:

Ms. Nazemi: Can you tell me about a specific time this year in Ms. Williams’ class where 
you felt successful in math, and what was it about that time that made you feel 
successful?

Jane: So there was a unit we did on correlation, and I was like really understanding 
the math, and [Ms. Williams] encouraged me to teach others when we were 
doing these test corrections, because once you get a certain amount of points 
correct on the test correction, you don’t need to do the corrections but just help 
other people. And I felt like giving me the opportunity to help other people 
validated what I knew and what I was learning.

Ms. Nazemi: And that felt good?
Jane: Yeah.
Ms. Nazemi: How were your peers with that?
Jane: They were good. Which is why I like the concept of student-student teaching, 

because it helps people understand things better.
Ms. Nazemi: And that was your time to shine!
Jane: Yeah.
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As Jane notes above, Ms. Williams deliberately worked to increase the status of 
students who were struggling in mathematics compared to their peers. Specifically, 
Jane described here that Ms. Williams took the time in her classroom to uphold the 
status of students so that they were seen as a rich source of learning to their peers. 
Ms. Williams worked to increase her status in her group, positioning her as a great 
resource for her peers and their learning.

Having a teacher recognize multiple abilities and at the same time publicly 
assign competence to a student reflects one of the important components to enact-
ing CI (Cohen et al., 1999). Assigning competence, as in this case between Ms. 
Williams and Jane, is about publicly naming the intellectual contributions of a 
student within a group, a move that is especially important when a student – like 
this girl of color – might have lower status in the classroom context. Research has 
found that through open-ended mathematics curriculum, establishment of norms 
around accountability and support, and “treating” status problems through “assign-
ing competence” to low-status students, equity can be advanced by supporting stu-
dents of color to learn, succeed, and demonstrate their learning of mathematics 
(Boaler & Staples, 2008).

3.3  Even with Equity-Minded and Ambitious Instruction, 
Racialized Narratives Persist

Even with the affordances of an equity-driven and ambitious form of mathematics 
instruction, and a thoughtful race-conscious teacher like Ms. Williams, students’ 
experiences showed that racialized discourses still ran deep within and among their 
peer and racial groups. In this section, I focus on Gena, Leilani, and Carlin who each 
identified racialized narratives that shaped how they were perceived by others and 
how they perceived themselves with respect to others, in the context of Ms. Williams’ 
AP Statistics classroom.

When asked, “Do you feel that your racial identity plays a role in learning math-
ematics [in Ms. Williams’ AP Statistics classroom]?”, all students except for one 
(Gena) said no. However, over the course of the interviews, all students discussed 
ways that were suggestive that their racial identity did indeed impact their sense of 
selves, their mathematics learning, and their mathematics learning opportunities, in 
Ms. Williams’ AP Statistics classroom. Based on an analysis of interviews with the 
students, and classroom observations wherever possible, it appeared that the central 
way in which racial identity mattered for their learning and opportunities to learn 
was due to how they were racially seen by others and in relation to other racial 
groups. This was especially true in regard to assumptions about different racial 
groups’ intelligence in mathematics.

Gena, who identified racially as Asian, was the only student who answered 
“yes” to my question regarding whether she felt her racial identity impacted her 
learning of mathematics in Ms. Williams’ class. In her response, she referenced 
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the  well- known stereotype about Asians being good at mathematics (Cvencek, 
Nasir, O’Connor, Wischnia, & Meltzoff, 2015; Nasir & Shah, 2011). She felt that 
because of the assumption that all Asians are good at math, during group work she 
was assumed by her peers to be good at math. Specifically, she said:,“I think it’s 
cuz people are just like ‘Asians can do math,’ and I’m like no, not all Asians can 
do math, cuz I know a lot of us don’t know what the heck is going on!” In class, I 
observed Gena working with her group on their final statistics project where they 
were administering a survey (to their classmates at Champlain) based on a topic 
they were curious to explore further using statistical methods. Gena’s group was 
made up of one Muslim student (I am basing this on her headscarf), one Black 
Muslim student (I know this because I interviewed him), and Carlin who is mixed 
race (focal student in my study). Gena’s group decided to explore the relationship 
between lack of sleep and student’s race. Gena was telling me about her girlfriend 
(who is White identifying) that does not seem to understand why Gena – who has 
a part-time job on top of keeping up for her studies – cannot seem to get enough 
sleep. As Gena tells me about her frustrations of keeping up with her job and 
school and that her girlfriend “doesn’t get it” because she does not need to work 
to help her family,7 Gena’s peers in her group kept asking Gena questions about 
considerations they need to make for their survey. Gena seemed happy to take on 
a leading role in her group and use her personal experiences as a motivation behind 
exploring lack of sleep and race together (Field Notes, May 24, 2016), yet her 
positioning as a leader in the group and as knowledgeable about the topic – per-
haps more experientially rather than mathematically  – was noteworthy. Gena’s 
leadership in her group suggested to me that other students likely see her as intel-
ligent and knowing, possibly because, as I observed, she was the only Asian stu-
dent in her group at that time.

Leilani, who identified herself as African American, is the only other student that 
brought up the “Asians are good at math” stereotype, again in the context of group 
work. In her case, however, this assumption was brought up in terms of what this 
stereotype meant for students who are not Asian and especially students that identi-
fied as Black or African American, like her:

I think sometimes people, you know, like uh the stereotype is that Asians are really good at 
math, so umm when you’re in a group with like all Asians and you’re a Black kid, some-
times you might feel like okay they’re gonna think I’m not as well as them in this. Then it 
starts to get to your head, that you know maybe I’m not as well as them, and you know 
sometimes they say certain things. You’ll agree with it even if you know it’s not right 
because you’re like, “Oh, they know,” but sometimes you’re right. So I think it’s important 
that people just be secure with what they know and not try to feed into a stereotype or umm 
something that’s like working against you.

7 This is another instance where class appeared to be a salient social marker for students. Gena and 
I had a conversation where I was suggesting that there could be factors and circumstances that, 
along with race, predict sleeping patterns. She seemed willing to listen to my suggestion but still 
seemed to see the contrast between her and her girlfriend as strictly racialized.
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Leilani’s discussion of the stereotypes between Asian and Black students’ contrast-
ing mathematics abilities fits with what other scholars have found (Martin, 2009; 
McGee, 2016; Nasir & Shah, 2011; Shah, 2017). Specifically, it is common for 
students of color to talk about – and place themselves and their peers within –what 
Martin (2009) called the “racial hierarchy” of mathematics. In this racial hierarchy, 
“students who are identified as Asian and White are placed at the top, and students 
identified as African American, Native American,8 and Latino are assigned to the 
bottom” (p. 315). Building on Martin’s work which looked closely at the prevalence 
of racialized discourse in mathematics education (research, practice, etc.) as a 
whole, Shah (2017) interviewed various students of color in the context of their 
mathematics classroom. He also found that, according to students, Asian and White 
students were positioned at the top in terms of ability and performance in mathemat-
ics, while students who identified as Pacific Islander or Black were positioned near 
the bottom.

I asked Leilani for a specific example to illustrate her claim about how poorly 
Black students see themselves and their mathematics abilities, as compared to Asian 
students. In response to my query, Leilani further highlighted the negative conse-
quences of the “Asians are good at math” stereotype for other groups of students:

I think that I’ve seen people make assumptions about themselves. It’s like, sometimes I’ll 
hear, Black kids in class and they’ll be like umm, they’ll get really good scores on a test and 
then they, maybe the Asian kids got a lower score, and they’ll be like “Wow! I did better 
than the smart kid,” and I’m just like, “Wow you, you think you’re not smart…like you 
should feel that you’re smart. You shouldn’t think that, that you know that you’re less than 
them in whatever you’re doing.” I hear people say like, “I gotta get to do the project with 
the smart kids” or “I gotta sit by the smart kids,” you know? So I feel like that’s really 
degrading to, to think that uh you’re not smart.

Consistent with Shah’s (2017) findings, Leilani, like many students of color, expe-
rienced the stereotype that they are not as smart as their Asian peers as “degrading” 
to their identities as Black learners of mathematics. It is worth noting, however, her 
counter-narrative is one of resilience, of being aware of assumptions that can have 
consequences for her and working hard not to let them. Leilani’s feelings around 
coping with the stereotype that Black students are not as good at mathematics relate 
to what we will next see with Carlin’s experience.

Carlin, much like Gena and Leilani, spoke about how her racial identity played 
a role in learning because of assumptions about intelligence that peers made based 
on her perceived racial identity. Carlin identified herself as “multiracial,” which 
she later elaborated meant she was Black and White. Different from Gena and 

8 While Martin’s (2009) racial hierarchy of mathematics refers to Native American students, an 
unfortunate shortcoming of much of the important work around race and racialization in mathe-
matics education (and educational research in general) is the omission of Native American and 
Aboriginal Peoples. I recognize that Native American and Aboriginal Peoples have been the most 
underserved populations in this county’s educational system. While it is not within the scope of 
this chapter to attend to these populations of students, I want to be explicit that I recognize how 
ignored and made invisible these groups have been both historically and presently. Future research 
will tend to this shortcoming more carefully.
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Leilani, Carlin described how she could “pass as White,” pointing to how context-
dependent one’s racialized experience can be, especially when one is White pass-
ing. Here, Carlin reveals how complicated it is to navigate her multiracial identity, 
especially given that both racial markers that she identifies are associated with 
very contrasting assumptions around intelligence (emphasis added in  italics below).

Ms. Nazemi: Do you feel like your racial identity plays a role in your learning?
Carlin: Not so much, but since I’m Caucasian, people, people kinda expect that I’m 

smarter for some reason. And I’m like well that has nothing to do with my 
intelligence. It’s just… kinda just a statistic. And I was like…they…they 
like… I hang around African American, Black people a lot, and they expect 
me to be smarter for some reason. But I’m just me. I’m just learning how I 
learn, and it’s…it’s weird.

Ms. Nazemi: How do you know they expect you to be smarter? Like what…
Carlin: They say it.
Ms. Nazemi: They say it?
Carlin: Yeah.
Ms. Nazemi: They say it, just like straight up.
Carlin: mm hmm.
Ms. Nazemi: Like they say, “you’re White, you’re smarter?”
Carlin: No, they don’t say “you’re White, you’re smarter.” It’s like when I struggle 

and I ask them for help, they’ll be like, “you’re White…you should know this.” 
I’m like well that’s kinda weird. I’m also Black as well so…should I know…
should I not know it because I’m Black? Like that’s weird for them to say like, 
so I kinda just shrug it off ‘cuz I don’t let that stuff bother me.

Carlin explained here that passing as White for her meant that she was expected to 
be smarter. She described above that when she was struggling with a mathematics 
concept, her peers would tell her that she should know it because she’s White, to 
which she responded that she’s also Black. This finding is consistent with Hobbs 
(2014) who outlined the effects on one’s racial and cultural identity, when passing 
as White. McGee (2016), who drew upon this work, showed that while it might 
appear that students of color benefit from passing as White, there is also much “lost 
by partial or full rejection of one’s racial and cultural identity” (p. 1654). She further 
describes that feeling pressured to limit parts of one’s racial and cultural identity is 
an attestation to the enduring and continued manifestation of white privilege through 
racism and white hegemony.

Assumptions about Carlin and her intelligence shifted when she was seen in 
comparison to White (boy) classmates.9 Elsewhere, Carlin describes the way she 
was viewed in relation to White students in her class (Nazemi, 2017) and that this 
felt different than when students of color were seeing her as White. In particular, 
while I did not have the opportunity to observe Carlin interact with her White class-
mates (as she was not grouped with them when I was observing the classroom), I 
did observe the two White (boy) students in the classroom and the ways in which 
they dominated whole class discussions and even their small group discussions as 

9 While gender is not a focus of this chapter, it is important to note that all six focal students are 
girls of color, and the only two White students in the class are boys, making it difficult at times to 
separate out racialized and gendered identities.
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well. In my observations, both White students were often the first to ask a question 
and/or offer an answer, often arguing with students’ responses in front of the class. 
More generally, while Carlin relayed that she was often presumed White and pre-
sumed smart in the presence of others, when she was in the presence of these White 
students, she was positioned as less knowing – likely because both her multiracial 
identity and her gendered identity were seen as inferior to a “full White guy” (to use 
her language) identity. Attempting to manage how one is seen by others is as 
degrading as it is futile. Carlin’s stories help us to see that while sometimes we can-
not verbalize or fully make sense of why or how we are seen by others, the implica-
tions for our identities, if not spoken or understood, are deeply felt. At the same 
time, much like what Gena shared with me about how she felt others assumed her 
to be smart in mathematics because she is Asian, Carlin shared that she is assumed 
to be smart when she is seen as White. And, much like Leilani’s explanation of 
Black students being seen as intellectually inferior to Asian students, Carlin’s anec-
dote describes that Black students are also being seen as intellectually inferior to 
White students. Additionally, in contrast to Carlin’s presumed whiteness and smart-
ness, when interacting with a “full White guy” student, she is powerless due to the 
complexity of her identity, which is not limited to White but includes Black and girl.

More generally, the students I interviewed confirmed that discourses regarding a 
“racial hierarchy of mathematical ability,” where Asian and White students are 
assumed to be at the top and Black students are assumed to be at the bottom (Martin, 
2009), were alive and well in Ms. Williams’ class. Regardless of Ms. Williams’ 
stance toward students’ racial identities along with her enactment of equity-oriented 
practices in support of student learning, it is apparent that hierarchical racial narra-
tives circulate and strive having deeply felt consequences for students’ sense of 
selves. Furthermore, while Carlin and Leilani’s narratives help us to understand the 
complicated disconnect between how we see ourselves and how we are seen by oth-
ers, they also remind of the ways in which our identities are complicated and vary 
or shift from context to context. The complexity and fluidity of identity are particu-
larly clear in Carlin’s stories about how she is seen by others but how that shifts 
when faced with a White boy student who exerts power over her gendered and racial 
identities. Consisted with a sociocultural perspective, as taken up in this chapter, 
we’ve seen here that identity is an ever-changing complex, and context-dependent, 
notion that is made up of how we see ourselves, as well as how we are seen by others.

If Ms. Williams’ ambitious and equity-driven classroom attends to supporting 
student learning while being responsive to students’ identities and experiences, yet 
racialized narratives persist, what does this mean for teaching and teaching education?

4  Implications for Pre-service Teacher Education

Various focal students’ narratives revealed that racialized assumptions were rou-
tinely made by their peers regarding these students and their abilities in mathemat-
ics. The narratives regarding students’ positioning in terms of intelligence in 
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mathematics and racial group membership reflected what Martin (2009) called the 
racial hierarchy of mathematics ability. Particularly, students recounted ways in 
which peers positioned Black students as less capable in mathematics than Asian 
and White students. However, focal students also exhibited counter-narratives and 
resisted the racial hierarchy. For example, Leilani, a Black student, explained that 
while she remained aware of the racial hierarchy, she worked to actively resist dom-
inant racial narratives around Asians being good at mathematics because of what 
this meant for her and other African American students (Nazemi, 2017). Her 
counter- narrative allowed her not to let the stereotype work against her. More gener-
ally, this study suggests that pedagogical innovations like CI, while equity-oriented, 
still need to consider the racialized narratives that circulate among the members of 
a classroom and find ways to disrupt them. After all, even with Ms. Williams’ enact-
ment of CI, and in particular the way in which she would assign competence to 
uplift a student’s status, students continued to function within the “racial hierarchy 
of mathematical ability” allowing it to thrive even in this equity-minded classroom.

Recall that at Champlain, AP Calculus was primarily composed of White and 
East Asian students, while AP Statistics was primarily African American and Pacific 
Islander students. The mathematics faculty had been concerned about the percep-
tion of AP Calculus and AP Statistics as two racialized mathematics tracks. I recall 
this because addressing racialized discourse (such as the racial hierarchy of mathe-
matics that students experienced) cannot happen only in the context of one class-
room but needs to happen across all classrooms and across entire schools. We need 
to consider our students as nested within our classrooms and schools and further 
situated within the larger social contexts and discourses in which these positions are 
located. Discussions like those among the mathematics teachers at schools like 
Champlain are necessary, yet from there, immediate action is also necessary. 
Highlighting student success, persistence, resistance, and resilience, as an increas-
ingly large body of work has done (e.g., Berry III, 2008; McGee & Martin, 2011; 
Stinson, 2008), is important.10 At the same time, we cannot stop there. We cannot 
simply give students access to upper level classrooms yet leave them to fend for 
themselves in the hopes that they are resilient enough. As Ahmad White suggests, 
“Resistance is a symptom of the way things are, not the way things necessarily 
should be” (from the TV show Atlanta). Thus, meeting hardship with resistance or 
resilience is a symptom of a problem, a problem of inequity. It is not on students of 
color to take full responsibility for their learning and figure out how to succeed in 
mathematics, all while remaining true to their sense of selves. After all, while AP 
Statistics holds a large number of students that are “normally” not present in upper 
level mathematics classrooms, it was also seen as the lower track of mathematics 
compared to AP Calculus, which as we know held larger numbers of White and East 
Asian students – those who are already seen as occupying the top-most tier of the 
racial hierarchy of mathematics.

10 Some scholars have called the resistance of students of color in mathematics as their “opposi-
tional identity.” See Gutstein (2002, 2007) and Martin (2000).
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Teacher education programs are in a unique position to reach teachers at the 
earliest point in their careers. With this fact, as well as given that some teachers may 
eventually consider educational leadership at the school or district level, teacher 
education programs must take the time and space to engage with and support pre- 
service teachers to understand the urgent implications of making assumptions about 
students’ abilities based on their identities and tracking students, within and beyond 
their classrooms. Starting these conversations with pre-service teachers can help 
educators and school leaders work together to find ways to ensure that their classes 
fairly represent the demographics of the larger community and are disrupting racial 
hierarchies and that individual students do not bear, alone, the responsibility for 
succeeding in mathematics. This is why I say that representation is not enough.

As teachers, whether pre-service or in-service, there is much we can learn from 
Ms. Williams and her AP Statistics classroom. Ms. Williams thinks deeply about her 
own identity and takes the time to learn about her students’ identities and experi-
ences. One reason she gathers this sort of information on her students – for example, 
through their anonymous letters at the start of the year – is so that she can build tasks 
that are relevant and responsive to students’ lives, identities, and experiences. Ms. 
Williams is aware that her position as a White woman teacher has consequences for 
if/how she relates to her students, a challenge that she continues to recognize and 
grapple with. She also enacts an equitable and ambitious form of instruction, where 
she is constantly paying close attention to students’ status in the classroom and 
working to respond to this in ways that uplift students and disrupt assumptions 
about their abilities in mathematics. Hearing about the racialized narratives or dis-
courses that shape these students’ relationship to mathematics and to one another 
suggests that Ms. Williams tends to her classroom in ways that support students and 
their sense of selves while learning mathematics. However, it is important to note 
that while noticing and addressing status issues are important, issues of power and 
privilege cannot always be fully addressed in the classroom context. Even if stu-
dents are seen for their multiple abilities with the teacher deliberately noting and 
addressing unequal participation of students due to varying status in the classroom 
(Cohen et al., 1999), racialization is a present process, and classroom contexts inev-
itably affect how students are perceived.

Recognizing the persistence of racialized narratives even in an equity-minded 
classroom taught by a teacher who works to teach in relation and in response to her 
students’ identities and experiences poses a new equity demand. These findings here 
suggest that as teachers, we need to continue to do the things that Ms. Williams 
does – take the time to explore our own identities and recognize how these affect the 
way we teach and relate to our students, learn about students and their identities and 
experiences so that we can build our curriculum and pedagogies to be centered 
around their lives, and respond to assumptions in our classrooms that position stu-
dents in the “racial hierarchy of mathematical ability” by assigning competence and 
uplifting students’ status. At the same time as doing these things, we must do more. 
Said simply, the persistence of students’ racialized narratives in Ms. Williams class-
room suggests that equitable forms of instruction such as CI, which partly support 
students’ learning and identities, are necessary but not sufficient.
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In particular, through students’ own voices about their own narratives, teachers 
can help surface what students of color learning mathematics might be experiencing 
in their mathematics classrooms. Ms. Williams’ students’ anonymous letter about 
their racial identities and experiences is one way teachers can begin to do this. 
Without reaching out to know students, a teacher has limited access to students’ 
identities, usually only how they are identified by school level data and what the 
student has shared with the teacher. By noting and privileging the voices and racial-
ized experiences of students of color in the mathematics classroom, teachers can 
better connect with students, learn more about them, and support student learning 
and students’ identities at the same time. This is a tall task. It will require seriously 
difficult work on the part of teachers – much of whom are White women – who must 
take the time to examine their own racial identities, for themselves and in relation to 
their students.

It is important for pre-service teachers to examine their own experiences of 
learning to help them decide on the kind of teacher they want to be. Or as Alvine 
(2001) puts it: “When those who plan to teach write about their own early memories 
of learning, they bring forward their embedded understandings about teaching and 
learning. In making those understandings explicit, they make them available to 
themselves” (p. 9). Given the ways in which identities form and shift through learn-
ing and teaching experiences, having pre-service teachers explore their identities – 
academic and personal – in the context of their own experiences of learning can 
uncover ways in which one’s learning and sense of self was simultaneously sup-
ported by teachers. In teacher education, we can help pre-service teachers to recall 
their learning experiences, as well as the ways in which their identities have been 
shaped and shifted throughout their learning trajectories. In facilitating this work as 
teacher educators, we can help pre-service teachers begin to understand how their 
experiences with identities and learning might inform the ways in which they might 
choose to teach. What kinds of information do teachers wish their own teachers had 
about them? What things did their teachers do to make them feel included/excluded 
and capable/ incapable in mathematics? Did they feel they were treated differently 
because of their gender, race, sexual orientation, class, religion, etc.? What kinds of 
mathematics learning would have felt relevant to their lives and identities? 
Considering these things about pre-service teachers’ own learning begins the iden-
tity work that we want teachers to continue doing well into their teaching careers, so 
that they do not ever forget these questions and considerations in their own class-
rooms and with their own students.

In addition to gathering information and making oneself aware of students’ 
racialized experiences and identities, teachers need to find ways to engage with 
students in conversations around race and racism, within the context of mathematics 
tasks as well as the broader context of mathematics learning and assumptions 
around ability. I agree with what Shah (2013) suggested in his dissertation that 
looked closely at racialized discourse among students of color in mathematics. 
Specifically, teachers can immediately and consistently address assumptions around 
race and ability by treating “explicit invocations of racial-mathematical narratives 
with the same level of gravity as they would blatantly racist statements” (p. 120). 
One way of doing this, as Ms. Williams shows us, is through assigning competence 
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to uplift the status of a student that might otherwise be seen as occupying a lower 
tier on the “racial hierarchy of mathematical ability.” Student learning and students’ 
sense of selves are what is at stake when racialized narratives circulate in the class-
room. It is up to teachers to make note of and disrupt these racialized discourses that 
have harmful impacts on students’ identities, mathematical and otherwise.

The challenging identity work of teachers, along with learning to recognize and 
disrupt racialized assumptions in the classroom, must start prior to when teachers 
enter their own classroom and thus in the context of teacher education. Taking the 
time to explore, articulate, and understand our own identities can contribute to our 
fuller understanding of the identities of our students and help us to think about how 
the affordances and constraints of our identities are in relation to the identities and 
lives of our students. In the context of teacher education, pre-service teachers must 
be given ample opportunities to explore their own learning experiences and learn to 
connect these experiences to how their identities are shifting and how they hope to 
be as teachers. When we come to recognize our students (and model this with pre- 
service teachers), just like ourselves, as holding shifting identities that are complex 
and intersectional11 in nature, we can better nuance all the parts that make up who 
we are, as well as how these parts are navigated, negotiated, and can be upheld in 
the contexts in which we are teaching and learning mathematics.
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1  Before We Begin: Opening Fragments1

What follows is the result of weekly conversations that took place from January 
2018 to May 2019 between two colleagues, both immigrants to the United States, 
discussing some issues that affect our teaching practice as mathematics teacher 
educators Two colleagues, mutindi and Nenad, are professors and mathematics 
teacher educators in a state liberal arts college in Charleston, South Carolina. 
mutindi is an associate professor with over 20  years of teaching experience in 
academia. Her research and teaching have spanned fields such as STEM education 
and women’s education in Kenya and in the United States (e.g., ndunda, 2000). 
She was born and raised in Kenya and has lived in many places including Namibia, 
Canada, and the Unites States. Nenad grew up in former Yugoslavia and has lived 
in the United States and Canada. He is an assistant professor in his fifth year of 
teaching mathematics education and research methods classes. His primary 
research is on social justice and transdisciplinarity in mathematics education (e.g., 
Jao & Radakovic, 2018).

We currently live in the American South and are both non-native speakers of 
English, immigrants who immigrated to the United States via Canada. mutindi 
immigrated in the 1990s to Canada from Kenya, and Nenad immigrated to Canada 
in the early 2000s from former Yugoslavia. Students in our classes are mostly white 
middle class women in their early twenties. As such we are othered both in the place 
in which we work and the place where we live.

1 Here we evoke German romantic philosopher Novalis’ idea of a  fragment according to which 
a fragment is a genre of writing that is meant for self-reflection and also as a seed for other ideas 
(Gjesdal, 2014).
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We teach different sections of the same course, mathematics content for K-8 
teachers, so we thought that this would be a good context for our discussion. In the 
beginning, we focused on making sense of a lesson that we co-taught in mutindi’s 
section of the course. We soon realized that we had significantly different interpreta-
tions of the lesson due to distinct views on, and experiences with, the curricula and 
curriculum standards in different contexts (North American, European, and African) 
and that this should be the focus of our conversations. As our conversations pro-
gressed and our views evolved, we had our own personal crisis of representation – 
how should our views be represented. The conversations then turned to 
duoethnographic methodology and the ways that we could use it that is consistent 
with our experiences, needs, and identities.

We use regular script to represent individual voices and for the explanatory sec-
tions of the paper. As it will be explained later, there were sections of duoethnogra-
phy that we could not solely attribute to one voice. This, emergent third voice, is 
written in italics.

We are weary of the typical linear thesis, what Jagger (2014) calls introduction-
literaturereviewmethodologyresultsdiscussion. We find it inauthentic, and it does 
not depict what we did and how we talked throughout the year. This is why we start 
our chapter with a dialogue.

2  “Kyuo” or Speaking the “Truth”

mutindi: As a Kamba woman, we have a word, “kyuo,” that our elders use to encourage 
those in the community to speak the “truth” of their experiences. This is 
because kyuo, if not spoken, cannot be used to make sound judgments. Kyuo 
spoken within a community of people helps in the making of fair judgment. If 
a judgment/decision is made without including others’ kyuos, the decision/
judgment is seen as incomplete by the community. Kyuo, therefore, encour-
ages the inclusion of diverse voices and ideas.

Nenad:  This is why I think it is important for us to have this conversation about our 
practice. Both of us teach the same course, mathematics content for K-8 
teachers, and we have the common goal of preparing our students for teaching 
which involves being able to conceptually understand mathematics. And this 
common goal comes with common challenges: a large number (if not most of 
the students) have negative attitudes towards math and are also math anxious, 
they are not confident in their mathematical knowledge, and do not see math 
as a creative endeavor. So using our kyuos to make sense of our practice is 
crucial.

mutindi: The process of listening to you allowed me to question my experiences and 
thoughts. Our conversation was a process of reflection, and reflecting together 
is like having two different mirrors in front of you – your own mirror and 
someone else’s mirror – and two mirrors project different images. This way 
you can see different characteristics of the image.

Nenad:  This process of thinking together to solve the problem and making sense of 
how we think together about our practice brought me to the idea of duoeth-
nography. I was reminded of John Mason’s observation that research is 
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 making sense of ourselves in relation to others (as mentioned in Zaskis & 
Koichu, 2015). While we were working on this project, it became clear to us 
that it was important to make sense of ourselves and our experiences together. 
We do this not to erase our differences but to highlight and carefully describe 
them so that we can evolve and evolve together.

For this reason, we picked duoethnography, an emerging methodological 
approach introduced in the early 2000s (Norris & Sawyer, 2012). Being an 
emerging methodology, its rules are not completely established (Breault, 
2016), and even if the methodology had a strict canon with completely estab-
lished norms and rules, we would still break them since methodology should 
be molded to fit the goal – the most authentic description of the phenomena 
under investigation (Lincoln, Lynham, & Guba, 2011). This is consistent with 
Norris and Sawyer’s (2012) assertion that “methodology should not dictate 
the form of a conversation of sentient beings in quest of meaning” (as cited in 
Breault, 2016, p. 778). Therefore, as we started to make sense of borders and 
what they mean to us, we had to come to terms of what duoethnography is to 
us. The realization of our vision of duoethnography did not come linearly – it 
evolved as we were telling stories about ourselves and working through our 
differences.

3  How We See Duoethnography

mutindi:  Duoethnography allowed me to speak in a way that is not limited to a meth-
odology that is sanitized, pure, and benign. In other words, the methodology 
is not objective and harmless – it has intended and unintended consequences. 
It allows us to sit together, make meaning, ask each other questions, make 
statements, and have somebody to deepen the understanding of the experi-
ences. This methodology brought together “two complex beings situated 
within their own complex social networks” (Breault, 2016, p.  780). This 
reminds me of a Kamba saying that a calabash shines when it passes through 
multiple hands. Similarly, the idea gets finer when it passes through multiple 
minds. Eventually, it becomes difficult to discern where the final product 
came from. The idea that it is only in your head only speaks when it becomes 
integrated in the community (even though it is two of us, it is the community). 
You draw more into your identity, because we are multiple subjectivities.

3.1  The Writing Process: The Emergence of Collaborative 
Generative Writing

mutindi:  The writing process was more than a year long, and it was a thinking process. 
The ideas that we explored sometimes got refined, sometimes they got 
rejected, sometimes our favorite ideas got rejected. The process of writing not 
only helped us reveal our identities but also helped us realize how we perform 
our identities. As we reflected on our kyuos, we were cognizant of our 
 “colonized” minds that tended to veer towards methodologies that hide our 
identities.
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3.2  Process of Creating Our Duoethnography

As we were communicating our ideas and “speaking out our truths” (our kyuos), we 
also needed to think about collaborative writingmethodologiesthat would enable us 
to capture our ideas and represent them. We had private ideas that we made public, 
but we also had ideas that became shared between the two of us and that we have 
decided not to share here. We believe that our sharing of ideas is an honest process, 
but what gets published is a political and subversive decision. In other words, there 
are aspects of our conversations about our institution, our lives, and our students 
that are intentionally left unspoken. We tried to preserve the authenticity as much as 
possible but not at the expenses of our standing in academia.

Writing played an important role in developing our duoethnography. We started 
with conversations about our practice centered around an activity we co-taught 
(described later in this chapter). The topics of our conversations included our teach-
ing practice, our students, and our identities. After several meetings, we went 
through generative writing steps (Boice, 1990) as described by Esmonde (2017). 
Generative writing was the major strategy that we used to write about and reflect on 
our experience of teaching in this context. The process involved the following steps:

 1. Individually writing for 10 min, not rushing through the process but also not 
stopping. At this stage, we did not worry about grammar, style, and sentence 
structure.

 2. Individually creating a concept map based on the first step for 10 min.
 3. With the concept map from step 2, writing a new version of the document 

described in Step 1.
 4. Presenting our drafts to each other and discussing them.
 5. Together, writing our duoethnographic dialogue and the common narrative.

Nenad:  I think that you would agree that we started from a need to have our story told 
and then landed on duoethnography as a method. I also say that we struggled 
(in a productive, positive way of the word) to work out what this means to us. 
So, as we worked through the process, we knew that we would not be happy 
to tell two parallel stories or come to an agreement without extensive discus-
sion. We also recognized that duoethnography is not a transcript and verbatim 
script of a dialogue. This view is consistent with other researchers’ views on 
duoethnography (Norris & Sawyer, 2012; Zaskis & Koichu, 2015). We are 
also happy that Zaskis and Koichu (2015) realize that duoethnography is a 
process of reflection and reconceptualization of researchers’ views. This pro-
cess makes researchers vulnerable, but it also gives them space to vocalize 
and grow their ideas.

mutindi:  The other way to think about this is that this approach allows us to stand close 
to our experiences as well as to distance ourselves from those experiences. In 
my practice, I often use the metaphor of standing on the shoulders of people 
whose views I’m examining. Standing on the shoulders enables me to see bet-
ter, but it also exerts pressure on the person on whose shoulders I am standing, 
hence making them vulnerable.
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3.3  Context

Nenad:  As we were thinking about the context and our place at the college, we started 
reflecting on our practice as mathematics pre-service teacher educators. We 
started looking at our specific teaching practices and beliefs about teaching 
and acknowledged that they do not exist on the vacuum. This reminds me of 
the depiction of the complex relationship between teachers, students, content, 
and the environment given by Deborah Lowenberg Ball in her presidential 
address to the annual conference of the American Educational Research 
Association (AERA, 2018). She started by discussing an older (and in her 
mind, not completely authentic) model of teaching that comes from her earlier 
work, known as “the instructional triangle,” showing the complex relationship 
between teaching, students, content, and the environment (Cohen, 
Raudenbush, & Ball, 2003). She then revised the model by accentuating the 
importance that the environment plays in classroom interactions and pointing 
out that the environment includes sociohistorical factors such as institutional 
racism and historical injustices. She defines and depicts the environment as 
the cloud that permeates all aspects of teaching such as teachers, students, 
content, and their mutual interactions.

3.4  College of Charleston: Historical Context

Nenad:  When we look at the “cloud” of environments around the center that Ball 
proposes, we see that it permeates teaching and student-teacher relationship. 
The environments also consist of structures, institutions, and histories that 
shape the place. The environmental cloud that we cannot ignore in our analy-
sis and the one that in our conversations we keep getting back to is the racist 
and white supremacist legacy and reality of the place where we work and 
educate educators. The College of Charleston was founded in 1770 and was 
only open to White men. White women were allowed to enroll starting in 
1918 and Black students started to enroll in 1967 even though segregation was 
abolished in 1954. 250 years since its founding, the legacy of the college as an 
exclusive space continues. For example, the number of students (undergradu-
ate and graduate) is around 11,000 yet, the percentage of African American 
students is less than 8% (College of Charleston, 2019) in a state where Black 
population is 27% (United States Census Bureau, 2019). Although the physi-
cal borders and barriers have been removed, the powerful structural barriers 
are still in place.2

mutindi:  In this complex environment, where I have committed myself to educating 
pre-service teachers to be successful math teachers of all children, I often find 
myself struggling to make that happen. Most of my students don’t consider 
mathematics a subject that they enjoy or the subject that, in their words, 
“comes easily” to them. Although teachers are critical gatekeepers with power 
to ether deny or grant access to mathematics, they often don’t see themselves 
as such. The purpose of our collaboration is to reflect on our practice of train-
ing mathematically confident and critically literate educators.

2 For the detailed descriptions of racial disparities in Charleston, please see Stacey Patton’s report 
The State of Racial Disparities in Charleston County, South Carolina 2005–2015 available at 
https://rsji.cofc.edu/resources/disparities-report/
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3.5  The Critical Episode

In the beginning of this project, we taught an hour-long lesson to a group of pre- 
service teachers, third year teacher education students, based on a counting dots 
task (Takahashi, 2007). In the environment of mainstream math education in the 
United States, this is a standard exemplar of a rich mathematical task and has been 
adopted by many educators including Jo Boaler (Youcubed, n.d.). The task requires 
students to describe how they see the following pattern in order to help them find the 
total number of dots (Fig. 1):

There are many ways for students to interpret this pattern making this a rich 
task – a task that contains multiple strategies, pathways to the solution, and repre-
sentations (Boaler, 2015). For example, some students see the increasing sequence 
of consecutive odd numbers followed by a matching decreasing sequence: 
1 + 3 + 5 + 7 + 5 + 3 + 1 = 25. Others may realize that the pattern consists of a 3 × 3 
and a 4 × 4 square array: 32 + 42 = 25. The task gives students an opportunity to 
communicate mathematical ideas and to think deeper about mathematical objects 
(Takahashi, 2007).

This lesson served as the basis for the critical episode in our sense making of our 
teaching practice. When we were debriefing the lesson, we realized that we inter-
preted students’ ideas differently which created a dissonance in a way that we think 
about math education. The dissonance caused us to investigate our ideas and to 
question our role as mathematics teacher educators.

Nenad:  As we reflected on our practice and the task, I started to introduce curriculum 
and professional standards and mapped out what Common Core Mathematical 
Practice Standards (National Governors Association [NGA], 2010) and 
Standards for Preparing Teachers of Mathematics (Association of Mathematics 
Teacher Educators [AMTE], 2017) are aligned with the task.

mutindi:  I was surprised by your push towards introducing standards. There was a bor-
derless math, and then you introduced borders with your interjection of stan-
dards. We very quickly went to what we learned to be “important.” Students 
to me were problem-solving, and there goes Nenad and starts talking about 
standards. You brought in the whole idea of structure and of canning the 
knowledge and the experiences and aligning it to your own standards-based 
agenda. It surprised me how quickly you went to that. It was so interesting 
how we landed on standards as if the task only becomes valuable when con-
nected to the standards. Teachers have been conditioned that a task is legiti-
mate only if it can be aligned with the standards.

Fig. 1 Counting dots task
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Nenad:  Lately I have been in love with standards; as an assistant professor on a tenure 
track, they give me the sense of belonging, sense of compass, and sense of 
direction for me and my students. I got enculturated in the practice/problems 
of math education through my interaction with others who have found their 
way around standards. It is almost like interpreting a religious text.

mutindi:  The standards for pre-service teacher preparation (similar to K-12 standards) 
have been around in the North American context for decades, and there is no 
evidence that student and pre-service teacher understanding of mathematics 
has improved. There is a paradox in the fact that standards list minimum com-
petencies, and yet we are happy when the standards are “met.” This standard-
ization means “the erasure of academic freedom resulting in lost opportunities 
for originality, creativity, dissent, and discovery, the very raisons d’être for 
educational institutions” (Pinar, 2004, pp. 229–230).

Nenad:  I agree with you that standardization leads to lack of flexibility. But I am hop-
ing that if I play by the rules I can bring in the nonmeasurable concepts such 
as creativity, beauty, and discovery into the standards. For example, if I 
wanted my students to appreciate the beauty of mathematical objects, I could 
align the activities with the Common Core practice standard of making sense 
of structure. The Common Core standard of critiquing the reasoning of others 
could be transformed into respecting and listening to other people’s argu-
ments. As an immigrant, I tend to play by the rules and work within the sys-
tem. I believe that I don’t have the luxury or privilege to break them.

In our conversations, we began to see the idea ofstandardizationas an attempt to 
create borders, and as immigrants, we immediately thought of political borders and 
the violence that borders create and perhaps the “protection” that borders bring if 
you can play by the rules. We started to play with the idea of physical borders as a 
metaphorfor borders brought bystandardization.

3.6  Toward the “Political Border” Metaphor

Nenad:  mutindi, you brought the work of Pinar into our conversations about borders. 
Particularly the overreliance on standards and attempting an impossible task 
of making education “teacher proof.” Another way that you talked about Pinar 
is the idea of curriculum being tied to the test. There is also a strong move-
ment in the United States that considers education as a commercial activity. 
For example, the Council for Accreditation of Educator Preparation (CAEP) 
refers to teacher education programs as educator preparation providers 
(CAEP, n.d.). The word “provider” implies that the purpose of a teacher prep-
aration program is to deliver a service rather than being an institution of 
higher learning dedicated to the education of teachers.

Pinar also talks about social engineering: it works with behaviorist and posi-
tivist paradigms (Pinar mentions Edward Thorndike, the behaviorist). The 
idea is that “evidence-based” research and practice is “evidence based” 
because education is reduced to “measurable outcomes” rather than seeing 
education as a complex web of connections in which teachers and students 
work to co-construct the world.

This standardization brings limitations and constraints on teachers, students, 
and everybody involved. In other words, the standardization creates borders. 
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Again, the border is a metaphor. The border is also a strong word that evokes 
political borders. We are both immigrants from areas where political borders 
often bring the meaning of turmoil, strife, and suffering. I grew up in 
Yugoslavia in a town that is now in Croatia, close to the border with Serbia. 
The border was not enforced before the war because Serbia and Croatia were 
parts of the same country. There is a town of Sid in Serbia, and I remember 
travelling with my parents from Sid as a child and entering a village of 
Tovarnik which is in Croatia. There is a road connecting the town and the vil-
lage, and before the war, you could travel in between without stopping. I 
remember being in a car with my mom and dad travelling along the road, and 
Mom just said, “See this row of trees, along the road, when we pass it, we will 
be in Croatia.” The border between Croatia and Serbia was only bureaucratic, 
and it was not enforced. Prior to World War II, there was not even a formal 
border: both places were a part of the same county in various countries such 
as the Kingdom of  Yugoslavia and the Austro-Hungarian Empire. This was 
before the existence of Serbia and Croatia in the modern sense. During the 
Yugoslav wars of the 1990s, there was a frontline between the two sides of the 
conflict (Serbian and Croatian) which could have been seen by the fact that for 
a long time, the facade of the buildings in Tovarnik were scarred by shrapnel. 
After the war, the formal border was established, and now instead of trees, 
there is an official border entry point with customs officials.

mutindi:  Creation of political borders comes with power. You may not have an idea of 
what is in Mexico because you are in Texas: the border separates. The border 
and what stands on the other side are forbidden places.

Nenad:  Borders define identity, and these standards are supposed to shape our iden-
tity. By naming the standards, similarly to naming and establishing countries, 
one also names the border: the activities that align with it and the ones 
that do not.

mutindi:  Who has the power to name the standards?

3.7  Our Response to Borders

Nenad:  The question we find ourselves asking is how do we respond to the borders 
created by standardization? We can choose to react to “the borders” in vari-
ous ways.

mutindi:  One way is to accept the standardization and the borders that are created. If 
you accept standardization, the “yardstick” that it creates (a standardized way 
to measure outcomes) gives us a way to compare populations and speculate 
on their needs which can give a semblance of equity. Sometimes you are 
afraid of the border because what is on the other side is another country. What 
do I find there? There are also people who live close to borders but never cross 
them. I choose to live on the side of the border not covered by standards. I do 
not cross over to the “land of the standards” because I feel that thinking is 
forbidden there or at least highly constrained. This reminds me of the banking 
system described by Paulo Freire in the pedagogy of the oppressed (Freire, 
2000). Many oppressed people do not get the time to think. They have no 
power to move the border. Thinking creates possibilities and opportunities, 
and many are left out.
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Nenad:  So, reaction to the border is then also the question of power. You can react to 
the standards by superficial coverage, or you can embrace standards and try to 
use them to reach the full potential of the standards. This is a matter of inter-
pretation; you can also recognize other standards and maybe even create other 
borders. What if you don’t recognize the terrain, the standards’ terrain?

mutindi:  This reminds me of the Saan people of South Africa: they had deep knowl-
edge of the physical terrain before the borders were erected, and they found 
themselves with no place to call home. These indigenous people, who have 
the best working environmental conservation skills, are landless and are in 
danger of dying out. I am thinking about those who understand the terrain and 
yet are excluded because of the borders. Do we have the courage to transgress 
and cross the border anyway? Borders have elements of protection, but they 
also separate; they exclude. They can be sites of oppression.

I look or relook and perhaps reexamine the standards that I have spent a lot of 
time working with and within; I begin to think about how did I get to this 
“place” that is so limited? A place that is so controlled, under surveillance, a 
place of power and powerlessness. With the standards, we have standards 
police, at every level. Those who really know the standards and those who 
have to be “forced” to be gatekeepers of the standards. We have gatekeepers, 
the guards who ensure that what the students are taught/told is what is sanc-
tioned by the standards. Passing standardized tests is the key yardstick. As 
teachers are made to teach the standards, there’s fear of venturing outside the 
borders because outside the borders is not safe. If you are outside the border, 
you might not be allowed to come back inside.

I am thinking of the alternatives or maybe what that could be or what it used 
to be. I am thinking of the places where we can “rupture” these canned knowl-
edges that forbid us from going through the borders. Who really have to stick 
to the canned knowledge? I am having a lot of questions. Why are we so 
happy about “coverage” rather than uncoverage? With the limitless amount of 
knowledge, can we afford to limit ourselves, our students, to this standardized 
knowledge and justify it as the only knowledge knowable?

4  Discussion and Implications for Mathematics Pre-service 
Teacher Education

In this chapter, we introduced the idea of speaking our truths to better understand 
our practice. This resulted in opposing views on standardization. The purpose of 
duoethnography is not to resolve these issues but rather to help us understand our 
stance and how to proceed. The synthesis and resolution, as consistent with Norris 
and Sawyer (2012), are up to the reader. The duoethnographic exploration leads us 
to look closer into our views on standardization.

Here we evoked border metaphors, because human thinking is metaphoric and 
metaphors enable us to understand the phenomenon under the investigation (Lakoff 
& Johnson, 1980). Our goal was to present duoethnography in a way that is truthful 
to our identities in order to make sense of the issues leant in our context. The meta-
phor that spoke to us as immigrants was the political border metaphor. Through 
evoking this metaphor, we identified several ways of reacting to standardization that 
has implications for mathematics pre-service teacher education. One way to react is 
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to embrace the standards in order to satisfy governing bodies such as CAEP. This is 
analogous to accepting your position as a citizen of a new formed country and fol-
lowing the established rules and borders. Outside of completely rejecting standard-
ization (analogous to the Saan people), another option is to include the ways to push 
them through introducing the elements that are not explicitly present. This is the 
equivalent of maintaining the relationship with communities from both sides of the 
border within the rules outlined by the authorities. This position of accepting the 
borders by moving between the two sides of the borders is analogous to Wiseman’s 
and Lunney Borden’s (2018) idea of transversing or “cutting across the boundaries” 
(p. 183). The introduction of the elements that are not explicitly stated in the rules 
can be an act of transgression (Hooks, 1994).

As mathematics pre-service teacher educators, through speaking out our truths, 
we were able to identify the tension that existed in our work regarding standardiza-
tion. This tension is the result of our identities as well as the experiences within the 
specific political, geographic, and the social context of the American South. True to 
the spirit of duoethnography, we do not offer a resolution, rather an invitation for 
readers to conduct their own investigations and meaning makings about borders and 
standardization.
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