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Preface 

This book is for undergraduates and HNCjHND students in both civil and 
mechanical engineering. The accent throughout has been placed upon the 
engineering aspects of the subject but it is hoped that the more mathematically 
minded reader will find sufficient to interest him. 

Assumptions upon which analyses are based have been carefully specified. Any 
analysis is only as accurate as its underlying assumptions and so the reader should 
develop the habit of assessing the value of a piece of theory by considering the 
applicability of its assumptions in the context of the problem under examination. 

Both engineers and mathematicians have contributed to the study of fluid 
mechanics and of recent years there has been a marked tendency to use mathe
matical methods in place of the empiricism that was used in the past. I believe 
that this trend will continue and academic courses will become progressively 
more mathematical in their approach. 

The systems of units that have been used are the British system and the SI 
system. Even after the SI system has been completely introduced in the UK and 
Europe, the British system will still be used in many areas of the world. It will 
therefore be necessary for British engineers designing projects in these areas to 
know both systems. 

At the end of each chapter questions have been included which it is hoped 
will be of assistance in understanding the chapter. They are set in both systems 
of units, the SI values being enclosed in square brackets. Some questions come 
from examination papers of the University of London, the University of Leeds 
and the Part II hydraulics examinations of the Institution of Civil Engineers, 
and I gratefully acknowledge permission to use them; others have been evolved 
for this book. The answers supplied are of course my own. 

The subject is very large and it is not possible to cover every topic in detail. 
The student will need to read further and a list of suggested reading is included. 

I would like to thank Mr J. Higgins, of the Faculty of Applied Science, the 
University of Leeds, who prepared the drawings. 

Department of Ovil Engineering, 
University of Leeds 

J. A. Fox 
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1 Definitions and Hydrostatics 

From the viewpoint of a man living on the surface of the earth, the world appears 
to be a ball of rock covered with an envelope of air, with water forming the 
oceans. This superficial view might lead him to believe that, similarly, the universe 
consists of solid bodies. But this is of course not so. The earth has a solid crust 
but its core probably consists of molten iron, while the stars are balls of very 
hot plasma and the galaxies appear to rotate as vortices. Where galaxies collide 
the pattern of star streams observed closely resembles turbulent fluid flow. Solid 
bodies are found only on the surface of planets, in asteroids and in the small-scale 
debris of planetary space. 

The description of fluid motion is thus clearly a matter of great interest and 
importance. Much of physics and mathematics is concerned with the study of 
fluid properties and motion, and in engineering where these disciplines are 
applied the study of fluid mechanics is vital. 

1.1 Basic definitions 

Fluid mechanics may be defined as the study of the stresses and velocities that 
occur in a fluid in motion; a fluid at rest is regarded as a special case of this 
general study. This definition leaves open the question of what precisely is meant 
by a fluid. The statement that a fluid is a substance that is not solid, although 
it includes both gases and liquids, is not adequate since fluids exist which under 
the action of small shear stresses behave as solids but under large stresses behave 
as liquids. Such substances are usually complex organic compounds with large 
molecules and are frequently colloidal. 

Liquids and gases 

A liquid is a substance that under suitable conditions of temperature will in 
time deform to take up the shape of any container into which it is placed. A free 
surface will develop if the container is located in a gravity field. 

1 



2 An I ntroduction to Engineering Fluid Mechanics 

A gas is a substance that will deform and expand to occupy the entire volume 
of any container in which it is placed without developing a free surface. 

An ideal or perfect fluid is one in which the viscosity (defined below) is zero. 
Needless to say, no such fluids exist. 

1.2 Viscosity 

Real fluids develop shear stresses within themselves when they move, these 
stresses being dependent on the rate of shear deformation. In this respect they 
differ from solids, in which shear stresses depend on the shear deformation itself. 
The relationship between the shear stress and the rate of shear can be used to 
classify various types of fluid. The shear stress T can be related to the shear rate 
yby the equation 

T = f(i) 

where i denotes the rate at which a fluid element is being deformed andfmeans 
'function of'. The simplest form of this equation is 

T = /li 

where /l is a constant. This defines a linear relationship between shear stress and 
shear rate. This particular relationship was first suggested by Newton and it has 
been found to describe very accurately the behaviour of many fluids including 
most gases, water, many lubricating oils and the lower hydrocarbons. For each 
fluid there is a particular value for the constant /l at a given temperature. /l is 
called the coefficient of dynamic viscosity and is a true constant for fluids that 
obey this linear relationship. Such fluids are called newtonian. i, the rate of shear 
deformation, will later be shown to be numerically equal to 3uj3y for a uni
dimensional flow parallel to the x-axis in a cartesian coordinate system (Section 
2.3). The parameter /l is not dependent upon i for newtonian fluids but it 
does vary with temperature. In liquids its value decreases with increasing tempera
ture and in gases it increases with increasing temperature. The difference in the 
behaviour of liquids and gases can be explained as follows. A gas is a collection of 
molecules that are so far apart that molecular forces of attraction are negligibly 
small. Their motion is determined by their momenta and to a first approximation 
they may be imagined as infinitely small spheres in random motion. If the gas is 
in motion a translational velocity is imposed upon these random motions; that is 
the random movements result in a net movement in space of the entire collection 
of molecules in the direction of the velocity. In other words the translational 
velocity is the mean velocity of the collection. If adjacent layers of gas move at 
different velocities, the random motions of individual molecules will cause trans
fer of molecules between the layers. The higher the temperature the greater the 
randomly directed velocities will be and thus the rate of transfer of molecules 
from one layer to the other will increase. Molecules moving between the two 
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layers will carry momentum with them, the net effect being to transfer momentum 
from the fast layer to the slow layer. The rate of transfer of momentum is 
equivalent to a shear stress so that as the rate of transfer increases with tempera
ture the equivalent shear stress will also increase with temperature, resulting in 
an increase in the coefficient of viscosity. 

In a liquid the molecules are much more closely packed and any given 
molecule is within the zone of attraction of the surrounding molecules_ When 
adjacent layers of a liqUid move relative to one another the attractive bonds 
between the molecules in the layers must be broken and reformed continuously. 
This explains the relation between the shear stress and the shear rate. If the 
temperature is increased the spacing between the molecules increases as the 
liquid expands and consequently the attractive forces between them weaken. 
Hence the shear force and the coefficient of dynamic viscosity decrease with 
increasing temperature_ 

Generally the behaviour of the coefficient of viscosity of a liquid is described 
by the equation 

and for a gas by 

11 = 110 + at - {3t2 

For water; in the cgs system 11 is in poise and 

110= 17·90 x 10-3 

a = 33·68 x 10-3 

{3 = 22·1 X 10-3 

In the Imperial system, 11 is in slugs/foot second and 

110 = 37·5 X 10-6 

a = 33·68 x 10-3 

{3 = 2·21 X 10-3 

In the SI system, 11 is in kilograms/metre second and 

110 = 1·79 X 10-3 

a = 33·68 x 10-3 

{3 = 2·21 X 10-3 

For air, if t is in degrees centigrade 

11 = 355 300 + 1680t - 2·48t2 slugs/ft s 

or 11 = (17600 + 83·It - 0·123t2)10-3 kg/m s 
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1.3 Non-newtonian fluids 

As mentioned earlier, other fluids exist for which the simple newtonian equation 
relating the shear stress T to the shear rate 'Y does not apply. 

r 

r, 

Fig. 1.1 

The main classes of non-newtonian fluids as illustrated in Fig. 1.1 are 

(i) Plastics, in which Bingham plastics are included as a special case 
(ii) Pseudoplastics 
(iii) Dilatants 

Plastics are different from the other two classes in that they possess a yield stress 
which must be exceeded before flow can commence. Substances such as tomato 
ketchup, butter and many other organic colloids are such fluids. Blood has a very 
low yield stress. and so must be classed as a plastic. For all these fluids the shear 
stress is uniquely defined by the shear rate but other fluids exist in which the 
shear stress depends not only upon the shear rate but also upon the shear history 
of the fluid. Such fluids are called thixotropes. Fluid mechanics is the study of 
newtonian fluids and rheology the study of all fluids. On this definition fluid 
mechanics is a subdivision of rheology. Non-newtonian fluids are very interesting 
and exhibit many unusual properties but their behaviour cannot be dealt with in 
this book for reasons of space. 
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1.4 Specific mass, weight and gravity 

The specific mass of a fluid is the mass of fluid contained within a unit volume. 
It is usually denoted by the symbol p (rho). The value of the specific mass of a 
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gas depends of course on its pressure but that of a liquid can be considered constant 
for most purposes. When pressure transients are caused by sudden or rapid velocity 
changes in a flow the assumption of constant density cannot be made but in 
steady liquid flows it is justified in almost all circumstances. The specific mass 
units in common use are 

SI kilograms/metre3 

cgs grams/ cen timetre 3 

British physicists pounds/foot3 

British and American engineers slugs/foot3 

The specific weight of a fluid in the weight of the fluid per unit volume and in 
this book it will be denoted by w. The units in common use are 

SI newtons/metre 3 

cgs dynes/ centimetre 3 

British physicists poundals/foot3 

British and American engineers pounds force/foot3 

The word slug was used above to define the mass unit in the British engineers' 
system. The reason for the introduction of this unit is as follows. It is essential 
for engineers to develop an intuitive appreciation of the magnitude of the forces, 
and velocities that arise in any problem they are attempting to solve. Every 
person has an intuitive awareness of the magnitude of the force unit to which 
they are accustomed, the pound weight, the kilogram weight or whatever it might 
be. In most of the English speaking world the unit of force in everyday use is the 
pound weight and most people including engineers are instinctively aware of the 
magnitude of this force. Very few people have any feeling for the magnitude of 
forces measured in poundals (one poundal is approximately one half of an ounce 
weight). Engineers must be able to judge the accuracy of an answer to a problem 
and this can be difficult if it is expressed in strange units. Consider Newton's 
second law which is the basis of all calculations concerning dynamic phenomena: 
F = mao F is the force, m is the mass of the body and a is the acceleration. If mass is 
in pounds mass and acceleration in ft/s2 the force will be in poundals. If it is 
required that forces are to be in pounds force (Ibf) and accelerations in ft/s2, then 
because the force unit is the numerical value of g times as large as the poundal, the 
mass unit must be as many times as large as the pound mass. Denote the 
numerical value of g by Ig I then 1 slug = Ig lIb mass. 

For example, in the case of water p = 62·4Ib/ft3 and this is the correct unit 
to use in the physicists' system. In the engineers' system p = 62·4/32·2 

slug/ft3 = 1·94 slugfft3 and the specific weight w = pg = 1·94 x 32·2 = 
62·4Ibf/ft3 . 
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As stated above, in the SI system the unit of mass density is the kilogram per 
cubic metre. In the cgs system water weighs I gram weight per cubic centimetre 
so the weight of 1 cubic metre of water is 1 000 000 grams weight and the 
specific mass of 1 cubic metre of water is therefore 1000 kilograms per cubic 
metre. The corresponding specific weight of water is pg, that is, 9810 newtons/ 
metre3 . 

The specific gravity (s) of a fluid is the ratio of the weight of a volume of the 
fluid to the weight of an equal volume of water. 

s = Wfluid/Wwater 

Water, by definition, has a specific gravity of unity so that in the cgs system the 
specific gravity of water equals the numerical value of its specific weight. 

1.5 Pressure at a point in a fluid 

In a stationary newtonian fluid no shear stresses can exist as the fluid is not 
undergoing a shearing process. Pressures or direct stresses do occur however. 
Consider a small element of area oa in the fluid. Let the force acting across it be 
'8p. Then the pressure on the area is '8p/oa. If the element is made extremely small 
and taken to the limit the pressure at the point is given by lim op/oa. The 

& ..... 0 

units of pressure are dynes/cm2 in the cgs system, N/m2 in the SI system, 
pdl/ft2 in the British physicists' system and Ibf/ft2 in the British and American 
engineers' system. These are all basic fundamental units but in practice are not 
very well suited to everyday use as they are all too small. The units commonly 
used are Ibf/in2 and kilograms wt/cm2. 

Proof that pressure acts equally in all directions 

At a point in a fluid the pressure acts equally in all directions. This statement can 
be proved as follows. Consider the forces acting upon a triangular prism of unit 

Fig. 1.2 
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length (see Fig. 1.2). Resolving forces in the x direction 

Px 3y = (PO ~Y ) sin B 
smB 

Px =Po 

Resolving vertically (remembering to include the weight of the fluid) 

Py 3x = (PO ~) cos B + ! 3x 3y w 
cos B 

When 3x and ~y become very small Py = Po . 
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Thus at a point in a fluid Px = Py = Po and as B can take any value this proves 
that pressures act equally in all directions in a stationary fluid. 

1.6 Pressure distribution in the atmosphere 

Consider a small cylindrical element of gas with its axis vertical at a height h above 
a given level. Let its cross sectional area be A and its thickness 3h (see Fig. 1.3). 

Let the pressure acting on its lower horizontal surface be p, then the pressure 
on its upper horizontal surface will be p + (dp/dh) 8h. The net upward vertical 
force acting on it will be -(dp/dh) 8hA and this will have to balance its weight 
which will be Apg 3h. 

-(dp/dh) 8hA =Apg3h 

so 

dp/dh = -pg 

Using the universal gas law, pip = gR T (R is a constant and T the absolute 
temperature) and assuming that the gas temperature is everywhere constant (that 
is, the process is isothermal) then by substituting 

Integrating 

p =p/gRT 

dp/dh = -(P/gRT)g= -p/RT 

dp/p = dh/RT 

lOIk P = -h/RT + B 

where B is a constant of integration. 
When h = 0, let the pressure p be Po, so that 101k Po = B, then 

loge p = -h/RT + loge Po 

loge (P/Po) = -h/RT 
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If the gas process is not isothermal, but adiabatic, then the above result does 
not apply. The equation dp/dh = -pg is still valid but the adiabatic equation 
p/p"! = k (where k is a constant) will apply instead. By substituting for p from 
p/p"! = k into the first equation 

Integrating 

dp = _(p/k)lfy g dh 

dp/plfy = -(I/k)l/"!g dh 

_r_ph-l)fy = -(I/k)lfygh + C 
r-I 

where C is a constant of integration. When h = 0, p = Po 

but 

Alterna tively 

_r_p&"!-l)/"! = C 
r-I 

_r_(ph-l)fy _ ph-l)fy) = _(I/k)lfygh 
r-I 0 

(I/k)lfy = Po/plf't = p/pl/"! 

_r_ (po ~) - h 
r - I Wo w 

_r_ Po [I _ (.E.)h-l)/"!] = h 
r - I Wo Po 

In the atmosphere, approximations to both isothermal and adiabatic processes 
occur. In the troposphere, the process most closely approximates to an adiabatic 
process. Such a case is said to be one of convective eqUilibrium. In the strato
sphere, conditions approximate to an isothermal equilibrium and such a case is 
said to be one of conductive equilibrium. 

Convective equilibrium is said to occur when two equal masses of gas can be 
exchanged between two different levels and they exchange pressures and 
temperatures without the addition or subtraction of heat. 

1.7 Hydrostatic pressures in incompressible fluids 

At the base of a column of fluid of cross sectional area A (see Fig. 1.3) the 
pressure force pA must act upwards to balance the weight of the column. The 
weight of the column is to APxg dx where Px denotes the mass per unit volume 
(or specific mass) of the fluid in the elemental volume at height x above the base 
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l( 

Area A 

p 

Fig. 1.3 

of the column. If the fluid is incompressible the mass density does not change 
with the pressure, so Px = p. The column weight = pgAh where h is the total 
column height up to the free liquid surface. 

Therefore 
pA = pgAh 

Fig. 1.4 

9 
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so 
p = pgh =wh 

where w is the weight/unit volume, i.e. the specific weight. 
This means that pressure increases linearly with depth in a liqUid (see Fig. 1.4), 

but in compressible fluids such as gases, pressures vary logarithmically with depth. 

1.8 Force on an inclined plane lamina 

The force on an elemental plane lamina (see Fig. 1.5) equals the pressure at the 
depth of the element multiplied by its area, that is 

8F=p8a 

b 

Fig. 1.5 

Now p = wh and 8a = b 8x. As h = x sin 8 the total force on the whole lamina is 
given by 

(1.1) 

The integral J~2 bx dx is the first moment of area of the lamina about the line of 
I 

intersection of the plane with the surface (denoted by 0). This is Ax where x is 
the distance of the centroid G of the lamina from 0, A being the area of the 
lamina. 

Therefore 
F=A (wx sin 8) 

- -
and as x sin 8 = h where h is the depth of the centroid 

F = area of lamina x the pressure at the centroid. (1.2) 
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It is often easy to specify the position of the centroid and so to be able to 
calculate the pressure at the centroid. This approach avoids the difficulties that 
may be encountered when the direct integration of the basic equation is 
attempted. 

Location of the centre of pressure of a plane lamina 

The effect of the pressure system acting upon a plane inclined lamina can be 
represented by a force of magnitude given by equation (1.1) located at a position 

o 

Fig. 1.6 

on the lamina such that the moment of the force about 0 is the same as that of 
the pressure distribution about O. The point at which the equivalent force must 
be located is termed the centre of pressure of the lamina. Its position can be 
calculated as follows. 

F x i = moment of the pressure system about 0 as i is the distance from 0 
measured along the plane to the centre of pressure P. 

Therefore F x i= f: z b dx wx sin (J x, that is the area of element x pressure x 
1 

moment arm. 
Therefore 

Xz 

F x i = w sin (J f bx2 dx 
XI 
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Now f;: bx2 dx is the second moment of area of the lamina taken about O. This 
is usually denoted by 1. So 

F x f= w sin OJ. 

But I = IG + Ax2 = Akl; + Ax2 (from the parallel axis theorem) where kG is the 
radius of gyration of the lamina about the centroid G. As the force F is given by 
wAx sin 0 (see equation (1.2» 

so 

or 

wAx sin Of= w sin OA (kl; + x 2) 

f=kl;/x+x 

_ Second moment of area about 0 
z= 

First moment of area about 0 

(1.3) 

(1.4) 

1.8.1 Forces acting on a rectangular lamina The rectangular lamina is a special 
case of particular interest as the force per foot run on a wall or dam is an 
example of it. 

The area of a rectangular lamina is bh. The intensity of pressure at the centroid 
is wh/2. Therefore the force on a rectangular lamina is wbh2/2. The depth of the 
centre of pressure is obtainable very easily from equation (1.3). 

x=h/2 

h2 /12 h 
so the depth of the centre of pressure = hi2 + -"2 = ih (1.5) 

In the case of a rectangular lamina, the breadth being constant, the centroid 
of the pressure diagram is coincident with the centre of pressure. The pressure 
diagram is triangular and its centroid is at a depth of ~h which agrees with the 
result obtained above in equation (1.5). 

1.9 Forces acting on curved surfaces 

The force on an element of a curved surface per unit width = 8P = wh 8s (see 
Fig. 1.7). Resolving this force into its horizontal and vertical components, H 
and V 

but 

so 

8H = 8P sin 0 = wh 8s sin 8 

8s sin 0 = 8h 

8H=wh 8h 
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Fig. 1.7 

Now this is the force on the projection of the area of the element onto the 
vertical plane. Therefore 

but 

so 

H= wh2j2 

8 V = 8P cos e = wh 8s cos e 
8s cos e = 8x 

8V=wh 8x 

and therefore 8 V is the weight of the volume of fluid above the element 8s. 

13 

(1.6) 

The total vertical force must therefore be the weight of the fluid enclosed by the 
surface. 

The two components of the force can now be calculated and the force P itself 
found 

(1.7) 

The angle it makes to the horizontal is 

ex = tan -1 (VIH) (1.8) 

The location of the line of the resultant force 

The horizontal component of the total force acts through the centre of pressure 
of the projection of the surface upon the vertical plane. If this projected area is a 
rectangle it is at a depth of ih. The vertical component of the force must act 
through the centroid G of the enclosed fluid mass. 

The value of x in Fig. 1.8 can either be calculated or obtained by graphical 
methods. The point of intersection of the horizontal and vertical components 
locates a point on the line of action of the resultant force-the resultant and its 
components must pass through the same point. The direction and magnitude of 
the resultant are specified by equations (1.7) and (1.8), thus it is totally defined. 
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v 

Fig.l.8 

" 

If the curved surface is curved in three dimensions the vertical projection of 
the surface may not be rectangular but the technique described is still applicable 
when appropriately modified. 

The special case of a curved surface which is part of a cylinder or a sphere is 
somewhat easier to deal with than the general case. All pressure forces acting 
upon such a surface must act through its centre of curvature. Thus the resultant 
of all such pressure forces must also act through the centre as shown in Fig. 1.9. 

The vertical and horizontal component of the forces can be very easily 
calculated, and thus the magnitude of the resultant found. The angle of the 
resultant to the horizontal is then found from equation (l.8) and the resultant 
must pass through the centre of curvature O. The distance z is then equal to 
R sin e. The resultant is thus completely defined in magnitude, position and 
direction but it has not been necessary to calculate the position of the centre of 
gravity of the enclosed fluid mass. 

o 

R 

Fig.l.9 
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1.1 0 Surface tension 

The molecules comprising any substance attract one another and it is these 
attractive forces which make the material cohesive. A steel bar breaks when 
placed under sufficiently large tension because the tension is larger than the 
cohesive stress generated by the steel. In a flUid, cohesive forces are present and 
account for the development of surface tension. Surrounding any molecule within 

sz 

Fig. 1.10 

the fluid is a zone within which another molecule will attract it. Such a molecule 
is shown at A in Fig. 1.10. All molecules within the fluid are acted upon by other 
molecules in this way so that a cohesive stress is set up. There is no resultant force 
acting upon a molecule such as the one located at A because all the forces acting 
upon it are balanced by others in each direction. However a molecule located at 
the fluid surface such as the one at B does experience a net resultant force acting 
in a direction perpendicular to the surface. It is this force that creates the defined 
surface exhibited by liquids. (It must be remembered that the zone around any 
molecule within which it is subjected to attractive forces from other molecules 
is extremely small, its radius being of the order of one millionth of a centimetre.) 
The surface layer of a liquid is thus in a different state from that prevailing in the 
rest of the fluid and it can be seen from Fig. 1.8 that it is in a state of uniform 
tension. This tension is called the surface tension of the liquid and it is usually 
denoted by a. It is measured in units of force per unit length. Its dimensions are 
M/T2. Water at ordinary temperatures has a value of a of 75 dynes/em. The value 
of a decreases with increasing temperature and becomes zero at the critical 
point-in this state a liquid and its vapour become indistinguishable. 
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1.11 Manometry 

The body of techniques that exists for measuring pressure and differential 
pressures is called manometry. 

II 

Fig. 1.11 

A device that measures pressures is called a piezometer. The simplest of these 
consists of a vertical tube (see Fig. 1.11). The height h is measured and the pressure 
p-calculated from 

P=Whl 

where w is the specific weight of the fluid. The tube must be sufficiently large 
for surface tension effects to be negligible. Obviously such a device can only be 
used to measure the pressure of a liquid. 

Pressure gauges 

A mechanical device, a Bourdon gauge, is available for measuring pressures. It 
consists of a curved tube which tends to straighten when placed under pressure 
(see Fig. 1.12). The movement of the free end of this tube is used to drive a 
mUltiplying mechanism which rotates a pointer over a dial. These gauges should 
be regularly calibrated on a dead-weight tester. 

Most pressure measuring devices measure the pressure relative to atmospheric 
pressure which can conveniently taken as zero. Pressures measured in this way 
are called gauge pressures. Such pressures are sometimes written as p Ibf/in 2 g 
the g denoting gauge. If absolute pressures are required, the magnitude of the 
atmospheric pressure should be added to the gauge pressures. Atmospheric 
pressure can be measured by an Aneroid or mercury barometer. 

Differential manometers 

A U tube manometer is shown in Fig. 1.13. Let the specific weight of the working 
fluid be wf and the specific weight of the manometer fluid be Wm• The pressure 
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Pressure applied here 

Fig. 1.12 

p+6p p 

x 

~ ____ B+--I-~ 

Fig. 1.13 
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at A = p + !::"p + Wf{X + hrJ. The pressure at B = p + WfX + wmh m. These pressures 
must be equal as they are at the same level in the same fluid. 

p + !::.p + wfX + wfhm = p + WfX + wmhm 

!::"p = {wm - Wf )hm 

Converting this pressure !::.p to an equivalent height of the working fluid 

hf = !::"P/Wf = (Wm/Wf - l)hm 

but 
Wm/Wf = Sm/Sf (s denotes specific gravity) 

so 
(1.15) 

If the working fluid is water Sf = 1 and if the manometer fluid is mercury 
Sm = 13·6 

then 

A U tube manometer such as this is a fairly unsophisticated instrument. To 
measure hm two readings are necessary; namely the heights of the left hand and 
right hand menisci. By enlarging the left hand limb so that its cross sectional 
area is very much larger than that of the right hand limb the surface movement 
in it can be made almost negligible (see Fig. 1.14). 

p 

1 
p+6p 

1 

Area a 
y 

Fig. 1.14 
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The meniscus in the right hand limb rises by an amount hm while that in the 
left hand limb falls only by y. 

As for the U tube 

Ifa~A 

Ay =ahm 

hf = t:.p/w = (Sm/Sf - l)(hm + y) 

= (Sm/Sf - l)(hm + hma/A) 

hf=(sm/sf-l)(1 +a/A)hm 

but if the calibration of the scale for measuring hm is made such that 

1 
1 scale unit = --- true units 

1 +a/A 

then the value measured on this modified scale will be larger than the true value, 
so that 

hm measured = (1 + a/A)hm true 

Then 

hf = (Sm/Sf - l)hm measured 

and the value of h f will be accurately measured by the manometer 

The inverted U tube 

If the value of p is large, it will not be possible to use two separate piezometers. 
A mercury-water differential manometer could be considered for this application 
but if t:.p is small this would give too small a reading. By using an air-liquid 
inverted differential manometer and by pressurising the air a quite satisfactory 
reading may be obtained (see Fig. 1.15). 

As before 

As wair is very much less than Wf the value ofwair/wf is very much less than 1. 
For instance, if water is the working fluid Wair/Wf = 1/780. The buoyant effect of 
the air can therefore be neglected and 

hf=hm 
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t 1 
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p 

Fig.1.1S 

Micromanometers 

A number of devices are available for the measurement of extremely small 
pressures. 

In the range of small, but significant pressures, the slant tube manometer can 
be used (see Fig. 1.16). 

The value of 1m can be converted to the eqUivalent head reading by multiplying 
by sin O. 

For small pressures multi-fluid manometers can be used (see Fig. 1.17). 

Fig. 1.16 
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By suitable choice of the two fluids in this manometer the sensitivity can be 
made high. The two fluids must be immiscible and have specific gravities of 
nearly the same value, for example, water and paraffin. If the specific weights 
of the two fluids are w 1 and w 2, the equation is 

~=hm[w2(1 +a/A)-w1{l -a/A)] 

This assumes that the working fluid is a gas for which the specific weight is 
negligible. 

A Casella micromanometer is shown in Fig. 1.18. The inverted reflection of the 
needle tip in the fluid surface and the image of the needle tip itself can be made 

This vessel can be 
raised or lowered by 
a screw to adjust 
the zero reading 

Flexible 
pipe 

Lighter 
fluid 

Fig. 1.17 

Glass tube 

Heavy liquid 

coincident by raising or lowering the tank in the right hand limb using a micro
meter screw. The amount through which it is raised or lowered gives the pressure 
difference in terms of head of manometer fluid. 

The Chattock micromanometer is an old but extremely sensitive device for 
measuring very small pressure differences. It is awkward to use but is probably 
the cheapest of the very sensitive micromanometers. 

Electronic pressure transducers 

The manometers mentioned are all well suited to measuring steady pressure and 
have the advantage of being absolute measuring devices; the conversion of the 
reading into pressure depending solely upon the geometry of the instrument and 
the density of the manometer fluid. They are quite unsuitable for measuring 
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Fig.l.1S 

rapidly fluctuating pressures such as those which may occur under conditions of 
unsteady flow. Electronic devices must be used for this purpose. All such devices 
must be calibrated as they are not absolute piezometers. They fall into two 
classes. In the capacitance type, pressure causes a diaphragm situated close to a 
metal plate to deform altering the electrical capacity of the condenser so formed. 
This alteration is discriminated by a frequency modulated circuit and the output 
can be fed to an oscilloscope or to an ultraviolet light recorder. 

In the strain gauge type four strain gauges linked to form a Wheatstone net are 
fixed to a diaphragm of suitable thickness (See Fig. 1.19). These strain gauges 
are usually silicon semiconductors. A voltage is applied across the net and the 
output fed to the galvanometer of an ultraviolet recorder. 

The frequency response of such circuits must be carefully examined before 
use as it is very easy-especially in the case of output to an ultraviolet light 

Strain 
gouges, 

Fig.l.19 
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recorder-to think that high frequency components of a pressure transient are 
being recorded when they are not. This is due to the low-frequency-high 
sensitivity response characteristic of the galvanometer. The frequency response 
not only of the transducer but of the entire recording system should be considered. 
Such transducers as these can be used to investigate pressure ranges from as low 
as 0-0·001 psi up to 0-1000 psi depending upon the diaphragm diameter and 
thickness employed. 

Table 1.1 
Specific weights of some common fluids 

Fluid 

Water (fresh) 
Water (salt) 
Benzene 
Carbon tetrachloride 
Petrol 
Paraffin 
Ethyl alcohol 
Mercury 
Oil 

Worked examples 

Specific weight 
Ibf/ft 3 kN/m3 

624 
64·0 
54·9 
99·9 
42·0 
50·0 
49·3 

847 
54 
to 
60 

9·81 
10·7 

8·6 
15·3 
6·61 
7·89 
7·74 

134 
8·51 
to 

9·48 

Specific 
gravity 

1 
1·03 
0·88 
1·59 
0·675 
0·803 
0·79 

13-6 
0·869 

to 
0·965 

(1) A dam has an upstream pronIe as illustrated in Fig. 1.20. Calculate the force 
per metre run acting upon it, specifying its magnitude, direction and location. 

Horizontal component of the force 

H =! x 9810 x 1 x (10 + 1 + 5)2 

= 1·26 meganewtons 

Vertical component of the force 

V = weight of contained fluid 

= area x w 

Resultant force 

= (6 x 10 + 1 x 5 +! x 10 x 10 + ~ X 12) x 9810 

= 1 ·14 meganewtons 

R = y(H2 + V2) 

= y(1·262 + 1·142)meganewtons 

= 1·69 meganewtons 
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Fig. 1.20 

Direction of resultant: 
Let Q be the angle the resultant makes to the horizontal. 
Then 

Position of resultant: 

Q = arctan (H/V) 

= arctan (1·26/1·14) 

= 47° 53' 

6m 

It is first necessary to locate the centroid of the mass of water contained 
between a vertical through A and the dam profile. Let the horizontal distance 
from A of the centroid be Q. 

Q 

6 x 10 x 5 +! X 102 x -W + 5 x 1 x 10·5 + (10 + 0·4244) x ~ 

'IT 
60 + 50 + 5 +-

4 

(Note that the distance of the centroid of a quadrant of a circle is 0·4244 x R 
from either straight edge). 

Q = 4·55 

b = 5·33/tan Q =5·33/1·11 

= 4·82m 
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The resultant force of 1·69 meganewtons intersects the base at an angle of 
47° 53' to the horizontal at a distance of 9·37 metres from the upstream edge 
of the base of the dam. 

25 

(2) A flat rectangular plate 1 metre wide by 2 metres long is immersed in water 
of density 1000 kg/m3. The shorter side is parallel to the water surface and 0·5 
metres below it. The longer side is inclined at 60° to the vertical. (See Fig. 1.21). 
Calculate the magnitude, direction and location of the force acting upon one side 
of the plate due to water pressure. 

\:19~ I·OOm 

Fig. 1.21 

Area of plate = 2 m 2 

Depth of centroid = 0·5 + 1 cos 60° 

= 1·00 

o 

Force = area x pressure at centroid 

= 2 x 9810 x 1·00 

= 19·6 kilonewtons 

This force acts perpendicularly to the plate so it is acting in a direction which 
is 30° to the vertical. 
Location of centre of pressure-: 

X=x +kb/x 
i = O·S/cos 60° + 1 = 2·0 

0·333 
X= 2·00+--= 2·17 m 

2·00 
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Questions 

Questions throughout this book are set in both the British and the SI systems of 
units. The values quoted in square brackets are in the SI system. Note they do not 
exactly correspond to the British values; this is to avoid unnecessarily awkward 
arithmetic. The answers are treated similarly. 

(1) Calculate the force acting on one face of a rectangular lamina 3 ft wide [1 m] 
and 12 ft long [4 m] immersed in oil of specific gravity 0·9 with its long side 
inclined at an angle of 60° to the horizontal and its short side in the surface. 

Answer: 10·5 x 103 lbf [61·2 kN]. 

(2) The upstream face of a dam consists of two intersecting planes. The upper 
plane is vertical and extends down from the water surface to a depth of 50 ft 
[15 m]. The lower plane is inclined at 45° to the horizontal and extends from the 
depth of 50 ft [15 m] to a depth of 100 ft [30 m] . Specify the resultant force 
acting on the dam face due to water pressures both in magnitude and direction. 

Answer: 390 x 103 Ibf/ft, 36·8° [5·5 MN/m, 36.8°]. 

(3) A lock gate consists of a vertical plane surface which is laterally supported 
by two horizontal cross beams. The depth of water retained by the gate is 
20 ft [7 m] and the lower beam is to withstand one and a half times as much 
load as the upper beam. The gate is to be 30 ft [10 m] wide. Calculate the depths 
below the water surface at which the beams should be located, and the forces 
acting on the beams. 

Answer: 8·43 ft, 16·6 ft, 150 x 103 lbf, 225 x 103 lbf [2·93 m, 5·84 m, 
960 kN, 1440 kN]. 

(4) The upstream profile of a dam is defined by the equation y = 0·25x2 • 

Calculate the magnitude and direction of the resultant thrust per unit width of 
dam when the upstream depth of fresh water is 100 ft [30 m]. 

Answer: 323 x 1031bf/ft at 15° to horizontal [4·91 MN/m at 26·0° to 
horizontal] . 

(5) A bridge across a river has an elevation as shown in Fig. 1.22. 
When the river is in flood the upstream water surface is level with the road surface 
and the downstream level is 15 ft [5 m] below it. Assuming the pressure distri
bution to be hydrostatic calculate (a) the horizontal thrust upon the bridge and 
(b) the overturning moment acting upon it. 

Answer: 1·14 x 106 1bf, 36·9 x 106 ft Ibf [6·17 MN, 57·5 MN m]. 
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Rood surface 

40' [13m] 

15' [5mJ 15' [5mJ 

100' [33m] ~I 
Fig. 1.22 

(6) A rectangular leaf gate is fitted into a side wall of a reservoir mounted in a 
vertical position. Its width is 4 ft [1·3 m] and its height is 10 ft [3 m] . Its upper 
edge is hinged to the reservoir wall and its lower edge is equipped with a 
retaining device that holds the gate vertical against the forces applied to its 
upstream face by the water. Its downstream face is at atmospheric pressure. 
Calculate the force on the hinge and the force on the retaining device when the 
water surface is 20 ft [7 m] above the level of the gate hinge. 

Answer: 29·2 x 103 lbf, 33·2 x 103 lbf [153kN, 172kN]. 

(7) A spherical vessel of radius 12 ft [4 m] is filled with water. The pressure at 
the highest point is atmospheric. Calculate the magnitude and direction of the 
resultant force acting on the half of the sphere created by the intersection of a 
vertical plane through the centre of the sphere and the sphere itself. Also locate 
the point of intersection of the resultant with the surface of the sphere. 

Answer: Force: 407 x 103 1bf, angle: 33·7° to horizontal, point of intersection: 
6·6 ft below horizontal diametral plane [Force: 2·39 MN, angle: 33·7°, point of 
intersection: 2·23 m below horizontal diametral plane]. 

(8) A radial gate has the dimensions given in Fig. 1.23. Calculate the magnitude 

Fig. 1.23 
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and direction of the resultant thrust acting upon the gate per unit width. Does 
the gate experience any moment? 

Answer: 13·8 x 103 lbf/ft acting at 6.950 to the horizontal [242 kN/m acting 
at 6.950 to the horizontal]. 

(9) A valve consisting of a circular disc pivoted on a horizontal diametral shaft 
is to be used to control flow from a dam. The diameter of the disc is 3 ft [1 m]. 
Assuming that the upstream water surface is always more than I! ft [0·5 m] above 
the centre of the valve calculate the torque required to keep the valve in the 
vertical closed position. 

Answer: 248 lbf ft [483 Nm]. 

(IO) A bridge across a river has the profile illustrated in Fig. l.24. The width of 
the bridge is 30 ft [10 m] . Calculate the upthrust on the bridge when the river 

15'[405mJ 15'[45mJ 

<j [3m] 

IOO'[30mJ 

Fig. 1.24 

level on both sides of the bridge is level with the road surface. Also calculate the 
resultant force acting on one half of the underside of the bridge from springing 
to crown in magnitude and direction. 

Answer: 2·21 x 106 lbf, 1·16 x 106 lbfat 18.20 to the horizontal 
-- [11·5 MN, 6·11 MN at 20.30 to the horizontal] . 

(II) A cubical tank, square in plan, with vertical sides contains water to a depth 
of 3 ft [1 m] overlain by a layer of oil of specific gravity 0·9 of 9 ft [3 m] 
thickness. Above the oil the gas in the tank is at a pressure of 1·5 Ibf/in2 

[10 x 103 newtons/m2]. If the tank sides are of 15 ft [5 m] length calculate the 
magnitude and the position of the resultant force on one side. 

Answer: 110 lbf acting at a height of 5·55 ft above the base 
--- [605 kN acting at a height of 1·81 m above the base]. 



2 Hydrodynamics 

The study of hydrodynamics involves a mathematically rigorous approach to the 
analysis of fluid motions. The concepts upon which it is based are the same as 
those employed in engineering fluid mechanics but the results obtained are usually 
expressed in the form of differential equations and are usually of more general 
application. 

2.1 The continuity equation 

The law of conservation of mass leads to the differential form of the continuity 
equation. Consider the flow into and out of a cubical element ABCDEFGH, as 
shown in Fig. 2.1. 

v+~8y 

A f---'-----'=t'/ 

u---....... ~ 

y 

v 

x 

Fig. 2.1 
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Fluid entering face AEGC will have a mass density Px and when it leaves 
across face BFHD it will have a mass density of Px + (apx/ax) 3x. Similarly for 
faces ABDC and EFHG the densities will be pz and pz + (apz/az) oz and for 
faces CGHD and AEFB Py and Py + (apy/ay) oy. 

The difference between the amount of fluid entering and leaving the element 
per second must be stored within the element and this is possible if the fluid 
within the element is compressible. The rate of storage within the element is 
3x 3y 3z (ap/at) where p is the mean value of the density, that is 
(Px + Py + pz)/3. 

Now 

similarly 

and 

3y 3z [pxu - (Px + ~x 3X) (u + :~ 3X) ] 

+ 3y 3x [ pz w - (pz + ~z) (w + ~; 3z ) ] 

+ 3z 3x [pyv - (PY + ~;3Y ) (v + :; 3y )] 

ap 
=3x3y 3z

at 

( apx ) ( au) a(p u) 
Px + ax 3x u + ax 3x - PxU = T 3x 

( ap ) ( aw) a(pzw) 
Pz + azz w + az 3z - PzW = --a:;- 3z 

( Py + apy 3Y) (v + av 3Y ) _ Pyv = a(pyv) 3y 
ay ay ay 

so that equation (2.1) reduces to 

Dividing through by oy ox oz 

ap 
=3x 3y 3z

at 

a a a ap 
-(p u)+-(p v)+-(p w)+-=o 
ax x ay y az z at 
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At a point in the fluid when 8x ~ .8y ~ 8z ~ 0 

so 
Px ~Py ~Pz ~ P 

a a a ap 
-(pu) +-(pu)+-(pw) +-= 0 ax ay az at 

If the fluid is incompressible p must be constant so 

au au aw 
-+-+-=0 ax ay az 
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This is equivalent to saying that the divergence of the velocity is zero or that 
the volume of a fluid element is constant. 

If the fluid is compressible, but the flow is steady 

ap = 0 
at 

a(pu) + a(pu) + a (pw) = 0 
ax ay az 

2.2 The Euler equation 

This equation is a differential form of Newton's second law of motion. 
Consider an element, as before, in a fluid flow in which pressure fields exist, 

but in which friction is absent (see Fig. 2.2). 

PJt----H~ 

y 

8x 

Py 

x 

Fig. 2.2 
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There will be a force acting on the element in the x direction, another in the 
y direction and a third in the z direction. There may be body forces acting upon 
the fluid. Such forces are forces which are proportional to the volume of the 
fluid. An example of such a body force is weight, the body force being the specific 
weight w. If the x and z axes are located in a horizontal plane the only body 
force that exists is the weight acting in the y direction but if the coordinate 
system has no particular orientation relative to the earth's gravitational field-
the vertical-then weight body-forces can exist in all three directions (see Fig. 2.3). 

r 

)( 

y 
Fig. 2.3 

These body forces are usually denoted by 

X for the body force, that is force/unit volume, in the x direction 

Y for the body force, that is force/unit volume, in the y direction 

Z for the body force, that is force/unit volume, in the z direction 

Then the force in the x direction due to pressure forces and body forces is 

( - :: 3X) ay az + X ax ay 3z 

This must cause an acceleration of the element of du/dt. 

ap du - - ax ay az + X ax ay az = p ax ay ,~z -d ax t 

_ ap +X=p du 
ax dt 

Now, by defmition of a total differential 

d a dx a dy a dz a 
-=--+--+--+
dt ax dt ay dt az dt at 



so 
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du au au au au 
-=u-+u-+w-+-
dt ax ay az at 

ap (au au au au) 
- ax + x = p u ax + u ay + w a-; + at 
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By an exactly similar process equations can be developed that describe the force
acceleration relationships in the y and z directions, that is 

_ ap + y = P (u au + u au + w au + au) 
ay ax ay az at 

ap (aw aw aw aw) --+z = p u-+u-+w-+-az ax ay az at 

These three equations are known as the Euler equations. The groups of derivatives 

au au au 
u-+u-+w-

ax ay az (2.1) 

au au au 
u-+u-+w-

ax ay az (2.2) 

aw aw aw 
u-+u-+w-

ax ay az (2.3) 

are called convective accelerations because they describe velocity changes caused 
by movements in space. 

The Euler equations describe relationships between forces and accelerations 
and are therefore differential forms of momentum equations. If they are inte
grated with respect to distance (in the direction for which they apply) energy 
relationships are obtained. 

If the coordinate system is taken so that x and z are located in an horizontal 
plane then the X and Z body forces are zero and the Y body force is -wf, the 
specific weight of the fluid. 

If the flow is steady, that is the derivatives au/at, au/at and aw/at are all 
zero, the equations become 

ap = _ p (u au + u au + w au) 
ax ax ay az 

ap = _ p (u au + u au + w au) _ Wf 
ay ax ay az 

ap = _ p (u aw + u aw + w aw) 
az ax ay az 
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Now 

ap ap ap 
dp = - 8x + - 8y + -8z 

ax ay az 

p=-p u-+v-+w- dx+ u-+v-+w- dy [f( au au au) f( av av av) 
ax ay az ax ay az 

+ u-+v-+w- dz -pgy f( aw aw aw)] 
ax ay az 

(2.4) 

Also 
au au au 

8u =-8x +-8y +-8z 
ax ay az 

when the flow is steady. 

u du = u ( au + au dy + au dz) and u = dx 
dx ax ay dx az dx dt 

so 

dy dy dz dz 
u -=-= vandu--=- =w 

dx dt dx dt 

du au au au 
u-=u-+v-+w-

dx ax ay az 

so the convective accelerations in the equations (2.1), (2.2), (2.3), can be written 

du dv dw 
u dx' v dy and w dz 

Substituting into equation (2.4) gives 

[f du f dv f dw ] p = - p u dx dx + gy + v dy dy + w dz dz 

( u2 +v2 +W2) 
P + WfY + p 2 = constant 

P V2 
-+ -+ Y = constant 
Wf 2g 

(2.5) 

as u2 + v2 + w2 = V2 where V is the local velocity. Equation (2.5) is Bernoulli's 
equation. 
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2.3 Nonnal strain and deformation of a fluid element 

It is necessary to describe, mathematically, the displacements, distortions and 
rotations of any fluid element. Consider an element that is a right parallelepiped. 
It can deform in two ways as illustrated in Figs. 2.4 and 2.5 and can also rotate 
without necessarily deforming. These two types of deformation can cause internal 
stresses within the fluid. 

B 

y 

'1 
0 

au ax 8x 8t 

,~L ___ 
C' 

k8y8t 1f B 

B 

Y 

o 

~; 8y8t 

u 

ay 

u 

c 

I 
8y I 

8x I 
1 

x 

Fig. 2.4 

-- c-;?7C 
/ 

/ 
/ 

l av A' --- -ax 
x A 

Fig.2.S 

8x 8f 

In Fig. 2.4 normal strain is occurring: point B moves relative to point 0 (also 
a moving point) by an amount of (av/ay) 8y 8t in time 8t. Similarly point A 
moves relative to point 0 an amount (au/ax) l)x [)t. 
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If the fluid is incompressible, area liy lix must be constant (considering a two 
dimensional case) 

av au ay ay at ax = - ax ax at ay 

au + av = 0 
ax ay 

which is another proof of the continuity equation. 
Next consider Fig. 2.S. The deformation of the element is due to shearing 

effects. Shear strain cannot be resisted by a fluid and cannot produce shear 
stresses. Shear stresses can be produced however by rates of shear straining 
(Newton's law of viscosity) and these are defined as follows. 

The angle AOB will become A'OB' in time at. This reduction in the angle is 

au av 
ay ay at/ay + ax ax at/ax 

and the rate of change of this angle is 

au av 
-+ay ax 

Denoting the rate of shear strain by i' then 

. au av 
1=-+ay ax 

Newton's law of viscosity can now be more generally stated as T = Pi', 
If the flow is unidirectional and in the direction x then v and av/ax will be 

zero (see Fig. 2.6). 
The rate of change of the angle AOB will be au/ay. This is really a special 

case of the result obtained above and is obtained by giving av/ax the value of zero. 

B' e e' 
B 

f 7 
y / / 

/ / -
V I 

0 u 
x A 

Fig. 2.6 
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2.4 Rotation ofa fluid element 

The rotation of a fluid element is illustrated in Fig. 2.7. In time at OA rotates 
to position OA', that is through an angle 

au au 
ax ax'M/ax that is ax at 

and line OB rotates to position OB' Le. through an angle 

au au 
- ayayot/oy that is - ay at 

au ay oyof 

l 
B 

B 

\ 
"1 \ -- --

A 
0 u 

Fig. 2.7 

.i!. ax 13 f 
Ox 

Note that for line OB to rotate as shown in Fig. 2.7 the value of au/ay must be 
negative (point B moving in the x direction at a smaller velocity than point 0). 

The diagonal OC will rotate through an angle of 

and its rate of rotation will be 

! (au _ au) at 
2 ax ay 

! (au _ au) 
2 ax ay 

Thus Q, the mean angular velocity is 

37 
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Vorticity (which will be dealt with later) is usually denoted by the symbol t 
(zeta) and has a value of twice the angular velocity so 

t = au _ au 
ax ay 

Thus a fluid for which the vorticity is zero is one in which all the fluid elements 
have zero angular velocity, that is they are not rotating. The case illustrated in 
Fig. 2.7 is an example of rotation without shearing deformation. In Fig. 2.5 a 
case is illustrated in which both shearing deformation and rotation is occurring. 

2.5 The Navier-Stokes equations 

When the Euler equations were developed it was assumed that there were no 
frictional forces acting upon the fluid element. In any real fluid such forces must 
exist and the Euler equations cannot give an accurate description of the behaviour 
of the fluid especially if its viscosity is large. 

Shear stresses must be exerted on all faces of the parallelepiped shown in 
Fig. 2.2 in addition to the pressure and body forces illustrated. 

If the relationship between these shear stresses and the shear deformations 
occurring is given by Newton's law of viscosity (this assumes laminar flow) it is 
possible to include the frictional effects in the analysis by adding another set 
of terms to the Euler equations. The development of the resulting equations is 
lengthy and cannot be given here (but see Hydrodynamics by H. Lamb). These 
equations are 

These are the Navier-Stokes equations and describe accurately and completely 
the dynamics of an incompressible viscous fluid. A general solution of these 
equations has not yet been achieved and there seems little likelihood of one ever 
being found. In certain special circumstances simplifying assumptions make 
their integration possible. 
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2.6 The velocity potential 

In the preceding paragraphs expressions have been obtained which describe the 
rate of rotation of infmitesimal elements of the fluid. If the rate of rotation is 
everywhere zero then the motion is called i"otational and the vorticity ~ is zero, 
that is 

au au 
~ = 2.Q = - - - = 0 ax ay 

so for such a flow 
au au 
-=-ax ay 

Similarly for three dimensional flow 

and 

au aw 
az ax 

aw au 
- =-
ay az 

Imagine that a function I{) (phi) exists such that 

u = al{)/ax 
u = al{)/ay 
w = al{)/az 

Then by substituting into equations (2.6), (2.7), (2.8) 

a21{) a21{) a21{) a21{) a21{) a21{) --=-_._-=-_._-=--
az ay ay az' ax az az ax' ay ax ax ay 

(2.6) 

(2.7) 

(2.8) 

It is clear that these results could only be obtained if the vorticity in the 
three directions is zero and no function such as I{) could exist if these results 
could not be shown to hold. Thus, if the vorticity of a flow is zero the velocity 
potential I{) can exist. The flow is irrotational and because the velocity potential 
I{) exists such a flow is often called potential flow. 

The continuity equation for an incompressible fluid is 

au au aw 
-+-+-=0 ax ay az 

Substituting for u, u and w, we get the Laplace equation 

a21{) a21{) a21{) 
-+-+-=0 ax2 ay2 az2 

or 

(2.9) 
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The operator V denotes 

and V2 denotes 

It is used in vector algebra which permits the generalisation of results obtained 
in one system of coordinates to any other. 

If the motion is two dimensional i.e. there is no flow velocity in, say, the z 
direction the process of obtaining velocity potentials is greatly simplified. 

The vorticity has only one component so 

so 

al{) 
u=-ax 

au au 
-=-ax ay 

al{) 
and u = ay 

a 21{) a 21{) 
--=--
ax ay ayax 

also the Laplace equation becomes 

2.7 The stream function 

a2 1{) a2 1{) 
-+-=0 
ax2 ay2 

If a function 1/1 (psi) is postulated such that u = (a 1/1 lay) and u = -(a 1/1 lax) the 
continuity equation will demonstrate its nature 

au au 
-+-=0 ax ay 

so 

ax ay ayax 
A streamline is a line in the flow field to which the adjacent flow is parallel. By 
this definition the flow velocity is tangential to the streamline (see Fig. 2.8) so 
that 

u dy 
-=-
u dx 

u 8y - u8x = 0 
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v 

Fig. 2.8 

Substituting for u and u gives 

a 1/1 8y _ (_ a1/l) 8x = 0 
ay ax 

so 
a 1/1 a 1/1 -8y+-8x=0 
ay ax 

This, from the definition of a total differential, gives a1/l = O. So along a streamline 
a1/l = 0 and therefore 1/1 = constant. Thus the function 1/1 defines the streamlines 
of a fluid motion. For an irrotational flow from equation (2.6) 

au au 
-=-
ax ay 

substituting for u and u gives 

so the stream function must also satisfy the Laplace equation. 
From the definitions of the velocity potential and the stream function it 

follows that 

and 

For a streamline 

dy u 
-=-
dx u 

Along a line of constant velocity potential, that is an equipotential line 

a..p a..p 
a..p = - 8x + - 8y = 0 

ax ay 

0= u 8x + u 8y 
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so for an equipotential line 

dy u 
-=-
dx v 

( : L=ilin' = - ( : [' •• M ... Ho, 

This effectively means that the stream lines intersect equipotential lines ortho
gonally, that is at right angles. 

2.7.1 The meaning of the stream function Consider two stream lines in an 
x-y plane as shown in Fig. 2.9. 

y 

x 

Fig. 2.9 

Between these streamlines a fluid flux occurs and as no flow can cross a 
streamline (by defmition) this flux ~Q must be made up of flow across AB 
which in turn must be the same as the sum of the flow across CB and that 
across AC. The flow across CB is -v 8x (8x is negative). Thus 

8Q = - vax + u 8y 

But 

and 



so 
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8if; = - v8x +u 8y 

8Q == 8 if; 
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Thus streamlines, which have been defmed as lines of constant value of the 
stream function, must also be lines of constant flux; the flux between a stream
line of stream function if; and one having a value for its stream function of zero 
is numerically equal to if;. 

2.8 Circulation 

The circulation of a fluid element is defined as the line integral of the velocity 
taken once around the element's boundary (see Fig. 2.10), that is the circulation 
r (gamma) is given by 

r= f V cos 0: ds 

Consider motion in a circular path, that is a vortex (Fig. 2.11). The value of r 
Stream lines 

Fig. 2.10 

Fig. 2.11 
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for the element is simply 21Trv. If the fluid motion is like a solid-body rotation 
u = r Q(forced vortex) and then 

and if the motion is that of a free vortex and given by the equation 

u=C/r 
then r= 2rr.C 

The concept of circulation is not limited to small elements. If a large element 
is drawn and this is split up into small elements as shown in Fig. 2.12 it will be 

Fig. 2.12 

seen that circulations around the interior small elements are neutralised by those 
around adjacent elements except at the boundary of the large element. Thus the 
circulation of all the small elements when summed must equal the circulation 
around the large element. 

2.9 Vorticity 

The vorticity defined previously as t was given by 

t= au _ au 
ax ay 

and was shown to describe the rotation of a very small element and to be equal 
to twice the angular velocity. 

Vorticity may also be thought of as the limit of the circulation around a very 
small element divided by the area of the element when the area of the element is 
made infinitesimally small, that is 

t = lim 8rj8a 
lia -->0 
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If the element is circular then as discussed above ~ r = 27tr2 D 
so 

If a rectangular element is considered as shown in Fig. 2.13 

y 

au 8 u+.,.- y 
ClY .. 

8y 

8x 

u 

Fig. 2.13 
x 

~ = lim [(u + au 3X) 3y + u3x - u 3y - (U + au 3Y ) 3X] !3X 3y 
/ix--?/iy-+O ax ay 

au au 
~=--ax ay 
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using the convention that circulation anti clockwise around the element is positive. 
This result is the same as that obtained previously. 

Before continuing to describe how these concepts of stream function, velocity 
potential, circulation and vorticity can be used to analyse some flow situations it 
is necessary to give the expressions for velocities in terms of the derivatives of the 
velocity potential and stream function expressed in cylindrical coordinates. 

The velocity V can either be resolved into two velocity components u and u 
in the x and y directions or into two velocities in a cylindrical coordinate system 
(see Fig. 2.14), one in the direction ofr, Ur , and the other in the direction of 
e, u(j, 

Now 

a..p at/! 
U = -= -- and ax ay 

a..p at/! 
u=-=--

ay ax 
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v 

y 

x 

Fig. 2.14 

In the cylindrical coordinate system the length equivalent to ax is ar and the 
length equivalent to a distance ay is r ao 

o'P 1 ol/J 
U =-=--

r or r 00 

and 

1 o'P ol/J 
Uo =--=--

r 00 or 

2.10 The source 

Certain idealised fluid motions can be considered which can in fact not occur in 
the real universe but which when compounded with other motions give resultant 
fluid situations that are of very great significance. These are the source, the sink, 
the doublet and the vortex, and uniform flow. 

A source is a point in space from which fluid is emitted at constant rate. This 
concept cannot of course represent a real situation. In this book we will consider 
only two dimensional flows. A source in this case will be a line from which fluid 
is emitted uniformly in all directions in the plane normal to the line. This is 
equivalent to saying that in the plane perpendicular to the line source the two 
dimensional flow created by the line source is radiating from a point (see Fig. 
2.15). 

At a distance r from such a source the fluid velocity will be directed away from 
the source in a radial direction so 

Q 
Ur = 27tr and Uo = 0 
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Fig. 2.15 

where Q = flow emitted from the line source per unit length. 

Now 
1 al/J Q 
--=u =-
r a8 ' 27tr 

al/J 
and -=-Ue =0 

ar 

al/J al/J Q 8l/J =-8r+-88 =Ox8r+rx-88 
ar a8 27tr 

8l/J = Q 88 
27t 

./, Q 8 Q -1 Y 
'I' = - + constant = - tan - + const 

27t 27t x 
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The expression for the stream function of a source given by this equation agrees 
with the idea that the stream function is the flux. If Q units of fluid are being 
emitted in all directions every second, then (Q/2rr)8 units will be emitted in an 
angle 8. 

From the expressions for u, and Ue in terms of the partial derivatives of the 
velocity potential, the equation for the velocity potential can be obtained 

Now 

or 

alP Q u =-=-
, ar 27tr 

1 at{! 
Ue =--=0 

r a8 

at{! at{! Q ~r 
8t{! = -8r + - 88 = - - + 0 

ar a8 27t r 

t{! = iL lo~ r + constant 
27t 
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¢'=3 

-+------~---+----~~----r---+-------~¢'o=O 

¢'=-4 

¢'=-3 

Fig. 2.16 

Summarising 

./, _ Q () _ Q -l(Y) 
'l'source - 21t - 21t tan :; 

omitting constants. These functions are illustrated in Fig. 2.16. 

2.11 The Sink 

A sink is the opposite of a source, that is it is a point in space at which fluid 
disappears. Its stream function and velocity potential is simply obtained by using 
a negative value for the total flux Q. 

2.11.1 Combination ofsource and sink A combination of a source and an equal 
sink a distance s apart produces streamlines which are circular arcs. See Fig. 2.17. 
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p 

Sink Source 

Fig. 2.17 

The stream function at the point P of the combined flow 1/! c due to the source 
and the sink can be obtained by adding the stream function of the source and 
sink-this is equivalent to vector addition. This can be justified as follows 

Uc = US/:mrce + Usink 
Vc = Vsource +vsink 

These two statements are equivalent to the following two statements 

(~~ t = (~~) source + (~~) sink 

-(~~)c =-(~~turce - (~~)sink 
And 

(a1/!) ( a1/!) (a1/!) (a1/!) = - i)x + - 8x + - i)y + - i)y 

ax source ax sink ay source ay sink 

1/!c = 1/!source + 1/!sink 

The foregoing argument applies to the process of combining any set of stream 
functions and an exactly similar argument can be used to show that velocity 
potentials can be added and also result in vector addition. This ability to perform 
a vector addition by the addition of velocity potentials or stream functions is the 
reason for their use. 
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Thus the combination of the source and sink gives 

Q =-ex 
27t 

Fig. 2.18 

For a particular value of 1/1 c the value of ex must be constant. The 
streamline equivalent to 1/I c must be a circular are (angles subtended by the 
same chord are equal) as shown in Fig. 2.18. Similarly '-Pc = '-Psource + '-Psink 
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2.12 The doublet 

From Fig. 2.19 the velocity potential and stream function are as follows: 

Os 
+ 

Fig. 2.19 

Velocity potential 

but 

Now 

Q , Q r' 
l{Jc = --10& ----; = - -10& -

2" , 2" , 

r' ~ , + os cos 8 

" Os - ~ 1 +- cos 8 , , 

( ~)_ oS cos 8 .!..(os cos 8)2 loge - - + ... , , 2 , 

l{Jc = - g os cos 8 to the first order of small quantities. 
2" , 
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If Q is increased as I)S is decreased in such a manner that Q oS remains constant 
a doublet results. 
Thus 

Fcos8 
l{Jdoublet = - --,-
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where 

Stream function 

as before 

so 

2.13 The vortex 

F= +Q~s 
2" 

F cos () Fx 
""doublet = - --r- = - Xl + y2 

Q 
l/J c = -Q! (as before) 

2" 

~s sin () 

r 

Q~s~F as 3s~0 

F sin () Fy 
l/Jdoublet =-r-= x 2 + y2 

The stream function and velocity potential for a vortex are as follows (Fig. 2.20). 

Fig. 2.20 

Stream function 
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Using the concept of circulation 

r = 27trV 

r 
V=-

27tr 

l/I =- £.f ar 
27t r 

r l/I = - -loge r + constant 
27t 

Thus for a vortex the stream lines consist of concentric circles. 

Velocity potential 

<P = f Vr de = f ~ r de 
27tr 

r 
<P = - e + constant. 

27t 
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Thus the stream function of a vortex can be obtained from the expression 
for the velocity potential for a source by replacing Q by r; and the velocity 
potential of a vortex from the expression for the stream function of a source by 
replacing Q by r. So a vortex is the inverse of a source. 

2.14 The unifonn wind 

Consider a uniform flow at velocity V inclined at an angle Q to the x axis (see 
Fig. 2.21). 

y 

Fig. 2.21 
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Stream function 

a 1/1 a 1/1 
u=-andv=--ay ax 

so 

81/1 = - v 8 x + u 8 y 

1/1 = uy - vx + constant 

Velocity potential 

Similarly..p = ux + vy + constant. 

Stream junction (in polar coordinates) 

From Fig. 2.22 

but 

y 

J( 

Fig. 2.22 

. al/l 1 a..p 
u6 =- Vsm(O -a)=--=-ar r ao 

1 al/l a..p 
u =Vcos(O-a)=--=-

r rao ar 

v 

= V sin (0 -a)8r+rVcos(0 -a)80 

1/1 = Vr sin (0 - a) + constant 
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Velocity potential (in polar coordinates) 

a cP = ocp 8r + ocp 30 
or 00 

= V cos (8- - a)3r - rV sin (0 - a) 30 

cp = rV cos (0 - a) + constant 
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These results can be checked by back differentiation. The equation above giving 
the expression ulJ = - V sin (0 - a) may need a little explanation. If 0 is greater 
than a, V sin (0 - a) is positive yet ulJ must be negative as it is directed in the 
direction of 0 becoming negative. Summarising 

t/J = uy - vx = Vr sin (0 - a) 

cp = ux + vy = Vr cos (0 - a) 

In the special case when the wind is horizontal 

t/J = uy = ur sin 0 

cp = ux = ur cos 0 

Up to this point the flows that have been analysed may seem to have little 
application to any real situations. Combinations of various of these flows will 
now be investigated and it will be seen that in this way reasonably accurate 
descriptions of real flows can be obtained. 

2.15 Combinations of flow patterns 

2.15.1 The uniform wind plus a source From Fig. 2.23 

Source 

Fig. 2.23 

t/J =i{O-UrsinO 
c 21t 

.. 

... 
.. .. 
.. 
.. 

Uniform Wind 

(source) (uniform wind) 

Q 
CPc = - lo&! r - Ur cos 0 

21t 

-v 
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It is interesting to examine the !/Ie = 0 streamline. 
If !/Ie = 0 

g () = Ur sin () 
27t 

When 8 = 0 the equation is correct irrespective of the value of r so one solution 
of the !/Ie = 0 streamline must be a horizontal line through the origin. For very 
small values of 8 the small-angle relationship holds so 8 -+ sin 8 

When 8 = n/2, 

When 8 -+ 1t', 

Q 
ro=o = 27tU 

r=~ 
4U 

r sin 8 (the semi thickness of the body, that isyx-+- oo ) tends to Q/2U. 

~------2 

-------1 
--------~------~--'-~----------~~---------o 

~ __ -----+I 

~---+2 

S !agna! ion po In! 

Fig. 2.24 

The zero streamline can be regarded as a boundary (as no flow crosses it) so 
it will represent the nose of a streamlined body. It is called a semi-streamlined 
body (see Fig. 2.24). 
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2.15.2 The streamlined body The combination of a source, sink and a uniform 
flow gives the profile of a fully streamlined body (see Fig. 2.25). 

SP 

Fig. 2.25 

In a real fluid the viscosity causes the fluid motion to be rotational and gives 
rise to velocity gradients near the boundary. As a consequence, in areas of divergent 
flow, fluid motions do not conform to the patterns predicted by stream function 
theory even approximately. The results obtained are good for the upstream end of 
the streamlined body but due to the formation of vortex motions or boundary layer 
separation effects (see later) are not at all applicable except at very low velocities 
(strictly, at low Reynolds' numbers). 

2.15.3 Flow around a cylinder By combining the stream functions and velocity 
potentials of a doublet and a uniform flow the appropriate functions for flow 
around a cylinder can be obtained (see Fig. 2.26) . 

.. .. 
Doublet .. 
~ .. -u 

.. .. 
Fig. 2.26 

(The arrow beneath the doublet indicates the direction of the infinitely short 
line from the sink to the source.) 
The stream function is 

1/1 = -Ur sin () + F sin (}/r 
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and the velocity potential 

I{J = - Ur cos (J - F cos (J Ir 
On the zero streamline 

1/1 = 0 

Ur sin (J = F sin (Jlr 

sin (J = 0 is a solution for any value of r-a straight horizontal line through the 
origin of the doublet. 

Also r2 = FlU when sin (J -+ (J -+ 0 so 

r= y'(Flu) 

Label this value of r, a. This gives a circle (that is the cross section of a cylinder). 
Thus the zero stream function is a straight line intersecting a circle as shown in 
Fig. 2.27. 

-2 

u 

----------~--~~~~~--_+-------------o 

Fig. 2.27 

In general 

Any other streamline can be obtained by flxing the value of 1/1; for example, 
if 1/1 = 1 

and 
1 

sin (J = ----:,..--:,---
Ur(a2/r2 - 1) 

For any value of r, (J can then be calculated and the coordinates of the streamline 
obtained. Two solutions can be obtained for (J; one describes the flow external 
to the cylinder and the other the flow inside the cylinder. This internal flow, 
being of little interest, is usually ignored. 
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2.16 Pressure distribution around a cylinder in a uniform flow 

The velocity Vat a point P on the cylinder 1/1 = 0 can be obtained from 

V=(u~ +u~)1/2 

Differentiating 1/1 partially with respect to rand 6, we get 

1/1 =- Ursin 6 (1-a2/r2) 

31/1 U' Ll Ua 2 . Ll 
U(J = - -3 = sm v + -2- sm v 

r r 

but r = a on the cylinder so 

U(J(r=a) = 2U sin 6 
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ur must be zero at the boundary but the theory will in any case show this to be 
true: 

but at the boundary, r = a so ur=a = 0 as stated above. 

V= 2Usin 6 

Applying Bernoulli's equation (2.5) to the upstream condition where the flow is 
uniform and also to the point P on the cylinder gives 

When 

Po + U2 = Pp + (2U sin 6)2 
w 2g w 2g 

PP - Po= U2 (1 _ 4 sin2 6) 
W 2g 

6 =~ Pp -Po 0 
6' W 

U2 
-, the stagnation pressure 
2g 

The curve of (pp - Po}/w plotted against 6 is shown in Fig. 2.28. 

(2.10) 

This theory, as has been emphasised several times before, is developed on the 
assumption that the fluid is 'ideal' or 'perfect' that is that it has zero viscosity. 
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Fig. 2.28 

The behaviour of a real fluid is quite accurately described by this theory for the 
values of () lying between ±(rt/2). Unfortunately, real fluids do not, even approxi
mately, conform to the theory over the downstream face because of boundary 
layer separation effects. This phenomenon is described in detail in the chapter on 
boundary layer flows (Chapter 5) but here only a brief explanation will be given. 

Fig. 2.29 

layer affected by 
frictional retardation 
-the boundary layer 

Direction 
----of flow 
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The fluid moving over the surface of the cylinder experiences frictional forces 
which retard it. As the fluid moves around the cylinder it will be gradually retarded 
and the layer of fluid affected by these forces will become thicker (see Fig. 2.29). 

At point B the fluid will have a low pressure because its velocity is high: 
V = 2U. Downstream of the cylinder the fluid velocity will be low again, that 
is :::::: U so the pressure will increase in the downstream direction. The fluid outside 
the boundary layer will obey Bernoulli's equation but the fluid within the boundary 
layer will not, having lost much of its kinetic energy and hence momentum. Con
sequently the fluid in the boundary layer will not be able to move forward against 
the positive pressure gradient and will have its slow, forward directed velocity 
reversed. It will consequently be compelled to leave the boundary and will become 
involved in complex vortex motions (see Fig. 2.30). The pressure over the down
stream face of the cylinder will not obey the equations derived and the pressure 
distribution prevailing will be of the form shown in Fig. 2.31. 

Fig. 2.30 
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-3 
C 

Fig. 2.31 
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The portion of the curve ABC is accurately described by equation (2.10) but 
the shape of the portion CD is not so easily dermed. The point E at which it 
deviates from the theoretical pressure distribution line depends upon the nature 
of the flow in the boundary layer. If this is laminar E is near to C-at approximately 
(J = 100° but if the boundary layer flow is turbulent the point at which the flow 
deviates from the theoretical equation moves further downstream, that is (J 

increases. This is explained by the fact that in a boundary layer in which flow is 
turbulent the velocities of fluid near the boundary are higJier than they are in a 
laminar boundary layer because momentum is being transferred to fluid layers 
near the boundary by a mass transfer mechanism in turbulent flow, whereas in a 
laminar boundary layer momentum transfer is by viscous shears and this is a much 
weaker mechanism. Thus in turbulent boundary layers the fluid near the boundary 
has relatively large momentum and can proceed further against the adverse 
positive pressure gradient before it loses its forward velocity and has its motion 
reversed, so setting up the vortices shown in Fig. 2.30. Consequently the pressure 
on the downstream face of the cylinder becomes approximately constant having 
a value rather less than the ambient pressure of the flow. 

2.17 Forces acting on a cylinder 

The resultant force acting on a cylinder can be split into two components-one 
acting in the direction of the flow, the drag force; and one acting transversely to 
it, the lift force. If the theory developed so far is used to calculate these forces it 
can be shown that both of the components are zero. This is not, in fact, true as it 
is a commonplace of experience that any body exposed to a flow experiences a 
drag force at least and, in some circumstances, for example the aerofoil, a lift 
force can also be generated. From the previous paragraph it should be obvious 
that the boundary layer and its separation effects explain the mechanism whereby 
drag forces occur but the explanation of how lift forces are generated is more 
complex and will be given later. 

... 

... 
u ... 

... 
Fig. 2.32 
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From Fig. 2.32 the pressure acting at point Pis p. There is thus a force 
8F = pa a8 acting on the element of the circumference of the cylinder directed 
towards O. Resolving this force into the horizontal and transverse directions 
produces two components aFH and aFy . 

and 

aFy = - pa a8 sin 8 

2", 

F H = - J pa cos 8 d8 
o 
27t 

Fy = - J pa sin 8 d8 
o 

Substituting for p into these two expressions gives 

and 

27t 

FH = - a J (Po + !pU2 (1 - 4 sin2 8)) cos 8 d8 
o 

21< 

Fy = - a J (Po + !pU2 (1 - 4 sin2 8)) sin 8 d8 
o 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

Evaluating these integrals gives zero results for both FH and Fy. Thus it is 
predicted from potential theory that a body moving in a fluid experiences no force 
at all. This is, of course, not true; the drag force occurs due to the phenomenon 
of boundary layer separation mentioned previously but if the fluid motions are 
very slow a close approximation to the classical motion can be obtained. 

2.18 The development of transverse forces 

By superimposing a vortex (that is a circulation) on the doublet plus uniform 
wind considered before (see Fig. 2.33) the development of a transverse force 
can be demonstrated. Although this may seem an artificial concept, experimental 
demonstration of the theory developed from it shows that it describes the real 
situations that occur. 

The stream function of the combination is 

Fsin8 r 
l/J = -- Ur sin 8 + --- - - loge r 

r 27t 
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Circulating flow 

~ .. 
-u .. 

Fig. 2.33 

and the velocity potential is 

F cos 0 r 
<{J = - Ur cos 0 - _0- + - 0 

r 27t 

The velocity at the cylinder boundary is 

al/l . 1 r 
ue =--=2UsmO +--ar a 27t 

and, as before Ur = O. 
Therefore p at any point on the cylinder is 

P = Po + !pU2 [1 - ~2 (2U sin 0 + 2:a f] 
= Po + !pU2 [1 - (2 sin 0 + 2:ua f] 

As in the case of flow around a cylinder (equation (2.11)) 

21< 

F H = - a f P cos 0 dO 
o 

per unit length of cylinder, and (equation (2.12)) 

21< 

Fv = - a f P sin 0 dO 
o 
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By substituting for P into these expressions and integrating it is easy to show 
thatFH = O. 

{ 
2", 2", 

Fy = - a f Po sin e de + f !pU2 sin e dO-
o 0 

2", ( r )2 } - f !pU2 2 sin e + -- sin e d8 
o 27tUa 

The first two of these three integrals can readily be shown to be zero so 

a (2'" ( r )2 ) Fy = +- pU2 f 2 sin e + -- sin 8 de 
2 0 2rcUa 
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2", 2", 2", ) 

= + ~ P U2 (f 4 sin 3 e de + f 2u.r sin 2 e de + f 2r ~ 2 sin 8 de 
2 rca 4 7t Ua 
000 

The value of J5'" sinn e de is always zero if n is odd so 

Fy = pU r units of force/unit length of the cylinder 

Thus the force on a cylinder of length L = pUrL. This is the Kutta Joukowski 
equation. This equation explains many phenomena. 

2.18.1 The Magnus effect If a ball is sliced when struck it will spin as it travels 
forwards. Depending upon the direction of the axis of this spin, the ball will 
experience a force acting perpendicularly to the direction of motion. This force 
therefore causes the ball to move in a circular path. The spin of the ball imparts 
a circulation to the adjacent air so creating a value of r which will decrease as 
the ball's spin decreases (due to frictional losses ); however U decreases more 
rapidly than does r because of the very much more powerful frictional forces 
acting caused by boundary layer separation effects. This decrease of the forward 
velocity causes an even more rapid decrease in the centrally directed acceleration 
needed to maintain circular motion (this is U2/r where r is the radius of the ball's 
path) so the transverse force developed, although decreasing in absolute 
magnitude, is progressively more capable of curving the ball's path. All players 
of ball games have discovered this phenomenon themselves. The generation of 
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~ 
------------(a) 

--------(c) 

Magnus effect-showing the effect on the flow pattern 
of progressively increasing the circulation 

Fig. 2.34 

such transverse forces by this mechanism is called the Magnus effect (see Fig. 
2.34). Hydraulic structures and aero foils also experience forces transverse to the 
direction of fluid motion but in such cases it is not so easy to see how the 
necessary circulation is generated. 

The flow around an aerofoil can be obtained by conformally transforming a 
cylinder (and its associated flow field) into an aerofoil. (Various transforming 
equations are available and these produce various types of aerofoil.) If the flow 
around a cylinder without circulation is conformally transformed the result is 
as shown in Fig. 2.35. 

Two stagnation points occur but the downstream one is not located at the 
trailing edge. This means that a streamline having a very small negative value a 
for its stream function would have a bend of extremely small radius at the trailing 
edge. Such a small radius of a streamline would require a very high pressure 
gradient (a particle of mass m requires a centrally directed force of mv2 /r to 
travel in a curve of radius r) and such pressure gradients can only be produced by 
having an extremely low, possibly negative, absolute pressure at the trailing edge. 

y/ =+2 

~~:I~~ 
1/=-1 _______ ~P2 <..:>: __ 1/=0 

--------_ y/= 8 - _ ::""'\~ y/=-5 

Fig. 2.35 
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Such negative pressures cannot occur in a gas so the situation cannot exist. In 
order that the stagnation point occurs at the trailing edge, a flow towards the 
trailing edge must develop. This in effect is a circulation. Figure 2.36 shows the 

Stagnation point 

Fig. 2.36 

Fig. 2.37 

conformally transformed flow around a cylinder plus a circulation. Figure 2.37 
shows the resultant flow. The circulation is of just such a magnitude that it moves 
the stagnation point to the trailing edge. 

Some may find this explanation of how a circulation starts unconvincing. It 
should be realised that it represents a real phenomenon and is not a mathematical 
'trick'. The mechanism of generation of circulation may be thought of somewhat 
differently. 

At the moment of starting the flow (take-off in the case of an aeroplane) 
there are no velocities anywhere so no frictional effects are present. No circula
tion is present initially. Flow around the trailing edge from the under to the upper 
edge starts to occur but because pressures at the trailing edge cannot fall low 
enough to maintain a stable pattern the particles of fluid trying to travel in the 
necessary curved path separate from the aerofoil and, because they now have 

Fig. 2.38 
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angular momentum, move off downstream in a vortex. More particles attempt to 
move from the lower to the upper surface and so another vortex is initiated. A 
sequence of vortices is thus generated (a vortex sheet) and this rolls up into a large 
vortex (see Fig. 2.38). This rolling-up effect is due to the fact that all the vortices 
in the sheet, being in the same field, are acting upon one another (see Fig. 2.39). 

(0) 

Fig. 2.39 

The vortex so caused is left behind as the aerofoil moves forward so that 
anticlockwise angular momentum has been generated in the flow. Now a linear 
motion cannot generate angular momentum so an equal and opposite angular 
momentum must be generated around the aerofoil in order that the sum of the 
momentum in the starting vortex plus that around the aerofoil remains zero. 
The angular momentum around the aerofoil causes the circulation. When an 
aeroplane takes off a starting vortex is left behind on the airport runway. Every 
time the aeroplane increases speed or increases the angle of incidence of its wings 
another amount of circulation is generated by shedding another starting vortex. 

2.19 The wake 

Earlier in the chapter mention was made of the boundary layer: the layer in 
which frictional effects are present and vorticity is not zero. Boundary layers 
will develop around a body over which a flow is occurring-such as a bridge 
pier or an aerofoil. These boundary layers will leave the body at its downstream 
end and be carried off in the flow, becoming incorporated into it. Thus, trailing 
downstream from the body there will be a zone of fluid in which turbulence will 
be present. This zone is called the wake-see Fig. 2.40. If the streamlined body 
is arranged so that one surface provides a divergent flow situation (for example 
the upper surface of an aero foil) and a positive pressure gradient occurs, the 
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Boundary layers 

Fig. 2.40 

Fig. 2.41 
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Non-uniform velocity distribution 
is confined to the wake 

boundary layer may separate from the surface as described earlier in this chapter 
-see Fig. 2.41. 

Clockwise vortices are shed regularly from the upper surface and the width of 
the wake is increased; it also becomes more turbulent. The energy loss in the wake 
is the cause of one of the elements of the drag force experienced by the aerofoil, 
so when boundary layer separation occurs a sudden very considerable increase in 
the drag occurs. 

2.19.1 Stalling The clockwise vortices that are shed during boundary layer 
separation carry angular momentum away with them so reducing the circulation. 
Consequently, the force acting transversely to the body (the lift force) is suddenly 
and very drastically reduced. If the body is an aircraft wing this sudden loss of 
lift puts it into a dive. The pilot must decrease the angle of incidence of the 
aircraft relative to the plane's direction of motion as this will cause the boundary 
layer to re-attach. By diving the plane will pick up the speed that it lost when the 
drag force increased during the period that the boundary layer was detached and 
once the angle of incidence has been reduced the lift will be regained and the 
pilot can pull the plane out of the dive. 
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2.19.2 Inhibition of boundary layer separation A variety of methods exist by 
which boundary layer separation can be prevented. 

(1) By drawing off the sluggish fluid near the boundary it is possible to draw 
more rapidly moving fluid down into the boundary layer. It is then 
possible to develop a much larger pressure gradient before these faster 
moving layers will be reversed and the boundary layer separates. In the 
case of aircraft the air intake of the engines may be arranged so as to 
draw some of the air that they require from inside the wings which are 
perforated suitably over the rear portions of their upper surfaces (suction 
wings). 

(2) If the slowly moving air close to the surface can be speeded up by the 
injection of high speed air, boundary layer separation will be prevented. 
Air can be brought from the lower surface of the wing through slots to 
the upper surface (slot.ted wings). The high pressure on the lower surface 
communicating through the slot to the low pressure on the upper surface 
causes high speed flows through to the upper surface where it speeds up 
the slow flows near the upper surface (see Fig. 2.42). 

Slot 

Fig. 2.42 

2.20 Pressure distribution over an aerofoil 

The 'suction' (sub-atmospheric) pressures acting on the upper surface of an aerofoil 
contribute far more lift than do the super-atmospheric pressures on the lower 
surface (see Fig. 2.43). 

Rayleigh's equation can be applied in this situation (see chapter 3). The lift 
force L is given by 

L = pUPf1(Re) 

and the drag force D by 

where 11 and 12 indicate different functions. 
P represents an area. The one usually used in this case is the plan 

area of the aerofoilA. 
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Positive pressures 

Fig. 2.43 

II (Re) is denoted by kL and 12 (Re) by ko so 

L= k L PU2A 

and 

Alternatively the lift and drag forces can be written in terms of the dynamic or 
pitot pressure at the stagnation point, !pu 2 . Then 

L =CdpU2A 

D = Co~pU2A 
CL and Co are called the coefficients of lift and drag respectively. 

71 

The coefficient of lift is approximately proportional to the angle of incidence 
until boundary layer separation occurs and then it suddenly drops because the 

a 

Fig. 2.44 
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circulation is shed as described earlier. Similarly, since the body is streamlined, 
the curve of coefficient of drag against angle of attack is slightly convex down
wards until boundary layer separation occurs. The energy loss in vortex forma
tion causes the drag, and hence its coefficient, to rise rapidly (see Fig. 2.44). 

The optimum angle of attack is given when the lift-drag ratio is maximum 
or the ratio CL/Cn is a maximum. 

2.21 The graphical addition of stream functions and velocity potentials 

As stated earlier the addition of stream functions or velocity potentials is 
equivalent to a vector addition. Addition of two stream functions should 
produce the same result when done algebraically or graphically. 

Take two stream functions, 

and 

1/12 = -3x + 2y 

I/Icombined = 5x + 7y by addition algebraically 

What has happened is that velocity components in the x and y directions have 
been added. 

Fig. 2.45 
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For stream function t/l1> 

Uj = at/l/ay = 5 and VI = -at/l/ax =-8 

Similarly, for stream function t/l2, U2 = 2, V2 = + 3. 
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At the intersections of the two stream function systems there are two values 
of the stream functions which can be added together as illustrated in Fig. 2.45 
If these added values are entered on the diagram, lines of constant t/I c can be 
drawn. It can easily be seen that the result for t/I c = 6, 11, 16, etc., as shown, 
represent the equation t/l c = 5x + 7y when values of6, 11, 16, etc. are substituted 
for t/I c. Similarly, addition of velocity potentials can be performed graphically. 

2.21.1 Addition of a source and a sink 

for Q = 12 

IJ 

1/1 source 

1/1 sink 

Q Q 
t/lsource = 2'1t 8; t/lsink = - 2'1t 8 

6 6 
t/lsource = -8; t/lsink = - - 8 

1t 1t 1t 21t 

t; "3 ~ '3 

2 3 4 
-1 -2 -3 -4 

'It 'It 

5 t;1t 

5 
-5 

1t 

6 
-6 

The streamlines of the combined stream functions are arcs of circles (see 
Fig. 2.46). 

+4 -2 

-5 +1 

-6----~~----------------------~~----

Sink Source 

Fig. 2.46 
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A further example of the technique of the graphical addition of stream 
functions can be obtained by the addition of a uniform wind and a source-a 
semi-streamlined body (see Fig. 2.47). Very complex combinations of stream 
functions which may be too complex for analysis can be dealt with by graphical 
methods following the techniques illustrated above. 

__ -4 

"---3 --- ..-- _ 2 Uniform 
wind 

"---1 

--------~~--~~----------------------o 

Source 

2.22 The Flow Net 

Outline of the semi
stream lined body 

Fig. 2.47 

To generate a flow net draw streamlines within a particular flow for constant 
increments (5l/1 of the stream function and then draw lines of constant velocity 
potential (equipotential lines) for increments (5<,0 of the velocity potential and 
make (5l/1 = (5<,0 (see Fig. 2.48). The equipotential lines will intersect the stream-

Fig. 2.48 



Hydrodynamics 

lines orthogonally, that is at right angles, as shown earlier (p. 42). Using 
natural coordinates sand n 

al/Jjan = v and a..pjas = l! 
so 

ill/J=viln and a..p = v3s 

as ill/J = 3..p 

v~n=vils so ~n = ils 
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This shows that if the equipotential lines and streamlines are drawn for equal 
increments of ill/J and il..p and these increments are themselves equal, the net of 
streamlines and equipotential lines produced must have a square mesh. If the 
values of ill/J and il..p chosen are extremely small, the squares produced will be 
true squares but if they are of significant size the squares will be 'curvilinear' 
squares. 

The values of ils and an are inversely proportional to the local velocity, so if 
the squares in a flow net are small the velOcity is high and conversely if they are 
large the velocity is low. 

If a flow is potential (that is the boundary layers are very thin and the main 
core of the flow is potential) it is possible to sketch in a system of streamlines 
which fits the shape of the boundaries. If a system of equipotential lines can be 
drawn-orthogonal to these streamlines-and a system of curvilinear squares 
produced, the resulting flow net is correct (see Fig. 2.49). Velocities throughout 
the flow can then be accurately estimated. It can be seen that velocities are 
largest near the inner wall and least at the outer wall of the bend. The process of 

Fig. 2.49 
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producing a flow net requires a lot of patience, a soft pencil and much use of an 
eraser. The original estimated streamlines will need modification which will 
require modification of the equipotential lines. The technique is a trial and 
error process. 

2.23 Percolating flows 

The Darcy equation for flow through permeable material is v = ki where i is the 
hydraulic gradient and v is the velocity of flow ignoring the presence of the 
particles. Now i can be written as t:.E/ I:!.s~ where t:.E is the energy loss over the 
distance I:!.s measured along the streamline 

that is v=kt:.E/l:!.s 

The value t:.E has been assumed to be equal to I:!.h where h is the head. This is 
so if v2 /2g is negligibly small and this is certainly true for percolating flows. 

Now this means that kE = ..p as can be seen from 

v = a..p/as = k t:.E/l:!.s 

The flow is therefore a potential flow (and a flow net can be drawn) if the 
velocity head is negligibly small. 

It might seem that the application of potential theory to what is essentially a 
highly frictional flow must be wrong. The flow of a fluid through a porous medium 
does not however produce vorticity on a macroscopic scale although it does so on 
a microscopic scale. Frictional effects occur throughout the fluid but these do 
not necessarily generate overall velocity gradients. As fluid flows round particles 
frictional effects do occur, but the overall potential flow model is obtained by 
ignoring the effect of these tiny boundaries and considering the flow through the 
space they occupy using velocities adjusted to take their presence into account. 

The effect of friction acting at all points throughout the fluid is not the same 
as the frictional effect of a flow boundary. A boundary generates velocity 
gradients and these in turn cause fluid particles to rotate but friction distributed 
throughout the flow is considered to reduce the velocity of fluid elements without 
causing their rotation, so the potential flow model is applicable, at least on a 
macroscopic scale. 

2.23.1 Flow beneath a dam The flow beneath a dam is illustrated in Fig. 2.50. 
The value E can be calculated for any point on the base of the dam. Upstream 

it has the value h. If it is reduced by uniform increments, say ten, the value of E 
at point P is To h. The pressure head at point P is fa h + d. Any other point on 
the dam base can be treated Similarly and the pressure distribution can be found. 
Velocities at any point in the permeable stratum can also be obtained. It should 
be noted that just downstream of the dam the squares are small so the velocities 
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Impervious bed 

Fig. 2.50 

through the material are high. If they are high enough they may cause particles 
of sand to lift and be carried away. Once this process starts, the erosion that occurs 
will shorten the fluid's frictional path so velocities will increase still further 
causing erosion to occur more and more rapidly. This is a catastrophic sequence 
of events and eventually the downstream erosion will become so great that the 
foundations of the dam will be endangered. The material immediately below the 
dam will suddenly be removed and the dam will collapse. It usually falls upstream 
rather than downstream-one example is the collapse of certain regulators on 
the river Nile. This phenomenon is called sand piping. 

Worked examples 

(1) A long cylinder is located in a flow with its longitudinal axis perpendicular 
to it. Assuming that the flow over the cylinder is two dimensional and that it 
can be represented by the zero streamline in a combination of a uniform wind 
and a doublet, show that the cylinder experiences a force that places it in 
tension and calculate the magnitude of this force when the cylinder is 0·05 m 
in diameter and the uniform wind has a velocity of 3 m/s. The fluid is water 
and the ambient pressure is 100 kN/m2 abs. 

The equation applicable is (2.1 0), that is 

Now (pp - Po)/w is negative when 4 sin2 () > 1, that is when sin () >!. So 
(pp - Po)/w is negative if () is greater than 300 and less than 1500 • This negative 
pressure distribution will apply tension to the cylinder. 
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The magnitude of the tensile force on the cylinder is (from equation (2.12)) 

'" 
Fy = - f pa sin e de 

o 
where 

a= 0·025 m 

and from equation (2.14) 

'" 
Fy = -a f (Po + !pU2 (1- 4 sin2 e)) sin e de 

o 

The first integral is 2po - pU2• The second integral 

'" 
12 = 2pU2 f sin2 e d(- cos e) 

o 

'" 
= - 2pif f (1 - cos2 e) d (cos e) 

o 

= - 2pif [cos () -l cos3 ()]~ 

Fy = - 2apo + 1apu2 

= - 2 x 0·025 x 1000 + 1 x 0·025 x 1000 x 32 

The tensile force acting on the cylinder is thus 475 N/m. 

(2) Given that the stream function for flow over a stationary cylinder immersed 
in a stream flowing at a velocity U is 

Ua 2y 
I/J = - Uy + -2--2 

X +y 

and using the principle of superposition of velocities to obtain the stream 
function of a cylinder moving at velocity U through a stationary fluid, develop 
an equation for the kinetic energy stored in a fluid caused by movement of a 
cylinder of radius a at velocity through a fluid which is stationary at infinite 
distances from the cylinder. 
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An empty steel cylinder of 1 m external diameter and of wall thickness 
0·04 m moves in a direction normal to its length. Neglecting all viscosity effects 
calculate the ratio of the forces required to accelerate the cylinder in sea water 
(Psea water = 1070 kg/m3) to that required to produce the same acceleration in 
air (Pair = 1·284 kg/m3). (Psteel = 7217 kg/m3) 

The stream function (t/I c) of a cylinder moving through a fluid is obtained by 
adding the stream function of the stationary cylinder over which a uniform 
wind is flowing to that for a uniform wind moving in the opposite direction i.e. 

so 

( ua2y ) t/I c = - Uy + -2--2 + Uy x +y 

Ua 2y Ua 2 sin e 
t/l c = x2 + y2= R 

(the second expression is in polar coordinates). 
The velocity component of this flow at coordinates R, e are 

so the resultant velocity 

The kinetic energy of an element at R, e is 
U2a4 lj2 pa4 

!mV2 = !pR ~e8R --= --- 3e~R R4 2 R3 

Total KE of the entire fluid field 

J7t j ~2 ~: ~e ~R = - lj27tpa4[ ~2r 
o a a 

= !7ta2 pU2 

KE of flow field = KE of fluid displaced by the cylinder. 

As KE = f Force ds = f mass x acceleration ds 

the kinetic energy is proportional to mass for a given acceleration. 
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In the case of a cylinder moving through a fluid, the mass of the cylinder must 
be increased by the mass of the displaced fluid. 

_ (12 - 0.922)7217 + 12 x 1070 

- (12 - 0.922)7217 + 12 x 1284 

Force ratio = 1·97 

Questions 

(1) The stream function of a two-dimensional frictionless incompressible flow 
against a flat plate normal to the initial velocity is 1/1 = - 2axy. Obtain the 
velocity potential for this flow and show that both the stream function and the 
velocity potential satisfy the Laplace equation. Given that a = 0·5 plot the stream 
lines defined by 1/1 = 1 and 2 and the equipotentials defined by 'P = 1 and 2. Obtain 
the velocity at the intersection of the stream line 1/1 = 1 and the equipotential 
line rf> = 1 and given that the pressure at a point x = 4 ft [ 4 m], y = 0 is 
2lbf/in2 [60 N/cm2] calculate the pressure at this intersection point. 

Answer: v = 1·68 ft/s [I ·68 m/s], p = 2.09 lbf/in2 [60·7 N/cm2]. 

(2) The flow around a cylinder situated in a uniform flow can be considered to 
be the same as that produced by a combination of a doublet and a uniform flow 
if the viscosity is negligible. 

(a) Derive an expression that describes the pressure distribution around such a 
cylinder and draw a graph in cartesian coordinates of pressure against e. 

(b) Indicate on this graph how the behaviour of a real fluid differs from its 
theoretical behaviour. 

(c) Plot on graph paper the stream lines for 1/1 = I and 1/1 = 2. 

(3) A cylinder is mounted in an air flow with its longitudinal axis transverse to 
the flow. A small hole is drilled in the surface of this cylinder and this hole is 
connected to an air-water differential manometer and acts as a pressure tapping. 
Using this tapping and rotating the cylinder slowly the pressure distribution 
around the cylinder can be obtained. As the cylinder is rotated it is found that 
the reading on the manometer varies and over the up-stream face of the cylinder 
the difference between the maximum and minimum manometer readings is 1·5 in 
of water. Working from first principles, specify the locations of the pressure 
tapping where these maximum and minimum readings are obtained and calculate 
the undisturbed stream velocity. The specific weight of air is 0·08 Ibf/ft3 . 

Answer: At 0° and 90°, 39·6 s. 
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(4) A two-dimensional uniform stream of incompressible invixid fluid flowing 
parallel to the x axis with a velocity of 12 [t/s [4 m/s] combines with a source 
at the origin. Interpreting this as a flow over a body defined by 1/1 = a of 3 ft 
[1 m] width at x = _00 sketch carefully the flow over the body. Calculate 

(a) the distance from the source to the stagnation point, 
(b) the distance from the source to the body surface at an angle of 90° to the 

x axis, 
(c) the magnitude of the velocity and its direction relative to the x axis of the 

fluid along the surface at the 90° angle. 

Answer: (a) 0·477ft (b) 0·75ft (c) 14·2 ft/sat 32!0 
(a) [0·159m] (b) [0·25m] (c) [4·73 m/sat 32!0]. 
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(5) Define a source and sink. If a source and sink of equal strength are separated 
by a distance of 2a show that the stream lines will be circular arcs. Taking the 
distance a as 1 cm draw the streamline on one side of the axis only having a radius 
of 5 cm and calling the value of the stream function for this line unity insert 
the streamlines corresponding to the values 2 and 4. 

(6) Explain the meaning and use of the stream function in dealing with problems 
of two-dimensional fluid motion. A line source of strength 50 7t ft s units is 
situated in a uniform stream flowing at 40 ft/s. At a distance of 2 ft downstream 
from the source there is an equal sink. Locate two points of zero velocity in the 
resultant field of flow and show how to trace the streamlines passing through 
these two points. 

(7) Find the expression for the stream functions for a point source of &trength 
m and for a point vortex of circulation r and hence obtain the stream function 
for the combined flow when the source is at the centre of the vortex. Find the 
expressions for the radial and tangential velocities and hence show that the 
streamlines make a constant angle with the radius vector, also show that the locus 
of all points having constant velocity V is the circle 

R = y(m2 + r2) 
27tV 

(8) Calculate the circulation around a cylinder of radius 1 m if the velocity in 
metres per second is 

V=7sin8+7 

Also determine the lift per metre length if the free stream velocity is 3 m/s and 
the fluid density is 1·25 kg/m3 . 

Answer: r= 147tm2 /s, L = 165 N/m. 

(9) A 90° bend of rectangular cross section with inner radius 2 m and external 
radius 6 m carries a flow of gas. Ignoring frictional effects and assuming that no 
boundary layer separations occur sketch a flow net for the flow and indicate a 
method of obtaining the pressure profile across the line of symmetry of the bend. 



3 Dimensional Analysis 

The solution of any problem in the physical sciences is usually expressed in the 
form of a relationship between a number of variables. Normally, such a relation
ship is written as an equation which describes how the dependent variable varies 
with the independent variables. The methods of establishing such relationships 
fall into two classes. 

In the first method, a mathematical model of the phenomenon is developed. 
This consists of a statement of the physical laws that are operating expressed in 
the form of equations. Almost always some assumptions have to be made that 
simplify the situation to a point at which the resulting mathematics can be 
performed. Such a simplified mathematical model may represent the situation 
quite accurately but sometimes the simplifying assumptions are so drastic that 
the model bears little relation to the physical problem. 

The second method is used when either the mathematical approach does not 
give good results, or the problem is so complex that no model can be developed 
whatever assumptions are made. SOIretimes, such problems involve so many 
variables, or require mathematics of such difficulty, that no analytic solution is 
possible. In this case a different approach is required. One approach is to con
struct a physical model which is capable of reproducing the phenomenon-usually 
in miniature. Measurements of parameters of interest can be taken from this 
model and scaling laws are then used to derive values applicable to the real 
situation (the prototype). This approach is particularly useful in fluid mechanics. 
Much money and effort has been invested in developing models to represent the 
forces acting upon hydraulic structures, or to predict the magnitudes and 
directions of fluid motions. 

Dimensional analysis forms the basis for physical modelling. This technique 
allows measurements taken from a model to be scaled up to apply to the 
prototype. Dimensional analysis also allows the variables in an equation to be 
arranged into a smaller number of dimensionless groups of variables. In problems 
involving fluids this can be of great importance. 

Dimensional analysis is concerned with the fundamental relationships between 
variables. Examples of different variables are velocity, length, acceleration and 
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mass density. These quantities are fundamentally different from one another 
although they possess certain qualities in common. It is reasonable to assume 
that all variables can be derived from quite a small number of certain basic 
entities. These are called dimensions and should not be confused with the 
quantities usually described by this word, for example length, breadth and 
height. 
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Two groups of dimensions can be used, one comprising mass [M] ,length 
(L), and time (T). There is no reason to think that mass is a more basic quantity 
than force and so the other set of dimensions that can be used is force (F), 
length (L) and time (T). 

The dimensions of all other variables can be expressed in terms of either of 
these sets of dimensions. For instance velocity must have the dimensions of L/T 
as it is the ratio of distance travelled to the time taken. Acceleration (velocity/ 
time) will have the dimensions of L/T2, force (mass x acceleration) the dimensions 
of ML/T2 and stress (force/area) the dimensions of M/LT2. Table 3.1 gives the 
dimensions of the quantities that will be used in this book. 

Table 3.l. 

Quantity Symbol Dimensions 

Mass M M or FT2/L 
Length L L 
Time T T 
Velocity v L/T 
Accelera tion a L/T2 
Force F ML/T2 or F 
Stress or pressure for p M/LT2 or F/L2 
Any modulus EorK M/LT2 or F/L2 
Mass density p M/L3 or FT2/L4 
Weight density w M/L2T3 or F/L3 
Dynamic viscosity !.l MILT or FT/L2 
Kinematic viscosity v L2/T 
Flow Q L3 /T 
Energy or work W ML2/T2 or FL 
Power P ML 21T3 or FL/T 
Surface tension a MIT or F/L 

Any problem can be expressed as a relationship between a group of variables, 
that is 

where Vi denotes some variable and [denotes 'a function of'. 
Consider the problem presented by the need to predict the resistance to 

motion R experienced by a body of size I when travelling at velocity v through 
a fluid of mass density p and viscosity Jl. There must be a function such that 

[(R, p, I, v, Jl) = 0 
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It is possible to express such a relationship in the form of an infmite series so 
that in general 

(3.1) 

every term on the right hand side must represent an element of force as the left 
hand side is a force and it is impossible to equate or to add unlike things. Thus 
the dimensions of each of the terms on the right hand side are those of R. Consider 
then the first term of the right hand side and substitute the dimensions of each 
variable for that variable. The dimensions of the resulting group of dimensions 
must reduce to those of the left hand side, that is force. Therefore 

MLT-2 = MaL -3aLbLcT-cMdL -dT-d 

Equating the indices of the three dimensions 

M: l=a+d 

T:-2=-c-d 

L: 1 = -3a + b + C - d 

(3.2) 

(3.3) 

(3.4) 

From equation (3.2) a = 1 - d. From equation (3.3) c = 2 - d. Substituting for 
a and c into equation (3.4) gives 

1 =-3+3d+b+2-d-d 

hence b=2-d 

(Note that the constantA was not considered when writing the dimensions of 
the variables as it is a pure number, that is a ratio, with no dimensions.) 

The process performed above could now be carried out for the second term 
also and the result would be 

e=l-h 

f= 2- h 

g=2-h 

If these values of the indices are now substituted back into equation (3.1) the 
series will be: 

R = A(pl-d[2-dv2-dpd) + B(pl-hp-hv2-hph) + ... 

A common group pl2v2 occurs in every term and this can be taken out so that 

The infinite series in the brackets is a function of the group p/ pvl. The 
reciprocal, pvl/p, of this group is more usually used, so the series then becomes 

R=pv2lrJf (pvl/p) 
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If the dimensions of the variables in the group pvl/Ji are substituted for the 
variables themselves it will be found that they will all cancel, that is the group is 
dimensionless. It is known as Reynolds number. The group R/ pv 2Z2 is also 
dimensionless; this can be seen when the equation is re-arranged: 

R (PVI) 
pv 2z2= cP-; 

As the group on the right hand side is dimensionless the one on the left hand 
side must also be dimensionless. 

In place of a relationship between a set of variables that describe a physical 
phenomenon a relationship between two dimensionless groups has been obtained. 
The number of variables has been reduced from five to two if each dimensionless 
groups is regarded as an individual variable. Without such a dimensional analysis 
it would be necessary to establish how R varies with each of p, v, I, and Ji. Each 
variable would have to be altered in turn while the others were kept constant. 
Such an investigation would be prohibitively laborious and also very expensive, 
as it would involve changing the working fluid to investigate the effect of p and 
Ji. On the other hand, a quite simple experiment can be performed to investigate 
the variation of R/pv 2 /2 with pvl/Ji and a single curve relating these two variables 
would then convey all the information that would have been obtained in the 
previous experiment. Moreover, the variable pvl/Ji can be changed simply by 
altering the value of v; there is no need to alter any of the other variables. Since 
the dimensional analysis has reduced the five variables involved to two the number 
of graphs required has been reduced from four to one. 

In general, the process of dimensional analysis will reduce the number of 
variables in a problem by the number of dimensions involved in each variable, 
for example, six variables would be reduced by three if mass length and time are 
all involved in each variable. The reduction will be correspondingly less if one 
of the dimensions is not involved in a particular variable. 

The rather tedious process of dimensional analysis illustrated above can be 
greatly simplified. 

3.1 The Buckingham 7r theorems 

The ideas discussed above can be formalised as two theorems. In the western 
world these are usually ascribed to Buckingham. 

3.1.1 First theorem A relationship between a set of physical variables can be 
stated as a relationship between a set of independent dimensionless groups made 
up from suitably chosen variables. 
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3.1.2 Second theorem The number of dimensionless groups required to specify 
completely the relationship is the number of variables, n, minus the number of 
dimensions, m, involved in the variables. (These dimensionless groups are often 
called 1r groups). Although this may be intuitively obvious it is very difficult to 
prove with mathematical rigour. 

These two theorems will be used in the problem discussed above. Initially an 
intuitive judgment is made as to the variables involved. As before, the resistance 
to motion R is judged to depend upon the density anod viscosity of the fluid, p 

and 11, through which the object is moving, its size I, and its velocity v. If this 
judgment had been wrong and a variable inserted which was not in fact having 
any influence upon the resistance, the dimensional analysis would produce an 
additional group which would be inapplicable in the circumstances. Conversely, 
if a variable had been omitted a dimensionless group of significance would not 
be generated. The Buckingham 1r theorems permit the equation 

(3.5) 

to be written. (Only two groups are involved as n = 5 and m = 3 so the number of 
1r groups = n - m = 5 - 3 = 2.) All that remains to be done is to develop 
expressions for these 1r groups. It is possible to write a large number of 1r groups 
that will all be dimensionless and which will therefore be suitable for use. How
ever, some can be immediately discarded. For example if two groups are 
produced which are not independent of one another, one or the other can be 
discarded. Then some groups will be less suitable than others. It will be shown 
below that many groups represent ratios of real quantities, for example Reynolds 
number is a ratio of the inertia forces acting on a body to the viscous forces 
acting on it. The group R/ pv 212 is the ratio of the resistance force experienced 
to the inertia force. Other groups however, have no such physical interpretation 
and it is therefore logical to eliminate these. 

Consider the flow between any two adjacent streamlines. If the area of flow 
isA, the momentum flow (or inertia) is pAv2 and the resistance experienced by 
this flow is proportional to f.lA dv/dy (by Newton's law of Viscosity). Now the 
distance apart of two adjacent streamlines depends upon the scale of the object 
creating the motion, in other words the value I. The area A depends upon z2 and 
dy depends upon l. 

The ratio of inertial force/viscous force acting at any point in the field of 
flow is pAv2 /pA dv/dy. Now dv depends upon v-the larger v the larger dv so 

inertial force pAv2 pvl 
-----= --- (X-

viscous force kpAv/l 11 

that is, Reynolds number is proportional to the ratio inertial force/viscous force. 
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3.2 Construction of 7r groups 

The technique of constructing a 7r group will now be described. Initially the 
decision must be made as to what type of group is required. Say the group is to 
be a ratio of inertia force to some other type of force. Inertia force is proportional 
to the rate of flow of momentum, pAv2 or p[2v2. Thus, if the inertia force is to 
be involved in the 7r group the variables p, v, and [must also occur in the group. 
A group can be formed by combining any four variables which between them 
contain the dimensions of mass, length and time. If three of the variables chosen 
are of the form mass density, velocity and length, the resulting group will be a 
ratio of inertia force to some other force. For instance, if the variables selected 
are p, v, 1 and J1 the resulting group will be the ratio of inertia force to visco.us 
force, that is Reynolds number. Thus 

7r1 = pavb[cR 

The second 7r group can be formed similarly, the repeating variables p, v, 1, being 
combined with the other variable J1 

1f2=pavb[cJ1 

The method of processing these 1f groups can now be demonstrated. Each 
group must be dimensionless, thus for 1T 1 

MaL -3aLbT-bLcMLT-2 = 101 

Equating indices of M, Land T respectively to zero gives 

M: a + 1 = 0 

T: -b - 2 = 0 

L:-3a+b+c+I=0 

Thus a = -1, b = - 2 and c = - 2. Hence 

Similarly 

Thus 

1f1 = p-1 v -2[-2R 

MaL -3aLbT-bLcML -1T-1 = 101 

M: a + 1 = 0 

T: -b - 1 = 0 

L: -3a + b + c - 1 = 0 

Thus a = -1, b = - 1 and c = -1, 

so 
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In most problems, the value of 11/ pvl is very small. In a pipe flow it could be 
10-6 for instance. This is inconvenient and the reciprocal of this number is used 
instead. This is of course quite valid as it is also dimensionless. By substituting 
these expressions (3.5) 

( R PVZ) f -,- =0 
pv 2Z2 11 

or 

R (PVZ) 
pv 2Z2 = f ---;; (3.6) 

or 

(3.7) 

This last form is called the Rayleigh equation. 

(Note: The reader is recommended to follow the sequence indicated when writing 
the equations for the indices ofM, L, and T, as he will then find that they solve 
explicitly as demonstrated.) 

3.3 The physical significance of some commonly used groups 

As stated before, the dimensionless groups commonly used all have physical 
significance as ratios of various physical quantities. The groups encountered in 
fluid mechanics are listed in Table 3.2. 

The precise meaning of these groups is worth closer examination. In many 
circumstances, the behaviour of a body is controlled by two physical effects. For 
instance, the motion of a billiard ball depends upon its inertia and also upon 

Group Name 

pvl/Jl. Reynolds number 
v2 /(gl) Froude number 
pv2 Z/a Weber number 
vic or .J(pv2 /K) 

Mach number 
Euler number 
Cauchy number 

Table 3.2. 

Symbol 

Mn,NM 
En,NE 
Cn,Nc 

Meaning 

inertial stress/viscous stress 
inertial stress/gravitational stress 
inertial stress/surface tension stress 

local velocity of fluid/local velocity of sound 
pressure/inertial stress 
(local velocity/wave velocity)2 

There are other numbers such as Petrov's number which arises in lubrication theory and 
Peclet's number which arises in heat transfer theory. Additionally there are numbers such as 
pgO·Sh 1.S /Jl. and Q/go,sh2·S which arise in free surface flow through apertures such as 
orifices, notches, and weirs. These are variant forms of the Reynolds and Froude numbers. 
Dimensionless numbers arising in the theory ofrotodynamic machines such as Q/ND3, 
gH/N2D2, the efficiency and the Reynolds number pND2/Jl. establish the modelling criteria 
for such machines. 
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the frictional forces it experiences when travelling over the table's surface. If it is 
travelling rapidly, the frictional effects can almost be ignored and its behaviour in 
the immediate future can be predicted from its inertia (momentum) and the 
laws of impact. However, if it is travelling slowly, the frictional effects may well 
dominate the motion. A type of Reynolds number could be written for the ball 
and this, as before, would be the ratio of inertial force to frictional force. If this 
number is large, the frictional force is negligible and if it is small the frictional 
force would very largely determine the motion. Similarly in the case of fluid motion, 
if Reynolds number is large, frictional effects are relatively small and the motion 
is governed largely by the momentum of the fluid; conversely if it is small, the 
motion will be dominated by friction. 

The Froude number appears in problems in which gravitational forces act 
upon and control, to some extent, the fluid motion. This happens when 
circumstances are such that free surfaces exist. Examples are wave motions on 
a liquid surface, river and channel flows and flow under gravitational action 
through orifices, notches and weirs. In many cases, frictional effects are present 
as well as gravitational effects; a dimensional analysis will then yield both the 
Reynolds and the Froude numbers. For example, in the case of a ship or sub
marine travelling on or near the surface of an ocean, the resistance to motion 
will be due partly to the energy it loses in creating waves upon the ocean surface 
and partly to the energy loss caused by friction between the ship's hull and the 
adjacent slower moving water. Its resistance will not only depend upon p, v, [ 
and J.1 as described earlier but also upon g-acceleration due to gravity. A unit 
volume of fluid raised through a height h by the action of a wave will need 
pgh units of energy; this indicates that g must be included in the dimensional 
analysis. 
Therefore, 

f(R, p, v, [, J.1, g) = 0 

There are six variables and three dimensions so three 1T groups can be expected. 
Hence, 

f(1Tl' 1T2, 1T3) = 0 

Now 1T land 1T 2 will be the same as in the previous analysis and 

1T3 = pavb[cg 

Therefore, 

Therefore, 

MaL -3aLbT-bLcLT-2 = 101 

M:a=O 

T: -b - 2 = O. Therefore, b =-2 

L: -3a + b + c + 1 = O. Therefore, c = + 1 

1T 3 = gi/v 2 - this is inverted to give v 2/gi 
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Therefore, 

R (PVl V2) 
pV2[2 = f -;;' gl 

v2 /g1 = Fn = Froude number 

or, 

R = pv 212 [(Re, Fn) 

The Froude number is the ratio: inertial force/gravitational force. This is 
Rayleigh's equation for the resistance of a body when both gravitational and 
frictional effects are present. 

The Weber number arises in problems that are concerned with surface tension. 
Ripples (as opposed to waves) are a phenomenon caused by surface tension, so 
the Weber number can be expected to occur in the equations that describe ripple 
motions. At very low pressure heads flows over, Vee and rectangular notches are 
not as predicted by the discharge equations. This is because surface tension is sig
nificant under such circumstances and the theory ignores surface tension. (At 
pressure heads of approximately i inch the liquid may stand on the edge of a 
notch and there is no flow at all.) 

Normally the coefficient of discharge of a notch (this is a type of Froude 
number) is plotted against a form of Reynolds number. At low heads it would 
be more sensible to plot this coefficient against the Weber number as surface 
tension effects are more important than friction effects. This is not done in 
practice as there is little interest in the behaviour of flow-measuring devices at 
such low heads. 

3.4 Models 

As the basis of most modelling techniques is dimensional analysis, it is appro
priate to describe this basis at this point. 

Usually a model of the hydraulic structure under examination is built. The 
scale of this model may be greater than full size, but normally it is less than full 
size. (The hydraulic structure under investigation is called the prototype.) The 
model is usually built to an undistorted geometric scale. This is not always true, 
as in some river models different scales are used for horizontal and vertical 
distances. Measurements can be taken from such a model and a suitable scaling 
law applied which will predict their values for the prototype. These scaling laws 
are usually derived from dimensional considerations. 

To illustrate how such scaling laws can be obtained from dimensional analysis, 
we use the result obtained earlier (equation (3.6)) for the resistance experienced 
by a body moving through a fluid 

R/(pv212 ) = rp (pvl//l) 
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This equation applies whatever the size of the body. This means that I defines the 
size of the body; it can be thought of as defming a leading dimension, all other 
dimensions of the body bearing some fixed relationship to I. Thus all geo
metrically similar bodies will be described by the same function I(J irrespective 
of the fluid used. This can be demonstrated by inserting into the analysis 
another length-say d. There will now be an additional1T group which must be 
either d/l or I/d. 

Equation (3.6) will then become 

R/(pv2/2) = I(J (pvl/J.l., d/l) (3.8) 

If the value of d/l is the same for two bodies of different sizes-that is they 
are geometrically similar-then equation (3.8) above reduces to equation (3.6). 
This result must be true for both the model and the prototype. (If the nature 
of the function I(J were known there would be no need to build a model at all, 
but as the problem cannot be analytically analysed (except in certain specific 
ranges of the value of Reynolds number) this function is not known.) 

Write the relationship for the model and the prototype using subscripts m 
for the model and p for the prototype 

and 

+. = I(J (PPvp/p) 
ppvplp J.l.p 

Dividing the first by the second equation 

Rrn/(Prnv-:nl~) _l{J(prnvrnlrn/J.l.m) 
Rp/(Ppv~IJ) - l(J(ppvp/p/J.l.p) 

We can now get no further unless an assumption is made. If it is assumed that 
Prnvrn1rn/J.l.rn is equal to ppvplp/J.l.p then I(J(Prnvrnlrn/J.l.rn) = l(J(ppvp/p/J.l.p) which 
gives 

so 

(3.9) 

or 

AR = ApA;A; 

where A here denotes 'scale of'. This is the scaling law of resistance. 
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The equality of the Reynolds numbers of the model and prototype was an 
essential requirement in the development of this result. The implications of 
this assumption must next be examined. 

If 

then 

so 

or 

Pmvm1m = ppvplp 

Ilm IJ.p 

Vm=Pp Ilm~ 
vp Pm IJ.p 1m 

Av=~ 
ApAI 

(3.10) 

(3.11) 

(3.12) 

The symbol v (nu) is often used to represent III P and this is called the kinematic 
viscosity of the fluid as opposed to Il-the dynamic viscosity of the fluid. 

Equation (3.11) can thus be written 

Vm vm Ip 
-=--
vp vp 1m 

or 

Substituting this result back into equation (3.9) gives 

Therefore, 

or 

This means that, given the value of Rm (obtained by direct measurement from 
the model), the force experienced by the prototype can be predicted, but only 
when it is moving at a velocity that produces the same Reynolds number as that 



Dimensional Analysis 93 
of the model when the Rm measurement was taken. That is to say that Rp can be 
predicted from 

and the result will apply when the prototype is travelling at a velocity 

vp 1m 
vp =--vm 

Vrn Ip 

Dynamic similarity between model and prototype is said to exist when the 
controlling dimensionless group on the right hand side of the dimensionless 
relationship is the same for both. In equation (3.10) Rem was equated to Rep 
and this condition is now described as that of dynamic similarity. Reynolds 
number was earlier shown to be the ratio inertia force/viscous force, so that 
for dynamic similarity 

(inertial force )rn (viscous force )m 
(inertial force)p (viscous force)p 

for all points throughout the fluid in both the model and prototy.pe. This means 
that fluid paths (streamlines in steady flow) in model and prototype are 
geometrically similar. 

If the problem is that of a ship traversing a water surface, wave motions would 
be the dominating influence and, as explained before, g would have to be intro
duced into the analysis. As before, 

R/(pv2/2) = '/J(Re, Fn) 

For strict modelling, the Reynolds and Froude numbers of the model and proto
type must be made equal to one another if the two functions are to be equal. If 
this could be done, then true dynamic similarity would be obtained-the stream
lines of the flow around the ship would be geometrically similar and at the same 
time the wave motions around the ship would be geometrically similar. Unfortu
nately, conditions under which both the Reynolds numbers and Froude numbers 
for model and prototype are equal cannot exist. For example, if Rem = Rep and 
Fnm =Fnp 

equating these values of vmlv p gives 

v 
.!!:.={lmll p)312 
vp 

The possibility of using a different liquid for the model from that used in 
the prototype, is not really feasible. Modelling techniques involve very large 
volumes of liquids and the use of a liquid other than water would be prohibitively 
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expensive. Further, many liquids that might be used are so offensive and dangerous 
that they would not be suitable, even if expense were no object. The impossibility 
of simultaneous Reynolds and Froude-number modelling is well recognised and 
causes both the ship designer and the river hydraulicist much trouble and work. 
Generally, when the gravitational effects present are important, the model is 
operated on the Froude- number scaling laws and the effects of failing to model 
for Reynolds number are ignored. This means there may be errors in the 
predictions for the prototype; this is called scale effect. Special formulae have 
been developed to correct such errors which are unfortunately inevitable. 

At this pOint it is as well to realise that Reynolds-number modelling also 
involves difficulties. The results previously derived for the moving body problem 
are 

and 

Vm I'm Ip 
-=--
vp vp 1m 

Now if the modelling fluid is the same as that occurring in the prototype situation 

This suggests that if the model is to be smaller than the prototype, its operating 
speed must be greater, in inverse ratio to the scale used. Also if the fluid is the 
same (Pm = Pp and I'm = vp ) then Rm = Rp. To provide apparatus that is 
capable of meeting these requirements can be formidably difficult. For instance, 
a common application of Reynolds-number modelling is in aircraft design. If the 
prototype speed is to be 400 mph and the model is to be one tenth the size of 
the prototype, then its speed should be 4000 mph. This places the model speed 
into the hypersonic range where compressibility effects-hitherto ignored-will 
be of far greater significance than the frictional effects described by Reynolds
number modelling. Furthermore the model will have to withstand the same forces 
as would be experienced by the prototype. Supports for the model will not be 
easy to design under such circumstances. If the model is tested in air which is 
pressurised to, say, 30 atmospheres, the density of the air will be increased by a 
factor of 30 but its dynamic viscosity will be only marginally affected. Thus I'm 

will be reduced by a factor of approximately 30 and Pm increased correspondingly. 
Then, 

Vm = 1/30 x 10 x 400 = 133! mph 

and 
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A pressurised wind tunnel needs strong and expensive structures and its operating 
costs are very high, largely due to its great power demands. Only large commercial 
undertakings and national governments can build such tunnels. 

Pure Froude-number modelling is relatively uncomplicated and as free surface 
flows are much more the province of the civil engineer than the mechanical 
engineer, the former is more fortunate than his colleague who frequently has to 
use Reynolds-number modelling. The civil engineer's problems really start when 
a problem involves Froude-number modelling but frictional effects are not 
negligible. 

3.5 Examples of dimensional analysis 

In this section, various problems that are discussed elsewhere in this book are 
analysed by dimensional analysis. The section may be omitted on a first reading 
but may be found helpful later. Reference will be made to this section when such 
problems arise. 

3.5.1 Orifices, notches and weirs Flow through orifices, notches and weirs are 
all examples of free-surface flows. The flow Q will depend upon the following 
parameters. 

(1) The diameter of the orifice, or the breadth of the weir whichever is appro-
priate. 

(2) The head, h, over the device. 
(3) The fluid parameters: mass density p, and the dynamic viscosity J.1. 
(4) The intensity, g, of the earth's gravitational field. 

That is, 

Q = f(l, p,g, h, J.1) 

or, 

f(Q, I, p, g, h, J.1) = 0 

There are six variables and three dimensions are involved so the number of 1r 

groups is three. That is, 

Now it was stated earlier that p, v, and I should be chosen to be repeating 
variables, but in this problem there is no variable v. However, v is implicit in Q 
and I-as the ratio of Q to P is a velocity. Alternatively a velocity can be obtained 
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by combining g and h. In the case of an orifice for example, v = Cv Y(2gh). Thus 
there are two equally valid approaches and both will be given here. 

1ft = paQblcg 

MaL -3aL3bT-bLcLT-2 = 101 

M:a=O 

T: -b - 2 = 0 :. b =-2 

L: - 30 + 3b + c + I = 0 

0-6+c+l=0 

c=5 

glS 
1ft = Q2 

or 1ft = palhcQ 

or MaL -3aLbr-2bLcL3T-l = 101 

a=O 

-2b - 1 = 0 :. b = -!. 
-3o+b+c+3=0 

0-!+c+3=0 

c=-2! 

- Q 
1ft - g1l2hS/2 

Dimensional analysis cannot differentiate between h and I, as both have the 
dimensions of length. Bearing this in mind it can be seen that the second 1f t 

group is the reciprocal of the square root of the first. In effect they are the 
same. 

1f2 = paQblch 

MaL -3aL3bT-bLcL = 101 

M:a=O 

T: b=O 

L: -30 + 3b + c + 1 = 0 

c=-1 

1f2 = h/I 

1f2 = palhcl 

MaL -3aLbT-2bLcL = 101 

M:a=O 

T: b=O 

L: - 3a + b + c + 1 = 0 

c= -1 

1f2 = I/h 

so once again, the second 1f2 group is effectively the same as the first, as it is 
the reciprocal ofit. 

1f3 = paQblcJJ. 

MaL -3aL3bT-bLcML -tT-1 = 101 

M: a + 1 = 0, :. a = -1 

T: -b - 1 = 0, :. b = -1 

L: -3a + 3b + c - 1 = 0 

:. c= 1 

1f3 = palhcJJ. 

MaL -3aLbT-2LcML -IT-1 = 101 

M: a + 1 = 0, :. a = -1 

T: -2b - 1 = 0, :. b =-! 
L: -30 + b + C - 1 = 0 

c=-i 
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These two are apparently quite different but both are forms of Reynolds 

number. (Note: 1Tl is a form of Froude number). Taking the reciprocals of 
both gives: 

The result of the dimensional analysis could be written as 

Q2 _ f (PQ h) 
g/s - [J;' I 

or as 

(3.13) 

and both are valid. The second form is a little more useful than the first because 
Q is usually unknown and h is the known measured value. If Q appears in the 
group for Reynolds number, it is not possible to substitute and obtain its value, 
but with the second form this difficulty does not arise. 

It is not necessary to perform such a double solution. The second form is 
obtainable from the first and vice versa. Suitable combination of the groups gives 

Upon simplification this becomes 

and taking the reciprocal 

This introduces a new idea. A combination of dimensionless groups can be 
arranged to give a new dimensionless group and this is just as valid as the original 
groups. Any combination of groups can be manipulated as shown, provided that 
in the end the number of groups specified by the first Buckingham theorem-no 
more and no less-is still available and that these fmal groups are independent of 
one another. For instance it would not be permissible to use the square of one 
group as a new group while retaining the first group. 

Consider equation (3.13). This may be written 

(
pgl12h3/2 h) 

Q = g 112 hS/2 f J1 ' I (3.14) 

This result is applicable to an orifice, a notch or a weir. hand / cannot be 
distinguished and consequently anywhere h appears / could be substituted. The 
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velocity through a small orifice is not variable across it, so the flow through it 
must be proportional to P where I represents the orifice diameter. Therefore the 
left hand side of equation (3.14) needs modification. Similarly the Reynolds 
number needs modification so that the leading dimension I can be introduced. 

From the normal analysis for an orifice 

Q = Cd ~ d2 y(2gh) 

Q/gl/2 hS/2 multiplied by (h/l)2 gives 

Q 
gl12 hl1212 

pgl/2h3/2/fJ. by l/h gives plY(gh)/fJ.. 
Except for the omission of y2Cy this group is pvl/fJ. (for an orifice 

v = Cy y(2gh) which is, of course, the Reynolds number. Therefore, 

Q = 12Y(gh)[(PvV(gh)I/fJ.) 

If I denotes the orifice diameter this result shows that the normal analysis is 
correct, but in addition it shows that Cd is a function of Reynolds number. By 
comparing the two results 

!!...Y2C = [ (p y(gh) d , ~) 
4 d fJ. h 

so 

Thus the dimensional analysis has revealed more about the nature of the 
coefficient of discharge than was obtainable from the conventional analysis. 

Conventional analysis for a Vee notch gives 

(J 
Q = Cd!s y(2g) tan 2" hS12 

If I is interpreted as the surface breadth of the notch, l/h will be 2 tan (J/2, so 
when the dimensional-analysis result is applied to a notch the l/h group must be 
interpreted as the tan (J /2 term in the conventional solution. 
Thus 

Conventional analysis for a rectangular notch gives 

Q = CM(2g)bh 3/ 2 
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Interpreting 1 as the breadth of the notch, b, and multiplying the Q/g1l2h S!2 

group by h/b gives Q/gl/2bh 3!2 and so the result becomes 

so 
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These results show that in the case of orifices and rectangular notches the 
coefficient of discharge varies with both the Reynolds number and the value of 
I/h and as neither can be regarded as constant as h varies, it is possible to predict 
that Cd must vary with h. In the case of the Vee notch, Cd only varies with the 
Reynolds number, so providing that the head is large enough for the surface 
tension effects to be negligible, the Cd of a Vee notch should be less affected by 
head variation than are the coefficients of discharge of rectangular notches. 
This is found in practice to be true. 

3.5.2 The dimensional analysis of pipe flow 

Flow in pipes is an example of a surface being exposed to frictional shear stresses 
caused by a fluid moving over it; the surface is the inside face of the pipe. This 
frictional stress must depend upon the velocity of the fluid; the diameter of the 
pipe must have an influence too, as if all the fluid is being constrained to travel 
in a small diameter pipe it must be exposed to the frictional effects from the 
boundary to a greater extent than it would be if it were travelling at the same 
velocity in a larger diameter pipe. The nature of the fluid must also affect the 
frictional shear stress at the pipe wall, that is the mass density and the 
coefficient of dynamic viscosity must affect the shear stress magnitude. 

The roughness of the surface must also influence the flow and this parameter 
will be denoted by k which will signify the mean height of the roughnesses. It is 
possible for the fluid compressibility to be involved in the problem, for example, 
when gases are flowing through a pipe compressibility effects are extremely 
important, and when flow is unsteady and pressure transients occur, the size of 
such transients is governed to a very great extent by the compressibility of the 
fluid. Thus 

7 = [(P, d, v, I, j.l, k,K) or [(7, p, d, v, I, j.l, k,K) = 0 

where 7 denotes the frictional shear stress at the pipe wall, p denotes the mass 
density of the fluid, v denotes the mean velocity of the flow, 1 denotes the length 
of the pipeline, j.l denotes the coefficient of dynamic viscosity of the fluid, 
k denotes the mean height of the roughnesses on the pipe wall and K denotes 
the bulk modulus of the fluid. 
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The dimensions of T are those of stress-M/LT2, the dimensions of k are L, 
and the dimensions of K are stress i.e. M/LT2. There are 8 - 3 = 5 groups, 

so 

therefore, 

so 

therefore, 

so 

therefore, 

Therefore, 

[(1Tl' 1T2, 1T3, 1T4, 1Ts) = 0 

1Tl =pavbdcT 

MaL-3aLbrbLCML -lr2 = 101 

M:a+ 1 =0, :.a=-1 

T: -b - 2 = 0,:. b =-2 

L: - 3a + b + C - 1 = 0, :. c = 0 

T 

1Tl = pv2 

1T2 = pavbdcl 

MaL - 3aLbT-bLc L = 101 

M: a=O 

T: -b =0 

L: -3a + b + c + 1 = 0; :. c =-1 

1T2 = lid 

1T3 = pavb~p. 

MaL - 3aLbT-bLcML -IT-l = 101 

M: a + 1 = 0, :. a = -1 

T: -b - 1 = 0, :. b = -1 

L: - 3a + b + c - 1 = 0, :. c = -1 

p. pvd 
1T3=- or 

pvd p. 

that is, Reynolds number. 

1T4 = pavbdck 

k has the dimensions oflength so 1T 4 = kid ~ the roughness number 

1Ts = pavbdcK 



Therefore, 

Therefore, 
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MaL -3aLbT-bLcML -IT-2 = 101 

M: a + 1 = 0, :. a = -1 

T: -b - 2 = 0, :. b =-2 

L: -3a + b + C - 1 = 0, :. c = 0 

K 
1T --

5 - pv 2 

N ow Kip = c2 where c is the velocity of transmission of sound in the fluid in 
question. Therefore, 

1Ts = (clv)2 

Now take the square root of the reciprocal so that 1Ts becomes vic. TIlis is 
the well-known Mach number. 

or 

So the required result is obtained: 

f(~,!..,PVd,~,~) = 0 
pv2 d IJ. d c 

7 = pv2 f(LPVd,~,!!..) 
d IJ. d c 
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The pressure difference between the ends of the pipe, p, must be related to 
the pipe wall shear stress by the equation 

.6.pA = TIP 

where A is the cross sectional area of the pipe, and P is the wetted perimeter of 
the pipe. 

Therefore 

'71 
Ap= AlP 

But AlP is called the hydraulic mean radius of the pipe (see Chapter 6) and is 
usually denoted by m (in American practice by R) therefore 

Ap = !!. 
m 

and the fluid head equivalent to this pressure difference is h = plw as w = pg. 
Therefore, 
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Denote 

then 
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( 1 pvdk v) [ -,-,-,- by [/2 
d J1 d c 

[lv 2 
hr =--

2gm 

(In American practice a value of [four times this size is used; thus the American 
expression is hr = flv 2 /8gm). 

This approach shows that [must depend upon the Reynolds number, the 
roughness number, the lid ratio and the Mach number. 

In almost all civil engineering practice the Mach number is so small as to 
suggest that compressibility effects are quite negligible. (This is not true in 
unsteady flow phenomena).lf the pipe length I is large in comparison with d, 
its effect upon the problem also ceases to be important. (This is equivalent to 
saying that the pipe entry length is very small in comparison with the pipe 
length-see Chapter 7 for a detailed explanation). Thus, these two numbers can 
reasonably be omitted in most pipe flow problems and then 

f= rp(Re, kid) 

This justifies the way in which Nikuradse, Stanton and Pannel have presented 
their results in graphical form. 

3.6 Units 

By considering the dimensions of a variable it is possible to 

(1) give names to the units in which variables are expressed. A simple example 
of this facility is velocity. The dimensions are LIT so the units of velocity are 
ft/s or cm/s or miles/hour. Again, the dimensions of dynamic viscosity are M/LT, 
so the units are slugs/ft or lbs/ft s or grams/cm s. The last unit is the one 
applicable to the cgs system and is usually called the poise in honour of 
Poiseuille, who did much of the early work on laminar flow. 

(2) convert from one system of units to another. Consider the coefficient of 
dynamic viscosity again. If it is required to calculate the number of poises in one 
slug/ft s then 

1 32·2 x 454 
Xx--= 479·6 

1 x 1 2·54 x 12 x 1 
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What has been done here is as follows: 
X x 1 gram/(1 cm xIs) has been equated to the number of grams in one slug 
(that is 32·2 x 454)/(the number of centimetres in one foot (that is 
2·54 x 12) x 1 second). Thus there are 479 poise in 1 slug/ft s. 

Similarly 

1 kg/m s = 10 poise 

and 

1 slug/ft s = 47'96 kg/m s 

or 

1 kg/m s = 0'0209 slugs/ft s 

3.7 Dimensional homogeneity of equations 

The reader should now be quite clear that it is only possible to equate like 
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things. Thus, if a mathematical equation has been developed, a check can be 
made upon its dimensional accuracy by ascertaining that all the terms in the 
equation have the same dimensions as one another and as the left hand side of the 
equation. This process will often reveal algebraic slips that have occurred in the 
process of developing an equation and the reader is strongly recommended to 
adopt this procedure as a standard routine in all his work; the process applies 
in all areas of study and is not, of course, confined to fluid mechanics. An equation 
which is dimensionally homogeneous is called a rational equation but some 
empirically derived equations are not dimensionally homogeneous, for example 
the Manning expression for the Chezy C, and these are called irrational. 

Worked examples 

(1) The flow through a sluice gate set into a dam is to be investigated by 
building a model of the dam and sluice at 1: 20 scale. Calculate the head at which 
the model should work to give conditions corresponding to a prototype head 
of 20 metres. If the discharge from the model under this corresponding head is 
0·5 m3 /s, estimate the discharge from the prototype dam. 

The variables involved are Q-the flow rate, d-a leading dimension of the 
sluice, h-the head over the sluice, p-the mass density of the water, g-the 
gravity field intensity and J,t- the viscosity of water, that is, 

f(Q, p, g, h, d, J,t) = 0 
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There are '6 - 3 = 31T groups. 

These are 

pagbhcQ 

pa~hcd 

pa~hc 

1Tl ~MaL -3aLbT-2bFL3T-l = 101 

M:a=O 

T:-2b-1=0, :.b=-1/2 

L: -3a + b + c + 3 = 0, :. c = -3 - b + 3a = -2! 

. Q 
.. 1Tl = g1l2h5/2 

1T2 ~MaL -3aLbT-2bLcL = 101 

by inspection, 1T2 can be seen to be d/h. 

1T3 ~MaL -3aLbT-2bFML -IT-l = 101 

M: a + 1 = 0, :. a = -1 

T: -2b - 1 = 0, :. b = -0·5 

L: - 3a + b + C - 1 = 0 

:. c = 1 + 3a - b = 1 - 3 + ! = -! 
• Jl. 
.. 1T3 = pgl/2h3/2 

The solution is thus: 

(Note that dimensionless groups can be inverted as they remain dimensionless). 
As flow through a sluice resembles flow through a large orifice, this expression 

requires slight amendment. 
Multiply Q/gl /2h5/2 by (h/d)2 

that is 

Q 

Then 
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This type of problem involves both the Reynolds and the Froude numbers. 

Q2 Q 
-=-=-- a: --=--
d2 y(gh) A y(gh) 

as A is a function of d 2 , but Q/A = v, so 

Q V v2 
--=-- a: --a: ---
d 2y(gh) y(gh) gh 

that is, the Froude number. 
As has already been demonstrated, it is not possible to obtain Reynolds and 

Froude-number modelling simultaneously. If the Reynolds number for the model 
is large, the value for the prototype will be even larger and the effect of the 
Reynolds-number variation will be minimal. Therefore, it is only necessary to 
model for the Froude number and the d/h value. 

dm/hm = dp/h p 

hp/hm = dp/dm = 20 

hm = 20/20 = I m 

Qp/Qm = (hp/h m )512 = 20 512 

Qp = ,20512 = 894 m3 /s 

(2) A model of an aeroplane built to roth scale is to be tested in a wind tunnel 
which operates at a pressure of 20 atmospheres. The aeroplane is expected to fly 
at a speed of 500 km/h. At what speed should the wind tunnel operate to give 
dynamic similarity between model and prototype. The drag measured on the 
model is 33·75 newtons. What power will be needed to propel the aircraft at 
500 km/h. 
Rayleigh's formula (equation 3.7) applies 

For dynamic similarity 

R = pv2/2cp(Re) 

Rem =Rep 

Pmvm/m ppvp/p 
---=--

Pm Pp 

Pp Pm Ip 
Vm =---v 

Pm Pp 1m p 

Now the coefficient of dynamic viscosity is not Significantly altered by pressure 
changes unless the pressure change is large, so: 

Pm = Pp 
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Due to the compressibility of air, 

Pm = 20 Pp 

As 

vm = -fax t X lOx vp = 250 km/hr 

Rem =Rep 

Rp/Rm = 20 X 4 X 102 

Rp = 8000Rm 

Power needed to propel the aircraft 

Questions 

500x 1000 8000Rm 
P = vpRp = 3600 x 1000 kW 

40000 
=--x 33·75 

36 

P= 37·5 MW 

(1) A sphere when placed in water moving at a velocity of 5 ftls [1·6 m/s] 
experiences a drag of 1 lbf [4 N] . Another sphere of twice the diameter is placed 
in a wind tunnel. Find the velocity of the air which will give dynamically similar 
conditions. Also find the drag in this case. vair/Vwater = 13. Pair = 0·08 Ib/ft3 
[1·28 kg/m3 ]. 

Answer: 32·5 ftls [10·4 m/s], 0·2171bf [0·865 N]. 

(2) Explain briefly the use of the Reynolds number in the interpretation of tests 
on the flow of liquid in pipes. Water flows through a i in [2 cm] dia. pipe at 
5 ftls [1·6 m/s]. Calculate the Reynolds number and find also the speed required 
to give the same Reynolds number when the pipe is transporting air. Obtain the 
ratio of the pressure drops in the same length of pipe in both cases. 

Vwater= 1·41 x 10-5 ft 2 /s [1·31 x 10-6 m2 /s] 

and Pwater = 62·41b/ft3 [1000 kg/m 3 ] 

Vair = 16·2 x 10-5 ft2/s [15·1 x 10-6 m2 /s] 

Pair = 0·075Ib/ft3 [1·19 kg/m3 ] 

Answer: 22 200 [24400], 57·5 ft/s [18-4 mls], 0·159 [0·157]. 
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(3) Explain what is meant by a non-dimensional coefficient and show that 
Reynolds number vd/v is non-dimensional. If the discharge Q through an orifice 
is a function of the diameter d, the pressure p causing flow, the density p, and 
the viscosity of the fluid /1, show that 

Q = Cp1l2d2/ pl!2 

where C is some function of the non-dimensional number dp 112 P 112 //1. 

(4) Show that one form of the law governing the frictional loss in a pipe can be 
expressed in the form 

and also show that 71 pv 2 is dimensionless, 7 being the frictional force per unit 
area of wetted surface. The frictional loss in a pipe carrying air is to be estimated 
from a suitable test on a similar pipe carrying water. Using the particulars given in 
the table, find the value of v and the ratio of the pressure drops per unit length 
of pipe, water to air. 

Fluid 
Pipe dia. 
inches [cm] 

Velocity 
ft/s [m/s] 

Density 
lb/ft3 [kg/m 3 ] 

Viscosity 
lb/ft s [kg/m s] 

Water 2 [5] v 62·4 [1000] 5·38 x 10-4 [8 x 10-4] 
Air 4 [10] 40 [12] 0·078 [1·24] 1·24 x 10-5 [1·84 x 10-5 ] 

A!lswer: Velocity 4·35 ft/s [1·3 m/s], pressure ratios = 18·9 [18·9]. 

(5) A cylinder 6 inches [0·16 m] in diameter is to be mounted m a stream of 
water in order to estimate the force on a tall chimney of 36 inches [1 m] 
diameter which is subjected to a wind of 100 ftls [33 m/s]. Calculate (a) the 
speed of the stream necessary to give dynamic similarity between model and 
chimney (b) the ratio of the forces per ft [m] run of height. 

Chimney p = 0·07 Ib/ft3 , /1 = 10·6 X 10-6 lb/ft s 

[1·12 kg/m3 ], [16 x 10-6 kg/m s] 

Model p = 62·3lb/ft3 , /1 = 5·4 X 10-4 lb/ft, 

[1000 kg/m3 ], [8 x 10-4 kg/m s] 

Answer: (a) 34·3 ftls [11·2 m/s]; (b) 0·0572 [0·0567]. 

(6) In the rotation of similar discs in a fluid in which the motion of the fluid is 
turbulent, show by the method of dimensions that a rational formula for the 
frictional torque T of a disc of diameter d rotating at a speed N in a fluid of 
viscosity /1 and density pis: 

T = pN2d s f(pNd21/1) 

Hence show that in similar discs rotating in the same fluid the frictional torques 
at the corresponding speeds vary as the diameter of the discs. What is the ratio 
of the corresponding speeds? 

Answer: NdN2 = (d2/d d2 . 
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(7) If the resistance to the motion of a sphere through a fluid is a function of 
the density and viscosity of the fluid, and the radius r and velocity v of the 
sphere, show that the resistance R is given by 

Hence show that if at very low velocities the resistance R is proportional to the 
velocity v than R = k WV where k is a dimensionless constant. A fine granular 
material of specific gravity 2·5 is in uniform suspension in still water of depth 
3·3 m. Regarding the particles as spheres of diameter 0·002 cm find how long it 
will take for the water to clear. Take k = 61Tand 11 = 0·0013 kg/m s. 

Answer: 218 mins 39·3 s. 

(8) Prove that the flow of a liquid over a 90° Vee notch can be expressed as 
Q = glJ2h S/2 cp(gh 3/v2) where h is the head and v is the kinematic viscosity. 
Experiments on the flow of water over such a notch show that very nearly 
Q = 1·3 h2.48 using metre, second units. Show that for a fluid the viscosity of 
which is n times that of water the corresponding formula is Q = 1·3 nO.0133h2.48. 

(9) It is found that the rate of discharge of fluids of viscosity 11 and density p 
flowing over a Vee notch is given by Q = gl/2hs/2~(pgl/2h3/2 /11) where h is the 
head and ~ is some unknown function. It is required to find the flow of fluid 
of specific gravity 0·8 and viscosity eight times that of water over a Vee notch 
with a depth of 0·3 m. It is found that when water is run over a similar notch 
the flow is given by Q = 0·828 h SJ2 m3/s, where h is the depth in metres. 
Determine the depth at which water should be run over this test notch and hence 
calculate the probable rate of flow over the working notch. 

Answer: 6·46 cm 0·0408 m3 /s. 

(10) A fluid dynamometer is to be used to absorb the power developed by an 
engine when under test. To check the design of the dynamometer a one fifth 
scale model was built and tests were carried out on it. Test results were as follows. 

Model speed = 2500 rpm; torque developed = 5·23 lbf ft [7 Nm] 

The kinematic viscosity of the oil to be used in the prototype dynamometer is 
to be ten times that used in the model and the specific gravity will be the same. 
At what speed should the prototype dynamometer be run to obtain dynamic 
similarity to these model conditions and what torque and power will the proto
type dynamometer then be developing. 

Answer: 2615lb ft [3500 Nm], 497·9 hp [367 kW], speed for dynamic similarity 
= 1000 rpm. 
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(11) A model submarine is tested in an air stream at an air pressure of 25 
atmospheres. The velocity of the air flow is 40 ft/s [12 m/s]. The model is 
built to a one tenth scale. At the test speed the model experiences a drag of 
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30 Ibf [120 N]. At what speed will the prototype be travelling when dynamic 
similarity exists between it and the model and what horsepower will it dissipate 
at this speed? The kinematic viscosity of air at atmospheric pressure is thirteen 
times that of water and its density at atmospheric pressure is 0·079 Ib/ft3 

[1·26 kg/m3 ]. 

Answer: 7·7 ft/s [2·3 m/s], 49·2 hp [32'2 kW]. 



4 The Basic Equations of 
Engineering Fluid Mechanics 

In Chapter 2 the mathematical approach to fluid mechanics was outlined. It is 
undoubtedly a very powerful technique but it is not the only approach available. 
Engineers use essentially the same methods in a rather different form. For example 
the continuity equation, the force equation and the energy equation, all of which 
were given in cartesian coordinates and in differential form in Chapter 2 are used 
in their natural coordinate integrated forms in engineering practice. 

4.1 Continuity equation 

Consider the flow between two streamlines (Fig. 4.1). In time a t element ABCD 
will move to position A'B'C'D'. Now no flow can cross streamlines as these are by 
definition lines drawn in the fluid parallel to the direction of motion of the fluid 
particles. 

The amount entering across AB in time a t must be P I a I V I a t and the amount 
leaving across CD must be P2a2 V2 a t. Nowaxi = VI a t and aX2 = V2 I)t so the 
amount stored must be stored within the volume A'B'C'D'. If the flow is steady, 
no storage can occur, so 

or 

pa V = a constant 

If the fluid is incompressible P is constant and then 

a V = constant 

110 
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CO 

Fig. 4.1 

By differentiating these equations, the differential forms given in Chapter 2 can 
readily be obtained: 

8p/p + 8a/a + 8V/V= 0 

4.2 The force equation 

The force acting on un element causes a change of momentum according to 
Newton's second law. Let the total force be F, the component in the x direction 
Fx and in the y direction Fy- From Fig. 4.2 

The force 

d d 
Fx= - (MV cos a) =M - (V cos a) 

dt dt 

( av av) =M V-+- cosa ax at 
but for the case of steady flow 

so 

av 
-=0 at 

av 
Fx=MV-cosa ax 



112 An Introduction to Engineering Fluid Mechanics 

I 

I 
--.. 

--.. 
~ \ ---.. v" --.. 

\ ---.. 
>-

Area 0, 
Area 02 

Pressurep, 
Pressure P2 

,L 

(0) 

L 

(b) 

L 

(c) 

Fig. 4.2 
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But 

so 

M= pa ax 

Fx = p(aV) av cos a 

Fx = pQ au 

Similarly the application of Newton's second law in the y direction gives 

In natural coordinates 

F= pQ av 

This approach can be used as it stands remembering that F must include 
pressure forces acting upon the element plus any external forces. 

Alternatively a further developed equation can be used, as will now be shown. 

but as 

Q au=a1v1au 

= al V1(U2 - ud 

a1V1 =a2 V2 

QaU=a2 V2u2 -a1V1uI 

Consider the projections of areas a I and a 2 on to planes perpendicular to the 
x direction. Call these a Ix and a2x (see Fig. 4.2c). Then 

But 

and 

a Ix = a I cos a I and 

a2x = a2 cos a2 

UI = VI cos al and 

U2 = V2 cosa2 

Ifwe denote the external forces asfx andfy and resolve in the x direction 

Plalx - P2a2x + fx = a2x vi - alx Vf 

(4.1) 
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By an exactly similar process, the force equation in the y direction is 

(4.2) 

Note: bothfx andfy are external forces acting on the element (in the x andy 
directions respectively). The pressure forces acting on the ends of the element 
were included in equations (4.1) and (4.2) but the pressures on the sides of the 
element were not included: these contribute to the forcesfx andfy. 

4.3 The energy equation 

Consider an element of fluid between two streamlines (Figs. 4.3a, b). Assume 
that the area, velocity and pressure increase with s. (This means there are no 
complications with signs in the following equation). Pressure forces act upon all 

p+ -:; 8s 

p 

Fig. 4.3 

sides of the element. If the element is small the mean pressure on the sides of 
the element is closely approximated by p + 1 (ap/as) l) s. The force acting in the 
direction s is 

( lap ) aa ( ap ) ( aa) ( 1 aa ) pa+ p+--8s -l)s- p+-l)s a+-l)s -w a+--l)s a~sine 
2 as as as as 2 as 

The second term is the component of pressure force acting in the s direction 
caused by the pressures on the sides of the elements. Remember that pressures 
act equally in all directions and that the projection of the side area of the 
element onto a plane perpendicular to the s direction is aa/as as. The fourth 
term is the component of the weight of the element acting in the s direction. 
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Expanding, this expression gives 

oa 1 opoa 
Force = pa + p -~s + - -- (~S)2 

oS 2 os os 

op oa op oa 
-pa -a -8s - p -8s - __ (8s)2 

os os os os 

w oa 
-wa 8s sin 8 - - - (8s)2 sin 8 

2 os 

Ignoring terms containing (~S)2 and simplifying gives 

Now 

op 
Force = -a -8s - wa 8s sin 8 

os 

8ssin8=~z 

op 
Force = -a -~s - wa 8z 

os 

This force causes the acceleration of the element according to Newton's second 
law: force = mass x dV/dt. Now mass = pa ~s and dV/dt = V oV/os + oV/ot 

-a-8s-wa8z=pa8s V-+-op ( oV OV) 
os os ot 

op (OV OV) oz -+p V-+- +w-=O 
os os ot os 

If the flow is steady 0 V/ot = 0 so 

op oV OZ 
-+pV-+w-=o 
os os os 

Integrating with respect to s gives 

p + P V 2/2 + wz = constant 

Dividing through by w 

p/w + V2/2g + z = constant 

This is called Bernoulli's equation. Each of the terms in this equation represents 
a component of energy per unit weight of the fluid. 

When developing the Bernoulli equation no external forces were taken into 
account. Such external forces could be generated by friction between the element 
and adjacent fluid and this would cause energy loss so that Bernoulli's equation 
would not apply. Bernoulli's equation can only be applied if no energy losses 
are occurring. 
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4.4 Flow through small orifices 

Energy losses as fluid moyes down a stream tube as shown in Fig. 4.4 are very 
small, so the application of Bernoulli should be appropriate. The centre line of 
the tube is defined as the line joining CD and @, so 

h 

PI vt P2 vi 
-+-+ZI =-+-+Z2 
W 2g W 2g 

Fig. 4.4 

(4.3) 

To solve this equation for one variable, the values of all the others must be 
known. PI is atmospheric pressure, VI is very small if the orifice is small and 
the tank large so Vt 12g is negligible, Z I - Z 2 is the height of the water surface 
above point 2. Unless P2 can be specified nothing further can be done. If the 
point 2 is assumed to be in the plane of the orifice P2 is not atmospheric 
pressure because the streamlines are heavily curved. These curvatures mean that 
the pressure at the centre of the orifice should be greater than atmospheric 
pressure so that outwardly directed pressure gradients can exist which will 
provide the centrally directed forces for the required centrally directed accelera
tions. At the first point where the streamlines are parallel in the effluxing jet 
the pressure is atmospheric so this is the position chosen for point 2. This point 
where the sides of the jet first became parallel is called the vena contracta and 
the pressure here must be atmospheric pressure. Then if Pa is the atmospheric 
pressure equation (4.3) becomes 

Pa/w + 0 + h + Z2 = Pa/w + Vil2g + Z2 

so 

Vil2g= h 

so 

V2 = y'(2gh) 
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This is not perfectly true because there is a small energy loss which was not 
taken into account. A coefficient can be introduced so that this expression 
gives an accurate result 

V= Cy y(2gh) 

The coefficient Cy is called the coefficient of velocity of the orifice. For a 
sharp-edged small orifice (that is d 0 ~ h )Cy is approximately 0·98 which shows 
how well the energy approach works. The flow through the orifice is given by 
the product of the velocity and the area of the jet at the vena contracta. 
That is 

Q= VA yc 

Q = Cy A ye y(2gh) 

Unfortunately, the area of the vena contracta is not easily calculated by a 
theoretical method and an element of empiricism must be introduced. The ratio 
of the area of the vena contracta to the area of the orifice is called the coefficient 
of contraction of the orifice Ce . 

so 

the coefficient Cd is called the coefficient of discharge and is equal to the product 
CyCe. The relationship between the three coefficients and h is shown in Fig. 4.5. 

1-0 Cv~0-98 r 
<J ~ C,='=O- 66 

"0 
c.=,=o- 63 

c 
0 05 

~ 

\.l 

Fig,4.5 

4.4.1 Time of emptying a tank through an orifice Let the cross sectional area 
of the tank be AT' The continuity equation is 

-ATdh=Qdt 
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(tank volume reduction = outflow rate x time in which the volume reduction 
occurs). h is the surface elevation above the orifice at time t and the negative 
sign is introduced because dh is a depth reduction. 

Integrating 

-AT dh = CdAoy(2gh) dt 

-AT dh 

2A H1I2 
t= T 

CdA o (2g) 112 

(H is the initial depth at time t = 0). 

4.4.2 Time of equalisation of levels in two tanks Denote the initial levels in 
two tanks, referred to the plane of the orifice, by H I and H 2 and the level 
difference by H (see Fig. 4.6). Denote levels at a time t by h I and h2 and level 
difference by h. 

Efflux through the orifice = Q = CdAo(2gh)1I2 

-AI ah l =Qdt 

also 

and 

A, 
- -

----- -
h 

- ----
H, 

hi 
A2 

I-. 

H2 

t 
Fig. 4.6 
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(remember that a decrease in level has a negative value) 

so 

A 
8h2 =-8h+8h1 =---.18hl 

A2 

8h 
3h 1 =---

1 +AdA2 

- AlA 2 8h = Q 8t = C A (2gh)112 8t 
Al+A2 dO 

_ A lA2 -112 
dt-- CdA O(2g)II2(AI +A2)h 8h 

_ 2AIA2 1I2]H 
t - (A 1 + A 2)CdA o (2g) 112 [h 0 

2f{1I2 

The value A2 = infinity corresponds to the emptying of a single tank. 

4.5 The venturimeter 

The venturimeter is a flow-measuring device used for pipelines. It consists of a 
tapered convergent pipe section followed by a slowly divergent pipe section as 
illustrated in Fig. 4.7. Pressure tappings at the meter entry and the throat each 

Fig. 4.7 
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consist of three holes drilled into the tube at the cross section concerned, the 
holes being located at 1200 angular spacings around the section. These three 
holes connect to a gallery which is, in turn, tapped for the manometer connection. 
The way in which the holes are drilled is important. It is vital that the internal 
surfaces adjacent to the holes should be smooth and flat. In large meters they 
can be scraped down but in small meters it is desirable that the holes should be 

LOW pressure 
'\ 

Fig. 4.8 

HIgh pressure"" 

s: -- · -~~F> 

JzzzzzJl ozzzza 
Fig. 4.9 

drilled either through the pipe wall into a plug or through the pipe wall and then 
into and through the diametrically opposite pipe wall. The entry hole should be 
plugged and the diametrically opposite hole used. These techniques avoid roughening 
of the hole edge which may cause reduced pressures at the tapping due to 
curvilinear flow in the boundary layer. A metal fragment adhering to the hole 
edge may cause higher or lower pressures at the hole depending on whether it is 
located on the downstream or upstream side of the hole (see Figs. 4.8 and 4.9). 

The downstream divergent section of the venturimeter is used to reconvert 
high velocity heads at the throat back to pressure head with minimal loss. 

4.5.1 Venturimeter analysis Apply Bernoulli's equation to the entry section 1 
and to the throat section 2 

v~ - vi Pl - P2 
---= +Zl -Z2 

2g W 
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But by continuity al VI = a2v2, 

so 

[(aI )2 -1] vj =~+ZI -z2 
a2 2g W 

_ [2g (IlP/W + Zl - Z2)]II2 
VI -

(ada2)2 - 1 

[2g(IlP/W + zI - Z2)] 112 
Q=alVl =aIa2 2 2 

al -a2 

Because small energy losses occur in the convergent section a coefficient of 
discharge must be introduced into Bernoulli's equation. 

Cd will be 0·98 if 

_ [2g(IlP/W + Zl - Z2)]II2 
Q - Cda I (1)2 1 

\alla2 -

(1) The Reynolds number for the pipeline is such that flow is turbulent. 
(2) The pressure tappings are constructed as described above. 
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(3) No bends or valves occur in the pipeline within a length of twenty 
diameters upstream ofthe meter. Bends cause secondary flows (see Section 5.5) 
generating helical flow patterns which must die away before the flow enters the 
meter. 

(4) The local pressure never falls below the pressure at which gas is released 
from the water, that is about 8 ft [2.3 m] head absolute. 

A typical Cd curve is shown in Fig. 4.10. 
The largest effect causing Cd to be less than unity is the non-uniformity of 

the velocity distribution across the pipe. This means that the assumption that 

I· 0 r-----:::::::===========~O~.9:;;-8 r 
Cd 0·5 

() 

Fig. 4.10 
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v2 /2g represents the mean kinetic energy per unit weight of flow is not strictly 
accurate. This is itself a friction effect of course. 

The energy loss in the convergent cone can be calculated if the Cd value is 
known. The Bernoulli equation is written including an allowance for friction loss, 
that is 

Pl vi P2 v~ -+ -+Zl = -+-+Z2 +hf 
w2g W 2g 

where hf is the head loss due to friction. 
Then as before 

from before 

but 

so 

Ca(f:!.p/W + Zl - Z2) = (f:!.p/w + Zl - Z2 - hf ) 

hf = (f:!.p/w + Zl - z2)(1 - Ca) 

hf = (~_ I) Q2 (~_~) 
Ca 2g a~ ai 

As the result stands it is suitable for use with a meter equipped with pressure 
gauges to measure pressuresPl> andp2. Usually venturimeters are equipped with 
some form of differential manometer rather than pressure gauges. In these 
circumstances the manometer will correct automatically for non-horizontality 
of the meter-see Fig. 4.11, and PA will be equal to PB. 

Pl + WfS + wfhm = P2 + Wf f:!.z + WfS + wmhm 

but f:!.z = Z2 - Zl, 
so 
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B 

A--f-'; 

Fig. 4.11 

In effect, the lack of horizon tality of the meter does not affect the manometer 
readinghm, 
so 

4.6 Notches 

A notch is a device which permits water to flow through it, developing a free 
surface as it does so. Notches may have a number of different shapes-triangular, 
circular, trapezoidal, rectangular or hyperbolic. 

The model that has been developed to predict the relationship between the 
flow Q and the head H over the base of the notch is a poor one and many people 
think that it should no longer be used. While accepting that the theory is based 
on unrealistic assumptions, I feel that it is worth including so that comparisons 
can be made with the results obtained from dimensional considerations 
(Chapter 3). 

4.6.1 The Vee or triangular notch The Vee notch is illustrated in Figs 4.12a and b. 
It can be argued that a vena contracta is formed at section 2 and that 

Bernoulli's equation can be applied between sections 1 and 2. If the cross 
sectional area at 1 is large by comparison with that at 2 the velocity there will be 
small and v~/2g will be negligible. 
Hence 

pdw = h + Pa/w = P2/W + v~/2g 
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H 

(a) ( b) 

Fig. 4.12 

We make the assumption that the flow through section 2 is not curvilinear 
and thus the pressure there is atmospheric. (This is a highly unrealistic assumption 
as the flow nowhere becomes linear but is always curvilinear, i.e. no real vena 
contracta is formed.) Then V2 = CvC2gh)1/2, allowing for energy losses. Assuming 
that the vena contracta effect causes a reduction of the flow area of the element 
so that it is given by Ccb 0 h 

8Q = CyCcb 8h(2gh)1I2 
But 

b = 2(H - h) tan 6/2 

8Q = 2CCCy tan 6/2 (2g) 1I2(H - h)h 1l2 8h 

Integrating between 0 and H 

Q = 2Cd tan 6 /2 (2g) 112 [,Hh 312 - thSI2]~ 

Q = !sCd tan 6/2(2g)1I2/{SI2 

It will be seen that the coefficients of contraction and velocity for the 
element that have been introduced have been assumed to be constant for all 
elements. It is improbable that this is true. In any case, as has been said before, 
no true vena contracta can be said to occur in the flow. 

It is surprising to find that the equation works reasonably well if an experi
mentally derived value for Cd is used. The result obtained from dimensional 
analysis is 

that is, 

Q=gl12HS12 rp(bIH,Re, We) 

The effect of blH in the function can be interpreted as tan 6/2. Thus the 
coefficient of discharge is given by 

8 
Cd = -..;'2 rp(Re, tan 6/2, We) 

15 



The Basic Equations of Engineering Fluid Mechanics 125 

As b/H is fIxed for all values of H it can be predicted that Cd should vary from 
notch to notch depending upon the value of the vertex angle but that for notches 
having the same vertex angle it should only depend uponRe if depths are such that 
surface tension effects can be neglected. At high Reynolds numbers it would be 
reasonable to expect the coefficient of discharge to become constant and 
invariant with Reynolds number. This in fact occurs as shown in Fig. 4.13. 

1·0 

"------

Fig. 4.13 

The Vee notch is thus an excellent notch to use without calibration providing 
it is worked at high levels. 

For a 90° sharp-edged Vee notch Q = 2·48H2.48 where Q is in ft 3/s and H is in 
ft is an excellent formula. A satisfactory approximation for this formula when 
using SI units would be Q = 1·37H2.48. The nearness of the index 2·48 to the 
theoretical value of 2·5 shows how very nearly constant the coefficient of dis
charge becomes over the working range of pressure head. It is important that a 
Vee notch working with water should not be operated under a head less than 
0·75 inches if this formula is to be used; this is due to the increasing signiflcance 
of surface tension at low heads. 

4.6.2 The rectangular notch The criticisms of the theory advanced for the Vee 
notch applies with equal force to the rectangular notch. This is illustrated in 
Fig. 4.14. As for the Vee notch 

so 
~Q = Cdb 3hy(2gh) 

H 

Q = Cd b(2g)1/2 f h 1/2 dh 
o 

The curve corresponding to this equation is shown in Fig. 4.15. 
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Fig. 4.15 

Compared with the Vee notch the rectangular notch needs calibration more 
because its Cd value varies more over the operating range. Cd values for Vee 
notches range from 0·62 to 0·59 as the 8 value is reduced from 180° to 90°. 

A formula advanced by Francis for rectangular notches which attempts to 
account for approach conditions is 

or 

Q = 3·33 (b - 0·1 nH)H312 where Q is in fe/s and 
H is in ft. 

Q = 1·84 (b - 0·1 nH)H312 where Q is in m3 /s and H is in m. 

n is the number of side contractions. A side contraction is illustrated in Fig. 4.16. 
The vena contracta of a notch such as that in Fig. 4.16 has a shape like that in 
Fig. 4.17 (here there are two side con tractions.) 

If the notch is at the end of a channel and one side of the notch is located at 
the side of the channel (Fig. 4.18a) then the con traction at that side will be 
inhibited (Fig. 4.18b) and n = 1. 
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Fig. 4.16 

Shape at jet 
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a 

Fig. 4.17 
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If the notch occupies the full width of the channel then both side contractions 
will be suppressed. The equation suggests that tan a= 0·2 (see Fig. 4.17 for the 
definition of a), the mean reduction of width caused by one side contraction is 
!H tan a so the net reduction of the notch breadth caused by n side contractions 
is 0·1 nH. 

The dimensional analysis of rectangular notches (Chapter 3) gives 

(
pgll2H312 b) 

Q = g1l2 bH3/2 rp 11 'Ii ignoring surface tension effects 

Comparing results: 

so 

and 

in this case blH is not constant so the value of Cd will vary not only with the 
Reynolds number but also with the value of blH and so cannot be expected to 
be a constant, as was the case with the Vee notch. 

Notches can have other geometrical shapes-semicircular, parabolic and 
hyperbolic. The analysis for such shapes is similar to that already demonstrated. 

4.7 Pipe diaphragm orifices 

The venturimeter is unquestionably the best instrument for measuring 
flow in pipes as it causes very little energy loss. Unfortunately, the instrument 
is expensive and in circumstances in which initial cost matters but head losses 
in the meter do not, the pipe orifice can be used. 

It can be arranged in two configurations as shown in Fig. 4.19. Pressure 
tapping 1 is located upstream of the orifice at a point where the flow is axial 
and has not started to curve inwards to pass through the orifice. Pressure tapping 2 
may be located opposite the point where the vena contracta forms. If the 
second tapping is located at point 3, Bernoulli's equation cannot be applied 
because of the very large energy loss caused by the flow divergence from the 
narrow vena contracta to the full pipe bore. Usually the flow becomes very 
turbulent as it diverges and this gradually dies away to a much smaller level 
downstream from the orifice as the local turbulence is transformed into heat. 
The two configurations must be analysed separately. 
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'Dead'space 

o 
Fig. 4.19 

(1) Second tapping located at the vena contracta 

Bernoulli's equation can be applied reasonably accurately to points 1 and 2. 

and 

Then 

and 

so 

and 

This result is the same as the venturimeter result. But 
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(2) Second tapping located at point 3 

An estimate for the energy loss per unit of fluid in the downstream section must 
be made. 

From Bernoulli's equation 

P2/W + v~/2g = P3/W + v~/2g + h f 

hf denotes the energy loss/unit weight between points 2 and 3. 
Then 

(P3 - P2)/W = (v~ - v~)/2g - hf 

---~-- ,---

Fig. 4.20 

An 'external' force is acting upon the fluid in the divergent section due to 
the pressure of the fluid in the 'dead' space. (See Fig. 4.20). The force equation 
is 

An assumption about the value of P4 must now be made. As the flow at point 
2 (the vena contracta) is parallel, the pressure just outside the area must be the 
same as the pressure within the area, i.e. P4 = P2. The assumption that P4 = P2 
and that P4 is constant over the area leads to a result which can be justified 
experimen tally. 
So 

but 

P2a2 + a2wv~/g - P3a3 - a3wvVg + P2(a3 - a2) = o. 
(P3 - P2)/W = (a2.v~ - a3Vn/ga3 

v~ - V3 
-=---=--hf 

2g 
2(a2/a3)V~ - 2v~ 

2g 
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so 
V~ - 2V2V3 + V~ hr = --"-----='---"'---"-

2g 

hr = (V2 - V3)2/2g 

Applying Bernoulli from points 1 to 3 

Pllw + vi!2g = P3/w + v~/2g + (V2 - V3)2/2g 

(V2 - V3)2 
asvl=v3 

2g 
Pl -P3 

w 
so 

Pl-P3=(a3 _ 1)2 v~ 
w a2 2g 

J{ 2g(pl - P2)/W} 
Q = a3v3 = Cva3 (miCe _ 1)2 

This result is very different from the result for the first configuration. (Note 
that an assumption was made that no energy loss occurred between points 1 
and 2.) 

4.8 The pitot tube 
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The pitot tube is a device for measuring local velocities in a flow. It consists of 
two concentrically arranged tubes bent to form a right-angle bend as illustrated 
in Fig. 4.21. One leg of the bend is aligned with the direction of flow. The 

/' Pressure toppings to 
A ' differential manometer 

B 

u .. 
® 4 

p .. .. 
CD ® 

Fig. 4.21 
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inner tube has an open end and the sealed outer tube has a streamlined shape. A 
number of small holes (usually 6 or 8) is drilled through the outer tube a small 
distance from the nose of the device (approximately 2 inches). The pressure at the 
stagnation point located at the upstream tip of the device is thus transmitted to 
tapping A while the ambient pressure of the flow is transmitted to tapping B. The 
difference in pressure between tappings A and B can be measured by any suitable 
differential manometer. 

Applying Bernoulli's equation to points 1 and 2 gives 

pdw + U2/2g = P2/W + 0 

(the velocity at point 2 is zero as this is a stagnation point). Applying the same 
equation to points 3 and 4 

But P3 also equals PI 
so 

P3/W + U2 /2g = P4/W + U2/2g 

P3 =P4 

PI =P4 

(P2 - P4)/W = U2/2g 

The pressure head (P2 - P4)/W is the pressure head measured by the mano
meter h, therefore U = (2gh)112 where h is the head measured by the manometer 
after it has been converted into head of working fluid; that is if hm is the mano
meter head h = (Sm/Sf - l)hm (where Sm is the specific gravity of the mano
meter fluid). 

A coefficient of velocity must be introduced because of small energy losses. 

U = Cv[2g(smfSf)hml 1/2 (4.4) 

Cv for a well designed pitot tube lies between 0·98 and 1·0. 

4.8.1 Pitot tube used in a confined space If a pitot tube is used to measure 
velocities in a pipe the result obtained above needs modification because of the 
constriction in the flow that the pitot tube itself creates. (See Fig. 4.22). 

@) 
f3\ '>. .. 
\.::J "'. 
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Fig. 4.22 



As before 

and 
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P3/W + U2/2g = P4/W + va!2g 

UA 
V4=-

A -a 

where A is the pipe area and a is the pitot tube cross section. But 

P3 = P 1 as before 

Pl U P4 • 2 (4)2 U2 

-;+ 2g =-;-+ A -a 2g 

Pl -P4 =[(~)2 -1] U2 
w A -a 2g 

and 

Eliminating P 1 from these equations gives 

P2 - P4 = (~)2 U2 

w A-a 2g 

if a -+ 0 or A -+ 00 the previous result is obtained 

It is desirable to make a as small as possible compared with A, if the simpler 
result (4.4) is to be used. 

4.9 Applications of the force equation 

4.9.1 Force on a tapered bend A tapered bend is illustrated in Fig. 4.23. The 
force equation is 
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In the x direction 

( PI+Vi)AI _(P2+V~)A2 cosa=-Ix 
w g w g w 

In the y direction 

_ (P2 + v~)A2 sin a = _ b 
w g w 

Now Ix andly are the forces that the bend exerts upon the fluid in the x andy 
direction so as to change its direction. The forces that the fluid exerts upon the 
bend, Px and Py , are equal in magnitude but opposite in direction by Newton's 
third law so 

and 

Applying the energy equation 

PI vi P2 v~ -+-=-+
w2gw2g 

if the bend is in the horizontal plane so that Z I = Z 2 and if energy losses are 
negligible. Also 

A IVI =A2v2 (continuity equation) 

By substitution 

Px = (pIAl +pA1vD -[(PI +p (l-(~:r) v2i)A2 cos a 

+ pA 2 cos a v ~ ] 
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Now substituting for V2 

2 { 1 ( (A I )2) A ~ } Px=PI(AI-A 2 coso:)+pvI A I -2" 1- A2 A 2 coso:- A/oS 0: 

Also 

_ I VI . Al 2 . [ ( (A )2) 2] ( )2 Py -- PI- 1- A2 P2 A2 smo:-p A2 A2 VI smo: 

P x and P y act in the directions shown in Fig. 4.23. 

A 2 P2 V2 

--- --- -+---:::o,L-...L..- L 
V, 

Fig. 4.23 

4.9.2 Forces acting on vanes 

Jet impact on a flat vane (Fig. 4.24) 

_fX=(PI+V~)a _(P2+V~)a 
w wg I W g 2 
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Fig. 4.24 

The force on the vane is made up of two parts, one due to the jet and the other 
due to the ambient pressure Po. If the area of the vane isA then there is a force 
acting on the vane due to the ambient pressure of Po(A - al) - poA = -POal' 
As the jet is free (unbounded) the pressure within it must be equal to the 
ambient pressure so PI = P2 = Po. Therefore the force on the vane = -fx - Pial' 
The area of flow leaving the vane resolved into the x direction = a2 = O. 

(Note that pav 2 = pav x v = mass flow x velocity 

= rate of momentum transfer.) 

If the ambient pressure had been taken as zero this result would have been 
obtained immediately. It is clear that in the case of free jets impinging upon 
vanes the ambient pressure can produce no net force upon the vanes and this 
method of making the ambient pressure zero is legitimate. 
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Jet impact upon a curved vane (Fig. 4.25) 

In the x direction 

w g g 

w g g 

~ r 
~ 
F; t 

AI 

P .. 
I 

vI L 
Fig. 4.25 

Now A I VI = A2v2 (continuity equation) and because of friction between the 
fluid and the vane V 2 is less than v I • Assume 

In the y direction 

w 

V2 = kVI where k ~ 0·85 

fx A lvi 
--=-- (1 - k cos 1') 

w g 

Px = -fx = pA l vi{1- k cos 1') 

g g 

P y = - fy = - pA I vi k sin l' 

The negative sign means that P y is in the direction of y decreasing. 
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4.10 The variation of the Bernoulli constant across stream lines 

Bernoulli's equation is 

P v2 
-+-+z=E 
w 2g 

where E can be regarded as the total energy of a unit weight of fluid and has the 
dimension of distance. Up to this point it has been treated as a constant along a 
stream line if the flow is not frictional. It was pOinted out earlier that when flow 
is along a curved path there must be radial pressure gradients within the fluid 
to provide the necessary centrally directed forces to maintain curvilinear motion. 
This can make it difficult to specify the value of p except in circumstances in 
which a stream tube is straight or on free surfaces. 

In such circumstances it becomes necessary to consider how E varies with 
radius, that is to obtain an expression for de/dr. From this it should be possible 
to deal with some of the simpler circular motions such as vortex motions. It must 
be emphasised that the analysis given below can be applied only to steady state 
conditions. The decay of a vortex can be analysed (see Viscous Flow, volume I 
by Shih J. Pai, page 66) but this is beyond the scope of this book. The initiation 
of a vortex by the rolling up of a vortex sheet followed by inwards diffusion of 
vorticity is an extremely difficult problem to analyse and has only been achieved 
in a limited number of special cases. 

Consider steady flow between two curved streamlines, treating it as a two 
dimensional problem. There will be a pressure gradient within the flow, the 
pressure increasing in the radial direction (See Fig. 4.26). 

ap" p+ a,: or 

v+~ 8r 
r 

v 

Fig. 4.26 
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Resolving forces acting upon the element in the radial direction: 

(1) Pressure forces 

The pressure force acting outwards is 

139 

Note that the last term in this expression is the component of the pressure force 
acting on the sides of the element resolved in the radial direction. 

Simplifying and ignoring second order small quantities reduces the expression 
to 

(2) Weight forces 

The weight of the element is wr ao ar. Its component in the outward radial 
direction is 

-wr ao ar sin 0 

but ar sin 0 is 8z, the change in elevation from the lower to the higher streamline, 
so the weight force acting in the outward radial direction is 

-wraz 80 

The total of these two forces creates the required centrally directed acceleration 
v2/r 
so 

Simplifying 

ap dz w v2 
-+w-+--=O ar dr g r 

Differentiating Bernoulli's equation gives 

dE d(P/w) v dv dz -=---+--+-
dr dr gdr dr 

=! (dP + ~v dv + W dz) 
wdrgdr dr 
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Now under conditions of steady two-dimensional flow aplar = dp/dr so 
substituting for dp/dr 

~ (_ w dz _ ~ v2 + ~ v dv + W dz) = dE 
w dr gr g dr dr dr 

Rearranging and cancelling gives 

(4.5) 

This equation can be used to solve the steady states of two vortices which are of 
common occurrence. 

4.11 The free vortex 

In a flow which is not significantly affected by friction any perturbation of the 
flow will generate rotational motion and the vortices so created are known as 
free vortices. The free vortex is not self sustaining and the model of a steady
state free vortex is unrealistic as even a small amount of friction in the flow 
would cause it to decay. However, it is an extremely useful mathematical 
concept because when it is combined with an inwardly directed flow (a sink) 
a self sustaining flow results and here the mathematical solution is a very good 
description of such natural phenomena as the bath tub vortex, the tornado, the 
hurricane, the cyclonic flow and the whirlpool. When the flow is outwardly 
directed the combination of a free vortex and a source describes the behaviour 
of anticyclones. 

To start a free vortex no more energy than is already in the flow is required, 
but it is necessary to introduce some rotational motion. By adding a 'swirl' to a 
sink flow a free spiral vortex can be produced for instance. If the production of 
the rotation introduces no angular momentum to the flow then two vortices 
of equal and opposite sign will be generated. An example of this is the twin 
vortices found upstream of undershot sluice gates. 

It is a common statement that in the northern hemisphere a free spiral vortex 
will rotate in an anticlockwise direction and conversely, in the southern hemi
sphere it will rotate in a clockwise direction. This statement is true if no initial 
predisposing whirl causes the vortex to rotate in an opposite direction. The 
effect of the earth's rotation upon the direction of the vortex is small and almost 
any initial whirl or geometrical asymmetry will be sufficient to mask the earth's 
effect. 

The way in which the earth influences the direction of a free vortex can be 
understood as follows. Imagine a large water-filled circular tank placed exactly 
above the north pole of the earth. The water in the tank will rotate once a day in 
an anticlockwise direction viewed from above, as does the earth. If a central 
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plug is now removed, water from the periphery will more inwards and because 
no energy or angular momentum is added it will travel more rapidly around the 
centre in order to keep its angular momentum constant as its distance from the 
centre of rotation is reduced. As the initial direction of rotation was the same as 
that of the earth the vortex will be moving in an anticlockwise direction. As no 
energy has been added to the flow the energy of any particle must remain 
constant so the increase in its kinetic energy that occurs as its radius of motion 
decreases must be at the expense of its positional and pressure energy, so its 
depth must decrease. 

4.11.1 The analysis ofthe free vortex The free vortex, ideally, dissipates no 
energy. Thus throughout it, E is constant and dE/dr = O. 

dv/dr + vir = 0 

so 

dv/v = - dr/r 

log v + log r = A 

and 

vr=C 

or 

v= Clr 

The constant C is called the strength of the vortex. In Chapter 2 it is shown that 
C is related to the circulation r by the equation r = 21fC. 

As the energy of the flow field is invariant Bernoulli's equation can be applied 
across streamlines as well as along them. 

Considering two streamlines at radii Rand r and applying Bernoulli's equation 

PR v'kt Pr vlt -+-+zR =-+-+z 
w 2g w2gr 

(4.6) 

(The second subscript t denotes the tangential direction). Substituting 

Vrt = C/r and VRt = CIR 

PR - Pr C2 (1 1 ) 
w + zR - zr = 2g r2 - R2 
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But, from Fig. 4.27 it can be seen that 

PH 
W 

d" 

+ 
d, 

ZR Z, 

R 

.I 

Undisturbed 
/POOI depth 

Surface profile 

Datum 

velocity profile 

C 
Ur= r 

r 

Fig. 4.27 

is equal to 

so 

dR -d = C
2 (~--4) r 2g r R 

and this is the equation of a second order hyperboloid. 
It R is made equal to infinity VR ~o and d r ~doo which is the undisturbed 

pool depth, so 
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Of course, in a real vortex the velocity gradients near the centre become so large 
that viscosity effects prevent the development of the central infinite velocity 
and infinite value of or that the theory predicts. Points in flows at which such 
infinite values are predicted are called singular points. 

4.12 Radial flow 

A flow of this type is either a sink or a source and in the case when no external 
energy is added to the flow and none is taken from it by such mechanisms as 
friction, Bernoulli's equation can be applied along radii. Denoting velocities by 
VRr and Vrr where the subscript r denotes the radial direction 

2 2 
PR - Pr + = Vrr - VRr 

W ZR -Zr 2g 

Note the similarity between this [) and equation (4.6). The plot of P against 
r is called Barlow's curve. 

4.13 The free spiral vortex 

As the analysis of the free cylindrical vortex and radial flow just demonstrated 
have both been based on Bernoulli's equation it is equally reasonable to think 
that Bernoulli's equation can be applied to their combination-the free spiral 
vortex. 

Denote the velocity at a radius R by VR, its tangential component by VRt 

and its radial component by VRr and similarly for the velocity at radius r. 
Then 

But 

2 - v 2 + v2 VR - Rt Rr 

So 

PR -Pr + 
ZR -z W r 

2 2 2 2 
Vrt - VRt+ Vrr - vRr 

2g 2g 

but if only unit thickness of the flow is considered and flow in a direction 
perpendicular to the plane under consideration does not occur then 

v =...!L and v - q 
rr 21tr Rr - 21tR 
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where q is the flow through the vortex per unit thickness, and as 

Vrt = C/r and VRt = elR 

PR -Pr +zR -z =dR -d = e2 +(qj21C)2(!_~) 
w r r 2g r2 R2 

This result applies quite accurately to many naturally occurring free-spiral 
vortices. 

Fig. 4.28 

The path of a fluid particle passing through such a vortex is an equiangular 
spiral as can readily be seen from the equation for the angle e that the velocity 
vector Vr makes with the radius. 

tan e = .!::.~ = elr _ = 21Ce 
Vrr qj21Cr q 

that is the value of e is constant for all radii (see Fig. 4.28). It is interesting that 
the spiral arms of galaxies are very similar in shape to this particle path. 

4.14 The forced vortex 

If a stirring device is placed in a fluid and rotated the fluid is constrained to 
rotate with it and must obey the law of solid body rotation: 

Vrt = rQ 
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where Q is the angular velocity of the rotation. As the free vortex velocity 
distribution is not obeyed the energy distribution throughout the fluid field is 
not uniform. 
Now 

v/r=Q and dv/dr = Q 
so 

dE = ~ (~ + dV) = r Q 2 Q 
drgr dr g 

so 
dE 2r Q2 
-=--
dr g 

E=r2Q2/g +A 

where A is an arbitrary constant. 

Now 

so 

but 

g g 
Pr v; and E=-+-+z 
W 2g r 

Pr/W + Zr =dr 
dr = r2 Q 2/2g + A 

This is the equation of a paraboloid (see Fig. 4.29). When r = 0, do = A, so 

d r =do +r2 Q2/2g 

I 

n 
I 

velocity distribution 

Surface profi Ie 

Fig. 4.29 
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(a) (b) 

Fig. 4.30 

(c) 

Pressure d,stnbut,on 
on lid 

Tank 

Pressure distribution 
./ on base 

Fig. 4.31 
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If a part-filled cylindrical vertical tank is rotated about its axis the contained fluid 
will eventually move as a forced vortex under the action of viscous shears. If the 
tank is closed a number of different modes of motion are possible (see Fig. 4.30). 

(a) When the surface does not touch the lid. 
(b) When the surface touches the lid but does not uncover the bottom or vice 

versa. 
(c) When the surface touches the lid and also uncovers the bottom. 

In all cases the surfaces are paraboloids or parts of paraboloids. The necessary 
condition for solution of all three types of motion is that the liquid volume does 
not change so the air volume above the liquid does not change either. 

Pressure distributions on the lid can be obtained by continuing the curve of 
the paraboloid up to its point of intersection with the extension of the tank wall 
(Fig. 4.31). The pressure distribution on the base is a mirror image of the surface 
profile. 

The total forces acting on the lid and base can be simply obtained by obtaining 
the appropriate volume of revolution of the pressure profile and multiplying by 
the specific weight of the fluid. It is not necessary to calculate both volumes 
of revolutions as once the force on the lid has been obtained the force on the base 
can very simply be obtained by adding the weight of the fluid contained within 
the tank to the force on the lid. 

4.15 The Rankine vortex 

When a free cylindrical vortex is started it rapidly decays because at its centre 
there are high velocities and high velocity gradients. These velocity gradients 
create large viscous shears which cause energy losses and hence the vortex decays. 

The viscous shears so created also tend to make the vortex core rotate as a 
solid body so the situation becomes that of a forced vortex surrounded by a 
free vortex. This is called a Rankine vortex. The surface profile and velocity 
distribution diagrams are combinations of the forced and free vortex diagrams 
(Fig. 4.32). 

The point at which the two velocity distributions join is not a perfect dis
continuity as theory predicts but a more gradual variation giving rise to a 
transition zone in which conditions correspond neither to the forced nor to the 
free vortex models. Assuming theoretical conditions at the radius at which the 
two vortices join,'c 
Then 

so 
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Surface 
profile 

velocity distribution 

Fig. 4.32 

For the forced vortex 

F or the free vortex 

dy=oo - d rc = C2
2 (~-~) 
g rc 00 

substituting r c from above 
d yc -do =CQ/2g 

and 
dy=oo - drc = C Q/2g 

so 
d rc - do = dy=oo - d rc 

Therefore the forced vortex core occupies half of the total depth of the vortex. 
This vortex is of particular interest because almost all so-called free vortices 

seen in nature are actually Rankine vortices or free spiral vortices. The vortices 
seen in a Karman vortex trail are always Rankine vortices. The pure free cylindrical 
vortex cannot actually occur, the nearest approximation being a Rankine vortex. 

An application of Rankine-vortex theory is in centrifugal pumps under no
flow conditions. The flow within the impeller can be thought of as an example 
of a forced vortex and that within the volute as a free vortex and as the rotational 
speed of the impeller is specified the head developed by the pump can be 
calculated including the head gain in the volute. 

Well-developed secondary flows may be associated with vortices (see Chapter 5). 
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4.16 Vorticity 

In Chapter 2 vorticity t was defined and shown to be given by the equation 

t = vir + dv/dr 

From equation (4.5) it can now be seen that 

dEv 
-=-t 
dr g 

Therefore if E is invariant with r, dE/dr is zero so t must also be zero. If this is 
so, potential flow theory applies. If dE/dr is not zero then t has value and this 
can be used to establish the limits of boundary layers. The dynamic tapping of a 
pitot tube gives the value of E so if a pitot tube is traversed across a flow that 
portion in which E changes has vorticity within it. On this a practical technique 
for delimiting boundary layers can be based. 

Worked examples 

(1) A tank of 5 m2 plan area is fitted with a sharp-edged orifice of 5 cm diameter 
in its base. The coefficient of discharge of the orifice is 0·62. Calculate the time 
taken for the level in the tank to fall from 2 metres depth to 0·5 metres depth. 
If water is now admitted to the tank at a rate of 0·01 m3/s calculate the rate at 
which the surface will be rising when the depth in the tank is 1 metre and the 
depth in the tank when the level becomes steady. 

. 2A (h1/2 h1/2 ) Time = 2 - 2 
Cd aoy(2g) 

2x5 _________ (2112 _ 0.5 112 ) 

7t 2 _ / 
0·62 x "4 (-05) x V 19·62 

=1·31x103 s 

Rate of rise of surface 

dh 
A - = Q - Cdaoy(2gh) 

dt 
where Q = inflow 

dh 7t 
A dt = Q - 0·62 x"4 x (·05)2 Y(19·62 x 1·0) 

dh 
- = 0'922 X 10-3 m/s 
dt 
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Level in steady state 

Q = CdaO y'(2ghs) 

Q2 
h =-

s Caao2g 

= 3·44m 

(2) A venturimeter of throat diameter 4 cm is fitted into a pipeline of 10 cm 
diameter. The coefficient of discharge is 0·96. Calculate the flow through the 
meter when the reading on a mercury-water manometer connected across the 
upstream and throat tapping is 25 cm. If the energy loss in the downstream 
divergent cone of the meter is 10 v~/2g per unit weight of fluid, calculate the 
head loss across the meter. (vp is the velocity in the pipeline.) 

Q=0.96 .:. (. )2){I90 62X00 25X 120 6} 
x 4 x 010 (10/4)4 _ 1 

Note that the manometer reading is related to the value (PI - P2) + z 1 - Z2 
by the relation 

= (13 0 6 - I)hm 

Energy loss/unit wt across the convergent cone 

Therefore total energy loss across the meter 

= (_1 _ 1) (vl- v~)+ 10 v~ 
CJ 2g 2g 

= 10 01 m 
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(3) Two pipe lengths are connected by a tapered 70° bend which lies in a 
horizontal plane. The pressure head (gauge) upstream of the bend is 25 m 
where the flow is 0·6 m3 /s, and the pipe diameter is 0·5 m. Downstream of the 
bend the pipe diameter is 0·25 m. Calculate the force acting upon the fluid 
specifying its magnitude and direction. 

Either of the two approaches described in the text may be used. 
First, h2 must be calculated. Assuming no energy loss occurs between points 1 

and 2 (Fig. 4.23) 

but 

so 

but 

vi - v~ 
h2 = hI + 2g 

h2 = 17'863 

In the x direction 

( PI+Vi)A _(P2+V~)A +Fx=O 
wg I wg 2W 

7t 
A I = 4" X 0.52 = 0'196; A2 = 0·0491 x cos 70° = 0·0168 

[( 3.0562) ( 12'2242) ~ 
F x =-9810 25+9-81 xO'19635- 17'863+ 9.81 xO.01679J 

= -44'54kN 
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In the y direction 

Al = 0, A2 = 0·0491 x sin 700 = 0·0461 

[( v2) ( 12.2242 ) ] Fy = - 9810 ~l + gl X 0 - 17·863 + 9.81 x 0·0461 

= + 14·967kN 

Px , the force acting on the bend in the x direction is the reaction to Fx so 

Px = 44·54 kN 
Similarly 

Py = - 14·967 kN 

The resultant force R = V(P; + P~) = 46·99 kN. The angle this resultant makes 
with the extended upstream pipe centre line a is given by 

14·967 0 
a= tan- l --= 18·57 

44·54 

(4) A cylindrical tank of 0·667 m diameter is situated with its longitudinal axis 
vertical. It contains water in which floats a solid cylinder of relative density 0·8 
and which is 0·333 m in diameter and 0·1667 m in length. When stationary and with 
the solid cylinder floating with its axis vertical the water surface is 0·333 m above 
the tank base. If the tank and its contents revolve about the tank's vertical axis 
at a rotational speed of 40 revs/min calculate the height of the top of the floating 
solid above the bottom of the tank. Assume that the axes of the solid cylinder 
and the tank remain coincident and that no water overflows. (See Fig. 4.33) 

s=v2 /2g 

= 24·8 X 10-3 

I I 
I 

Q.166~ 

I. I .1 
0·333 m 

, 

0·667m 

T I. 
Fig. 4.33 
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Volume of contained water remains constant and the volume of fluid dis
placed by the floating solid cylinder must also remain constant_ 

~ ~ 

Water volume ="4 x 0-6672 x 0-333 - 0-8 x 0-1667 x"4 x 0-3332 

= 0-105 

~ 2 ~ 2 (2~N/60 x 0-667/2)2 
Now 0-105 = AB x - x 0-667 + - x 0-667 x; -'-----'------'-~ 

4 4 2g 

~ 2 
- - x 0-333 x 0-8 x 0-1667 

4 

AB =0-284 

x = 0-284 + 5/2 + 0-2 x 0-1667 

= 0-3297 

The height of the top of the solid cylinder above the base is 0-3297 metres_ 

Questions 

(1) Water discharges from a tank through a convergent-divergent nozzle_ The 
diameters of the throat and exit of the nozzle are 1; inches [0-04 m] and 
3 inches [0-08 m] respectively_ The entry to the nozzle is rounded off and 
losses in the nozzle may be neglected_ Calculate the depth of water in the tank 
_over the centre line of the nozzle necessary to cause air release from the water 
assuming that air release occurs at an absolute head of 8 ft [2-7 m] of water. 
What will be the discharge under these conditions? If the divergent section of the 
nozzle is then removed what will be the flow under the same head? The height 
of the wa ter barometer is 34 ft [10 m] _ 

Answer: h = 1-733 ft [0-487 m], Qinitial = 0-5186 ft3/s [0-01554 m3/s], 

Qfinal = 0-1297 ft 3/s [0-00388 m3/s] 

(2) Show that for a venturimeter possessing a constant coefficient of discharge 
the loss of head due to friction in the convergent cone can be written as 
hf = kQ2 where k is a constant and Q is the rate of flow_ Obtain the value of k 
for a venturimeter for which the inlet and throat diameters are 6 inches [0-15 m] 
and 3 inches [0-075 m] respectively and the coefficient of discharge is 0-96_ 

Answer: 0-514 [208-27] 
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(3) A closed tank has an orifice of 0·03 m diameter in one of its vertical sides. 
The tank is filled with oil of specific gravity 0·9 to a depth of 1 m over the 
centre of the orifice. The air space above the oil is pressurised to 16000 N/m2 • 

The coefficient of discharge of the orifice is 0·61. Determine the discharge from 
the orifice. 

Answer: 0·0032 m3/s 

(4) A horizontal boiler shell 6 ft [2 m] in diameter and 30 ft [10 m] long is 
half full of water. Find the time of emptying the shell through a 3 inch [0·08 m] 
diameter orifice located at the base of the shell for which the coefficient of 
discharge is 0·8. 

Answer: 1206 s [1368·7 s] 

(5) A reservoir with vertical walls has a plan area of 60000 square yards. 
Discharge from the reservoir takes place over a rectangular weir for which 
Q = 30 hI· 5 ft3/S. The sill of the weir is 8 ft above the bottom of the reservoir. 
Starting with a depth of water of 10 ft in the reservoir and no inflow, what will 
be the depth of water after free discharge has taken place for one hour. 

Answer: 9·54 ft 

(6) Derive an expression for the discharge over a sharp-crested rectangular weir 
taking into account the effects of end contractions. A weir is to be constructed 
across a stream in which the flow is 0·2 m3 /s. (The coefficient of discharge for 
the notch is 0·623). Find the minimum length of weir necessary if the upstream 
level is not to rise more than 0·384 m when the stream is discharging five times 
its normal flow. 

Answer: 1·210 m 

(7) A venturimeter of throat diameter 3 inches [0·08 m] is fitted in a 6 inch 
[0·16 m] diameter vertical pipe in which liquid of unit specific gravity flows 
downwards. Pressure gauges are fitted to the inlet and throat sections, the latter 
being 3 ft [1 m] below the former. The coefficient of the meter is 0·97. Find 
the discharge when (a) the pressure gauges read the same (b) when the inlet 
gauge reads 2·2Ibf/in2 [10 kN/m2 ] higher than the throat gauge. 

Answer: 0·688 fe /5 [0·0224 m3 /s], 1·12 ft 3 /s [0·0318 m3 /s] 

(8) Ajet of water of 10 square inches [0·0062 m2 ] cross section moving at 
40 ft/s [12·0 m/s] is deflected by a curved plate of 1350 angle. The plate is 
moving at 15 ft/s [5 m/s] in the same direction as the jet. Find the amount of 
work done on the plate per second neglecting friction. 

Answer: 2154 ft Ib/s [2593 Nm/s] 
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(9) A tapered bend of 60° deflection angle joins two pipes. The upstream pipe 
diameter is 4 ft [1·3 m] and the downstream pipe diameter is 2 ft [0·6 m]. 

When the flow through the pipe line is 107 ft 3 /s [3 m3 /s] the pressure head 
upstream of the bend is 100 ft [33 m]. Calculate the magnitude and direction 
of the force acting on the bend and describe a method of resisting this force. 

Answer: 71 x 103 1bf at 16° to the axis of the upstream pipe[394kN at 13·8°] 

(10) The wake of a submarine may be regarded as having a conical shape. The 
velocity profile across the circular cross section of this cone at a certain distance 
from the submarine may be treated as a paraboloid, the maximum velocity 
being on the centre line of the wake its radius being 30 ft [10 m] and the maximum 
velocity being 15 ft/s [5 m/s]. If the submarine is travelling at 10 ft/s [3 m/s] 
relative to still water, what power is being used in overcoming drag? Specific 
gravity of sea water = 1·03. 

Answer: 7700 hp [8090 kW] 

(11) A hollow cylindrical vessel 2 ft [0·67 m] dia. open at the top, spins about 
its axis, which is vertical, thus producing a forced vortex motion of the liquid 
contained in it. Calculate the height of the vessel so that the liquid just reaches the 
top and just begins to uncover the base when rotating at 120 rpm. If the speed is 
now increased to 150 rpm what area of the base will be uncovered and if the 
speed is now reduced until the base is just covered again, how high will the 
liquid stand at the sides? 

Answer: Height = 2-46 ft [0·903 m], area uncovered = 1·14 ft2 [0·129 m2], 
1·57 ft [0·57 m] 

(12) A cylindrical vessel with vertical axis is closed top and bottom with flat 
ends. Its diameter is 18" [0·5 m] and the height is 24" [0·67 m] . It is filled with 
water to a depth of 20" [0·6 m], the remainder with air at atmospheric pressure. 
It is then revolved about its axis at a speed of 200 rpm. Calculate the force on the 
bottom and top covers. 

Answer: Force on top = 71·81bs wt [629 N], force on bottom = 255·51bf 
[1784 N] 

(13) A cylindrical vessel 18" [0·5 m] internal dia. and 30" [0·9 m] deep, closed 
top and bottom, can rotate about its axis which is vertical. The vessel contains oil 
of specific gravity 0·9 to a depth of 20" [0·6 m] when stationary. It is set in 
steady rotation and oil rotates with it at the same speedN rpm. Plot on squared 
paper curves showing (a) the relation betweenN andy, the depth of the lowest 
poin t of the oil surface below the top cover for values of y varying from 10" 
[0·3 m] to 30" [0·9 m]. 

Answer: y = 10 + 0·000573 N inches up to 132 rpm then y = 0·152 N inches 
[y = 0·3 + 0·0000174N2 m up to 131 rpm theny = 0·00458Nm] 
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(14) A tube ADBC consists of a straight vertical portion ADB and a curved 
portion BC, BC being the quadrant of a circle 9" [0·25 m] radius with centre at 
D. A is open and the end C is closed. The tube is completely filled with water up 
to a height of 10" [0·3 m] above B. Find the speed of rotation about the vertical 
axis ADB for the pressure at C to be the same as the pressure at B. For this speed 
find the maximum pressure in BC and its position. Prove any formula used. 

Answer: 88 rpm [84 rpm]; 60°, 1·021 ft head [60°,0.3625 m head] 

(15) A horizontal open channel of constant rectangular cross section conveys 
600 cusec [20 m3/s] of fluid. At one point in the channel there is a right-angled 
bend formed by circular arcs, the inner radius being 15 ft [5 m] and the outer 
25 ft [8 m]. In the straight portion of the channel the uniform depth of fluid 
is 6 ft [2 m] . Assuming a perfect fluid with constant specific energy of flow and 
a free vortex flow around the bend, estimate the depth of flow at the inner and 
outer radii of the bend. 

Answer: Depth at inner radius = 4·65 ft, depth at outer radius = 6·508 ft 
[1·552 m and2·17 m] 

Note that the solution of the cubic equation for c is 205 [22·3] 

(16) A cylindrical vessel open on top is 2 ft [0·67 m] in diameter and 4 ft [1·33 
m] deep and is filled with water. It is now rotated steadily about its axis, which 
is vertical, at such a speed that the centre of the water surface just touches the 
bottom of the tank. (a) Develop the formula for the shape of the water surface. 
(b) Find the speed of rotation. (c) Water is now run into the vessel through a 
central hole in the bottom at a rate of 10 lbs per second [5 kg/s]. Find the 
torque required to maintain the steady speed of rotation, stating clearly what 
assumptions you have made in your solution. 

Answer: (a) Paraboloid, (b) 16 radians/s [15·3rads/s], (c) 5lbfft [8·53 Nm] 



5 Boundary layer Theory 

In Chapter 2 it was shown that if the motion of a fluid is not affected by friction 
a velocity potential exists and the Euler equations are obeyed. In some cases, 
such potential flows can be analysed and pressures and velocities throughout 
them can be specified. 

Unfortunately, there are many other cases which cannot be treated like this 
because of frictional effects. Sometimes the zones of flow affected by friction 
are narrow and close to the flow boundaries, but the entire flow may be 
dominated by friction. When the zone affected by friction is narrow the flow 
outside the zone may be analysed by potential theory provided that the boundary 
conditions can be specified. 

Prandtl suggested that a flow field should be divided into two parts. 

(1) The potential core in which potential theory applies and in which 
frictional effects are not present. 

(2) The boundary layers which are zones of flow situated close to the 
boundaries in which frictional effects dominate the motion of the fluid. 

This division is somewhat arbitrary as boundary layers are not well defined, 
the two parts of the flow gradually merging into one another. Even so, this 
concept of the boundary layer has proved extremely useful and provides a 
powerful tool in the analysis of frictional flows. 

5.1 Fonnation of boundary layers 

If a mass of fluid is set in linear motion in a gravity field far from any boundaries 
there will be no velocity gradients within it. When such a fluid approaches a 
boundary the fluid close to it is affected by frictional forces which will slow it 
down. Fluid in contact with the boundary is brought completely to rest-there is 
no 'slip' at the boundary. (This statement may not apply to gases at very low 
pressures.) Further away from the boundary, fluid will be slowed but not as much 
as fluid close to the boundary (see Fig 5.1). 

157 
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The boundary layer is said to end where the local velocity equals 0·99 U (U 
being the undisturbed stream velocity). This is arbitrary because frictional effects 
spread throughout the flow. (The velocity distribution becomes asymptotic to U at 
large distances from the boundary.) The thickness of the boundary layer, usually 
denoted by 0, is defined as the distance from the boundary to the point at which 
the local velocity equals 0·99 U. 

As the fluid passes over a greater length of the boundary more fluid will be 
retarded by friction with the fluid layers near to the boundary, so the boundary 
layer thickness ° will increase. What is happening here is that the fluid near the 
top of the boundary layer is dragging the fluid nearer to the boundary along and 
maintaining it in forward motion. This mechanism may be one of two types. 

(1) Normal viscous shearing action produces tractive shear forces which may 
exert the necessary drag effects upon the slower moving layers deep in the 
boundary layer. If the boundary layer thickness is small, so that the velocity 
gradients are large, the tractive shear stress, which is given by l' = J1(au/ay), can 
be large enough to account for this effect. As the boundary layer becomes thicker 
the velocity gradients will decrease and eventually l' will become too small to 
maintain the slower layers in motion and, if viscous shear stress was the only 
mechanism available, they would have to come to rest. 

(2) When the viscous shear mechanism becomes inadequate to maintain the 
sluggish layers in forward motion laminar flow will not be possible, deep layers 
will slow down under the influence of friction from the boundary and between 
it and faster moving layers higher up in the boundary layer fluid masses will start 
to rotate. (See Fig. 5.2.) This rotation effect can be considered as the formation 
of vortex sheets in the boundary layer which roll up to form many small vortices. 
(See Chapter 2, p. 68). The motion of the fluid particles in this state will rapidly 
become random and true turbulence will result. Now particles high in the 
boundary layer which have relatively high velocities and large momenta may move 
down into the lower layers because of their randomly directed velocities. 
Conversely particles from the slow moving layers will find their way up into the 
fast moving layer. The effect is to give a circulation of mass from fast to slow 
and back to fast layers with a net transport of momentum into the boundary 
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layer. This transfer of momentum will maintain the slower layers in motion and 
is equivalent to a tractive shear stress. 

Thus when a fluid moves over a boundary a boundary layer will develop in 
which flows will be laminar at the leading edge of the boundary and for some 
distance downstream of it. As the layer thickens the viscous shear mechanism 
will become inadequate and flow in the boundary layer will become turbulent. 
This explains Fig. 5.1. Generally, laminar boundary layers are thin and turbulent 
boundary layers are relatively thick. 

5.1.1 The laminar sub-layer At points very close to the boundary velocity 
gradients are large and the viscous shear mechanism is powerful enough to 
transmit the shear stress to the boundary, so the very thin layer adjacent to the 
boundary is in laminar motion even when the flow in the rest of the boundary 
layer is turbulent. The sub-layer is only a few thousandths of an inch thick but 
its presence is vitally important in deciding whether a surface is hydraulically 
rough or smooth. (Seepp. 190 to 196.) 

5.2 The Prandtl mixing-length hypothesis 

An approach to the development of a theory for turbulent boundary layers is due 
to Prandtl who applied ideas taken from the kinetic theory of gases to a theory 
first developed by Reynolds in 1895. 

The velocity of any fluid particle can be split into three components U, V, 
and W in the x, y and z directions. If flow is turbulent these velocity components 
are not constant with time. However, the components can be regarded as being 
made up of two parts, one a steady velocity u and the other time varying, u'. 
So 

U=u +u' 

V= v +v' 

W=w+w' 
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Ifthe flow is unidimensional in the x direction then U = u + u', V = v' and 
W = w'. Consider the flow over a boundary defined by y = 0 located in the x, Z 

plane and assume that flow is only occurring in the x direction (Fig. 5.3). The 
mass crossing the area oA per second = p 0 A v I. The momentum being transferred 
per second from the fast layer to the slow layer is therefore: 

p?;Av' x velocity difference between the two layers 

If the two layers are thought of as consisting of rolling balls of fluid moving 
along with their centres travelling at velocity u (Fig. 5.4) it will be seen that at a 
fixed point in space on either of the two streamlines the fluid velocity will 
fluctuate as a ball of fluid passes through it. On streamline 2 the velocity will 
fluctuate from u up to u + (1/2) 3u/3y and back to u so 

u' = (1/2) 3u/3y 

Similarly on streamline 1 the velocity will fluctuate from u down to 
u - (1/2) 3u/3y and back to u as the rotating fluid mass passes through. The 
total velocity fluctuation between streamlines 1 and 2 is 

u' = 1(3u/3y) 

Fig. 5.4 
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so the momentum transfer per second from one layer to the other is 

p 3Av'lcau/ay) = p 3Av'U' 

The rate of transfer of momentum per unit area is the shear stress (Newton's 
law) so 

I I 
7= pU v 

This is Reynolds' shear stress equation. Prandtl hypothesised that 

u' = v' = lcau/ay) 
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I which was shown in the diagram as the distance apart of the two layers can now 
be seen to defme the dimensions of the rolling fluid masses. I is usually called the 
mixing length 

7 = pl2 cau/ay)2 
That this mixing length has a physical existence can be seen from the smoke 
patterns given off by a factory chimney in a steady breeze (Fig. 5.5). The air 
flow around the chimney is a boundary layer flow, the boundary being the earth's 
surface. The chimney is a smoke injector and as far as this phenomenon is con
cerned has no influence on the flow pattern. 

Smoke from the chimney fills the centres of the fluid masses rolling over its 
outlet. As these masses move away downstream of the chimney the smoke 
gradually diffuses and mixes with all the fluid mass and the eddy appears to 
increase in size. However the eddy can be observed for some distance down
stream before smoke diffuses away from it. 

Clearly the size of the eddy must depend upon its location. One situated very 
near the boundary could not be very large whereas one situated a long way from 
it could. Prandtl found that the size of the eddies was approximately 0·4 times 
the distance of its centre from the boundary. 

o.~y J(~ ) = ~~ 
au = 2·5 J(!...) ~ 
ay p y 

Fig. 5.5 
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If T is assumed to have the same value as the bed shear TO and to be invariant 
withy then 

u = 2·SV(TO/p) loge y + C 

u = S·7SV(TO/P) 10glO(Y/C) 

The assumption that T is constant at TO is difficult to accept. In the case of a 
free surface flow in which the boundary layer occupies the entire depth of the 
flow there cannot be a viscous shear stress at the surface itself. However, the 
logarithmic velocity distribution obtained by making this assumption can be 
shown experimentally to be closely followed by real fluids. The point is that the 
precise mode of variation of the shear stress is not very significant deep in the' 
boundary layer where shear stresses have their largest values, but high in the 
boundary layer where they must be changing rapidly they can have only marginal 
influence upon the velocity distribution. 

Von Karman considered a distribution function for u, expanded it in a Taylor 
series and from this and other considerations he showed that 

and hence 

By making the assumption that T falls linearly from a value at the boundary to 
zero at the edge of the boundary layer he obtained an integrable result as below. 

U = Umax + 2·5 V*[ V(1 - y/o) + loge {I - V(1- y'!o)}] 

V*=(TO/p) 

This result is slightly better than Prandtl's result. 

5.3 Boundary layer separation 

If flow over a boundary occurs in circumstances in which pressure decreases in 
the direction of flow the fluid will accelerate and the boundary layer will become 
thinner. Fluid near the boundary will be helped by this negative pressure gradient 
to maintain its forward motion and there will be no tendency for the boundary 
layer to separate from the boundary. In convergent flows such negative pressure 
gradients exist and it is a characteristic of all convergent flows that they are stable 
and that turbulence decreases within them. 

If a positive pressure gradient exists in the fluid the situation is different. Such 
pressure gradients can be generated by divergent flow or by flow in a curved path; 
an explanation of the mechanism of this will be given later. Fluid outside the 



Boundary Layer Theory 163 

boundary layer will have sufficient momentum to carry it through the adverse 
pressure gradient; indeed, it is the adverse pressure gradient which slows the 
flow so that continuity can be maintained in divergent flow. Fluid near the 
boundary has so little momentum that the adverse pressure gradient will rapidly 
bring it to rest and may even reverse its motion. In this case the fluid which is 
conforming to what is usually considered to be boundary layer motion is moved 
away from the boundary by being displaced by fluid that is moving in the j 'dgo of """odo,, layer 

(c) 

Stagnation POI nt Separation zone 

Fig. 5.6 

reverse direction-this is called boundary layer separation (see Figs. 5.6a, band 
c). At the edge of the separated zone a point of inflexion in the velocity distri
bution occurs (see Fig. 5.7). Flows on either side of the inflexion point are directed 
in opposite directions. This will generate a vortex sheet which will roll up into 
discrete vortices. In the separation zone flows are more turbulent due to the 
vortices present than is the flow in the boundary layer itself, so such separations 
cause increased energy losses and this is why divergent flow is inherently 
unstable and why it causes much greater energy loss than normally occurs in 
parallel or convergent flow. 

/ Vortex sheet 

-C)-d--

Fig. 5.7 



164 An Introduction to Engineering Fluid Mechanics 

5.3.1 Examples of boundary layer separation 

Divergent duct or diffuser 

This is illustrated in Fig. 5.8. Generally, after a short period the boundary 
layer separation zone on one side will be suppressed and the other becomes 

~----

Fig. 5.8 

thicker. This effect is used in the design of fluidic control elements. The side on 
which the separation zone is suppressed is an accident of geometry and is probably 
decided by some asymmetry in the approach flow to the divergent section. 

Tee and Y junctions 

These are illustrated in Fig. 5.9. Two boundary layer separations are produced. 
In separation A, a particle at point 1 may travel through the main pipe to point 
2. If the pipe at point 2 has the same area as that at point I the velocity at point 
2 must be less than that at point 1 because of the flow that has been abstracted 
through the branch. Therefore the pressure at point 2 must be greater than that 
at point 1, and a positive pressure gradient must exist along the main pipe. This 
causes the boundary layer separation at A. The boundary layer on the branch 
side of the main pipe is drawn off through the branch so no separation can occur 

A 

CD 
~ 

® ~ 

X 

B 

Y 
G) 

Fig. 5.9 
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on this side. Next consider separation B. To enter the branch the fluid has to 
enter a curve of very small radius and needs a centrally directed pressure gradient 
to provide the necessary centrally directed acceleration. Thus, at X, the pressure 
must be less than the ambient pressure. When the fluid has passed down the 
branch it will return to parallel straight motion and the pressure must return to 
about the same magnitude as the ambient pressure at the junction. Thus along 
XY there must be a positive pressure gradient and this explains the separation 
that occurs. 

Fig. 5.10 

The Tee junction described above is a special case of the Y junction (Fig. 5.10). 
The essential point here is that junctions such as these produce a net increase in 
the area of the flow and as such are examples of divergen t flow. Downstream of 
the separation zones the vortices die away and normal pipe flow gradually 
redevelops; their effect is thus local. 

Flow in bends 

Two separations occur in flow in bends (Fig. 5.11). Consider separation A. At 
a the pressure is approximately the same as the mean pressure in the pipe at the 
bend. At b the pressure must be greater than this mean pressure so as to provide 
the required radially directed acceleration. Thus a positive pressure gradient 
occurs along abo 

Consider separation B. At c the pressure is less than the mean pressure (if 
the pressure at b is greater, the pressure at c must be less than the mean bend 
pressure so that the mean can be maintained). At d the pressure must be the mean 
value again as the fluid must be in linear motion so a positive pressure gradient 
must occur along cd-hence the separation B. Flow reattaches after separation A 
as the pressure gradient becomes negative downstream of it. 
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Fig. 5.11 

The Karman vortex trail or street 

If flow around a cylinder is very slow (Reynolds number Eo;; 0·5) the two 
boundary layers around the cylinder do not detach because the pressure gradients 
(which depend upon v 2 ) are very small. (Fig. 5.12). For Reynolds numbers 
between 2 and 30 the flow boundary layers separate symmetrically producing 
two attached vortices as shown. From a lower limiting Reynolds number of 
between 70 and 120 the vortices are shed alternately from each side of the 
cylinder producing two staggered rows of vortices as illustrated in Fig. 5.13. This 
is the Karman vortex trail. Each vortex is in the field of every other vortex so if 
such a system of vortices could exist in a stationary fluid the system would move 
'upstream'. If the still-water velocity of the vortex system is Vy the velocity of 

Re<0·5 0·5<Re < 70 

Fig. 5.12 
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I. b 

Fig. 5.13 

the system in the real flow under consideration will be U - v y . The frequency 
of the vortex trail must then be 

[= (U - vy)/b 

Von Kannan showed that alb = 0·281. and G. F. Taylor gave [as 

U ( 19'7) [=0'198- 1--
D Re 

(note /DIU is the Strouhal number). This result applies up to Re = 200 000. 
The Karman vortex trail is the mechanism behind many significant pheno-

mena. The famous failure of the Tacoma narrows suspension bridge was caused 
by resonance between the Karman vortex trail from the bridge deck and the 
natural frequency of the bridge. The tramping of power lines is, in essence', caused 
by the Karman vortex trail phenomenon. Scour downstream of a bridge pier is, 
at least partly, also caused this way. (Remember that most scour effects occur 
upstream of a bridge pier and these are caused by secondary flows-see Section 5.5). 

5.4 Drag on spheres 

A case of particular importance for civil engineers is that of very small spheres 
falling through a fluid-the sedimentation situation. 

Stokes gave the equation 

R = 6rr:aJ.1v 

where a is the radius of the sphere, J.1 is the coefficient of viscosity and v is the 
velocity of the sphere. R is the drag force or resistance. 

If a spherical particle is falling through a liquid the force acting is its weight 
minus the buoyant effect of the fluid it displaces, so 
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where w = specific weight of water, S = specific gravity of particle and Sf = 
specific gravity of fluid. From this equation it is possible to estimate the time 
taken for a given depth of fluid to clear of particles suspended in it, or, given 
the relevant details about the particles and the time taken for a given depth to 
clear, the result may be used to estimate the coefficient of dynamic viscosity of 
the fluid. The particle must be small enough for Stokes law to apply, that is 
Re < 0·1. 

Stokes law can be expressed in a modified form: 

R = Cd (pv 27ta2 )/2 = 67taJ.l.v 

l2J.1. 24J.1. 24 
Cd =-=--=-

pav p(2a) v Re 

This result is accurate, as just stated, up to Re = 0·1 but Oseen gives 

24 
Cd =-(1 +-&Re) 

Re 

which works well up to Re = 1. Above 1 and below 100 

5.5 Secondary flow 

24 
Cd =-(1 +-&Re)1I2 

Re 

Generally one dimensional approaches to the analysis of engineering problems 
give sufficiently accurate solutions. Sometimes two dimensional approaches 
have to be used. Occasionally results of such analyses are completely wrong 
because the phenomenon of secondary flow has been ignored. 

Secondary flow is a spiral motion created by the interaction of the primary 
flow and the boundary layer flow. It occurs commonly in curvilinear flow but 
can also be detected in linear flows. The mechanisms that generate secondary 
flow in a primary curved flow and in straight flow are different and will be 
described separately. 

5.5.1 Secondary flow in a curvilinear primary flow A flow in a curved path can 
be considered as part of a vortex of some type (see pp. 138 et seq.). In the radial 
direction the pressure will alter, reducing towards the centre. Away from any 
boundary the fluid will be moving with a finite velocity and with a radial 
pressure gradient such that the force acting on any element of fluid necessary 
to produce the required centrally directed acceleration for curvilinear flow is 
provided. Near a boundary, friction will reduce the velocity of an element so that 
the unchanged pressure gradient will cause an inwardly directed radial velocity 
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component. This causes spiral motions to be superimposed upon the primary 
flow. 
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As.an example, examine the case of a free surface flow around a channel 
bend. In a bend such as this a flow closely resembling a portion of a free vortex 
will be set up (see Fig. 5.14). At Q the longitudinal velocity, vQ, will be less than 
that at P, vp. Hence the value of the acceleration v~/r required to maintain the 
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Fig. 5.14 

Cross section 
of a channel bend 
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fluid in its curved path parallel to the channel sides will not be as large as that 
required at P. The transverse pressure gradient acting at P and Q is the same (that 
is the transverse surface slope) so if the pressure gradient is producing a centrally 
directed acceleration that causes curvilinear flow at the correct radius r at point 
P it must be causing a centrally directed acceleration that is too large at Q. This 
excites a secondary spiral flow as illustrated in Fig. 5.15. As many as three or 
four such spirals may be generated in any cross section. The boundary layers 
from the side walls of the channel are not important in this type of secondary 
flow but they assist in generating it. 

One consequence of secondary flow in channel bends is meandering. If the 
channel is cut in erodible material the secondary helices will cause loose material 

Centreline of 
bend 

1 
I 

I 
I 

I 
Fig. 5.15 
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Fig. 5.16 
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to be swept across the bed and deposited at the inner bank so producing scour 
on the outside of the bend. (See Fig. 5.16.) Once this scour has occurred the 
flow situation becomes extremely complex and tends to initiate a bend in the 
opposite direction downstream. The river becomes progressively more sinuous 
and hence longer, its hydraulic mean radius becomes smaller because its wetted 
perimeter becomes larger and so the longitudinal surface slope becomes greater. 
Eventually the surface rises above the river banks and the meanders are cut off 
forming ox-bow lakes. (Fig. 5.l7d.) The river may not complete this cycle 
however; instead, once the meanders have formed, they themselves may start 
travelling downstream as shown in Fig. 5.l7b. 

Initially 
straight 
river 

(a) 

Meanders 
travelling 
down stream 

( b) 

Advanced 
development 
of meandering 

(c) 

Fig. 5.17 

Ox-bow lake 
formation 

(d) 
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Meandering depends upon the slope of the plain over which the river runs, the 
erodibility of the bed material and the magnitude of the dominant discharge. For 
it to occur, both erosion and accretion must be occurring at the same time. If the 
dominant discharge is too low there will be no bed movement hence no meander
ing. If it is too large the bed will erode throughout its length and again no 
meandering will occur. It is extremely difficult to control river meandering and 
at the moment of writing it is not possible to predict the form or magnitude of 
the meandering phenomenon except in a most general manner. It can be a most 
dangerous phenomenon as it can cause a major river to change its course overnight. 

Helical flow in pipe bends 

Secondary flow occurs in pipe bends for exactly the same reasons as for river 
bends. Because no free surface is present the secondary flow system consists of 
two vortices rather than one and these rotate around one another making a 
rope of vortici ty (Fig. 5.18). 

These secondary flows cause energy losses over and above normal pipe 
friction losses and also upset the calibration of instruments such as venturimeters 
which have been calibrated in straight pipes. Either flow straighteners should 
be fitted immediately after the bend to eradicate the secondary flow or no 
instrument should be fitted for a distance of at least 20 diameters downstream 
of the bend so that the secondary flow may decay. 

Section 'BB' 

Normal velocity 
distribution, 
Section 'AA 

'B' 

-

'c' 

Plan view of bend 

Section 'cc' 

Fig. 5.18 
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Secondary flow in vortices 

In a vortex the secondary flow mechanism described for a river bend will operate. 
As a consequence the secondary spiral will cause suspended particles to be swept 
in towards the centre at the bottom of the vortex and outwards at the surface. 
This explains the behaviour of tea leaves when a cup of tea is stirred. It will be 
found that the tea leaves move in towards the centre at the bottom of the cup. 

Fig. 5.19 

Primary vortex 
flow 

Secondary flow 

5.5.2 Secondary flow in straight channels In a straight channel secondary flows 
occur as illustrated in Figs. S.20a and b. 

In a corner where two boundary layers interfere the flow is acted upon by two 
boundaries and loses more energy in friction than flow in the boundary layers 

(a) 

Maximum velocity 
/filament 

1~0u0000~1 
(b) 

Fig. 5.20 
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away from the corner. Consequently the mass transport mechanism that operates 
to maintain flow in normal boundary layers (Prandtl mixing-length hypothesis, 
Section 5.2) must operate even more powerfully to maintain flow in the corners. 
The resulting increased mass transport into the corners shows itself as a secondary 
flow as illustrated in Fig. 5.20. In shallow river flows additional spirals may be 
excited as illustrated in Fig. 5.20b. 

Broad channel 

Narrow channel 

Depth 

VelOCity 

Fig. 5.21 

According to most theories of velocity distribution in free surface flows the 
maximum-velocity filament should be located on the surface and on the centre
line of the channel. In fact it is usually depressed below the surface and secondary 
flow is the cause of this. It carries the maximum-velocity filament downwards 
replacing it with slower moving fluid from the sides. Thus in wide channels the 
maximum-velocity filament can be expected to lie on the surface and in narrow 
channels it will be displaced downwards by an amount that depends on the 
strength of the secondary flow. This in turn depends upon the side and bed 
roughness. (See Fig. 5.21.) 

5.5.3 Secondary flows caused by obstructions When an obstruction is placed in 
a flow a stagnation point will be created somewhere upstream_ The potential 
(pressure head plus elevation above a datum) generated outside the bed boundary 
layer will be greater than that at the bed by an amount of v2 /2g where v is the 
free stream velocity so a flow will start towards the bed. In the case of an 
obstruction in a free surface flow founded on erodible material such as a bridge 
pier this flow can cause heavy erosion upstream of the bridge pier as shown in 
Fig. 5.22. 

It has been found that by building dwarf walls at approximately 30° on either 
,ide of the longitudinal axis of the flow the erosion can be greatly reduced (see 
Figs. 5.23a and b). The explanation for this is that the water between the dwarf 
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(a) 

Elevation showing erosion 

(b) 

Plan showing flow at and near the bed 

(c) 

Fig. 5.22 

Bed Dwarf 
level walls 
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(0) 
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Fig. 5.23 

(b) 

Bridge pier 
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walls is very nearly stationary so the dangerous secondary current is lifted above 
the bed by a distance which is of the same order of magnitude as the height of 
the tops of the dwarf walls above the bed. This protects the bed from being 
acted upon by the scouring effect. 

5.5.4 Undershot sluices Undershot sluice gates develop twin vortices in the 
upstream flow. This is due to a secondary flow mechanism. The surface flow 
along the centreline of the channel is at or near the maximum velocity whereas 
that on the surface near a side wall has a much lower velocity. When these 
velocities are both reduced to zero by the water impinging upon the sluice 
there are changes in flow depth which cause a transverse surface slope. This 
transverse surface slope causes a secondary flow which is so well developed that 
visible free spiral vortices may be seen. These may be so strong that an air core 
may extend down from the upstream water surface to the exit from the sluice. 
(See Figs. S.24a, b, and c.) 

(0) Elevation showing vortex 
with on air core 

Plan (c) 

o' 

i 

Fig. 5.24 

-
t------~// Flow passage 

(b) 

Elevation of slUice 



6 Pipe Flow 

The flow of water through pipes has interested engineers from earliest times. 
The problem is far more complex than it would at first seem and it is not 
surprising that a defmitive solution of the problem has only recently been 
attained. Even now there are many research areas which could be investigated 
with considerable benefit. 

The engineer requires the answer to the question what flow occurs through a 
pipe of specified diameter and length given the difference in pressure over the 
length. The answer must be obtained in terms of two classes of parameters: 
(1) those that define the nature of the fluid, for example its mass density and 
viscosity, and (2) those that define the characteristics of the pipe, for example 
its length, diameter and surface roughness. 

6.1 Simple experiments 

The simplest experiment to investigate the variation of the mean velocity of a 
flow through a pipe with the pressure difference between its ends will show that 
the relationship is not simple but that a discontinuity exists. Reynolds investi
gated this in detail. He built a tank in which the water surface could be main
tained at a constant level, and in which a re-entrant exit pipe equipped with a 
bell mouthed entry was fitted. On the centreline of the bell mouth he installed 
a dye injector. The arrangement was as illustrated in Fig. 6.1. 

If flow is permitted by slightly opening the outlet valve and at the same time 
the dye injector control valve is adjusted to admit dye at the same velocity as 
the flow, a fine stready dye line will be formed in the pipe. If the flow is 
progressively increased and the dye injector correspondingly adjusted, the dye 
line will remain stable until a specific condition of flow is reached at which 
instabilities in the dye line will start to develop, the line breaking up into a 
helical pattern and then reforming. If flow is further increased the dye line will 
produce a stable helical pattern and if still further increased the dye line will 
break down completely and the dye will be diffused throughout the flow. The 
sequence is illustrated in Figs. 6.2, 6.3, 6.4 and 6.5. 
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Dye Injector 
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Fig. 6.1 

Fig. 6.2 

Fig. 6.3 
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Fig. 6.4 
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Fig. 6.5 

6.1.1 Lower and upper critical velocities It is clear that the nature of the flow 
changes as the velocity increases from below to above the critical value required 
to cause the onset of instability of the dye line. A further experiment can be 
performed to fmd the relationship between the mean velocity and the pressure 
difference between the ends of the pipe. The results of such an experiment are 
graphically represented by a curve such as in Fig. 6.6. 

v 

Fig. 6.6 

log h 

log v 
Fig. 6.7 
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There is a transition zone in which no consistent results can be obtained. At 
velocities lower than a certain specific value (the lower critical velocity) the 
relationship is linear and above another critical velocity (the upper critical 
velocity) the relationship is exponential, that is h = kvn. Plotting log h against 
log v gives n = I below the lower critical velocity, confinning the linear relation
ship, and n = 1·83 for the section of the curve for which velocities are greater 
than the upper critical velocity. (See Fig. 6.7.) 

These two experiments show that below the lower critical velocity flow is 
laminar and above the upper critical velocity motions are randomised and 
irregular; that is, the flow is turbulent. 

The description of pipe flow must therefore be split into two sections, the 
first dealing with laminar flow and the second with turbulent flow. 

6.2 Laminar flow 

Consider the forces acting upon an annulus of flow as illustrated in Fig. 6.8. 
On the outer surface of the annulus there will be a viscous shear force operating 
in the direction opposite to the flow. On the inner surface there will be a tractive 
shear force caused by the fluid in the inner core moving more rapidly than the 
annulus. The difference between the shear force acting on the inner and outer 
annular surfaces is given by a/ar(21tn·axH r and as the outer surface will 
experience the larger force the net force on the annulus will operate in a 
direction opposite to that of the flow. 

For steady flow this shear force must be balanced by another force and this 
is obtained from the pressure difference across the ends of the annulus. In fact 
the pressure must drop along the pipe if an equality of the shear and pressure 

Direction of flow 

• 

8x 

Fig. 6.8 
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forces is to be obtained but here the pressure gradient will be assumed to be 
positive and the signs will then look after themselves. 
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By Newton's first law of motion the force in the direction of flow caused by 
the pressure changes is equal to the net shear force on the annulus. 

Expanding 

ap a (7r) 
--r=--ax ar 

ap a7 
--r=r-+7 ax ar 

ap a7 7 
--=-+ax ar r 

(6.1) 

TItis is the differential equation ofaxi-symmetric flow through circular pipes. 
Up to this point no particular assumption has been made about the type of 

flow in the pipeline other than that it is steady and no assumption has been 
made about the nature of the fluid, whether it is newtonian or non-newtonian. 

If it is assumed that the flow is laminar and that the fluid is newtonian, 
Newton's law of viscosity can be applied 

au au 
7=J.1-=-J.1-ay ar 

(u is the velocity at a distance y from the wall and r = a - y so or = - oy). This 
equation is not limited however. In rheology, equation (6.1) can be applied to 
any fluid providing the relationship between 7 and the shear rate (au/ar often 
denoted by i') can be specified. Equation (6.1) would even be applicable to 
turbulent flow if a relationship linking 7, u and r could be specified. 

Assuming laminar flow of a newtonian fluid and substituting for 7 

so 
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Integrating 

Dividing through by r 

Integrating again 

rap au A 
--=-+-
2,.,. ax ar r 

r2 ap 
- - = u + A lo&! r + B 
4,.,. ax (6.2) 

When r is zero u is finite (the centreline velocity is fmite) but as lo&! 0 is _00, 
A must be zero. When r = a, u = o. 

r2 _a2 ap 
u=---

4,.,. ax 

(6.3) 

As r is always less than a and u is positive 3p/3x must be negative, that is the 
pressure drops along the pipe in the direction of x increasing. 

The quantity of flow along the pipe can simply be obtained by integrating 

The mean velocity v is defmed as the flow divided by the area through which it 
occurs so 



and hence 

Integrating gives 

When 

so 

When 

so 

Pipe Flow 

_ ap a2 
v=---ax 8p 

ap 8pv 
ax = - ---;;r-

8pvx 
p=---+C 

a2 

x = 0, P is PI (the upstream pressure) 

x =L,p iSP2 (the downstream pressure) 

8pvL 32pLv 
PI -P2 =--=--

a2 d 2 
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where d is the pipe diameter and equals 20. The pressure head equivalent to this 
pressure difference is 

PI - P2 32pLv h f = =--
W pgd2 

This is called the Hagen-Poiseuille formula. Considering the velocity distribution 
equation (6.3) further 

a2 _,2 ap 
u=-----

4p ax 
the velocity distribution is paraboloidal. 

The maximum velocity V is given when, = 0, so 

The ratio of the maximum to the mean velocity is 

V (- a2 /4p) (ap/ax) 

v (-a 2 /8p)(ap/ax) 

V/v = 2 
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The location of the point in the fluid at which the local velocity equals the 
mean velocity is specified by the radius r m which is given by 

v= _;: :~ = _ (a 2 ~tLr?n) :~ 
so 

6.2.1 Kinetic energy correction It is rarely necessary to consider the kinetic 
energy of a laminar flow through a pipeline as velocities are usually low but it 
may be necessary to include kinetic energy changes in the energy balances that 
are used to solve such problems. Because the velocity profile is paraboloidal 
and not even approximately constant the use of the term v2 /2g to describe the 
kinetic energy/unit weight of fluid is inaccurate. A term av2 /2g must be used 
instead and a can be evaluated for laminar flow from purely theoretical con
siderations. 

The kinetic energy flowing through an annulus of radius r is 

u2 
oKE= w21tr~ru -

2g 

and the total kinetic energy flowing through the pipe per second is 

Substituting for u 

KE - 21tw (-(ap/ax)3) fa( 2 2)3 d 
--- 6 3 a -r r r 

2g 4tL 0 

If we assume that the mean velocity is a satisfactory basis for calculating the 
kinetic energy of the flow 
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a2 ap 
iJ=---

8fJ. ax 

KEtrue 

KEmean velocity 
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2 

In a problem in which laminar flow occurs through a simple pipeline as 
illustrated in Fig. 6.9 this value of 0: can be used to give a more accurate result. 

p~ __ ~ ____ VI __________ :=:::_--------------~;. v. 

Fig. 6.9 

Writing Bernoulli's equation allowing for energy losses but ignoring the losses 
at the area contraction gives 

PI 2vy P2 2v~ 
-+-+ZI =-+-+Z2 +hfl +hf2 
w 2g w 2g 

where hfl is the energy loss in the large pipe and hf2 is the loss in the small 
pipe. 

Equation (6.2) can be used to deal with the problem of flow through the 
annulus between concentric pipes (see Fig. 6.10). 

,2 ap 
u = - - + A log , + B 

r 4fJ. ax e 

so when 

Ur = 0 

and 
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and 

Subtracting 

so 

@=-=-==IV 
I. L J 

Fig. 6.10 

_R~ ap 
0- --+A loge R2 +B 

4Jl ax 

R~ -Ri ap R2 
---!:.-....!. -- = - A log -

4J.L ax e Rl 
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At the maximum velocity filament au/a, = 0, so from 

gives 

6.3 Turbulent flow 

au ,ap A 
-=--+a, 2J.1. ax , 

2 _ 2J.1.A d .. .. 
'max - - 'dp/ax an substItutmg lor A 

In Section 6.1 Reynolds' experiment was described in which it was shown 
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that the pressure drop in a pipe was linked to the velocity raised to a power of 
approximately 1·85. This suggests that the viscous shear stress at the wall of the 
pipe must also depend upon the mean velocity raised to a power of approximately 
1·85. 

If it is assumed that the relationship between the wall viscous shear and the 
mean velocity is T = kvn where k and n are constants it becomes possible to 
deduce a law relating pressure drop and mean velocity. This relationship was 
first stated by Froude who performed experiments to determine the force 
required to tow long planks through water. He found that k and n were constants 
that depended to a certain degree upon the nature of the surface of the plank. 
He found n to be 1·83 for many types of surfaces. 

The force acting upon the fluid contained within a length of pipe L of cross 
sectional area A and wetted perimeter P is caused by a pressure drop which in 
turn is balanced by the previously mentioned viscous shear acting over the 
surface of contact of the fluid with the pipe wall (Fig. 6.11). 

p 

~ ~ ~ 
r 

P ap 8 p+a; )( 
r 

~ ~ ~ 

8)( 

----..)( 

Fig. 6.11 
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The force causing flow is -(aplax)i;xA and the force opposing flow is 
Pi ox. (The pressure gradient must be negative if flow is to occur in the direction 
of x increasing.) Equating these forces as the flow is to be steady 

and substituting for i 

ap 
--3xA =P73x ax 

ap kvn 
-=-ax m 

where m = AlP that is m is the mean thickness of flow. 

I L...--_A ------JIJm 
I. p .1 

Fig. 6.12 

To understand this last statement imagine the wetted perimeter laid out 
straight and construct a rectangle of area A as illustrated in Fig. 6.12. Its height 
will then be m that is AlP. This term is called the hydraulic mean radius. In 
American practice it is often denoted by R. 

When x = 0, p = PI and when x =L, p = P2, so 

Dividing through by w to obtain the head equivalent to the Ap value 

Ap kLvn 
h f =-=--

w pgm 
(6.4) 

As n is nearly 2 (and in any case will later be made equal to 2 because of 
dimensional considerations) we may introduce a 2 into the denominator as this 
form of the equation facilitates the addition of energy loss and kinetic energy 
terms: 

k'L v2 
h f =-

pm 2g 
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For reasons that emerge from the dimensional considerations mentioned above 
k' / p is usually denoted by f So the equation becomes 

/Lv 2 
h f == -

m 2g 

This result is ascribed to Darcy and Weisbach. For circular pipes 

so 

A 7t d 
m ==- == -d2/(7td) ==-

P 4 4 

4fL v2 
hf ==-

d 2g 

This form is used in the UK but in America and Europe the form used is 

f'L v2 

hf==d 2g 

and 

/'=4/ 

(6.5) 

It is true that far more pipes of circular cross section are made than any other 
type and this may be considered a sufficient justification for dropping the 4, but 
the author feels that British practice has much to commend it in that the original 
form of the fundamental equation is preserved. Throughout this book, wherever 
/values are quoted, the British value is intended. 

6.4 The/number 

In Chapter 3 dimensional analysis is used to obtain the same equation as has just 
been derived and / is shown to be a function of Reynolds number, the roughness 
number kid (k is the mean height of the roughnesses), the ratio Lid and the 
Mach number vic. 

In long pipes the effect of Lid is insignificant. Strictly the effect of this ratio 
is in defining the entry length. Within the entry length the boundary layers have 
not become sufficiently thick to fill the pipe and there is a core of potential 
flow (see Fig. 6.13). At a distance greater than Ie the boundary layers adjacent 
to the opposite pipe walls meet and the entire flow is affected by friction. 
Clearly if the length of the pipe L is of the same order of magnitude as the 
entry length the nature of the flow is not completely controlled by frictional 
effects as it would be in a long pipe in which the length is much greater than the 
entry length. As the entry length is a function of the pipe diameter (and the 
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Fig. 6.13 

Reynolds number) a large value of Lid indicates that the entry-length effect 
need not be considered. The entry length Ie is given by Ie = 0·058 Re d. 

The Mach number is rarely of significance in steady liquid flow problems 
because c is very large relative to v and the Mach number is negligibly small. For 
instance, a large value for v is 20 ft/s and c in a water pipeline may be 4000 ft/s 
so the Mach number is 0·005. 

6.4.1 The variation off with Reynolds number and roughness The roughness 
number cannot however be ignored as it is of more significance than the Reynolds 
number in deciding the value off if its value is above a certain small limit. Thus 
the equation for f given in Chapter 3 

( k L v) 
f= tp Re, d'd'-~ 

reduces to 

with only trivial limitations on its range of validity. 
Using this result f could be plotted against Re and a family of curves should 

result, each with a different kid value. In the dimensional analysis no distinction 
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was made between laminar and turbulent flow so it should be possible to insert 
laminar flow results on the same graph. Now the Hagen-Poiseuille equation can 
be obtained from the Darcy equation by making the function of/equal to 
16/Re. With this in mind Nikuradse performed a large number of experiments 
upon artificially roughened pipes and presented the results he obtained by using 
the method described above. (See Fig. 6.14.) 

..... dlk=30 

0> 
0 

...J dlk=60 

dlk=120 

dlk=250 

dlk=500 

__ ____________ ____________ ____________ 

3,0 W 50 ~ 

Log Re 

Fig. 6.14 

This type of experiment must confirm the laminar flow result of course and 
for this zone / is indeed given by / = 16/Re. 

At a Reynolds number of about 2000 (the lower critical Reynolds number) a 
break occurs in the graph and no satisfactory trends can be found until a Reynolds 
number of about 2800 has been exceeded (the upper critical Reynolds number). 
Above this value the results for various pipes can be arranged in curves with 
increasing values of / corresponding to increasing kid values. 

If the simple experiment described on page 177 in which the h and v values 
were plotted against one another is now reconsidered it will be realised that the 
upper and lower critical velocities are really manifestations of upper and lower 
critical Reynolds numbers and whereas the results obtained are only applicable 
to the one pipe transporting the particular liquid used (water), the log/against 
10gRe plot applies to all pipes having large Lid and low vic values transporting 
any newtonian fluid. 

The surface of a pipe can be considered as a flat boundary rolled up into a 
pipe so what has been said about a flat surface can, with only minor modifica-
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tions, be applied to a pipe. In a turbulent flow through a pipe there will be a 
laminar sub-layer which if thick enough will protect the turbulent core from 
the roughnesses on the boundary. It may be thinner than the roughnesses how
ever and then these will generate additional turbulence in the main flow. From 
this it can be seen that a pipe is hydraulically smooth if its laminar sub layer is 
thicker but hydraulically rough if its laminar sub-layer is thinner than the height 
of the roughnesses. 

As the laminar sub-layer decreases in thickness with increasing Reynolds 
number it can be seen that a pipe may be hydraulically smooth at low 
Reynolds numbers but rough at high Reynolds numbers. Also if the roughnesses 
are very large they will saturate the flow with turbulence and the Reynolds 
number will not affect the value off. This is clearly shown in Fig. 6.14 in which 
at large kid values/remains constant for all Reynolds numbers above a fairly 
low value. Clearly, at low Reynolds numbers the fluid is in a state which while 
not laminar cannot be considered fully turbulent. At any point in the flow the 
steady component of the instantaneous velocity is large compared with the 
turbulent fluctuating component. At high Reynolds numbers however the 
reverse is true, the turbulent fluctuations being large in relation to the steady 
translational component. Thus the onset of turbulence can be thOUght of as a 
gradual process in which fluid which is just not in laminar motion is in a weakly 
turbulent state, this turbulence increasing with Reynolds number and wall 
roughness. 

The form of Reynolds number indicates that turbulence should increase as 
its value increases. Reynolds number is the ratio of inertial forces to viscous forces 
acting upon a fluid element. The viscous forces damp out any disturbance of 
uniform motion or dissipate the energy of any unstable motion that may start 
within the flow. If this viscous force is small in relation to the forces tending to 
magnify any initial disturbance or instability (such as the inertial forces) the 
fluid motion can be expected to degenerate into a random chaotic motion of 
fluid molecules, that is to become turbulent. Thus a large Reynolds number 
corresponds to unstable, that is turbulent flow whereas a small value corresponds 
to stable, that is laminar flow. 

Turbulence has been described as a random chaotic motion in which particle 
motions are continuously varying in an unpredictable manner. This is certainly 
true of strongly developed turbulence, but in weak turbulence structure can 
exist, the fluid being filled with small or large vortices depending upon circum
stances. A tranquil flow in a river moving over a rough bed which is deeply 
submerged shows the presence of these large vortices as patches of upwelling 
fluid which cover the surface. Flow behind an obstruction in a free surface flow 
may show a Karman vortex sheet in which the vortices are very large. Such 
coarse-grained turbulence can be regarded as one end of a spectrum of turbulence 
which grades down through finer-grained turbulence to a turbulence which 
involves fluid masses of microscopic size. 
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6.4.2 The value off In the equation (6.5) 

4jL v 2 fL v2 
hf =-- or 

d 2g m2g 

fis a variable. In obtaining this expression from equation (6.4) 

kLvn 
hf =--

pgm 
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n was made 2 andf/2 replaced kip. If k were a true constant then the alteration 
of n from 1·83 (or thereabouts) to 2 can only be compensated by makingfa 
function of v which is such that fv 2/2 = kvn / p. It is necessary to replace n by 
2 not only to make the calculation easier by avoiding the awkward fractional 
index but also to get a dimensionally rational result. Inserting the dimensions 
into equation (6.4) 

I kl LLnr-n 
L = -'------:::------::-

ML -3Lr 2L 

I k I = ML -(n + l)Tn - 2 

If n is non.integral, k cannot have rational dimensions so n must take the 
value of 2 and thus I k I = M/L3. The value of fis related to 7. From Fig. 6.11 

but 

and 

A x.l::!.p =p.l::!.x x 7 

.l::!.p/.I::!.x = 7/m 

.l::!.p f.l::!.xv 2 
.l::!.h =-=--

f W 2gm 

.l::!.p pfv 2 
-=--
.l::!.x 2m 

m 2m 

~ = (V*)2 = fv 2 
P 2 

f= ~= 2 (V*)2 
pv2 v 

(6.6) 

In laminar flow, from purely theoretical considerations, it can be seen that 
f= 16/Re. In turbulent flow, the problem is far more complex and was originally 
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tackled by purely empirical methods. The early experimental formulae are of 
doubtful value when applied in circumstances which are significantly different 
from those in which the formula was obtained. Examples of such early formulae 
are 

Weisbach 

f= 0·0036 + 0.00429/Yv 

Bazin 

f= 0·00294(1 + 0·3736/d) 

Kutter and Ganguillet 

f= 64.4 {I + (41·6 + 0.00281l/h)N/Ym}2 
1·811/N + 41·6 + 0·002811/h 

where N is a roughness number. 

Thropp 

where C, n and x are coefficients chosen from a list which specifies the values 
appropriate to the pipe surface condition. 

Modern Formulae (Smooth bore pipes) 

Blasius, 1913 

f= 0·079/Re l/4 

This is applicable to pipes in which Re lies between 4000 and 100 000. 

Lees, 1924 

f= 0·0018 + 0·153/Reo. 35 

Again, Reynolds number must lie between 4000 and 400 000 

Hermann, 1930 

Nikuradse, 1932 

f= 0·00135 + 0·099/Reo.3 

4000 <Re < 2000000 

f= 0·0008 + 0·05525/Reo.237 
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6.5 The PrandtI mixing-length hypothesis applied to pipe flow 

In Chapter 5 the theory of the boundary layer based on the Prandtl mixing
length hypothesis was developed. The velocity distribution equation is of use 
here 

u = 2'5Y(TO/p) loge Y + C 
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where u is the local velocity at a distance y from the pipe wall and TO is the wall 
shear stress. On the centreline of the pipe y = r and u = V max so 

U = Vmax + 2'5)( ~o) 10ge~ 
Denoting 

Y(TO/p) by V* 

(YTo/p has the dimensions of velocity) 

u= Vmax +2'5V*loge(v/r) (6.7) 

A simpler result that is sufficiently accurate for all practical purposes can be 
used providing that the Reynolds number is less than 100 000 

u/V max = (y/r)ll7 (6.8) 

This one seventh power law is widely used in engineering. 
The index 1/7 can be progressively decreased as Reynolds number increases 

above 100 000. 
Whereas Prandtl assumed that the shear stress from the wall to the pipe centre 

was constant, Van Karman assumed it to decrease linearly from its maximum 
value at the pipe wall to zero at the centre and obtained the following result 

u = Vmax + 2'5V*{ y(l- y/r) + 10ge[1- y(1- y/r)]} 

The difference between the Van Karman and the Prand tl result is very small 
except near the walls. 

6.6 The velocity distribution in smooth pipes 

6.6.1 The laminar sub-layer Both the Prandtl and the Van Karman result give an 
infinite negative value for the local velocity at the pipe wall; an impossible 
result. At very small distances from a boundary it is hard to believe that fluid 
motions can be completely randomised as is required if the flow is to be turbu
lent. Fluid motion at such extremely small distances must be influenced by the 
presence of the wall and must be laminar. This suggests that in the case of a 
turbulent flow through a pipe there must be a peripheral annulus of fluid 
adjacent to the pipe wall which is in laminar motion, a laminar sub· layer. This 
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layer is of course very thin. For such a layer the turbulent theory described 
before cannot apply and it is the presence of this layer that explains why the 
impossible negative infinite velocity does not occur at the boundary. 

It is reasonable to assume that the velocity distribution in a very thin layer 
such as this is linear as non-linear effects cannot be very significant. If the layer 
is assumed to have a thickness 0' and the velocity at the edge of the layer is 
denoted by ul 

so 

T = Jl(aulay) = JlUzlo' 

!... = V*2 = JlUI 
P po' 

ullV* = po'V*/Jl 

The term on the right hand side can be seen to be a type of Reynolds number, 
and as would be expected it has a specific value for conditions at the edge of 
the laminar sub-layer. 

6.6.2 The buffer zone The turbulent core of flow in the pipe does not change 
suddenly into the laminar sub-layer at points close to the pipe wall. Instead there 
is a transition zone, called the buffer zone, across which the state of flow changes 
from fully turbulent at the radius at which it joins the turbulent core to fully 
laminar at the the laminar sub-layer. 

At the edge of the laminar sub-layer the value of p V*o'/Jl is 5 and at the 
junction of the buffer zone with the turbulent core the value is 70. However a 
satisfactory theory can be developed if the buffer zone is ignored. Some authors 
consider that the thickness of the laminar sub-layer should be increased to 
include part of the buffer zone and that the rest of it should be ignored. Such 
authors use a value of p V*o' / Jl of between 10 and 11·6 for the laminar sub
layer thickness. Rewriting equation (6.7) 

u = Vmax + 2·5 V* loge (Ylr) 

At the edge of the turbulent core 

y = 0' and u = ul 

Ul = V max + 2·5 V* loge o'ir 

Ul Vmax r pV*o' 
-= --- 2·5 log -=--= 11·6 
V* V* eo' Jl 

(6.9) 
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At the edge of the laminar sub-layer 

pV*o' 
--= 11·6 

J1 

Substituting for 0' in equation (6.9) 

so 0' = 11·6J1 
pV* 

Vmax pV*r 
11·6 = r - 2·5 loge 11.6J1 

Vmax 1 pV*r 
--= 11·6 + 2·5 log -+ 2·5 log --

V* e 11.6 e J1 

Vmax pV*r 
--= 5·5 + 2·5 log --
V* e J1 
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u pV*y 
- = 5·5 + 5·75 10glO--
V* J1 

(6.10) 

This equation gives the velocity distribution in smooth circular pipes. However 
if the mean height of the roughnesses on the wall of a rough pipe do not pene
trate the laminar sub-layer, it too may be treated as a smooth pipe. 

6.7 The velocity distribution in rough pipes 

Prandtl assumed that in a rough pipe the edge of the turbulent core was located 
at a distance y c from the wall and that y c was given by 

Yc = ck 

where c is a constant and k is the mean height of the wall roughnesses. From 
equation (6.7) 

U Vmax r 
-=--- 2·510&
V* V* y 

To get u at the edge of the turbulent core substitute y = ck 

From this equation 

!!£ = V max _ 2.510& !..
V* V* ck 

Vmax Uc r 
--=-+2'510g -

V* V* e ck 
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Substituting into (6.7) gives 

so 

U Uc (r r) -=-+2,5 lo~--log -
V* V* ck e y 

U Uc Y 
-= -- 2·510~ c + 2·5 log -
V* V* e k 

For any given roughness uc/V* - 2·5 loge c is approximately constant and in 
the case of completely rough pipes this constant is 3·7. In common logarithms 

~ = 8·5 + 5·75 10glO (z) 
V* k 

When k is less than 0' the smooth pipe result should hold so replacing the 8.5 
value by 

pV*k 
{3 = 5·50 + 5'7510g1o-

p. 

will transform the rough pipe equation into the smooth pipe equation. 
Thus if a pipe is hydraulically smooth (the mean height of roughnesses are 

less than the laminar sub-layer thickness and the turbulent core is protected 
from their influence) then p V* k/ p. ~ 5 and 

{3 = 5·50 + 5·7510g10 (pV*k/p.) 

When the pipe is completely rough (the roughnesses protrude through the laminar 
sub-layer) 

p V*k/p.;;;;' 70 and {3 = 8·50 

Transitionally rough pipes are defmed by 5 < p V*k/ p. < 70 (see Fig. 6.15). 
Commercial pipes often lie in the transition zone but tend to come into the 

rough zone as they tuberculate with age. However the same pipe may operate 
anywhere on this curve depending upon the value of V* which depends upon T 

and fmally upon the pressure difference applied to the ends of the pipe. Thus a 
pipe operating under a small head difference will carry a small flow and its 
laminar sub-layer thickness will be large, possibly greater than the roughness 
height, so that the smooth pipe formula is applicable. However under a large head 
difference, the laminar sub-layer may be thinner than the roughness height and 
the rough equation will then apply. The same pipe may be physically rough yet 
hydraulically rough or smooth according to the value of p V*k/p.. 

In the theory of rough pipes we have assumed that the roughnesses all have 
the same height. In commercial pipes there is a spectrum of roughness and not 
all of the roughnesses pierce the laminar sub-layer at the same time. As a result 
the theoretical discontinuity shown in Fig. 6.15 does not in fact occur; instead 
the smooth curve shown describes the real situation. 
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Fig. 6.15 

6.8 The universal pipe friction laws 

For smooth pipes, from equation (6.10) 

u/V* = 5·5 + 5·7510g10 (pV*y/p) 

Considering the flow through an annulus in a circular pipe, integrating to give 
the total flow, and dividing by the cross sectional area of the pipe gives an 
expression for the mean velocity of flow: 

v/V* = 1·75 + 5·7510g10 (pV*r/p) 

From equation (6.6) 

V*=v Jf 
:. for a smooth pipe 

1/ v/= - 1·81 + 4·07 loglO(2 ReV!) 

where Re = pvD/p and D = 2r. 
These results are usually adjusted slightly to fit experimentally obtained 

values a little better: 

1/ v/= 4·0 10glO(Re 2V!) - 1·6 

Following a similar procedure the corresponding result for rough pipes can 
be obtained: 

1/ v/= 4·0 loglo (D/2k) + 3·48 

197 
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6.8.1 Colebrook-White formula The equations just obtained can be combined 
as first suggested by Colebrook and White and the result works very well, in fact 
it is probably the best available formula. 

1 {2'51 k} 
y'f = - 4·0 loglo 2y'f Re + 3.7D 

This equation is difficult to use, as f appears on both sides. However it can 
quickly be solved on a computer. A mean range value of fis first inserted in the 
right hand side of the equation and anfvalue obtained. This is substituted into 
the right hand side and the left hand value worked out. The process may then 
be iterated until two successive values off are obtained which are not Significantly 
different, say to an accuracy of 0·00001. Not many iterations are needed for 
this process. 

6.9 Losses in pipelines other than those due to pipe friction 

Losses may occur in pipelines other than those due to pipe friction. They are 
localised and are said to be local losses. All of them are caused by increase in 
turbulence due to boundary layer separation. 

These losses occur at the positions listed below: 

(1) At entry to a pipe. 
(2) At a sudden increase in pipe diameter. 
(3) At a sudden decrease in pipe diameter. 
(4) At bends, elbows, tees and divergent taper sections. 
(5) At partially closed valves. 
(6) At exit from the pipe. 

In all these cases, the most significant feature is flow expansion. An example that 
will best illustrate such a sudden expansion of a flow is that of a sudden increase 
in pipe diameter (see Fig. 6.16). The metal annulus that joins the two pipes exerts 
a pressure on the fluid P3' The magnitude of this pressure must be close to PI 

p, C2 P.v.o. 
.. -~J .. 

PI 

VI (i) • ®J • °1 .:)":> 
- I :::::----.... 

.. 
p, C":5 ..:J .. 

Fig. 6.16 
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because it is the pressure in the fluid just outside the parallel sided jet in which 
the pressure is P 1. For the jet to be parallel sided P3 must equal Pl. This is one 
of the main assumptions underlying this analysis. The second assumption is that 
the pressure P3 acts uniformly over the annulus. If this pressure distribution is 
significantly non-uniform the flow is curvilinear at high speeds and in the eddies 
in the corners of the section these conditions are not present. The assumption 
of uniform pressure distribution on the annulus is effectively true in practice. 

Applying Bernoulli's equation from CD to <IJ 
Pl vi P2 v~ --+-+Zl =-+-+Z2 +hL 
w 2g w 2g 

where hL is the energy loss/unit weight of fluid 

2 2 
.::...P...::.1_--=-.P..=.2 _ V 2 - v 1 h ----+ L 

W 2g 

assuming that changes in z values are negligible. 
Applying the total force equation 

Now 

but 

( P1+ vi)a1 _ (P2+ v~)a2 + Fx = 0 
w g w g w 

Fx = P3(a2 -ad = PI(a2 - a1) 
2 2 PIal -P2a2 +P1a2 -Pla1=a2v2 -a1 v1 

w g 

w g 

2 2 v2 - Vi 

2g 

2 2 2 = V I - vI v2 + v2 
2g 

(VI - V2)2 
2g 
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Also 
PI-'--P2 v~-vI VI-2vIv2+v~ 
:......!.-~ = ---+---.!._-..!-..;=----=-

W 2g 2g 

P2 - PI (VI - V2)V2 
W g 

Thus although there is an energy loss the pressure increases across a sudden flow 
expansion. 

6.9.1 The sudden flow contraction The convergent flow from the larger pipe 
causes a vena contracta to form (Fig. 6.17). This sort of convergent flow is stable 

v. 
a. 

'-"J V ::> P. 

f'./ 
v. 

a, .,;) a. 

Vena 
contracta 

Fig. 6.17 

and very little energy is lost in it. Downstream of the vena contracta a flow 
divergence occurs and energy is consequently lost. This loss is given by the sudden 
expansion expression 

hL = --1 ~ ( 
1 )2 2 

Cc 2g 

If Cc is given the extreme value of 0·582 the expression becomes 

and therefore 

V~ 
hL = 0·5--

2g 

PI -P2 l'Sv~ -VI 
w 2g 

This gives an upper estimate of the energy loss in a sudden flow contraction. 
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6.9.2 Pipe Entrance Flow at the entrance of a pipe (Fig. 6.18) is an example of 
a flow contraction so 

\ 
( 

Sharp edged mouthpiece 

Fig. 6.18 

Re-entrant or Borda mouthpiece 

Fig. 6.19 

The mouthpiece shown in Fig. 6.19 can be analysed using the energy and force 
equations. The result is 

(6.11) 
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Figure 6.20 illustrates the best mouthpiece, but this is obviously far more 
expensive to make. For this mouthpiece the loss is given by 

hL = 0·05(v~/2g) 

--.. v. 

Bell mouth entrance 

Fig. 6.20 

A certain type of pipe entrance that may unintentionally be produced can 
cause extremely heavy losses. For example, when a hole is drilled into a tank of 
a smaller diameter than the pipe it is to supply, a diaphragm will result (Fig. 6.21). 

Fig. 6.21 
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This gives a very heavy loss due to excessive flow expansion. This type of loss 
can explain the failure of many domestic water supplies to deliver an adequate 
flow. 

6.9.3 Losses at bends, elbows and tees In Chapter 5 the loss mechanism that 
occurs in bends and tees is dealt with in detail. Both boundary layer separations 
that occur in these circumstances cause losses that are described by a formula 
like 

(6.12) 

where F is a number that depends upon the parameters deftning the geometry 
of the section and the flow. Manufacturer's tables may be referred to for precise 
values of F for various flow circumstances. 

To refresh the reader's memory sketches of the various boundary layer 
separations that can occur in these cases is given in Figs. 6.22a, band c. 

(a) 

Bend 

(c) 

Y junction 

Fig. 6.22 

(b) 

Tee junction 
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6.9.4 Losses at divergent taper sections Loss at a divergent taper section (Fig. 
6.23) is a further example of boundary layer separation. The head loss caused 
by this mechanism depends upon the change of velocity caused by the taper and 
upon its angle of divergence. Again for precise details of the losses involved a 
manufacturer's tables should be consulted. However it is worth noting that if 
the angle of divergence is greater than 60° it is more economic to use a sudden 
flow expansion than a taper. 

Fig. 6.23 

6.9.5 Losses at partially closed valves Figure 6.24 illustrates losses at a partially 
closed valve. Clearly the loss mechanism is again that of flow expansion. This is 
again described by equation (6.12) 

hL =Fv~/2g 

Fig. 6.24 

Because of the variations of geometry that occur in valves designed by 
different manufacturers it is not possible to state the way in which F varies with 
the degree of valve opening and so the reader is once again referred to manu
facturer's tables for precise values of F. 

6.9.6 Losses at exit from a pipeline If a pipe delivers into a reservoir the 
kinetic energy of the fluid effluxing from the pipe is destroyed by turbulent 
mixing with the fluid in the reservoir so the loss at exit must be given by 

hL = v~/2g 



Pipe Flow 205 

This loss may also be seen as a flow expansion in which the final flow velocity is 
zero: hL = (vp - 0)2/2g. 

If the pipe discharges straight to atmosphere it will deliver fluid which possesses 
a kinetic energy of v~/2g per unit weight of fluid delivered. This constitutes a 
flow of energy that is being rejected from the system. Although this energy is not 
being destroyed it is effectively unavailable. It is accounted for in an energy 
balance however and so it is essential to differentiate between rejected kinetic 
energy and exit loss. 

(0) 

-=--

H, 

(b) 

Fig. 6.25 

Consider two simple pipelines (Figs_ 6.25a and b) to illustrate this point 
and write the energy equations. From Fig. 6.25a 

In this case 

PI vi P2 v~ 4fLv~ 
-+--+ZI =-+-+Z2 +--
w 2g w 2g 2gd 

1 v~ v~ +-- + 
22g 2g 

entry loss exit loss 

PI = P2 = atmospheric presssure 

ZI - z2 =Hs 
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so 

From Fig. 6.2Sb 

Here 

so 
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H = 4fLv~ + 1.5 v~ 
s 2gd 2g 

PI VI P2 v~ 4fLv~ 1 v~ --+-+zl =- +-+--+--+z2 
w 2g w 2g 2gd 22g 

rejected KE entry loss 

PI = P2 = atmospheric pressure 

VIR::O 

These two results are identical but for very different reasons and the reader 
should make sure that he has appreciated this difference. 

6.10 The energy grade line and the hydraulic grade line 

It is sometimes useful to plot a line above the longitudinal section of the pipe that 
represents the energy head along the pipeline as shown in Fig. 6.26. 

2 
I V, 

2'29 

(VI - V2)2 

2(1 

Fig. 6.26 

2 
I v. 

T'29 
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In pipe 1 the slope of the energy grade line is 4f1 vI!(2gd 1). In pipe 2 the slope 
is 4f2v~/(2gd2) and in pipe 3 the slope is 4hv~/(2gd3). 

In other cases, for example when the absolute pressure head is of interest 
because gas is being released or vapourous cavitation occurring, it may be more 
helpful to plot the pressure head line-this line is called the hydraulic grade line 
and its slope is called the hydraulic gradient. This line is similar to the energy 
grade line but not identical (see Fig. 6.27). 

2 
V, 

1'5-
2g 

Fig. 6.27 

This illustration demonstrates the difference between the energy grade line 
and the hydraulic grade line but it does not show its application in practice. 

At the point x from the upstream reservoir in Fig. 6.28 the pressure head is 
Px/w above atmospheric pressure. When the pipe line rises above the hydraulic 
grade line the pressure head becomes negative and if it rises to a sufficient height 
above the grade line the head may fall so low that gas may be released from the 
water. If this gas collects at the high point the flow area will be altered and a weir 
flow will occur over the high point. This will cause a flow reduction which in 
turn will reduce the friction loss in the upstream portion of the pipe. This will 

4fv2 
Slope= 2gd 

Fig. 6.28 
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cause the grade line to rise so preventing the development of the low pressure 
and so stopping the release of gas. The flow will thus fluctuate and this may 
cause water hammer to develop. 

This situation must be avoided and the hydraulic grade line can be used to 
assess the risk of its occurrence. Gas release occurs at about 8 ft (2·4 m) head 
absolute and as the height of the water barometer is 34 ft (I0·2 m) the hydraulic 
grade line should never be lower than 26 ft (7·9 m) below the pipe. It is usual 
to fit air-release valves at high points and wash-out valves at low points. By 
closing a downstream control valve the pressure at all points in the pipe can be 
made greater than atmospheric pressure and then the air release valve will auto
matically release any air in the pipeline. Wash-out valves are fitted for cleansing. 
Needless to say, the highest point of the pipeline must be below the upstream 
reservoir surface. 

6.11 The energy coefficient 

Up to this point it has been assumed that the kinetic energy terms in the energy 
equation are sufficiently small for the approximation for the kinetic energy 
v2 /2g to be valid. In laminar flow this is not even approximately true and in 
turbulent flow it involves an error of about 6% of the kinetic energy. In long 
pipelines where kinetic energies represent a very small fraction of the total head 
this error is trivial and may actually represent an error of less than 0·5% of the 
total head. In short pipelines this is not necessarily the case and then a correction 
must be made to the value of the kinetic energy. 

The kinetic energy of a flow is uniformly distributed across the flow only if 
the velocity distribution is uniform. At the walls the fluid, having a very small 
velocity has even less kinetic energy and conversely in the main core of the flow, 
the velocity and kinetic energy are large. The kinetic energy is dependent on the 
square of the velocity and the square of the mean velocity cannot equal the mean 
of the squares of local velocities so the term v2 /2g cannot correctly represent the 
true average kinetic energy per unit weight. 

Fig. 6.29 
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Consider the kinetic energy of flow through an annulus (see Fig. 6.29). The 
kinetic energy flowing through this annulus per second is given by 

u2 
W x 27tru x-ar 

2g 

and therefore the total KE per second flowing through the pipe is 

Assuming that the smooth.pipe velocity distribution equation (6.8) applies 

u/V = (y/R)l/n 

where V is the centreline velocity. But r = R - y so dr = - dy 

rO ( )3/n 
KE/second = - 7tgW V 3 J

R 
f (R - y) dy 

_ __ _ __ 2+3/n 7twV3 [Ry l+3/n I ]0 
- - R 3/ng I + 3/n - 2 + 3/n y R 

:. The ratio a of the true kinetic energy flowing per second to the kinetic energy 
based on the mean velocity is 

V 3 
[ 2n2 ] w7tR 2 -

2g (2n + 3)(n + 3) 2n2 (V)3 
w7tR 2(v 3/2g) = (2n + 3)(n + 3) -;; 

(6.13) 

It is now necessary to evaluate Vivo The elemental flow through the pipe annulus 
is given by 

aQ = 27tru ar 

= -21tV(y/R)lIn(R - y) dy 

= _ 27tV [_l_R l+l/n __ 1 __ 2+1/n]0 
R 1/n 1 + l/n y 2+ l/n Y R 
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= 27tR2 V (_n __ _ n_) = 7tR2 V ___ 2n_2 __ _ 
n+12n+1 (n+1)(2n+1) 

Q 2n2 
v = -- = V------

7tR2 (2n + l)(n + 1) 

so 

-
V (2n+1)(n+1) 

Substituting back into equation (6.13) 

a = 2n2 [(n + 1)(2n + 1)]] 
(2n + 3)(n + 3) 2n2 

(n + 1)\2n + 1)3 

4n4(2n + 3)(n + 3) 

a is known as the Coriolis coefficient. n is usually 7 so 

and 

83 X 153 
a = 1·06 

4 x 49 x 49 x 17 x 10 

V 8 xIS 
-=--= 1·225 
v 2 x 49 

In laminar flow the kinetic energy ratio is 2 as demonstrated on page 183. 

6.12 Momentum coefficient 

Owing to the non-uniform velocity distribution the usual statement that the 
momentum, M, of the flow is given by 

M= pav 2 

where a is the area and v is the mean velocity is not strictly true and a momentum 
coefficient must be employed if momentum effects are significant. By a precisely 
similar method as was used to derive the Coriolis coefficient the momentum 
coefficient can be obtained. 

The total momentum flow rate is 



Pipe Flow 211 

substituting u = V(y/R)I/n gives 

7tR2 V 2w 2n2 
Momentum/unit weight of flow = (')() 

g 2n+2 n+2 

7tR 2wv 

( V2) 2n2 
= gv (2n + 2)(n + 2) 

The momentum of unit weight of fluid based on the mean velocity = v/g. There
fore the ratio {3 of the true momentum per unit weight of the flow to the 
momentum per unit weight of flow based on the mean velocity is given by 

V2 2n2 

gv (2n + 2)(n + 2) (V)2 2n2 
{3 = v/g -;; (2n + 2)(n + 2) 

substituting for (V/v)2 gives 

When n = 7 

152 X 82 50 
{3=----

2 x 49 x 16 x 9 49 

=1·02 

Inserting these two correcting coefficients enables more accurate expressions 
for energy and momentum to be written when velocity distributions are not 
uniform, for example in pipe flow. The energy equation becomes 

PI vi P2 v~ -+a-+z1 =-+a-+z2 +h f 
w 2g w 2g 

and the momentum equation 
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6.13 Flow in pipe networks 

Provided that the network is not too complex relatively simple methods of 
analysis can be developed based on the continuity and dynamic equations. If 
the networks are made up of relatively long pipes and local turbulence losses are 
not significant a simple modification of the head loss equation yields a result of 
great value. In the equation 

replace v by Q/[(7t/4),j2]. Then 

4fLv2 
h f =--

2gd 

4fLQ2 32fLQ2 

h f = (7t/4)22gd S 7t2gdS 

In fps units this expression is closely given by 

(Note that the number 10 in this expression is not a dimensionless number.) In 
metric units to an adequate accuracy 

fLQ2 
h f = 3ds 

Consider a simple pipe network of the type illustrated in Fig. 6.30. A unit 
weight of water as it leaves reservoir A en route to reservoir C will lose energy 

A 

B 

Fig. 6.30 
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in pipe 1 and more in pipe 3. It may also lose energy in passing through local 
turbulences at pipe entry, at the pipe junction and at the pipe exit. 

wheie kvi/2g is the loss at the pipe junction. 
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Now in reservoirs surface velocities must be nearly zero so vX/2g and v~/2g 
can be neglected. P A = Pc = atmospheric pressure so 

The same process can be applied to fluid leaving reservoir B en route to reservoir 
C and the result will be 

HB = (..!..+ 4hL2) v~ + (k + 1 + 4hL3) v~ 
2 d2 2g d3 2g 

Also 

that is 

By substituting for VI and V2 in terms of V3 these three equations can be solved 
forvj,v2 andv3' 

If local turbulences are negligible the head-quantity equations can be used 
directly with some saving in effort. Then 

and Q3 = Ql + Q2 in metric units. 



214 An Introduction to Engineering Fluid Mechanics 

The easiest way of solving these equations is to let Q1 = o:Q3' Then 

H = (flL 10:2 + 13L 3) Q2 
A 3di 3d~ 3 

(6.14) 

H = (12L2 (1 _ 0:)2 + 13L 3) Q2 
B 3d~ 3d~ 3 

(6.15) 

When values are substituted this reduces to a simple quadratic in 0: which 
when solved can be substituted back into either equation (6.14) or equation 
(6.15) to obtain Q3' QI and Q2 can then be simply obtained. 

The statement that the available head, H A or HB in Fig. 6.30 is used to over
come friction is satisfactory providing that it is remembered that it derives from 
the energy equation and therefore friction in this sense means all energy losses 
including local turbulence losses and rejected kinetic energy. 

If pipes are arranged to operate in parallel, for example AJ and BJ in Fig. 6.30, 
the head loss from A to C is the head loss in AJ plus that in JC and the head loss 
from B to C is the head loss in BJ plus that in JC (ignoring local losses). It is a 
common error to say that the total loss in the system is the sum of the head 
losses in all three pipes. This statement is true if all the pipes are arranged in 
series so that every fluid element has to pass through all three but it is obviously 
untrue when some of the pipes are arranged to operate in parallel so that not all 
of the fluid passes through all of the pipes. This mistake is so common that it is 
considered necessary to draw the reader's attention to it. 

6.13.1 Pipeline equipped with a nozzle A pipeline with a nozzle is illustrated in 
Fig. 6.31. Applying the energy equation to points 1 and 2 

PI vi P2 v~ 4fLv~ -+-+z =-+-+Z2 +-
w 2g I W 2g d 2g 
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CD 

Hs 

2 

C. dn 

Fig. 6.31 

Now PI = P2 = atmospheric pressure. vI = 0 effectively and z 1 - Z 2 = HS 

and 

H = vfi + 4fL v~ + (~_ 1) (vfi - V~) 
s2g d2g Ca 2g 

Hs = [(::f + (~-I){(::r -I} + 4:] ;! 
Hs = [~J{(::r -I) + 4: +( ::r]~ 

6.14 Analysis of pipe networks 

215 

For every pipe in a network the head loss equation can be written, an equation 
can be written for every junction which specifies that the flow into the junction 
must equal the flow out of the junction (Kirchofrs law-really a statement of 
continuity) and finally equations can be written which specify that head differences 
between any two points in the network must be the same irrespective of the route 
taken through the network. This gives enough equations completely to specify the 
problem. Hence a solution must be possible-at least theoretically. If the number 
of pipes in the network is greater than four or five this solution becomes extremely 
laborious and when the number is large, impossible. It must be remembered that a 
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large number of nonlinear simultaneous equations are involved in the solution. At 
the time of writing no one attempts the direct solution of these equations 
although it is possible that it might be attempted on a large fast computer. All 
analyses of networks of any significant size are based upon one or other of two 
methods. These are the electrical analogue and the Hardy Cross methods. 

6.14.1 The electrical analogue This technique is based on the property of either 
(1) glowing lamp filaments which have resistive properties such that V = kin 
where V is the voltage across the lamp and i is the current through it (n has the 
value 1·83) or (2) ceramic resistance elements, for which a similar resistance law 
exists. Clearly a perfect analogy exists between the electrical and the hydraulic 
equations, that is 

Voltage is the analogue of head, current is the analogue of flow and n may be 
made the same by careful choice of the resistive elements. kh and ke can be 
made to bear the correct relation to one another by linking numbers of glowing 
bulbs together appropriately arranged in series or parallel to give a value of ke 
that will be in appropriate scale to the value of kh for which it is desired to 
model. 

Once resistance elements of suitable properties have been manufactured they 
can be wired together and the currents and voltages measured which can then be 
directly scaled to give flows and heads as required. This technique is worth 
performing for medium sized networks. A model of the network is built, new 
resistance elements modelling new pipes that are being fitted into the pipe 
network and then added as required. Trials can be made of the effect upon the 
network of various sizes of pipes and an optimum chosen. 

This approach is not economic for small networks and is too complex and 
expensive for very large networks. In such large networks the effects of installing 
a new pipe are estimated empirically. Pressure con tours are plotted over the 
network, the information being obtained from data collected by direct measure
ment. These contours make it possible to estimate heads anywhere in the network 
and the effect of installing a new pipe can be assessed by analysing a limited 
portion of the surrounding network taking in sufficient to ensure that the 
alterations caused by fitting the proposed new pipe are negligible in the periphery 
of the section of network under detailed examination. It is also important to 
ensure that the section considered is not so large as to give rise to an excessively 
laborious analysis. After fitting the new pipe the pressure contours will need 
alteration, of course. 

Thus, for small networks and for portions of a large network it is necessary to 
use an analytic technique to solve the network. 
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6.14.2 The Hardy Cross method This method is one in which a trial guess is 
made for the values of the flow in every circuit in the network. These trial guesses 
are improved by employing corrections as demonstrated later, the process being 
repeated until successive corrections become insignificant. If the first guesses are 
reasonably accurate convergence to the solution is quick, if the first trials are 
significantly wrong convergence is slower. 

Two approaches are available and are used in circumstances to which they are 
best suited. They are head balancing and quantity balancing. 

6.14.3 Head balancing Consider a loop in a complex pipe network (Fig. 6.32). 

Q 

® 

3 @ 

Q 

Fig. 6.32 

Let Qr and QI be the first values assumed and let Q; and Q{ be the correct values. 
Then 

and 

where SQ is the error in the assumed values. Note that both Qr + QI and Q; + QI' 
equal Q as indeed they must if they are to obey continuity. 

Now the head lost along either route from junction 1 to junction 4 must be 
the same 

r.hf = r.hf 
1-2-4 1-3-4 

r.(k[Q~ + nQ~-1 3Q + ... ]) = r.(k[Qf - nQf- 1 3Q + ... ]) 
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Ignoring second and higher powers of aQ gives 

~ _ 'LkQ~ - 'LkQf 
Q- - n('LkQ~-1 + 'LkQf- 1) 

or 

'Lh (paying attention to sign) a Q = __ --'=--0--"'--___ ---='-'-
n'Lh/Q (ignoring signs) 

The sign of flow around the network loop in a clockwise direction is taken as 
positive and in an anti-clockwise direction is negative. 

Thus for any given loop the value aQ can be evaluated and then added to the 
original values and the process repeated until insignificant values of aQ are 
produced. If one leg (or more) of the loop is part of an adjacent loop, that is 
the pipe is shared between the two loops, a slight modification must be made 
to this procedure. oQ values must be calculated for both loops from the assumed 
values. The aQ values when applied to their respective loops will cause changes 
in the flow in the pipe that they have in common and an alteration made in one 
loop is communicated to the other. Thus all loops should be adjusted, corrections 
made throughou t and then all loops corrected again. It is wrong to correct one 
loop fully and then start on the second which upon correction inlmediately 
throws the head balance out in the first. 

The head-quantity equation 

The Darcy or Fanning equation can of course be used but as/is a variable in 
the equation many people do not care to undertake the additional work necessary 
to evaluate it and then fmd hf from 

(where N is either 10 or 3 according to the system of units in use). Instead, the 
Hazen-Williams equation is preferred 

(C depends upon the roughness of the pipe). This leads to 

h - -- __ Ql.85 (
1.594)1.85 L 

f - C d 4 •87 
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As C is a true constant this equation is exactly of the type assumed in the Hardy 
Cross analysis: hf = kQn where k = 0·594/C)1.85 L/d4-87 and n = 1·85. The 
expression for k involves awkward indices so it is usual to use a nomogram for 
solving this equation. 

The Hazen-Williams equation is very widely used in engineering practice and it 
is easy to understand why, but it should be realised that the convenience of the 
equation is no measure of its accuracy; and also it only applies to the flow of 
water at one specific temperature. The Colebrook-White formula for fis 
applicable to steady, non-spatially varied, flow of all newtonian fluids in pipes. 

Example of head balancing 

0-05 m 3/5 

Head=70m ® A 

L=160m 
d=0-25m 

L=160m 
d=Ol5m 

@D 

L=700m 

d=0-2m 

Loop I 

L=700m 

d=0-25m 

Loopll 

L=700m 

d=O-15m 

Fig. 6.33 

0-008m 3/5 

@B 

L=160m 
d=0-15 m 

©c 

L=160m 
d=0-25m 

®F 

For the pipes making up the network in Fig. 6.33,/= 0·005, so 

hf = 0·005 LQ2/3d5 = kQ2 

Thus k AB = 3650, k BC = 3510, kCD = 1190, kDA = 273 

kCE = 273, kEF = 15400, kFD = 3510 

Table 6.1 shows how the network can be solved. A fourth or maybe fifth 
adjustment could be performed with advantage. Note that flow around aloop in 
a positive direction is taken as positive. 

6.14.3 Quantity balancing In head balancing an error in the flow around a 
circuit of a network was assumed. 
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A 

E 

c 

Fig. 6.34 

In quantity balancing, an error in the head at a junction is assumed. Consider 
a junction such as illustrated in Fig. 6.34. A first trial value for the head at the 
junction H] can be made. Assuming that this first trial is too large by an amount 
ah and H; is the correct head then 

Calculating the flow in pipe 1 from the pipe formula 

the value QI so obtained will be wrong by an amount of aQ. For the correct 
head and flow 

substituting for HJ in the equation givesHA - (H; + ?3h) = k1Q7. Subtracting 
gives 

I5h = klQ7 - kl(Q -I5Qdn 

I5h "'" nkQ7- 1I5QI 

I5h = nhl I5QdQI 

This error can be written in terms of the flow errors in all the other pipes 

nhl nh2 nh3 
I5h = Q; I5QI = Q2 I5Q2 = Q3 I5Q3 = ... 
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( QI+ Q2 + Q3+ ... ) ~h = n(~QI + ~Q2 + ~Q3 + ... ) 
hI h2 h3 

n'L~Q 

~h = 'LQ/h 

Thus a very simple procedure can be employed for solving the network. 

(1) Assume a head at the junction J. 
(2) Calculate the flows in the various pipes using the assumed head at the 

junction and the friction equation. 
(3) Sum the flows into the junction; flow into the junction being assumed 

positive and flow out of the junction negative. The sum of these flows 'L ~ Q. 
(4) Evaluate Q/h for each pipe and obtain 'LQ/h. 
(5) Calculate ~h. 

Re-evaluate Hj, that isH] - ~h and restart the calculation at step 1 again. 
Repeat the process until the value of ~h becomes negligible. 

Quantity balancing can be used to solve a network in a very similar way to 
head balancing. Estimates of heads at all the network junctions must first be 
made. Corrections of the heads at the junctions can then be calculated. The 
process can be repeated until successive values of junction heads are negligibly 
different. A tabular approach is desirable. 

Worked examples 

(1) A horizontal pipe of7·5 cm diameter is joined by a sudden enlargement to a 
pipe of 15 cm diameter. Water is flowing through it at a rate of 0·0141 m3/s. If 
the pressure just before the junction is 6 m head, what will be the pressure head 
in the 15 cm pipe downstream of the junction? What will be the power loss at 
the junction? 

Energy loss/unit wt of fluid = (vI - V2)2/2g 

0·0141 
VI=( )2/ =3·192m/s 0·075 7t 4 

h (3'192-0'7979)2 
L = = 0·292 m 

19·62 
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_P2 6 + 0·519 --+ 0·0324 + 0·292 
w 

P2 _ 
- -6·19Sm 
w 

Power loss = wQhL = 9810 x 0·0141 x 0·292 

= 40·39 watts (newton metres) 

(2) In rough pipes the Darcy fis given by: 

I/f= 4·0 10glO(r/k) + 3-48 

223 

In a certain district, the flow through a pipe of 10 cm diameter was found to 
be 0·007 m3 /s when the hydraulic gradient was 0·01. Fifteen years later this flow 
rate was shown to have decreased by 20%. A new 22·5 cm diameter pipe is to be 
installed to carry a flow of at least 0·056 m3 /s when operating under a hydraulic 
gradient of 0·015. For how long can this pipe be expected to carry this minimum 
flow. Assume that the roughness of the new pipe is the same as the initial 
roughness of the 10 cm pipe and that the roughness will increase linearly with 
time at the same rate as did that of the 10 cm diameter pipe. 

Initially for the 10 cm dia. pipe 

hf 4fv2 
- = ---= 0·01 
L d 2g 

0·007 
v = (7t/4) X 0.12 0·8913 m/s 

f=6·17Sx 10-3 

I/";f = 12·73 

After 15 years and with the same hydraulic gradient, 

Initially 

v = 0·8 x 0·8913 = 0·713 m/s 

I/";f = 10·18 

12·73 - 3·48 
10g lO(r/ko) = 4 (see p. 197) 

= 2·312 

r/ko = 204·9 

ko = 0·05/204·9 = 2·44 x 10-4 m 
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After 15 years 

10·18 - 3·48 
logI0(r/k 1S)= 4 =1·675 

k 15 = 0·05/47 ·34 = 1·056 x 10-3 

0·001056 - 0·0002441 
:. Rate of increase of k per year = 15 0·000054 m/year. 

In the case of the 0·225 m pipe the flow will reduce to its minimum acceptable 
value of 0·056 m3 /s under a hydraulic gradient of 0·015 eventually. 

h f 4f 0·056 I L= 0·015 = 0.225 (7t/4)0.225 2 19·62 

f= 0·008346 

l/y'f= 10·95 

I r _ 10·95 - 3·48 
og10 k- 4 1·867 

r/k = 73·5 so k = 0·1125/73·54 

k = 0·00153. 

0·00153 - 0·000244 
t=---------------

0·000054 

= 24 years 

So the 22·5 cm diameter pipe will transport 0·056 m3 /s for at least 24 years. 

(3) Calculate the horsepower that can be delivered to a factory 6·5 km distant 
from a hydraulic power house through three horizontal pipes each 150 mm in 
diameter laid in parallel, if the inlet pressure in maintained constant at 540 N/cm2 

and the efficiency of transmission is 94%. If one of the pipes becomes unusable, 
what increase of pressure at the power station would be required to transmit the 
same delivery pressure as before. What would be the efficiency of transmission 
under these conditions? f= 0·0075 in both cases. 

. 5400000 
Head at power stahon = metres 

9810 

= 550·5 m 

Head loss due to friction = 6% of 550·5 

= 33·03 m 
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. . . _ 4 x 0·0075 x 6500 2 
Flow/plpe. 3303 - 19.62 x 0.15 v 

v = 0·706 m/s 

7t 
Q/pipe = - x 0.152 x 0·706 

4 

= 0·01248 m3 /s 

Delivery head = 517·43 m 

WQH 
Power delivered/pipe = 1000 kW 

9810 x 0·01284 x 517·43 
= 

1000 

= 63·33 kW/pipe 

Total power delivered = 3 x 63·33 

= 189·99 kW 

When one pipe becomes unusable and the delivery pressure is to remain 
unaltered, 

hd = 517·43 m 

The power to be delivered must remain the same as before of course, Le. 
190 kW, so power/pipe = 95·0 kW 

WQhd 
95,00=--

1000 

Qhd = 95 000 = 9.6845 
9810 

Also if hn is the new head required at the pumping station, then 

4fL 2 
h -hd =-v 

n 2gd n 

_ 4 x 0·0075 x 6500 2 

- 19·62 x 0.15 Vn 

Vn = 0·12285 (hn - hd)1/2 

225 
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and 
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Qn/pipe = ~ d 2vn = 2·171 (h n - hd)1/2 x 10-3 

2·171 x lO-\hn --hd)1/2hd = 9·6835 

h h 1/2 _ 9·6835 
(n- d) -2.171xlO-3 x517.43 

hn = 74·309 + 517·43 

= 591·739 m 

Pumping pressure = 591·74 x 9810 N/m2 

= 580·496 N/cm2 

517·43 
Transmission efficiency = x 100 

591·739 

= 87·4% 

(4) A reservoir, A, with its surface at an elevation of 26 m above datum supplies 
water to two other reservoirs, Band C. The surface level in B is 7·6 m above 
datum and that in C is at datum level. From A to a junction, J, a pipe of 15 cm 
dia., 244 m length is used. The branch, JB, is 7·5 cm dia. and 61 m length. The 
branch JC is 10 cm dia. and 91 m length. Takingf as 0·0075 throughout and 
neglecting local losses, calculate the flow through the net. 

4fLv 2 4jL(4QrTtd2)2 64fLQ2 
h f = 2gd = 2gd = 19·627t2d 5 

fLQ2 

3·026d 5 

h -h = jLAQi + fLBQ~ = 26 -7·6 = 18·4 
A B 3.026d1 3.026dfi 

0·0075 x 244 2 0·0075 x 61 2 

18-4 = 3.026 x 0.15 5 QA + 3.026 X 0.0755 QB 

= 7963·9Qi + 63711·21Q~ 

h - h = fLAQi + jLcQ~ = 26 - 0 = 26 
A c 3.026d1 3.026d~ 

2 0·0075 x 91 2 
26 = 7963·9QA + 3.026 X 0.105 Qc 

7963·9Qi + 22554·5Qt 
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QB = exQA then Qc= (1 - ex)QA 

18·4 = 7963·9Qi + 63711·21ex2 Qi 

26 = 30S18·4Qi - 4S109exQi + 22SS4·Sex2Qi 

Dividing equation (1) by (2) and simplifying 

Check 

ex 2 + 0·6686ex - 0·2855 = 0 

ex = 0·29598 

Q =J( 18·4 )=0.036853m3 /s 
A 7963.9 + 63711·21 x 0.295982 

QB = 0·0369 x 0·29598 = 0·01091 m3 /s 

Qc = 0·0369(1 - ex) = 0·02S943 m3/s 

hi = 26·0 - 7963·9Qi 

= 15·18 

hi - 63711·21Q~ = 7·596 (error = 0·004) 

hi - 22554·5Q~ = -0·000063 

Note that these calculations were performed on a desk top calculator. High 
accuracy is needed to obtain satisfactory results. 

Questions 
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(1) 

(2) 

(1) Two water tanks A and B having constant cross-sectional areas of 100 sq ft 
[10 m2 ] and 50 sq ft [4 m2 ] are connected by a 2" [5 cm] diameter pipe, 
SOO' [ISO m] long, for which/= 0·01. Determine the time taken for 12S0 
gallons [5700 kg] to be transferred from tank A to tank B, if the initial 
difference in level is 7' [2·1 m]. 

Answer: 11S·47 minutes [13S·8 minutes]. 

(2) Two reservoirs A and B whose constant difference oflevel is 20' [6 m] A 
being the higher, are connected by a 6" [15 cm] diameter pipe, SOOO' [IS00 m] 
long, for which the coefficient of friction/is 0·005. Water can be drawn from 
the pipe through a valve at a point C, distant 2000' [600 m] from the reservoir 
A. Find, neglecting the velocity head and all losses other than pipe friction, the 
quantity of water entering reservoir B when the quantity drawn off through the 
valve at C is (a) zero, and (b) 0·4 ft3/s [0·011 m3/s]. Draw the hydraulic gradient 
for case (b). 

Answers: (a) O·S cusec [0·0135 m3 /s] (b) 0·3 cusec [0·00798 m3/s] 
(c) hAC = IS·7' [4·74 m] hCB = 4·3' [1·26 m]. 
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(3) A reservoir discharges into a second reservoir through a pipe 15" [37·5 cm] 
diameter and 6000' [1800 m] long. The difference of water levels in the two 
reservoirs is 25' [7·5 m] . Find the discharge, takingf= 0·008. If the level of the 
pipe midway between the reservoirs is 50' [15 m] below the water level in the 
higher reservoir, find the pressure head at this point. 

Answer: 4ft3/s [0·108 m3/s], 37·50' [Il·25m]. 

(4) A pipeline conveying water from a reservoir to a hydro-electric plant com
prises 19000' [5800 m] of concrete lined tunnel followed by 1500' [460 m] 
of steel pipe. The ratio between the diameters of tunnel and steel pipe is 1·4/1. 
The total head from reservoir level to turbine tail race is 416' [128 m] and the 
turbines, which have an efficiency of 90%, are required to develop 32 000 HP 
[24000 kW] when the loss of head in the pipe and tunnel is 32' [9·8 m]. The 
coefficient offriction f is 0·0030 for the tunnel and 0·0036 for the steel pipe. 
Determine (a) the quantity of water required, and (b) the diameter of the tunnel. 
Neglect the loss of head at entrance to tunnel and at the point where the diameter 
changes. 

Answer: (a) 11·2' [3·44 m], (b) 816·1 ft3/s [23 m3 s]. 

(5) Two reservoirs whose difference oflevel is 45' [14 m] are connected by a pipe 
ABC whose highest point B is 5' [1·5 m] below the level in upper reservoir A. 
The portion AB has a diameter of 8" [20 cm] and the portion BC a diameter of 
6" [15 cm] the friction coefficient for each being 0·005. The total length of the 
pipe is 10 000' [3050 m] . Find the maximum allowable length of the portion AB 
if the pressure head at B is not to be more than la' [3·0 m] below atmospheric 
pressure. Neglect velocity head in the pipe, loss of head at pipe entry and loss of 
head at change of section. 

Answer: 6781·5' [2032 m]. 

(6) Two sharp ended pipes of 2" [5 cm] and 4" [10 cm] diameter, each 100' 
[30 m] long, are connected in parallel between two reservoirs whose difference 
of level is 25' [7·5 m]. Find (a) the flow in cusec for each pipe and draw the 
corresponding hydraulic gradients; (b) the diameter of a single pipe 100' [30 m] 
long which will give the same flow as the two actual pipes. Assume that the 
entrance loss is 0·5 v2 /2g and take f= 0·008 in each case. 

Answers: 0·193 cusec [0·0052 m3 /s] , 1·052 cusec [0·0286 m3/s], 4·29" 
[0·107m]. 

(7) Develop the standard formula for the energy loss per unit weight of flow at a 
sudden enlargement in a pipeline carrying a fluid, and state the assumptions 
made. At a sudden enlargement from 12" [0·30 m] to 24" [0·6 m] diameter 
carrying water, the hydraulic gradient line rises 0·4' [0·12 m]. Calculate the 
quantity of water flowing. 

Answer: 6·5 ft3/ s [0·178m3/s]. 
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(8) Determine the conditions for transmission of maximum power through a 
pipe assuming loss of head by friction only. Calculate the maximum power 
available at the far end of a hydraulic pipeline 3 miles long [5 kIn] and 8/1 
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[20 cm] diameter when water at 1000 Ib/sq. in [700 N/cm2] pressure is fed in 
at the near end. Take the friction coefficient f as 0·007. 

Answer: 527 hp [377 kW]. 

(9) A pipeline connects a reservoir to a nozzle. The first 800' [240 m] of the 
pipe is 15/1 [38 cm] dia. and the last 1200' [360 m] is 12/1 [30 cm] dia. If the 
water level in the reservoir is taken as datum, the two pipes join at -180' [- 54 m] 
and the discharge is at - 240' [- 72 m]. The coefficient of velocity of the nozzle 
which is 3/1 [7'5 cm] dia. is to be taken as 0·96 and there is no contraction. If 
the friction coefficient for both pipes is taken as 0·008 calculate the discharge 
from the nozzle and the water horsepower of the jet. Find also the pressure in the 
12" [30 cm] pipe just after the change of section. 

Answers: 5-4 ft 3/s [0·148 m3 /s], 116 hp [82 kW], 75 psi [50'13 N/cm2]. 

(10) Calculate the diameter of a pipe to convey gas from a holder to a power 
station having the following particulars given: gas consumption 20 000 ft3/hour 
[0'157 m3/s], length of pipe 0·5 miles [800 m], delivery 50' [15 m] above the 
entrance to the pipe, pressure at holder 4/1 [10 cm] water and at the power 
station 2/1 [5 cm] , density of gas 0·045 [7] and of air 0·08 Ib/ft3 [12' 5] 
[N/m 3 ],f= 0·005. 

Answer: 8'22/1 [20'9 cm]. 

(11) A tank feeds a pipe A which forks into two pipes Band C. At the ends of 
Band C are streamlined nozzles, each I!,' dia. (Cv = 0·97), which discharge to 
atmosphere and the heads in the tank over them are 50' and 75' respectively. 
Pipe A is 50' long and 3/1 dia. Pipe B is 50' long and 3/1 dia. Pipe Cis 100' long 
and 3/1 dia. Takingf= 0·01 throughout and neglecting all losses except pipe 
friction, calculate the rates of discharge through the pipes Band C. 

Answers: Qc = 0-455 ft3/ s, QB = 0·34 ft3/ S. 



7 Open Channel Hydraulics 

The difference between bounded flows and flows in which free surfaces are 
present is that the flow areas in free-surface flows are not determined by their 
fIxed boundaries, but by the need to maintain continuity of flow while obeying 
dynamic laws. Before examining the complex conditions that can arise in free 
surface flows, it is necessary to consider the simplest case, that is uniform or 
normal flow. 

7.1 Uniform flow 

Uniform flow is flow at constant depth. It can only occur in a prismoidal channel, 
that is, a channel in which the geometry of the cross section does not vary through 
the channel. If the depth is constant in an open prismoidal channel and the flow 
is steady, the mean velocity must be constant throughout the length of the 
channel. Frictional losses must therefore also be constant throughout the channel. 
These frictional energy losses must be exactly balanced by energy gains if the flow 
velocity is to be maintained constant and these can only be obtained from the 
potential energy that the fluid loses as it falls down the slope of the channel. 
Alternatively, uniform flow may be seen as a situation in which the weight 
component of the fluid acting down the channel slope causes the fluid to 
accelerate until a velocity is reached at which the fluid frictional shear stresses 
acting over the channel sides and bed exactly balance it. (See Fig. 7.1.) 

Now wA 0 x sin i is the force component acting down the slope on the fluid 
element due to its weight and '(P ox is the frictional force exerted by the 
boundaries upon the fluid. (A is the flow area, '( the frictional shear stress at the 
boundary and P the length of the wetted boundary.) If the fluid velocity is to 
remain constant, as it must if the flow area is to remain constant, 

so 

wA ~x sin i = '(P~x 

'( = wA sin ifP 

230 
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r--t-_..=-------------L.!al1 f = /a x 

Fig. 7.1 

For channels normally encountered in engineering practice the value of i is 
always small and the usual small-angle approximation applies: i = sin i = tan i, so 

T = wAilP 

where i can be taken as either the channel bed slope in radians or its sine or 
tangent. This approximation may seem a little extreme, but it must be realised 
that uniform flow can only occur in channels of small slope, because when slopes 
are large the flow becomes aerated and also develops roll waves upon its surface, 
so the uniform flow approach is not then applicable anyway. The study of aerated 
flow and the development of roll waves is still in the area of research. 

The shear stress T is dependent upon vn where n has a value between 1·75 
and 2. 

This is Froude's law, but if n is assumed to be 2 the value of k will vary with a 
power of v. This assumption that n = 2 must be made if decimal indices are to be 
avoided. 

so 

A. 
kv 2 =W-l 

P 

Usually AlP is denoted by m which is called the hydraulic mean depth. 

v = Cy(mi) 

where 

C = y(wlk) 

C is itself a variable depending on the roughness of the surface and Reynolds 
number. This result was first developed by de Chezy and is known as the Chezy 
equation. 
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An alternative approach is possible using the Darcy equation developed for 
flow in pipes. There is no reason to think that the Darcy equation should be 
limited to bounded flows as no assumption to this effect was made when it was 
developed. The energy loss due to friction per unit weight ohr over a length ox 
(see Fig. 7.1) must be exactly balanced by conversion of potential energy. Thus 

but 

and 

8hr = i 8x 

dhr fv 2 . 
-=--=/ 
dx 2gm 

v = ..j(2g/fh!(mi) 

v = C..j(mi) 

C = ..j(2g/f) 

This approach links the Chezy C and the Darcy f The flow in a channel is given 
by Q = CA ..j(mi). If flow is uniform the quantity CA..jm is sometimes called the 
conveyance of the channel. 

Much research has been performed to establish the variables upon which C 
depends. As usual the early results of such research are simple and easy to use, but 
inaccurate, while the more recently obtained results are complex, awkward to use 
but relatively accurate. Some of the various equations obtained are given below. 

7.2 Formulae for the Chezy C 

The Manning Formula, 1889 

Manning expressed Strickler's formula as 

C = 1·0 m1l6/n (SI units) 

C = 1·486 m 1I6/n (fps units) 

This is a very popular formula and is still used. n is a dimensional quantity and 
therefore varies according to the system of units in use. n lies between 0·009 
and 0·045 for the extreme ranges of roughness. The formula applies when 
turbulence is fully developed and as this is the case in most channel flows the 
Manning equation has a wide range of application. 



The Bazin formula, 1897 

Bazin gave 

Open Channel Hydraulics 

157·6 
c= 1 +n/v'm (fps units) 

87 
c= 1 +nlv'm (SI units) 

The roughness number varies from 0·11 to 3·17 in the fps units, and from 
0·0607 to 1·75 in the SI units. The Bazin formula was developed from work 
performed on model channels and is therefore not very accurate for large 
channels. 

The Pavlovski formula, 1925 

This formula is in common use in the Soviet Union. 

C = mY /n (SI units) 

y = 2·5yn - 0·13 - 0·75ym( yn - 0·10) 

Approximate forms can be used: 

The Powell Formula, 1950 

When m < 1·0 m y = 1·5yn 

Whenm>1·0m y==1·3yn 

( C e) . C = -421og10 4Re + m (fps umts) 
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( C e) . (7.1) 

C = -23·2Iog10 -- + - (SI umts) 
2·2Re m 

where Re is the Reynolds number for the flow, m is the hydraulic mean depth 
and e is the mean height of the channel roughnesses. In most channels Reynolds 
number is very large and the flow is highly turbulent hence 

C = 42IoglO(m/e)(fps units) 

C = 23·2 loglO(m/e)(SI units) 

For very smooth channels 

C = 42 log 10 (4Re/C) (fps units) 

C = 23·2 log 10 (2·2Re/C)(SI units) 



234 An Introduction to Engineering Fluid Mechanics 

As C appears on both sides an iterative method of solution must be used; this 
method is well suited to a computer approach but is rather tedious by hand. It 
is recommended that a trial value of C = 100 [55] is inserted into the right-hand 
side of equation (7.1) and C thus evaluated. This value can then be applied to the 
right hand side and a second value for C obtained. Continue iteration of this 
process until two successive values of C are insignificantly different. Approxi
mately five iterations are necessary in my experience if C is required to 1 % 
accuracy. (At certain high values of elm and at intermediate Reynolds numbers 
this type of solution can become unstable.) 

Table 7.1 

Type of Chezy C* Manning n Bazin n 
channel fps SI fps SI fps SI 

Smooth cement 130 to 170 71 to 93 0·009 0·009 0·109 0·0607 
Welliaid brickwork 110 to 140 61 to 77 0·012 0·012 0·290 0·16 
Brickwork in bad 

condition 70 to 100 39 to 55 0·017 0·017 0·833 0·46 
Na tural channels 

in good condition 60 to 80 33 to 44 0·0225 0·0225 1·54 0·85 
Natural channels 

in poor condition 35 to 55 19 to 30 0·030 0·030 2·355 1·200 
Na tural channels 

in bad condition 25 to 45 14 to 25 0·035 0·035 3-170 1·75 

* The lower values apply to low hydraulic mean depths and the higher to larger hydraulic 
mean depths. Chezy C values are only useful as giving the basis of a trial calculation which 
can later be improved by a more detailed calculation using one of the more sophisticated 
formulae. 

7.3 The Prandtl mixing-length hypothesis applied to uniform free surface flows 

In Chapter 5 the formation of a turbulent boundary layer according to the mixing 
length hypothesis was described and the equation 

u = 2·Sy'(Tolp) loge y/C 

developed. Now C in a rough channel is equal to k/33 

u = 2·50y'(TO/p) lo~ (33y/k) (7.2) 

where TO is the shear stress at the boundary, the velocity is u at a distance y from 
the boundary, and k is the mean height of roughnesses. 

A uniform free-wrface flow over a rough bed is an example of such a 
boundary layer flow. At the entrance to such a channel the boundary layer will 
be thin and will constitute only a small fraction of the flow depth. At a con
siderable distance downstream from the entrance the boundary layer will 
thicken until eventually it occupies the entire depth of the flow. This is one of 



Open Channel Hydraulics 235 
the main differences between flow in natural channels and flow in experimental 
channels of the type found in laboratories. In natural channels the boundary layer 
occupies the entire flow depth but in experimental channels the boundary layer 
may only occupy one fifth of the channel depth. Any work done in experimental 
channels must be carefully examined from this viewpoint to ensure that results 
obtained have Significance in relation to flow in natural channels. Many exper
imentally obtained friction formulae do not work well when applied to full size 
rivers and channels preCisely for this reason. 

Secondary flow in straight narrow channels 

Fig. 7.2 

In broad channels the situation in the central regions of the flow can be 
closely approximated by a two dimensional approach and two dimensional 
boundary layer theory applies. In narrow channels and close to the sides of 
broad channels the boundary layers from the sides interact with those from the 
bed so that the problem becomes three dimensional and in addition secondary 
flows occur (Fig. 7.2). These two effects make the problem intractable. 

For these reasons what follows applies only to broad channels. As V{TO/p) 
has the dimensions of velocity it will be denoted by V* which is often called 
the shear velocity. This velocity does not necessarily describe the velocity of 
any particular fluid element. 

Rewriting equation (7.2) 

u = 2·50V* loge(33y/k) 

Wheny = d, U = the fluid velocity at the surface, V. This is also the maximum 
velocity. 

and 

V= 2·50V* loge{33d/k) 

!!... _loge(33y/k) 
V 10&{33d/k) 
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The flow/unit width = q = fOd U dy 

V fd 33y V k Jd 33Yd (33Y) - 10 d - 10 - -
- 10& (33d/k) 0 & k Y - loge(33d/k) 33 0 & k k 

let 33y/k = z 

fd 33y (33Y ) J33d/k 
o loge k d k = 0 log z dz 

i 33d/k [ ]33dfk 
o log z dz = z loge z - I z d loge Z 0 = [z loge z - Z ]~3d/k 

Vk 33d ( 33d) ( 1) 
q = 33 loge (33d/k) k 10& k - I = Vd 1 -log(33d/k) 

:. Mean velocity 

- q ( 1) 
V= d = V I -loge (33d/k) 

The height above the bed, Y m, at which this mean velocity will occur is given by 

33Ym ( 1) 2·5V* 10& --= V 1-----
k loge (33d/k) 

loge (33Ym/k) = loge (33d/k) - 1 

loge(d/Ym) = I 

d/Ym = e 

Ym/d = lie = 0·368 
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This is usually approximated to 0·4 so the height of the the mean-velocity fila
ment is 0·4 x depth. Hence, changing to common logarithms, 

V= S'7Sy(TO/p) IOgl0(13·2d/k) 

In a channel 

wAi ax = ToP 8x 

considering forces acting on a fluid element of cross sectional areaA, periphery 
P and length ax. 

To=wmi 

and 

TO/p = gmi 

For a broad channel m = d, so 

TO/p = gdi 

:. for a broad channel 

V= S'7Sy(gdi) log 10 (I3·2d/k) 

Comparing this result with the Chezy formula 

V= Cy(di) 

(substituting d for m) it can be seen that 

C = S'7Syg log 10 (I3·2d/k) 

C = 32·6 log 10 (I3·2d/k) (fps units) 

and 

C = 18'01 log 10 (I 3·2d/k) (SI units) 

From formulae such as this or the Powell formula, estimates of C at high 
flow and large depth can be made by investigating the velocity distribution at 
low flows and so finding k. If in high flow conditions this k value does not 
alter, it can be used to obtain C at high depth values. 

7.4 'Economic' channels 

Up to this point no mention has been made of the effect of the shape of the 
channel upon the flow. Quite obviously, it is important when designing a channel 
to pick the cross section which will give the largest flow for the least cost. It is 
not possible to develop a theory that will determine the most economic shape of 
channel that will be applicable in all situations so the best or 'economic' shape 
is defined as being that shape that gives the maximum discharge for a given cross 
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sectional area. As much of the cost of building a channel is incurred in its 
excavation this approximates to the condition of largest obtainable discharge 
for a given expenditure on the channel. 

The flow in a channel is given by 

Q = AC v(rni) = CA 312 p-1I2i 1l2 

dQ = (~A 112 p-1I2 dA _ !p-312 A 312 dP)Ci1l2 

For maximum discharge dQ = 0 

3PdA -A dP=O 

The velocity in a channel is 

v = CA 112p-1I2i1l2 

dv = (tA -ll2pll2 dA - tp-1I2 A 112 dP)Ci1l2 

For maximum velocity dv = 0 

PdA -A dP=O 

These two results have been obtained making the tacit assumption that the 
Chezy C is constant. If this assumption cannot be made and C depends upon 
other parameters such as the hydraulic mean depth then the expression for C 
must be substituted so that the differentiation process can include the variation 
of C. If the channel shape that gives maximum discharge for a given cross 
sectional area is required then 8A can be specified as zero. So both these equations 
reduce to 8P = O. Now if the cross section consists of three straight boundaries, 
that is a trapezoidal cross section, the shape that obeys the equation can be 
completely defined. Most man-made channels are of this type. Consider a 
trapezoidal channel for which the side slopes are I in s and the bottom width 
is 2b (Fig. 7.3). Then 

and from before 

A = 2bd +sd2 

P= 2b + 2dV(1 +S2) 

P=A/d - sd + 2dV(1 +s2) 

dP/dd = 0 = -(A/d2) - S + 2V(1 + s2) 

(,A/d) + sd = 2dV(1 + S2) 

A/d= 2b +sd 

b + sd = d V(1 + S2) 

This condition must be satisfied if discharge is to be maximum. It is now necessary 
to examine what this condition implies as regards the shape of the cross section. 
Referring to Fig. 7.3, b + sd = AB and d V(1 + S2) = BC so the condition is that 
AB=BC. 
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o sd 

A 

........... F 

I. 20 

Fig. 7.3 

If this is so then MBD == ~EBC as AB = BC, LADB = LBEC = 1 right 
angle and LEBC is common to both. 

AD = EC and EC = AF 
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If AD = AF it must be possible to inscribe a semicircle within the channel 
cross section which will be tangential to all three sides and have its centre in the 
surface of the flow. An economic channel is defined by this condition. 

The value of the hydraulic mean depth for an economic channel is always 
half the depth. 

2bd + sd2 2bd + sd2 d 
m= = =-

2b + 2(b + sd) 2(2b + sd) 2 

In the case of a rectangular channel the economic channel breadth is equal to 
twice the depth. 

The statement that a channel in which a semicircle can be inscribed is 
economic, defines a class of trapezoidal cross sections all of which are economic 
and have the same cross sectional area. However, the one for which the side slope 
is 60° is better than all the others. This means that the best channel is half a 
regular hexagon. From before 

P = (A/d) - sd + 2d.J(1 + S2) 

dP/ds = -d + (2d/2)(1 + S2)-1I22s = 0 

1 = 2s/(I + s2)-1I2 

s = 1/y'3 
e = 60° 
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7.S Flow in circuJar culverts and pipes 

Uniform flow in culverts and pipes can occur at part depths (Fig. 7.4). As the 
depth increases the area increases and the wetted perimeter also increases so that 
the mean velocity variation with depth is not straightforward. 

v = Cv'(mi); Q = ACv'(mi) 

Fig. 7.4 

If the Manning expression is used, 

C = 1·49 m1l61n 

so 

Therefore 

v = 1·49 m 2l3i1l2 In and Q = 1·49 Am2/3i1l2 In 

_ 1·49 A .112 d Q _ 1·49 __ ·112 ( )213 A5/3 
v-- - , an -- 2/3' 

n P n P 

d =R -R cos(8/2) = D/2(1- cos(8/2)] 

A =R28/2 _R2 cos(8/2) sin (8/2) 

A =R2(8 - sin 8)/2 

R ( sin 8) P=R8 som ="2 1- -8-

V=--11l2 - 1--1·49. [R ( sin 8)]213 
n 2 8 

1·49 8R8/3 ( sin 8)5/3 
Q = -;;- i1l2 25/3 1 - -8-
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_v_ = (1 _ sin 0)2/3 
Vfun 0 

~= ~ (1 _ sin 0)5/3 
Qfull 27t 0 

7.6 Gradually varied, non-uniform flow in channels 
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All flows approximate to uniform flow if the channel is sufficiently long. Flow 
may on the other hand be non-uniform. If depth variations cause surface slopes 
which are not large the flow is non-uniform and gradually varied but if slopes are 
large the flow is non-uniform and rapidly varied. (See Fig. 7.5.) 

Uniform flow / / 

Ropldly vaned 
non uniform 
flow 

Fig. 7.5 

Gradually vaned 
non uniform 
flow 

Before analysing gradually varied non-uniform flow it is necessary to consider 
the three types of open channel flow: super-critical, critical and sub-critical 
flow. 

A device that affects the flow depths upstream of it must signal the depth 
changes that it causes to the upstream fluid. This it does by initiating waves that 
travel upstream altering depths and flow velocities as they traverse the fluid. Once 
these velocities and depths have been adjusted to fit the depth imposed by the 
hydraulic control downstream the flow state becomes steady. If at an upstream 
point the flow velocity in the channel is greater than or equal to the velocity of 
the wave trains coming upstream from the control, the waves will be brought to 
rest and a surface discontinuity, an hydraulic jump, will form. If a free surface 
flow is occurring in which the flow velocity is greater than the velocity of trans
mission of a small wave upon its surface (wave celerity) conditions downstream 
cannot affect conditions upstream, but conditions upstream can affect conditions 
downstream. Conversely if flow velocities are less than the wave celerity, condi
tions downstream control conditions upstream. Clearly the ratio flow velocity/ 
wave celerity determines which of these situations occurs. (This is similar to the 
conditions that occur in compressible flow and the ratio flow velocity/wave 
celerity is strictly analogous to the Mach number: flow velocity/local velocity 
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of sound). It will later be shown that the wave celerity c is given by c = y(gd) 
(p. 272) so the ratio v/c becomes v/ y(gd). This is called the Froude number by 
some American and British writers, and the Boussinesq number by other British 
writers. Note that in this book the square of this number v2 /gd has been called 
the Froude number and the reader should always carefully check which expression 
is being used when Froude numbers are used. The critical value of this number is 
unity as this occurs when the local flow velocity equals the local wave celerity. A 
flow which has a velocity greater than the wave celerity is called super critical, 
shooting or torrential and its Froude number is greater than 1. A flow in which 
the flow velocity is less than the wave celerity is called sub critical, streaming or 
tranquil and its Froude number is less than unity. These three classes of flow are 
very different. At this point it is worth noting the existence of another number, 
the kineticity. Kineticity A is the ratio of the kinetic energy of a flow per unit 
weight to the depth energy. 

v2 v2 
A=-/d=-=!Fn 

2g 2gd 

7.7 The analysis of gradually varied flow 

The analysis may be performed either from energy considerations or momentum 
considerations. The energy approach will be used here. 

In Fig. 7.6 T denotes the shear stress exerted on the fluid by the bed. The 
energy equation is 

P v2 
- +-+y=H 
w 2g 

Now for any point C, p/w = s if the pressure distribution is hydrostatic so 
s + (v 2 /2g) + y = constant but s + Y = d + z. Therefore d + (v 2 /2g) + Z = constant = 
H where H is the total energy for unit weight of the fluid. 

A I' 
b 

s d A v 

~w --.. d+ iJd 8x 
C iJx ----. 

v+_iJ v 8x ~ ilx 

y /~ ¥=-z 

Fig. 7.6 
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The rate of change of H with x is 

dH dd v dv dz 
-=-+--+-
dx dx gdx dx 

but dz/dx = sin i and ifi is small sin i ~ tan i ~ i. Applying the continuity 
equation 

But 

and 

d(Av) = 0 
dx 

dA dv 
v-+A-=O 

dx dx 

dv v dA 
-=---
dx Adx 

dAdAdd -=-+-
dx dd dx 

3A = b 3d (see Fig. 7.7) 

dA/dd = b where b is the surface breadth 

dv vb dd 
=---

dx Adx 

dH dd v2bdd . -=----+z 
dx dx Agdx 
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Now dH/dx is the rate of change of energy/unit weight along the channel and 
this can only be caused by frictional losses. An estimate of the value of dH/dx 
can be made by considering the flow as if it were uniform at the depth and 
velocity occurring at a particular point. If the flow is uniform the energy lost 

Fig. 7.7 
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per unit weight must equal the energy gained as the fluid moves down the 
slope and the surface slope is equal to the bed slope. Thus the energy loss per 
unit weight per unit distance is equal to the surface slope,j, which equals the bed 
slope. Also 

v = Cy(mi) = Cy(mj) 

j = v2 j(C2m) 

So the energy loss rate = j = v2/C2 m. 
dH/dx must be negative as H must be decreasing due to friction, so 

dHjdx = -j = _v2/C2m 

_v2 dd v2 b dd 
--=----+i 
C 2m dx Ag dx 

If the bed slope is regarded as positive when the slope is directed downwards 
in the direction of flow the sign of i in the above equation will have to be 
changed. This conversion is sensible as most people would consider a slope as 
positive ifit causes flow. v2b/Ag is the Froude number as can be seen from the 
following argument. Let A/b be denoted by 8 where 8 is the mean depth of the 
cross section. Then v2 b/Ag = v2 /g8 which is the Froude number. Then 

dd=~ 
dx I-Fn 

where j = v2/C 2m and is the energy loss per unit weight of fluid per unit length 
of the channel and the Froude number Fn = v2 /g8. (b is the surface breadth, 
not the base breadth nor the mean breadth). 

This differential equation cannot be integrated even in its simplest form. 
Finite difference integration is the only possible way of dealing with the problem. 
As the velocity is variable as well as the depth, it is useful to express velocities in 
terms of the flow rate Q. 

dd i - Q2 j(A 2C2 m) 
dx 1 - Q2b/(A 3g) 

If the channel is of uniform rectangular cross section then 

dd i - Q2 j(b 2d 2C 2m) 

dx 1 - Q2 j(b 2d 3g) 

If the channel is broad m equals dn and 

Q = bdnCy(dni) 
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so 

where dn is the uniform flow depth. 
When the depth of flow is critical the Froude number is 1 so 

Q2/(b2g) = dg 

dd i - (dn/d)3i i(d 3 - d~) 
dx 1 - (dc/d)3 d 3 - d~ 

This result is only applicable to a wide channel in which 

bd d 
In=--= 

b + 2d 1 + 2d/b 

when b ~oo, d/b ~O and m ~d. 

7.8 The specific force equation 

When the momentum equation is applied to free surface flows the resulting 
equation is called the total force or specific force equation. 
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(7.3) 

The form of the momentum equation that is applicable to a free surface flow 
is 

Ld p ~A/w + r v2 ~A/g = constant 

N ow fa p~A is the pressure force over a cross section of the flow of depth d 
and if the pressure distribution is hydrostatic the value of this integral is wAi 
where i is the depth below the surface of the centroid of the flow cross section. 

The momentum equation thus becomes 

Ai + Av2 /g = constant 

Applying this result to two sections (subscripts 1 and 2) gives 

This result is valid for any channel cross section but it is assumed that the two 
sections are sufficiently close for frictional forces due to the boundary to be 
negligible. 

If the cross section is rectangular 

A1=bd1 A 2 =bd2 i 1 =dt/2 and i 2 =d2/2 

dil2 + d 1 vi!g = d~/2 + d2V~/g = S, the specific force 
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7.9 The specific energy equation 

Over a short length of a horizontal channel energy dissipation due to frictional 
forces from the boundary and turbulence can be ignored. Writing Bernoulli's 
equation for points 1 and 2 on a streamline 

pdw + Yl + vV2g = P2/W + Y2 + v~/2g 

x 

d 

y 

Fig. 7.8 

If the streamlines are not curved the pressure distribution is hydrostatic so 
P dw and P2/W are equal to x 1 and x 2 respectively (see Fig. 7.8). 

x, + y, + vV2g=X2 + Y2 + v~/2g 

d, + vr/2g = d2 + v~/2g = E, the specific energy 

The specific energy is thus defined as the energy/unit weight of the fluid 
referred to the bed of the channel as datum. Note that the bed does not have 
to be horizontal and may even be discontinuous. 
Summarising 

d 2 /2 +dv2 /g =s 
where S is the specific force and 

v depends upon Q and d so 

and 

PlottingE against d for constant Q gives the curve shown in Fig. 7.9. A 
minimum value of E is obtained at a certain value of d and this can be obtained 
by differentiating with respect to d. 

de Q2 dA 
-= 1---=0 
dd gA 3 dd 
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Fig. 7.9 

but dA/dd = b, the surface breadth, so Q 2b/A 3g = 1; Now this is the Froude 
number, so for minimum specific energy the Froude number is unity and in a 
rectangular channel the critical depth dc is obtained from 

Q2 b 
b 3d 3g = 1 :. de = (Q2/bi)1/3 = (q2/g)1/3 

A suitable dimensionless form can be obtained by dividing the specific energy 
equation through by dc 

In a rectangular channel 

Now 
Q2 

--=---=-- = 1 that is, the Froude number is unity for minimum energy 
g(bdc)2dc 

Q2/gb 2 =d~ 

v2/2gdc = !(dc/d)2 

d/dc + !(dc/d)2 = E/dc 

This result is only applicable to a rectangular channel (see Fig. 7.10). 
Note that the critical depth is jE as when d = dc 

1·5 = E/dc :. d c = jE 
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1·5 

1·0 

Fig. 7.10 

Examining the specific force equation 

d 2/2 +dQ2/(gb2d 2)=S 

d 2/2 + Q2 /(gb 2d) = S 

dS/dd = de - Q2 /(bg2d;) = 0 at the minimum 

Q2 /(gb2d~) = 1 

That is, as for the specific energy case, minimum specific force occurs when the 
Froude number is unity. 

Fig. 7.11 
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Dividing the specific force equation by d; gives 

!(d2/d~) +dv2/d~g=S/d~ 

!(d/dc)2 + dQ2 /(d~b2d2g) = S/d~ 

as before 
Q2/b2g = d~ 

!(d/dc)2 + dc/d = S/d~ 
This curve is sketched in Fig. 7.11. 
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As for the specific energy case the minimum value occurs when the depth is 
critical. 

7.10 Flow profdes 

If the depth of uniform or normal flow in a channel is greater than the critical 
depth (the depth at which the Froude number is unity) the bed slope is called 
mild. If it is less than the critical depth the bed slope is steep and if equal to the 
critical depth the bed slope is critical. Steep slopes as defined in this way are 
not steep in the usual sense of the word. Mild slopes are less than and steep 
slopes are greater than the critical slope. 

Critical slopes, again, are slopes that have a normal flow depth which is equal 
to the critical depth, so i = j and Fn = 1 simultaneously. 

and 

so 

ic = v2 /(C 2m) 

v2 /(g8) = 1 

C2mic =g8 

ic = go/(C2m) 

In a broad channel 0 = m, so 
ic =g/C2 

Three zones can be defined (see Fig. 7.12). 

Fig. 7.12 
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(1) The zone of space above both the critical and normal depths. 
(2) The zone of space between the normal depth and the critical depth. 
(3) The lowest zone of space above the channel bed and below both the 

critical and the normal depth lines 

As three types of slope exist (mild M, steep S and critical C) and three zones 
exist for M and S slopes and two zones for C slopes (the second zone does not 
exist for C slopes as d n = de) eight different curves can be drawn. These are Ml, 
M2 and M3; S 1, S2 and S3; and C 1 and C3 curves. 

The Ml or backwater curve (Fig. 7.13) 

----- ...... 
MI 

Norrn~ 

i<:::; 
crlt 

Fig. 7.13 

dd i-v2/(C 2m) 
dx 1 - v2 /(g8) 

As the depth is greater than the normal depth v 2 /C2m is less than i. Also v 2 /go 
is less than 1 because the depth is greater than critical depth. 

The numerator is positive and the denominator is also positive. Therefore 
dd/dx is positive so the depth must increase in the downstream direction. As the 
depth gets larger the v 2/C 2m and v 2/go terms become smaller so dd/dx -+i. This 
means that the water surface tends to the horizontal downstream and is asymptotic 
to the normal depth line far upstream. 

The M2 or drawdown curve (Fig. 7.14) 

i,i 
Crtt 

Fig. 7.14 
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If the depth is less than the normal depth the v2 /C 2m term is greater than i so 
the numerator is negative, but because the depth is greater than critical depth 
the Froude number is less than 1 so the denominator is positive. The value of 
the surface slope dd/dx is therefore negative, and the depth decreases in the 
downstream direction. When the depth reaches the critical depth the value of 
the Froude number becomes 1 and the denominator becomes zero. Thus the 
surface slope becomes _00. Far upstream the surface is asymptotic to the normal 
depth line. 

The M3 curve (Fig. 7.15) 

Fig. 7.15 

In this case v2/C2m ~ i and v2 /g8 > 1 so dd/dx is positive. The depth therefore 
increases downstream. When it reaches the critical depth v2 /g8 = 1 and 
dd/dx = + 00. Upstream the surface slope approximates to 

v 2 /C2 m 

v 2 /g8 = ic 

which, as ic is greater than i, means that the surface slope is slightly above the 
horizontal, that is the slope, referred to the horizontal, is approximately ic - i. 

This condition is hypothetical because when it applies the depth is zero, and 
the velocity is infinite, also the Chezy C cannot then be considered to have its 
normal value. 

The S1 or ponding curve (Fig. 7.16) 
SI 

enrical d 
epth line 

No;;:;-, 
a depth 

)) )-
Fig. 7.16 
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In all S curves the critical depth line is above the normal depth line. In the Sl 
case v2/C2m ~i and v2/go < 1 so dd/dx is positive. When d =dc, dd/dx = +00. 
As the depth increases v2 /C2m ~o and v2 /go ~o so dd/dx ~i. The surface 
thus tends to the horizontal downstream. 

The 82 curve (Fig. 7.17) 

Fig. 7.17 

v2/C2m < i because the depth is greater than the normal flow depth but v2/go > 1 
so dd/dx is negative. The depth must then decrease downstream. When the depth 
reaches the normal depth v2/C 2m equals i so dd/dx ~ O. The surface therefore 
approaches the normal depth line asymptotically downstream. Upstream the 
profile approaches the critical depth line which it must intersect perpendicularly. 

The 83 curve (Fig. 7.18) 

Fig. 7.18 

The depth being less than the normal and the critical depth both v2/C 2m and 
v 2 /go must be large so dd/dx is positive. Upstream the slope approximates to ic - i 
and downstream the profile must approach asymptotically the normal depth line. 
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The C curves (Fig. 7.19) 

::::----....... C I 

C3 --=:::::::::::: 
enricOf d 

eprh fine 

; = lent 

Fig. 7.19 

In both C curves the normal depth and the critical depth lines are coincident. 
For C curves 

dd ic - v2 /C2m _ go/C 2m - v2 /C2m 

dx 1 - v2 /go - (go - v2)/go 

go (gO_v 2) go . 
= C 2m go _ v2 = C 2m = Ie 

Thus both C curves are horizontal straight lines. 
A general principle can be enunciated. When considering the shape of a 

particular flow profile the curve must intersect the critical depth line perpen
dicularly and it must approach the normal depth line asymptotically. 

Adverse slopes 
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Channels which have negative slopes, that is slopes which are directed upwards 
in the direction of flow, are really special cases of mild slopes. In such channels 
no normal flow can occur so the normal depth line disappears off the top of the 
mild slope diagram and there can only be two cases, A2 and A3. These curves 
are similar in shape to the M2 and M3 curves but extend over a shorter length 
of the channel. 

Before demonstrating the use of these curves in predicting the channel profiles 
that occur in various circumstances it is necessary to examine a phenomenon that 
is of frequent occurrence in open channels, namely, the formation of hydraulic 
jumps. 

7.11 The hydraulic jump 

It is possible for very rapid changes in depth (surface discontinuities) to occur 
in a channel in which the flow is non-uniform. These are called hydraulic jumps 
(see Fig. 7.20). 
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7777777777 
Fig. 7.20 
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Hydraulic jump 
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Fig. 7.21 

The conditions that determine whether a jump occurs are those at the upstream 
and downstream ends of the channel. If the flow upstream is constrained, by for 
example a sluice, to be supercritical while downstream, a weir compels it to be 
sub critical , the flow proflles cannot join smoothly (see Fig. 7.21) and consequently 
the proflle is discontinuous. The jump must be located at a point in the channel 
at which the specific force just upstream is equal to the specific force just 
downstream of the jump. The specific energy of the flow changes across a jump 
because of the energy lost in the development of the strong turbulence in the 
roller that often develops on the front of the jump. For this reason the specific 
energy equation cannot be used to analyse the hydraulic jump. 

Writing the specific force equation for a rectangular channel for points 1 and 
2 (see Fig. 7.22). 

® 

Fig. 7.22 
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also bd I v I = bd 2V2 (continuity equation) 

VI =d 2V2/d l 

(dj - dD/2 + [(d2/d 1)2d I - d 2] v~/g = 0 

Dividing through by d~ 

(dj - d~)/2d~ + V~(d2/dl - l)/gd2 = 0 

H(d l/d 2)2 -1] + Fn2(I -ddd2)d2/dl =0 

!(d dd2 + 1) - Fn2(d2/d d = 0 

!(ddd2)2 +!ddd2 -Fn2 =0 

d l /d 2 -! + y(a + 2Fn2) 
1 

ddd2 = -1 + !y(I + 8Fn2) 

If, instead of substituting for v I, the substitution V2 = d I vdd2 is used the 
following result is obtained 

d 2/d l =-!+1y{l +8Fnd 

Both results are useful; which is used depends upon the information available. 
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If the upstream depth is known Fn I is known so the second result can be used. 
If the downstream depth is specified then Fn2 is known so the first result can be 
used. 

The specific force and specific energy diagram can conveniently be used when 
considering the hydraulic jump (see Figs. 7.23a and b). On the specific energy 
diagram two depths, for example d I and d~, that have the same specific energy 
are called corresponding depths. On the specific force diagram two depths, for 
example d I and d 2 that have the same specific force are called conjugate depths. 

6.E 

s E 

(0) (b) 

Fig. 7.23 
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Clearly, d~ and d 2 are not the same and because of this an energy loss occurs. 
The fact that the line joining the two points on the specific force diagram that 
describe conditions upstream and downstream of a jump is nearly horizontal 
corresponds to the assumption that the specific force upstream equals the specific 
force downstream of the jump. 

7.11.1 The nature of hydraulic jumps For a hydraulic jump to occur the nature 
of the flow must change from supercritical to sub critical across the jump. The 
value of the Froude number of the approach flow decides the nature of the jump. 

/7777777777 
Undular jump 1< Fn,< 4 

Fig. 7.24 

Ifit lies between 1 and about 4 an undular jump occurs (see Fig. 7.24). Above 4 
and below 100 the jump is weak and above 100 a roller forms on the front face 
of the jump (see Figs. 7.25aand b). 

~ 
7777/ /777/ 

(0) (b) 

Fig. 7.25 

In all cases energy losses occur across the jump and the heavy turbulence tends 
to erode the bed of the channel. The energy loss in a jump is simply given by 

per unit weight of fluid passing through the jump. The total energy loss in the 
jump per second is wQ !lE. 

Before returning to the study of flow profiles in channels the theory of 
standing wave flumes must be developed. Such flumes act as hydraulic controls 
and so establish boundary conditions to the differential equation of non-uniform 
steady flow. 
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7.12 The venturi flume 

A venturi flume is similar to a venturimeter in that it is a flow metering device 
which operates by constricting the flow area. Most venturi flumes are built in 
channels of rectangular cross section and so are simply constrictions of the 
breadth of the channel. Sometimes a bed hump of streamlined cross section is 
fitted into such a constriction and arranged so that its highest point is located 

(a ) 

(b) 

Elevation 

Fig. 7.26 

at the throat of the constriction. The plan of a typical venturi flume is illustrated 
in Fig. 7.26a. Upstream of a venturi flume the constriction causes the depth to 
increase above the value it would have if the flume were not present. The 
surface within the flume itselffalls as illustrated in Fig. 7.26b and reverts back 
to the downstream level via an hydraulic jump. The drop in the surface from the 
upstream entry of the flume to the throat is called a standing wave and all flumes 
causing such a phenomenon are called standing wave flumes. The hydraulic jump 
may occur inside or outside the flume depending upon the value of the down
stream depth. 

Applying the specific energy equation 

Vt = y[2g(E - d)] 

Q = bdy[2g(E - d)] (7.4) 

If Q is plotted against d a graph such as that illustrated in Fig. 7.27 is obtained. 
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Q 

Fig. 7.27 

The maximum value of Q can easily be obtained by differentiating equation 
(7.4) with respect to d and equating dQ/dd to zero. 

dQ/dd = 0 = bV(2g)[(E - d)1I2 - !(E - d e)-1I2d e l 
E-de =de/2 

de = 2E/3 

So the value of d that produces maximum flow is the critical depth. 
The maximum discharge is obtained by substituting this value of d into 

equation (7.4) 

Q = bjEV[2g(E - jE)l 

Q = 3'09bE3!2 (in fps units) 

Q = 1·705 bE3!2 (in SI units) 

Introducing a coefficient of discharge 

Q = 3.09Cd bE3!2 (fps unitS)} 

Q = 1'70SCd bE3!2 (SI units) 

Thus, if the flow profile passes through critical depth equations (7.5) are 
applicable. 

(7.5) 

The venturi flume is a device for which the specific energy is constant (if 
trivial frictional losses are ignored) but the breadth is variable. At the upstream 
part of the flume the breadth is B and it decreases gradually to b t at the throat. 
At this point the specific energy curve defmed by the equation E = d + Q2(2gb 2d 2) 
lies above curves applicable to larger b values as illustrated in Figs. 7.28a and b. 
The line of constant specific energy appropriate to the flow is a horizontal line 
starting at point 1, moving across the diagram from right to left and passing 
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=dc 
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Fig. 7.28 

through points 2 and 3 to 4 at the throat at which the depth becomes critical. 
The breadth increases gradually through the divergent section, taking values b2 , 

b I and finally B again, and correspondingly the specific energy line moves through 
points 5, 6 and fililllly to 7. The depth has thus fallen progressively along the 
flume fromd l at entry tod4 (=dc) at the throat tod7 at the exit. It should be 
clear that the specific energy curve can never rise above the specific energy line 
however small the throat breadth but, at the smallest flume breadth, the specific 
energy curve must adjust itself so as to just touch the specific energy line, thus 
giving critical depth at the smallest breadth. In fact the flow profIle adjusts 
itself by backing up in the upstream reach to a depth for which the corresponding 
specific energy takes such a value that critical depth occurs at the narrowest 
section. 

Thus, as critical depth occurs at the throat, the critical depth equation applies: 

Q = 3·09Cd bE312 ft3/s 

Q = 1·705CdbE3/ 2 m3 /s 

Now E = du + v~/2g where the subscript u denotes the upstream conditions. 
In the upstream reach Vu is small so for a first approximation EUI = du. 

Therefore a first approximation for Q is QI = 1·705Cdbd~12 m3/s. A first 
approximation for Vu is vul = Qt/Bdu. A second approximation for E is 
Eu2 = du + V~l /2g. Hence a second approximation for Q is 
Q2 = 1·705CdbE~~2 m3 /s. Vu2 can now be calculated and a third approximation 
for Eu can be obtained. This process should be repeated until two successive 
values of Q are insignificantly different. This process rarely needs to be repeated 
more than three times. 
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7.12.1 The drowned venturi flume If the downstream depth is forced up to a 
large value by either another hydraulic control located further downstream, by a 
high normal flow depth in the downstream channel or by some other sort of 
obstruction downstream the supercritical flow in the divergent portion of the 
flume must jump to the flow depth of the downstream channel. 

Fig. 7.29 

As the flow depth downstream is increased this jump is forced upstream into 
the flume itself and finally up to the throat. It cannot pass the throat if the depth 
there is critical because the flow velocity there is equal to the wave velocity so any 
depth changes that occur downstream cannot be transmitted to the upstream 
reach as long as the depth at the throat remains critical. Once the downstream 
depth is increased to the point where the depth at the throat is forced above the 
critical value the depth upstream is compelled to increase also. The process 
described above can be followed in Fig. 7.29 by examining profiles 1, 2, 3 and 
4. When the depth at the throat is greater than critical depth the flume is said to 
be drowned; the flume formula given before does not then apply. 

If depths at the entry and the throat are considered, that is de and dt then 
writing the specific energy equation 

de + v~/2g = dt + vl/2g 

d _ d = [1 _ ('!..! dt )2] vr 
e t B d 2 e g 
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This result is far more awkward to use than the free-discharge result as two 
depths must be measured which then require much more manipulation before 
the value of Q is obtained. For this reason it is usual to arrange the flume and 
the downstream channel in such a way that free discharge is obtained in the 
flume. At low flows it is probable that the flume will be drowned and if this is 
to be avoided a bed hump should be fitted but this has the disadvantage that 
bed humps cause the upstream depth to increase. 

The ratio of the downstream depth to the upstream depth at which the depth 
at the throat is on the point of increasing is called the modular limit of the flume. 
It is usually possible to design the divergent portion of the flume to give a modular 
limit of at least 0·8. Values close to unity can be obtained by careful design. 

7.13 Broad crested weirs and bed humps 

The broad crested weir consists of an obstruction built across the flow which 
causes the upstream level to rise until flow over the weir occurs (Figs. 7.30 and 
7.31). As the profile along the weir falls, it passes through the critical depth. 
The critical depth (in a rectangular channel) is two-thirds of the specific energy 
at the point in the channel at which the critical depth occurs. 

de = 2E/3 = (Q2/b 2g)1I3 

Broad crested weir 

Fig. 7.30 

Crump weir Bed hump 

Fig. 7.31 
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But as the critical depth occurs at the crest of the weir the specific energy 
there E is E u - h where E u denotes the specific energy in the upstream channel. 
This is obtained as follows. From Bernoulli's equation 

Eu = dw + v;,/2g + h 

Where dw and Vw are the depth and velocity of flow at a point on the weir. As 

dw + v;,/2g = E 

Eu =E+h 

E=Eu -h 

j(Eu- h) = (Q2/b 2g)1I3 

Q=bygj(Eu _h)312 

Q = 3·09b(Eu - h)312 ft3/ s 

Q= 1·70Sb(Eu _h)3/2 m3 /s 

Introducing a coefficient of discharge to allow for energy losses ignored in 
the analysis 

Q = 3·09Cd b(Eu - h)312 ft3/S 

Q= 1·70SCd b(Eu _h)312 m3/s 

7.13.1 Cd values Cd values for weirs and venturi flumes usually lie between 0·9 
and 1·0 and depend upon the geometry of the flume between the entry and the 
point at which critical depth is located. In the venturi flume analysis it was 
assumed that critical depth occurs at the throat section. This may not actually 
be true; the critical depth may occur a little upstream or downstream of the 
throat and the appropriate value of b is larger than the throat breadth. If the 
throat breadth is the value used for b in the equation the necessary correction 
will then be made by the coefficient of discharge. 

The critical depth point moves along the flume as flow increases. Another 
point of design is thus the provision of an adequate throat length so that the 
critical depth point stays within this throat length. 

7.14 The sluice 

A sluice consists of a sheet of metal or wood that can be lowered into a flow 
leaving a flow area at the bottom (see Fig. 7.32). 

The flow contracts as it passes under the sluice to a minimum depth d and 
the ratio d/ds is the coefficient of contraction of the sluice. A reasonable value 
for Cc is 0·6. 
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d 

Fig. 7.32 

Applying the specific energy equation 

E = du + v~/2g =d + v2 /2g 

v = Cv y[2g(E - d)] 

Q = CvbCcd sy[2g(E - Ccds)] 

Q = Cdbds y[2g(E - Ccds)] 

Values of Cd lie between 0·45 and 0'6. 

263 

The various flow metering devices described are called hydraulic controls 
because they create a situation just upstream of themselves in which the flow 
depth is uniquely related to flow. In other words, they provide boundary 
conditions that can be applied to the differential equation ddldL = (i - j)/(l - Fn) 
and so enable it to be integrated by finite difference methods as described earlier. 

Steep slope 

Fig. 7.33 
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There is one other hydraulic control that has not yet been mentioned, but 
which is of vital significance: the overfall (see Figs. 7.33a and b). At an abrupt 
bed drop and at a change of bed slope from mild to steep the profile must pass 
through critical depth. The explanation for this follows from an examination of 
the mild-steep slope case as the abrupt drop is only an extreme example of this. 
The flow profile in the mild channel must be an M2 curve (Section 7.10) which 
runs down to critical depth at its downstream end. The profile in the steep 
channel is an S2 curve which starts at critical depth and then runs down to the 
normal depth asymptotically. The only way in which these curves can be fitted 
together is for them to join at critical depth at the slope-change point. The 
profile does not cross the critical depth line perpendicularly as theory predicts, 
because when flow depths are near to the critical value curvilinear flow involves 
pressure distributions that are not hydrostatic. At the end of a channel, 
because of this effect, critical depth is usually found just a little upstream of the 
bed drop. 

7.15 The prediction of flow profiles in channels 

In Section 7.10 the various flow profiles were described, that is the M 1, M2 and 
M3; S 1, S2 and S3; and the Cl and C3 curves. In a real channel the breadth and 
bed slopes of different reaches may vary and although these profile elements are 
applicable providing that the breadth is constant in any particular reach, the 
fitting together of these profile elements to give the profile of the whole river or 
channel is not a simple process. 

The first thing that must be done is to establish normal and critical depths 
throughout the channel. Next control points must be established. The possible 
profile elements must then be sketched in starting from these control points. 
Hydraulic jumps may be present and these must be located by detailed calcula
tion. Often, several different profiles are possible and the decision as to which 
of these actually occur can only be decided by these detailed calculations. 

A short channel with an upstream sluice (Fig. 7.34) 

We first draw in the critical and normal depth lines. At the downstream end, 
critical depth must occur so an M2 curve must be present. Upstream an M3 curve 
starts at the contracted section just downstream of the sluice. Thus two control 
points have been located and two curves established. These cannot link except 
via an hydraulic jump. Take a series of points on the M3 curve and calculate the 
depths conjugate to each depth from the equation d 21d 1 = 0·5 + 0·5 yO + 8Fn). 
This gives a conjugate depth curve and at the intersection of this and the M2 curve 
is the hydraulic jump. At this point the flow upstream of the jump has the same 
specific force as the flow just downstream of the jump and the depth downstream 
of the jump also fits the M2 curve at this point. If the channel is long the M2 curve 
may effectively attain the normal depth. 
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It may happen that the M2 curve, where it overlies the M3 curve, is everywhere higher than the conjugate depth curve, and in this case the sluice will run drowned as shown in Fig. 7.35. There will be a strong eddy just downstream of the sluice in this case. The drowning of the sluice will cause the level upstream of it to rise. 

Slope change from mild to steep slope (Fig. 7.36) 
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As before insert the normal depth line and the critical depth line. At the point 
where the slope changes the profile must pass through the critical depth; upstream 
an M2 profile must occur and downstream an S2 curve. 

Slope change from steep to mild slope (Fig. 7.37) 

i < lent 

Mild 

Fig. 7.37 

In this case two possibilities exist. 

(1) A jump and an S I curve in the steep channel. 
(2) An M3 curve and a jump in the mild channel. 

To decide which of these cases will arise one of two approaches can be used. 
Calculate the conjugate depth corresponding to the normal flow depth in the 
steep section and if this is less than the normal depth in the mild channel an SI 
curve must occur, and if it is greater than the the normal depth of the mild 
channel the M3 curve must occur. Alternatively, calculate the depth conjugate 
to the normal flow depth in the mild channel and if it is less than the ·normal 
flow depth in the steep channel the M3 curve cannot occur so the SI must. If it is 
greater than the normal depth of the steep channel the M3 curve occurs. 

Slope change from a large mild slope to a less mild slope 
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Fig. 7.38 
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Slope change from a small mild slope to a large mild slope 
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Fig. 7.39 

Slope change from a large steep slope to a less steep slope 
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Slope change from a small steep slope to a large steep slope 
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The backwater curve 
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Fig. 7.42 

Fig. 7.43 

Ml curves can be many miles long and are the longest of all the curves. 
Generally the mild curves are longer than the steep curves. 

7.16 Method of integrating the gradually varied flow differential equation 

Before the days of electronic computers it was desirable to find methods of 
simplifying the finite difference integration of this differential equation. By 
assuming that the channel is wide the solution is somewhat Simplified as previously 
demonstrated (equation (7.3». 

dd i(l - (dn/d)3) 

dx 1 - (dc/d)3 

Tables of this function are given in some books and it is certainly true that 
when channels are wide these tables are extremely valuable and the calculations 
are very simple to perform. Unfortunately very many channels are not even 
approximately wide. In this connection a wide channel is one in which 
m "" dn . In a rectangular channel m = d/( 1 + 2d/b). 

Thus ford/b = l/lO;m = O·83d and ford/b = l/lOO;m = O·98d. 
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Thus a channel in which d is less than one hundredth of the width is effectively 
wide within two percent upon this basis of definition. 

Many channels have varying widths and slopes in different reaches so any 
approach used must allow for this. Consider a short length of the channel over 
which it is reasonable to assume that the channel profile is approximately a 
straight line (see Fig. 7.44). dm denotes the mean depth over the length of the 

r 8L 

1 
d2 

d m d, 

/ 

Fig. 7.44 

element. d 1 can either be assumed to have been evaluated by a previous step of 
computation or to be located at an hydraulic control (such as a weir) which 
fixes its value by other considerations. 

Choose a value of 8d-the smaller the value chosen the more accurate the 
result but the more onerous the calculation will be. Then 

Urn = Q/(bdm ) if the channel is rectangular. 

Fnm = u~/(gdm). Hence the value of dd/dx can be evaluated for a short length 
of channel. But dd/dx = od/oL 

U = (l.-~nm) od 
/- 1m 

The point at which the depth is d 1 - od has been located so a new point on the 
channel profile has been established. This process can be repeated until the entire 
curve has been developed. As the depth alters the value of C should be appro
priately adjusted. Such adjustments can be made using this method for performing 
the finite difference integration. The method is well suited to programming on to 
a computer. 
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7.17 Surge waves in channels 

An hydraulic jump is a surge wave that has moved to a point in a channel at 
which its celerity is exactly balanced by the flow velocity so causing it to become 
stationary. If a free surface flow is suddenly totally or partially arrested a surge 
wave travels upstream (see Fig. 7.45). 

----_~-J-.... '-- Vw lowered into 
/ ~SIUjce sUddenly 

: ~ ~fi~ v: • 
IT/7~/-/~7~/-/"7"'-/-r--,7~7:'' 

Fig. 7.45 

Various types of surge wave are recognised. 

(1) The rejection surge which is caused by partial or total rejection of the 
downstream flow, as illustrated in Fig. 7.45. 

(2) The demand surge. This is caused by a sudden increase in flow at the 
downstream end shown in Fig. 7.46. 

___ -=_74: v. 
v • IncreaSed demOnd 

77/7///777 
Fig. 7.46 

(3) The flood surge which is caused by a sudden increase in supply upstream 
(such as a storm in a river catchment area or a dam burst)-see Fig. 7.47. 

Flood surge 

\t:v. 

77777777/ 
Fig. 7.47 

(4) The ebb surge caused by a decrease of flow upstream (see Fig. 7.48). 

The bore or eagre in the River Severn is a type of rejection surge (see Fig. 7.49). 
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Fig. 7.48 

Fig. 7.49 
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The absolute velocity of the wave is Vw (this is not the wave celerity). By 
superimpomng • velocity V w in the left to right direction upon the entire flow 
there will be no altemtion in the dynamiCS of the problem but the wave will be 
brought to rest and the flow boundaries will then be roo:d in space (Fig, 7.50). 

Fig. 7.50 

Two equations can now be written; the continuity and the specifiC force equations. 

" andi, are the depth of the centroids of the crOSS sections below the surface. wAtZt +WAt(Vl + Vw)'"/g = WA 2Z2 +wA 2(V2 + Vw)2/g Al(V
l 

+ Vw)2/g -A 2(V2 + Vw)2/g =A2Z2 -AtZt 
A1(Vt + Vwi/g-A1(Vt + Vw)At(Vl + Vw)IA~=AzZ2 -AlZl A

l
(1-A

l /A 2)(V l + Vw)z/g=AzZz -AlZl 
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This generalised result cannot be taken further as it stands unless the cross 
sectional shape is known. 

For a rectangular cross section 

so 
(7.6) 

If VI is zero the wave is travelling over stationary water and the wave velocity 
V w is then the celerity c so 

Now d2 = d I + h where h is the height of the wave. Dropping the subscript of d I 

c = {gd(1 + ~ hid + !(h/df)} 112 

= y'(gd){l +, h/d} 112 if hid is small 

~ y'(gd)(1 + i hid) - the St Venant result 

c = y'(gd) when hid ~ O-this result is due to Laplace. 

For very small waves, that is waves which have very large wavelengths in 
comparison with the depth d this last result applies even if the wave is of a 
translatory type. 

Surge waves, however generated, can be solved using equation (7.6) for the 
wave velocity V w 

_ J[gd2 (d l +d2 )] v: --VI + 
w d l 2 

and the continuity equation 

dl(VI + Vw )=d2(V2 + Vw ) 

When solving equations such as these the value of d 2 must be available. 
Generally, the condition that initiates the surge will determine the value of d 2 

bu t as the wave progresses d 2 changes as illustrated in Fig. 7.51. Usually the 
surge diminishes in height as it progresses upstream. 
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Closing sluice 

Fig. 7.51 

Flow downstream of the jump can be analysed by normal methods for 
handling backwater curves. Finite difference methods must be used. Accurate 
solution of this problem is only possible on a fast computer and unsteady flow 
theory must be used. 

Worked examples 

(1) An open channel conveying water is of trapezoidal cross section. The base 
width is 1·5 m and the side slopes are at 60° to the horizontal. The channel bed 
slope is 1 in 400 and the depth is constant at I metre. Calculate the discharge in 
cubic metres per second if the Chezy C is calculated from the Bazin relationship 
C = 87/(1 + 0·2/ ym) where m is the hydraulic mean depth. 

m=A/P 

A = 1 x (3·0 + 2 x tan 30°)/2 = 2·077 

P = 1·5 + 2 x sec 30° x 1 = 3·809 

m = 0·545 m 

C = 68·46 

Q=CAy(mi) 

= 68·46 x 2·077 YO·545 x ~ 

Q = 5·25 m3 /s 

(2) Water is flowing down a prismoidal channel of constant base width (15 m) 
and constant longitudinal slope (0·0005). The channel cross section is trapezoidal 
and the side slopes are 1: 1. The Chezy Cis 55. At a certain point in the channel 
the depth is decreasing at a rate 1 in 10 000 and at this point the depth is 5 m. 
Estimate the flow rate in the channel. 
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The relevant equation is: 

Now 

dd i-j 
-=--
dL 1-Fn 

dd 1 
dL 10 000 

15 + 15 + 2 x 5 
Area = x 5 

2 

= 100 

p= 15 + 2 x v'2 x 5 

= 29·14 

100 
m=--

29·14 

= 3·43 

Q2 Q2 

j A 2C 2m = A2 x 552 x 3·43 

v2 A 
Fn = - and 1) = = 2·5 

g1) 15+2x5 

Fn = 4·077 x 10-6 x Q2 

5 X 10-4 - Q2 x 9·638 X 10-9 
- 10-4 = ----=------,,...--

1 - 4·077 X 10-6 

(3) A venturi flume with a horizontal bed is fitted into a channel of 22·5 cm 
width. The throat width is 15 cm and the depth in the upstream section is 
20 cm. Calculate the flow in the channel using a method of successive approxi
mations to allow for the velocity of approach. 

The relevant formula for a freely discharging venturi flume is 



First approximation 

Assume 

Upstream velocity 

Second approximation 

Third approximation 

Open Channel Hydraulics 

E =d. 

Q. = 1·705 x 0·15 x 0.20312 

= 0·022875 m3 /s 

0·022875 v. = 
0·225 x 0·2 

= 0·508 

0.5082 

E. = 0·2 + 19.62 

= 0·21317 

E. = 0·21317 

Q2 = 1·705 x 0·15 x 0.213173/ 2 

= 0·02517 m3/s 

0·02517 
V2 = 

0·225 x 0·2 

= 0·55936 

0.559362 

E2 = 0·2 + 19.62 

= 0·21595 

Q3 = 1·705 x 0·15 x 0.21595 312 

= 0·025665 m3/s 

0·025665 
V2 = 0.225 x 0·2 

= 0·57033 

0.57033 2 

E3 = 0·2 + 19.62 

= 0·21658 

Q4= 1·705 x 0·15 x 0.216583/2 

= 0·025777 m3/s 
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This last value is insignificantly different from the previously calculated value 
so it can be accepted. 
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(4) An open channel having a trapezoidal cross section with side slopes of 
I vertical to 2 horizontal is required to discharge 15 m3 /s of water when 
running full. The longitudinal slope is 1 in 2000. Determine the depth d and 
the base width b to give minimum cross sectional area. C = 70 m 1/6 • 

Fig. 7.52 

For an economic section, a semicircle must be inscribable in the channel 
cross section. Under these circumstances, the hydraulic mean radius equals half 
the depth, d. The areaA = (2b + 4d)d/2; m = d/2. 

so 

Q = ACv!(mi) =A x 70 m2l3i l12 

lS/(70i1l2 ) = (b + 2d)d x (d/2)2/3 

~AED=~CFE 

AE =CE 

b/2 + 2d = v'[d2 + (2d)2] 

b = 2(v'5d - 2d) = 0·472 d 

9·583 = 2·472 d 2(d/2)213 

d= 1·977 m 

b = 0-472 x 1·977 = 0·933 m 

(5) The cross section of an irrigation canal is in the form of an equilateral 
triangle with its vertex downwards and equal side slopes. The flow depth just 
upstream of an hydraulic jump is 0·5 m when the flow is 1·0 m3 /s. Calculate 
the depth just downstream of the jump. 

Area of flow = 2 x (0·5 tan 30°) x 0,5/2 

= 0.1443 m 2 

Velocity = 0·1/0·1443 = 6·928 m/s 
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v2 gA 2 AIz I -A2Z2 
Relevant equation - = --

g Al Al -A2 

A2 = 2 X d 2 tan 30° x d 2/2 = 0·5774 d~ 

z2 = d 2/3 

v- 9·81-_ J [ d~ (1 x 0·5774dj - i x 0.5774d~)] 
d I 0·5774di - 0·5774d~ 

J[ ( d2)2(0.125-d~)] v = 6·928 = 3·27 - 2 
0·5 0·25 - d 2 

This equation is most easily solved by successive approximations: 

Tryd2 =2 
Tryd2 =1 
Tryd2 = 1·5 
Tryd2 = 1·505 
Try d 2 = 1·502 

R.H.S. = 1O-482-too high 
R.H.S. = 3·906-too low 
R.H.S. = 5·92-to low 
R.H.S. = 6·949-too high 
R.H.S. = 6·9287-adequate agreement 

Depth downstream of hydraulic jump = 1· 502 m 
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(6) A channel of rectangular cross section with a horizontal bed has a sluice gate. 
A flow of 3·6 m3 Is per unit width is passing through the sluice with the gate so 
adjusted that the depth just upstream of it is 2·4 m. If the gate is suddenly 
partially closed so that only 1·0 m3 Is per unit width is passing determine the 
velocity and depth with which the resultant surge starts to travel back up the 
channel. 

J[ gd2(d l +d2)] Wave speed = V w = - V + d; 2 

Flow down channel-flow through sluice 

=Vw (d2 -d I ) 

3·6 - 1 = Vw (d 2 - 2·4) 

V= 3·6/2·4 = 1·5 mls 

- = v: = -1·5 + __ 2 1·2 +--')·6 J[9.81d ( d 2)] 
d2 - 2·4 w 2-4 2 
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Solve by successive approximations: 
Try 

d 2 =2'8m 

)[9'81 x 2·8 ] 
2·6/0·4 = 6·5 m/s; V w = - 1·5 + 2.4 (1'2 + 1·4) = 3·955 m/s 

Increasing d 2 should give a better second approximation. Try 

d 2 =3'Om 

2·6 J[9'81 x 3 ] 0.6 = 4·333; Vw = -1·5 + 2.4 (1·2 + 1·5) = 4·254 m/s 

Increase d 2 a little more 

d 2 = 3·01 

2·6 J[ 9·81 x 3·01 ] 0.610 =4,2623; Vw =-1·5+ 2.4 (1'2+ 1'505) =4'269m/s 

So d 2 = 3·01 m is acceptable. 

Wave speed = 4·26 m/s 

Height of wave = 3·01 - 2·4 = 0·61 m 

Questions 

(1) A semicircular channel is required to convey 1·5 m3 /s when flowing full, the 
gradient being 1 in 1000. Taking the Chezy Cas 60, fmd the diameter of the 
channel. 

Answer: 1·74 m. 

(2) Working from first principles, derive Chezy's formula for uniform or normal 
flow in open channels, and show the location of the hydraulic gradient line. An 
open channel of rectangular section and breadth 1 m conveys water at a rate of 
0·3 m3 /s. Cis 55 and the slope is 2 in 1000. Estimate the depth of normal flow. 

Answer: 0'286 m. 

(3) The breadth of a rectangular channel is twice the depth. Assuming the 
Chezy C to be 55, find the cross sectional dimensions of the channel and the 
slope to satisfy the following two conditions. (a) Discharge when flowing full = 
0·8 m3 /s. (b) Velocity when flowing half full = 0·6 m/s. 

Answers: d = 0·74 m, b = 1·48 m, i = 1/2070. 
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(4) An open channel of circular section 0·7 m diameter laid at a slope of 1 in 
3600 conveys 0'16 m 3/S when running three-quarters full; that is with ~ of the 
vertical diameter immersed. If the Chezy C = km 116 where m is the hydraulic 
mean depth in metres, find the numerical value of k. 

Answer: k = 87'435. 

(5) Obtain the ratio of depth to breadth for an open channel of rectangular 
cross section which requires minimum area for a given discharge. Calculate the 
dimensions of the section of such a channel which will convey 10 m3 /s, the 
slope of the bed being 1 in 1500. Take Cas 60 m1l6. 

Answer: d = 1·85 m, b = 3·7 m. 

(6) AIm diameter conduit, 400 m long is laid at a uniform slope of 1 in 1500 
and connects two reservoirs. When the levels of the reservoirs are low the conduit 
runs partially full and it is found that a normal depth of 0·671 m gives a rate of 
flow of 0·33 m3 /s. The C value is given by kmn where k is a constant, m is the 
hydraulic mean depth and n = 1/6. Neglecting losses at exit and entry find 
(a) the value of k and (b) the discharge when the conduit is flowing full and the 
difference in level between the two reservoirs is 5 m. 

Answers: k = 51'84, 1·807 m3 /s. 

(7) The cross section of an open channel consists of a semicircular culvert with 
vertical sides, the overall depth being equal to the maximum width. The channel 
is required to convey 0·15 m3/s of water and in order to guard against overflow 
the depth of the stream is to be only 90% of the maximum possible depth of the 
channel. The slope of the bed is 1 in 1500 and C = 70. Calculate the dimensions 
of the cross section. 

Answer: radius = 0·252 m; width = 0·504 m. 

(8) The straight sides of an open channel slope outwards at 15° to the vertical 
and are tangential to the invert which is a circular arc of 0·5 m radius. Determine 
the gradient necessary to give a discharge of 0·6 m % when the maximum depth 
of the water is 1 m. C= 55. 

Answer: 1 in 4026. 

(9) Prove that the slope of the surface of the water in an open channel in which 
the flow is non-uniform is given dd/dD = (i - j)/( 1- Fn) the symbols having their 
usual meaning. A rectangular channel 15 ft [5 m] wide has a gradient of 0·00081 
and the normal depth of flow is 3 ft [1 m]. The depth is increased by a weir which 
is placed across the channel and the same flow of water is maintained. Determine 
the slope of the surface at a point upstream where the depth is 3·5 ft [1·05 m]. 
Take Cas 120 ft1l2 [66 ml/2]. 

Answer: -4'806 x 10-4 [-6·81 x 10-4 ]. 
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(10) What do you understand by normal and critical flow conditions in a 
channel? A wide channel of slope i = 1 in 4000 is equipped with a sluice, just 
downstream of which the depth is reduced to 0-3 ft_ The flow is 10 ft 3/s per ft 
width of channel. Find the distance from the sluice at which the hydraulic jump 
occurs in the downstream channel. 

Answer: 51-06 ft using one step of integration_ 

(13) A horizontal rectangular channel having constant width of 5 ft [1-5 m] 
conveys water. Over a length of 500 ft [150 m] the depth decreases from 3 ft 
[0-9m] t02ft [0-6m]_Assumingj=0-01v 2/2gm lJ=v 2/442 m] find 
the discharge_ Use numerical integration_ 

Answer: With 1 step of integration 45-78 ft 3/s [1-24 m3/s]_ 

(14) A venturi flume is to be installed in a channel conveying water with the 
object of raising the level of the water upstream_ The channel is rectangular in 
section and is 40 ft [12 m] wide, has a gradient of 1 in 6400 and a depth of water 
5 ft [1-5 m] _ The width of the throat section of the flume is 20 ft [6 m] _ If the 
bed of the flume at the throat is a streamlined hump, find the necessary height 
of the hump in order that the depth of water on the upstream side shall be 6 ft 
[1-8 m] _ Take C = 140 [77] for the channel, ignore hydraulic losses in the flume 
and assume that a standing wave is formed on the downstream side of the hump_ 

Answer: 1-09 ft [0-3465 m]_ 

(15) Explain what is meant by critical depth of flow in a channel. If specific 
energy is defined by h + v2 /2g, where h is the depth measured from the bottom 
of a channel of rectangular section, show that the critical depth for a given flow 
is that satisfying the condition of minimum specific energy_ A jump occurs 
downstream of a sluice spanning a channel of rectangular section which conveys 
water at normal depth of 3 ft [0-9 m] and velocity 4 ft/s [1-2 m/s] _ The opening 
below the sluice is 9 in [0-23 m] _ Estimate the height of the jump and the specific 
energy lost_ 

Answers: 2-213 ft [0-667 m], I-IS ft [0-355 m]_ 

(16) A venturi flume is installed in an open channel conveying water. Derive 
the formula for the discharge through the flume when a standing wave is formed 
on the downstream side, and explain why the depth of water at the throat section 
is then said to be the critical depth_ The channel, rectangular in section, has a width 
of 30 ft [9 m] and the gradient of the bed is 1/3600_ The bed of the flume at the 
throat is a streamlined hump 2 ft [0-6 m] high, and the width at the throat section 
is 20 ft [6 m] _ If the depth of water in the channel at the entrance to the flume is 
7 ft [2-1 m] estimate the quantity discharged through the flume_ Also, find the 
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depth of water at the highest point of the hump, and the depth of water in the 
channel far upstream. Ignore hydraulic losses in the flume and take V = 120y(mi) 
[V= 66y(mi)] for the channel. 

Answers: 730·2 cusec [19'861 m3/s], 3"45 ft [1'034 m], 5'91 ft [1'777 m]. 

(17) What is meant by an hydraulic jump in an open channel? Considering the 
case of a rectangular channel of constant width, determine from first principles 
the conditions required for the formation of such a jump and calculate the 
consequent loss of head in terms of the depth d i just before the jump and the 
depth d 2 just after it. 

Answer: (d 2 -dd3 /(4d 1d 2 ). 

(18) The cross section of an irrigation canal is in the form of an equilateral 
triangle with vertex downwards and equal side slopes. The stillwater head 
upstream is H m. Calculate the critical depth and critical velocity of flow. 

Answers: 0·8 H, 0·447 y(2gH). 

(19) The section of a horizontal channel conveying water is defined by the 
equation b2 = 16d, where b is the width of the free surface and d is the maximum 
depth of flow. The section is symmetrical about the vertical centreline. At a 
certain section the velocity of the water is 15 ft/s [4·5 m/s] and the maximum 
depth is 2·5 ft [0·75/m]. Calculate the critical depth. If a hydraulic jump is 
formed, calculate the depth after the jump. 

Answers: 3·58 ft [1·068 m], 4·92 ft [1'5 mJ. 

(20) A river of depth HI is flowing with a velocity v towards the sea. Tide 
conditions cause a sudden increase in depth downstream toH2 and this depth 
is maintained constant by the tide. Show that a bore will travel upstream with 
velocity V where 

V=-v+J[ ~2(Hl :H2)] 
(21) Explain what is meant by a hydraulic bore in an open channel. Describe 
the conditions of flow necessary for a bore to travel upstream, and show by a 
mathematical analysis for a rectangular cross-section channel, that a hydraulic 
jump may be considered as a bore with zero velocity. Discuss the use ofajump 
as an energy dissipator. 

(22) A stream flows at its normal depth of 4 ft [1·2 m] through a rectangular 
channel 20 ft [6 m] wide. The bed slope is 1 in 2000 and the Chezy C may be 
taken as 100 [55] . A landslip into the stream causes a sudden increase of depth 
to 5 ft [1'5 m]. Show that this will cause a surge to travel upstream and, working 
from first principles, calculate how long it will take for the surge to reach a 
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village two miles [3 km] upstream from the landslip. Neglect storage effects and 
assume that the depth at the landslip does not increase with time. Show how 
your basic equations would he modified if the cross section of the stream were 
not rectangular. Discuss the error in the method caused by making the assumption 
mentioned above. 

Answer: 18·2 minutes [17·06 minutes]. 



8 Pressure Transients 

The development of large transient pressures can occur in pipelines whenever 
the velocity changes rapidly. Such transient pressures can cause major failure of 
the pipe and the consequent expense involved in repair can be large. It is probably 
true to say that the generation of pressure transients is the largest single hydraulic 
cause of pipeline failure. It is strange, therefore, to find that a large percentage of 
users are not aware of the danger to their pipelines caused by rapid velocity 
fluctuations, nor do they seem particularly interested in studying the considerable 
volume of literature that now exists on this subject. 

It may be of interest to note at this point that a velocity change of 1 ft/s can 
generate a pressure head of approximately 125 ft if it occurs rapidly enough; if the 
pipeline is long, the required rate of change is not particularly large. Some catastrophic 
failures have occurred and it is now clear that the cost of a pipeline which will 
not fail under any circumstances is too high to be contemplated. Instead, a 
compromise must be sought which will reduce the risk of failure to an acceptable 
level and yet not be excessively expensive. The question remains of how to establish 
the amount of risk to which a pipeline may be exposed, and the theory that 
follows is the basis upon which it is assessed. 

8.1 Rigid pipe theory of waterhammer 

Pressure transients-or waterhammer, as the phenomenon is sometimes called
can be analysed by rigid pipe theory or elastic pipe theory. The method to be 
used depends upon circumstances and these will be specified later. 

If a velocity fluctuation occurs over a relatively long period of time, and the 
accelerations of the fluid are small, the pressure generated will also be small. If 
the pipeline is of normal construction, these small pressure changes will cause 
very little deformation of the pipe, and it will be reasonable to treat it as a rigid 
pipe; furthermore, if the velocity of pressure wave propagation in the system is 
large, the time taken for a velocity fluctuation at one end of the pipe to be 
signalled to the rest of the fluid in the pipe will be very small in relation to the 
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overall time of the velocity fluctuation. It will then be reasonable to analyse the 
motion of the fluid as ifit were a solid body occupying the internal volume of 
the pipeline. If this were not true; if the wave velocity were low, or if the 
velocity fluctuation occurred in a very short time, it would be possible for a 
portion of the fluid in the downstream section of the pipeline to be at rest 
because of a valve closure at the downstream end, while fluid at the upstream 
end was still entering the pipe. This actually happens in very rapid valve closures 
(see Section 8.6) and under such circumstances it is not reasonable to write an 
equation that describes the fluid's motion and pressure changes for all points in 
the pipeline at the same instant in time. Thus, only if the velocity fluctuations 
occur over a relatively long time will it be correct to treat the fluid as if it were 
moving as a solid body. The assumptions that the pipe is rigid and that the fluid 
can be treated as a solid body are essential to the development of the rigid pipe 
theory. 

'I 

Fig. 8.1 

Bearing these assumptions in mind, consider the case of decelerating flow in a 
pipeline. The fluid can reduce its velocity only if a decelerating force is applied 
to it and such a force is caused by a pressure difference between the ends of the 
pipe (See Fig. 8.1). In other words, P2 must be greater than P I if the fluid is to 
be decelerated (neglecting frictional effects for the moment). The mass of fluid 
in the pipe is pAl where A is the pipe cross sectional area. The force acting on 
the fluid from left to right is (P I - P2)A. By Newton's second of motion 

(PI - P2)A = pAl dvldt 

Cancelling A, substituting p = wig and calling (P I - P2) /lp gives 

or 

w dv 
flp=+-l

g dt 

flp = _ h. = +.!.... dv 
wig dt 

where hi is the head that must be created (perhaps by a valve closure) at the 
downstream end of the pipe in excess of the static head if the fluid is to be 
decelerated by the amount dvldt. 

(8.1) 
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Note that dv/dt is negative for a deceleration of the flow. The sUbscript i is used 
to show that this is a head caused by inertia changes, that is an inertia head. 

Given this equation, a large range of problems can be solved. 

8.2 Sudden valve opening at the end of a pipeline 

The case of a sudden valve opening at the end of a pipeline is illustrated in Fig. 
8.2. Immediately after the valve has opened, the fluid in the pipeline is at rest, 

Fig. 8.2 

but a net head of Hs is acting upon it and therefore it immediately experiences 
an acceleration. After a short time t its velocity will have increased to a value v 
and frictional forces will start to operate and will reduce the head available to 
produce acceleration by an amount 4fLv2/(2gd) that is, hf. Then the inertia head 
will be given by the equation 

hi =Hs - hf 

(Note that if local turbulence is occurring anywhere in the pipeline, this can be 
included in the friction loss term.) 

+!:. dv =H _ (4fL + k) v2 

gdt s d 2g 

where kv 2 /2g is the head loss due to local turbulence. Denote 4fL/d + k by K. 
Then 

L dv 2gHs _Kv 2 
- - = -=-----"---
g dt 2g 

dv 1 
-= -(2gH _Kv 2 ) 
dt 2L s 

2L 
dt = dv 

2gHs -Kv2 
(8.2) 
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This will be solved by partial fractions, so rewrite equation (8.2) as follows 

L 
:. t = y'( y'( ) [-loge { y'(2gHs) - y'(K)v} + lo&{ y'(2gHs) + y'(K)v}]g 

2gHs) K 

L [ { y(2gHs) + y(K)V} V] = log 
y'(2gHsK) e y'(2gHs) - y'(K)v 0 

(8.3) 

When time is infmite the demominator of the log expression must be zero. There
fore y'2gHs = y'K Voo , Voo being the velocity in the pipeline at t = 00. 

V 00 = y'(2gHs/K) 

This is obvious when equation (8.3) is considered. Alternatively, when time 
approaches infinity the fluid velocity must have achieved steady state. Then, by 
the usual method of solving steady state flow in pipes, 

hf=Hs 

Kv~/2g = Hs :. Voo = y'(2gHs/K) 

Re-writing equation (8.3) in the following form 

_ L y(2gHs/K) + v 
t - y'(2gHK) loge y'(2gHs/K) _ v 

and substituting Voo for y'(2gHs/K) 

L Voo + v 
t = y'(2gHK) loge Voo _ v 

exp [y'(2gHK)t] = Voo + V 
L Voo - V 

Let (v'(2gHK)/L be denoted by c. 

ct Voo + V e =--
Voo - v 
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(ect - 1) V=V oo --
ect + 1 

Since 

c = y[2gHs(4fL/d + k)]/L 

substituting back for c gives 

v/v co 

'·0 

~ = exp{ y[2gHs(4fL/d + k)]t/L} - 1 

Voo exp{y[2gHs(4fL/d+k)]t/L}+ 1 

Asymptotic to '·0 

-------~-

o~-----------------------------------
J'[29H, (4fL Id + k [] tiL 

Fig. 8.3 

Thus a solution for the pipeline velocity has been obtained which includes 
the effect of friction (see Fig. 8.3). 

8.3 Slow uniform valve closure 
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Assume that a valve is closed in such a way that its area of opening at any 
instant t is being linearly decreased as t increases. A solution for the maximum 
pressure attained during the closure can be obtained. (The uniform closing of a 
spear valve closely approximates to this case.) This is illustrated in Fig. 8.4. 
Here ap is the area of pipe, an the area of nozzle at time t seconds, Hn the head 
behind the nozzle at time t seconds, Hs the static head in the pipe, Vn the 
velocity of the jet at time t seconds and vp the velocity in the pipe at time t 
seconds. In this case, as a nozzle is fitted on the end of the pipeline, the head 
lost due to friction in the pipe will be small and in the following analysis it will 
be neglected. 
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Fig. 8.4 

If valve closure is to be linear 

(8.4) 

where anO is the area of nozzle when fully open and T is the time of closure. 
Using the simple nozzle equation for discharge 

(8.5) 

At t = 0 seconds Hn = Hno = Hs if friction is neglected. 

(8.6) 

Substituting this value into equation (8.4) gives 

then substituting this value of an into equation (8.5) gives 

(8.7) 

But 

H -H =_!:.. dvp 
n s g dt (8.8) 
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Differentiate equation (8.7) to obtain dVp/dt. 

dvp = ~ (1-.. H-1!2 (1 _ i) dHn _1-.. H1I2) 
dt V(Hs) 2 n T dt T n 

dvp = v _ !.(H IH) (1 - tlTdHn _~) 
dt pO V' n s 2H dt T 

n 

Substituting for dVp/dt from equation (8.9) into (8.8) 

(H -H )~=v - h(H IH)(l-tITdHn _1-..) 
s n L pO V' n s 2H dt T 

n 
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(8.9) 

dHn 2 [(Hs -Hn)V(HsIHn)g/(vpoL) + l/T]Hn (8.10) 
dt 1 - tiT 

The method of integrating this equation will be discussed later. To estimate the 
maximum value of Hn, re-arrange equation (8.10) as follows 

1 ( t) dHn V g Hn - 1-- -=(H -H) (HH)-+-
2 T dt s n s n vpoL T 

when Hn is a maximum dHn/dt = 0 

(8.11 ) 

(8.12) 

If the curve of Hn against t does not have a maximum in the normal algebraic 
sense the right hand side of the equation will still be zero when t = T and Hn has 
its largest value here. If the maximum were to occur before t had reached its 
largest value, then dHn/dt would be zero. In either case the right hand side of 
the equation (8.11) will be zero when Hn attains its largest value. 

Rearranging equation (8.12) into dimensionless form 

Then 
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Let 

Hn = + (2 + k2) ± y(4 + 4k2 + k4 - 4) 

Hs 2 

Hn = + 1 + k 2 + ky(4 + k2) 
Hs 2 2 

(8.13) 

k can be evaluated quite easily and Hn then solved. 

The method of integrating to obtain the curve of Hn against t 

Rewriting equation (8.1 0) 

dHn = 2 (Hs -Hn)y(HsIHn)glvpOL + liT H 
dt 1 - tiT n 

When t= O,Hn =Hs 

( dHn) = 2Hs 
dt t=O T 

If the value of T is split up into n increments so that dt = Tin, the value of Hn 
at time tl = dt is approximately 

Hnt, = Hs + 2HsiT St 

Using this value of Hn, calculate (dHn/dt)t=t, and use it to get 

Hnt=t2 = (Hn)t=t, + (dHn/dt)t=t, St 

This process can be repeated as often as desired, or until t = T. The method used 
is a very simple finite difference integration method and will be accurate only if 
n is large. There are more refined methods of performing such finite difference 
integrations of course. 
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8.4 Elastic pipe theory 

The rigid pipe theory is often applicable in circumstances that are of little 
interest to the engineer. It can be used only if valve closures are slow and the 
pressure surges so caused are small. Usually it is necessary to know the worst 
conditions under which the pipe may have to operate, and it is precisely these 
conditions that the rigid pipe theory cannot describe. It is thus essential to be 
able to predict the pressure rises generated when velocity fluctuations are 
rapid and the consequent pressure surges large. 

It is helpful to consider an infinitely rapid, that is, instantaneous valve 
closure although in practice rapidly varying pipe velocities are produced by 
valve closures that are only moderately rapid. 
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When a valve at the end of a long pipeline is shut instantaneously, the fluid 
upstream of the valve will impinge upon the closed valve and its pressure will 
immediately rise. The fluid layer behind this now stationary fluid mass will in 
turn be brought to rest and its impact upon the first layer will cause its pressure 
to rise and also maintain the pressure of the first fluid layer. This process will 
then be repeated by the next layer and so on. Eventually all the fluid in the 
pipe will be brought to rest and its pressure will be raised throughout the pipe. 
The increase in pressure so created will cause the fluid to be compressed and the 
pipe itself to be distended. This process can be pictured as shown in Fig. 8.5. 

In other words, a pressure surge runs up the pipe at a wave speed of magnitude c. 

The wave speed c is high, approximately 1200 mis, but it is not infinite. It will 
now be realised that if valve closure speeds are slow, this value of c is relatively 
very large and it is this that justifies the application of rigid pipe theory to slow 
valve closures. 

When the wave has reached the reservoir end of the pipe the situation is as 

t<L Ie 
L 

I' "I 
r-: --=:::z: .... :::.---...=: =-.:;::=...:=-=-~,~::x 
I -' -. i P,Z"'~dod \'0 I I I ood fI"id "mp~,," I 

I [H. <+ [H.+h I 

Pressure diagram 

Fig. 8.5 
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Fig. 8.9 

shown in Fig. 8.6. The reservoir head is Hs but the head in the pipe is Hs + hi. 
The fluid will now start to flow out of the pipe back into the reservoir. By 
considerations of energy this reversed flow will have a velocity of - vp. This 
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can be understood by remembering that the strain energy of the distended pipe 
walls and the compressed fluid must have been produced by conversion of the 
kinetic energy of the fluid in the pipe, and when the fluid flows back into the 
reservoir, this strain energy must be converted back into kinetic energy. As there 
is very little energy lost by friction in this process, the reverse flow must have 
the same energy as the original flow. The fluid layer at the reservoir end of the 
pipe will move towards the reservoir with a velocity vp and its pressure will 
revert to Hs. Then the next layer will move in the upstream direction and its 
pressure will fall also. This process will continue, each layer moving upstream in 
turn, gaining velocity and losing pressure in the process. As the pressure drops 
back to its original value the pipe contracts back to its original diameter (Fig. 8.7). 

This process continues and the pressure falls until eventually at a time 2L/c 
the entire pipe is at a pressure Hs and the fluid is moving at a velocity vp towards 
the reservoir. This is illustrated in Fig. 8.8. This situation can exist only for an 
instant, because the fluid in the pipe will attempt to move away from the valve 
at velocity vp. Immediately, the pressure of the downstream layer at the valve 
will drop and the fluid will come to rest. The next layer will then experience the 
same sequence of events and each layer in turn will suffer the pressure drop and 
be brought to rest. The drop in pressure will cause the pipe to contract. The 
situation will then be as shown in Fig. 8.9. At time t = 3L/c the situation is as 
shown in Fig. 8.lD. Now the pipe contains fluid at a pressure less than that in 
the reservoir, and it is in a contracted state. As soon as this state occurs, flow at 
velocity vp into the pipe starts and the pressure returns to its original value H s , 

the pipe returning to its original diameter (Fig. 8.11). At time t = 4L/c the 
situation is as shown in Fig. 8.12. 
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This last state is exactly the same as the state just before valve closure occurred. 
Therefore the cycle will start again; a positive pressure wave running up the pipe 
causing a pressure Hs + hi then reflecting with equal magnitude but opposite sign, 
causing a negative pres~ure wave to run back to the valve and producing a pressure 
head of Hs. This negative wave then reflects at the closed valve with the same 
magnitude and the same sign, so a negative wave runs back up the pipe again, 
causing a pressure head Hs - hi. This reflects at the reservoir with the same 
magnitude and opposite sign, so causing a positive wave to return to the valve 
end, giving a pressure head Hs. 

A basic principle has been enunciated here: at an open end a pressure wave 
reflects negatively, but with the same magnitude as the incident wave, and at a 
closed end a pressure wave reflects positively and with the same magnitude as 
the incident wave. 

Graphs of pressure head against time for an instantaneous valve closure are 
shown at the valve in Fig. 8.13 and at a point upstream from the valve in Fig. 8.14. 

In all the foregoing, friction has been completely ignored. In some circum
stances friction is almost negligible but it is not always so, and to include it in 
an analysis involves a very much greater effort. 

If the valve closure is not instantaneous, pressure waves are generated 
sequentially by the closing movement of the valve. These waves follow one 
another up the pipe and are reflected negatively at the reservoir end. If the valve 
closure is completed before the first wave initiated has had time to travel up 
the pipe and return in its negative form, the sum of all the waves must be the 
same as would have occurred if the valve had been closed in zero time. The 
time taken by a wave to travel to the reservoir and back to the valve is 2L/c. 
Thus all closures that occur in a time less than 2L/c-the pipe period-will produce 
the same maximum pressure at the valve as would have been produced by an 
instantaneous valve closure, although the resulting wave form will be very 
different in shape. Such closures are called sudden closures. 
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A phenomenon that can cause gross modification of the events that have been 
described above occurs when the absolute head at the valve before closure, H s , is 
less than the inertia head generated by the closure, hj, minus the head at which 
gas release occurs in the liquid, about 2·4 m absolute for water. After the first 
wave reflection, that is after a time 2L/c, the absolute head behind the valve 
is Hs - hi. This value is less than the head at which gas bubbles evolve in the 
liquid so gas evolution will occur. The liquid will be moving away from the valve 
at this instant and the reduced pressure at the valve is necessitated by the require
ment that the liquid must not leave the valve. As gas generates under these low 
pressures, the liquid will leave the valve and the movement of the fluid away 
from the valve will cause expansion of the gas filled space so generated. The 
pressure will fall at a much lower rate than would have occurred if the gas had 
not been present, and the movement of the liquid away from the valve will be 
decelerated much more slowly. Once the fluid has been brought to rest, it will 
start to move back into the pipe, but will not attain the original pipe velocity, 
as it would have done if no gas had been generated. This is because the accelera
ting pressure difference between the reservoir and gas volume is much less than 
would have otherwise occurred. When the movement towards the valve has 
caused the gas volume to disappear, the moving liquid will impinge upon the 
valve so generating another large pressure transient. The sequence will repeat 
as described before until energy loss by friction has damped the entire process. 

If the original pipe velocity is large enough, it may well happen that the 
pressure at the valve will fall to the vapour pressure of the liquid. If this occurs, 
the liquid will boil at the ambient temperature. This phenomenon is sometimes 
called separation. A typical trace of pressure against time when gas release and/or 
vapour generation occurs is as shown in Fig. 8.15. 
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Absolute zero 

Having described the phenomenon that occurs when a valve at the end of a 
pipeline is rapidly closed, it is necessary to show how the magnitude of the 
resulting pressure wave is calculated. 

8.5 Pressure surge caused by instantaneous valve closure 

At time t after a valve has closed, the situation will be as shown in Fig. 8.16. 
From equation (8.1) 

x dv 
h·=---

1 g dt 

where x is the length of pipeline over which the inertia head hi is developed. 

c ........... ..,.."'" 

H, 

Pressure diagram 

Fig. 8.16 
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Two unknowns appear in this equation if it is rewritten in finite difference 
form 

x ~v 
h·=---

1 g ~t (8.14) 

these being ~v and ~t. 
If the closure is complete, the velocity change ~v will be from v to zero in a 

time ~t, so ~v equals - v. ~t cannot be zero even if the valve were shut in zero 
time. This is because the large pressure rise caused by a very rapid closure will 
cause the fluid to compress and the pipe distend, so creating a space in the pipe 
into which fluid can continue to flow even though the valve itself is shut. In 
other words, it is impossible to stop the fluid in zero time even though the valve 
is shut in zero time. 

If the volume made available by fluid compression and pipe distension is 
calculated it becomes possible to calculate how long it will take for fluid 
travelling at the original pipe velocity to fill it and so obtain the time taken 
for the fluid to be brought to rest. Once this value has been obtained it is 
possible to calculate hi from equation (8.14). It is now necessary to calculate 
the space produced by fluid compression and pipe distension. 

The hoop stress fh in the pipe wall is given by 

fh =pPo/2T (8.15) 

where T is the wall thickness. The longitudinal stress is given by 

it = PiDO/4T (8.16) 

These equations are readily derived by considering force compatibility. (See 
Figs. 8.17a and b.) 

Various cases can be considered but only two will be dealt with here: (1) pipe 
restrained from extending longitudinally and (2) pipe permitted to extend 
longi tudinally. 

Fig. 8.17(a) 
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D. 

Fig.8.17(b) 

8.5.1. Restrained pipe A pipe is frequently restrained over its length by the 
fitting of anchor blocks which withstand the momentum and pressure forces 
acting at every bend 

so 

3D =fh 
Do E 

3D = Dofh/E 

where E is Young's modulus of the pipe wall material. 3L = 0 because of the 
restraining effect 
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W=PiD5 
2TE 

(8.17) 

The total additional space generated in the pipe by fluid compression and 
pipe distension is 

Pi 7tD5L 7tDoL ---+--3D 
K 4 2 

(K is the bulk modulus of the fluid). 
Substituting for 3D from equation (8.17), this becomes 

7tDo~ (PiDO + PP5) = 7tD5L . (..! + Do) 
2 2K 2TE 4 PI K TE 
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This space is filled by fluid flowing into the pipe at the original velocity over 
the time !It (which is the time taken by the fluid compression and distensibility 
effects to create the space. This is also the time required for the fluid to be 
brought to rest). 

Then 

so 

A _LPi (1 Do) ~t-- -+-
v K TE 

Now in this case the velocity change ~v is - v and ~t is as given above, so the 
equation 

h. = Pi= _!:.. ~v 
1 w g ~t 

becomes 

_ wL [LPi (1 Do)]-l p·_-v - -+-
1 g v K TE 

(8.18) 

8.5.2 Pipe unrestrained The additional space provided in such an unrestrained 
pipe by fluid compression and pipe distension is 

D 3D 1tD5 ~L 1t D2 T Pi 
1t L-+--o +- ()L'-

o 2 4 4 K 

Now 

where a denotes Poisson's ratio 
and 
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substituting for fh andfi from equations (8.15) and (8.16) 

and 

8D=PiD'5 (1-~) 
2TE 2 

8L = PiDOL (1 _ a) 
2TE ! 

:. Additional space 

=7tD L PiD'5 (1 _~) + 7tD5PiDOL (1 _ a)+!!. D2L Pi 
o 4TE 2 4 2TE! 4 0 K 

Proceeding as for the restrained pipe 

LPi (1 Do (5 ») t:J.t=- -+- 'J-a 
v K TE 

and this can be developed as before to give 
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(8.19) 

(8.20) 

From the analysis above it is also possible to obtain an expression for the 
velocity of wave transmission. The fluid in the pipe is brought to rest in a time 
tlt by the action of closing the valve. During this interval the pressure surge will 
have travelled up the pipe from the valve end to the reservoir end, distance of L 
at a velocity c so that c = L/tlt. 

Using equation (8.19) for tlt 

c = L I [ L ~i {k + ~; (i - a)} ] 

= v I [Pi {k + ~ (i - a)} ] 
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Substituting for Pi from equation (8.20) 

v 

v!.- -+-(i-a) -+-(i-a) c = [ {I D }] J!2{ 1 D } 
w K TE K TE 

(8.21) 

(or 

in the case of the restrained pipe). The expression for Pi, equations (8.18) and 
(8.21), can be manipulated into a far more easily remembered form. 

From equation (8.21) 

( I D }112 -+-(a-a) =c- I (w/g)-112 
K TE 

Substituting the square-rooted expression into equation (8.20) 

Pi = V (g/W)-112 c(w/g) 112 

= wcv/g 

or hi = p/w = cv/g. This is the Allievi expression. This expression is also sometimes 
called the Joukowski equation. It can be very Simply obtained if the value of cis 
already known. 

Consider a wave traversing a length of pipe of length x (see Fig. 8.18). The 
fluid in the pipe length x will be decelerated by an amount LlV in a time Llt 

~ I 
I 
I 

x 

I ~ I ~ ... --~ ..... ~- Pressure wave 

--II-~ 

I 
Fig. 8.18 
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where ~t is the time taken for the wave to traverse the length x that is 
At = x/c. 

x ~v x~v 
~h· =--x--=--

1 g ~t g x/c 

Integrating 

hi = cvlg as before. 
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(8.22) 

The results obtained in equations (8.20) and (8.22) will accurately predict the 
magnitude of the pressure surge if the valve closure occurs in a time less than 
or equal to the pipe period 2L/c. 

Note that the expression given above for the wave speed c is a special form 
of the usual equation for the velocity of transmission of sound, c = V(K/p). If 
11K' is written into the equation in place of 11K + D/TE (~- a) then from 
equation (8.21) for the unrestrained pipe 

[ ]
-112 

C = g;' , but wig = p 

c = y'(K'/p) 

Thus the expression -!, =! +!!.- (a - a) describes the way in which the effective 
K K TE 

bulk modulus of the fluid is modified by pipe distensibility. If the pipe has a very 
D 

small distensibility, that is if - (a - a) is very small, the pressure-wave speed 
TE 

approximates to that of sound and as K for water is 300 000 Ibf/sq in and 

p = 62·4/32·2 = 1·93 slugs/ft3 

c = 300 000 x 144/1·93 = 4700 ftls [1435 m/s] 

In a pipe of greater distensibility this figure can be as low as 2000 ft/s and in a 
rubber tube it can be as low as 100 ft/s. 

The foregoing analysis applies only to simple unbranched pipelines in which 
valve closures are sudden, that is they occur in times less than 2L/c. If c = 4000 
ft/s and L = 8000 ft, 2L/c = 4 s. If the pipe is of significant diameter, say 6 
inches or more, the valve on it will also be quite large and impossible to close 
in such a short time. Although valve closures taking longer than 2L/c cannot 
develop as large pressure surges as those that close suddenly it is still necessary 
to predict the magnitudes of the pressure surges so caused. To do this, further 
techniques are available. The Schnyder-Bergeron graphical method is one such 
method but this has limitations. A better method is based on the solution of the 
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full partial differential equations of water hammer. This solution is a ftnite 
difference integration of the characteristic forms of the partial differential 
equations and this must be done on a computer. Lack of space precludes the 
presentation of these methods. 

Worked examples 

(1) At the downstream end of a pipeline oflength 2000 m, a valve is fttted. 
When open, the pressure head upstream of the valve is 300 m and the flow 
velocity is 4 m/s. The valve closure time is 30 s and it closes in such a way that 
the flow area varies linearly with time. Estimate the pressure head at time 2 s 
and also calculate the maximum pressure head that occurs in the pipeline. 
Neglect all friction and elasticity effects. 

so 

The relevant equation is (8.11). 

dB 2[(Hs -Hnh/{Hs/Hn)g/(voL) + I/TJ Hn 
--=~~---=~~=-~~~~~~~-

dt 1 - tiT 

This equation must be integrated using ftnite difference methods. 
Take time steps at 1 second intervals 

t = 0: Hn = Hs = 300; T = 30 

(MI) = 2 x 30Q= 20 
t:.t t=O 30 

MI = 20 x 1 = 20 m 

t = 1: Hn = 320;Hs = 300; Vo = 4 m/s 

(MI) = 2[(- 20:>V(300/320)9'81/(4 x 2000) + 1/30]320 

t:.t 1 - 1/30 
t=1 

MI= 6'35 m 

t = 2: Hn = 326'35 

(MI) = 2 [(-26·35)Y(300/326·35)9·81/8000 + 1/30]326·35 

t:.t t=2 1 - 2/30 

All = 1·65 

H2 = 328 m 
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To calculate the maximum head generated during the closure, use the 
equation (8.13) 

--= 1 +-+k -+-Hmax k2 2J(1 1) 
Hs 2 4 k2 

where 

k = voL = 4 x 2000 = 0.0906 
gHsT 9·81 x 300 x 30 

k 2 = 0·008208 

Hmax/Hs = 1·0948 

Hmax = 328 
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Note that the calculation to obtain the pressure head at time 2 seconds is dependent 
upon the At interval chosen. A value as large as 1 second is likely to produce an 
inaccurate answer. However, it is interesting to note that a At value as large as 2 
will produce a value for AN which is larger than Hmax. This makes the point that 
a choice of an excessively large At value could produce a completely wrong result. 

(2) A pipe fitted with a valve at its downstream end transports water at 3 mis, 
the head upstream of the valve then being 150 m. The effective valve opening is 
suddenly reduced by one third. Calculate the instantaneous increase in pressure 
head behind the valve. Wave speed = 1300 m/s. 

When the valve is full open the head upstream of it is Hno. After the partial 
closure, it is H, the corresponding velocities in the pipeline then being Vo and v. 

The discharge q = Cdall y(2gH) 

where ay is the valve area and ap is the pipe area. 
Similarly, 

and 

But after the closure 

V 
- = lIt where 11 = ay/avO 
Vo 

cAv .. 
H = Ho - - (remember that Av 1S negatIve) 

g 
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c 
H=Ho--(v-vo) 

g 

c ~o( v) =Ho+-(vo-v)=Ho+- 1--
g g Vo 

H ~o ( v ) ~o - = 1 + - 1 - - = 1 + - (1 - TIn 
Ho gHo Vo gHo 

Note that this is the first equation in the series known as Allievi's interlocking 
equations. 

so 

~o 1300 x 3 
- 2·65 

gHo 9·81 x 150 

~2 _ 1 = 2·65 (1 - 0·667n. 

~= 1·222 

H/Ho = 1.2222 = 1·492 

H=I·492x150 

H= 223·8 m. 

Pressure head rise = 223·8 - 150 = 73·8 m. 

(3) A pipeline consists of a 6 in diameter length connected at its upstream end 
to a length of 12 in diameter. At the downstream end of the 6 in diameter 
section, a spear valve is fitted. When the spear valve is fully open, the effective 
nozzle diameter is 1·5 in. The coefficient of discharge of this valve may be 
assumed constant for all nozzle settings at a value of 0·9. With the valve full 
open, the flow in the pipeline is 2·36 ft3/S• The wave speed may be assumed 
constant throughout the pipeline at a value of 4000 ft/s. 

Calculate the rise in pressure head immediately behind the valve caused by a 
sudden partial valve closure from full open nozzle area to half open nozzle area. 
When the pressure wave reaches the junction of the 6 in and 12 in pipes, a partial 
transmission of the wave through the junction occurs and a negative reflected 
wave travels back down the 6 in pipe. Calculate the magnitude of the trans
mitted wave. Neglect friction. 
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The approach used to solve the first part of the question is the same as that 

used in example 2. 

2 CVo 
~ - I = - (1 - 11n 

gHo 

2·36 
Vo = = 12·02 ft/s 

7t x 0.5 2 /4 

CdavO 
C = 4000, g = 32·2, Vo = -- y(2gHo) 

ao 

Ho = 709·1 ft 

CVo 4000 x 12·02 
- = =2·106 
gHo 32·2 x 709·1 

11= 0·5. 

~2 _ 1 = 2·106(1- 0·5n 

~= 1·313. 

H/Ho = ~2 

H= 1.3132 x 709·1 = 1222 ft 

Wave magnitude =H -Ho = 513-3 ft 

The transmission of the wave through the junction is illustrated in Fig. 8.19. 

513 

t-AI 

Pipe A 

I
I "A2 

Junction 

Fig. 8.19 

c--li--_ 

---VBO 

PipeS 
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Magnitude of wave transmitted into pipe B 

Value of VAl 

513·3. V AO = 12·02 from before 

so 

gbJIj 32·2 x 513·3 
VAl = VAO --c-= 12·02 - 4000 7·888 ft/s 

Now reflected wave magnitude plus transmitted wave magnitude = initial wave 
magnitude, 
so 

C(VAI - VA2 ) + C(VBO - VB2 ) = 513.3 
g g 

513·3 x 32·2 
VAl - VA2 + VBO - VB2 = =4·132 

4000 

By continuity 

so 

also 

VBO = (d2/dl)2VAO = VAo/4= 3·005 

7·888 - 4VB2 + 3·005 - VB2 = 4·132 

5VB2 = 6·761 so VB2 = 1·352 

Transmitted wave magnitude 

= C(VBO - VB2 ) = 4000 x (3·005 - 1·352) 
g 32·2 

= 205 ft 

(4) Water from a reservoir flows through a rigid pipe at a velocity of 2·5 m/s. 
This flow is completely stopped by the closure of a valve situated 1100 m from 
the reservoir. Determine the maximum rise of pressure in N/m2 above that corre
sponding to uniform flow when valve closure occurs in (a) 1 second, (b) 5 seconds. 
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c = 1430 m/s. In (b), assume that the pressure rises at a uniform rate with time 
and there is no damping of the pressure wave. 

The value ofU/c = 2200/1430 

= 1·538 s 

As this is greater than 1 second, (a) represents a sudden closure. 
The relevant equation is 

!::Jl= cLlv = 1430 x 2·5 364-4 m 
g 9·81 

Llp = pg!::Jl. 

= 9810 x 364·4 

= 3·575 x 106 N/m2 

In case (b), the time of closure> 1·538 s so the sudden closure analysis will 
not be applicable. The question suggests that a rigid pipe-incompressible fluid 
theory could be used. The assumption that pressure rises at a uniform rate 
implies this. 

Let 

but 

so 

When 

so 

hence 

when 

p=kt 

-wLdv 
p=---=kt 

g dt 

dv g 
-=--kt 
dt wL 

gk t 2 
v = - --+ constant 

wL 2 

t = 5, v = 0 

25gk 
constant = --

2wL 

t = 0, v = 2·5 
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so 
2.5 = 25gk 

2wL 

5wL 5x9810xll00 
k=-=------

25g 25 x 9·81 

so 

Questions 

= 220 000 

Ps seconds = kt = 5 x 220000 

=1·IMN/m2 

(1) Describe the pressure phenomena produced in a pipe by sudden valve 
closure when elasticity of the water is taken into account. The pressure change 
produced in a pipe by a sudden decrease of velocity dv is given by dp = wa dv/g 
Ibs/ft2 where w is specific weight of water and c is the velocity of sound trans
mission in water. A pipe is 800 m long and the velocity of flow is 2·0 m/s. 
Determine the pressure produced by complete closure of a valve in 1 s and show 
how this pressure is not affected by the rate of valve closure. Also determine 
the pressure produced by valve closure in 5 s, assuming that the velocity decreases 
at a uniform rate as the valve closes. c = 1430 m/s. 

Answers: 2·86 x 106 N/m2, 3·2 x 105 N/m2. 

(2) Develop a formula for the rise of pressure in a pipe through which water is 
flowing at a constant rate due to the sudden closing of a valve, allowing for the 
expansion of the pipe and the compressibility of the water. A cast iron pipe is 
0·15 m bore and 0·015 m thick. Calculate the maximum permissible flow in 
m 3 /s if a sudden stoppage is not to stress the pipe to more than 5 x 107 N/m2 . 

Modulus of compressibility of water is 2 x 109 N/m2. Young's modulus for cast 
iron is 1·24 x 1011 N/m2. 

Answer: 0·135 m3/s. 

(3) Describe the phenomenon of water hammer which occurs in a pipeline when 
a valve in the pipeline is suddenly closed. Give a diagram against time for a point 
close to the valve and also for a point halfway along the pipe when a valve at the 
end of the pipe is suddenly closed. Prove that the rise of pressure at the valve 
dp = dv.y(981OK/g) in N/m2 where dv is the change of velocity in the pipe 
if the valve is partially closed and K is the combined bulk modulus of wa ter and 
pipe. Water flows in a pipe at 4 m/s and the head at the valve is 200 m. The valve 
is suddenly partially closed to 90% of its previous opening. Find dp if 
K = 1·45 X 109 N/m2. Note that dv is not = 0·1 x 12. 

Answer: 2·32 x 105 N/m2. 
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(4) Describe with diagrams of pressure against time, the phenomenon of water
hammer at the discharge valve end and halfway along a horizontal main, when the 
valve is suddenly closed. Show that if the speed of the water was originally 
V mis, sudden and complete closure will cause a rise of pressure of 1·18 x 106V 
N/m2 approximately, given that the effective bulk modulus of elasticity of the 
water allowing for the stiffness of the pipe is 1·4 x 109 N/m2. A pipe carries 
water flowing at 4 mis, the head at the valve being 200 m. The effective valve 
opening is suddenly reduced by one fifth. Whatis the instantaneous rise of head 
at the valve? 

Answer: 50'5 m. 

(5) Derive a formula for the pressure rise in a fluid flowing in a pipe when the 
valve at the end from which the fluid escapes is closed (a) slowly, and (b) very 
quickly. Water flows through a steel pipe 0·2 m internal dia. and 0·05 m thick 
with a velocity of 2·5 m/s. The length is 120 m. Calculate the maximum pressure 
rise if (a) the flow is reduced uniformly to zero in 5 seconds, (b) the valve is closed 
in a time which may be treated as instantaneous. Bulk modulus for water is 
2 x 109 N/m2 ,E for steel is 2 x 1011 N/m2 . 

Answers: 6 x 104 N/m2, 3·47 x 106 N/m2. 

(6) A pipeline of length 4000 ft [1300 m] is fitted with a valve at its downstream 
end. When this valve is fully open the pressure head just upstream of the valve is 
700 ft [200 m] and the flow velocity 10 ft/s [3 m/s]. The valve closes in 25 
seconds in such a way that the area varies linearly with time. Neglecting friction 
and all elasticity effects estimate the maximum pressure head that occurs in the 
pipe line. 

Answer: 751·3 ft [216'5 m]. 

(7) A pipeline of length 4000 ft [1300 m] conveys water at a velocity of9 ft/s 
[3 m/s]. With this velocity in the pipe the pressure head behind a valve at the 
downstream end of the pipe is 100 ft [30 m]. This valve is suddenly partially 
closed to two thirds of its full open area and one pipe period later this valve is 
further partially closed to a flow area of one half of the full open area. The wave 
speed is 4000 ft/ s [1300 m/ s ] . 

Neglecting friction calculate (a) the head behind the valve immediately after 
the first step of closure and (b) the head behind the valve immediately after the 
second step of closure. 

Answer: 190'17 ft [58'5 m], 216·0 ft [69'2 m]. 



9 Surge Tanks 

Any pipeline in which velocity fluctuations can occur can be subjected to large 
magnitude pressure transients. All pipelines are subjected to such velocity 
fluctuations when for example a valve is opened or closed or when an hydraulic 
turbine connected to it is started up or shut down. In Chapter 8 it was demon
strated that a rapid velocity fluctuation, that is one occurring in a time less than 
2L/c, causes a pressure change that can be as large as 130 feet head per foot per 
second of velocity change. It is therefore clear that a pipe must be protected 
against such rapid velocity fluctuations if it is not to be excessively costly. In 
other words, rapid velocity fluctuations must be converted into slow velocity 
fluctuations so that the pressure transients so generated will be diminished to 
insignificant values. 

A device capable of achieving this result must also be capable of meeting a 
further requirement. When a turbine is started or a valve is suddenly opened the 
water in a long pipeline will take a significant time to accelerate under the 
influence of the reservoir head and in some cases this could be a serious hindrance 
to the efficient operation of the pipeline. To supply the water needed to give an 
approximation of steady flow during the starting-up phase of the pipeline 
operation it is necessary that an auxiliary source such as a small reservoir should 
be located near to the exit from the pipeline and connected to it from which water 
can be taken during the starting-up phase and which is replenished when the 
system is shut down. 

This last requirement in effect defines the device needed. In its simplest form 
it consists of a vertical pipe of large diameter connected to the pipeline and 
located at a point as near to the exit as practical. The vertical pipe can act as a 
reservoir during start-up and can act as a point of relatively constant pressure so 
preventing the passage, almost completely, of any pressure transient into the 
upstream portion of the pipe. Such a device is called a surge tank. The simplest 
form of a surge tank is the vertical pipe described above and shown in Fig. 9.l. 

If this surge tank is open to the atmosphere at the top it must be extended to 
an elevation higher than the reservoir static level if the tank is not to spill when the 
system is shut down. If it were located close to the exit and the pipe connected 

312 
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Reservoir static water 
level 

Reservoir 

Fig.9.! 

to a turbine, the head on which was large, the surge tank would have to be 
impracticably high. Under such circumstances the surge tank must be so located 
that it will not have to be unreasonably high and the pipe between the turbine and 
the surge tank must then be capable of withstanding the pressure transients. This 
section of the pipe is called the penstock in American practice and is made of 
steel. The pipe connecting the surge tank to the reservoir is often made of 
concrete and usually consists of a concrete lined tunnel of larger dimensions 
than the penstock so the velocities in it are smaller than those in the penstock. 
Such concrete lined tunnels must be protected from elevated pressures as they 
can be cracked; this is the function of the surge tank. 

When a pipeline fitted with a simple surge tank is operating in steady state, 
the level in the surge tank is lower than that in the reservoir by an amount equal 
to the friction head loss in the pipeline connecting the surge tank to the 
reservoir. When a shut-down occurs a pressure transient travels up the penstock 
reducing the velocity in it to zero. A reflection occurs at the surge tank and a 
negative wave travels back down the penstock. The usual waterhammer pheno
menon occurs and this rapidly dies away due to the attenuating effects of friction. 
The penstock is relatively short so its pipe period (2L/c) is small. The fluid in the 
penstock can therefore be regarded as effectively stationary very soon after valve 
closure or turbine shut-down is complete. The water moving in the main pipeline 
is not brought to rest by the closure as it is able to flow into the surge 
tank. This flow causes the level in the surge tank to rise and this applies a 
decelerating head to the water in the pipeline. By the time that the surge tank 
water level has reached the reservoir water level the pipeline velocity will be 
reduced but will not be zero, consequently the level will continue to rise above 
reservoir static level and so a mass oscillation will be set up. This will be damped 
by friction (see Fig. 9.2). 
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Fig. 9.2 

In effect a pressure oscillation is converted into a mass oscillation in which 
the time scale of the oscillation is greatly increased and the pressure fluctuations 
very greatly reduced. Friction plays a great part in determining the nature 
of the oscillation; as friction increases, the oscillation alters as shown below in 
Fig. 9.3a, band c. These types of oscillation do not occur in real systems because 

(a) 

(e) 

Fig. 9.3 
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such heavy frictional dissipation is not acceptable when the system is operating 
in steady state. 

The surge tank is thus essentially a U tube in which the limbs of the U tube 
are of greatly different cross sectional area and are connected by a pipe which 
turbulently damps any oscillation that may occur. The parameters that must be 
determined when designing a surge tank are therefore (1) the maximum amplitude 
of the mass oscillation (2) the frequency of the oscillation and (3) the attenuation 
of the oscillation. The basis of the analysis must therefore be the same as that of 
a simple U tube with friction allowed. 

9.1 The frictionless analysis 

Before demonstrating the frictional analysis it is necessary to develop the analysis 
ignoring friction. This gives results which are of varying accuracy; for example, 
the frequency is given accurately but the value obtained for the amplitude is only 
approximate. Even so it is useful in providing a preliminary basis for design. 

In steady state the water level in the surge tank will be the same as the 
reservoir static water level because there is no friction (see Fig. 9.4). Lety be 
measured positively upwards from the reservoir static water level (Fig. 9.5). 

Area A 

Valve open 

Valve closed 

Reservoir static water leve I 

\ 
.4-- v 

t===J 
Fig. 9.4 

t 
4- V 

Fig. 9.5 
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Then two equations can be written, the continuity equation 

A dy/dt =av 

and the dynamic equation 

L dv 
y=--

g dt 

the minus sign being introduced because dv/dt is a deceleration. Now 

so 

so 

Ady 
v=-- from equation (9.1) 

a dt 

dv A d2y 
dt = -;; dt2 

(9.1) 

(9.2) 

(9.3) 

This is the differential equation of a frictionless surge tank oscillation and can 
easily be recognised as that of an undamped simple harmonic motion. This is 
what would be expected in such circumstances. 

Comparing the result with that of the standard result for a simple harmonic 
motion 

the period of an oscillation is T = 27t/ Q. Here 

Q= y(ga/LA) 

hence 

The maximum amplitude r is obtainable from u = r Q where u is the orbital 
velocity which in this case is av/A and v is the steady pipeline velocity, so 

r = u/ Q = : / J (1: ) 
that is 

r = vy(La/gA) 
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The displacement curve of a simple harmonic motion is sinusoidal and so the 
surge tank water level moves sinusoidally in relation to time. Thus 

y=rsin.Qt 

assuming that the origin is taken at the reservoir static water level. 

9.2 Frictional analysis 

To obtain a comparable result when friction is included the sudden complete 
shut-down must be considered as before but unfortunately the resulting 
differen tial equation becomes unintegrable. 

c -.J 

cv·C 8_ J Yt 

A Y; -

Fig. 9.6 

In steady state the water level in the surge tank will be at A an amountYi 
below the reservoir static water level (see Fig. 9.6) and 

4JLv[ 
Yi = - 2gd 

or 
n 

Yi = -CVi 

where Vi is the steady state velocity, that is the initial velocity. The negative sign 
is in troduced as Y is measured positively upwards from the reservoir static wa ter 
level. 

When valve closure occurs 

av = A dy/dt 

as in equation (9.1) but the dynamic equation must be modified to allow for 
friction. If at time t the water level has risen to C due to the valve closure, and 
the velocity in the pipeline at that instant is V, the difference in level between the 
actual position of the water surface and the position it would be in if the flow 
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were steady at velocity v (position B) isy + Cvn. This means that the pressure 
applied to the pipe by the water in the surge tank is greater than that required 
for steady flow by an amount of y + Cvn and so the water in the pipeline must 
experience a deceleration given by 

From equation (9.3) 

so 

ifn = 2 then 

L dv 
y +Cvn =--

g dt 

dv _ A d2y 
dt - -;; dt2 

LA d2y (A)n (dy)n --+C - - +y=O 
ga dt2 a dt 

d2y +C(gA)(dy )2 + ga = 0 
dt2 La dt LAY 

(Note that by putting C equal to 0 the frictionless result is obtained.) 

(9.4) 

(9.5) 

The expression for the head loss due to friction Cvn where n "'" 1·83 is valid 
for many commercial pipes. As mentioned elsewhere this expression is often 
inconvenient to use and as C = 4 jL/(2gd) if n is made equal to 2 and much 
information exists about the value off if this is so, it is ofttm better to use the 
form Cv2 instead of Cvn. When Cv 2 is used the value of C strictly is variable with 
vas opposed to the constant value that C takes if n = 1·83. This variation of C 
can be dealt with by the use of finite difference techniques and presents no 
particular difficulties. 

The result given in equation (9.5) is applicable to a rising surge but for a 
falling surge the friction changes sign. The expression giving the value of friction 
Cv 2 does not change sign although v reverses its direction and a modification 
of it is therefore desirable. If the expression is written Cv I v I meaning C 
multiplied by the velocity multiplied by the positive value of the velocity 
(ignoring any negative sign) this difficulty is resolved so in future work the 
symbol/ v I will be used to indicate the absolute value of v. 

In this way the two equations 

and 

Ady 
v=-- (See (9.1)) 

a dt 

L dv 
y + Cv I v I = - - -

g dt 

can be used to describe rising and falling surges. 

(9.6) 
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The differential equation (9.5) cannot be integrated and finite difference 
computations have to be undertaken to estimate the magnitude of any surges. 
It is easier to integrate the two basic equations than to integrate the derived 
second degree equation. Before discussing the method for integrating the 
equations it is necessary to deal with other cases that can arise in conjunction 
with surge tank operation. These are: 

(1) Partial sudden closure of a downstream valve, etc. 
(2) Sudden opening of a downstream valve or turbine control. 
(3) Partial opening of a downstream valve. 
(4) Slow valve opening or closing. 

(1) Partial sudden closure of a downstream valve or turbine gate (see Fig. 9.7) 

y 

Fig. 9.7 

The initial steady flow is denoted by Q, and the final flow by Qf. Then 

Q - Qf =A dy/dt 

so 

dy/dt = (Q - Qc)/A 

The dynamic equation remains unchanged: 

L dv 
y + Cv I v I = - - -

g dt 

(2) Sudden valve opening or turbine start-up (see Fig. 9.8) 

Initial state 

J y[ =:Jcvlvi 

-4-:: v ~ Q 
~ 

Fig. 9.8 
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Initially the water levels in the reservoir and surge tank are the same. When the 
turbine starts up the flow down the penstock suddenly takes the value Q. 

At a time t then 

dy 
Q=-A -+av 

dt 

(The minus sign must be introduced because y is taking progressively larger 
negative values). In other words the flow Q is partly supplied by flow out of the 
surge tank and partly by flow from the pipeline. Initially there is no flow out 
of the pipe and all the flow comes from the surge tank. Finally, all the flow 
comes from the pipeline and none from the surge tank. The dynamic equation is 

L dv 
y +Cvlvl= --

g dt 

as before. 
This equation is the same as those previously derived but its method of 

derivation may not be obvious. The fluid is experiencing an acceleration so the 
L dv 

acceleration head is - -d . The head available to cause this is the difference 
g t 

in value between the surge tank water level and the frictional head Cv 1 v I, that 
is - y - Cv 1 v I. The minus sign before the y is to turn a negative value into a 
positive value. (Again the reader is reminded thaty is measured positively in the 
upward direction.) This head causes an acceleration in the pipeline so 

L dv 
-y -Cvlvl=-

g dt 

L dv 
y+Cvlvl=--

g dt 

(3) Partial opening of a valve turbine 

If the initial state of the system is total shut-down there is no difference between 
a sudden complete and sudden partial opening. If the initial state is that the system 
is running under part load then a further partial opening up needs separate 
consideration. 

Let the flow in the pipeline at time t be Q and the fmal flow be Qf. Then 

- A dy/dt = Qf - Q 

so 

dy/dt = (Q - Qf}/A 

and the dynamic equation is the same as before. 
Note this result is the same as for a partial shut-down. 
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(4) Slow valve opening or closing 

At any time t after a valve has begun to close the flow through it is a function 
of time 

Qt = Q(t) 

If this value is then substituted for Qf the equation becomes 

dy/dt = (Q - Q(t»/A 

The dynamic equation remains unaltered. 
From the foregoing it can be seen that all cases can be described by the two 

equations 

and 

F or a sudden closure 

For a partial sudden closure 

F or a sudden opening 

and so on. 

9.3 Complex surge tanks 

dy/dt = [Q - Q(t)]/A 

L dv 
y + Cv I v I = - - -

g dt 

Q(t) = 0 

Q(t) = Qf 

Qi = 0 and Q(t) = Qf 

The simple surge tank is efficient in preventing the development of pressure 
transients in the pipeline but if suffers from a number of disadvantages. 

(1) Frictional damping is small so oscillation can continue for significantly 
long periods. 

(2) If it is to be near the pipe exit it may have to be unacceptably high. 

There are a number of alternative designs of surge tanks in use today but lack 
of space forbids their description here. The use of these different types largely 
overcomes the various problems listed above. 
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9.4 Surge tank modelling 

In many cases surge tank analyses can be of great difficulty and the results, when 
obtained, of doubtful value. For example, a pipeline of great length may require 
a number of surge tanks distributed along its length to protect it adequately and 
the interaction between such surge tanks may lead to resonance, the system being 
liable to instability as a consequence. Again, for engineering reasons it may be 
necessary to build a group of surge tanks instead of a single tank and, as before, 
instability in operation is a possibility. The analyses of such systems are very 
complex, and liable to mathematical instabilities which would invalidate any 
analysis. For these reasons it is necessary in the case of the more complex surge 
tanks to predict behaviour by the use of modelling techniques rather than by 
purely analytic methods. 

A dimensional analysis of any surge tank system must lead to an expression 
which involves both the Froude and the Reynolds numbers, and as demonstrated 
in Chapter 3 it is not possible simultaneously to satisfy the Reynolds and Froude 
number criteria for modelling. If the Reynolds number criterion is ignored the 
Froude number criterion leads to a model in which velocities are proportional 
to the square root of the length scale. During periods in which the velocities in 
the prototype are low, the Froudian velocities in the model will be even lower. 
If it is to be possible to ignore the Reynolds number criterion it is necessary 
that the Reynolds number for both prototype and model should be large. In this 
case this does not occur and so Froudian modelling will be subject to scale effect 
and will not be suitable. 

Other modelling criteria are possible, however, and for surge tanks the 
technique illustrated below is found to work well. 

The two basic equations of surge tanks are 

and 
dyjdt = av/A (See (9.1)) 

L dv 
y+Cun =--- (See (9.4)) 

g dt 

Writing these two equations for the model and the prototype and putting 
R =A/a 

alld 

so 

(:) =(~) =;: 
m m 

(dr) = (~) = ;: 
p p 

(dyjdt)m Rp Vm 

(dyjdt)p Rm vp 
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Now considering a typical surge, the slope of a point on the graph of the 
surface displacement against time for both the model and prototype is defined 
by the ratioy/t. This is not to say that dy/dt = y/t, but given similarity between 
the model and prototype displacement versus time curves the ratio of (dy/dt)m to 
(dy/dt)p equals the ratio (y/t)m/(y/t)p. 

Then 
(y/t)m Rp Vm 
--=--
(y/t)p Rm vp 

Next considering the dynamic equation 

and 

Then 

n Lm (dV) 
Ym +Cmvm =--g dt m 

y + C vN = _ Lp (dV) 
p p p g dt 

p 

Lm (dv/dt)m 

Lp (dv/dt)p 

Dividing through by Cm v~ and Cpv~ 

Now if 

then 

ym/(Cmv~) + I 
Yp/(CpvN) + 1 

Lm(dv/dt)m/Cmv~ 

Lp(dv/dt)p/Cpv~ 

(9.7) 

(9.8) 

(9.9) 

Before, dy/dt was said to be defined by y/t and similarly it may be said that 
dv/dt is defined by v/t 
:. equation (9.9) may be written 

rearranging gives (9.10) 
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and from equation (9.8) 

From equation (9.7) 

N 
YP CpVp -=--

Rp Yrnvptp - = .=-.!!::......:.-.!.-

substituting for Yrn/Yp and tp/trn from equations (9.11) and (9.10) gives 

Rp _ (Crn )2 v~-2 Lp R- -C 2N- 2 L-
rn p vp rn 

(9.11) 

If both the model and prototype pipes possess values of n that are close enough 
in value to be assumed equal then 

:~ = (~:r (::fn
-

2 :~ 
and if n = 2 (as in the case of rough pipes) 

:~ = (~:f(Vv:r :~ (9.12) 

If equation (9.12) is rewritten as follows 

(VV:Y = :~ (~j 2 ~: 
then as all terms on the right hand side are constant the left hand side must also 
be constant. 

Thus if n = N, Vrn /vp is also a constant. If during a surge the model and proto
type velocities change from Vrnl to Vrn2 and vpl to vp2 respectively then 

Vrnl = Vrn2 = Rp (Cp)2 Lrn 
vpl vp2 Rrn Crn Lp 

vrnl = Vpl 

Vrn2 vp2 

This result can be useful on occasions. 
From these results it is possible to establish the dimensions of a model of the 

prototype which will satisfy the requirements that velocities should never be 
excessively small in the prototype so that laminar flow will not develop and also 
maintain a modelling scale for the surges that will give an easily measured model 
surge. These modelling criteria work very well and are far more satisfactory than 
those derived from considerations of dimensional analysis. 
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Worked examples 

(1) A simple surge tank of 6 m diameter is connected to a pipeline of 1 m 
diameter at its downstream end. The pipeline is 3 km long and the value of the 
Darcy [for it is 0·005. When the flow through the pipeline is in steady state, 
the velocity in it is 3 m/s. Calculate the difference in level between the water 
surface in the upstream reservoir and that in the surge tank. Estimate the period 
of oscillation of the water surface in the surge tank when the flow in the pipe
line is in an unsteady state. Using a I:::.t interval of 10 seconds and a simple initial 
value method of finite difference integration, calculate the level of the water 
surface in the surge tank referred to the level in the reservoir as datum and the 
velocity in the pipeline at a time of 40 seconds after flow rejection. 

The level difference between the surge tank and reservoir water surfaces is 

4jLv2 4 x 0·005 x 3000 
--= x9 

2gd 19·62 

= 27·52 m 

The period of oscillation 

T= 659·3 s 

Equations applicable are 

A dy 
v=--

a dt 
and 

so 

and 

L dv 
y+Cvlvl=--

g dt 

. 4jL 
I:::.t = 10 (gtven);C= 2gd = 3·0581 

a 
I:::.y = - vl:::.t = i6 x 10v = 0·2778v 

A 

g 
I:::.v = - - (y + Cv Iv 1)l:::.t = -0·0327(y + 3·058vlv I) 

L 
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Initially 

Yo=-27·52m and vo=3m/s 

The finite difference integration is best done in tabular form but as this may not 
be quite as clear a presentation, each stage of the calculation will be set out 
separately here 

Att=O; Yo=-27·52; vo=3 

~Y = 0·2778 x 3 = 0·8334 m; ~v = O. 

Att=IO; YlO=-26·69; vlO=3. 

~Y = 0·2778 x 3 = 0·8334; ~v = - 0·0327(-26·69 + 27·523) = -0·0273 

At t = 20; Y20 = -25·86; V20 = 2·972 

Y = 0·2778 x 2·972 = 0·826; ~V = -0·0327(-25·857 + 3·058 x 2.9722 ) 

At t = 30; Y30 = - 25·03; V30 = 2·934 

~Y = 0·2778 x 2·934 = 0·815; ~V = -0·0327(- 25·03 + 3·058 x 2.9342 ) 

At t = 40; Y40 = -24·2 m; V40 = 2·89 m/s. 

Questions 

(1) For what purposes are surge tanks used? Using the notation of Fig. 9.9, 
justify the equations 

dz +av 
-=- and 
dt A 

Water surface 

L dv 
z+Cv 2 =--

g dt 

d 

L 

z Measured positively upwards 

Fig. 9.9 

Water surface 
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for instantaneous closure of the valve. The table gives some particulars of a model 
and a full size surge tank system. Find (a) the correct initial velocity of flow for 
the model and (b) the ratio of the maximum surge in the model to that in the 
prototype. 

L Pipe dia. S urge tank dia. e Initial 
velocity 

Model 40ft 2·0" 3·5" 0·1 
[12 m] [0·05 m] [0·0875 m] [0·0328] 

Prototype 640 ft 4·0 ft 10·0 ft 0·08 6 ft/s 
[192 m] [1·2 m) [3 m] [0·0271] [l·8m/s] 

Answers: 1·72 ft/s [0·53 m/s]'Ym/Yp = 0·103 [0·105]. 

(2) What is the purpose of a surge tank? Show that when comparing a model and 
a prototype surge tank Rp/Rm = (Cm/Cp)2Lp/Lm(V m/Vp)2. Find a suitable 
diameter of model tank to satisfy the conditions set out below. 

L Pipe dia. Tank dia. e Initial 
velocity 

Model 40ft 2" d 0·1 1·25 
[12 m) [0·05 m) [0·0328] [0·375 m/s] 

Prototype 600ft 48" 120" 0·1 5·00 
[180 m) [1·2 m] [3·0 m] [0·0328] [1·5 m/s) 

Answer: d = 5·16/1 [0·13 m] 

(3) In a simple surge chamber z is the height of the water level at any instant 
relative to reservoir water surface level. Develop the continuity and dynamic 
equations describing z for a sudden partial rejection of flow at the turbines. 
Hence derive a differential equation completely describing z in terms of t. 
Determine constants of the differential equation for a surge chamber 100 ft 
diameter, tunnel diameter 20 ft, tunnel length 4000 ft and f = 0·005, if the flow 
to the turbines is suddenly reduced from 2000 to 1000 cusecs. 

d2z (dz)2 (dz) 
::..::An=s,-,-w--=-e:.c.r: -dt-2 + 0·0125 (dt) + 0·003185 (dt) + 0·000322z + 0·000203 = O. 

(4) In a hydro-electric scheme the water velocity in the low-pressure penstock 
under steady full load conditions is 11 ft/s [3 m/s]. The low-pressure penstock 
is 3220 ft [981 m] long, has a diameter of7 ft [2 m] andf= 0·005. It connects 
to the base of a simple surge tank 20 ft [6 m] diameter, and this connection is 
70 ft [21 m] below reservoir static level. When starting the turbines the gates 
are suddenly completely opened to the steady full load flow. Estimate the 
minimum depth of water in the surge tank due to mass oscillation. Use the basic 
equations of mass oscillation to form a step-by-step integration. 

Answer: Using initial value integration and 10 s steps: approximately 15 ft [7·9 m]. 
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(5) An approximately horizontal tunnel 20 ft [6 m] diameter and 4 miles [7 km] 
long connects a reservoir to a surge tank which is cylindrical and 80 ft [24 m] dia. 
Find as a first approximation the periodic time of one complete oscillation of 
the water level in the tank by neglecting pipe friction. After a period of suddenly 
increased load, the outflow and inflow are momentarily equal to 1200 cusec 
[35 m3 /s] and the level in the surge tank is 16 ft [5 m] below reservoir level. 
The outflow remains constant and friction head lost in the tunnel may now be 
taken as v2 /3 ft [1·11 v2 ] where v is the mean water velocity in the tunnel. 
Calculate the level in the surge tank after 60 seconds. A step-by-step method is 
suggested, taking three intervals of 20 seconds each. 

Answer: 14·78 ft [4·66 m] below reservoir level 
Time of oscillation = 643·7 s [671·4 sJ . 



10 Rotodynamic Machines 

The term 'rotodynamic machine' is used to describe machines which cause a 
change of total head of the fluid flowing through them by virtue of the dynamic 
effect they have upon the fluid. Machines exist which change the head of the 
working fluid without employing a dynamic effect, for example reciprocating 
pumps, and such machines will not be dealt with in this book. 

Two classes of rotodynamic machines, turbine and pumps, are of particular 
interest to the engineer. The basic theory of both these classes of machines is 
the same. 

10.1 Flow through rotating curved passages 

Rotodynamic machines all make use of the effect that occurs when fluid passes 
through a rotating curved passage. In the case of turbines this effect consists of a 
transfer of energy from the fluid to the rotating passage and in the case of pumps 
it consists of the transfer of energy from the passage to the fluid. 

Consider a flow through a rotating curved passage as illustrated in Fig. 10.1. 

Turbine case 

Uz 

Fig. 10.1 
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Denote the peripheral velocity of the tips of the passage (at the inlet diameter) 
by UI and at the exit diameter by u2' Let VI and V2 denote the absolute velocity 
of the fluid at inlet and exit respectively and let Vf1 and V w2 and V f2 and V w2 

denote the radial and tangential components of the absolute velocity at inlet and 
exit. The subscripts f and w denote the terms flow and whirl respectively. The 
radial component of velocity Vf is called the velocity of flow because when it is 
multiplied by the peripheral area of the passage it gives the rate of flow in units 
of volume per second. The tangential component of the absolute velocity is called 
the velocity of whirl for obvious reasons. 

The rate of change of angular momentum that a mass flow M of fluid experiences 
in passing through the curved passage is 

Therefore 

M(Vwlrl - Vw2r2) = torque applied to the passage 

The work done per second = torque x angular velocity 

but 

rtQ=Ut and r2 Q =u2 

So, work done per second is 

If W is the number of units of weight flowing, W = Mg. Dividing through by W 
gives the work done per unit weight of fluid as 

(10.1) 

This result applies whichever way the fluid is flowing, that is inwards or 
outwards. Being a momentum equation it is valid without further correction. 

10.1.1 Runners and impellers In practice a single curved passage is not a practical 
device and a runner or impeller is used. (The term runner is used when talking 
about the rotating portion of a turbine and impeller is used to describe the 
rotating part of a centrifugal pump.) A typical runner is shown in Fig. 10.2. 
Here a number of curved passages have been formed by dividing up the volume 
between the two plates by fitting runner blades into it. 

The impeller of a centrifugal pump is very similar except that the flow passes 
through it in the opposite direction. The geometry of the blading shown in 
Fig. 10.2 is not appropriate for use in a centrifugal pump and a suitable impeller 
is illustrated in Fig. 10.3. 
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Bock plate 

Flow path 

Turbine runner 

Fig. 10.2 

Eye of the 
Impeller 

Pump Impeller 

Fig. 10.3 

Shaft 

It should now be clear that turbines and pumps are devices that operate on 
the equation (10.1) 

Workdone/unitweightoffluid=(Vw1UI - Vw2 U2)/g 

and that the turbine or pump is merely a device that will generate optimum 
values of V wI, V w2, uland U2, while passing an adequate volume of fluid. 
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The turbine therefore is a device that will take in high energy fluid and, by 
altering the velocities of whirl will abstract energy from the fluid, passing it to 
the runner which can then b.e made to do useful work such as driving an electric 
generator of some sort, usually an alternator. The water is discharged from the 
turbine with greatly reduced energy. 

A pump is a similar device that takes in low energy fluid and, by transferring 
energy to it from the impeller-which must of course be driven-converts into it 
high energy fluid. 

10.2 The reaction turbine 

From the foregoing it should be realised that the turbine must be designed to 
provide appropriate values of the whirl and peripheral velocities while maintaining 
an adequate flow velocity. 

The entry velocity of whirl is generated by fitting fixed guide vanes around 
the runner as shown in Fig. 10.4. The flow entering the turbine from the supply 
pipeline is compelled to travel in a circular path by entering a casing (the scroll 
casing). At the inner periphery of this casing the fluid enters the guide vane 
passages and is directed on to the runner blades at an angle to the radial direction 
so generating a tangential component of the absolute velocity- the velocity of 
whirl at inlet. The magnitude of this velocity of whirl is related to the absolute 
velocity V 1 and the setting of the guide vane. For this reason the guide vane 
setting is made adjustable, all the guide vanes rotate about their own axes and 
are linked together so that an adjustment of one blade adjusts all. 

J L 
Guide vanes 

Scroll casing 
Runner 

Fig. 10.4 



Rotodynamic Machines 333 

Fig. 10.5 

We now examine the situation in a guide vane passage and a runner blade 
passage (see Fig. 10.5). Three angles must be involved in an analysis of the flow: 
ex, {3 and 'Y. (All measured relative to the forward tangent.) 'Y is the angle made by 
the absolute inlet velocity VI to the forward tangent and is controlled by the 
guide vane setting. ex and {3 are both fixed values and are the angles that the 
tangent to the blade tip makes with the forward peripheral tangent at inlet and 
exit to and from the blade respectively. 

If a stream of water traverses an edge of a boundary in a direction parallel 
to the boundary no Significant loss of energy results but if it traverses it in any 
other direction heavy losses will be caused due to boundary layer separations
see Fig. 10.6. It is therefore necessary to ensure that water leaving the guide 
vanes has a velocity relative to the runner blades that is parallel to the blade 
tips as otherwise energy will be lost and the efficiency of the turbine corre
spondingly reduced. It should be appreciated that this condition can be attained 
for only limited conditions. 

Fig. 10.6 
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The designer can fix the value of a for the working conditions of the turbine 
but if these should change, although he can adjust by altering the guide vane 
settings, there will be a point beyond which he will not be successful. The flow 
then will not be parallel to the blade tips and efficiency will fall off. This 
explains why the part load or part gate efficiency of a turbine is never as high 
as its designed full load efficiency. 

The condition that will specify that the flow will be in a direction parallel 
to the runner blade tips can be obtained from the velocity or Euler triangles. 
Draw the velocity triangle for the fluid and the blade tip (see Fig. 10.7). Vr1 

Inlet triangle 

'_I. ---'-----l I 

:1 

u, 

I~ VW , 

Fig. 10.7 

denotes the velocity of the flow relative to the runner blade tip. It can be seen 
that for no energy loss at entry to the blade 

Now 

and 

Vf1 
tan a =---

UI - VWI 

V wI = - VI cos 'Y (cos 'Y is negative) 

Vn=Vlsin'Y and tan'Y=Vf1/VWI 

If U I is less than the numerical value of V wI a different configuration 
(Fig. 10.8) results. 

(10.2) 

Both configurations are possible but Fig. 10.8 would be suitable for a high 
head turbine and Fig. 10.7 would be more suitable for a rather lower head 
turbine. This can be understood from the following argument. The value of VI 

depends upon the head on the turbine. For a high head machine VI will therefore 
be larger than for a low head machine. The rotational speed depends upon the 
peripheral speed U and if the rotational speed is not to be too low the value of 
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Inlet triangle 

Fig. 10.8 

u must be large. In Fig. 10.7 ut/V1 is large whereas in Fig. 10.8 ut/V1 is low. 
Therefore in the case of a low head turbine a large ratio ut/V1 is needed to 
give an adequate value of u 1 so the type of triangle illustrated in Fig. 10.7 is 
the more suitable. It should also be remembered that when there is a low head 
large flows are necessary to give adequate power. (Power = wQH x efficiency) 
so a large diameter of the runner is needed to avoid haVing an excessively large 
value of Vn . 

(10.3) 

where B 1 is the axial length of the runner blade at inlet. As the rotational speed 
of the runner N is given by 

u 
N = 60'TtD revs/min (10.4) 

and D must be large for a low head machine again a large value of u must be 
possible if N is not to be excessively low. 

Exit triangle 

Uz 

Uz 

I. 
Fig. 10.9 

:1 
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At exit from the runner a further velocity diagram (Fig. 10.9) can be drawn. 

and 

(a) 

Vf2 
Again tan f3 = --=-

U2 - Vw2 

( b) 

Fig. 10.10 

(10.5) 

(10.6) 

(10.7) 

(c) 

B2 being the axial length of the blade at exit. As for the entry triangle there are 
several forms of this triangle; some are shown in Fig. 10.10. The difference 
between figures a, b, and c depends on the value of U2 which in turn depends 
upon the rotational speedN. IftJ1e turbine is overloaded and therefore running 
below the designed speed, Fig. 10. lOa applies. Vw2 is then negative and the torque 
applied to the wheel is increased because 

torque =M(Vw1Ul - Vw2U2)/Q 

Now in case a and c the value of V2 is larger than in case b so the energy 
rejected from the runner in the form of kinetic energy is larger. Thus, if the 
condition of zero velocity of whirl at exit occurs (case b) it can be deduced that 
the turbine will operate at maximum efficiency. 

This is sufficiently true for most purposes and at the level of this book the 
assumption that zero velocity of whirl at exit from the runner gives the maximum 
efficiency is reasonable. However designers are now not satisfied with this 
assumption and instead the velocity of whirl that gives a minimum value of the 
sum of the rejected kinetic energy and the frictional head loss in the runner is 
used. The head lost in the runner = k v.z2 /2g where n ~ 2, so 

V2 kV2 
total head loss = ~ + ~ 

2g 2g 



Rotodynamic Machines 337 

~ 

~ ~Vf2=V. 

VW2 = 0 

(a) 

Fig.lO.ll 

As both V 2 and Vr2 depend upon V w2 it will be realised that a minimum total 
head loss will be given when V w2 has a small positive value. (See Fig. 1O.11a 
and b.) Assuming zero velocity of whirl at exit 

where 

{3 = tan -1 (V f2/U2) 

U2 = nD2N/60 (from equation (10.7)) 

'Y = 1800 
- tan 1(Vfl/Vw1 ) 

The hydraulic or ideal efficiency Eh is given by 

Eh = (work done/unit weight)/H 

E - Vw1U1 
h -

gH 
(10.8) 

assuming zero velocity of whirl at exit. This ideal efficiency cannot be achieved 
in practice because part of the energy given to the runner must be lost in 
supplying bearing friction and disc friction. This last is the friction between the 
runner and the fluid surrounding it. The overall efficiency Eo is given by 

Eo = shaft power/water power 

where water power = wQH/550 in horse power or wQH/lOOO in kilowatts. The 
mechanical efficiency, Em 

shaft horse power shaft kW E = or-------------
m WQVw1 U1/550g wQVw 1ut!1000g 

It follows that 
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At this stage the design parameters of a turbine can be evaluated. Given the 
supply head and the flow available and making an estimate of the efficiency, 
the power that the turbine will give can be assessed. The work done per unit 
weigh t of fluid can then be calculated and so the value of the produc t V wi U I 

can be found from equation (10.8). The ratio of B t toD t can be speCified (this 
decision is made on the basis of previous experience) and then the value of D! 
can be determined from equation (10.3) which gives, assuming B I = CD!, 

To perform this calculation a value of Vfl must be decided. Values chosen 
usually lie between 8 ftls and 14 ftls [about 2 mls and 5 m/s]. (The larger the 
value of Vfl chosen the smaller the resulting turbine, but the larger all the 
velocities within the turbine and hence the larger the frictional losses and the 
lower the efficiency.) ThusD! can be found. Ut is then given by u! =7tNDd60 
and VW! can be calculated. 

From this, a, (3 and r can be calculated if V w2 is assumed to be zero. From 
equation (10.2) 

_ Vf1 
a= tan ! --

u! - VW! 

In many designs the velocity of flow is maintained constant so 

B2D2 V f2 = B !D! Vf! 

and as Vf1 then equals V f2 

B2D2 =B!D! 

If D2 is made too small B2 will become too large so a satisfactory compromise 
must be made and D2 can hence be determined. 

The essential components of a turbine have been dealt with but two other 
parts of the machine have important functions; these are the scroll casing which 
leads water into the guide vanes and the draft tube which takes water from the 
runner and passes it to the tail race (the channel that carries off the water from 
the turbine.) 

10.2.1 The scroll casing and the draft tube The scroll casing (Fig. 10.12a) 
conducts water into the guide vanes and the cross sectional area has to be reduced 
progressively around the periphery of the runner to maintain an approximately 
constant velocity of flow of the same order of magnitude as the velocity of entry 
to the guide vanes within it. It is wise to avoid sudden large velocity changes 
within any flow system as these can lead to energy losses even when flow is 
convergent. Details of methods of design of scroll casings are beyond the scope 
of this text. 
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(b) 

The draft tube (Fig. I O.12b) has two functions. First it applies a suction head 
to the outlet of the runner approximately equal to the height of the runner above 
the tail race level; without the draft tube, delivery from the runner would be 
straight to atmosphere and the head on the turbine would consequently be reduced 
Secondly, by diverging the draft tube the rejected kinetic energy can be greatly 
reduced so giving an even higher efficiency for the whole machine. If the angle of 
divergence is large, boundary layer separations will occur and losses due to 
turbulence will offset the recovery of rejected kinetic energy. Small angles of 
divergence must therefore be used and this means that the draft tube must be 
long if a significant reduction in rejected kinetic energy is to be achieved. Such 
a long draft tube, if straight and vertical may involve raising the turbine level so 
high as to risk gaseous cavitation or even vaporous cavitation with all the 
attendant risks of damage. The draft tube is therefore often made in the shape 
of an L. The bend needs careful design to avoid the occurrence of the boundary 
layer separations. A method that can be used is to converge the duct in the plane 
of the bend but diverge it in the perpendicular plane (see Fig. 10.13). It will be 

o II A.I 
-t--~ o 

Section AA bend Section CC 

lie .. 

o 
Section BB 

/I B II 
II C II 

Fig. 10.13 
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realised that draft tubes are expensive to construct and it is necessary to consider 
their design very carefully. 

It is usual to install a large turbine with its shaft in a vertical position. This 
has many advantages one of which is in simplifying the draft tube design. 
Turbines are usually designed to drive alternators and this vertical position makes 
the alternator design easier also (see Fig. 10.14). 

GUide 

Turbine runner 

Draft tube 

Fig. 10.14 

10.2.2 Types of reaction turbine It was stated earlier that different types of 
turbine runner could be designed, some of which were best suited to high head 
operation and others to low head operation. The type of turbine discussed in 
Section 10.2 is known as a Francis turbine (sometimes a reaction or pressure 
turbine) and can be regarded as an archetypal turbine from which an entire class 
of turbines has developed. In its pure form it is suited for operation at heads 
ranging from 750 to 1000 ft [250 to 300 m]. If operated outside this limited 
range its efficiency falls off and other types of turbine can produce better results. 
At lower heads, because a unit weight of fluid possesses less poten tial energy, 
larger flows must be used to give an adequate power output. At the exit from 
the runner larger flows lead to either larger velocities of flow and hence larger 
rejected kinetic energies or larger runner breadths which give larger flow areas. 
Thus as the head is reduced the geometry of the runner must be altered to give 
progressively larger flow areas. (The alternative of progressively higher flow 
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velocities with high rejected kinetic energies and high frictional losses is not 
acceptable.)Thus as heads reduce the runner shape must alter as shown in Fig. 
10.15. 

Radial flow 

Pure FranCIS 

Mostly radial but an 
element of aXla I flow 
present 

Mixed flow 

Medium head 

Fig. 10.15 

Flow starts radial but 
becomes fully aXial 
before leaVing runner 

Mixed flow 

Low head 

In the three turbines illustrated an evolution has occurred in which an element 
of axial flow has developed as the working head is reduced and the exit flow area 
has progressively increased. Runners in which flow occurs in the radial and axial 
direction are called mixed flow runners. It should be noted that as the head 
becomes lower the suitable runner progressively turns flow into the axial direction. 
In the pure Francis runner the change of direction occurs after the flow has left 
the runner but in a runner suitable for the lowest heads the change of direction 
occurs before the flow enters the runner. This suggests that as the head to which 
the turbine is suited is reduced its runner should produce a greater component 
of axial flow within itself. This leads to the idea of a purely axial flow runner for 
very low head operation. Turbines using such axial flow runners are called 
propellor turbines. (See Fig. 10.16.) 

In the propeller turbine the flow is given its whirl by the guide vanes and then 
turned into the axial direction before entering the runner. The exit from the 
runner has the largest diameter possible, that is the diameter of the runner itself. 
In a standard propeller turbine the position of the guide vanes is adjustable but 
the runner blades are fixed. As a result this type of turbine has a high efficiency 
at full gate opening when operating under full load but this efficiency drops off 
rapidly at part gate openings. For this reason, this turbine is sometimes equipped 
with adjustable runner blades. It is then known as a Kaplan turbine and its part 
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Turbtne shaft 

Runner blades 

Draft tube 

Fig. 10.16 

gate efficiency is high. The cost of providing for runner blade adjustment is high 
as the control gear has to operate through the runner shaft and also has to control 
blades which are experiencing large forces. Kaplan turbines are therefore not 
usually used as base load machines which operate at constant load; propeller 
turbines are used for such applications when head circumstances are suitable. 
Kaplan turbines are used to deal with fluctuating load conditions. 

10.3 Impulse turbines 

Above the head range to which Francis turbines are best suited there is a naturally 
occurring head range for which reaction turbines are not well suited. This head 
range is from 1000 ft [330 m] to 2500 ft [800 m] and the turbines that work 
well in this range are known as impulse turbines. There are two main types of 
impulse turbines, Pelton wheels and Turgo wheels. 

10.3.1 The Pelton wheel In the Pelton wheel (Fig. 10.17) the water under high 
head is passed through a nozzle in which its pressure head is converted into kinetic 
energy according to the standard nozzle equation 

Vn = Cv y(2gHn) 

This jet then impinges upon a double blade (see Fig. 10.18) in which it is 
deflected through a large angle. This of course involves a change of momentum 
and a reaction upon the double blade (usually called a bucket) which, acting 
at a radius equal to that of the pitch circle of the buckets, provides the torque 
necessary to drive the wheel. As one bucket moves out of the line of the jet 
another moves in and experiences the same impulsive force as it moves through 
the arc in which it intercepts the jet. The nozzle is of a special type known as a 



Rotodynamic Machines 

7777777777777 

A-A 

Fig. 10.17 

"All 

Elevation and section 
of a typical bucket 

Fig. 10.18 

343 



344 An Introduction to Engineering Fluid Mechanics 

spear nozzle. The flow through the nozzle is controlled by moving the spear 
farther into or out of the orifice of the nozzle. The flow runs over the spear 
reforming into a smooth jet without turbulence thus giving control of flow area 
without energy loss. This is important from the viewpoint of part gate efficiency 
(see Fig. 10.19). 

Full gate openmg Part gate openmg 

Fig. 10.19 

Power developed 

Consider a Pelton wheel bucket, for which the deflection angle 'Y is less than 90° 
(Such a bucket would never be made but it is slightly easier to imagine the 
velocity triangles for such a case and the signs of the trigonometrical functions of 
'Y can be left to look after themselves when 'Y takes its normal value of 165°). 
The velocity triangles are shown in Fig. 10.20. The value of Vr2 is less than Vr1 

Inlet triangle .,. 

I' 
I • 

I: 
Vrl .1 

Vw, 
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/ 
Flow area 

=A 

., 
u 

Outlet triangle 

.1 
Fig. 10.20 
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due to friction losses incurred by flow over the blade surface. Usually Vr2 = kVrl 
where k has a value of approximately 0·85. 

The inlet triangle has degenerated into a straight line, and it can be seen that 
the following relationships must be true 

Vwl = VI 

Vrl=V1-U 

U is the same for both the inlet and outlet condition as inlet and outlet occurs 
at very nearly the same radius. From the outlet triangle 

Vw2 = u + kVrl cos "/ 

Therefore work done/unit weight of fluid is 

(VWIUI - Vw2U2)/g= U[VI - (u + kVrl cos 'Y)]/g 

Substituting for Vrl = VI - u, work done/unit weight is 

U [VI - U - k(VI - u) cosr]/g = U(VI - u)(l - k cos 'Y)/g 

The power generated is 

wA VI u(V I - u)(1 - k cOS"f)/550 g hp 

= pA V~(u/VIXl - u/V1)(l - k cos 'Y)/550 hp 

= pAVUu/VIXl - u/V1)(1- k cos ,,/)/1000 kW 

Efficiency of the wheel 

Input energy/unit weight = V1!2g 

Therefore efficiency 

This is the hydraulic or ideal efficiency of the wheel. If the nozzle is included as 
part of the turbine the input pressure head upstream of the nozzle is H n which 
equals V1!(C~2g). Therefore the ideal efficiency (nozzle included) is given by 

(10.9) 

These two expressions give parabolic relationships in which the variables are 
the two dimensionless gr6upsE and u/V. The efficiency E is a maximum when 
u/V is 0·5. This can be easily checked by differentiation and equating to zero. 

Thus, theoretically, the maximum efficiency and power should be obtained 
at a rotational speed such that the peripheral blade speed is one half the jet 
speed and this maximum efficiency can then be obtained from 

E = 2 X 0.982 x 0·5 x 0·5(1 - 0·85 cos 165°) 
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In this expression usual values have been inserted for Cv , k and 'Y and E then is 
calculated as 87!%. In fact the maximum value of efficiency occurs at a value 
of u/V of 0·46 to 0-47 due to the distortion of the efficiency versus u/V curve 
by bearing and windage losses. The efficiency should be zero when u/V = 0 and 
again at u/V = 1·0 but due to windage and bearing losses the efficiency falls to 
zero at a value of u/V of about 0·8. 

At the lower end of the Pelton wheel head range the power output tends to 
become inadequate because of a limitation on the maximum size of the nozzle. 
This limitation arises because if the bucket is to be able to deflect the jet through 
1650 its diameter must be at least three times that of the jet. If the nozzle 
diameter is made big enough to deliver a flow adequate to give large powers 
under low heads the buckets must be made correspondingly larger and because the 
wheel diameter cannot be greatly increased if an adequate rotational speed is to be 
maintained, the buckets become large by comparison with the wheel radius. 
This means that the assumption that the arc traced out by the bucket during the 
time that the jet is impinging upon it can be taken to be a straight line is not 
even approximately true. The maximum efficiency will thus fall off if the buckets 
are excessively large in relation to the pitch circle radius so the power of a 
machine to work under low heads cannot be adequately increased by increas-
ing the nozzle diameter. If such a hydraulic situation is encountered it is 
possible to increase the flow on to the wheel by fitting another nozzle 1200 away 
from the first nozzle. This is not a particularly good solution as there is a risk of 
water from one nozzle, after deflection by the buckets, interfering with the flow 
on to the wheel from the other nozzle. The best solution is to fit another wheel 
on the same shaft with its own nozzle. As many wheels may be fitted as necessary 
to give the required power (see Fig. 10.21). 

The process of fitting additional wheels to the shaft to give the required power 
can lead to a clumsy design. When the flow parameters lie between those suitable 
for multi-Pelton wheels and Francis turbines another type of machine is 
available- the Turgo wheel. 

Low head 
Pelton wheel 

Fig. 10.21 

High head 
Pelton wheel 
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10.3.2 The Turgo wheel The Turgo wheel, like the Pelton wheel is an impulse 
turbine, the water being brought down to atmospheric pressure by being passed 
through a nozzle before entry to the wheel. The difference is that entry is made 
at an angle to the plane of the wheel as illustrated in Fig. 10.22. Flow through 
the blades is in the axial direction and there is little risk of interference between 
nozzles so there is no particular limitation on the number of nozzles. 
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Velocity triangles are easy to draw and blade angles can therefore be calculated 
as for Francis turbines. It is cheaper and more efficient to use a Turgo wheel than 
to develop a multi-wheel, multi-jet Pelton wheel. 

The turbine characteristics of the Pelton wheel and Francis turbine are 
illustrated in Fig. 10.23. 

10.4 Centrifugal pumps 

The centrifugal pump is like a turbine in many ways. It consists of an impeller, 
very like the turbine runner, which is driven by a motor. The impeller is 
surrounded by a casing and water passes through the pump in a direction 
opposite to that in which water passes through a turbine. It is delivered from 
the impeller into a volute which is very similar to the scroll casing of a turbine 
(see Fig. 10.24). Usually no guide vanes are fitted however, although in very 

Suction 

The eye of 
The impeller 

The Impeller 

Fig. 10.24 

Delivery 
The volute 

If-

large pumps a diffuser ring which acts like a set of fixed guide vanes is sometimes 
installed. In the largest of installations adjustable guide vanes may be fitted but 
this is rare, the type of installation has to be very large and high efficiency must 
be of great importance, as in a pumped storage scheme for example where the 
pump is periodically called upon to act as a turbine. Such machines are very 
expensive. 

Consider the flow in the passage between two adjacent blades (Fig. 10.25). 
Denote the larger radius by subscript 1 and the' smaller radius by 2 as was done 
in the section on turbines. Assuming that as the water travels up the suction pipe 
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eLll Vv,1 
Outlet trianQle 

V}?I' a I-j V-
rl 

Inlet triangle 

Fig. 10.25 

it does not start to whirl before actually entering the impeller, then V w2 = o. As 
for the turbine (equations (10.5), (10.6) and (10.7)) 

where N = rotational speed of the impeller in revs/min and B 2 = axialleIigth of 
the impeller at entry. From equations (10.2) and (10.1), 

The work done per unit weight of fluid = (Vw1UI - Vw2U2)/g and as Vw2 = 0, 
work done per unit weight is 
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The work given to the fluid/unit weight is H where H is the total head imposed 
on it, so the hydraulic efficiency E h is 

This expression is the reciprocal of the expression for the efficiency of a turbine. 
Now 

so 

The head imposed upon the fluid H is the energy given to it (V wI U II g) minus 
any losses it has incurred in travelling through the impeller, hi' However the 
energy that the fluid possesses upon leaving the impeller is not all in pressure 
head form, much of it is in the form of the kinetic energy Vi/2g and as this is 
large there is a risk of losing a large amount of it in the necessary process of 
reducing the exit absolute velocity V I to the much lower value it must have 
when moving up the delivery pipe Vp. The velOcity reduction is achieved by 
collecting the fluid leaving around the periphery of the wheel in a divergent 
duct wrapped around the periphery-the volute. Passage through this divergent 
duct reduces the velocity but some loss must occur as it does in all cases of 
divergent flow. If the head loss in the volute is hv 

VwIuJig=H+h i +hv + V~/2g 
The head loss in the impeller, hi, must depend upon the velocity of the fluid 
relative to it, that is upon Vr!' Assume this loss is given by 

Similarly the loss in the volute must depend upon V I so 

The hea!i rise across the pump is H and so 

including the ~/2g term in the volute loss. 
From before 

and 



so 

also 

Now 

so 

Rotodynamic Machines 

Vi = (UI - Vf1 cot ex)2 + Vtl 

vi = uI - 2u I Vf1 cot ex + Vfl cosec2 ex 

V;I = Vtl cosec2 ex 

H = [2ui - 2u I Vf1 cot ex - k j Vtl cosec2 a - ky(uI - 2u I Vf1 cot ex 

+ Vtl cosec2 a)]/2g 

H = [(2 - ky)uI - 2uI Vf1 (1 - ky) cot ex - Vfl cosec2 a(k j + ky)]/2g. 
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H=AN2 -BNQ - CQ2 (10.10) 

where A, Band C are constants and B may be positive or negative depending upon 
the value of k y • 

This suggests that the characteristic curve of H versus Q for a pump should 
belong to the family of curves two members of which are illustrated in Fig. 10.26. 

H 

() 

Fig. 10.26 

Because the flow through the pump is directed outwards it is divergent and 
therefore more turbulent than the convergent, inwardly directed flow that occurs 
in a turbine. Hence pumps are less efficient than turbines, a figure of 75-80% 
being usual for a pump while 85-95% is usual for a turbine. The efficiency versus 
Q curve is as illustrated in Fig. 10.27. The curve has a shape like a distorted 
parabola, and this distortion is explained as follows. At a particular flow rate the 
inlet velocity triangle is as designed and maximum efficiency is obtained, at 
higher flow rates the losses in the volute and the runner increase rapidly and 
cause the rapid fall off in the efficiency. 
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Fig. 10.27 

10.4.1 Manometric head and efficiency The head defmed by equation (10.10) 
is the amount of energy given to a unit weight of fluid by the pump and is the 
sum of the kinetic energy plus the pressure head. However, this head is related 
to the head that would be measured by a manometer connected across the 
outlet and inlet flanges of the pump Hm (the manometric head) by the equation 

H=Hm +(Va - V;)/2g+h 

where Vd is the velocity in the delivery pipe, Vs the velocity in the suction pipe 
and h the difference in level between the outlet and the inlet flanges. The mano
metric efficiency is an efficiency based upon the manometric head Hm rather 
than upon the total or dynamic head H 

10.5 Types of centrifugal pump 

Pumps, like turbines, may range from a pure radial flow type through all 
varieties of mixed flow to a pure axial flow type. As in the case of turbines, pure 
radial flow machines are suited to low flows and high heads and pure axial flow 
machines to large flow and low heads. However, pumps are very seldom as large 
as turbines and it is not usually economic to fit the parts required to give high 
efficiency. 

To obtain high efficiency special care must be taken with the volute design as 
this is the part of the machine in which most of the losses occur. The function of 
the volute is to take the high velocity fluid leaving the impeller and by passing it 
through a gradually divergent passage to reduce its velocity to the value required 
in the delivery pipe. This process must be done with minimum energy loss if 
high efficiency is to be obtained and attempts to keep volute casings small and 
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hence inexpensive are bound to give low efficiency machines. There are three 
basic volute types: (1) constant velocity volutes, (2) variable velocity volutes and 
(3) whirlpool volutes. 

In the constant velocity volute the flow velocity in the volute is kept constant, 
the increasing flow around the impeller being compensated by the increasing area 

'<" 

Fig. 10.28 

of the volute (see Fig. 10.28). An energy loss is thus created which is approximately 
given by 

Velocity distribution 

Fig. 10.29 
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This type of loss is often called a shock loss. If Vv is made equal to O' 5 V wI, hL 

is! V;"I /2g. In the variable velocity volute the flow area increases more rapidly 
than does that of a constant velocity volute, the flow velocity in the volute falls 
from V wI at its smallest cross section to V p - the velocity in the delivery pipe. 
This is more efficient but also more expensive than the constant velocity volute. 

The whirlpool volute is larger than both the other types and is also more 
efficient. In this type, use is made of the ability of the free vortex to convert 
high-speed low-pressure fluid to low-speed high-pressure fluid according· to the 
equation (see Chapter 4): 

(PI - P2)/w= C2(I/r~ - l/ri)/2g 

This is illustrated in Fig. 10.29. 

10.5.1 Speed to commence pumping Before flow through a pump starts the 
fluid in the pump is being whirled around and moves as it it were a solid. This 
means that it behaves as if it were in a forced vortex. The head developed in a 
forced vortex (see Chapter 4) is given by 

hst = ui!2g 

where ul has been used instead of VI' But 

so 

7t2DjN2 
hst = 602 2g 

N = 153'3yh/D (in fps units) 

N = 84'6yh/D (in SI units) 

If a pump has to lift water through a height h before delivery can commence it 
must be brought up to the speed given by N = 84·6 Jh/D and the speed must 
then be increased until the required delivery is obtained. 

10.5.2 Pump and system characteristics A pump has to be chosen for a particular 
application in such a way that when it is in steady operation the speed and 
delivery are such that it is operating at peak efficiency. If this is not so the pump 
will waste power and will be operating uneconomically. 
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Fig. 10.30 

It is first necessary to decide the operating point at which any pump will 
function when connected to any particular pipe system. Consider, as an example, 
the case of a rising main (see Fig. 10.30). 

The head that the pump must supply, H, is given by 

H=h + 4jLV~ 
s 2gd 

or 

H=h +jLQ2 
s 3ds 

that is 

H = hs + kQ2 where k = fL/(3d S ) 

This result can be plotted on to a graph of H versus Q. If the pump characteristic 
for H versus Q is also plotted on the graph a result such as that illustrated in Fig. 
10.31 is obtained. The system will operate at point P. 

Now it may be that the available pump cannot produce acceptable results; 
for example, the pump characteristic may at all places lie below the system 
characteristic or the pump characteristic may falloff so rapidly that an 
inadequate flow results. In such cases it may be necessary to combine pumps 
in series or parallel. Two similar pumps connected in series will give a combined 
pump characteristic of twice the height, as shown in Fig. 10.32. Two similar 
pumps in parallel will contribute equal flows for the same head so the Q values 
of the characteristic curve for a single pump should be doubled to give the 
combined characteristic for parallel operation. Parallel operation is more difficult 
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Fig. 10.32 

to achieve successfully than is series operation. There is a danger that one pump 
may take the en tire load while the other makes no con tribu tion and, if not 
prevented by fitting reflex valves, it may happen that one pump attempts to drive 
the other as a turbine. 

Instability may also occur when a pump with a characteristic head flow 
equation (10.1 0) in which B is negative is used on a pipe system which has a high 
value of hs (see Fig. 10.33). There are two possible operating points in this case. 
It will not be possible to get the pump to deliver any flow at all unless either hs 
can be temporarily reduced until flow has started and then increased again or 
unless the pump can be temporarily over-speeded. It is improbable that anyone 
would design a pump to operate in these circumstances except possibly when a 
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pump is used to fill a reservoir. Initially Fig. 10.31 would apply apply but finally, 
if the rise in the reservoir surface required were sufficiently large Fig. 10.33 
would apply. The operating point will move from P in Fig. 10.31 to B in Fig. 
10.33. The pump will tend to operate at point B but a speed fluctuation or a 
momentary flow reduction could cause it to operate at point A. Immediately 
flow falls below that for point A, it will cease completely and it will not be 
possible to restart it until the level in the upstream reservoir has been lowered. 
It is undesirable to operate a pump in such conditions and this must be borne 
in mind when designing a rising main. 

10.5.3 Selection of a pump for long term operation The pipe system charac
teristic is determined by the conditions which the system is designed to meet 
and there is only a small element of choice in this. This element comes in from 
the need to decide the diameters of the pipes in the rising main. If a large 
diameter pipe is chosen then the system characteristic will be flat and friction 
losses low. The capital cost will be larger than if a smaller diameter pipe had been 
chosen but the operating costs will be lower. An economic analysis will decide 
what diameter should be chosen. In this the annual cost of borrowing the capital 
plus the annual cost of operating the pumping station should be minimised. 
Having decided upon the diameter of the rising main it is necessary to select 
the pump. Pumps come in families, each member of the family being geo
metrically similar to the other members but of a different size. By plotting a pump 
characteristic on to the system characteristic it can be seen just how suitable or 
otherwise a particular pump is. For example in Fig. 10.34 it can be seen that the 
pump is not well suited to the system characteristic as it would operate at an 
efficiency E 1 which is far less than the maximum Em that the pump can produce. 
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Pump efficiency 
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The question arises, what can be done to make the pump more suited to the 
conditions under which it is to operate. If the pump is producing a satisfactory 
flow QI it will not be an acceptable solution to merely run the pump faster so 
as to make the pump characteristic intersect the system characteristic just below 
the maximum of the efficiency curve. Such a solution will give a much larger 
flow than is required and will also require a considerably more powerful (and 
hence more expensive) motor to drive the pump. The best solution then is to 
pick a geometrically similar pump which will have the acceptable flow QI but 
which will be of such a size and will operate at such a speed that it will be 
functioning at maximum efficiency. 

Let the subscript r denote the parameters of th~ required pump. This pump 
is to run under maximum efficiency conditions. When this occurs the values of 
the dimensionless numbers quoted below (derived later in the text) must equal 
one another as both apply to maximum efficiency conditions. 

Qe Qr 

NIdr Nrd; 

gHe gHr 
N 2d 2 == N 2d 2 

I I r r 

(10.11) 

so as Qr must equal QI and Hr must equal HI, Qr and Hr are known. Qe and He 
can be taken from the graph. So 

and 

Nr == (dt)3 Qr 
NI dr Qe 
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substituting for (~: r 
Nr = (Nr)2(He)312 Qr 
Nl Nl Hr Qe 

As everything here is known exceptNr, it can be calculated. dr can then be 
evaluated from equation (10.11) and the size and running speed of the pump 
which will give the required delivery in the specified conditions while working 
at maximum efficiency is known. 

10.6 The dimensional analysis of rotodynamic machines 

The analysis of rotodynamic machines is a simple example of the technique of 
dimensional analysis, the result only will therefore by quoted here. 

(10.12) 

where k is the mean height of roughnesses on the runner. 
A further group can be developed that could be used in place of one of its 

constituents. 

JL x gH xEx!!..= wQHE 
ND 3 N 2D2 P pN3Ds 

but wQHE = P, the output power. The group is therefore 

P 
pN3Ds 

The group pND2/J.l is a form of Reynolds number. 

10.7 Unit speed, quantity and power 

A turbine or pump designed for a particular application may be suitable for use 
in another application under different flow and head conditions. It is therefore 
helpful to be able to present the characteristics of any particular machine in a 
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standardised form which can be scaled up to apply to any head conditions that 
may be required. This is done by reducing the characteristics to unit values. For 
example a certain pump delivers a quantity Q against a head H when running at a 
speed N. It is possible to scale down this quantity and speed to unit values, that 
is the quantity and speed which would be applicable to the pump when working 
against ahead of unity (1 foot or 1 metre). 

This scaling process can be very easily performed by using the dimensionless 
groups given above. As the results are to be obtained for the same machine, D 
does not change. So 

but 

so 

also 

so 

Then 

Q ~ 
ND3 N uD3 

Qu = QNu/N 

gH gHu 
N 2D2 = N 2D2 

u 

Hu = 1 by definition 

Qu =Q/v'H 

p Pu 
= 

pN3D s pN~Ds 

Pu = P(Nu/N) 3 

Eu =E 

Results obtained by testing a machine can now be reduced to their unit values 
and these then plotted on graphs. The unit characteristics so obtained can be 
used to give characteristics applicable to any head required by multiplying the 
unit quantity by the head value raised to an index (either 0·5 or 1·5 according 
to which unit value is being manipulated). Unit characteristics can be used to 
compare the performance of different machines. 

These unit values can be obtained by considering the velocity triangles of the 
machine when operating under full head with those applicable to the machine 
when operating under unit head. When the equivalent velocity triangles are 
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similar to one another it is assumed that the efficiencies will be the same. This 
is not strictly true because the Reynolds numbers have not been made equal 
but this leads to a scale effect of relatively small magnitude. 

It should be realised that considering the geometric similarity of the velocity 
triangles leads to exactly the same result as that given by the dimensional 
analysis. For example if the inlet velocity triangles are similar 

but 

and 

so 

Similarly 

so 

as before 

gH gHu 
--=---

H/u 2 = l/ua 

N~D2 =N2 D2/H 

JL =J&.. 
uD2 uuD2 

u o::ND 

Qu = QNu/N= QhlH 

In effect the dimensional analysis has specified that for dynamical similarity to 
exist in a turbine operating under two different conditions the velocity triangles 
must be geometrically similar. 
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10.8 The specific speed 

From what has been said so far in this chapter it should be clear that the type of 
turbine that should be used in any particular hydraulic situation is well defined 
and depends upon head. If a high head machine is operated under low head it 
will give an inadequate power output. However, if only a small power output is 
required a very small turbine of the high head type may be suitable. For example, 
the pure radial flow Francis turbine is said to be suited to operation between 
750 and 1000 ft head yet a small model of such a turbine operating on heads 
less than 100 ft is to be found in almost every college fluid mechanics laboratory. 

Therefore the head is not the only variable that determines the suitability of 
a turbine to any application. In fact there are three variables involved; these are 
head, rotational speed and either power or flow according to whether the machine 
is a turbine or a pump. It is necessary to develop a method of precisely defining 
the most suitable type of turbine for any hydraulic situation. A parameter called 
the specific speed can be developed which uniquely defines the type of turbine 
in terms of the head, speed and power or flow. 

In the case of a turbine this specific speed is defmed as the speed of operation 
of a model of the turbine which is so proportioned that it produces one horse· 
power (or kilowatt) when operating under unit head. It will be appreciated that 
if two geometrically similar turbines of different sizes are to be compared on this 
basis the model turbines that will produce unit power under unit head (the 
specific turbine) derived from either of the two geometrically similar turbines 
must be identically the same and will be operating at the same speed. Thus the 
value of the speed at which the specific turbine runs is a parameter which depends 
upon the geometry of the turbine and can be used to define the turbine type. 

The same argument can be used to define a specific speed for pumps but as 
in this case the user is not usually interested in the water power generated by 
the pumps but by the flow delivered, the specific speed for pumps is defined as 
the speed of a model of the pump which is so proportioned that it delivers unit 
volume per second when generating unit head. 

We now obtain expressions for the specific speed. 

( 1) Turbines 

For the specific turbine Ps = 1 
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and Hs = 1. Eliminating Ds (the diameter of the specific turbine) from the above 
equation 

(2) Pumps 

and 

and 

From the above equation 

so 

P N;H5/2 

N 3D5 = N;N5D 5 

gH gHs 
N 2D2 =N2D2 s s 

JL =N;H312 

ND 3 N sN 3D3 
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Table 10.1. 

Turbine type 

Pelton wheel 
Multiple wheel, 

multi-jet machines 
Turgo 
Radial flow 

Francis 
Mixed flow 

Francis 
Axial flow 

Francis 
Kaplan and 

propellers 

Values of Ns for turbines 

Pin hp, H in ft andN 
in revs/min 

2·5-6 

6-10 
8-12 

12-20 

20-100 

100-150 

150-200 

Ns range 

Note that 1 British unit = 3·82 metric units (P in kW) 
1 British unit = 4·45 metric units (P in metric hp) 
1 metric hp = 75 kgf m/s = 735 N m/s 
1 British hp = 76 kgfm/s = 746 N m/s 

Table 10.2 

Value of Nsfor pumps 

Pump type Ns range 

PinkW,Hin m, andNin 
revs/min 

9·5 - 2·3 

23-38 
3046 

46-76 

76-380 

380-570 

570-760 

H in ft, Q in gallons/min H in m, Q in m3/s 

Pure radial centrifugal pump 
Mixed flow 
Axial flow 

500-2000 
3500-8000 
7000-15000 

10-42 
74-170 

150-315 

10.S.1 Machine efficiency The efficiencies of various types of turbine vary with 
the specific speed, that is, within the range of one particular type of turbine 
different runner geometries give different values for the maximum efficiency. 
As an example, consider a Pelton wheel. The specific speed can vary between 
2·5 and 6 and the maximum efficiency will vary within this range. There is a 
similar relationship for other turbines (see Fig. 10.35). 

A rotodynamic machine designed to work at a limiting value of its range of 
specific speeds will have a lower efficiency than a machine designed to operate 
in the middle of the range. Design parameters have been pushed to their limits in 
such machines and somewhat excessive friction losses have been accepted in 
order to make the design possible, hence the low efficiency. 
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10.9 Scaling of results from model tests 

The full dimensional analysis of rotodynamic machines gives 

( Q gH H k pND2 ) 
f ND3' N 2D2'D'D'-/l-,E = 0 

365 

The results obtained from a test on a model of the machine under investigation 
can be presented as a series of graphs of 

E versus Q/(ND3) and gH/(N2 D2) versus Q/(ND3). 

The modelling of the roughness number k/D is extremely difficult as scaling 
down of prototype roughness to model roughness requires a smoother finish on 
the model than on the prototype which is already as smooth as it can conveniently 
be made. However, as the prototype is already hydraulically smooth in most cases, 
it is not necessary to model for roughness. 

To model for Reynolds number is, as always, extremely difficult because of the 
requirement that for equality of the Reynolds numbers the model speed must be 
much greater than that of the prototype. In fact, in rotodynamic machines the 
effect of failing to achieve Reynolds number equality is not very important as 
the flow is so turbulent that the Reynolds number effect can almost be ignored. 
This leaves the H/D term and failure to model for this leads to a scale effect 
which can be corrected by the application of the following law due to L. F. Moody. 

~= (Dm)O.2S(Hp)O.04 
I-Em Dp Hm 

(Subscript p denotes prototype and subscript m denotes model.) 
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10.10 Cavitation 

When the local pressure of a liquid falls to a value equal to or less than its vapour 
pressure the liquid boils at the ambient temperature. For it to do this it is 
necessary for nuclei of size 5 microns and larger to be present on which bubbles 
may form. A bubble can only exist above a certain size. Below a critical size 
the loss of gas by diffusion out of the bubble is so rapid that the bubble dis
appears, while above the critical size it grows by diffusion of gas or vapour into 
it. It follows that in the absence of a particle or nucleus of such a size that vapour 
may deposit on it forming first a film and then a bubble, it will not be possible for 
a bubble to form at all. This is illustrated by the phenomenon of super-ebullition 
in which a fluid without any nuclei can be heated to temperatures well above the 
boiling point without ebullition. Liquid free from nuclei can be subjected to 
large negative pressures (tensions) without evolution of bubbles. Such negative 
pressures may be as large as 300 atmospheres. In ordinary water there are plenty 
of nuclei. Even in the absence of particles from the normal environment there is 
always a constant supply of fine particles falling from the upper atmosphere 
which come from the burning up of micro meteorites in the outer reaches of the 
atmosphere. 

Under any circumstances in which liquid pressure is reduced the formation of 
gas filled bubbles (gaseous cavitation) or vapour filled bubbles (vaporous 
cavitation) is possible. Almost all man-made hydraulic devices can generate 
cavitation in one or more of the component valves, sluices, turbines, pumps, 
propellers, etc. I t is probably true to say that the final cause of failure of a 
domestic tap is the pitting of the valve seat caused by cavitation. The pheno
menon is thus of common occurrence. 

When a vapour fllied bubble forms, it will start to grow but as it is carried 
along in the moving fluid it will sooner or later reach a zone in which the pressure 
is above the vapour pressure. The vapour in the bubble then very rapidly diffuses 
back into the main body of the liquid and the bubble collapses. At the instant of 
collapse the opposite faces of the bubble impinge upon one another at a very 
high velocity so generating a localised but very intense pressure wave. Pressure 
intensities as high as 45 tonf/in2 [approximately 700 MN/m2] have been 
detected. This wave propagates as a spherical wave and its intensity falls off 
very rapidly. However, if the point of implosion of a bubble is very close to a 
boundary the boundary experiences an intense impulsive impact and may be 
eroded by it. As many thousands of bubbles are imploding every second in such a 
region the boundary is being subjected to a highly erosive effect which over a 
period of months may damage it. In pumps and turbines the damage done by 
cavitation is so great that care must be taken to prevent it occurring. The effect 
commonly occurs near low pressure areas of the runner (or impeller in the case 
of centrifugal pumps) and the damage may involve complete erosion of much of 
the rotating parts. 

Gas in solution will come out of solution when the pressure is rapidly reduced 
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to below a specific pressure, the gas release pressure. In normal water at ordinary 
temperatures this is about 8 ft (2-45 m) head absolute. This means that inter
spersed with the vapour filled bubbles caused by vaporous cavitation there will 
be larger gas filled bubbles generated when the pressure first fell below the gas 
release pressure. When a pressure greater than vapour pressure but less than gas 
release pressure is encountered the vapour filled bubbles will collapse but the 
gas filled ones will not and these will then act as miniature surge tanks and will 
damp out the spherical pressure waves generated by the collapse of the vapour 
filled bubbles. 

Thus gaseous cavitation protects somewhat against the worst effects of 
vaporous cavitation but if pressures do not reach vapour pressure and fall below 
gas release pressure then pure gaseous cavitation occurs and this has a similar 
effect to vaporous cavitation. The implosion of gas filled bubbles is thought to 
be an altogether slower process than the collapse of vapour filled bubbles but is 
believed to be mildly damaging. Thus gas cavitation should be seen as a pheno
menon to be avoided if possible but if it does occur it mitigates the more extreme 
damage of vaporous cavitation. 

Vaporous cavitation is accompanied by noise and vibration. A cavitating 
turbine or pump sounds as if the water passing through it is carrying small 
particles of stone or gravel in suspension and these are impinging upon the 
inner boundaries of the machine. If air is added to the water in a carefully 
controlled manner the noise and vibration can be stopped. This added air stops 
the cavitation by a similar process to that by which gaseous cavitation mitigates 
vaporous cavita tion. 

The damage cavitation causes is not its only effect. The bubbles of gas and 
vapour generated cause the gross volume of fluid flowing to be increased and this 
in turn causes higher velocities and hence large frictional losses. These in turn 
cause decreased pressures and so the number and volume of bubbles present 
increases still further. When this effect occurs the characteristic curves of a 
turbine or pump are most adversely affected. This is illustrated in Fig. 10.36. 
The efficiency curve is, of course, similarly affected. 

p 

Power output 
(cavitation present) 

N 

Fig. 10.36 

Power output 
(no cavitation) 
present 
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Cavitation is thus a phenonenon to be avoided at almost any cost. If it cannot 
be avoided chrome steel should be used in places which are liable to cavitation 
attack as chrome steels are much more resistant to cavitation than other materials. 
It seems certain that an element of chemical attack occurs and some believe that 
this is due to the removal of protective oxide films by the mechanical effects of 
cavitation which then leaves the metal unprotected against chemical attack. 
Concrete is particularly prone to cavitation, and may need to be protected. 

To decide if cavitation is likely to occur it is necessary to know whether zones 
oflow pressure are likely to occur. In calculations of head drops in turbines it 
seems simple to estimate pressure heads at various points throughout the machine. 
In fact the pressure that is calculated is a mean pressure and in a rotodynamic 
machine such as a turbine or pump, local pressures at points quite near to the 
point for which the mean pressure was calculated may be very much lower than 
the mean pressure. Bubbles generated in such a zone may then cause damage in 
zones of higher pressure. It is not possible to calculate accurately the difference 
in pressure between zones in which local pressures are less than the mean pressure, 
yet it is precisely this difference in pressure that matters. Places in pumps and 
turbines in which such local low pressures develop are usually on the face of the 
blades at the inner radius (see Fig. 10.37). 

Zone of low pressure 
development 

Fig. 10.37 

Cavitation damage in turbines therefore tends to occur on the trailing face of 
the turbine blades at exit as in this location eddies are likely to form in which, 
due to pressure fluctuations, the vapour bubbles will collapse. In pumps the 
bubbles formed at the inner radius are carried into the zone of high pressure at 
the outlet of the impeller where they collapse causing cavitation damage to the 
outlet end of the blade. 

Worked examples 

(1) The peripheral velocity of the wheel of an inward flow reaction turbine is 
20 m/s. The velocity of whirl of the inflowing water is 17 m/s and the radial 
velocity of flow is 2 m/s. If the flow is 0·7 m3/s and the hydraulic efficiency 
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is 80%, find the head on the wheel, the power generated by the turbine and 
the angles of the vanes. Assume radial discharge. 

VwU 
Hydraulic efficiency = -- (from equation 10.8) 

gH 

17 x 20 
0·8=---

9·81 xH 

H=43'3 m 

VwU Q 
Power generated = w -- x -- kW 

g 1000 

9810 x 34·658 x 0·7 
1000 

= 238 kW 

Angle of guide vane = arctan (Vfl/Vwd 

= arctan (2/17) 

Entry angle of runner = arctan ( Vfl ) 
ul - Vw1 

= arctan (20 ~ 17) 

= 33'7° 
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(2) A Pelton wheel is required to develop 4500 kW at 400 revs/min., operating 
under an available head of 360 m. There are two equal jets and the bucket angle 
is 170°. Calculate the bucket pitch circle diameter, the cross sectional area of 
each jet and the hydraulic efficiency of the turbine making the following 
assumptions. 

(a) The overall efficiency Eo is 85% when the water is discharged from the 
wheel in a direction parallel to the axis of rotation (u/V may then be taken 
as 0·46). 

(b) The loss in the nozzles is 3% of the available head. 
(c) k for the buckets may be taken as 0·85. 
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Hydraulic efficiency (from equation 10.9) is 

but 

so 

2C; ~ (1 - ~) (1 - k cos 'Y ) 

Nozzle loss = 0·03 = l/C; - 1 

Cy = 0·985 

Eh = 2 X 0.985 2 x 0·46 x 0·54 x (1 - 0·85 cos 170°) 

= 88·54% 

wQH 
Power = Eox--

1000 

0·85 x 9810 x Q x H 
1000 

4500000 
QH=----

0·85 x 9810 

= 539·67 

H=360 

but for the nozzles 

QI2 = Cy x an v'(2gH) per nozzle 

where Cc is assumed to be unity 

Now 

0·145 
a =--------~---------

n 2 x 0·985 x ../2 x 9·81 x 360 

= 9·054 x 10-3 m2 

Area of each nozzle = 90·54 cm2 

Velocity of buckets = 0·46 x 0·985 ../(2g x 360) 

= 38·08 mls 

1tND/60 = bucket velocity = 38·08 

38·08 x 60 
D=------

1T X 400 

D= 1·82 m 



Rotodynamic Machines 371 

(3) A Francis turbine of specific speed 210 is to develop 30 MW at 180 revs/ 
min. An experimental model is to be made to operate at a flow of 0·6 m3/s and 
head of 4·5 m. Assume an efficiency E of 88% and estimate the speed, power 
and scale ratio for the model. Using the same efficiency estimate the flow 
through the turbine. 

but as 

Scale ratio 

so 

wQH 
Power generated by model = 1000 E 

= 9810 x 0·6 x 4·5 x 0.88 = 23·309 kW 
1000 

N. =N - Ip /H5/4 srn mV'm m 

N =N - Ip /H5/4 
sp pV' P P 

Now Nsp = 210 = 18OV(30 OOO)/Hf/' 

Hp = (180y'(30 000)/210)°·8 

= 54·61 m 

= 285 revs/min 

Dp/Dm = 5·517 

P 30 000 x 1000 Q = -p-=------
p wHpE 9810 x 54·61 x 0·88 

= 63·6m3 /s 

Pm =Pp(Nm/Np)\Dm/Dp)5 = 23·3 kW 
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(4) In an inward flow turbine developing 200 kW under a head of 30 m the 
guide and runner vane outlet angles are 160° and 25° respectively, the inlet 
diameter is 1'5 times the outlet diameter, the ratio ofthe outlet area from the 
runner to that from the guides is 1'333, the outlet pressure is atmospheric and 
the outlet discharge is radial. Assuming that the loss in the guides is 10% of the 
velocity head generated at their outlet and the loss in the runner vanes is 20% 
of the outlet relative velocity head determine the outlet area of the guide vanes, 
the pressure head at the inlet to the wheel and the flow in m3 /s. 

so 

so 

so 

but 

wQHE 
P=200=--

1000 

= 9810Q x 30 x E/1000 

= 294·3 QE 

QE = 200/294·3 

= 0·6796 

VW1 = VI cos 20° = 0·9397V1 

Vfl = VI sin 20° = 0·3421 VI 

0·1 Vi/2g+0·2 V;2/2g+ VW1ut/g+ V~/2g=30 

U2 = jUl 

V2 = 0-4336 x 2ut/3 

= 0·3109u l 

Vr2 = U2/COS 25° = (j/cos 2S 0 )Ul 

= 0'7356111 

Vf2=Al= __ =~ 
Vfl A2 1·333 4 

Vf2 =0·75Vfl 

V2 = Vf2 = 0·3109ul = 0·75Vn 

0·75 0·75 
Ul = 0.3109 Vfl = 0.3109 X 0'3420V1 

Ul = 0·8252V1; V2 = 0·2565V1 



but 

Rotodynamic Machines 

Vr2 = 0·7356uI = 0·7356 X 0·8252V1 

= 0'607VI 

0·1 Vt /2g + 0·2 x 0.6072 Vt /2g + 2 x 0·9397 V I x 0·8252 V I /2g 

+ 0.25652 Vt/2g = 30 

(0'1 + 0·0737 + 1·551 + 0·06580) Vt/2g = 30 

VI = 18·13 

E = Vw1UI 
gH 

0·9397 x 0·8252 x 18.132 = 0.866 
9·81 x 30 

Q = 0'6796/0'866 = 0'785 m3/s 

Pressure at inlet to wheel, Pw, is given by 

Pw/w+ Vi/2g= Vwl ut/g+0'2 V'A/2g+ V~/2g+Pa/w 

where Pa is the atmospheric pressure 

(Pw - Pa)/w = 11·6 m 

Outlet area A of guides 

0'785 
A = Q/Vf1 = = 0,127 m 2 

0·3421 x 18'13 
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(5) A centrifugal pump lifts water against a static head of 36 m, the manometric 
efficiency being 80%. The suction and delivery pipes are both of 38 cm diameter. 
The impeller is 38 cm diameter and 2·5 cm wide at outlet. Its exit blade angle 
is 25° and the specified rotational speed is 1320 revs/min. If the totalloss by 
friction in the pipeline at this speed is estimated at 9 m, calculate the probable 
discharge rate in m3 /s. 

H= 36 + 9 = 45 

9·81 x 45 
0·8=---

VwlUI = 9·81 x 45/0·8 

= 551·8 

u I = 1tDN/60 = 1t x 0·38 x 1320/60 

= 26·26 m/s 
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VW1 = 551-8/26·26 = 21·01 m/s 

Vf1 = (UI - Vwd cot 25° 

= (26·26 - 21·01) cot 25° 

= 11·27m/s 

Q = 1tDBVf1 = 1tX 0·38 x 0·025 x 11·27 

Q = 0·3364 m3 /s 

(6) The impeller of a centrifugal pump has an outer diamter of 35·5 cm and 
runs at 1000 revs/min. The blades are bent back at 150° to the direction of 
motion at discharge and the radial velocity of flow is constant through the 
impeller at 2·4 m/s. The measured head across the pump is 21·7 m and the 
frictional resistance of the pump is estimated to be 2·0 m. Find (a) the efficiency 
according to the velocity triangles and (b) the fraction of the kinetic energy of 
the water leaving the impeller which is converted to pressure head in the casing. 

(a) 

(b) 

Vf1 = 2-4= (UI - Vwd tan (I80 - 150) 

UI - VW1 = 2-4/tan 30° 

= 4·157 

UI =1tDN/60= 1tX 0·355 x 1000/60 

= 18·59 m/s 

VW1 = 18·59 - 4·157 

= 14-43 m/s 

9·81x21·7 
Efficiency = ------

14-431 x 18·588 

= 79·4% 

V1 = vi + V~l = 225·51 

Kinetic head = V1!2g = 11-49 m 

Head losses = (I - E) x Vw1ut/g 

= 0·2064 x 18·59 x 14-43/9·81 

= 5·644 m 

Loss in volute = 5·644 - 2 

:. Fraction of kinetic energy regained in volute 

3·644 
= 1 - 10.91 

= 68·3% 
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Questions 

(1) Explain very briefly in what way a hydraulic reaction turbine differs funda
mentally from an impulse turbine. Write down an expression for the work done 
per unit weight of water passing through an inward-flow reaction turbine runner 
and define the hydraulic efficiency of the turbine. An inward-flow reaction turbine 
has a guide vane angle 'Y, its runner vanes are radial at inlet, it has a constant velo
city of flow, and no tangential whirl at exit from the runner. If 180° - 'Y is 
small, determine approximately the proportion of the total head which is 
kinetic at the entrance to the runner. 
Answer: 50%. 

(2) In an inward-flow reaction turbine the guide vane angle is 'Y, the runner vanes 
are radial at inlet and the velocity of flow is constant. Show that the maximum 
theoretical hydraulic efficiency of the turbine is given by E = 1/(1 + ! tan2 'Y). 
Show also that for a Pelton wheel the hydraulic efficiency is a theoretical 
maximum when the speed ratio is!. Neglect friction losses. 

(3) The peripheral velocity of the wheel of an inward-flow reaction turbine is 
70 ft/s [20 m/s]. The velocity of whirl of the inflowing water is 55 ft/s [17 m/s] 
and the radial velocity of flow is 7 ft/s [2 m/s]. If the flow is 24 ft3 Is [0·7 m 3 Is] 
and the hydraulic efficiency is 80%, find the head on the wheel, the hp [kW] 
of the turbine and by drawing to scale or otherwise, from the velocity triangle 
find the angles of the vanes. Assume discharge radial. 
Answers: 326 hp [238 kW], 149·5 ft head [43·3 m], Q = 25° [33f], 

'Y = In·8° [173·3°]. 

(4) A Pelton wheel has a mean bucket speed of 40 ftls [12 m/s] and is supplied 
with water at a rate of 150 gallsls [700 kg/s] under a head of 100 ft [30 m]. 
If the buckets deflect the jet through an angle of 160° (when stationary) find 
the hp [kW] and the efficiency of the wheel. Assume Cv = 0·98 and k = 1. 
Answers: 254 hp [192 kW], 93·11% [93·14%]. 

(5) Derive an expression giving the efficiency of a reaction turbine in terms of 
the velocity of whirl of the water, the peripheral velocity of the runner and the 
head under which the turbine operates. The velocity of the whirl at the inlet edge 
of an inward-flow reaction turbine runner is 0·7 y(2gH) and the velocity of flow 
at this edge is 0·12 y(2gH) where H is the head. The velocity of whirl at the 
outlet edge of the runner is zero. The hydraulic efficiency is 84%. Determine 
(a) the peripheral speed of the inlet edge of the runner and the relative velocity 
of the water at this point in terms of H, and (b) the direction of this relative 
velocity. 
Answers: (a) 0.6Y(2gH), 0.156Y(2gH), (b) 50°. 

(6) For an inward-flow water turbine of specific speed 25 operating under a head 
H ft the outer peripheral speed of the wheel is 0·65 V(2gH) and the breadth of the 
outer periphery is 0·125 of the diameter of the wheel. 
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Find the velocity of whirl and velocity of flow at the entrance of the wheel, both 
in terms of V(2gH) and hence find the guide blade angle and the vane angle at 
entrance to the wheel. Assume the overall efficiency to be 82!% and the hydraulic 
efficiency to be 87% when the discharge from the wheel is radial. 
Answers: 0·67 y(2gH), 0·2135 y(2gH), 95 .4°. 

(7) A Pelton wheel of 5 ft [1·5 m] dia. is operated by two jets each of 3· 7 5 in. 
[9·5 cm] dia. The total head at the nozzles is 900 ft [275 m]. The nozzle 
velocity coefficient is 0·98, the bucket angle of deflection is 165° and the 
turbine develops 3000 hp [2250 kW] when the wheel is running at the 
theoretically best speed. Show how this speed is determined. Calculate the 
efficiency of the system and the velocity coefficient for the buckets. 
Answers: 0·71 [0·727],81% [81·73%]. 

(8) Establish the formula for the specific speed of a water turbine and apply the 
formula to find the specific speed of a single-jet Pelton wheel in which the 
diameter of the wheel is 15 times the diameter of the jet, given that the mean 
speed of the cups is 0-46 V(2gH) and the velocity of the jet 0·985 V(2gH) when 
the overall efficiency is 85%. H is the available head to the turbine. 
Answer: 3·65 [13-9]. 

(9) The water available for a Pelton wheel is 150 ft 3 /sec [4·3 m3 /s] and the 
total head from reservoir level to nozzles is 900 ft [275 m] . The turbine has two 
runners with two jets per runner. All four jets have the same diameter. The pipeline 
is 10000 ft [3000 m] long. The efficiency of power transmission through the 
pipeline and nozzle is 91 % and the efficiency of each runner is 90%. The velocity 
coefficient for each nozzle is 0·975 and the coefficient for the pipeline is 0·0045. 
Determine (a) the hp [kW] developed by the turbine, (b) the diameter of the jets 
and (c) the diameter of the pipeline. 
Answers: 12600 hp [9·5 MW], 5·47" [138 mm], 4·84 ft [1·48 m]. 

(10) A Pelton wheel driven by two similar jets transmits 5000 hp [3750 kW] 
to the shaft when running at 375 revs/min. The head from reservoir level to 
nozzles is 670 ft [200 m] and the efficiency of power transmission through the 
pipe and nozzles is 90%. The centrelines of the jets are tangential to a 4·8 ft 
[1·5 m] dia. circle. The relative velocity decreases by 10% as the water traverses 
the bucket surfaces which are so shaped that they would, if stationary, deflect 
the jet through an angle of 165°. Neglecting windage losses find (a) the effiCiency 
of the runner, and (b) the diameter of each jet. 
Answers: 93·3% [93·5%], 6" [156 mm]. 

(11) The output power of a Pelton wheel is 8000 hp [6 mw]. If the coefficient 
of velocity of the nozzle is 0·97, the relative velocity of the water to the bucket 
at exit is 0·95 times the relative velocity at inlet, the bucket speed is 0·46 times 
the jet speed and the deflecting angle of the buckets is 165°, calculate the 
hydraulic efficiency of the turbine. If the flow through the nozzle is reduced by 
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10% by closing a throttle valve, the jet needle position being unaltered and the 
wheel speed remaining constant, calculate the new output power. Assume that 
the mechanical efficiency of the turbine remains a constant fraction of the 
hydraulic efficiency. 

Answers: 89·6% [89·6%]; 5870 hp [4-40 MW]. 

(12) In the spiral casing of a reaction turbine the head is 48 ft above atmospheric 
and the water speed is 16 ft/s. The shaft is vertical and the discharge is 400 cusec. 
The top of the draft tube and level of the tail race are 3 ft and 10ft respectively 
below the horizontal central plane of the spiral casing. At the draft tube inlet the 
water has a velocity of 16 ft/s without whirl, and it leaves the tube at 8 ft/s. 
Assuming that the overall efficiency is 80% and the hydraulic efficiency is 84% 
and the loss of head in the draft tube is 1·6 ft, find ( a) the friction loss of head 
in the turbine proper, (b) the head at the top of the draft tube and (c) the value 
of the specific speed. Ns = N vPIHs/4 if the speed of rotation of the turbine is 
250 revs/min. 

Answers: (a) 950 ft, (b) 8·38 ft below atmospheric, (c) 70·42. 

Centrifugal pumps 

(13) A centrifugal fan has to deliver 150ft3 /s [4·25m 3/s] of air when running 
at 750 revs/min. The diameter of the impeller at inlet is 21" [0·53 m] and at 
outlet is 30" [0·76 m]. It may be assumed that the air enters the fan radially. 
The vanes are set backward at outlet at 70° to the tangent and the width at outlet 
is 4" [0·1 m] . The volute casing gives 30% recovery of the outlet velocity head. 
The losses in the impeller may be taken as equivalent to 25% of the outlet 
velocity head. The specific volume of the air is 12·8 ft3 /lb [0·082 m3 /N] and 
blade thickness effects may be neglected. Determine the efficiency, the power 
required and the total head at discharge. 

Answers: 42·05%,5·193 hp, 1·54" water [41·23%,3·68 kW, 36-4 mm water]. 

(14) Develop an expression for the specific speed of a centrifugal pump. Making 
reasonable approximations show that the ratio BID increases as specific speed 
increases. B = impeller breadth at outlet, D = impeller diameter. A centrifugal 
pump delivers 5000 galls/min [0·38 m3 /s] of water against a head of 160 ft 
[49 m] with a speed of 750 revs/min. Calculate the head and discharge at 
400 revs/min and the power required to drive it if the efficiency is 80%. 

Answers: Head = 45·5 ft, discharge = 2667 galls/min, power = 46·0 hp [Head 
= 13·94 m, discharge = 0·203 m3 /s, power = 34·7 kW]. 

(15) Draw a section through a two-stage centrifugal pump having a pair of 
balanced opposed impellers. The impeller of a centrifugal pump is 13" [0·33 
m] dia. and 3/4" [0·019 m] wide at the outlet. The blade angle at outlet is 
35° to the tangent at the periphery and the water at inlet has radial flow. The 
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suction lift, including pipe and valve losses, is 12 ft [3·7 m] and the impeller 
speed is 1600 revs/min. The delivery pipe losses are estimated to be 30 ft 
[9·1 m] and the static lift from the pump centre is 130 ft [40 m]. The suction 
and delivery pipes are both 5" [0·125 m] dia. If the manometric efficiency is 
76% and the overall efficiency is 72%, calculate the discharge in cusec [m3 /s] 
and the hp [kW] to be supplied. 

Answer: 1·56,42·25 hp [0·0414 m3 /s, 29·8 kW]. 

(16) Explain what is meant by the manometric head of a centrifugal pump. 
Prove that in general for such a pump running at speed N and giving a discharge 
Q the manometric head can be expressed in the form: H = AN2 + BNQ + CQ2, 
where A, Band C are constants. A centrifugal pump impeller is 10" [0·25 m] 
external dia. and the water passage is 1·25" [0·03 m] wide at exit. The circum
ference is reduced by 12% on account of the thickness of the vanes. The impeller 
vanes are inclined at 1400 to the forward tangent at exit. If the manometric 
efficiency is 83% when the pump runs at 1000 revs/min and delivers 630 galls/ 
min [0·05 m3/s] , calculate the fraction of the kinetic energy of discharge from 
the impeller which is subsequently recovered in the casing, assuming no loss of 
head in the impeller. If none of the exit kinetic energy were so recovered what 
would be the manometric efficiency? 

Answers: 59·5%,58% [59%,58·8%]. 
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Convective acceleration 33, 34 
Conveyance, of channel 232 
Curve, C 253,264,265 

Ml or backwater 250, 264, 265, 266 
M2 or drawdown 250, 264,265,266 
M3 251,264,265,266 
SI or ponding 251, 264, 265, 266 
S2 252,264,265,266 
S3 252,264,265,266 

Darcy 187,189,232 
Darcy, equation 76,189,232,325 
Diffuser 164 
Dilatants 4 
Dimensional analysis 82,85, 89, 90, 95, 

96,98,187,322,324,358,361 
of rectangular notches 128 

Dimensional homogeneity 103 
Dimensionless numbers 85,86,87,88,89, 

289,358,360 
Discontinuity of surface 241 
Distribution, of pressure in rough pipes 

195 
in channels 246 

of velocity 163,173,188 
logarithmic 162 
paraboloidal 181 
in smooth pipes 193 



382 Index 
Divergence, of velocity 31 
Doublet 46,51,57,58,63,77 
Draft tube 338, 339 
Drag 72 
Drag force 62,63,69,70,71 
Drawdown curve 250 
Duct, divergent 164 
Dwarf walls 173, 175 
Dye injector 176 
Dynamic equation 316,317, 319, 320, 

321,323,327,361 

Ebullition 360 
super 360 

Efficiency, part gate 342, 344 
Electrical analogue 216 
Energy, specific 246 
Energy equation 114,134,211 
Equation, Bernoulli; see Bernoulli 

continuity; see Continuity 
Chezy 231 
Darcy 76,189,232,325 
dynamic; see Dynamic 
energy 114, 134,211 
Euler 31,33,38 
force 111,133,245 
Hazen-Williams 219 
head quantity 218,219 
momentum 211 
Rayleigh 70, 88 
Reynolds shear stress 161 
specific energy 246,254,257,260, 

263 
specific force 245, 254 
Stokes 167, 168 

Equipotential line 42 
Euler equa tion 31, 33, 38 
Euler, triangle 334 

[-number 187,191 
[-value 187, 191 

variation with Reynolds number 
and roughness 188 

Finite difference method 244,263,273 
Flow, axial symmetric 179 

boundary 76 
contraction 200, 201 
convergent 163 
critical depth of 245 
critical velocity of 178 
divergent 57,58,162,163 
field of 40, 86 
free 173,234 
gradually varied 241,242 
in bends 165,169 
in channel bend 169 
in channels 249,264 
in circular pipes 240 
in curved path 162 
in helical pipes 171 
in pipe network 212 
laminar 178,179,182, 183, 189, 

190,191 
net 74,75 
non-uniform 241 

real 55 
secondary 168,169,172 
through rotating curved passage 

329 
through small orifices 116 
tranquil 190 
turbulent 128,179,185,191,208 
uniform 46, 57, 59 
unsteady 102 

Flow velocity 40 
Fluid, bulk modulus 301,303 

compression 99,298 
flux 42,43,47,48 
ideal 2,59 
incompressible, viscous 38 
real 2, 38,57,60 

Fluid element 31,35 
circula tion of 43 
rotation of 37 

Fluid mechanics 1,4,103 
Fluid motion 44, 57, 89 
Fluid parameters 95 
Fluid velocity 46 
Force, on curved surface 12 

on rectangular lamina 12 
on tapered bend 133 
on vanes 135, 136 
viscous shear 178, 185 

Force equation 111,133,245 
specific 245, 254 

Forces, pressure 139 
viscous 196 
weight 139 

Formula, Bazin 192,233,273 
Chezy C 103,232,237 
Manning 103,232,240 
Pavlovski 233 
Powell 233, 237 
Strickler 232 

Francis 126 
Free surface 1, 2,89,95 
Frictional analysis 315, 317 
Frictional damping 321 
Frictional dissipation 315 
Frictional head loss 318 
Froude number 89,90,93,94,97,185, 

231,242,244,247 
Froude number scaling laws 94, 95 
Froudian velocities 322 

Gas, definition of 2 
Grade line, energy 206, 207 

hydraulic 206,207,208 
Guide vane passage 333 
Gyration, radius of 12 

Hagen-Poiseuille 189 
Hagen-Poiseuille formula 181 
Hardy-Cross method 217 
Hazen-Williams 218, 219 
Hazen-Williams equation 219 
Head 90,95 

dynamic 352 
high machine 362 
inertia 296 



manometric 352 
net 285 
static 284 

Head acceleration 320 
Head balancing 217, 219 
Head drop in machines 368 
Head loss 313, 318, 320, 328 
Head quantity equation 218 
Head reservoir 293,312 
Hermann 192 
Hydraulic efficiency 337,345,350,369, 

370 
Hydraulic gradient 76, 223 
Hydraulicjump 241,253,254,255, 

256,257,265 
Hydraulic mean radius 101 
Hydraulically rough pipe 196,197 
Hydraulically rough surface 189 
Hydraulically smooth pipe 196, 197 
Hydraulically smooth surface 189, 190 
Hydrodynamics, definition of 29 

Impeller 330, 348 
pump 331 

Inertial force 87 
ratio of, to frictional force 89 
ratio of, to gravitational force 90 
ratio of, to viscous force 86 

Irrotational motion 39, 41 

Jet impact, on curved vane 137 
on flat vane 135 

Joukowski equation 302 

Kinetic energy 208, 209 
correction for 182 
of flow 208, 209 

Kirchoff law 215 
Kutta Joukowski equation 65 
Kutter and Ganguillet 192 

laminar flow 178,179,182,183,189, 
324 

laminar sublayer 158,159,190,193, 
194,195,196 

laplace equation 39,40,41,272 
Lees 192 
Lift-drag ratio 72 
Lift force 62, 70, 71 
Liquid, definition of 1 
Losses at bends 203 

at divergent taper section 204 
at elbows 203 
at exit from pipeline 204 
at partially closed valves 204 
at tees 203 
frictional, in channels 230 
in pipelines 198 

Ml curve 250,264,265,266 
M2 curve 250, 264, 265, 266 
M3 curve 251,264,265,266 
Mach 101,102 
Mach number 101,102,188,241 
Machine efficiency 364 
Magnus effect 65, 66 

Index 383 
Manning formula 103,232,240 
Manometer 16,17,19,20,21,120,132 
Manometric efficiency 373 
Manometric head 352 
Mass density 87 
Meandering 170, 171, 172 
Momentum 210,211 
Momentum coefficient 210 
Momentum equation 211 
Momentum flow 86 
Momentum transfer 161 
Navier-Stokes equation 38 
Newton's first law 179 
Newton's second law 5,111,113,115, 

284 
Newton's third law 134 
Newton's law of viscosity 36, 38, 86, 179 

Newtonian equation 4 
Newtonian fluid 6 
Nikuradse 189,192 
Notches 95,97,123 

rectangular 98,99,125,128 
triangular 123 
vee 123,125,126 

Non-newtonian fluid 4 
Nozzle 153 
Number, Boussinesq 242 

f 187,188 
Froude 89,90,93,97,185,231, 

242,244,247 
Kineticity 242 
Mach 101,102,188,241 
Reynolds 57,85-102,121,125, 

129, 166, 176, 187, 189, 193, 
322,359,361,365 

roughness 100, 187, 192, 365 
Weber 90 

Open channel 230 
Orifice 95,97,99 

diameter of 198 
small 116 

Oscillation, attenuation of 315 
frequency of 315 
mass 313,314,315,327 
period of 325 
pressure 314 

Oseen 168 

Paraboloid surface 147,155 
Pavlovski formula 233 
Pelton wheel 342,344,346,347,348, 

364, 369 
Penstocks 313,320 
Pipe, restrained 299,301,302 

rough 196, 197 
smooth 196,197 
transitional 197 
unrestrained 300 

Pipe distensibility 303 
Pipe distension 298 
Pipe entrance 201 
Pipe friction laws 197 
Pipe network 212, 215 
Pipe period 295, 313 
Pipe theory 283, 291 



384 Index 
Pipe velocity 291,298 
Pipeline failure 283 
Pipeline velocity 312, 313 
Pipeline with nozzle 214 
Piezometer 16, 22 
Pitot tube 131,149 

in confined space 132 
Poisson ratio 300 
Ponding curve 251 
Poseuille 102 
Potential core 157 
Potential flow 39 
Potential pressure 137 
Potential theory 63,76 
Potential velocity 157 
Powell formula 233, 237 
Prandtl 157,159,161,162,195 
Prandtl mixing-length hypothesis 159, 

193,234 
Pressure diagram 12 
Pressure difference 177 
Pressure distribution 195 
Pressure gradients 168 

negative 162 
positive 165 
transverse 169 

Pressure head 76,283 
Pressure surge 291, 297, 301, 303 
Pump, centrifugal 330, 348, 352, 373, 

374 
reciprocating 

Pump characteristic 
Pump impeller 331 

329 
354,356 

Raleigh equation 70, 88 
Reservoir, static level 312,313,315, 

317,327 
Reynolds 159 
Reynolds number 57,85-102,121,125, 

129,166,176,187,189,193,322,359, 
361,365 

modelling 94,95 
Reynolds shear equation 161 
Rheology 4, 179 
Rotating curved passage 329 
Rotating of fluid 39 
Rotational speed of impeller 349 
Rotodynamic machine 329, 364, 368 
Roughness 173,190,196 
Roughness number 100,187,192,365 
Runners 330 

blades of 331 
Francis 341 
mixed flow 341 
turbine 331, 348 

Sl curve 251, 264, 265, 266 
S2 curve 252,264,265,266 
S3 curve 252,264,265,266 
Scale effect 94 
Scaling law of resistance 91 
Scaling process 360 
Schnyder-Bergeron method 330 
Scour 170 
Semi-streamlined body 56,74 
Separation 163,165,296 

Shear, viscous 62,162 
Shear deformation 38 
Shear force 3 
Shear rate 2, 3, 4 
Shear strain 36 
Shear stress 2,3,4,6,36,38,91,99, 

101,230 
Shock loss 354 
Shih I. Pai 138 
Sink 46,48,49,50,57,73,74 
Slopes, adverse 253 
Sluice 262, 277 
Source 46,48,49,50,53,55,57,73,74 

auxiliary 312 
Spear valve 287, 306 
Specific energy 254 
Specific energy equation 245,254,257, 

260,263 
Specific force 248, 254 
Specific force equation 245, 254 
Specific gravity 6 
Specific mass of fluid and gas 5 
Specific speed 362 
Speed, peripheral 336,344 
Sphere, drag on 167 
Stagnation point 163,173 
Stalling 69 
Steady-state flow 286 
Stokes equation 167,168 
Stream function 40,41,42,43,45,48, 

49,51,52,53,54,57,58,63,69, 
72, 74 

theory of 57 
Streamline 40,41,43,48,50,53,56, 

57,58,66,68,72,74,76,93,110, 
160,161 

Strickler formula 232 
Strouhal 167 
Surface flow, uniform 234 
Surge, demand 220 

ebb 270 
flood 270 
pressure 291 
rejection 270 

Surge tank 312,313,315,318,319,320, 
325,326,327 

complex 321 
frictional 316 
modelling 322 
simple 321 

Surge waves in channels 270 
Surface tension 15, 90 

Tail race 338, 339 
Taylor, G. F. 167 
Tee junctions 164, 165 
Thixotrope 4 
Turbine 313, 327 

cavitating 367 
control 319 
Francis 340,341,346,347,348, 

362,371 



Index 385 
gate 319 
hydraulic 312 
impulse 342 
inward flow reaction 368, 372 
Kaplan 341 
propellor 341 
reaction 332, 340 
valve 320 

Turbulence 190, 198, 285 

Universal gas laws 7 

Valve, spear 287, 306 
Valve closure 287, 297 
Valve opening 285 
Vane, curved 137 

flat 135 
Velocity, steady-state 317 

translational 2 
transmission 101 

Velocity distribution 188 
Velocity fluctuation 160,283,284,312 
Velocity gradient 57,76 
Velocity head 99,338 
Velocity in channel 238 
Velocity in pipeline 313,316 
Velocity of pressure wave propagation 

283 
Velocity of whirl 330,332,336 
Velocity potential 39,41,45,47,48,49, 

51,52,53,54,55,57,58,64,72,73,74 
Velocity profile 182 
Velocities, critical 177 
Vena contracta 116,117,124,126,130, 

200 
Venturi flume 257,258,260,274 
Venturi meter 119,120,128,150,153 
Viscosity, dynamic 93,94,95,102, 

fluid 38,57,59,83,86 

Viscous force 190 
Viscous shear 62, 178, 185 
Viscous shear stress 162 
Volute 350, 352, 353 

constant velocity 353 
variable velocity 354 
whirlpool 354 

Von Karman 162,167,193 
Vortex 43,63,68, 69, 72 

bath tub 140 
forced 144,155,354 
free 44,46,52,53,57,61,140, 

148,169,354 
analysis of 141 
cylindrical 143, 148 
spiral 143,144, 145, 175 

Karman 148,166,167 
Rankine 147,148 
sheet 68, 163 
strength of 140 
twin 175 

Vorticity 38,39,40,44,45,76,149 
rope of 171 

Wake 68,69 
Waterhammer 283,304,313 
Wave celerity 241,242,271 
Wave motions 93 
Weber number 90 
Weir 95,97 

broad crested 261 
sharp crested 154 

Weisbach 187,192 
Wheel, Pelton 342,344,346,347,348, 

364,369 
Turgo 342,346,347 

Y junctions 164,165 
Young's modulus 299 




