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Preface
When Barbara Finlay and I undertook the first edition of this book nearly four
decades ago, our goal was to introduce statistical methods in a style that emphasized
their concepts and their application to the social sciences rather than the mathe-
matics and computational details behind them. We did this by focusing on how the
methods are used and interpreted rather than their theoretical derivations.

This edition of the book continues the emphasis on concepts and applications,
using examples and exercises with a variety of “real data.” This edition increases its
illustrations of statistical software for computations, and takes advantage of the out-
standing applets now available on the Internet for explaining key concepts such as
sampling distributions and for conducting basic data analyses. I continue to downplay
mathematics, in particular probability, which is all too often a stumbling block for stu-
dents. On the other hand, the text is not a cookbook. Reliance on an overly simplistic
recipe-based approach to statistics is not the route to good statistical practice.

Changes in the Fifth Edition
Users of earlier editions will notice that the book no longer lists Barbara Finlay as
a co-author. I am grateful to Barbara Finlay for her contributions to the first two
editions of this text. Combining her sociology background with my statistics back-
ground, she very much helped me develop a book that is not only statistically sound
but also relevant to the social sciences.

Since the first edition, the increase in computer power coupled with the contin-
ued improvement and accessibility of statistical software has had a major impact on
the way social scientists analyze data. Because of this, this book does not cover the
traditional shortcut hand-computational formulas and approximations. The presen-
tation of computationally complex methods, such as regression, emphasizes interpre-
tation of software output rather than the formulas for performing the analysis. The
text contains numerous sample software outputs, both in chapter text and in home-
work exercises. In the appendix on using statistical software, this edition adds R and
Stata to the material on SPSS and SAS.

Exposure to realistic but simple examples and to numerous homework exercises
is vital to student learning. This edition has updated data in most of the exercises
and replaced some exercises with new ones. Each chapter’s homework set is divided
into two parts, straightforward exercises on the text material in Practicing the Basics
and exercises dealing with open-ended data analyses, understanding of concepts, and
advanced material in Concepts and Applications. The data sets in the examples and
exercises are available at www.pearsonglobaleditions.com/Agresti.

This edition contains some changes and additions in content, directed toward a
more modern approach. The main changes are as follows:

• The text has greater integration of statistical software. Software output shown
now uses R and Stata instead of only SAS and SPSS, although much output has
a generic appearance. The text appendix provides instructions about basic use
of these software packages.

• New examples and exercises in Chapters 4–6 ask students to use applets to
help learn the fundamental concepts of sampling distributions, confidence
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10 Preface

intervals, and significance tests. The text also now relies more on applets for
finding tail probabilities from distributions such as the normal, t, and chi-
squared. I strongly encourage instructors and students to look at the excellent
applets cited at www.pearsonglobaleditions.com/Agresti. They
were prepared by Prof. Bernhard Klingenberg for the fourth edition of the text
Statistics: The Art and Science of Learning from Data, by Agresti, Franklin,
and Klingenberg (Pearson, 2017).

• Chapter 5 has a new section introducing maximum likelihood estimation and
the bootstrap method.

• Chapter 12 on ANOVA has been reorganized to put more emphasis on using
regression models with dummy variables to handle categorical explanatory
variables.

• Chapter 13 on regression modeling with both quantitative and categorical
explanatory variables has a new section using case studies to illustrate how
research studies commonly use regression with both types of explanatory
variables. The chapter also has a new section introducing linear mixed models.

• Chapter 14 has a new section introducing robust regression standard errors
and nonparametric regression.

• The text Web site www.pearsonglobaleditions.com/Agresti has the
data sets analyzed in the text, in generic form to copy for input into statistical
software. Special directories there also have data files in Stata format and in
SPSS format, so they are ready for immediate use with those packages.

• Answers to Select Odd-Numbered Exercises are available at the text Website
www.pearsonglobaleditions.com/Agresti.

Use of Text in Introductory Statistics Courses
Like the first four editions, this edition is appropriate for introductory statistics
courses at either the undergraduate or beginning graduate level, and for either a
single-term or a two-term sequence. Chapters 1–9 are the basis for a single-term
course. If the instructor wishes to go further than Chapter 9 or wishes to cover some
material in greater depth, sections that can easily be omitted without disturbing con-
tinuity include 2.4, 5.5, 6.6–6.7, 7.5–7.7, and 8.5. Also, Chapters 7–9 are self-contained,
and the instructor could move directly into any of these after covering the funda-
mentals in Chapters 1–6. Three possible paths for a one-term course are as follows:

• Chapters 1–9 (possibly omitting sections noted above): Standard cross-section
of methods, including basic descriptive and inferential statistics, two-sample
procedures, contingency tables, and linear regression.

• Chapters 1–7, 9, and 11: Emphasis on regression.

• Chapters 1–7, and 9, and Sections 11.1–11.3 and 12.1–12.3: After two-group com-
parisons, introduction to regression and analysis of variance.

Regardless of the type of data, my belief is that a modeling paradigm empha-
sizing parameter estimation is more useful than the artificial hypothesis-testing
approach of many statistics texts. Thus, the basic inference chapters (5–8) explain
the advantages confidence intervals have over significance testing, and the second
half of this text (starting in Chapter 9) is primarily concerned with model building.
The modeling material forms the basis of a second course. Instructors who focus on

http://www.pearsonglobaleditions.com/Agresti
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Preface 11

observational data rather than designed experiments may prefer to cover only the
first section of Chapter 12 (ANOVA), to introduce dummy variables before moving
to later chapters that incorporate both categorical and quantitative explanatory
variables.

Some material appears in sections, subsections, or exercises marked by asterisks.
This material is optional, having lesser importance for introductory courses. The text
does not attempt to present every available method, since it is meant to be a teach-
ing tool, not an encyclopedic cookbook. It does cover the most important methods
for social science research, however, and it includes topics not usually discussed in
introductory statistics texts, such as

• Methods for contingency tables that are more informative than chi-squared,
such as cell residuals and analyses that utilize category orderings.

• Controlling for variables, and issues dealing with causation.

• The generalized linear modeling approach, encompassing ordinary regression,
analysis of variance and covariance, gamma regression for nonnegative re-
sponses with standard deviation proportional to the mean, logistic regression
for categorical responses, and loglinear association models for contingency
tables.

• Relatively new methods that are increasingly used in research, such as the lin-
ear mixed model approach of using both fixed effects and random effects (and
related multilevel models), and multiple imputation for dealing with missing
data.

I believe that the student who works through this book successfully will acquire
a solid foundation in applied statistical methodology.
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CHAPTER
OUTLINE

1.1 Introduction to
Statistical
Methodology

1.2 Descriptive Statistics
and Inferential
Statistics

1.3 The Role of
Computers and
Software in Statistics

1.4 Chapter Summary

1.1 Introduction to Statistical Methodology
Recent years have seen a dramatic increase in the use of statistical methods by social
scientists, whether they work in academia, government, or the private sector. Social
scientists study their topics of interest, such as analyzing how well a program works
or investigating the factors associated with beliefs and opinions of certain types, by
analyzing quantitative evidence provided by data. The growth of the Internet and
computing power has resulted in an increase in the amount of readily available quan-
titative information. At the same time, the evolution of new statistical methodology
and software makes new methods available that can more realistically address the
questions that social scientists seek to answer.

This chapter introduces “statistics” as a science that deals with describing data
and making predictions that have a much wider scope than merely summarizing the
collected data. So, why should knowledge of statistical science be important for a
student who is studying to become a social scientist?

WHY STUDY STATISTICAL SCIENCE?

The increased use of statistical methods is evident in the changes in the content of
articles published in social science research journals and reports prepared in govern-
ment and industry. A quick glance through recent issues of journals such as American
Political Science Review and American Sociological Review reveals the fundamental
role of statistical methodology in research. For example, to learn about which factors
have the greatest impact on student performance in school or to investigate what af-
fects people’s political beliefs or the quality of their health care or their decisions
about work and home life, researchers collect information and analyze it using sta-
tistical methods. Because of this, more and more academic departments require that
their majors take statistics courses.

These days, social scientists work in a wide variety of areas that use statis-
tical methods, such as governmental agencies, business organizations, and health
care facilities. Social scientists in government agencies dealing with human wel-
fare or environmental issues or public health policy commonly need to read reports
that contain statistical arguments, and perhaps use statistical methods themselves in
preparing such reports. Some social scientists help managers to evaluate employee
performance using quantitative benchmarks and to determine factors that help
predict sales of products. Medical sociologists and physicians often must evaluate

13



14 Chapter 1 Introduction

recommendations from studies that contain statistical evaluations of new therapies
or new ways of caring for the elderly. In fact, a recent issue of The Journal of the
American Medical Association indicated that the Medical College Admissions Test
has been revised to require more statistics, because doctors increasingly need to be
able to evaluate quantitatively the factors that affect peoples’ health.

In fact, increasingly many jobs for social scientists require a knowledge of statis-
tical methods as a basic work tool. As the joke goes, “What did the sociologist who
passed statistics say to the sociologist who failed it? ‘I’ll have a Big Mac, fries, and
a Coke.’ ”

But an understanding of statistical science is important even if you never
use statistical methods in your own career. Often you are exposed to commu-
nications containing statistical arguments, such as in advertising, news reporting,
political campaigning, and surveys about opinions on controversial issues. Statis-
tical science helps you to make sense of this information and evaluate which ar-
guments are valid and which are invalid. You will find concepts from this text
helpful in judging the information you encounter in your everyday life. Look at
www.youtube.com/user/ThisisStats to view some short testimonials with
the theme that “Statistics isn’t just about data analysis or numbers; it is about under-
standing the world around us. The diverse face of statistics means you can use your
education in statistics and apply it to nearly any area you are passionate about, such
as the environment, health care, human rights, sports. . . .”

We realize you are not reading this book in hopes of becoming a statistician. In
addition, you may suffer from math phobia and feel fear at what lies ahead. Please
be assured that you can read this book and learn the primary concepts and methods
of statistics with little knowledge of mathematics. Just because you may have had
difficulty in math courses before does not mean you will be at a disadvantage here.
To understand this book, logical thinking and perseverance are more important than
mathematics. In our experience, the most important factor in how well you do in a
statistics course is how much time you spend on the course—attending class, doing
homework, reading and re-reading this text, studying your class notes, working to-
gether with your fellow students, and getting help from your professor or teaching
assistant—not your mathematical knowledge or your gender or your race or whether
you now feel fear of statistics.

Please do not be frustrated if learning comes slowly and you need to read a chap-
ter a few times before it makes sense. Just as you would not expect to take a single
course in a foreign language and be able to speak that language fluently, the same is
true with the language of statistical science. Once you have completed even a por-
tion of this text, however, you will better understand how to make sense of statistical
information.

DATA

Information gathering is at the heart of all sciences, providing the observations used
in statistical analyses. The observations gathered on the characteristics of interest are
collectively called data.

For example, a study might conduct a survey of 1000 people to observe charac-
teristics such as opinion about the legalization of same-sex marriage, political party
affiliation, how often attend religious services, number of years of education, annual
income, marital status, race, and gender. The data for a particular person would con-
sist of observations such as (opinion = do not favor legalization, party = Republican,
religiosity = once a week, education = 14 years, annual income in the range of 40–60
thousand dollars, marital status = married, race = white, gender = female). Looking

http://www.youtube.com/user/ThisisStats


Section 1.1 Introduction to Statistical Methodology 15

at the data in the right way helps us learn about how the characteristics are asso-
ciated. We can then answer questions such as “Do people who attend church more
often tend to be less favorable toward same-sex marriage?”

To generate data, the social sciences use a wide variety of methods, including
surveys using questionnaires, experiments, and direct observation of behavior in nat-
ural settings. In addition, social scientists often analyze data already recorded for
other purposes, such as police records, census materials, and hospital files. Existing
archived collections of data are called databases. Many databases are now available
on the Internet. An important database for social scientists contains results since
1972 of the General Social Survey.

Example
1.1

The General Social Survey Every other year, the National Opinion Research Center
at the University of Chicago conducts the General Social Survey (GSS). This survey
of about 2000 adults provides data about opinions and behaviors of the American
public. Social scientists use it to investigate how adult Americans answer a wide di-
versity of questions, such as “Do you believe in life after death?” “Would you be
willing to pay higher prices in order to protect the environment?” and “Do you think
a preschool child is likely to suffer if his or her mother works?” Similar surveys oc-
cur in other countries, such as the General Social Survey administered by Statistics
Canada, the British Social Attitudes Survey, and the Eurobarometer survey and Eu-
ropean Social Survey for nations in the European Union.

It is easy to get summaries of data from the GSS database. We’ll demonstrate,
using a question it asked in one survey, “About how many good friends do you have?”

• Go to the website sda.berkeley.edu/GSS/ at the Survey Documentation
and Analysis site at the University of California, Berkeley.

• Click on GSS—with NO WEIGHT VARIABLES predefined. You will then see
a “variable selection” listing in the left margin dealing with issues addressed
over the years, and a menu on the right for selecting particular characteristics
of interest.

• The GSS name for the question about number of good friends is NUMFREND.
Type NUMFREND in the Row box. Click on Run the table.

The GSS site will then generate a table that shows the possible values for “num-
ber of good friends” and the number of people and the percentage who made each
possible response. The most common responses were 2 and 3 (about 16% made each
of these responses).

WHAT IS STATISTICAL SCIENCE?

You already have a sense of what the word statistics means. You hear statistics quoted
about sports events (such as the number of points scored by each player on a bas-
ketball team), statistics about the economy (such as the median income or the un-
employment rate), and statistics about opinions, beliefs, and behaviors (such as the
percentage of students who indulge in binge drinking). In this sense, a statistic is
merely a number calculated from data. But this book uses statistics in a much broader
sense—as a science that gives us ways of obtaining and analyzing data.

Statistics Statistics consists of a body of methods for obtaining and analyzing data.
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Specifically, statistical science provides methods for

1. Design: Planning how to gather data for a research study to investigate ques-
tions of interest to us.

2. Description: Summarizing the data obtained in the study.

3. Inference: Making predictions based on the data, to help us deal with uncer-
tainty in an objective manner.

Design refers to planning a study so that the data it yields are informative. For
a survey, for example, the design specifies how to select the people to interview and
constructs the questionnaire to administer to those people.

Description refers to summarizing data, to help understand the information the
data provide. For example, an analysis of the number of good friends based on the
GSS data might start with a list of the number reported for each person surveyed.
The raw data are then a complete listing of observations, person by person. These
are not easy to comprehend, however. We get bogged down in numbers. For presen-
tation of results, instead of listing all observations, we could summarize the data with
a graph or table showing the percentages reporting 1 good friend, 2 good friends, 3
good friends, and so on. Or we could report the average number of good friends,
which was about 5, or the most common response, which was 2. Graphs, tables, and
numerical summaries such as averages and percentages are called descriptive statis-
tics. We use descriptive statistics to reduce the data to a simpler and more under-
standable form without distorting or losing much information.

Inference refers to using the data to make predictions. For instance, for the GSS
data on reported number of good friends, 6.1% reported having only 1 good friend.
Can we use this information to predict the percentage of the 250 million adults in the
United States who have only 1 good friend? A method presented in this book allows
us to predict confidently that that percentage is no greater than 8%. Predictions made
using data are called statistical inferences.

Description and inference are the two types of ways of analyzing the data. Social
scientists use descriptive and inferential statistics to answer questions about social
phenomena. For instance, “Is having the death penalty available for punishment as-
sociated with a reduction in violent crime?” “Does student performance in schools
depend on the amount of money spent per student, the size of the classes, or the
teachers’ salaries?”

1.2 Descriptive Statistics and Inferential Statistics
Section 1.1 explained that statistical science consists of methods for designing stud-
ies and analyzing data collected in the studies. A statistical analysis is classified as
descriptive or inferential, according to whether its main purpose is to describe the
data or to make predictions. To explain this distinction further, we next define the
population and the sample.

POPULATIONS AND SAMPLES

The entities on which a study makes observations are called the sample subjects for
the study. Usually the subjects are people, such as in the General Social Survey, but
they need not be. For example, subjects in social research might be families, schools,
or cities. Although we obtain data for the sample subjects, our ultimate interest is in
the population that the sample represents.
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Population and Sample The population is the total set of subjects of interest in a study. A sample is
the subset of the population on which the study collects data.

In the 2014 General Social Survey, the sample was the 2538 adult Americans who
participated in the survey. The population was all adult Americans at that time—
about 250 million people. One person was sampled for about every 100,000 people
in the population.

The goal of any study is to learn about populations. But it is almost always nec-
essary, and more practical, to observe only samples from those populations. For ex-
ample, survey organizations such as the Gallup Poll usually select samples of about
1000–2000 Americans to collect information about opinions and beliefs of the pop-
ulation of all Americans.

Descriptive Statistics Descriptive statistics summarize the information in a collection of data.

Descriptive statistics consist of graphs, tables, and numbers such as averages and
percentages. Descriptive statistics reduce the data to simpler and more understand-
able form without distorting or losing much information.

Although data are usually available only for a sample, descriptive statistics are
also useful when data are available for the entire population, such as in a census. By
contrast, inferential statistics apply when data are available only for a sample, but we
want to make a prediction about the entire population.

Inferential Statistics Inferential statistics provide predictions about a population, based on data
from a sample of that population.

Example
1.2

How Many People Believe in Heaven? In three of its surveys, the General Social
Survey asked, “Do you believe in heaven?” The population of interest was the col-
lection of all adults in the United States. In the most recent survey in which this was
asked, 85% of the 1326 sampled subjects answered yes. This is a descriptive statistic.
We would be interested, however, not only in those 1326 people but in the entire
population of all adults in the United States.

Inferential statistics use the sample data to generate a prediction about the en-
tire population. An inferential method presented in Chapter 5 predicts that the pop-
ulation percentage that believe in heaven falls between 83% and 87%. That is, the
sample value of 85% has a “margin of error” of 2%. Even though the sample size
was tiny compared to the population size, we can conclude that a large percentage
of the population believed in heaven.

Inferential statistical analyses can predict characteristics of populations well by
selecting samples that are small relative to the population size. That’s why many polls
sample only about a thousand people, even if the population has millions of people.
In this book, we’ll see why this works.

In recent years, social scientists have increasingly recognized the power of infer-
ential statistical methods. Presentation of these methods occupies a large portion of
this textbook, beginning in Chapter 4.

PARAMETERS AND STATISTICS

A descriptive statistic is a numerical summary of the sample data. The corresponding
numerical summary for the population is called a parameter.
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Parameter A parameter is a numerical summary of the population.

Example 1.2 estimated the percentage of Americans who believe in heaven. The
parameter was the population percentage who believed in heaven. Its value was unknown.
The inference about this parameter was based on a descriptive statistic—the percentage
of the 1326 subjects interviewed in the survey who answered yes, namely, 85%.

In practice, our main interest is in the values of the parameters, not merely the
values of the statistics for the particular sample selected. For example, in viewing re-
sults of a poll before an election, we’re more interested in the population percentages
favoring the various candidates than in the sample percentages for the people inter-
viewed. The sample and statistics describing it are important only insofar as they help
us make inferences about unknown population parameters.

An important aspect of statistical inference involves reporting the likely preci-
sion of the sample statistic that estimates the population parameter. For Example 1.2
on belief in heaven, an inferential statistical method predicted how close the sample
value of 85% was likely to be to the unknown percentage of the population believing
in heaven. The reported margin of error was 2%.

When data exist for an entire population, such as in a census, it’s possible to find
the values of the parameters of interest. Then, there is no need to use inferential
statistical methods.

DEFINING POPULATIONS: ACTUAL AND CONCEPTUAL

Usually the population to which inferences apply is an actual set of subjects, such as
all adult residents of the United States. Sometimes, though, the generalizations refer
to a conceptual population—one that does not actually exist but is hypothetical.

For example, suppose a medical research team investigates a newly proposed
drug for treating lung cancer by conducting a study at several medical centers. Such
a medical study is called a clinical trial. The conditions compared in a clinical trial
or other experiment are called treatments. Basic descriptive statistics compare lung
cancer patients who are given the new treatment to other lung cancer patients who in-
stead receive a standard treatment, using the percentages who respond positively to
the two treatments. In applying inferential statistical methods, the researchers would
ideally like inferences to refer to the conceptual population of all people suffering
from lung cancer now or at some time in the future.

1.3 The Role of Computers and Software in Statistics
Over time, powerful and easy-to-use software has been developed for implementing
statistical methods. This software provides an enormous boon to the use of statistics.

STATISTICAL SOFTWARE

Statistical software packages include R, SPSS,1 SAS,2 and Stata. Appendix A ex-
plains how to use them, organized by chapter. You can refer to Appendix A for the
software used in your course as you read each chapter, to learn how to implement the
analyses of that chapter. It is much easier to apply statistical methods using software

1 Originally, this was an acronym for Statistical Package for the Social Sciences.
2 Originally, this was an acronym for Statistical Analysis System.
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than using hand calculation. Moreover, many methods presented in this text are too
complex to do by hand or with hand calculators. Software relieves us of computa-
tional drudgery and helps us focus on the proper application and interpretation of
the statistical methods.

Many examples in this text also show output obtained by using statistical soft-
ware. One purpose of this textbook is to teach you what to look for in output and
how to interpret it. Knowledge of computer programming is not necessary for using
statistical software.

DATA FILES

Statistical software analyzes data organized in the spreadsheet form of a data file:

• Any one row contains the observations for a particular subject (e.g., person) in
the sample.

• Any one column contains the observations for a particular characteristic.

Figure 1.1 shows an example of a data file, in the form of a window for editing
data using Stata software. It shows data for the first 10 subjects in a sample, for the
characteristics sex, racial group, marital status, age, and annual income (in thousands
of dollars). Some of the data are numerical, and some consist of labels. Chapter 2
introduces the types of data for data files.

FIGURE 1.1: Example of
Part of a Stata Data File

R is a software package that is increasingly popular, partly because it is available
to download for free at www.r-project.org. Figure 1.2 shows part of an R session
for loading a data file called OECD.dat from a PC directory and displaying it.

USES AND MISUSES OF STATISTICAL SOFTWARE

A note of caution: The easy access to statistical methods using software has dangers as well
as benefits. It is simple to apply inappropriate methods. A computer performs the analysis
requested whether or not the assumptions required for its proper use are satisfied.

Incorrect analyses result when researchers take insufficient time to understand
the statistical method, the assumptions for its use, or its appropriateness for the

http://www.r-project.org
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FIGURE 1.2: Example of
Part of an R Session for
Loading and Displaying
Data. The full data file is in
Table 3.13 on page 70.

specific problem. It is vital to understand the method before using it. Just knowing
how to use statistical software does not guarantee a proper analysis. You’ll need a
good background in statistics to understand which method to select, which options
to choose in that method, and how to make valid conclusions from the output. The
purpose of this text is to give you this background.

1.4 Chapter Summary
The field of statistical science includes methods for

• designing research studies,

• describing the data (descriptive statistics), and

• making predictions using the data (inferential statistics).

Statistical methods apply to observations in a sample taken from a population.
Statistics summarize sample data, while parameters summarize entire populations.

• Descriptive statistics summarize sample or population data with numbers, ta-
bles, and graphs.

• Inferential statistics use sample data to make predictions about population
parameters.

A data file has a separate row of data for each subject and a separate column for
each characteristic. Software applies statistical methods to data files.

Exercises

Practicing the Basics
1.1. A medical university conducts an annual national sur-
vey of cancer patients who are in remission about their
lifestyle habits. In 2016, 1764 patients were surveyed.
Identify the (a) subject, (b) sample, and (c) population.

1.2. In 2015, a French national survey asked adults about
marriage and divorce. Of the 1754 individuals surveyed,
43% reported that they were married. Of the entire adult
French population, 41% were married.
(a) What was the population and what was the sample?
(b) Identify a statistic and a parameter.
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1.3. A lecturer at an arts college wants to research social
media usage among students. The lecturer sends out an
online questionnaire to the entire student body of 2,234
students. Out of this, only 127 students respond. One ques-
tion asked is, “How many hours per day do you spend on
social media?”

(a) Identify the population of interest.
(b) For the 2,234 students, one characteristic of interest
was the percentage who would respond “zero” to this
question. This value is computed for the 127 students who
responded. Is it a parameter or a statistic? Why?

1.4. In January 2016, an educational polling organization
in the United Kingdom surveyed a sample of 1156 high
school students asking, “Do you plan to attend univer-
sity?” The response percentages were 42% (“Yes”), 27%
(“No”), and 29% (“Undecided”). Are these values de-
scriptive statistics or inferential statistics? Why?

1.5. A social survey agency in Norway conducted a study
on a sample of 1520 subjects and asked whether eating a
vegan diet reduces chances of suffering a stroke. Out of
1520 sampled subjects, 761 responded probably true, and
759 responded probably not true. The proportion respond-
ing probably not true was 759/1520 = 0.499.

(a) Describe the population that may not be of interest to
this exercise.
(b) Which population parameter cannot be inferred from
the sample statistic given?
(c) What is the proportion of people who responded prob-
ably true?
(d) Will the value of the population parameter be the
same as the sample statistic? Explain.

1.6. Go to the General Social Survey website,
sda.berkeley.edu/GSS. By entering TVHOURS in
the Row box, find a summary of responses to the ques-
tion “On a typical day, about how many hours do you
personally watch television?”

(a) What was the most common response?
(b) Is your answer in (a) a descriptive statistic or an infer-
ential statistic? Why?

1.7. At the General Social Survey website, sda.
berkeley.edu/GSS, by entering HEAVEN in the Row
box, you can find the percentages of people who said yes,
definitely; yes, probably; no, probably not; and no, defi-
nitely not when asked whether they believed in heaven.

(a) Report the percentage who gave one of the yes re-
sponses.
(b) To obtain data for a particular year such as 2008, en-
ter YEAR(2008) in the Selection filter option box before
you click on Run the table. Do this for HEAVEN in 2008,
and report the percentage who gave one of the yes re-
sponses. (The GSS asked this question only in 1991, 1998,
and 2008.)

(c) Summarize opinions in 2008 about belief in hell (char-
acteristic HELL in the GSS). Was the percentage of yes
responses higher for HEAVEN or for HELL?

1.8. A private polling organization conducts a national
study on physical exercise. The reported responses for
1,507 individuals surveyed were as follows: 21.7% exer-
cised daily, 39.1% exercised two to three times per week,
21.4% exercised four to six times per week, and 17.8% re-
ported being sedentary.
(a) Are these numbers statistics or parameters? Explain.
(b) A method from this text predicts that the percentage
of the entire national population that is sedentary is at
least 12% but no greater than 18%. What type of statisti-
cal method does this illustrate—descriptive or inferential?
Why?

1.9. A multicountry poll in 2009 asked if people were will-
ing to bear higher prices for energy and other goods to
take steps to fight climate change. The percentages of peo-
ple who responded by saying yes in various countries were
68% (China), 59% (Vietnam), 53% (Japan), 51% (Iran),
and 51% (Mexico). The results indicate that majority of
people in these five nations were willing to bear higher
prices. The results of this poll are an example of (select
one)
(a) inferential statistics.
(b) descriptive and inferential statistics.
(c) descriptive statistics.
(d) design of a study.

1.10. Using R (statistical software), create a data file to
display the characteristics of five pet dogs. The char-
acteristics measured were breed (Pomeranian, Apso,
Dachshund, Labrador, Pug), color (White, Gray, Black,
Brown, Gray), age (2, 2, 2, 3, 5), energy level (High, Mod-
erate, Moderate, High, High), and Gender (Male, Male,
Male, Female, Female).

Concepts and Applications
1.11. The Students data file at the text websites www.
pearsonglobaleditions.com/Agresti shows re-
sponses of a class of social science graduate students
at the University of Florida to a questionnaire that
asked about GENDER (1 = female, 0 = male), AGE,
HSGPA = high school GPA (on a four-point scale),
COGPA = college GPA, DHOME = distance (in miles)
of the campus from your home town, DRES = distance
(in miles) of the classroom from your current residence,
TV = average number of hours per week that you watch
TV, SPORT = average number of hours per week that
you participate in sports or have other physical exercise,
NEWS = number of times a week you read a newspaper,
AIDS = number of people you know who have died from
AIDS or who are HIV+, VEG = whether you are a vege-
tarian (1 = yes, 0 = no), AFFIL = political affiliation (1 =
Democrat, 2 = Republican, 3 = independent), IDEOL =
political ideology (1 = very liberal, 2 = liberal, 3 = slightly

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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liberal, 4 = moderate, 5 = slightly conservative, 6 = con-
servative, 7 = very conservative), RELIG = how often
you attend religious services (0 = never, 1 = occasionally,
2 = most weeks, 3 = every week), ABOR = opinion about
whether abortion should be legal in the first three months
of pregnancy (1 = yes, 0 = no), AFFIRM = support affir-
mative action (1 = yes, 0 = no), and LIFE = belief in life
after death (1 = yes, 2 = no, 3 = undecided). You will use
this data file for exercises in later chapters.
(a) Practice accessing a data file for statistical analysis
with your software by going to this website and copying
this data file. Print a copy of the data file. How many ob-
servations (rows) are there in the data file?
(b) Give an example of a question that could be addressed
using these data with (i) descriptive statistics, (ii) inferen-
tial statistics.

1.12. Using statistical software or a spreadsheet program
(such as Microsoft Excel), your instructor will help the class
create a data file consisting of the values for class members
of characteristics such as those in the previous exercise. One
exercise in each chapter will use this data file.
(a) Copy the data file to your computer and print a copy.
(b) Give an example of a question that you could address
by analyzing these data with (i) descriptive statistics, (ii)
inferential statistics.

1.13. For the statistical software your instructor uses for
your course, find out how to access the software, enter
data, and print any data files that you create. Create a data
file using the data in Figure 1.1 on page 19, and print it.

1.14. Illustrating with an example, explain
(a) the difference between a sample and a population.
(b) design of a research study.

1.15. A researcher in his study finds that a particular drug
is very effective in alleviating symptoms of anxiety. The
researcher would like to infer the results to the concep-
tual population. What is the conceptual population in
this case?

1.16. A sociologist wants to estimate the average age
at marriage for women in New England in the early
eighteenth century. She finds within her state archives
marriage records for a large Puritan village for the years
1700–1730. She then takes a sample of those records, not-
ing the age of the bride for each. The average age in
the sample is 24.1 years. Using a statistical method from
Chapter 5, the sociologist estimates the average age of
brides at marriage for the population to be between 23.5
and 24.7 years.

(a) What part of this example is descriptive?
(b) What part of this example is inferential?
(c) To what population does the inference refer?

1.17. In a recent public opinion poll conducted by a survey
agency on the impact of globalization on the development
of nations, a stark difference was found in opinion of vari-
ous nations. The majority of nations that agreed on a pos-
itive impact of globalization included Bangladesh (59%),
Vietnam (76%), Indonesia (54%), and Pakistan (61%).
The nations that didn’t see globalization as favorable in-
cluded Italy (87%), Germany (82%), China (66%), and
South Korea (61%). Of the 2370 subjects interviewed in
Bangladesh, 59% agreed. It was predicted that for all the
citizens of Bangladesh, the percentage who agreed falls
between 56% and 62%. Identify in this discussion (a) a
statistic, (b) a parameter, (c) a descriptive analysis, and
(d) an inferential analysis.

1.18. At the homepage www.gallup.com for the Gallup
Poll, from the information listed or linked, give an exam-
ple of (a) sample in a study, and (b) population of interest.

1.19. Browse through electronic journals of your choice,
such as, Journal of Experimental Psychology, Journal
of Educational and Behavioral Statistics, Journal of So-
cial Psychology, etc. Pick an article that interests you.
Make a presentation to explain the gist of the article
in terms of the design of the study, sample, popula-
tion, statistical methods used, and inferences drawn at
the end.

http://www.gallup.com
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2.5 Chapter Summary

T o analyze social phenomena with a statistical analysis, descriptive methods summarize the
data and inferential methods use sample data to make predictions about populations. In gath-

ering data, we must decide which subjects to sample. (Recall that the subjects of a population to
be sampled could be individuals, families, schools, cities, hospitals, records of reported crimes, and
so on.) Selecting a sample that is representative of the population is a primary topic of this chapter.

For our sample, we must convert our ideas about social phenomena into data by deciding
what to measure and how to measure it. Developing ways to measure abstract concepts such as
performance, achievement, intelligence, and prejudice is one of the most challenging aspects of
social research. A measure should have validity, describing what it is intended to measure and
accurately reflecting the concept. It should also have reliability, being consistent in the sense
that a subject will give the same response when asked again. Invalid or unreliable data-gathering
instruments render statistical analyses of the data meaningless and even possibly misleading.

The first section of this chapter introduces definitions pertaining to measurement, such as
types of data. The other sections discuss ways, good and bad, of selecting the sample.

2.1 Variables and Their Measurement
Statistical methods help us determine the factors that explain variability among sub-
jects. For instance, variation occurs from student to student in their college grade
point average (GPA). What is responsible for that variability? The way those stu-
dents vary in how much they study per week? How much they watch TV per day?
Their IQ? Their college board scores? Their high school GPA?

VARIABLES

Any characteristic that we can measure for each subject is called a variable. The
name reflects that values of the characteristic vary among subjects.

Variable
A variable is a characteristic that can vary in value among subjects in a
sample or population.

Different subjects may have different values of a variable. Examples of variables
are income last year, number of siblings, whether employed, and gender. The values
the variable can take form the measurement scale. For gender, for instance, the mea-
surement scale consists of the two labels, (female, male). For number of siblings, it is
(0, 1, 2, 3, 4, and so on).

The valid statistical methods for a variable depend on its measurement scale.
We treat a numerical-valued variable such as annual income differently from a vari-
able with a measurement scale consisting of categories, such as (yes, no) for whether
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employed. We next present ways to classify variables. The first type refers to whether
the measurement scale consists of categories or numbers. Another type refers to the
number of levels in that scale.

QUANTITATIVE VARIABLES AND CATEGORICAL VARIABLES

A variable is called quantitative when the measurement scale has numerical values
that represent different magnitudes of the variable. Examples of quantitative vari-
ables are a subject’s annual income, number of siblings, age, and number of years of
education completed.

A variable is called categorical when the measurement scale is a set of cate-
gories. For example, marital status, with categories (single, married, divorced, wid-
owed), is categorical. For Canadians, the province of residence is categorical, with
the categories (Alberta, British Columbia, and so on). Other categorical variables
are whether employed (yes, no), primary clothes shopping destination (local mall,
local downtown, Internet, other), favorite type of music (classical, country, folk, jazz,
rock), religious affiliation (Christianity, Islam, Hinduism, Buddhism, Jewish, other,
none), and political party preference.

For categorical variables, distinct categories differ in quality, not in numerical
magnitude. Categorical variables are often called qualitative. We distinguish be-
tween categorical and quantitative variables because different statistical methods
apply to each type. For example, the average is a statistical summary for quantita-
tive variables, because it uses numerical values. It’s possible to find the average for
a quantitative variable such as income, but not for a categorical variable such as
favorite type of music.

NOMINAL, ORDINAL, AND INTERVAL SCALES
OF MEASUREMENT

For a quantitative variable, the possible numerical values are said to form an
interval scale, because they have a numerical distance or interval between each pair
of levels. For annual income, for instance, the interval between $40,000 and $30,000
equals $10,000. We can compare outcomes in terms of how much larger or how much
smaller one is than the other.

Categorical variables have two types of scales. For the categorical variables men-
tioned in the previous subsection, such as religious affiliation, the categories are un-
ordered. The scale does not have a “high” or “low” end. The categories are then said
to form a nominal scale. For another example, a variable measuring primary mode
of transportation to work might use the nominal scale (automobile, bus, subway, bi-
cycle, walking). For a nominal variable, no category is greater than or smaller than
any other category. Labels such as “automobile” and “bus” for mode of transporta-
tion identify the categories but do not represent different magnitudes. By contrast,
each possible value of a quantitative variable is greater than or less than any other
possible value.

A third type of scale falls, in a sense, between nominal and interval. It consists of
categorical scales having a natural ordering of values. The categories form an ordi-
nal scale. Examples are social class (upper, middle, lower), political philosophy (very
liberal, slightly liberal, moderate, slightly conservative, very conservative), govern-
ment spending on the environment (too little, about right, too much), and frequency
of religious activity (never, less than once a month, about 1–3 times a month, every
week, more than once a week). These scales are not nominal, because the categories
are ordered. They are not interval, because there is no defined distance between
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levels. For example, a person categorized as very conservative is more conservative
than a person categorized as slightly conservative, but there is no numerical value
for how much more conservative that person is.

The scales refer to the actual measurement and not to the phenomena them-
selves. Place of residence may indicate a geographic place name such as a county
(nominal), the distance of that place from a point on the globe (interval), the size of
the place (interval or ordinal), or other kinds of variables.

QUANTITATIVE ASPECTS OF ORDINAL DATA

Levels of nominal scales are qualitative, varying in quality, not in quantity. Levels of
interval scales are quantitative, varying in magnitude. The position of ordinal scales
on the quantitative–qualitative classification is fuzzy. Because their scale is a set of
categories, they are often analyzed using the same methods as nominal scales. But in
many respects, ordinal scales more closely resemble interval scales. They possess an
important quantitative feature: Each level has a greater or smaller magnitude than
another level.

Some statistical methods apply specifically to ordinal variables. Often, though,
it’s helpful to analyze ordinal scales by assigning numerical scores to categories. By
treating ordinal variables as interval scale rather than nominal scale, we can use the
more powerful methods available for quantitative variables. For example, course
grades (such as A, B, C, D, E) are ordinal. But, we treat them as interval when we
assign numbers to the grades (such as 4, 3, 2, 1, 0) to compute a grade point average.

DISCRETE AND CONTINUOUS VARIABLES

One other way to classify a variable also helps determine which statistical methods
are appropriate for it. This classification refers to the number of values in the mea-
surement scale.

Discrete and Continuous
Variables

A variable is discrete if its possible values form a set of separate numbers,
such as (0, 1, 2, 3, . . . ). It is continuous if it can take an infinite continuum of
possible real number values.

An example of a discrete variable is the number of siblings. Any variable phrased
as “the number of . . .” is discrete, because it is possible to list its possible values
{0, 1, 2, 3, 4, . . .}.

Examples of continuous variables are height, weight, and the amount of time
it takes to read a passage of a book. It is impossible to write down all the distinct
potential values, since they form an interval of infinitely many values. The amount
of time needed to read a book, for example, could take the value 8.62944 . . . hours.

Discrete variables have a basic unit of measurement that cannot be subdivided.
For example, 2 and 3 are possible values for the number of siblings, but 2.571 is not.
For a continuous variable, by contrast, between any two possible values there is al-
ways another possible value. For example, age is continuous in the sense that an indi-
vidual does not age in discrete jumps. At some well-defined point during the year in
which you age from 21 to 22, you are 21.385 years old, and similarly for every other
real number between 21 and 22. A continuous, infinite collection of age values occurs
between 21 and 22 alone.

Any variable with a finite number of possible values is discrete. Categorical
variables, nominal or ordinal, are discrete, having a finite set of categories. Quan-
titative variables can be discrete or continuous; age is continuous, and number of
siblings is discrete.



26 Chapter 2 Sampling and Measurement

For quantitative variables, the distinction between discrete and continuous vari-
ables can be blurry, because of how variables are actually measured. In practice, we
round continuous variables when measuring them, so the measurement is actually
discrete. We say that an individual is 21 years old whenever that person’s age is some-
where between 21 and 22. On the other hand, some variables, although discrete, have
a very large number of possible values. In measuring annual family income in dollars,
the potential values are (0, 1, 2, 3, . . .), up to some very large value in many millions.

What’s the implication of this? Statistical methods for discrete variables are
mainly used for quantitative variables that take relatively few values, such as the
number of times a person has been married. Statistical methods for continuous vari-
ables are used for quantitative variables that can take lots of values, regardless of
whether they are theoretically continuous or discrete. For example, statisticians treat
variables such as age, income, and IQ as continuous.

In summary,

• Variables are either quantitative (numerical-valued) or categorical. Quantita-
tive variables are measured on an interval scale. Categorical variables with un-
ordered categories have a nominal scale, and categorical variables with ordered
categories have an ordinal scale.

• Categorical variables (nominal or ordinal) are discrete. Quantitative variables
can be either discrete or continuous. In practice, quantitative variables that can
take lots of values are treated as continuous.

Figure 2.1 summarizes the types of variables, in terms of the (quantitative, categori-
cal), (nominal, ordinal, interval), and (continuous, discrete) classifications.

Quantitative

Note: Ordinal data are treated sometimes as categorical and sometimes as quantitative

Ordinal
Categorical

Continuous

Discrete

Nominal

Interval

FIGURE 2.1: Summary of
Quantitative–Categorical,
Nominal–Ordinal–Interval,
and Continuous–Discrete
Classifications

2.2 Randomization
Inferential statistical methods use sample statistics to make predictions about val-
ues of population parameters. The quality of the inferences depends on how well
the sample represents the population. This section introduces randomization, the
mechanism for achieving good sample representation.

In this section and throughout the text, we let n denote the number of subjects
in the sample. This is called the sample size.

SIMPLE RANDOM SAMPLING

Simple random sampling is a method of sampling for which every possible sample of
size n has equal chance of selection.
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Simple Random Sample
A simple random sample of n subjects from a population is one in which
each possible sample of that size has the same probability (chance) of being
selected.

For instance, suppose you want to select a simple random sample of a student
from a class of 60 students. For a simple random sample of n = 1 student, each of the
60 students is equally likely to be selected. You could select one by numbering the
students from 01 to 60, placing the 60 numbers on 60 identical ballots, and selecting
one blindly from a hat. For a simple random sample of n = 2 students from the class,
each possible sample of size 2 is equally likely. The potential samples are (01, 02),
(01, 03), (01, 04), . . . , (59, 60). To select the sample, you blindly select two ballots
from the hat. But this is unwieldy if the population size is large, and these days we
can easily select the sample using a random number generator with software.

A simple random sample is often just called a random sample. The simple adjec-
tive is used to distinguish this type of sampling from more complex sampling schemes
presented in Section 2.4 that also have elements of randomization.

Why is it a good idea to use random sampling? Because everyone has the same
chance of inclusion in the sample, so it provides fairness. This reduces the chance that
the sample is seriously biased in some way, leading to inaccurate inferences about the
population. Most inferential statistical methods assume randomization of the sort
provided by random sampling.

HOW TO SELECT A SIMPLE RANDOM SAMPLE?

To select a random sample, we need a list of all subjects in the population. This list is
called the sampling frame. Suppose you plan to sample students at your school. The
population is all students at the school. One possible sampling frame is the student
directory.

The most common method for selecting a random sample is to (1) number the
subjects in the sampling frame, (2) generate a set of these numbers randomly, and
(3) sample the subjects whose numbers were generated. Using random numbers to
select the sample ensures that each subject has an equal chance of selection.

Random Numbers
Random numbers are numbers that are computer generated according to a
scheme whereby each digit is equally likely to be any of the integers
0, 1, 2 , . . . , 9 and does not depend on the other digits generated.

Table 2.1 shows a table containing random numbers, in sets of size 5. The num-
bers fluctuate according to no set pattern. Any particular number has the same
chance of being a 0, 1, 2, . . . , or 9. The numbers are chosen independently, so any
one digit chosen has no influence on any other selection. If the first digit in a row of
the table is a 9, for instance, the next digit is still just as likely to be a 9 as a 0 or 1 or
any other number.

TABLE 2.1: A Table of Random Numbers

Line/Col. (1) (2) (3) (4) (5) (6) (7) (8)

1 90826 68432 36255 32536 92103 76082 82293 78852
2 77714 33924 86688 94720 45943 83064 68007 10523
3 34371 53100 81078 34696 92393 92799 72281 62696

Source: Constructed using sample function in R.
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Although random numbers are available in published tables, we can easily gen-
erate them with software and many statistical calculators. For example, suppose you
want to randomly select n = 4 students out of a class of size 60. After assigning the
numbers (01, 02, . . . , 60) to the class members, you can use software to generate four
random numbers between 01 and 60. R is a software package that can do this. It is
available to download for free at www.r-project.org. In R, the sample function
performs simple random sampling from a numbered population list. Here is how to
select a sample of size 4 from a population of size 60 (the > is the R system prompt,
and you type in sample(1:60, 4) and press the enter key on your keyboard):

> sample(1:60, 4) # put comments on command line after the # symbol
[1] 22 47 38 44 # these are the four numbers randomly generated

The sample of size 4 selects the students numbered 22, 47, 38, and 44.

COLLECTING DATA WITH SAMPLE SURVEYS

Many studies select a sample of people from a population and interview them. This
method of data collection is called a sample survey. The interview could be a personal
interview, telephone interview, or self-administered questionnaire.

The General Social Survey (GSS) is an example of a sample survey. It gathers
information using personal interviews of a random sample of subjects from the U.S.
adult population to provide a snapshot of that population. (They do not use simple
random sampling but rather a method discussed later in the chapter that incorporates
multiple stages and clustering but is designed to give each family the same chance
of inclusion.) National polls such as the Gallup Poll are also sample surveys. They
usually use telephone interviews. Since it is often difficult to obtain a sampling frame,
especially since many people now have cell phones but not landline phones, many
telephone interviews obtain the sample with random digit dialing.

COLLECTING DATA WITH AN EXPERIMENT

In some studies, data result from a planned experiment. The purpose of most experi-
ments is to compare responses of subjects on some outcome measure, under different
conditions. Those conditions are levels of a variable that can influence the outcome.
The scientist has the experimental control of being able to assign subjects to the
conditions.

The conditions in an experiment are called treatments. For instance, the treat-
ments might be different drugs for treating some illness. To conduct the experiment,
the researcher needs a plan for assigning subjects to the treatments. These plans are
called experimental designs. Good experimental designs use randomization to de-
termine which treatment a subject receives. This reduces bias and allows us to use
statistical inference to make predictions.

In the late 1980s, the Physicians’ Health Study Research Group at Harvard Med-
ical School designed an experiment to analyze whether regular intake of aspirin
reduces mortality from heart disease. Of about 22,000 male physicians, half were ran-
domly chosen to take an aspirin every other day. The remaining half took a placebo,
which had no active agent. After five years, rates of heart attack were compared. By
using randomization to determine who received which treatment, the researchers
knew the groups would roughly balance on factors that could affect heart attack
rates, such as age and quality of health. If the physicians could decide on their own

http://www.r-project.org
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which treatment to take, the groups might have been out of balance on some im-
portant factor. Suppose, for instance, younger physicians were more likely to select
aspirin. Then, a lower heart attack rate among the aspirin group could occur merely
because younger subjects are less likely to suffer heart attacks.

In medicine, experiments using randomization (so-called randomized clinical
trials) have been the gold standard for many years. But randomized experiments
are also increasingly used in the social sciences. For example, researchers use ran-
domized experiments to evaluate programs for addressing poverty in the developing
world. For many examples, see the websites

www.povertyactionlab.org/methodology and www.nature.com/news,

at the latter site searching for the article “Can randomized trials eliminate global
poverty?” (by J. Tollefson, August 12, 2015).

COLLECTING DATA WITH AN OBSERVATIONAL STUDY

In social research, it is often not feasible to conduct experiments. It’s usually not
possible to randomly assign subjects to the groups we want to compare, such as levels
of gender or race or educational level or annual income. Many studies, such as sample
surveys, merely observe the outcomes for available subjects on the variables without
any experimental manipulation of the subjects. Such studies are called observational
studies. The researcher measures subjects’ responses on the variables of interest but
has no experimental control over the subjects.

With observational studies, comparing groups is difficult because the groups may
be imbalanced on variables that affect the outcome. This is true even with random
sampling. For instance, suppose we plan to compare black students, Hispanic stu-
dents, and white students on some standardized exam. If white students have a higher
average score, a variety of variables might account for that difference, such as par-
ents’ education or parents’ income or quality of school attended. This makes it dif-
ficult to compare groups with observational studies, especially when some key vari-
ables may not have been measured in the study.

Establishing cause and effect is central to science. But it is not possible to es-
tablish cause and effect definitively with a nonexperimental study, whether it be an
observational study with an available sample or a sample survey using random sam-
pling. An observational study always has the possibility that some unmeasured vari-
able could be responsible for patterns observed in the data. By contrast, with an
experiment that randomly assigns subjects to treatments, those treatments should
roughly balance on any unmeasured variables. For example, in the aspirin and heart
attack study mentioned above, the doctors taking aspirin would not tend to be
younger or of better health than the doctors taking the placebo. Because a random-
ized experiment balances the groups being compared on other factors, we can use it
to study cause and effect.

2.3 Sampling Variability and Potential Bias
Even if a study wisely uses randomization, the results of the study still depend on
which subjects are sampled. Two researchers who separately select random samples
from some population may have little overlap, if any, between the two sample mem-
berships. Therefore, the values of sample statistics will differ for the two samples, and
the results of analyses based on these samples may differ.

http://www.povertyactionlab.org/methodology
http://www.nature.com/news
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SAMPLING ERROR

Suppose the Gallup, Harris, Ipsos-Reid, and Pew polling organizations each ran-
domly sample 1000 adult Canadians, in order to estimate the percentage of Canadi-
ans who give the prime minister’s performance in office a favorable rating. Based on
the samples they select, perhaps Gallup reports an approval rating of 53%, Harris
reports 58%, Ipsos-Reid 55%, and Pew 54%. These differences could reflect slightly
different question wording. But even if the questions are worded exactly the same,
the percentages would probably differ somewhat because the samples are different.

For conclusions based on statistical inference to be worthwhile, we should know
the potential sampling error—how much the statistic differs from the parameter it
predicts because of the way results naturally exhibit variation from sample to sample.

Sampling Error The sampling error of a statistic is the error that occurs when we use a
statistic based on a sample to predict the value of a population parameter.

Suppose that the percentage of the population of adult Canadians who give the
prime minister a favorable rating is 56%. Then the Gallup organization, which pre-
dicted 53%, had a sampling error of 53% − 56% = −3%. The Harris organiza-
tion, which predicted 58%, had a sampling error of 58% − 56% = 2%. In practice,
the sampling error is unknown, because the values of population parameters are
unknown.

Random sampling protects against bias, in the sense that the sampling error
tends to fluctuate about 0, sometimes being positive (as in the Harris Poll) and some-
times being negative (as in the Gallup Poll). Random sampling also allows us to pre-
dict the likely size of the sampling error. For sample sizes of about 1000, we’ll see
that the sampling error for estimating percentages is usually no greater than plus or
minus 3%. This bound is the margin of error. Variability also occurs in the values of
sample statistics with nonrandom sampling, but the extent of the sampling error is
not predictable as it is with random sampling.

SAMPLING BIAS: NONPROBABILITY SAMPLING

Other factors besides sampling error can cause results to vary from sample to sample.
These factors can also possibly cause bias. We next discuss three types of bias. The
first is called sampling bias.

For simple random sampling, each possible sample of n subjects has the same
probability of selection. This is a type of probability sampling method, meaning that
the probability any particular sample will be selected is known. Inferential statistical
methods assume probability sampling. Nonprobability sampling methods are ones
for which it is not possible to determine the probabilities of the possible samples.
Inferences using such samples have unknown reliability and result in sampling bias.

The most common nonprobability sampling method is volunteer sampling. As
the name implies, subjects volunteer for the sample. But the sample may poorly
represent the population and yield misleading conclusions. Examples of volunteer
sampling are visible daily on Internet sites and television news programs. Viewers
register their opinions on an issue by voting over the Internet. The viewers who re-
spond are unlikely to be a representative cross section, but will be those who can eas-
ily access the Internet and who feel strongly enough to respond. Individuals having
a particular opinion might be much more likely to respond than individuals having
a different opinion. For example, one night the ABC TV program Nightline asked
viewers whether the United Nations should continue to be located in the United
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States. Of more than 186,000 respondents, 67% wanted the United Nations out of
the United States. At the same time, a poll using a random sample of about 500 re-
spondents estimated the population percentage to be about 28%. Even though the
random sample had a much smaller size, it is far more trustworthy.

A large sample does not help with volunteer sampling—the bias remains. In
1936, the newsweekly Literary Digest sent over 10 million questionnaires in the mail
to predict the outcome of the presidential election. The questionnaires went to a
relatively wealthy segment of society (those having autos or telephones), and fewer
than 25% were returned. The journal used these to predict an overwhelming victory
by Alfred Landon over Franklin Roosevelt. The opposite result was predicted by
George Gallup with a much smaller sample in the first scientific poll taken for this
purpose. In fact, Roosevelt won in a landslide.

The sampling bias inherent in volunteer sampling is also called selection bias.
It is problematic to evaluate policies and programs when individuals can choose
whether or not to participate in them. For example, if we were evaluating a program
such as Head Start in which participation is partly based on a parental decision, we
would need to consider how family background variables (such as mother’s educa-
tional level) could play a role in that decision and in the outcome evaluated.

Unfortunately, volunteer sampling is sometimes unavoidable, especially in medical
studies. Suppose a study plans to investigate how well a new drug performs compared to
a standard drug, for subjects who suffer from high blood pressure. The researchers are
not going to be able to find a sampling frame of all who suffer from high blood pressure
and take a simple random sample of them. They may, however, be able to sample
such subjects at certain medical centers or using volunteers. Even then, randomization
should be used wherever possible. For the study patients, the researchers can randomly
select who receives the new drug and who receives the standard one.

Even with random sampling, sampling bias can occur. One case is when the sam-
pling frame suffers from undercoverage: It lacks representation from some groups in
the population. A telephone survey will not reach prison inmates or homeless people,
whereas families that have many phones will tend to be over-represented. Responses
by those not having a telephone might tend to be quite different from those actually
sampled, leading to biased results. About 21% of adults are under age 30, yet only
5% of the population having a landline phone are under age 30, so substantial bias
could occur if we sampled only landlines.1 Likewise there would be bias if we sam-
pled only cell phones, because adults who have only a cell phone tend to be younger,
poorer, more likely to be renters, to live with unrelated adults, and to be Hispanic
than those who also have a landline phone.

RESPONSE BIAS

In a survey, the way a question is worded or asked can have a large impact on the re-
sults. For example, when a New York Times/CBS News poll asked whether the inter-
viewee would be in favor of a new gasoline tax, only 12% said yes. When the tax was
presented as reducing U.S. dependence on foreign oil, 55% said yes, and when asked
about a gas tax that would help reduce global warming, 59% said yes.2

Poorly worded or confusing questions result in response bias. Even the order in
which questions are asked can influence the results dramatically. During the Cold
War, a study asked, “Do you think the U.S. should let Russian newspaper reporters
come here and send back whatever they want?” and “Do you think Russia should
let American newspaper reporters come in and send back whatever they want?” The

1 See http://magazine.amstat.org/blog/2014/10/01/prescolumnoct14.
2 Column by T. Friedman, New York Times, March 2, 2006.

http://magazine.amstat.org/blog/2014/10/01/prescolumnoct14
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percentage of yes responses to the first question was 36% when it was asked first and
73% when it was asked second.3

In an interview, characteristics of the interviewer may result in response bias.
Respondents might lie if they think their belief is socially unacceptable. They may
be more likely to give the answer that they think the interviewer prefers. In a study
on the effect of the interviewer’s race, following a phone interview, respondents were
asked whether they thought the interviewer was black or white (all were actually black).
Perceiving a white interviewer resulted in more conservative opinions. For example, 14%
agreed that ‘‘American society is fair to everyone’’ when they thought the interviewer
was black, but 31% agreed to this when they thought the interviewer was white.4

NONRESPONSE BIAS: MISSING DATA

Some subjects who are selected for the sample may refuse to participate, or it may not
be possible to reach them. This results in nonresponse bias. If only half the intended
sample was actually observed, we should worry about whether the half not observed
differ from those observed in a way that causes biased results. Even if we select the
sample randomly, the results are questionable if there is substantial nonresponse, say,
over 20%.

For her book Women in Love, author Shere Hite surveyed women in the United
States. One of her conclusions was that 70% of women who had been married at
least five years have extramarital affairs. She based this conclusion on responses to
questionnaires returned by 4500 women. This sounds like an impressively large sam-
ple. However, the questionnaire was mailed to about 100,000 women. We cannot
know whether the 4.5% of the women who responded were representative of the
100,000 who received the questionnaire, much less the entire population of Ameri-
can women. This makes it dangerous to make an inference to the larger population.

A problem in many studies is missing data: Some subjects do not provide re-
sponses for some of the variables measured. This problem is especially common in
studies that observe people over time (called longitudinal studies), as some people
may drop out of the study for various reasons. Even in censuses, which are designed
to observe everyone in a country, some people are not observed or fail to cooper-
ate. A statistical analysis that ignores cases for which some observations are missing
wastes information and has possible bias.

SUMMARY OF TYPES OF BIAS

In summary, sample surveys have potential sources of bias:

• Sampling bias occurs from using nonprobability samples, such as the selection
bias inherent in volunteer samples.

• Response bias occurs when the subject gives an incorrect response (perhaps
lying), or the question wording or the way the interviewer asks the questions is
confusing or misleading.

• Nonresponse bias occurs when some sampled subjects cannot be reached or
refuse to participate or fail to answer some questions.

These sources of bias can also occur in observational studies other than sample
surveys and even in experiments. In any study, carefully assess the scope of conclu-
sions. Evaluate critically the conclusions by noting the makeup of the sample. How

3 See Crossen (1994).
4 Washington Post, June 26, 1995.
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was the sample selected? How large was it? How were the questions worded or the
variables measured? Who sponsored and conducted the research? The less informa-
tion that is available, the less you should trust it.

Finally, be wary of any study that makes inferences to a broader population than
is justified by the sample chosen. Suppose a psychologist performs an experiment
using a random sample of students from an introductory psychology course. With
statistical inference, the sample results generalize to the population of all students in
the class. For the results to be of wider interest, the psychologist might claim that the
conclusions extend to all college students, to all young adults, or even to all adults.
These generalizations may well be wrong, because the sample may differ from those
populations in fundamental ways, such as in average age or socioeconomic status.

2.4 Other Probability Sampling Methods∗

Section 2.2 introduced simple random sampling and explained its importance to
statistical inference. In practice, other probability sampling methods that utilize ran-
domization can be simpler to obtain.

SYSTEMATIC RANDOM SAMPLING

Systematic random sampling selects a subject near the beginning of the sampling
frame list, skips names and selects another subject, skips names and selects the next
subject, and so forth. The number of names skipped at each stage depends on the
chosen sample size. Here’s how it is done:

Systematic Random Sample

Denote the sample size by n and the population size by N. Let k = N/n, the
population size divided by the sample size. A systematic random sample
(1) selects a subject at random from the first k names in the sampling frame,
and (2) selects every kth subject listed after that one. The number k is called
the skip number.

Suppose you want a systematic random sample of 100 students from a population
of 30,000 students listed in a campus directory. Then, n = 100 and N = 30,000, so
k = 30,000/100 = 300. The population size is 300 times the sample size, so you
need to select one of every 300 students. You select one student at random, using
random numbers, from the first 300 students in the directory. Then you select every
300th student after the one selected randomly. This produces a sample of size 100.
For example, suppose the random number you choose between 001 and 300 is 104.
Then, the numbers of the students selected are 104, 104 + 300 = 404, 404 + 300 =
704, 704 + 300 = 1004, 1004 + 300 = 1304, and so on. The 100th student selected is
listed in the last 300 names in the directory.

Systematic random sampling typically provides as good a representation of the
population as simple random sampling, because for alphabetic listings such as direc-
tories of names, values of most variables fluctuate randomly through the list. With
this method, statistical formulas based on simple random sampling are usually valid.

A systematic random sample is not a simple random sample, because all samples of
size n are not equally likely. For instance, unlike in a simple random sample, two subjects
listed next to each other on the sampling frame list cannot both appear in the sample.

STRATIFIED RANDOM SAMPLING

Another probability sampling method, useful in social science research for studies
comparing groups, is stratified sampling.
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Stratified Random Sample A stratified random sample divides the population into separate groups,
called strata, and then selects a simple random sample from each stratum.

Suppose a study in Cambridge, Massachusetts, plans to compare the opinions of
registered Democrats and registered Republicans about whether government should
guarantee health care to all citizens. Stratifying according to political party registra-
tion, the study selects a random sample of Democrats and another random sample
of Republicans.

Stratified random sampling is called proportional if the sampled strata propor-
tions are the same as those in the entire population. For example, in the study of
opinions about health care, if 90% of registered voters in Cambridge are Democrats
and 10% are Republicans, then the sampling is proportional if the sample size for
Democrats is nine times the sample size for Republicans.

Stratified random sampling is called disproportional if the sampled strata pro-
portions differ from the population proportions. This is useful when the population
size for a stratum is relatively small. A group that comprises a small part of the popu-
lation may not have enough representation in a simple random sample to allow pre-
cise inferences. It is not possible to compare accurately Republicans to Democrats,
for example, if only 10 people in a sample of size 100 are Republican. By contrast, a
disproportional stratified sample of size 100 might randomly sample 50 of each party.

To implement stratification, we must know the stratum into which each subject
in the sampling frame belongs. This usually restricts the variables that can be used
for forming the strata. The variables must have strata that are easily identifiable.
For example, it would be easy to select a stratified sample of a school population
using grade level as the stratification variable, but it would be difficult to prepare an
adequate sampling frame of city households stratified by household income.

CLUSTER SAMPLING

Simple, systematic, and stratified random sampling are often difficult to implement,
because they require a complete sampling frame. Such lists are easy to obtain for
sampling cities or hospitals or schools, but more difficult for sampling individuals or
families. Cluster sampling is useful when a complete listing of the population is not
available.

Cluster Random Sample
Divide the population into a large number of clusters, such as city blocks.
Select a simple random sample of the clusters. Use the subjects in those
clusters as the sample.

For example, a study might sample about 1% of the families in a city, using city
blocks as clusters. Using a map to identify city blocks, it could select a simple random
sample of 1% of the blocks and then sample every family on each block. A study of
patient care in mental hospitals in Ontario could first sample mental hospitals (the
clusters) in that province and then collect data for patients within those hospitals.

What’s the difference between a stratified sample and a cluster sample? A strat-
ified sample uses every stratum. The strata are usually groups we want to compare.
By contrast, a cluster sample uses a sample of the clusters, rather than all of them.
In cluster sampling, clusters are merely ways of easily identifying groups of subjects.
The goal is not to compare the clusters but rather to use them to obtain a sample.
Most clusters are not represented in the eventual sample.

Figure 2.2 illustrates the distinction among sampling subjects (simple ran-
dom sample), sampling clusters of subjects (cluster random sample), and sampling
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subjects from within strata (stratified random sample). The figure depicts ways to
survey 40 students at a school, to make comparisons among Freshmen, Sophomores,
Juniors, and Seniors.

Simple Random Cluster Stratified

Fresh. Soph. Jnr. Snr.

FIGURE 2.2: Ways of
Randomly Sampling 40
Students. The figure is a
schematic for a simple
random sample, a cluster
random sample of 8
clusters of students who
live together, and a
stratified random sample of
10 students from each class
(Fresh., Soph., Jnr., Snr.).

MULTISTAGE SAMPLING

When conducting a survey for predicting elections, the Gallup organization often
identifies election districts as clusters and takes a simple random sample of them.
But then it also takes a simple random sample of households within each selected
election district. This is more feasible than sampling every household in the chosen
districts. This is an example of multistage sampling, which uses combinations of
sampling methods.

Here is an example of a multistage sample:

• Treat counties (or census tracts) as clusters and select a random sample of a
certain number of them.

• Within each county selected, take a cluster random sample of square-block re-
gions.

• Within each region selected, take a systematic random sample of every 10th
house.

• Within each house selected, select one adult at random for the sample.

Multistage samples are common in social science research. They are simpler to
implement than simple random sampling but provide a broader sampling of the pop-
ulation than a single method such as cluster sampling.

For statistical inference, stratified samples, cluster samples, and multistage sam-
ples use different formulas from the ones in this book. Cluster sampling requires a
larger sample to achieve as much inferential precision as simple random sampling.
Observations within clusters tend to be similar, because of the tendency of subjects
living near one another to have similar values on opinion issues and on economic and
demographic variables such as age, income, race, and occupation. So, we need more
data to obtain a representative cross section. By contrast, the results for stratified
sampling may be more precise than those stated in this textbook for simple random
sampling. Books specializing in sampling methodology provide further details (Lohr,
2009; Scheaffer et al., 2011; Thompson, 2012).

2.5 Chapter Summary
Statistical methods analyze data on variables, which are characteristics that vary
among subjects. The statistical methods we can use depend on the type of variable:
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• Numerically measured variables, such as family income and number of children
in a family, are quantitative. They are measured on an interval scale.

• Variables taking in a set of categories are categorical. Those measured with
unordered categories, such as religious affiliation and province of residence,
have a nominal scale. Those measured with ordered categories, such as social
class and political ideology, have an ordinal scale of measurement.

• Variables are also classified as discrete, having possible values that are a set of
separate numbers (such as 0, 1, 2, . . . ), or continuous, having a continuous, in-
finite set of possible values. Categorical variables, whether nominal or ordinal,
are discrete. Quantitative variables can be of either type, but in practice are
treated as continuous if they can take a large number of values.

Inferential statistical methods require probability samples, which incorporate
randomization in some way. Random sampling allows control over the amount of
sampling error, which describes how results can vary from sample to sample. Ran-
dom samples are much more likely to be representative of the population than are
nonprobability samples such as volunteer samples.

• For a simple random sample, every possible sample has the same chance of
selection.

• Here are other types of probability sampling: Systematic random sampling
takes every kth subject in the sampling frame list. Stratified random sampling
divides the population into groups (strata) and takes a random sample from
each stratum. Cluster random sampling takes a random sample of clusters of
subjects (such as city blocks) and uses subjects in those clusters as the sample.
Multistage sampling uses combinations of these methods.

Some social science research studies are experimental, with subjects randomly
assigned to different treatments that we want to compare. Most studies, such as sam-
ple surveys, are observational. They use available subjects in a sample to observe
variables of interest, without any experimental control for randomly assigning sub-
jects to groups we want to compare. We need to be very cautious in making causal
conclusions based on inferential analyses with data from observational studies.

Chapter 3 introduces statistics for describing samples and corresponding param-
eters for describing populations. Hence, its focus is on descriptive statistics.

Exercises

Practicing the Basics
2.1. Explain the difference between

(a) quantitative and qualitative variables.
(b) interval scale and ordinal scale.
(c) experiment and survey.

2.2. Identify each variable as categorical or quantitative:

(a) Level of education (high school, bachelor’s, master’s).
(b) Number of times married.
(c) Hair color.
(d) Preferred type of exercise.
(e) Type of residence (rented apartment, owned apart-
ment, rented house, owned house).

(f) Number of household members.
(g) Height.
(h) Field of study (humanities, social sciences, natural
sciences).
(i) Number of close friends.

2.3. Which scale of measurement (nominal, ordinal, or
interval) is most appropriate for

(a) City of residence?
(b) Number of people you have known who have had lung
cancer (0, 1, 2, 3, or more)?
(c) Temperature (Celsius)?
(d) Eye color (brown, black, blue, hazel, etc.)?
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(e) Attitude toward paid paternity leave (favor, neutral,
oppose)?
(f) Satisfaction with salary (very satisfied, somewhat sat-
isfied, somewhat unsatisfied, very unsatisfied)?
(g) Home ownership (yes/no)?
(h) Rating of cell phone service (awful, poor, neutral,
good, great)?
(i) Marital status (married, divorced, single, widowed)?
(j) Number of pets (0, 1, 2, or more)?
(k) Industry of employment (healthcare, technology,
education, any other)?

2.4. Which scale of measurement is most appropriate for

(a) Subjects in a course (French, Spanish, German, . . .)?
(b) Relationship status (single, married, divorced, wid-
owed, . . .)?
(c) Time taken per trial (between 0 and 10 seconds)?
(d) Statewide female birth rate (per 1000 population)?
(e) Headcount of employees in a company?
(f) Number of books read in past one year?
(g) Attitude toward climate change (unconcerned,
slightly concerned, very concerned)?
(h) College dropout rate (in percentage)?
(i) Mental health status (poor, average, good)?
(j) Score on a job involvement questionnaire (scores be-
tween 20 and 100)?

2.5. Which scale of measurement is most appropriate for
“personal characteristics of children” measured as

(a) Height and weight of child?
(b) Developmental milestone (rolling over, sitting with
support, crawling, . . .)?
(c) Color of eyes (brown, green, blue, . . .)?

2.6. Identify the following variables as categorical or
quantitative, and as continuous or discrete.

(a) Gender (male, female)
(b) Number of siblings
(c) Age
(d) IQ
(e) Favorite film genre
(f) Employment status (yes, no)
(g) Annual income

2.7. A study conducted by YouGov (yougov.com) asked
people from different countries from around the world,
“Which of the following best describes the way you feel
about your country?” The response choices were best in
the world, better than most other countries, as good as most
other countries, not as good as most other countries, and
worst in the world.

(a) What scale of measurement has been used in the
study?
(b) What method of data collection has been used in the
study?
(c) Thirty-five percent of the Australian sample rated
their country as the best in the world as compared to the
French sample, where only 5% rated their country as best
in the world. Are these values discrete or continuous?

2.8. A researcher decides to use the experimental method
to see the effectiveness of a new teaching method on the
achievement scores of subjects. Two groups are formed,
that is, the experimental group (those who receive train-
ing using the new teaching method) and the control group
(those who receive training using the usual method). Af-
ter six months, an achievement test is administered on the
subjects in the two groups. The scores on the test range
from 0 to 100. What scale of measurement is used to mea-
sure the achievement scores of the subjects? Why?

2.9. Identify which of the following variables are discrete
and which would be measured on a continuous scale.
(a) Level of education
(b) Favorite type of music
(c) Annual income
(d) Religious affiliation
(e) Number of family members
(f) Finish time for a marathon
(g) Distance traveled to work

2.10. Which of the following variables are both discrete
and quantitative?
(a) Number of records sold
(b) Time to swim 200 meters
(c) Occupation
(d) Number of years employed
(e) Age when first married
(f) Student population
(g) Cups of coffee consumed per day

2.11. Select the telephone numbers of at least 30 people
you know. Number these telephone numbers from 1 to 30.
Using a statistical software, create a table of random num-
bers and draw a random sample of five telephone numbers
from the total list. What were the numbers selected?

2.12. Make a list of the total number of states/districts in
your country. Suppose you have to draw a sample of three
states randomly. What are the steps involved in drawing a
random sample without a statistical software?

2.13. Explain whether you would conduct an experiment
or an observational study for the following scenarios. Jus-
tify your reasoning.
(a) Whether or not enrollment in a preparatory program
improves student retention rates.
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(b) Whether public transport or carpooling provides a
shorter commute time.
(c) Whether or not a new drug helps individuals manage
anxiety.
(d) Whether or not students who participate in music ed-
ucation have higher GPAs.

2.14. A study is planned about whether playing violent
video games before the age of 10 has an impact on an-
tisocial behavior.

(a) One possible study would take a sample of children
under 10 and randomly select half of them to play vio-
lent video games, while the other half would not be ex-
posed. Then 10 years later the researchers would observe
whether each child had developed antisocial behavior.
Would this study be experimental or observational? Why?
(b) What do you see as possible problems with the study
in (a)? How would you redesign the study to make it
feasible?

2.15. Table 2.2 shows the result of the 2012 Presidential
election and the predictions of several organizations in the
days before the election. The sample sizes were typically
about 2000. (The percentages for each poll do not sum to
100 because of voters reporting as undecided or favoring
another candidate.)

(a) What factors cause the results to vary somewhat
among organizations?
(b) Identify the sampling error for the Gallup Poll.

TABLE 2.2

Predicted Vote

Poll Obama Romney

Gallup 49 50
CNN/Opinion Research 49 49
ABC/Washington Post 50 47
Rasmussen Reports 48 49
NBC/Wall Street Journal 48 47
Pew Research 50 47
Actual vote 51.1 47.2

Source: www.realclearpolitics.com.

2.16. Identify the type of sampling bias in each of the fol-
lowing studies. Explain.

(a) A graduate student is researching TV viewing habits.
She posts a link to her questionnaire on her social media
sites and receives 46 responses.
(b) Educational researchers want to examine the effec-
tiveness of an after-school enrichment program. The pro-
gram is optional, with parents deciding whether or not
to enroll their children. At the end of the program, re-
searchers test the children participating in the program.

2.17. A national polling organization surveyed 1751 indi-
viduals to investigate their opinion on public transportation

services. One question in the survey was: “How happy or
unhappy are you with current national highway tolls and
the national railway service?” When calculating the re-
sults, the polling organization had to eliminate the ques-
tion. Use this example to explain the concept of response
bias.

2.18. A farmhouse has a population of 5067 animals. A re-
searcher is keen to study the effect of a drug on the milk
production of cows.

(a) How will the researcher select a sample of 10 cows
from the farmhouse with a population of 560 cows? Ex-
plain the steps using systematic random sampling.
(b) Suppose in the population of 560 cows, 280 cows are
black and 280 are white. How will the researcher draw a
sample of 100 cows using proportional stratified random
sampling?

2.19. You plan to sample from the 6000 students at a col-
lege to compare the proportions of men and women who
believe that capital punishment should be abolished. Ex-
plain how you would proceed if you want a systematic ran-
dom sample of 200 students.

2.20. You plan to sample from the 15,000 students en-
rolled at your university to compare the proportions of
medical students and law students who believe that social
media has a positive impact on their lives.

(a) Suppose that you use random numbers to select stu-
dents but you stop selecting law students as soon as you
have 30, and you stop selecting biology students as soon
as you have 30. Is the resulting sample a simple random
sample? Why or why not?
(b) What type of sample is the sample in (a)? What is
the advantage of using this type of sampling compared to
other sampling methods?

2.21. In stratified random sampling, what is the difference
between a proportional and a disproportional stratified
random sample?

(a) Which sampling method combines different sampling
techniques?
(b) Which type of sampling is best when a complete list of
population is not available?

Concepts and Applications
2.22. Refer to the Students data file introduced in Ex-
ercise 1.11 (page 21). For each variable in the data set, in-
dicate whether it is

(a) Categorical or quantitative.
(b) Nominal, ordinal, or interval.

2.23. Repeat the previous exercise for the data file created
in Exercise 1.12 (page 22).

2.24. You are directing a research to study different as-
pects of the refugee crisis.

http://www.realclearpolitics.com
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(a) Give at least two research problems that you would
like to study.
(b) What will be the characteristics of the sample that you
wish to study? How will you measure the variables?
(c) What will be your choice of method to draw a sample
for your study? Why?

2.25. A researcher wants to study the opinions of peo-
ple about social media. For this, the researcher takes into
consideration all the states/districts of his/her country and
calls them clusters. Further, a simple random sample is
drawn from the clusters listed. What could be the possible
advantage of using this kind of sampling technique? How
is this method different from stratified random sampling?

2.26. A social psychology website conducts a survey on-
line using the volunteer sampling method. The survey col-
lects information about a newly launched clothing brand.
It asks the subjects, “Would you rate this brand as the best
in the market?” Explain briefly what volunteer sampling
is. Discuss selection bias and undercoverage as the two
outcomes of volunteer sampling.

2.27. In each of the following situations, evaluate whether
the method of sample selection is appropriate for obtain-
ing information about the population of interest. How
would you improve the sample design?

(a) A TV talent show with a viewership of 2 million wants
to find out whether viewers prefer to have a one-hour fi-
nal episode or a two-hour final episode. Viewers are in-
vited to call in and vote for their preference. A total of
20000 viewers voluntarily call in and 86% indicate a pref-
erence for a two-hour finale. Based on the viewers’ input,
the producers arrange to have a two-hour finale.
(b) A voluntary suggestion box at a museum receives
374 entries. In the suggestion box, one out of every four
entries is a complaint about the museum’s no-camera
policy. The museum’s administrators determine that
75% of museum attendees find the no-camera policy
acceptable.
(c) A university student council conducts a student sat-
isfaction survey about catering services. Two representa-
tives from the council survey students as they are entering
the cafeteria. After surveying 100 students from a total
population of 3000, they find that 76% students are satis-
fied or very satisfied with cafeteria services.
(d) A graduate student e-mails a survey about dieting
to the entire student body (3000). She receives 121 re-
sponses. After compiling her data, she reports that her
data represents a “simple random sample of the student
body.”
(e) A school district wants to examine the impact of
sedentary behavior on academic performance. The total
number of students in the district is spread across five
schools. The research team lists all of the grade levels,
assigning a number to each. Then using a random num-
ber table, they select a grade at random and survey every

student in that grade about their level of activity and com-
pare this level to their academic performance.

2.28. A researcher wants to analyze the relation between
months in a year and the rate of depression among people.
The study aims to see whether certain months report more
number of cases of depression. The sampling frame con-
sists of number of depression cases for each month for the
past five years. What can be a potential problem in using
systematic sampling with a skip number 12 or a multiple
of 12?

2.29. Why might a researcher choose to use a systematic
random sample? Explain.

2.30. With a total sample size of 150, you want to compare
the study techniques of students majoring in engineering
to other students at your university. What would be the
best way to sample your study? Why?

2.31. Explain with an example the steps involved in multi-
stage sampling. How is it different from cluster sampling?

2.32. Look for websites on social surveys on the Internet
like the General Social Survey (GSS), World Values Sur-
vey, World Economic Forum, etc. Find three studies from
different domains and report the following:

(a) The variables used in the studies and their scale of
measurement.
(b) The sampling method used.
(c) The result of the study (descriptive or inferential?).

2.33. To sample residents of registered nursing homes in
Yorkshire, UK, I construct a list of all nursing homes in
the county, which I number from 1 to 110. Beginning ran-
domly, I choose every 10th home on the list, ending up
with 11 homes. I then obtain lists of residents from those
11 homes, and I select a simple random sample from each
list. What kinds of sampling have I used?

For multiple-choice questions 2.34–2.37, select the best re-
sponse.

2.34. A simple random sample of size n is one in which

(a) Every nth member is selected from the population.
(b) Each possible sample of size n has the same chance of
being selected.
(c) There must be exactly the same proportion of women
in the sample as is in the population.
(d) You keep sampling until you have a fixed number
of people having various characteristics (e.g., males, fe-
males).
(e) A particular minority group member of the popula-
tion is less likely to be chosen than a particular majority
group member.
(f) All of the above.
(g) None of the above.
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2.35. If we use random numbers to take a simple random
sample of 50 students from the 3500 undergraduate stu-
dents at the University of Rochester,

(a) It is impossible to get the random number 1111, be-
cause it is not a random sequence.
(b) If we get 2001 for the first random number, for the
second random number that number is less likely to occur
than the other possible four-digit random numbers.
(c) The draw 1234 is no more or less likely than the draw
1111.
(d) Since the sample is random, it is impossible that it will
be non representative, such as having only females in the
sample.

2.36. An analysis5 of published medical studies involving
treatments for heart attacks noted that in the studies
having randomization and strong controls for bias, the new
therapy provided improved treatment 9% of the time. In
studies without randomization or other controls for bias,
the new therapy provided improved treatment 58% of
the time. For each of the following conclusions, state true
or false.

(a) This result suggests it is better not to use randomiza-
tion in medical studies, because it is harder to show that
new ideas are beneficial.
(b) Many newspaper articles that suggest that a particu-
lar food, drug, or environmental agent is harmful or ben-
eficial should be viewed skeptically, unless we learn more
about the statistical design and analysis for the study.
(c) This result suggests that you should be skeptical about
published results of medical studies that are not random-
ized, controlled studies.
(d) Controlling for biases, both suspected and unsus-
pected, is necessary in medical research but not in social

research, because the social sciences deal in subjective
rather than objective truth.

2.37. Keeping in mind the importance of survey design
and wording, you want to investigate the percentage of
students who have cheated in exams and assignments.
From your random sample of 1478 students from a total
student population of 10000, the percentage that admits
to cheating is 28%. Why might this percentage be unrep-
resentative?
(a) Responses can depend greatly on the wording of the
questions.
(b) Surveys sample only a small part of the population
and can never be trusted.
(c) The sample may not have been randomly selected.
(d) The sample may have had problems with bias result-
ing from subjects not telling the truth.

2.38. Explain how voluntary surveys may not represent a
random sample.

2.39. A national news network asks viewers to call in to
participate in a poll about whether or not viewers believe
crime has increased over the past five years. About 10000
viewers call in, with 72% reporting that they believe
crime has increased. True or false: Since everyone had a
chance to call, this was a simple random sample of the na-
tional population. Explain. What could make the sample
random?

2.40.∗ An interval scale for which ratios are valid is called a
ratio scale. Such scales have a well-defined 0 point, so, for
instance, one can regard the value 20 as twice the quantity
of the value 10. Explain why annual income is measured
on a ratio scale, but temperature (in Fahrenheit or Centi-
grade) is not. Is IQ, as a measure of intelligence, a ratio-
scale variable? Explain.

5 Source: Crossen (1994, p. 168).
∗ Exercises marked with an asterisk are of greater difficulty or else introduce new and optional material.
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W e’ve seen that statistical methods are descriptive or inferential. The purpose of descriptive
statistics is to summarize data, to make it easier to assimilate the information. This chapter

presents basic methods of descriptive statistics.
We first present tables and graphs that describe the data by showing the number of times var-

ious outcomes occurred. Quantitative variables also have two key features to describe numerically:

• The center of the data—a typical observation.

• The variability of the data—the spread around the center.

Most importantly, the mean describes the center and the standard deviation describes the
variability.

The final section introduces descriptive statistics that investigate, for a pair of variables, their
association—how certain values for one variable may tend to go with certain values of the other.
For quantitative variables, the correlation describes the strength of the association, and regression
analysis predicts the value of one variable from a value of the other variable.

3.1 Describing Data with Tables and Graphs
Tables and graphs are useful for all types of data. We’ll begin with categorical
variables.

RELATIVE FREQUENCIES: CATEGORICAL DATA

For categorical variables, we list the categories and show the number of observa-
tions in each category. To make it easier to compare different categories, we also
report proportions or percentages in the categories, also called relative frequencies.
The proportion equals the number of observations in a category divided by the total
number of observations. It is a number between 0 and 1 that expresses the share of
the observations in that category. The percentage is the proportion multiplied by 100.
The sum of the proportions equals 1.00. The sum of the percentages equals 100.

Example
3.1

Household Structure in the United States Table 3.1 lists the different types of house-
holds in the United States in 2015. Of 116.3 million households, for example, 23.3
million were a married couple with children, for a proportion of 23.3/116.3 = 0.20.

A percentage is the proportion multiplied by 100. That is, the decimal place is
moved two positions to the right. For example, since 0.20 is the proportion of families
that are married couples with children, the percentage is 100(0.20) = 20%. Table 3.1

41
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TABLE 3.1: U.S. Household Structure, 2015

Type of Family Number (millions) Proportion Percentage (1970)

Married couple with children 23.3 0.20 20 (40)
Married couple, no children 33.7 0.29 29 (30)
Women living alone 17.4 0.15 15 (11)
Men living alone 14.0 0.12 12 (6)
Other family households 20.9 0.18 18 (11)
Other nonfamily households 7.0 0.06 6 (2)

Total 116.3 1.00 100 (100)

Source: U.S. Census Bureau; percentages from 1970 in parentheses.

also shows the percentages (in parentheses) from the year 1970. We see a substantial
drop since 1970 in the relative number of married couples with children.

FREQUENCY DISTRIBUTIONS AND BAR GRAPHS:
CATEGORICAL DATA

A table, such as Table 3.1, that lists the categories and their numbers of observations
is called a frequency distribution.

Frequency Distribution A frequency distribution is a listing of possible values for a variable,
together with the number of observations at each value.

When the table shows the proportions or percentages instead of the numbers, it is
called a relative frequency distribution.

To more easily get a feel for the data, it is helpful to look at a graph of the fre-
quency distribution. A bar graph has a rectangular bar drawn over each category.
The height of the bar shows the frequency or relative frequency in that category. Fig-
ure 3.1 is a bar graph for the data in Table 3.1. The bars are separated to emphasize
that the variable is categorical rather than quantitative. Since household structure
is a nominal variable, there is no particular natural order for the bars. The order of
presentation for an ordinal variable is the natural ordering of the categories.

0.0

0.1

0.2

0.3Relative
frequency
of household
structure

Married,
with

children

Married,
no

children

Women
living
alone

Men
living
alone

Other family
house-
holds

Other
nonfamily

households

FIGURE 3.1: Bar Graph
of Relative Frequency
Distribution of U.S.
Household Types
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Another type of graph, the pie chart, is a circle having a “slice of the pie” for each
category. The size of a slice represents the percentage of observations in the category.
A bar graph is more precise than a pie chart for visual comparison of categories with
similar relative frequencies.

FREQUENCY DISTRIBUTIONS: QUANTITATIVE DATA

Frequency distributions and graphs also are useful for quantitative variables. The
next example illustrates this.

Example
3.2

Statewide Violent Crime Rates Table 3.2 lists all 50 states in the United States and
their 2015 violent crime rates. This rate measures the number of violent crimes in
that state per 10,000 population. For instance, if a state had 12,000 violent crimes
and a population size of 2,300,000, its violent crime rate was (12,000/2,300,000) ×
10,000 = 52. Tables, graphs, and numerical measures help us absorb the information
in these data.

TABLE 3.2: List of States with 2015 Violent Crime Rates Measured as
Number of Violent Crimes per 10,000 Population

Alabama 43 Louisiana 52 Ohio 29
Alaska 64 Maine 13 Oklahoma 44
Arizona 42 Maryland 47 Oregon 25
Arkansas 46 Massachusetts 41 Pennsylvania 34
California 40 Michigan 45 Rhode Island 26
Colorado 31 Minnesota 23 South Carolina 51
Connecticut 26 Mississippi 27 South Dakota 32
Delaware 49 Missouri 43 Tennessee 59
Florida 47 Montana 25 Texas 41
Georgia 37 Nebraska 26 Utah 22
Hawaii 25 Nevada 60 Vermont 12
Idaho 22 New Hampshire 22 Virginia 20
Illinois 38 New Jersey 29 Washington 29
Indiana 36 New Mexico 61 West Virginia 30
Iowa 27 New York 39 Wisconsin 28
Kansas 34 North Carolina 34 Wyoming 21
Kentucky 21 North Dakota 27

Source: www.fbi.gov; data are in Crime data file at text website.

To summarize the data with a frequency distribution, we divide the measurement
scale for violent crime rate into a set of intervals and count the number of observa-
tions in each interval. Here, we use the intervals {0–9, 10–19, 20–29, 30–39, 40–49,
50–59, 60–69}. Table 3.3 (page 44) shows that considerable variability exists in the
violent crime rates.

Table 3.3 also shows the relative frequencies, using proportions and percentages.
As with any summary method, we lose some information as the cost of achieving
some clarity. The frequency distribution does not show the exact violent crime rates
or identify which states have low or high rates.

The intervals of values in frequency distributions are usually of equal width. The
width equals 10 in Table 3.3. The intervals should include all possible values of the
variable. In addition, any possible value must fit into one and only one interval; that
is, they should be mutually exclusive.

http://www.fbi.gov
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TABLE 3.3: Frequency Distribution and Relative Frequency
Distribution for Violent Crime Rates

Violent Crime Rate Frequency Proportion Percentage

0–9 0 0.00 0
10–19 2 0.04 4
20–29 20 0.40 40
30–39 10 0.20 20
40–49 12 0.24 24
50–59 3 0.06 6
60–69 3 0.06 6

Total 50 1.00 100.0

HISTOGRAMS

A graph of a frequency distribution for a quantitative variable is called a histogram.
Each interval has a bar over it, with height representing the number of observations
in that interval. Figure 3.2 is a histogram for the violent crime rates, as constructed
by R software.

FIGURE 3.2: Histogram
of Frequencies for Violent
Crime Rates

Choosing intervals for frequency distributions and histograms is primarily a mat-
ter of common sense. If too few intervals are used, too much information is lost. If
too many intervals are used, they are so narrow that the information presented is
difficult to digest, and the histogram may be irregular and the overall pattern of the
results may be obscured. Ideally, two observations in the same interval should be sim-
ilar in a practical sense. To summarize annual income, for example, if a difference of
$5000 in income is not considered practically important, but a difference of $15,000
is notable, we might choose intervals of width less than $15,000, such as $0–$9999,
$10,000–$19,999, $20,000–$29,999, and so forth.

For a discrete variable with relatively few values, a histogram has a separate bar
for each possible value. For a continuous variable or a discrete variable with many
possible values, you need to divide the possible values into intervals, as we did with
the violent crime rates. Statistical software can automatically choose intervals for us
and construct frequency distributions and histograms.
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STEM-AND-LEAF PLOTS

Figure 3.3 shows an alternative graphical representation of the violent crime rate
data. This figure, called a stem-and-leaf plot, represents each observation by its lead-
ing digit(s) (the stem) and by its final digit (the leaf ). Each stem is a number to the
left of the vertical bar and a leaf is a number to the right of it. For instance, on the
first line, the stem of 1 and the leaves of 2 and 3 represent the violent crime rates 12
and 13. The plot arranges the leaves in order on each line, from smallest to largest.

Stem Leaf

1 2 3
2 0 1 1 2 2 2 3 5 5 5 6 6 6 7 7 7 8 9 9 9
3 0 1 2 4 4 4 6 7 8 9
4 0 1 1 2 3 3 4 5 6 7 7 9
5 1 2
6 0 1 4

FIGURE 3.3:
Stem-and-Leaf Plot for
Violent Crime Rate Data in
Table 3.2

A stem-and-leaf plot conveys information similar to a histogram. Turned on its
side, it has the same shape as the histogram. In fact, since the stem-and-leaf plot
shows each observation, it displays information that is lost with a histogram. From
Figure 3.3, the largest violent crime rate was 64, and the smallest was 12. It is not
possible to determine these exact values from the histogram in Figure 3.2.

Stem-and-leaf plots are useful for quick portrayals of small data sets. As the
sample size increases, you can accommodate the increase in leaves by splitting the
stems. For instance, you can list each stem twice, putting leaves of 0 to 4 on one line
and leaves of 5 to 9 on another. When a number has several digits, it is simplest for
graphical portrayal to drop the last digit or two. For instance, for a stem-and-leaf plot
of annual income in thousands of dollars, a value of $27.1 thousand has a stem of 2
and a leaf of 7 and a value of $106.4 thousand has a stem of 10 and a leaf of 6.

POPULATION DISTRIBUTION AND SAMPLE DATA DISTRIBUTION

Frequency distributions and histograms apply both to a population and to samples
from that population. The first type is called the population distribution, and the
second type is called a sample data distribution. In a sense, the sample data distri-
bution is a blurry photo of the population distribution. As the sample size increases,
the sample proportion in any interval gets closer to the true population proportion.
Thus, the sample data distribution looks more like the population distribution.

For a continuous variable, imagine the sample size increasing indefinitely, with
the number of intervals simultaneously increasing, so their width narrows. Then,
the shape of the sample histogram gradually approaches a smooth curve. This text
uses such curves to represent population distributions. Figure 3.4 shows two sample

FIGURE 3.4: Histograms
for a Continuous Variable.
We use smooth curves to
represent population
distributions for continuous
variables.
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histograms, one for a sample of size 100 and the second for a sample of size 500, and
also a smooth curve representing the population distribution. Even if a variable is
discrete, a smooth curve often approximates well the population distribution, espe-
cially when the number of possible values of the variable is large.

THE SHAPE OF A DISTRIBUTION

Another way to describe a sample or a population distribution is by its shape. A
group for which the distribution is bell shaped is fundamentally different from a
group for which the distribution is U-shaped, for example. See Figure 3.5. In the
U-shaped distribution, the highest points (representing the largest frequencies) are
at the lowest and highest scores, whereas in the bell-shaped distribution, the highest
point is near the middle value. A U-shaped distribution indicates a polarization on
the variable between two sets of subjects. A bell-shaped distribution indicates that
most subjects tend to fall near a central value.

Low

Values of the Variable

Relative
Frequency

High

U-shaped Bell-shaped

Low

Values of the Variable

Relative
Frequency

High

FIGURE 3.5: U-Shaped
and Bell-Shaped Frequency
Distributions

The distributions in Figure 3.5 are symmetric: The side of the distribution below a
central value is a mirror image of the side above that central value. Most distributions
encountered in the social sciences are not symmetric. Figure 3.6 illustrates this. The
parts of the curve for the lowest values and the highest values are called the tails of
the distribution. Often, as in Figure 3.6, one tail is much longer than the other. A
distribution is said to be skewed to the right or skewed to the left, according to which
tail is longer.

Income Exam Score

Relative
Frequency

Skewed to the
right

Skewed to the
left

Relative
Frequency

FIGURE 3.6: Skewed
Frequency Distributions.
The longer tail indicates
the direction of skew.

To compare frequency distributions or histograms for two groups, you can give
verbal descriptions using characteristics such as skew. It is also helpful to make nu-
merical comparisons such as “On the average, the violent crime rate for Southern
states is 5.4 above the violent crime rate for Western states.” We next present nu-
merical descriptive statistics.
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3.2 Describing the Center of the Data
This section presents statistics that describe the center of a frequency distribution for
a quantitative variable. The statistics show what a typical observation is like.

THE MEAN

The best known and most commonly used measure of the center is the mean.

Mean The mean is the sum of the observations divided by the number of
observations.

The mean is often called the average.

Example
3.3

Female Economic Activity in Europe and Middle East Table 3.4 shows an index of
female economic activity in 2014 for the 10 largest countries (in population) of West-
ern Europe and of the Middle East. The number specifies female employment as a
percentage of male employment. In Italy, for instance, the number of females in the
work force was 66% of the number of males in the work force.

TABLE 3.4: Female Employment, as a Percentage of Male Employment, in
Western Europe and the Middle East

Western Europe Middle East

Country Employment Country Employment

Belgium 79 Egypt 29
France 79 Iran 42
Germany 78 Iraq 19
Greece 68 Israel 81
Italy 66 Jordan 39
Netherlands 82 Saudi Arabia 4
Portugal 78 Syria 38
Spain 71 Turkey 34
Sweden 85 United Arab Emirates 49
UK 81 Yemen 40

Source: www.socialwatch.org.

For the 10 observations for Western Europe, the sum equals

79 + 79 + 78 + 68 + 66 + 82 + 78 + 71 + 85 + 81 = 767.

The mean equals 767/10 = 76.7. By comparison, you can check that the mean for the
10 Middle Eastern countries equals 375/10 = 37.5. Female economic activity tends to
be considerably lower in the Middle East.

NOTATION FOR OBSERVATIONS, MEAN, AND SUMMATIONS

We use the following notation in formulas for the mean and statistics that use the
mean:

Notation for Observations
and Sample Mean

The sample size is symbolized by n. For a variable denoted by y, its
observations are denoted by y1, y2, . . . , yn. The sample mean is denoted
by ȳ.

http://www.socialwatch.org
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Throughout the text, letters near the end of the alphabet denote variables. The
n sample observations on a variable y are denoted by y1 for the first observation, y2

for the second, and so forth. For example, for female economic activity in Western
Europe, n = 10, and the observations are y1 = 79, y2 = 79, . . . , y10 = 81. The symbol
ȳ for the sample mean is read as “y-bar.” A bar over a letter represents the sample
mean for that variable. For instance, x̄ represents the sample mean for a variable
denoted by x.

The definition of the sample mean says that

ȳ = y1 + y2 + · · · + yn

n
.

The symbol
∑

(upper case Greek letter sigma) represents the process of summing.
For instance,

∑
yi represents the sum y1 + y2 + · · · + yn. This symbol1 stands for the

sum of the y-values, where the index i represents a typical value in the range 1 to n.
To illustrate, for the Western European data,∑

yi = y1 + y2 + · · · + y10 = 79 + 79 + · · · + 81 = 767.

Using this summation symbol, we have the shortened expression for the sample
mean of n observations,

ȳ =
∑

yi

n
.

The summation operation is sometimes even further abbreviated as
∑

y.

PROPERTIES OF THE MEAN

Here are some properties of the mean:

• The formula for the mean uses numerical values for the observations. So, the
mean is appropriate only for quantitative variables. It is not sensible to compute
the mean for observations on a nominal scale. For instance, for religion mea-
sured with categories such as (Protestant, Catholic, Muslim, Jewish, Other), the
mean religion does not make sense, even though for convenience these levels
may be coded in a data file by numbers.

• The mean can be highly influenced by an observation that falls well above or
well below the bulk of the data, called an outlier.

Here is an example illustrating an outlier: The owner of Leonardo’s Pizza
reports that the mean annual income of full-time employees in the business
is $45,900. In fact, the annual incomes of the seven employees are $15,400,
$15,600, $15,900, $16,400, $16,400, $16,600, and $225,000. The $225,000 income
is the salary of the owner’s son, who happens to be an employee. The value
$225,000 is an outlier. The mean computed for the other six observations alone
equals $16,050, quite different from the mean of $45,900 including the outlier.

• The mean is pulled in the direction of the longer tail of a skewed distribution,
relative to most of the data.

In the Leonardo’s Pizza example, the large observation $225,000 results in
an extreme skewness to the right of the income distribution. This skewness
pulls the mean above six of the seven observations. This example shows that
the mean is not always typical of the observations in the sample. The more
highly skewed the distribution, the less typical the mean is of the data.

1 You can also formally present the range of observations in the symbol, using
∑n

i=1 yi to represent summing yi

while letting i go from 1 to n.
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• The mean is the point of balance on the number line when an equal weight is
at each observation point.

For example, Figure 3.7 shows that if we place an equal weight at each Mid-
dle Eastern observation on female economic activity from Table 3.4, then the
line balances by placing a fulcrum at the point 37.5. The mean is the center of
gravity (balance point) of the observations: The sum of the distances to the
mean from the observations above the mean equals the sum of the distances to
the mean from the observations below the mean.

0 1007525 50D

y 5 37.5
_

FIGURE 3.7: The Mean as
the Center of Gravity, for
Middle Eastern Data from
Table 3.4. The line balances
with a fulcrum at 37.5.

• Denote the sample means for two sets of data with sample sizes n1 and n2 by ȳ1

and ȳ2. The overall sample mean for the combined set of (n1 +n2) observations
is the weighted average

ȳ = n1ȳ1 + n2ȳ2

n1 + n2
.

The numerator n1ȳ1 + n2ȳ2 is the sum of all the observations, since nȳ = ∑
y

for each set of observations. The denominator is the total sample size.

To illustrate, for the female economic activity data in Table 3.4, the Western
European observations have n1 = 10 and ȳ1 = 76.70. Canada, the United States,
and Mexico have n2 = 3 and values (83, 69, 56), for which ȳ2 = 69.33. The overall
mean economic activity for the 13 nations equals

ȳ = n1ȳ1 + n2ȳ2

n1 + n2
= 10(76.70) + 3(69.33)

10 + 3
= (767 + 208)

13
= 975

13
= 75.0.

The weighted average of 75.0 is closer to 76.7, the value for Western Europe, than
to 69.3, the value for the three North American nations. This happens because more
observations are from Western Europe.

THE MEDIAN

The mean is a simple measure of the center. But other measures are also informa-
tive and sometimes more appropriate. Most important is the median. It splits the
sample into two parts with equal numbers of observations, when they are ordered
from lowest to highest or from highest to lowest.

Median

The median is the observation that falls in the middle of the ordered
sample. When the sample size n is odd, a single observation occurs in the
middle. When the sample size is even, two middle observations occur, and
the median is the midpoint between the two.

To illustrate, the ordered income observations for the seven employees of
Leonardo’s Pizza are

$15,400, $15,600, $15,900, $16,400, $16,400, $16,600, $225,000.

The median is the middle observation, $16,400. This is a more typical value for this
sample than the sample mean of $45,900. When a distribution is highly skewed, the
median describes a typical value better than the mean.
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In Table 3.4, the ordered economic activity values for the Western European
nations are

66, 68, 71, 78, 78, 79, 79, 81, 82, 85.

Since n = 10 is even, the median is the midpoint between the two middle values, 78
and 79, which is (78 + 79)/2 = 78.5. This is close to the sample mean of 76.7, because
this data set has no outliers.

The middle observation has the index (n+1)/2. That is, the median is the value of
observation (n+1)/2 in the ordered sample. When n = 7, (n+1)/2 = (7+1)/2 = 4,
so the median is the fourth smallest, or equivalently fourth largest, observation.
When n is even, (n + 1)/2 falls halfway between two numbers, and the median is
the midpoint of the observations with those indices. For example, when n = 10, then
(n + 1)/2 = 5.5, so the median is the midpoint between the fifth and sixth smallest
observations.

Example
3.4

Median for Grouped or Ordinal Data Table 3.5 summarizes the distribution of the
highest degree completed in the U.S. population of age 25 years and over, as esti-
mated from the 2014 American Community Survey taken by the U.S. Bureau of the
Census. The possible responses form an ordinal scale. The population size was n =
209 (in millions). The median score is the (n + 1)/2 = (209 + 1)/2 = 105th lowest.
Now, 24 responses fall in the first category, (24 + 62) = 86 in the first two, (24 + 62 +
35) = 121 in the first three, and so forth. The 87th to 121st lowest scores fall in cate-
gory 3, which therefore contains the 105th lowest, which is the median. The median
response is “Some college, no degree.” Equivalently, from the percentages in the last
column of the table, (11.5% + 29.7%) = 41.2% fall in the first two categories and
(11.5% + 29.7% + 16.7%) = 57.9% fall in the first three, so the 50% point falls in
the third category.

TABLE 3.5: Highest Degree Completed, for a Sample of Americans

Highest Degree Frequency (millions) Percentage

Not a high school graduate 24 11.5
High school only 62 29.7
Some college, no degree 35 16.7
Associate’s degree 21 10.0
Bachelor’s degree 42 20.1
Master’s degree 18 8.6
Doctorate or professional 7 3.3

PROPERTIES OF THE MEDIAN

• The median, like the mean, is appropriate for quantitative variables. Since it
requires only ordered observations to compute it, it is also valid for ordinal-
scale data, as the previous example showed. It is not appropriate for nominal-
scale data, since the observations cannot be ordered.

• For symmetric distributions, such as in Figure 3.5, the median and the mean are
identical. To illustrate, the sample of observations 4, 5, 7, 9, and 10 is symmetric
about 7; 5 and 9 fall equally distant from it in opposite directions, as do 4 and
10. Thus, 7 is both the median and the mean.

• For skewed distributions, the mean lies toward the longer tail relative to the
median. See Figure 3.8.
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FIGURE 3.8: The Mean
and the Median for Skewed
Distributions. The mean is
pulled in the direction of
the longer tail.

The mean is larger than the median for distributions that are skewed to the
right. For example, income distributions are often skewed to the right. House-
hold income in the United States in 2015 had a mean of about $73,000 and a
median of about $52,000 (U.S. Bureau of the Census).

The mean is smaller than the median for distributions that are skewed to the
left. The distribution of grades on an exam may be skewed to the left when some
students perform considerably poorer than the others. For example, suppose
that an exam scored on a scale of 0 to 100 has a median of 88 and a mean of 80.
Then most students performed quite well (half being over 88), but apparently
some scores were very much lower in order to bring the mean down to 80.

• The median is insensitive to the distances of the observations from the mid-
dle, since it uses only the ordinal characteristics of the data. For example, the
following four sets of observations all have medians of 10:

Set 1: 8, 9, 10, 11, 12
Set 2: 8, 9, 10, 11, 100
Set 3: 0, 9, 10, 10, 10
Set 4: 8, 9, 10, 100, 100

• The median is not affected by outliers. For instance, the incomes of the seven
Leonardo’s Pizza employees have a median of $16,400 whether the largest
observation is $20,000, $225,000, or $2,000,000.

MEDIAN COMPARED TO MEAN

The median is usually more appropriate than the mean when the distribution is very
highly skewed, as we observed with the Leonardo’s Pizza employee incomes. The
mean can be greatly affected by outliers, whereas the median is not.

For the mean we need quantitative (interval-scale) data. The median also applies
for ordinal scales. To use the mean for ordinal data, we must assign scores to the cat-
egories. In Table 3.5, if we assign scores 10, 12, 13, 14, 16, 18, and 20 to the categories
of highest degree, representing approximate number of years of education, we get a
sample mean of 13.7.

The median has its own disadvantages. For discrete data that take relatively
few values, quite different patterns of data can have the same median. For instance,
Table 3.6, from the 2014 General Social Survey, summarizes the responses of the 53
females of age 18–22 to the question “How many sex partners have you had in the
last 12 months?” Only six distinct responses occur, and 50.9% of those are 1. The
median response is 1. For the sample mean, to sum the 52 observations we multiply
each possible value by the frequency of its occurrence, and then add. That is,∑

yi = 11(0) + 27(1) + 6(2) + 5(3) + 3(4) + 1(5) = 71.
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The sample mean response is

ȳ =
∑

yi

n
= 71

53
= 1.34.

If the distribution of the 53 observations among these categories were (0, 27, 6, 5, 3,
12) (i.e., we shift the 11 responses from 0 to 5), then the median would still be 1, but
the mean would shift to 2.38. The mean uses the numerical values of the observations,
not just their ordering.

TABLE 3.6: Number of Sex Partners Last Year, for Female
Respondents in GSS of Age 18–22

Response Frequency Percentage

0 11 20.8
1 27 50.9
2 6 11.3
3 5 9.4
4 3 5.7
5 1 1.9

The most extreme form of this problem occurs for binary data, which can take
only two values, such as 0 and 1. The median equals the more common outcome, but
gives no information about the relative number of observations at the two levels. For
instance, consider a sample of size 5 for the variable, number of times married. The
observations (1, 1, 1, 1, 1) and the observations (0, 0, 1, 1, 1) both have a median of
1. The mean is 1 for (1, 1, 1, 1, 1) and 3/5 for (0, 0, 1, 1, 1).

For binary (0, 1) data,
proportion = mean

When observations take values of only 0 or 1, the mean equals the
proportion of observations that equal 1.

Generally, for highly discrete data, the mean is more informative than the median.
In summary,

• If a distribution is highly skewed, the median is better than the mean in repre-
senting what is typical.

• If the distribution is close to symmetric or only mildly skewed or if it is discrete
with few distinct values, the mean is usually preferred over the median, because
it uses the numerical values of all the observations.

THE MODE

Another measure, the mode, states the most frequent outcome.

Mode The mode is the value that occurs most frequently.

The mode is most commonly used with highly discrete variables, such as with cat-
egorical data. In Table 3.6 on the number of sex partners in the last year, for instance,
the mode is 1, since the frequency for that outcome is higher than the frequency for
any other outcome. Here are some properties of the mode:
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• The mode is appropriate for all types of data. For example, we might measure
the mode for religion in Australia (nominal scale), for the grade given by a
teacher (ordinal scale), or for the number of years of education completed by
Hispanic Americans (interval scale).

• A frequency distribution is called bimodal if two distinct mounds occur in
the distribution. Bimodal distributions often occur with attitudinal variables
when populations are polarized, with responses tending to be strongly in one
direction or another. For instance, Figure 3.9 shows the relative frequency
distribution of responses in a General Social Survey to the question “Do you
personally think it is wrong or not wrong for a woman to have an abortion if
the family has a very low income and cannot afford any more children?” The
frequencies in the two extreme categories are much higher than those in the
middle categories.
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FIGURE 3.9: Bimodal
Distribution for Opinion
about Whether Abortion Is
Wrong

• The mean, median, and mode are identical for a unimodal, symmetric distribu-
tion, such as a bell-shaped distribution.

The mean, median, and mode are complementary measures. They describe dif-
ferent aspects of the data. In any particular example, some or all their values may
be useful. Be on the lookout for misleading statistical analyses, such as using one
statistic when another would be more informative. People who present statistical
conclusions often choose the statistic giving the impression they wish to convey. Re-
call the Leonardo’s Pizza employees, with the extreme outlying income observation.
Be wary of the mean when the distribution may be highly skewed.

3.3 Describing Variability of the Data
A measure of center alone is not adequate for numerically describing data for a quan-
titative variable. It describes a typical value, but not the spread of the data about that
typical value. The two distributions in Figure 3.10 illustrate this. The citizens of nation
A and the citizens of nation B have the same mean annual income ($25,000). The
distributions of those incomes differ fundamentally, however, nation B being much
less variable. An income of $30,000 is extremely large for nation B, but not especially
large for nation A. This section introduces statistics that describe the variability of a
data set.
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FIGURE 3.10:
Distributions with the
Same Mean but Different
Variability

THE RANGE

The difference between the largest and smallest observations is the simplest way to
describe variability.

Range The range is the difference between the largest and smallest observations.

For nation A, from Figure 3.10, the range of income values is about $50,000 −
$0 = $50,000. For nation B, the range is about $30,000 − $20,000 = $10,000.
Nation A has greater variability of incomes.

The range is not, however, sensitive to other characteristics of data variability.
The three distributions in Figure 3.11 all have the same mean ($25,000) and range
($50,000), but they differ in variability about the center. In terms of distances of
observations from the mean, nation A has the most variability, and nation B the
least. The incomes in nation A tend to be farthest from the mean, and the incomes
in nation B tend to be closest.

Nation B
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0 50403020
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10

Nation A
Relative
Frequency

FIGURE 3.11:
Distributions with the
Same Mean and Range, but
Different Variability about
the Mean

STANDARD DEVIATION

The most useful measure of variability is based on the deviations of the data from
their mean.

Deviation The deviation of an observation yi from the sample mean ȳ is (yi − ȳ), the
difference between them.
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Each observation has a deviation. The deviation is positive when the observation
falls above the mean. The deviation is negative when the observation falls below the
mean. The interpretation of ȳ as the center of gravity of the data implies that the
sum of the positive deviations equals the negative of the sum of negative deviations.
Thus, the sum of all the deviations about the mean,

∑
(yi − ȳ), equals 0. Because

of this, measures of variability use either the absolute values or the squares of the
deviations. The most popular measure uses the squares.

Standard Deviation

The standard deviation s of n observations is

s =
√∑

(yi − ȳ)2

n − 1
=

√
sum of squared deviations

sample size − 1
.

This is the positive square root of the variance s2, which is

s2 =
∑

(yi − ȳ)2

n − 1
= (y1 − ȳ)2 + (y2 − ȳ)2 + · · · + (yn − ȳ)2

n − 1
.

The variance is approximately the average of the squared deviations. The units
of measurement are the squares of those for the original data, since it uses squared
deviations. This makes the variance difficult to interpret. It is why we use instead its
square root, the standard deviation.

The expression
∑

(yi − ȳ)2 in these formulas is called a sum of squares. It rep-
resents squaring each deviation and then adding those squares. The larger the devi-
ations, the larger the sum of squares and the larger s tends to be.

Although its formula looks complicated, the most basic interpretation of the
standard deviation s is simple: s is a sort of typical distance of an observation from
the mean. So, the larger the standard deviation, the greater the spread of the data.

Example
3.5

Comparing Variability of Quiz Scores Each of the following sets of quiz scores for
two small samples of students has a mean of 5 and a range of 10:

Sample 1: 0, 4, 4, 5, 7, 10
Sample 2: 0, 0, 1, 9, 10, 10

By inspection, sample 1 shows less variability about the mean than sample 2. Most
scores in sample 1 are near the mean of 5, whereas all the scores in sample 2 are quite
far from 5.

For sample 1,∑
(yi − ȳ)2 = (0 − 5)2 + (4 − 5)2 + (4 − 5)2 + (5 − 5)2 + (7 − 5)2 + (10 − 5)2 = 56.

So, the variance is

s2 =
∑

(yi − ȳ)2

n − 1
= 56

6 − 1
= 56

5
= 11.2,

and the standard deviation is s = √
11.2 = 3.3. For sample 2, you can verify that

s2 = 26.4 and s = √
26.4 = 5.1. Since 3.3 < 5.1, the standard deviations tell us that

sample 1 is less variable than sample 2.

Statistical software and many hand calculators can find the standard deviation.
For example, for sample 2 the free software R finds
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> quiz2 <- c(0, 0, 1, 9, 10, 10) # c COMBINES values listed
> sd(quiz2) # sd is standard deviation function
[1] 5.138093

You should do the calculation yourself for a couple of small data sets to get a feel for
what s represents. The answer you get may differ slightly from the value reported by
software, depending on how much you round off in performing the calculation.

PROPERTIES OF THE STANDARD DEVIATION

• s ≥ 0.

• s = 0 only when all observations have the same value. For instance, if the ages
for a sample of five students are 19, 19, 19, 19, and 19, then the sample mean
equals 19, each of the five deviations equals 0, and s = 0. This is the minimum
possible variability.

• The greater the variability about the mean, the larger is the value of s.

• The reason for using (n − 1), rather than n, in the denominator of s is tech-
nical. In Chapter 5, we’ll see that doing this provides a better estimate of a
corresponding parameter for the population. When we have data for an entire
population, we replace (n − 1) by the actual population size; the population
variance is then precisely the mean of the squared deviations about the popu-
lation mean.

• If the data are rescaled, the standard deviation is also rescaled. For instance, if
we change annual incomes from dollars (such as 34,000) to thousands of dollars
(such as 34.0), the standard deviation also changes by a factor of 1000 (such as
from 11,800 to 11.8).

INTERPRETING THE MAGNITUDE OF s: THE EMPIRICAL RULE

A distribution with s = 5.1 has greater variability than one with s = 3.3, but how
do we interpret how large s = 5.1 is? We’ve seen that a rough answer is that s is
a typical distance of an observation from the mean. To illustrate, suppose the first
exam in your course, graded on a scale of 0 to 100, has a sample mean of 77. A value
of s = 0 in unlikely, since every student must then score 77. A value such as s = 50
seems implausibly large for a typical distance from the mean. Values of s such as 8
or 12 seem much more realistic.

More precise ways to interpret s require further knowledge of the shape of the
frequency distribution. The following rule is applicable for many data sets.

Empirical Rule

If the histogram of the data is approximately bell shaped, then

1. About 68% of the observations fall between ȳ − s and ȳ + s.
2. About 95% of the observations fall between ȳ − 2s and ȳ + 2s.
3. All or nearly all observations fall between ȳ − 3s and ȳ + 3s.

The rule is called the Empirical Rule because many frequency distributions seen
in practice (i.e., empirically) are approximately bell shaped. Figure 3.12 is a graphical
portrayal of the rule.
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Example
3.6

Describing a Distribution of SAT Scores The Scholastic Aptitude Test (SAT, see
www.collegeboard.com) has three portions: critical reading, mathematics, and
writing. For each portion, the distribution of scores is approximately bell shaped
with mean about 500 and standard deviation about 100. Figure 3.13 portrays this.
By the Empirical Rule, for each portion, about 68% of the scores fall between 400
and 600, because 400 and 600 are the numbers that are one standard deviation be-
low and above the mean of 500. About 95% of the scores fall between 300 and 700,
the numbers that are two standard deviations from the mean. The remaining 5% fall
either below 300 or above 700. The distribution is roughly symmetric about 500, so
about 2.5% of the scores fall above 700 and about 2.5% fall below 300.

300

2.5% of
scores

2.5% of
scores

68% of
scores

95% of scores

400 500 600 700

FIGURE 3.13: A
Bell-Shaped Distribution of
Scores for a Portion of the
SAT, with Mean 500 and
Standard Deviation 100

The Empirical Rule applies only to distributions that are approximately bell
shaped. For other shapes, the percentage falling within two standard deviations of
the mean need not be near 95%. It could be as low as 75% or as high as 100%. The
Empirical Rule does not apply if the distribution is highly skewed or if it is highly
discrete, with the variable taking few values. The exact percentages depend on the
form of the distribution, as the next example demonstrates.

Example
3.7

Familiarity with AIDS Victims A General Social Survey asked, “How many people
have you known personally, either living or dead, who came down with AIDS?”
Table 3.7 shows part of some software output for summarizing the 1598 responses
on this variable. It indicates that 76% of the responses were 0.

The mean and standard deviation are ȳ = 0.47 and s = 1.09. The values
0 and 1 both fall within one standard deviation of the mean. Now, 88.8% of the
distribution falls at these two points, or within ȳ ± s. This is considerably larger

http://www.collegeboard.com
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than the 68% that the Empirical Rule states. The Empirical Rule does not apply
to this distribution, because it is not even approximately bell shaped. Instead, it is
highly skewed to the right, as you can check by sketching a histogram. The small-
est value in the distribution (0) is less than one standard deviation below the mean;
the largest value in the distribution (8) is nearly seven standard deviations above the
mean.

TABLE 3.7: Frequency Distribution of the Number of People Known Personally
with AIDS

AIDS Frequency Percent
---------------------------

0 1214 76.0
1 204 12.8
2 85 5.3
3 49 3.1
4 19 1.2
5 13 0.8
6 5 0.3
7 8 0.5
8 1 0.1

n = 1598 Mean = 0.47 Std Dev = 1.09

Whenever the smallest or largest observation is less than a standard deviation
from the mean, this is evidence of severe skew. Suppose that the first exam in your
course, having potential scores between 0 and 100, has ȳ = 86 and s = 15. The upper
bound of 100 is less than one standard deviation above the mean. The distribution is
likely highly skewed to the left.

The standard deviation, like the mean, can be greatly affected by an outlier, es-
pecially for small data sets. For instance, for the incomes of the seven Leonardo’s
Pizza employees shown on page 48, ȳ = $45,900 and s = $78,977. When we remove
the outlier, ȳ = $16,050 and s = $489.

3.4 Measures of Position
Another way to describe a distribution is with a measure of position. This tells us
the point at which a given percentage of the data fall below (or above) that point.
As special cases, some measures of position describe center and some describe
variability.

QUARTILES AND OTHER PERCENTILES

The range uses two measures of position, the maximum value and the minimum
value. The median is a measure of position, with half the data falling below it and
half above it. The median is a special case of a set of measures of position called
percentiles.
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Percentiles
The pth percentile is the point such that p% of the observations fall below
or at that point and (100 − p)% fall above it.

Substituting p = 50 in this definition gives the 50th percentile. This is the me-
dian. The median is larger than 50% of the observations and smaller than the other
(100 − 50) = 50%. In proportion terms, a percentile is called a quantile. The 50th
percentile is the 0.50 quantile.

Two other commonly used percentiles are the lower quartile and the upper
quartile.

Lower and Upper Quartiles
The 25th percentile is called the lower quartile. The 75th percentile is called
the upper quartile. One quarter of the data fall below the lower quartile.
One quarter fall above the upper quartile.

The quartiles result from the percentile definition when we set p = 25 and p = 75.
The quartiles together with the median split the distribution into four parts, each
containing one-fourth of the observations. See Figure 3.14. The lower quartile is the
median for the observations that fall below the median, that is, for the bottom half
of the data. The upper quartile is the median for the observations that fall above the
median, that is, for the upper half of the data.
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FIGURE 3.14: The
Quartiles and the Median
Split a Distribution into
Four Equal Parts. The
interquartile range
describes the spread of the
middle half of the
distribution.

The median, the quartiles, and the maximum and minimum are five positions
often used as a set to describe center and spread. Software can easily find these values
as well as other percentiles. For instance, using R software we find ȳ and s and then
the five-number summary for the violent crime rates of Table 3.2, which the variable
violent lists in the data file Crime at the text website:

> mean(violent); sd(violent)
[1] 34.9
[1] 12.43637
> summary(violent)

Min. 1st Qu. Median Mean 3rd Qu. Max.
12.0 26.0 33.0 34.9 43.0 64.0



60 Chapter 3 Descriptive Statistics

The lower and upper quartiles are labeled as “1st Qu.” and “3rd Qu.” In Stata, we
use the summarize command to get ȳ, s, and the min and max.

. summarize violent
Variable | Obs Mean Std. Dev Min Max
violent | 50 34.9 12.43637 12 64

We can also find the quartiles:

. tabstat violent, stats(p25 p50 p75)

variable | p25 p50 p75
violent | 26 33 43

In summary, about a quarter of the states had violent crime rates (i) below 26, (ii)
between 26 and 33, (iii) between 33 and 43, and (iv) above 43. The distance between
the upper quartile and the median, 43 − 33 = 10, exceeds the distance 33 − 26 = 7
between the lower quartile and the median. This commonly happens when the dis-
tribution is skewed to the right.

MEASURING VARIABILITY: INTERQUARTILE RANGE

The difference between the upper and lower quartiles is called the interquartile
range, denoted by IQR. This measure describes the spread of the middle half of the
observations. For the U.S. violent crime rates just summarized by the five-number
summary, the interquartile range IQR = 43 − 26 = 17. The middle half of the rates
fall within a range of 17, whereas all rates fall within a range of 64−12 = 52. Like the
range and standard deviation, the IQR increases as the variability increases, and it is
useful for comparing variability of different groups. For example, in 1990 the violent
crime rates had quartiles of 33 and 77, giving an IQR of 77 − 33 = 44. This indicates
quite a bit more variability than in 2015, when IQR = 17.

An advantage of the IQR over the ordinary range or the standard deviation is
that it is not sensitive to outliers. The violent crime rates ranged from 12 to 64, so the
range was 52. When we include the observation for D.C., which was 130, the IQR
changes only from 17 to 18. By contrast, the range changes from 52 to 118.

For bell-shaped distributions, the distance from the mean to either quartile is
about two-thirds of a standard deviation. Then, IQR equals approximately (4/3)s.

BOX PLOTS: GRAPHING THE FIVE-NUMBER SUMMARY
OF POSITIONS

The five-number summary consisting of (minimum, lower quartile, median, upper
quartile, maximum) is the basis of a graphical display called2 the box plot that sum-
marizes center and variability. The box of a box plot contains the central 50% of the
distribution, from the lower quartile to the upper quartile. The median is marked by
a line drawn within the box. The lines extending from the box are called whiskers.

2 Stem-and-leaf plots and box plots are relatively recent innovations, introduced by the statistician John Tukey
(see Tukey, 1977), who also introduced the terminology “software.”
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These extend to the maximum and minimum, except for outliers, which are marked
separately.

Figure 3.15 shows the box plot for the violent crime rates, including D.C., in the
format provided with R software. The upper whisker and upper half of the central
box are a bit longer than the lower ones. This indicates that the right tail of the dis-
tribution, which corresponds to the relatively large values, is longer than the left tail.
The plot reflects the skewness to the right of violent crime rates.

FIGURE 3.15: Box Plot of
Violent Crime Rates of
U.S. States. The outlier is
the observation for D.C.

COMPARING GROUPS

Many studies compare different groups on some variable. Relative frequency distri-
butions, histograms, and side-by-side box plots are useful for making comparisons.

Example
3.8

Comparing Canadian and U.S. Murder Rates Figure 3.16 (page 62) shows side-by-
side box plots of murder rates (measured as the number of murders per 100,000 pop-
ulation) in a recent year for the 50 states in the United States and for the provinces
of Canada. From this figure, it is clear that the murder rates tended to be much lower
in Canada, varying between 0.7 (Prince Edward Island) and 2.9 (Manitoba) whereas
those in the United States varied between 1.6 (Maine) and 20.3 (Louisiana). These
side-by-side box plots reveal that the murder rates in the United States tend to be
much higher and have much greater variability.

OUTLIERS

Box plots identify outliers separately. To explain this, we now present a formal defi-
nition of an outlier.

Outlier
An observation is an outlier if it falls more than 1.5(IQR) above the upper
quartile or more than 1.5(IQR) below the lower quartile.

In box plots, the whiskers extend to the smallest and largest observations only if
those values are not outliers, that is, if they are no more than 1.5(IQR) beyond the
quartiles. Otherwise, the whiskers extend to the most extreme observations within
1.5(IQR), and the outliers are marked separately.
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FIGURE 3.16: Box Plots
for U.S. and Canadian
Murder Rates

Figure 3.16 shows one outlier for the United States with a very high murder rate.
This is the murder rate of 20.3 (for Louisiana). For these data, lower quartile = 3.9
and upper quartile = 10.3, so IQR = 10.3 − 3.9 = 6.4. Thus,

Upper quartile + 1.5(IQR) = 10.3 + 1.5(6.4) = 19.9.

Since 20.3 > 19.9, the box plot highlights the observation of 20.3 as an outlier.
Why highlight outliers? It can be informative to investigate them. Was the obser-

vation perhaps incorrectly recorded? Was that subject fundamentally different from
the others in some way? Often it makes sense to repeat a statistical analysis without
an outlier, to make sure the conclusions are not overly sensitive to a single obser-
vation. Another reason to show outliers separately in a box plot is that they do not
provide much information about the shape of the distribution, especially for large
data sets.

In practice, the 1.5(IQR) criterion for an outlier is somewhat arbitrary. It is better
to regard an observation satisfying this criterion as a potential outlier rather than a
definite outlier. When a distribution has a long right tail, some observations may fall
more than 1.5(IQR) above the upper quartile even if they are not separated far from
the bulk of the data.

HOW MANY STANDARD DEVIATIONS FROM THE MEAN?
THE z-SCORE

Another way to measure position is by the number of standard deviations that a
value falls from the mean. For example, the U.S. murder rates shown in the box plot
in Figure 3.16 have a mean of 7.3 and a standard deviation of 4.0. The value of 20.3
for Louisiana falls 20.3 − 7.3 = 13.0 above the mean. Now, 13.0 is 13.0/4.0 = 3.25
standard deviations. The Louisiana murder rate is 3.25 standard deviations above the
mean.

The number of standard deviations that an observation falls from the mean is
called its z-score. For the murder rates of Figure 3.16, Louisiana has a z-score of

z = 20.3 − 7.3
4.0

= observation − mean
standard deviation

= 3.25.

By the Empirical Rule, for a bell-shaped distribution it is very unusual for an
observation to fall more than three standard deviations from the mean. An alterna-
tive criterion regards an observation as an outlier if it has a z-score larger than 3 in
absolute value. By this criterion, the murder rate for Louisiana is an outlier.
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3.5 Bivariate Descriptive Statistics
In this chapter, we’ve learned how to summarize categorical and quantitative vari-
ables graphically and numerically. In the next three chapters, we’ll learn about sta-
tistical inference for a categorical or quantitative variable. Most studies have more
than one variable, however, and Chapters 7–15 present methods that can handle two
or more variables at a time.

ASSOCIATION BETWEEN RESPONSE AND EXPLANATORY VARIABLES

With multivariable analyses, the main focus is on studying associations among the
variables. An association exists between two variables if certain values of one vari-
able tend to go with certain values of the other.

For example, consider “religious affiliation,” with categories (Protestant,
Catholic, Jewish, Muslim, Hindu, Other), and “ethnic group,” with categories
(Anglo-American, African-American, Hispanic). In the United States, Anglo-
Americans are more likely to be Protestant than are Hispanics, who are
overwhelmingly Catholic. African-Americans are even more likely to be Protestant.
An association exists between religious affiliation and ethnic group, because the pro-
portion of people having a particular religious affiliation changes as the ethnic group
changes.

An analysis of association between two variables is called a bivariate analysis,
because there are two variables. Usually one is an outcome variable on which com-
parisons are made at levels of the other variable. The outcome variable is called
the response variable. The variable that defines the groups is called the explanatory
variable. The analysis studies how the outcome on the response variable depends
on or is explained by the value of the explanatory variable. For example, when we
describe how religious affiliation depends on ethnic group, religious affiliation is the
response variable and ethnic group is the explanatory variable. In a comparison of
men and women on income, income is the response variable and gender is the ex-
planatory variable. Income may depend on gender, not gender on income.

Often, the response variable is called the dependent variable and the explana-
tory variable is called the independent variable. The terminology dependent variable
refers to the goal of investigating the degree to which the response on that variable
depends on the value of the other variable. We prefer not to use these terms, since
independent and dependent are used for many other things in statistical science.

COMPARING TWO GROUPS: BIVARIATE CATEGORICAL
AND QUANTITATIVE DATA

Chapter 7 presents descriptive and inferential methods for comparing two groups.
For example, suppose we’d like to know whether men or women have more good
friends, on the average. A General Social Survey reports that the mean number
of good friends is 7.0 for men (s = 8.4) and 5.9 for women (s = 6.0). The two
distributions have similar appearance, both being highly skewed to the right and
with a median of 4.

Here, this is an analysis of two variables—number of good friends and gender.
The response variable, number of good friends, is quantitative. The explanatory vari-
able, gender, is categorical. In this case, it’s common to compare categories of the
categorical variable on measures of the center (such as the mean and median) for
the response variable. Graphs are also useful, such as side-by-side box plots.
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BIVARIATE CATEGORICAL DATA

Chapter 8 presents methods for analyzing association between two categorical vari-
ables. Table 3.8 is an example of such data. This table results from answers to two
questions on the 2014 General Social Survey. One asked whether homosexual rela-
tions are wrong. The other asked about the fundamentalism/liberalism of the respon-
dent’s religion. A table of this kind, called a contingency table, displays the number
of subjects observed at combinations of possible outcomes for the two variables. It
displays how outcomes of a response variable are contingent on the category of the
explanatory variable.

TABLE 3.8: Contingency Table for Religion and Opinion about Homosexual Relations

Opinion about Homosexual Relations

Always Almost Always Sometimes Not Wrong
Religion Wrong Wrong Wrong at All Total

Fundamentalist 262 10 19 87 378
Liberal 122 16 43 360 541

Table 3.8 has eight possible combinations of responses. (Another possible out-
come, moderate for the religion variable, is not shown here.) We could list the cate-
gories in a frequency distribution or construct a bar graph. It’s most informative to
do this for the categories of the response variable, separately for each category of the
explanatory variable. For example, if we treat opinion about homosexual relations
as the response variable, we could report the percentages in the four categories for
homosexual relations, separately for each religious category.

Consider the always wrong category. For fundamentalists, since 262/378 = 0.69,
69% believe homosexual relations are always wrong. For those who report being
liberal, since 122/541 = 0.23, 23% believe homosexual relations are always wrong.
Likewise, you can check that the percentages responding not wrong at all were 23%
for fundamentalists and 67% for liberals. There seems to be an appreciable asso-
ciation between opinion about homosexuality and religious beliefs, with religious
fundamentalists being more negative about homosexuality. (For comparison, in the
1974 GSS the percentages in the always wrong category were 84% for fundamental-
ists and 47% for liberals, so the change in views over time has been considerable.)
Chapter 8 shows many other ways of analyzing bivariate categorical data.

BIVARIATE QUANTITATIVE DATA

To illustrate methods that are useful when both variables are quantitative, we use
the UN data file at the text website, partly shown in Table 3.9. The file has United
Nations data from 2014 for 42 nations on per capita gross domestic product (GDP,
in thousands of dollars), a human development index (HDI, which has components
referring to life expectancy at birth, educational attainment, and income per capita),
a gender inequality index (GII, a composite measure reflecting inequality in achieve-
ment between women and men in reproductive health, empowerment, and the labor
market), fertility rate (number of births per woman), carbon dioxide emissions per
capita (metric tons), a homicide rate (number of homicides per 100,000 people),
prison population (per 100,000 people), and percent using the Internet.
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TABLE 3.9: National Data from UN Data File at Text Website

Source: http://hdr.undp.org/en/data and http://data.worldbank.org; complete data file UN (n = 42) is at text website.

Nation GDP HDI GII Fertility C02 Homicide Prison Internet
Algeria 12.8 0.72 0.42 2.8 3.2 0.8 162 17
Argentina 14.7 0.81 0.38 2.2 4.7 5.5 147 60
Australia 42.3 0.93 0.11 1.9 16.5 1.1 130 83
Austria 43.1 0.88 0.06 1.4 7.8 0.8 98 81
Belgium 39.5 0.88 0.07 1.8 8.8 1.8 108 82
Brazil 14.3 0.74 0.44 1.8 2.2 21.8 274 52
Canada 40.6 0.90 0.14 1.6 14.1 1.5 118 86
...
UK 34.7 0.89 0.19 1.9 7.1 1.2 148 90
US 50.9 0.91 0.26 1.9 17.0 4.7 716 84
Vietnam 4.9 0.64 0.32 1.7 2.0 1.6 145 44

Figure 3.17 is an example of a type of graphical plot, called a scatterplot, that
portrays bivariate relations between quantitative variables. It plots data on percent
using the Internet and gross domestic product. Here, values of GDP are plotted on
the horizontal axis, called the x-axis, and values of Internet use are plotted on the
vertical axis, called the y-axis. The values of the two variables for any particular
observation form a point relative to these axes. The figure plots the 42 observations
as 42 points. For example, the point at the highest level on GDP represents Norway,
which had a GDP of 62.9 and Internet use of 95 percent. The scatterplot shows a
tendency for nations with higher GDP to have higher levels of Internet use.
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FIGURE 3.17: Scatterplots
for GDP as Predictor of
Internet Use and of GII,
for 42 Nations

In Chapter 9, we’ll learn about two ways to describe such a trend. One way to
describe the trend, called the correlation, describes how strong the association is, in
terms of how closely the data follow a straight-line trend. For Figure 3.17, the corre-
lation is 0.88. The positive value means that Internet use tends to go up as GDP goes
up. By contrast, Figure 3.17 also shows a scatterplot for GDP and GII. Those vari-
ables have a negative correlation of −0.85. As GDP goes up, GII tends to go down.
The correlation takes values between −1 and +1. The larger it is in absolute value,
that is, the farther from 0, the stronger the association. For example, GDP is more
strongly associated with Internet use and with GII than it is with fertility, because
correlations of 0.88 and −0.85 are larger in absolute value than the correlation of
−0.49 between GDP and fertility.

http://hdr.undp.org/en/data
http://data.worldbank.org
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The second useful tool for describing the trend is regression analysis. This
method treats one variable, usually denoted by y, as the response variable, and
the other variable, usually denoted by x, as the explanatory variable. It provides a
straight-line formula for predicting the value of y from a given value of x. For the
data from Table 3.9 on y = fertility rate and x = GDP, this equation is

Predicted fertility = 2.714 − 0.025(GDP).

For a country with GDP = 4.4 (the lowest value in this sample), the predicted fertility
rate is 2.714 − 0.025(4.4) = 2.6 births per woman. For a country with GDP = 62.9
(the highest value in this sample), the predicted fertility rate is 2.714−0.025(62.9) =
1.1 births per woman.

Chapter 9 shows how to find the correlation and the regression line. It is simple
with software, as shown in Table 3.10 using R with variables from the data file UN at
the text website. Later chapters show how to extend the analysis to handle categorical
as well as quantitative variables.

TABLE 3.10: Using R Software for a Scatterplot, Correlation, and Regression Line

> UN <- read.table("http://www.stat.ufl.edu/~aa/smss/data/UN.dat",
+ header=TRUE)
> attach(UN)
> plot(GDP, Fertility) # requests scatterplot
> cor(GDP, Fertility); cor(GDP, Internet); cor(GDP, GII)
[1] -0.4861589
[1] 0.8771987
[1] -0.8506693

> lm(Fertility ˜ GDP) # lm is short for "linear model"
Coefficients:
(Intercept) GDP

2.71401 -0.02519

ANALYZING MORE THAN TWO VARIABLES

This section has introduced analyzing associations between two variables. One im-
portant lesson from later in the text is that just because two variables have an asso-
ciation does not mean there is a causal connection. For example, the correlation for
Table 3.9 between the Internet use and the fertility rate is −0.48. But having more
people using the Internet need not be the reason the fertility rate tends to be lower
(e.g., because people are on the Internet rather than doing what causes babies). Per-
haps high values on Internet use and low values on fertility are both a by-product of
a nation being more economically advanced.

Most studies have several variables. The second half of this book (Chapters
10–15) shows how to conduct multivariate analyses. For example, to study what is as-
sociated with the number of good friends, we might want to simultaneously consider
gender, age, whether married, educational level, whether attend religious services
regularly, and whether live in urban or rural setting.

http://www.stat.ufl.edu/~aa/smss/data/UN.dat
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3.6 Sample Statistics and Population Parameters
Of the measures introduced in this chapter, the mean ȳ is the most commonly used
measure of center and the standard deviation s is the most common measure of
spread. We’ll use them frequently in the rest of the text.

Since the values ȳ and s depend on the sample selected, they vary in value from
sample to sample. In this sense, they are variables. Their values are unknown be-
fore the sample is chosen. Once the sample is selected and they are computed, they
become known sample statistics.

With inferential statistics, we distinguish between sample statistics and the cor-
responding measures for the population. Section 1.2 introduced the term parameter
for a summary measure of the population. A statistic describes a sample, while a
parameter describes the population from which the sample was taken. In this text,
lower case Greek letters usually denote population parameters and Roman letters
denote the sample statistics.

Notation for Mean and
Standard Deviation

Parameters

Greek letters denote parameters. For example, μ (mu) and σ (sigma)
denote the population mean and standard deviation of a variable.

We call μ and σ the population mean and population standard deviation, re-
spectively. The population mean is the average of the observations for the entire
population. The population standard deviation describes the variability of those ob-
servations about the population mean.

Whereas the statistics ȳ and s are variables, with values depending on the sample
chosen, the parameters μ and σ are constants. This is because μ and σ refer to just
one particular group of observations, namely, the observations for the entire popu-
lation. The parameter values are usually unknown, which is the reason for sampling
and computing sample statistics to estimate their values. Much of the rest of this text
deals with ways of making inferences about parameters (such as μ) using sample
statistics (such as ȳ). Before studying these inferential methods, though, you need to
learn some basic ideas of probability, which serves as the foundation for the methods.
Probability is the subject of the next chapter.

3.7 Chapter Summary
This chapter introduced descriptive statistics—ways of describing data to summarize
key characteristics of the data.

OVERVIEW OF TABLES AND GRAPHS

• A frequency distribution summarizes numbers of observations for possible val-
ues or intervals of values of a variable.

• For a quantitative variable, a histogram uses bars over possible values or in-
tervals of values to portray a frequency distribution. It shows shape—such as
whether the distribution is approximately bell shaped or skewed to the right
(longer tail pointing to the right) or to the left.

• The box plot portrays the quartiles, the extreme values, and any outliers.

Cook (2014) and Tufte (2001) showed other innovative ways to present data
graphically.
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OVERVIEW OF MEASURES OF CENTER

Measures of center describe the center of the data, in terms of a typical observation.

• The mean is the sum of the observations divided by the sample size. It is the
center of gravity of the data.

• The median divides the ordered data set into two parts of equal numbers of
observations, half below and half above that point.

• The lower quarter of the observations fall below the lower quartile, and
the upper quarter fall above the upper quartile. These are the 25th and
75th percentiles. The median is the 50th percentile. The quartiles and median
split the data into four equal parts. These measures of position, portrayed
with extreme values in box plots, are less affected than the mean by outliers
or extreme skew.

OVERVIEW OF MEASURES OF VARIABILITY

Measures of variability describe the spread of the data.

• The range is the difference between the largest and smallest observations. The
interquartile range is the range of the middle half of the data between the upper
and lower quartiles. It is less affected by outliers.

• The variance averages the squared deviations about the mean. Its square root,
the standard deviation, is easier to interpret, describing a typical distance from
the mean.

• The Empirical Rule states that for a bell-shaped distribution, about 68% of
the observations fall within one standard deviation of the mean, about 95%
fall within two standard deviations of the mean, and nearly all, if not all, fall
within three standard deviations of the mean.

Table 3.11 summarizes measures of center and variability. A statistic summarizes
a sample. A parameter summarizes a population. Statistical inference uses statistics
to make predictions about parameters.

TABLE 3.11: Summary of Measures of Center and Variability

Measure Definition Interpretation

Center
Mean ȳ = ∑

yi/n Center of gravity
Median Middle observation 50th percentile, splits sample

of ordered sample into two equal parts
Mode Most frequently Most likely outcome, valid for

occurring value all types of data

Variability
Standard s = √∑

(yi − ȳ)2/(n − 1) Empirical Rule: If bell shaped,
deviation 68%, 95% within s, 2s of ȳ

Range Largest − smallest observation Greater with more variability
Interquartile Upper quartile (75th percentile) Encompasses middle half of

range − lower quartile (25th percentile) data
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OVERVIEW OF BIVARIATE DESCRIPTIVE STATISTICS

Bivariate statistics summarize data on two variables together, to analyze the
association between them.

• Many studies analyze how the outcome on a response variable depends on the
value of an explanatory variable.

• For categorical variables, a contingency table shows the number of observa-
tions at the combinations of possible outcomes for the two variables.

• For quantitative variables, a scatterplot graphs the observations. It shows a
point for each observation, plotting the response variable on the y-axis and
the explanatory variable on the x-axis.

• For quantitative variables, the correlation describes the strength of straight-
line association. It falls between −1 and +1 and indicates whether the response
variable tends to increase (positive correlation) or decrease (negative correla-
tion) as the explanatory variable increases. A regression line is a straight-line
formula for predicting the response variable using the explanatory variable.

Exercises

Practicing the Basics
3.1. Table 3.12 shows the number (in millions) of the
foreign-born population of the United States, by place of
birth.

(a) Construct a relative frequency distribution.
(b) Sketch the data in a bar graph.
(c) Is “place of birth” quantitative, or categorical?
(d) Use whichever of the following measures is relevant
for these data: mean, median, mode.

TABLE 3.12

Place of Birth Number

Europe 4.5
Asia 10.1
Caribbean 3.6
Central America 14.4
South America 2.4
Other 2.6

Total 37.6

Source: Statistical Abstract of
the United States, 2012.

3.2. According to a survey done by a large technology
firm, the number of Internet users was 630 million in
China, 400 million in Europe, and 290 million in the
United States.

(a) Construct a relative frequency distribution.
(b) Sketch a bar graph.
(c) Can you find a mean, median, or mode for these data?
If yes, do so and interpret.

3.3. A teacher shows her class the scores on the midterm
exam in the stem-and-leaf plot:

6 | 5 8 8
7 | 0 1 1 3 6 7 7 9
8 | 1 2 2 3 3 3 4 6 7 7 7 8 9
9 | 0 1 1 2 3 4 4 5 8

(a) Identify the number of students and the minimum and
maximum scores.
(b) Sketch a corresponding histogram with four intervals.

3.4. A countrywide demographical survey of a popula-
tion revealed that 43.2 million people had black-colored
eyes, 12.1 million people had hazel-colored eyes, 26.7 mil-
lion people had brown-colored eyes, 17.4 million people
had green-colored eyes, and 10.0 million people had gray-
colored eyes.

(a) Make a relative frequency distribution to display the
above data.
(b) Make a histogram.
(c) What is the mode in this case?

3.5. Create a data file with your software for the Crime
data file from the text website. Use the variable murder,
which is the murder rate (per 100,000 population). Using
software,

(a) Construct a relative frequency distribution.
(b) Construct a histogram. How would you describe the
shape of the distribution?
(c) Construct a stem-and-leaf plot. How does this plot
compare to the histogram in (b)?
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TABLE 3.13

nation GDP Gini HDI Econ CO2 Prison
Australia 43550 34 0.93 81 16.5 130
Austria 44149 30 0.88 71 7.8 98
Belgium 40338 33 0.88 69 8.8 108
Canada 43247 34 0.90 79 14.1 118
...
UK 36197 38 0.89 76 7.1 148
US 53143 41 0.91 76 17.0 716

Source:stats.oecd.org,hdr.undp.org/en/data, andwww.pewresearch.org;
complete data file is at text website.

3.6. The OECD (Organization for Economic Coopera-
tion and Development) consists of advanced, industrial-
ized countries that accept the principles of representative
democracy and a free market economy. Table 3.13 shows
part of the OECD data file at the text website that has
data on several variables for the 24 nations that made up
the OECD before its recent enlargement to include na-
tions that have recently undergone market economy re-
forms. The variables are gross domestic product (GDP,
per capita in U.S. dollars), the Gini measure of inequal-
ity, a human development index (HDI, which has com-
ponents referring to life expectancy at birth, educational
attainment, and income per capita), an index of economic
freedom, carbon dioxide emissions (CO2, per capita, in
metric tons), and prison population (per 100,000 people).
Using the complete data file from the text website:

(a) Construct a stem-and-leaf plot of the GDP values, by
rounding and reporting the values in thousands of dollars
(e.g., replacing $43,550 by 44).
(b) Construct a histogram. Interpret.
(c) Identify the outlier in each plot.

3.7. Refer to the prison values in the previous exercise.

(a) Find the mean and the median.
(b) Based on a histogram or box plot for these data, why
would you expect the mean to be larger than the median?
(c) Identify an outlier. Investigate how it affects the mean
and the median by recalculating them without this obser-
vation.

3.8. A study conducted by a world opinion website on
the number of Internet users across different countries
revealed the following data: 11.6 million in Singapore,
69.8 million in Japan, 22.1 million in France, 14.2 million
in Belgium, 14.1 million in Austria, and 12.7 million in
Bangladesh.

(a) Find the mean and median for the above data.
(b) Which value in the above data would be considered an
outlier? What will be the value of the mean if the outlier
was not taken into consideration?

3.9. In order to develop a new line of hair dye, a cosmet-
ics company poll asked, “What color best describes your
natural hair?” (black, brown, blonde, red), the percentage
of responses were 31%, 54%, 7% and 3%, respectively.

(a) Which response is the mode?
(b) Can you compute a mean or a median for these data?
If so, do so; if not, explain why not.

3.10. A researcher in an alcoholism treatment center, to
study the length of stay in the center for first-time patients,
randomly selects 10 records of individuals institutional-
ized within the previous two years. The lengths of stay, in
days, were 11, 6, 20, 9, 13, 4, 39, 13, 44, and 7. For a similar
study 25 years ago, lengths of stay, in days, for 10 sampled
individuals were 32, 18, 55, 17, 24, 31, 20, 40, 24, and 15.
Software shows results:
-------------------------------------------
Variable | Obs Mean Std. Dev. Min Max
stay_new | 10 16.6 13.91402 4 44
stay_old | 10 27.6 12.39355 15 55

-------------------------------------------

(a) Summarize results in the two studies, using measures of
center and variability. Interpret any differences you find.
(b) Actually, the new study also selected one other record.
That patient is still institutionalized after 40 days. Thus,
that patient’s length of stay is at least 40 days, but the ac-
tual value is unknown. Can you calculate the mean or me-
dian for the complete sample of size 11 including this par-
tial observation? Explain. (This observation is said to be
censored, meaning that the observed value is “cut short”
of its true, unknown value.)

3.11. Access the GSS at sda.berkeley.edu/GSS. En-
tering TVHOURS for the variable and year(2014) in the
selection filter, you obtain data on hours per day of TV
watching in the United States in 2014.

(a) Construct the relative frequency distribution for the
values 0, 1, 2, 3, 4, 5, 6, 7 or more.
(b) How would you describe the shape of the distribu-
tion?
(c) Explain why the median is 2.
(d) The mean is larger than 2. Why do you think this is?

http://www.pewresearch.org
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3.12. Table 3.14 shows 2012 female economic activity
(FEA) for countries in Eastern Europe. Construct plots
and find summary statistics to compare these values with
those from the Middle East in Table 3.4. Interpret.

TABLE 3.14

Country FEA Country FEA Country FEA Country FEA

Bosnia/Herz. 68 Estonia 80 Moldova 87 Slovakia 75
Bulgaria 81 Hungary 82 Poland 75 Slovenia 79
Croatia 79 Latvia 81 Romania 80 Ukraine 67
Czech Rep. 74 Lithuania 83 Serbia 75

Source: www.socialwatch.org.

3.13. Calculate the weighted average for two sets of sam-
ple where n1 = 12, n2 = 5, ȳ1 = 360, and ȳ2 = 211. The
weighted average is close to which sample mean?

3.14. Table 3.15 summarizes responses of 2223 subjects in
the 2014 GSS to the question “About how often did you
have sex during the last 12 months?”

TABLE 3.15

How Often Had Sex Frequency

Not at all 571
Once or twice 220
About once a month 255
2 or 3 times a month 357
About once a week 333
2 or 3 times a week 365
More than 3 times a week 122

(a) Report the median and the mode. Interpret.
(b) Treat this scale in a quantitative manner by assign-
ing the scores 0, 0.1, 1.0, 2.5, 4.3, 10.8, and 17 to the cate-
gories, for approximate monthly frequency. Find the sam-
ple mean, and interpret.

3.15. A survey conducted on a sample of employees from
an organization asked, “How would you rate yourself
on a scale of happiness?” The responses ranged from
extremely happy, very happy, somewhat happy, neutral,
somewhat unhappy, very unhappy, to extremely unhappy.
The counts in each category were 234, 267, 387, 459, 350,
301, and 231.
(a) Make a relative frequency distribution and plot a his-
togram for the data.
(b) What are the mode and median for the above data?

3.16. According to a study done by an educational re-
search organization, the median tuition cost for a private
university was $32,500 per year and $17,350 per year for
a public university, whereas the mean was $34,000 for pri-
vate universities and $19,500 for public universities.
(a) Does this suggest that the distribution of tuition for
public and private universities is symmetric, or skewed to
the right, or skewed to the left? Explain.
(b) The results refer to 25 private universities and 23 pub-
lic universities. Find the overall mean.

3.17. A national polling organization conducts a research
study on the median amount of money spent on grooming
products. Women spent $2,350 in the past year and men
spent $866 in the past year.
(a) Identify the response variable and the explanatory
variable for this analysis.
(b) Is enough information given to find the median when
the data from both groups are combined? Why or why
not?
(c) If the reported values were means, what else would
you need to know to find the overall mean?

3.18. The General Social Survey has asked, “During the
past 12 months, how many people have you known per-
sonally that were victims of homicide?” Table 3.16 shows
software output from analyzing responses.
(a) Is the distribution bell shaped, skewed to the right, or
skewed to the left?

TABLE 3.16

VICTIMS Frequency Percent
--------------------------------

0 1244 90.8
1 81 5.9
2 27 2.0
3 11 0.8
4 4 0.3
5 2 0.1
6 1 0.1

n Mean Std Dev Min 1st Qu. Med 3rd Qu. Max
-----------------------------------------------------------
1370 0.146 0.546 0 0 0 0 6

http://www.socialwatch.org
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(b) Does the Empirical Rule apply to this distribution.
Why or why not?
(c) Report the median. If 500 observations shift from 0 to
6, how does the median change? What property does this
illustrate for the median?

3.19. According to an article reported byen.wikipedia.
org on the top oil producers in 2011, the oil production
(measured in metric ton, mt) was 517 for Saudi Arabia,
510 for Russia, 215 for Iran, 203 for China, 139 for Nigeria,
144 for the UAE, and 144 for Mexico.

(a) Calculate the mean and the median.
(b) What is the range for the given distribution?
(c) What is the standard deviation for the data and what
does it tell us about the spread of the data?

3.20. National Geographic Traveler magazine recently
presented data on the annual number of vacation days av-
eraged by residents of eight different countries. They re-
ported 42 days for Italy, 37 for France, 35 for Germany, 34
for Brazil, 28 for Britain, 26 for Canada, 25 for Japan, and
13 for the United States. (The number of days mandated
by these governments differs, varying between 0 for the
United States and 30 for France.)

(a) Find the mean and standard deviation. Interpret.
(b) Report the five-number summary. (Hint: You can find
the lower quartile by finding the median of the four values
below the median.)

3.21. The Human Development Index (HDI) is an index
the United Nations uses to give a summary rating for each
nation based on life expectancy at birth, educational at-
tainment, and income. In 2014, the 10 nations (in order)
with the highest HDI rating, followed by the percentage of
seats in their parliament held by women (which is a mea-
sure of gender empowerment), were Norway 40, Australia
31, Switzerland 28, Netherlands 38, United States 18, Ger-
many 32, New Zealand 32, Canada 28, Singapore 24, and
Denmark 39. For these data, ȳ = 31 and s = 7. Would s in-
crease, or decrease, (a) if the United States were removed
from the data set? (b) if Australia were removed? Explain.

3.22. A report published by a survey agency on the num-
ber of female workers (in millions) in each country re-
vealed the following data. For Western Europe, the val-
ues were as follows: Germany, 86; Norway, 89; France, 72;
Ireland, 77; Finland, 81; Greece, 85; the United Kingdom,
89; Belgium, 73; Italy, 79; and Denmark, 83. For Africa,
the values reported were as follows: Congo, 32; Sudan,
12; Botswana, 11; Kenya, 36; Ghana, 22; Zimbabwe, 27;
Madagascar, 12; and Zambia, 38.

(a) Calculate the mean for the two sets of nations. Which
set of nations has a higher number of female workers?

(b) Find the standard deviation for the two sets of nations.
Which set has a larger spread of scores and why?

3.23. A report indicates that teacher’s total annual pay
(including bonuses) in Toronto, Ontario, has a mean of
$61,000 and standard deviation of $10,000 (Canadian dol-
lars). Suppose the distribution has approximately a bell
shape.

(a) Give an interval of values that contains about (i) 68%,
(ii) 95%, (iii) all or nearly all salaries.
(b) Would a salary of $100,000 be unusual? Why?

3.24. Excluding the United States, the national mean
number of holiday and vacation days in a year for OECD
nations (see Exercise 3.6) is approximately bell shaped
with a mean of 35 days and standard deviation of 3 days.3

(a) Use the Empirical Rule to describe the variability.
(b) The observation for the United States is 19. If this is
included with the other observations, will the (i) mean in-
crease, or decrease? (ii) standard deviation increase, or
decrease?
(c) Using the mean and standard deviation for the other
countries, how many standard deviations is the U.S.
observation from the mean?

3.25. For GSS data on “the number of people you know
who have committed suicide,” 88.8% of the responses
were 0, 8.8% were 1, and the other responses took higher
values. The mean equals 0.145, and the standard deviation
equals 0.457.

(a) What percentage of observations fall within one stan-
dard deviation of the mean?
(b) Is the Empirical Rule appropriate for the distribution
of this variable? Why or why not?

3.26. A sample of 100 voters completed a questionnaire
regarding their level of satisfaction with the current gov-
ernment. The scores on the questionnaire ranged between
25 and 150. The mean of the sample was 92. Which of the
following value can be a possible standard deviation for
this sample: 0, −92, 12, 64? Why?

3.27. Why is standard deviation preferred in place of vari-
ance to explain variability?

3.28. According to an online survey, the average number
of hours spent by a person on the Internet is 12. Which of
the following values seems the most realistic in terms of
standard deviation:
(i) 5, (ii) 0, (iii) −5, (iv) 32, (v) 64? Why?

3.29. For all homes in Gainesville, Florida, the annual res-
idential electrical consumption4 recently had a mean of
10,449 and a standard deviation of 7489 kilowatt-hours
(kWh). The maximum usage was 336,240 kWh.

3 Source: www.stateofworkingamerica.org.
4 Data supplied by Todd Kamhoot, Gainesville Regional Utilities.

http://www.stateofworkingamerica.org
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(a) What shape do you expect this distribution to have?
Why?
(b) Do you expect this distribution to have any outliers?
Explain.

3.30. A recent study5 of the effect of work hours and com-
muting time on political participation estimated that for
those engaged in paid work in the United States, the time
it takes on a typical day to get to work has a mean of
19.8 minutes and standard deviation of 13.6 minutes. What
shape do you expect this distribution to have? Why?

3.31. According to Statistical Abstract of the United States,
2015, the mean salary (in dollars) of secondary school
teachers in the United States varied among states with a
five-number summary of
-------------------------------------------

100% Max 68,800 (New York)
75% Q3 54,700
50% Med 45,500
25% Q1 43,100
0% Min 37,700 (South Dakota)

-------------------------------------------

(a) Find and interpret the range.
(b) Find and interpret the interquartile range.

3.32. Refer to the previous exercise.
(a) Sketch a box plot.
(b) Based on (a), predict the direction of skew for this dis-
tribution. Explain.
(c) If the distribution, although skewed, is approximately
bell shaped, which value is most plausible for the standard
deviation:
(i) 100, (ii) 1000, (iii) 7000, (iv) 25,000? Explain.

3.33. Table 3.17 shows part of software output for analyz-
ing the murder rates (per 100,000) in the Crime2 data

TABLE 3.17

Variable = MURDER
n 51 n 50
Mean 5.6 Mean 4.8
Std Dev 6.05 Std Dev 2.57

Quartiles Quartiles
100% Max 44 100% Max 13
75% Q3 6 75% Q3 6
50% Med 5 50% Med 5
25% Q1 3 25% Q1 3
0% Min 1 0% Min 1

Range 43 Range 12
Q3-Q1 3 Q3-Q1 3

file at the text website (to be analyzed in Chapter 9). The
first column refers to the entire data set, and the second
column deletes the observation for D.C. For each statis-
tic reported, evaluate the effect of including the outlying
observation for D.C.

3.34. The text website has a data file Houses that lists re-
cent selling prices of 100 homes in Gainesville, Florida.
Software reports ȳ = $155, 331, s = $101, 262, and a five-
number summary of minimum = $21, 000, Q1 = $91, 875,
median = $132,600, Q3 = $173, 875, and maximum =
$587,000.

(a) Does the Empirical Rule apply to this distribution?
Why?
(b) What do these values suggest about the shape of the
distribution? Why?
(c) Use the 1.5(IQR) criterion to determine if any outliers
are present.

3.35. For the following examples, discuss the shape of the
distribution by giving a valid explanation.

(a) The mean score on a mathematics test was 67 and the
median was 44.
(b) In a sample of 100 infants, the average number of
hours slept was 18 and the median was 22.
(c) The most frequently occurring scores in a distribution
are at the lowest and the highest points.
(d) In an experiment, the average time taken to complete
a trial is 30 seconds. The median is also 30 seconds.
(e) The average calories consumed by an adult in a day
are 2,300 and the median is 1,300.

3.36. For each of the following variables, indicate whether
you would expect its relative frequency histogram to be
bell shaped, U-shaped, skewed to the right, or skewed to
the left.

(a) Exam score of easy exam (with ȳ = 88, s = 10, mini-
mum = 65, Q1 = 77, median = 85, Q3 = 91, and maximum
= 100).
(b) IQ for the general population.
(c) Number of times arrested in past year.
(d) Time needed to complete difficult exam (maximum
time is 1 hour).
(e) Age at death.
(f) Weekly church contribution (median is $10 and mean
is $17).
(g) Attitude toward legalization of abortion.

3.37. For parts (a), (b), and (f) of the previous exercise,
sketch box plots that would be plausible for the variable.

3.38. The January 2014 unemployment rates of adults of
age 24 or less in the 28 countries in the European Union

5 B. Newman, J. Johnson, and P. Lown, Am. Politics Res., vol. 42 (2014), pp. 141–170.
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ranged from 7.9 (Germany) to 57.3 (Greece), with lower
quartile = 18.9, median = 23.7, upper quartile = 33.5,
mean = 26.0, and standard deviation = 13.0. Sketch a
box plot, labeling which of these values are used in the
plot.

3.39. For the number of times a week reading a news-
paper, from the Students data file referred to in Exer-
cise 1.11, Figure 3.18 shows software output (rather crude)
of the stem-and-leaf plot and the box plot.

(a) From the box plot, identify the minimum, lower quar-
tile, median, upper quartile, and maximum.
(b) Identify this five-number summary using the stem-
and-leaf plot.
(c) Do the data appear to contain any outliers? If so, iden-
tify.
(d) The standard deviation is one of the following
values—0.3, 3, 13, 23. Which do you think it is, and why?
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FIGURE 3.18

3.40. Infant mortality rates (number of infant deaths, per
1000 live births) are reported by the World Bank. In their
report for 2010–2014, the five-number summaries (min,
Q1, median, Q2, max) were (19, 55, 74, 86, 107) for Africa
and (2, 3, 4, 4, 6) for Europe. Sketch side-by-side box plots,
and use them to describe differences between the distri-
butions. (The plot for Europe shows that the quartiles,
like the median, are less useful when the data are highly
discrete.)

3.41. In 2013, the five-number summary for the U.S.
statewide percentage of people without health insurance
had minimum = 4% (Massachusetts), Q1 = 10%, Med =
12%, Q3 = 15%, and maximum = 20% (Texas).

(a) Sketch a box plot.
(b) Do you think that the distribution is symmetric,
skewed to the right, or skewed to the left? Why?

3.42. For a national graduation examination scored out
of 110, the 2016 results were reported as minimum = 30,

lower quartile = 41, median = 66, upper quartile = 74,
and maximum = 93.

(a) Report and interpret the range and interquartile
range.
(b) Calculate the outliers low observations and the high
observations.

3.43. Using software, analyze the murder rates from the
Crime data file at the text website.

(a) Find the five-number summary.
(b) Construct a box plot, and interpret.
(c) Repeat the analyses, adding the D.C. murder rate of
15.9 to the data file, and compare results.

3.44. A report by the OECD6 indicated that annual water
consumption for nations in the OECD (see Exercise 3.6)
was skewed to the right, with values (in cubic meters per
capita) having a median of about 500 and ranging from
about 200 in Denmark to 1700 in the United States Con-
sider the possible values for the IQR: −10, 0, 10, 350, 1500.
Which is the most realistic value? Why?

3.45. According to values from Table 3.9, for the nations
in the European Union (EU) excluding Luxembourg, car-
bon dioxide emissions (metric tons per capita) had a mean
of 7.4 and standard deviation of 1.7.

(a) How many standard deviations above the mean was
the value of 20.9 for Luxembourg?
(b) Sweden’s observation was 5.5. How many standard de-
viations below the mean was it?
(c) The carbon dioxide emissions were 14.1 for Canada
and 17.0 for the United States Relative to the distribution
for the European Union, find and interpret the z-score for
(i) Canada, (ii) the United States.

3.46. The United Nations publication Energy Statis-
tics Yearbook lists consumption of energy (unstats.
un.org/unsd/energy). For the 27 nations that made
up the European Union (EU) in 2011, the energy values
(in kilowatt-hours per capita) had a mean of 5963 and a
standard deviation of 2292.

(a) France had a value of 7946. How many standard devi-
ations from the mean was it?
(b) The value for the United States was 13,930. Relative to
the distribution for the European Union, find its z-score.
Interpret.
(c) If the distribution of EU energy values were bell
shaped, would a value of 13,930 be unusually high? Why?

3.47. A study compares three types of personalities (Ex-
trovert, Ambivalent, Introvert) on their level of sociabil-
ity, that is, very social, social, asocial.

(a) In this study, identify the explanatory variable and the
response variable.

6 OECD Key Environmental Indicators.



Exercises 75

(b) How will you display this data in a contingency
table?

3.48. Table 3.18 shows reported happiness for those sub-
jects in the 2014 GSS who attend religious services rarely
and for those who attend frequently.
(a) Identify the response variable and the explanatory
variable.
(b) At each level of religious attendance, find the percent-
age who reported being very happy.
(c) Does there seem to be an association between these
variables? Why?

TABLE 3.18

Religious Happiness

Attendance Very Happy Pretty Happy Not Too Happy Total

At least once a
week

247 287 67 601

No more than
once a year

298 723 165 1186

3.49. For 2014 World Bank data (data.worldbank.org)
for several nations, a prediction equation relating fertil-
ity (the mean number of children per adult woman) and
percentage of people using the Internet is

Predicted fertility = 3.20 − 0.02(Internet use).

(a) Compare the predicted fertility of a nation with 87%
use of the Internet (Canada) to a nation with 0% use
(North Korea).
(b) The correlation is −0.55. Explain what the negative
value represents.
(c) The correlation for these nations between fertility
and percentage of people using contraceptive methods is
−0.89. Which variable seems to be more strongly asso-
ciated with fertility—Internet use, or contraceptive use?
Why?

3.50. Refer to the previous exercise. Using regression, the
prediction equation relating GDP (in thousands of dollars
per capita) to carbon dioxide emissions (in metric tons per
capita) is

Predicted CO2 = 1.93 + 0.178(GDP).

(a) What type of pattern would you expect for the points
in a scatterplot for these data?
(b) In this data set, the highest CO2 value was 17.0
metric tons, for the United States. Its GDP was 53.1.
Find its predicted CO2 use, according to the regression
analysis.
(c) In this data set, GDP ranged from a low of 4.4 to a high
of 62.9. Find the range of predicted CO2 values.

3.51. For the data for OECD nations in Table 3.13 in Ex-
ercise 3.6 and in the UN data file, use software to construct

a scatterplot relating x = carbon dioxide emissions (CO2)
and y = fertility rate.

(a) Based on this plot, would you expect the correlation
between these variables to be positive, or negative? Why?
(b) Do you see an observation that falls apart from the
others? Identify the nation.
(c) The correlation with CO2 is 0.67 for GDP and −0.55
for the gender inequality index. Which variable is more
strongly associated with CO2? Why?

3.52. Using national surveys, the Pew Research Center
has estimated the percent of people who say that religion
plays a very important role in their lives. Values for OECD
nations (with GDP values in parentheses from the OECD
data file) include Australia 21% (43,550), Canada 25%
(43,247), France 14% (36,907), Germany 21% (43,332),
Greece 35% (25,651), Italy 32% (34,303), Japan 10%
(36,315), Spain 22% (32,103), Turkey 71% (18,975), the
United Kingdom 18% (36,197), and the United States
59% (53,143). Construct a scatterplot of these values (as
y) against GDP. Summarize what you learn, highlighting
any apparent outliers.

3.53. What is the difference between the descriptive mea-
sures symbolized by (a) ȳ and μ? (b) s and σ?

Concepts and Applications
3.54. For the Students data file at the text website (see
Exercise 1.11 on page 21), use software to conduct graph-
ical and numerical summaries for (a) distance from home
town, (b) weekly hours of TV watching. Describe the
shapes of the distributions, and summarize your findings.

3.55. Refer to the data file your class created for Exercise
1.12 (page 22). For variables chosen by your instructor,
conduct descriptive statistical analyses. In your report, give
an example of a research question that could be addressed
using your analyses, identifying response and explanatory
variables. Summarize and interpret your findings.

3.56. Table 3.19, the Guns data file at the text website,
shows annual homicide rates (including homicide, suicide,

TABLE 3.19

Gun Gun Gun
Nation Deaths Nation Deaths Nation Deaths

Australia 1.1 (15) Greece 5.9 (22) Norway 0.4 (31)
Austria 1.8 (30) Iceland 3.2 (30) Portugal 4.8 (8)
Belgium 2.9 (17) Israel 9.4 (7) Spain 1.5 (10)
Canada 5.1 (31) Italy 8.1 (12) Sweden 1.9 (32)
Denmark 2.2 (12) Japan 0.4 (1) Switzerland 2.3 (46)
Finland 2.6 (45) Luxembourg 6.0 (15) United Kingdom 0.4 (6)
France 2.2 (31) Netherlands 2.0 (4) United States 28.3 (89)
Germany 2.0 (30) New Zealand 2.6 (23)

Source: www.smallarmssurvey.org. Values in parentheses are number of
firearms (per 100 people).

http://www.smallarmssurvey.org
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and accidental deaths) per million population in advanced
industrialized nations. The values in parentheses are the
nation’s number of firearms, per 100 people. Prepare a re-
port in which you summarize the data using graphical and
numerical methods from this chapter.

3.57. In 2014, UNICEF reported child poverty rates7

for many nations in 2012 and in 2008. In 2012, val-
ues in Scandinavia were Norway 5.3%, Finland 8.8%,
Denmark 10.2%, and Sweden 12.1%, and values in North
America were Canada 20.8%, United States 32.2%, and
Mexico 34.3%.
(a) Use descriptive statistical methods to summarize and
compare Scandinavia and North America.
(b) Compare 2012 and 2008 poverty rates for the full data
set of 41 nations in the Poverty data file at the text web-
site. Overall, did the distribution change much? Also, take
differences between 2012 and 2008 for each nation and
analyze the changes in poverty rates.

3.58. For Table 3.9, pose a research question for two
variables relating to the direction of their association,
identifying the response variable and explanatory vari-
able. Using software, construct a scatterplot and find
the correlation. Interpret, and indicate what they suggest
about the research question.

3.59. Zagat restaurant guides publish ratings of restau-
rants for many large cities around the world (see
www.zagat.com). The review for each restaurant gives

a verbal summary as well as a 0-to-30-point rating of the
quality of food, decor, service, and the cost of a dinner
with one drink and tip. Figure 3.19 shows side-by-side box
plots of the cost for Italian restaurants in Boston, London,
and New York (Little Italy and Greenwich Village neigh-
borhoods). Summarize what you learn from these plots.

3.60. Use software to load the UN data file shown in
Table 3.9.
(a) Conduct a descriptive statistical analysis of the prison
rates. Summarize your conclusions, highlighting any un-
usual observations.
(b) Use scatterplots and correlations to investigate the as-
sociation between prison rate and the other variables in
the table. Summarize the results for one of those associa-
tions.

3.61. For Table 3.19, construct a scatterplot to investi-
gate the association between gun deaths and number of
firearms. Identify the effect of any outlier.

3.62. The Internet sitewww.pearsonglobaleditions
.com/Agresti has useful applets for illustrating data
analyses and properties of statistical methods.

(a) Using the Explore Quantitative Data applet, construct
a sample of 20 observations on y = number of hours of
physical exercise in the past week having ȳ < s. What
aspect of the shape of the distribution causes this to
happen?
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7 See www.unicef-irc.org/publications/pdf/rc12-eng-web.pdf.

http://www.zagat.com
http://www.pearsonglobaleditions.com/Agresti
http://www.unicef-irc.org/publications/pdf/rc12-eng-web.pdf
http://www.pearsonglobaleditions.com/Agresti
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(b) Using the Explore Linear Regression applet with the
Draw Own option, create 20 data points that are plausi-
ble for x = number of hours of exercise last week and
y = number of hours of exercise this week. (Note that you
can adjust the ranges of the axes in the applet.) Describe
your data by the correlation and by the linear regression
line, and interpret them.

3.63. When a distribution is highly skewed, which de-
scribes the typical value better, the median or the mean?
Which one is more likely to be impacted by outliers, the
median or the mean?

3.64. What is the size of the mean compared to the me-
dian when a distribution skews to the left? What about
when it skews to the right?

3.65. The fertility rate (mean number of children per
adult woman) varies in European countries between a low
of 1.2 (Poland and Portugal) and a high of 1.9 (Ireland
and France). For each woman, the number of children is
a whole number, such as 0 or 1 or 2. Explain why it makes
sense to measure a mean number of children per adult
woman (which is not a whole number), for example, to
compare these rates among European countries or with
Canada (1.6), the United States (1.9), and Mexico (2.2).

3.66. According to a national weather service, during the
month of June 2016, 4% of days were 20◦ Celsius or lower,
10% were 21◦ Celsius or lower, 26% were 22◦ Celsius or
lower, 48% were 24◦ Celsius or lower, 67% were 25◦ Cel-
sius or lower, and 96% were 27◦ Celsius or lower. These
are called cumulative percentages.

(a) Find the median temperature for the month of June.
(b) Nearly all the daily temperatures fall between 26 and
19◦ Celsius, with less than 1% falling outside that range.
If the temperatures are approximately bell shaped, give a
rough approximation for the standard deviation. Explain
your reasoning.

3.67. Give an example of a variable for which the mode
applies, but not the mean or median.

3.68. Give an example of a variable having a distribution
that you expect to be (a) approximately symmetric, (b)
skewed to the right, (c) skewed to the left, (d) bimodal,
(e) skewed to the right, with a mode and median of 0 but
a positive mean.

3.69. To measure center, why is the (a) median sometimes
preferred over the mean? (b) mean sometimes preferred
over the median? In each case, give an example to illus-
trate your answer.

3.70. To measure variability, why is

(a) The standard deviation s usually preferred over the
range?
(b) The IQR sometimes preferred to s?

3.71. Answer true or false to the following:

(a) The mean, median, and mode can never all be the
same.
(b) The mean is always one of the data points.
(c) The median is the same as the second quartile and the
50th percentile.
(d) For 67 sentences for murder recently imposed us-
ing U.S. Sentencing Commission guidelines, the median
length was 160 months and the mean was 251 months. This
distribution is probably skewed to the right.

For multiple-choice problems 3.72–3.74, select the best
response.

3.72. A national polling organization reported a recent
survey of levels of education (high school, some college,
college, master’s, doctorate/professional). For level of ed-
ucation, the frequencies were (48%, 11%, 24%, 9%, 7%),
respectively.

(a) The median level of education is doctorate/
professional.
(b) Only 3% of the subjects fall within one standard devi-
ation of the mean.
(c) The mode is high school.
(d) The master’s response is an outlier.

3.73. A national survey asked whether capital punish-
ment is (always wrong, almost always wrong, wrong only
sometimes, not wrong at all). The response counts in these
four categories were (621, 172, 112, 275). This distribution
is

(a) Skewed to the right.
(b) Approximately bell shaped.
(c) Somewhat bimodal, but with overall mode “always
wrong.”
(d) Shape does not make sense, since the variable is
nominal.

3.74. In a study of graduate students who took the Grad-
uate Record Exam (GRE), the Educational Testing Ser-
vice recently reported that for the quantitative exam, U.S.
citizens had a mean of 529 and standard deviation of 127,
whereas the non-U.S. citizens had a mean of 649 and stan-
dard deviation of 129.

(a) Both groups had about the same amount of variability
in their scores, but non-U.S. citizens performed better, on
the average, than U.S. citizens.
(b) If the distribution of scores was approximately bell
shaped, then almost no U.S. citizens scored below 400.
(c) If the scores range between 200 and 800, then prob-
ably the scores for non-U.S. citizens were symmetric and
bell shaped.
(d) A non-U.S. citizen who scored three standard devia-
tions below the mean had a score of 200.
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3.75. A teacher summarizes grades on the midterm
exam by

Min = 26, Q1 = 67, Median = 80, Q3 = 87, Max = 100,
Mean = 76, Mode = 100, Standard dev. = 76, IQR = 20.

She incorrectly recorded one of these. Which one do you
think it was? Why?

3.76. Ten people are randomly selected in Florida and an-
other 10 people are randomly selected in Alabama. Ta-
ble 3.20 provides summary information on mean income.
The mean is higher in Alabama both in rural areas and in
urban areas. Which state has the larger overall mean in-
come? (The reason for this apparent paradox is that mean
urban incomes are larger than mean rural incomes for
both states and the Florida sample has a higher propor-
tion of urban residents.)

TABLE 3.20

State Rural Urban

Florida $26,000 (n = 3) $39,000 (n = 7)
Alabama $27,000 (n = 8) $40,000 (n = 2)

3.77. For Table 3.2 (page 43), explain why the mean of
these 50 observations is not necessarily the same as the
violent crime rate for the entire U.S. population.

3.78. For a sample with mean ȳ, adding a constant c to
each observation changes the mean to ȳ + c, and the stan-
dard deviation s is unchanged. Multiplying each observa-
tion by c changes the mean to cȳ and the standard devia-
tion to |c|s.

(a) Scores on a difficult exam have a mean of 57 and a
standard deviation of 20. The teacher boosts all the scores
by 20 points before awarding grades. Report the mean and
standard deviation of the boosted scores.

(b) Suppose that annual income of Canadian lawyers has
a mean of $100,000 and a standard deviation of $30,000.
Values are converted to British pounds for presentation to
a British audience. If one British pound equals $2.00, re-
port the mean and standard deviation in British currency.
(c) Observations from a survey that asks about the num-
ber of miles traveled each day on mass transit are to be
converted to kilometer units (1 mile = 1.6 kilometers).
Explain how to find the mean and standard deviation of
the converted observations.

3.79.* Show that
∑

(yi − ȳ) must equal 0 for any collection
of observations y1, y2, . . . , yn.

3.80.* The Russian mathematician Tchebysheff proved
that for any k > 1, the proportion of observations that
fall more than k standard deviations from the mean can
be no greater than 1/k2. This holds for any distribution,
not just bell-shaped ones.

(a) Find the upper bound for the proportion of observa-
tions falling (i) more than 2 standard deviations from the
mean, (ii) more than 3 standard deviations from the mean,
(iii) more than 10 standard deviations from the mean.
(b) Compare the upper bound for k = 2 to the approxi-
mate proportion falling more than 2 standard deviations
from the mean in a bell-shaped distribution. Why is there
a difference?

3.81.* The least squares property of the mean states that
the data fall closer to ȳ than to any other number c, in
the sense that the sum of squares of deviations about the
mean is smaller than the sum of squares of deviations
about c. That is,∑

(yi − ȳ)2 <
∑

(yi − c)2.

If you have studied calculus, prove this property by treat-
ing f (c) = ∑

(yi − c)2 as a function of c and deriving
the value of c that provides a minimum. (Hint: Take the
derivative of f (c) with respect to c and set it equal to zero.)
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C ompared to most mathematical sciences, statistical science is young. Methods of statistical
inference were developed within the past century. By contrast, probability, the subject of

this chapter, has a long history. For instance, mathematicians used probability in France in the sev-
enteenth century to evaluate various gambling strategies. Probability is a highly developed subject,
but this chapter limits attention to the basics that we’ll need for statistical inference.

Following an introduction to probability, we introduce probability distributions, which pro-
vide probabilities for all the possible outcomes of a variable. The normal distribution, described
by a bell-shaped curve, is the most important probability distribution for statistical inference. The
sampling distribution is a fundamentally important type of probability distribution that we need
to conduct statistical inference. It enables us to predict how close a sample mean falls to the popu-
lation mean. The main reason for the importance of the normal distribution is the remarkable result
that sampling distributions are usually bell shaped.

4.1 Introduction to Probability
In Chapter 2, we learned that randomness is a key component of good ways to gather
data. For each observation in a random sample or randomized experiment, the pos-
sible outcomes are known, but it’s uncertain which will occur.

PROBABILITY AS A LONG-RUN RELATIVE FREQUENCY

For a particular possible outcome for a random phenomenon, the probability of
that outcome is the proportion of times that the outcome would occur in a very long
sequence of observations.

Probability
With a random sample or randomized experiment, the probability that an
observation has a particular outcome is the proportion of times that
outcome would occur in a very long sequence of like observations.

Later in this chapter, we’ll analyze data for the 2014 California gubernatorial
election, for which the winner was the Democratic party candidate, Jerry Brown.
We’ll use an exit poll that interviewed a random sample of voters in that election
and asked whom they voted for. Suppose that the population proportion who voted
for Brown is 0.60. Then, the probability that a randomly selected person voted for
Brown is 0.60.

Why does probability refer to the long run? Because when you do not al-
ready know or assume some value for a probability, you need a large number of
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observations to accurately assess it. If you sample only 10 people and they are
all right-handed, you can’t conclude that the probability of being right-handed
equals 1.0.

This book defines a probability as a proportion, so it is a number between 0
and 1. In practice, probabilities are often expressed also as percentages, then falling
between 0 and 100. For example, if a weather forecaster says that the probability of
rain today is 70%, this means that in a long series of days with atmospheric conditions
like those today, rain occurs on 70% of the days.

This long-run approach is the standard way to define probability. This definition
is not always applicable, however. It is not meaningful, for instance, for the proba-
bility that human beings have a life after death, or the probability that intelligent life
exists elsewhere in the universe. If you start a new business, you will not have a long
run of trials with which to estimate the probability that the business is successful. You
must then rely on subjective information rather than solely on objective data. In the
subjective approach, the probability of an outcome is defined to be your degree of
belief that the outcome will occur, based on the available information, such as data
that may be available from experiences of others. A branch of statistical science uses
subjective probability as its foundation. It is called Bayesian statistics, in honor of an
eighteenth-century British clergyman (Thomas Bayes) who discovered a probability
rule on which it is based.

BASIC PROBABILITY RULES

Next, we’ll present four rules for finding probabilities. We won’t try to explain them
with precise, mathematical reasoning, because for our purposes it suffices to have an
intuitive feel for what each rule says.

Let P(A) denote the probability of a particular possible outcome denoted by the
letter A. Then,

• P(not A) = 1 − P(A).

If you know the probability a particular outcome occurs, then the probability
it does not occur is 1 minus that probability. Suppose A represents the outcome
that a randomly selected person favors legalization of same-sex marriage. If
P(A) = 0.66, then 1 − 0.66 = 0.34 is the probability that a randomly selected
person does not favor legalization of same-sex marriage.

• If A and B are distinct possible outcomes (with no overlap), then P(A or B) =
P(A) + P(B).

In a survey to estimate the population proportion of people who favor le-
galization of marijuana, let A represent the sample proportion estimate be-
ing much too low, say more than 0.10 below the population proportion. Let B
represent the sample proportion estimate being much too high—at least 0.10
above the population proportion. These are two distinct possible outcomes.
From methods in this chapter, perhaps P(A) = P(B) = 0.03. Then, the over-
all probability the sample proportion is in error by more than 0.10 (without
specifying the direction of error) is

P(A or B) = P(A) + P(B) = 0.03 + 0.03 = 0.06.

• If A and B are possible outcomes, then P(A and B) = P(A) × P(B given A).

From U.S. Census data, the probability that a randomly selected American
adult is married equals 0.56. Of those who are married, General Social Surveys
estimate that the probability a person reports being very happy when asked to
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choose among (very happy, pretty happy, not too happy) is 0.40; that is, given
you are married, the probability of being very happy is 0.40. So,

P(married and very happy) =
P(married) × P(very happy given married) = 0.56 × 0.40 = 0.22.

About 22% of the adult population is both married and very happy. The prob-
ability P(B given A) is called a conditional probability and is often denoted
by P(B | A).

In some cases, A and B are “independent,” in the sense that whether one
occurs does not depend on whether the other does. That is, P(B given A) =
P(B), so the previous rule simplifies:

• If A and B are independent, then P(A and B) = P(A) × P(B).

For example, suppose that 60% of a population supports a carbon tax to
diminish impacts of carbon dioxide levels on global warming. In random sam-
pling from that population, let A denote the probability that the first person
sampled supports the carbon tax and let B denote the probability that the sec-
ond person sampled supports it. Then P(A) = 0.60 and P(B) = 0.60. With
random sampling, successive observations are independent, so the probability
that both people support a carbon tax is

P(A and B) = P(A) × P(B) = 0.60 × 0.60 = 0.36.

This extends to multiple independent events. For 10 randomly sampled people,
the probability that all 10 support a carbon tax is 0.60 × 0.60 × · · · × 0.60 =
(0.60)10 = 0.006.

4.2 Probability Distributions for Discrete and
Continuous Variables

A variable can take at least two different values. For a random sample or randomized
experiment, each possible outcome has a probability that it occurs. The variable it-
self is sometimes then referred to as a random variable. This terminology emphasizes
that the outcome varies from observation to observation according to random vari-
ation that can be summarized by probabilities. For simplicity, we’ll continue to use
the “variable” terminology regardless of whether the variation has a random aspect.

Recall (from Section 2.1) that a variable is discrete if the possible outcomes are
a set of separate values, such as a variable expressed as “the number of . . . ” with
possible values 0, 1, 2, . . . . It is continuous if the possible outcomes are an infinite
continuum, such as all the real numbers between 0 and 1. A probability distribution
lists the possible outcomes and their probabilities.

PROBABILITY DISTRIBUTIONS FOR DISCRETE VARIABLES

The probability distribution of a discrete variable assigns a probability to each possi-
ble value of the variable. Each probability is a number between 0 and 1. The sum of
the probabilities of all possible values equals 1.

Let P(y) denote the probability of a possible outcome for a variable y. Then,

0 ≤ P(y) ≤ 1 and
∑
all y

P(y) = 1,

where the sum is over all the possible values of the variable.
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Example
4.1

Ideal Number of Children for a Family Let y denote the response to the question
“What do you think is the ideal number of children for a family to have?” This is a
discrete variable, taking the possible values 0, 1, 2, 3, and so forth. According to re-
cent General Social Surveys, for a randomly chosen person in the United States the
probability distribution of y is approximately as Table 4.1 shows. The table displays
the recorded y-values and their probabilities. For instance, P(4), the probability that
y = 4 children is regarded as ideal, equals 0.12. Each probability in Table 4.1 is be-
tween 0 and 1, and the sum of the probabilities equals 1.

TABLE 4.1: Probability Distribution
of y = Ideal Number of
Children for a Family

y P(y)

0 0.01
1 0.03
2 0.60
3 0.23
4 0.12
5 0.01

Total 1.00

A histogram can portray the probability distribution. The rectangular bar over
a possible value of the variable has height equal to the probability of that value.
Figure 4.1 is a histogram for the probability distribution of the ideal number of chil-
dren, from Table 4.1. The bar over the value 4 has height 0.12, the probability of the
outcome 4.

0.0

0.2

0.4

0.6

Probability

Ideal Number of Children

0 1 2 3 4 5

FIGURE 4.1: Histogram
for the Probability
Distribution of the Ideal
Number of Children for a
Family

PROBABILITY DISTRIBUTIONS FOR CONTINUOUS VARIABLES

Continuous variables have an infinite continuum of possible values. Probability dis-
tributions of continuous variables assign probabilities to intervals of numbers. The
probability that a variable falls in any particular interval is between 0 and 1, and the
probability of the interval containing all the possible values equals 1.
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A graph of the probability distribution of a continuous variable is a smooth,
continuous curve. The area under the curve1 for an interval of values represents the
probability that the variable takes a value in that interval.

Example
4.2

Commuting Time to Work A recent U.S. Census Bureau study about commuting
time for workers in the United States who commute to work2 measured y = travel
time, in minutes. The probability distribution of y provides probabilities such as
P(y < 15), the probability that travel time is less than 15 minutes, or P(30 < y < 60),
the probability that travel time is between 30 and 60 minutes.

Figure 4.2 portrays the probability distribution of y. The shaded area in the figure
refers to the region of values higher than 45. This area equals 15% of the total area
under the curve, representing the probability of 0.15 that commuting time is more
than 45 minutes. Those regions in which the curve has relatively high height have the
values most likely to be observed.

0 15 30 45 60 75 90 105 120 135 150

Commuting Time (minutes)

15% of area (probability 5 0.15)

Probability 5 Area under Curve

y 

FIGURE 4.2: Probability
Distribution of Commuting
Time to Work. The area
under the curve between
two points represents the
probability of that interval
of values.

PARAMETERS DESCRIBE PROBABILITY DISTRIBUTIONS

Some probability distributions have formulas for calculating probabilities. For oth-
ers, tables or software provide the probabilities. Section 4.3 shows how to find prob-
abilities for the most important probability distribution.

Section 3.1 introduced the population distribution of a variable. This is, equiv-
alently, the probability distribution of the variable for a subject selected randomly
from the population. For example, if 0.12 is the population proportion of adults who
believe the ideal number of children is 4, then the probability that an adult selected
randomly from that population believes this is also 0.12.

Like a population distribution, a probability distribution has parameters describ-
ing center and variability. The mean describes center and the standard deviation
describes variability. The parameter values are the values these measures would as-
sume, in the long run, if the randomized experiment or random sample repeatedly
took observations on the variable y having that probability distribution.

For example, suppose we take observations from the distribution in Table 4.1.
Over the long run, we expect y = 0 to occur 1% of the time, y = 1 to occur 3% of
the time, and so forth. In 100 observations, for instance, we expect about

one 0, 3 1′s, 60 2′s, 23 3′s, 12 4′s, and one 5.

1 Mathematically, this calculation uses integral calculus. The probability that y falls in the interval between points
a and b is the integral over that interval of the function for the curve.
2 See www.census.gov/hhes/commuting.

http://www.census.gov/hhes/commuting
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In that case, since the mean equals the total of the observations divided by the sample
size, the mean equals

0(1) + 1(3) + 2(60) + 3(23) + 4(12) + 5(1)
100

= 245
100

= 2.45.

This calculation has the form

0(0.01) + 1(0.03) + 2(0.60) + 3(0.23) + 4(0.12) + 5(0.01),

the sum of the possible outcomes times their probabilities. In fact, for any discrete
variable y, the mean of its probability distribution has this form.

Mean of a
Probability Distribution

(Expected Value)

The mean of the probability distribution for a discrete variable y is

μ =
∑

yP(y).

The sum is taken over all possible values of the variable. This parameter is
also called the expected value of y and denoted by E(y).

For Table 4.1, for example,

μ =
∑

yP(y) = 0P(0) + 1P(1) + 2P(2) + 3P(3) + 4P(4) + 5P(5)

= 0(0.01) + 1(0.03) + 2(0.60) + 3(0.23) + 4(0.12) + 5(0.01)

= 2.45.

This is also the expected value of y, E(y) = 2.45. The terminology reflects that E(y)
represents what we expect for the average value of y in a long series of observations.

The standard deviation of a probability distribution, denoted by σ , measures
its variability. The more spread out the distribution, the larger the value of σ . The
Empirical Rule (Section 3.3) helps us to interpret σ . If a probability distribution is
bell shaped, about 68% of the probability falls between μ−σ and μ+σ , about 95%
falls between μ − 2σ and μ + 2σ , and all or nearly all falls between μ − 3σ and
μ + 3σ .

The standard deviation is the square root of the variance of the probability dis-
tribution. The variance measures the average squared deviation of an observation
from the mean. That is, it is the expected value of (y − μ)2. In the discrete case, the
formula is

σ 2 = E(y − μ)2 =
∑

(y − μ)2P(y).

We shall not need to calculate σ 2, so we shall not further consider this formula here.

4.3 The Normal Probability Distribution
Some probability distributions are important because they approximate well sample
data in the real world. Some are important because of their uses in statistical infer-
ence. This section introduces the normal probability distribution, which is important
for both reasons.

Normal Distribution

The normal distribution is symmetric, bell shaped, and characterized by its
mean μ and standard deviation σ . The probability within any particular
number of standard deviations of μ is the same for all normal distributions.
This probability (rounded off) equals 0.68 within 1 standard deviation, 0.95
within 2 standard deviations, and 0.997 within 3 standard deviations.
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Each normal distribution3 is specified by its mean μ and standard deviation
σ . For any real number for μ and any nonnegative number for σ , there is a nor-
mal distribution having that mean and standard deviation. Figure 4.3 illustrates this.
Essentially the entire distribution falls between μ − 3σ and μ + 3σ .

0.68

0.95

0.997

mm 2 2s m 2 sm 2 3s m 1 2sm 1 s m 1 3s

FIGURE 4.3: For Every
Normal Distribution, the
Probability (Rounded)
Equals 0.68 within σ of μ,
0.95 within 2σ of μ, and
0.997 within 3σ of μ

For example, heights of adult females in North America have approximately a
normal distribution with μ = 65.0 inches and σ = 3.5. The probability is nearly
1.0 that a randomly selected female has height between μ − 3σ = 65.0 − 3(3.5) =
54.5 inches and μ+3σ = 65.0+3(3.5) = 75.5 inches. Adult male height has a normal
distribution with μ = 70.0 and σ = 4.0 inches. So, the probability is nearly 1.0 that a
randomly selected male has height between μ − 3σ = 70.0 − 3(4.0) = 58 inches and
μ + 3σ = 70.0 + 3(4.0) = 82 inches. See Figure 4.4.

0.95

58 62 65 70 72 78

0.95

FIGURE 4.4: Normal
Distributions for Women’s
Height (μ = 65, σ = 3.5)
and for Men’s Height
(μ = 70, σ = 4.0)

FINDING NORMAL PROBABILITIES: TABLES, SOFTWARE,
AND APPLETS

For the normal distribution, for each fixed number z, the probability that is within
z standard deviations of the mean depends only on the value of z. This is the area
under the normal curve between μ − zσ and μ + zσ . For every normal distribution,
this probability is 0.68 for z = 1, 0.95 for z = 2, and nearly 1.0 for z = 3.

For a normal distribution, the probability concentrated within zσ of μ is the same
for all normal curves even if z is not a whole number—for instance, z = 1.43 instead of
1, 2, or 3. Table A, also shown next to the inside back cover, determines probabilities

3 More technically, the normal distribution with mean μ and standard deviation σ is represented by a bell-shaped
curve that has the formula

f (y) = 1√
2πσ

e−[(y−μ)2/2σ 2].
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for any region of values. It tabulates the probability for the values falling in the right
tail, at least z standard deviations above the mean. The left margin column of the
table lists the values for z to one decimal point, with the second decimal place listed
above the columns.

Table 4.2 displays a small excerpt from Table A. The probability for z = 1.43 falls
in the row labeled 1.4 and in the column labeled .03. It equals 0.0764. This means that
for every normal distribution, the right-tail probability above μ + 1.43σ (i.e., more
than 1.43 standard deviations above the mean) equals 0.0764.

TABLE 4.2: Part of Table A Displaying Normal Right-Tail Probabilities

Second Decimal Place of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
....

1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559

Since the entries in Table A are probabilities for the right half of the normal dis-
tribution above μ+zσ , they fall between 0 and 0.50. By the symmetry of the normal
curve, these right-tail probabilities also apply to the left tail below μ − zσ . For ex-
ample, the probability below μ − 1.43σ also equals 0.0764. The left-tail probabilities
are called cumulative probabilities.

We can also use statistical software to find normal probabilities. The free soft-
ware R has a function pnorm that gives the cumulative probability falling below
μ + zσ . For example, pnorm(2.0) provides the cumulative probability falling below
μ + 2.0σ :

> pnorm(2.0) # cumulative probability below mu + 2.0(sigma)
[1] 0.97724987 # right-tail probability = 1 - 0.977 = 0.023

In the Stata software, we can use the display normal command:

. display normal(2.0) # cumulative probability below mu + 2.0(sigma)

.97724987 # right-tail probability = 1 - 0.977 = 0.023

We subtract the cumulative probability from 1 to find the right-tail probability above
μ+2.0σ . That is, the probability 1−0.97725 = 0.02275 falls more than two standard
deviations above the mean. By the symmetry of the normal distribution, this is also
the probability falling more than two standard deviations below the mean. The prob-
ability falling within two standard deviations of the mean is 1 − 2(0.02275) = 0.954.
(Here, we’ve used rule (1) of the probability rules at the end of Section 4.1, that P(not
A) = 1− P(A).) You can also find normal probabilities with SPSS and SAS software.

Normal probabilities are also available on the Internet, such as with the easy-to-
use Normal Distribution applet4 for which there is a link at www.pearsonglobal
editions.com/Agresti. See Figure 4.5.

4 This is one of several applets we shall use that were developed by Prof. Bernhard Klingenberg for the text
Statistics: The Art and Science of Learning from Data, 4th ed., by A. Agresti, C. Franklin, and B. Klingenberg
(Pearson, 2017).

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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FIGURE 4.5: Go to
www.pearsonglobal
editions.com/Agresti
for Useful Internet
Applets. For normal
probabilities, click on
Normal Distribution. The
applet denotes a variable
by X and a possible value
by x. Tail probabilities do
not depend on values
entered for μ

and σ .

NORMAL PROBABILITIES AND THE EMPIRICAL RULE

Probabilities for the normal distribution apply approximately to other bell-shaped
distributions. They yield the probabilities for the Empirical Rule. Recall (page 56)
that that rule states that for bell-shaped histograms, about 68% of the data fall within
one standard deviation of the mean, 95% within two standard deviations, and all or
nearly all within three standard deviations. For example, we’ve just used software to
find that for normal distributions the probability falling within two standard devia-
tions of the mean is 0.954. For one and for three standard deviations, we find central
probabilities of 0.683 and 0.997, respectively.

The approximate percentages in the Empirical Rule are the actual percentages
for the normal distribution, rounded to two decimal places. The Empirical Rule
stated the percentages as being approximate rather than exact. Why? Because that
rule referred to all approximately bell-shaped distributions, not only the normal dis-
tribution. Not all bell-shaped distributions are normal, only those described by the
formula shown in the footnote on page 85. We won’t need that formula, but we will
use probabilities for it throughout the text.

FINDING z-VALUES FOR CERTAIN TAIL PROBABILITIES

Many inferential methods use z-values corresponding to certain normal curve prob-
abilities. This entails the reverse use of Table A or software or applets. Starting with a
tail probability, we find the z-value that provides the number of standard deviations
that that number falls from the mean.

http://www.pearsonglobaleditions.com/Agresti
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To illustrate, let’s first use Table A to find the z-value having a right-tail proba-
bility of 0.025. We look up 0.025 in the body of Table A, which contains tail proba-
bilities. It corresponds to z = 1.96 (i.e., we find .025 in the row of Table A labeled
1.9 and in the column labeled .06). This means that a probability of 0.025 falls above
μ + 1.96σ . Similarly, a probability of 0.025 falls below μ − 1.96σ . So, a total proba-
bility of 0.025 + 0.025 = 0.050 falls more than 1.96σ from μ. We saw in the previous
subsection that 95% of a normal distribution falls within two standard deviations of
the mean. More precisely, 0.954 falls within 2.00 standard deviations, and here we’ve
seen that 0.950 falls within 1.96 standard deviations.

R software has a function qnorm that gives the z-value for a particular cumula-
tive probability. The right-tail probability of 0.025 corresponds to a cumulative prob-
ability of 1 − 0.025 = 0.975, for which the z-value is

> qnorm(0.975) # q denotes "quantile"; .975 quantile = 97.5 percentile
[1] 1.959964 # The z-value is 1.96, rounded to two decimals

Here is how you can find the z-value for a cumulative probability using the Stata
software:

. display invnormal(0.975) /* invnormal = "inverse normal" */
1.959964

The qnorm function in R is equivalent to the invnormal (inverse normal) func-
tion in Stata. You can also find this z-value using an Internet applet, such as
Figure 4.6 shows with the Normal Distribution applet at www.pearsonglobal
editions.com/Agresti. It is also possible to find z-values with SPSS and SAS
software.

FIGURE 4.6: Using the
Normal Distribution
Applet at
www.pearsonglobal
editions.com/Agresti
to Find the z-value for a
Normal Tail Probability of
0.025 (i.e., 2.5 percent)

To check that you understand this reasoning, use Table A, software, or the applet
to verify that the z-value for a right-tail probability of (1) 0.05 is z = 1.64, (2) 0.01
is z = 2.33, and (3) 0.005 is z = 2.58. Show that 90% of a normal distribution falls
between μ − 1.64σ and μ + 1.64σ .

Example
4.3

Finding the 99th Percentile of IQ Scores Stanford-Binet IQ scores have approxi-
mately a normal distribution with mean = 100 and standard deviation = 16. What is
the 99th percentile of IQ scores? In other words, what is the IQ score that falls above
99% of the scores?

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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To answer this, we need to find the value of z such that μ + zσ falls above 99%
of a normal distribution. Now, for μ + zσ to represent the 99th percentile, the prob-
ability below μ + zσ must equal 0.99, by the definition of a percentile. So, 1% of
the distribution is above the 99th percentile. The right-tail probability equals 0.01, as
Figure 4.7 shows.

99th percentile
5 m 1 2.33s 

m

.49

.01

.5FIGURE 4.7: The 99th
Percentile for a Normal
Distribution Has 99% of
the Distribution below that
Point and 1% above It

With Table A, software, or the Internet, you can find that the z-value for a cu-
mulative probability of 0.99 or right-tail probability of 0.01 is z = 2.33. Thus, the
99th percentile is 2.33 standard deviations above the mean. In summary, 99% of any
normal distribution is located below μ + 2.33σ .

For IQ scores with mean = 100 and standard deviation = 16, the 99th percentile
equals

μ + 2.33σ = 100 + 2.33(16) = 137.

That is, about 99% of IQ scores fall below 137.

To check that you understand the reasoning above, show that the 95th percentile
of a normal distribution is μ + 1.64σ , and show that the 95th percentile for the IQ
distribution equals 126.

z-SCORE REPRESENTS THE NUMBER OF STANDARD DEVIATIONS
FROM THE MEAN

The z symbol in a normal table refers to the distance between a possible value y of
a variable and the mean μ of its probability distribution, in terms of the number of
standard deviations that y falls from μ.

For example, scores on each portion of the Scholastic Aptitude Test (SAT) have
traditionally been approximately normal with mean μ = 500 and standard deviation
σ = 100. The test score of y = 650 has a z-score of z = 1.50, because 650 is 1.50
standard deviations above the mean. In other words, y = 650 = μ + zσ = 500 +
z(100), where z = 1.50.

For sample data, Section 3.4 introduced the z-score as a measure of position.
Let’s review how to find it. The distance between y and the mean μ equals y−μ. The
z-score expresses this difference in units of standard deviations.

z-Score

The z-score for a value y of a variable is the number of standard deviations
that y falls from the mean. For a probability distribution with mean μ and
standard deviation σ , it equals

z = Variable value − Mean
Standard deviation

= y − μ

σ
.
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To illustrate, when μ = 500 and σ = 100, a value of y = 650 has the z-score of

z = y − μ

σ
= 650 − 500

100
= 1.50.

Positive z-scores occur when the value for y falls above the mean μ. Negative
z-scores occur when the value for y falls below the mean. For example, for SAT scores
with μ = 500 and σ = 100, a value of y = 350 has a z-score of

z = y − μ

σ
= 350 − 500

100
= −1.50.

The test score of 350 is 1.50 standard deviations below the mean. The value y = 350
falls below the mean, so the z-score is negative.

The next example shows that z-scores provide a useful way to compare positions
for different normal distributions.

Example
4.4

Comparing SAT and ACT Test Scores Suppose that when you applied to college, you
took a SAT exam, scoring 550. Your friend took the ACT exam, scoring 30. If the
SAT has μ = 500 and σ = 100 and the ACT has μ = 18 and σ = 6, then which score
is relatively better?

We cannot compare the test scores of 550 and 30 directly, because they have dif-
ferent scales. We convert them to z-scores, analyzing how many standard deviations
each falls from the mean. The SAT score of y = 550 converts to a z-score of

z = y − μ

σ
= 550 − 500

100
= 0.50.

The ACT score of y = 30 converts to a z-score of (30 − 18)/6 = 2.0.
The ACT score of 30 is relatively higher than the SAT score of 550, because 30

is 2.0 standard deviations above its mean whereas 550 is only 0.5 standard deviations
above its mean. The SAT and ACT scores both have approximate normal distribu-
tions. From Table A, z = 2.0 has a right-tail probability of 0.0228 and z = 0.5 has a
right-tail probability of 0.3085. Of all students taking the ACT, only about 2% scored
higher than 30, whereas of all students taking the SAT, about 31% scored higher than
550. In this relative sense, the ACT score is higher.

USING z-SCORES TO FIND PROBABILITIES OR y-VALUES

Here’s a summary of how we use z-scores:

• If we have a value y and need to find a probability, convert y to a z-score using
z = (y −μ)/σ , and then convert z to the probability of interest using a table of
normal probabilities, software, or the Internet.

• If we have a probability and need to find a value of y, convert the probability
to a tail probability (or cumulative probability) and find the z-score (using a
normal table, software, or the Internet), and then evaluate y = μ + zσ .

For example, we used the equation z = (y − μ)/σ to determine how many stan-
dard deviations a SAT test score of 650 fell from the mean of 500, when σ = 100
(namely, 1.50). Example 4.3 used the equation y = μ + zσ to find a percentile score
for a normal distribution of IQ scores.
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THE STANDARD NORMAL DISTRIBUTION

Many inferential statistical methods use a particular normal distribution, called the
standard normal distribution.

Standard Normal
Distribution

The standard normal distribution is the normal distribution with mean
μ = 0 and standard deviation σ = 1.

For the standard normal distribution, the number falling z standard deviations
above the mean is μ + zσ = 0 + z(1) = z. It is simply the z-score itself. For instance,
the value of 2 is two standard deviations above the mean, and the value of −1.3 is 1.3
standard deviations below the mean. The original values are the same as the z-scores.
See Figure 4.8.

22 21 1 2 323

0.95

s 5 1

2s

m 5 0

FIGURE 4.8: The
Standard Normal
Distribution Has Mean 0
and Standard Deviation 1.
Its ordinary scores are the
same as its z-scores.

When the values for an arbitrary normal distribution are converted to z-scores,
those z-scores are centered around 0 and have a standard deviation of 1. The z-scores
have the standard normal distribution.

z-Scores and the Standard
Normal Distribution

If a variable has a normal distribution, and if its values are converted to
z-scores by subtracting the mean and dividing by the standard deviation,
then the z-scores have the standard normal distribution.

Suppose we convert each SAT score y to a z-score by using z = (y − 500)/100.
For instance, y = 650 converts to z = 1.50, and y = 350 converts to z = −1.50. Then,
the entire set of z-scores has a normal distribution with a mean of 0 and a standard
deviation of 1. This is the standard normal distribution.

Many inferential methods convert values of statistics to z-scores and then to nor-
mal curve probabilities. We use z-scores and normal probabilities often throughout
the rest of the book.

BIVARIATE PROBABILITY DISTRIBUTIONS: COVARIANCE
AND CORRELATION∗

Section 3.5 introduced bivariate descriptive statistics that apply to a pair of variables.
An example is the sample correlation. Likewise, bivariate probability distributions
determine joint probabilities for pairs of random variables. For example, the bivariate
normal distribution generalizes the bell curve over the real line for a single variable
y to a bell-shaped surface in three dimensions over the plane for possible values of
two variables (x, y).
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Each variable in a bivariate distribution has a mean and a standard deviation.
Denote them by (μx, σx) for x and by (μy, σy) for y. The way that x and y vary together
is described by their covariance, which is defined to be

Covariance(x, y) = E[(x − μx)(y − μy)],

which represents the average of the cross products about the population means
(weighted by their probabilities). If y tends to fall above its mean when x falls above
its mean, the covariance is positive. If y tends to fall below its mean when x falls above
its mean, the covariance is negative.

The covariance can be any real number. For interpretation, it is simpler to use

Correlation(x, y) = Covariance(x, y)
(Standard deviation of x)(Standard deviation of y)

.

But this equals

E[(x − μx)(y − μy)]
σxσy

= E
[(

x − μx

σx

)(
y − μy

σy

)]
= E(zxzy),

where zx = (x − μx)/σx denotes the z-score for the variable x and zy = (y − μy)/σy

denotes the z-score for the variable y. That is, the population correlation equals the
average cross product of the z-score for x times the z-score for y. It falls between −1
and +1. It is positive when positive z-scores for x tend to occur with positive z-scores
for y and when negative z-scores for x tend to occur with negative z-scores for y.

We shall not need to calculate these expectations. We can use software to find
sample values, as we showed in Table 3.10 for the correlation.

4.4 Sampling Distributions Describe How
Statistics Vary

We’ve seen that probability distributions summarize probabilities of possible out-
comes for a variable. Let’s now look at an example that illustrates the connection
between statistical inference and probability calculations.

Example
4.5

Predicting an Election from an Exit Poll Television networks sample voters on elec-
tion day to help them predict the winners early. For the fall 2014 election for Gov-
ernor of California, CBS News5 reported results of an exit poll of 1824 voters. They
stated that 60.5% of their sample reported voting for the Democratic party candi-
date, Jerry Brown. In this example, the probability distribution for a person’s vote
would state the probability that a randomly selected voter voted for Brown. This
equals the proportion of the population of voters who voted for him. When the exit
poll was taken, this was an unknown population parameter.

To judge whether this is sufficient information to predict the outcome of the
election, the network can ask, “Suppose only half the population voted for Brown.
Would it then be surprising that 60.5% of the sampled individuals voted for him?” If
this would be very unlikely, the network infers that Brown received more than half
the population votes and won the election. The inference about the election outcome
is based on finding the probability of the sample result under the supposition that the
population parameter, the percentage of voters preferring Brown, equals 50%.

5 See www.cbsnews.com/elections/2014/governor/california/exit/.

http://www.cbsnews.com/elections/2014/governor/california/exit
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About 7.3 million people voted in this race. The exit poll sampled only 1824 vot-
ers, yet TV networks used it to predict that Brown would win. How could there pos-
sibly have been enough information from this poll to make a prediction? We next
see justification for making a prediction.

SIMULATING THE SAMPLING PROCESS

A simulation can show us how close an exit poll result tends to be to the population
proportion voting for a candidate. One way to simulate the vote of a voter randomly
chosen from the population is to select a random number using software. Suppose
exactly 50% of the population voted for Brown and 50% voted for the Republican
candidate, Neel Kashkari. Identify all 50 two-digit numbers between 00 and 49 as
Democratic votes and all 50 two-digit numbers between 50 and 99 as Republican
votes. Then, each candidate has a 50% chance of selection on each choice of two-digit
random number. For instance, the first two digits of the first column of the random
numbers table on page 27 provide the random numbers 10, 53, 24, and 42. So, of the
first four voters selected, three voted Democratic (i.e., have numbers between 00 and
49) and one voted Republican. Selecting 1824 two-digit random numbers simulates
the process of observing the votes of a random sample of 1824 voters of the much
larger population (which is actually treated as infinite in size).

To do this, we can use software that generates random numbers or that uses such
numbers to simulate flipping a coin repeatedly, where we regard one outcome (say,
head) as representing a person who votes for the Democrat and the other outcome
(say, tail) as representing a person who votes for the Republican. Here is how we
simulated, using an applet on the Internet. We suggest you try this also, to see how
it works.

• Go to www.pearsonglobaleditions.com/Agresti and click on Ran-
dom Numbers.

• Click on Coin Flips.

• The box for Probability of a Head (in %) should say 50. Then, random numbers
between 00 and 49 correspond to head and random numbers between 50 and
99 correspond to tail. In the box for How many flips do you want to generate in
one simulation? enter 1824. See Figure 4.9.

• Click Simulate.

FIGURE 4.9: The Random
Numbers Applet for
Simulating at
www.pearsonglobal
editions.com/Agresti.
When we click on Simulate,
we see the results of
flipping a coin 1824 times
when the probability on
each flip of getting a head
equals 0.50.

When we performed this simulation, we got 901 heads (Democratic votes)
and 923 tails (Republican votes). The sample proportion of Democratic votes was
901/1824 = 0.494, quite close to the population proportion of 0.50. This particular
estimate was good. Were we merely lucky? We repeated the process and simulated

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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1824 more flips. (In this app, click again on Simulate.) This time the sample propor-
tion of Democratic votes was 0.498, also quite good.

Using software,6 we next performed this process of picking 1824 people 10,000
times so that we could search for a pattern in the results. Figure 4.10 shows a his-
togram of the 10,000 values of the sample proportion. Nearly all the simulated pro-
portions fell between 0.46 and 0.54, that is, within 0.04 of the population proportion
of 0.50. Apparently a sample of size 1824 provides quite a good estimate of a popu-
lation proportion.

FIGURE 4.10: Results of
10,000 Simulations of the
Sample Proportion
Favoring the Democratic
Candidate, for Random
Samples of 1824 Subjects
from a Population in which
Half Voted for the
Democrat and Half Voted
for the Republican. In
nearly all cases, the sample
proportion fell within 0.04
of the population
proportion of 0.50 (i.e.,
between 0.46 and 0.54).

In summary, if half the population of voters had voted for Brown, we would have
expected between 46% and 54% of voters in an exit poll of size 1824 to have voted for
him. It would have been very unusual to observe 60.5% voting for him, as happened
in the actual exit poll. If less than half the population had voted for Brown, it would
have been even more unusual to have this outcome. This is the basis of the network’s
exit poll prediction that Brown won the election.

You can perform this simulation using any population proportion value, corre-
sponding to flipping a coin in which head and tail have different probabilities. For
instance, you could simulate sampling when the population proportion voting for
the Democrat is 0.45 by changing the probability of a head in the applet to 45%.
Likewise, we could change the size of each random sample in the simulation to study
the impact of the sample size. From results of the next section, for a random sample
of size 1824 the sample proportion has probability close to 1 of falling within 0.04 of
the population proportion, regardless of its value.

REPRESENTING SAMPLING VARIABILITY BY A
SAMPLING DISTRIBUTION

Voter preference is a variable, varying among voters. Likewise, so is the sample pro-
portion voting for some candidate a variable: Before the sample is obtained, its value
is unknown, and that value varies from sample to sample. If we could select several
random samples of size n = 1824 each, a certain predictable amount of variation
would occur in the sample proportion values. A probability distribution with ap-
pearance similar to Figure 4.10 describes the variation that occurs from repeatedly
selecting samples of a certain size n and forming a particular statistic. This distribu-
tion is called a sampling distribution. It also provides probabilities of the possible
values of the statistic for a single sample of size n.

Sampling Distribution
A sampling distribution of a statistic (such as a sample proportion or a
sample mean) is the probability distribution that specifies probabilities for
the possible values the statistic can take.

6 The Sampling Distribution for the Sample Proportion applet at www.pearsonglobaleditions.com/
Agresti does this efficiently.

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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Each sample statistic has a sampling distribution. There is a sampling distribu-
tion of a sample mean, a sampling distribution of a sample proportion, a sampling
distribution of a sample median, and so forth. A sampling distribution is merely a
type of probability distribution. Unlike the probability distributions studied so far,
a sampling distribution specifies probabilities not for individual observations but for
possible values of a statistic computed from the observations. A sampling distribu-
tion allows us to calculate, for example, probabilities about the sample proportions
of individuals in an exit poll who voted for the different candidates. Before the vot-
ers are selected for the exit poll, this is a variable. It has a sampling distribution that
describes the probabilities of the possible values.

The sampling distribution is important in inferential statistics because it helps
us predict how close a statistic falls to the parameter it estimates. From Figure 4.10,
for instance, with a sample of size 1824 the probability is apparently close to 1 that a
sample proportion falls within 0.04 of the population proportion.

Example
4.6

Constructing a Sampling Distribution It is sometimes possible to construct the sam-
pling distribution without resorting to simulation or complex mathematical deriva-
tions. To illustrate, we construct the sampling distribution of the sample proportion
for an exit poll of n = 4 voters from a population in which half voted for each candi-
date. (Such a small n would not be used in practice, but it enables us to more easily
explain this process.)

We use a symbol with four entries to represent the votes for a potential sample
of size 4. For instance, (R, D, D, R) represents a sample in which the first and fourth
subjects voted for the Republican and the second and third subjects voted for the
Democrat. The 16 possible samples are

(R, R, R, R) (R, R, R, D) (R, R, D, R) (R, D, R, R)
(D, R, R, R) (R, R, D, D) (R, D, R, D) (R, D, D, R)
(D, R, R, D) (D, R, D, R) (D, D, R, R) (R, D, D, D)
(D, R, D, D) (D, D, R, D) (D, D, D, R) (D, D, D, D)

When half the population voted for each candidate, the 16 samples are equally likely.
Let’s construct the sampling distribution of the sample proportion that voted for

the Republican candidate. For a sample of size 4, that proportion can be 0, 0.25, 0.50,
0.75, or 1.0. The proportion 0 occurs with only one of the 16 possible samples, (D, D,
D, D), so its probability equals 1/16 = 0.0625. The proportion 0.25 occurs for four
samples, (R, D, D, D), (D, R, D, D), (D, D, R, D), and (D, D, D, R), so its probability
equals 4/16 = 0.25. Based on this reasoning, Table 4.3 shows the probability for each
possible sample proportion value.

TABLE 4.3: Sampling Distribution of Sample Proportion Voting
Republican, for Random Sample of Size n = 4 when
Population Proportion Is 0.50. For example, a sample
proportion of 1.0 occurs for only 1 of 16 possible
samples, namely (R, R, R, R), so its probability is 1/16
= 0.0625.

Sample
Proportion Probability

0.00 0.0625
0.25 0.2500
0.50 0.3750
0.75 0.2500
1.00 0.0625
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Figure 4.11 portrays the sampling distribution of the sample proportion for n =
4. It is much more spread out than the one in Figure 4.10 for samples of size n = 1824,
which falls nearly entirely between 0.46 and 0.54. With such a small sample (n = 4),
the sample proportion need not be near the population proportion. This is not sur-
prising. In practice, samples are usually much larger than n = 4. We used a small
value in this example, so it was simpler to write down all the potential samples and
find probabilities for the sampling distribution.7

.250 .50

Sample Proportion

.75 1.0

Probability

0.0

0.1

0.2

0.3

0.5

0.4

FIGURE 4.11: Sampling
Distribution of Sample
Proportion Voting
Republican, for Random
Sample of Size n = 4 when
Population Proportion Is
0.50

Suppose we denoted the two possible outcomes by 0 for Democrat and by 1
for Republican. From Section 3.2 (page 52), the proportion of times that 1 occurs is
the sample mean of the data. For instance, for the sample (0, 1, 0, 0) in which only
the second subject voted for the Republican, the sample mean equals (0 + 1 + 0 +
0)/4 = 1/4 = 0.25, the sample proportion voting for the Republican. So, Figure 4.11
is also an example of a sampling distribution of a sample mean. Section 4.5 presents
properties of the sampling distribution of a sample mean.

REPEATED SAMPLING INTERPRETATION
OF SAMPLING DISTRIBUTIONS

Sampling distributions portray the sampling variability that occurs in collecting data
and using sample statistics to estimate parameters. If different polling organizations
each take their own exit poll and estimate the population proportion voting for the
Republican candidate, they will get different estimates, because the samples have
different people. Likewise, Figure 4.10 describes the variability in sample proportion
values that occurs in selecting a huge number of samples of size n = 1824 and con-
structing a histogram of the sample proportions. By contrast, Figure 4.11 describes
the variability for a huge number of samples of size n = 4.

A sampling distribution of a statistic for n observations is the relative frequency
distribution for that statistic resulting from repeatedly taking samples of size n, each
time calculating the statistic value. It’s possible to form such a distribution empiri-
cally, as in Figure 4.10, by repeated sampling or through simulation. In practice, this
is not necessary. The form of sampling distributions is often known theoretically, as
shown in the previous example and in the next section. We can then find probabilities
about the value of the sample statistic for one random sample of the given size n.

7 Section 6.7 presents a formula for probabilities in this sampling distribution, called the binomial distribution,
but we do not need the formula here.
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4.5 Sampling Distributions of Sample Means
Because the sample mean ȳ is used so much, with the sample proportion also being a
sample mean, its sampling distribution merits special attention. In practice, when we
analyze data and find ȳ, we do not know how close it falls to the population mean μ,
because we do not know the value of μ. Using information about the spread of the
sampling distribution, though, we can predict how close it falls. For example, the sam-
pling distribution might tell us that with high probability, ȳ falls within 10 units of μ.

This section presents two main results about the sampling distribution of the
sample mean. One provides formulas for the center and spread of the sampling dis-
tribution. The other describes its shape.

MEAN AND STANDARD ERROR OF SAMPLING DISTRIBUTION OF ȳ

The sample mean ȳ is a variable, because its value varies from sample to sample.
For random samples, it fluctuates around the population mean μ, sometimes being
smaller and sometimes being larger. In fact, the mean of the sampling distribution
of ȳ equals μ. If we repeatedly took samples, then in the long run, the mean of the
sample means would equal the population mean μ.

The spread of the sampling distribution of ȳ is described by its standard devia-
tion, which is called the standard error of ȳ.

Standard Error The standard deviation of the sampling distribution of ȳ is called the
standard error of ȳ and is denoted by σȳ.

The standard error describes how much ȳ varies from sample to sample. Suppose
we repeatedly selected samples of size n from the population, finding ȳ for each set of
n observations. Then, in the long run, the standard deviation of the ȳ-values would
equal the standard error. The symbol σȳ (instead of σ ) and the terminology stan-
dard error (instead of standard deviation) distinguish this measure from the standard
deviation σ of the population distribution.

In practice, we do not need to take samples repeatedly to find the standard error
of ȳ, because a formula is available. For a random sample of size n, the standard error
of ȳ depends on n and the population standard deviation σ by8

σȳ = σ√
n

.

Figure 4.12 displays a population distribution having σ = 10 and shows the
sampling distribution of ȳ for n = 100. When n = 100, the standard error is
σȳ = σ/

√
n = 10/

√
100 = 1.0. The sampling distribution has only a tenth of the

spread of the population distribution. This means that individual observations tend
to vary much more than sample means vary from sample to sample.

In summary, the following result describes the center and spread of the sampling
distribution of ȳ:

Mean and Standard Error of ȳ

For sampling a population, the sampling distribution of ȳ states the
probabilities for the possible values of ȳ. For a random sample of size n
from a population having mean μ and standard deviation σ , the sampling
distribution of ȳ has mean μ and standard error σȳ = σ/

√
n.

8 Exercise 4.58 shows the basis of this formula.
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Population distribution

Sampling distribution for n 5 100

(m 5 100, s 5 10)

Standard error sy 5
10
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s

n
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FIGURE 4.12: A
Population Distribution
and the Sampling
Distribution of ȳ for
n = 100

Example
4.7

Standard Error of Sample Proportion in Exit Poll Following Example 4.5 (page 92),
we conducted a simulation to investigate how much variability to expect from sample
to sample in an exit poll of 1824 voters. Instead of conducting a simulation, we can
get similar information directly by finding a standard error. Knowing the standard
error helps us answer the following question: If half the population voted for each
candidate, how much would a sample proportion for an exit poll of 1824 voters tend
to vary from sample to sample?

Let the variable y denote a vote outcome. As at the end of Example 4.6, we let
y = 0 represent a vote for the Democrat and y = 1 represent a vote for the Repub-
lican. Figure 4.13 shows the population distribution for which half the population
voted for each, so that P(0) = 0.50 and P(1) = 0.50. The mean of the distribution
equals 0.50, which is the population proportion voting for each. (Or, from the for-
mula near the end of Section 4.2, μ = ∑

yP(y) = 0(0.50) + 1(0.50) = 0.50.) The
squared deviation of y from the mean, (y − μ)2, equals (0 − 0.50)2 = 0.25 when
y = 0, and it equals (1 − 0.50)2 = 0.25 when y = 1. The variance is the expected
value of this squared deviation. Thus, it equals σ 2 = 0.25. So, the standard deviation
of the population distribution of y is σ = √

0.25 = 0.50.

0 1
y 0.0

0.6
Probability

0.2

0.4

0.1

0.3

0.5

m 5 0.5

FIGURE 4.13: The
Population Distribution
when y = 0 or 1, with
Probability 0.50 Each. This
is the probability
distribution for a vote, with
0 = vote for Democratic
candidate and 1 = vote for
Republican candidate.

For a sample, the mean of the 0 and 1 values is the sample proportion of votes for
the Republican. Its sampling distribution has mean that is the mean of the population
distribution of y, namely, μ = 0.50. For repeated samples of a fixed size n, the sample
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proportions fluctuate around 0.50, being larger about half the time and smaller half
the time. The standard deviation of the sampling distribution is the standard error.
For a sample of size 1824, this is

σȳ = σ√
n

= 0.50√
1824

= 0.0117.

A result from later in this section says that this sampling distribution is bell
shaped. Thus, with probability close to 1.0 the sample proportion falls within three
standard errors of μ, that is, within 3(0.0117) = 0.035 of 0.50, or between about 0.46
and 0.54. For a random sample of size 1824 from a population in which 50% voted for
each candidate, it would be surprising if fewer than 46% or more than 54% voted
for one of them. We’ve now seen how to get this result either using simulation, as
shown in Figure 4.10, or using the information about the mean and standard error of
the sampling distribution.

EFFECT OF SAMPLE SIZE ON SAMPLING DISTRIBUTION
AND PRECISION OF ESTIMATES

The standard error gets smaller as the sample size n gets larger. The reason for this is
that the denominator (

√
n) of the standard error formula σȳ = σ/

√
n increases as n

increases. For instance, when the population standard deviation σ = 0.50, we’ve just
seen that the standard error is 0.0117 when n = 1824. When n = 100, a less typical
size for a poll, the standard error is

σȳ = σ√
n

= 0.50√
n

= 0.50√
100

= 0.050.

With n = 100, since three standard errors equal 3(0.050) = 0.15, the probability
is very high that the sample proportion falls within 0.15 of 0.50, or between 0.35
and 0.65.

Figure 4.14 shows the sampling distributions of the sample proportion when
n = 100 and when n = 1824. As n increases, the standard error decreases and the
sampling distribution gets narrower. This means that the sample proportion tends to
fall closer to the population proportion. It’s more likely that the sample proportion
closely approximates a population proportion when n = 1824 than when n = 100.
This agrees with our intuition that larger samples provide more precise estimates of
population characteristics.

Sample proportion

0.35 0.40 0.45 0.50 0.55 0.60 0.65

n 5 1824

n 5 100

FIGURE 4.14: The
Sampling Distributions of
the Sample Proportion,
when n = 100 and when
n = 1824. These refer to
sampling from the
population distribution in
Figure 4.13.
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In summary, error occurs when we estimate μ by ȳ, because we sampled only part
of the population. This error, which is the sampling error, tends to decrease as the
sample size n increases. The standard error is fundamental to inferential procedures
that predict the sampling error in using ȳ to estimate μ.

SAMPLING DISTRIBUTION OF SAMPLE MEAN IS
APPROXIMATELY NORMAL

For the population distribution for the vote in an election, shown in Figure 4.13, the
outcome has only two possible values. It is highly discrete. Nevertheless, the two
sampling distributions shown in Figure 4.14 have bell shapes. This is a consequence
of the second main result of this section, which describes the shape of the sampling
distribution of ȳ. This result can be proven mathematically, and it is often called the
Central Limit Theorem.

Central Limit Theorem For random sampling with a large sample size n, the sampling distribution
of the sample mean ȳ is approximately a normal distribution.

Here are some implications and interpretations of this result:

• The bell shape of the sampling distribution applies no matter what the shape
of the population distribution. This is remarkable. For large random samples,
the sampling distribution of ȳ has a normal bell shape even if the population
distribution is very skewed or highly discrete such as the binary distribution in
Figure 4.13. We’ll learn how this enables us to make inferences even when the
population distribution is highly irregular. This is helpful, because many social
science variables are very skewed or highly discrete.

Figure 4.15 displays sampling distributions of ȳ for four different shapes for
the population distribution, shown at the top of the figure. Below them are

n 5 2
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FIGURE 4.15: Four
Different Population
Distributions and the
Corresponding Sampling
Distributions of ȳ. As n
increases, the sampling
distributions get narrower
and have more of a bell
shape.
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portrayed the sampling distributions for random samples of sizes n = 2, 5, and
30. As n increases, the sampling distribution has more of a bell shape.

• How large n must be before the sampling distribution is bell shaped largely
depends on the skewness of the population distribution. If the population dis-
tribution is bell shaped, then the sampling distribution is bell shaped for all
sample sizes. The rightmost panel of Figure 4.15 illustrates this. More skewed
distributions require larger sample sizes. For most cases, n of about 30 is suf-
ficient (although it may not be large enough for precise inference). So, in
practice, with random sampling the sampling distribution of ȳ is nearly always
approximately bell shaped.

• Knowing that the sampling distribution of ȳ can be approximated by a normal
distribution helps us to find probabilities for possible values of ȳ. For instance,
ȳ almost certainly falls within 3σȳ = 3σ/

√
n of μ. Reasoning of this nature is

vital to inferential statistical methods.

Example
4.8

Simulating a Sampling Distribution You can verify the Central Limit Theorem em-
pirically by repeatedly selecting random samples, calculating ȳ for each sample of n
observations. Then, the histogram of the ȳ-values is approximately a normal curve.

• Go to www.pearsonglobaleditions.com/Agresti and click on the
Sampling Distribution for the Sample Mean applet for continuous variables.

• Select a skewed population distribution. You can specify how skewed the dis-
tribution is. Here, we’ll use the value 2 for skewness.

• We’ll consider what happens for sample sizes of n = 200, relatively modest for
a social science study. Enter 200 in the Select sample size box. When you click
on Draw sample, the applet will randomly sample 200 observations, find the
sample mean and standard deviation, and plot a histogram.

• Next, change the number of samples of size n = 200 that you draw from 1 to
10,000. When you again click on Draw Sample, the applet will select 10,000
samples, each of size 200. It will find the sample mean for each sample of 200
observations, overall then finding 10,000 sample means and plotting their his-
togram. See Figure 4.16 (page 102) for a result. It shows the skewed population
distribution on top, the sample data distribution for one of the samples of size
200 below that, and the empirical sampling distribution for the 10,000 sample
means at the bottom.

Even though the population distribution in Figure 4.16 is skewed, the sampling
distribution is bell shaped. It is also much less spread out, because its spread is de-
scribed by the standard error, which is the population standard deviation divided by√

200 = 14.1.

Example
4.9

Is Sample Mean Income of Migrant Workers Close to Population Mean? For the pop-
ulation of migrant workers doing agricultural labor in Florida, suppose that weekly
income has a distribution that is skewed to the right with a mean of μ = $380 and a
standard deviation of σ = $80. A researcher, unaware of these values, plans to ran-
domly sample 100 migrant workers and use the sample mean income ȳ to estimate μ.
What is the sampling distribution of the sample mean? Where is ȳ likely to fall, rel-
ative to μ? What is the probability that ȳ overestimates μ by more than $20, falling
above $400?

By the Central Limit Theorem, the sampling distribution of the sample mean ȳ
is approximately normal, even though the population distribution is skewed. The

http://www.pearsonglobaleditions.com/Agresti
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FIGURE 4.16: An Applet
for Simulating a Sampling
Distribution. Here, in
clicking on Draw Sample,
we take 10,000 samples of
size 200 each. The graphic
shows the population
distribution, the sample
data distribution for one
sample of size 200, and the
empirical sampling
distribution that shows the
10,000 values of ȳ for the
10,000 samples of size
n = 200 each.

sampling distribution has the same mean as the population distribution, namely,
μ = $380. Its standard error is

σȳ = σ√
n

= 80√
100

= 8.0 dollars.

Thus, it is highly likely that ȳ falls within about $24 (three standard errors) of μ, that
is, between about $356 and $404.

For the normal sampling distribution with mean 380 and standard error 8, the
possible ȳ value of 400 has a z-score of

z = (400 − 380)/8 = 2.5.

From a table of normal probabilities (such as Table A) or software, the corresponding
right-tail probability above 400 is 0.0062. It is very unlikely that the sample mean
would fall above $400.

This example is unrealistic, because we assumed knowledge of the population
mean μ. In practice, μ would be unknown. However, the sampling distribution of ȳ
provides the probability that the sample mean falls within a certain distance of the
population mean μ, even when μ is unknown. We illustrate by finding the probability
that the sample mean weekly income ȳ falls within $10 of the unknown true mean
income μ for all such workers.

Now, the sampling distribution of ȳ is approximately normal in shape and is cen-
tered about μ. We have just seen that when n = 100, the standard error is σȳ = $8.0.
Hence, the probability that ȳ falls within $10 of μ is the probability that a normally
distributed variable falls within 10/8 = 1.25 standard deviations of its mean. That is,
the number of standard errors that μ + 10 (or μ − 10) falls from μ is

z = (μ + 10) − μ

8
= 10

8
= 1.25.
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See Figure 4.17. From a normal table, the probability that ȳ falls more than 1.25 stan-
dard errors from μ (in either direction) is 2(0.1056) = 0.21. Thus, the probability
that ȳ falls no more than $10 from μ equals 1 − 0.21 = 0.79.

0.79

0.1056

m 2 10 m 1 10m

10 5 1.25sy
_

FIGURE 4.17: Sampling
Distribution of ȳ for
Unknown μ and Standard
Error σȳ = 8

This example is still unrealistic, because we assumed knowledge of the popu-
lation standard deviation σ . In practice, we’d need to estimate σ . The next chapter
shows that to conduct inference, we estimate σ by the sample standard deviation s.

To get a feel for the Central Limit Theorem and how sampling distributions be-
come more bell shaped as n increases, we suggest that you try out an applet on the
Internet, as in Exercises 4.38 and 4.39.

4.6 Review: Population, Sample Data,
and Sampling Distributions

Sampling distributions are fundamental to statistical inference and to methodology
presented in the rest of this text. Because of this, we now review the distinction be-
tween sampling distributions and the two types of distributions presented in Section
3.1—the population distribution and the sample data distribution.

Here is a capsule description of the three types of distribution:

• Population distribution: This is the distribution from which we select the sam-
ple. It is usually unknown. We make inferences about its characteristics, such
as the parameters μ and σ that describe its center and spread.

• Sample data distribution: This is the distribution of data that we actually ob-
serve, that is, the sample observations y1, y2, . . . , yn. We describe it by statistics
such as the sample mean ȳ and sample standard deviation s. The larger the
sample size n, the closer the sample data distribution resembles the population
distribution, and the closer the sample statistics such as ȳ fall to the population
parameters such as μ.

• Sampling distribution of a statistic: This is the probability distribution for the
possible values of a sample statistic, such as ȳ. A sampling distribution describes
the variability that occurs in the statistic’s value among samples of a certain
size. This distribution determines the probability that the statistic falls within a
certain distance of the population parameter it estimates.

In Figure 4.16 on page 102, the population distribution is the skewed distribu-
tion shown at the top. The distribution in the middle of the figure is a sample data
distribution based on one particular sample of n = 200 observations. It has similar



104 Chapter 4 Probability Distributions

appearance to the population distribution, also being somewhat skewed to the right.
It has ȳ = 13.4 and s = 8.9, similar to μ = 14.3 and σ = 9.0 for the population.
The distribution at the bottom of the figure describes the sampling distribution of
the sample mean for random samples of size 200. It is an empirical sampling distri-
bution, showing a histogram of 10,000 values of the sample mean for 10,000 random
samples of size n = 200 each. It is bell shaped, as a consequence of the Central
Limit Theorem, and very narrow, as a consequence of the standard error formula
σȳ = σ/

√
n. Following is an example in which the three distributions would have

shape like those in Figure 4.16.

Example
4.10

Three Distributions for a General Social Survey Item In 2014, the GSS asked about
the number of hours a week spent on the Internet, excluding e-mail. The sample data
distribution for the n = 1399 subjects in the sample was very highly skewed to the
right. It is described by the sample mean ȳ = 11.6 and sample standard deviation
s = 15.0.

Because the GSS cannot sample the entire population of adult Americans (about
250 million people), we don’t know the population distribution. Because the sample
data distribution had a large sample size, probably the population distribution looks
like it. Most likely the population distribution would also be highly skewed to the
right. Its mean and standard deviation would be similar to the sample values. Values
such as μ = 12.0 and σ = 14.0 would be plausible.

If the GSS repeatedly took random samples9 of 1399 adult Americans, the sam-
ple mean time ȳ spent on the Internet would vary from survey to survey. The sam-
pling distribution describes how ȳ would vary. For example, if the population has
mean μ = 12.0 and standard deviation σ = 14.0, then the sampling distribution of ȳ
also has mean 12.0, and it has a standard error of

σȳ = σ√
n

= 14.0√
1399

= 0.37.

Unlike the population and sample data distributions, the sampling distribution
would be bell shaped and narrow. Nearly all of that distribution would fall within
3(0.37) = 1.12 of the mean of 12.0. So, it’s very likely that any sample of size
1399 would have a sample mean within 1.12 of 12.0. In summary, the sample
data and population distributions are highly skewed and spread out, whereas the
sampling distribution of ȳ is bell shaped and has nearly all its probability in a
narrow range.

Example
4.11

Three Distributions for Exit Poll Example We consider, once again, the variable y =
vote in the 2014 California gubernatorial election for a randomly selected voter. Let
y = 1 for Jerry Brown (the Democrat) and y = 0 for Neel Kashkari (the Republi-
can). In fact, of the 7,317,581 adult residents of California who voted, 60.0% voted
for Brown. So, the probability distribution for y has probability 0.600 at y = 1 and
probability 0.400 at y = 0. The mean of this distribution is μ = 0.600, which is the
population proportion of votes for Brown. From a formula we’ll study in the next
chapter, the standard deviation of this two-point distribution is σ = 0.490.

The population distribution of candidate preference consists of the 7,317,581 val-
ues for y, of which 40.0% are 0 and 60.0% are 1. This distribution is described by the
parameters μ = 0.600 and σ = 0.490. Figure 4.18 portrays this distribution, which is
highly discrete (binary). It is not at all bell shaped.

9 In reality, the GSS uses a multistage cluster sample, so the true standard error is a bit larger than σ/
√

n. For
purposes of illustration, we’ll treat GSS data as if they come from a simple random sample, keeping in mind that
in practice some adjustment is necessary as explained at the GSS website, sda.berkeley.edu/GSS.
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FIGURE 4.18: The
Population Distribution
(7,317,581 votes) and the
Sample Data Distribution
(n = 1824 votes) in the
2014 California
Gubernatorial Election,
where 1 = Vote for Brown
and 0 = Vote for Kashkari

Before all the votes were counted, the population distribution was unknown.
When polls closed, CBS News reported results of an exit poll of size n = 1824 to
predict the outcome. A histogram of the 1824 votes in the sample describes the sam-
ple data distribution. Of the 1824 voters, 60.5% said they voted for Brown (i.e., have
y = 1) and 39.5% said they voted for Kashkari (y = 0). Figure 4.18 also displays the
histogram of these sample data values. Like the population distribution, the sample
data distribution concentrates at y = 0 and y = 1. It is described by sample statistics
such as ȳ = 0.605, which is the sample proportion voting for Brown. The larger the
sample size, the more this sample data distribution tends to resemble the population
distribution, since the sample observations are a random subset of the population
values. If the entire population is sampled, as when all the votes are counted, then
the two distributions are identical.

For a random sample of size n = 1824, the sampling distribution of ȳ is approxi-
mately a normal distribution. Its mean is μ = 0.600, and its standard error is

σȳ = σ√
n

= 0.490√
1824

= 0.011.

Figure 4.19 portrays this sampling distribution, relative to the population distribution
of votes.

Population distribution

10 m 5 0.600

Sampling distribution
of y (n 5 1824) 

_

y

FIGURE 4.19: The
Population Distribution
(where y = 1 is Vote for
Brown and y = 0 is Vote
for Kashkari) and the
Sampling Distribution of ȳ
for n = 1824

The population distribution and sample data distribution of votes are concen-
trated at the values 0 and 1. The sampling distribution looks completely different,
being much less spread out and bell shaped. The population and sample data dis-
tributions of the vote are not bell shaped. They are highly discrete, concentrated at
0 and 1. For n = 1824, the sample proportion can take a large number of values
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between 0 and 1, and its sampling distribution is essentially continuous, being bell
shaped by the Central Limit Theorem. Although the individual values of y are 0 and
1, according to the sampling distribution it is practically impossible that a random
sample of size 1824 has a sample mean anywhere near 0 or 1; nearly all the proba-
bility falls between 0.57 and 0.63, that is, within three standard errors of the mean
μ = 0.600.

THE KEY ROLE OF SAMPLING DISTRIBUTIONS
IN STATISTICAL INFERENCE

By the Central Limit Theorem, we can often use the normal distribution to find
probabilities about ȳ. The next two chapters show how statistical inferences rely on
this theorem.

The result about sample means having approximately normal sampling distri-
butions is important also because similar results hold for many other statistics. For
instance, most sample statistics used to estimate population parameters have approx-
imately normal sampling distributions, for large random samples. This is the primary
reason for the key role of the normal distribution in statistical science.

4.7 Chapter Summary
For an observation in a random sample or a randomized experiment, the probability
of a particular outcome is the proportion of times that the outcome would occur in
a very long sequence of observations.

• A probability distribution specifies probabilities for the possible values of a
variable. We let P(y) denote the probability of the value y. The probabilities
are nonnegative and sum to 1.0.

• Probability distributions have summary parameters, such as the mean μ and
standard deviation σ . The mean for a probability distribution of a discrete vari-
able is

μ =
∑

yP(y).

This is also called the expected value of y.

• The normal distribution has a graph that is a symmetric bell-shaped curve
specified by the mean μ and standard deviation σ . For any z, the probability
falling within z standard deviations of the mean is the same for every normal
distribution.

• In a probability distribution, the z-score for a value y is

z = (y − μ)/σ.

It measures the number of standard deviations that y falls from the mean μ.
For a normal distribution, the z-scores have the standard normal distribution,
which has mean = 0 and standard deviation = 1.

• A sampling distribution is a probability distribution of a sample statistic, such
as the sample mean or sample proportion. It specifies probabilities for the pos-
sible values of the statistic for samples of the particular size n.

• The sampling distribution of the sample mean ȳ centers at the population mean
μ. Its standard deviation, called the standard error, relates to the standard
deviation σ of the population by σȳ = σ/

√
n. As the sample size n increases,
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the standard error decreases, so the sample mean tends to be closer to the pop-
ulation mean.

• The Central Limit Theorem states that for large random samples on a variable,
the sampling distribution of the sample mean is approximately a normal dis-
tribution. This holds no matter what the shape of the population distribution,
both for continuous variables and for discrete variables. The result applies also
to proportions, since the sample proportion is a special case of the sample mean
for observations coded as 0 and 1 (such as for two candidates in an election).

The bell shape for the sampling distribution of many statistics is the main reason
for the importance of the normal distribution. The next two chapters show how the
Central Limit Theorem is the basis of methods of statistical inference.

Exercises

Practicing the Basics
4.1. In a Child Health Survey conducted in a school, 1567
children answered “yes” and 433 children answered “no”
in response to the question: “Do you drink milk?”

(a) Estimate the probability that a randomly selected
child drinks milk.
(b) Estimate the probability that a child does not drink
milk.
(c) Of those who drink milk, 40% like it with chocolate.
Estimate the probability that a randomly chosen child
likes to drink chocolate milk.

4.2. Suppose a software for statistical inference methods
often sets the default probability of a correct inference to
be 0.95. Suppose we make an inference about the popula-
tion proportion of people who like to go trekking, and we
consider this separately for men and for women. Let A de-
note the outcome that the inference about men is correct,
and let B denote the outcome that the inference about
women is correct. Treating these as independent samples
and inferences, find the probability that both inferences
are correct.

4.3. Save Your Earth, an NGO, conducted a survey asking
subjects whether they are a member of any NGO working
for environmental protection and whether they would be
willing to purchase a sapling. Table 4.4 shows the results.

(a) Estimate the probability that a randomly selected
adult is a member of an NGO.
(b) Show that the estimated probability of being willing
to plant a tree is (i) 0.238, given that the person is a mem-
ber of an NGO; (ii) 0.1407, given that the person is not a
member of an NGO.
(c) Show that the estimated probability that a person is
both a member of an NGO and willing to purchase a
sapling is 0.0564 (i) directly using the counts in the table,
(ii) using the probability estimates from (a) and (b).

(d) Show that the estimated probability that a person an-
swers yes to both questions or no to both questions is
0.712.

TABLE 4.4

Willing to Plant a Tree

Yes No Total

Member of Yes 50 160 210
the NGO No 95 580 675

Total 145 740 885

4.4. Let y = number of sports a person can play. For
residents of Country A, y has probability distribution
P(0) = 0.05, P(1) = 0.85, and P(2) = 0.10, with negligi-
ble probability for higher values of y.

(a) Is y a discrete or a continuous variable? Why?
(b) Construct a table showing the probability distribution
of y.
(c) Find the probability that an Indian does not play more
than one sport.
(d) Find the mean of this probability distribution.

4.5. Let y denote the number of times a person was ad-
mitted to a hospital within the past 12 months. According
to results from recent Region Health Surveys, for a ran-
domly chosen person in Country A, the probability dis-
tribution of y is approximately P(0) = 0.85, P(1) = 0.13,
P(2) = 0.01, and P(3) = 0.01.

(a) Explain why it is not valid to find the mean of this
probability distribution as (0 + 1 + 2 + 3)/4 = 1.5.
(b) Find the correct mean of the probability distribution.

4.6. A ticket for a lottery costs $1. With probability
0.0000001, you win 2 million dollars ($2,000,000), and
with probability 0.9999999 you win nothing. Let y denote
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the winnings from buying one ticket. Construct the prob-
ability distribution for y. Show that the mean of the distri-
bution equals 0.20, corresponding to an expected return
of 20 cents for the dollar paid.

4.7. Let y be the outcome of selecting a single digit using
a random number generator.

(a) Construct the probability distribution for y. (This type
of distribution is called a uniform distribution, because
of the uniform spread of probabilities across the possible
outcomes.)
(b) Find the mean of this probability distribution.

4.8. For a normal distribution, find the probability that an
observation falls (a) at least one standard deviation above
the mean; (b) at least one standard deviation below the
mean.

4.9. For a normal distribution, verify that the probability
between

(a) μ − σ and μ + σ equals 0.68.
(b) μ − 1.96σ and μ + 1.96σ equals 0.95.
(c) μ − 3σ and μ + 3σ equals 0.997.
(d) μ − 0.67σ and μ + 0.67σ equals 0.50.

4.10. Find the z-value for which the probability that a nor-
mal variable exceeds μ + zσ equals (a) 0.01, (b) 0.025,
(c) 0.05, (d) 0.10, (e) 0.25, (f) 0.50.

4.11. Find the z-value such that for a normal distribution
the interval from μ − zσ to μ + zσ contains (a) 50%,
(b) 90%, (c) 95%, (d) 99% of the probability.

4.12. Find the z-values corresponding to the (a) 90th, (b)
95th, (c) 99th percentiles of a normal distribution.

4.13. If z is the number such that the interval from μ−zσ

to μ + zσ contains 90% of a normal distribution, then ex-
plain why μ + zσ is the 95th percentile.

4.14. If z is the positive number such that the interval from
μ − zσ to μ + zσ contains 50% of a normal distribution,
then

(a) Which percentile is (i) μ + zσ? (ii) μ − zσ?
(b) Find this value of z. Using this result, explain why the
upper quartile and lower quartile of a normal distribution
are μ + 0.67σ and μ − 0.67σ , respectively.

4.15. What proportion of a normal distribution falls

(a) above a z-score of 2.10?
(b) below a z-score of −2.10?
(c) between z-scores of −2.10 and 2.10?

4.16. Find the z-score for the number that is less than only
1% of the values of a normal distribution.

4.17. A teacher wants to know how many students have a
test score at the 96th percentile or higher.

(a) How many standard deviations above the mean is the
96th percentile?
(b) For the normal distribution of scores with mean 75
and standard deviation 8, find the score for the 96th per-
centile.

4.18. According to a recent Population Survey, self-
employed individuals in a country work an average of
55 hours per week, with a standard deviation of 18. If this
variable is approximately normally distributed, what pro-
portion averaged more than 40 hours per week?

4.19. The Mental Development Index (MDI) of the Bay-
ley Scales of Infant Development is a standardized mea-
sure used in studies with high-risk infants. It has approx-
imately a normal distribution with a mean of 100 and a
standard deviation of 16.

(a) What proportion of children have an MDI of at least
140?
(b) Find the MDI score that is the 90th percentile.
(c) Find and interpret the lower quartile, median, and up-
per quartile.

4.20. For a study in a State University Hospital, 3856 preg-
nant women who reported information on length of ges-
tation until birth had mean = 284 days and standard de-
viation = 12 days. A baby is classified as premature if the
gestation time is 258 days or less.

(a) If mothers’ gestation times are normally distributed,
what proportion of babies would be born prematurely?
(b) The actual proportion born prematurely during this
period was 0.045. Based on this information, how would
you expect the distribution of gestation time to differ from
the normal distribution?

4.21. Suppose that the weekly use of ground water in a vil-
lage is approximately normally distributed, with a mean of
20 gallons and a standard deviation of 5 gallons.

(a) What proportion of villagers use more than 25 gallons
per week?
(b) Assuming that the standard deviation and the nor-
mal form would remain constant, to what level must the
mean reduce so that only 5% use more than 25 gallons per
week?
(c) If the distribution of ground water use is not actually
normal, how would you expect it to deviate from normal?

4.22. On the midterm exam in mathematics, an instructor
always gives a grade of A to students who score between
90 and 95. One year, the scores have approximately a nor-
mal distribution with mean 83 and standard deviation 7.

About what proportion of the students get an A?

4.23. Student A’s scores in Country X have a distribution
with μ = 400 and σ = 75, and Student B’s scores in Coun-
try Y have a distribution with μ = 25 and σ = 4.0. Which
score is relatively higher, Student A = 500 or Student
B = 36? Explain.



Exercises 109

4.24. Suppose that consumption expenditure by house-
holds in a city has an approximately normal distribution
with a mean of $5400 and a standard deviation of $1800.
The consumption expenditure by one particular house-
hold is $8000.

(a) Find the z-score corresponding to that value.
(b) What proportion of the consumption expenditure ex-
ceeds $8000?

4.25. An energy study found that household use of elec-
tricity had a mean of 583 and a standard deviation of 450
kWh (kilowatt-hours).

(a) If the distribution was normal, what percentage of the
households used above 800 kWh?
(b) Do you think the distribution is truly normal? Why or
why not?

4.26. Five students—the females Angeline and Belle and
the males Charlie, David, and Edmund—are rated equally
qualified for admission to medical school, ahead of other
applicants. However, all but two positions have been filled
for entering the class. The admissions committee can ad-
mit only two more students, so it decides to randomly se-
lect two of these five candidates. For this strategy, let y =
number of males admitted. Using the first letter of the
name to denote a student, the different combinations that
could be admitted are (A, B), (A, C), (A, D), (A, E), (B,
C), (B, D), (B, E), (C, D), (C, E), and (D, E).

(a) Construct the probability distribution for y.
(b) Construct the sampling distribution of the sample pro-
portion of the students selected who are male.

4.27. Construct the sampling distribution of the sample
proportion of heads, for flipping a balanced coin

(a) Once.
(b) Twice. (Hint: The possible samples are (H, H), (H, T),
(T, H), (T, T).)
(c) Three times. (Hint: There are 8 possible samples.)
(d) Four times. (Hint: There are 16 possible samples.)
(e) Describe how the shape of the sampling distribution
seems to be changing as the number of flips increases.

4.28. The probability distribution associated with the out-
come of rolling a balanced die has probability 1/6 at-
tached to each integer, {1, 2, 3, 4, 5, 6}. Let (y1, y2) denote
the outcomes for rolling the die twice.

(a) Enumerate the 36 possible (y1, y2) pairs (e.g., (2, 1)
represents a 2 followed by a 1).
(b) Treating the 36 pairs as equally likely, construct the
sampling distribution for the sample mean ȳ of the two
numbers rolled.
(c) Construct a histogram of the (i) probability distribu-
tion for each roll, (ii) sampling distribution of ȳ in (b).
Describe their shapes.

(d) What are the means of the two distributions in (c)?
Why are they the same?
(e) Explain why the sampling distribution of ȳ has rela-
tively more probability near the middle than at the min-
imum and maximum values. (Hint: Note there are many
more (y1, y2) pairs that have a sample mean near the mid-
dle than near the minimum or maximum.)

4.29. An exit poll of 547 voters in the state election indi-
cated that 55% voted for Candidate X, with most of the
rest voting for Candidate Y.

(a) If actually 50% of the population voted for Candidate
X, find the standard error of the sample proportion voting
for this candidate, for this exit poll. (Recall from Example
4.5 on page 92 that the population standard deviation is
0.50.)
(b) If actually 50% of the population voted for Candidate
Y, would it have been surprising to obtain the results in
this exit poll? Why?
(c) Based on your answer in (b), would you be willing to
predict the outcome of this election? Explain.

4.30. According to Population Reports, population distri-
bution of number of years of education for women in
Country C has a mean of 10.6 and a standard deviation
of 4.0. Find the mean and standard error of the sampling
distribution of ȳ for a random sample of (a) 6 women,
(b) 49 women, (c) 100 women. Describe the pattern as n
increases.

4.31. Refer to Exercise 4.6. The mean and standard devia-
tion of the probability distribution for the lottery winnings
y are μ = 0.20 and σ = 632.45. Suppose you play the lot-
tery 1 million times. Let ȳ denote your average winnings.

(a) Find the mean and standard error of the sampling dis-
tribution of ȳ.
(b) About how likely is it that you would “come out
ahead,” with your average winnings exceeding $1, the
amount you paid to play each time?

4.32. According to a General Regional Survey, in South
Asia, the distribution of y = pair of shoes has a mean of
6.5 and a standard deviation of 4.9. Suppose these are the
population mean and standard deviation.

(a) Does y have a normal distribution? Explain.
(b) For a random sample of 700 adults (the size of the
General Research Survey for this variable), describe the
sampling distribution of ȳ by giving its shape, mean, and
standard error.
(c) Refer to (b). Report an interval within which the sam-
ple mean would almost surely fall.

4.33. The scores on the Psychomotor Development Index
(PDI), a scale of infant development, are approximately
normal with mean 100 and standard deviation 15.

(a) An infant is selected at random. Find the probability
that PDI is below 95.



110 Chapter 4 Probability Distributions

(b) A study uses a random sample of 36 infants. Specify
the sampling distribution of the sample mean PDI, and
find the probability that the sample mean is below 95.
(c) Would you be surprised to observe a PDI score of 95?
Would you be surprised to observe a sample mean PDI of
95? Why?
(d) Sketch the population distribution for the PDI. Super-
impose a sketch of the sampling distribution for n = 25.

4.34. A study plans to sample randomly 100 government
records of farms to estimate the mean acreage of farms
in Place A. Results from an earlier study suggest that 400
acres is a reasonable guess for the population standard de-
viation of farm size.

(a) Approximate the probability that the sample mean
acreage falls within 20 acres of the population mean
acreage.
(b) If in reality the population standard deviation is larger
than 400, would the probability be larger, or smaller, than
you found in (a)?

4.35. According to the Census Report in Country A, the
number of children in a household has a mean of 3.5 and a
standard deviation of 2.0. Suppose the Census Report in-
stead had estimated this mean using a random sample of
300 homes, and that sample had a mean of 4.2 and stan-
dard deviation of 1.5.

(a) Identify the variable y.
(b) Describe the center and spread of the population
distribution.
(c) Describe the center and spread of the sample data
distribution.
(d) Describe the center and spread of the sampling distri-
bution of the sample mean for 300 homes. What does that
distribution describe?

4.36. At a university, 55% of the 6500 students are fe-
male. The student newspaper reports results of a survey
of a random sample of 60 students about the activity clubs
they wish to join. They report that their sample contained
32 females.

(a) Explain how you can set up a variable y to represent
gender.
(b) Identify the population distribution of gender at this
university.
(c) Identify the sample data distribution of gender for this
sample.
(d) The sampling distribution of the sample proportion of
females in the sample is approximately a normal distribu-
tion with mean 0.55 and standard error 0.07. Explain what
this means.

4.37. The distribution of family size in a particular soci-
ety is skewed to the right, with μ = 10.4 and σ = 6.0.
These values are unknown to an anthropologist, who sam-
ples families to estimate mean family size. For a random

sample of 40 families, the anthropologist gets a mean of
8.6 and a standard deviation of 5.2.
(a) Identify the population distribution and its mean and
standard deviation.
(b) Identify the sample data distribution and its mean and
standard deviation.
(c) Identify the sampling distribution of ȳ and its mean
and standard error, and explain what it describes.
(d) Find the probability that the anthropologist’s sample
mean falls within 0.5 of the population mean.
(e) If the sample were truly random, would you be sur-
prised if the anthropologist obtained ȳ = 3.0? Why? (This
could well happen if the sample were not random.)

Concepts and Applications
4.38. Use the applet for the Sampling Distribution for the
Sample Proportion atwww.pearsonglobaleditions.
com/Agresti to illustrate this concept. Set the popula-
tion proportion as 0.50 and sample size n = 100.
(a) Simulate once (setting the number of samples to 1 and
clicking on Draw Sample) and report the counts and the
proportions for the two categories. Did you get a sam-
ple proportion close to 0.50? Perform this simulation of a
random sample of size 100 ten times, each time observing
from the graphs the counts and the corresponding sample
proportion of yes votes. Summarize.
(b) Now plot the results of simulating a random sample of
size 100 and finding the sample proportion 10,000 times,
by setting 10,000 for the number of samples of size n. How
does this plot reflect the Central Limit Theorem?

4.39. Use the applet for the Sampling Distribution for
the Sample Mean for continuous variables at www.
pearsonglobaleditions.com/Agresti to investi-
gate the sampling distribution of ȳ.
(a) Select the skewed population distribution and set the
skewness = 2. Take 10,000 samples of size 50 each. How
does the empirical sampling distribution of sample means
compare to the population distribution? What does this
reflect?
(b) Repeat, this time choosing a sample size of only 2 for
each sample. Why is the sampling distribution not sym-
metric and bell shaped?

4.40. Go to the applet for the Sampling Distribution
for the Sample Mean for discrete variables at www.
pearsonglobaleditions.com/Agresti.
(a) Construct a population distribution that you think is
plausible for y = number of cars in a house.
(b) Draw a single sample of size n = 1000 to reflect re-
sults of a typical sample survey. Summarize how the sam-
ple data mean and standard deviation resemble those for
the population.
(c) Now draw 10000 samples of size 1000 each to ap-
proximate the sampling distribution of ȳ. Report the
mean and standard deviation of this empirical sampling

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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distribution and compare to the theoretical values of μ

and σ − y = σ/
√

n. Explain what this sampling distribu-
tion represents.

4.41. For a single roll of a die, let y = 1 for an even num-
ber and y = 0 for an odd number, to simulate the vote in
an election with two equally preferred candidates.
(a) Construct the probability distribution for y, and find
its mean.
(b) The die is rolled 10 times, yielding an even number six
times and an odd number four times. Construct the sam-
ple data distribution.
(c) Use the applet for the Sampling Distribution for the
Sample Proportion atwww.pearsonglobaleditions.
com/Agresti to simulate what would happen if ev-
eryone in a university with 10,000 students rolled a die
10 times and observed the proportion of times an even
number comes up in the sample. Describe the shape and
spread of the empirical sampling distribution compared
to the distributions in (a) and (b).
(d) What does the applet report for the mean and the
standard deviation of the empirical sampling distribution
in (c)? What are the theoretical values for the true sam-
pling distribution? (In finding this, you can use 0.50 as the
population standard deviation of the distribution in (a).)

4.42. (Class Exercise) Refer to Exercises 1.11 and 1.12
(pages 21 and 22). Using the population defined by your
class or using the Students data file, the instructor will
select a variable, such as weekly time watching television.
(a) Construct a histogram or stem-and-leaf plot of the
population distribution of the variable for the class.
(b) By generating random numbers, each student should
select nine students at random and compute the sample
mean response for those students. (Each student should
use different random numbers.) Plot a histogram of the
sample means obtained by all the students. How do the
spread and shape compare to the histogram in (a)? What
does this illustrate?

4.43. Rainbow City was designed to attract orphan chil-
dren. Its current population of 30,000 children has a mean
age of 6 years and a standard deviation of 10 years. The
distribution of ages is skewed to the left, reflecting the
predominance of older children. A random sample of 100
children of Rainbow City has ȳ = 8.3 and s = 7.0.
(a) Describe the center and spread of the population dis-
tribution.
(b) Describe the center and spread of the sample data dis-
tribution. What shape does it probably have?
(c) Find the center and spread of the sampling distribu-
tion of ȳ for n = 100. What shape does it have and what
does it describe?
(d) Explain why it would not be unusual to observe a child
of age 5 years in Rainbow City, but it would be highly un-
usual to observe a sample mean of 5, for a random sample
size of 100.

4.44.* Refer to the previous exercise. Describe the sam-
pling distribution of ȳ (a) for a random sample of size
n = 1; (b) if you sample all 30,000 children.

4.45. (Class Exercise) Table 4.5 provides the ages of all
50 heads of households in a small Nova Scotian fishing
village. The data are in the data file Ages at the text
website. The distribution of these ages is characterized by
μ = 47.18 and σ = 14.74.

(a) Construct a stem-and-leaf plot or histogram of the
population distribution.
(b) Each student should generate nine random numbers
between 01 and 50 and use them to sample nine heads
of households. Compute their sample mean age. Plot the
empirical sampling distribution of the ȳ-values. Compare
it to the distribution in (a).
(c) What do you expect for the mean of the ȳ-values in a
long run of repeated samples of size 9?
(d) What do you expect for the standard deviation of the
ȳ-values in a long run of repeated samples of size 9?

TABLE 4.5

Name Age Name Age Name Age Name Age

Alexander 50 Griffith 66 McTell 49 Staines 33
Bell 45 Grosvenor 51 MacLeod 30 Stewart 36
Bell 23 Ian 57 McNeil 28 Stewart 25
Bok 28 Jansch 40 McNeil 31 Thames 29
Clancy 67 Keelaghan 36 McNeil 45 Thomas 57
Cochran 62 Lavin 38 McNeil 43 Todd 39
Fairchild 41 Lunny 81 Mitchell 43 Trickett 50
Finney 68 MacColl 27 Muir 54 Trickett 64
Fisher 37 McCusker 37 Oban 62 Tyson 76
Francey 60 McCusker 56 Reid 67 Watson 63
Fricker 41 McDonald 71 Renbourn 48 Young 29
Gaughan 70 McDonald 39 Rogers 32
Graham 47 McDonald 46 Rush 42

4.46. (a) Which distribution does the sample data distri-
bution tend to resemble more closely—the sampling dis-
tribution or the population distribution? Explain.
(b) Explain carefully the difference between a sample
data distribution and the sampling distribution of ȳ. Illus-
trate your answer for a variable y that can take only values
of 0 and 1.

4.47. The Central Bureau of Statistics in Sunshine Vil-
lage asked mothers aged between 22 and 26 about the
ideal number of children. The probability distribution is
approximately P(1) = 0.02, P(2) = 0.14, P(3) = 0.07,
P(4) = 0.33, P(5) = 0.15, and P(6 or more) = 0.28.

(a) Because the last category is open ended, it is not pos-
sible to calculate the mean exactly. Find a lower bound for
the mean.
(b) Explain why you can find the median of the distribu-
tion, and find it.

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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4.48. For a normal distribution, show that
(a) The upper quartile equals μ + 0.67σ .
(b) According to the 1.5(IQR) criterion, an outlier is an
observation falling more than 2.7 standard deviations be-
low or above the mean, and this happens for only 0.7% of
the data.

4.49. In an exit poll of 3646 voters in the 2017 election in a
town, 50.8% said they voted for Candidate R and 49.2%
said they voted for Candidate S. Based on this informa-
tion, would you be willing to predict the winner of the
election? Explain your reasoning.

4.50. For an election exit poll that uses random sampling,
find the standard error of the sample proportion voting for
a candidate for whom the population proportion is 0.50,
when n = 100, when n = 1000, and when n = 10000.
In each case, predict an interval within which the sample
proportion is almost certain to fall. Notice that the inter-
val shrinks in width as the sample size increases. This is
a consequence of the law of large numbers, which states
that with random sampling, the sample proportion tends
to get closer and closer to the population proportion as n
increases indefinitely.

Select the correct response(s) in multiple-choice questions
4.51—4.52. There may be more than one correct answer.

4.51. The standard error of a statistic describes
(a) The standard deviation of the sampling distribution of
that statistic.
(b) The standard deviation of the sample data.
(c) How close that statistic is likely to fall to the parame-
ter that it estimates.
(d) The variability in the values of the statistic for re-
peated random samples of size n.
(e) The error that occurs due to nonresponse and mea-
surement errors.

4.52. The Central Limit Theorem implies that
(a) All variables have bell-shaped sample data distribu-
tions if a random sample contains at least about 30 obser-
vations.
(b) Population distributions are normal whenever the
population size is large.
(c) For large random samples, the sampling distribution
of ȳ is approximately normal, regardless of the shape of
the population distribution.
(d) The sampling distribution looks more like the popu-
lation distribution as the sample size increases.

4.53. True or False: As the sample size increases, the stan-
dard error of the sampling distribution of ȳ increases. Ex-
plain your answer.

4.54.* A junior college admits students only if they score
above 500 on a standardized achievement test. Appli-
cants from Region A have a mean of 550 and a standard

deviation of 120 on this test, and applicants from Region B
have a mean of 600 and a standard deviation of 120. Both
distributions are approximately normal, and both regions
have the same size.
(a) Find the proportion not admitted for students from
each region.
(b) Of the students who are not admitted, what propor-
tion are from Region A?
(c) A state legislator proposes that the college lower the
cutoff point for admission to 300, thinking that the propor-
tion of the students who are not admitted who are from
Region A would decrease. If this policy is implemented,
determine the effect on the answer to (b), and comment.

4.55.* From the formula on page 84, the standard devia-
tion of a discrete probability distribution is

σ =
√∑

(y − μ)2 P(y).

(a) When y can equal only 0 and 1, letting π = P(y = 1)
and 1 − π = P(y = 0), show that μ = π and that
σ = √

π(1 − π).
(b) Show that the standard error of a sample proportion
for a random sample of size n equals

√
π(1 − π)/n.

4.56.* Refer to the formula for the normal distribution
curve shown in the footnote on page 85. Show that this
curve is symmetric, by showing that for any constant c,
the curve has the same value at y = μ + c as at y = μ − c.
(The integral of f (y) for y between μ + zσ and ∞ equals
the tail probability tabulated in Table A.)

4.57.* The standard error formula σȳ = σ/
√

n treats the
population size as infinitely large relative to the sample
size n. The formula for σȳ for a finite population size de-
noted by N is

σȳ =
√

N − n
N − 1

(
σ√
n

)
.

The term
√

(N − n)/(N − 1) is called the finite popula-
tion correction.
(a) When n = 300 students are selected from a col-
lege student body of size N = 30, 000, show that
σȳ = 0.995σ/

√
n. (In practice, n is usually small relative

to N, so the correction has little influence.)
(b) If n = N (i.e., we sample the entire population), show
that σȳ = 0. In other words, no sampling error occurs, be-
cause ȳ = μ.
(c) For n = 1, explain why the sampling distribution of ȳ
and its standard error are identical to the population dis-
tribution and its standard deviation.

4.58.* A general rule states that for independent obser-
vations, the variance of

∑
yi is the sum of the variances,

which is nσ 2 for n observations.
(a) Explain intuitively why

∑
yi would have a larger vari-

ance than a single observation y.
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(b) Since the variance of a probability distribution is σ 2 =
E(y − μ)2, explain why the variance of the sampling dis-
tribution of ȳ is

E
[∑

yi

n
− μ

]2

= E
[∑

yi − nμ

n

]2

=

1
n2

E
(∑

yi − nμ
)2

= 1
n2

(nσ 2) = σ 2

n
.

(Hint: The second expression represents a sum with n2 in
the denominator, which is a constant that can be put in
front of the summation.)

(c) From (b), explain why the standard error equals
σȳ = σ/

√
n.

4.59.* Ellenberg (2014) noted that when you use sample
data to rank states by brain cancer rates, the highest rank-
ing state (South Dakota) and the nearly lowest ranking
state (North Dakota) had relatively small sample sizes.
Also, when schools in North Carolina were ranked by their
average improvement in test scores, the best and the worst
schools were schools with very small sample sizes. Explain
how these results could merely reflect sample means and
proportions having larger variability when sample sizes are
smaller. (Hint: What would you expect with the sample if
all the population means were identical?)
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5.4 Choice of Sample Size
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5.6 Chapter Summary

T his chapter shows how to use sample data to estimate population parameters. With categorical
variables, we estimate population proportions for the categories. For example, a study dealing

with binge drinking by college students might estimate the proportion of college students who
participate in binge drinking. With quantitative variables, we estimate the population mean. For
example, the study might estimate the mean number of alcoholic drinks taken in a typical binge-
drinking experience for the population of college students who do this.

We first learn about two types of estimates: One is a single point and the other is an interval of
points, called aconfidence interval. We construct confidence intervals for population proportions and
meansby takingapoint estimate andaddingandsubtractingamarginof error thatdependson the sample
size. We also learn how to find the sample size needed to achieve the desired precision of estimation.
The final section presents two general-purpose methods for estimation—maximum likelihood and
the bootstrap—that apply to nearly all other parameters, such as the population median.

5.1 Point and Interval Estimation
We use sample data to estimate a parameter in two ways:

• A point estimate is a single number that is the best guess for the parameter
value.

• An interval estimate is an interval of numbers around the point estimate that
we believe contains the parameter value. This interval is also called a confidence
interval.

For example, a General Social Survey asked, “Do you believe there is a life af-
ter death?” For 1958 subjects sampled, the point estimate for the proportion of all
Americans who would respond yes equals 0.73. An interval estimate predicts that
the population proportion responding yes falls between 0.71 and 0.75. That is, this
confidence interval tells us that the point estimate of 0.73 has a margin of error of
0.02. Thus, an interval estimate helps us gauge the precision of a point estimate.

The term estimate alone is often used as short for point estimate. The term es-
timator then refers to a particular type of statistic for estimating a parameter and
estimate refers to its value for a particular sample. For example, the sample propor-
tion is an estimator of a population proportion. The value 0.73 is the estimate for the
population proportion believing in life after death.

POINT ESTIMATION OF PARAMETERS

Estimates are the most common statistical inference reported by the mass media.
For example, a Gallup Poll in May 2016 reported that 53% of the American public
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approved of President Barack Obama’s performance in office. This is an estimate
rather than a parameter, because it was based on interviewing a sample of about
1500 people rather than the entire population.

Any particular parameter has many possible estimators. For a normal population
distribution, for example, the center is the mean and the median, since that distri-
bution is symmetric. So, with sample data, two possible estimators of that center are
the sample mean and the sample median.

UNBIASED AND EFFICIENT POINT ESTIMATORS

A good estimator has a sampling distribution that (1) is centered around the param-
eter and (2) has as small a standard error as possible.

An estimator is unbiased if its sampling distribution centers around the param-
eter. Specifically, the parameter is the mean of the sampling distribution. From
page 97, for random sampling the mean of the sampling distribution of the sample
mean ȳ equals the population mean μ. Thus, ȳ is an unbiased estimator of the popu-
lation mean μ. Figure 5.1 illustrates this. For any particular sample, the sample mean
may underestimate μ or may overestimate it. If the sample mean were found re-
peatedly with different samples, however, in the long run the overestimates would
counterbalance the underestimates.

m

Population distribution

Sampling distribution
of sample median
(biased)

Sampling distribution of
y (unbiased) 
_

FIGURE 5.1: Sampling
Distributions of Two
Estimators of the
Population Mean, for a
Skewed Population
Distribution

By contrast, a biased estimator tends to underestimate the parameter, on the
average, or it tends to overestimate the parameter. For example, the sample range
cannot be larger than the population range, because the sample minimum and
maximum cannot be more extreme than the population minimum and maximum.
Thus, the sample range tends to underestimate the population range. It is a biased
estimator of the population range.

A second desirable property for an estimator is a relatively small standard error.
An estimator having standard error that is smaller than those of other estimators is
said to be efficient. An efficient estimator tends to fall closer than other estimators to
the parameter. For example, when a population distribution is normal, the standard
error of the sample median is 25% larger than the standard error of the sample mean.
The sample mean tends to be closer than the sample median to the population center.
The sample mean is an efficient estimator. The sample median is inefficient.

In summary, a good estimator of a parameter is unbiased, or nearly so, and
efficient. Statistical methods use estimators that possess these properties. The final



Section 5.1 Point and Interval Estimation 117

section of this chapter introduces a general method, called maximum likelihood, for
constructing estimators that have these properties.

ESTIMATORS OF MEAN, STANDARD DEVIATION,
AND PROPORTION

It is common, but not necessary, to use the sample analog of a population param-
eter as its estimator. For instance, to estimate a population proportion, the sample
proportion is an estimator that is unbiased and efficient. For estimating a population
mean μ, the sample mean ȳ is unbiased. It is efficient for the most common popula-
tion distributions. Likewise, we use the sample standard deviation s as the estimator
of the population standard deviation σ .

The symbol “ ˆ ” over a parameter symbol is often used to represent an esti-
mate of that parameter. The symbol “ ˆ ” is called a caret, and is usually read as hat.
For example, μ̂ is read as mu-hat. Thus, μ̂ denotes an estimate of the population
mean μ.

CONFIDENCE INTERVAL FORMED BY POINT
ESTIMATE ± MARGIN OF ERROR

To be truly informative, an inference about a parameter should provide not only a
point estimate but should also indicate how close the estimate is likely to fall to the
parameter value. For example, since 1996 each year the Gallup Poll has asked, “Do
you think marriages between same-sex couples should or should not be recognized
by the law as valid, with the same rights as traditional marriages?” The percentage
saying they should be valid has increased from 27% in 1996 to 60% in 2015. How
accurate are these estimates? Within 2%? Within 5%? Within 10%?

The information about the precision of a point estimate determines the width of
an interval estimate of the parameter. This consists of an interval of numbers around
the point estimate. It is designed to contain the parameter with some chosen prob-
ability close to 1. Because interval estimates contain the parameter with a certain
degree of confidence, they are referred to as confidence intervals.

Confidence Interval

A confidence interval for a parameter is an interval of numbers within
which the parameter is believed to fall. The probability that this method
produces an interval that contains the parameter is called the confidence
level. This is a number chosen to be close to 1, such as 0.95 or 0.99.

The key to constructing a confidence interval is the sampling distribution of the
point estimator. Often, the sampling distribution is approximately normal. The nor-
mal distribution then determines the probability that the estimator falls within a cer-
tain distance of the parameter. With probability about 0.95, the estimator falls within
two standard errors. To construct a confidence interval, we add and subtract from the
point estimate a z-score multiple of its standard error. This is the margin of error.
That is,

Form of confidence interval: Point estimate ± Margin of error.

To construct a confidence interval having “95% confidence,” we take the point esti-
mate and add and subtract a margin of error that equals about two standard errors.
We’ll see the details in the next two sections.
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5.2 Confidence Interval for a Proportion
For categorical data, an observation occurs in one of a set of categories. This type
of measurement occurs when the variable is nominal, such as preferred candidate
(Democrat, Republican, Independent), or ordinal, such as opinion about how much
the government should address global warming (less, the same, more). It also occurs
when inherently continuous variables are measured with categorical scales, such as
when annual income has categories ($0–$24,999, $25,000–$49,999, $50,000–$74,999,
at least $75,000).

To summarize categorical data, we record the proportions (or percentages) of
observations in the categories. For example, a study might provide a point or interval
estimate of

• The proportion of Americans who lack health insurance.

• The proportion of Canadians who favor independent status for Quebec.

• The proportion of Australian young adults who have taken a “gap year,” that
is, a break of a year between high school and college or between college and
regular employment.

THE SAMPLE PROPORTION AND ITS STANDARD ERROR

Let π denote a population proportion.1 Then, π falls between 0 and 1. Its point es-
timator is the sample proportion. We denote the sample proportion by π̂ , since it
estimates π .

Recall that the sample proportion is a mean when we let y = 1 for an observation
in the category of interest and y = 0 otherwise. (See the discussion about Table 3.6 on
page 52 and following Example 4.4 on page 90.) Similarly, the population proportion
π is the mean μ of the probability distribution having probabilities

P(1) = π and P(0) = 1 − π.

The standard deviation of this probability distribution is2 σ = √
π(1 − π). Since

the formula for the standard error of a sample mean is σȳ = σ/
√

n, the standard
error σπ̂ of the sample proportion π̂ is

σπ̂ = σ√
n

=
√

π(1 − π)
n

.

As the sample size increases, the standard error gets smaller. The sample proportion
then tends to fall closer to the population proportion.

CONFIDENCE INTERVAL FOR A PROPORTION

Since the sample proportion π̂ is a sample mean, the Central Limit Theorem applies:
For large random samples, the sampling distribution of π̂ is approximately normal
about the parameter π it estimates. Figure 5.2 illustrates this. Recall that 95% of a
normal distribution falls within two standard deviations of the mean, or, more pre-
cisely, 1.96 standard deviations. So, with probability 0.95, π̂ falls within 1.96σπ̂ units
of the parameter π , that is, between π − 1.96σπ̂ and π + 1.96σπ̂ , as Figure 5.2 shows.

1 Here, π is the Greek analog of p for proportion, not the mathematical constant, 3.1415. . . .
2 From page 84, the variance is σ 2 = ∑

(y−μ)2P(y) = (0−π)2P(0)+(1−π)2P(1) = (0−π)2(1−π)+(1−π)2π ,
which simplifies to π(1 − π). Thus, σ = √

π(1 − π).
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FIGURE 5.2: Sampling
Distribution of π̂ and
Possible 95% Confidence
Intervals for π

Once the sample is selected, if π̂ does fall within 1.96σπ̂ units of π , then the in-
terval from π̂ − 1.96σπ̂ to π̂ + 1.96σπ̂ contains π . See line 1 of Figure 5.2. In other
words, with probability 0.95, a π̂ value occurs such that the interval π̂ ± 1.96σπ̂ con-
tains the population proportion π . On the other hand, the probability is 0.05 that π̂

does not fall within 1.96σπ̂ of π . If that happens, then the interval from π̂ − 1.96σπ̂

to π̂ + 1.96σπ̂ does not contain π (see Figure 5.2, line 2). Thus, the probability is 0.05
that π̂ is such that π̂ ± 1.96σπ̂ does not contain π .

The interval π̂ ± 1.96σπ̂ is an interval estimate for π with confidence level 0.95.
It is called a 95% confidence interval. In practice, the value of the standard error
σπ̂ = √

π(1 − π)/n for this formula is unknown, because it depends on the unknown
parameter π . So, we estimate this standard error by substituting the sample propor-
tion, using

se =
√

π̂(1 − π̂)
n

.

We’ve used the symbol s to denote a sample standard deviation, which estimates the
population standard deviation σ . In the remainder of this text, we use the symbol se
to denote a sample estimate of a standard error.

The confidence interval formula uses this estimated standard error. In summary,
the 95% confidence interval for π is

π̂ ± 1.96(se), where se =
√

π̂(1 − π̂)
n

.

Example
5.1

Estimating the Proportion Who Favor Restricting Legalized Abortion For many
years, the Florida Poll3 conducted by Florida International University asked, “In
general, do you think it is appropriate for state government to make laws restricting
access to abortion?” In the most recent poll, of 1200 randomly chosen adult Florid-
ians, 396 said yes and 804 said no. We shall estimate the population proportion who
would respond yes to this question.

Let π represent the population proportion of adult Floridians who would re-
spond yes. Of the n = 1200 respondents in the poll, 396 said yes, so π̂ = 396/1200 =
0.330. Then, 1 − π̂ = 0.670. That is, 33% of the sample said yes and 67% said no.

3 See www2.fiu.edu/∼ipor/ffp/abort1.htm.

http://www2.fiu.edu/%E2%88%BCipor/ffp/abort1.htm
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The estimated standard error of the sample proportion π̂ is

se =
√

π̂(1 − π̂)
n

=
√

(0.33)(0.67)
1200

=
√

0.000184 = 0.0136.

A 95% confidence interval for π is

π̂ ± 1.96(se) = 0.330 ± 1.96(0.0136) = 0.330 ± 0.027, or (0.30, 0.36).

We conclude that the population percentage supporting restricting access to abortion
appears to be at least 30% but no more than 36%. All numbers in the confidence
interval (0.30, 0.36) fall below 0.50. Thus, at the time of this poll, apparently fewer
than half the Florida adult population supported restricting access to abortion.

You can obtain this confidence interval using software with your data file. In
Stata, you can also find it directly from the summary results, by applying the cii
command4 to n and the count in the category of interest:

. cii proportions 1200 396, wald
-- Binomial Wald ---

Variable | Obs Mean Std. Err. [95% Conf. Interval]
| 1,200 .33 .0135739 .3033957 .3566043

The software R uses a confidence interval for the proportion that has a more complex
formula5 than the one we gave, so it gives slightly different results:

> prop.test(396, 1200)$conf.int
[1] 0.3035683 0.3575336

Calculators for such confidence intervals are also available with Internet applets. See
Figure 5.3 for an example.

FIGURE 5.3: Applets at
www.pearsonglobal
editions.com/Agresti
Perform Inference
Procedures Presented in
Chapters 5–9. The
Inference for a Proportion
applet can construct
confidence intervals for
proportions.

4 Stata calls this the Wald confidence interval. Here i following ci stands for immediate.
5 Exercise 5.77 gives the idea behind this so-called score confidence interval.

http://www.pearsonglobaleditions.com/Agresti
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Results in such surveys vary greatly depending on the question wording and
where the poll is conducted. For instance, when the 2014 General Social Survey asked
whether a pregnant woman should be able to obtain a legal abortion if the woman
wants it for any reason, 907 said no and 746 said yes. The 95% confidence interval
for the population proportion saying no equals (0.53, 0.57).

If you construct a confidence interval using a hand calculator, don’t round off
while doing the calculation or your answer may be affected, but do round off when
you report the final answer. Likewise, in reporting results from software output, you
should use only the first two or three significant digits. Report the confidence interval
as (0.30, 0.36) rather than (0.303395, 0.356605). Software’s extra precision provides
accurate calculations in finding se and the confidence interval. However, the extra
digits are distracting in reports and not useful. They do not tell us anything extra in a
practical sense about the population proportion, and their validity is shaky because
the sampling distribution is only approximately normal.

Example
5.2

Estimating Proportion Who “Oppose” from Proportion Who “Favor” In the Florida
Poll, for estimating the population proportion who supported restricting access to
abortion, we obtained se = 0.0136 for the point estimate π̂ = 0.33. Similarly, the
estimated standard error for 1 − π̂ = 0.67, the proportion of voters who say no to
restricting access to abortion, is

se =
√

(1 − π̂)π̂/n =
√

(0.67)(0.33)/1200 = 0.0136.

Both proportions have the same se.
A 95% confidence interval for the population proportion of no responses to

restricting access to abortion is

0.67 ± 1.96(0.0136) = 0.67 ± 0.03, or (0.64, 0.70).

Now, 0.64 = 1 − 0.36 and 0.70 = 1 − 0.30, where (0.30, 0.36) is the 95% confi-
dence interval for π . Thus, inferences for the proportion 1 − π follow directly from
those for the proportion π by subtracting each endpoint of the confidence interval
from 1.0.

CONTROLLING THE CONFIDENCE LEVEL BY CHOICE
OF z-SCORE

With a confidence level of 0.95, that is, “95% confidence,” there is a 0.05 probability
that the method produces a confidence interval that does not contain the parameter
value. In some applications, a 5% chance of an incorrect inference is unacceptable.
To increase the chance of a correct inference, we use a larger confidence level, such
as 0.99.

The general form for the confidence interval for a population proportion π is

π̂ ± z(se), with se =
√

π̂(1 − π̂)/n,

where z depends on the confidence level. The higher the confidence level, the greater
the chance that the confidence interval contains the parameter. High confidence
levels are used in practice so that the chance of error is small. The most common
confidence level is 0.95, with 0.99 used when it is more crucial not to make an error.
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Example
5.3

Finding a 99% Confidence Interval For the data in Example 5.1 (page 119), let’s find
a 99% confidence interval for the population proportion who favor laws restricting
access to abortion. Now, 99% of a normal distribution occurs within 2.58 standard
deviations of the mean. So, the probability is 0.99 that the sample proportion π̂ falls
within 2.58 standard errors of the population proportion π . A 99% confidence inter-
val for π is π̂ ± 2.58(se).

In Example 5.1, the sample proportion was 0.33, with se = 0.0136. So, the 99%
confidence interval is

π̂ ± 2.58(se) = 0.33 ± 2.58(0.0136) = 0.33 ± 0.04, or (0.29, 0.37).

Compared to the 95% confidence interval of (0.30, 0.36), this interval estimate is
less precise, being a bit wider. To be more sure of enclosing the parameter, we must
sacrifice precision of estimation by using a wider interval.

The z-value multiplied by se is the margin of error. With greater confidence, the
confidence interval is wider because the z-score in the margin of error is larger—for
instance, z = 1.96 for 95% confidence and z = 2.58 for 99% confidence.

Why do we settle for anything less than 100% confidence? To be absolutely
100% certain of a correct inference, the interval must contain all possible values
for π . A 100% confidence interval for the population proportion in favor of limiting
access to abortion goes from 0.0 to 1.0. This is not helpful. In practice, we settle for
less than perfection in order to estimate much more precisely the parameter value. In
forming a confidence interval, we compromise between the desired confidence that
the inference is correct and the desired precision of estimation. As one gets better,
the other gets worse. This is why you would not typically see a 99.9999% confidence
interval. It would usually be too wide to say much about where the population pa-
rameter falls (its z-value is 4.9).

LARGER SAMPLE SIZES GIVE NARROWER INTERVALS

We can estimate a population proportion π more precisely with a larger sample size.
The margin of error is z(se), where se = √

π̂(1 − π̂)/n. The larger the value of n, the
smaller the margin of error and the narrower the interval.

To illustrate, suppose that π̂ = 0.33 in Example 5.1 on estimating the proportion
who favor restricting legalized abortion was based on n = 300, only a fourth as large
as the actual sample size of n = 1200. Then, the estimated standard error of π̂ is

se =
√

π̂(1 − π̂)/n =
√

(0.33)(0.67)/300 = 0.027,

twice as large as the se in Example 5.1. The resulting 95% confidence interval is

π̂ ± 1.96(se) = 0.33 ± 1.96(0.027) = 0.33 ± 0.053.

This is twice as wide as the confidence interval formed from the sample of size
n = 1200.

Since the margin of error is inversely proportional to the square root of n, and
since

√
4n = 2

√
n, the sample size must quadruple in order to double the preci-

sion (i.e., halve the width). Section 5.4 shows how to find the sample size needed to
achieve a certain precision.
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In summary, two factors affect the width of a confidence interval:

The width of a
confidence interval

• Increases as the confidence level increases.
• Decreases as the sample size increases.

These properties apply to all confidence intervals, not only the one for a proportion.

ERROR PROBABILITY = 1 − CONFIDENCE LEVEL

The probability that an interval estimation method yields a confidence interval that
does not contain the parameter is called the error probability. This equals 1 minus
the confidence level. For confidence level 0.95, the error probability equals 1− 0.95 =
0.05. In statistical inference, the Greek letter α (alpha) denotes the error probability,
and 1−α is the confidence level. For an error probability of α = 0.05, the confidence
level equals 1 − α = 0.95.

The z-value for the confidence interval is such that the probability is α that π̂ falls
more than z standard errors from π . The z-value corresponds to a total probability
of α in the two tails of a normal distribution, or α/2 (half the error probability) in
each tail. For example, for a 95% confidence interval, α = 0.05, and the z-score is
the one with probability α/2 = 0.05/2 = 0.025 in each tail. This is z = 1.96.

CONFIDENCE LEVEL IS LONG-RUN PROPORTION CORRECT

The confidence level for a confidence interval describes how the method performs
when used over and over with many different random samples. The unknown pop-
ulation proportion π is a fixed number. A confidence interval constructed from any
particular sample either does or does not contain π . If we repeatedly selected ran-
dom samples of that size and each time constructed a 95% confidence interval, then
in the long run about 95% of the intervals would contain π . This happens because
about 95% of the sample proportions would fall within 1.96(se) of π , as does the π̂

in line 1 of Figure 5.2 (page 119). Saying that a particular interval contains π with
“95% confidence” signifies that in the long run 95% of such intervals would contain
π . That is, 95% of the time the inference is correct.

Figure 5.4 shows the results of selecting 10 separate samples and calculating the
sample proportion for each and a 95% confidence interval for the population propor-
tion. The confidence intervals jump around because π̂ varies from sample to sample.
However, 9 of the 10 intervals contain the population proportion π . On the aver-
age, only about 1 out of 20 times does a 95% confidence interval fail to contain the
population parameter.

Sampling distribution of p

p

ˆFIGURE 5.4: Ten 95%
Confidence Intervals for a
Population Proportion π .
In the long run, only 5%
of the intervals fail to
contain π .
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You can get a feel for this using an applet designed to illustrate the performance
of confidence intervals for proportions:

• Go to www.pearsonglobaleditions.com/Agresti and click on Ex-
plore Coverage. Use the Confidence Interval for a Proportion option.

• The default is forming a 95% confidence interval when n = 50 and the true
parameter value is π = 0.30. To better reflect Example 5.1, set the sample size
to 1200. Choose 10 samples of size 1200 each. Click on Draw Sample. You will
see a plot of the 10 confidence intervals, with ones drawn in red that do not
contain the parameter value of 0.30. The output also summarizes the number
and percentage of the confidence intervals that contain π = 0.30. What is this?

• Now select 1000 for the number of samples to draw, each of size 1200. Now the
proportion of the intervals that actually contain the parameter value is probably
closer to 0.95.

In practice, we select only one sample of some fixed size n and construct one con-
fidence interval using the observations in that sample. We do not know whether that
confidence interval truly contains π . Our confidence in that interval is based on long-
term properties of the procedure. We can control, by our choice of the confidence
level, the chance that the interval contains π . If an error probability of 0.05 makes
us nervous, we can instead form a 99% confidence interval, for which the method
makes an error only 1% of the time.

LARGE SAMPLE SIZE NEEDED FOR VALIDITY OF METHOD

In practice, the probability that the confidence interval contains π is approximately
equal to the chosen confidence level. The approximation is better for larger samples.
As n increases, the sampling distribution of π̂ is more closely normal in form, by
the Central Limit Theorem. This is what allows us to use z-scores from the normal
distribution in finding the margin of error. Also as n increases, the estimated standard
error se = √

π̂(1 − π̂)/n gets closer to the true standard error σπ̂ = √
π(1 − π)/n.

For this reason, the confidence interval formula applies with large random sam-
ples. How large is “large”? A general guideline states you should have at least 15
observations both in the category of interest and not in it.6 This is true in most social
science studies. In Example 5.1, the counts in the two categories were 396 and 804, so
the sample size requirement was easily satisfied. Section 5.4 and Exercise 5.77 show
methods that work well when the guideline is not satisfied.

Here is a summary of the confidence interval for a proportion:

Confidence Interval for
Population Proportion π

For a random sample with sample proportion π̂ , a confidence interval for a
population proportion π is

π̂ ± z(se), which is π̂ ± z

√
π̂(1 − π̂)

n
.

The z-value is such that the probability under a normal curve within z
standard errors of the mean equals the confidence level. For 95% and 99%
confidence intervals, z equals 1.96 and 2.58. The sample size n should be
sufficiently large that at least 15 observations are in the category and at least
15 are not in it.

6 For justification of this guideline, download the article at www.stat.ufl.edu/~aa/ci proportion.pdf

http://www.pearsonglobaleditions.com/Agresti
http://www.stat.ufl.edu/~aa/ci
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5.3 Confidence Interval for a Mean
We’ve learned how to construct a confidence interval for a population proportion
for categorical data. We now learn how to construct one for the population mean for
quantitative data.

ESTIMATED STANDARD ERROR FOR THE MARGIN OF ERROR

Like the confidence interval for a proportion, the confidence interval for a mean has
the form

Point estimate ± Margin of error,

where the margin of error is a multiple of the standard error. The point estimate
of the population mean μ is the sample mean, ȳ. For large random samples, by the
Central Limit Theorem, the sampling distribution of ȳ is approximately normal. So,
for large samples, we can again find a margin of error by multiplying a z-score from
the normal distribution times the standard error.

From Section 4.5, the standard error of the sample mean is

σȳ = σ√
n

,

where σ is the population standard deviation. Like the standard error of a sample
proportion, this depends on an unknown parameter, in this case σ . In practice, we
estimate σ by the sample standard deviation s. So, confidence intervals use the esti-
mated standard error

se = s/
√

n.

Example
5.4

Estimating Mean Number of Sex Partners When the 2014 General Social Survey
asked respondents how many male sex partners they have had since their 18th birth-
day, the 129 females in the sample between the ages of 23 and 29 reported a median
of 3 and mean of 6.6. Software output summarizes the results:

Variable n Mean StDev SE Mean 95.0% CI
NUMMEN 129 6.6 13.3 1.17 (4.4, 8.8)

How did software get the standard error reported of 1.17? How do we interpret it
and the confidence interval shown?

The sample standard deviation is s = 13.3. The sample size is n = 129. So, the
estimated standard error of the sample mean is

se = s/
√

n = 13.3/
√

129 = 1.17.

In several random samples of 129 women in this age grouping, the sample mean
number of male sex partners would vary from sample to sample with a standard
deviation of about 1.17.

The 95% confidence interval reported of (4.4, 8.8) is an interval estimate of μ,
the mean number of male sex partners since the 18th birthday for the corresponding
population. We can be 95% confident that this interval contains μ. The point estimate
of μ is 6.6, and the interval estimate predicts that μ is likely to be greater than 4.4
but smaller than 8.8.



126 Chapter 5 Statistical Inference: Estimation

This example highlights a couple of cautions: First, the sample mean of 6.6 and
standard deviation of 13.3 suggest that the sample data distribution is very highly
skewed to the right. The mean may be misleading as a measure of center. The median
response of 3 is perhaps a more useful summary. It’s also worth noting that the mode
was 1, with 20.2% of the sample. Second, the margin of error refers only to sampling
error. Other potential errors include those due to nonresponse or measurement error
(lying or giving an inaccurate response). If such errors are not negligible, the estimate
and margin of error may be invalid.

How did software find the margin of error for this confidence interval? As with
the proportion, for a 95% confidence interval this is approximately two times the
estimated standard error. We’ll next find the precise margin of error by multiplying
se by a score that is very similar to a z-score.

THE t DISTRIBUTION

We’ll now learn about a confidence interval that applies for any random sample size.
To achieve this generality, it has the disadvantage of assuming that the population
distribution is normal. In that case, the sampling distribution of ȳ is normal even for
small sample sizes.7

Suppose we knew the exact standard error of the sample mean, σȳ = σ/
√

n.
Then, with the additional assumption that the population is normal, for any n the
appropriate confidence interval formula is

ȳ ± zσȳ, which is ȳ ± zσ/
√

n,

for instance, with z = 1.96 for 95% confidence. In practice, we don’t know the popu-
lation standard deviation σ , so we don’t know the exact standard error. Substituting
the sample standard deviation s for σ to get the estimated standard error, se = s/

√
n,

then introduces extra error. This error can be sizeable when n is small. To account
for this increased error, we must replace the z-score by a slightly larger score, called
a t-score. The confidence interval is then a bit wider. The t-score is like a z-score,
but it comes from a bell-shaped distribution that is slightly more spread out than the
standard normal distribution. This distribution is called the t distribution.

PROPERTIES OF THE t DISTRIBUTION

Here are the main properties of the t distribution:

• The t distribution is bell shaped and symmetric about a mean of 0.

• The standard deviation is a bit larger than 1. The precise value depends on what
is called the degrees of freedom, denoted by df . The t distribution has a slightly
different spread for each distinct value of df , and different t-scores apply for
each df value.

• For inference about a population mean, the degrees of freedom equal df =
n − 1, one less than the sample size.

7 The right panel of Figure 4.15 on page 100, which showed sampling distributions for various population distri-
butions, illustrated this.
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• The t distribution has thicker tails and is more spread out than the standard
normal distribution. The larger the df value, however, the more closely it re-
sembles the standard normal. Figure 5.5 illustrates this. When df is about 30 or
more, the two distributions are nearly identical.

23 22 21 0 1 2 3

Standard normal distribution
(mean 0, variance 1)

t distribution, df 5 6

t distribution, df 5 2

t

FIGURE 5.5: t
Distribution Relative
to Standard Normal
Distribution. The t gets
closer to the normal as the
degrees of freedom (df )
increase, and the two
distributions are practically
identical when df > 30.

• A t-score multiplied by the estimated standard error gives the margin of error
for a confidence interval for the mean.

Table B at the end of the text lists t-scores from the t distribution for various
right-tail probabilities. Table 5.1 is an excerpt. The column labeled t.025, which has
probability 0.025 in the right tail and a two-tail probability of 0.05, is the t-score used
in 95% confidence intervals.

TABLE 5.1: t-Scores for Various Confidence Levels and Degrees of Freedom (df). The
scores, obtained with the qt function in R software, have right-tail proba-
bilities of 0.100, 0.050, 0.025, 0.010, 0.005, and 0.001.

Confidence Level
80% 90% 95% 98% 99% 99.8%

df t.100 t.050 t.025 t.010 t.005 t.001

1 3.078 6.314 12.706 31.821 63.657 318.3
10 1.372 1.812 2.228 2.764 3.169 4.144
28 1.313 1.701 2.048 2.467 2.763 3.408
30 1.310 1.697 2.042 2.457 2.750 3.385
100 1.290 1.660 1.984 2.364 2.626 3.174
Infinity 1.282 1.645 1.960 2.326 2.576 3.090

To illustrate, when the sample size is 29, the degrees of freedom are df = n−1 =
28. With df = 28, we see that t.025 = 2.048. This means that 2.5% of the t distribution
falls in the right tail above 2.048. By symmetry, 2.5% also falls in the left tail below
−t.025 = −2.048. See Figure 5.6. When df = 28, the probability equals 0.95 between
−2.048 and 2.048. These are the t-scores for a 95% confidence interval when n = 29.
The confidence interval is ȳ ± 2.048(se).

The t-scores are also supplied by software. For example, the free software R
has a function qt that gives the t-score for a particular cumulative probability. For
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.05.05

.025.025

3210212223
t 

22.048
(2t.025)

2.048
(t.025)

21.701
(2t.05)

1.701
(t.05)

FIGURE 5.6: The t
Distribution with df = 28

example, the right-tail probability of 0.025 corresponds to a cumulative probability
of 0.975, for which the t-score when df = 28 is

> qt(0.975, 28) # q = "quantile" (percentile) for t distribution
[1] 2.048407

With Stata software, we can find this with the invt (inverse t) command:

. display invt(28, 0.975)
2.0484071

It is also possible to find t-scores with SPSS and SAS statistical software, but it is
simpler to use Internet sites and statistical calculators. See Figure 5.7.

FIGURE 5.7: The t
Distribution Applet at
www.pearsonglobal
editions.com/Agresti
Can Supply t Cumulative
and Tail Probabilities

t-SCORES IN THE CONFIDENCE INTERVAL FOR A MEAN

Confidence intervals for a mean resemble those for proportions, except that they use
t-scores from the t distribution instead of z-scores from the standard normal distri-
bution.

http://www.pearsonglobaleditions.com/Agresti
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Confidence Interval for
Population Mean μ

For a random sample from a normal population distribution, a
95% confidence interval for μ is

ȳ ± t.025(se), where se = s/
√

n

and df = n − 1 for the t-score.

Like the confidence interval for a proportion, this confidence interval has margin
of error that is a score multiplied by the estimated standard error. Besides substitut-
ing the t-score for the z-score, the t method also makes the assumption of a normal
population distribution. In practice, the population distribution may not be close to
normal. We discuss the importance of this assumption later in the section, where we’ll
find that this is mainly relevant for very small samples.

Example
5.5

Estimating Mean Weight Change for Anorexic Girls This example comes from an
experimental study that compared various treatments for young girls suffering from
anorexia, an eating disorder. For each girl, weight was measured before and after
a fixed period of treatment. The variable of interest was the change in weight, that
is, weight at the end of the study minus weight at the beginning of the study. The
change in weight was positive if the girl gained weight and negative if she lost weight.
The treatments were designed to aid weight gain. The weight changes for 29 girls
undergoing the cognitive behavioral treatment were8

1.7, 0.7, −0.1, −0.7, −3.5, 14.9, 3.5, 17.1, −7.6, 1.6,
11.7, 6.1, 1.1, −4.0, 20.9, −9.1, 2.1, 1.4, −0.3, −3.7,

−1.4, −0.8, 2.4, 12.6, 1.9, 3.9, 0.1, 15.4, −0.7.

Software used to analyze the data from a data file reports the summary results:

Variable | Obs Mean Std. Dev. Min Max
change | 29 3.006896 7.308504 -9.1 20.9

For the n = 29 girls who received this treatment, their mean weight change was
ȳ = 3.01 pounds with a standard deviation of s = 7.31. The sample mean had an
estimated standard error of se = s/

√
n = 7.31/

√
29 = 1.36.

Let μ denote the population mean change in weight for the cognitive behavioral
treatment, for the population represented by this sample. If this treatment has a ben-
eficial effect, then μ is positive. Since n = 29, df = n−1 = 28. For a 95% confidence
interval, we use t.025 = 2.048. The 95% confidence interval is

ȳ ± t.025(se) = 3.01 ± 2.048(1.36) = 3.0 ± 2.8, or (0.2, 5.8).

It is simple to do this using software. For example, with R applied to a data file having
a variable called change for the change in weight:

> t.test(change, conf.level=0.95)$conf.int
[1] 0.2268902 5.7869029

8 Courtesy of Prof. Brian Everitt, King’s College, London; data available in Anorexia CB data file at text web-
site.
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With Stata, we apply the command ci to the variable name. If you have only sum-
mary statistics, Stata can construct the interval using them, with the cii command
or using a dialog box, by entering n, ȳ, and s:

. cii means 29 3.007 7.309

Variable | Obs Mean Std. Err. [95% Conf. Interval]
| 29 3.007 1.357247 .2268051 5.787195

SPSS output is similar (see page 160). Calculators for t confidence intervals are also
available online.9

With 95% confidence, we infer that this interval contains the population mean
weight change. It appears that the mean weight change is positive, but it may be
small in practical terms. However, this experimental study used a volunteer sample,
because it is not possible to identify and randomly sample a population of anorexic
girls. Because of this, inferences are tentative and “95% confidence” in the results
may be overly optimistic. The results are more convincing if researchers can argue
that the sample was representative of the population. The study did employ ran-
domization in assigning girls to three therapies (only one of which is considered
here), which is reassuring for analyses conducted later in the text that compare the
therapies.

Another caveat about our conclusion is shown by Figure 5.8, a histogram that
software shows for the data. This reveals that the sample data distribution is skewed
to the right. The assumption of a normal population distribution may be violated—
more about that below. The median weight change is only 1.4 pounds, somewhat less
than the mean of 3.0 because of the skew to the right. The sample median is another
indication that the size of the effect could be small.

FIGURE 5.8: Histogram
of Weight Change Values
for Anorexia Study

EFFECT OF CONFIDENCE LEVEL AND SAMPLE SIZE

We’ve used the t distribution to find a 95% confidence interval. Other confidence
levels use the same formula but with a different t-score.

9 Such as the Inference for a Mean applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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To be safer in estimating the population mean weight change for the anorexia
study in Example 5.5, we could instead use a 99% confidence interval. We then use
the t-score with total probability 0.01 in the two tails, so 0.005 in each tail. Since
df = 28 when n = 29, this t-score is t.005 = 2.763. The standard error does not
change. The 99% confidence interval is

ȳ ± 2.763(se) = 3.01 ± 2.763(1.36), which is (−0.7, 6.8).

The confidence interval is wider than the 95% interval of (0.2, 5.8). This is the cost
of having greater confidence. The 99% confidence interval contains 0. This tells
us it is plausible, at the 99% confidence level, that the population mean change is
0, that is, that the therapy may not result in any change in the population mean
weight.

Like the width of the confidence interval for a proportion, the width of a con-
fidence interval for a mean also depends on the sample size n. Larger sample sizes
result in narrower intervals.

ROBUSTNESS FOR VIOLATIONS OF NORMAL
POPULATION ASSUMPTION

The assumptions for the confidence interval for a mean are (1) randomization for
collecting the sample and (2) normal population distribution. Under the normality
assumption, the sampling distribution of ȳ is normal even for small n. Likewise, the
z-score measuring the number of standard errors that ȳ falls from μ then has the
standard normal distribution. In practice, when we use the estimated standard error
se = s/

√
n (rather than the true one, σ/

√
n), the number of se that ȳ falls from μ has

the t distribution.
For the anorexia study, the sample data histogram in Figure 5.8 is not a precise

indication of the population distribution because n is only 29, but it showed evidence
of skew. Generally, the normal population assumption seems worrisome for social
science application of this statistical method, because variables often have distribu-
tions that are far from normal.

A statistical method is said to be robust with respect to a particular assump-
tion if it performs adequately even when that assumption is violated. Statisticians
have shown that the confidence interval for a mean using the t distribution is ro-
bust against violations of the normal population assumption. Even if the popu-
lation is not normal, confidence intervals based on the t distribution still work
quite well, especially when n exceeds about 15. As the sample size gets larger,
the normal population assumption becomes less important, because of the Cen-
tral Limit Theorem. The sampling distribution of the sample mean is then bell
shaped even when the population distribution is not. The actual probability that
the 95% confidence interval method contains μ is close to 0.95 and gets closer as
n increases.

An important case when the method does not work well is when the data are
extremely skewed or contain extreme outliers. Partly this is because of the effect
on the method, but also because the mean itself may not then be a representative
summary of the center.

In practice, assumptions are rarely perfectly satisfied. Thus, it is important to
know whether a statistical method is robust when a particular assumption is vio-
lated. The t confidence interval method is not robust to violations of the randomiza-
tion assumption. Like all inferential statistical methods, the method has questionable
validity if the method for producing the data did not use randomization.
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STANDARD NORMAL IS THE t DISTRIBUTION WITH
df = INFINITY

Look at a table of t-scores, such as Table 5.1 or Table B. As df increases, you move
down the table. The t-score decreases and gets closer and closer to the z-score for a
standard normal distribution. This reflects the t distribution becoming less spread out
and more similar in appearance to the standard normal distribution as df increases.
You can think of the standard normal distribution as a t distribution with df = ∞
(infinity).

For instance, when df increases from 1 to 100 in Table 5.1, the t-score t.025 with
right-tail probability equal to 0.025 decreases from 12.706 to 1.984. The z-score with
right-tail probability of 0.025 for the standard normal distribution is z = 1.96. The
t-scores are not printed for df > 100, but they are close to the z-scores. The last
row of Table 5.1 and Table B lists the z-scores for various confidence levels, opposite
df = ∞. As we showed, you can get t-scores for any df value using software, so you
are not restricted to those in Table B.

Why does the t distribution look more like the standard normal distribution as n
(and hence df ) increases? Because s is increasingly precise as a point estimate of σ in
approximating the true standard error σ/

√
n by se = s/

√
n. The additional sampling

error for small samples results in the t sampling distribution being more spread out
than the standard normal.

The t distribution was discovered in 1908 by the statistician and chemist W. S.
Gosset. At the time, Gosset was employed by Guinness Breweries in Dublin, Ireland,
designing experiments pertaining to the selection, cultivation, and treatment of bar-
ley and hops for the brewing process. Due to company policy forbidding the publish-
ing of trade secrets, Gosset used the pseudonym Student in articles he wrote about
his discovery. The t distribution became known as Student’s t, a name still sometimes
used today. The method for constructing t confidence intervals for a mean was intro-
duced 20 years after Gosset’s discovery.

USING SOFTWARE FOR STATISTICAL METHODS

The examples in this section used output from statistical software to help us ana-
lyze the data. We’ll show software output increasingly in future chapters as we cover
methods that require substantial computation. You should use software yourself for
some exercises and to get a feel for how researchers analyze data in practice.

When you start to use software for a given method, we suggest that you first use
it for the example of that method in this book. Note whether you get the same results,
as a way to check whether you are using the software correctly.

5.4 Choice of Sample Size
Polling organizations such as the Gallup Poll take samples that typically contain
about a thousand subjects. This is large enough for a sample proportion estimate
to have a margin of error of about 0.03. At first glance, it seems astonishing that a
sample of this size from a population of perhaps many millions is adequate for pre-
dicting outcomes of elections, summarizing opinions on controversial issues, showing
relative sizes of television audiences, and so forth.

Recall that the margin of error for a confidence interval depends on the stan-
dard error of the point estimate. Thus, the basis for this inferential power lies in the
formulas for the standard errors. As long as a random sampling scheme is properly
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executed, good estimates result from relatively small samples, no matter how large
the population size.10 Polling organizations use sampling methods that are more com-
plex than simple random samples, often involving some clustering and/or stratifica-
tion. However, the standard errors under their sampling plans are approximated rea-
sonably well either by the formulas for simple random samples or by inflating those
formulas by a certain factor (such as by 25%) to reflect the sample design effect.

Before data collection begins, most studies attempt to determine the sample size
that will provide a certain degree of precision in estimation. A relevant measure
is the value of n for which a confidence interval for the parameter has margin of
error equal to some specified value. The key results for finding the sample size are as
follows:

• The margin of error depends directly on the standard error of the sampling
distribution of the point estimator.

• The standard error itself depends on the sample size.

DETERMINING SAMPLE SIZE FOR ESTIMATING PROPORTIONS

To determine the sample size, we must decide on the margin of error. Highly pre-
cise estimation is more important in some studies than in others. An exit poll in
a close election requires a precise estimate to predict the winner. If, on the other
hand, the goal is to estimate the proportion of U.S. citizens who do not have health
insurance, a larger margin of error might be acceptable. So, we must first decide
whether the margin of error should be about 0.03 (three percentage points), 0.05, or
whatever.

We must also specify the probability with which the margin of error is achieved.
For example, we might decide that the error in estimating a population proportion
should not exceed 0.04, with 0.95 probability. This probability is the confidence level
for the confidence interval.

Example
5.6

Sample Size for a Survey on Single-Parent Children A social scientist wanted to es-
timate the proportion of school children in Boston who live in a single-parent fam-
ily. Since her report was to be published, she wanted a reasonably precise estimate.
However, her funding was limited, so she did not want to collect a larger sample than
necessary. She decided to use a sample size such that, with probability 0.95, the error
would not exceed 0.04. So, she needed to determine n such that a 95% confidence
interval for π equals π̂ ± 0.04.

Since the sampling distribution of the sample proportion π̂ is approximately nor-
mal, π̂ falls within 1.96 standard errors of π with probability 0.95. Thus, if the sample
size is such that 1.96 standard errors equal 0.04, then with probability 0.95, π̂ falls
within 0.04 units of π . See Figure 5.9.

Recall that the true standard error is σπ̂ = √
π(1 − π)/n. How do we find the

value of n that provides a value of σπ̂ for which 0.04 = 1.96σπ̂ ? We must solve for n
in the expression

0.04 = 1.96

√
π(1 − π)

n
.

10 In fact, the methods actually treat the population size as infinite; see Exercise 4.57 in Chapter 4.
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FIGURE 5.9: Sampling
Distribution of π̂ with the
Error of Estimation No
Greater than 0.04, with
Probability 0.95

Multiplying both sides of the expression by
√

n and dividing both sides by 0.04,
we get

√
n = 1.96

√
π(1 − π)
0.04

.

Squaring both sides, we obtain the result

n = (1.96)2π(1 − π)
(0.04)2

.

Now, we face a problem. We want to select n for the purpose of estimating the
population proportion π , but this formula requires the value of π . This is because
the spread of the sampling distribution depends on π . The distribution is less spread
out, and it is easier to estimate π , if π is close to 0 or 1 than if it is near 0.50. Since
π is unknown, we must substitute an educated guess for it in this equation to solve
for n.

The largest possible value for π(1 −π) occurs when π = 0.50. Then, π(1 −π) =
0.25. In fact, π(1−π) is fairly close to 0.25 unless π is quite far from 0.50. For example,
π(1 − π) = 0.24 when π = 0.40 or π = 0.60, and π(1 − π) = 0.21 when π = 0.70
or π = 0.30. Thus, one approach merely substitutes 0.50 for π in the above equation
for n. This yields

n = (1.96)2π(1 − π)
(0.04)2

= (1.96)2(0.50)(0.50)
(0.04)2

= 600.

This approach ensures that with confidence level 0.95, the margin of error will not
exceed 0.04, no matter what the value of π .

Obtaining n by setting π = 0.50 is the “safe” approach. But this n value is ex-
cessively large if π is not near 0.50. Suppose that based on other studies the social
scientist believed that π was no higher than 0.25. Then, an adequate sample size is

n = (1.96)2π(1 − π)
(0.04)2

= (1.96)2(0.25)(0.75)
(0.04)2

= 450.

A sample size of 600 is larger than needed.

SAMPLE SIZE FORMULA FOR ESTIMATING PROPORTIONS

We next provide a general formula for determining the sample size. Let M denote
the desired margin of error. The formula also uses a general z-score (in place of 1.96)
determined by the probability with which the error is no greater than M.
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Sample Size for Estimating a
Population Proportion π

The random sample size n having margin of error M in estimating π by the
sample proportion π̂ is

n = π(1 − π)
( z

M

)2
.

The z-score is the one for the chosen confidence level, such as z = 1.96 for
level 0.95. You need to guess π or take the safe approach of setting
π = 0.50.

To illustrate, suppose the study about single-parent children wanted to estimate
the population proportion to within 0.08 with confidence level 0.95. Then the mar-
gin of error is M = 0.08, and z = 1.96. The required sample size using the safe
approach is

n = π(1 − π)
( z

M

)2
= (0.50)(0.50)

(
1.96
0.08

)2

= 150.

This sample size of 150 is one-fourth the sample size of 600 necessary to guarantee a
margin of error no greater than M = 0.04. Reducing the margin of error by a factor of
one-half requires quadrupling the sample size. Calculators for this are also available
online.11

DETERMINING SAMPLE SIZE FOR ESTIMATING MEANS

Next we find n for estimating a population mean μ. We determine how large n needs
to be so that the sampling distribution of ȳ has margin of error M. Figure 5.10 illus-
trates this.

.95
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Required n
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Distribution
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_

FIGURE 5.10:
Determining n So that ȳ
Has Probability 0.95 of
Falling within a Margin of
Error of M Units of the
Population Mean μ

A derivation using the large-sample normal sampling distribution of ȳ yields the
following result:

Sample Size for Estimating a
Population Mean μ

The random sample size n having margin of error M in estimating μ by the
sample mean ȳ is

n = σ 2
( z

M

)2
.

The z-score is the one for the chosen confidence level, such as z = 1.96 for
level 0.95. You need to guess the population standard deviation σ .

11 For example, at epitools.ausvet.com.au/content.php?page=1Proportion.
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The greater the spread of the population distribution, as measured by its stan-
dard deviation σ , the larger the sample size needed to achieve a certain margin of
error. If subjects have little variation (i.e., σ is small), we need less data than if they
are highly heterogeneous. In practice, σ is unknown. We need to substitute an edu-
cated guess for it, perhaps based on a previous study.

A slight complication is that since we don’t know σ , for inference we actually
use the t distribution rather than the standard normal. But, if we don’t know n, we
also don’t know the degrees of freedom and the t-score. We have seen, however, that
unless df is small, the t-score is close to the z-score. So, we won’t worry about this
complication. The approximation of replacing an unknown t-score in the sample size
formula by a z-score is usually much less than that in using an educated guess for σ .
Calculators for the formula for determining n are also available online.12

Example
5.7

Estimating Mean Education of Native Americans A study is planned of elderly
Native Americans. Variables to be studied include educational level. How large a
sample size is needed to estimate the mean number of years of attained education
correct to within one year with probability 0.99?

If the study has no prior information about the standard deviation σ of educa-
tional attainment for Native Americans, we need to provide a guess. Perhaps nearly
all educational attainment values fall within a range of 15 years, such as between 5
and 20 years. If the population distribution is approximately normal, then since the
range from μ − 3σ to μ + 3σ contains nearly all of a normal distribution, the range
of 15 equals about 6σ . Then, 15/6 = 2.5 is a guess for σ .

Now, for 99% confidence, the error probability is 0.01. The z-score is 2.58, which
has probability 0.01/2 = 0.005 in each tail. Since the desired margin of error is M = 1
year, the required sample size is

n = σ 2
( z

M

)2
= (2.5)2

(
2.58

1

)2

= 42.

A more cautious approach would select a larger value for σ . For example, if the
range from 5 to 20 years encloses only about 95% of the education values, we could
treat this as the range from μ−2σ to μ+2σ and set 15 = 4σ . Then, σ = 15/4 = 3.75
and n = (3.75)2(2.58/1)2 = 94.

OTHER CONSIDERATIONS IN DETERMINING SAMPLE SIZE

In summary, the necessary sample size depends on the desired precision for the mar-
gin of error, the confidence level for a confidence interval, and the variability in the
population. For estimating means, the required sample size increases as σ increases.
In most social surveys, large samples (1000 or more) are necessary, but for homoge-
neous populations (e.g., residents of nursing homes) smaller samples are often ade-
quate, due to reduced population variability.

From a practical point of view, other considerations also affect the sample size.
One consideration is the complexity of analysis planned. The more complex the
analysis, such as the more variables analyzed simultaneously, the larger the sample
needed. To analyze a single variable using a mean, a relatively small sample might be
adequate. Planned comparisons of several groups using complex multivariate meth-
ods, however, require a larger sample. For instance, Example 5.7 showed we may be

12 For example, at http://epitools.ausvet.com.au/content.php?page=1Mean.

http://epitools.ausvet.com.au/content.php?page=1Mean
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able to estimate mean educational attainment quite well with only 42 people. But if
we also wanted to compare the mean for several ethnic and racial groups and study
how the mean depends on other variables such as gender, parents’ income and edu-
cation, and size of the community, we would need a much larger sample.

Another consideration concerns time, money, and other resources. Larger sam-
ples are more expensive and more time consuming. They may require greater re-
sources than are available. For example, sample size formulas might suggest that
1000 cases provide the desired precision. Perhaps you can afford to gather only 400.
Should you go ahead with the smaller sample and sacrifice precision and/or confi-
dence, or should you give up unless you find additional resources? You may need to
answer questions such as “Is it really crucial to study all groups, or can I reduce the
sample by focusing on a couple of groups?”

The sample size formulas of this section apply to simple random sampling. Clus-
ter samples and complex multistage samples must usually be larger to achieve the
same precision, whereas stratified samples can often be smaller. In such cases, seek
guidance from a statistical consultant.

In summary, no simple formula can always give an appropriate sample size. The
needed sample size depends on resources and the analyses planned. This requires
careful judgment. A final caveat: If the study is carried out poorly, or if data are
never obtained for a substantial percentage of the sample, or if some observations
are stated wrongly or incorrectly recorded by the data collector or by the statistical
analyst, then the actual probability of accuracy to within the specified margin of error
may be much less than intended. When someone claims to achieve a certain precision
and confidence, be skeptical unless you know that the study was substantially free of
such problems.

WHAT IF YOU HAVE ONLY A SMALL SAMPLE?∗

Sometimes, because of financial or ethical reasons, it’s just not possible to take as
large a sample as we’d like. If n must be small, how does that affect the validity
of confidence interval methods? The t methods for a mean can be used with any
n. When n is small, though, you need to be cautious to look for extreme outliers
or great departures from the normal population assumption, such as is implied by
highly skewed data. These can affect the results and the validity of using the mean
as a summary of center.

Recall that the confidence interval formula for a proportion requires at least 15
observations of each type. Otherwise, the sampling distribution of the sample pro-
portion need not be close to normal, and the estimate se = √

π̂(1 − π̂)/n of the
true standard error

√
π(1 − π)/n may be poor. As a result, the confidence interval

formula works poorly, as the next example shows.

Example
5.8

What Proportion of Students Are Vegetarians? For a class project, a student ran-
domly sampled 20 fellow students at the University of Florida to estimate the pro-
portion of undergraduate students at that university who were vegetarians. Of the
20 students she sampled, none were vegetarians. Let π denote the population pro-
portion of vegetarians at the university. The sample proportion was π̂ = 0/20 = 0.0.

When π̂ = 0.0, then se = √
π̂(1 − π̂)/n = √

(0.0)(1.0)/20 = 0.0. The 95%
confidence interval for the population proportion of vegetarians is

π̂ ± 1.96(se) = 0.0 ± 1.96(0.0), which is 0.0 ± 0.0, or (0.0, 0.0).

The student concluded she could be 95% confident that π falls between 0 and 0. But
this confidence interval formula is valid only if the sample has at least 15 vegetarians
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and at least 15 nonvegetarians. (Recall the guidelines in the box on page 124.) The
sample did not have at least 15 vegetarians, so the method is not appropriate.

For small samples, the confidence interval formula is still valid if we use it after
adding four artificial observations, two of each type. The sample of size n = 20 in
Example 5.8 had 0 vegetarians and 20 nonvegetarians. We can apply the confidence
interval formula with 0 + 2 = 2 vegetarians and 20 + 2 = 22 nonvegetarians. The
value of the sample size for the formula is then n = 24. Applying the formula, we get

π̂ = 2/24 = 0.083, se =
√

π̂(1 − π̂)/n =
√

(0.083)(0.917)/24 = 0.056.

The resulting 95% confidence interval is

π̂ ± 1.96(se), which is 0.083 ± 1.96(0.056), or (−0.03, 0.19).

A proportion cannot be negative, so we report the interval as (0.0, 0.19).
We can also find this interval using some software, or with Internet applets.13

You can find it using Stata,14 by applying the cii command to n and the count in the
category of interest or using a dialog box:

. cii proportions 20 0, agresti
-- Agresti-Coull ---

Variable | Obs Mean Std. Err. [95% Conf. Interval]
| 20 0 0 0 .1898096

We can be 95% confident that the proportion of vegetarians at the University of
Florida is no greater than 0.19.

Why do we add 2 to the counts of the two types? The reason is that the confidence
interval then closely approximates one based on a more complex method (described
in Exercise 5.77) that does not require estimating the standard error.

5.5 Estimation Methods: Maximum Likelihood
and the Bootstrap∗

We’ve focused on estimating means and proportions, but Chapter 3 showed that
other statistics are also useful for describing data. These other statistics also have
sampling distributions. In this section, we introduce a standard method, called maxi-
mum likelihood, that statisticians use to find good estimators of parameters. We also
introduce a newer method, called the bootstrap, that uses modern computational
power to find confidence intervals in cases in which it is difficult to derive the sam-
pling distribution.

MAXIMUM LIKELIHOOD METHOD OF ESTIMATION

The most important contributions to modern statistical science were made by a
British statistician and geneticist, R. A. Fisher (1890–1962). While working at an agri-
cultural research station north of London, he developed much of the theory of point
estimation as well as methodology for the design of experiments and data analysis.

13 For example, with the Inference for a Proportion applet at www.pearsonglobaleditions.com/Agresti.
14 Software calls it the Agresti–Coull confidence interval, because it was proposed in an article by A. Agresti and
B. Coull, American Statistician, vol. 52 (1998), pp. 119–126.

http://www.pearsonglobaleditions.com/Agresti
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For point estimation, Fisher proposed the maximum likelihood estimate. This esti-
mate is the value of the parameter that is most consistent with the observed data,
in the following sense: If the parameter equaled that number (i.e., the value of the
estimate), the observed data would have had greater chance of occurring than if the
parameter equaled any other number.

We illustrate this method using data from a recent survey with a random sample
of 1000 adult Americans, in which a sample proportion of 0.37 said that they believed
in astrology. What is the maximum likelihood estimate of the population proportion
who believe in astrology? Figure 5.11 plots the probability that a random sample
of size 1000 has a sample proportion of 0.37, as a function of the actual population
proportion believing in astrology. The probability changes dramatically as the popu-
lation proportion changes. The curve, called a likelihood function, suggests that such
a sample would be essentially impossible if the population proportion were below
about 0.32 or above about 0.42. The maximum of the curve occurs at the population
proportion value of 0.37. That is, the observed sample result would have been more
likely to occur if the population proportion equaled 0.37 than if it equaled any other
possible value between 0 and 1. So, the maximum likelihood estimate of the popula-
tion proportion who believe in astrology is 0.37. In fact, with random sampling, the
maximum likelihood estimate of a population proportion is necessarily the sample
proportion.

FIGURE 5.11: The
Probability that Exactly
37% of a Sample of Size
1000 Believe in Astrology,
Plotted as a Function of
the Population Proportion
Believing in Astrology.
The maximum probability
occurs at the population
proportion value of 0.37.
This is the maximum
likelihood estimate.

For many population distributions, such as the normal distribution, the maxi-
mum likelihood estimator of a population mean is the sample mean. The primary
point estimates presented in this book are, under certain population assumptions,
maximum likelihood estimates. Fisher showed that, for large samples, maximum like-
lihood estimators have three desirable properties:

• They are efficient, for relatively large samples: Other estimators do not have
smaller standard errors.

• They are consistent, in the sense that as n increases they tend to get closer and
closer to the unknown parameter value. In particular, they have little, if any,
bias, with the bias diminishing to 0 as n increases.

• They have approximately normal sampling distributions.



140 Chapter 5 Statistical Inference: Estimation

Fisher also showed how to estimate standard errors for maximum likelihood es-
timators. Because their sampling distributions are approximately normal, confidence
intervals for the parameters they estimate have the general form of taking the max-
imum likelihood estimate and then adding and subtracting a z-score multiplied by
the estimated standard error. For instance, this is the method we used in Section
5.2 to find a confidence interval for a population proportion. To learn more about
maximum likelihood, see Eliason (1993).

MAXIMUM LIKELIHOOD FOR MEAN, MEDIAN OF
NORMAL DISTRIBUTION

When the population distribution is normal, the population mean and median are
identical, because of the symmetry of the distribution. How should we estimate that
common value, with the sample mean or the sample median? They are both point
estimators of the same number. Fisher found that the maximum likelihood estimator
is the sample mean, and that is preferred over the sample median.

In fact, for random samples, the standard error of the sample median equals
1.25σ/

√
n. The sample median is not as efficient an estimator as the sample mean,

because its standard error is 25% larger. When the population distribution is ap-
proximately normal, this is one reason the mean is more commonly used than the
median in statistical inference.

When the population distribution is highly skewed, the population median is
often a more useful summary than the population mean. We use the sample median
to estimate the population median. However, the standard error formula 1.25σ/

√
n

is valid only when the population distribution is approximately normal. We’ll next
learn about a general method that is useful for constructing confidence intervals even
when we do not know the shape of the population distribution.

THE BOOTSTRAP

To use maximum likelihood, we need to make an assumption about the shape of the
population distribution. But sometimes we do not have enough information to make
a sensible assumption. In addition, some parameters do not have a confidence inter-
val formula that works well regardless of the population distribution or sample size.

For such cases, a recent computational invention called the bootstrap is useful.
This method treats the sample distribution as if it were the true population distri-
bution and approximates by simulation the unknown sampling distribution. To do
this, the method samples n observations, with replacement, from the sample distri-
bution. That is, each of the original n data points has probability 1/n of selection for
each “new” observation. This new sample of size n has its own point estimate of the
parameter. The bootstrap method repeats this sampling process a large number of
times, for instance, selecting 1000 separate samples of size n and 1000 corresponding
point estimate values.

This type of empirically generated sampling distribution of the point estimate
values provides information about the true parameter. For example, it generates a
standard error for the point estimate we found with the actual data. This standard
error is the sample standard deviation of the point estimate values from the simula-
tions. It also generates a confidence interval for the parameter, for example, by the
interval of values between the 2.5 and 97.5 percentiles of the simulated point estimate
values. This is a computationally intensive process, but easily feasible with modern
computing power.
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Example
5.9

Estimating Median Shelf Time in a Library A librarian at the University of Florida
wanted to estimate various characteristics of books in one of the university’s special
collections. Among the questions of interest were, “How old is a typical book in the
collection?” and “How long has it been since a typical book has been checked out?”
She suspected that the distributions of these variables were heavily skewed to the
right, so she chose the median to describe the center.

Table 5.2 shows data (from the Library data file at the text website) on
P = number of years since publication of book and C = number of years since
book checked out, for a systematic random sample of 54 books from the collec-
tion. Figure 5.12 shows a box plot for the P values. The five starred values represent
extreme outliers falling more than 3.0 (IQR) above the upper quartile. The sample
median, which is 17, is more representative of the data than the sample mean of 22.6.

TABLE 5.2: Number of Years since Publication (P) and Number of Years since Checked
Out (C) for 54 Books

C P C P C P C P C P

1 3 9 9 4 4 1 18 1 5
30 30 0 17 2 7 0 12 1 13
7 19 5 5 47 47 3 15 9 17

11 140 2 19 5 8 2 10 11 18
1 5 1 22 1 11 5 19 2 3
2 97 0 10 1 21 7 7 4 19
4 4 11 11 5 20 14 14 5 43
2 19 10 10 10 10 0 18 10 17
4 13 17 71 8 19 0 17 48 48
2 19 11 11 6 6 7 20 4 4

92 92 4 44 1 5 1 54

0 40 80 120

publication_years

FIGURE 5.12: Box Plot
for Number of Years since
Publication for Sample of
Library Books

What is the standard error for this sample median estimate? There is no simple
formula for this when we do not assume a shape for the population distribution.
However, we can use the bootstrap to find one as well as a corresponding confidence
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interval. The bootstrap is available on the Internet15 and in software. For instance, in
Stata software we find

. bootstrap r(p50), reps(10000): summarize P, detail

| Observed Bootstrap Normal-based
| Coef. Std. Err. [95% Conf. Interval]

_bs_1 | 17 2.114768 12.85513 21.14487

to produce 10,000 replications of a bootstrap for the median (labeled by Stata as
r(p50) for the 50th percentile) of the variable P. The sample median of 17 has a
bootstrap standard error of 2.11 and a 95% confidence interval for the population
median of (12.9, 21.1).

Likewise, there is not a simple formula for a confidence interval for a standard
deviation unless we make rather stringent assumptions. For the library data set, in
Stata we use 10,000 replications of a bootstrap for the standard deviation of the vari-
able P:

. bootstrap r(sd), reps(10000): summarize P, detail

| Observed Bootstrap Normal-based
| Coef. Std. Err. [95% Conf. Interval]

_bs_1 | 25.91758 5.578261 14.98439 36.85077

The sample standard deviation of the time since publication of the book was
25.9 years, and a 95% bootstrap confidence interval for the population standard
deviation is (15.0, 36.9).

5.6 Chapter Summary
This chapter presented methods of estimation, focusing on the population mean μ

for quantitative variables and the population proportion π for categorical variables.

• A point estimate is the best single guess for the parameter value. The point
estimates of the population mean μ, standard deviation σ , and proportion π

are the sample values, ȳ, s, and π̂ .

• An interval estimate, called a confidence interval, is an interval of numbers
within which the parameter is believed to fall.

Confidence Intervals

Confidence intervals for a population mean μ and for a population
proportion π have the form

Point estimate ± Margin of error,
with Margin of error = Score × (se),

where se is the estimated standard error.

15 See the Bootstrap applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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The true standard error, which is σ/
√

n, depends on the unknown population
standard deviation σ . We estimate this and use it to get an estimated stan-
dard error, denoted by se. Table 5.3 shows the formula for se for estimating
means and proportions. The score multiplied by se is a z-score from the normal
distribution for confidence intervals for proportions and a t-score from the t
distribution for confidence intervals for a mean. For the relatively large sample
sizes of most social research, the t-score is essentially the same as the z-score.

• The probability that the method yields an interval that contains the parameter,
called the confidence level, is controlled by the choice of the z or t score in the
margin of error. Increasing the confidence level entails the use of a larger score
and, hence, the sacrifice of a wider interval.

• The t distribution applies for statistical inference about a mean. It looks like the
standard normal distribution, having a mean of 0 but being a bit more spread
out. Its spread is determined by the degrees of freedom, which equal n − 1 for
inference about a mean.

• The width of a confidence interval also depends on the estimated standard error
(se) of the sampling distribution of the point estimator. Larger sample sizes
produce smaller se values and narrower confidence intervals and, hence, more
precise estimates.

Confidence intervals assume random sampling. For large samples, they do not
need an assumption about the population distribution, because the sampling distri-
bution is approximately normal even if the population is highly nonnormal, by the
Central Limit Theorem. Confidence intervals using the t distribution apply with any
n but assume a normal population distribution, although the method is robust to
violations of that assumption. Table 5.3 summarizes estimation methods.

TABLE 5.3: Summary of Estimation Methods for Means and Proportions, with
Margin of Error M

Estimated Sample Size
Point Standard Confidence to Estimate

Parameter Estimate Error Interval to within M

Mean μ ȳ se = s√
n

ȳ ± t(se) n = σ 2
( z

M

)2

Proportion π π̂ se =
√

π̂(1 − π̂)
n

π̂ ± z(se) n = π(1 − π)
( z

M

)2

Note: For error probability α and confidence level (1 − α), z-score or t-score has right-tail probability α/2
(e.g., α/2 = 0.025 for 95% confidence and z = 1.96).

Table 5.3 also shows formulas for the sample size needed to achieve a desired
margin of error M. You must select M and the confidence level, which determines the
z-score. Also, you must substitute a guess for the population standard deviation σ to
determine the sample size for estimating a population mean μ. You must substitute
a guess for the population proportion π to determine the sample size for estimating
π . Substituting π = 0.50 guarantees that the sample size is large enough to give the
desired precision and confidence.

The maximum likelihood estimator is an efficient estimator that has an approx-
imately normal sampling distribution and is commonly used in statistical inference
when we are willing to make an assumption about the shape of the population dis-
tribution. The bootstrap is a resampling method that can yield standard errors and
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confidence intervals for measures, such as the median and the standard deviation,
for which simple formulas are not available when we do not assume anything about
the population distribution.

Exercises

Practicing the Basics
5.1. Of 288,503 people involved in motor vehicle acci-
dents in Florida recently, 206,439 were wearing seat belts
(Florida Department of Highway Safety and Motor Vehi-
cles). Find a point estimate of the population proportion
of Florida motorists wearing seat belts.

5.2. In response to a recent survey question about the
number of hours daily spent playing outdoors, the re-
sponses by the seven subjects who identified themselves
as Buddhists were 2, 3, 1, 1, 2, 3, 2.

(a) Find a point estimate of the population mean hours
daily spent playing outdoors for Buddhists.
(b) The margin of error for this point estimate is 0.756.
Explain what this represents.

5.3. In a survey by Wanderlust, a travel agency, it was esti-
mated that of a region-wide random sample of 800 college
graduates between the ages of 17 and 28, a proportion of
0.78 women like to go to a beach on their spring break.
Find the standard error of this estimate, and interpret.

5.4. A survey of adults in Country A conducted in May
2017 by Alpha Research Center asked whether they were
in favor of allowing laptops to school. Of the 400 conser-
vatives sampled, 25% were in favor, whereas of the 250
liberals, 82% were in favor. Find the estimated standard
errors for the sample proportions in favor. Interpret.

5.5. The World Health Survey in 2014–2016 asked if abor-
tion was justifiable, on a scale from 1 (never) to 10
(always). The response never was given by 25.6% of the
3465 respondents in Country A and by 5.9% of the 1504
respondents in Country B. A report stated that the margin
of error for Country A equals ±1.4%. Find the margin of
error for Country B. (Although n is smaller for Country
B, its margin of error is smaller, reflecting that standard
errors of proportions diminish appreciably as proportions
approach 0 or 1.)

5.6. One question in a recent General Survey asked, “Do
you think that it should be government’s responsibility to
provide secondary level education to the poor?” Those
answering yes included 85 of the 155 subjects who called
themselves strong supporters of Party A in political party
identification and 24 of the 110 who called themselves
strong supporters of Party B.

(a) Find the point estimate of the population proportion
who would answer yes for each group.

(b) The 95% confidence interval for the population pro-
portion of yes responses is (0.47, 0.63) for strong support-
ers of Party A and (0.14, 0.29) for strong supporters of
Party B. Explain how to interpret the intervals.

5.7. The General Survey asks whether you agree or dis-
agree with the following statement: “It is much better for
everyone involved if the girls in the family were not edu-
cated as much as the boys.” The sample proportion agree-
ing was 0.78 in 1977 and 0.17 in 2016 (n = 1845).

(a) Show that the estimated standard error in 2016 was
0.008.
(b) Construct the 95% confidence interval for 2016, and
interpret it.

5.8. A recent survey asked, “If the residents of an area
don’t vote in favor of an eatery, is it right that it should
not be opened in that area?” Of 458 respondents, 355 said
yes and 103 said no. Show that a 99% confidence interval
for the population proportion who would say yes is (0.725,
0.825). Interpret.

5.9. When a 2016 research study asked whether there is
solid evidence of global warming, 87% of liberals said yes
whereas 25% of conservatives said yes. For conservatives,
if n = 400, find and interpret a (a) 95% and (b) 99% con-
fidence interval for a relevant parameter.

5.10. When a survey asked whether the government
should impose strict laws to discourage people from
smoking, a 95% confidence interval for the population
proportion responding yes was (0.85, 0.89). Would a 99%
confidence interval be wider, or shorter? Why?

5.11. State the z-score used in constructing a confidence
interval for a proportion with confidence level (a) 0.98,
(b) 0.90, (c) 0.50, and (d) 0.9973.

5.12. A 2015 survey asked respondents whether they fa-
vored or opposed the death penalty for people convicted
of murder. Software shows results:

x n Sample prop 95.0% CI
900 1600 0.5625 (0.554, 0.572)

Here, x refers to the number of respondents who were in
favor.

(a) Show how to obtain the value reported under “Sample
prop.”
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(b) Can you conclude that more than half of all adults are
in favor? Why?
(c) Find a 95% confidence interval for the proportion of
adults who opposed the death penalty from the confidence
interval shown for the proportion in favor.

5.13. The General Social Survey has asked respon-
dents, “Do you think the use of marijuana should
be made legal or not?” View results for all years at
sda.berkeley.edu/GSS by entering the variables
GRASS and YEAR.

(a) Of the respondents in 2014, what proportion said legal
and what proportion said not legal?
(b) Is there enough evidence to conclude whether a ma-
jority or a minority of the population support legaliza-
tion? Explain your reasoning.
(c) Describe any trend you see since about 1986 in the
proportion favoring legalization.

5.14. When a survey asked whether reading novels en-
hanced their child’s language, 65.4% of 1200 respon-
dents answered that this was probably or definitely not
true. Find a 99% confidence interval for the corre-
sponding population proportion, and indicate whether
you can conclude that a majority of respondents felt
this way.

5.15. A 2016 report by the Center for Healthy Lifestyle
provided a point estimate of 20.1% for the percentage of
adults who regularly exercise. The sample size was 20,345.
Assuming that this sample has the characteristics of a ran-
dom sample, construct and interpret a 99% confidence
interval for the population proportion of adults who reg-
ularly exercise. (Note: When n is very large, even confi-
dence intervals with large confidence levels are narrow.)

5.16. Of the 1824 voters sampled in the exit poll discussed
in the previous chapter (page 92), 60.5% said they voted
for Jerry Brown. Is there enough evidence to predict the
winner of the election? Base your decision on a 95%
confidence interval, stating needed assumptions for that
decision.

5.17. For an exit poll of people who voted in a regional
election, 45% voted for Candidate A and 55% for Can-
didate B. Assuming this is a random sample of all voters,
construct a 99% confidence interval for the proportion of
votes that Candidate A received, if the sample size was (a)
500 and (b) 50. In each case, indicate whether you would
be willing to predict the winner. Explain how and why the
sample size affects the inference.

5.18. In 2016, a poll reported results of a survey about re-
ligious beliefs. Of 3250 adults surveyed, 24% believed in
reincarnation. Treating this as a random sample, a 95%
confidence interval for the population proportion believ-
ing in reincarnation is (0.225, 0.255). Without doing any
new calculation, explain how the interval would change if
the sample size had been only a fourth as large, n = 813.

5.19. Report the t-score that multiplies by the standard
error to form a

(a) 95% confidence interval for μ with 15 observations.
(b) 95% confidence interval for μ with 25 observations.
(c) 95% confidence interval for μ with df = 25.
(d) 99% confidence interval for μ with df = 25.

5.20. Find and interpret the 95% confidence interval for
μ, if ȳ = 70 and s = 10, based on a sample size of (a) 5,
(b) 20.

5.21. A survey in 2015 asked respondents how many ice
creams they have had since last week. For the 200 chil-
dren in the sample between the ages of 13 and 16, the me-
dian = 4 and mode = 2 (16.8% of the sample). Software
summarizes other results:
------------------------------------------------------
Variable n Mean StDev SE Mean 95.0% CI
NUMCHILDREN 200 10.25 15.68 1.11 (8.07, 12.43)
------------------------------------------------------

(a) Show how software got the standard error reported,
and interpret.
(b) Interpret the reported confidence interval.
(c) State a statistical factor that might make you skeptical
about the usefulness of this confidence interval.

5.22. A survey asked, “What do you think is the ideal
number of hours a child should study?” The 528 female
students who responded had a median of 5, mean of 6.02,
and standard deviation of 2.75.

(a) Find and interpret the standard error of the sample
mean.
(b) The 95% confidence interval is (5.79, 6.25). Interpret.
(c) Is it plausible that the population mean = 5? Explain.

5.23. Refer to the previous exercise. For the 450 male stu-
dents in the sample, the mean was 6.80 and the standard
deviation was 1.24.

(a) Show that the standard error of the sample mean is
0.058.
(b) Show that the 95% confidence interval for the popu-
lation mean is (6.69, 6.91), and explain what “95% confi-
dence” means.

5.24. Example 5.5 (page 129) analyzed data from a study
that compared therapies for anorexia. For the 17 girls who
received the family therapy, the changes in weight during
the study (which are in the data file Anorexia at the text
website) were

11, 11, 6, 9, 14,−3, 0, 7, 22, −5,−4, 13, 13, 9, 4, 6, 11.

(a) Verify that ȳ = 7.29, s = 7.18, and se = 1.74.
(b) To use the t distribution, explain why df = 16 and a
95% confidence interval uses the t-score of 2.120.
(c) Verify that the 95% confidence interval for the pop-
ulation mean change in weight μ for this therapy is (3.6,
11.0). Interpret.
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5.25. A 2014 survey asked, “On an average, about how
many hours a day do you watch television?” Stata soft-
ware reports:
-----------------------------------------------------
Mean estimation Number of obs = 1500

Mean Std. Err. [95.0% Conf. Interval]
TVHOURS 3.56 0.085 (3.55, 3.57)
-----------------------------------------------------

What’s wrong with the interpretation “In the population,
95% of the time, subjects watched between 3.55 and 3.57
hours of TV a day?” State the correct interpretation.

5.26. In response to a survey question in 2016 about the
number of hours daily spent jogging, the responses by the
seven subjects were 1, 1, 1, 2, 2, 3, 4.

(a) Estimate the mean, standard deviation, and standard
error.
(b) Construct a 95% confidence interval for the popula-
tion mean, specifying its assumptions. Interpret.

5.27. A survey asked subjects, “How long have you lived
in the city, town, or community where you live now?” The
responses of the 1600 subjects had a median of 14 years, a
mean of 19.8, and a standard deviation of 17.2.

(a) Do you think that the population distribution is nor-
mal? Why or why not?
(b) Based on your answer in (a), can you construct a 99%
confidence interval for the population mean? If not, ex-
plain why not. If so, do so and interpret.

5.28. A recent survey asked, “How many times in the past
8 months have you fallen sick?” The 900 women who re-
sponded had a median of 2, mean of 2.71, and standard
deviation of 1.43. The 683 men who responded had a me-
dian of 1, mean of 1.24, and standard deviation of 1.34.

(a) Find a 95% confidence interval for the population
mean for women. Interpret.
(b) Explain why the ȳ and s values suggest that this vari-
able does not have a normal distribution. Does this cause
a problem with the confidence interval method in (a)?
Explain.

5.29. A survey asked respondents how many jobs they
had changed in the last 5 years. Software reports:

--------------------------------------------------------
Variable N Mean StDev SE Mean 95.0% CI
Jobs 3000 0.885 0.825 0.015 (0.856, 0.914)
--------------------------------------------------------

(a) Interpret the confidence interval reported.
(b) Based on these results, explain why the distribution
was probably skewed to the right. Explain why the skew
need not cause a problem with the validity of the confi-
dence interval, unless there are extreme outliers.
(c) Upon closer look at the data file, we see that of the
eight available responses (0, 1, 2, · · · · · · , 7), 5 stands for
5–10 jobs, 6 stands for 11–20 jobs, and 7 stands for 21–100
jobs. If we instead had

the actual numbers of jobs, would the mean and standard
deviation be larger, or smaller? Why? What would the im-
pact be on the confidence interval?

5.30. For the Students data file mentioned in Exercise
1.11, software reports the results for responses on the
number of times a week the subject reads a newspaper:
-------------------------------------------------------
Variable N Mean Std Dev SE Mean 95.0% CI
News 60 4.1 3.0 0.387 (3.32, 4.88)
-------------------------------------------------------

(a) Interpret the confidence interval shown.
(b) Does it seem plausible that the population distribu-
tion of this variable is normal? Why? Explain the implica-
tions of the term robust regarding the normality assump-
tion for this analysis.

5.31. The General Social Survey asks respondents to rate
their political views on a seven-point scale, where 1 = ex-
tremely liberal, 4 = moderate, and 7 = extremely conser-
vative. A researcher analyzing data from the 2014 GSS
gets software output:
-----------------------------------------------------
Mean estimation Number of obs = 2500

Mean Std. Err. [99.0% Conf. Interval]
PolViews 4.20 0.030 (4.123, 4.277)
-----------------------------------------------------

(a) Show how to construct the confidence interval from
the other information provided.
(b) Would the confidence interval be wider, or narrower,
(i) if you constructed a 95% confidence interval? (ii) if
you found the 99% confidence interval only for the 411
respondents who called themselves strong Democrat on
political party identification (PARTYID), for whom the
mean was 3.150 with standard deviation 1.496?
(c) What assumption are you making about the scale of
measurement for political ideology when you use the sam-
ple mean and standard deviation?

5.32. At sda.berkeley.edu/GSS, consider responses
to the question “On how many days in the past 7 days
have you felt lonely” (coded LONELY) for the most
recent survey in which this was asked.
(a) Find a point estimate of the population mean.
(b) Construct the 95% confidence interval, and interpret.

5.33. A study estimates the mean annual family income
for families living in public housing in Chicago. For a
random sample of 30 families, the annual incomes (in hun-
dreds of dollars) are in the Chicago data file at the text
website and here:

133 140 127 150 133 114 128 142 123 172
146 110 135 136 158 120 189 106 144 134
161 143 170 120 142 150 174 109 162 129

(a) Based on a descriptive graphic, what do you predict
about the shape of the population distribution?
(b) Find and interpret point estimates of μ and σ , the
population mean and standard deviation.
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(c) Construct and interpret a 95% confidence interval
for μ.

5.34. A hospital administrator wants to estimate the mean
number of admissions of patients in that hospital. Based
on a systematic random sample of 100 records of patients
for the previous year, she reports that “the sample mean
was 7.4. In repeated random samples of this size, the sam-
ple mean could be expected to fall within 1.2 of the true
mean about 95% of the time.”
(a) Construct and interpret a 95% confidence interval for
the mean.
(b) The administrator decides that this interval is too
wide, and she prefers one of only half this width for a new
study this year. How large a sample size does she need?

5.35. To estimate the proportion of traffic deaths in a re-
gion last year that were due to overspeeding, determine
the necessary sample size for the estimate to be accurate
to within 0.05 with probability 0.90. Based on results of
studies reported by the region’s Traffic Safety Adminis-
tration, we expect the proportion to be about 0.25.

5.36. A television network plans to predict the outcome
of an election between Candidate A and Candidate B.
They will do this with an exit poll on election day. They
decide to use a random sample size for which the margin
of error is 0.05 for 95% confidence intervals for popula-
tion proportions.
(a) What sample size should they use?
(b) If the pollsters think that the election will be close,
they might use a margin of error of 0.025. How large
should the sample size be?

5.37. A public health unit wants to sample death records
for the past year in South Asia to estimate the proportion
of deaths that were due to accidents. They want the esti-
mate to be accurate to within 0.03 with probability 0.95.
(a) Find the necessary sample size if, based on the data
published, they believe that this proportion does not ex-
ceed 0.10.
(b) Suppose that in determining n, they use the safe ap-
proach that sets π = 0.50 in the appropriate formula.
Then how many records need to be sampled? Compare
the result to the answer in part (a), and note the reduction
in sample size that occurs by making an educated guess
for π .

5.38. A 2015 poll in Country X indicated that 48% of its
residents favored that all citizens who do not vote should
pay a fine. A report by related polls did not report the sam-
ple size but stated, “Polls of this size are considered to be
accurate within 2.5 percentage points 95% of the time.” If
this is the case, about how large was the sample size?

5.39. In 2006, a survey reported that the percentage of
people in a university who reported a lot of, or some con-
fidence (instead of not too much, or no confidence) in the
elected Student Body President was 15% in House Red,

29% in House Blue, 26% in House Green, and 5% in
House Yellow. In 2014, the corresponding percentages re-
ported for the new president were 85%, 71%, 73%, and
56%. The reported margin of error in House Yellow was
1.5% for the 2006 result and 3.0% for the 2014 result. Find
the approximate sample size in House Yellow for the stud-
ies.

5.40. An estimate is needed of the mean acreage of farms
in Region X. The estimate should be correct to within 100
acres with probability 0.95. A preliminary study suggests
that 400 acres is a reasonable guess for the standard devi-
ation of farm size.

(a) How large a sample of farms is required?
(b) A random sample is selected of the size found in (a).
The sample has a standard deviation of 800 acres, rather
than 400. What is the margin of error for a 95% confidence
interval for the mean farm size?

5.41. A social scientist plans a study of adult South Asians
to investigate educational attainment in women. In some
parts, the women are not required to attend school, so
some of them had very little education. How large a sam-
ple size is needed so that a 95% confidence interval for the
mean number of years of education completed has margin
of error equal to 1 year? There is no information about
the standard deviation of educational attainment, but re-
searchers expect that nearly all values fall between 0 and
18 years.

5.42. How large a sample size is needed to estimate the
mean annual income of natives of Country X correct to
within $1,000 with probability 0.99? There is no prior in-
formation about the standard deviation of annual income
of natives, but we guess that about 95% of their incomes
are between $6,000 and $66,000 and that this distribution
of incomes is skewed but approximately bell shaped.

5.43. An anthropologist wants to estimate the proportion
of children in a tribe who die before reaching adulthood.
For families she knew who had children born between
1990 and 1995, 4 of 32 children died before reaching adult-
hood. Can you use the ordinary large sample formula to
construct a 95% confidence interval for the population
proportion? Why or why not? Construct an appropriate
confidence interval, and interpret.

5.44. You randomly sample five students at your school
to estimate the proportion of students who like broccoli.
None of the five students say they like it.

(a) Find the sample proportion who like it and its standard
error. Does the usual interpretation of se make sense?
(b) Why is it not appropriate to use the ordinary confi-
dence interval formula (from page 124) for these data?
Use a more appropriate approach, and interpret.

5.45. Refer to Exercise 5.33. Use the bootstrap to con-
struct a 95% confidence interval for the median annual
income of the public housing residents. Interpret.
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5.46. Refer to Example 5.9 (page 141). Construct a 95%
confidence interval for the median time since a book was
last checked out. Interpret.

Concepts and Applications
5.47. Use the Explore Coverage applet at www.
pearsonglobaleditions.com/Agresti to repeat-
edly generate random samples and construct confidence
intervals for a proportion, to illustrate their behavior
when used for many samples. Set the population propor-
tion value (labeled as p) to 0.50, the sample size to 200,
the confidence level to 90%, and the number of samples
to 10.

(a) Click on Draw Sample. In your simulation, what per-
centage of the ten 90% confidence intervals generated ac-
tually contained the parameter value? How many would
be expected to contain the parameter?
(b) To get a feel for what happens “in the long run,” re-
set and draw 1000 samples. What percentage actually con-
tained the true parameter value? Copy results, and inter-
pret.

5.48. Refer to the previous exercise. Using this applet,
let’s check that the confidence interval for a proportion
may work poorly with small samples. Set the population
proportion π = 0.10, with n = 10. Draw 100 random sam-
ples, each of size 10, forming 95% confidence intervals for
π for each one.
(a) How many intervals failed to contain the true value,
π = 0.10? How many would you expect not to contain
the true value? What does this suggest? (Notice that many
of the intervals contain only the value 0.0, which happens
when π̂ = 0.0.)
(b) To see that this is not a fluke, reset and draw 1000
confidence intervals. What percentage contain π = 0.10?
(Note: For every interval formed, the number of “suc-
cesses” is smaller than 15, so the large-sample formula is
not adequate.)
(c) Using the Sampling Distribution of the Sample Propor-
tion applet at www.pearsonglobaleditions.com/
Agresti, select a population proportion of 0.10. Draw
10,000 random samples of size 10 each. Look at the em-
pirical sampling distribution of the sample proportion val-
ues. Is it bell shaped and symmetric? Use this to help ex-
plain why the confidence interval performs poorly in this
case.

5.49. Refer to the Students data file (Exercise 1.11 on
page 21). Using software, construct and interpret a 95%
confidence interval for (a) the mean weekly number of
hours spent watching TV, (b) the proportion believing in
life after death. Interpret.

5.50. Refer to the data file created in Exercise 1.12
(page 22). For variables chosen by your instructor, pose
a research question, and conduct inferential statistical
analyses using basic estimation methods. Summarize and

interpret your findings, and explain how you could use
them to answer the research question.

5.51. In 2016, a survey asked about the number of hours
a week spent on the social networking sites, exclud-
ing e-mail (variable denoted WWWHR). State a re-
search question you could address about this response
variable and a relevant explanatory variable. Go to
sda.berkeley.edu/GSS and analyze the data. Pre-
pare a short report summarizing your analysis and answer-
ing the question you posed.

5.52. A recent survey asked married respondents, “Did
you live with your husband/wife before you got married?”
The responses were 60 yes and 118 no for those who called
themselves politically liberal, and 50 yes and 245 no for
those who called themselves politically conservative. An-
alyze these data, identifying the response variable and ex-
planatory variable. Summarize your analysis in a report of
no more than 200 words.

5.53. When parents in a recent survey were asked whether
they agreed with the following statements, the (yes, no)
counts under various conditions were as follows:

• Homework should be banned: (250, 1545).
• Single-sex schools are better for students: (640, 1189).
• Teachers should not be allowed to contact students

through social media: (756, 1150).
Analyze these data. Prepare a one-page report stating the
assumptions, showing results of description and inference,
and summarizing conclusions.

5.54. The observations on daily TV watching for the 15
subjects in a 2016 survey who were obese were 0, 2, 2, 3,
3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 8. A 95% confidence interval for
the mean of the corresponding population is (2.84, 4.76).
Suppose the observation of 8 was incorrectly recorded as
80. What would have been obtained for the 95% confi-
dence interval? Compare to the interval (2.84, 4.76). How
does this warn you about potential effects of outliers on
confidence intervals for means?

5.55. (a) Explain what it means for an estimator to be
unbiased.
(b) Explain why the sample range is a biased estimator of
the population range.

5.56. What is the purpose of forming a confidence inter-
val for a parameter? What can you learn from it that you
could not learn from a point estimate?

5.57. An interval estimate for a mean is more informative
than a point estimate, because with an interval estimate
you can figure out the point estimate, but with the point
estimate alone you have no idea about the width of the
interval estimate.
(a) Explain why this statement is correct, illustrating us-
ing the reported 95% confidence interval of (4.0, 5.6)
for the mean number of dates in the previous month for
women at a particular college.
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http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti


Exercises 149

(b) The confidence interval in (a) used a sample size of 50.
What were the sample mean and standard deviation?

5.58. Explain why confidence intervals are wider with
(a) larger confidence levels, (b) smaller sample sizes.

5.59. Why would it be unusual to see a (a) 99.9999%,
(b) 25% confidence interval?

5.60. Give an example of a study in which it would be im-
portant to have

(a) A high degree of confidence.
(b) A high degree of precision.

5.61. How does population heterogeneity affect the sam-
ple size required to estimate a population mean? Illustrate
with an example.

5.62. Explain the reasoning behind the following state-
ment: Studies about more diverse populations require
larger sample sizes. Illustrate for the problem of estimat-
ing mean income for all medical doctors in a country
compared to estimating mean income for all entry-level
employees at a restaurant in the same country.

5.63. You would like to find the proportion of bills passed
by a ruling party in a certain country that were vetoed
by the president in the last five years. After checking the
records, you see that for the population of all 44 bills
passed, 2 were vetoed. Does it make sense to construct
a confidence interval using these data? Explain. (Hint:
Identify the sample and population.)

5.64. The publication Attitudes towards European Union
Enlargement from Eurobarometer states, “The readers
are reminded that survey results are estimations, the ac-
curacy of which rests upon the sample size and upon the
observed percentage. With samples of about 1000 inter-
views, the real percentages vary within the following con-
fidence limits:”

Observed 10% or 90% 20%, 80% 30%, 70% 40%, 60% 50%
limits ± 1.9 ± 2.5 ± 2.7 ± 3.0 ± 3.1

(a) Explain how they got 3.0 points for 40% or 60%.
(b) Explain why the margin of error differs for different
observed percentages.
(c) Explain why the accuracy is the same for a particular
percentage and for 100 minus that value (e.g., both 40%
and 60%).
(d) Explain why it is more difficult to estimate a popula-
tion proportion when it is near 0.50 than when it is near 0
or 1.

5.65. To use the large-sample confidence interval for a
proportion, you need at least 15 outcomes of each type.
Show that the smallest value of n for which the method
can be used is (a) 30 when π̂ = 0.50, (b) 50 when π̂ = 0.30,
(c) 150 when π̂ = 0.10. That is, the overall n must increase
as π̂ moves toward 0 or 1. (When the true proportion is

near 0 or 1, the sampling distribution can be highly skewed
unless n is quite large.)

Select the best response in Exercises 5.66–5.69.

5.66. The reason we use a z-score from a normal distribu-
tion in constructing a confidence interval for a proportion
is that
(a) For large random samples, the sampling distribu-
tion of the sample proportion is approximately normal.
(b) The population distribution is normal.
(c) For large random samples, the sample data distribu-
tion is approximately normal.
(d) If in doubt about the population distribution, it’s
safest to assume that it is the normal distribution.

5.67. Increasing the confidence level causes the width of
a confidence interval to (a) increase, (b) decrease, (c) stay
the same.

5.68. Other things being equal, quadrupling the sample
size causes the width of a confidence interval to (a) dou-
ble, (b) halve, (c) be one quarter as wide, (d) stay the
same.

5.69. Based on responses of 1467 subjects in General
Social Surveys, a 95% confidence interval for the mean
number of close friends equals (6.8, 8.0). Which of the
following interpretations is (are) correct?

(a) We can be 95% confident that ȳ is between 6.8 and 8.0.
(b) We can be 95% confident that μ is between 6.8 and
8.0.
(c) Ninety-five percent of the values of y = number of
close friends (for this sample) are between 6.8 and 8.0.
(d) If random samples of size 1467 were repeatedly se-
lected, then 95% of the time ȳ would fall between 6.8 and
8.0.
(e) If random samples of size 1467 were repeatedly se-
lected, then in the long run 95% of the confidence inter-
vals formed would contain the true value of μ.

5.70. A random sample of 100 records yields a 95% confi-
dence interval for the mean age at first marriage of women
in a certain country of 20.5 to 24.0 years. Explain what is
wrong with each of the following interpretations of this
interval.
(a) If random samples of 100 records were repeatedly se-
lected, then 95% of the time the sample mean age at
first marriage for women would be between 20.5 and 24.0
years.
(b) Ninety-five percent of the ages at first marriage for
women in the county are between 20.5 and 24.0 years.
(c) We can be 95% confident that ȳ is between 20.5 and
24.0 years.
(d) If we repeatedly sampled the entire population, then
95% of the time the population mean would be between
20.5 and 24.0 years.
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5.71. Refer to the previous exercise. Provide the proper
interpretation.

5.72.* For a random sample of n subjects, explain why it
is about 95% likely that the sample proportion has error
no more than 1/

√
n in estimating the population propor-

tion. (Hint: To show this “1/
√

n rule,” find two standard
errors when π = 0.50, and explain how this compares to
two standard errors at other values of π .) Using this result,
show that n = 1/M2 is a safe sample size for estimating a
proportion to within M with 95% confidence.

5.73.* You know the sample mean ȳ of n observations.
Once you know (n−1) of the observations, show that you
can find the remaining one. In other words, for a given
value of ȳ, the values of (n − 1) observations determine
the remaining one. In summarizing scores on a quantita-
tive variable, having (n−1) degrees of freedom means that
only that many observations are independent.

5.74.* Find the true standard error of the sample propor-
tion when π = 0 or π = 1. What does this reflect?

5.75.* Let π be the probability that a randomly selected
voter prefers the Republican candidate. You sample two
people, and neither prefers the Republican. Find the point
estimate of π . Does this estimate seem sensible? Why?
(The Bayesian estimator is an alternative one that uses a
subjective approach, combining the sample data with your
prior beliefs about π before seeing the data. For example,
if you believed π was equally likely to fall anywhere from
0 to 1, the Bayesian estimate adds two observations, one
of each type, thus yielding the estimate 1/4.)

5.76.* To encourage subjects to make responses on sen-
sitive questions, the method of randomized response is
often used. The subject is asked to flip a coin, in secret.
If it is a head, the subject tosses the coin once more
and reports the outcome, head or tails. If, instead, the
first flip is a tail, the subject reports instead the response
to the sensitive question, for instance, reporting the re-
sponse head if the true response is yes and reporting the
response tail if the true response is no. Let π denote
the true probability of the yes response on the sensitive
question.

(a) Explain why the numbers in Table 5.4 are the proba-
bilities of the four possible outcomes.
(b) Let p denote the sample proportion of subjects who
report head for the second response. Explain why π̂ =
2p − 0.5 estimates π .
(c) Using this approach, 200 subjects are asked whether
they have ever knowingly cheated on their income tax.

Report the estimate of π if the number of reported heads
equals (i) 50, (ii) 70, (iii) 100, (iv) 150.

TABLE 5.4

Second Response

First Coin Head Tail

Head 0.25 0.25
Tail π/2 (1 − π)/2

5.77.* To construct a confidence interval for a proportion
π , it is not necessary to substitute π̂ for the unknown value
of π in the formula for the true standard error of π̂ . A less
approximate method (called the score confidence interval
for a proportion) finds the endpoints for a 95% interval
by determining the π values that are 1.96 standard errors
from the sample proportion, by solving for π in the equa-
tion

|π̂ − π | = 1.96

√
π(1 − π)

n
.

For Example 5.8 (page 137) with no vegetarians in a sam-
ple of size 20, substitute π̂ and n in this equation and show
the equation is satisfied at π = 0 and at π = 0.161. So, the
95% confidence interval is (0, 0.161), compared to (0, 0)
based on the ordinary formula.

5.78. Refer to the previous exercise. At the Infer-
ence for a Proportion applet at www.pearsonglobal
editions.com/Agresti, enter 0 successes for n = 20.
Click on Confidence Interval for type of inference. Why
are the reported standard error and confidence interval
not sensible? Clicking on the Agresti–Coull adjustment
(introduced on page 138) gives a sensible alternative to
the score confidence interval.
5.79.* This exercise presents a confidence interval for
the population median that requires no assumption about
the population distribution other than it is essentially
continuous.
(a) Explain why for a random sample of size n the sample
proportion π̂ falling below the median has expected value
0.50 and standard error σπ̂ = 0.50/

√
n, and so the proba-

bility is about 0.95 that the number of observations falling
below (above) the median is within n(1/

√
n) = √

n of half
the sample.
(b) For the ordered sample of size n, explain why a 95%
confidence interval for the median goes from the observa-
tion that has the index (n + 1)/2 − √

n to the observation
with the index (n + 1)/2 + √

n. For Example 5.9 on me-
dian shelf life in a library, show that this interval is 11 to
19 years.
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A n aim of many studies is to check whether the data agree with certain predictions. The
predictions, which often result from the theory that drives the research, are hypotheses about

the study population.

Hypothesis
In statistics, a hypothesis is a statement about a population. It takes the
form of a prediction that a parameter takes a particular numerical value
or falls in a certain range of values.

Examples of hypotheses are the following: “For restaurant managerial employees, the mean
salary is the same for women and for men”; “There is no difference between Democrats and Re-
publicans in the probabilities that they vote with their party leadership”; and “A majority of adult
Canadians are satisfied with their national health service.”

A statistical significance test uses data to summarize the evidence about a hypothesis. It
does this by comparing point estimates of parameters to the values predicted by the hypothesis.
The following example illustrates concepts behind significance tests.

Example
6.1

Testing for Gender Bias in Selecting Managers A large supermarket chain in Florida peri-
odically selects employees to receive management training. A group of women employees recently
claimed that the company selects males at a disproportionally high rate for such training. The
company denied this claim. In past years, similar claims of gender bias have been made about pro-
motions and pay for women who work for various companies.1 How could the women employees
statistically back up their assertion?

Suppose the employee pool for potential selection for management training is half male and
half female. Then, the company’s claim of a lack of gender bias is a hypothesis. It states that,
other things being equal, at each choice the probability of selecting a female equals 1/2 and the
probability of selecting a male equals 1/2. If the employees truly are selected for management
training randomly in terms of gender, about half the employees picked should be females and
about half should be male. The women’s claim is an alternative hypothesis that the probability of
selecting a male exceeds 1/2.

Suppose that 9 of the 10 employees chosen for management training were male. We might be
inclined to believe the women’s claim. However, we should analyze whether these results would
be unlikely if there were no gender bias. Would it be highly unusual that 9/10 of the employees
chosen would have the same gender if they were truly selected at random from the employee pool?

1 For example, Wal-Mart, see http://now.org/blog/walmart-and-sex-discrimination.
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Due to sampling variation, not exactly 1/2 of the sample need be male. How far above 1/2 must
the sample proportion of males chosen be before we believe the women’s claim?

This chapter introduces statistical methods for summarizing evidence and making decisions
about hypotheses. We first present the parts that all significance tests have in common. The rest of
the chapter presents significance tests about population means and population proportions. We’ll
also learn how to find and how to control the probability of an incorrect decision about a hypothesis.

6.1 The Five Parts of a Significance Test
Now let’s take a closer look at the significance test method, also called a hypothesis
test, or test for short. All tests have five parts:

Assumptions, Hypotheses, Test statistic, P-value, Conclusion.

ASSUMPTIONS

Each test makes certain assumptions or has certain conditions for the test to be valid.
These pertain to

• Type of data: Like other statistical methods, each test applies for either quan-
titative data or categorical data.

• Randomization: Like other methods of statistical inference, a test assumes that
the data gathering employed randomization, such as a random sample.

• Population distribution: Some tests assume that the variable has a particular
probability distribution, such as the normal distribution.

• Sample size: Many tests employ an approximate normal or t sampling distribu-
tion. The approximation is adequate for any n when the population distribution
is approximately normal, but it also holds for highly nonnormal populations
when the sample size is relatively large, by the Central Limit Theorem.

HYPOTHESES

Each significance test has two hypotheses about the value of a population parameter.

Null Hypothesis,
Alternative Hypothesis

The null hypothesis, denoted by the symbol H0, is a statement that the
parameter takes a particular value. The alternative hypothesis, denoted
by Ha, states that the parameter falls in some alternative range of values.
Usually the value in H0 corresponds, in a certain sense, to no effect. The
values in Ha then represent an effect of some type.

In Example 6.1 about possible gender discrimination in selecting management
trainees, let π denote the probability that any particular selection is a male. The com-
pany claims that π = 1/2. This is an example of a null hypothesis, no effect referring
to a lack of gender bias. The alternative hypothesis reflects the skeptical women em-
ployees’ belief that this probability actually exceeds 1/2. So, the hypotheses are H0:
π = 1/2 and Ha: π > 1/2. Note that H0 has a single value whereas Ha has a range of
values.

A significance test analyzes the sample evidence about H0, by investigating
whether the data contradict H0, hence suggesting that Ha is true. The approach taken
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is the indirect one of proof by contradiction. The null hypothesis is presumed to
be true. Under this presumption, if the data observed would be very unusual, the
evidence supports the alternative hypothesis. In the study of potential gender dis-
crimination, we presume that H0: π = 1/2 is true. Then we determine whether the
sample result of 9 men selected for management training in 10 choices would be un-
usual, under this presumption. If so, then we may be inclined to believe the women’s
claim. But, if the difference between the sample proportion of men chosen (9/10)
and the H0 value of 1/2 could easily be due to ordinary sampling variability, there’s
not enough evidence to accept the women’s claim.

A researcher usually conducts a test to gauge the amount of support for the alter-
native hypothesis, as that typically reflects an effect that he or she predicts. Thus, Ha

is sometimes called the research hypothesis. The hypotheses are formulated before
collecting or analyzing the data.

TEST STATISTIC

The parameter to which the hypotheses refer has a point estimate. The test statistic
summarizes how far that estimate falls from the parameter value in H0. Often this is
expressed by the number of standard errors between the estimate and the H0 value.

P-VALUE

To interpret a test statistic value, we create a probability summary of the evidence
against H0. This uses the sampling distribution of the test statistic, under the pre-
sumption that H0 is true. The purpose is to summarize how unusual the observed
test statistic value is compared to what H0 predicts.

Specifically, if the test statistic falls well out in a tail of the sampling distribution
in a direction predicted by Ha, then it is far from what H0 predicts. We can summarize
how far out in the tail the test statistic falls by the tail probability of that value and of
more extreme values. These are the possible test statistic values that provide at least
as much evidence against H0 as the observed test statistic, in the direction predicted
by Ha. This probability is called the P-value.

P-value
The P-value is the probability that the test statistic equals the observed
value or a value even more extreme in the direction predicted by Ha. It is
calculated by presuming that H0 is true. The P-value is denoted by P.

A small P-value (such as P = 0.01) means that the data we observed would have
been unusual if H0 were true. The smaller the P-value, the stronger the evidence is
against H0.

For Example 6.1 on potential gender discrimination in choosing managerial
trainees, π is the probability of selecting a male. We test H0: π = 1/2 against Ha:
π > 1/2. One possible test statistic is the sample proportion of males selected, which
is 9/10 = 0.90. The values for the sample proportion that provide this much or even
more extreme evidence against H0: π = 1/2 and in favor of Ha: π > 1/2 are the
right-tail sample proportion values of 0.90 and higher. See Figure 6.1. A formula
from Section 6.7 calculates this probability as 0.01, so the P-value equals P = 0.01.
If the selections truly were random with respect to gender, the probability is only
0.01 of such an extreme sample result, namely, that 9 or all 10 selections would be
males. Other things being equal, this small P-value provides considerable evidence
against H0: π = 1/2 and supporting the alternative Ha: π > 1/2 of discrimination
against females.
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FIGURE 6.1: The P-Value
Equals the Probability of
the Observed Data or Even
More Extreme Results. It
is calculated under the
presumption that H0 is
true, so a very small
P-value gives strong
evidence against H0.

By contrast, a moderate to large P-value means the data are consistent with H0.
A P-value such as 0.26 or 0.83 indicates that, if H0 were true, the observed data would
not be unusual.

CONCLUSION

The P-value summarizes the evidence against H0. Our conclusion should also inter-
pret what the P-value tells us about the question motivating the test. Sometimes it
is necessary to make a decision about the validity of H0. If the P-value is sufficiently
small, we reject H0 and accept Ha.

Most studies require very small P-values, such as P ≤ 0.05, in order to reject H0.
In such cases, results are said to be significant at the 0.05 level. This means that if H0

were true, the chance of getting such extreme results as in the sample data would be
no greater than 0.05.

Making a decision by rejecting or not rejecting a null hypothesis is an optional
part of the significance test. We defer discussion of it until Section 6.4. Table 6.1
summarizes the parts of a significance test.

TABLE 6.1: The Five Parts of a Statistical Significance Test

1. Assumptions
Type of data, randomization, population distribution, sample size condition

2. Hypotheses
Null hypothesis, H0
(parameter value for “no effect”)
Alternative hypothesis, Ha

(alternative parameter values)
3. Test statistic

Compares point estimate to H0 parameter value
4. P-value

Weight of evidence against H0; smaller P is stronger evidence
5. Conclusion

Report and interpret P-value
Formal decision (optional; see Section 6.4)
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6.2 Significance Test for a Mean
For quantitative variables, significance tests usually refer to population means. The
five parts of the significance test for a single mean follow:

THE FIVE PARTS OF A SIGNIFICANCE TEST FOR A MEAN

1. Assumptions
The test assumes the data are obtained using randomization, such as a random sam-
ple. The quantitative variable is assumed to have a normal population distribution.
We’ll see that this is mainly relevant for small sample sizes and certain types of Ha.

2. Hypotheses
The null hypothesis about a population mean μ has the form

H0: μ = μ0,

where μ0 is a particular value for the population mean. In other words, the hypoth-
esized value of μ in H0 is a single value. This hypothesis usually refers to no effect
or no change compared to some standard. For example, Example 5.5 in the previ-
ous chapter (page 129) estimated the population mean weight change μ for teenage
girls after receiving a treatment for anorexia. The hypothesis that the treatment has
no effect is a null hypothesis, H0: μ = 0. Here, the H0 value μ0 for the parameter
μ is 0.

The alternative hypothesis contains alternative parameter values from the value
in H0. The most common alternative hypothesis is

Ha: μ �= μ0, such as Ha: μ �= 0.

This alternative hypothesis is called two-sided, because it contains values both below
and above the value listed in H0. For the anorexia study, Ha: μ �= 0 states that the
treatment has some effect, the population mean equaling some value other than 0.

3. Test Statistic
The sample mean ȳ estimates the population mean μ. When the population distribu-
tion is normal, the sampling distribution of ȳ is normal about μ. This is also approx-
imately true when the population distribution is not normal but the random sample
size is relatively large, by the Central Limit Theorem.

Under the presumption that H0: μ = μ0 is true, the center of the sampling dis-
tribution of ȳ is the value μ0, as Figure 6.2 shows. A value of ȳ that falls far out in the
tail provides strong evidence against H0, because it would be unusual if truly μ = μ0.

m0

 sy 5
s

n

y
_

_

FIGURE 6.2: Sampling
Distribution of ȳ if H0:
μ = μ0 Is True. For large
random samples, it is
approximately normal,
centered at the null
hypothesis value, μ0.
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The evidence about H0 is summarized by the number of standard errors that ȳ falls
from the null hypothesis value μ0.

Recall that the true standard error is σȳ = σ/
√

n. As in Chapter 5, we substitute
the sample standard deviation s for the unknown population standard deviation σ to
get the estimated standard error, se = s/

√
n. The test statistic is the t-score

t = ȳ − μ0,

se
where se = s√

n
.

The farther ȳ falls from μ0, the larger the absolute value of the t test statistic. Hence,
the larger the value of |t|, the stronger the evidence against H0.

We use the symbol t rather than z because, as in forming a confidence interval,
using s to estimate σ in the standard error introduces additional error. The null sam-
pling distribution of the t test statistic is the t distribution (see Section 5.3). It looks
like the standard normal distribution, having mean equal to 0 but being more spread
out, more so for smaller n. It is specified by its degrees of freedom, df = n − 1.

4. P-Value
The test statistic summarizes how far the data fall from H0. Different tests use dif-
ferent test statistics, though, and simpler interpretations result from transforming it
to the probability scale of 0 to 1. The P-value does this.

We calculate the P-value under the presumption that H0 is true. That is, we give
the benefit of the doubt to H0, analyzing how unusual the observed data would be if
H0 were true. The P-value is the probability that the test statistic equals the observed
value or a value in the set of more extreme values that provide even stronger evidence
against H0. For Ha: μ �= μ0, the more extreme t-values are the ones even farther out
in the tails of the t distribution. So, the P-value is the two-tail probability that the
t test statistic is at least as large in absolute value as the observed test statistic. This
is also the probability that ȳ falls at least as far from μ0 in either direction as the
observed value of ȳ.

Figure 6.3 shows the sampling distribution of the t test statistic when H0 is true.
A test statistic value of t = (ȳ − μ0)/se = 0 results when ȳ = μ0. This is the t-value
most consistent with H0. The P-value is the probability of a t test statistic value at
least as far from this consistent value as the one observed. To illustrate its calculation,
suppose t = 1.283 for a sample size of 369. (This is the result in the example below.)
This t-score means that the sample mean ȳ falls 1.283 estimated standard errors above
μ0. The P-value is the probability that t ≥ 1.283 or t ≤ −1.283 (i.e., |t| ≥ 1.283).
Since n = 369, df = n − 1 = 368 is large, and the t distribution is nearly identical
to the standard normal. The probability in one tail above 1.28 is 0.10, so the two-tail
probability is P = 2(0.10) = 0.20.

Software can supply tail probabilities for the t distribution. For example, the free
software R has a function pt that gives the cumulative probability for a particular
t-score. When df = 368, the right-tail probability above t = 1.283 is 1 − the cumula-
tive probability:

t

0.10 0.10

021.283 1.283

P 5 Sum of tail probabilities
    5 2(0.10) 5 0.20

Sampling distribution of t 5
when H0 is true
(t distribution)

y 2 m0

se

_FIGURE 6.3: Calculation
of P-Value when t = 1.283,
for Testing H0: μ = μ0
against Ha: μ �= μ0. The
P-value is the two-tail
probability of a more
extreme result than the
observed one.
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> 1 - pt(1.283, 368)
[1] 0.1001498 # right-tail probability above t=1.283, when df=368

With Stata software, we can find the right-tail probability with the ttail function:

. display ttail(368, 1.283)

.10014975

We double the single-tail probability to get the P-value, P = 2(0.10014975) =
0.2002995. Round such a value, say to 0.20, before reporting it. Reporting the P-value
with many decimal places makes it seem as if more accuracy exists than actually does.
In practice, the sampling distribution is only approximately the t distribution, because
the population distribution is not exactly normal as is assumed with the t test.

Tail probabilities for the t distribution are also available using SPSS and SAS
and Internet applets, such as Figure 5.7 showed with the t Distribution applet at
www.pearsonglobaleditions.com/Agresti.

5. Conclusion
Finally, the study should interpret the P-value in context. The smaller P is, the
stronger the evidence against H0 and in favor of Ha.

Example
6.2

Significance Test about Political Ideology Some political commentators have re-
marked that citizens of the United States are increasingly conservative, so much so
that many treat “liberal” as a dirty word. We can study political ideology by ana-
lyzing responses to certain items on the General Social Survey. For instance, that
survey asks where you would place yourself on a seven-point scale of political views
ranging from extremely liberal, point 1, to extremely conservative, point 7. Table 6.2
shows the scale and the distribution of responses among the levels for the 2014 sur-
vey. Results are shown separately according to subjects classified as white, black, or
Hispanic.

Political ideology is an ordinal scale. Often, we treat such scales in a quantitative
manner by assigning scores to the categories. Then we can use quantitative sum-
maries such as means, allowing us to detect the extent to which observations gravi-
tate toward the conservative or the liberal end of the scale. If we assign the category

TABLE 6.2: Responses of Subjects on a Scale of Political Ideology

Race

Response Black White Hispanic

1. Extremely liberal 16 73 5
2. Liberal 52 209 49
3. Slightly liberal 42 190 46
4. Moderate, middle of road 182 705 155
5. Slightly conservative 43 260 50
6. Conservative 25 314 50
7. Extremely conservative 11 84 14

n = 371 n = 1835 n = 369

http://www.pearsonglobaleditions.com/Agresti
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scores shown in Table 6.2, then a mean below 4 shows a propensity toward liberalism
and a mean above 4 shows a propensity toward conservatism. We can test whether
these data show much evidence of either of these by conducting a significance test
about how the population mean compares to the moderate value of 4. We’ll do this
here for the Hispanic sample and in Section 6.5 for the entire sample.

1. Assumptions: The sample is randomly selected. We are treating political ideol-
ogy as quantitative with equally spaced scores. The t test assumes a normal pop-
ulation distribution for political ideology, which seems inappropriate because
the measurement of political ideology is discrete. We’ll discuss this assumption
further at the end of this section.

2. Hypotheses: Let μ denote the population mean ideology for Hispanic Ameri-
cans, for this seven-point scale. The null hypothesis contains one specified value
for μ. Since we conduct the analysis to check how, if at all, the population mean
departs from the moderate response of 4, the null hypothesis is

H0: μ = 4.0.

The alternative hypothesis is then

Ha: μ �= 4.0.

The null hypothesis states that, on the average, the population response is po-
litically “moderate, middle of road.” The alternative states that the mean falls
in the liberal direction (μ < 4.0) or in the conservative direction (μ > 4.0).

3. Test statistic: The 369 observations in Table 6.2 for Hispanics are summarized
by ȳ = 4.089 and s = 1.339. The estimated standard error of the sampling
distribution of ȳ is

se = s√
n

= 1.339√
369

= 0.0697.

The value of the test statistic is

t = ȳ − μ0

se
= 4.089 − 4.0

0.0697
= 1.283.

The sample mean falls 1.283 estimated standard errors above the null hypoth-
esis value of the mean. The df = 369 − 1 = 368.

4. P-value: The P-value is the two-tail probability, presuming H0 is true, that t
would exceed 1.283 in absolute value. From the t distribution with df = 368,
this two-tail probability is P = 0.20. If the population mean ideology were 4.0,
then the probability equals 0.20 that a sample mean for n = 368 subjects would
fall at least as far from 4.0 as the observed ȳ of 4.089.

5. Conclusion: The P-value of P = 0.20 is not very small, so it does not contradict
H0. If H0 were true, the data we observed would not be unusual. It is plausible
that the population mean response for Hispanic Americans in 2014 was 4.0, not
leaning in the conservative or liberal direction.

CORRESPONDENCE BETWEEN TWO-SIDED TESTS AND
CONFIDENCE INTERVALS

Conclusions using two-sided significance tests are consistent with conclusions using
confidence intervals. If a test says that a particular value is believable for the param-
eter, then so does a confidence interval.



Section 6.2 Significance Test for a Mean 159

Example
6.3

Confidence Interval for Mean Political Ideology For the data in Example 6.2, let’s
construct a 95% confidence interval for the Hispanic population mean political ide-
ology. With df = 368, the multiple of the standard error (se = 0.0697) is t.025 = 1.966.
Since ȳ = 4.089, the confidence interval is

ȳ ± 1.966(se) = 4.089 ± 1.966(0.0697) = 4.089 ± 0.137, or (3.95, 4.23).

At the 95% confidence level, these are the plausible values for μ.

This confidence interval indicates that μ may equal 4.0, since 4.0 falls inside the
confidence interval. Thus, it is not surprising that the P-value (P = 0.20) in testing
H0: μ = 4.0 against Ha: μ �= 4.0 in Example 6.2 was not small. In fact,

Whenever the P > 0.05 in a two-sided test about a mean μ, a 95%
confidence interval for μ necessarily contains the H0 value for μ.

By contrast, suppose the P-value = 0.02 in testing H0: μ = 4.0. Then, a 95% confi-
dence interval would tell us that 4.0 is implausible for μ, with 4.0 falling outside the
confidence interval.

Whenever P ≤ 0.05 in a two-sided test about a mean μ, a 95% confidence
interval for μ does not contain the H0 value for μ.

ONE-SIDED SIGNIFICANCE TESTS

We can use a different alternative hypothesis when a researcher predicts a deviation
from H0 in a particular direction. It has one of the forms

Ha: μ > μ0 or Ha: μ < μ0.

We use the alternative Ha: μ > μ0 to detect whether μ is larger than the particular
value μ0, whereas we use Ha: μ < μ0 to detect whether μ is smaller than that value.
These hypotheses are called one-sided. By contrast, we use the two-sided Ha to detect
any type of deviation from H0. This choice is made before analyzing the data.

For Ha: μ > μ0, the P-value is the probability (presuming H0 is true) of a
t-score above the observed t-score, that is, to the right of it on the real number line.
These t-scores provide more extreme evidence than the observed value in favor of
Ha: μ > μ0. So, P equals the right-tail probability under the t curve. See Figure 6.4.
A t-score of 1.283 with df = 368 results in P = 0.10 for this alternative.

t 
0

Observed t

Sampling distribution of t,
when H0 is true

P

FIGURE 6.4: Calculation
of P-Value in Testing
H0: μ = μ0 against
Ha: μ > μ0. The P-value
is the probability of
values to the right of the
observed test statistic.
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For Ha: μ < μ0, the P-value is the left-tail probability, below the observed
t-score. A t-score of t = −1.283 with df = 368 results in P = 0.10 for this alter-
native. A t-score of 1.283 results in P = 1 − 0.10 = 0.90.

Example
6.4

Test about Mean Weight Change in Anorexic Girls Example 5.5 in Chapter 5
(page 129) analyzed data (available in the Anorexia CB data file at the text web-
site) from a study comparing treatments for teenage girls suffering from anorexia.
For each girl, the study observed her change in weight while receiving the therapy.
Let μ denote the population mean change in weight for the cognitive behavioral
treatment. If this treatment has beneficial effect, as expected, then μ is positive. To
test for no treatment effect versus a positive mean weight change, we test H0: μ = 0
against Ha: μ > 0.

In the Chapter 5 analysis, we found that the n = 29 girls had a sample mean
weight change of 3.007 pounds, a standard deviation of 7.309 pounds, and an esti-
mated standard error of se = 1.357. The test statistic is

t = ȳ − μ0

se
= 3.007 − 0

1.357
= 2.22.

For this one-sided Ha, the P-value is the right-tail probability above 2.22. Why do
we use the right tail? Because Ha: μ > 0 has values above (i.e., to the right of) the
null hypothesis value of 0. It’s the positive values of t that support this alternative
hypothesis.

Now, for n = 29, df = n − 1 = 28. The P-value equals 0.02. Software can find
the P-value for you. For instance, for the one-sided and two-sided alternatives with
a data file with variable change for weight change, R reports

> t.test(change, mu = 0, alternative = "greater")$p.value
[1] 0.0175113
> t.test(change, mu = 0, alternative = "two.sided")$p.value
[1] 0.0350226

Using its ttest command with the data file, Stata also reports P = 0.0175 for the
one-sided Ha: μ > 0. See Table 6.3. If you have only summary statistics rather than
a data file, Stata can conduct the test using them, with the ttesti command (or a
dialog box), by entering n, ȳ, s, and μ0 as shown in Table 6.3. Internet applets can
also do this.2

Some software reports the P-value for a two-sided alternative as the default, un-
less you request otherwise. SPSS reports results for the two-sided test and confidence
interval as

Test Value = 0 95% Confidence Interval
Mean of the Difference

t df Sig.(2-tailed) Difference Lower Upper
change 2.216 28 .035 3.00690 .2269 5.7869

The one-sided P-value is 0.035/2 = 0.018. The evidence against H0 is relatively
strong. It seems that the treatment has an effect.

The significance test concludes that the mean weight gain was not equal to 0.
But the 95% confidence interval of (0.2, 5.8) is more informative. It shows just how

2 Such as the Inference for a Mean applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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different from 0 the population mean change is likely to be. The effect could be
very small. Also, keep in mind that this experimental study (like many medically
oriented studies) had to use a volunteer sample. So, these results are highly tenta-
tive, another reason that it is silly for studies like this to report P-values to several
decimal places.

TABLE 6.3: Stata Software Output (Edited) for Performing a Significance Test about a Mean

. ttest change == 0

One-sample t test
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
change | 29 3.006896 1.357155 7.308504 .2268896 5.786902

mean = mean(change) t = 2.2156
Ho: mean = 0 degrees of freedom = 28

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
Pr(T < t) = 0.9825 Pr(|T| > |t|) = 0.0350 Pr(T > t) = 0.0175

/* Can also perform test with n, mean, std. dev., null value */
. ttesti 29 3.007 7.309 0

Ha: mean < 0 Ha: mean != 0 Ha: mean > 0
Pr(T < t) = 0.9825 Pr(|T| > |t|) = 0.0350 Pr(T > t) = 0.0175

IMPLICIT ONE-SIDED H0 FOR ONE-SIDED Ha

From Example 6.4, the one-sided P-value = 0.018. So, if μ = 0, the probability equals
0.018 of observing a sample mean weight gain of 3.01 or greater. Now, suppose μ < 0;
that is, the population mean weight change is negative. Then, the probability of ob-
serving ȳ ≥ 3.01 would be even smaller than 0.018. For example, a sample value of
ȳ = 3.01 is even less likely when μ = −5 than when μ = 0, since 3.01 is farther out
in the tail of the sampling distribution of ȳ when μ = −5 than when μ = 0. Thus,
rejection of H0: μ = 0 in favor of Ha: μ > 0 also inherently rejects the broader null
hypothesis of H0: μ ≤ 0. In other words, one concludes that μ = 0 is false and that
μ < 0 is false.

THE CHOICE OF ONE-SIDED VERSUS TWO-SIDED TESTS

In practice, two-sided tests are more common than one-sided tests. Even if a re-
searcher predicts the direction of an effect, two-sided tests can also detect an ef-
fect that falls in the opposite direction. In most research articles, significance tests
use two-sided P-values. Partly this reflects an objective approach to research that
recognizes that an effect could go in either direction. In using two-sided P-values,
researchers avoid the suspicion that they chose Ha when they saw the direction in
which the data occurred. That is not ethical.

Two-sided tests coincide with the usual approach in estimation. Confidence in-
tervals are two sided, obtained by adding and subtracting some quantity from the
point estimate. One can form one-sided confidence intervals, for instance, having
95% confidence that a population mean weight change is at least equal to 0.8 pounds
(i.e., between 0.8 and ∞), but in practice one-sided intervals are rarely used.
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In deciding whether to use a one-sided or a two-sided Ha in a particular exercise
or in practice, consider the context. An exercise that says “Test whether the mean has
changed” suggests a two-sided alternative, to allow for increase or decrease. “Test
whether the mean has increased” suggests the one-sided Ha: μ > μ0.

In either the one-sided or two-sided case, hypotheses always refer to population
parameters, not sample statistics. So, never express a hypothesis using sample statistic
notation, such as H0: ȳ = 0. There is no uncertainty or need to conduct statistical
inference about sample statistics such as ȳ, because we can calculate their values
exactly from the data.

THE α-LEVEL: USING THE P-VALUE TO MAKE A DECISION

A significance test analyzes the strength of the evidence against the null hypothesis,
H0. We start by presuming that H0 is true. We analyze whether the data would be
unusual if H0 were true by finding the P-value. If the P-value is small, the data con-
tradict H0 and support Ha. Generally, researchers do not regard the evidence against
H0 as strong unless P is very small, say, P ≤ 0.05 or P ≤ 0.01.

Why do smaller P-values indicate stronger evidence against H0? Because the
data would then be more unusual if H0 were true. When H0 is true, the P-value is
roughly equally likely to fall anywhere between 0 and 1. By contrast, when H0 is
false, the P-value is more likely to be near 0 than near 1.

Sometimes we need to decide whether the evidence against H0 is strong enough
to reject it. We base the decision on whether the P-value falls below a prespecified
cutoff point. For example, we could reject H0 if P ≤ 0.05 and conclude that the
evidence is not strong enough to reject H0 if P > 0.05. The boundary value 0.05 is
called the α-level of the test.

α-Level
The α-level is a number such that we reject H0 if the P-value is less than or
equal to it. The α-level is also called the significance level. In practice, the
most common α-levels are 0.05 and 0.01.

Like the choice of a confidence level for a confidence interval, the choice of
α reflects how cautious you want to be. The smaller the α-level, the stronger the
evidence must be to reject H0. To avoid bias in the decision-making process, you
select α before analyzing the data.

Example
6.5

Examples of Decisions about H0 Let’s use α = 0.05 to guide us in making a decision
about H0 for the examples of this section. Example 6.2 (page 157) tested H0: μ = 4.0
about mean political ideology. With sample mean ȳ = 4.089, the P-value was 0.20.
The P-value is not small, so if truly μ = 4.0, it would not be unusual to observe
ȳ = 4.089. Since P = 0.20 > 0.05, there is insufficient evidence to reject H0. It is
believable that the population mean ideology was 4.0.

Example 6.4 tested H0: μ = 0 about mean weight gain for teenage girls suffering
from anorexia. The P-value was 0.018. Since P = 0.018 < 0.05, there is sufficient
evidence to reject H0 in favor of Ha: μ > 0. We conclude that the treatment results in
an increase in mean weight. Such a conclusion is sometimes phrased as “The increase
in mean weight is statistically significant at the 0.05 level.” Since P = 0.018 is not less
than 0.010, the result is not statistically significant at the 0.010 level. In fact, the P-value
is the smallest level for α at which the results are statistically significant. So, with P-value
= 0.018, we reject H0 if α = 0.02 or 0.05 or 0.10, but not if α = 0.010 or 0.001.

Table 6.4 summarizes significance tests for population means.



Section 6.2 Significance Test for a Mean 163

TABLE 6.4: The Five Parts of Significance Tests for Population
Means

1. Assumptions
Quantitative variable
Randomization
Normal population (robust, especially for two-sided Ha, large n)

2. Hypotheses
H0: μ = μ0
Ha: μ �= μ0 (or Ha: μ > μ0 or Ha: μ < μ0)

3. Test statistic

t = ȳ − μ0

se
, where se = s√

n
4. P-value

With the t distribution, use
P = Two-tail probability for Ha: μ �= μ0
P = Probability to right of observed t-value for Ha: μ > μ0
P = Probability to left of observed t-value for Ha: μ < μ0

5. Conclusion
Report P-value. Smaller P provides stronger evidence against
H0 and supporting Ha. Can reject H0 if P ≤ α-level

ROBUSTNESS FOR VIOLATIONS OF NORMALITY ASSUMPTION

The t test for a mean assumes that the population distribution is normal. This ensures
that the sampling distribution of the sample mean ȳ is normal (even for small n) and,
after using s to estimate σ in finding the se, the t test statistic has the t distribution. As
n increases, this assumption of a normal population becomes less important. We’ve
seen that when n is roughly about 30 or higher, an approximate normal sampling
distribution occurs for ȳ regardless of the population distribution, by the Central
Limit Theorem.

From Section 5.3 (page 125), a statistical method is robust if it performs ade-
quately even when an assumption is violated. Two-sided inferences for a mean using
the t distribution are robust against violations of the normal population assumption.
Even if the population is not normal, two-sided t tests and confidence intervals still
work quite well. The test does not work so well for a one-sided test with small n when
the population distribution is highly skewed.

Figure 6.5 shows a histogram and a box plot of the data from the anorexia study
of Example 6.4 (page 160). They suggest skew to the right. The box plot highlights (as
outliers) six girls who had considerable weight gains. As just mentioned, a two-sided
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t test works quite well even if the population distribution is skewed. However, this
plot makes us wary about using a one-sided test, since the sample size is not large
(n = 29). Given this and the discussion in the previous subsection about one-sided
versus two-sided tests, we’re safest with that study to report a two-sided P-value of
0.035. Also, the median may be a more relevant summary for these data.

6.3 Significance Test for a Proportion
For a categorical variable, the parameter is the population proportion for a category.
For example, a significance test could analyze whether a majority of the population
support legalizing same-sex marriage by testing H0: π = 0.50 against Ha: π > 0.50,
where π is the population proportion π supporting it. The test for a proportion, like
the test for a mean, finds a P-value for a test statistic that measures the number of
standard errors a point estimate falls from a H0 value.

THE FIVE PARTS OF A SIGNIFICANCE TEST FOR A PROPORTION

1. Assumptions
Like other tests, this test assumes that the data are obtained using randomization.
The sample size must be sufficiently large that the sampling distribution of π̂ is ap-
proximately normal. For the most common case, in which the H0 value of π is 0.50,
a sample size of at least 20 is sufficient.3

2. Hypotheses
The null hypothesis of a test about a population proportion has the form

H0: π = π0, such as H0: π = 0.50.

Here, π0 denotes a particular proportion value between 0 and 1, such as 0.50. The
most common alternative hypothesis is

Ha: π �= π0, such as Ha: π �= 0.50.

This two-sided alternative states that the population proportion differs from the value
in H0. The one-sided alternatives

Ha: π > π0 and Ha: π < π0

apply when the researcher predicts a deviation in a certain direction from the H0

value.

3. Test Statistic
From Section 5.2, the sampling distribution of the sample proportion π̂ has mean π

and standard error
√

π(1 − π)/n. When H0 is true, π = π0, so the standard error is
se0 = √

π0(1 − π0)/n. We use the notation se0 to indicate that this is the standard
error under the presumption that H0 is true.

The test statistic is

z = π̂ − π0

se0
, where se0 =

√
π0(1 − π0)

n
.

3 Section 6.7, which presents a small-sample test, gives a precise guideline.
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This measures the number of standard errors that the sample proportion π̂ falls from
π0. When H0 is true, the sampling distribution of the z test statistic is approximately
the standard normal distribution.

The test statistic has a similar form as in tests for a mean.

Form of Test Statistic in
Test for a Proportion z = Estimate of parameter − Null hypothesis value of parameter

Standard error of estimate

Here, the estimate π̂ of the proportion replaces the estimate ȳ of the mean, and the
null hypothesis proportion π0 replaces the null hypothesis mean μ0.

Note that in the standard error formula,
√

π(1 − π)/n, we substitute the null
hypothesis value π0 for the population proportion π . The parameter values in sam-
pling distributions for tests presume that H0 is true, since the P-value is based on
that presumption. This is why, for tests, we use se0 = √

π0(1 − π0)/n rather than the
estimated standard error, se = √

π̂(1 − π̂)/n. If we instead used the estimated se,
the normal approximation for the sampling distribution of z would be poorer. This
is especially true for proportions close to 0 or 1. By contrast, the confidence interval
method does not have a hypothesized value for π , so that method uses the estimated
se rather than a H0 value.

4. P-Value
The P-value is a one- or two-tail probability, as in tests for a mean, except using
the standard normal distribution rather than the t distribution. For Ha: π �= π0, P
is the two-tail probability. See Figure 6.6. This probability is double the single-tail
probability beyond the observed z-value.

For one-sided alternatives, the P-value is a one-tail probability. Since Ha: π > π0

predicts that the population proportion is larger than the H0 value, its P-value is the
probability above (i.e., to the right) of the observed z-value. For Ha: π < π0, the
P-value is the probability below (i.e., to the left) of the observed z-value.

5. Conclusion
As usual, the smaller the P-value, the more strongly the data contradict H0 and sup-
port Ha. When we need to make a decision, we reject H0 if P ≤ α for a prespecified
α-level such as 0.05.

Example
6.6

Reduce Services, or Raise Taxes? These days, whether at the local, state, or national
level, government often faces the problem of not having enough money to pay for the
various services that it provides. One way to deal with this problem is to raise taxes.
Another way is to reduce services. Which would you prefer? When the Florida Poll
recently asked a random sample of 1200 Floridians, 52% (624 of the 1200) said raise
taxes and 48% said reduce services.

0 Observed z

Sampling distribution of z 5
when H0 is true
(standard normal distribution)

z

p 2 p0ˆ
se0

FIGURE 6.6: Calculation
of P-Value in Testing H0:
π = π0 against Ha: π �= π0.
The two-sided alternative
hypothesis uses a two-tail
probability.
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Let π denote the population proportion in Florida who would choose raising
taxes rather than reducing services. If π < 0.50, this is a minority of the population,
whereas if π > 0.50, it is a majority. To analyze whether π is in either of these ranges,
we test H0: π = 0.50 against Ha: π �= 0.50.

The estimate of π is π̂ = 0.52. Presuming H0: π = 0.50 is true, the standard error
of π̂ is

se0 =
√

π0(1 − π0)
n

=
√

(0.50)(0.50)
1200

= 0.0144.

The value of the test statistic is

z = π̂ − π0

se0
= 0.52 − 0.50

0.0144
= 1.386.

The two-tail P-value is about P = 0.17. If H0 is true (i.e., if π = 0.50), the probability
equals 0.17 that sample results would be as extreme in one direction or the other as
in this sample.

This P-value is not small, so there is not much evidence against H0. It seems be-
lievable that π = 0.50. With an α-level such as 0.05, since P = 0.17 > 0.05, we would
not reject H0. We cannot determine whether those favoring raising taxes rather than
reducing services are a majority or minority of the population.

We can conduct the test using software. Table 6.5 shows some output (edited)
using the free software R applied to the number in the category, n, and the null value
π0. With Stata, you can do this for a variable in a data file, or also directly using the
summary statistics as shown in Table 6.6 with the command prtesti. The test is
also easy to conduct with an Internet applet.4

TABLE 6.5: R Software for Performing a Significance Test about a Proportion

> prop.test(624, 1200, p=0.50, alt="two.sided", correct=FALSE)

data: 624 out of 1200, null probability 0.5
p-value = 0.1659
alternative hypothesis: true p is not equal to 0.5
95 percent confidence interval: 0.4917142 0.5481581
sample estimates: p 0.52

TABLE 6.6: Stata Software for Performing a Significance Test about a Proportion

. prtesti 1200 0.52 0.50 // provide n, sample prop., H0 prop.

One-sample test of proportion x: Number of obs = 1200
Variable | Mean Std. Err. [95% Conf. Interval]

x | .52 .0144222 .491733 .548267
p = proportion(x) z = 1.3856

Ho: p = 0.5
Ha: p < 0.5 Ha: p != 0.5 Ha: p > 0.5

Pr(Z < z) = 0.9171 Pr(|Z| > |z|) = 0.1659 Pr(Z > z) = 0.0829

4 For example, with the Inference for a Proportion applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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NEVER “ACCEPT H0”

In Example 6.6 about raising taxes or reducing services, the P-value of 0.17 was not
small. So, H0: π = 0.50 is plausible. In this case, the conclusion is sometimes reported
as “Do not reject H0,” since the data do not contradict H0.

It is better to say “Do not reject H0” than “Accept H0.” The population propor-
tion has many plausible values besides the number in H0. For instance, the software
output above reports a 95% confidence interval for the population proportion π as
(0.49, 0.55). This interval shows a range of plausible values for π . Even though in-
sufficient evidence exists to conclude that π �= 0.50, it is improper to conclude that
π = 0.50.

In summary, H0 contains a single value for the parameter. When the P-value is
larger than the α-level, saying “Do not reject H0” instead of “Accept H0” emphasizes
that that value is merely one of many believable values. Because of sampling vari-
ability, there is a range of believable values, so we can never accept H0. The reason
“accept Ha” terminology is permissible for Ha is that when the P-value is sufficiently
small, the entire range of believable values for the parameter falls within the range
of values that Ha specifies.

EFFECT OF SAMPLE SIZE ON P-VALUES

In Example 6.6 on raising taxes or cutting services, suppose π̂ = 0.52 had been
based on n = 4800 instead of n = 1200. The standard error then decreases to 0.0072
(half as large), and you can verify that the test statistic z = 2.77. This has two-sided
P-value = 0.006. That P-value provides strong evidence against H0: π = 0.50 and
suggests that a majority support raising taxes rather than cutting services. In that
case, though, the 95% confidence interval for π equals (0.506, 0.534). This indicates
that π is quite close to 0.50 in practical terms.

A given difference between an estimate and the H0 value has a smaller P-value
as the sample size increases. The larger the sample size, the more certain we can
be that sample deviations from H0 are indicative of true population deviations. In
particular, notice that even a small departure between π̂ and π0 (or between ȳ and
μ0) can yield a small P-value if the sample size is very large.

6.4 Decisions and Types of Errors in Tests
When we need to decide whether the evidence against H0 is strong enough to reject
it, we reject H0 if P ≤ α, for a prespecified α-level. Table 6.7 summarizes the two
possible conclusions for α-level = 0.05. The null hypothesis is either “rejected” or
“not rejected.” If H0 is rejected, then Ha is accepted. If H0 is not rejected, then H0 is
plausible, but other parameter values are also plausible. Thus, H0 is never “accepted.”
In this case, results are inconclusive, and the test does not identify either hypothesis
as more valid.

TABLE 6.7: Possible Decisions in a Significance
Test with α-Level = 0.05

Conclusion

P-Value H0 Ha

P ≤ 0.05 Reject Accept
P > 0.05 Do not reject Do not accept
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It is better to report the P-value than to indicate merely whether the result is
“statistically significant.” Reporting the P-value has the advantage that the reader
can tell whether the result is significant at any level. The P-values of 0.049 and 0.001
are both “significant at the 0.05 level,” but the second case provides much stronger
evidence than the first case. Likewise, P-values of 0.049 and 0.051 provide, in practical
terms, the same amount of evidence about H0. It is a bit artificial to call one result
“significant” and the other “nonsignificant.” Some software places the symbol * next
to a test statistic that is significant at the 0.05 level, ** next to a test statistic that is
significant at the 0.01 level, and *** next to a test statistic that is significant at the
0.001 level.

TYPE I AND TYPE II ERRORS FOR DECISIONS

Because of sampling variability, decisions in tests always have some uncertainty. The
decision could be erroneous. The two types of potential errors are conventionally
called Type I and Type II errors.

Type I and Type II Errors When H0 is true, a Type I error occurs if H0 is rejected.
When H0 is false, a Type II error occurs if H0 is not rejected.

The two possible decisions cross-classified with the two possibilities for whether
H0 is true generate four possible results. See Table 6.8.

TABLE 6.8: The Four Possible Results of Making a Decision in
a Significance Test. Type I and Type II errors are the
incorrect decisions.

Decision

Reject H0 Do Not Reject H0

Condition of H0 H0 true Type I error Correct decision
H0 false Correct decision Type II error

REJECTION REGIONS: STATISTICALLY SIGNIFICANT TEST
STATISTIC VALUES

The collection of test statistic values for which the test rejects H0 is called the rejec-
tion region. For example, the rejection region for a test of level α = 0.05 is the set of
test statistic values for which P ≤ 0.05.

For two-sided tests about a proportion, the two-tail P-value is ≤ 0.05 whenever
the test statistic |z| ≥ 1.96. In other words, the rejection region consists of values of
z resulting from the estimate falling at least 1.96 standard errors from the H0 value.

THE α-LEVEL IS THE PROBABILITY OF TYPE I ERROR

When H0 is true, let’s find the probability of Type I error. Suppose α = 0.05.
We’ve just seen that for the two-sided test about a proportion, the rejection region is
|z| ≥ 1.96. So, the probability of rejecting H0 is exactly 0.05, because the probability
of the values in this rejection region under the standard normal curve is 0.05. But this
is precisely the α-level.



Section 6.4 Decisions and Types of Errors in Tests 169

The probability of a Type I error is the α-level for the test.

With α = 0.05, if H0 is true, the probability equals 0.05 of making a Type I error
and rejecting H0. We control P(Type I error) by the choice of α. The more serious
the consequences of a Type I error, the smaller α should be. In practice, α = 0.05 is
most common, just as an error probability of 0.05 is most common with confidence
intervals (i.e, 95% confidence). However, this may be too high when a decision has
serious implications.

For example, consider a criminal legal trial of a defendant. Let H0 represent
innocence and Ha represent guilt. The jury rejects H0 and judges the defendant to
be guilty if it decides the evidence is sufficient to convict. A Type I error, rejecting a
true H0, occurs in convicting a defendant who is actually innocent. In a murder trial,
suppose a convicted defendant may receive the death penalty. Then, if a defendant is
actually innocent, we would hope that the probability of conviction is much smaller
than 0.05.

When we make a decision, we do not know whether we have made a Type I
or Type II error, just as we do not know whether a particular confidence interval
truly contains the parameter value. However, we can control the probability of an
incorrect decision for either type of inference.

AS P(TYPE I ERROR) GOES DOWN, P(TYPE II ERROR) GOES UP

In an ideal world, Type I or Type II errors would not occur. However, errors do
happen. We’ve all read about defendants who were convicted but later determined
to be innocent. When we make a decision, why don’t we use an extremely small
P(Type I error), such as α = 0.000001? For instance, why don’t we make it almost
impossible to convict someone who is really innocent?

When we make α smaller in a significance test, we need a smaller P-value to
reject H0. It then becomes harder to reject H0. But this means that it will also be
harder even if H0 is false. The stronger the evidence required to convict someone,
the more likely we will fail to convict defendants who are actually guilty. In other
words, the smaller we make P(Type I error), the larger P(Type II error) becomes,
that is, failing to reject H0 even though it is false.

If we tolerate only an extremely small P(Type I error), such as α = 0.000001, the
test may be unlikely to reject H0 even if it is false—for instance, unlikely to convict
someone even if they are guilty. This reasoning reflects the fundamental relation:

• The smaller P(Type I error) is, the larger P(Type II error) is.

For instance, in an example in Section 6.6, when P(Type I error) = 0.05 we’ll find
that P(Type II error) = 0.02, but when P(Type I error) decreases to 0.01, P(Type II
error) increases to 0.08. Except in Section 6.6, we shall not find P(Type II error),
as it is beyond our scope. In practice, making a decision requires setting only α, the
P(Type I error).

Section 6.6 shows that P(Type II error) depends on just how far the true param-
eter value falls from H0. If the parameter is nearly equal to the value in H0, P(Type II
error) is relatively high. If it falls far from H0, P(Type II error) is relatively low. The
farther the parameter falls from the H0 value, the less likely the sample is to result in
a Type II error.

For a fixed P(Type I error), P(Type II error) depends also on the sample size n.
The larger the sample size, the more likely we are to reject a false H0. To keep both
P(Type I error) and P(Type II error) at low levels, it may be necessary to use a very
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large sample size. The P(Type II error) may be quite large when the sample size is
small, unless the parameter falls quite far from the H0 value.

EQUIVALENCE BETWEEN CONFIDENCE INTERVALS AND
TEST DECISIONS

We now elaborate on the equivalence for means5 between decisions from two-
sided tests and conclusions from confidence intervals, first alluded to in Example 6.3
(page 159). Consider the significance test of

H0: μ = μ0 versus Ha: μ �= μ0.

When P < 0.05, H0 is rejected at the α = 0.05 level. When n is large (so the t dis-
tribution is essentially the same as the standard normal), this happens when the test
statistic t = (ȳ−μ0)/se is greater in absolute value than 1.96, that is, when ȳ falls more
than 1.96(se) from μ0. But if this happens, then the 95% confidence interval for μ,
namely, ȳ ± 1.96(se), does not contain the null hypothesis value μ0. See Figure 6.7.
These two inference procedures are consistent.

m0m0 2 1.96(se) m0 1 1.96(se)

.025.025
_
y region in which
H0 is rejected

_
y region in which
H0 is rejected

_
y

Sampling distribution of y,
when H0 is true

_

Observed y
_

_
y 1 1.96(se)

_
y 2 1.96(se)

FIGURE 6.7: Relationship
between Confidence
Interval and Significance
Test. For large n, the 95%
confidence interval does
not contain the H0 value μ0
when the sample mean falls
more than 1.96 standard
errors from μ0, in which
case the test statistic
|t| > 1.96 and the P-value
< 0.05.

Significance Test Decisions
and Confidence Intervals

In testing H0: μ = μ0 against Ha: μ �= μ0, when we reject H0 at the 0.05
α-level, the 95% confidence interval for μ does not contain μ0. The 95%
confidence interval consists of those μ0 values for which we do not reject H0
at the 0.05 α-level.

In Example 6.2 about mean political ideology (page 157), the P-value for testing
H0: μ = 4.0 against Ha: μ �= 4.0 was P = 0.20. At the α = 0.05 level, we do not reject
H0: μ = 4.0. It is believable that μ = 4.0. Example 6.3 (page 159) showed that a 95%
confidence interval for μ is (3.95, 4.23), which contains μ0 = 4.0.

Rejecting H0 at a particular α-level is equivalent to the confidence interval for μ

with the same error probability not containing μ0. For example, if a 99% confidence
interval does not contain 0, then we would reject H0: μ = 0 in favor of Ha: μ �= 0 at
the α = 0.01 level with the test. The α-level is P(Type I error) for the test and the
probability that the confidence interval method does not contain the parameter.

5 This equivalence also holds for proportions when we use the two-sided test of Section 6.3 and the confidence
interval method presented in Exercise 5.77.
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MAKING DECISIONS VERSUS REPORTING THE P-VALUE

The approach to hypothesis testing that incorporates a formal decision with a fixed
P(Type I error) was developed by the statisticians Jerzy Neyman and Egon Pearson
in the late 1920s and early 1930s. In summary, this approach formulates null and
alternative hypotheses, selects an α-level for the P(Type I error), determines the
rejection region of test statistic values that provide enough evidence to reject H0,
and then makes a decision about whether to reject H0 according to what is actually
observed for the test statistic value. With this approach, it’s not even necessary to
find a P-value. The choice of α-level determines the rejection region, which together
with the test statistic determines the decision.

The alternative approach of finding a P-value and using it to summarize evidence
against a hypothesis is due to the great British statistician R. A. Fisher. He advocated
merely reporting the P-value rather than using it to make a formal decision about H0.
Over time, this approach has gained favor, especially since software can now report
precise P-values for a wide variety of significance tests.

This chapter has presented an amalgamation of the two approaches (the
decision-based approach using an α-level and the P-value approach), so you can in-
terpret a P-value yet also know how to use it to make a decision when that is needed.
These days, most research articles merely report the P-value rather than a decision
about whether to reject H0. From the P-value, readers can view the strength of evi-
dence against H0 and make their own decision, if they want to.

6.5 Limitations of Significance Tests
A significance test makes an inference about whether a parameter differs from the
H0 value and about its direction from that value. In practice, we also want to know
whether the parameter is sufficiently different from the H0 value to be practically im-
portant. In this section, we’ll learn that a test does not tell us as much as a confidence
interval about practical importance.

STATISTICAL SIGNIFICANCE VERSUS PRACTICAL SIGNIFICANCE

It is important to distinguish between statistical significance and practical significance.
A small P-value, such as P = 0.001, is highly statistically significant. It provides
strong evidence against H0. It does not, however, imply an important finding in any
practical sense. The small P-value merely means that if H0 were true, the observed
data would be very unusual. It does not mean that the true parameter value is far
from H0 in practical terms.

Example
6.7

Mean Political Ideology for All Americans The political ideology ȳ = 4.089 reported
in Example 6.2 (page 157) refers to a sample of Hispanic Americans. We now con-
sider the entire 2014 GSS sample who responded to the political ideology question.
For a scoring of 1.0 through 7.0 for the ideology categories with 4.0 = moderate, the
n = 2575 observations have ȳ = 4.108 and standard deviation s = 4.125. On the
average, political ideology was the same for the entire sample as it was for Hispanics
alone.6

As in Example 6.2, we test H0: μ = 4.0 against Ha: μ �= 4.0 to analyze
whether the population mean differs from the moderate ideology score of 4.0. Now,

6 And it seems stable over time, equaling 4.13 in 1980, 4.16 in 1990, and 4.10 in 2000.
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se = s/
√

n = 1.425/
√

2575 = 0.028, and

t = ȳ − μ0

se
= 4.108 − 4.0

0.028
= 3.85.

The two-sided P-value is P = 0.0001. There is very strong evidence that the true
mean exceeds 4.0, that is, that the true mean falls on the conservative side of moder-
ate. But, on a scale of 1.0 to 7.0, 4.108 is close to the moderate score of 4.0. Although
the difference of 0.108 between the sample mean of 4.108 and the H0 mean of 4.0 is
highly significant statistically, the magnitude of this difference is very small in prac-
tical terms. The mean response on political ideology for all Americans is essentially
a moderate one.

In Example 6.2, the sample mean of ȳ = 4.1 for n = 369 Hispanic Americans
had a P-value of P = 0.20, not much evidence against H0. But now with ȳ = 4.1
based on n = 2575, we have instead found P = 0.0001. This is highly statistically
significant, but not practically significant. For practical purposes, a mean of 4.1 on a
scale of 1.0 to 7.0 for political ideology does not differ from 4.00.

A way of summarizing practical significance is to measure the effect size by the
number of standard deviations (not standard errors) that ȳ falls from μ0. In this ex-
ample, the estimated effect size is (4.108 − 4.0)/1.425 = 0.08. This is a tiny effect.
Whether a particular effect size is small, medium, or large depends on the substan-
tive context, but an effect size of about 0.2 or less in absolute value is usually not
practically important.

SIGNIFICANCE TESTS ARE LESS USEFUL THAN
CONFIDENCE INTERVALS

We’ve seen that, with large sample sizes, P-values can be small even when the point
estimate falls near the H0 value. The size of P merely summarizes the extent of evi-
dence about H0, not how far the parameter falls from H0. Always inspect the differ-
ence between the estimate and the H0 value to gauge the practical implications of a
test result.

Null hypotheses containing single values are rarely true. That is, rarely is the
parameter exactly equal to the value listed in H0. With sufficiently large samples, so
that a Type II error is unlikely, these hypotheses will normally be rejected. What is
more relevant is whether the parameter is sufficiently different from the H0 value to
be of practical importance.

Although significance tests can be useful, most statisticians believe they are
overemphasized in social science research. It is preferable to construct confidence
intervals for parameters instead of performing only significance tests. A test merely
indicates whether the particular value in H0 is plausible. It does not tell us which
other potential values are plausible. The confidence interval, by contrast, displays
the entire set of believable values. It shows the extent to which reality may differ
from the parameter value in H0 by showing whether the values in the interval are
far from the H0 value. Thus, it helps us to determine whether rejection of H0 has
practical importance.

To illustrate, for the complete political ideology data in Example 6.7, a 95% con-
fidence interval for μ is

ȳ ± 1.96(se) = 4.108 ± 1.96(0.028), or (4.05, 4.16).

This indicates that the difference between the population mean and the moderate
score of 4.0 is very small. Although the P-value of P = 0.0001 provides very strong
evidence against H0: μ = 4.0, in practical terms the confidence interval shows that
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H0 is not wrong by much. By contrast, if ȳ had been 6.108 (instead of 4.108), the 95%
confidence interval would equal (6.05, 6.16). This indicates a substantial practical
difference from 4.0, the mean response being near the conservative score rather than
the moderate score.

When a P-value is not small but the confidence interval is quite wide, this forces
us to realize that the parameter might well fall far from H0 even though we cannot re-
ject it. This also supports why it does not make sense to “accept H0,” as we discussed
on page 167.

The remainder of the text presents significance tests for a variety of situations.
It is important to become familiar with these tests, if for no other reason than their
frequent use in social science research. However, we’ll also introduce confidence in-
tervals that describe how far reality is from the H0 value.

SIGNIFICANCE TESTS AND P-VALUES CAN BE MISLEADING

We’ve seen it is improper to “accept H0.” We’ve also seen that statistical significance
does not imply practical significance. Here are other ways that results of significance
tests can be misleading:

• It is misleading to report results only if they are statistically significant.
Some research journals have the policy of publishing results of a study only if
the P-value ≤ 0.05. Here’s a danger of this policy: Suppose there truly is no
effect, but 20 researchers independently conduct studies. We would expect
about 20(0.05) = 1 of them to obtain significance at the 0.05 level merely by
chance. (When H0 is true, about 5% of the time we get a P-value below 0.05
anyway.) If that researcher then submits results to a journal but the other 19
researchers do not, the article published will be a Type I error. It will report an
effect when there really is not one.

• Some tests may be statistically significant just by chance. You should never
scan software output for results that are statistically significant and report only
those. If you run 100 tests, even if all the null hypotheses are correct, you would
expect to get P-values ≤ 0.05 about 100(0.05) = 5 times. Be skeptical of reports
of significance that might merely reflect ordinary random variability.

• It is incorrect to interpret the P-value as the probability that H0 is true. The
P-value is P(test statistic takes value like observed or even more extreme),
presuming that H0 is true. It is not P(H0 true). Classical statistical methods
calculate probabilities about variables and statistics (such as test statistics) that
vary randomly from sample to sample, not about parameters. Statistics have
sampling distributions, parameters do not. In reality, H0 is not a matter of prob-
ability. It is either true or not true. We just don’t know which is the case.

• True effects are often smaller than reported estimates. Even if a statistically
significant result is a real effect, the true effect may be smaller than reported.
For example, often several researchers perform similar studies, but the results
that receive attention are the most extreme ones. The researcher who decides
to publicize the result may be the one who got the most impressive sample
result, perhaps way out in the tail of the sampling distribution of all the possible
results. See Figure 6.8.

Example
6.8

Are Many Medical “Discoveries” Actually Type I Errors? In medical research stud-
ies, suppose that an actual population effect exists only 10% of the time. Suppose
also that when an effect truly exists, there is a 50% chance of making a Type II error
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No
Effect

True
Effect

Reported
Effect

FIGURE 6.8: When Many
Researchers Conduct
Studies about a Hypothesis,
the Statistically Significant
Result Published in a
Journal and Reported by
Popular Media Often
Overestimates the True
Effect

and failing to detect it. These were the hypothetical percentages used in an article in
a medical journal.7 The authors noted that many medical studies have a high Type II
error rate because they are not able to use a large sample size. Assuming these rates,
could a substantial percentage of medical “discoveries” actually be Type I errors?

Figure 6.9 is a tree diagram showing what we would expect with 1000 medical
studies that test various hypotheses. If a population effect truly exists only 10% of
the time, this would be the case for 100 of the 1000 studies. We do not obtain a small
enough P-value to detect this true effect 50% of the time, that is, in 50 of these 100
studies. An effect will be reported for the other 50 of the 100 that do truly have an
effect. For the 900 cases in which there truly is no effect, with the usual significance
level of 0.05 we expect 5% of the 900 studies to incorrectly reject H0. This happens
for (0.05)900 = 45 studies. In summary, of the 1000 studies, we expect 50 to report
an effect that is truly there, but we also expect 45 to report an effect that does not
actually exist. So, a proportion of 45/(45 + 50) = 0.47 of medical studies that report
effects are actually reporting Type I errors.

True
Effect

Decision
Reject H0?

Yes (50)
Yes (100)

No (50)

Yes (45)

No (855)

No (900) Type I Error

Type II Error1000
Studies

Given that H0 Is Rejected,
P (Type I error) 5 45/(45150) 5 0.47

FIGURE 6.9: Tree
Diagram of 1000
Hypothetical Medical
Studies. This assumes a
population effect truly
exists 10% of the time and
a 50% chance of a Type II
error when an effect truly
exists.

The moral is to be skeptical when you hear reports of new medical advances. The
true effect may be weaker than reported, or there may actually be no effect at all.

Related to this is the publication bias that occurs when results of some studies
never appear in print because they did not obtain a small enough P-value to seem
important. One investigation8 of this reported that 94% of medical studies that had
positive results found their way into print whereas only 14% of those with disap-
pointing or uncertain results did.

7 By J. Sterne, G. Smith, and D. R. Cox, BMJ, vol. 322 (2001), pp. 226–231.
8 Reported in The New York Times, January 17, 2008.
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6.6 Finding P(Type II Error)∗

We’ve seen that decisions in significance tests have two potential types of error. A
Type I error results from rejecting H0 when it is actually true. Given that H0 is true,
the probability of a Type I error is the α-level of the test; when α = 0.05, the proba-
bility of rejecting H0 equals 0.05.

When H0 is false, a Type II error results from not rejecting it. This probability
has more than one value, because Ha contains a range of possible values. Each value
in Ha has its own P(Type II error). This section shows how to calculate P(Type II
error) at a particular value.

Example
6.9

Testing whether Astrology Really Works One scientific test of the pseudoscience as-
trology used the following experiment9: For each of 116 adult subjects, an astrologer
prepared a horoscope based on the positions of the planets and the moon at the
moment of the person’s birth. Each subject also filled out a California Personality
Index survey. For each adult, his or her birth data and horoscope were shown to an
astrologer with the results of the personality survey for that adult and for two other
adults randomly selected from the experimental group. The astrologer was asked
which personality chart of the three subjects was the correct one for that adult, based
on their horoscope.

Let π denote the probability of a correct prediction by an astrologer. If the as-
trologers’ predictions are like random guessing, then π = 1/3. To test this against
the alternative that the guesses are better than random guessing, we can test H0:
π = 1/3 against Ha: π > 1/3. The alternative hypothesis reflects the astrologers’ be-
lief that they can predict better than random guessing. In fact, the National Council
for Geocosmic Research, which supplied the astrologers for the experiment, claimed
π would be 0.50 or higher. So, let’s find P(Type II error) if actually π = 0.50, for an
α = 0.05-level test. That is, if actually π = 0.50, we’ll find the probability that we’d
fail to reject H0: π = 1/3.

To determine this, we first find the sample proportion values for which we would
not reject H0. For the test of H0: π = 1/3, the sampling distribution of π̂ is the curve
shown on the left in Figure 6.10. With n = 116, this curve has standard error

se0 =
√

π0(1 − π0)
n

=
√

(1/3)(2/3)
116

= 0.0438.

Sampling distribution of p
when p 5 0.50 (H0 false)

a 5 .05

when p 5 (H0 true)
1
3

Sampling distribution of p

.02 5 Probability that
H0 is not rejected when
p 5 0.50 (H0 false) 

0.405 0.501
3

ˆ

ˆ

p̂

FIGURE 6.10: Calculation
of P(Type II Error) for
Testing H0: π = 1/3 against
Ha: π > 1/3 at α = 0.05
Level, when True
Proportion Is π = 0.50 and
n = 116. A Type II error
occurs if π̂ < 0.405, since
then the P-value > 0.05
even though H0 is false.

9 S. Carlson, Nature, vol. 318 (1985), pp. 419–425.
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For Ha: π > 1/3, the P-value equals 0.05 if the test statistic z = 1.645. That is, 1.645
is the z-score that has a right-tail probability of 0.05. So, we fail to reject H0, getting
a P-value above 0.05, if z < 1.645. In other words, we fail to reject H0: π = 1/3 if the
sample proportion π̂ falls less than 1.645 standard errors above 1/3, that is, if

π̂ < 1/3 + 1.645(se0) = 1/3 + 1.645(0.0438) = 0.405.

So, the right-tail probability above 0.405 is α = 0.05 for the curve on the left in
Figure 6.10.

To find P(Type II error) if π actually equals 0.50, we must find P(π̂ < 0.405)
when π = 0.50. This is the left-tail probability below 0.405 for the curve on the right
in Figure 6.10, which is the curve that applies when π = 0.50. When π = 0.50, the
standard error for a sample size of 116 is

√
[(0.50)(0.50)]/116 = 0.0464. (This differs

a bit from se0 for the test statistic, which uses 1/3 instead of 0.50 for π .) For the normal
distribution with a mean of 0.50 and standard error of 0.0464, the π̂ value of 0.405
has a z-score of

z = 0.405 − 0.50
0.0464

= −2.04.

The probability that π̂ < 0.405 is the probability that a standard normal variable falls
below −2.04, which equals 0.02. So, for a sample of size 116, the probability of not
rejecting H0: π = 1/3 is 0.02, if in fact π = 0.50. In other words, if astrologers truly
had the predictive power they claimed, the chance of failing to detect this with this
experiment would have only been about 0.02. To see what actually happened in the
experiment, see Exercise 6.17.

This probability calculation of P(Type II error) was rather involved. Such calcu-
lations can be performed easily with an Internet applet.10

The probability of Type II error increases when the parameter value moves
closer to H0. To verify this, you can check that P(Type II error) = 0.55 at π = 0.40.
So, if the parameter falls near the H0 value, there may be a substantial chance of
failing to reject H0. Likewise, the farther the parameter falls from H0, the less likely
a Type II error. Figure 6.11 plots P(Type II error) for the various π values in Ha.

P (Type II Error) 5 .55
when p 5 .40

P (Type II Error)
Decreases as p Gets
Farther above H0
Value of 1/3

p

1/3 0.40 0.50
0
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1.0

P
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FIGURE 6.11: Probability
of Type II Error for Testing
H0: π = 1/3 against Ha:
π > 1/3 at α = 0.05 Level,
Plotted for the Potential π

Values in Ha

For a fixed α-level and alternative parameter value, P(Type II error) decreases
when the sample size increases. If you can obtain more data, you will be less likely
to make this sort of error.

TESTS WITH SMALLER α HAVE GREATER P(TYPE II ERROR)

As explained on page 169, the smaller α = P(Type I error) is in a test, the larger
P(Type II error) is. To illustrate, suppose the astrology study in Example 6.9 used

10 See, for example, the Errors and Power applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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α = 0.01. Then, when π = 0.50 you can verify that P(Type II error) = 0.08, compared
to P(Type II error) = 0.02 when α = 0.05.

The reason that extremely small values are not normally used for α, such as α =
0.0001, is that P(Type II error) is too high. We may be unlikely to reject H0 even if
the parameter falls far from the null hypothesis. In summary, for fixed values of other
factors,

• P(Type II error) decreases as

– the parameter value is farther from H0.
– the sample size increases.
– P(Type I error) increases.

THE POWER OF A TEST

When H0 is false, you want the probability of rejecting H0 to be high. The probability
of rejecting H0 is called the power of the test. For a particular value of the parameter
from within the Ha range,

Power = 1 − P(Type II error).

In Example 6.9, for instance, the test of H0: π = 1/3 has P(Type II error) = 0.02 at
π = 0.50. Therefore, the power of the test at π = 0.50 is 1 − 0.02 = 0.98.

The power increases for values of the parameter falling farther from the H0 value.
Just as the curve for P(Type II error) in Figure 6.11 decreases as π gets farther above
π0 = 1/3, the curve for the power increases.

In practice, studies should ideally have high power. Before granting financial
support for a planned study, research agencies often expect principal investigators to
show that reasonable power (usually, at least 0.80) exists at values of the parameter
that are practically significant.

When you read that results of a study are not statistically significant, be skeptical
if no information is given about the power. The power may be low, especially if n is
small or the effect is not large.

6.7 Small-Sample Test for a Proportion—
The Binomial Distribution∗

For a population proportion π , Section 6.3 presented a significance test that is valid
for relatively large samples. The sampling distribution of the sample proportion π̂ is
then approximately normal, which justifies using a z test statistic.

For small n, the sampling distribution of π̂ occurs at only a few points. If
n = 5, for example, the only possible values for the sample proportion π̂ are
0, 1/5, 2/5, 3/5, 4/5, and 1. A continuous approximation such as the normal distri-
bution is inappropriate. In addition, the closer π is to 0 or 1 for a given sample size,
the more skewed the actual sampling distribution becomes.

This section introduces a small-sample test for proportions. It uses the most im-
portant probability distribution for discrete variables, the binomial distribution.

THE BINOMIAL DISTRIBUTION

For categorical data, often the following three conditions hold:
• Each observation falls into one of two categories.

• The probabilities for the two categories are the same for each observation. We
denote the probabilities by π for category 1 and (1 − π) for category 2.
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• The outcomes of successive observations are independent. That is, the outcome
for one observation does not depend on the outcomes of other observations.

Flipping a coin repeatedly is a prototype for these conditions. For each flip, we
observe whether the outcome is head (category 1) or tail (category 2). The probabil-
ities of the outcomes are the same for each flip (0.50 for each if the coin is balanced).
The outcome of a particular flip does not depend on the outcome of other flips.

Now, for n observations, let x denote the number of them that occur in category
1. For example, for n = 5 coin flips, x = number of heads could equal 0, 1, 2, 3,
4, or 5. When the observations satisfy the above three conditions, the probability
distribution of x is the binomial distribution.

The binomial variable x is discrete, taking one of the integer values 0, 1, 2, . . . , n.
The formula for the binomial probabilities follows:

Probabilities for a Binomial
Distribution

Denote the probability of category 1, for each observation, by π . For n
independent observations, the probability that x of the n observations occur
in category 1 is

P(x) = n!
x!(n − x)!

πx(1 − π)n−x, x = 0, 1, 2, . . . , n.

The symbol n! is called n factorial. It represents n! = 1 × 2 × 3 × · · · × n.
For example, 1! = 1, 2! = 1 × 2 = 2, 3! = 1 × 2 × 3 = 6, and so forth. Also,
0! is defined to be 1.

For particular values for π and n, substituting the possible values for x into the
formula for P(x) provides the probabilities of the possible outcomes. The sum of the
probabilities equals 1.0.

Example
6.10

Gender and Selection of Managerial Trainees Example 6.1 (page 151) discussed a
case involving potential bias against females in selection of management trainees for
a large supermarket chain. The pool of employees is half female and half male. The
company claims to have selected 10 trainees at random from this pool. If they are
truly selected at random, how many females would we expect to be chosen?

The probability that any one person selected is a female is π = 0.50, the pro-
portion of available trainees who are female. Similarly, the probability that any one
person selected is male is (1 − π) = 0.50. Let x = number of females selected. This
has the binomial distribution with n = 10 and π = 0.50. For each x between 0 and
10, the probability that x of the 10 people selected are female equals

P(x) = 10!
x!(10 − x)!

(0.50)x(0.50)10−x, x = 0, 1, 2, . . . , 10.

For example, the probability that no females are chosen (x = 0) is

P(0) = 10!
0!10!

(0.50)0(0.50)10 = (0.50)10 = 0.001.

(Recall that any number raised to the power of 0 equals 1.) The probability that
exactly one female is chosen is

P(1) = 10!
1!9!

(0.50)1(0.50)9 = 10(0.50)(0.50)9 = 0.010.
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Table 6.9 lists the entire binomial distribution for n = 10, π = 0.50. Binomial prob-
abilities for any n, π , and x value can be found with Internet applets.11

TABLE 6.9: The Binomial Distribution for n = 10, π =
0.50. The binomial variable x can take any
value between 0 and 10.

x P(x) x P(x)

0 0.001 6 0.205
1 0.010 7 0.117
2 0.044 8 0.044
3 0.117 9 0.010
4 0.205 10 0.001
5 0.246

In Table 6.9, the probability is about 0.98 that x falls between 2 and 8, inclusive.
The least likely values for x are 0, 1, 9, and 10, which have a combined probability
of only 0.022. If the sample were randomly selected, somewhere between about two
and eight females would probably be selected. It is especially unlikely that none or
10 would be selected.

The probabilities for females determine those for males. For instance, the prob-
ability that 9 of the 10 people selected are male equals the probability that 1 of the
10 selected is female.

PROPERTIES OF THE BINOMIAL DISTRIBUTION

The binomial distribution is perfectly symmetric only when π = 0.50. In Ex-
ample 6.10, for instance, since the population proportion of females equals 0.50,
x = 10 has the same probability as x = 0.

The sample proportion π̂ relates to the binomial variable x by

π̂ = x/n.

For example, for x = 1 female chosen out of n = 10, π̂ = 1/10 = 0.10. The sampling
distribution of π̂ is also symmetric when π = 0.50. When π �= 0.50, the distribution is
skewed, the degree of skew increasing as π gets closer to 0 or 1. Figure 6.12 illustrates
this. When π = 0.10, for instance, the sample proportion π̂ can’t fall much below 0.10
since it must be positive, but it could fall considerably above 0.10.

Like the normal distribution, the binomial can be characterized by its mean and
standard deviation.

Binomial Mean and Standard
Deviation

The binomial distribution for x = how many of n observations fall in a
category having probability π has mean and standard deviation

μ = nπ and σ =
√

nπ(1 − π).

For example, suppose the probability of a female in any one selection for manage-
ment training is 0.50, as the supermarket chain claims. Then, out of 10 trainees, we
expect μ = nπ = 10(0.50) = 5.0 females.

We’ve seen (in Sections 5.2 and 6.3) that the sampling distribution of the sample
proportion π̂ has mean π and standard error

√
π(1 − π)/n. To obtain these formulas,

11 For example, with the Binomial Distribution applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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Distribution of π̂ when
π = 0.10 or 0.50, for
n = 10, 50, 100

we divide the binomial mean μ = nπ and standard deviation σ = √
nπ(1 − π) by n,

since π̂ divides x by n.

Example
6.11

How Much Variability Can an Exit Poll Show? Example 4.6 (page 95) discussed an
exit poll of 1824 voters for the 2014 California gubernatorial election. Let x denote
the number in the exit poll who voted for Jerry Brown. In the population of more
than 7 million voters, 60.0% voted for him. If the exit poll was randomly selected,
then the binomial distribution for x has n = 1824 and π = 0.600. The distribution is
described by

μ = 1824(0.600) = 1094, σ =
√

1824(0.600)(0.400) = 21.

Almost certainly, x would fall within three standard deviations of the mean. This
is the interval from 1031 to 1157. In fact, in that exit poll, 1104 people of the 1824
sampled reported voting for Brown.

THE BINOMIAL TEST

The binomial distribution and the sampling distribution of π̂ are approximately
normal for large n. This approximation is the basis of the large-sample test of
Section 6.3. How large is “large”? A guideline is that the expected number of
observations should be at least 10 for both categories. For example, if π = 0.50,
we need at least about n = 20, because then we expect 20(0.50) = 10 observations in
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one category and 20(1−0.50) = 10 in the other category. For testing H0: π = 0.90 or
H0: π = 0.10, we need n ≥ 100. The sample size requirement reflects the fact that a
symmetric bell shape for the sampling distribution of π̂ requires larger sample sizes
when π is near 0 or 1 than when π is near 0.50.

If the sample size is not large enough to use the normal test, we can use the bi-
nomial distribution directly. Refer to Example 6.10 (page 178) about potential gen-
der discrimination. For random sampling, the probability π that a person selected
for management training is female equals 0.50. If there is bias against females, then
π < 0.50. Thus, we can test the company’s claim of random sampling by testing

H0: π = 0.50 versus Ha: π < 0.50.

Of the 10 employees chosen for management training, let x denote the number
of women. Under H0, the sampling distribution of x is the binomial distribution with
n = 10 and π = 0.50. Table 6.9 tabulated it. As in Example 6.1 (page 151), suppose
x = 1. The P-value is then the left-tail probability of an outcome at least this extreme;
that is, x = 1 or 0. From Table 6.9, the P-value is

P = P(0) + P(1) = 0.001 + 0.010 = 0.011.

If the company selected trainees randomly, the probability of choosing one or fewer
females is only 0.011. This result provides evidence against the null hypothesis of a
random selection process. We can reject H0 for α = 0.05, though not for α = 0.010.

Even if we suspect bias in a particular direction, the most even-handed way
to perform a test uses a two-sided alternative. For Ha: π �= 0.50, the P-value is
2(0.011) = 0.022. This is a two-tail probability of the outcome that one or fewer
of either sex is selected. Figure 6.13 shows the formation of this P-value.
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FIGURE 6.13: Calculation
of P-Value in Testing H0:
π = 0.50 against Ha:
π �= 0.50, when n = 10
and x = 1

The assumptions for the binomial test are the three conditions for the binomial
distribution. Here, the conditions are satisfied. Each observation has only two pos-
sible outcomes, female or male. The probability of each outcome is the same for
each selection, 0.50 for selecting a female and 0.50 for selecting a male (under H0).
For random sampling, the outcome of any one selection does not depend on any
other one.

6.8 Chapter Summary
Chapter 5 and this chapter have introduced two methods for using sample data
to make inferences about populations—confidence intervals and significance tests.
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A confidence interval provides a range of plausible values for a parameter. A sig-
nificance test judges whether a particular value for the parameter is plausible. Both
methods utilize the sampling distribution of the estimator of the parameter.

Significance tests have five parts:

1. Assumptions:

• Tests for means apply with quantitative variables whereas tests for propor-
tions apply with categorical variables.

• Tests assume randomization, such as a random sample.
• Large-sample tests about proportions require no assumption about the pop-

ulation distribution, because the Central Limit Theorem implies approxi-
mate normality of the sampling distribution of the sample proportion.

• Tests for means use the t distribution, which assumes the population distri-
bution is normal. In practice, two-sided tests (like confidence intervals) are
robust to violations of the normality assumption.

2. Null and alternative hypotheses about the parameter: The null hypothesis has
the form H0: μ = μ0 for a mean and H0: π = π0 for a proportion. Here, μ0 and
π0 denote values hypothesized for the parameters, such as 0.50 in H0: π = 0.50.
The most common alternative hypothesis is two sided, such as Ha: π �= 0.50.
Hypotheses such as Ha: π > 0.50 and Ha: π < 0.50 are one sided, designed to
detect departures from H0 in a particular direction.

3. A test statistic describes how far the point estimate falls from the H0 value.
The z statistic for proportions and t statistic for means measure the number of
standard errors that the point estimate (π̂ or ȳ) falls from the H0 value.

4. The P-value describes the evidence about H0 in probability form.

• We calculate the P-value by presuming that H0 is true. It equals the proba-
bility that the test statistic equals the observed value or a value even more
extreme.

• The “more extreme” results are determined by the alternative hypothesis.
For two-sided Ha, the P-value is a two-tail probability.

• Small P-values result when the point estimate falls far from the H0 value, so
that the test statistic is large. When the P-value is small, it would be unusual
to observe such data if H0 were true. The smaller the P-value, the stronger
the evidence against H0.

5. A conclusion based on the sample evidence about H0: We report and interpret
the P-value. When we need to make a decision, we reject H0 when the P-value
is less than or equal to a fixed α-level (such as α = 0.05). Otherwise, we cannot
reject H0.

When we make a decision, two types of errors can occur.

• When H0 is true, a Type I error results if we reject it.

• When H0 is false, a Type II error results if we fail to reject it.

The choice of α, the cutoff point for the P-value in making a decision, equals P(Type
I error). Normally, we choose small values such as α = 0.05 or 0.01. For fixed α,
P(Type II error) decreases as the distance increases between the parameter and the
H0 value or as the sample size increases.

Table 6.10 summarizes the five parts of the tests this chapter presented.
Sample size is a critical factor in both estimation and significance tests. With

small sample sizes, confidence intervals are wide, making estimation imprecise.
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TABLE 6.10: Summary of Significance Tests for Means and Proportions

Parameter Mean Proportion

1. Assumptions Random sample, Random sample,
quantitative variable, categorical variable,
normal population null expected counts at least 10

2. Hypotheses H0: μ = μ0 H0: π = π0
Ha: μ �= μ0 Ha: π �= π0
Ha: μ > μ0 Ha: π > π0
Ha: μ < μ0 Ha: π < π0

3. Test statistic t = ȳ − μ0

se
with z = π̂ − π0

se0
with

se = s√
n
, df = n − 1 se0 = √

π0(1 − π0)/n
4. P-value Two-tail probability in sampling distribution for two-sided test

(H0: μ �= μ0 or Ha: π �= π0); one-tail probability for one-sided test
5. Conclusion Reject H0 if P-value ≤ α-level such as 0.05

Small sample sizes also make it difficult to reject false null hypotheses unless the
true parameter value is far from the null hypothesis value. P(Type II error) may be
high for parameter values of interest.

This chapter presented significance tests about a single parameter for a single
variable. In practice, it is usually artificial to have a particular fixed number for the
H0 value of a parameter. One of the few times this happens is when the response
score results from taking a difference of two values, such as the change in weight in
Example 6.4 (page 160). In that case, μ0 = 0 is a natural baseline. Significance tests
much more commonly refer to comparisons of means for two samples than to a fixed
value of a parameter for a single sample. The next chapter shows how to compare
means or proportions for two groups.

Exercises

Practicing the Basics
6.1. For (a)–(c), is it a null hypothesis, or an alternative
hypothesis?
(a) In India, the proportion of teenagers who watch hor-
ror movies equals 0.45.
(b) The proportion of all Indian school students with ac-
cess to the Internet is now more than 0.30 (the value it was
5 years ago).
(c) The mean IQ of newly recruited workers at ABC Inc.
is less than 100.
(d) Introducing notation for a parameter, state the hy-
potheses in (a)–(c) in terms of the parameter values.

6.2. You want to know whether employees in a company
consider the ideal average working hours to be 10, or
higher or lower than that.
(a) Define notation and state the null and alternative hy-
potheses for studying this.
(b) For responses in a recent survey to the question “What
do you think are the ideal average working hours?” soft-
ware shows results:

----------------------------------------------------
Test of mu = 10 vs mu not = 10

Variable n Mean StDev SE Mean T P-value
Hours 1500 10.5 0.750 0.036 25.82 0.0000
----------------------------------------------------
Report the test statistic value, and show how it was ob-
tained from other values reported in the table.

(c) Explain what the P-value represents, and interpret its
value.

6.3. For a test of H0: μ = 0 against Ha: μ �= 0 with
n = 1500, the t test statistic equals 0.92.

(a) Find the P-value, and interpret it.
(b) Suppose t = −3.60 rather than 0.92. Find the P-value.
Does this provide stronger, or weaker, evidence against
the null hypothesis? Explain.
(c) When t = 0.92, find the P-value for (i) Ha: μ > 0,
(ii) Ha: μ < 0.

6.4. The P-value for a test about a mean with n = 31 is
P = 0.01.
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(a) Find the t test statistic value that has this P-value for
(i) Ha: μ �= 0, (ii) Ha: μ > 0, (iii) Ha: μ < 0.
(b) Does this P-value provide stronger, or weaker, ev-
idence against the null hypothesis than P = 0.001?
Explain.

6.5. Find and interpret the P-value for testing H0: μ = 50
against H0: μ �= 50 if a sample has

(a) n = 200, ȳ = 53, and s = 20.
(b) n = 800, ȳ = 53, and s = 20. Comment on the effect
of n on the results of a significance test.

6.6. Example 6.4 (page 160) described a study about ther-
apies for teenage girls suffering from anorexia. For the
17 girls who received the family therapy, the changes in
weight were
11, 11, 6, 9, 14, −3, 0, 7, 22, −5, −4, 13, 13, 9, 4, 6, 11.
Some Stata output (edited) for the data shows
-------------------------------------------------
Variable | Obs Mean Std. Err. Std. Dev.

change | 17 7.294118 ?? 7.183007

mean = mean(change) t = ??
Ho: mean = 0 degrees of freedom = ??

Ha: mean != 0 Ha: mean > 0
Pr(|T| > |t|) = 0.0007 Pr(T > t) = ??

-------------------------------------------------

Fill in the four missing results.

6.7. According to a union agreement, the mean income
for all managers in a large manufacturing company equals
$2000 per month. A representative of a graduate group
decides to analyze whether the mean income μ for gradu-
ate managers matches this norm. For a random sample of
10 graduate employees, ȳ = $1500 and s = 100.

(a) Test whether the mean income of graduate employees
differs from $2000 per month. Include assumptions, hy-
potheses, test statistic, and P-value. Interpret the result.
(b) Report the P-value for Ha: μ < 2000. Interpret.
(c) Report and interpret the P-value for Ha: μ > 2000.
(Hint: The P-values for the two possible one-sided tests
must sum to 1.)

6.8. By law, a chemical plant can discharge no more than
400 units of chemical waste per hour, on an average, into
a neighboring river. Based on other infractions they have
noticed, an environmental action group believes this limit
is being exceeded. Monitoring the plant is expensive, and
a random sample of five hours is taken over a period of a
week. Software reports
-------------------------------------------------
Variable No. Cases Mean StDev SE of Mean
WASTE 5 960.0 500.0 150.0

-------------------------------------------------

(a) Test whether the mean discharge equals 400 units per
hour against the alternative that the limit is being ex-
ceeded. Find the P-value, and interpret.

(b) Explain why the test may be highly approximate or
even invalid if the population distribution of discharge is
far from normal.
(c) Explain how your one-sided analysis implicitly tests
the broader null hypothesis that μ ≤ 400.
6.9. In response to the statement “An effective leader
must be able to feel the emotions of his group-members,”
the response categories (Strongly agree, Agree, Disagree,
Strongly disagree) had counts (103, 375, 425, 97) for re-
sponses in an Emotional Quotient Survey. To treat this
ordinal variable as quantitative, we assign scores to the
categories. For the scores (2, 1, −1, −2), which treat the
distance between Agree and Disagree as twice the dis-
tance between Strongly agree and Agree or between Dis-
agree and Strongly disagree, software reports
----------------------------------------------

n Mean Std Dev Std Err
1000 -.048 1.543 0.0413

----------------------------------------------
(a) Set up null and alternative hypotheses to test whether
the population mean response differs from the neutral
value, 0.
(b) Find the test statistic and P-value. Interpret, and make
a decision about H0, using α = 0.05.
(c) Based on (b), can you “accept” H0: μ = 0? Why or
why not?
(d) Construct a 95% confidence interval for μ. Show the
correspondence between whether 0 falls in the interval
and the decision about H0.

6.10. In Example 6.2 on political ideology (page 157), sup-
pose we use the scores (−3, −2, −1, 0, 1, 2, 3) instead of
(1, 2, 3, 4, 5, 6, 7). We then test H0: μ = 0. Explain the
effect of the change in scores on (a) the sample mean and
standard deviation, (b) the test statistic, (c) the P-value
and interpretation.
6.11. Results of 95% confidence intervals for means are
consistent with results of two-sided tests with which
α-level? Explain the connection.
6.12. For a test of H0: π = 0.45, the z test statistic equals
0.80.
(a) Find the P-value for Ha: π > 0.45.
(b) Find the P-value for Ha: π �= 0.45.
(c) Find the P-value for Ha: π < 0.45.
(d) Do any of the P-values in (a), (b), or (c) give strong
evidence against H0? Explain.

6.13. For a test of H0: π = 0.60, the sample proportion is
0.45 with n = 125.
(a) Show that the test statistic is z = −3.423.
(b) Find and interpret the P-value for Ha: π < 0.60.
(c) For a significance level of α = 0.01, what decision do
you make?
(d) If the decision in (c) was an error, what type of error
was it? What could you do to reduce the chance of that
type of error?
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6.14. Illegal trafficking of some items in a country was
banned by its government in 2007. Is this supported by a
majority, or a minority, of the population of the country?
In a global poll conducted by an international agency for
a reputed newspaper in January 2010 involving 900 resi-
dents of the country that asked whether the ban should
stand or be repealed, 55% supported the banning. Let π

denote the population proportion of the country that sup-
ports banning. For testing H0: π = 0.5 against Ha: π �= 0.5,

(a) Find the standard error, and interpret.
(b) Find the test statistic, and interpret.
(c) Find the P-value, and interpret in context.

6.15. When the 2015 Heritage Conservation Survey
asked, “Would you be willing to pay higher taxes in order
to protect the heritage buildings?” 429 people answered
yes and 726 answered no. Software shows the following
results to analyze whether a majority or a minority of peo-
ple would answer yes:
----------------------------------------------------
Test of proportion = 0.5 vs not = 0.5

n Sample prop 95% CI z-Value P-Value
1155 0.453 (0.424, 0.481) -3.21 0.0007
----------------------------------------------------

(a) Specify the hypotheses that are tested.
(b) Report and interpret the test statistic value.
(c) Report and interpret the P-value as a probability.
(d) Explain an advantage of the confidence interval
shown over the significance test.

6.16. The International EQ Survey asked, “Indicate the
importance of honesty in your life.” Of the people sam-
pled in a country, Stata reports the following output for
the proportion who answered “very important” or “rather
important” (instead of “not very important” or “not at all
important”).
-------------------------------
One-sample test of proportion:
Number of obs = 2000
Variable | Mean Std. Err.
Honesty | .35 .0099288
p = proportion(honesty)
z = -13.4164
Ho: p = 0.5
Ha: p < 0.5
Pr(Z < z) = 0.0000
Ha: p ! = 0.5
Pr(|Z| > |z|) = 0.0000
Ha: p > 0.5
Pr(Z > z) = 1.0000
------------------------------

(a) Explain how to interpret all results shown.
(b) By contrast, the results for Country B had a sam-
ple proportion of 0.88 who answered “very important” or
“rather important.” Here are the test results:
----------------------
Ha: p < 0.5
Pr(Z < z) = 1.0000
Ha: p != 0.5
Pr(|Z| > |z|) = 0.0000
Ha: p > 0.5
Pr(Z > z) = 0.0000
----------------------

6.17. In the scientific test of astrology discussed in Exam-
ple 6.9 (page 175), the astrologers were correct with 40 of
their 116 predictions. Test H0: π = 1/3 against Ha: π >

1/3. Find the P-value, make a decision using α = 0.05,
and interpret.

6.18. The previous exercise analyzed whether astrologers
could predict the correct personality chart for a given
horoscope better than by random guessing. In the words
of that study, what would be a (a) Type I error? (b) Type
II error?

6.19. A secretary election in a labor union has two can-
didates. Exactly half the members currently prefer each
candidate.
(a) For a random sample of 500 voters, 290 voted for a par-
ticular candidate. Are you willing to predict the winner?
Why?
(b) For a random sample of 50 voters, 29 voted for a par-
ticular candidate. Would you be willing to predict the win-
ner? Why? (The sample proportion is the same in (a) and
(b), but the sample sizes differ.)

6.20. The authorship of an old document is in doubt. An
academician hypothesizes that the author was a sociolo-
gist named Olivia Munn. Upon a thorough investigation
of Munn’s known works, it is observed that one unusual
feature of her writing was that she consistently began 5%
of her sentences with the word therefore. To test the aca-
demician’s hypothesis, it is decided to count the number of
sentences in the disputed document that begin with there-
fore. Out of the 400 sentences, none do. Let π denote the
probability that any one sentence written by the unknown
author of the document begins with therefore. Test H0:
π = 0.05 against Ha: π �= 0.05. What assumptions are
needed for your conclusion to be valid?12

6.21. A multiple-choice test question has four possible re-
sponses. The question is difficult, with none of the four re-
sponses being obviously wrong, yet with only one correct
answer. It first occurs on an exam taken by 500 students.
Test whether more people answer the question correctly

12 F. Mosteller and D. L. Wallace conducted this type of investigation to determine whether Alexander Hamilton
or James Madison authored 12 of 12. See www.worldvaluessurvey.org/WVSOnline.jsp.MAIN, Vol. 19
(17), p. 174, Chapter 6, “Statistical Inference: Significance Tests the Federalist Papers.” See Frederick Mosteller
and David L. Wallace, Inference and Disputed Authorship: The Federalist (Reading Addison-Wesley, 1964).

http://www.worldvaluessurvey.org/WVSOnline.jsp.MAIN
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than would be expected just due to chance (that is, if ev-
eryone randomly guessed the correct answer).
(a) Set up the hypotheses for the test.
(b) Of the 500 students, 175 correctly answer the question.
Find the P-value, and interpret.

6.22. Example 6.4 (page 160) tested a therapy for
anorexia, using H0: μ = 0 and Ha: μ > 0 about the popu-
lation mean weight change.
(a) In the words of that example, what is a (i) Type I
error? (ii) Type II error?
(b) The P-value was 0.018. If the decision for α = 0.05
were in error, what type of error is it?
(c) Suppose instead α = 0.01. What decision would you
make? If it is in error, what type of error is it?

6.23. Nora and Ayush separately conduct studies to test
H0: μ = 400 against HA: μ �= 400, each with n = 1200.
Nora gets ȳ = 423.35 with se = 12.0. Ayush gets
ȳ = 434.2, with se = 17.0
(a) Show that t = 1.95 and P-value = 0.051 for Nora.
Show that t = 2.01 and P-value = 0.044 for Ayush.
(b) Using α = 0.050, for each study indicate whether the
result is “statistically significant.”
(c) Using this example, explain the misleading aspects of
reporting the result of a test as “P ≤ 0.05” versus “P >

0.05,” or as “Reject H0” versus “Do not reject H0,” with-
out reporting the actual P-value.

6.24. Nora and Oliva separately conduct studies to test
H0: π = 0.45 against H0: π �= 0.45, each with n = 485.
Nora gets π̂ = 240/485 = 0.494845 Oliva gets π̂ =
239/485 = 0.492784.
(a) Show that z = 1.99 and P-value = 0.046 for Nora.
Show that z = 1.89 and P-value = 0.058 for Oliva.
(b) Using α = 0.05, indicate in each case whether the re-
sult is “statistically significant.” Interpret.
(c) Use this example to explain why important informa-
tion is lost by reporting the result of a test as “P-value ≤
0.05” versus “P-value > 0.05,” or as “Reject H0” versus
“Do not reject H0,” without reporting the P-value.
(d) The 95% confidence interval for π is (0.451, 0.539)
for Nora and (0.449, 0.537) for Oliva. Explain how this
method shows that, in practical terms, the two studies had
very similar results.

6.25. A study considers whether the mean score μ on an
MBA entrance exam for students in 2017 was any differ-
ent from the mean of 400 for students in 1966. Test H0:
μ = 400 against Ha: μ �= 400 if for a nationwide ran-
dom sample of 9,000 students who took the exam in 2017,
ȳ = 397 and s = 90. Show that the result is highly signifi-
cant statistically, but not practically significant.

6.26. An academic survey on employees at their job mar-
ket entry level reported the presence of a notable gap
between graduate and postgraduate employees in their

confidence that tenure rules are clear, with postgraduates
feeling more confident. The 4500 staff members in the sur-
vey were asked to evaluate policies on a scale of 1 to 5
(very unclear to very clear). The mean response about
the criteria for tenure was 4.91 for graduates and 4.95
for postgraduates, which was indicated to meet the test
for statistical significance. Use this study to explain the
distinction between statistical significance and practical
significance.

6.27. Refer to Example 6.8 on “medical discoveries”
(page 173). Using a tree diagram, approximate P(Type I
error) under the assumption that a true effect exists 20%
of the time and that P(Type II error) = 0.30.

6.28. A decision is planned in a test of H0: μ = 0 against
Ha: μ > 0, using α = 0.05. If μ = 5, P(Type II error) =
0.17.
(a) Explain the meaning of this last sentence.
(b) If the test used α = 0.01, would P(Type II error) be
less than, equal to, or greater than 0.17? Explain.
(c) If μ = 10, would P(Type II error) be less than, equal
to, or greater than 0.17? Explain.

6.29. Let π denote the proportion of people under stress
who respond positively to treatment. A test is conducted
of H0: π = 0.60 against Ha: π > 0.60, for n = 30, using
α = 0.05.
(a) Find the region of sample proportion values for which
H0 is rejected.
(b) Suppose that π = 0.70. Find P (Type II error).

6.30. A follow-up to the anorexia study of Example 6.4
plans a test of H0: μ = 0 against Ha: μ > 0, for the mean
weight change μ for a new therapy, predicting that μ = 10.
The test uses α = 0.05. For n = 30, suppose the standard
deviation is 18. Find P(Type II error) if μ = 10 by showing
(a) a test statistic of t = 1.699 has a P-value of 0.05, (b) we
fail to reject H0 if ȳ < 5.6, (c) this happens if ȳ falls more
than 1.33 standard errors below 10, (d) this happens with
probability about 0.10.

6.31. Refer to the previous exercise.
(a) Find P(Type II error) if μ = 5. How does P(Type II
error) depend on the value of μ?
(b) Find P(Type II error) if μ = 10 and α = 0.01. How
does P(Type II error) depend on α?
(c) How does P(Type II error) depend on n?

6.32. An employee list contains the names of all employ-
ees who may be deputed with additional charges. The
proportion of women on the list is 0.56. A group of size
15 is selected at random from the list. None selected are
women.
(a) Find the probability of selecting 0 women.
(b) Test the hypothesis that the selections are random
against the alternative of bias against women. Report the
P-value, and interpret.
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6.33. A person claiming to possess extrasensory percep-
tion (ESP) says she can guess more often than not the
outcome of a flip of a balanced coin in another room, not
visible to her.
(a) Introduce appropriate notation, and state hypotheses
for testing her claim.
(b) Of five coin flips, she guesses the correct result four
times. Find the P-value and interpret.

6.34. In a newspaper exit poll of 1500 voters in the 2015
general election in an emerging nation, let x = number of
voters in the exit poll who voted for a candidate, Mr. X.

(a) Explain why this scenario would seem to satisfy the
three conditions needed to use the binomial distribution.
(b) If the population proportion voting for him had been
0.30, find the mean and standard deviation of the proba-
bility distribution of x.
(c) For (b), using the normal distribution approximation,
give an interval in which x would almost certainly fall.
(d) Now, actually the exit poll had x = 550. Explain how
you could make an inference about whether π is above or
below 0.30.

6.35. In a given year in a developing country, the proba-
bility of death in any earthquake equals 0.0004 for high-
landers and 0.0003 for plain land dwellers (Statistical Ab-
stract of the Developing Countries).

(a) In a town having 2 million highland dwellers, find the
mean and standard deviation of x = number of deaths
from any severe earthquake. State the assumptions for
these to be valid.
(b) Would it be surprising if x = 10? Explain. (Hint: How
many standard deviations is 10 from the expected value?)
(c) Based on the normal approximation to the binomial,
find an interval within which x has probability 0.95 of
occurring.

Concepts and Applications
6.36. You can use the Errors and Power applet at
www.pearsonglobaleditions.com/Agresti to in-
vestigate the performance of significance tests, to illustrate
their long-run behavior when used for many samples. For
significance tests, set the null hypothesis as H0: π = 0.50
for a one-sided test with Ha: π > 0.50 and sample size 50,
and set P(Type I error) = α = 0.05. The applet shows the
null sampling distribution of π̂ and the actual sampling dis-
tribution of π̂ for various true values of π . Click on Show
Type II error, and it also displays P(Type II error), which
is the probability of failing to reject H0 even though it is
false.

(a) Set the true value of the proportion to be (i) 0.60,
(ii) 0.70, (iii) 0.80. What happens to P(Type II error) as
π gets farther from the H0 value?
(b) Set the true value of the proportion to be (i) 0.53,
(ii) 0.52, (iii) 0.51. What value does P(Type II error) ap-
proach as π gets closer to the H0 value?

(c) Fix the true value of the proportion to be 0.60. Show
how P(Type II error) changes for n equal to (i) 50, (ii) 100,
(iii) 200.
(d) Summarize how P(Type II error) depends on π (for
fixed n) and on n (for fixed π).

6.37. Refer to the Students data file (Exercise 1.11 on
page 21).
(a) Test whether the population mean political ideology
differs from 4.0. Report the P-value, and interpret.
(b) Test whether the proportion favoring legalized abor-
tion equals, or differs, from 0.50. Report the P-value, and
interpret.

6.38. Refer to the data file your class created in Exercise
1.12 (page 22). For variables chosen by your instructor,
state a research question and conduct inferential statis-
tical analyses. Also, use graphical and numerical meth-
ods presented earlier in this text to describe the data
and, if necessary, to check assumptions for your analy-
ses. Prepare a report summarizing and interpreting your
findings.

6.39. A study considered the effects of a special class de-
signed to improve children’s verbal skills. Each child took
a verbal skills test before and after attending the class
for three weeks. Let y = second exam score − first exam
score. The scores on y for a random sample of four chil-
dren having learning problems were 3, 7, 3, 3. Conduct
inferential statistical methods to determine whether the
class has a positive effect. Summarize your analyses and
interpretations in a short report. (Note: The scores could
improve merely from the students feeling more comfort-
able with the testing process. A more appropriate design
would also administer the exam twice to a control group
that does not take the special class, comparing the changes
for the experimental and control groups using methods of
Chapter 7.)

6.40. Sixty students in a class at the University of Florida
made blinded evaluations of pairs of dark chocolates. For
60 comparisons of two chocolates, the first one was pre-
ferred 41 times. In the population that this sample repre-
sents, is there a strong evidence that a majority prefers one
of the chocolates? Refer to the following software output:

-------------------------------------------------
Test of parameter = 0.50 vs not = 0.50

n Sample prop 95.0% CI z-Value P-Value
60 0.6833 (0.557, 0.810) 2.84 0.002

-------------------------------------------------

Explain how each result on this output was obtained.
Summarize results in a way that would be clear to some-
one who is not familiar with statistical inference.

6.41. Researchers have studied possible abuse by security
officers in treating owner-drivers of small cars at cross-
roads. An NGO studied whether owner-drivers of small
cars were more likely than others in the population to be

http://www.pearsonglobaleditions.com/Agresti
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targeted by officers for traffic stops. They considered 360
car stops due to security reasons in a chosen city during
one week. Of those, 234 of the drivers were owners of
small cars. At that time, 45% of the city’s population was
owner of small cars. Does the number of owner-drivers of
small cars stopped give strong evidence of possible bias,
being higher than you’d expect if we take into account or-
dinary random variation? Explain your reasoning in a re-
port of at most 250 words.

6.42. An experiment with 26 students in an Israeli class-
room consisted of giving everyone a lottery ticket and
then later asking if they would be willing to exchange their
ticket for another one, plus a small monetary incentive.
Only 7 students agreed to the exchange. In a separate ex-
periment, 31 students were given a new pen and then later
asked to exchange it for another pen and a small mone-
tary incentive. All 31 agreed.13 Conduct inferential statis-
tical methods to analyze the data. Summarize your analy-
ses and interpretations in a short report.

6.43. Ideally, results of a statistical analysis should not de-
pend greatly on a single observation. To check this, it’s a
good idea to conduct a sensitivity study: Redo the analy-
sis after deleting an outlier from the data set or changing
its value to a more typical value, and check whether re-
sults change much. For the anorexia data of Example 6.4
(available in the Anorexia CB data file at the text web-
site), the weight change of 20.9 pounds was a severe out-
lier. Suppose this observation was actually 2.9 pounds but
was incorrectly recorded. Redo the one-sided test of Ex-
ample 6.4 (page 160), and summarize the influence of that
observation.

6.44. In making a decision in a test, a researcher worries
about the possibility of rejecting H0 when it is actually
true. Explain how to control the probability of this type
of error.

6.45. Consider the analogy between making a decision in
a test and making a decision about the innocence or guilt
of a defendant in a criminal trial.

(a) Explain what Type I and Type II errors are in the trial.

(b) Explain intuitively why decreasing P(Type I error) in-
creases P(Type II error).

(c) Defendants are convicted if the jury finds them to be
guilty “beyond a reasonable doubt.” A jury interprets this
to mean that if the defendant is innocent, the probability
of being found guilty should be only 1 in a billion. De-
scribe any disadvantages this strategy has.

6.46. Medical tests for diagnosing conditions such as
breast cancer are fallible, just like decisions in significance
tests. Identify (H0 true, H0 false) with disease (absent,
present), and (Reject H0, Do not reject H0) with diag-
nostic test (positive, negative), where a positive diagno-

sis means that the test predicts that the disease is present.
Explain the difference between Type I and Type II errors
in this context. Explain why decreasing P(Type I error)
increases P(Type II error), in this context.

6.47. An article in a management journal that deals with
changes in social skill over time states, “For these subjects,
the difference in their mean performances on a scale of
skill between age 25 and the current survey was signifi-
cant (P < 0.01).”

(a) Explain what it means for the result to be “significant.”
(b) Explain why it would have been more informative
if the authors provided the actual P-value rather than
merely indicating that it is below 0.01. What other infor-
mation might they have provided?

6.48. A popular psychology analysis journal reports that
“no significant difference was found between Emotional
Intelligence Quotient for the academicians and service
holders (P = 0.85).” Hence, the population emotional in-
telligence quotients would be identical for academicians
and service holders—true or false?

6.49. Harry conducted a significance test using Stata. The
output reports a P-value of 0.3598621. In summarizing
analyses in an article, explain why it would be sensible for
Harry to report P = 0.36 rather than P = 0.3598621.

6.50. A social study conducts 1000 significance tests. Of
these, 50 are significant at the 0.05 level. The researchers
write a report stressing only the 50 “significant” results,
not mentioning the other 950 tests that were “not signifi-
cant.” Explain what is misleading about their report.

6.51. Some journals have a policy of publishing research
results only if they achieve statistical significance at the
0.05 α-level.

(a) Explain the dangers of this.
(b) When medical stories in the mass media report sup-
posed large dangers or benefits of certain agents (e.g., cof-
fee drinking, fiber in cereal), later research often suggests
that the effects are smaller than first believed, or may not
even exist. Explain why.

Select the correct response(s) in Exercises 6.52–6.56. (More
than one may be correct.)

6.52. We analyze whether the true mean daily discharge
of waste by a chemical plant exceeds its claim of 1500
units. For the decision in the one-sided test using α = 0.01,

(a) If the plant is not exceeding the limit, but actually
μ = 1500, there is only a 1% chance that we will conclude
that they are not exceeding the limit.
(b) If the plant is exceeding the limit, there is only a 1%
chance that we will conclude that they are exceeding the
limit.

13 M. Bar-Hillel and E. Neter, Journal of Personality and Social Psychology, Vol. 70 (1996), pp. 17–27.
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(c) The probability that the sample mean equals exactly
the observed value would equal 0.01 if H0 were true.
(d) If we accept Ha, the probability that H0 is actually true
is 0.01.
(e) All of the above.

6.53. The P-value for testing H0: μ = 50 against Ha:
μ �= 50 is P = 0.003. This implies that
(a) There is strong evidence that μ �= 50.
(b) There is strong evidence that μ = 50.
(c) There is strong evidence that μ > 50.
(d) There is strong evidence that μ < 50.
(e) If μ were equal to 50, it would be unusual to obtain
data such as those observed.

6.54. In the previous exercise, suppose the test statistic
z = −5.48.
(a) There is strong evidence that μ > 50.
(b) There is strong evidence that μ < 50.
(c) There is strong evidence that μ = 50.

6.55. A 99% confidence interval for μ is (99, 116). Which
two statements about significance tests for the same data
are correct?
(a) In testing H0: μ = 110 against Ha: μ �= 110, P < 0.01.
(b) In testing H0: μ = 110 against Ha: μ �= 110, P > 0.01.
(c) In testing H0: μ = μ0 against Ha: μ �= μ0, P > 0.01 if
μ0 is any of the numbers outside the confidence interval.
(d) In testing H0: μ = μ0 against Ha: μ �= μ0, P > 0.01 if
μ0 is any of the numbers inside the confidence interval.

6.56. Let β denote P (Type II error). For an α = 0.01-
level test of H0: μ = 0 against Ha: μ > 0 with n = 50
observations, β = 0.57 at μ = 6. Then,
(a) At μ = 6, β > 0.57.
(b) If n = 80, then at μ = 6, β > 0.57.
(c) If α = 0.01, then at μ = 6, β > 0.57
(d) The power of the test is 0.43 at μ = 6.
(e) (d) must be false, because necessarily α + β = 1.

6.57. Answer true or false for each of the following, and
explain your answer:
(a) P (Type II error) always increases with P (Type I
error).
(b) If we accept HA using α = 0.01, then we also accept it
using α = 0.05.
(c) The P-value is the probability that HA is false. (Hint:
Do we find probabilities about variables and their statis-
tics, or about parameters?)
(d) A survey conducted by an NGO reports P = 0.082 for
testing H0: μ = 0 against Ha: μ �= 0. If the surveyors had
instead reported a 99% confidence interval for μ, then the
interval would have contained 0, and readers could have
better judged just which values are plausible for μ.

6.58. Explain the difference between one-sided and two-
sided alternative hypotheses, and explain how this affects
calculation of the P-value.

6.59. Explain why the terminology “do not reject H0” is
preferable to “accept H0.”

6.60. A researcher plans to survey people in your local-
ity to study whether a majority feel that the cap on for-
eign direct investment should be reduced. The researcher
has never studied statistics. How would you explain to
him the concepts of (a) null and alternative hypotheses,
(b) P-value, (c) α-level, (d) Type II error?

6.61. A random sample of size 50 has ȳ = 130. The
P-value for testing H0: μ = 120 against Ha: μ �= 120 is
P = 0.069. Explain what is incorrect about each of the
following interpretations of this P-value, and provide a
proper interpretation.

(a) The probability that the null hypothesis is correct
equals 0.069.
(b) The probability that ȳ = 130 if H0 is true equals
0.069.
(c) If in fact μ �= 120, the probability that the data would
at least be as contradictory to H0 as the observed data
equals 0.069.
(d) The probability of Type I error equals 0.069.
(e) We can accept H0 at the α = 0.06 level.
(f) We can reject H0 at the α = 0.06 level.

6.62.*Refer to the previous exercise and the P-value of
0.069.

(a) Explain why the P-value is the smallest α-level at
which H0 can be rejected; that is, P equals the smallest
level at which the data are significant.
(b) Refer to the correspondence between results of con-
fidence intervals and two-sided tests. When the P-value
is 0.069, explain why the 93.1% confidence interval is
the narrowest confidence interval for μ that contains
μ0 = 120.

6.63.*A surveyor conducts a significance test every time
he analyzes a new survey data. Over time, he conducts
200 tests.

(a) Suppose H0 is true in every case. What is the dis-
tribution of the number of times she rejects H0 at the
0.01 level?
(b) Suppose she rejects H0 in seven of the tests. Is it plau-
sible that H0 is correct in every case? Explain.

6.64.*Each year in an archive at New Delhi, the director
estimates the mean number of times the archived docu-
ments have been checked out in the previous year. To do
this, the director randomly samples computer records for
500 books and forms a 95% confidence interval for the
mean. This has been done for 10 years. Find the proba-
bility that (a) all the confidence intervals contain the true
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means; (b) at least one confidence interval does not con-
tain the true mean.

6.65.*Refer to Example 5.8 on 0 vegetarians in a sample
of n = 20 and Exercises 5.77 and 5.77.
(a) At the Inference for a Proportion applet at
www.pearsonglobaleditions.com/Agresti, en-
ter 0 successes for n = 20. Explain why the reported
standard error values differ when you click on Confidence
Interval and when you click on Significance Test and enter
a null hypothesis value such as 0.50 for π .
(b) To test H0: π = 0.50, show what happens if you find
the z test statistic using the se = √

π̂(1 − π̂)/n formula for
confidence intervals. Explain why se0 = √

π0(1 − π0)/n is
more appropriate for tests.

6.66.* You test H0: π = 0.50 against Ha: π > 0.50, us-
ing α = 0.05. In fact, Ha is true. Explain why P(Type II
error) increases toward 0.95 as π moves down toward
0.50. (Assume n and α stay fixed. You may want to look
at the applet introduced in Exercise 6.36.)

6.67.* Refer to the ESP experiment in Exercise 6.33, with
n = 5.

(a) For what value(s) of x = number of correct guesses
can you reject H0: π = 0.50 in favor of Ha: π > 0.50, us-
ing α = 0.05?

(b) For what value(s) of x can you reject H0 using α =
0.01? (Note: For small samples, it may not be possible to
achieve very small P-values.)

(c) Suppose you test H0 using α = 0.05. If π = 0.50, what
is the actual P(Type I error)? (Note: For discrete distri-
butions, P(Type I error) may be less than intended. It is
better to report the P-value.)

6.68.* You evaluate 16 schools in your city over the past
four years according to the change from the previous year
in the mean student score on a standardized achievement
test. Of the schools, school number 3 performed above the
median in all four years. Explain what is misleading if you
use this record to decide that that school is performing
better than the others.

http://www.pearsonglobaleditions.com/Agresti
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7.8 Chapter Summary

C omparing two groups is a very common analysis in the social and behavioral sciences. A study
might compare mean amount of time spent on housework for men and women. Another study

might compare the proportions of Americans and Europeans who support strict gun control. For
quantitative variables, we compare means. For categorical variables, we compare proportions.

7.1 Preliminaries for Comparing Groups
Do women tend to spend more time on housework than men? If so, how much more?
The 2012 General Social Survey asked, “On average, how many hours a week do
you personally spend on household work, not including childcare and leisure time
activities?” Table 7.1 reports the mean and standard deviation, classified by sex of
respondent. We use Table 7.1 in explaining basic concepts for comparing groups.

TABLE 7.1: Hours per Week Spent on Household Work

Household Work Time

Sex Sample Size Mean Standard Deviation

Men 583 8.3 9.4
Women 693 11.9 12.7

BIVARIATE ANALYSES WITH RESPONSE
AND EXPLANATORY VARIABLES

Two groups being compared constitute a binary variable—a variable having only
two categories, sometimes also called dichotomous. In a comparison of mean house-
work time for men and women, men and women are the two categories of the binary
variable, sex. Methods for comparing two groups are special cases of bivariate sta-
tistical methods—an outcome variable of some type is analyzed for each category of
a second variable.

From Section 3.5 (page 63), an outcome variable about which comparisons are
made is called a response variable. The variable that defines the groups is called
the explanatory variable. In Table 7.1, weekly time spent on household work is the
response variable. The sex of the respondent is the explanatory variable.

191
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DEPENDENT AND INDEPENDENT SAMPLES

Some studies compare groups at two or more points in time. For example, a longitu-
dinal study observes subjects at several times. An example is the Framingham Heart
Study, which every two years since 1948 has observed many health characteristics
of more than 5000 adults from Framingham, Massachusetts. Samples that have the
same subjects in each sample are called dependent samples.

More generally, two samples are dependent when a natural matching occurs be-
tween each subject in one sample and a subject in the other sample. Usually this hap-
pens when each sample has the same subjects. But matching can also occur when the
two samples have different subjects. An example is a comparison of housework time
of husbands and wives, the husbands forming one sample and their wives the other.

More commonly, comparisons use independent samples. This means that the ob-
servations in one sample are independent of those in the other sample. The subjects
in the two samples are different, with no matching between one sample and the other
sample. In observational studies (page 29), comparisons of groups often result from
dividing a sample into subsamples according to classification on a variable such as sex
or race or political party. An example is Table 7.1. Subjects were randomly selected and
thenclassifiedontheir sexandmeasuredonvariousresponsevariables.Thesamplesof
men and women were independent. Such a cross-sectional study uses a single survey
to compare groups. If the overall sample was randomly selected, then the subsamples
are independent random samples from the corresponding subpopulations.

Suppose you plan to use an experimental study to analyze whether a tutoring pro-
gram improves mathematical understanding. One study design administers an exam
on math concepts to a sample of students both before and after they go through the
program. The sample of exam scores before the program and the sample of exam
scores after the program are then dependent, because each sample has the same sub-
jects. Another study design randomly splits a class of students into two groups, one
of which takes the tutoring program (the experimental group) and one of which does
not (the control group). After the course, both groups take the math concepts exam,
and mean scores are compared. The two samples are then independent, because they
contain different subjects without a matching between samples.

Why do we distinguish between independent and dependent samples? Because
the standard error formulas for statistics that compare means or compare propor-
tions are different for the two types of sample. With dependent samples, matched
responses are likely to be correlated. In the study about a tutoring program, the stu-
dents who perform relatively well on one exam probably tend to perform well on the
second exam also. This affects the standard error of statistics comparing the groups.

STANDARD ERROR OF ESTIMATED
DIFFERENCE BETWEEN GROUPS

To compare two populations, we estimate the difference between their parameters.
To compare population means μ1 and μ2, we treat μ2 − μ1 as a parameter and es-
timate it by the difference of sample means, ȳ2 − ȳ1. For Table 7.1, the estimated
difference between women and men in the population mean weekly time spent on
household work is ȳ2 − ȳ1 = 11.9 − 8.3 = 3.6 hours.

The sampling distribution of the estimator ȳ2 − ȳ1 has expected value μ2 − μ1.
For large random samples, by the Central Limit Theorem this sampling distribution
has a normal shape, as Figure 7.1 portrays.

An estimate has a standard error that describes how precisely it estimates a pa-
rameter. Likewise, the difference between estimates from two samples has a standard
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Normal sampling distribution
Mean 5 m2 2 m1 

m2 2 m1

y2 2 y1
_ _

FIGURE 7.1: For Random Samples, the Sampling Distribution of the Difference
between the Sample Means ȳ2 − ȳ1 Is Approximately Normal about μ2 − μ1

error. For Table 7.1, the standard error of the sampling distribution of ȳ2 − ȳ1 de-
scribes how precisely ȳ2 − ȳ1 = 3.6 estimates μ2 − μ1. If many studies had been
conducted in the United States comparing weekly household work time for women
and men, the estimate ȳ2 − ȳ1 would have varied from study to study. The standard
error describes the variability of the estimates from different potential studies of the
same size.

The following general rule enables us to find standard errors when we compare
estimates from independent samples:

Standard Error of Difference
between Two Estimates

For two estimates from independent samples that have estimated standard
errors se1 and se2, the sampling distribution of their difference has

Estimated standard error =
√

(se1)2 + (se2)2.

Each estimate has sampling error, and the variabilities add together to determine
the standard error of the difference of the estimates. The standard error formula for
dependent samples differs, and Section 7.4 presents it.

Recall that the estimated standard error of a sample mean is

se = s√
n

,

where s is the sample standard deviation. Let n1 denote the sample size for the first
sample and n2 the sample size for the second sample. Let s1 and s2 denote the sample
standard deviations, which estimate the corresponding population standard devia-
tions σ1 and σ2. The difference ȳ2 − ȳ1 between two sample means with independent
samples has estimated standard error

se =
√

(se1)2 + (se2)2 =
√(

s1√
n1

)2

+
(

s2√
n2

)2

=
√

s2
1

n1
+ s2

2

n2
.

For example, from Table 7.1, the estimated standard error of the difference of
3.6 hours between the sample mean weekly household work time for women and
men is

se =
√

s2
1

n1
+ s2

2

n2
=

√
(9.4)2

583
+ (12.7)2

693
= 0.62.

For such large sample sizes, the estimate ȳ2 − ȳ1 would not vary much from study
to study.

From the formula, the standard error of the difference is larger than the standard
error for either sample estimate alone. Why is this? In practical terms, (ȳ2 − ȳ1) is
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often farther from (μ2 −μ1) than ȳ1 is from μ1 or ȳ2 is from μ2. For instance, suppose
μ1 = μ2 = 10 (unknown to us), but the sample means are ȳ1 = 8 and ȳ2 = 12. Then
the errors of estimation were

ȳ1 − μ1 = 8 − 10 = −2 and ȳ2 − μ2 = 12 − 10 = 2,

each estimate being off by a distance of 2. But the estimate (ȳ2 − ȳ1) = 12 − 8 = 4
falls 4 from (μ2 −μ1) = 0. The error of size 4 for the difference is larger than the error
of size 2 for either mean individually. Suppose a sample mean that falls 2 away from
a population mean is well out in the tail of a sampling distribution for a single sample
mean. Then, a difference between sample means that falls 4 away from the difference
between population means is well out in the tail of the sampling distribution for ȳ2−ȳ1.

RATIOS OF MEANS AND PROPORTIONS

This chapter focuses on comparing parameters by their difference, but we can also
compare them by their ratio. The ratio equals 1.0 when the parameters are equal.
Ratios farther from 1.0 represent larger effects.

In Table 7.1, the ratio of sample mean household work time for women and for
men is 11.9/8.3 = 1.43. The sample mean for women was 1.43 times the sample mean
for men. We can also express this by saying that the mean for women was 43% higher
than the mean for men.

When proportions for two groups are close to 0, the ratio1 is often more infor-
mative than the difference. For example, according to recent data from the United
Nations, the annual gun homicide rate is 62.4 per one million residents in the United
States and 1.3 per one million residents in Britain. In proportion form, the results are
0.0000624 in the United States and 0.0000013 in Britain. The difference between the
proportions is 0.0000624 − 0.0000013 = 0.0000611, extremely small. By contrast,
the ratio is 0.000624/0.0000013 = 624/13 = 48. The proportion of people killed
by guns in the United States is 48 times the proportion in Britain. In this sense, the
effect is very large.

7.2 Categorical Data: Comparing Two Proportions
Let’s now learn how to compare proportions inferentially. Let π1 denote the propor-
tion for the first population and π2 the proportion for the second population. Let π̂1

and π̂2 denote the sample proportions. You may wish to review Sections 5.2 and 6.3
on inferences for proportions in the one-sample case.

Example
7.1

Does Prayer Help Coronary Surgery Patients? A study used patients at six U.S. hospi-
tals who were to receive coronary artery bypass graft surgery.2 The patients were ran-
domly assigned to two groups. For one group, Christian volunteers were instructed
to pray for a successful surgery with a quick, healthy recovery and no complications.
The praying started the night before surgery and continued for two weeks. The other
group did not have volunteers praying for them. The response was whether medical
complications occurred within 30 days of the surgery. Table 7.2 summarizes results.

1 The ratio is often called the relative risk, because it is used in public health to compare rates for an undesirable
outcome.
2 H. Benson et al., American Heart Journal, vol. 151 (2006), pp. 934–952.
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TABLE 7.2: Whether Complications Occurred for Heart Surgery
Patients Who Did or Did Not Have Group Prayer

Complications

Prayer Yes No Total

Yes 315 289 604
No 304 293 597

Is there a difference in complication rates for the two groups? Let π1 denote the
probability of complications for those patients who had a prayer group. Let π2 denote
the probability of complications for the subjects not having a prayer group. These are
population proportions for the conceptual population this sample represents. From
Table 7.2, the sample proportions who had complications are

π̂1 = 315
604

= 0.522 and π̂2 = 304
597

= 0.509.

We compare the probabilities using their difference, π2 − π1. The difference of
sample proportions, π̂2−π̂1, estimates π2−π1. If n1 and n2 are relatively large, π̂2−π̂1

has a sampling distribution that is approximately normal, by the Central Limit
Theorem. See Figure 7.2. The mean of the sampling distribution is the parameter
π2 − π1 to be estimated.

Normal sampling distribution:
Mean 5 p2 2 p1
Standard error:

p2 2 p1

1.96 se

p2 2 p1ˆ ˆ

se 5
p1(1 2 p1)

n1

p2(1 2 p2)
n2

1
ˆˆˆˆ

.95

FIGURE 7.2: For Large Random Samples, the Sampling Distribution of the Estimator
π̂2 − π̂1 of the Difference π2 − π1 of Population Proportions Is Approximately Normal,

by the Central Limit Theorem

From the rule on page 193, the standard error of the difference of sample pro-
portions equals the square root of the sum of squared standard errors of the separate
sample proportions. Recall (page 119) that the estimated standard error of a single
sample proportion is

se =
√

π̂(1 − π̂)
n

.

Therefore, the difference between two proportions has estimated standard error

se =
√

(se1)2 + (se2)2 =
√

π̂1(1 − π̂1)
n1

+ π̂2(1 − π̂2)
n2

.

For Table 7.2, π̂1 = 0.522, π̂2 = 0.509, and π̂2 − π̂1 has estimated standard error

se =
√

(0.522)(0.478)
604

+ (0.509)(0.491)
597

= 0.0288.
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For samples of these sizes, the difference in sample proportions would not vary much
from study to study.

CONFIDENCE INTERVAL FOR DIFFERENCE OF PROPORTIONS

As with a single proportion, the confidence interval takes the point estimate and adds
and subtracts a margin of error that is a z-score times the estimated standard error,
such as

(π̂2 − π̂1) ± 1.96(se)

for 95% confidence.

Confidence Interval for
π2 − π1

For large, independent random samples, a confidence interval for the
difference π2 − π1 between two population proportions is

(π̂2 − π̂1) ± z(se), where se =
√

π̂1(1 − π̂1)
n1

+ π̂2(1 − π̂2)
n2

.

The z-score depends on the confidence level, such as 1.96 for 95%
confidence.

The sample is large enough to use this formula if, for each sample, at least 10
observations fall in the category for which the proportion is estimated, and at least
10 observations do not fall in that category. When this is not the case, the formula
is still valid when you make a simple adjustment3: Add four observations, by adding
one observation of each type to each sample.

Example
7.2

Comparing Prayer and Non-Prayer Surgery Patients For Table 7.2, we estimate the
difference π2 − π1 between the probability of complications for the non-prayer and
prayer surgery patients. Since π̂1 = 0.522 and π̂2 = 0.509, the estimated difference is
π̂2−π̂1 = −0.013. There was a drop of 0.013 in the proportion who had complications
among those not receiving prayer.

To determine the precision of this estimate, we form a confidence interval. We
have found that se = 0.0288. A 95% confidence interval for π2 − π1 is

(π̂2 − π̂1) ± 1.96(se), or (0.509 − 0.522) ± 1.96(0.0288)

= −0.013 ± 0.057, or (−0.07, 0.04).

It seems that the difference is close to 0, so the probability of complications is similar
for the two groups.

INTERPRETING A CONFIDENCE INTERVAL
COMPARING PROPORTIONS

When the confidence interval for π2 − π1 contains 0, as in the previous example, it is
plausible that π2 − π1 = 0. That is, it is believable that π1 = π2. Insufficient evidence
exists to conclude which of π1 or π2 is larger. For the confidence interval for π2 − π1

of (−0.07, 0.04), we infer that π2 may be as much as 0.07 smaller or as much as 0.04
larger than π1.

3 See A. Agresti and B. Caffo, American Statistician, vol. 54 (2000), pp. 280–288; this is an analog of the Agresti–
Coull method (page 138) of adding four observations for a single sample.



Section 7.2 Categorical Data: Comparing Two Proportions 197

When a confidence interval for π2−π1 contains only negative values, this suggests
that π2 − π1 is negative. In other words, we infer that π2 is smaller than π1. When a
confidence interval for π2 −π1 contains only positive values, we conclude that π2 −π1

is positive; that is, π2 is larger than π1.
Which group we call Group 1 and which we call Group 2 is arbitrary. If we let

Group 1 be the non-prayer group rather than the prayer group, then the estimated
difference would be +0.013 rather than −0.013. The confidence interval would have
been (−0.04, 0.07), the negatives of the endpoints we obtained. Similarly, for con-
clusions it does not matter whether we form a confidence interval for π2 − π1 or for
π1 − π2. If the confidence interval for π2 − π1 is (−0.07, 0.04), then the confidence
interval for π1 − π2 is (−0.04, 0.07).

The magnitude of values in the confidence interval tells you how large any true
difference is likely to be. If all values in the confidence interval are near 0, such as
the interval (−0.07, 0.04), we infer that π2 − π1 is small in practical terms even if not
exactly equal to 0.

As in the one-sample case, larger sample sizes contribute to a smaller se, a
smaller margin of error, and narrower confidence intervals. In addition, higher confi-
dence levels yield wider confidence intervals. For the prayer study, a 99% confidence
interval equals (−0.06, 0.09), wider than the 95% confidence interval of (−0.04, 0.07).

SIGNIFICANCE TESTS ABOUT π2 − π1

To compare population proportions π1 and π2, a significance test specifies H0: π1 =
π2. For the difference of proportions parameter, this hypothesis is H0: π2 − π1 = 0,
no difference, or no effect.

Under the presumption for H0 that π1 = π2, we estimate the common value
of π1 and π2 by the sample proportion for the entire sample. Denote this by π̂ . To
illustrate, for the data in Table 7.2 from the prayer study, π̂1 = 315/604 = 0.522 and
π̂2 = 304/597 = 0.509. For the entire sample,

π̂ = (315 + 304)/(604 + 597) = 619/1201 = 0.515.

The proportion π̂ is called a pooled estimate, because it pools together observations
from the two samples.

The test statistic measures the number of standard errors between the estimate
and the H0 value. Treating π2 − π1 as the parameter, we test that π2 − π1 = 0; that is,
the null hypothesis value of π2 − π1 is 0. The estimated value of π2 − π1 is π̂2 − π̂1.
The test statistic is

z = Estimate − Null hypothesis value
Standard error

= (π̂2 − π̂1) − 0
se0

.

Rather than using the standard error from the confidence interval, you should use an
alternative formula based on the presumption stated in H0 that π1 = π2. We use the
notation se0, because it is a se that holds under H0. This standard error, which uses
the pooled estimate π̂ of a common value, is

se0 =
√

π̂(1 − π̂)
n1

+ π̂(1 − π̂)
n2

=
√

π̂(1 − π̂)
(

1
n1

+ 1
n2

)
.

The P-value depends in the usual way on whether the test is two-sided,
Ha: π1 �= π2 (i.e., π2 − π1 �= 0), or one-sided, Ha: π1 > π2 (i.e., π2 − π1 < 0) or
Ha: π1 < π2 (i.e., π2 − π1 > 0). Most common is the two-sided alternative. Its
P-value is the two-tail probability from the standard normal distribution that falls
beyond the observed test statistic value. This z test is valid when each sample has at
least 10 outcomes of each type.
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Example
7.3

Test Comparing Prayer and Non-Prayer Surgery Patients For Table 7.2 on complica-
tion rates for prayer and non-prayer surgery patients, the standard error estimate for
the significance test is

se0 =
√

π̂(1 − π̂)
(

1
n1

+ 1
n2

)
=

√
0.515(0.485)

(
1

604
+ 1

597

)

=
√

0.000832 = 0.0288.

The test statistic for H0: π1 = π2 is

z = π̂2 − π̂1

se0
= 0.509 − 0.522

0.0288
= −0.43.

This z-score has two-sided P-value equal to 0.67. There is not much evidence
against H0.

In summary, it is plausible that the probability of complications is the same for
the prayer and non-prayer conditions. However, this study does not disprove the
power of prayer. Apart from the fact that we cannot accept a null hypothesis, the
experiment could not control many factors, such as whether friends and family were
also praying for the patients.

You can use software to construct confidence intervals and significance tests
comparing proportions. If you already have sample proportions, Stata can conduct
the inferences with the prtesti command (or a dialog box), by entering n and π̂ for
each group. It constructs a confidence interval for each population proportion and
for the difference, and a significance test for each possible alternative hypothesis.
Table 7.3 illustrates for this example.

TABLE 7.3: Stata Software for Performing Two-Sample Inferences for Proportions. (Stata
estimates π1 − π2 instead of π2 − π1.)

. prtesti 604 0.52152 597 0.50921

Two-sample test of proportions x: Number of obs = 604
y: Number of obs = 597

------------------------------------------------------------------
Variable | Mean Std. Err. z P>|z| [95% Conf. Interval]

x | .52152 .0203259 .481682 .561358
y | .50921 .0204602 .469109 .549311

----------+-------------------------------------------------------
diff | .01231 .0288402 -.044216 .068836

| under Ho: .0288423 0.43 0.670

Ho: diff = 0
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0

Pr(Z < z) = 0.6652 Pr(|Z| < |z|) = 0.6695 Pr(Z > z) = 0.3348

With R software, you can also conduct inference by entering the counts in the
category of interest and the sample sizes, as shown in Appendix A. Internet applets
are also available.4

4 For example, the Comparing Two Proportions applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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CONTINGENCY TABLES AND CONDITIONAL PROBABILITIES

Table 7.2 is an example of a contingency table. Each row is a category of the explana-
tory variable (whether prayed for) which defines the two groups compared. Each
column is a category of the response variable (whether complications occurred). The
cells of the table contain frequencies for the four possible combinations of outcomes.

The parameters π1 and π2 estimated using the contingency table are conditional
probabilities. This term refers to probabilities for a response variable evaluated un-
der two conditions, namely, the two levels of the explanatory variable. For instance,
under the condition that the subject is being prayed for, the conditional probability
of developing complications is estimated to be 315/604 = 0.52.

This section has considered binary response variables. Instead, the response
could have several categories. For example, the response categories might be
(No complications, Slight complications, Severe complications). Then, we could com-
pare the two groups in terms of the conditional probabilities of observations in each
of the three categories. Likewise, the number of groups compared could exceed two.
Chapter 8 shows how to analyze contingency tables having more than two rows
or columns.

7.3 Quantitative Data: Comparing Two Means
We compare two population means μ1 and μ2 by making inferences about their dif-
ference. You may wish to review Sections 5.3 and 6.2 on inferences for means in the
one-sample case.

CONFIDENCE INTERVAL FOR μ2 − μ1

For large random samples, or for small random samples from normal population
distributions, the sampling distribution of (ȳ2 − ȳ1) has a normal shape. As usual,
inference for means with estimated standard errors uses the t distribution for test
statistics and for the margin of error in confidence intervals. A confidence interval
takes the point estimate and adds and subtracts a margin of error that is a t-score
times the standard error.

Confidence Interval
for μ2 − μ1

For independent random samples from two groups that have normal
population distributions, a confidence interval for μ2 − μ1 is

(ȳ2 − ȳ1) ± t(se), where se =
√

s2
1

n1
+ s2

2

n2
.

The t-score is chosen to provide the desired confidence level.

The formula for the degrees of freedom for the t-score, called the Welch–
Satterthwaite approximation, is complex. The df depends on the sample standard
deviations s1 and s2 as well as the sample sizes n1 and n2. If s1 = s2 and n1 = n2, it
simplifies to df = (n1+ n2−2). This is the sum of the df values for separate inference
about each group; that is, df = (n1 − 1) + (n2 − 1) = n1 + n2 − 2. Generally, df falls
somewhere between n1 + n2 − 2 and the minimum of (n1 − 1) and (n2 − 1). Software
can find this df value, t-score, and confidence interval.

In practice, the method is robust to violations of the normal population assump-
tion. This is especially true when both n1 and n2 are at least about 30, by the Central
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Limit Theorem. As usual, you should be wary of extreme outliers or of extreme skew
that may make the mean unsuitable as a summary measure.

Example
7.4

Comparing Housework Time of Men and Women For Table 7.1 (page 191) on the
weekly time spent on housework, denote the population mean by μ1 for men and
μ2 for women. That table reported sample means of 8.3 hours for 583 men and 11.9
hours for 693 women, with sample standard deviations of 9.4 and 12.7, respectively.
The point estimate of μ2 − μ1 equals ȳ2 − ȳ1 = 11.9 − 8.3 = 3.6 hours. Section 7.1
found that the estimated standard error of this difference is

se =
√

s2
1

n1
+ s2

2

n2
=

√
(9.4)2

583
+ (12.7)2

693
= 0.620.

The sample sizes are very large, so the t-score is essentially the z-score (1.96).
The 95% confidence interval for μ2 − μ1 is

(ȳ2 − ȳ1) ± 1.96(se) = 3.6 ± 1.96(0.620), or 3.6 ± 1.2, which is (2.4, 4.8).

We can be 95% confident that the population mean amount of weekly time spent on
housework is between 2.4 and 4.8 hours higher for women than men.

INTERPRETING A CONFIDENCE INTERVAL COMPARING MEANS

The confidence interval (2.4, 4.8) contains only positive values. Since we took the
difference between the mean for women and the mean for men, we can infer that the
population mean is higher for women. A confidence interval for μ2−μ1 that contains
only negative values suggests that μ2 −μ1 is negative, meaning that we can infer that
μ2 is less than μ1. When the confidence interval contains 0, insufficient evidence
exists to conclude which of μ1 or μ2 is larger. It is then plausible that μ1 = μ2.

The identification of which is group 1 and which is group 2 is arbitrary, as is
whether we estimate μ2 − μ1 or μ1 − μ2. For instance, a confidence interval of (2.4,
4.8) for μ2 − μ1 is equivalent to one of (−4.8,−2.4) for μ1 − μ2.

SIGNIFICANCE TESTS ABOUT μ2 − μ1

To compare population means μ1 and μ2, we can also conduct a significance test of
H0: μ1 = μ2. For the difference of means parameter, this hypothesis is H0: μ2−μ1 = 0
(no effect). Alternative hypotheses can be two-sided or one-sided.

As usual, the test statistic measures the number of standard errors between the
estimate and the H0 value,

t = Estimate of parameter − Null hypothesis value of parameter
Standard error of estimate

.

Treating μ2 − μ1 as the parameter, we test that μ2 − μ1 = 0. Its estimate is ȳ2 − ȳ1.
The standard error is the same as in a confidence interval. The t test statistic is

t = (ȳ2 − ȳ1) − 0
se

, where se =
√

s2
1

n1
+ s2

2

n2
,

with the same df as in constructing a confidence interval.
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Example
7.5

Test Comparing Mean Housework for Men and Women Using the data from Table 7.1
(page 191), we now test for a difference between the population mean housework
time, μ1 for men and μ2 for women. We test H0: μ1 = μ2 against Ha: μ1 �= μ2. We’ve
seen that the estimate ȳ2 − ȳ1 = 11.9 − 8.3 = 3.6 has se = 0.620.

The t test statistic is

t = (ȳ2 − ȳ1) − 0
se

= (11.9 − 8.3)
0.620

= 5.8.

Such an enormous t-value gives a P-value that is 0 to many decimal places. We con-
clude that the population means differ. The sample means show that the difference
takes the direction of a higher mean for women.

In practice, data analysts use significance tests much more often for two-sample
comparisons than for one-sample analyses. It is usually artificial to test whether the
population mean equals one particular value, such as in testing H0: μ = μ0. However,
it is often relevant to test whether a difference exists between two population means,
such as in testing H0: μ1 = μ2. For instance, we may have no idea what to hypothesize
for the mean amount of housework time for men, but we may want to know whether
that mean (whatever its value) is the same as, larger than, or smaller than the mean
for women.

Software can construct confidence intervals and significance tests comparing
means. If you already have summary statistics, some software (such as SPSS and
Stata) can conduct the inferences with them. With Stata, you apply the ttesti com-
mand (or use a dialog box) and enter n, ȳ, and s for each group. See Table 7.4. Internet
applets are also available.5 For comparing means, most software also presents results
for another method that makes the additional assumption that σ1 = σ2. We present
this method on page 205.

TABLE 7.4: Stata Software for Performing Two-Sample Inferences for Means. (Stata estimates
μ1 − μ2 instead of μ2 − μ1.)

. ttesti 583 8.3 9.4 693 11.9 12.7, unequal

Two-sample t test with unequal variances
| Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

x | 583 8.3 .3893082 9.4 7.53538 9.06462
y | 693 11.9 .4824331 12.7 10.95279 12.84721

----+------------------------------------------------------------
diff | -3.6 .6199214 -4.816197 -2.383803

diff = mean(x) - mean(y) t = -5.8072
Ho: diff = 0 Satterthwaite’s degrees of freedom = 1254.29

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.0000 Pr(|T| > |t|) = 0.0000 Pr(T > t) = 1.0000

CORRESPONDENCE BETWEEN CONFIDENCE INTERVALS AND TESTS

For means, the equivalence between two-sided tests and confidence intervals men-
tioned in Sections 6.2 and 6.4 also applies in the two-sample case. For example, since
the two-sided P-value in Example 7.5 is less than 0.05, we reject H0: μ2−μ1 = 0 at the

5 For example, the Comparing Two Means applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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α = 0.05 level. Similarly, a 95% confidence interval for μ2 − μ1 does not contain 0,
the H0 value. That interval equals (2.4, 4.8).

As in one-sample inference, confidence intervals are more informative than
tests. The confidence interval tells us not only that the population mean differs for
men and women, but it shows us just how large that difference is likely to be, and in
which direction.

7.4 Comparing Means with Dependent Samples
Dependent samples occur when each observation in sample 1 matches with an ob-
servation in sample 2. The data are often called matched-pairs data, because of this
matching.

Dependent samples commonly occur when each sample has the same subjects.
Examples are longitudinal observational studies that observe a person’s response at
several points in time and experimental studies that take repeated measures on sub-
jects. An example of the latter is a crossover study, in which a subject receives one
treatment for a period and then the other treatment. The next example illustrates this.

Example
7.6

Cell Phone Use and Driver Reaction Time An experiment6 used a sample of college
students to investigate whether cell phone use impairs drivers’ reaction times. On
a machine that simulated driving situations, at irregular periods a target flashed red
or green. Participants were instructed to press a brake button as soon as possible
when they detected a red light. Under the cell phone condition, the student carried
out a conversation about a political issue on the cell phone with someone in a
separate room. In the control condition, they listened to a radio broadcast or to
books-on-tape while performing the simulated driving.

For each student and each condition, Table 7.5 records their mean response time
(in milliseconds) over several trials. Figure 7.3 shows box plots of the data for the two
conditions. Student 28 is an outlier under each condition.

With matched-pairs data, for each pair we form

Difference = Observation in sample 2 − Observation in sample 1.

Table 7.5 shows the difference scores for the cell phone experiment. Let ȳd denote
the sample mean of the difference scores. This estimates μd, the population mean
difference. In fact, the parameter μd is identical to μ2 − μ1, the difference between
the population means for the two groups. The mean of the differences equals the
difference between the means.

Difference of means
= Mean of differences

For matched-pairs data, the difference between the means of the two groups
equals the mean of the difference scores.

INFERENCES COMPARING MEANS USING PAIRED
DIFFERENCE SCORES

We can base analyses about μ2 − μ1 on inferences about μd, using the single sam-
ple of difference scores. This simplifies the analysis, because it reduces a two-sample
problem to a one-sample problem.

6 Data courtesy of David Strayer, University of Utah. See D. Strayer and W. Johnston, Psychological Science,
vol. 21 (2001), pp. 462–466.
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TABLE 7.5: Reaction Times (in Milliseconds) on Driving Skills Task and Cell Phone Use (Yes
or No). The difference score is the reaction time using the cell phone minus the
reaction time not using it. This is the CellPhone data file at the text website.

Cell Phone? Cell Phone?

Student No Yes Difference Student No Yes Difference

1 604 636 32 17 525 626 101
2 556 623 67 18 508 501 −7
3 540 615 75 19 529 574 45
4 522 672 150 20 470 468 −2
5 459 601 142 29 512 578 66
6 544 600 56 22 487 560 73
7 513 542 29 23 515 525 10
8 470 554 84 24 499 647 148
9 556 543 −13 25 448 456 8
10 531 520 −11 26 558 688 130
11 599 609 10 27 589 679 90
12 537 559 22 28 814 960 146
13 619 595 −24 29 519 558 39
14 536 565 29 30 462 482 20
15 554 573 19 31 521 527 6
16 467 554 87 32 543 536 −7

400 500 600 700 800 900 1000

Cell phone
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FIGURE 7.3: Box Plots of Observations for the Experiment on the Effects of Cell
Phone Use on Reaction Times

Let n denote the number of observations in each sample. This equals the number
of difference scores. The confidence interval for μd is

ȳd ± t
(

sd√
n

)
.

Here, ȳd and sd are the sample mean and standard deviation of the difference scores,
and t is the t-score for the chosen confidence level, having df = n−1. This confidence
interval has the same form as the one Section 6.3 presented for a single mean. We
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apply the formula to the single sample of n differences rather than to the original
two sets of observations.

For testing H0: μ1 = μ2, we express the hypothesis in terms of the difference
scores as H0: μd = 0. The test statistic is

t = ȳd − 0
se

, where se = sd√
n

.

This compares the sample mean of the differences to the null hypothesis value of 0
by the number of standard errors between them. The standard error is the same one
used for a confidence interval. Since this test uses the difference scores for the pairs
of observations, it is called a paired-difference t test.

Example
7.7

Comparing Driver Reaction Times by Cell Phone Use For the matched-pairs data in
Table 7.5 for the driving and cell phone experiment, the mean reaction times were
534.6 milliseconds without the cell phone and 585.2 milliseconds while using it. The
32 difference scores (32, 67, 75, . . . ) from the table have a sample mean of

ȳd = [32 + 67 + 75 + · · · + (−7)]/32 = 50.6.

This equals the difference between the sample means of 585.2 and 534.6 for the two
conditions. The sample standard deviation of the 32 difference scores is

sd =
√

(32 − 50.6)2 + (67 − 50.6)2 + · · ·
32 − 1

= 52.5.

The standard error of ȳd is se = sd/
√

n = 52.5/
√

32 = 9.28.
For a 95% confidence interval for μd = μ2 − μ1 with df = n − 1 = 31, we use

t0.025 = 2.04. The confidence interval equals

ȳd ± 2.04(se) = 50.6 ± 2.04(9.28), which is (31.7, 69.5).

We infer that the population mean reaction time when using cell phones is between
about 32 and 70 milliseconds higher than when not using cell phones. The confidence
interval does not contain 0. We conclude that the population mean reaction time is
greater when using a cell phone.

Next consider the significance test of H0: μd = 0, which corresponds to equal
population means for the two conditions, against Ha: μd �= 0. The test statistic is

t = ȳd − 0
se

= 50.6
9.28

= 5.5,

with df = 31. The P-value for the two-sided Ha: μd �= 0 equals 0.000005. There is
extremely strong evidence that mean reaction time is greater when using a cell phone.
Table 7.6 shows how SPSS software reports these results for its paired-samples t test
option.

TABLE 7.6: SPSS Output for Matched-Pairs Analysis of CellPhone Data File Comparing
Driver Reaction Times for Yes and No Categories of Cell Phone Use

Paired Samples Test
95% Conf Int

Std. Error of Difference Sig.
Mean Std. Dev. Mean Lower Upper t df (2-tailed)

Yes - No 50.625 52.486 9.278 31.702 69.548 5.456 31 .000

Paired-difference inferences make the usual assumptions for t procedures: The
observations (the difference scores) are randomly obtained from a population distri-
bution that is normal. Confidence intervals and two-sided tests are valid even if the
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normality assumption is violated (their robustness property), unless the sample size is
small and the distribution is highly skewed or has severe outliers. For the study about
driving and cell phones, one subject was an outlier on both reaction times. However,
the difference score for that subject, which is the observation used in the analysis,
is not an outlier. The article about the study did not indicate whether the subjects
were randomly selected. The subjects in the experiment were probably a volunteer
sample, so inferential conclusions are highly tentative.

INDEPENDENT VERSUS DEPENDENT SAMPLES

Using dependent samples can have certain benefits. First, sources of potential bias
are controlled. Using the same subjects in each sample, for instance, keeps other
factors fixed that could affect the analysis. Suppose younger subjects tend to have
faster reaction times. If group 1 has a lower sample mean than group 2, it is not
because subjects in group 1 are younger, because both groups have the same subjects.

Second, the standard error of ȳ2 − ȳ1 may be smaller with dependent samples.
In the cell phone study, the standard error was 9.3. If we had observed independent
samples with the same scores as in Table 7.3, the standard error of ȳ2 − ȳ1 would
have been 19.7. This is because the variability in the difference scores tends to be
less than the variability in the original scores when the scores in the two samples are
strongly positively correlated. In fact, for Table 7.5, the correlation (recall Section 3.5)
between the no–cell phone reaction times and the cell phone reaction times is 0.81,
strongly positive.

7.5 Other Methods for Comparing Means∗

Section 7.3 presented inference comparing two means with independent samples. A
slightly different inference method can be used when we expect similar variability for
the two groups. For example, under a null hypothesis of “no effect,” we often expect
the entire distributions of the response variable to be identical for the two groups.
So, we expect standard deviations as well as means to be identical.

COMPARING MEANS WHILE ASSUMING EQUAL
STANDARD DEVIATIONS

In comparing the population means, this method makes the additional assumption
that the population standard deviations are equal; that is, σ1 = σ2. For it, a simpler
df expression holds for an exact t distribution for the test statistic. Although it seems
disagreeable to make an additional assumption, confidence intervals and two-sided
tests are robust against violations of this and the normality assumption, particularly
when the sample sizes are similar and not extremely small. In fact, the method itself
is a special case of a multiple-group method introduced in Chapter 12 (called analysis
of variance) that, for simplicity, has a single standard deviation parameter.

We estimate the common value σ of σ1 and σ2 by

s =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

√∑
(yi1 − ȳ1)2 + ∑

(yi2 − ȳ2)2

n1 + n2 − 2
.

Here,
∑

(yi1−ȳ1)2 denotes the sum of squares about the mean for the observations in
the first sample, and

∑
(yi2 − ȳ2)2 denotes the sum of squares about the mean for the

observations in the second sample. The estimate s pools information from the two
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samples to provide a single estimate of variability. It is called the pooled estimate.
The term inside the square root is a weighted average of the two sample variances.
When n1 = n2, it is the ordinary average. The estimate s falls between s1 and s2. With
s as the estimate of σ1 and σ2, the estimated standard error of ȳ2 − ȳ1 simplifies to

se =
√

s2

n1
+ s2

n2
= s

√
1
n1

+ 1
n2

.

The confidence interval for μ2 − μ1 has the usual form

(ȳ2 − ȳ1) ± t(se).

The t-score for the desired confidence level has df = n1 + n2 − 2. The df equals the
total number of observations (n1 + n2) minus the number of parameters estimated
in order to calculate s (namely, the two means, μ1 and μ2, estimated by ȳ1 and ȳ2).

To test H0: μ1 = μ2, the test statistic has the usual form

t = (ȳ2 − ȳ1) − 0
se

.

Now, se uses the pooled formula, as in the confidence interval. The test statistic has
a t distribution with df = n1 + n2 − 2.

Example
7.8

Comparing a Therapy to a Control Group Examples 5.5 (page 129) and 6.4 (page 160)
described a study that used a cognitive behavioral therapy to treat a sample of
teenage girls who suffered from anorexia. The study analyzed the mean weight
change after a period of treatment. Such studies also usually have a control group
that receives no treatment or a standard treatment. Then researchers can analyze
how the change in weight compares for the treatment group to the control group.

In fact, the anorexia study had a control group. Teenage girls in the study were
randomly assigned to the cognitive behavioral treatment (Group 1) or to the control
group (Group 2). Table 7.7 summarizes the results.7

TABLE 7.7: Summary of Results Comparing Treatment Group to
Control Group for Weight Change in Anorexia Study

Group Sample Size Mean Standard Deviation

Treatment 29 3.01 7.31
Control 26 −0.45 7.99

Let μ1 and μ2 denote the mean weight gains for these therapies for the con-
ceptual populations that the samples represent. We test H0: μ1 = μ2 against
Ha: μ1 �= μ2. If treatment has no effect relative to control, then we would expect
the groups to have equal means and equal standard deviations of weight change.
For these data, the pooled estimate of the assumed common standard deviation is

s =
√

(n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2
=

√
28(7.31)2 + 25(7.99)2

29 + 26 − 2
= 7.64.

7 The data for both groups are shown in Table 12.18 on page 385 and are in the Anorexia data file at the text
website.
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Now, ȳ1 − ȳ2 = 3.01 − (−0.45) = 3.46 has an estimated standard error of

se = s

√
1
n1

+ 1
n2

= 7.64

√
1

29
+ 1

26
= 2.06.

The test statistic is

t = ȳ1 − ȳ2

se
= 3.01 − (−0.45)

2.06
= 1.68.

This statistic has df = n1 + n2 − 2 = 29 + 26 − 2 = 53. From software, the two-sided
P-value is P = 0.10, only weak evidence of a different mean using the cognitive
behavioral therapy instead of the control condition.

When df = 53, the t-score for a 95% confidence interval for (μ1 − μ2) is
t0.025 = 2.006. The interval is

(ȳ1 − ȳ2) ± t(se) = 3.46 ± 2.006(2.06), which is 3.46 ± 4.14, or (−0.7, 7.6).

We conclude that the mean weight change for the cognitive behavioral therapy could
be as much as 0.7 pounds lower or as much as 7.6 pounds higher than the mean weight
change for the control group. Since the interval contains 0, it is plausible that the
population means are identical. This is consistent with the P-value exceeding 0.05 in
the test. If the population mean weight change is less for the cognitive behavioral
group than for the control group, it is just barely less (less than 1 pound), but if the
population mean change is greater, it could be nearly 8 pounds greater. Since the
sample sizes are not large, the confidence interval is relatively wide.

COMPLETELY RANDOMIZED VERSUS RANDOMIZED BLOCK DESIGN

The anorexia study used a completely randomized experimental design: Subjects
were randomly assigned to the two therapies. With this design, there’s the chance
that the subjects selected for one therapy might differ in an important way from sub-
jects selected for the other therapy. For moderate to large samples, factors that could
influence results (such as initial weight) tend to balance by virtue of the randomiza-
tion. For small samples, an imbalance could occur.

An alternative experimental design matches subjects in the two samples, such
as by taking two girls of the same weight and randomly deciding which girl receives
which therapy. This matched-pairs plan is a simple example of a randomized block
design. Each pair of subjects forms a block, and within blocks subjects are randomly
assigned to the treatments. Another example of a block design occurs when each
subject is measured twice, such as before and after receiving some treatment. With
such designs, we would use the methods of Section 7.4 for dependent samples.

SOFTWARE CAN PERFORM INFERENCES ASSUMING EQUAL
OR UNEQUAL VARIABILITY

Software can conduct two-sample inference for means with or without the assump-
tion of equal population standard deviations. For example, Table 7.8 illustrates the
way SPSS reports results of two-sample t tests. The t test just presented assumes that
σ1 = σ2. The t statistic that SPSS reports for the “equal variances not assumed” case
is the t statistic of Section 7.3,

t = (ȳ2 − ȳ1)
se

, with se =
√

s2
1

n1
+ s2

2

n2
.
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TABLE 7.8: SPSS Output for Performing Two-Sample t Tests with Anorexia Data File. The
output also has confidence intervals for the two cases, not shown here.

t-test for Equality of Means
Sig. Mean Std. Error

t df (2-tailed) Difference Difference
Equal variances 1.676 53 0.099 3.45690 2.06259
assumed
Equal variances 1.668 50.971 0.102 3.45690 2.07279
not assumed

When n1 = n2, the “equal variances” and “unequal variances” test statistics are iden-
tical. They are usually similar if n1 and n2 are close or if s1 and s2 are close.

If you already have summary statistics, some software (such as SPSS and Stata)
can conduct the inferences with them. In Stata, use the ttesti command (or a di-
alog box), by entering n, ȳ, and s for each group. Table 7.9 shows the analysis of this
section for the anorexia data, assuming σ1 = σ2. Adding “unequal” to the command
line, as shown on page 201 for the housework example, does the t inference without
assuming that σ1 = σ2. Internet applets are also available.8

TABLE 7.9: Stata Software Output (Edited) for Performing Two-Sample t Inferences under
Assumption σ1 = σ2

. ttesti 29 3.01 7.31 26 -0.45 7.99

Two-sample t test with equal variances
| Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]

x | 29 3.01 1.357433 7.31 .2294247 5.790575
y | 26 -.45 1.566968 7.99 -3.677231 2.777231

------+-----------------------------------------------------------
diff | 3.46 2.062968 -.6777895 7.597789

diff = mean(x) - mean(y) t = 1.6772
Ho: diff = 0 degrees of freedom = 53

Ha: diff < 0 Ha: diff != 0 Ha: diff > 0
Pr(T < t) = 0.9503 Pr(|T| > |t|) = 0.0994 Pr(T > t) = 0.0497

If the data show evidence of a potentially large difference in standard deviations
(with, say, one sample standard deviation being at least double the other), it is better
to use the approximate t test (Section 7.3) that does not make the σ1 = σ2 assumption.
It can yield a t statistic value much different from the method that assumes σ1 = σ2

if s1 and s2 are quite different and the sample sizes are unequal.
Many texts and most software present a statistic denoted by F for testing that

the population standard deviations are equal. It’s not appropriate to conduct this test
in order to determine which t method to use. In fact, we don’t recommend this test
even if your main purpose is to compare variability of two groups. The test assumes
that the population distributions are normal, but it is not robust to violations of that
assumption.

8 For example, the Comparing Two Means applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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EFFECT SIZE

In Example 7.8 on page 206 about an anorexia study, is the estimated difference of
3.46 between the mean weight gains for treatment and control groups large, or small,
in practical terms? Recall that the size of an estimated difference depends on the
units of measurement. These data were in pounds, but if converted to kilograms the
estimated difference would be 1.57 and if converted to ounces it would be 55.4.

A standardized way to describe the difference divides it by the estimated stan-
dard deviation for each group. This is called the effect size for comparing means.
With sample means of 3.01 and −0.45 pounds and an estimated common standard
deviation of s = 7.64 pounds, the effect size is

Effect size = ȳ1 − ȳ2

s
= 3.01 − (−0.45)

7.64
= 0.45.

The difference between the sample means is less than half a standard deviation. This
is usually considered to be a small to moderate difference. The effect is considered
to be quite large if the effect size is about 1 (or larger) in absolute value. We obtain
the same value for the effect size if we measure the data in different units, such as
kilograms or ounces.

A MODEL FOR MEANS

In the second half of this book, we’ll learn about advanced methods for analyzing as-
sociations among variables. We’ll base analyses explicitly on a model. For two vari-
ables, a model is a simple approximation for the true relationship between those
variables in the population.

Let N(μ, σ ) denote a normal distribution with mean μ and standard deviation
σ . Let y1 denote a randomly selected observation from group 1 and y2 a randomly se-
lected observation from group 2. The hypothesis tested above for comparing means
under the assumption σ1 = σ2 can be expressed as the model

H0: Both y1 and y2 have a N(μ, σ ) distribution.

Ha: y1 has a N(μ1, σ ) distribution and y2 has a N(μ2, σ ) distribution, with μ1 �= μ2.

Under H0, the population means are equal, with some common value μ. Under Ha,
the population means differ. This is a special case of a model that Chapter 12 uses
for comparing several means.

Sampling distributions and resulting inferences are derived under the assumed
model structure. But models are merely convenient simplifications of reality. We do
not expect distributions to be exactly normal, for instance. One of the key parts of
becoming more comfortable using statistical methods is becoming knowledgeable
about which assumptions are most important in a model and how to check the as-
sumptions. Generally, simpler models have benefits. They have fewer parameters to
estimate, and inferences can be more powerful. However, when such a model is badly
in error, we are better off using a more complex model.

The significance test in Section 7.3 for comparing means results from a slightly
more complex model

H0: y1 has a N(μ, σ1) distribution and y2 has a N(μ, σ2) distribution.

Ha: y1 has a N(μ1, σ1) distribution and y2 has a N(μ2, σ2) distribution, with μ1 �= μ2.

Again, under H0 the population means are equal. But now, no assumption is made
about the population standard deviations being equal. If there is reason to expect
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the population standard deviations to be very different, or if the data indicate this
(with one of the sample standard deviations being at least double the other), then
we’re better off using analyses based on this model. If the data show that even this
model is badly in error, such as when the sample data distributions are so highly
skewed that the mean is an inappropriate summary, we’re better off using a different
model yet. The final section of this chapter presents a model that does not assume
normality or use means.

7.6 Other Methods for Comparing Proportions∗

Section 7.2 presented large-sample methods for comparing proportions with inde-
pendent samples. This section presents methods for comparing proportions with
(1) dependent samples and (2) small samples.

COMPARING PROPORTIONS FROM DEPENDENT SAMPLES

Section 7.4 presented dependent-samples methods for comparing means. We use
the following example to illustrate dependent-samples methods for comparing
proportions.

Example
7.9

Belief in Heaven and Hell A recent General Social Survey asked subjects whether
they believed in heaven and whether they believed in hell. Table 7.10 shows results. Of
1214 subjects responding, 875 believed in both, 168 believed in neither, 162 believed
in heaven but not in hell, and 9 believed in hell but not in heaven. The row marginal
counts (1037, 177) are the (yes, no) totals for belief in heaven. The column marginal
counts (884, 330) are the (yes, no) totals for belief in hell.

TABLE 7.10: Belief in Heaven and Belief in Hell

Belief in Hell

Belief in Heaven Yes No Total

Yes 875 162 1037
No 9 168 177

Total 884 330 1214

We will compare the proportions responding yes for heaven and for hell. The
samples are dependent, because the same 1214 people responded to each ques-
tion. Let π1 denote the population proportion who believe in heaven, and let π2

denote the population proportion who believe in hell. The sample estimates are
π̂1 = 1037/1214 = 0.854 and π̂2 = 884/1214 = 0.728.

If the proportions responding yes were identical for heaven and hell, the number
of observations in the first row of Table 7.10 would equal the number of observations
in the first column. The first cell (the one containing 875 in Table 7.10) is common
to both the first row and first column, so the other cell count in the first row would
equal the other cell count in the first column. That is, the number of people saying
yes to heaven but no to hell would equal the number of people saying no to heaven
but yes to hell. We can test H0: π1 = π2 using the counts in those two cells. If H0 is
true, then of these people, we expect half to be in each of those two cells.

As in the matched-pairs test for a mean, we reduce the inference to one about
a single parameter. For the population in the two cells just mentioned, we test
whether half are in each cell. In Table 7.10, of the 162 + 9 = 171 people who
believe in one but not the other, the sample proportion 162/171 = 0.947 believed
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in heaven but not in hell. Under the null hypothesis that the population proportion
is 0.50, the standard error of the sample proportion for these 171 observations is√

(0.50)(0.50)/171 = 0.038.
From Section 6.3 (page 164), the z statistic for testing that of the population

observations in those two cells half are in each cell is

z = Sample proportion − H0 proportion
Standard error

= 0.947 − 0.50
0.038

= 11.7.

The two-sided P-value equals 0.000. This provides extremely strong evidence against
H0: π1 = π2. Based on the sample proportions, the evidence favors a greater popu-
lation proportion of belief in heaven than in hell.

McNEMAR TEST FOR COMPARING DEPENDENT PROPORTIONS

A simple formula exists for this z test statistic for comparing two dependent propor-
tions. For a table of the form of Table 7.10, denote the cell counts in the two relevant
cells by n12 for those in row 1 and in column 2 and by n21 for those in row 2 and in
column 1. The test statistic is

z = n12 − n21√
n12 + n21

.

When n12 + n21 exceeds about 20, this statistic has approximately a standard normal
distribution when H0 is true. This test is often referred to as McNemar’s test. For
smaller samples, use the binomial distribution (Section 6.7) to conduct the test.

For Table 7.10, the McNemar test uses n12 = 162, the number of people believing
in heaven but not in hell, and n21 = 9, the number for the reverse. The test statistic is

z = 162 − 9√
162 + 9

= 11.7,

as we previously obtained.

CONFIDENCE INTERVAL FOR DIFFERENCE OF
DEPENDENT PROPORTIONS

A confidence interval for the difference of proportions is more informative than a
significance test. For large samples, this is

(π̂2 − π̂1) ± z(se),

where the standard error is estimated using

se = 1
n

√
(n12 + n21) − (n12 − n21)2/n.

For Table 7.10, π̂1 = 1037/1214 = 0.8542 and π̂2 = 884/1214 = 0.7282. The
difference π̂1 − π̂2 = 0.8542 − 0.7282 = 0.126. For n = 1214 observations with
n12 = 162 and n21 = 9,

se = (1/1214)
√

(162 + 9) − (162 − 9)2/1214 = 0.0101.

A 95% confidence interval for π1 −π2 equals 0.126 ± 1.96(0.0101), or (0.106, 0.146).
We conclude that the population proportion who believe in heaven is between about
0.10 and 0.15 higher than the population proportion who believe in hell.

This confidence interval and McNemar’s test are available in statistical software
and with Internet applets. See, for instance, the Comparing Two Proportions ap-
plet at www.pearsonglobaleditions.com/Agresti, with the Two Dependent
Samples option.

http://www.pearsonglobaleditions.com/Agresti
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FISHER’S EXACT TEST FOR COMPARING PROPORTIONS

The inferences of Section 7.2 for comparing proportions with independent samples
are valid for relatively large samples. For small sample sizes, the sampling distribu-
tion of π̂2 − π̂1 may not be close to normality. You can then compare two proportions
π1 and π2 using a method called Fisher’s exact test, due to the eminent British statis-
tician R. A. Fisher.

The calculations for Fisher’s exact test are complex and beyond the scope of
this text.9 The principle behind the test is straightforward, however, as Exercise 7.57
shows. Statistical software provides its P-value. As usual, the P-value is the probabil-
ity of the sample result or a result even more extreme, under the presumption that
H0 is true.

Example
7.10

Depression and Suicide among HIV-Infected Persons A study10 on psychological im-
pacts of being HIV positive examined rates of major depression and suicidality for
HIV-infected and uninfected persons in China. The study used a volunteer sample.
In an attempt to make the sample more representative, subjects were recruited from
clinics in two very different regions of China, one urban and one rural. Table 7.11
shows results based on a diagnostic interview asking whether the subject had ever
attempted suicide. The table also shows output from conducting Fisher’s exact test.

TABLE 7.11: Comparison of HIV-Infected and Uninfected
Subjects on whether They Have Ever
Attempted Suicide

HIV suicide
|yes |no | Total

positive | 10 | 18 | 28
negative | 1 | 22 | 23
---------+--------+--------+
Total 11 40 51

STATISTICS FOR TABLE OF HIV BY SUICIDE
Statistic Prob
Fisher’s Exact Test (Left) 0.9995

(Right) 0.0068
(2-Tail) 0.0075

Denote the population proportion who had ever made a suicide attempt by π1

for those who were HIV positive and by π2 for those who were HIV negative. Then,
π̂1 = 10/28 = 0.36 and π̂2 = 1/23 = 0.04. We test H0: π1 = π2 against Ha: π1 > π2.
One of the four counts is very small, so to be safe we use Fisher’s exact test.

On the output shown, the right-sided alternative refers to Ha: π1 − π2 > 0; that
is, Ha: π1 > π2. The P-value = 0.0068 gives very strong evidence that the population
proportion attempting suicide is higher for those who are HIV positive. The P-value
for the two-sided alternative equals 0.0075. This is not double the one-sided P-value
because, except in certain special cases, the sampling distribution (called the hyper-
geometric distribution) is not symmetric.

9 For details about Fisher’s exact test, see Agresti (2007, pp. 45–48); calculations are available at the Fisher’s
Exact Test applet at www.pearsonglobaleditions.com/Agresti.
10 H. Jin et al., Journal of Affective Disorders, vol. 94 (2006), pp. 269–275.

http://www.pearsonglobaleditions.com/Agresti
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The test is called exact because it uses the actual (hypergeometric) sampling dis-
tribution rather than a normal approximation. Corresponding exact confidence in-
tervals exist. They are beyond the scope of this text, but are available in software.

7.7 Nonparametric Statistics for Comparing Groups∗

Many statistics have large-sample normal sampling distributions, even when popula-
tion distributions are not normal. In fact, with random sampling, nearly all parameter
estimators have normal distributions, for large sample sizes. Small samples, though,
often require additional assumptions. For instance, inferences for means using the t
distribution assume normal population distributions.

A body of methods exists that makes no assumption about the shape of the pop-
ulation distribution. These methods are called nonparametric.11 They contrast with
the traditional (so-called parametric) methods that assume particular population dis-
tributions, such as normality. Nonparametric methods still apply when the normality
assumption for methods using the t distribution is badly violated. They are primarily
useful for small samples, especially for one-sided tests, as parametric methods may
then be invalid when the normal population assumption is badly violated. They are
also useful when the two groups have highly skewed distributions, because then the
mean may not be a meaningful summary measure.

WILCOXON–MANN–WHITNEY TEST

To illustrate, Section 7.5 introduced a t distribution method for comparing means that
assumes normal population distributions with identical standard deviations. These
assumptions are mainly relevant for small samples, namely, when n1 or n2 is less
than about 20–30. Most nonparametric comparisons of groups also assume identi-
cal shapes for the population distributions, but the shapes are not required to be
normal. The model for the test is then

H0: Both y1 and y2 have the same distribution.

Ha: The distributions for y1 and y2 have the same shape, but the one for y1 is
shifted up or shifted down compared to the one for y2.

Here, Ha is two-sided. One-sided Ha is also possible.
The most popular test of this type is called the Wilcoxon test. This test is an

ordinal-level method, in the sense that it uses only the rankings of the observations.
The combined sample of n1 + n2 measurements is ranked from 1 to n1 + n2, and the
means of the ranks are computed for observations in each sample. The test statistic
compares the sample mean ranks. For large samples, a z test statistic has an approx-
imate standard normal distribution. For small samples, an exact P-value is based on
how unusual the observed difference between the mean ranks is (under the presump-
tion that H0 is true) compared to the differences between the mean ranks for all other
possible rankings.

Another nonparametric test is the Mann–Whitney test. It views all the pairs of
observations, such that one observation is from one group and the other observations
is from the other group. The test statistic is based on the number of pairs for which the
observation from the first group was higher. This test is equivalent to the Wilcoxon
test, giving the same P-value.12

11 Hollander et al. (2013) presented an overview of nonparametric statistical methods.
12 Frank Wilcoxon developed equivalent tests as Henry Mann and D. R. Whitney at about the same time in the
late 1940s.
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For Example 7.8 comparing weight changes for a cognitive behavioral therapy
group and a control group in the anorexia study (page 206), the parametric t test had
a P-value of 0.10. The large-sample version of the Wilcoxon–Mann–Whitney test
reports similar results, with a P-value of 0.11.

Some software also can report a corresponding confidence interval for the dif-
ference between the population medians. The method assumes that the two popula-
tion distributions have the same shape, but not necessarily bell shaped. The median
weight change was 1.4 pounds for the cognitive behavioral therapy group and −0.35
pounds for the control group. Software reports a 95% confidence interval for the
difference between the medians of (−0.6, 8.1) pounds.

EFFECT SIZE: PROPORTION OF BETTER RESPONSES FOR A GROUP

Section 7.5 introduced an effect size measure, (ȳ1 − ȳ2)/s, for summarizing the size of
the difference between two groups. When the distributions are very skewed or have
outliers, the means are less useful and this effect size summary may be inappropriate.
A nonparametric effect size measure is the proportion of pairs of observations (one
from each group) for which the observation from the first group was higher. If y1

denotes a randomly selected observation from group 1 and y2 a randomly selected
observation from group 2, then this measure estimates P(y1 > y2).

To illustrate, suppose the anorexia study had four girls, two using a new therapy
and two in a control group. Suppose the weight changes were

Therapy group (y1): 4, 10
Control group (y2): 2, 6

There are four pairs of observations, with one from each group:

y1 = 4, y2 = 2 (Group 1 is higher)
y1 = 4, y2 = 6 (Group 2 is higher)
y1 = 10, y2 = 2 (Group 1 is higher)
y1 = 10, y2 = 6 (Group 1 is higher)

Group 1 is higher in three of the four pairs, so the estimate of P(y1 > y2) is 0.75. If
two observations had the same value, we would count it as y1 being higher for half
the pair (rather than 1 or 0).

Under H0 of no effect, P(y1 > y2) = 0.50. The farther P(y1 > y2) falls from
0.50, the stronger the effect. For the full anorexia data set analyzed on page 206, the
sample estimate of P(y1 > y2) is 0.63. The estimated probability that a girl using the
cognitive behavioral therapy has a larger weight gain than a girl using the control
therapy is 0.63.

When the two groups have normal distributions with the same standard devia-
tion, a connection exists between this effect size and the parametric one, (μ1−μ2)/σ .
For example, when (μ1−μ2)/σ = 0, then P(y1 > y2) = 0.50; when (μ1−μ2)/σ = 0.5,
then P(y1 > y2) = 0.64; when (μ1 − μ2)/σ = 1, then P(y1 > y2) = 0.71; when
(μ1 − μ2)/σ = 2, then P(y1 > y2) = 0.92. The effect is relatively strong if P(y1 > y2)
is larger than about 0.70 or smaller than about 0.30.

TREATING ORDINAL VARIABLES AS QUANTITATIVE

Social scientists often use parametric statistical methods for quantitative data with
variables that are only ordinal. They do this by assigning scores to the ordered
categories. Example 6.2 (page 157) on political ideology showed an example of this.
Sometimes the choice of scores is straightforward. For categories (liberal, moderate,
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conservative) for political ideology, any set of equally spaced scores is sensible, such
as (1, 2, 3) or (0, 5, 10). When the choice is unclear, such as with categories (not too
happy, pretty happy, very happy) for happiness, it is a good idea to perform a sensi-
tivity study. Choose two or three reasonable sets of potential scores, such as (0, 5, 10),
(0, 6, 10), (0, 7, 10), and check whether the ultimate conclusions are similar for each.
If not, any report should point out how conclusions depend on the scores chosen.

Alternatively, nonparametric methods are valid with ordinal data. The reason is
that nonparametric methods do not use quantitative scores but rather rankings of the
observations, and rankings are ordinal information. However, this approach works
best when the response variable is continuous (or nearly so), so each observation has
its own rank. When used with ordered categorical responses, such methods are often
less sensible than using parametric methods that treat the response as quantitative.
The next example illustrates this.

Example
7.11

Alcohol Use and Infant Malformation Table 7.12 refers to a study of maternal drink-
ing and congenital malformations. After the first three months of pregnancy, the
women in the sample completed a questionnaire about alcohol consumption. Fol-
lowing childbirth, observations were recorded on presence or absence of congenital
sex organ malformations. Alcohol consumption was measured as average number of
drinks per day.

TABLE 7.12: Infant Malformation and Mother’s Alcohol Consumption

Alcohol Consumption

Malformation 0 < 1 1–2 3–5 ≥6

Absent 17,066 14,464 788 126 37
Present 48 38 5 1 1
Total 17,114 14,502 793 127 38

Source: Graubard, B. I., and Korn, E. L., Biometrics, vol. 43 (1987), pp. 471–476.

Is alcohol consumption associated with malformation? One approach to inves-
tigate this is to compare the mean alcohol consumption of mothers for the cases
where malformation occurred to the mean alcohol consumption of mothers for the
cases where malformation did not occur. Alcohol consumption was measured by
grouping values of a quantitative variable. To find means, we assign scores to alcohol
consumption that are midpoints of the categories, that is, (0, 0.5, 1.5, 4.0, 7.0), the last
score (for ≥6) being somewhat arbitrary. The sample means are then 0.28 for the
absent group and 0.40 for the present group, and the t statistic of 2.56 has P-value
of 0.01. There is strong evidence that mothers whose infants suffered malformation
had a higher mean alcohol consumption.

An alternative, nonparametric, approach assigns ranks to the subjects and uses
them as the category scores. For all subjects in a category, we assign the average of
the ranks that would apply for a complete ranking of the sample. These are called
midranks. For example, the 17,114 subjects at level 0 for alcohol consumption share
ranks 1 through 17,114. We assign to each of them the average of these ranks, which
is the midrank (1 + 17, 114)/2 = 8557.5. The 14,502 subjects at level <1 for alcohol
consumption share ranks 17,115 through 17, 114+14, 502 = 31, 616, for a midrank of
(17, 115 + 31, 616)/2 = 24, 365.5. Similarly the midranks for the last three categories
are 32,013, 32,473, and 32,555.5. Used in a large-sample Wilcoxon test, these scores
yield much less evidence of an effect (P = 0.55).

Why does this happen? Adjacent categories having relatively few observations
necessarily have similar midranks. The midranks (8557.5, 24365.5, 32013, 32473, and
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32555.5) are similar for the final three categories, since those categories have con-
siderably fewer observations than the first two categories. A consequence is that this
scoring scheme treats alcohol consumption level 1–2 (category 3) as much closer to
consumption level ≥6 (category 5) than to consumption level 0 (category 1). This
seems inappropriate. It is better to use your judgment by selecting scores that reflect
well the distances between categories.

Although nonparametric methods have the benefit of weaker assumptions, in
practice social scientists do not use them as much as parametric methods. Partly this
reflects the large sample sizes for most studies, for which assumptions about popula-
tion distributions are not so vital. In addition, nonparametric methods for multivari-
ate data sets are not as thoroughly developed as parametric methods.

7.8 Chapter Summary
This chapter introduced methods for comparing two groups. For quantitative re-
sponse variables, inferences apply to the difference μ2 − μ1 between population
means. For categorical response variables, inferences apply to the difference π2 − π1

between population proportions.
In each case, the significance test analyzes whether 0 is a plausible difference.

If the confidence interval contains 0, it is plausible that the parameters are equal.
Table 7.13 summarizes the methods for independent random samples, for which obser-
vations in the two samples are not matched. This is the most common case in practice.

TABLE 7.13: Comparison Methods for Two Groups, for Independent Random Samples

Type of Response Variable

Categorical Quantitative

Estimation
1. Parameter π2 − π1 μ2 − μ1
2. Point estimate π̂2 − π̂1 ȳ2 − ȳ1

3. Standard error se =
√

π̂1(1−π̂1)
n1

+ π̂2(1−π̂2)
n2

se =
√

s2
1

n1
+ s2

2
n2

4. Confidence
interval (π̂2 − π̂1) ± z(se) (ȳ2 − ȳ1) ± t(se)

Significance testing
1. Assumptions Randomization Randomization

≥10 observations in each Normal population dist.’s
category, for each group (robust, especially for large n’s)

2. Hypotheses H0: π1 = π2 H0: μ1 = μ2
(π2 − π1 = 0) (μ2 − μ1 = 0)
Ha: π1 �= π2 Ha: μ1 �= μ2

3. Test statistic z = π̂2−π̂1
se0

t = ȳ2−ȳ1
se

4. P-value Two-tail probability from standard normal or t distribution
(Use one tail for one-sided alternative)

• Both for differences of proportions and differences of means, confidence inter-
vals have the form

Estimated difference ± Score(se)

using a z-score for proportions and t-score for means. In each case, the test
statistic equals the estimated difference divided by the standard error.
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• For dependent samples, each observation in one sample matches with an ob-
servation in the other sample. For quantitative variables, we compare means by
analyzing the mean of difference scores computed between the paired obser-
vations. The paired-difference confidence interval and test procedures are the
one-sample methods of Chapters 5 and 6 applied to the difference scores.

• Another approach for comparing means makes the extra assumption that the
normal population distributions have equal standard deviations. This approach
pools the standard deviations from the two samples to find a common estimate.

• For comparing proportions, with independent samples the small-sample test
is Fisher’s exact test. For dependent samples, McNemar’s test compares the
number of subjects who are in category 1 in the first sample and category 2 in
the second sample to the number of subjects who are in category 2 in the first
sample and category 1 in the second.

• Nonparametric statistical methods make no assumption about the shape of the
population distribution. Most such methods use the ranks of the observations.

At this stage, you may feel confused about which method to use for any given
situation. It may help if you use the following checklist. Ask yourself, is the analysis
about

• Means or proportions (quantitative or categorical response variable)?

• Independent samples or dependent samples?

• Confidence interval or significance test?

Exercises

Practicing the Basics
7.1. The biannual ABDC survey of school students indi-
cated that 78% of tenth graders in 2016 considered having
a car to be essential or very important, compared to 45%
when the survey was first conducted in 1968. Are the sam-
ple percentages of 45% in 1968 and 78% in 2016 based on
independent samples, or dependent samples? Explain.

7.2. An annual survey of public opinion considers the
public views about adequacy of policies taken to protect
global environment, with a random sample of about 5000
adults from each of 20 developing nations each year. In
2000, 15% of them expressed positive views about ade-
quacy of the measures taken at the global level. In 2016,
75% of them expressed a positive attitude about the same.

(a) Explain what it would mean for these results to be
based on (i) independent samples, (ii) dependent samples.
(b) If we compare results in 2000 and 2016, identify
the response variable and the explanatory variable, and
specify whether the response variable is quantitative or
categorical.

7.3. An annual survey on consumer expenditure for a
country estimated 56% of its citizens to own large cars in
2017 as compared to 29% in 2012.

(a) Estimate the difference between the proportions of
large car owners over the periods.

(b) If standard error is 0.040 for each proportion, find the
standard error of the difference. Interpret.

7.4. When a recent Eurobarometer survey asked subjects
in each European Union country whether they would be
willing to pay more for energy produced from renewable
sources than for energy produced from other sources, the
proportion answering yes varied from a high of 0.52 in
Denmark (n = 1008) to a low of 0.14 in Lithuania (n =
1002). For this survey,
(a) Estimate the difference between Denmark and
Lithuania in the population proportion of yes responses.

(b) From the se = √
π̂(1 − π̂)/n formula, the proportion

estimates have se = 0.0157 for Denmark and se = 0.0110
for Lithuania. Use these to find the se for the difference
estimate in (a). Interpret this se.

7.5. The Regional Center for Health Survey recently esti-
mated that the mean weight for adult Indian women was
52 kg in 1968 and 65 kg in 2012.
(a) Suppose these estimates had a standard error of 1.2 kg
each year. Estimate the increase in mean weight in the
population from 1968 to 2012, and find and interpret the
standard error of that estimate.
(b) Show that the estimated mean in 2012 was 1.25 times
the estimated mean in 1968. Express this in terms of the
percentage increase.
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(c) The estimated mean weights for men were 71 kg in
1968 and 81 kg in 2012. Find and interpret the difference
and the ratio.

7.6. In 2015, a country’s planning commission estimated
its median household consumption expenditure in domes-
tic currency to be 265,000 in urban and 51,000 in rural
sectors.
(a) Identify the response variable and the explanatory
variable.
(b) Compare the households using a (i) difference,
(ii) ratio.

7.7. In 2016, the Educational Research Wing reported that
the school dropout rate in a country was 375 per 10,000
male students (composed of 8% of urban male students
and 12% of rural male students), and 425 per 10,000 fe-
male students.
(a) Find the ratio of proportions of dropouts, for females
relative to males. Interpret.
(b) Find the difference of proportions dropout. Interpret.
(c) Which measure do you think better summarizes these
data? Why?

7.8. According to a university database, the annual prob-
ability that a student between the ages of 20 and 24 fails
to go abroad for higher studies is 0.00237 for males and
0.00069 for females.
(a) Compare these rates using the difference of
proportions.
(b) Compare these rates using the ratio of proportions.
(c) Which of the two measures seems to better summa-
rize results when both proportions are very close to 0?
Explain.

7.9. The Global Charitable Trust asked, “How often do
you donate?” The response sometimes was given by
22.1% of the 1532 respondents in Country A and by
46.7% of the 1098 respondents in Country B.
(a) Assuming random sampling, the 95% confidence in-
terval for the difference between corresponding popula-
tion proportions is (0.21, 0.28). Interpret it.
(b) The P-value is <0.0001 for testing the null hypothesis
that the corresponding population proportions are equal.
Interpret.

7.10. For a random sample of university teachers, 50%
were positive about the vice chancellor’s performance. A
similar poll two months later indicated an approval rate
of 47%. A 99% confidence interval for the change in
the population proportions is (−0.09, 0.03). Explain why
(a) there may have been no change in support, (b) if a
decrease in support occurred, it may have been fairly im-
portant, whereas if an increase in support occurred, it was
probably so small as to be substantively unimportant.

7.11. A study group at a high school has interviewed ran-
dom samples of students at higher grades several times

since 2010. Most recently, of the students who reported
reading Encyclopedia Britannica, the percentage who re-
ported that reading “to portray their image as studious”
is an important reason for borrowing such books from the
library was 35.2% of 4690 women students and 59.5% of
5120 male students. For comparing men and women,

(a) Show that the standard error for the estimated differ-
ence between the corresponding population proportions
equals 0.0098.
(b) Show that the 95% confidence interval for the differ-
ence is (0.22, 0.26). Interpret.

7.12. The study mentioned in the previous exercise esti-
mated in 2010 that 3% had done better in interschool
competitions because of reading such books; this was
4.5% at the latest survey.

(a) Specify assumptions, notation, and hypotheses for a
two-sided test comparing the corresponding population
proportions.
(b) The test statistic z = 5.53 and the P-value close to
0.0000. Interpret the P-value.
(c) Some might argue that the result in (b) reflects statisti-
cal significance but not practical significance. Explain the
basis of this argument, and explain why you learn more
from the 95% confidence interval, which is (0.009, 0.02).

7.13. In Great Britain, the Time Use Survey
(www.statistics.gov.uk) studied how a random
sample of Brits spend their time on a typical day. Of
those working full time, 55% of 1219 men and 74% of
733 women reported spending some time on cooking and
washing up during a typical day. Find and interpret a 95%
confidence interval for the difference in the population
proportions.

7.14. Table 7.14 summarizes responses from General So-
cial Surveys in 1977 and in 2014 to the statement “It
is much better for everyone involved if the man is the
achiever outside the home and the woman takes care of
the home and family.” Let π1 denote the population pro-
portion who agreed with this statement in 1977, and let π2
denote the population proportion in 2014.

(a) Show that π̂1 − π̂2 = 0.347, with standard error 0.017.
(b) Show that the 95% confidence interval for π1 − π2 is
(0.31, 0.38). Interpret.
(c) Explain how results would differ for comparing the
proportions who did not agree in the two years.

TABLE 7.14

Year Agree Disagree Total

1977 989 514 1503
2014 515 1140 1655

7.15. Refer to the previous exercise. In 2014, of 745 male
respondents, 247 (33.2%) agreed. Of 910 female respon-
dents, 268 (29.5%) agreed.

http://www.statistics.gov.uk
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(a) Set up notation and specify hypotheses for the hypoth-
esis of no difference between the population proportions
of males and of females who would agree.
(b) Estimate the population proportion presuming H0,
find the standard error of the sample difference of pro-
portions, and find the test statistic.
(c) Find the P-value for the two-sided alternative.
Interpret.
(d) Of 1032 respondents having less education than a col-
lege degree, 37.1% agreed. Of 623 respondents having at
least a college degree, 21.2% agreed. Which variable, gen-
der or educational level, seems to have had the greater
influence on opinion? In other words, did opinion tend to
differ more between men and women, or between those
with and without a degree? Explain.

7.16. In a survey conducted by the education department,
college teachers were asked if they frequently used inter-
active teaching learning methods. Table 7.15 shows soft-
ware output. Treating these observations as a random
sample from the population of interest,

(a) State a research question that could be addressed with
this output.
(b) Interpret the reported confidence interval.
(c) Interpret the reported P-value.

TABLE 7.15

Sample Yes No Sample prop
1. Seniors 335 1200 0.2792
2. Juniors 425 1260 0.3373

estimate for p(1) - p(2): -0.058
95% CI for p(1) - p(2): (-0.021, -0.095)
Test for difference = 0 (vs not = 0): z = -3.13
P-value = 0.002

7.17. A study of compulsive buying behavior (uncon-
trolled urges to buy) conducted a national telephone sur-
vey in 2004 of adults ages 18 and over.13 Of 800 men,
44 were judged to be compulsive buyers according to
the Compulsive Buying Scale. Of 1501 women, 90 were
judged to be compulsive buyers. Conduct an inference to
analyze whether one sex is more likely than the other to
be a compulsive buyer. Interpret, including relevant as-
sumptions for the interpretations to be valid.

7.18. Table 7.16 shows results from the 2014 General So-
cial Survey on belief in an afterlife, classified by sex. Con-
duct all steps of a significance test, using α = 0.05, to
compare the population proportions of females and males
who would respond yes to belief in an afterlife. If you have
made an error in your decision, what type of error is it,
Type I or Type II?

TABLE 7.16

Belief in Afterlife

Sex Yes No Total

Female 600 109 709
Male 424 170 594

7.19. A GSS reported that the 486 females had a mean of
8.3 close friends (s = 15.6) and the 354 males had a mean
of 8.9 close friends (s = 15.5).
(a) A 95% confidence interval for the difference between
the population means for males and for females is (−1.5,
2.7). Interpret.
(b) For each sex, does it seem like the distribution of num-
ber of close friends is normal? Explain why this does not
invalidate the result in (a) but may affect the usefulness of
the interval.

7.20. Table 7.17 summarizes the number of hours spent
in laboratory per week by researchers, based on a recent
study.
(a) Estimate the difference between population means
for junior and senior fellows.
(b) Show that the estimated standard error of the sample
difference is 0.58. Interpret.
(c) Show that a 99% confidence interval for the difference
is (0.51, 3.49). Interpret.

TABLE 7.17

Laboratory Hours

Research fellow Sample Size Mean Standard Deviation

Junior 415 5.5 8.2
Senior 560 7.5 9.8

7.21. A study evaluated the degree of addiction that chil-
dren form to cartoon shows once they start watching them
in their leisure hours. The study used a random sample of
445 school students in two metropolitan cities who had
started watching cartoon shows by the commencement of
the study. The response variable was from the Checklist
on Student Behavior, a list of 15 questions such as “Have
you ever tried to stop watching but couldn’t?” The check-
list score is the total number of questions to which a stu-
dent answered yes. The final checklist means describing
such addiction were 6.5 (s = 2.4) for the 350 TV show
observers and 2.0 (s = 4.3) for the 95 ex-observers.
(a) Software reports a 95% confidence interval of (3.60,
5.40). Interpret.
(b) Was the checklist sample data distribution for ex-
observers approximately normal? How does this affect in-
ference? Why?

13 Koran et al., American Journal of Psychiatry, vol. 163 (2006), p. 1806.



220 Chapter 7 Comparison of Two Groups

7.22. In Great Britain, the Time Use Survey14 studied how
a random sample of Brits spend their time on a typical
day. For those who reported working full time, Table 7.18
reports the mean and standard deviation of the reported
average number of minutes per day spent on cooking and
washing up.

TABLE 7.18

Cooking and Washing Up Minutes

Sex Sample Size Mean Standard Deviation

Men 1219 23 32
Women 733 37 16

(a) Estimate the difference between the means for
women and men, and find its standard error.
(b) Compare the population means using a two-sided
significance test. Interpret the P-value.

7.23. A current employees’ behavior survey asked, “How
many days in the past 15 days have you felt demotivated?”
Software reported sample means of 5.9 for executives
and 2.1 for nonexecutives, with a 95% confidence inter-
val comparing them of (1.5, 3.2), a t statistic of 5.2, and a
P-value of 0.000. Interpret these results.

7.24. A survey for 2016, comparing retired and in-service
persons on the number of hours a day that they spent on
gardening, gave

----------------------------------------------
Group n Mean StdDev Std Error Mean
Retired 875 4.65 1.80 0.073
In-service 525 2.75 1.47 0.085

----------------------------------------------

(a) Conduct all parts of a significance test to analyze
whether the population means differ for retired and in-
service persons. Interpret the P-value, and report the con-
clusion for α-level = 0.05.
(b) If you were to construct a 95% confidence interval
comparing the means, would it contain 0? Answer based
on the result of (a), without finding the interval.
(c) Do you think that the distribution of hours on garden-
ing is approximately normal? Why or why not? Does this
affect the validity of your inferences? Why?

7.25. For a 2015 study, Table 7.19 shows software output
for evaluating the number of hours of Internet surfing per
day by age.

(a) Interpret the reported confidence interval. Can you
conclude that one population mean is higher? If so, which
one? Explain.
(b) Interpret the reported P-value.

(c) Explain the connection between the result of the sig-
nificance test and the result of the confidence interval.

TABLE 7.19

Race n Mean StdDev Std Error Mean
Teenagers 355 6.13 2.57 0.1456
Retired 1365 4.78 1.80 0.0576

Difference = mu (Teenagers) - mu (Retired)
Estimate for difference : 1.19
95% CI for difference: (1.08, 1.62)
T-Test of difference = 0:
T-value = 9.64,
P-value = 0.000

7.26. In a study comparing various drink types (tea, en-
ergy drink, coffee with cream, lime soda, etc.) on teena-
gers’ desire for additional drinks after various lengths
of time, coffee with cream had the least effect. In one anal-
ysis for coffee with cream, the researchers reported that
desire ratings were significantly higher at 20 minutes com-
pared with the baseline (t = 3.68, df = 25, P = 0.0011)
but not significantly different for the other time points
(P-values > 0.45). Explain why these analyses used statis-
tical methods for dependent samples, identify the sample
size, and interpret the P-value for the significant result.

7.27. In a study15 of the effect of the compound tomoxe-
tine as a treatment for adult attention deficit hyperactivity
disorder (ADHD), the 21 subjects had an ADHD rating
scale mean of 30.0 (s = 6.7) at baseline and 21.5 (s = 10.1)
after three weeks of treatment. The standard deviation
was 9.84 for the 21 changes in rating. The authors reported
a paired t statistic of 3.96 with df = 20. Show how the au-
thors constructed the t statistic, and report and interpret
the P-value for a two-sided test.

7.28. As part of her class project, a student at the Uni-
versity of Florida randomly sampled 10 fellow students to
investigate their most common social activities. As part of
the study, she asked the students to state how many times
they had done each of the following activities during the
previous year: going to a movie, going to a sporting event,
or going to a party. Table 7.20 shows the data.

(a) To compare the mean movie attendance and mean
sports attendance using statistical inference, should we
treat the samples as independent or dependent? Why?
(b) For the analysis in (a), software shows results in
Table 7.21. Interpret the 95% confidence interval shown.
(c) Show how the test statistic shown in the output was
obtained from the other information given. Report the
P-value, and interpret in context.

14 www.statistics.gov.uk.
15 T. Spencer et al., American Journal of Psychiatry, vol. 155 (1998), pp. 693–695.

http://www.statistics.gov.uk
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TABLE 7.20

Activity

Student Movies Sports Parties

1 10 5 25
2 4 0 10
3 12 20 6
4 2 6 52
5 12 2 12
6 7 8 30
7 45 12 52
8 1 25 2
9 25 0 25
10 12 12 4

TABLE 7.21

n Mean Std Dev Std Error Mean
movies 10 13.000 13.174 4.166
sports 10 9.000 8.380 2.650
Difference 10 4.000 16.166 5.112

95% CI for mean difference: (-7.56, 15.56)
T-Test of mean difference = 0 (vs not = 0):

T-Value = 0.78 P-Value = 0.454

7.29. Refer to the previous exercise. For comparing par-
ties and sports, software reports a 95% confidence inter-
val of (−3.33, 28.93) and a P-value of 0.106. Explain the
connection between the results of the significance test and
the confidence interval.

7.30. A clinical psychologist wants to choose between two
therapies for treating mental depression. For six patients,
she randomly selects three to receive therapy A, and the
other three receive therapy B. She selects small samples
for ethical reasons; if her experiment indicates that one
therapy is superior, that therapy will be used on her other
patients having these symptoms. After one month of treat-
ment, the improvement is measured by the change in
score on a standardized scale of mental depression sever-
ity. The improvement scores are 10, 20, 30 for the patients
receiving therapy A, and 30, 45, 45 for the patients receiv-
ing therapy B.

(a) Using the method that assumes a common standard
deviation for the two therapies, show that the pooled s =
9.35 and se = 7.64.
(b) When the sample sizes are very small, it may be worth
sacrificing some confidence to achieve more precision.
Show that the 90% confidence interval for (μ2 − μ1) is
(3.7, 36.3). Interpret.
(c) Estimate and interpret the effect size.

7.31. Refer to the previous exercise. To avoid bias from
the samples being unbalanced with such small n, the psy-
chologist redesigned the experiment. She forms three
pairs of subjects, such that the patients matched in any
given pair are similar in health and socioeconomic status.
For each pair, she randomly selects one subject for each
therapy. Table 7.22 shows the improvement scores, and
Table 7.23 shows some results of using SPSS to analyze
the data.

(a) Compare the means by (i) finding the difference of the
sample means for the two therapies, (ii) finding the mean
of the difference scores. Compare.
(b) Verify the standard deviation of the differences and
standard error for the mean difference.
(c) Verify the confidence interval shown for the popula-
tion mean difference. Interpret.
(d) Verify the test statistic, df , and P-value for comparing
the means. Interpret.

TABLE 7.22

Pair Therapy A Therapy B

1 10 30
2 20 45
3 30 45

TABLE 7.23

Paired Samples Statistics

Variable Mean N Std. Dev. Std. Error

Therapy A 20.00 3 10.000 5.774

Therapy B 40.00 3 8.660 5.000

Paired Samples Test

Std. Error Sig.

Mean Std. Dev. Mean t df (2-tailed)

Yes - No 20.00 5.00 2.887 6.93 2 .020

7.32. A study16 of treatments for obesity for rural
women examined the impact of a six-month behav-
ioral weight loss program delivered by phone either
one-on-one with a counselor or to a group via con-
ference call. A sample of rural women classified as
obese by their BMI were randomly assigned to the two
conditions. Table 7.24 shows software results of two-
sample comparisons of mean weight loss (in kg) over the
six months.

(a) State the assumptions on which each significance test
is based, and explain how to interpret the results.

16 C. Befort et al., Eating Behaviors, vol. 11 (2010), pp. 11–17.
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(b) Assuming equal population standard deviations, a
95% confidence interval for the difference in mean weight
changes for group versus individual treatments is (1.45,
9.35). Interpret.

TABLE 7.24

t-test for Equality of Means
Sig. Mean Std. Error

t df (2-tailed) Difference Difference
wtloss Equal variances 2.82 25 0.008 5.4 0.522

assumed
Equal variances 2.91 23 0.009 5.4 0.538
not assumed

7.33. For the survey of students described in Exercise 1.11,
the responses on political ideology had a mean of 3.18 and
standard deviation of 1.72 for the 51 nonvegetarian stu-
dents and a mean of 2.22 and standard deviation of 0.67
for the 9 vegetarian students. When we use software to
compare the means with a significance test, we obtain

-------------------------------------------
Variances T DF P-value
Unequal 2.915 30.9 0.0066
Equal 1.636 58.0 0.1073

-------------------------------------------

Explain why the results of the two tests differ so much.
What would you conclude about whether the population
means are equal?

7.34. In 2014, the General Social Survey asked about the
number of hours a week spent on the World Wide Web,
not counting e-mail. The 778 females had a mean of 11.2
and standard deviation of 13.7. The 620 males had a mean
of 11.9 and standard deviation of 16.0. Use these results
to make an inference comparing males and females in the
population. Since the sample standard deviations are not
dramatically different, your inference can assume equality
of population standard deviations.

7.35. Two new short courses have been proposed for help-
ing students who suffer from severe math phobia, scoring
at least 8 on a measure of math phobia that falls between
0 and 10 (based on responses to 10 questions). A sample
of 10 such students were randomly allocated to the two
courses. Following the course, the drop in math phobia
score was recorded. The sample values were

Course A: 0, 2, 2, 3, 3
Course B: 3, 6, 6, 7, 8

(a) Make an inferential comparison of the means, assuming
equal population standard deviations. Interpret your results.
(b) Find and interpret the effect size (ȳB − ȳA)/s.

(c) Using software, report and interpret the P-value for
the two-sided Wilcoxon test.
(d) Estimate and interpret the effect size P(yB > yA).

7.36. Recent years have seen impressive improvements in
systems for automatically recognizing speech. Research
in comparing the quality of different speech recognition
systems often uses as a benchmark test a series of iso-
lated words, checking how often each system makes er-
rors recognizing the word. Table 7.25 shows an example17

of one such test, comparing two speech recognition sys-
tems, called generalized minimal distortion segmentation
(GMDS) and continuous density hidden Markov model
(CDHMM).

(a) Estimate the population proportion correct for each
system.
(b) Show all steps of McNemar’s test to compare the pop-
ulation proportions. Interpret.
(c) Construct a 95% confidence interval to compare the
population proportions. Interpret.

TABLE 7.25

CDHMM

GMDS Correct Incorrect Total

Correct 1921 58 1979
Incorrect 16 5 21
Total 1937 63 2000

7.37. A General Social Survey asked subjects their opin-
ions about government spending on health and on law
enforcement. Table 7.26 shows results.

(a) Find the sample proportion favoring increased spend-
ing, for each item.
(b) Test whether the population proportions are equal.
Report the P-value, and interpret.
(c) Analyze the data using a 95% confidence interval.
Interpret.

17 S. Chen and W. Chen, IEEE Transactions on Speech & Audio Processing, vol. 3 (1995), pp. 141–145.
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TABLE 7.26

Law Enforcement Spending

Health Spending Increase Decrease

Increase 292 25
Decrease 14 9

7.38. The World Values Survey has asked if homosexu-
ality is justifiable, on a scale from 1 (“never”) to 10 (“al-
ways”). In 1981–1984 surveys in the United States of 2325
subjects, 62.4% gave response 1. In 2010–2014 surveys
of 2232 respondents, 24.0% gave response 1. A report
claimed that this was evidence of a change in the popu-
lation in tolerance toward homosexuality. Do these data
support this claim? Justify your answer which an inferen-
tial analysis, in which you state relevant assumptions.

7.39. An experimental study18 of young children’s moral
behavior used as subjects 32 three-year-old girls, half as-
signed to each of two conditions. Each girl and two actors
created a picture or clay sculpture, after which one actor
left the room. In the Harm condition, the remaining actor
then destroyed the absent actor’s picture or sculpture. In a
Control condition, the actor did not harm it. Upon return
of the actor, in the Harm condition 7 of 16 children acted
prosocially such as tattling on the actor, whereas in the
Control condition none did. The study authors concluded,
“This is the first study to show that children as young as
three years of age actively intervene in third-party moral
transgressions.” Table 7.27 shows results using software
for conducting Fisher’s exact test.

TABLE 7.27

response
condition | yes | no | Total
harm | 7 | 9 | 16
control | 0 | 16 | 16
Total 7 25 32

Fisher’s Exact Test
Left-sided P-value 1.0000
Right-sided P-value 0.0034
Two-sided P-value 0.0068

(a) Why is Fisher’s exact test used to compare the groups?
(b) Report and interpret the P-value for the alternative
hypothesis that the probability of prosocial behavior is
higher for the Harm condition.

7.40. In a study about lesbianism, 45 young adults were
asked whether they had ever had a same-gender sexual
relationship. Table 7.28 shows results. Use software to test

whether the probability of this is higher for those raised
by lesbian mothers. Interpret.

TABLE 7.28

Same-Gender Relationship

Mother Yes No

Lesbian 6 19
Heterosexual 0 20

Concepts and Applications
7.41. For the Students data file (Exercise 1.11 on
page 21), use graphical and numerical summaries and
inferential statistical methods for the following:

(a) Compare political ideology of students identifying as
Democrats and as Republicans.
(b) Compare opinions of males and females about legal-
ized abortion.
(c) Compare the mean weekly time spent watching TV
to the mean weekly time in sports and other physical
exercise.

7.42. For the data file created in Exercise 1.12, with vari-
ables chosen by your instructor, state a research question
and conduct inferential statistical analyses. Prepare a re-
port that summarizes your findings. In this report, also use
graphical and numerical methods to describe the data.

7.43. Using the Comparing Two Means applet at
www.pearsonglobaleditions.com/Agresti, con-
struct two scenarios of independent samples of four men
and four women with y = number of hours spent on In-
ternet in past week having ȳ1 = 5 and ȳ2 = 10, such that
for testing H0: μ1 = μ2 against Ha: μ1 �= μ2, (a) P-value
> 0.10, (b) P-value < 0.01. What differs in the two cases
to make the P-values so different?

7.44. Exercise 3.6 on page 70 showed data on carbon
dioxide emissions, a major contributor to global warm-
ing, for advanced industrialized nations. State a research
question for these data that involves comparing means
or proportions. Conduct an investigation to answer this
question.

7.45. Pose null and alternative hypotheses about the re-
lationship between time spent on the Internet (variable
WWWHR for the GSS) and a binary explanatory that
you believe may be associated with Internet use. Us-
ing the most recent GSS data on these variables at
sda.berkeley.edu/GSS, conduct the test. Prepare
a short report summarizing your analysis.

7.46. Browse one or two daily online newspapers such as
The New York Times. Find an article about a research

18 A. Vaish et al., British Journal of Developmental Psychology, vol. 2 (2011), pp. 124–130.

http://www.pearsonglobaleditions.com/Agresti
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study that compared two groups. Prepare a short report
that answers the following questions:

(a) What was the purpose of the research study?
(b) Identify explanatory and response variables.
(c) Can you tell whether the statistical analysis used
(1) independent samples or dependent samples, (2) a
comparison of proportions or a comparison of means,
(3) a significance test or a confidence interval? Explain.

7.47. A study19 considered whether greater levels of TV
watching by teenagers were associated with a greater like-
lihood of committing aggressive acts over the years. The
researchers randomly sampled 707 families in two coun-
ties in northern New York State and made follow-up ob-
servations over 17 years. They observed whether a sam-
pled teenager later conducted any aggressive act against
another person, according to a self-report by that person
or by their mother. Of 88 cases with less than 1 hour per
day of TV watching, 5 had committed aggressive acts. Of
619 cases with at least 1 hour per day of TV, 154 had com-
mitted aggressive acts. Analyze these data, summarizing
your analyses in a short report.

7.48. According to an article in The New York Times (De-
cember 6, 2015), the number of annual gun homicides per
million people is 31.2 in the United States, 5.6 in Canada,
2.3 in the Netherlands, 0.9 in England, and 0.1 in Japan.
Show an informative way to compare these rates between
the United States and other countries.

7.49. The World Values Survey asks if homosexuality is
justifiable, on a scale from 1 (“never”) to 10 (“always”).
In 1981–1984 surveys, the 2325 respondents in the United
States had a mean response of 2.4 and standard devia-
tion of 2.3. In 2010–2014 surveys, the 2232 U.S. respon-
dents had a mean of 5.4 and standard deviation of 3.4.
A report about the results stated, “The mean tolerance
level for homosexuality was 3 units higher in 2010–2014
than in 1981–1984. If the true means were equal, a differ-
ence of this size could be expected less than 0.01% of the
time. For samples of this size, 95% of the time one would
expect this difference in means to be within 0.2 of the
true value.”

(a) Explain how this conclusion refers to the results of a
(i) confidence interval, (ii) significance test.
(b) Describe how you would explain the results of
the study to someone who has not studied inferential
statistics.

7.50. The results in Table 7.29 are from a study20 of phys-
ical attractiveness and subjective well-being. A sample of
college students were rated by a panel on their physical
attractiveness. The table presents the number of dates in

the past three months for students rated in the top or bot-
tom quartile of attractiveness. Analyze these data, and
interpret.

TABLE 7.29

No. Dates, Men No. Dates, Women

Attractiveness Mean Std. Dev. n Mean Std. Dev. n

More 9.7 10.0 35 17.8 14.2 33
Less 9.9 12.6 36 10.4 16.6 27

7.51. In the World Values Survey, interviews of 1902 sub-
jects in the Netherlands found that 29.2% reported having
confidence in the European Union and 33.0% reported
having confidence in the government of the Netherlands.
Do you have enough information to make an inferential
comparison of the percentages? If so, do so. If not, what
else would you need to know?

7.52. In 2011, the United States Supreme Court dealt
with a sex discrimination case in which women managers
at Walmart earned $14,500 a year less, on the average,
than their male counterparts. If you were also given the
standard errors of the annual mean salaries for male and
female managers at Walmart, would you have enough
information to determine whether this is a “statistically
significant” difference? Explain.

7.53. The International Adult Literacy Survey21 was a 22-
country study in which nationally representative samples
of adults were interviewed and tested at home, using the
same literacy test having scores that could range from 0
to 500. For those of age 16–25, some of the mean prose
literacy scores were United Kingdom 273.5, New Zealand
276.8, Ireland 277.7, United States 277.9, Denmark 283.4,
Australia 283.6, Canada 286.9, the Netherlands 293.5,
Norway 300.4, and Sweden 312.1. The website does not
provide sample sizes or standard deviations. Suppose each
sample size was 250 and each standard deviation was 50.
How far apart do two sample means have to be before you
feel confident that an actual difference exists between the
population means? Explain your reasoning, giving your
conclusion for Canada and the United States.

7.54. Table 7.30 compares two hospitals on the outcomes
of patient admissions for severe pneumonia. Although
patient status is an ordinal variable, two researchers who
analyze the data treat it as an interval variable. The first
researcher assigns the scores (0, 5, 10) to the three cate-
gories. The second researcher, believing that the middle
category is much closer to the third category than to the
first, uses the scores (0, 9, 10). Each researcher calculates
the means for the two institutions and identifies the in-
stitution with the higher mean as the one having more

19 J. G. Johnson et al., Science, vol. 295 (2002), pp. 2468–2471.
20 E. Diener et al., Journal of Personality & Social Psychology, vol. 69 (1995), pp. 120–129.
21 www.nifl.gov/nifl/facts/IALS.html.

http://www.nifl.gov/nifl/facts/IALS.html
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success in treating its patients. Find the two means for
the scoring system used by (a) the first researcher, (b) the
second researcher. Interpret. (Since conclusions can de-
pend on the scoring system, if you treat ordinal variables
as quantitative, take care in selecting scores.)

TABLE 7.30

Patient Status

Died in Released after Released after
Hospital Lengthy Stay Brief Stay

Hospital A 1 29 0
Hospital B 8 8 14

7.55. From Example 6.4 (page 160), for the cognitive be-
havioral therapy group the sample mean change in weight
of 3.0 pounds was significantly different from 0. However,
Example 7.8 (page 206) showed it is not significantly dif-
ferent from the mean change for the control group, even
though that group had a negative sample mean change.
How do you explain this paradox? (Hint: From Sections
7.1 and 7.3, how does the se value for estimating a dif-
ference between two means compare to the se value for
estimating a single mean?)

7.56. A survey by the Harris Poll of 2250 Americans in
2013 indicated that 42% believe in ghosts, 26% believe
in witches, 29% believe in astrology, and 36% believe in
creationism.

(a) Is it valid to compare the proportions using inferential
methods for independent samples? Explain.
(b) Do you have enough information to compare them us-
ing inferential methods for dependent samples? Explain.

7.57. A pool of six candidates for three managerial posi-
tions includes three females and three males. Table 7.31
shows the results.

(a) Denote the three females by F1, F2, and F3 and the
3 males by M1, M2, and M3. Identify the 20 distinct sam-
ples of size three that can be chosen from these six indi-
viduals.
(b) Let π̂1 denote the sample proportion of males selected
and π̂2 the sample proportion of females. For Table 7.28,
π̂1 − π̂2 = (2/3) − (1/3) = 1/3. Of the 20 possible sam-
ples, show that 10 have π̂1 − π̂2 ≥ 1/3. Thus, if the three
managers were randomly selected, the probability would
equal 10/20 = 0.50 of obtaining π̂1 − π̂2 ≥ 1/3. This is the

TABLE 7.31

Chosen for Position

Gender Yes No

Male 2 1
Female 1 2

reasoning that provides the one-sided P-value for Fisher’s
exact test.
(c) Find the P-value if all three selected are male.
Interpret.

7.58. Describe a situation in which it would be more sen-
sible to compare means using dependent samples than
independent samples.

7.59. An AP story about a University of Chicago survey
of 1600 people of ages 15 to 25 in several Midwest U.S.
cities indicated that 58% of black youth, 45% of Hispanic
youth, and 23% of white youth reported listening to rap
music every day.

(a) True or false: If a 95% confidence interval comparing
the population proportions for Hispanic and white youths
was (0.18, 0.26), then we can infer that at least 18% but
no more than 26% of the corresponding white population
listens daily to rap music.
(b) The study reported that 66% of black females and
57% of black males agreed that rap music videos portray
black women in bad and offensive ways. True or false:
Because both these groups had the same race, inferential
methods comparing them must assume dependent rather
than independent samples.

7.60. True or false? If a 95% confidence interval for
(μ2 − μ1) contains only positive numbers, then we can
conclude that both μ1 and μ2 are positive.

7.61. True or false? If you know the standard error of
the sample mean for each of two independent samples,
you can figure out the standard error of the difference
between the sample means, even if you do not know the
sample sizes.

In Exercises 7.62–7.64, select the correct response(s). More
than one may be correct.

7.62. A 99% confidence interval for the difference π2 −π1
between the proportions of men and women in California
who are alcoholics equals (0.02, 0.09).

(a) We are 99% confident that the proportion of alco-
holics is between 0.02 and 0.09.
(b) We are 99% confident that the proportion of men in
California who are alcoholics is between 0.02 and 0.09
larger than the proportion of women in California who
are alcoholics.
(c) At this confidence level, there is insufficient evidence
to infer that the population proportions are different.
(d) We are 99% confident that a minority of California
residents are alcoholics.
(e) Since the confidence interval does not contain 0, it is
impossible that π1 = π2.

7.63. To compare the population mean annual incomes
for Hispanics (μ1) and for whites (μ2) having jobs in
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construction, we construct a 95% confidence interval for
μ2 − μ1.
(a) If the confidence interval is (3000, 6000), then at this
confidence level we conclude that the population mean
income is higher for whites than for Hispanics.
(b) If the confidence interval is (−1000, 3000), then the
corresponding α = 0.05-level test of H0: μ1 = μ2 against
Ha: μ1 �= μ2 rejects H0.
(c) If the confidence interval is (−1000, 3000), then it is
plausible that μ1 = μ2.
(d) If the confidence interval is (−1000, 3000), then we
are 95% confident that the population mean annual in-
come for whites is between $1000 less and $3000 more
than the population mean annual income for Hispanics.

7.64. The Wilcoxon test differs from parametric proce-
dures comparing means in the sense that
(a) It applies directly to ordinal as well as interval re-
sponse variables.
(b) It is unnecessary to assume that the population distri-
bution is normal.
(c) Random sampling is not assumed.

7.65.* A test consists of 100 true–false questions. Joe did
not study, so on each question he randomly guesses the
correct response.

(a) Find the probability that he scores at least 70, thus
passing the exam. (Hint: Use either the binomial distri-
bution or the sampling distribution for the proportion of
correct responses.)
(b) Jane studied a little and has a 0.60 chance of a correct
response for each question. Find the probability that her
score isnonetheless lower thanJoe’s. (Hint: Usethesampling
distribution of the difference of sample proportions.)
(c) How do the answers to (a) and (b) depend on the
number of questions? Explain.

7.66.* Let yi1 denote the observation for subject i at time 1,
yi2 the observation for subject i at time 2, and yi = yi2−yi1.

(a) Letting ȳ1, ȳ2, and ȳd denote the means of these ob-
servations, show that ȳd = ȳ2 − ȳ1.
(b) Is the median difference (i.e., the median of the yi val-
ues) equal to the difference between the medians of the
yi1 and yi2 values? Show this is true, or give a counterex-
ample to show that it is false.
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8.6 Chapter Summary

R ecall that we say a sample shows association between two variables if certain values of one
variable tend to go with certain values of the other. Many studies involve making an infer-

ence about the association between a response variable and an explanatory variable in a particular
population of interest. In that population, an association exists if the probability distribution of the
response variable changes in some way as the value of the explanatory variable changes.

In the previous chapter, we learned how to analyze whether population means or population
proportions differ between two groups. These methods analyzed whether an association exists be-
tween a response variable and a binary explanatory variable that defines the two groups (e.g., sex).
For a quantitative response variable, we compared means. For a categorical response variable, we
compared proportions.

This chapter presents methods for detecting and describing associations between two categori-
cal variables. The methods of this chapter help us answer a question such as “Is there an association
between happiness and whether one is religious?” The methods of Chapter 7 for comparing two
proportions are special cases of ones considered here in which both categorical variables have only
two categories.

We first introduce terminology for categorical data analysis and define statistical indepen-
dence, a type of lack of association in a population. We then present a significance test, called the
chi-squared test, for determining whether two categorical variables are statistically independent or
associated. We follow up that test by a residual analysis that describes the nature of that asso-
ciation. We then present ways of determining whether the association is strong enough to have
practical importance, and we detail some specialized analyses for ordinal categorical variables.

8.1 Contingency Tables
Data for the analysis of categorical variables are displayed in contingency tables.
This type of table displays the number of subjects observed at all combinations of
possible outcomes for the two variables.

Example
8.1

Gender Gap in Political Beliefs Does a “gender gap” exist in political beliefs? Do
women and men tend to differ in their political thinking and voting behavior? To
investigate this in the United States, we analyze Table 8.1, from the 2014 General
Social Survey. The categorical variables are gender and political party identification
(party ID, for short). Subjects indicated whether they identified more strongly with
the Democratic or Republican party or as Independents. We regard party ID as the
response variable and gender as the explanatory variable.

Table 8.1 contains responses for 2450 subjects, cross-classified by their gender
and party ID. Table 8.1 is called a 2 × 3 (read “2-by-3”) contingency table, meaning
that it has two rows and three columns. The row totals and the column totals are

227
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TABLE 8.1: Political Party Identification (ID) and Gender, for GSS Data
in Data File PartyID at Text Website

Party Identification

Gender Democrat Independent Republican Total

Females 495 590 272 1357
Males 330 498 265 1093

Total 825 1088 537 2450

called the marginal distributions. The sample marginal distribution for party ID,
for instance, is the set of marginal frequencies (825, 1088, 537), showing that Inde-
pendent was the most common response and Republican was the least common.

PERCENTAGE COMPARISONS: CONDITIONAL DISTRIBUTIONS

Constructing a contingency table from a data file is the first step in investigating
an association between two categorical variables. As we explained on pages 64 and
199, when we distinguish between response and explanatory variables, it is natu-
ral to convert the cell frequencies to percentages for the response categories. In
Table 8.1, to study how party ID differs for females and males, we find percentages
within each row. For example, the percentage who identify themselves as Democrat
is 36% for females (a proportion of 495/1357 = 0.36) and 30% for males (330 out
of 1093). Table 8.2 shows all the percentages. It seems that females are more likely
than males to identify as Democrats.

TABLE 8.2: Political Party Identification and Gender: Percentages
Computed within Rows of Table 8.1

Party Identification

Gender Democrat Independent Republican Total n

Females 36% 43% 20% 100% 1357
Males 30% 46% 24% 100% 1093

The two sets of percentages for females and males are the sample conditional
distributions on party ID. They describe the sample data distribution of party ID,
conditional on gender. The females’ conditional distribution on party ID is the set of
percentages (36, 43, 20) for (Democrat, Independent, Republican). The percentages
sum to 100 in each row, except for rounding. Figure 8.1 portrays graphically the two
conditional distributions.

Another way to report percentages provides a single set for all cells in the ta-
ble, using the total sample size as the base. To illustrate, in Table 8.1, of the 2450
subjects, 495 or 20% fall in the cell (Female, Democrat), 330 or 13% fall in the cell
(Male, Democrat), and so forth. This percentage distribution is called the sample
joint distribution. It is useful for comparing relative frequencies of occurrences for
combinations of variable levels. When we distinguish between response and explana-
tory variables, however, conditional distributions are more informative than the joint
distribution.

When you report a contingency table with conditional or joint distributions, in-
clude the total sample sizes on which the percentages or proportions are based. That
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Conditional Distributions
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way, readers can determine standard errors to analyze the precision of sample pro-
portion estimates.

INDEPENDENCE AND DEPENDENCE

Whether an association exists between party ID and gender is a matter of whether
females and males differ in their conditional distributions on party ID. For the corre-
sponding population, we answer the question “Is party ID associated with gender?”
with reference to the concepts of statistical independence and dependence.

Statistical Independence and
Statistical Dependence

Two categorical variables are statistically independent if the population
conditional distributions on one of them are identical at each category of
the other. The variables are statistically dependent if the conditional
distributions are not identical.

In other words, two variables are statistically independent if the percentage of
the population in any particular category of one variable is the same for all categories
of the other variable. In Table 8.2, the two conditional distributions are not identical.
But that table describes a sample, and the definition of statistical independence refers
to the population. If those observations were the entire population, then the variables
would be statistically dependent.

For simplicity, we usually use the term independent rather than statistically inde-
pendent. Table 8.3 is a contingency table showing independence. The table contains
hypothetical population data for two variables—party ID and ethnic group. The per-
centage of Democrats is the same for each ethnic group, 35%. Similarly, the percent-
age of Independents and the percentage of Republicans are the same for each ethnic

TABLE 8.3: Population Cross-Classification Exhibiting Statistical Independence.
The conditional distribution on party ID is the same in each row,
(35%, 40%, 25%).

Party Identification

Ethnic Group Democrat Independent Republican Total

White 3500 (35%) 4000 (40%) 2500 (25%) 10,000 (100%)
Black 350 (35%) 400 (40%) 250 (25%) 1000 (100%)
Hispanic 875 (35%) 1000 (40%) 625 (25%) 2500 (100%)
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group. The probability that a person has a particular party ID is the same for each
ethnic group, and so party ID is independent of ethnic group.

Statistical independence is a symmetric property: If the conditional distributions
within rows are identical, then so are the conditional distributions within columns. In
Table 8.3, for example, you can check that the conditional distribution within each
column equals (74%, 7%, 19%).

Example
8.2

Associations with Belief in Life after Death In recent General Social Surveys, the
percentage of Americans who express a belief in life after death has been nearly 80%.
This has been true both for females and for males and true for those who classify their
race as black, white, or Hispanic. Thus, it appears that belief in life after death may
be statistically independent of variables such as gender and race. On the other hand,
whereas about 80% of Catholics and Protestants believe in an afterlife, only about
40% of Jews and 50% of those with no religion believe in an afterlife. We can’t be
sure, not having data for the entire population, but it seems that belief in life after
death and religious affiliation are statistically dependent.

8.2 Chi-Squared Test of Independence
The definition of statistical independence refers to the population. Two variables
are independent if the population conditional distributions on the response variable
are identical. Since Table 8.1 refers to a sample, it provides evidence but does not
definitively answer whether party ID and gender are independent. Even if they are
independent, we would not expect the sample conditional distributions to be identi-
cal. Because of sampling variability, we expect sample percentages to differ from the
population percentages.

We next study whether it is plausible that party ID and gender are independent.
If they are truly independent, could we expect sample differences such as Table 8.2
shows between females and males in their conditional distributions merely by sam-
pling variation? Or, would differences of this size be unlikely? We address this with
a significance test, by testing

H0: The variables are statistically independent.
Ha: The variables are statistically dependent.

EXPECTED FREQUENCIES FOR INDEPENDENCE

The significance test compares the observed frequencies in the contingency table
with values that satisfy the null hypothesis of independence. Table 8.4 shows the
observed frequencies from Table 8.1, with the values (in parentheses) that satisfy
H0. These H0 values have the same row and column marginal totals as the observed
frequencies, but satisfy independence. They are called expected frequencies.

TABLE 8.4: Political Party Identification by Gender, with
Expected Frequencies in Parentheses

Party Identification

Gender Democrat Independent Republican Total

Female 495 (456.9) 590 (602.6) 272 (297.4) 1357
Male 330 (368.1) 498 (485.4) 265 (239.6) 1093

Total 825 1088 537 2450
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Observed and Expected
Frequencies

Let fo denote an observed frequency in a cell of the table. Let fe denote an
expected frequency. This is the count expected in a cell if the variables were
independent. It equals the product of the row and column totals for that
cell, divided by the total sample size.

For instance, for the cell in the upper left-hand corner (females who identify as
Democrats), fo = 495. Its expected frequency is fe = (1357)(825)/2450 = 456.9, the
product of the row total for Females and the column total for Democrats, divided by
the overall sample size.

Let’s see why this rule makes sense. In the entire sample, 825 out of 2450 people
(33.7%) identify as Democrats. If the variables were independent, we would expect
33.7% of males and 33.7% of females to identify as Democrats. For instance, 33.7%
of the 1357 females should be classified in the Democrat category. The expected
frequency for the cell is then

fe =
(

825
2450

)
1357 = 0.337(1357) = 456.9.

THE PEARSON STATISTIC FOR TESTING INDEPENDENCE

The test statistic for H0: independence summarizes how close the expected frequen-
cies fall to the observed frequencies. Symbolized by X 2, it is

X 2 =
∑ ( fo − fe)2

fe
,

with summation over all cells in the contingency table. This is the oldest test statistic
in common use today, having been introduced by the great British statistician Karl
Pearson in 1900.

When H0 is true, fo and fe tend to be close for each cell, and X 2 is relatively
small. If H0 is false, at least some fo and fe values tend not to be close, leading to
large ( fo − fe)2 values and a large test statistic. The larger the X 2 value, the greater
the evidence against H0: independence.

Substituting the fo and fe values from Table 8.4, we find

X 2 =
∑ ( fo − fe)2

fe

= (495 − 456.9)2

456.9
+ (590 − 602.6)2

602.6
+ (272 − 297.4)2

297.4

+ (330 − 368.1)2

368.1
+ (498 − 485.4)2

485.4
+ (265 − 239.6)2

239.6
= 12.57.

The calculation is messy, but it is simple to obtain X 2 using software. We next study
how to interpret its magnitude.

THE CHI-SQUARED PROBABILITY DISTRIBUTION

As usual, for statistical inference we assume randomization, such as random sam-
pling in a sample survey or a randomized experiment. The probability distribution
of cell counts in conditional distributions or marginal distributions is then the multi-
nomial distribution, which generalizes the binomial distribution (Section 6.7) from
two categories to several categories. The multinomial distribution for the cell counts
implies a sampling distribution for the X 2 statistic. Under the presumption that
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H0: independence is true, we can use this sampling distribution to determine whether
a particular sample value of X 2 is consistent with H0 or would be unusually large.

For large sample sizes under randomization, the sampling distribution of X 2 is
called the chi-squared probability distribution. The symbol χ2 for the chi-squared
distribution is the Greek analog of the symbol X 2 for the test statistic. That statistic
is often called the Pearson chi-squared statistic. Here are the main properties of the
chi-squared distribution:

• It is concentrated on the positive part of the real line. The X 2 test statistic can-
not be negative, since it sums squared differences divided by positive expected
frequencies. The minimum possible value, X 2 = 0, would occur if fo = fe in
each cell.

• It is skewed to the right.

• The precise shape of the distribution depends on the degrees of freedom (df ).
The mean μ = df and the standard deviation σ = √

2df . Thus, the distribution
tends to shift to the right and become more spread out for larger df values. In
addition, as df increases, the skew lessens and the chi-squared curve becomes
more bell shaped. See Figure 8.2.

df 5 5

df 5 1

df 5 10

df 5 20

0 10 20 30 40
Chi-Squared

FIGURE 8.2: The
Chi-Squared Distribution.
The curve has larger mean
and standard deviation as
the degrees of freedom
increase.

• For testing H0: independence with a table having r rows and c columns,

df = (r − 1)(c − 1).

For a 2 × 3 table, r = 2, c = 3, and df = (2 − 1)(3 − 1) = 1 × 2 = 2. Larger
numbers of rows and columns produce larger df values. Since larger tables have
more terms in the summation for the X 2 test statistic, the X 2 values also tend
to be larger.

• The larger the X 2 value for a particular df , the stronger the evidence against H0:
independence. The P-value equals the right-tail probability above the observed
X 2 value. It measures the probability, presuming H0 is true, that X 2 is at least
as large as the observed value.

Chi-squared right-tail probabilities are available with software or with Internet
applets. Figure 8.3 shows an applet for finding the P-value when X 2 = 12.57 with
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df = 2. With the software R, this P-value equals 1 minus the cumulative probability
at 12.57 when df = 2:

> 1 - pchisq(12.57, 2)
[1] 0.001864057

FIGURE 8.3: The P-Value
for the Chi-Squared Test
of Independence Is the
Right-Tail Probability,
above the Observed Value
of the Test Statistic. The
Chi-Squared Distribution
applet at
www.pearsonglobal
editions.com/Agresti
can supply chi-squared tail
probabilities.

When df = 1 or 2, the chi-squared curve is so skewed that the mode is 0, as in
Figure 8.3.

Example
8.3

Chi-Squared Statistic for Party ID and Gender To apply the chi-squared test to
Table 8.1 on party ID and gender, we test the following:

H0: Party ID and gender are statistically independent.
Ha: Party ID and gender are statistically dependent.

Using Stata with a data file of 2450 observations classified on categorical variables
partyid and gender, we obtain the results shown in Table 8.5.

TABLE 8.5: Stata Software Output for Expected Frequencies and Pearson Chi-
Squared Test of Independence for Data in Table 8.1 from
PartyID Data File

. tab gender partyid, expected chi2

| partyid
gender | 1 2 3 | Total

1 | 495 590 272 | 1,357
| 456.9 602.6 297.4 | 1,357.0

2 | 330 498 265 | 1,093
| 368.1 485.4 239.6 | 1,093.0

-----------+---------------------------------+----------
Total | 825 1,088 537 | 2,450

| 825.0 1,088.0 537.0 | 2,450.0

Pearson chi2(2) = 12.5693 Pr = 0.002

http://www.pearsonglobaleditions.com/Agresti
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With some software, if we already have the cell counts we can enter them and obtain
X 2 and the P-value, such as in Stata with the command

tabi 495 590 272 \ 330 498 265, chi2

or at some websites.1

The P-value of 0.002 provides strong evidence against H0. It seems likely that
party ID and gender are associated, in the population. If the variables were inde-
pendent, it would be very unusual for a random sample to have this large a X 2

statistic.

CHI-SQUARED AND DIFFERENCE OF PROPORTIONS
FOR 2 × 2 TABLES

As Section 7.2 showed, we can use 2 × 2 contingency tables to compare two groups
on a binary response variable. The outcomes could be, for example, (yes, no) on
an opinion question. For convenience, we label the two possible outcomes for that
binary variable by the generic labels success and failure.

Let π1 represent the proportion of successes in population 1, and let π2 repre-
sent the proportion of successes in population 2. Then (1 − π1) and (1 − π2) are the
proportions of failures. Table 8.6 displays the notation. The rows are the groups to
be compared and the columns are the response categories.

TABLE 8.6: 2×2 Table for Comparing Two Groups
on a Binary Response Variable

Population Proportion

Group Success Failure Total

1 π1 1 − π1 1.0
2 π2 1 − π2 1.0

If the response variable is statistically independent of the populations consid-
ered, then π1 = π2. The null hypothesis of independence corresponds to the ho-
mogeneity hypothesis, H0: π1 = π2. In fact, the chi-squared test of independence is
equivalent to a test for equality of two population proportions. Section 7.2 presented
a z test statistic for this, based on dividing the difference of sample proportions by
its standard error under H0,

z = π̂2 − π̂1

se0
.

The chi-squared statistic relates to this z statistic by X 2 = z2.
The chi-squared statistic for 2 × 2 tables has df = 1. Its P-value from the chi-

squared distribution is the same as the P-value for the two-sided test with the z test
statistic. This is because of a direct connection between the standard normal distri-
bution and the chi-squared distribution with df = 1: Squaring z-scores yields chi-
squared scores with df = 1. The chi-squared right-tail probability is the same as the
two-tail standard normal probability for z. For instance, z = 1.96 is the z-score with
a two-tail probability of 0.05. The square of this, (1.96)2 = 3.84, is the chi-squared
score for df = 1 with a right-tail probability of 0.05.

1 For example, the Chi-Squared Test applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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Example
8.4

Women’s and Men’s Roles Table 8.7 summarizes responses from General Social
Surveys in 1977 and in 2014 to the statement “It is much better for everyone involved
if the man is the achiever outside the home and the woman takes care of the home
and family.” You can check that the sample proportions agreeing with the statement
were π̂1 = 0.658 in 1977 and π̂2 = 0.311 in 2014, the se0 for the test comparing them
equals 0.0178, and the z test statistic for H0: π1 = π2 is z = (0.658 − 0.311)/0.0178 =
19.49. You can also check that the chi-squared statistic for this table is X 2 = 379.9.
This equals the square of the z test statistic. Both statistics show extremely strong
evidence against the null hypothesis of equal population proportions.

TABLE 8.7: GSS Responses to the Statement “It is much
better for everyone involved if the man is the
achiever outside the home and the woman
takes care of the home and family”

Year Agree Disagree Total

1977 989 514 1503
2014 515 1140 1655

CHI-SQUARED NEEDED FOR LARGER TABLES THAN 2 × 2

For a 2 × 2 table, why should we ever do a z test, if we can get the same result with
chi-squared? An advantage of the z test is that it also applies with one-sided alter-
native hypotheses, such as Ha: π1 > π2. The direction of the effect is lost in squaring
z and using X 2.

Why do we need the X 2 statistic? The reason is that a z statistic can only compare
a single estimate to a single H0 value. Examples are a z statistic for comparing a sam-
ple proportion to a H0 proportion such as 0.5, or a difference of sample proportions
to a H0 value of 0 for π2 − π1. When a table is larger than 2 × 2 and thus df > 1, we
need more than one difference parameter to describe the association. For instance,
suppose Table 8.7 had three rows, for three years of data. Then H0: independence
corresponds to π1 = π2 = π3, where πi is the population proportion agreeing with
the statement in year i. The comparison parameters are (π1 − π2), (π1 − π3), and
(π2 − π3). We could use a z statistic for each comparison, but not a single z statistic
for the overall test of independence.

We can interpret the df value in a chi-squared test as the number of parame-
ters needed to determine all the comparisons for describing the contingency table.
For instance, for a 3 × 2 table for comparing three years on a binary opinion re-
sponse, df = 2. This means we need to know only two parameters for making com-
parisons to figure out the third. For instance, if we know (π1 − π2) and (π1 − π3),
then

(π2 − π3) = (π1 − π3) − (π1 − π2).

SAMPLE SIZE REQUIREMENTS FOR CHI-SQUARED TEST

The chi-squared test, like one- and two-sample z tests for proportions, is a large-
sample test. The chi-squared distribution is the sampling distribution of the X 2 test
statistic only when the sample size is relatively large. A guideline is that the expected
frequency fe should exceed 5 in each cell. Otherwise, the chi-squared distribution
may poorly approximate the actual sampling distribution of the X 2 statistic.
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For 2×2 contingency tables, a small-sample test of independence is Fisher’s exact
test (page 212). The test extends to tables of arbitrary size r×c. The computations are
complex and well beyond the scope of this text, but the test is available in statistical
software. So, you don’t need to use the chi-squared approximation when you are
uncertain about its adequacy. For the GSS data on party ID and gender, Fisher’s
exact test also gives P-value = 0.002. The software R provides the results in Table
8.8 for the chi-squared test and for Fisher’s exact test.

TABLE 8.8: R Software for Pearson Chi-Squared Test and Fisher’s Exact Test with Table 8.1

> data <- matrix(c(495, 590, 272, 330, 498, 265), ncol=3, byrow=TRUE)
> chisq.test(data)

Pearson’s Chi-squared test
X-squared = 12.569, df = 2, p-value = 0.001865

> fisher.test(data)
p-value = 0.001848

So, why do you often see chi-squared tests in research articles? Why not always
use Fisher’s exact test, since it uses an exact rather than an approximate sampling dis-
tribution and it has no sample size requirement? In practice, it’s probably because
methodologists have been using chi-squared tests for a long time, and only very re-
cently has software been available for Fisher’s exact test for r × c tables.

CHI-SQUARED TESTS AND TREATMENT OF CATEGORIES

In the chi-squared test, the value of X 2 does not depend on which is the response
variable and which is the explanatory variable (if either). When a response variable
is identified and the population conditional distributions are identical, they are said
to be homogeneous. The chi-squared test of independence is then often referred to
as a test of homogeneity. For example, party ID is a response variable and gender is
explanatory, so we can regard the chi-squared test applied to these data as a test of
homogeneity of the conditional distributions of party ID.

Table 8.9 summarizes the five parts of the chi-squared test of independence. The
test treats the classifications as nominal. That is, X 2 takes the same value if the rows
or columns are reordered in any way. If either classification is ordinal or grouped
interval, the chi-squared test does not use that information. In that case, even

TABLE 8.9: The Five Parts of the Chi-Squared Test of Independence

1. Assumptions: Two categorical variables, random sampling, fe ≥ 5 in all cells
(Test treats variables as nominal scale)

2. Hypotheses: H0: Statistical independence of variables
Ha: Statistical dependence of variables

3. Test statistic: X2 = ∑ ( fo − fe)2

fe
, where fe = (row total)(column total)

total sample size
4. P-value: P = right-tail probability above observed X2 value,

for chi-squared distribution with df = (r − 1)(c − 1)
5. Conclusion: Report P-value

If decision needed, reject H0 at α-level if P ≤ α
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though the variables are categorical, it is usually better to apply stronger statistical
methods designed for the higher level of measurement. Section 8.5 presents a test
of independence for ordinal variables.

8.3 Residuals: Detecting the Pattern of Association
The chi-squared test of independence, like other significance tests, provides limited
information. If the P-value is very small, strong evidence exists that the variables
are associated. The chi-squared test tells us nothing, however, about the nature or
strength of the association. The test does not indicate whether all cells deviate greatly
from independence or perhaps only one or two of the cells do so.

RESIDUAL ANALYSIS

A cell-by-cell comparison of observed and expected frequencies reveals the nature
of the evidence about the association. The difference ( fo − fe) between an observed
and an expected cell frequency is called a residual. A residual is positive when, as
in the cell for female Democrats in Table 8.4, the observed frequency fo exceeds the
value fe that independence predicts. The residual is negative when, as in the cell for
male Democrats in Table 8.4, the observed frequency is smaller than independence
predicts.

How do we know whether a residual is large enough to indicate a departure from
independence that is unlikely to be due to mere chance? A standardized form of the
residual that behaves like a z-score provides this information.

Standardized Residual

The standardized residual for a cell is

z = fo − fe

se
= fo − fe√

fe(1 − row proportion)(1 − column proportion)
.

Here, se denotes the standard error of fo − fe, presuming H0 is true. The
standardized residual is the number of standard errors that ( fo − fe) falls
from the value of 0 that we expect when H0 is true.

The se uses the marginal proportions for the row and the column in which the cell
falls. When H0: independence is true, the standardized residuals have a large-sample
standard normal distribution. They fluctuate around a mean of 0, with a standard
deviation of about 1.

We use the standardized residuals in an informal manner to describe the pattern
of the association among the cells. A large standardized residual provides evidence
against independence in that cell. When H0 is true, there is only about a 5% chance
that any particular standardized residual exceeds 2 in absolute value. When we in-
spect many cells in a table, some standardized residuals could be large just by random
variation. Values below −3 or above +3, however, are very convincing evidence of a
true effect in that cell.

Example
8.5

Standardized Residuals for Gender and Party ID Table 8.10 displays the standard-
ized residuals for testing independence between gender and party ID. For female
Democrats, for instance, fo = 495 and fe = 456.9. The first row and first column
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TABLE 8.10: Observed and Expected Frequencies, with Standardized Residuals in
Parentheses, for Testing Independence between Party ID and Gender

Political Party Identification

Gender Democrat Independent Republican Total

Female 495, 456.9 (3.3) 590, 602.6 (−1.0) 272, 297.4 (−2.5) 1357
Male 330, 368.1 (−3.3) 498, 485.4 (1.0) 265, 239.6 (2.5) 1093

Total 825 1088 537 2450

marginal proportions are 1357/2450 = 0.554 and 825/2450 = 0.337, respectively.
Substituting into the formula, the standardized residual

z = fo − fe√
fe(1 − row prop.)(1 − col. prop.)

= 495 − 456.9√
[456.9(1 − 0.554)(1 − 0.337)]

= 3.3.

Since the standardized residual exceeds 3.0, we can conclude that females are Demo-
crats more often than we would expect if the variables were truly independent.

The table also exhibits a large positive residual for male Republicans. More
males identify as Republicans than the hypothesis of independence predicts. The
table exhibits relatively large negative residuals for female Republicans and male
Democrats. There were fewer female Republicans and male Democrats than we’d
expect if party ID were independent of gender.

For each party ID, Table 8.10 contains only one nonredundant standardized
residual. The one for females is the negative of the one for males. The observed
counts and the expected frequencies have the same row and column totals. Thus, in
a given column, if fo > fe in one cell, the reverse must happen in the other cell. The
differences fo − fe have the same magnitude but a different sign in the two cells,
implying the same pattern for their standardized residuals.

Along with the X 2 statistic, statistical software2 can provide standardized resid-
uals. With R applied to a vector of the six cell counts in the form of a 2 × 3 table, we
have

> data <- matrix(c(495, 590, 272, 330, 498, 265), ncol=3, byrow=TRUE)
> chisq.test(data)$stdres

[,1] [,2] [,3]
[1,] 3.272365 -1.032199 -2.498557
[2,] -3.272365 1.032199 2.498557

STANDARDIZED RESIDUALS FOR 2 × 2 TABLES

Table 8.11 shows the standardized residuals for Table 8.7 on opinions about women’s
and men’s roles. In this 2 × 2 table, every standardized residual equals either +19.5
or −19.5. The absolute value of the standardized residual is 19.5 in every cell.

For chi-squared tests with 2×2 tables, df = 1. This means that only one piece of
information exists about whether an association exists. Once we find the standard-
ized residual for one cell, other standardized residuals in the table have the same

2 Also see the Chi-Squared Test applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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TABLE 8.11: Standardized Residuals (in
Parentheses) for Table 8.7

Year Agree Disagree Total

1977 989 (19.5) 514 (−19.5) 1503
2004 515 (−19.5) 1140 (19.5) 1655

absolute value. In fact, in 2 × 2 tables, each standardized residual equals the z test
statistic (or its negative) for comparing the two proportions. The square of each stan-
dardized residual equals the X 2 test statistic.

8.4 Measuring Association in Contingency Tables
The main questions normally addressed in analyzing a contingency table are

• Is there an association? The chi-squared test of independence addresses this
question. The smaller the P-value, the stronger the evidence of association.

• How do the data differ from what independence predicts? The standardized
residuals highlight the cells that are more likely or less likely than expected
under independence.

• How strong is the association? To summarize this, we use a statistic such as a dif-
ference of proportions, forming a confidence interval to estimate the strength
of association in the population.

Analyzing the strength of the association reveals whether the association is impor-
tant or whether it is perhaps statistically significant but practically insignificant. On
page 65, we introduced the correlation for describing strength of association for
quantitative variables. This section presents two measures of association for con-
tingency tables.

STRONG VERSUS WEAK ASSOCIATION IN
A CONTINGENCY TABLE

Let’s first consider what is meant by strong versus weak association. Table 8.12 shows
two hypothetical contingency tables relating religion (fundamentalist, nonfundamen-
talist) to opinion about legalized marriage for same-sex couples (favor, oppose).
Case A, which exhibits statistical independence, represents the weakest possible
association. Both religious categories have 60% in favor and 40% opposed on opin-
ion. Opinion is not associated with race. By contrast, case B exhibits the strongest

TABLE 8.12: Cross-Classification of Opinion about Same-Sex Legalized Marriage by
Religion, Showing (A) No Association and (B) Maximum Association

A: Opinion B: Opinion

Religion Favor Oppose Total Favor Oppose Total

Nonfundamentalist 360 240 600 600 0 600
Fundamentalist 240 160 400 0 400 400

Total 600 400 1000 600 400 1000
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possible association. All nonfundamentalists favor, whereas all fundamentalists op-
pose. In this table, opinion is completely dependent on religion. For these subjects,
if we know whether they are fundamentalist or not, we know their opinion.

A measure of association describes how similar a table is to the tables repre-
senting the strongest and weakest associations. It takes a range of values from one
extreme to another as data range from the weakest to strongest association. It is use-
ful for comparing associations, to determine which is stronger.

DIFFERENCE OF PROPORTIONS: MEASURING
ASSOCIATION IN 2 × 2 TABLES

As discussed on page 234, many 2×2 tables compare two groups on a binary variable.
In such cases, an easily interpretable measure of association is the difference between
the proportions for a given response category. For example, we could measure the
difference between the proportions of religious nonfundamentalists and fundamen-
talists who favor allowing same-sex marriage. For Table 8.12(A), this difference is

360
600

− 240
400

= 0.60 − 0.60 = 0.0.

The population difference of proportions is 0 whenever the conditional distributions
are identical, that is, when the variables are independent. The difference is 1 or −1 for
the strongest possible association. For Table 8.12(B), for instance, the difference is

600
600

− 0
400

= 1.0,

the maximum possible absolute value for the difference.
This measure falls between −1 and +1. In practice, we don’t expect data to take

these extreme values, but the stronger the association, the larger the absolute value of
the difference of proportions. The following contingency tables illustrate the increase
in this measure as the degree of association increases:

For the second table, for instance, the proportion falling in the first column is
30/(30 + 20) = 0.60 in row 1 and 20/(20 + 30) = 0.40 in row 2, for a difference of
0.60 − 0.40 = 0.20.

CHI-SQUARED DOES NOT MEASURE STRENGTH OF ASSOCIATION

A large value for X 2 in the chi-squared test of independence suggests that the vari-
ables are associated. It does not imply, however, that the variables have a strong
association. This statistic summarizes how close the observed frequencies are to the
frequencies expected if the variables were independent. It merely indicates, however,
how much evidence there is that the variables are dependent, not how strong that de-
pendence is. For a given association, larger X 2 values occur for larger sample sizes.
As with any significance test, large test statistic values can occur with weak effects, if
the sample size is large.
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For example, consider the hypothetical cases in Table 8.13 for race and an opin-
ion response. The association in each table is very weak—the conditional distribution
for whites on opinion (49% favor, 51% oppose) is nearly identical to the conditional
distribution for blacks (51% favor, 49% oppose). All three tables show exactly the
same degree of association, with the difference between the proportions of blacks
and whites in the “yes” category being 0.51 − 0.49 = 0.02 in each table.

TABLE 8.13: Cross-Classifications of Opinion by Race, Showing Weak but Identical
Associations

A B C

Race Yes No Total Yes No Total Yes No Total

White 49 51 100 98 102 200 4,900 5,100 10,000
Black 51 49 100 102 98 200 5,100 4,900 10,000

100 100 200 200 200 400 10,000 10,000 20,000

X2 = 0.08 X2 = 0.16 X2 = 8.0
P-value = 0.78 P-value = 0.69 P-value = 0.005

For the sample of size 200 in case A, X 2 = 0.08, which has a P-value = 0.78. For
the sample of size 400 in case B, X 2 = 0.16, for which P = 0.69. So, when the cell
counts double, X 2 doubles. Similarly, for the sample size of 20,000 (100 times as large
as n = 200) in case C, X 2 = 8.0 (100 times as large as X 2 = 0.08) and P = 0.005.

In summary, for a fixed percentage assignment to the cells of a contingency table,
X 2 is directly proportional to the sample size—larger values occur with larger sample
sizes. Like other test statistics, the larger the X 2 statistic, the smaller the P-value and
the stronger the evidence against the null hypothesis. However, a small P-value can
result from a weak association when the sample size is large, as case C shows.

THE ODDS RATIO∗

The difference of proportions is easily interpretable. Several other measures are also
available in statistical software. This subsection presents the most important one for
categorical data analysis, the odds ratio.

For a binary response variable, recall that we use success to denote the outcome
of interest and failure the other outcome. The odds of success are defined to be

Odds = Probability of success
Probability of failure

.

If P(success) = 0.75, then P(failure) = 1 − 0.75 = 0.25, and the odds of success
= 0.75/0.25 = 3.0. If P(success) = 0.50, then odds = 0.50/0.50 = 1.0. If P(success)
= 0.25, then odds = 0.25/0.75 = 1/3. The odds are nonnegative, with value greater
than 1.0 when a success is more likely than a failure. When odds = 3.0, a success is
three times as likely as a failure; we expect about three successes for every failure.
When odds = 1/3, a failure is three times as likely as a success; we expect about one
success for every three failures.

The probability of an outcome relates to the odds of the outcome by

Probability = Odds
Odds + 1

.

For instance, when odds = 3, probability = 3/(3 + 1) = 0.75.
The ratio of odds from the two rows of a 2 × 2 table is called the odds ratio.

For instance, if the odds = 4.5 in row 1 and the odds = 3.0 in row 2, then the odds
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ratio = 4.5/3.0 = 1.5. The odds of success in row 1 then equal 1.5 times the odds of
success in row 2. We denote the population value of an odds ratio by the Greek letter
θ (theta).

Example
8.6

Race of Murder Victims and Offenders For murders in the United States in 2013
having a single victim and single offender, Table 8.14 cross-classifies the race of the
victim by the race of the offender for cases in which they were both known. We
treat race of victim as the response variable. For white offenders, the proportion of
victims who were white is 2509/2918 = 0.860 and the proportion who were black
is 409/2918 = 0.140. The odds of a white victim equaled 0.860/0.140 = 6.13. This
equals (2509/2918)/(409/2918) = 2509/409. So, we can calculate the odds by the
ratio of the counts in the two cells in row 1, without converting them to proportions.

TABLE 8.14: Cross-Classification of Race of Victim
and Race of Offender

Race of Victim

Race of Offender White Black Total

White 2509 409 2918
Black 189 2245 2434

Source: www.fbi.gov.

The value 6.13 means that for white offenders, there were 6.13 white victims for
every black victim. For black offenders, the odds of a white victim were 189/2245 =
0.0842. This means there were 0.0842 white victims for every black victim. Equiva-
lently, since 2245/189 = 1/0.0842 = 11.88, black offenders had 11.88 black victims
for every white victim.

For these data, the odds ratio is

θ = Odds for white offenders
Odds for black offenders

= 6.13
0.0842

= 72.9.

The odds of a white victim for white offenders were about 73 times the odds of a
white victim for black offenders.

In summary,

Odds and Odds Ratio

The estimated odds for a binary response equal the number of successes
divided by the number of failures.

The odds ratio is a measure of association for 2 × 2 contingency tables
that equals the odds in row 1 divided by the odds in row 2.

PROPERTIES OF THE ODDS RATIO∗

In Table 8.14, suppose we treat race of offender, rather than race of victim, as the
response variable. When victims were white, the odds the race of the offender was
white equaled 2509/189 = 13.28. When victims were black, the odds the race of the
offender was white equaled 409/2245 = 0.182. The odds ratio is 13.28/0.182 = 72.9.
For each choice of the response variable, the odds ratio is 72.9. In fact,

• The odds ratio takes the same value regardless of the choice of response
variable.

http://www.fbi.gov
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Since the odds ratio treats the variables symmetrically, the odds ratio is a natural
measure when there is no obvious distinction between the variables, such as when
both are response variables.

• The odds ratio θ equals the ratio of the products of cell counts from diagonally
opposite cells.

For Table 8.13, for instance,

θ = 2509 × 2245
409 × 189

= 72.9.

Because of this property, the odds ratio is also called the cross-product ratio.

• The odds ratio can equal any nonnegative number.

• When the success probabilities are identical in the two rows of a 2 × 2 table
(i.e., π1 = π2), then θ = 1.

When π1 = π2, the odds are also equal. The odds of success do not depend on the
row level of the table, and the variables are then independent, with θ = 1. The value
θ = 1 for independence serves as a baseline for comparison. Odds ratios on each
side of 1 reflect certain types of associations.

• When θ > 1, the odds of success are higher in row 1 than in row 2.

For instance, when θ = 4, the odds of success in row 1 are four times the odds of
success in row 2.

• When θ < 1, the odds of success are lower in row 1 than in row 2.

• Values of θ farther from 1.0 in a given direction represent stronger associations.

An odds ratio of 4 is farther from independence than an odds ratio of 2, and an odds
ratio of 0.25 is farther from independence than an odds ratio of 0.50.

• Two values for θ represent the same strength of association, but in opposite
directions, when one value is the reciprocal of the other.

For instance, θ = 4.0 and θ = 1/4.0 = 0.25 represent the same strength of associa-
tion. When θ = 0.25, the odds of success in row 1 are 0.25 times the odds of success
in row 2. Equivalently, the odds of success in row 2 are 1/0.25 = 4.0 times the odds of
success in row 1. When the order of the rows is reversed or the order of the columns
is reversed, the new value of θ is the reciprocal of the original value. This ordering of
rows or columns is usually arbitrary, so whether we get 4.0 or 0.25 for the odds ratio
is merely a matter of how we label the rows and columns.

In interpreting the odds ratio, be careful not to misinterpret it as a ratio of proba-
bilities. An odds ratio of 72.9 does not mean that π1 is 72.9 times π2. Instead, θ = 72.9
means that the odds in row 1 equal 72.9 times the odds in row 2. The odds ratio is a
ratio of two odds, not a ratio of two probabilities. That is,

θ = Odds in row 1
Odds in row 2

= π1/(1 − π1)
π2/(1 − π2)

, not
π1

π2
.

As explained on page 194, the ratio of probabilities π1/π2 is itself a useful measure
for comparing two groups.

The sampling distribution of the sample odds ratio θ̂ is highly skewed unless
the sample size is extremely large, in which case the distribution is approximately
normal. Exercise 8.45 shows a method of constructing confidence intervals for odds
ratios.
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ODDS RATIOS FOR r × c TABLES∗

For contingency tables with more than two rows or more than two columns, the odds
ratio describes patterns in any 2 × 2 subtable. We illustrate using GSS data on party
ID and race, shown in Table 8.15.

TABLE 8.15: GSS Data from 2014 on Political Party
Identification and Race

Political Party Identification

Gender Democrat Independent Republican

Black 249 108 17
White 496 828 498

Consider first the 2 × 2 subtable formed from the first two columns. The sample
odds ratio is (249 × 828)/(108 × 496) = 3.85. The odds that a black’s response was
Democrat rather than Independent equal 3.85 times the odds for whites. Of those
subjects who responded Democrat or Independent, blacks were more likely than
whites to respond Democrat.

The sample odds ratio for the last two columns of this table is (108 × 498)/
(17 × 828) = 3.82. The odds that a black’s response was Independent rather than
Republican equal 3.8 times the odds for whites. Of those subjects who responded
Independent or Republican, blacks were much more likely than whites to respond
Independent.

Finally, for the 2 × 2 subtable formed from the first and last columns, the sample
odds ratio is (249 × 498)/(17 × 496) = 14.71. The odds that a black’s response was
Democrat rather than Republican equal 14.7 times the odds for whites. Of those
subjects who responded Democrat or Republican, blacks were much more likely than
whites to respond Democrat. This is a very strong effect, far from the independence
odds ratio value of 1.0.

The odds ratio value of 14.7 for the first and last columns equals (3.85)(3.82), the
product of the other two odds ratios. For 2 × 3 tables, df = 2, meaning that only two
independent bits of information exist about the association. Two of the odds ratios
determine the third.

SUMMARY MEASURES OF ASSOCIATION FOR r × c TABLES∗

Instead of studying association in 2 × 2 subtables, it’s possible to summarize associa-
tion in the entire table by a single number. One way to do this summarizes how well
we can predict the value of one variable based on knowing the value of the other
variable. For example, party ID and race are highly associated if race is a good pre-
dictor of party ID, that is, if knowing their race, we can make much better predictions
about people’s party ID than if we did not know it.

For quantitative variables, the correlation is such a summary measure. We’ll study
a similar summary measure of this type for ordinal variables (called gamma) in the
next section. These measures describe an overall trend in the data. For nominal vari-
ables, when r or c exceeds 2 it is usually an oversimplification to describe the table
with a single measure of association. In that case, too many possible patterns of asso-
ciation exist to describe an r × c table well by a single number. We believe you get a
better feel for the association by making percentage comparisons of conditional dis-
tributions, by viewing the pattern of standardized residuals in the cells of the table,
by constructing odds ratios in 2 × 2 subtables, and by building models such as those



Section 8.5 Association Between Ordinal Variables∗ 245

presented in Chapter 15. These methods become even more highly preferred to sum-
mary measures of association when the analysis is multivariate rather than bivariate.

8.5 Association Between Ordinal Variables∗

We now turn our attention to analyses of contingency tables that cross-classify or-
dinal variables. We introduce a popular ordinal measure of association and present
related methods of inference.

Example
8.7

How Strongly Associated Are Income and Happiness? Table 8.16 cross-classifies two
ordinal variables. The data, from the 2014 General Social Survey, show the relation
between family income and happiness. This table has results for black Americans,
and Exercise 8.13 analyzes data for white Americans.

TABLE 8.16: Family Income and Happiness for a GSS Sample, with
Conditional Distributions on Happiness in Parentheses

Happiness

Not Too Pretty Very
Family Income Happy Happy Happy Total

Below average 37 (22%) 90 (52%) 45 (26%) 172 (100.0%)
Average 25 (15%) 93 (53%) 56 (32%) 174 (100.0%)
Above average 6 (16%) 18 (49%) 13 (35%) 37 (100.0%)

Total 68 201 114 383

Let’s first get a feel for the data by studying the conditional distributions on
happiness. Table 8.16 shows them. For subjects with below-average family income,
only 26% are very happy, whereas 35% of those at the above-average income level
are very happy. Conversely, a lower percentage (16%) of the high-income group are
not too happy compared to those in the low-income group (22%). The odds ratio for
the four corner cells is (37×13)/(45×6) = 1.78. There seems to be a slight tendency
for subjects with higher incomes to have greater happiness.

Ordinal data exhibit two primary types of association between variables x and
y—positive and negative. Positive association results when subjects at the high end of
the scale on x tend also to be high on y, and those who are low on x tend to be low on
y. For example, a positive association exists between income and happiness if those
with low incomes tend to have lower happiness, and those with high incomes tend to
have greater happiness. Negative association occurs when subjects classified high on
x tend to be classified low on y, and those classified low on x tend to be high on y.
For example, a negative association might exist between religious fundamentalism
and tolerance toward homosexuality—the more fundamentalist in religious beliefs,
the less tolerance toward homosexuality.

CONCORDANCE AND DISCORDANCE

Many ordinal measures of association are based on the information about the asso-
ciation provided by all the pairs of observations.
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Concordant Pair,
Discordant Pair

A pair of observations is concordant if the subject who is higher on one
variable also is higher on the other variable.

A pair of observations is discordant if the subject who is higher on one
variable is lower on the other.

In Table 8.16, we regard Not too happy as the low end and Very happy as the high end
of the scale on y = happiness, and Below average as low and Above average as high
on x = family income. By convention, we construct contingency tables for ordinal
variables so that the low end of the row variable is the first row and the low end of
the column variable is the first column.3

Consider a pair of subjects, one of whom is classified (below average, not too
happy), and the other of whom is classified (average, pretty happy). The first subject
is one of the 37 classified in the upper left-hand cell of Table 8.16, and the second
subject is one of the 92 classified in the middle cell. This pair of subjects is concor-
dant, since the second subject is higher than the first subject both in happiness and in
income. The subject who is higher on one variable is also higher on the other. Now,
each of the 37 subjects classified (below average, not too happy) can pair with each
of the 92 subjects classified (average, pretty happy). So, there are 37 × 92 = 3404
concordant pairs of subjects from these two cells.

By contrast, each of the 90 subjects in the cell (below average, pretty happy)
forms a discordant pair when matched with each of the 25 subjects in the cell (aver-
age, not too happy). The 90 subjects have lower income than the other 25 subjects,
yet they have greater happiness. All 90 × 25 = 2250 of these pairs of subjects are
discordant.

Concordant pairs of observations provide evidence of positive association since,
for such a pair, the subject who is higher on one variable also is higher on the other.
On the other hand, the more prevalent the discordant pairs, the more evidence there
is of a negative association. We let C denote the total number of concordant pairs
of observations and D denote the total number of discordant pairs of observations.
We leave to Exercise 8.46 a general rule for calculating C and D. Software can easily
do this for us. Overall, Table 8.16 has C = 14,804 and D = 11,031. More pairs show
evidence of a positive association (i.e., concordant pairs) than show evidence of a
negative association (discordant pairs).

GAMMA

A positive difference for C − D occurs when C > D. This indicates a positive associ-
ation. A negative difference for C − D reflects a negative association.

Larger sample sizes have larger numbers of pairs with, typically, larger absolute
differences in C − D. Therefore, we standardize this difference to make it easier to
interpret. To do this, we divide C−D by the total number of pairs that are either con-
cordant or discordant, C + D. This gives the measure of association called gamma.
Its sample formula is

γ̂ = C − D
C + D

.

Here are some properties of gamma:

• The value of gamma falls between −1 and +1.

• The sign of gamma indicates whether the association is positive or negative.

• The larger the absolute value of gamma, the stronger the association.

3 There is no standard, however, and some books use a different convention.
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A table for which gamma equals 0.60 or −0.60 exhibits a stronger association
than one for which gamma equals 0.30 or −0.30, for example. The value +1 repre-
sents the strongest positive association. This occurs when there are no discordant
pairs (D = 0), so all the pairs reveal a positive association. Gamma equals −1 when
C = 0, so all pairs reveal a negative association. Gamma equals 0 when C = D.

For Table 8.16, C = 14,804 and D = 11,031, so

γ̂ = 14,804 − 11,031
14,804 + 11,031

= 0.146.

This sample exhibits a positive association. The higher the family income, the greater
the happiness tends to be. However, the sample value is closer to 0 than to 1, so the
association is relatively weak.

GAMMA IS A DIFFERENCE BETWEEN TWO ORDINAL PROPORTIONS

Another interpretation for the magnitude of gamma follows from the expression

γ̂ = C − D
C + D

= C
C + D

− D
C + D

.

Now, (C + D) is the total number of pairs that are concordant or discordant. The
ratio C/(C + D) is the proportion of those pairs that are concordant, D/(C + D) is
the proportion of the pairs that are discordant, and γ̂ is the difference between the
two proportions.

For example, suppose γ̂ = 0.60. Then, since 0.80 and 0.20 are the two proportions
that sum to 1 and have a difference of 0.80 − 0.20 = 0.60, 80% of the pairs are
concordant and 20% are discordant. Similarly, γ̂ = −0.333 indicates that 1/3 of the
pairs are concordant and 2/3 of the pairs are discordant, since 1/3 + 2/3 = 1 and
1/3 − 2/3 = −0.333.

For Table 8.16, out of the 14,804 + 11,031 = 25,835 pairs that are concordant or
discordant, the proportion 14,804/25,835 = 0.573 are concordant and the proportion
11,031/25,835 = 0.427 are discordant; γ̂ = 0.146 is the difference between these
proportions.

COMMON PROPERTIES OF ORDINAL MEASURES

Gamma is one of several ordinal measures of association. Others are Kendall’s
tau-b, Spearman’s rho-b, and Somers’ d. These measures are all similar in their
basic purposes and characteristics. For lack of space, we do not define them, but we
will list some common properties. These properties also hold for the correlation for
quantitative variables, which we introduced in Section 3.5 and use extensively in the
next chapter.

• Ordinal measures of association take values between −1 and +1. The sign tells
us whether the association is positive or negative.

• If the variables are statistically independent, then the population values of
ordinal measures of association equal 0.

• The stronger the association, the larger the absolute value of the measure.
Values of 1.0 and −1.0 represent the strongest associations.
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• With the exception of Somers’ d, the ordinal measures of association named
above do not distinguish between response and explanatory variables. They
take the same value when variable y is the response variable as when it is the
explanatory variable.

CONFIDENCE INTERVALS AND TESTS
FOR ORDINAL ASSOCIATION

Confidence intervals help us gauge the strength of the association in the population.
Let γ denote the population value of gamma. For sample gamma, γ̂ , its sampling
distribution is approximately normal about γ . Its standard error se describes the
variation in γ̂ values around γ among samples of the given size. The formula for
se is complicated, but it is reported by most software. Assuming random sampling, a
confidence interval for γ has the form

γ̂ ± z(se).

The chi-squared test of whether two categorical variables are independent treats
the variables as nominal. Other tests are usually more powerful when the variables
are ordinal, and here we present one using gamma. As in the chi-squared test, the
null hypothesis is that the variables are statistically independent. The alternative hy-
pothesis can take the two-sided form Ha: γ �= 0 or a one-sided form Ha: γ > 0 or Ha:
γ < 0, when we predict the direction of the association.

The test statistic has the z statistic form. It takes the difference between γ̂ and
the value of 0 that gamma takes when H0: independence is true and divides by the
standard error,

z = γ̂ − 0
se

.

Under random sampling, this test statistic has approximately the standard normal
distribution, when H0 is true. Some software also reports a se and/or related P-value
that holds only under H0. The normal approximation holds better with larger n, and
is adequate when each of C and D exceeds about 50.

Example
8.8

Inference about Association between Income and Happiness For Table 8.16 on
family income and happiness, Table 8.17 shows software output. The γ̂ = 0.145
value has se = 0.079. (It is labeled as ASE, where the A stands for “asymptotic,”
meaning it is an approximate large-sample standard error.) With some software, if
we already have the cell counts, we can enter them and find gamma and its standard
error. Stata uses the command

tabi 37 90 45 \ 25 93 56 \ 6 18 13, gamma

TABLE 8.17: Part of Software Output for Analyzing Table 8.16

Value DF P-Value
Pearson Chi-Square 4.1266 4 0.389

Statistic Value ASE P-Value
Gamma 0.1454 0.0789 0.064

A 95% confidence interval for γ in the population is

γ̂ ± 1.96(se), or 0.145 ± 1.96(0.079), or 0.145 ± 0.155,

which equals (−0.01, 0.30). We can be 95% confident that γ is no less than −0.01
and no greater than 0.30. It is plausible that essentially no association exists between



Section 8.5 Association Between Ordinal Variables∗ 249

income and happiness, but it is also plausible that a moderate positive association
exists. We need a larger sample size to estimate this more precisely.

For testing independence between family income and happiness, the chi-squared
test of independence has X 2 = 4.13 with df = 4, for which the P-value equals 0.39.
This test does not show any evidence of an association. The chi-squared test treats
the variables as nominal, however, and ordinal-level methods are more powerful if
there is a positive or negative trend. The ordinal test statistic using gamma is

z = γ̂ − 0
se

= 0.145 − 0
0.079

= 1.84.

The P-value for Ha: γ �= 0 equals 0.064. This test shows some evidence of an as-
sociation. A priori, we might have predicted a positive association between family
income and happiness. The test for Ha: γ > 0 has P = 0.033. There is relatively
strong evidence of a positive association in the population.

ORDINAL TESTS VERSUS PEARSON CHI-SQUARED TEST

The z test result for these data providing evidence of an association may seem sur-
prising. The chi-squared statistic of X 2 = 4.09 with df = 4 provided no evidence
(P = 0.39).

A test of independence based on an ordinal measure is usually preferred to the
chi-squared test when both variables are ordinal. The X 2 statistic ignores the order-
ing of the categories, taking the same value no matter how the levels are ordered.
If a positive or negative trend exists, ordinal measures are usually more powerful
for detecting it. Unfortunately, the situation is not clear cut. It is possible for the
chi-squared test to be more powerful even if the data are ordinal.

To explain this, we first note that the null hypothesis of independence is not
equivalent to a value of 0 for population gamma. Although independence implies
γ = 0, the converse is not true. Namely, γ may equal 0 even though the variables are
not statistically independent. For example, Table 8.18 shows a relationship between
two variables that does not have a single trend. Over the first two columns there is a
positive relationship, since y increases when x increases. Over the last two columns
there is a negative relationship, as y decreases when x increases. For the entire table,
C = 25(25 + 25) = 1250 = D, so γ = 0. The proportion of concordant pairs equals
the proportion of discordant pairs. However, there is not independence, because the
conditional distribution on y for the low level of x is completely different from the
conditional distribution on y for the high level of x.

TABLE 8.18: A Relationship for Which Ordinal Measures of Association
Equal 0. The variables are dependent even though gamma
equals 0.

Level of y

Very Low Low High Very High

Level of x Low 25 0 0 25
High 0 25 25 0

Thus, an ordinal measure of association may equal 0 when the variables are sta-
tistically dependent but the dependence does not have an overall positive or overall
negative trend. The chi-squared test can perform better than the ordinal test when
the relationship does not have a single trend. In practice, most relationships with
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ordinal variables have primarily one trend, if any. So, the ordinal test is usually more
powerful than the chi-squared test.

SIMILAR INFERENCE METHODS FOR OTHER
ORDINAL MEASURES

The inference methods for gamma apply also to other ordinal measures of associ-
ation. An alternative approach to detect trends assigns scores to the categories for
each variable and uses the correlation and a z test based on it. (Section 9.5 presents
a closely related test.) Some software reports this as a test of linear-by-linear
association.

Whenever possible, it is better to choose the categories for ordinal variables
finely rather than crudely. For instance, it is better to use four or five categories than
only two categories. Standard errors of measures tend to be smaller with more cat-
egories, for a given sample size. Thus, the finer the categorizations, the shorter the
confidence interval for a population measure of association tends to be. In addition,
finer measurement makes it more valid to treat the data as quantitative and use the
more powerful methods presented in the following chapter for quantitative variables.

MIXED ORDINAL–NOMINAL CONTINGENCY TABLES

For a cross-classification of an ordinal variable with a nominal variable that has only
two categories, ordinal measures of association are still valid. In that case, the sign of
the measure indicates which level of the nominal variable is associated with higher
responses on the ordinal variable. For instance, suppose gamma = −0.12 for the
association in a 2×3 table relating gender (female, male) to happiness (not too happy,
pretty happy, very happy). Since the sign is negative, the “higher” level of gender (i.e.,
male) tends to occur with lower happiness. The association is weak, however.

When the nominal variable has more than two categories, it is inappropriate
to use an ordinal measure such as gamma. There are specialized methods for mixed
nominal–ordinal tables, but it is usually simplest to treat the ordinal variable as quan-
titative by assigning scores to its levels. The methods of Chapter 12, which general-
ize comparisons of two means to several groups, are then appropriate. Section 15.4
presents a modeling approach that does not require assigning scores to ordinal re-
sponse variables. For further details about statistical methods for ordinal variables,
see Agresti (2010).

8.6 Chapter Summary
This chapter introduced analyses of association for categorical variables:

• By describing the counts in contingency tables using percentage distributions,
called conditional distributions, across the categories of the response vari-
able. If the population conditional distributions are identical, the two variables
are statistically independent—the probability of any particular response is the
same for each level of the explanatory variable.

• By using chi-squared to test H0: independence between the variables. The
Pearson chi-squared test statistic compares each observed frequency fo to the
expected frequency fe satisfying H0, using

X 2 =
∑ ( fo − fe)2

fe
.
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The test statistic has, under H0, a large-sample chi-squared distribution. The de-
grees of freedom depend on the number of rows r and the number of columns c,
through df = (r − 1)(c − 1). The P-value is the right-tail probability above the
observed value of X 2. Fisher’s exact test is also applicable with small samples.

• By describing the pattern of association using standardized residuals for the
cells in the table. A standardized residual reports the number of standard errors
that ( fo− fe) falls from 0. A large absolute value indicates that that cell provides
evidence of association in a particular direction.

• By describing the strength of association. For 2 × 2 tables the difference of pro-
portions is useful, as is the odds ratio, the ratio of odds from the two rows.
Each odds measures the proportion of successes divided by the proportion of
failures. When there is independence, the difference of proportions equals 0
and the odds ratio equals 1. The stronger the association, the farther the mea-
sures fall from these baseline values.

This chapter also presented methods for analyzing association between two or-
dinal categorical variables.

• Many ordinal measures of association use the numbers of concordant pairs
(the subject who is higher on x also is higher on y) and discordant pairs (the
subject who is higher on x is lower on y). Of the pairs that are concordant or
discordant, gamma equals the difference between their proportions and falls
between −1 and +1, with larger absolute values indicating stronger association.
When the variables are independent, gamma equals 0.

The chi-squared test treats the data as nominal. When the variables are ordinal,
methods that use the ordinality (such as a z test based on sample gamma) are more
powerful for detecting a positive or negative association trend.

The next chapter introduces analyses of association for quantitative variables.

Exercises

Practicing the Basics
8.1. GSS surveys routinely show that in the United States,
about 40% of males and 40% of females believe that a
woman should be able to get an abortion if she wants it
for any reason.

(a) Construct a contingency table showing the conditional
distribution on whether unrestricted abortion should be
legal (yes, no) by gender.
(b) Based on these results, does statistical independence
seem plausible between gender and opinion about unre-
stricted abortion? Explain.

8.2. Whether a woman becomes pregnant in the next year
is a categorical variable with categories (yes, no), and
whether she and her partner use contraceptives is another
categorical variable with categories (yes, no). Would you
expect these variables to be statistically independent, or
associated? Explain.

8.3. A March 2015 survey by the Pew Research Center
(www.pewresearch.org) compared various groups of
Americans in terms of their support for legalizing mari-
juana. In considering age groups, it estimated that legal-
ization was supported by 68% of those of age between 18
and 34, by 51% of those of age between 35 and 69, and by
29% of those of age 70 and higher.

(a) If results for the population of adult Americans were
similar to these, would age and opinion about legalizing
marijuana be independent, or dependent?
(b) Display hypothetical population percentages in a con-
tingency table for which these variables would be inde-
pendent.

8.4. The World Values Survey4 asked, “How often do you
pray?” The response never was given by 16.5% of the 2232
respondents in the United States, by 48.4% of the 1189 re-
spondents in Spain, and by 56.8% of the 1206 respondents

4 See www.worldvaluessurvey.org/WVSOnline.jsp.

http://www.pewresearch.org
http://www.worldvaluessurvey.org/WVSOnline.jsp
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in Sweden. Show how to construct a contingency table re-
lating the outcome on the praying question to the nation
where it was asked. For this table, identify the response
variable, the explanatory variable, and the conditional
distributions.

8.5. Based on current estimates of how well mammo-
grams detect breast cancer, Table 8.19 shows what to ex-
pect for 100,000 adult women over the age of 40 in terms
of whether a woman has breast cancer and whether a
mammogram gives a positive result (i.e., indicates that the
woman has breast cancer).

(a) Construct the conditional distributions for the mam-
mogram test result, given the true disease status. Does the
mammogram appear to be a good diagnostic tool?
(b) Construct the conditional distribution of disease sta-
tus, for those who have a positive test result. Use this to
explain why even a good diagnostic test can have a high
false positive rate when a disease is not common.

TABLE 8.19

Diagnostic Test

Positive Negative

Breast Yes 860 140
Cancer No 11800 87120

8.6. Data posted at the FBI website (www.fbi.gov) in-
dicated that of all blacks slain in 2013, 92% were slain by
blacks, and of all whites slain in 2013, 93% were slain by
whites. Let y denote race of victim and x denote race of
murderer.

(a) Which conditional distributions do these statistics re-
fer to, those of y at given levels of x, or those of x at given
levels of y? Set up a contingency table showing these dis-
tributions.
(b) Are x and y independent or dependent? Explain.

8.7. How large a X 2 value provides a P-value of 0.05 for
testing independence for the following table dimensions?

(a) 2 × 2 (b) 3 × 3 (c) 2 × 5 (d) 5 × 5
(e) 3 × 9

8.8. A sociologist uses a 2 × 4 contingency table to com-
pare four groups on a binary response variable. For group
i, let πi denote the population proportion of response in
the first outcome category, i = 1, 2, 3, 4. Explain what
df = 3 means in the context of comparing these four pop-
ulation proportions.

8.9. In 2010, the GSS asked about willingness to accept
cuts in the standard of living to help the environment, with
categories (very willing, fairly willing, neither willing nor
unwilling, not very willing, not at all willing). When this
was cross tabulated with sex, X 2 = 3.3.

(a) What are the hypotheses for the test to which X 2

refers?
(b) Report the df value on which X 2 is based.
(c) What conclusion would you make, using a significance
level of 0.05? State your conclusion in the context of this
study.

8.10. Table 8.20 is based on results described in a study5

that examined the effects of alcohol consumption and
drug use on sexual behavior, for undergraduate students
at a university in the southeastern United States. In this
table, the columns refer to whether the student engaged
in unprotected sex in the past three months, and the rows
refer to whether the student reported drinking alcohol
mixed with energy drinks (AmED).

(a) Construct conditional distributions that treat unpro-
tected sex as the response variable. Interpret.
(b) Test whether the variables are statistically indepen-
dent. Report the P-value, and interpret.

TABLE 8.20

Unprotected Sex

Yes No

AmED Yes 77 44
Consumption No 194 309

8.11. Are people happier who believe in life after death?
Go to the GSS website sda.berkeley.edu/GSS and
download the contingency table for the 2014 survey relat-
ing happiness and whether you believe in life after death
(variables HAPPY and POSTLIFE, with YEAR(2014) in
the selection filter).

(a) State a research question that could be addressed with
the output.
(b) Report the conditional distributions, using happiness
as the response variable, and interpret.
(c) Report the X 2 value and its P-value. (You can get this
by checking Statistics.) Interpret.
(d) Interpret the standardized residuals. (You can get
them by checking z statistic.) Summarize what you
learned from your analyses.

8.12. In the GSS, subjects who were married were asked
the happiness of their marriage, the variable coded as
HAPMAR.

(a) Go to sda.berkeley.edu/GSS/ and construct a
contingency table for 2014 relating HAPMAR to family
income measured as (above average, average, below av-
erage), by entering FINRELA(r: 1-2; 3; 4-5) as the row
variable and YEAR(2014) in the selection filter. Use a ta-
ble or graph with conditional distributions to describe the
association.

5 By D. Snipes and E. Benotsch, Addictive Behaviors, vol. 38 (2013), pp. 1418–1423.

http://www.fbi.gov
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(c) By checking “Statistics,” you request the chi-squared
statistic. Report it and its df and P-value, and interpret.

8.13. The sample in Table 8.16 is 382 black Americans.
Table 8.21 shows cell counts and standardized residuals
for income and happiness for white subjects in the 2014
General Social Survey.

(a) Interpret the Pearson chi-squared statistic and its
P-value.
(b) Interpret the standardized residuals in the four corner
cells.

TABLE 8.21

Rows: income Columns: happiness
not pretty very

below 128 324 107
9.14 0.95 -7.47

average 66 479 295
-5.27 0.57 3.12

above 35 247 184
-3.62 -1.66 4.33

Cell Contents: Count
Standardized residual

Pearson Chi-Square = 114.7,
DF = 4, P-Value = 0.000

8.14. Table 8.22 shows SPSS analyses with the 2014 Gen-
eral Social Survey, for variables party ID and race.

(a) Report the expected frequency for the first cell, and
show how SPSS obtained it.

(b) Test the hypothesis of independence. Report the test
statistic and P-value, and interpret.

(c) Use the standardized residuals (labeled “Adjusted
Residual” here) to describe the pattern of association.

TABLE 8.22

party_ID
democr indep repub Total

race black Count 249 108 17 374
Expected Count 126.9 159.4 87.7
Adjusted Residual 14.6 -5.9 -9.5

-----------------------------------------------------
white Count 496 828 498 1822

Expected Count 618.1 776.6 427.3
Adjusted Residual -14.6 5.9 9.5

------------------------------------------------------------
Total Count 745 936 515 2196

Value df Asymptotic Significance
Pearson Chi-Square 230.35 2 .000

8.15. For a 2×4 cross-classification of gender and religios-
ity (very, moderately, slightly, not at all) for recent GSS
data, the standardized residual was 3.2 for females who
are very religious, −3.2 for males who are very religious,

−3.5 for females who are not at all religious, and 3.5 for
males who are not at all religious. All other standardized
residuals fell between −1.1 and 1.1. Interpret.

8.16. Table 8.23, from the 2014 General Social Survey,
cross-classifies happiness and marital status.
(a) Software reports that X 2 = 135.3. Interpret.
(b) The table also shows, in parentheses, the standard-
ized residuals. Summarize the association by indicating
which marital statuses have strong evidence of (i) more,
(ii) fewer people in the population in the very happy cat-
egory than if the variables were independent.
(c) Compare the married and divorced groups by the dif-
ference in proportions in the very happy category.

TABLE 8.23

Marital Status Very Happy Pretty Happy Not Too Happy

Married 472 (9.8) 592 (−3.9) 90 (−7.6)
Widowed 49 (−2.4) 120 (0.7) 38 (2.2)
Divorced 94 (−3.9) 233 (0.5) 84 (4.6)
Separated 12 (−3.2) 47 (0.5) 22 (3.7)
Never married 158 (−5.0) 410 (3.3) 105 (1.9)

8.17. A report by the Gallup organization in February
2015 estimated that 9% of Republicans approved of Pres-
ident Barack Obama’s performance, whereas 79% of
Democrats approved. Would you characterize the associ-
ation between political party affiliation and opinion about
Obama’s performance as weak, or strong? Explain why.

8.18. In a recent GSS, the death penalty for subjects con-
victed of murder was favored by 74% of whites and 43%
of blacks. It was favored by 75% of males and 63% of fe-
males. In this sample, which variable was more strongly
associated with death penalty opinion—race, or gender?
Explain why.

8.19. In a survey of senior high school students in Dayton,
Ohio, 1449 students had used both alcohol and cigarettes,
281 had used neither, 500 had used alcohol but not
cigarettes, and 46 had used cigarettes but not alcohol.
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(a) Construct the 2 × 2 table relating alcohol use to
cigarette use. Describe the strength of association using
the difference between (i) users and nonusers of alcohol
in the proportions who have used cigarettes, (ii) users and
nonusers of cigarettes in the proportions who have used
alcohol. Interpret.
(b) Describe the strength of association using the odds ra-
tio. Interpret. Does the odds ratio value depend on your
choice of response variable?

8.20. Table 8.24 cross-classifies 68,694 passengers in autos
and light trucks involved in accidents in the state of Maine
by whether they were wearing a seat belt and by whether
they were injured or killed. Describe the association using
(a) The difference between two proportions, treating
whether injured or killed as the response variable.
(b) The odds ratio.

TABLE 8.24

Injury

Yes No

Seat Yes 2409 35,383
Belt No 3865 27,037

Source: Thanks to Dr. Cristanna Cook,
Medical Care Development, Augusta,
Maine, for supplying these data.

8.21. The 2012 National Survey on Drug Use and Health
(NSDUH) estimated that 23% of Americans aged 12 or
over reported binge drinking in the past month, and 7%
had used marijuana in the past month.
(a) Find the odds of (i) binge drinking, (ii) marijuana use.
Interpret.
(b) Find the odds ratio comparing binge drinking to mar-
ijuana use. Interpret.

8.22. According to the U.S. Bureau of Justice Statistics,
in 2014 the incarceration rate in the nation’s prisons was
904 per 100,000 male residents, 65 per 100,000 female
residents, 2805 per 100,000 black residents, and 466 per
100,000 white residents. (Source: www.bjs.gov.)
(a) Find the odds ratio between whether incarcerated and
(i) gender, (ii) race. Interpret.
(b) According to the odds ratio, which has the stronger as-
sociation with whether incarcerated, gender or race? Ex-
plain.

8.23. Refer to Table 8.1 (page 228) on political party ID
and gender. Find and interpret the odds ratio for each 2×2
subtable. Explain why this analysis suggests that the last
two columns show a very weak association.

8.24. According to a 2015 study by the Pew Research
Center (www.people-press.org), the percentage of
Americans who favor allowing gays and lesbians to marry
legally was 81% for Democrats who identified themselves

as liberal and 22% for Republicans who identified them-
selves as conservative.

(a) The odds ratio is 15.1. Explain what is wrong with the
interpretation “The probability that liberal Democrats fa-
vor legalized gay marriage is 15.1 times the probability
that conservative Republicans favor legalized gay mar-
riage.” Give the correct interpretation.
(b) For those born after 1980, the odds of favoring legal-
ization equaled 2.7. Estimate the probability they favored
legalization.

8.25. Table 8.25 cross-classifies happiness with family in-
come for the subsample of the 2014 GSS that identified
themselves as Jewish.

(a) Give an example of a (i) concordant pair, (ii) discor-
dant pair.
(b) The table has 204 concordant pairs and 55 discordant
pairs. Find gamma, and interpret.
(c) Show how to express gamma as a difference between
two proportions.

TABLE 8.25

HAPPY
Not_too Pretty Very

INCOME Below 0 4 1
Average 4 11 1
Above 0 12 8

8.26. For the 2014 GSS, γ̂ = 0.19 for the relationship be-
tween job satisfaction (categories very dissatisfied, little
dissatisfied, moderately satisfied, very satisfied) and fam-
ily income (below average, average, above average).

(a) Would you consider this a very strong or relatively
weak association? Explain.
(b) Is this a stronger or a weaker association than the
one between job satisfaction and happiness, which has
γ̂ = 0.41? Explain.

8.27. A GSS cross-classified income in thousands of dol-
lars (<5, 5–15, 15–25, >25) by job satisfaction (very dissat-
isfied, a little satisfied, moderately satisfied, very satisfied)
for black Americans. Software provides the results shown
in Table 8.26.

TABLE 8.26

| jobsat
income | 1 2 3 4

---------------------------------
1 | 2 4 13 3
2 | 2 6 22 4
3 | 0 1 15 8
4 | 0 3 13 8
---------------------------------

Pearson chi2(9) = 11.5243 Pr = 0.241
gamma = 0.3551 ASE = 0.122

http://www.bjs.gov
http://www.people-press.org
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(a) Interpret the P-value reported for the chi-squared test.
(b) Conduct an alternative test of independence that
takes category ordering into account. Why are results so
different from the chi-squared test?
(c) Construct the 95% confidence interval for gamma.
Interpret.

8.28. Refer to Exercise 8.13 on happiness and income.
The analysis there does not take into account the ordi-
nality of the variables. Using software, summarize the
strength of association by finding and interpreting gamma.
Construct inference using it, and interpret.

Concepts and Applications
8.29. Refer to the Students data file (Exercise 1.11 on
page 21). Using software, create and analyze descriptively
and inferentially the contingency table relating opinion
about abortion and (a) political affiliation, (b) religiosity.

8.30. Refer to the data file you created in Exercise 1.12.
For variables chosen by your instructor, pose a research
question and conduct descriptive and inferential statisti-
cal analyses. Interpret and summarize your findings in a
short report.

8.31. One year the GSS asked how housework was shared
between the respondent and his or her spouse. Possible re-
sponses were 1 = I do much more than my fair share, 2 =
I do a bit more than my fair share, 3 = I do roughly my
fair share, 4 = I do a bit less than my fair share, 5 = I do
much less than my fair share. Table 8.27 shows results ac-
cording to the respondent’s sex. State a research question
that could be addressed with this output, and prepare a
100–200-word summary of what you learn. (The Adjusted
Residual is the standardized residual.)

8.32. Pose a research question about attitude regard-
ing homosexual relations and political ideology. Using
the most recent GSS data on variables HOMOSEX
and POLVIEWS, conduct a descriptive and inferential
analysis to address this question. Prepare a one-page re-
port summarizing your analysis.

8.33. Does belief in evolution vary according to religious
beliefs? Examine this using Table 8.28, for respondents to
the 2014 General Social Survey. The variables are Funda-
mentalism/Liberalism of Respondent’s Religion and re-
sponse to whether human beings developed from ear-
lier species of animals. Analyze these data. Prepare a
200–300-word report describing your analyses and pro-
viding interpretations.

8.34. For 2014 GSS data, of those identifying as
Democrats, 496 classified themselves as liberal and 171
as conservative. Of those identifying as Republicans, 56
called themselves liberal and 499 conservative. Using
methods of this chapter, describe the strength of asso-
ciation, and interpret.

TABLE 8.27

hhwkfair
female count 121 108 135 19 6
% within sex 31.1% 27.8% 34.7% 4.9% 1.5%
Adjusted Residual 8.0 5.9 -4.2 -7.1 -4.9

male count 18 28 148 68 29
% within sex 6.2% 9.6% 50.9% 23.4% 10.0%
Adjusted Residual -8.0 -5.9 4.2 7.1 4.9

Pearson Value df Asymp. Sig.,
Chi-Square 155.8 4 .000

Gamma Value Asymp. Std. Error.
.690 .038

TABLE 8.28

Religious
Preference

Evolution
True False Total

Fundamentalist 70 196 266
Moderate 239 210 449
Liberal 248 96 344

Total 557 502 1059

8.35. An abstract of an article6 dealing with alcohol
use and sexual assault among college women stated,
“This study prospectively examined the relation between
alcohol use and sexual assault in a sample (n = 319) of
first-year college women. ... Over the course of their fresh-
man year, 19.3% reported experiencing at least one sexual
assault. Frequent binge drinking and frequent drinking
predicted a subsequent sexual assault. Frequent binge
drinking demonstrated a stronger association with sexual
assault than did frequent drinking.” Explain the statistical
methods that were probably used in order to make such
conclusions.

8.36. Shortly before a gubernatorial election, a poll asks
a random sample of 50 potential voters the following
questions:

Party: Do you consider yourself to be a Democrat (D),
a Republican (R), or an Independent (I)?

Vote: If you were to vote today, would you vote for the
Democratic candidate (D) or the Republican (R) can-
didate, or would you be undecided (U) about how to
vote?
Plan: Do you plan on voting in the election? Yes (Y) or
no (N)?

For each person interviewed, the answers to the three
questions are entered in a data file, which is the Voting

6 By E. Mouilso and S. Fischer, Violence and Victims, vol. 27 (2012), pp. 78–94.
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data file at the text website. Using software, create a data
file and conduct the following analyses:

(a) Construct the 3 × 3 contingency table relating party
affiliation to intended vote. Report the conditional distri-
butions on intended vote for each of the three party affil-
iations. Are they very different?
(b) Report the result of the test of the hypothesis that in-
tended vote is independent of party affiliation. Provide
the test statistic and the P-value, and interpret the result.
(c) Supplement the analyses in (a) and (b) to investigate
the association more fully. Interpret.

8.37. (a) When the sample size is very large, we have not
necessarily established an important result when we show
a statistically significant association. Explain.
(b) The remarks in Sections 8.3 and 8.4 about small P-
values not necessarily referring to an important effect
apply for any significance test. Explain why, discussing
the effect of n on standard errors and the sizes of test
statistics.

8.38. Answer true or false for the following. Explain your
answer.

(a) Even when the sample conditional distributions in a
contingency table are only slightly different, when the
sample size is very large it is possible to have a large X 2

test statistic and a very small P-value for testing H0: inde-
pendence.
(b) If the odds ratio = 2.0 between gender (female, male)
and opinion on some issue (favor, oppose), then the odds
ratio = −2.0 if we measure gender as (male, female).
(c) Interchanging two rows in a contingency table has no
effect on the X 2 statistic.
(d) Interchanging two rows in a contingency table has no
effect on gamma.
(e) If γ = 0 for two variables, then the variables are sta-
tistically independent.

8.39. The correct answer in Exercise 8.38(c) implies that
if the chi-squared statistic is used for a contingency table
having ordered categories in both directions, then (select
the correct response(s))

(a) The statistic actually treats the variables as nominal.
(b) Information about the ordering is ignored.
(c) The test is usually not as powerful for detecting asso-
ciation as a test statistic based on numbers of concordant
and discordant pairs.
(d) The statistic cannot differentiate between positive and
negative associations.

8.40. Each subject in a sample of 100 men and 100 women
is asked to indicate which of the following factors (one or
more) are responsible for increases in crime committed
by teenagers: A—the increasing gap in income between
the rich and poor, B—the increase in the percentage of

single-parent families, C—insufficient time that parents
spend with their children, D—criminal penalties given by
courts are too lenient, E—increasing problems with drugs
in society, F—increasing levels of violence shown on TV.
To analyze whether responses differ by gender of respon-
dent, we cross-classify the responses by gender, as Table
8.29 shows.

(a) Is it valid to apply the chi-squared test of indepen-
dence to these data? Explain.
(b) Explain how this table actually provides information
needed to cross-classify gender with each of six variables.
Construct the contingency table relating gender to opin-
ion about whether the increasing gap in income is respon-
sible for increases in teenage crime.

TABLE 8.29

Gender A B C D E F

Men 60 81 75 63 86 62
Women 75 87 86 46 82 83

8.41.* Table 8.30 exhibits the maximum possible associa-
tion between two binary variables for a sample of size n.

(a) Show that X 2 = n for this table and, hence, that the
maximum value of X 2 for 2 × 2 tables is n.
(b) The phi-squared measure of association for 2×2 con-
tingency tables has sample value

φ̂2 = X 2

n
.

Explain why this measure falls between 0 and 1, with a
population value of 0 corresponding to independence. (It
is a special case, for 2 × 2 tables, of the r2 measure intro-
duced in the next chapter.)

TABLE 8.30

n/2 0

0 n/2

8.42.* For 2×2 tables, gamma simplifies to a measure first
proposed about 1900 by the British statistician G. Udny
Yule, who also introduced the odds ratio. In that special
case, gamma is called Yule’s Q.

(a) Show that for a generic table with counts (a, b) in row
1 and (c, d) in row 2, the number of concordant pairs
equals ad, the number of discordant pairs equals bc, and
Q = (ad − bc)/(ad + bc).
(b) Show that the absolute value of gamma equals 1 for
any 2 × 2 table in which one of the cell frequencies is 0.

8.43.* Construct a 3×3 table for which gamma equals (a)
1, (b) −1, (c) 0.
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8.44.* A chi-squared variable with degrees of freedom
equal to df has representation z2

1 + · · · + z2
df , where

z1, . . . , zdf are independent standard normal variates.
(a) If z is a test statistic that has a standard normal distri-
bution, what distribution does z2 have?
(b) Explain how to get the chi-squared values for df = 1
from z-scores in the standard normal table (Table A).
Illustrate for the chi-squared value of 6.63 having
P-value 0.01.
(c) The chi-squared statistic for testing H0: independence
between belief in an afterlife (yes, no) and happiness (not
too happy, pretty happy, very happy) is X 2

m in a 2×3 table
for men and X 2

w in a 2 × 3 table for women. If H0 is true
for each gender, then what is the probability distribution
of X 2

m + X 2
w?

8.45.* For a 2×2 table with cell counts a, b, c, d, the sam-
ple log odds ratio log θ̂ has approximately a normal sam-

pling distribution with estimated standard error

se =
√

1
a

+ 1
b

+ 1
c

+ 1
d

.

The antilogs of the endpoints of the confidence interval
for log(θ) are endpoints of the confidence interval for θ .
For Table 8.14 on page 242, show7 that the 95% confidence
interval for the odds ratio is (60.8, 87.4). Interpret.

8.46.* In an ordinal table, to calculate the number of con-
cordant pairs C, start at the corner of the table for the
low level for each variable. Multiply that cell count by the
count in every cell that is higher on both variables. Sim-
ilarly, for every other cell, multiply the cell count by the
counts in cells that are higher on both variables. Then C
is the sum of these products. Explain how to calculate the
total number of discordant pairs D.

7 Stata provides this with the command csi 2509 409 189 2245, or woolf.
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and Correlation

9.6 Model Assumptions
and Violations

9.7 Chapter Summary

C hapter 8 presented methods for analyzing association between categorical response and
explanatory variables. This chapter presents methods for analyzing association between

quantitative response and explanatory variables. The analyses are collectively called a regression
analysis.

Example 9.1 Regression Analysis for Crime Indices Table 9.1 shows data from Statistical
Abstract of the United States for the 50 states and the District of Columbia (D.C.) on

• Murder rate: The number of murders per 100,000 people in the population.

• Violent crime rate: The number of murders, forcible rapes, robberies, and aggravated assaults
per 100,000 people in the population.

• Percentage of the population with income below the poverty level.

• Percentage of families headed by a single parent.

For these quantitative variables, violent crime rate and murder rate are natural response vari-
ables. We’ll treat the poverty rate and percentage of single-parent families as explanatory variables
for these responses as we present regression methods in this chapter. The text website contains
this data file, called Crime2, as well as a data file Crime that contains 2013 violent crime and
murder rates already analyzed in Chapter 3.

We present three different, but related, aspects of regression analysis:

1. We investigate whether an association exists between the variables by testing the hypothesis
of statistical independence.

2. We study the strength of their association using the correlation measure of association.

3. We estimate a regression equation that predicts the value of the response variable from the
value of the explanatory variable.

9.1 Linear Relationships
We let y denote the response variable and let x denote the explanatory variable. We
analyze how values of y tend to change from one subset of the population to another,
as defined by values of x. For categorical variables, we did this by comparing the
conditional distributions of y at the various categories of x, in a contingency table.
For quantitative variables, a mathematical formula describes how the conditional
distribution of y (such as y = crime rate) varies according to the value of x (such as
x = percentage below the poverty level). Does the crime rate tend to be higher for
states that have higher poverty rates?

259
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TABLE 9.1: Statewide Data (from Crime2 Data File at the Text Website) Used to Illustrate
Regression Analyses

Violent Murder Poverty Single Violent Murder Poverty Single
State Crime Rate Rate Parent State Crime Rate Rate Parent

AK 761 9.0 9.1 14.3 MT 178 3.0 14.9 10.8
AL 780 11.6 17.4 11.5 NC 679 11.3 14.4 11.1
AR 593 10.2 20.0 10.7 ND 82 1.7 11.2 8.4
AZ 715 8.6 15.4 12.1 NE 339 3.9 10.3 9.4
CA 1078 13.1 18.2 12.5 NH 138 2.0 9.9 9.2
CO 567 5.8 9.9 12.1 NJ 627 5.3 10.9 9.6
CT 456 6.3 8.5 10.1 NM 930 8.0 17.4 13.8
DE 686 5.0 10.2 11.4 NV 875 10.4 9.8 12.4
FL 1206 8.9 17.8 10.6 NY 1074 13.38 16.4 12.7
GA 723 11.4 13.5 13.0 OH 504 6.0 13.0 11.4
HI 261 3.8 8.0 9.1 OK 635 8.4 19.9 11.1
IA 326 2.3 10.3 9.0 OR 503 4.6 11.8 11.3
ID 282 2.9 13.1 9.5 PA 418 6.8 13.2 9.6
IL 960 11.42 13.6 11.5 RI 402 3.9 11.2 10.8
IN 489 7.5 12.2 10.8 SC 1023 10.3 18.7 12.3
KS 496 6.4 13.1 9.9 SD 208 3.4 14.2 9.4
KY 463 6.6 20.4 10.6 TN 766 10.2 19.6 11.2
LA 1062 20.3 26.4 14.9 TX 762 11.9 17.4 11.8
MA 805 3.9 10.7 10.9 UT 301 3.1 10.7 10.0
MD 998 12.7 9.7 12.0 VA 372 8.3 9.7 10.3
ME 126 1.6 10.7 10.6 VT 114 3.6 10.0 11.0
MI 792 9.8 15.4 13.0 WA 515 5.2 12.1 11.7
MN 327 3.4 11.6 9.9 WI 264 4.4 12.6 10.4
MO 744 11.3 16.1 10.9 WV 208 6.9 22.2 9.4
MS 434 13.5 24.7 14.7 WY 286 3.4 13.3 10.8

DC 2922 78.5 26.4 22.1

LINEAR FUNCTIONS: INTERPRETING THE y-INTERCEPT AND SLOPE

Any particular formula might provide a good description or a poor one of how y
relates to x. This chapter introduces the simplest type of formula—a straight line.
For it, y is said to be a linear function of x.

Linear Function
The formula y = α + βx expresses observations on y as a linear function of
observations on x. The formula has a straight-line graph with slope β (beta)
and y-intercept α (alpha).

Each real number x, when substituted into the formula y = α + βx, yields a
distinct value for y. In a graph, the horizontal axis, the x-axis, lists the possible values
of x. The vertical axis, the y-axis, lists the possible values of y. The axes intersect at
the point where x = 0 and y = 0, called the origin.

At x = 0, the equation y = α + βx simplifies to y = α + βx = α + β(0) = α.
Thus, the constant α in this equation is the value of y when x = 0. Now, points on
the y-axis have x = 0, so the line has height α at the point of its intersection with the
y-axis. Because of this, α is called the y-intercept.

The slope β equals the change in y for a one-unit increase in x. That is, for two
x-values that differ by 1.0 (such as x = 0 and x = 1), the y-values differ by β. Two
x-values that are 10 units apart differ by 10β in their y-values. Figure 9.1 portrays the
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interpretation of the y-intercept and slope. In the context of a regression analysis, α

and β are called regression coefficients.

1 2 3 4 5 6 7 8 9 10
x

1

y

a 1 b

a 1 10b

a

b

FIGURE 9.1: Graph of the
Straight Line y = α + βx.
The y-intercept is α and the
slope is β.

Example
9.2

Straight Lines for Predicting Violent Crime Rate For the 50 states, consider y =
violent crime rate and x = poverty rate. We’ll see that a straight line cannot perfectly
represent the relation between them, but the line y = 210 + 25x provides a type of
approximation. The y-intercept of 210 represents the violent crime rate at poverty
rate x = 0 (unfortunately, there are no such states). The slope equals 25. When the
percentage with income below the poverty level increases by 1, the violent crime rate
increases by about 25 crimes a year per 100,000 population.

By contrast, if instead x = percentage of the population living in urban areas, the
straight line approximating the relationship is y = 26 + 8x. The slope of 8 is smaller
than the slope of 25 when poverty rate is the explanatory variable. An increase of
1 in the percentage below the poverty level corresponds to a greater change in the
violent crime rate than an increase of 1 in the percentage urban.

Figure 9.2 shows the lines relating the violent crime rate to poverty rate and to
urban residence. Generally, the larger the absolute value of β, the steeper the line.
When β is positive, y increases as x increases—the straight line goes upward, like
these two lines. Then, large values of y occur with large values of x, and small values
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of y occur with small values of x. When a relationship between two variables follows
a straight line with β > 0, the relationship is said to be positive.

When β is negative, y decreases as x increases. The straight line then goes
downward, and the relationship is said to be negative. For instance, the equation
y = 1756 − 16x, which has slope −16, approximates the relationship between y =
violent crime rate and x = percentage of residents who are high school graduates.
For each increase of 1.0 in the percentage who are high school graduates, the violent
crime rate decreases by about 16. Figure 9.2 also shows this line.

When β = 0, the graph is a horizontal line. The value of y is constant and does not
vary as x varies. If two variables are independent, with the value of y not depending
on the value of x, a straight line with β = 0 represents their relationship. The line
y = 800 shown in Figure 9.2 is an example of a line with β = 0.

MODELS ARE SIMPLE APPROXIMATIONS FOR REALITY

As Section 7.5 (page 205) explained, a model is a simple approximation for the rela-
tionship between variables in the population. The linear function provides a simple
model for the relationship between two quantitative variables. For a given value of
x, the model y = α + βx predicts a value for y. The better these predictions tend to
be, the better the model.

As we shall discuss in some detail in Chapter 10, association does not imply cau-
sation. For example, consider the interpretation of the slope in Example 9.2 above
of “When the percentage with income below the poverty level increases by 1, the
violent crime rate increases by about 25 crimes a year per 100,000 population.” This
does not mean that if we had the ability to go to a state and increase the percentage
of people living below the poverty level from 10% to 11%, we could expect the num-
ber of crimes to increase in the next year by 25 crimes per 100,000 people. It merely
means that based on current data, if one state had a 10% poverty rate and one had
an 11% poverty rate, we’d predict that the state with the higher poverty rate would
have 25 more crimes per year per 100,000 people. But, as we’ll see in Section 9.3, a
sensible model is actually a bit more complex than the one we’ve presented so far, by
allowing variability in y-values at each value for x. That model, not merely a straight
line, is what we mean by a regression model. Before introducing the complete model,
in Section 9.3, we’ll next see how to find the best approximating straight line.

9.2 Least Squares Prediction Equation
Using sample data, we can estimate the equation for the simple straight-line model.
The process treats α and β in the equation y = α + βx as parameters and estimates
them.

A SCATTERPLOT PORTRAYS THE DATA

The first step of model fitting is to plot the data, to reveal whether a model with a
straight-line trend makes sense. The data values (x, y) for any one subject form a
point relative to the x and y axes. A plot of the n observations as n points is called
a scatterplot.
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Example
9.3

Scatterplot for Murder Rate and Poverty For Table 9.1, let x = poverty rate and
y = murder rate. Figure 9.3 shows a scatterplot for the 51 observations. Each point
portrays the values of poverty rate and murder rate for a given state. For Maryland,
for instance, the poverty rate is x = 9.7, and the murder rate is y = 12.7. Its point
(x, y) = (9.7, 12.7) has coordinate 9.7 for the x-axis and 12.7 for the y-axis. This point
is labeled MD in Figure 9.3.
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Figure 9.3 indicates that the trend of points seems to be approximated fairly well
by a straight line. One point, however, is far removed from the rest. This is the point
for the District of Columbia (D.C.). It had murder rate much higher than for any
state. This point lies far from the overall trend. Figure 9.3 also shows box plots for
these variables. They reveal that D.C. is an extreme outlier on murder rate. In fact,
it falls 6.5 standard deviations above the mean. We shall see that outliers can have a
serious impact on a regression analysis.

The scatterplot provides a visual check of whether a relationship is approxi-
mately linear. When the relationship seems highly nonlinear, it is not sensible to
use a straight-line model. Figure 9.4 illustrates such a case. This figure shows a nega-
tive relationship over part of the range of x-values, and a positive relationship over
the rest. These cancel each other out using a straight-line model. For such data, a
nonlinear model presented in Section 14.5 is more appropriate.
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y
FIGURE 9.4: A Nonlinear
Relationship, for Which It
Is Inappropriate to Use a
Straight-Line Model
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PREDICTION EQUATION

When the scatterplot suggests that the model y = α+βx may be appropriate, we use
the data to estimate this line. The notation

ŷ = a + bx

represents a sample equation that estimates the linear model. In the sample equa-
tion, the y-intercept (a) estimates the y-intercept α of the model and the slope (b)
estimates the slope β. The sample equation ŷ = a + bx is called the prediction equa-
tion, because it provides a prediction ŷ for the response variable at any value of x.

The prediction equation is the best straight line, falling closest to the points in
the scatterplot, in a sense explained later in this section. The formulas for a and b in
the prediction equation ŷ = a + bx are

b =
∑

(x − x̄)(y − ȳ)∑
(x − x̄)2

and a = ȳ − bx̄.

If an observation has both x- and y-values above their means, or both x- and y-values
below their means, then (x − x̄)(y − ȳ) is positive. The slope estimate b tends to be
positive when most observations are like this, that is, when points with large x-values
also tend to have large y-values and points with small x-values tend to have small
y-values.

We shall not dwell on these formulas or even illustrate how to use them, as any-
one who does any serious regression modeling uses statistical software. The appendix
at the end of the text provides details. Internet applets are also available.1

Example
9.4

Predicting Murder Rate from Poverty Rate For the 51 observations on y = murder
rate and x = poverty rate in Table 9.1, SPSS software provides the results shown in
Table 9.2. Murder rate has ȳ = 8.7 and s = 10.7, indicating that it is probably highly
skewed to the right. The box plot for murder rate in Figure 9.3 shows that the extreme
outlying observation for D.C. contributes to this.

The estimates of α and β are listed under the heading2 B. The estimated y-
intercept is a = −10.14, listed opposite (Constant). The estimate of the slope is
b = 1.32, listed opposite the variable name of which it is the coefficient in the pre-
diction equation, POVERTY. Therefore, the prediction equation is ŷ = a + bx =
−10.14 + 1.32x.

TABLE 9.2: Part of SPSS Output for Fitting Linear Model to Observations from Crime2 Data
File for 50 States and D.C. on x = Percentage in Poverty and y = Murder Rate

Variable Mean Std Deviation B Std. Error
MURDER 8.727 10.718 (Constant) -10.1364 4.1206
POVERTY 14.259 4.584 POVERTY 1.3230 0.2754

The slope b = 1.32 is positive. So, the larger the poverty rate, the larger is the
predicted murder rate. The value 1.32 indicates that an increase of 1 in the percent-
age living below the poverty rate corresponds to an increase of 1.32 in the predicted
murder rate.

1 For example, the Fit Linear Regression Model applet at www.pearsonglobaleditions.com/Agresti.
2 B is the symbol SPSS uses to denote an estimated regression coefficient. Stata uses Coef. as the heading, short

for coefficient, R uses Coefficients, and SAS uses Parameter estimate.

http://www.pearsonglobaleditions.com/Agresti
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Similarly, an increase of 10 in the poverty rate corresponds to a 10(1.32) =
13.2-unit increase in predicted murder rate. If one state has a 12% poverty rate and
another has a 22% poverty rate, for example, the predicted annual number of mur-
ders per 100,000 population is 13.2 higher in the second state than the first state.
This differential of 13 murders per 100,000 population translates to 130 per million
or 1300 per 10 million population. If the two states each had populations of 10 mil-
lion, the one with the higher poverty rate would be predicted to have 1300 more
murders per year.

EFFECT OF OUTLIERS ON THE PREDICTION EQUATION

Figure 9.5 plots the prediction equation from Example 9.4 over the scatterplot. The
diagram shows that the observation for D.C. (the sole point in the top-right corner) is
a regression outlier—it falls quite far from the trend that the rest of the data follow.
This observation seems to have a substantial effect. The line seems to be pulled up
toward it and away from the center of the general trend of points.
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Let’s now refit the line using the observations for the 50 states but not the one
for D.C. Table 9.3 shows that the prediction equation is ŷ = −0.86 + 0.58x. Figure
9.5 also shows this line, which passes more directly through the 50 points. The slope
is 0.58, compared to 1.32 when the observation for D.C. is included. The one outlying
observation has the impact of more than doubling the slope!

An observation is called influential if removing it results in a large change in the
prediction equation. Unless the sample size is large, an observation can have a strong
influence on the slope if its x-value is low or high compared to the rest of the data
and if it is a regression outlier.

In summary, the line for the data set including D.C. seems to distort the rela-
tionship for the 50 states. It seems wiser to use the equation based on the 50 states
alone rather than to use a single equation for both the 50 states and D.C. This line for
the 50 states better represents the overall trend. In reporting these results, we would
note that the murder rate for D.C. falls outside this trend, being much larger than
this equation predicts.
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TABLE 9.3: Software Output for Fitting Linear Model to Crime2 Data File on 50 States
(but Not D.C.) on x = Percentage in Poverty and y = Murder Rate

Sum of Mean Unstandardized
Squares df Square Coefficients

Regression 307.342 1 307.34 B
Residual 470.406 48 9.80 (Constant) -.857
Total 777.749 49 poverty .584

murder predict residual
1 9.0000 4.4599 4.5401
2 11.6000 9.3091 2.2909
3 10.2000 10.8281 -0.6281
4 8.6000 8.1406 0.4594

PREDICTION ERRORS ARE CALLED RESIDUALS

For the prediction equation ŷ = −0.86 + 0.58x for the 50 states, a comparison of the
actual murder rates to the predicted values checks the goodness of the equation. For
example, Massachusetts had poverty rate x = 10.7 and y = 3.9. The predicted murder
rate (ŷ) at x = 10.7 is ŷ = −0.86 + 0.58x = −0.86 + 0.58(10.7) = 5.4. The prediction
error is the difference between the actual y-value of 3.9 and the predicted value of
5.4, or y − ŷ = 3.9 − 5.4 = −1.5. The prediction equation overestimates the murder
rate by 1.5. Similarly, for Louisiana, x = 26.4 and ŷ = −0.86 + 0.58(26.4) = 14.6. The
actual murder rate is y = 20.3, so the prediction is too low. The prediction error is
y − ŷ = 20.3 − 14.6 = 5.7. The prediction errors are called residuals.

Residual
For an observation, the difference between an observed value and the
predicted value of the response variable, y − ŷ, is called the residual.

Table 9.3 shows the murder rates, the predicted values, and the residuals for the
first four states in the data file. A positive residual results when the observed value y
is larger than the predicted value ŷ, so y− ŷ > 0. A negative residual results when the
observed value is smaller than the predicted value. The smaller the absolute value
of the residual, the better is the prediction, since the predicted value is closer to the
observed value.

In a scatterplot, the residual for an observation is the vertical distance between
its point and the prediction line. Figure 9.6 illustrates this. For example, the obser-
vation for Louisiana is the point with (x, y) coordinates (26.4, 20.3). The prediction
is represented by the point (26.4, 14.6) on the prediction line obtained by substitut-
ing x = 26.4 into the prediction equation ŷ = −0.86 + 0.58x. The residual is the
difference between the observed and predicted points, which is the vertical distance
y − ŷ = 20.3 − 14.6 = 5.7.

PREDICTION EQUATION HAS LEAST SQUARES PROPERTY

We summarize the size of the residuals by the sum of their squared values. This quan-
tity, denoted by SSE, is

SSE =
∑

(y − ŷ)2.
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In other words, the residual is computed for every observation in the sample, each
residual is squared, and then SSE is the sum of these squares. The symbol SSE is an
abbreviation for sum of squared errors. This terminology refers to the residual being
a measure of prediction error from using ŷ to predict y.

The better the prediction equation, the smaller the residuals tend to be and,
hence, the smaller SSE tends to be. Any particular equation has corresponding
residuals and a value of SSE. The prediction equation specified by the formulas on
page 264 for the estimates a and b of α and β has the smallest value of SSE out of all
possible linear prediction equations.

Least Squares Estimates
The least squares estimates a and b are the values that provide the
prediction equation ŷ = a + bx for which the residual sum of squares,
SSE = ∑

(y − ŷ)2, is a minimum.

The prediction line ŷ = a + bx is called the least squares line, because it is the
one with the smallest sum of squared residuals. If we square the residuals (such as
those in Table 9.3) for the least squares line ŷ = −0.86 + 0.58x and then sum them,
we get

SSE =
∑

(y − ŷ)2 = (4.54)2 + (2.29)2 + · · · = 470.4.

This value is smaller than SSE for any other straight line predictor, such as ŷ =
−0.88 + 0.60x. In this sense, the data fall closer to this line than to any other line.
Most software (e.g., R, SPSS, Stata) calls SSE the residual sum of squares. It de-
scribes the variation of the data around the prediction line. Table 9.3 reports it in the
Sum of Squares column, in the row labeled Residual.

Besides making the errors as small as possible in this summary sense, the least
squares line

• Has some positive residuals and some negative residuals, but the sum (and
mean) of the residuals equals 0.

• Passes through the point (x̄, ȳ).

The first property tells us that the too-low predictions are balanced by the too-high
predictions. Just as deviations of observations from their mean ȳ satisfy

∑
(y−ȳ) = 0,
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so does the prediction equation satisfy
∑

(y − ŷ) = 0. The second property tells us
that the line passes through the center of the data.

9.3 The Linear Regression Model
For the linear model y = α + βx, each value of x corresponds to a single value of y.
Such a model is said to be deterministic. It is unrealistic in social science research,
because we do not expect all subjects who have the same x-value to have the same
y-value. Instead, the y-values vary.

For example, let x = number of years of education and y = annual income. The
subjects having x = 12 years of education do not all have the same income, because
income is not completely dependent upon education. Instead, a probability distri-
bution describes annual income for individuals with x = 12. It is the conditional
distribution of the y-values at x = 12. A separate conditional distribution applies
for those with x = 13 years of education. Each level of education has its own condi-
tional distribution of income. For example, the mean of the conditional distribution
of income would likely be higher at higher levels of education.

A probabilistic model for the relationship allows for variability in y at each value
of x. We now show how a linear function is the basis for a probabilistic model.

LINEAR REGRESSION FUNCTION

A probabilistic model uses α + βx to represent the mean of y-values, rather than y
itself, as a function of x. For a given value of x, α + βx represents the mean of the
conditional distribution of y for subjects having that value of x.

Expected Value of y
Let E(y) denote the mean of a conditional distribution of y. The symbol E
represents expected value.

We now use the equation
E(y) = α + βx

to model the relationship between x and the mean of the conditional distribution of
y. For y = annual income, in dollars, and x = number of years of education, suppose
E(y) = −5000 + 3000x. For instance, those having a high school education (x = 12)
have a mean income of E(y) = −5000 + 3000(12) = 31,000 dollars. The model
states that the mean income is 31,000, but allows different subjects having x = 12 to
have different incomes.

An equation of the form E(y) = α + βx that relates values of x to the mean of
the conditional distribution of y is called a regression function.

Regression Function
A regression function is a mathematical function that describes how the
mean of the response variable changes according to the value of an
explanatory variable.

The function E(y) = α + βx is called a linear regression function, because it
uses a straight line to relate the mean of y to the values of x. In practice, the regres-
sion coefficients α and β are unknown. Least squares provides the sample prediction
equation ŷ = a + bx. At any particular value of x, ŷ = a + bx estimates the mean of
y for all subjects in the population having that value of x.
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DESCRIBING VARIATION ABOUT THE REGRESSION LINE

The linear regression model has an additional parameter σ describing the standard
deviation of each conditional distribution. That is, σ measures the variability of the
y-values for all subjects having the same x-value. We refer to σ as the conditional
standard deviation.

A model also assumes a particular probability distribution for the conditional
distribution of y. This is needed to make inference about the parameters. For quan-
titative variables, the most common assumption is that the conditional distribution
of y is normal at each fixed value of x, with unknown standard deviation σ .

Example
9.5

Describing How Income Varies, for Given Education Again, suppose E(y) =
−5000 + 3000x describes the relationship between mean annual income and num-
ber of years of education. The slope β = 3000 implies that mean income increases
$3000 for each year increase in education. Suppose also that the conditional distribu-
tion of income is normal, with σ = 13,000. According to this model, for individuals
with x years of education, their incomes have a normal distribution with a mean of
E(y) = −5000 + 3000x and a standard deviation of 13,000.

Those having a high school education (x = 12) have a mean income of E(y) =
−5000 + 3000(12) = 31,000 dollars and a standard deviation of 13,000 dollars. So,
about 95% of the incomes fall within two standard deviations of the mean, that is,
between 31,000 − 2(13,000) = 5000 and 31,000 + 2(13,000) = 57,000 dollars.
Those with a college education (x = 16) have a mean annual income of E(y) =
−5000 + 3000(16) = 43,000 dollars, with about 95% of the incomes falling between
$17,000 and $69,000. Figure 9.7 pictures this regression model.
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In Figure 9.7, each conditional distribution is normal, and each has the same
standard deviation, σ = 13. In practice, the distributions would not be exactly nor-
mal, and the standard deviation need not be the same for each. Any model never
holds exactly in practice. It is merely a simple approximation for reality. For sam-
ple data, we’ll learn about ways to check whether a particular model is realistic. The
most important assumption is that the regression equation is linear. The scatterplot
helps us check whether this assumption is badly violated, as we’ll discuss later in
the chapter.



270 Chapter 9 Linear Regression and Correlation

RESIDUAL MEAN SQUARE: ESTIMATING CONDITIONAL VARIATION

The ordinary linear regression model assumes that the standard deviation σ of the
conditional distribution of y is identical at the various values of x. The estimate of
σ uses SSE = ∑

(y − ŷ)2, which measures sample variability about the least squares
line. The estimate is

s =
√

SSE
n − 2

=
√∑

(y − ŷ)2

n − 2
.

If the constant variation assumption is not valid, then s summarizes the average vari-
ability about the line.

Example
9.6

TV Watching and Grade Point Averages A survey3 of 50 college students in an in-
troductory psychology class observed self-reports of y = high school GPA and x =
weekly number of hours viewing television. The study reported ŷ = 3.44 − 0.03x.
Software reports sums of squares shown in Table 9.4. This type of table is called an
ANOVA table. Here, ANOVA is an acronym for analysis of variability. The residual
sum of squares in using x to predict y was SSE = 11.66. The estimated conditional
standard deviation is

s =
√

SSE
n − 2

=
√

11.66
50 − 2

= 0.49.

TABLE 9.4: Software Output of ANOVA Table for Sums of
Squares in Fitting Regression Model to y = High
School GPA and x = Weekly TV Watching

Sum of Squares df Mean Square
Regression 3.63 1 3.63
Residual 11.66 48 .24
Total 15.29 49

At any fixed value x of TV viewing, the model predicts that GPAs vary around a
mean of 3.44 − 0.03x with a standard deviation of 0.49. At x = 20 hours a week, for
instance, the conditional distribution of GPA is estimated to have a mean of 3.44 −
0.03(20) = 2.84 and standard deviation of 0.49.

The term (n − 2) in the denominator of s is the degrees of freedom (df ) for the
estimate. When a regression equation has p unknown parameters, then df = n − p.
The equation E(y) = α + βx has two parameters (α and β), so df = n − 2. The table
in the above example lists SSE = 11.66 and its df = n−2 = 50−2 = 48. The ratio of
these, s2 = 0.24, is listed on the printout in the Mean Square column. Most software
calls this the residual mean square. Its square root is the estimate of the conditional
standard deviation of y, s = √

0.24 = 0.49. Among the names software calls this are
Root MSE (Stata and SAS) for the square root of the mean square error, Residual
standard error (R), and Standard error of the estimate (SPSS).

3 https://www.iusb.edu/ugr-journal/static/2002/index.php.

https://www.iusb.edu/ugr-journal/static/2002/index.php
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CONDITIONAL VARIATION TENDS TO BE LESS THAN
MARGINAL VARIATION

From pages 55 and 117, a point estimate of the population standard deviation of a
variable y is √∑

(y − ȳ)2

n − 1
.

This is the standard deviation of the marginal distribution of y, because it uses only
the y-values. It ignores values of x. To emphasize that this standard deviation depends
on values of y alone, the remainder of the text denotes it by sy in a sample and σy

in a population. It differs from the standard deviation of the conditional distribution
of y, for a fixed value of x. To reflect its conditional form, that standard deviation is
sometimes denoted by sy|x for the sample estimate and σy|x for the population. For
simplicity, we use s and σ .

The sum of squares
∑

(y − ȳ)2 in the numerator of sy is called the total sum of
squares. In Table 9.4 for the 50 student GPAs, it is 15.29. Thus, the marginal standard
deviation of GPA is sy = √

15.29/(50 − 1) = 0.56. Example 9.6 showed that the
conditional standard deviation is s = 0.49.

Typically, less spread in y-values occurs at a fixed value of x than totaled over
all such values. We’ll see that the stronger the association between x and y, the less
the conditional variability tends to be relative to the marginal variability. For ex-
ample, suppose the marginal distribution of college GPAs (y) at your school falls
between 1.0 and 4.0, with sy = 0.60. Suppose we could predict college GPA perfectly
using x = high school GPA, with the prediction equation ŷ = 0.40 + 0.90x. Then,
SSE = 0, and the conditional standard deviation would be s = 0. In practice, per-
fect prediction would not happen. However, the stronger the association in terms of
less prediction error, the smaller the conditional variability would be. See Figure 9.8,
which portrays a marginal distribution that is much more spread out than each
conditional distribution.
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9.4 Measuring Linear Association: The Correlation
The linear regression model uses a straight line to describe the relationship. For this
model, this section introduces two measures of the strength of association between
two quantitative variables.
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THE SLOPE AND STRENGTH OF ASSOCIATION

The slope b of the prediction equation tells us the direction of the association. Its
sign indicates whether the prediction line slopes upward or downward as x increases,
that is, whether the association is positive or negative. The slope does not, however,
directly tell us the strength of the association. The reason for this is that its numerical
value is intrinsically linked to the units of measurement.

For example, consider the prediction equation ŷ = −0.86 + 0.58x for y = mur-
der rate and x = percentage living below the poverty level. A one-unit increase in x
corresponds to a b = 0.58 increase in the predicted number of murders per 100,000
people. This is equivalent to a 5.8 increase in the predicted number of murders per
1,000,000 people. So, if murder rate is the number of murders per 1,000,000 popula-
tion instead of per 100,000 population, the slope is 5.8 instead of 0.58. The strength
of the association is the same in each case, since the variables and data are the same.
Only the units of measurement for y differed. The slope b doesn’t directly indicate
whether the association is strong or weak, because we can make b as large or as small
as we like by an appropriate choice of units.

The slope is useful for comparing effects of two predictors having the same units.
For instance, the prediction equation relating murder rate to percentage living in
urban areas is 3.28 + 0.06x. A one-unit increase in the percentage living in urban
areas corresponds to a 0.06 predicted increase in the murder rate, whereas a one-unit
increase in the percentage below the poverty level corresponds to a 0.58 predicted
increase in the murder rate. An increase of 1 in percentage below the poverty level
has a much greater effect on the murder rate than an increase of 1 in percentage
urban.

The measures of association we now study do not depend on the units of mea-
surement. Like the measures of association that Chapter 8 presented for categorical
data, their magnitudes indicate the strength of association.

THE CORRELATION

On page 65, we introduced the correlation between quantitative variables. Its value,
unlike that of the slope b, does not depend on the units of measurement.

Correlation

The correlation between variables x and y, denoted by r, is

r =
∑

(x − x̄)(y − ȳ)√[∑
(x − x̄)2

] [∑
(y − ȳ)2

] .

The formulas for the correlation and for the slope (page 264) have the same
numerator, relating to the covariation of x and y. The correlation is a standardized
version of the slope. The standardization adjusts the slope b for the fact that the
standard deviations of x and y depend on their units of measurement. Let sx and sy

denote the marginal sample standard deviations of x and y,

sx =
√∑

(x − x̄)2

n − 1
and sy =

√∑
(y − ȳ)2

n − 1
.
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Here is the simple connection between the slope estimate and the sample correlation:

Correlation Is
a Standardized Slope

The correlation relates to the slope b of the prediction equation ŷ = a + bx by

r =
(

sx

sy

)
b.

If the sample spreads are equal (sx = sy), then r = b. The correlation is the value
the slope would take for units such that the variables have equal standard devia-
tions. For example, when the variables are standardized by converting their values
to z-scores, both standardized variables have standard deviations of 1.0. Because of
the relationship between r and b, the correlation is also called the standardized re-
gression coefficient for the model E(y) = α + βx. In practice, it is not necessary to
standardize the variables, but we can interpret the correlation as the value the slope
would equal if the variables were equally spread out.

The point estimate r of the correlation was proposed by the British statistical
scientist Karl Pearson in 1896, just four years before he developed the chi-squared
test of independence for contingency tables. In fact, this estimate is sometimes called
the Pearson correlation.

Example
9.7

Correlation between Murder Rate and Poverty Rate For the data in Table 9.1, the
prediction equation relating y = murder rate to x = poverty rate is ŷ = −0.86+0.58x.
Software tells us that sx = 4.29 for poverty rate, sy = 3.98 for murder rate, and the
correlation r = 0.63. In fact,

r =
(

sx

sy

)
b =

(
4.29
3.98

)
(0.58) = 0.63.

We will interpret this value after studying the properties of the correlation.

PROPERTIES OF THE CORRELATION

• The correlation is valid only when a straight-line model is sensible for the re-
lationship between x and y. Since r is proportional to the slope of a linear pre-
diction equation, it measures the strength of the linear association.

• −1 ≤ r ≤ 1. The correlation, unlike the slope b, must fall between −1 and +1.
We shall see why later in the section.

• r has the same sign as the slope b. This holds because their formulas have the
same numerator, relating to covariation of x and y, and positive denominators.
Thus, r > 0 when the variables are positively related, and r < 0 when the
variables are negatively related.

• r = 0 for those lines having b = 0. When r = 0, there is not a linear increasing
or linear decreasing trend in the relationship.

• r = ±1 when all the sample points fall exactly on the prediction line. These
correspond to perfect positive and negative linear associations. There is then
no prediction error when we use ŷ = a + bx to predict y.
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• The larger the absolute value of r, the stronger the linear association. Variables
with a correlation of −0.80 are more strongly linearly associated than variables
with a correlation of 0.40. Figure 9.9 shows scatterplots having various values
for r.

x
r 5 1

y

x
r 5 21

y

x
r 5 .4

y

x
r 5 .8

y

FIGURE 9.9: Scatterplots
for Different Correlation
Values

• The correlation, unlike the slope b, treats x and y symmetrically. The prediction
equation using y to predict x has the same correlation as the one using x to
predict y.

• The value of r does not depend on the variables’ units.

For example, if y is the number of murders per 1,000,000 population instead of
per 100,000 population, we obtain the same value of r = 0.63. Also, when murder
rate predicts poverty rate, the correlation is the same as when poverty rate predicts
murder rate, r = 0.63 in both cases.

The correlation is useful for comparing associations for variables having differ-
ent units. Another potential predictor for murder rate is the mean number of years
of education completed by adult residents in the state. Poverty rate and education
have different units, so a one-unit change in poverty rate is not comparable to a one-
unit change in education. Their slopes from the separate prediction equations are
not comparable. The correlations are comparable. Suppose the correlation of mur-
der rate with education is −0.30. Since the correlation of murder rate with poverty
rate is 0.63, and since 0.63 > |−0.30|, murder rate is more strongly associated with
poverty rate than with education.

We emphasize that the correlation describes linear relationships. For curvilinear
relationships, the best-fitting prediction line may be completely or nearly horizontal,
and r = 0 when b = 0. See Figure 9.10. A low absolute value for r does not then imply
that the variables are unassociated, but merely that the association is not linear.

y

x 

Good fit using
curvilinear
function

y 5 a 1 bx (b 5 0)ˆ

FIGURE 9.10: Scatterplot
for Which r = 0, Even
Though There Is a Strong
Curvilinear Relationship
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CORRELATION IMPLIES REGRESSION TOWARD THE MEAN

Another interpretation of the correlation relates to its standardized slope property.
We can rewrite the equality

r =
(

sx

sy

)
b as sxb = rsy.

Now, the slope b is the change in ŷ for a one-unit increase in x. An increase in x of sx

units has a predicted change of sxb units. (For instance, if sx = 10, an increase of 10
units in x corresponds to a change in ŷ of 10b.) See Figure 9.11. Since sxb = rsy, an
increase of sx in x corresponds to a predicted change of r standard deviations in the
y-values.

1

b

sx

sxb 5 rsy

x

yFIGURE 9.11: An
Increase of sx Units in x
Corresponds to a Predicted
Change of rsy Units in y

For example, let’s start at the point (x̄, ȳ) through which the prediction equation
passes and consider the impact of x moving above x̄ by a standard deviation. Suppose
that r = 0.5. An increase of sx in x, from x̄ to (x̄ + sx), corresponds to a predicted
increase of 0.5sy in y, from ȳ to (ȳ + 0.5sy). We predict that y is closer to the mean,
in standard deviation units. This is called regression toward the mean. The larger the
absolute value of r, the stronger the association, in the sense that a standard deviation
change in x corresponds to a greater proportion of a standard deviation change in y.

Example
9.8

Child’s Height Regresses toward the Mean The British scientist Sir Francis Galton
discovered the basic ideas of regression and correlation in the 1880s. After multiply-
ing each female height by 1.08 to account for gender differences, he noted that the
correlation between x = parent height (the average of father’s and mother’s height)
and y = child’s height is about 0.5. From the property just discussed, a standard de-
viation change in parent height corresponds to half a standard deviation change in
child’s height.

For parents of average height, the child’s height is predicted to be average. If, on
the other hand, parent height is a standard deviation above average, the child is pre-
dicted to be half a standard deviation above average. If parent height is two standard
deviations below average, the child is predicted to be one standard deviation below
average.

Since r is less than 1, a y-value is predicted to be fewer standard deviations from
its mean than x is from its mean. Tall parents tend to have tall children, but on the
average not quite so tall. For instance, if you consider all fathers with height 7 feet,
perhaps their sons average 6 feet 5 inches—taller than average, but not so extremely
tall; if you consider all fathers with height 5 feet, perhaps their sons average 5 feet
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5 inches—shorter than average, but not so extremely short. In each case, Galton
pointed out the regression toward the mean. This is the origin of the name for regres-
sion analysis.

r-SQUARED: PROPORTIONAL REDUCTION IN PREDICTION ERROR

A related measure of association summarizes how well x can predict y. If we can
predict y much better by substituting x-values into the prediction equation ŷ = a+bx
than without knowing the x-values, the variables are judged to be strongly associated.
This measure of association has four elements:

• A rule for predicting y without using x. We refer to this as Rule 1.

• A rule for predicting y using information on x. We refer to this as Rule 2.

• A summary measure of prediction error for each rule, E1 for errors by rule 1
and E2 for errors by rule 2.

• The difference in the amount of error with the two rules is E1 −E2. Converting
this reduction in error to a proportion provides the definition

Proportional reduction in error = E1 − E2

E1
.

Rule 1 (Predicting y without using x): The best predictor is ȳ, the sample mean.

Rule 2 (Predicting y using x): When the relationship between x and y is linear,
the prediction equation ŷ = a + bx provides the best predictor of y.

Prediction Errors: The prediction error for each subject is the difference be-
tween the observed and predicted values of y. The prediction error using rule 1
is y − ȳ, and the prediction error using rule 2 is y − ŷ, the residual. For each pre-
dictor, some prediction errors are positive, some are negative, and the sum of
the errors equals 0. We summarize the prediction errors by their sum of squared
values,

E =
∑

(observed y-value − predicted y-value)2
.

For rule 1, the predicted values all equal ȳ. The total prediction error is

E1 =
∑

(y − ȳ)2
.

This is the total sum of squares of the y-values about their mean. We denote this by
TSS. For rule 2 (predicting using the ŷ-values), the total prediction error is

E2 =
∑

(y − ŷ)2
.

We have denoted this by SSE, called the sum of squared errors or the residual sum
of squares.

When x and y have a strong linear association, the prediction equation provides
predictions (ŷ) that are much better than ȳ, in the sense that the sum of squared
prediction errors is substantially less. Figure 9.12 shows graphical representations of
the two predictors and their prediction errors. For rule 1, the same prediction (ȳ)
applies for the value of y, regardless of the value of x. For rule 2, the prediction
changes as x changes, and the prediction errors tend to be smaller.
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FIGURE 9.12: Graphical
Representation of Rule 1
and Total Sum of Squares
E1 = TSS = ∑

(y − ȳ)2,
Rule 2 and Residual
Sum of Squares
E2 = SSE = ∑

(y − ŷ)2

Definition of Measure: The proportional reduction in error from using the linear
prediction equation instead of ȳ to predict y is

r2 = E1 − E2

E1
= TSS − SSE

TSS
=

∑
(y − ȳ)2 − ∑

(y − ŷ)2∑
(y − ȳ)2

.

It is called r-squared, or sometimes the coefficient of determination. The notation r2

is used for this measure because, in fact, the proportional reduction in error equals
the square of the correlation r.

Example
9.9

r2 for Murder Rate and Poverty Rate The correlation between poverty rate and mur-
der rate for the 50 states is r = 0.629. Therefore, r2 = (0.629)2 = 0.395. For predicting
murder rate, the linear prediction equation ŷ = −0.86 + 0.58x has 39.5% less error
than ȳ.

Software for regression routinely provides tables that contain the sums of
squares that compose r2. For example, part of Table 9.3 contained the ANOVA table

Sum of Squares
Regression 307.342
Residual 470.406
Total 777.749

The sum of squared errors using the prediction equation is SSE = ∑
(y−ŷ)2 = 470.4,

and the total sum of squares is TSS = ∑
(y − ȳ)2 = 777.7. Thus,

r2 = TSS − SSE
TSS

= 777.7 − 470.4
777.7

= 307.3
777.7

= 0.395.

In practice, it is unnecessary to perform this computation, since software reports r or
r2 or both.

PROPERTIES OF r-SQUARED

The properties of r2 follow directly from those of the correlation r or from its defini-
tion in terms of the sums of squares.

• Since −1 ≤ r ≤ 1, r2 falls between 0 and 1.

• The minimum possible value for SSE is 0, in which case r2 = TSS/TSS = 1.
For SSE = 0, all sample points must fall exactly on the prediction line. In that
case, there is no error using x to predict y with the prediction equation. This
condition corresponds to r = ±1.
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• When the least squares slope b = 0, the y-intercept a equals ȳ (because a =
ȳ − bx̄, which equals ȳ when b = 0). Then, ŷ = ȳ for all x. The two prediction
rules are then identical, so SSE = TSS and r2 = 0.

• Like the correlation, r2 measures the strength of linear association. The closer
r2 is to 1, the stronger the linear association, in the sense that the more effective
the least squares line ŷ = a + bx is compared to ȳ in predicting y.

• r2 does not depend on the units of measurement, and it takes the same value
when x predicts y as when y predicts x.

SUMS OF SQUARES DESCRIBE CONDITIONAL AND
MARGINAL VARIABILITY

To summarize, the correlation r falls between −1 and +1. It indicates the direction
of the association, positive or negative, through its sign. It is a standardized slope,
equaling the slope when x and y are equally spread out. A one standard deviation
change in x corresponds to a predicted change of r standard deviations in y. The
square of the correlation has a proportional reduction in error interpretation related
to predicting y using ŷ = a + bx rather than ȳ.

The total sum of squares, TSS =
∑

(y − ȳ)2, summarizes the variability of the
observations on y, since this quantity divided by n−1 is the sample variance s2

y of the
y-values. Similarly, SSE =

∑
(y−ŷ)2 summarizes the variability around the prediction

equation, which refers to variability for the conditional distributions. For example,
when r2 = 0.39, the variability in y using x to make the predictions is 39% less than
the overall variability of the y-values. Thus, the r2 result is often expressed as “the
poverty rate explains 39% of the variability in murder rate” or “39% of the vari-
ance in murder rate is explained by its linear relationship with the poverty rate.”
Roughly speaking, the variance of the conditional distribution of murder rate for a
given poverty rate is 39% smaller than the variance of the marginal distribution of
murder rate.

This interpretation has the weakness, however, that variability is summarized by
the variance. Many statisticians find r2 to be less useful than r because, being based
on sums of squares, it uses the square of the original scale of measurement. It’s easier
to interpret the original scale than a squared scale. This is also the advantage of the
standard deviation over the variance.

9.5 Inferences for the Slope and Correlation
We have seen that a linear regression model can represent the form of a relationship
between two quantitative variables. We use the correlation and its square to describe
the strength of the association. These parts of a regression analysis are descriptive.
We now present inferential methods for the regression model.

A test of whether the two quantitative variables are statistically independent has
the same purpose as the chi-squared test for categorical variables. A confidence in-
terval for the slope of the regression equation or the correlation tells us about the
size of the effect. These inferences enable us to judge whether the variables are as-
sociated and to estimate the direction and strength of the association.

ASSUMPTIONS FOR STATISTICAL INFERENCE

Statistical inferences for regression make the following assumptions:
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• Randomization, such as a simple random sample in a survey.

• The mean of y is related to x by the linear equation E(y) = α + βx.

• The conditional standard deviation σ is identical at each x-value.

• The conditional distribution of y at each value of x is normal.

The assumption about a common σ is one under which the least squares esti-
mates are the best possible estimates of the regression coefficients.4 The assumption
about normality assures that the test statistic for a test of independence has a t sam-
pling distribution. In practice, none of these assumptions is ever satisfied exactly. In
the final section of the chapter, we’ll see that the important assumptions are the first
two.

TEST OF INDEPENDENCE USING SLOPE OR CORRELATION

Under the above assumptions, suppose the population mean of y is identical at each
x-value. In other words, the normal conditional distribution of y is the same at each
x-value. Then, the two quantitative variables are statistically independent. For the
linear regression function E(y) = α + βx, this means that the slope β = 0 (see
Figure 9.13). The null hypothesis that the variables are statistically independent is
H0: β = 0.

a 5 m

x

y

E (y) 5 a (all x)

FIGURE 9.13: x and y Are
Statistically Independent
when the Slope β = 0 in
the Regression Model
E(y) = α + βx with Normal
Conditional Distributions
Having Identical Standard
Deviations

We can test independence against Ha: β �= 0, or a one-sided alternative, Ha:
β > 0 or Ha: β < 0, to predict the direction of the association. The test statistic is

t = b
se

,

where se is the standard error of the sample slope b. The form of the test statistic is the
usual one for a t or z test. We take the estimate b of the parameter β, subtract the null
hypothesis value (β = 0), and divide by the standard error of the estimate b. Under
the assumptions, this test statistic has the t sampling distribution with df = n − 2.
The P-value for Ha: β �= 0 is the two-tail probability from the t distribution.

The formula for the standard error of b is

se = s√∑
(x − x̄)2

, where s =
√

SSE
n − 2

.

4 Under the assumptions of normality with common σ , least squares estimates are special cases of maximum
likelihood estimates, introduced in Section 5.5.
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This depends on the point estimate s of the standard deviation of the conditional
distributions of y. The degrees of freedom for the t test are the same as the df for
s. The smaller s is, the more precisely b estimates β. A small s occurs when the data
points show little variability about the prediction equation. Also, the standard error
of b is inversely related to

∑
(x − x̄)2, the sum of squares of the observed x-values

about their mean. This sum increases, and hence b estimates β more precisely, as the
sample size n increases. (The se also decreases when the x-values are more highly
spread out, but the researcher usually has no control over this except in designed
experiments.)

The correlation r = 0 in the same situations in which the slope b = 0. Let ρ

(Greek letter rho) denote the correlation value in the population. Then, ρ = 0 pre-
cisely when β = 0. In fact, a test of H0: ρ = 0 using the sample value r is equivalent
to the t test of H0: β = 0 using the sample value b. The test statistic for H0: ρ = 0 is

t = r√
1 − r2

n − 2

.

This has the same value as the test statistic t = b/se. We can use either statistic to
test H0: independence, since each has the t distribution with df = n − 2 and yields
the same P-value.

Example
9.10

Regression for Selling Price of Homes What affects the selling price of a house?
Table 9.5 shows observations on recent home sales in Gainesville, Florida. This table
shows data for eight homes. The entire file for 100 home sales is the Houses data
file at the text website. Variables listed are selling price (in dollars), size of house
(in square feet), annual property taxes (in dollars), number of bedrooms, number of
bathrooms, and whether the house is newly built.

TABLE 9.5: Selling Prices and Related Factors for a Sample of Home
Sales in Gainesville, Florida (Houses Data File)

Home Selling Price Size Taxes Bedrooms Bathrooms New

1 279,900 2048 3104 4 2 No
2 146,500 912 1173 2 1 No
3 237,700 1654 3076 4 2 No
4 200,000 2068 1608 3 2 No
5 159,900 1477 1454 3 3 No
6 499,900 3153 2997 3 2 Yes
7 265,500 1355 4054 3 2 No
8 289,900 2075 3002 3 2 Yes

Note: The complete Houses data file for 100 homes is at the text website.

For a set of variables, software can report the correlation for each pair in a
correlation matrix. This matrix is a square table listing the variables as the rows
and again as the columns. Table 9.6 shows the way software reports the correlation
matrix for the variables selling price, size, taxes, and number of bedrooms. The cor-
relation between each pair of variables appears twice. For instance, the correlation
of 0.834 between selling price and size of house occurs both in the row for price and
column for size and in the row for size and column for price. The correlations on the
diagonal running from the upper left-hand corner to the lower right-hand corner of
a correlation matrix all equal 1.0. This merely indicates that the correlation between
a variable and itself is 1.0. For instance, if we know the value of y, then we can predict
the value of y perfectly.
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TABLE 9.6: Correlation Matrix for House Selling Price Data from
Houses Data File

Correlations
price size taxes bedrooms

price 1.00000 0.83378 0.84198 0.39396
size 0.83378 1.00000 0.81880 0.54478
taxes 0.84198 0.81880 1.00000 0.47393
bedrooms 0.39396 0.54478 0.47393 1.00000

For now, we use only the data on y = selling price and x = size of house. Since
these 100 observations come from one city alone, we cannot use them to make infer-
ences about the relationship between x and y in general. We treat them as a random
sample of a conceptual population of home sales in this market in order to analyze
how these variables seem to be related.

Figure 9.14 shows a scatterplot, which displays a strong positive trend. The model
E(y) = α + βx seems appropriate. Some of the points at high levels of size may be
outliers, however, and one point falls quite far below the overall trend. We discuss
this abnormality in Section 14.4, which introduces an alternative model that does not
assume constant variability around the regression line.
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FIGURE 9.14: Scatterplot
and Prediction Equation
for y = Selling Price (in
Dollars) and x = Size of
House (in Square Feet)

Table 9.7 shows some software output (Stata) for a regression analysis. The pre-
diction equation is ŷ = −50, 926.2 + 126.6x. The predicted selling price increases by
b = 126.6 dollars for an increase in size of a square foot. Figure 9.14 also superim-
poses the prediction equation over the scatterplot.

Table 9.7 reports that the standard error of the slope estimate is se = 8.47. This
value estimates the variability in sample slope values that would result from repeat-
edly selecting random samples of 100 house sales in Gainesville and calculating pre-
diction equations. For testing independence, H0: β = 0, the test statistic is

t = b
se

= 126.6
8.47

= 14.95,

shown in Table 9.7. Since n = 100, its degrees of freedom are df = n − 2 = 98. This
is an extremely large test statistic. The P-value, listed in Table 9.7 under the heading
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TABLE 9.7: Stata Output (Edited) for Regression Analysis of y = Selling Price and x = Size
of House from Houses Data File

Source | SS df MS Number of obs = 100
- -------+----------------------------- F(1, 98) = 223.52

Model | 7.0573e+11 1 7.0573e+11 Prob > F = 0.0000
Residual | 3.0942e+11 98 3.1574e+09 R-squared = 0.6952
---------+----------------------------- Adj R-squared = 0.6921

Total | 1.0151e+12 99 1.0254e+10 Root MSE = 56190

price | Coef. Std. Err. t P>|t| [95% Conf. Interval]
size | 126.5941 8.467517 14.95 0.000 109.7906 143.3976

_cons | -50926.25 14896.37 -3.42 0.001 -80487.62 -21364.89

P > |t|, is 0.000 to three decimal places. This refers to the two-sided alternative Ha:
β �= 0. It is the two-tailed probability of a t statistic at least as large in absolute value
as the absolute value of the observed t, |t| = 14.95, presuming H0 is true.

We get the same result if we conduct the test using the correlation. The correla-
tion of r = 0.834 for the house selling price data has

t = r√
(1 − r2)/(n − 2)

= 0.834√
(1 − 0.695)/98

= 14.95.

Table 9.8 shows some R output for the same analysis. The two-sided P-value,
listed under the heading Pr(> |t|), is 0 to many decimal places.

TABLE 9.8: R Output for Regression Analysis of y = Selling Price and x = Size of House from
Houses Data File

> fit <- lm(price ˜ size)
> summary(fit)

Estimate Std. Error t value Pr(>|t|)
(Intercept) -50926.255 14896.373 -3.419 0.000918
size 126.594 8.468 14.951 < 2e-16
---
Residual standard error: 56190 on 98 degrees of freedom
Multiple R-squared: 0.6952, Adjusted R-squared: 0.6921

> cor.test(price,size)

t = 14.951, df = 98, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval: 0.7621910 0.8852286
sample estimates: cor 0.8337848

Both the Stata and R outputs also contain a standard error and t test for the
y-intercept. We won’t use this information, since rarely is there any reason to test
the hypothesis that a y-intercept equals 0. For this example, the y-intercept does not
have any interpretation, since houses of size x = 0 do not exist.

In summary, the evidence is extremely strong that size of house has a positive
effect on selling price. On the average, selling price increases as size increases. This
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is no surprise. Indeed, we would be shocked if these variables were independent. For
these data, estimating the size of the effect is more relevant than testing whether it
exists.

CONFIDENCE INTERVAL FOR THE SLOPE AND CORRELATION

A small P-value for H0: β = 0 suggests that the regression line has a nonzero slope.
We should be more concerned with the size of the slope β than in knowing merely
that it is not 0. A confidence interval for β has the formula

b ± t(se).

The t-score is the value, with df = n − 2, for the desired confidence level. The form
of the interval is similar to the confidence interval for a mean (Section 5.3), namely,
take the estimate of the parameter and add and subtract a t multiple of the standard
error. The se is the same as se in the test about β.

Constructing a confidence interval for the correlation ρ is more complicated than
for the slope β. The reason is that the sampling distribution of r is not symmetric
except when ρ = 0. The lack of symmetry is caused by the restricted range [−1, 1]
for r values. If ρ is close to 1.0, for instance, the sample r cannot fall much above ρ,
but it can fall well below ρ. The sampling distribution of r is then skewed to the left.
Exercise 9.64 shows how to construct confidence intervals for correlations. This is
available with software.

Example
9.11

Estimating the Slope and Correlation for House Selling Prices For the data on x =
size of house and y = selling price, b = 126.6 and se = 8.47. The parameter β refers
to the change in the mean selling price (in dollars) for each 1-square-foot increase in
size. For a 95% confidence interval, we use the t.025 value for df = n − 2 = 98, which
is t.025 = 1.984. The interval is

b ± t.025(se) = 126.6 ± 1.984(8.47)

= 126.6 ± 16.8, or (110, 143).

We can be 95% confident that β falls between 110 and 143. The mean selling price
increases by between $110 and $143 for a 1-square-foot increase in house size.

In practice, we make inferences about the change in E(y) for an increase in x that
is a relevant portion of the actual range of x-values. If a one-unit increase in x is too
small or too large in practical terms, the confidence interval for β can be adjusted
to refer to a different change in x. For Table 9.5, x = size of house has x̄ = 1629
and sx = 669. A change of 1 square foot in size is small. Let’s estimate the effect of
a 100-square-foot increase in size. The change in the mean of y is 100β. The 95%
confidence interval for β is (110, 143), so the 95% confidence interval for 100β has
endpoints 100(110) = 11,100 and 100(143) = 14,300. We infer that the mean selling
price increases by at least $11,100 and at most $14,300 for a 100-square-foot increase
in house size. For example, assuming that the linear regression model is valid, we
conclude that the mean is between $11,100 and $14,300 higher for houses of 1700
square feet than for houses of 1600 square feet.

For the house selling price data, we found that the correlation between selling
price and size is 0.834. The R output in Table 9.8 tells us that a 95% confidence
interval for the population correlation is (0.762, 0.885).
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SUMS OF SQUARES IN SOFTWARE OUTPUT

How do we interpret the sums of squares (SS) output in tables such as Table 9.7?
In that table, the residual sum of squares (SSE = 3.0942 × 1011) is a huge number
because the y-values are very large and their deviations are squared. The estimated
conditional standard deviation of y is

s =
√

SSE/(n − 2) = 56,190,

labeled as Root MSE by Stata and Residual standard error by R. The sum of squares
table also reports the total sum of squares, TSS = ∑

(y − ȳ)2 = 1.0151 × 1012. From
this value and SSE,

r2 = TSS − SSE
TSS

= 0.695.

This is the proportional reduction in error in predicting the selling price using the
linear prediction equation instead of the sample mean selling price. A strong associ-
ation exists between these variables.

The total sum of squares TSS partitions into two parts, the sum of squared errors,
SSE = 3.0942 × 1011, and the difference TSS − SSE = 7.0573 × 1011. This difference
is the numerator of the r2 measure. Software calls this the regression sum of squares
(e.g., SPSS) or the model sum of squares (e.g., Stata, SAS). It represents the amount
of the total variation TSS in y that is explained by x in using the least squares line.
The ratio of this sum of squares to TSS equals r2.

Tables of sums of squares have an associated list of degrees of freedom values.
The df for the total sum of squares TSS = ∑

(y − ȳ)2 is n − 1 = 99, since TSS refers
to variability in the marginal distribution of y, which has sample variance s2

y = TSS/

(n − 1). The degrees of freedom for SSE are n − 2 = 98, since it refers to variability
in the conditional distribution of y, which has variance estimate s2 = SSE/(n−2) for
a model having two parameters. The regression (model) sum of squares has df equal
to the number of explanatory variables in the regression model, in this case 1. The
sum of df for the regression sum of squares and df for the residual sum of squared
errors is df = n − 1 for the total sum of squares, in this case 1 + 98 = 99.

9.6 Model Assumptions and Violations
We end this chapter by reconsidering the assumptions underlying linear regression
analysis. We discuss the effects of violating these assumptions and the effects of in-
fluential observations. Finally, we show an alternate way to express the model.

WHICH ASSUMPTIONS ARE IMPORTANT?

The linear regression model assumes that the relationship between x and the mean of
y follows a straight line. The actual form is unknown. It is almost certainly not exactly
linear. Nevertheless, a linear function often provides a decent approximation for the
actual form. Figure 9.15 illustrates a straight line falling close to an actual curvilinear
relationship.

The inferences introduced in the previous section are appropriate for detecting
positive or negative linear associations. Suppose that instead the true relationship
were U-shaped, such as in Figure 9.4. Then, the variables would be statistically de-
pendent, since the mean of y would change as the value of x changes. The t test of H0:
β = 0 might not detect it, though, because the slope b of the least squares line would
be close to 0. In other words, a small P-value would probably not occur even though
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FIGURE 9.15: A Linear
Regression Equation as an
Approximation for a
Nonlinear Relationship

an association exists. In summary, β = 0 need not correspond to independence if
the assumption of a linear regression model is violated. For this reason, you should
always construct a scatterplot to check this fundamental assumption.

The least squares line and r and r2 are valid descriptive statistics no matter what
the shape of the conditional distribution of y-values for each x-value. However, the
statistical inferences in Section 9.5 also assume that the conditional distributions of
y are (1) normal, with (2) identical standard deviation σ for each x-value. These as-
sumptions are also not exactly satisfied in practice. For large samples, the normality
assumption is relatively unimportant, because an extended Central Limit Theorem
implies that sample slopes and correlations have approximately normal sampling
distributions. If the assumption about common σ is violated, other estimates may be
more efficient than least squares (i.e., having smaller se values), but ordinary infer-
ence methods are still approximately valid.

The random sample and straight-line assumptions are very important. If the true
relationship deviates greatly from a straight line, for instance, it does not make sense
to use a slope or a correlation to describe it. Chapter 14 discusses ways of checking
the assumptions and modifying the analysis, if necessary.

INFLUENTIAL OBSERVATIONS

The least squares method has a long history and is the standard way to fit predic-
tion equations to data. A disadvantage of least squares, however, is that individual
observations can unduly influence the results. A single observation can have a large
effect if it is a regression outlier—having x-value relatively large or relatively small
and falling quite far from the trend that the rest of the data follow.

Figure 9.16 illustrates this. The figure plots observations for several African and
Asian nations on y = crude birth rate (number of births per 1000 population size)
and x = number of televisions per 100 people. We added to the figure an observation
on these variables for the United States, which is the outlier that is much lower than
the other countries in birth rate but much higher on number of televisions. Figure
9.16 shows the prediction equations both without and with the U.S. observation. The
prediction equation changes from ŷ = 29.8−0.024x to ŷ = 31.2−0.195x. Adding only
a single point to the data set causes the prediction line to tilt dramatically downward.

When a scatterplot shows a severe regression outlier, you should investigate the
reasons for it. An observation may have been incorrectly recorded. If the observation
is correct, perhaps that observation is fundamentally different from the others in
some way, such as the U.S. observation in Figure 9.16. It may suggest an additional
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predictor for the model, using methods of Chapter 11. It is often worthwhile to refit
the model without one or two extreme regression outliers to see if those observations
have a large effect on the fit. We did this following Example 9.4 (page 264) with the
D.C. observation for the murder rates. The slope of the prediction equation relating
murder rate to poverty rate more than doubled when we included the observation
for D.C.

Observations that have a large influence on the model parameter estimates can
also have a large impact on the correlation. For instance, for the data in Figure 9.16,
the correlation is −0.935 when the United States is included and −0.051 when it is
deleted from the data set. One point can make quite a difference, especially when
the sample size is small.

FACTORS INFLUENCING THE CORRELATION

Besides being influenced by outliers, the correlation depends on the range of x-values
sampled. When a sample has a much narrower range of variation in x than the popu-
lation, the sample correlation tends to underestimate drastically (in absolute value)
the population correlation.

Figure 9.17 shows a scatterplot of 500 points that has a correlation of r = 0.71.
Suppose, instead, we had only sampled the middle half of the points, roughly between
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FIGURE 9.17: The
Correlation Is Affected by
the Range of x-Values. The
correlation decreases from
0.71 to 0.33 using only
points with x between 43
and 57.
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x-values of 43 and 57. Then the correlation equals only r = 0.33, considerably lower.
For the relation between housing price and size of house, portrayed in Figure 9.14,
r = 0.834. If we sampled only those sales in which house size is between 1300 and
2000 square feet, which include 44 of the 100 observations, r decreases to 0.254.

The correlation is most appropriate as a summary measure of association when
the sample (x, y)-values are a random sample of the population. This way, there is a
representative sample of the x variation as well as the y variation.

Example
9.12

Does the SAT Predict College GPA? Consider the association between x = score
on the SAT college entrance exam and y = college GPA at end of second year of
college. The strength of the correlation depends on the variability in SAT scores in
the sample. If we study the association only for students at Harvard University, the
correlation will probably be weak, because the sample SAT scores will be concen-
trated very narrowly at the upper end of the scale. By contrast, if we could randomly
sample from the population of all high school students who take the SAT and then
place those students in the Harvard environment, students with poor SAT scores
would tend to have low GPAs at Harvard. We would then observe a much stronger
correlation.

Other aspects of regression, such as fitting a prediction equation to the data and
making inferences about the slope, remain valid when we randomly sample y within
a restricted range of x-values. We simply limit our predictions to that range. The
slope of the prediction equation is not affected by a restriction in the range of x. For
Figure 9.17, for instance, the sample slope equals 0.97 for the full data and 0.96 for
the restricted middle set. The correlation makes most sense, however, when both x
and y are random, rather than only y.

EXTRAPOLATION IS DANGEROUS

It is dangerous to apply a prediction equation to values of x outside the range of
observed values. The relationship might be far from linear outside that range. We
may get poor or even absurd predictions by extrapolating beyond the observed range.

To illustrate, the prediction equation ŷ = −0.86 + 0.58x in Section 9.2 relating
x = poverty rate to y = murder rate was based on observed poverty rates between
8.0 and 26.4. It is not valid to extrapolate much below or above this range. The pre-
dicted murder rate for a poverty rate of x = 0% is ŷ = −0.86. This is an impossible
value for murder rate, which cannot be negative.

Here is another type of inappropriate extrapolation: x being positively correlated
with y and y being positively correlated with z does not imply that x is positively
correlated with z. For example,5 in the United States wealthier people tend to reside
in wealthier states and wealthier states tend to have a higher percentage favoring the
Democratic candidate in presidential elections, yet wealthier people tend to be less
likely to vote Democratic.

REGRESSION MODEL WITH ERROR TERMS∗

Recall that at each fixed value of x, the regression model permits values of y to fluc-
tuate around their mean, E(y) = α + βx. Any one observation may fall above that

5 See Red State, Blue State, Rich State, Poor State by A. Gelman (Princeton University Press, 2008).
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mean (i.e., above the regression line) or below that mean (i.e., below the regression
line). The standard deviation σ summarizes the typical sizes of the deviations from
the mean.

An alternative formulation for the model expresses each observation on y, rather
than the mean E(y) of the values, in terms of x. We’ve seen that the deterministic
model y = α + βx is unrealistic, because of not allowing variability of y-values. To
allow variability, we include a term for the deviation of the observation y from the
mean,

y = α + βx + ε.

The term denoted by ε (the Greek letter epsilon) represents the deviation of y from
the mean, α + βx. Each observation has its own value for ε.

If ε is positive, then α + βx + ε is larger than α + βx, and the observation falls
above the mean. See Figure 9.18. If ε is negative, the observation falls below the
mean. When ε = 0, the observation falls exactly at the mean. The mean of the
ε-values is 0.

x

y
E (y) 5 a 1 bx

y 5 a 1 bx 1 e
(e . 0)

e

e

a 1 bx

y 5 a 1 bx 1 e
(e , 0)

FIGURE 9.18: Positive
and Negative ε-Values
Correspond to
Observations above and
below the Mean of the
Conditional Distribution

For each x, variability in the y-values corresponds to variability in ε. The ε term
is called the error term, since it represents the error that results from using the mean
value (α + βx) of y at a certain value of x to predict the individual observation.

In practice, we do not know the n values for ε, just like we do not know
the parameter values and the true mean α + βx. For the sample data and their pre-
diction equation, let e be such that

y = a + bx + e.

That is, y = ŷ + e, so e = y − ŷ. Then e is the residual, the difference between the
observed and predicted values of y, which we can observe. Since y = α + βx + ε,
the residual e estimates ε. We can interpret ε as a population residual. Thus, ε is
the difference between the observation y and the mean α + βx of all possible ob-
servations on y at that value of x. Graphically, ε is the vertical distance between the
observed point and the true regression line.

In summary, we can express the regression model either as

E(y) = α + βx or as y = α + βx + ε.

We use the first equation in later chapters, because it connects better with regression
models for response variables assumed to have distributions other than the normal.
Models for discrete quantitative variables and models for categorical variables are
expressed in terms of their means, not in terms of y itself.
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MODELS, REALITY, AND ALTERNATIVE APPROACHES

We emphasize again that the regression model approximates the true relationship.
No sensible researcher expects a relationship to be exactly linear, with exactly normal
conditional distributions at each x and with exactly the same standard deviation of
y-values at each x-value. Models merely approximate reality.

If the model seems too simple to be adequate, the scatterplot or other diagnos-
tics may suggest improvement by using other models introduced later in this text.
Such models can be fitted, rechecked, and perhaps modified further. Model build-
ing is an iterative process. Its goals are to find a realistic model that is adequate for
describing the relationship and making predictions but that is still simple enough to
interpret easily. Chapters 11–15 extend the basic regression model so that it applies
to situations in which the assumptions of this chapter are too simplistic.

9.7 Chapter Summary
Chapters 7–9 have dealt with the detection and description of association between two
variables. Chapter 7 showed how to compare means or proportions for two groups.
When the variables are statistically independent, the population means or propor-
tions are identical for the two groups. Chapter 8 dealt with association between two
categorical variables. Measures of association such as the difference of proportions,
the odds ratio, and gamma describe the strength of association. The chi-squared
statistic for nominal data or a z statistic based on sample gamma for ordinal data
tests the hypothesis of independence.

This chapter dealt with association between quantitative variables. A new ele-
ment studied here was a regression model to describe the form of the relationship
between the explanatory variable x and the mean E(y) of the response variable. The
major aspects of the analysis are as follows:

• The linear regression equation E(y) = α + βx describes the form of the re-
lationship. This equation is appropriate when a straight line approximates the
relationship between x and the mean of y.

• A scatterplot views the data and checks whether the relationship is approxi-
mately linear. If it is, the least squares estimates of the y-intercept α and the
slope β provide the prediction equation ŷ = a + bx closest to the data, mini-
mizing the sum of squared residuals.

• The correlation r and its square describe the strength of the linear association.
The correlation is a standardized slope, having the same sign as the slope but
falling between −1 and +1. Its square, r2, gives the proportional reduction in
variability about the prediction equation compared to the variability about ȳ.

• For inference about the relationship, a t test using the slope or correlation tests
the null hypothesis of independence, namely, that the population slope and
correlation equal 0. A confidence interval estimates the size of the effect.

Table 9.9 summarizes the methods studied in the past three chapters.
Chapter 11 introduces the multiple regression model, a generalization that per-

mits several explanatory variables in the model. Chapter 12 shows how to include
categorical predictors in a regression model. Chapter 13 includes both categorical
and quantitative predictors. Chapter 14 introduces models for more complex rela-
tionships, such as nonlinear ones. Finally, Chapter 15 presents regression models for
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TABLE 9.9: Summary of Tests of Independence and Measures of Association

Measurement Levels Of Variables

Nominal Ordinal Interval

Null hypothesis H0: independence H0: independence H0: independence (β = 0)
Test statistic X2 = ∑ ( f0− fe)2

fe
z = γ̂

se t = b
se = r√

1 − r2
n − 2

, df = n − 2

Measure of π̂2 − π̂1 γ̂ = C−D
C+D r = b

(
sx
sy

)
association

Odds ratio r2 = TSS−SSE
TSS

categorical response variables. Before discussing these multivariate models, how-
ever, we introduce in the next chapter some new concepts that help us to understand
and interpret multivariate relationships.

Exercises

Practicing the Basics
9.1. For the following variables in a regression analysis,
which variable more naturally plays the role of x (explana-
tory variable) and which plays the role of y (response vari-
able)?

(a) College grade point average (GPA) and high school
GPA.
(b) Number of children and mother’s education level.
(c) Annual income and number of years of education.
(d) Annual income of homeowner and assessed value of
home.

9.2. Sketch plots of the following prediction equations, for
values of x between 0 and 10:
(a) ŷ = 7 + x, (b) ŷ = 7 − x, (c) ŷ = 7, (d) ŷ = x.

9.3. Anthropologists often try to reconstruct information
using partial human remains at burial sites. For instance,
after finding a femur (thighbone), they may want to pre-
dict how tall an individual was. An equation they use to
do this is ŷ = 61.4 + 2.4x, where ŷ is the predicted height
and x is the length of the femur, both in centimeters.

(a) Identify the y-intercept and slope of the equation. In-
terpret the slope.
(b) A femur found at a particular site has length of 50 cm.
What is the predicted height of the person who had that
femur?

9.4. The OECD (Organization for Economic Coopera-
tion and Development) consists of advanced, industri-
alized countries. For these nations, a recent prediction
equation6 relating y = child poverty rate to x = social

expenditure as a percentage of gross domestic product is
ŷ = 22 − 1.3x. The y-values ranged from 2.8% (Finland)
to 21.9% (the United States). The x-values ranged from
2% (the United States) to 16% (Denmark).

(a) Interpret the y-intercept and the slope.
(b) Find the predicted poverty rates for the United States
and for Denmark.
(c) The correlation is −0.79. Interpret.

9.5. Look at Figure 2 at http://ajph.aphapublica
tions.org/doi/pdf/10.2105/AJPH.93.4.652, a
scatterplot for U.S. states with correlation 0.53 between
x = child poverty rate and y = child mortality rate.
Approximate the y-intercept and slope of the prediction
equation shown there.

9.6. The Firearms data file at the text website shows
U.S. statewide data on x = percentage of people who re-
port owning a gun and y = firearm death rate (annual
number of deaths per 100,000 population), from
www.cdc.gov.

(a) Find the prediction equation, and interpret.
(b) The correlation is 0.70. Identify an outlier, and show
that r = 0.78 when you remove this state from the data
file.

9.7. Access the UN data file (shown in Table 3.9) at the
text website from 42 countries. Let y = carbon dioxide
emissions (metric tons per capita) and x = gross domestic
product (per capita GDP, in dollars).

(a) Find the prediction equation, and interpret the coeffi-
cients.

6 Source: Figure 8H at www.stateofworkingamerica.org.

http://ajph.aphapublications.org/doi/pdf/10.2105/AJPH.93.4.652
http://www.cdc.gov
http://www.stateofworkingamerica.org
http://ajph.aphapublications.org/doi/pdf/10.2105/AJPH.93.4.652
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(b) For the United States, x = 50.9 and y = 17.0. Find the
predicted CO2 value. Find the residual, and interpret.

9.8. For the 2014 GSS, a prediction equation relates y =
highest year of school completed to x = father’s highest
year of school completed.

(a) Which equation is more realistic for the result: ŷ =
9.57 + 0.35x, or ŷ = 0.35 + 9.57x? Why?

(b) Suppose the prediction equation had been ŷ = x.
Identify the y-intercept and slope, and interpret the slope.

9.9. Access the data file Crime2 shown in Table 9.1. Let
y = violent crime rate and x = poverty rate.

(a) Using software, show that the prediction equation is
ŷ = 209.9 + 25.5x. Interpret the y-intercept and the slope.

(b) Find the predicted violent crime rate and the resid-
ual for Massachusetts, which had x = 10.7 and y = 805.
Interpret.

(c) Two states differ by 10.0 in their poverty rates. Find
the difference in their predicted violent crime rates.

(d) From the prediction equation, can you tell the sign of
the correlation between these variables? How?

9.10. In the 2000 Presidential election in the United
States, the Democratic candidate was Al Gore and the Re-
publican candidate was George W. Bush. In Palm Beach
County, Florida, initial election returns reported 3407
votes for the Reform party candidate, Pat Buchanan.
Some political analysts thought that most of these votes
may have actually been intended for Gore (whose name
was next to Buchanan’s on the ballot) but wrongly cast for
Buchanan because of the design of the “butterfly ballot”
used in that county, which some voters found confusing.
For the 67 counties in Florida, Figure 9.19 is a scatterplot

of the county wide vote for the Reform party candidates
in 2000 (Buchanan) and in 1996 (Perot).
(a) The top point is for Palm Beach county. What does it
suggest?

(b) The prediction equation fitted to all but the observa-
tion for Palm Beach county is ŷ = 45.7 + 0.02414x. In
Palm Beach county, x = 30,739. Find the predicted
Buchanan vote and the residual, and interpret.

(c) Why is the top point, but not each of the two right-
most points, considered a regression outlier? (Note: Sta-
tistical analyses predicted that fewer than 900 of the 3407
votes were truly intended for Buchanan. Bush won the
state by 537 votes and, with it, the Electoral College and
the election. Other factors that played a role were 110,000
disqualified “overvote” ballots in which people mistak-
enly voted for more than one presidential candidate—
with Gore marked on 84,197 ballots and Bush on 37,731—
often because of confusion from names being listed on
more than one page of the ballot, and 61,000 “under-
votes” caused by factors such as “hanging chads” from
manual punch-card machines.)

9.11. Figure 9.20 is a scatterplot relating y = percentage of
people using cell phones and x = per capita gross domes-
tic product (GDP) for some nations listed in the Human
Development Report.

(a) Give the approximate x- and y-coordinates for the na-
tion that has the highest (i) cell phone use, (ii) GDP.

(b) The least squares prediction equation is ŷ = −0.13 +
2.62x. For one nation, x = 34.3 and y = 45.1. Find the
predicted cell-phone use and the residual. Interpret the
residual.

(c) Is the correlation positive, or negative? Explain what
it means for the correlation to have this sign.
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FIGURE 9.20: Scatterplot of Percentage Using Cell
Phones and Per Capita GNP

9.12. For nations listed in the Human Development
Report, the correlation with percentage of people using
the Internet is 0.888 for per capita gross domestic product
(GDP, a summary description of a nation’s wealth), 0.818
for percentage using cell phones, 0.669 for literacy rate,
−0.551 for fertility rate (the mean number of children
per adult woman), and 0.680 for per capita emissions of
carbon dioxide.

(a) Explain how to interpret the sign of the correlation
between Internet use and (i) GDP, (ii) fertility rate.
(b) Which variable has the (i) strongest, (ii) weakest lin-
ear association with Internet use?

9.13. A report summarizing the results of a study on the
relationship between a verbal aptitude test x and a math-
ematics aptitude test y states that x̄ = 480, ȳ = 500, sx =
80, sy = 120, and r = 0.60. Using the formulas for the cor-
relation and for the least squares estimates, find the pre-
diction equation.

9.14. Table 9.15 in Exercise 9.39 shows countywide data
for several variables in Florida. For those counties,
Table 9.10 shows part of the output for the regression anal-
ysis relating y = median income (in thousands of dollars)
to x = percentage of residents with at least a high school
education.

(a) Report the prediction equation, and interpret the
slope.
(b) County A has 10% more of its residents than county B
with at least a high school education. Find their difference
in predicted median incomes.
(c) Find the correlation. Interpret using (i) the sign,
(ii) the magnitude, (iii) the standardized slope.
(d) Find r2. Explain how to interpret it.

TABLE 9.10

Variable Mean Std Dev Parameter
------------------------- Variable Estimate
INCOME 24.51 4.69 (Constant) -4.63
EDUC 69.49 8.86 EDUC 0.42

9.15. The Internet sitewww.pearsonglobaleditions
.com/Agresti has an Explore Linear Regression ap-
plet. To show the impact of an outlier, use the Draw Own
option to put 10 points on the scatterplot that have a
correlation close to +1, and then add a single point that
changes the correlation to a negative value. Explain why
this single observation has so much influence. Download
the scatterplot and print it as part of your solution.

9.16. For the student survey data set described in Exercise
1.11, the sample correlation between y = political ideol-
ogy (scored 1 to 7, with higher values representing more
conservatism) and x = number of times a week reading a
newspaper is r = −0.066.

(a) Would you conclude that the sample association is
strong, or weak?
(b) Interpret the square of the correlation.
(c) When y is predicted using x = religiosity (how often
attend religious services, scored 0, 1, 2, 3), the sample cor-
relation is r = 0.580. Which of these two explanatory vari-
ables seems to have a stronger linear relationship with y?
Explain.

9.17. For the study in Example 9.6 (page 270) of y = high
school GPA and x = weekly number of hours viewing
television, ŷ = 3.44 − 0.03x.

(a) The study reported that r-squared = 0.237. Interpret.
(b) Report and interpret the correlation.
(c) Suppose you found the correlation only for those stu-
dents having TV watching of no more than three hours per
week. Would you expect the correlation to be stronger, or
weaker, than for all students? Why?

9.18. For students who take Statistics 101 at Lake
Wobegon College in Minnesota, both x = midterm exam
score and y = final exam score have mean = 75 and stan-
dard deviation = 10.

(a) The prediction equation is ŷ = 30 + 0.60x. Find
the predicted final exam score for a student who has
(i) midterm score = 100, (ii) midterm score = 50. Note that
the predicted final exam score regresses from the midterm
score toward the mean.
(b) Show that the correlation equals 0.60.
(c) If instead, ŷ = x, show that r = 1.0.
(d) If instead, ŷ = 75 (i.e., slope = 0), show that r = 0.0.

9.19. The prediction equation relating x = years of educa-
tion and y = annual income (in dollars) is ŷ = −20,000 +
4000x, and the correlation equals 0.50. The standard de-
viations were 2.0 for x and 16,000 for y.

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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(a) Show how to find the correlation from the slope.

(b) Results were translated to units of euros, at a time
when the exchange rate was $1.25 per euro. Find the pre-
diction equation and the correlation.

9.20. Access the Houses data file (shown partly in Table
9.5) at the text website. For the response variable taxes and
explanatory variable size, using software,

(a) Graphically portray the association, and describe it.

(b) Find and interpret the prediction equation.

(c) Find and interpret the correlation and r2.

9.21. For 2014 GSS data, the correlation matrix for sub-
ject’s education (EDUC), mother’s education (MAE-
DUC), and father’s education (PAEDUC) is

EDUC PAEDUC MAEDUC
EDUC 1.00 .46 .45
PAEDUC .46 1.00 .69
MAEDUC .45 .69 1.00

Interpret this matrix, identifying the pair of variables with
the strongest association and giving the implication of the
sign of each correlation.

9.22. In the UN Human Development Report, one vari-
able measured was x = percentage of adults who use con-
traceptive methods. Table 9.11 shows part of a regression
analysis using y = fertility (mean number of children per
adult woman), for 22 nations listed in that report. For
those nations, x had a mean of 60.0 and standard devia-
tion of 20.6.

(a) State a research question that could be addressed with
this output.

(b) Report the prediction equation and find the predicted
fertility when (i) x = 0, (ii) x = 100. Show how the differ-
ence between these can be obtained using the slope.

(c) Find and interpret r and r2.

(d) What do your analyses say about the question in (a)?

TABLE 9.11

Predictor Coef. Std. Error t P>|t|
Constant 6.6633 0.4771 13.97 0.000
CONTRA -0.064843 0.007539 -8.60 0.000

Source Sum of Squares df
Regression 37.505 1
Residual 10.138 20
Total 47.644 21

9.23. For data on several nations, we want to describe
whether the percentage of people using the Internet is
more strongly associated with per capita GDP or with the
fertility rate.

(a) Can we compare the slopes when GDP and fertil-
ity each predict Internet use in separate regression equa-
tions? Why or why not?

(b) Let x = GDP (thousands of dollars per capita). For
recent data on 39 nations from the UN, for y = percent-
age using cell phones, ŷ = −0.13 + 2.62x, whereas for y
percentage using the Internet, ŷ = −3.61 + 1.55x. Why
does it make sense to compare these slopes, thus conclud-
ing that a one-unit increase in GDP has a slightly greater
impact on the percentage using cell phones than on the
percentage using the Internet?

9.24. For the Houses data file (shown partly in Table
9.5), Table 9.12 shows a regression analysis relating sell-
ing price to number of bedrooms.

(a) Report the prediction equation, and interpret the
slope.

(b) Report r2, and interpret its value.

(c) Report the correlation and its confidence interval, and
interpret.

(d) Interpret the value labeled Root MSE.

TABLE 9.12

Root MSE 93547 R-Square 0.1552
correlation and 95% limits

price bedrooms 0.394 0.214 0.548

Parameter Standard
Variable Estimate Error t Sig.
Intercept -28412 44303 -0.64 0.5228
bedrooms 61248 14435 4.24 <.0001
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9.25. Refer to Table 9.1 and the Crime2 data file at the
text website. For all 51 observations, use software to an-
alyze the relationship between y = murder rate and x =
poverty rate.

(a) Construct a scatterplot. Does there seem to be a pos-
itive, or a negative, relationship?

(b) Report the prediction equation, and find the predicted
murder rate and the residual for D.C. Interpret.

(c) Based on the scatterplot, would you regard D.C. as a
regression outlier? Refit the model without it, and note
the effect on the slope.

9.26. Refer to the Florida data file at the text web-
site, shown partly in Table 9.15 for Exercise 9.39, giving
countywide data for several variables in Florida. For those
data, use software to analyze y = crime rate and x = per-
centage living in an urban environment.

(a) Construct a box plot for y. Interpret.

(b) Find the prediction equation. Interpret the y-intercept
and slope.

(c) Using the slope, find the difference in predicted crime
rates between counties that are 100% urban and counties
that are 0% urban. Interpret.

(d) Report and interpret the correlation and r2.

9.27. Refer to Table 3.9 on page 65. This exercise uses y =
fertility rate and x = gender inequality index. Table 9.13
shows part of an SPSS output for a regression analysis.

(a) State a research question that could be addressed with
this printout.
(b) Report the prediction equation, and interpret.
(c) Report r and r2, and interpret.
(d) What do your analyses suggest about the question
posed in (a)?

TABLE 9.13 Fertility Rate Regressed on Gender Inequality
Index

R .598 R Square 0.357
B Std. Error t Sig.

(Constant) 1.378 0.172 8.027 0.000
GII 2.734 0.580 4.717 0.000

9.28. Refer to the previous exercise. Now let the human
development index (HDI) be the explanatory variable for
predicting fertility. Using software with the UN data file at
the text website,

(a) Construct a scatterplot. Do any observations stand out
as potential regression outliers?

(b) Fit the model, and interpret the parameter estimates
and correlation.

(c) Redo the analyses without the observation that may
be a regression outlier. Compare results to (b).

9.29. For 2271 observations from the 2014 GSS on y =
number of years of education (EDUC) and x = num-
ber of years of mother’s education (MAEDUC), ŷ =
9.86 + 0.345x, with se = 0.0147 for the slope.

(a) Test the null hypothesis that these variables are inde-
pendent, and interpret.

(b) Find a 95% confidence interval for the population
slope. Interpret.

(c) The correlation equals 0.441. Explain “regression to-
ward the mean” in terms of these variables.

9.30. A study was conducted using 49 Catholic female
undergraduates at Texas A&M University. The variables
measured refer to the parents of these students. The re-
sponse variable is the number of children that the parents
have. One of the explanatory variables is the mother’s ed-
ucational level, measured as the number of years of for-
mal education. For these data, x̄ = 9.88, sx = 3.77, ȳ =
3.35, sy = 2.19, the prediction equation is ŷ = 5.40 −
0.207x, the standard error of the slope estimate is 0.079,
and SSE = 201.95.

(a) Find the correlation and interpret its value.

(b) Test the null hypothesis that mean number of children
is independent of mother’s educational level, and report
and interpret the P-value.

(c) Sketch a potential scatterplot such that the analyses
you conducted in (a) and (b) would be inappropriate.

9.31. Is political ideology associated with income? When
GSS data for 1478 cases in 2014 were used to regress y =
political views (POLVIEWS, using scores 1–7 with 1 = ex-
tremely liberal and 7 = extremely conservative) on x =
respondent’s income (RINCOME, using scores 1–12 for
the 12 income categories), we get the results shown in
Table 9.14.

(a) Construct a confidence interval to make an inference
about the size of the slope effect of x on y. In practical
terms, would you characterize this effect as major, or mi-
nor? Why?

(b) SPSS and Stata report the correlation under the mis-
leading heading of “Beta.” How would you interpret this
value?
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TABLE 9.14 Political Views Regressed on Income

R Square 0.0032
B Std. Error Beta t Sig.

Constant 3.6950 0.1395 26.48 0.000
RINCOME 0.0282 0.0129 0.0569 2.19 0.029

9.32. Refer to the previous exercise. When we regress
political ideology in 2014 on x = number of hours
spent in the home on religious activity in the past month
(RELHRS1), we obtain
------------------------------------------------

B Std. Error Beta t Sig.
Constant 4.0115 0.0422 95.10 0.0000
RELHRS1 0.0064 0.0020 0.087 3.20 0.0015
------------------------------------------------

(a) Report and interpret the P-value for testing the hy-
pothesis that these variables are independent.
(b) Use these results to illustrate that statistical signifi-
cance does not imply practical significance.

9.33. For the OECD data file for OECD nations in Table
3.13 on page 70, use software to construct a scatterplot re-
lating x = carbon dioxide emissions and y = prison pop-
ulation.
(a) Based on this plot, identify a point that has a large in-
fluence in determining the correlation. Show how the cor-
relation changes if you remove this observation from the
data set.
(b) Suppose you constructed this plot using UN data for
all nations, rather than only the highly economically ad-
vanced nations that form the OECD. Would you expect
the correlation to be weaker, about the same size, or
stronger? Why?

Concepts and Applications
9.34. For the Students data file (Exercise 1.11 on
page 21), conduct regression analyses relating (i) y =
political ideology and x = religiosity, (ii) y = high school
GPA and x = hours of TV watching. Prepare a report
(a) Using graphical ways of portraying the individual vari-
ables and their relationship.
(b) Interpreting descriptive statistics for summarizing the
individual variables and their relationship.
(c) Summarizing and interpreting results of inferential
analyses.

9.35. Refer to the data file you created in Exercise 1.12.
For variables chosen by your instructor, pose a research
question and conduct a regression and correlation analy-
sis. Report both descriptive and inferential statistical anal-
yses, interpreting and summarizing your findings.

9.36. Pose a research question about job satisfaction and
educational attainment. Using the most recent GSS data
on SATJOB and EDUC with the multiple regression op-
tion at sda.berkeley.edu/GSS, with scores (1, 2, 3,
4) for (very satisfied, . . . , very dissatisfied), conduct a de-
scriptive and inferential analysis to address this question.
Prepare a one-page report summarizing your analysis.

9.37. Refer to the UN data file shown in Table 3.9 on
page 65. Pose a research question relating to the associ-
ation between fertility and the gender inequality index.
Using software, analyze data in that file to address this
question, and summarize your analyses.

9.38. The Guns suicide data file at the text website
shows statewide data7 on y = suicides (per 100,000 peo-
ple) and x = percentage of residents who own a firearm.
Conduct a regression and correlation analysis to analyze
the association.

9.39. Table 9.15 shows a small excerpt of the Florida
data file at the text website. That file has data from all
67 Florida counties on crime rate (number of crimes per
1000 residents), median income (in thousands of dollars),
percentage of residents with at least a high school educa-
tion (of those aged at least 25), and the percentage of the
county’s residents living in an urban environment. Using
crime rate as the response variable and percentage urban
as the predictor, analyze these data. In your report, pro-
vide interpretations of all the analyses.

9.40. Refer to Table 9.1 (page 260), available in the
Crime2 data file at the text website. Pose a research ques-
tion about the relationship between the murder rate and
the percentage of single-parent families. Using software,
conduct analyses to address this question. Write a report
showing your analyses and providing interpretations.

TABLE 9.15

Crime Median High Percentage Crime Median High Percentage
County Rate Income School Urban County Rate Income School Urban

ALACHUA 104 22.1 82.7 73.2 LAKE 42 23.4 70.6 43.2
BAKER 20 25.8 64.1 21.5 LEE 59 28.4 76.9 86.1

Source: Dr. Larry Winner, University of Florida. Complete data are in Florida data file at the text website.

7 Source: The Economist, January 31, 2015.
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9.41. Refer to the UN data for several nations shown in
Table 3.9 (page 65) and given at the text website. Us-
ing software, obtain the correlation matrix. Which pairs
of variables are highly correlated? Describe the nature
of those correlations, and inspect scatterplots to analyze
whether any of them may be misleading. Explain how
your software handled the missing values.

9.42. A study,8 after pointing out that diets high in fats
and sugars (bad for our health) are more affordable than
diets high in fruit and vegetables (good for our health),
reported, “Every extra 100 g of fats and sweets eaten de-
creased diet costs by 0.05 to 0.4 Euros, whereas every
extra 100 g of fruit and vegetables eaten increased diet
costs by 0.18 to 0.29 Euros.” Indicate the parameters to
which these interpretations refer and the statistical infer-
ence that was performed to give this summary.

9.43. The headline of an article in the Gainesville Sun
newspaper stated, “Height can yield a taller paycheck.”
It described an analysis of four large studies in the United
States and Britain by a University of Florida professor on
subjects’ height and salaries. The article reported that for
each gender “an inch is worth about $789 a year in salary.
So, a person who is 6 feet tall will earn about $5,523 more
a year than a person who is 5 foot 5.”

(a) For the interpretation in quotes, identify the response
variable and explanatory variable, and state the slope
of the prediction equation, when height is measured in
inches and salary in dollars.
(b) Explain how the value $5,523 relates to the slope.

9.44. A recent survey reported that the mean total earn-
ings that a worker in Country X can expect to earn be-
tween ages 25 and 64 is $1 million for those with only a
high school education and $3 million for those with a doc-
toral degree.

(a) Assuming eight years for a doctoral degree and a
straight-line regression of y = total earnings on x = num-
ber years of education, what is the slope?
(b) If y instead measures earnings per year (rather than
for 40 years), then what is the slope?

9.45. Explain why conditional variability can be much
less than marginal variability, using the relationship be-
tween y = weight and x = age for a sample of boys of
ages 2–12, for which perhaps σy = 30 but the conditional
σ = 10.

9.46. For counties in a particular state, crime rate (num-
ber of crimes per thousand residents) in the past two years
varies around a mean = 50 with standard deviation = 20.
The crime rate last year has correlation 0.50 with the crime
rate this year. Last year, the crime rate was 100 for the

county having the highest rate. Predict the crime rate in
that county this year. Explain your reasoning.

9.47. Annual income, in dollars, is an explanatory variable
in a regression analysis. For a British version of the re-
port on the analysis, all responses are converted to British
pounds sterling (1 pound equals about 1.33 dollars, as of
2016).

(a) How, if at all, does the slope of the prediction equation
change?
(b) How, if at all, does the correlation change?

9.48. A magazine article9 reported results of a study sug-
gesting that “each extra year of schooling makes someone
10% less likely to describe himself as religious.” Explain
how the 10% could be a slope estimate from a regression
analysis, but the prediction equation obtained would ap-
ply over a restricted range of education levels.

9.49. State the assumptions in fitting and making infer-
ences with the model E(y) = α + βx. Which assumptions
are most critical? In view of these assumptions, indicate
why the model might not be adequate for

(a) x = income, y = charitable contributions within the
previous year. (Hint: Would poor people show as much
variation as wealthy people?)
(b) x = age, y = annual medical expenses.

9.50. For a total of 100 salesmen in a firm, the 10 who per-
form poorest in the first quarter are enrolled in a special
training program. The overall sales mean is 70 in both the
first and the last quarter, but the mean for the specially
trained employees increases from 50 to 60. Use the con-
cept of regression toward the mean to explain why this is
not sufficient evidence to imply that the training program
was successful.

9.51. A study by the Readership Institute10 at Northwest-
ern University used survey data to analyze how reader
behavior was influenced by the Iraq war. The response
variable was a Reader Behavior Score (RBS), a com-
bined measure summarizing newspaper use frequency,
time spent with the newspaper, and how much was read.
Comparing RBS scores before the war and during the war,
the study noted that there was a significant increase in
reading by light readers (mean RBS changing from 2.05
to 2.32, P < 0.001) but a significant decrease in reading
by heavy readers (mean RBS changing from 5.87 to 5.66,
P < 0.001). Would you conclude that the Iraq war caused
a change in reader behavior, or could there be some other
explanation?

9.52. Refer to Exercise 9.39. For these counties, the cor-
relation between high school education rate and median
income equals 0.79. Suppose we also have data at the

8 E. Frazao and E. Golan, Evidence-Based Healthcare and Public Health, vol. 9 (2005), pp. 104–107.
9 The Economist, October 11, 2014.

10 www.readership.org/consumers/data/FINAL war study.pdf.

http://www.readership.org/consumers/data/FINAL
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individual level as well as aggregated for a county. Sketch
a scatterplot to show that at the individual level, the cor-
relation could be much weaker. (Hint: Show that lots of
variability could exist for individuals, yet the summary val-
ues for counties could fall close to a straight line. Thus, it
is misleading to extend results from the aggregate level to
individuals. Making predictions about individuals based
on the behavior of aggregate groups is known as the eco-
logical fallacy.)

9.53. For which student body do you think the correla-
tion between high school GPA and college GPA would be
higher: Yale University or the University of Bridgeport,
Connecticut? Explain why.

9.54. Explain why the correlation between x = number
of years of education and y = annual income is likely to
be smaller if we use a random sample of adults who have
a college degree than if we use a random sample of all
adults.

9.55. Explain carefully the interpretations of the standard
deviations (a) sy, (b) sx, (c) s = square root of residual MS,
(d) se for b.

9.56. Estimating a single mean μ corresponds to estimat-
ing the parameter in the simple model, E(y) = μ. Use this
fact to explain why the estimate sy of the standard devia-
tion of the marginal distribution has df = n − 1.

9.57. The statistician George Box, who had an illustrious
academic career at the University of Wisconsin, is often
quoted as saying, “All models are wrong, but some mod-
els are useful.” Why do you think that, in practice, (a) all
models are wrong, (b) some models are not useful?

9.58. The variables y = annual income (thousands of
dollars), x1 = number of years of education, and x2 =
number of years of experience in job are measured for
all the employees having city-funded jobs, in Knoxville,
Tennessee. The following prediction equations and corre-
lations apply:

i. ŷ = 10 + 1.0x1, r = 0.30.

ii. ŷ = 14 + 0.4x2, r = 0.60.

The correlation is −0.40 between x1 and x2. Which of the
following statements are true?
(a) The strongest sample association is between y and x2.
(b) The weakest sample association is between x1 and x2.
(c) The prediction equation using x2 to predict x1 has
negative slope.
(d) A standard deviation increase in education corre-
sponds to a predicted increase of 0.3 standard deviations
in income.
(e) There is a 30% reduction in error in using education,
instead of ȳ, to predict income.
(f) Each additional year on the job corresponds to a $400
increase in predicted income.
(g) When x1 is the predictor of y, the sum of squared resid-
uals (SSE) is larger than when x2 is the predictor of y.

(h) The predicted mean income for employees having 20
years of experience is $4000 higher than the predicted
mean income for employees having 10 years of experi-
ence.
(i) If s = 8 for the model using x1 to predict y, then it is not
unusual to observe an income of $70,000 for an employee
who has 10 years of education.
(j) It is possible that sy = 12.0 and sx1 = 3.6.
(k) It is possible that ȳ = 20 and x̄1 = 13.

Select the best response(s) in Exercises 9.59—9.61. (More
than one response may be correct.)

9.59. One can interpret r = 0.60 as follows:
(a) A 60% reduction in error occurs in using x to predict y.
(b) A 9% reduction in error occurs in using x to predict y
compared to using ȳ to predict y.
(c) 9% of the time ŷ = y.
(d) y changes 0.60 units for every one-unit increase in x.
(e) When x predicts y, the average residual is 0.6.
(f) x changes exactly 0.60 standard deviations when y
changes one standard deviation.

9.60. The correlation is inappropriate as a measure of
association between two quantitative variables
(a) When different people measure the variables using
different units.
(b) When the relationship is highly nonlinear.
(c) When the data points fall exactly on a straight line.
(d) When the slope of the prediction equation is 0 using
nearly all the data, but a couple of outliers are extremely
high on y at the high end of the x scale.
(e) When y tends to decrease as x increases.
(f) When we have data for the entire population rather
than a sample.
(g) When the sample has a much narrower range of
x-values than does the population.

9.61. The slope of the least squares prediction equation
and the correlation are similar in the sense that
(a) They do not depend on the units of measurement.
(b) They both must fall between −1 and +1.

(c) They both have the same sign.
(d) They both equal 1 when there is the strongest
association.
(e) Their squares both have proportional reduction in
error interpretations.
(f) They have the same t statistic value for testing H0:
independence.
(g) They both can be strongly affected by severe outliers.

9.62.* A study by the National Highway Traffic Safety
Administration estimated that 73% of people wear seat
belts, that failure to wear seat belts led to 9200 deaths in



298 Chapter 9 Linear Regression and Correlation

the previous year, and that that value would decrease by
270 for every 1 percentage point gain in seat belt usage.
Let ŷ = predicted number of deaths in a year and x = per-
centage of people who wear seat belts. Find the prediction
equation that yields these results.

9.63.* Observations on both x and y are standardized,
having estimated means of 0 and standard deviations of
1 (see Section 4.3). Show that the prediction equation
has the form ŷ = rx, where r is the sample correlation
between x and y. That is, for the standardized variables,
the y-intercept equals 0 and the slope is the same as the
correlation.

9.64.* A confidence interval for a population correlation
ρ requires a transformation of r, T = (1/2) loge[(1 +
r)/(1 − r)], for which the sampling distribution is approx-
imately normal, with standard error 1/

√
n − 3. Once we

get the endpoints of the interval for the population value
of T , we substitute each endpoint in the inverse transfor-
mation ρ = (e2T −1)/(e2T +1) to get the endpoints of the
confidence interval for ρ. For r = 0.8338 for the data on
house selling price and size of house (Table 9.5), show that
T = 1.20 with standard error 0.1015, a 95% confidence in-
terval for population T is (1.00, 1.40), and the correspond-
ing confidence interval for ρ is (0.76, 0.89). (Unless r = 0,

the confidence interval for ρ is not symmetric about r,
because of the nonsymmetry of its sampling distribution.)

9.65.* Refer to the previous exercise. Let ρ1 and ρ2 denote
the population correlation values between two variables
for two separate populations. Let r1 and r2 denote sample
values for independent random samples from the popula-
tions. To test H0: ρ1 = ρ2, the test statistic is

z = T2 − T1

sT2−T1

with sT2−T1 =
√

1
n1 − 3

+ 1
n2 − 3

,

where T1 and T2 are the transformed values of r1 and r2. If
H0 is true, this test statistic has approximately the standard
normal distribution. In Table 9.5, the correlation between
housing price and size of home is r1 = 0.96 for the 11
new homes and r2 = 0.76 for the 89 older homes. Find
the P-value for testing H0: ρ1 = ρ2 against Ha: ρ1 �= ρ2.

Interpret.

9.66.* Refer to the formula a = ȳ−bx̄ for the y-intercept.
(a) Show that substituting x = x̄ into the prediction equa-
tion ŷ = a + bx yields the predicted y-value of ŷ = ȳ.
Show that this means that the least squares prediction
equation passes through the point with coordinates (x̄, ȳ),
the center of gravity of the data.
(b) Show that an alternative way of expressing the regres-
sion model is as (ŷ − ȳ) = b(x − x̄).
(c) Let y = final exam score and x = midterm exam
score. Suppose the correlation is 0.70 and the standard
deviation is the same for each set of scores. Show that

(ŷ − ȳ) = 0.70(x − x̄); that is, the predicted difference
between your final exam grade and the class mean is 70%
of the difference between your midterm exam score and
the class mean, so your score is predicted to regress to-
ward the mean.

9.67.* The formula for the correlation can be expressed as

r =
∑

(x − x̄)(y − ȳ)√[∑
(x − x̄)2

] [∑
(y − ȳ)2

] = 1
n − 1

∑ ⎛
⎝ x − x̄

sx

⎞
⎠

⎛
⎝ y − ȳ

sy

⎞
⎠.

(a) Using the first formula, explain why the correlation
has the same value when x predicts y as when y predicts x.
(b) By the second formula, the correlation is approxi-
mately the average product of the z-score for x times the
z-score for y. Use this to explain why the correlation does
not depend on the units of measurement. (Note: For the
population, page 92 showed an analogous formula.)

9.68.* From the formulas for b (page 264) and r (page 272),
show that r = bsx/sy.

9.69.* Suppose that the linear regression model E(y) =
α + βx with normality and constant standard deviation
σ is truly appropriate. Then, the interval of numbers

ŷ ± t.025s

√
1 + 1

n
+ (x − x̄)2∑

(x − x̄)2

predicts where a new observation on y will fall at that
value of x. This interval, which for large n is roughly
ŷ ± 2s, is a 95% prediction interval for y. To make an
inference about the mean of y (rather than a single value
of y) at that value of x, we use the confidence interval

ŷ ± t.025s

√
1
n

+ (x − x̄)2∑
(x − x̄)2

.

For large n, near x̄ this is roughly ŷ ± 2s/
√

n. The t-value
in these intervals is based on df = n − 2. Most software
has options for calculating these formulas. Refer to the
Houses data file at the text website.

(a) Using software, find a 95% prediction interval for
selling price at house size x = 2000.
(b) Using software, find a 95% confidence interval for the
mean selling price at house size x = 2000.
(c) Explain intuitively why a prediction interval for a sin-
gle observation is much wider than a confidence interval
for the mean.
(d) Explain how prediction intervals would likely be in
error if, in fact, (i) the variability in housing prices tends
to increase as house size increases, (ii) the response vari-
able is highly discrete, such as y = number of children in
Exercise 9.30.
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10.5 Chapter Summary

C hapters 7–9 introduced methods for analyzing the association between two variables. In most
social science research, these analyses are but the first step. Subsequent steps use multivariate

methods to include other variables in the analysis that might influence that association.
For instance, Examples 8.1 and 8.3 showed that political party identification in the United

States is associated with gender, with men somewhat more likely than women to be Republicans.
To analyze why this is so, we could analyze whether differences between men and women in
political ideology (measured on a conservative–liberal scale) could explain the association. For
example, perhaps men tend to be more conservative than women, and being conservative tends
to be associated with being Republican. If we compare men to women just for those classified as
liberal in political ideology, and then again just for those classified as conservative, is it still true
that men are more likely than women to be Republicans? Or, could the difference between men
and women on political party ID be explained by some other factor, such as income or religion?

Several types of research questions require adding variables to the analysis. These questions
often involve notions of causal connections among the variables. This chapter discusses causation
and outlines methods for testing causal hypotheses. We present the notion of statistical control,
a fundamental tool for studying how an association changes or possibly even disappears after we
remove the influence of other variables. We also show the types of multivariate relationships that
statistical control can reveal.

10.1 Association and Causality
Causality is central to the scientific endeavor. Most people are familiar with this con-
cept, at least in an informal sense. We know, for instance, that being exposed to a virus
can cause the flu and that smoking can cause lung cancer. But how can we judge
whether there is a causal relationship between two social science variables? For in-
stance, what causes juvenile delinquency? Being poor? Coming from a single-parent
home? A lack of moral and religious training? Genetic factors? A combination of
these and other factors? We now look at some guidelines that help us assess a hy-
pothesis of the form “x causes y.”

Causal relationships usually have an asymmetry, with one variable having an
influence on the other, but not vice versa. An arrow drawn between two variables
x and y, pointing to the response variable, denotes a causal association between the
variables. Thus,

x → y

specifies that x is an explanatory variable having a causal influence on y. For exam-
ple, suppose we suspect that being a Boy Scout has a causal effect on being a juve-
nile delinquent, scouts being less likely to be delinquents. We are hypothesizing that
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S → D, where S (for Scouting) and D (for Delinquency) denote the binary variables
“whether a Boy Scout (yes, no)” and “whether a juvenile delinquent (yes, no).”

If we suspect that one variable is causally explained by another, how do we ana-
lyze whether it actually is? A relationship must satisfy three criteria to be considered
a causal one. These criteria, which we’ll discuss below, are

• association between the variables,

• an appropriate time order, and

• the elimination of alternative explanations.

If all three are met, then the evidence supports the hypothesized causal relation-
ship. If one or more criteria are not met, then we conclude that there is not a causal
relationship.

ASSOCIATION IS REQUIRED, BUT NOT SUFFICIENT, FOR CAUSALITY

The first criterion for causality is association. We must show that x and y are associ-
ated. If x → y, then as x changes, the distribution of y should change in some way.
If scouting causes lower delinquency rates, for example, then the population propor-
tion of delinquents should be higher for nonscouts than for scouts. For sample data,
a statistical test, such as chi-squared for categorical data or a t test for the regres-
sion slope or for a comparison of means for quantitative data, analyzes whether this
criterion is satisfied.

Association by itself cannot establish causality.

Association does not imply causation.

The remainder of this section explains why.

CAUSALITY REQUIRES APPROPRIATE TIME ORDER

The second criterion for causality is that the two variables have the appropriate time
order, with the cause preceding the effect. Sometimes this is just a matter of logic.
For instance, race, age, and gender exist prior to current attitudes or achievements,
so any causal association must treat them as causes rather than effects.

In other cases, the causal direction is not as obvious. Consider scouting and delin-
quency. It is logically possible that scouting reduces delinquency tendencies. On the
other hand, it is also possible that delinquent boys avoid scouting but nondelinquent
boys do not. Thus, the time order is not clear, and both possibilities, S → D and
D → S, are plausible. Just showing that an association exists does not solve this
dilemma, because a lower proportion of delinquents among scout members is con-
sistent with both explanations.

It is difficult to study cause and effect when two variables do not have a time
order but are measured together over time. The variables may be associated merely
because they both have a time trend. For example, for recent annual data there is a
correlation of 0.993 between y = divorce rate in Maine and x = per capita consump-
tion of margarine.1 They both have a decreasing trend over time, so they have a strong
positive correlation, with higher divorce rates occurring in years that have higher
consumption of margarine. Each variable would be strongly negatively correlated
with all variables that have a positive time trend, such as percentage of people who

1 See www.tylervigen.com/spurious-correlations.

http://www.tylervigen.com/spurious-correlations
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use smart phones, percentage of people who belong to an Internet social network
such as Facebook, and annual average worldwide temperature.

ALTERNATIVE EXPLANATION MAY INVALIDATE CAUSAL RELATION

When two variables are associated and have the proper time order to satisfy a
casual relation, this is still insufficient to imply causality. The association may have
an alternative explanation.

For example, airline pilots turn on the “fasten seat belt” sign just before their
planes encounter turbulence. We observe an association, greater turbulence occur-
ring when the sign is on than when it is off. There is usually also the appropriate time
order, the sign coming on, followed by turbulence shortly afterward. But this does
not imply that turning on the sign causes turbulence.

An alternative explanation for an association is responsible for rejecting many
hypotheses of causal relationships. Many alternative explanations involve an addi-
tional variable z or a set of variables. For example, there may be a variable z that
causes both x and y.

With observational data, it is easy to find associations, but those associations
are often explained by other variables that may not have been measured in a study.
For example, some medical studies have found associations between coffee drinking
and various responses, such as the likelihood of a heart attack. But after taking into
account other variables associated with the extent of coffee drinking, such as country
of residence, occupation, and levels of stress, such associations have disappeared or
weakened considerably.

This criterion for causality of eliminating an alternative explanation is the most
difficult to achieve. We may think we’ve found a causal relationship, but we may
merely have not thought of a particular reason that can explain the association. Be-
cause of this, with observational studies we can never prove that one variable is a cause
of another. We can disprove causal hypotheses, however, by showing that empirical
evidence contradicts at least one of these three criteria.

ASSOCIATION, CAUSALITY, AND ANECDOTAL EVIDENCE

The association between smoking and lung cancer is regarded as having a causal link.
The association is moderately strong, there is the proper time order (lung cancer
following a period of smoking), and no alternative explanation has been found to
explain the relationship. In addition, the causal link has been bolstered by biological
theories that explain how smoking could cause lung cancer.

Sometimes you hear people give anecdotal evidence to attempt to disprove
causal relationships. “My Uncle John is 85 years old, he still smokes a pack of
cigarettes a day, and he’s as healthy as a horse.” An association does not need to
be perfect, however, to be causal. Not all people who smoke two packs of cigarettes
a day will get lung cancer, but a much higher percentage of them will do so than peo-
ple who are nonsmokers. Perhaps Uncle John is still in fine health, but that should
not encourage us to tempt the fates by smoking a pack each day. Anecdotal evidence
is not enough to disprove causality unless it can deflate one of the three criteria for
causality.

ESTABLISHING CAUSALITY WITH RANDOMIZED EXPERIMENTS

As mentioned in Section 2.2 (page 26), a randomized experiment is the ideal way
to compare two groups. This approach, by which we randomly select the subjects
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for each group and then observe the response, provides the gold standard for
establishing causality. For instance, does a new drug have a beneficial effect in treat-
ing a disease? We could randomly assign subjects suffering from the disease to
receive either the drug or a placebo. Then, to analyze whether the drug assignment
may have a causal influence on the response outcome, we would observe whether
the proportion successfully treated was significantly higher for the drug group.

In a randomized experiment, suppose that we observe an association between
the group variable and the response variable, such as a statistically significant differ-
ence between two proportions for a categorical response or between two means for a
quantitative response. With such an experiment, we do not expect another variable to
provide an alternative explanation for the association. With randomized assignment
to groups, the two groups should have about the same distributions for variables not
observed but which may be associated with the response variable. So, the associa-
tion is not because of an association between the group variable and an alternative
variable. In addition, when a research study is experimental, the time order is fixed.
The outcome for a subject is observed after the group is assigned, so the time order
is certain. Because of these factors, it is easier to assess causality with randomized
experiments than with observational studies.

In most social research, unfortunately, randomized experiments are not possi-
ble. If we want to investigate the effect of level of education on political ideology, we
cannot randomly assign children to different levels of attained education and then
later ask them about their ideology. For each person sampled, we can merely observe
their actual attained education and political ideology, and data are missing for that
subject about what the political ideology would have been had they attained a dif-
ferent level of education. In the next section, we present a way that we can attempt
to adjust for different groups differing in their distributions of other variables that
could be associated with the response variable.

10.2 Controlling for Other Variables
A fundamental component to evaluating whether x could cause y is searching for an
alternative explanation. We do this by studying whether the association between x
and y remains when we remove the effects of other variables on this association. In a
multivariate analysis, a variable is said to be controlled when its influence is removed.

A laboratory experiment controls variables that could affect the results by hold-
ing their values constant. For instance, an experiment in chemistry or physics might
control temperature and atmospheric pressure by holding them constant in a labo-
ratory environment during the course of the experiment. A lab experiment investi-
gating the effect of different doses of a carcinogen on mice might control the age and
diet of the mice.

Randomized experiments cannot strictly control other variables. But in their
randomization, we expect groups on which we perform randomization to have simi-
lar distributions on the other variables. So, randomized experiments inherently con-
trol other variables in a probabilistic sense.

STATISTICAL CONTROL IN SOCIAL RESEARCH

Unlike laboratory sciences, social research is usually observational rather than
experimental. We cannot fix values of variables we might like to control, such as
intelligence or education, before obtaining data on the variables of interest. But we
can approximate an experimental type of control by grouping together observations
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with equal, or similar, values on the control variables. Socioeconomic status or a
related variable such as education or income is often a prime candidate for control in
social research. To control education, for instance, we could group the sample results
into those subjects with less than a high school education, those with a high school
education but no college education, those with some college education, and those
with at least one college degree. This is statistical control, rather than experimental
control.

The following example, although artificial, illustrates statistical control in a social
science setting, by holding a key variable constant.

Example
10.1

Causal Effect of Height on Math Achievement? Do tall students tend to be better
than short students in learning math skills? We might think so looking at a random
sample of students from Lake Wobegon school district who take a math achievement
test. The correlation is 0.81 between height and math test score. Taller students tend
to have higher scores.

Is being tall a causal influence on math achievement? Perhaps an alternative
explanation for this association is that the sample has students of various ages. As
age increases, both height and math test score would tend to increase. Older students
tend to be taller, and older students tend to have stronger math knowledge.

We can remove the effects of age from the association by statistical control, study-
ing the association between height and math test score for students of the same age.
That is, we control for age by analyzing the association separately at each age level.
Then, variation in age cannot jointly cause variation in both height and test score.

In fact, the achievement test was administered to students from grades 2, 5, and
8 at Lake Wobegon, so the sample contained considerable variability in the students’
ages. Figure 10.1 shows a scatterplot of the observations, with labels indicating the
grade for each student. The overall pattern of points shows a strong positive correla-
tion, with higher math scores at higher heights. View the points within a fixed grade
level (for which age is approximately constant), however, and you see random vari-
ation, with no particular pattern of increase or decrease. The correlation between
height and math test score is close to zero for students of about the same age. Height
does not have a causal effect on math test score, because the association disappears
when age is held constant.
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In summary, we control a variable by holding its value constant, or nearly so. We
can then study the relationship between x and y for cases with equal, or similar, values
of that variable. The variable controlled is called a control variable. In holding the
control variable constant, we remove the influence of that variable on the association
between x and y.

STATISTICAL CONTROL FOR VARIABLE TYPES IN AN ASSOCIATION

The scatterplot in Figure 10.1 describes the association between two quantitative
variables, controlling for a third variable. We can describe association between a
quantitative variable and a categorical variable by comparing means. For example, at
your school suppose the mean salary for male faculty is higher than the mean salary
for female faculty. Suppose that the percentage of professors who are female is lowest
for full professors and is considerably higher for instructors and assistant professors,
perhaps because relatively few female faculty were hired until recent years. Then,
this difference in mean salaries would diminish and could even disappear if we con-
trol for academic rank.

To study the association between two categorical variables, while controlling for
a third variable, we form contingency tables relating those variables separately for
subjects at each level of that control variable. The separate tables that display the
relationships within the fixed levels of the control variable are called partial tables.

Example
10.2

Partial Tables for Control with Categorical Variables Table 10.1 is a hypothetical
table relating scouting to delinquency. The percentage of delinquents among scout
members is lower than among nonscouts. This table is bivariate, meaning that it con-
tains data only on two variables. All other variables are ignored. None is controlled.

TABLE 10.1: Contingency Table Relating Scouting
and Delinquency. Percentages refer to
conditional distribution of delinquency,
given whether a boy scout.

Delinquency

Yes No Total

Boy Scout Yes 36 (9%) 364 (91%) 400
No 60 (15%) 340 (85%) 400

In seeking a possible explanation for the association, we could control for church
attendance. Perhaps boys who attend church are more likely than nonattenders to be
scouts, and perhaps boys who attend church are less likely to be delinquent. Then,
the difference in delinquency rates between scouts and nonscouts might be due to
variation in church attendance.

To control for church attendance, we examine the association between scouting
and delinquency within partial tables formed by various levels of church attendance.
Table 10.2 shows partial tables for three levels: Low = no more than once a year,
Medium = more than once a year but less than once a week, and High = at least
once a week. Adding these three partial tables together produces the bivariate table
(Table 10.1), which ignores church attendance. For instance, the number of Boy
Scouts who are delinquents is 36 = 10 + 18 + 8.
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TABLE 10.2: Contingency Table Relating Scouting and Delinquency, Controlling for
Church Attendance

Church Attendance

Low Medium High

Delinquency Yes No Yes No Yes No

Scout 10 (20%) 40 (80%) 18 (12%) 132 (88%) 8 (4%) 192 (96%)
Not scout 40 (20%) 160 (80%) 18 (12%) 132 (88%) 2 (4%) 48 (96%)

In each partial table, the percentage of delinquents is the same for scouts as
for nonscouts. Controlling for church attendance, no association appears between
scouting and delinquency. These data provide an alternative explanation for the
association between scouting and delinquency, making us skeptical of any causal
links. The alternative explanation is that both these variables are associated with
church attendance. Youngsters who attend church are less likely to be delinquents
and more likely to be scouts. For a fixed level of church attendance, scouting has
no association with delinquency. Since the association can be explained by church
attendance, no causal link exists between scouting and delinquency.

Some examples in this chapter, like this one, use artificial data in order to make
it simpler to explain the concepts. In practice, some distortion occurs because of sam-
pling variation. Even if an association between two variables truly disappears under a
control, sample partial tables would not look exactly like those in Table 10.2. Because
of sampling variation, they would not show a complete lack of association. Moreover,
few associations disappear completely under a control. There may be some causal
connection between two variables, but not as strong as the bivariate table suggests.
Moreover, in practice we need to control for several variables, and we’ll see in the
next chapter that statistical control then involves further assumptions.

BE WARY OF LURKING VARIABLES

It is not always obvious which variables require control in a study. Knowing about
the theory and previous research in a field of study helps a researcher to know which
variables to control. A potential pitfall of almost all social science research is the pos-
sibility that the study did not include an important variable. If you fail to control for
a variable that strongly influences the association between the variables of primary
interest, you will obtain misleading results.

A variable that is not measured in a study (or perhaps even known about to
the researchers) but that influences the association under study is called a lurking
variable. In analyzing the positive correlation between height and math achieve-
ment in Example 10.1 (page 303), we observed that the correlation could be due to
a lurking variable, the age of the student.

When you read about a study that reports an association, try to think of a lurking
variable that could be responsible. For example, suppose a study reports a positive
correlation between individuals’ college GPA and their income later in life. Is doing
well in school responsible for the higher income? An alternative explanation is that
both high GPA and high income could be caused by a lurking variable such as IQ or
an individual’s tendency to work hard.



306 Chapter 10 Multivariate Relationships

10.3 Types of Multivariate Relationships
Section 10.2 showed that an association may change dramatically when we control
for another variable. This section describes types of multivariate relationships that
often occur in social science research. For a response variable y, there may be several
explanatory variables and control variables, and we denote them by x1, x2, . . . .

SPURIOUS ASSOCIATIONS

An association between y and x1 is said to be spurious if both variables are dependent
on a third variable x2, and their association disappears when x2 is controlled. Such
an association results from the relationship of y and x1 with the control variable x2,
rather than indicating a causal connection. Showing that the association between two
variables may be spurious provides an alternative explanation to a causal connection
between them.

Example
10.3

Examples of Spurious Associations Table 10.1 (page 304) displayed an association
between scouting and delinquency. Controlling for church attendance, the partial
tables in Table 10.2 (page 305) showed no association. This is consistent with spu-
riousness. Table 10.2 shows that as church attendance increases, the percentage of
delinquents decreases (compare percentages across the partial tables) and the per-
centage of scout members increases. By the nature of these two associations, it is not
surprising that Table 10.1 exhibits lower overall delinquency rates for scouts than
nonscouts.

The association between height and mathematics achievement test score in
Example 10.1 disappears at fixed levels of age. That association is spurious, with age
being a common cause of both height and math achievement. Figure 10.2 graphi-
cally depicts this spurious association, using x1 = height and y = math test score.
They are associated only because they both depend on a common cause, x2 = age.
As x2 changes, it produces changes simultaneously in x1 and y, so that x1 and y are
associated. In fact, they are associated only because of their common dependence
on the third variable (age).

x2 Age

x1

y

Height

Math score

FIGURE 10.2: Graphical
Depiction of a Spurious
Association between y and
x1. The association
disappears when we control
for x2, which causally
affects both x1 and y.

Example
10.4

Do Fewer Vacations Cause Increased Risk of Death? When an association is
observed between two variables, later studies often attempt to determine whether
that association might be spurious, by controlling for variables that could be a
common cause. For example, some studies have observed an association between
frequency of vacationing and quality of health. In particular, a study using a 20-year
follow-up of women participants in the Framingham Heart Study found2 that less
frequent vacationing was associated with greater frequency of deaths from heart
attacks.

2 E. D. Eaker et al., American Journal of Epidemiology, vol. 135 (1992), pp. 835–864.
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A later study3 questioned whether this could be a spurious association, explained
by the effects of socioeconomic status (SES). For example, perhaps higher SES is
responsible both for lower mortality and for more frequent vacations. But after con-
trolling for education, family income, and other potentially important variables with
a much larger data set, this study also observed higher risk of heart disease and re-
lated death for those who took less vacation time. Perhaps the association is not spu-
rious, unless researchers find another variable to control such that the association
disappears.

CHAIN RELATIONSHIPS AND INTERVENING (MEDIATOR) VARIABLES

Another way that an association can disappear when we control for a third variable
is with a chain of causation, in which x1 affects x2, which in turn affects y. Figure 10.3
depicts the chain. Here, x1 is an indirect, rather than direct, cause of y. Variable x2 is
called an intervening variable or a mediator variable.

x1 x2 y 

FIGURE 10.3: A Chain
Relationship, in Which x1
Indirectly Affects y
through an Intervening
Variable x2, Which Has a
Mediating Effect

Example
10.5

Is Education Responsible for a Long Life? A New York Times article4 summarized
research studies dealing with human longevity. It noted that consistently across stud-
ies in many nations, life span was positively associated with educational attainment.
Many researchers believe education is the most important variable in explaining how
long a person lives. Is having more education responsible for having a longer life?

Establishing causal connections is difficult. In some societies, perhaps the causa-
tion could go in the other direction, with sick children not going to school or drop-
ping out early because they were ill. Many researchers believe there could be a chain
of causation, perhaps with income as an intervening variable. For example, perhaps
having more education leads to greater wealth, which then (possibly for a variety
of reasons, such as access to better health care) leads to living longer. Figure 10.4
depicts this causal chain model.

Education Income Life span

FIGURE 10.4: Example of
a Chain Relationship.
Income is an intervening
variable (also called a
mediator variable), and the
association between
education and life span
disappears when it is
controlled.

This model is supported if the association between education and life span
disappears after controlling for income; that is, if within fixed levels of income
(the intervening variable), no significant association occurs. If this happens, educa-
tion does not directly affect life span, but it is an indirect cause through income.

For both spurious relationships and chain relationships, an association between
y and x1 disappears when we control for a third variable, x2. The difference between

3 B. B. Gump and K. A. Matthews, Psychosomatic Medicine, vol. 62 (2000), pp. 608–612.
4 Written by G. Kolata, January 3, 2007.
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the two is in the causal order among the variables. For a spurious association, x2 is
causally prior to both x1 and y, as in Figure 10.2. In a chain association, x2 intervenes
between the two, as in Figures 10.3 and 10.4.

To illustrate, a study5 of mortality rates in the United States found that states
that had more income inequality tended to have higher age-adjusted mortality rates.
However, this association disappeared after controlling for the percentage of a state’s
residents who had at least a high school education. Might this reflect a chain relation-
ship, or a spurious relationship? Greater education could tend to result in less income
inequality, which could in turn tend to result in lower mortality rates. Thus, the chain
relationship

Education −→ Income inequality −→ Mortality rate

is plausible. For the relationship to be spurious, education would need to have a
causal effect on both income inequality and mortality. This is also plausible. Just
from viewing the association patterns, we do not know which provides a better
explanation.

MULTIPLE CAUSES

Response variables in social science research almost always have more than one
cause. For instance, a variety of factors likely have causal influences on responses
such as y = juvenile delinquency or y = length of life. Figure 10.5 depicts x1 and x2

as separate causes of y. We say that y has multiple causes.

x1

y

x2

FIGURE 10.5: Graphical
Depiction of Multiple
Causes of y

Sometimes variables that are separate causes of y are themselves statistically
independent. That is, they are independent causes. For instance, x1 = gender and x2 =
race are essentially statistically independent. If they both have effects on juvenile
delinquency, with delinquency rates varying both according to gender and race, they
are likely to be independent causes.

In the social sciences, most explanatory variables are associated. Both being poor
and being from a single-parent family may cause delinquency, but those factors are
themselves probably associated. Because of complex association linkages, when we
control for a variable x2 or a set of variables x2, x3, . . . , the x1y association usually
changes somewhat. Often the association decreases somewhat, although usually it
does not completely disappear as in a spurious or chain relationship. Sometimes this
is because x1 has direct effects on y and also indirect effects through other variables.
Figure 10.6 illustrates this. For instance, perhaps being from a single-parent family
has direct effects on delinquency but also indirect effects through being more likely
to be poor. Most response variables have many causes, both direct and indirect.

x1 y 

x2

FIGURE 10.6: Graphical
Depiction of Direct and
Indirect Effects of x1 on y

5 A. Muller, BMJ, vol. 324 (2002), pp. 23–25.
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SUPPRESSOR VARIABLES

In examples so far, an association disappears or weakens when we control for another
variable. By contrast, occasionally two variables show no association until a third
variable is controlled. That control variable is called a suppressor variable.

Example
10.6

Age Suppresses the Association between Education and Income Is educational level
positively related with income? Table 10.3 shows such a relationship, measured as
binary variables, controlling for age. In each partial table, the percentage of subjects
at the high level of income is greater when education is high than when education is
low.

TABLE 10.3: Partial Tables Relating Education and Income, Controlling
for Age

Age = Low Age = High

Income: High Low % High High Low % High

Education High 125 225 35.7 125 25 83.3
Low 25 125 16.7 225 125 64.3

Suppose now that we ignore age, adding these two partial tables together. The
bivariate table for education and income is the first panel of Table 10.4. Every count
equals 250. Both when education is high and when education is low, the percentage
having a high income is 50%. For the bivariate table, no association exists between
education and income.

TABLE 10.4: Bivariate Tables Relating Education, Income, and Age

Income Income Education

Education High Low Age High Low Age High Low

High 250 250 High 350 150 High 150 350
Low 250 250 Low 150 350 Low 350 150

A look at the other two bivariate tables in Table 10.4 reveals how this could
happen. Age is positively associated with income but negatively associated with
education. Older subjects tend to have higher income, but they tend to have lower
education. Thus, when we ignore rather than control age, we give an inadvertent
boost to the relative numbers of people at high incomes with low educational levels
and at low incomes with high educational levels. Because of the potential for a sup-
pressor effect, it can be informative to control for a variable even when the bivariate
analysis does not show an association with y. This is especially true when there is a
theoretical reason for a potential suppression effect.

STATISTICAL INTERACTION

Often the effect of an explanatory variable on a response variable changes according
to the level of another explanatory variable or control variable. When the true effect
of x1 on y changes at different levels of x2, the relationship is said to exhibit statistical
interaction.
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Statistical Interaction
Statistical interaction exists between x1 and x2 in their effects on y when
the true effect of one predictor on y changes as the value of the other
predictor changes.

Example
10.7

Interaction between Education and Gender in Predicting Income Consider the rela-
tionship between y = annual income (in thousands of dollars) and x1 = number of
years of education, by x2 = gender. Many studies in the United States have found that
the slope for a regression equation relating y to x1 is larger for men than for women.
Suppose that in the population, the regression equations are E(y) = −10 + 5x1 for
men and E(y) = −5 + 3x1 for women. On the average, income for men increases
by $5000 for every year of education, whereas for women it increases by $3000 for
every year of education. That is, the effect of education on income varies according to
gender, with the effect being greater for men than for women. So, there is interaction
between education and gender in their effects on income.

Example
10.8

Interaction between SES and Age in Predicting Health Some studies6 have noted
that quality of health (measured by self-rated and health indexes) tends to be pos-
itively associated with SES (measured by years of education and annual household
income), and that the association strengthens with age. For example, the gap in health
between low SES and high SES levels tends to be larger at older ages. Thus, there is
interaction between SES and age in their effects on health.

ANALYZING AND DEPICTING INTERACTION

To assess whether a sample shows evidence of interaction, we can compare the effect
of x1 on y at different levels of x2. When the sample effect is similar at each level
of x2, it’s simpler to use statistical analyses that assume an absence of interaction.
The interaction is worth noting when the variability in effects is large. For instance,
perhaps the association is positive at one level of x2 and negative at another, or strong
at one level and weak or nonexistent at another.

Figure 10.7 depicts a three-variable relationship having statistical interaction.
Here, x2 affects the relationship between x1 and y. When this happens, then likewise
x1 affects the relationship between x2 and y.

x1

x2

y

FIGURE 10.7: Graphical
Depiction of Statistical
Interaction. The effect of
one explanatory variable
on y depends on the level
of the other explanatory
variable.

Suppose no interaction occurs between x1 and x2 in their effects on y. This
does not mean that x1 and x2 have no association. There can be a lack of statistical
interaction even when all the variables are associated. For instance, Tables 10.2
(page 305) and 10.3 (page 309) showed no interaction—in each case the association
was similar in each partial table. However, in each case the explanatory variables

6 For example, see S. G. Prus, Canadian Journal on Aging, vol. 23 (2004), Supplement, pp. S145–S153.
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were associated, with each other and with the response. In Table 10.3, for instance,
age was negatively associated with education and positively associated with income.

SUMMARY OF MULTIVARIATE RELATIONSHIPS

In summary,

• For spurious relationships (i.e., x2 affects both x1 and y) and chain relationships
(i.e., x2 intervenes between x1 and y), the x1y association disappears when we
control for x2.

• For multiple causes, an association may change under a control but does not
disappear.

• When there is a suppressor variable, an association appears only under the
control.

• When there is statistical interaction, an association has different strengths
and/or directions at different values of a control variable.

This does not exhaust the possible association structures. It is even possible that,
after controlling for a variable, each association in a partial table has the opposite
direction as the bivariate association. This is called Simpson’s paradox and is illus-
trated in Exercises 10.14, 10.29, and 10.30.

CONFOUNDING AND OMITTED VARIABLE BIAS

When two explanatory variables both have effects on a response variable but are also
associated with each other, there is said to be confounding. It is difficult to determine
whether either of them truly causes the response, because a variable’s effect could
be at least partly due to its association with the other variable. We usually observe a
different effect on y for a variable when we control for the other variable than when
we ignore it.

In analyzing the effect of an explanatory variable of key interest, if our study
neglects to observe a confounding variable that explains a major part of that effect,
our results and conclusions will be biased. Such bias is called omitted variable bias.

Confounding and omitted variable bias are constant worries in social science
research. They are the main reason it is difficult to study many issues of importance,
such as what causes crime or what causes the economy to improve or what causes
students to succeed in school.

10.4 Inferential Issues in Statistical Control
To conduct research well, you must select the key variables, determine which vari-
ables to control, choose an appropriate model, and analyze the data and interpret
the results properly. So far this chapter has ignored inferential matters, to avoid con-
fusing them with the new concepts presented. We now discuss some inferential issues
in studying associations while controlling other variables.

EFFECTS OF SMALLER SAMPLE SIZE IN PARTIAL ANALYSES

Suppose we control for x2 in studying the x1y association. The sample size at a fixed
level of x2 may be much smaller than in the full data set. Even if no reduction in
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association occurs relative to the full data, standard errors of parameter estimators
tend to be larger. Thus, confidence intervals for those parameters at fixed levels of
x2 tend to be wider, and test statistic values tend to be smaller.

For categorical data, for example, we could compute the Pearson X 2 statistic
within a particular partial table to test whether the variables are independent at that
level of x2. This X 2-value may be small relative to the X 2-value for the bivariate x1y
table. This could be due partly to a weaker association, but it could also reflect the
reduction in sample size. Section 8.4 showed that larger sample sizes tend to produce
larger X 2-values, for a particular degree of association.

EFFECTS OF CATEGORIZATION IN CONTROLLING A VARIABLE

Categorical control variables (e.g., gender) have the categories as the natural values
held constant in partial tables. For ordinal control variables, you should avoid overly
crude categorizations. The greater the number of control levels, the more nearly con-
stant the control variable is within each partial table. It is usually advisable to use at
least three or four partial tables.

On the other hand, it is preferable not to use more partial tables than needed,
because then each one may have a small sample size. Separate estimates may have
large standard errors, resulting in imprecise inferences within the partial tables and
comparisons of associations between tables. Fortunately, the model-building meth-
ods presented in the rest of the text allow us to attempt statistical control and assess
patterns of association and interaction without necessarily performing separate anal-
yses at the various combinations of levels of the control variables.

COMPARING AND POOLING MEASURES

It is often useful to compare parameter values describing the effect of an explana-
tory variable on a response variable at different levels of a control variable. You can
construct a confidence interval for a difference between two parameter values in the
same way as Chapter 7 showed for a difference of proportions or a difference of
means. Suppose that the two sample estimates are based on independent random
samples, with standard errors se1 and se2. Then, Section 7.1 noted that the standard
error for the difference between the estimates is

√
(se1)2 + (se2)2. For large random

samples, most estimates have approximately normal sampling distributions. Then, a
confidence interval for the difference between the parameters is

(Estimate2 − Estimate1) ± z
√

(se1)2 + (se2)2.

If the interval does not include 0, the evidence suggests that the parameter values
differ.

Example
10.9

Comparing Happiness Associations for Men and Women Is there a difference be-
tween men and women in the association between happiness and marital happiness?
For recent data from the GSS, the sample value of gamma for a 3×3 table relat-
ing these two ordinal variables is 0.674 (se = 0.0614, n = 326) for males and 0.689
(se = 0.0599, n = 350) for females.

A 95% confidence interval for the difference between the population values of
gamma is

(0.689 − 0.674) ± 1.96
√

(0.0614)2 + (0.0599)2, or 0.015 ± 0.168,

which is (−0.153, 0.183). It is plausible that the population gamma values are identi-
cal. If they are not identical, they seem not to be very different.
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When the association between two variables is similar in the partial analyses, we
can form a measure that summarizes the strength of the association, conditional on
the control variable. This is referred to as a measure of partial association. The rest
of the text shows how to do this in various contexts, using models that handle all the
variables at once.

10.5 Chapter Summary
We use a multivariate analysis to study effects of multiple explanatory variables on a
response variable. To demonstrate a causal relationship, we must show association
between variables, ensure proper time order, and eliminate alternative explanations
for the association. This is possible for randomized experiments, but eliminating
alternative explanations is a challenge for observational studies.

To consider alternative explanations in observational studies, we introduce con-
trol variables. We perform statistical control by analyzing associations while keeping
the values of control variables essentially constant. This helps us to detect

• Spuriousness, in which x2 jointly affects both y and x1.

• Chain relationships, in which x2 is an intervening variable (also called a
mediator variable), so that x1 affects y indirectly through its effects on x2.

• Suppressor variables, in which the x1 y association appears only after control-
ling for x2.

• Statistical interaction, in which the effect of x1 on y varies according to the
value of x2.

Table 10.5 summarizes some possible relationships. The remainder of this text
presents statistical methods for multivariate relationships. As you learn about these
methods, be careful not to overextend your conclusions: Realize the limitations in
making causal inferences with inferential statistical analyses, and keep in mind that
any inferences you make must usually be tentative because of assumptions that may
be violated or lurking variables that you did not include in your analyses. For further
discussion of these points in the context of regression modeling, see Berk (2004),
Freedman (2005), Morgan and Winship (2007), and Pedhazur (1997).

TABLE 10.5: Some Three-Variable Relationships

Graph Name of Relationship Controlling for x2

x2
↗
↘

x1

y
Spurious x1y association Association between x1 and y

disappears.
x1 −→ x2 −→ y Chain relationship; x2 intervenes;

x1 indirectly causes y
Association between x1 and y
disappears.

x2

↓
x1 −→ y

Interaction Association between x1 and y
varies according to level of x2.

x2

x1

↘
↗y Multiple causes Association between x1 and y does

not change.
x1 −→ y
↘

x2
↗ Both direct and indirect effects of x1

on y
Association between x1 and y
changes, but does not disappear.
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Exercises

Practicing the Basics
10.1. State the three criteria for a causal relationship. For
each, describe a relationship between two variables that
is not causal because that criterion would be violated.

10.2. A young child wonders what causes women to have
babies. For each woman who lives on her block, she ob-
serves whether her hair is gray and whether she has young
children. The four women with gray hair do not have
young children, whereas all five women not having gray
hair have young children. Noticing this association, the
child concludes that not having gray hair is what causes
women to have children.
(a) Form the contingency table displaying the data.
(b) Use this example to explain why association does not
imply causation.

10.3. For all fires in Chicago last year, data are available
on x = number of firefighters at the fire and y = cost of
damages due to the fire. The correlation is positive.
(a) Does this mean that having more firefighters at a fire
causes the damage to be worse? Explain.
(b) Identify a third variable that could be a common
cause of x and y. Construct a hypothetical scatterplot (like
Figure 10.1 on page 303), identifying points according
to their value on the third variable, to illustrate your
argument.

10.4. Cities in the United States have a positive correla-
tion between y = crime rate and x = size of police force.
Does this imply that x causes y? Explain.

10.5. An association exists between college GPA and
whether a college student has ever used marijuana.
Explain how
(a) The direction of a causal arrow might go in either
direction.
(b) A third variable might be responsible for the
association.

10.6. Explain what it means to control for a variable, using
an example to illustrate.

10.7. Explain what is meant by a spurious association,
drawing a scatter diagram to illustrate.
(a) Illustrate using x1 = shoe size, x2 = age, and y = num-
ber of books one has ever read, for children from schools
in Winnipeg, Canada.
(b) Illustrate using x1 = height, x2 = gender, and y =
annual income, for a random sample of adults. Suppose
that, overall, men tend to be taller and have higher
income, on the average, than females.

10.8. Figure 9.16 on page 286 showed a negative correla-
tion between birth rate and television ownership. Identify
a variable to help explain how this association could be
spurious.

10.9. An Associated Press story quoted a study at the
University of California at San Diego that reported, based
on a nationwide survey, that those who averaged at least
8 hours of sleep a night were 12 percent more likely to die
within six years than those who averaged 6.5 to 7.5 hours
of sleep a night.

(a) Explain how the subject’s age could be positively asso-
ciated both with time spent sleeping and with an increased
death rate, and hence could explain the association be-
tween sleeping and the death rate.
(b) If the association disappears when we control for sub-
ject’s age, do you think age is more likely to be a common
cause, or a mediator variable?

10.10. A study found that children who eat breakfast get
better math grades than those who do not eat breakfast.
This result was based on the association between x =
whether eat breakfast (yes, no) and y = grade in last math
course taken. How might this result be spurious, and how
could you check for that possibility?

10.11. Suppose race is related to frequency of juvenile
arrests, with black juveniles more likely to be arrested
than white juveniles. A possible chain relationship expla-
nation is that (1) race affects family income, with blacks
tending to have lower family incomes than whites, and
(2) being poor increases the chance of being arrested as
a juvenile. Show a figure to portray the chain relationship.
To support this explanation, what would need to happen
to the difference between the arrest rates for whites and
blacks, after controlling for family income?

10.12. A study at your university finds that of those who
applied to its graduate school last year, the percentage
admitted was higher for the male applicants than for the
female applicants. However, for each department that
received applications, the percentage admitted was lower
for the male applicants than for the female applicants.
How could this possibly happen? In your answer, explain
what plays the role of the response variable, the explana-
tory variable, the control variable, the bivariate table, and
the partial tables. (Exercise 15.12 shows data that have
similar behavior.)

10.13. Table 10.6 relates occupational level (white col-
lar, blue collar) and political party choice, controlling for
income.

(a) Construct the bivariate table between occupational
level and political party, ignoring income. Is there an
association? If so, describe it.
(b) Do the partial tables display an association? Interpret
them.
(c) Using the nature of the association between income
and each of the other variables, explain why the bivari-
ate table has such different association than the partial
tables.
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TABLE 10.6
High Medium High Medium Low Low

Income Income Income Income

White Blue White Blue White Blue White Blue
Party Collar Collar Collar Collar Collar Collar Collar Collar

Democrat 45 5 100 25 75 300 45 405
Republican 405 45 300 75 25 100 5 45

(d) Construct a chain diagram that might explain the
relationships, identifying the intervening (i.e., mediator)
variable.

(e) Show that the data are also consistent with a spurious
association, and draw the corresponding diagram. Which
diagram seems more appropriate? Why?

10.14. In murder trials7 in 20 Florida counties in two
years, the death penalty was given in 19 out of 151 cases in
which a white killed a white, in 0 out of 9 cases in which a
white killed a black, in 11 out of 63 cases in which a black
killed a white, and in 6 out of 103 cases in which a black
killed a black.

(a) Construct partial tables relating D = defendant’s race
and P = the death penalty verdict, controlling for V =
victim’s race. In those tables, compare the proportions
of white and black defendants who received the death
penalty.

(b) Construct the bivariate table, ignoring victim’s race.
Describe the association, and compare to (a).

(c) Simpson’s paradox states that the associations in par-
tial tables can all have a different direction than the asso-
ciation in the bivariate table. Show that these data satisfy
Simpson’s paradox, with white defendants having a lower
or higher chance of the death penalty than black defen-
dants according to whether we control victim’s race.
(d) By describing how V is associated with D (whites
tending to kill whites and blacks tending to kill blacks)
and how V is associated with P (killing a white more likely
to lead to the death penalty), explain why the partial as-
sociation differs as it does from the bivariate association.

(e) For these variables, indicate whether each of the fol-
lowing diagrams seems to provide a reasonable model.
Give your reasoning.

i. V ↗
↘

P

D
ii. D−→V −→P iii.

D

V
↘
↗P iv. D −→ P↘

V
↗

10.15. For the data on house sales shown partly in
Table 9.5 on page 280, the number of bedrooms has a
moderately strong positive correlation with selling price.
Controlling for size of home, however, this association
diminishes greatly.

(a) Explain how this could happen, illustrating with a dia-
gram showing potential direct and indirect effects of num-
ber of bedrooms on selling price.
(b) Explain what it means to say that there is confounding
in the effects of size of home and number of bedrooms in
their effects on the selling price.

10.16. For the Florida data file (shown partly on
page 295), giving countywide data in Florida for several
variables, a moderate positive correlation (r = 0.47) ex-
ists between crime rate and the percentage who are high
school graduates. The percentage living in urban areas is
also strongly correlated with crime rate (r = 0.68) and
with high school graduation rate (r = 0.79).
(a) Explain why the association between crime rate and
high school graduation rate could disappear, or even
change direction, when we control for the percentage liv-
ing in urban areas.

(b) Under the control in (a), if the association disappears,
which type of relationship is more plausible—a spurious
relationship or a chain relationship? Explain.

10.17. Opposition to the legal availability of abortion
is stronger among the very religious than the nonreli-
gious, and it is also stronger among those with conser-
vative sexual attitudes than those with more permissive
attitudes. Draw a three-variable diagram of how these
variables might be related, treating abortion attitude as
the response variable. (Note: More than one diagram is
plausible.)

10.18. Table 10.7 lists the mean salary, in thousands of
dollars, of faculty on nine-month contracts in U.S. insti-
tutions of higher education in 2013–2014, by gender and
academic rank.
(a) Suppose that gender is the explanatory variable. Iden-
tify the response variable and the control variable.
(b) Describe the bivariate relationship between gender
and salary.
(c) Describe the relationship between gender and salary,
controlling for academic rank.
(d) A hypothesis of interest for these variables is “Con-
trolling for academic rank, annual salary and gender
are independent.” Draw a causal diagram that is consis-
tent with this hypothesis. Refer to your interpretation in

7 Data from M. Radelet, American Sociological Review, vol. 46 (1981), pp. 918–927.
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part (c), and comment on whether the hypothesis seems
plausible.
(e) Is it possible that the overall difference between mean
income of men and women could be larger than the differ-
ence for each academic rank? (It nearly is.) Explain how
or how not.

TABLE 10.7

Academic Rank

Gender Professor Associate Assistant Instructor Overall

Men 115.5 81.2 68.5 59.6 85.5
Women 98.1 75.4 63.6 56.9 70.4

Source: National Center for Education Statistics, Digest of Education Statistics,
2015, Table 316.10.

10.19. Table 10.8 relates y = exam score (1 = below me-
dian, 2 = above median) to gender, controlling for the
subject of the exam (Math, Verbal). Show that subject of
exam is a suppressor variable.

TABLE 10.8

Math Verbal

Gender y = 1 y = 2 y = 1 y = 2

Females 100 50 50 100
Males 50 100 100 50

10.20. When we analyze data for the census tracts in the
greater Los Angeles area, we find no significant correla-
tion between median tax bill and median lot size. Yet a
considerable positive correlation occurs when we control
for the percentage of the tract used for business. Explain
how the percentage of the tract used for businesses could
be a suppressor variable, if it is positively correlated with
median tax bill and negatively correlated with median lot
size.

10.21. According to the U.S. Census Bureau, in 2013 the
population median income was estimated to be $29,127
for white females, $26,006 for black females, $41,086 for
white males, and $30,394 for black males. Compare the
difference in median incomes between males and females
for (a) white subjects, (b) black subjects. If these are close
estimates of the population medians, explain why there is
interaction and describe its nature.

10.22. For lower-level managerial employees of a fast-
food chain, the prediction equation relating y = annual
income (thousands of dollars) to x1 = number of years of
experience on the job is ŷ = 14.2 + 1.1x1 for males and
ŷ = 14.2+0.8x1 for females. Explain how these equations
show evidence of statistical interaction.

10.23. A study of the association between whether a
smoker (yes, no) and whether have had some form of

cancer (yes, no) has odds ratio 1.1 for subjects of age less
than 30, 2.4 for subjects of age 30 to 50, and 4.3 for subjects
of age over 50.
(a) Identify the response variable, explanatory variable,
and control variable.
(b) Does the study show evidence of interaction? Explain.

10.24. A study of students at Oregon State University
found an association between frequency of church atten-
dance and favorability toward the legalization of mar-
ijuana. Both variables were measured in ordered cate-
gories. Controlling for gender, the gamma measures for
the two partial tables were

Males: gamma = −0.287, standard error = 0.081.
Females: gamma = −0.581, standard error = 0.091.

(a) These results show a slight degree of , since the
association is somewhat stronger for females than males.
(b) Construct and interpret a 95% confidence interval for
the difference between the population gamma values.

Concepts and Applications
10.25. Refer to the Students data file (Exercise 1.11 on
page 21). Construct partial tables relating opinion about
abortion to opinion about life after death, controlling for
attendance at religious services, measured using the two
categories (Never or occasionally, Most weeks or every
week). Prepare a report (a) posing and interpreting a pos-
sible arrow diagram, before you analyze the data, for rela-
tionships among the variables, (b) interpreting the sample
associations in the bivariate table and the partial tables,
(c) revising, if necessary, your arrow diagram based on the
evidence in the sample data.

10.26. For the Students data (Exercise 1.11), are there
any pairs of variables for which you expect the association
to disappear under control for a third variable? Explain.

10.27. Using the most recent General Social Survey, con-
struct a contingency table relating gender (GSS variable
SEX) and party identification (PARTYID). Is there still a
gender gap? Control for political ideology (the GSS vari-
able POLVIEWS) by forming partial tables for the most
conservative and the most liberal subjects. Does the asso-
ciation seem to persist for these subjects?

10.28. Suppose that x1 = father’s education is positively
associated with y = son’s income at age 40. However, for
the regression analysis conducted separately at fixed lev-
els of x2 = son’s education, the correlation does not differ
significantly from zero. Do you think this is more likely
to reflect a chain relationship, or a spurious relationship?
Explain.

10.29. Table 10.9 shows the mean number of children in
Canadian families, classified by whether the family was
English speaking or French speaking and by whether the
family lived in Quebec or in another province. Let y =
number of children in family, x1 = primary language of
family, and x2 = province (Quebec, others).



Exercises 317

(a) Describe the association between y and x1, based on
the overall means in this table.
(b) Describe the association between y and x1, controlling
for x2.
(c) Explain how it is possible that for each level of
province the mean is higher for French-speaking fami-
lies, yet overall the mean is higher for English-speaking
families. (This illustrates Simpson’s paradox. See Exercise
10.14.)

TABLE 10.9

Province English French

Quebec 1.64 1.80
Other 1.97 2.14
Overall 1.95 1.85

10.30. Eighth-grade math scores on the National Assess-
ment of Educational Progress had means of 277 in Ne-
braska and 271 in New Jersey. For white students, the
means were 281 in Nebraska and 283 in New Jersey. For
black students, the means were 236 in Nebraska and 242 in
New Jersey. For other nonwhite students, the means were
259 in Nebraska and 260 in New Jersey.8

(a) Identify the group variable specifying the two states
as the explanatory variable. What is the response variable
and the control variable?
(b) Explain how it is possible for New Jersey to have the
higher mean for each race yet for Nebraska to have the
higher mean when the data are combined. (This illustrates
Simpson’s paradox.).

10.31. Example 7.1 (page 194) discussed a study that
found that prayer did not reduce the incidence of com-
plications for coronary surgery patients.
(a) Just as association does not imply causality, so does a
lack of association not imply a lack of causality, because
there may be an alternative explanation. Illustrate this us-
ing this study.
(b) A summary of this study in Time Magazine (Decem-
ber 4, 2006, p. 87) noted that “. . . the prayers said by
strangers were provided by the clergy and were all iden-
tical. Maybe that prevented them from being truly heart-
felt. In short, the possible confounding factors in this study
made it extraordinarily limited.” Explain what “possible
confounding” means in the context of this study.

10.32. A study observes that subjects who say they exer-
cise regularly reported only half as many serious illnesses
per year, on the average, as those who say they do not
exercise regularly. The results section in the article states,
“We next analyzed whether age was a confounding vari-
able affecting this association.” Explain what this sentence
means and how age could potentially explain the associa-
tion between exercising and illnesses.

10.33. A research study funded by Wobegon Springs
Mineral Water, Inc., discovers that the probability that a
newborn child has a birth defect is lower for families that
regularly buy bottled water than for families that do not.
Does this association reflect a causal link between drink-
ing bottled water and a reduction in birth defects? Why or
why not?

10.34. The percentage of women who get breast cancer is
higher now than a century ago. Suppose that cancer inci-
dence tends to increase with age, and suppose that women
tend to live longer now than a century ago. How might a
comparison of breast cancer rates now with 100 years ago
show different results from these if we control for the age
of the woman?

10.35. The crude death rate is the number of deaths in a
year, per size of the population, multiplied by 1000. Ac-
cording to the U.S. Bureau of the Census, recently Mex-
ico had a crude death rate of 4.6 (i.e., 4.6 deaths per 1000
population) while the United States had a crude death
rate of 8.4. Could the overall death rate be higher in
the United States even if the United States has a lower
death rate than Mexico for people of each specific age?
Explain.

10.36. In the United States, the median age of residents
is lowest in Utah. At each age level, the death rate from
heart disease is higher in Utah than in Colorado; yet over-
all, the death rate from heart disease is lower in Utah
than Colorado. Are there any contradictions here, or is
this possible? Explain.

10.37. A study of the relationship between student’s high
school GPA and mother’s employment (yes, no) suspects
an interaction with the gender of a student. Controlling
gender, Table 10.10 shows results.

(a) Describe the relationship between mother’s em-
ployment and GPA for females and for males. Does
this sample show evidence of statistical interaction?
Explain.
(b) A journal article written about the study states,
“Having a mother who is employed outside the home
seems to have positive effects on daughter’s achieve-
ment in high school, but no substantive effect on son’s
achievement.” Explain how Table 10.10 suggests this
interpretation.

TABLE 10.10 Mean GPA by Mother’s Employ-
ment, Controlling for Gender

Gender Mother Employed Mother Not Employed

Females 2.94 2.71
Males 2.72 2.74

8 H. Wainer and L. Brown, American Statistician, vol. 58 (2004), p. 119
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10.38. Give an example of three variables for which the
effect of x1 on y would be
(a) Spurious, disappearing when x2 is controlled.
(b) Part of a chain relationship, disappearing when a me-
diator variable x2 is controlled.
(c) Weakened, but not eliminated, when x2 is controlled.
(d) Unaffected by controlling x2.
(e) Different at different levels of x2 (i.e., showing
interaction).
(f) Confounded with the effect of x2.

10.39. Exercise 7.17 on page 219 mentioned a study of
compulsive buying behavior that conducted a national
telephone survey. The study found that lower-income sub-
jects
were more likely to be compulsive buyers. They reported,
“Compulsive buyers did not differ significantly from other
respondents in mean total credit card balances, but the
compulsive buyers’ lower income was a confounding fac-
tor.” Explain what it means to say that income was a
confounding factor, and explain why a comparison of
the mean total credit card balances between compulsive
and noncompulsive buyers could change depending on
whether income is controlled.

10.40. A study9 reported a correlation of 0.68 between
scores on an index of depression and scores on an index
that measures the amount of saturated fat intake. True or
false: You can conclude that if you increase your saturated
fat intake by a standard deviation, your degree of depres-
sion will increase by more than half a standard deviation.

10.41. For recent U.S. presidential elections, in each state
wealthier voters tend to be more likely to vote Repub-
lican, yet states that are wealthier in an aggregate sense
are more likely to have more Democrat than Republi-
can votes (Gelman and Hill 2007, Section 14.2). Sketch a
plot that illustrates how this instance of Simpson’s para-
dox could occur.

Select the best response(s) in Exercises 10.42–10.45. (More
than one response may be correct.)

10.42. For all court trials about homicides in Florida in a
certain period, the difference between the proportions of
whites and blacks receiving the death penalty was 0.026
when the victim was black and −0.077 when the victim
was white.10 This shows evidence of (a) a spurious asso-
ciation, (b) statistical interaction, (c) a chain relationship,
(d) all of these.

10.43. Statistical interaction refers to which of the
following?
(a) Association exists between two variables.
(b) The effect of an explanatory variable on a response
variable changes greatly over the levels of a control
variable.
(c) The partial association is the same at each level of the
control variable, but it is different from the overall bivari-
ate association, ignoring the control variable.
(d) For a collection of three variables, each pair of vari-
ables is associated.
(e) All of the above.

10.44. Example 9.10 (page 280) used a data set on house
sales to regress y = selling price of home (in dollars) to x
= size of house (in square feet). The prediction equation
was ŷ = −50,926 + 126.6x. Now, we regard size of house
as x1 and also consider x2 = whether the house is new (yes
or no). The prediction equation relating ŷ to x1 has slope
161 for new homes and 109 for older homes. This gives
evidence:
(a) of interaction between x1 and x2 in their effects on y.
(b) of a spurious association between selling price and
size.
(c) of a chain relationship, whereby whether new affects
size which affects selling price.
(d) that size of house does not have a causal effect on
price.

10.45. Consider the relationship between y = political
party preference (Democrat, Republican) and x1 = race
(Black, White) and x2 = gender. There is an associa-
tion between y and both x1 and x2, with the Democrat
preference being more likely for blacks than whites and
for women than men.
(a) x1 and x2 are probably independent causes of y.
(b) The association between y and x1 is probably spurious,
controlling for x2.
(c) Since both variables affect y, there is probably inter-
action.
(d) The variables probably satisfy a chain relationship.
(e) Race is probably a suppressor variable.

(f) None of the above.

9 In Behavior Modification, vol. 29 (2005), p. 677.
10 M. L. Radelet and G. L. Pierce, Florida Law Review, vol. 43 (1991).
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C hapter 9 introduced regression modeling of the relationship between two quantitative vari-
ables. Multivariate relationships require more complex models, containing several explanatory

variables. Some of these may be predictors of theoretical interest, and some may be control variables.
This chapter extends the regression model to a multiple regression model that can have

multiple explanatory variables. Such a model provides better predictions of y than does a model
with a single explanatory variable. The model also can analyze relationships between variables while
controlling for other variables. This is important because Chapter 10 showed that after controlling
for a variable, an association can appear quite different from when the variable is ignored.

After defining the multiple regression model and showing how to interpret its parameters,
we present correlation and r-squared measures that describe association between y and a set of
explanatory variables, and we present inference procedures for the model parameters. We then show
how to allow statistical interaction in the model, whereby the effect of an explanatory variable
changes according to the value of another explanatory variable. A significance test can analyze
whether a complex model, such as one permitting interaction, provides a better fit than a simpler
model. The final two sections introduce correlation-type measures that summarize the association
between the response variable and an explanatory variable while controlling other variables.

11.1 The Multiple Regression Model
Chapter 9 modeled the relationship between the explanatory variable x and the mean
of the response variable y by the straight-line (linear) equation E(y) = α + βx. We
refer to this model containing a single predictor as a bivariate model, because it
contains only two variables.

THE MULTIPLE REGRESSION FUNCTION

With two explanatory variables, denoted by x1 and x2, the bivariate regression func-
tion generalizes to the multiple regression function

E(y) = α + β1x1 + β2x2.

In this equation, α, β1, and β2 are parameters discussed below. For particular values
of x1 and x2, the equation specifies the population mean of y for all subjects with
those values of x1 and x2. With additional explanatory variables, each has a βx term,
such as E(y) = α + β1x1 + β2x2 + β3x3 + β4x4 with four explanatory variables.

The multiple regression function is more difficult to portray graphically than the
bivariate regression function. With two explanatory variables, the x1 and x2 axes are
perpendicular but lie in a horizontal plane and the y axis is vertical and perpendicular
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to both the x1 and x2 axes. The equation E(y) = α +β1x1 +β2x2 traces a plane (a flat
surface) cutting through three-dimensional space, as Figure 11.1 portrays.

x1

x1x2 Plane
x2

0

y
a 1 b1 x1 (x2 5 0)

a 1 b2 x2 (x1 5 0)
a

a 1 b1 x1 1 b2 x2

FIGURE 11.1: Graphical
Depiction of a Multiple
Regression Function with
Two Explanatory Variables

The simplest interpretation treats all but one explanatory variable as control
variables and fixes them at particular levels. This leaves an equation relating the
mean of y to the remaining explanatory variables.

Example
11.1

Do Higher Levels of Education Cause Higher Crime Rates? The Florida data file
at the text website, shown partly in Table 9.15 on page 295, contains data for the
67 counties in the state of Florida on y = crime rate (annual number of crimes per
1000 population), x1 = education (percentage of adult residents having at least a
high school education), and x2 = urbanization (percentage living in an urban envi-
ronment). The bivariate relationship between crime rate and education is approxi-
mated by E(y) = −51.3 + 1.5x1. Surprisingly, the association is moderately positive,
the correlation being r = 0.47. As the percentage of county residents having at least
a high school education increases, so does the crime rate.

A closer look at the data reveals strong positive associations between crime rate
and urbanization (r = 0.68) and between education and urbanization (r = 0.79).
This suggests that the association between crime rate and education may be spurious.
Perhaps urbanization is a common causal factor. See Figure 11.2. As urbanization
increases, both crime rate and education increase, resulting in a positive correlation
between crime rate and education.

Urbanization

Crime rate

Education

FIGURE 11.2: The
Positive Association
between Crime Rate and
Education May Be
Spurious, Explained by the
Effects of Urbanization on
Each

The relation between crime rate and both explanatory variables considered to-
gether is approximated by the multiple regression function

E(y) = 58.9 − 0.6x1 + 0.7x2.
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For instance, the expected crime rate for a county at the mean levels of education
(x̄1 = 70) and urbanization (x̄2 = 50) is E(y) = 58.9 − 0.6(70) + 0.7(50) = 52 annual
crimes per 1000 population.

Let’s study the effect of x1, controlling for x2. We first set x2 at its mean level of
50. Then, the relationship between crime rate and education is

E(y) = 58.9 − 0.6x1 + 0.7(50) = 58.9 − 0.6x1 + 35.0 = 93.9 − 0.6x1.

Figure 11.3 plots this line. Controlling for x2 by fixing it at 50, the relationship be-
tween crime rate and education is negative, rather than positive. The slope decreased
and changed sign from 1.5 in the bivariate relationship to −0.6. At this fixed level of
urbanization, a negative relationship exists between education and crime rate. We
use the term partial regression equation to distinguish the equation E(y) = 93.9 −
0.6x1 from the regression equation E(y) = −51.3 + 1.5x1 for the bivariate relation-
ship between y and x1. The partial regression equation refers to part of the potential
observations, in this case counties having x2 = 50.
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40
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100

x1

y

93.9 2 .6x
1  (x

2  5 50)
86.9 2 .6x

1  (x
2  5 40)

FIGURE 11.3: Partial
Relationships between
E(y) and x1 for the
Multiple Regression
Equation E(y) = 58.9 −
0.6x1 + 0.7x2. These partial
regression equations fix
x2 to equal 50 or 40.

Next we fix x2 at a different level, say x2 = 40 instead of 50. Then, you can check
that E(y) = 86.9−0.6x1. Thus, decreasing x2 by 10 units shifts the partial line relating
y to x1 downward by 10β2 = 7.0 units (see Figure 11.3). The slope of −0.6 for the
partial relationship remains the same, so the line is parallel to the one with x2 = 40.
Setting x2 at a variety of values yields a collection of parallel lines, each having slope
β1 = −0.6.

Similarly, setting x1 at a variety of values yields a collection of parallel lines, each
having slope 0.7, relating the mean of y to x2. In other words, controlling for educa-
tion, the slope of the partial relationship between crime rate and urbanization is
β2 = 0.7.

In summary, education has an overall positive effect on crime rate, but it has
a negative effect when controlling for urbanization. The partial association has the
opposite direction from the bivariate association. This is called Simpson’s paradox.
Figure 11.4 illustrates how this happens. It shows the scatterplot relating crime rate to
education, portraying the overall positive association between these variables. The
diagram circles the 19 counties that are highest in urbanization. That subset of points
for which urbanization is nearly constant has a negative trend between crime rate
and education. The high positive association between education and urbanization is
reflected by the fact that most of the highlighted observations that are highest on
urbanization also have high values on education.
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FIGURE 11.4: Scatterplot
Relating Crime Rate and
Education. The circled
points are the counties
highest in urbanization. A
regression line fitting the
circled points has negative
slope, even though the
regression line passing
through all the points has
positive slope (Simpson’s
paradox).

INTERPRETATION OF REGRESSION COEFFICIENTS

We have seen that for a fixed value of x2, the equation E(y) = α + β1x1 + β2x2

simplifies to a straight-line equation in x1 with slope β1. The slope is the same for
each fixed value of x2. When we fix the value of x2, we are holding it constant: We are
controlling for x2. That’s the basis of the major difference between the interpretation
of slopes in multiple regression and in bivariate regression:

• In multiple regression, a slope describes the effect of an explanatory variable
while controlling effects of the other explanatory variables in the model.

• Bivariate regression has only a single explanatory variable. So, a slope in bi-
variate regression describes the effect of that variable while ignoring all other
possible explanatory variables.

The parameter β1 measures the partial effect of x1 on y, that is, the effect of a
one-unit increase in x1, holding x2 constant. The partial effect of x2 on y, holding x1

constant, has slope β2. Similarly, for the multiple regression model with several ex-
planatory variables, the beta coefficient of a particular explanatory variable describes
the change in the mean of y for a one-unit increase in that variable, controlling for
the other variables in the model. The parameter α represents the mean of y when
each explanatory variable equals 0.

The parameters β1, β2, . . . are called partial regression coefficients. The adjec-
tive partial distinguishes these parameters from the regression coefficient β in the
bivariate model E(y) = α + βx, which ignores rather than controls effects of other
explanatory variables.

A partial slope in a multiple regression model usually differs from the slope in the
bivariate model for that explanatory variable, but it need not. With two explanatory
variables, the partial slopes and bivariate slopes are equal if the correlation between
x1 and x2 equals 0. When x1 and x2 are independent causes of y, the effect of x1 on y
does not change when we control for x2.

LIMITATIONS OF THIS MULTIPLE REGRESSION MODEL

In interpreting partial regression coefficients in observational studies, we need to be
cautious not to regard the estimated effects as implying causal relations. For example,
for a sample of college students, suppose y = math achievement test score (scale of
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0 to 100) and the explanatory variables are x1 = number of years of math education,
x2 = mother’s number of years of math education, and x3 = GPA, and we fit the
multiple regression model

E(y) = α + β1x1 + β2x2 + β3x3.

Suppose that the estimate of β1 is 5. In interpreting the effect of x1, we might say,
“A one-year increase in math education corresponds to an increase in the predicted
math achievement test score of 5, controlling for the mother’s math education and
GPA.” However, this does not imply that if a student attains another year of math
education, her or his math achievement test score is predicted to change by 5. To
validly make such a conclusion, we’d need to conduct an experiment that adds a
year of math education for each student and then observes the results. Otherwise, a
higher mean test score at a higher math education level could at least partly reflect
the correlation of several other variables with both math test score and math educa-
tion level, such as the student’s IQ, father’s number of years of math education, and
number of years of science courses.

What the above interpretation actually means is this: “The difference between
the estimated mean math achievement test score of a subpopulation of students hav-
ing a certain number of years of math education and a subpopulation having one
fewer year of math education equals 5, when we control (keep constant) the mother’s
math education and GPA.” However, we need to be cautious even with this inter-
pretation. It is unnatural and even inconsistent with the data for some observational
studies to envision increasing one explanatory variable while keeping all the others
fixed. For example, x1 and x2 are likely to be positively correlated, so increases in x1

naturally tend to occur with increases in x2. In some data sets, one might not even
observe a one-unit range in an explanatory variable when the other explanatory vari-
ables are all held constant. As an extreme example, suppose y = height, x1 = length
of left leg, and x2 = length of right leg. The correlation between x1 and x2 is extremely
close to 1. It does not make much sense to imagine how y changes as x1 changes while
x2 is controlled.

Because of this limitation, some methodologists prefer to use more cautious
wording than “controlling.” In interpreting an estimate of 5 for β1, they would say,
“The difference between the estimated mean math achievement test score of a sub-
population of students having a certain number of years of math education and a
subpopulation having one fewer year equals 5, when both subpopulations have the
same estimated value for β2xi2 +β3xi3.” More concisely, “The effect of the number of
years of math education on the estimated mean math achievement test score equals
5, adjusting for student’s age and mother’s math education.” In the rest of the text, we
will use the simpler “controlling” wording, but we should keep in mind its limitations.

Finally, this multiple regression model also has a structural limitation. It assumes
that the slope of the partial relationship between y and each explanatory variable
is identical for all combinations of values of the other explanatory variables. This
means that the model is appropriate when there is a lack of statistical interaction, in
the sense explained in Section 10.3 (page 306). If the true partial slope between y
and x1 is very different at x2 = 50 than at x2 = 40, for example, we need a more
complex model. Section 11.4 will show this model and Section 11.5 will show how to
analyze whether it fits significantly better.

PREDICTION EQUATION AND RESIDUALS

Corresponding to the multiple regression equation, software finds a prediction equa-
tion by estimating the model parameters using sample data. In general, we let p
denote the number of explanatory variables.
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Notation for Prediction
Equation

The prediction equation that estimates the multiple regression equation
E(y) = α + β1x1 + β2x2 + · · · + βpxp is denoted by
ŷ = a + b1x1 + b2x2 + · · · + bpxp.

We use statistical software to find the prediction equation. The calculation formulas
are complex and are not shown in this text.

To get the predicted value of y for a subject, we substitute the x-values for that
subject into the prediction equation. Like the bivariate model, the multiple regres-
sion model has residuals that measure prediction errors. For a subject with predicted
response ŷ and observed response y, the residual is y − ŷ. The next section shows an
example.

The sum of squared errors (SSE),

SSE =
∑

(y − ŷ)2
,

summarizes the closeness of fit of the prediction equation to the response data. Most
software calls SSE the residual sum of squares. The formula for SSE is the same as in
Chapter 9. The only difference is that the predicted value ŷ results from using several
explanatory variables instead of just a single one.

The parameter estimates in the prediction equation satisfy the least squares cri-
terion: The prediction equation has the smallest SSE value of all possible equations
of the form ŷ = a + b1x1 + · · · + bpxp.

Example
11.2

Multiple Regression for Mental Health Study A study in Alachua County, Florida,
investigated the relationship between certain mental health indices and several
explanatory variables. Primary interest focused on an index of mental impairment,
which incorporates various dimensions of psychiatric symptoms, including aspects of
anxiety and depression. This measure, which is the response variable y, ranged from
17 to 41 in the sample. Higher scores indicate greater psychiatric impairment.

The two explanatory variables used here are x1 = life events score and x2 =
socioeconomic status (SES). The life events score is a composite measure of both
the number and severity of major life events the subject experienced within the past
three years. These events range from severe personal disruptions, such as a death
in the family, a jail sentence, or an extramarital affair, to less severe events, such as
getting a new job, the birth of a child, moving within the same city, or having a child
marry. This measure ranged from 3 to 97 in the sample. A high score represents a
greater number and/or greater severity of these life events. The SES score is a com-
posite index based on occupation, income, and education. Measured on a standard
scale, it ranged from 0 to 100. The higher the score, the higher the status.

Table 11.1 shows data1 on the three variables for a random sample of 40 adults
in the county. Table 11.2 summarizes the sample means and standard deviations of
the three variables.

SCATTERPLOT MATRIX FOR BIVARIATE RELATIONSHIPS

Plots of the data provide an informal check of whether the relationships are linear.
Software can construct scatterplots on a single diagram for each pair of the variables.

1These data are based on a much larger survey. Thanks to Dr. Charles Holzer for permission to use the study as
the basis of this example.
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TABLE 11.1: Mental Data File from the Text Website
with y = Mental Impairment, x1 = Life
Events, and x2 = Socioeconomic Status

y x1 x2 y x1 x2 y x1 x2

17 46 84 26 50 40 30 44 53
19 39 97 26 48 52 31 35 38
20 27 24 26 45 61 31 95 29
20 3 85 27 21 45 31 63 53
20 10 15 27 55 88 31 42 7
21 44 55 27 45 56 32 38 32
21 37 78 27 60 70 33 45 55
22 35 91 28 97 89 34 70 58
22 78 60 28 37 50 34 57 16
23 32 74 28 30 90 34 40 29
24 33 67 28 13 56 41 49 3
24 18 39 28 40 56 41 89 75
25 81 87 29 5 40
26 22 95 30 59 72

TABLE 11.2: Sample Means and Standard Deviations
of Mental Impairment, Life Events, and
Socioeconomic Status (SES)

Variable Mean Standard Deviation

Mental impairment 27.30 5.46
Life events 44.42 22.62
SES 56.60 25.28

Figure 11.5 shows the plots for the variables from Table 11.1. This type of plot is called
a scatterplot matrix. Like a correlation matrix, it shows each pair of variables twice.
In one plot, a variable is on the y-axis and in the other it is on the x-axis. Mental
impairment (the response variable) is on the y-axis for the plots in the first row of
Figure 11.5, so these are the plots of interest to us. The plots show no evidence of
nonlinearity, and models with linear effects seem appropriate. The plots suggest that
life events have a mild positive effect and SES has a mild negative effect on mental
impairment.
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FIGURE 11.5: Scatterplot
Matrix: Scatterplots for
Pairs of Variables from
Table 11.1
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PARTIAL PLOTS FOR PARTIAL RELATIONSHIPS

The multiple regression model states that each explanatory variable has a linear
effect with common slope, controlling for the other predictors. Although the regres-
sion formula is relatively simple, this itself is quite a strong assumption. To check it,
we can compare the fit of the model to the fit of a more complex model, as we’ll ex-
plain in Section 11.4. We can also plot y versus each predictor, for subsets of points
that are nearly constant on the other predictors. With a single control variable, for ex-
ample, we could sort the observations into four groups using the quartiles as bound-
aries, and then either construct four separate scatterplots or mark the observations
on a single scatterplot according to their group.

With several control variables, however, keeping them all nearly constant can re-
duce the sample to relatively few observations and is impractical. A more informative
single picture is provided by the partial regression plot (also called added-variable
plot). It displays the relationship between the response variable and an explanatory
variable after removing the effects of the other predictors in the multiple regression
model. It does this by plotting the residuals from models using these two variables
as responses and the other explanatory variables as predictors.

Here is how software constructs the partial regression plot for the effect of x1

when the multiple regression model also has explanatory variables x2 and x3. It finds
the residuals from the models (i) using x2 and x3 to predict y and (ii) using x2 and x3

to predict x1. Then it plots the residuals from the first analysis (on the y-axis) against
the residuals from the second analysis. For these residuals, the effects of x2 and x3 are
removed. The least squares slope for the points in this plot is necessarily the same as
the estimated partial slope b1 for the multiple regression model.

Figure 11.6 shows a partial regression plot for y = mental impairment and
x1 = life events, controlling for x2 = SES. It plots the residuals on the y-axis from
ŷ = 32.2 − 0.086x2 against the residuals on the x-axis from x̂1 = 38.2 + 0.110x2.
Both axes have negative and positive values, because they refer to residuals. Recall
that residuals (prediction errors) can be positive or negative, and have a mean of 0.
Figure 11.6 suggests that the partial effect of life events is approximately linear and
is positive.
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FIGURE 11.6: Partial
Regression Plot for Mental
Impairment and Life
Events, Controlling for
SES. This plots the
residuals from regressing
mental impairment on SES
against the residuals from
regressing life events on
SES.

Figure 11.7 shows the partial regression plot for SES. It shows that its partial
effect is also approximately linear but is negative.
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FIGURE 11.7: Partial
Regression Plot for Mental
Impairment and SES,
Controlling for Life Events.
This plots the residuals
from regressing mental
impairment on life events
against the residuals from
regressing SES on life
events.

SOFTWARE OUTPUT FOR MENTAL IMPAIRMENT EXAMPLE

Tables 11.3 and 11.4 are Stata outputs of the coefficients table for the bivariate rela-
tionships between mental impairment and the separate explanatory variables. The
estimated regression coefficients fall in the column labeled Coef. The prediction
equations are

ŷ = 23.31 + 0.090x1 and ŷ = 32.17 − 0.086x2.

In the sample, mental impairment is positively related to life events, since the coef-
ficient of x1 (0.090) is positive. The greater the number and severity of life events in
the previous three years, the higher the mental impairment (i.e., the poorer the men-
tal health) tends to be. Mental impairment is negatively related to socioeconomic
status. The correlations between mental impairment and the explanatory variables
are modest, 0.372 for life events and −0.399 for SES (the appropriate square roots
of the r2-values reported).

TABLE 11.3: Bivariate Regression Analysis for y = Mental Impairment and x1 = Life Events
from Mental Data File

R-squared = 0.1385
impair | Coef. Std. Err. t P>|t| [95% Conf. Interval]
life | .0898257 .0363349 2.47 0.018 .0163 .1634

_cons | 23.30949 1.806751 12.90 0.000 19.65 26.97

TABLE 11.4: Bivariate Regression Analysis for y = Mental Impairment and x2 = Socioeco-
nomic Status (SES) from Mental Data File

R-squared = 0.1589
impair | Coef. Std. Err. t P>|t| [95% Conf. Interval]
ses | -.086078 .0321317 -2.68 0.011 -.1511 -.0210

_cons | 32.17201 1.987649 16.19 0.000 28.148 36.196

Table 11.5 shows output for the multiple regression model E(y) = α + β1x1 +
β2x2. The prediction equation is

ŷ = a + b1x1 + b2x2 = 28.230 + 0.103x1 − 0.097x2.
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TABLE 11.5: Fit of Multiple Regression Model for y = Mental Impairment, x1 = Life Events,
and x2 = Socioeconomic Status from Mental Data File

R-squared = 0.3392
impair | Coef. Std. Err. t P>|t| [95% Conf. Interval]
life | .1032595 .0324995 3.18 0.003 .0374 .1691
ses | -.0974755 .0290848 -3.35 0.002 -.1564 -.0385

_cons | 28.22981 2.174222 12.98 0.000 23.82 32.64

Controlling for SES, the sample relationship between mental impairment and life
events is positive, since the coefficient of life events (b1 = 0.103) is positive. The esti-
mated mean of mental impairment increases by about 0.1 for every one-unit increase
in the life events score, controlling for SES. Since b2 = −0.097, a negative association
exists between mental impairment and SES, controlling for life events. For example,
over the 100-unit range of potential SES values (from a minimum of 0 to a maximum
of 100), the estimated mean mental impairment changes by 100(−0.097) = −9.7.
Since mental impairment ranges only from 17 to 41 with a standard deviation of 5.5,
a decrease of 9.7 points in the mean is noteworthy.

From Table 11.1, the first subject in the sample had y = 17, x1 = 46, and x2 = 84.
This subject’s predicted mental impairment is

ŷ = 28.230 + 0.103(46) − 0.097(84) = 24.8.

The prediction error (residual) is y − ŷ = 17 − 24.8 = −7.8.
Table 11.6 summarizes some results of the regression analyses. It shows standard

errors in parentheses below the parameter estimates. The partial slopes for the mul-
tiple regression model are similar to the slopes for the bivariate models. In each case,
the introduction of the second explanatory variable does little to alter the effect of
the other one. This suggests that these explanatory variables may have nearly inde-
pendent sample effects on y. In fact, the sample correlation between x1 and x2 is only
0.123. The next section shows how to interpret the R2-value listed for the multiple
regression model.

TABLE 11.6: Summary of Regression Models for Men-
tal Impairment

Explanatory Variables in Regression Model

Effect Multiple Life Events SES

Intercept 28.230 23.309 32.172
Life events 0.103 0.090 —

(0.032) (0.036)
SES −0.097 — −0.086

(0.029) (0.032)

R2 0.339 0.138 0.159

11.2 Multiple Correlation and R2

The correlation r and its square describe strength of linear association for bivariate
relationships. This section presents analogous measures for the multiple regression
model. They describe the strength of association between y and the set of explanatory
variables acting together as predictors in the model.
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THE MULTIPLE CORRELATION R

The explanatory variables collectively are strongly associated with y if the observed
y-values correlate highly with the ŷ-values from the prediction equation. The corre-
lation between the observed and predicted values summarizes this association.

Multiple Correlation
The sample multiple correlation for a regression model, denoted by R, is
the correlation between the observed y-values and the predicted ŷ-values.

For each subject, the prediction equation provides a predicted value ŷ. So, each
subject has a y-value and a ŷ-value. For the first three subjects in Table 11.1, the
observed and predicted y-values are

y ŷ
17 24.8
19 22.8
20 28.7

The sample correlation computed between all 40 of the y- and ŷ-values is R, the
multiple correlation. The larger the value of R, the better the predictions of y by the
set of explanatory variables.

The predicted values cannot correlate negatively with the observed values. The
predictions must be at least as good as the sample mean ȳ, which is the prediction
when all partial slopes = 0, and ȳ has zero correlation with y. So, R always falls
between 0 and 1. In this respect, the correlation between y and ŷ differs from the
correlation between y and an explanatory variable x, which falls between −1 and +1.

R2: THE COEFFICIENT OF MULTIPLE DETERMINATION

Another measure uses the proportional reduction in error concept, generalizing r2 for
bivariate models. This measure summarizes the relative improvement in predictions
using the prediction equation instead of ȳ. It has the following elements:

Rule 1 (Predict y without using x1, . . . , xp): The best predictor is then the sample
mean, ȳ.

Rule 2 (Predict y using x1, . . . , xp): The best predictor is the prediction equation
ŷ = a + b1x1 + b2x2 + · · · + bpxp.

Prediction Errors: The prediction error for a subject is the difference between the
observed and predicted values of y. With rule 1, the error is y − ȳ. With rule 2, it is
the residual y − ŷ. In either case, we summarize the error by the sum of the squared
prediction errors. For rule 1, this is TSS = ∑

(y − ȳ)2, the total sum of squares. For
rule 2, it is SSE = ∑

(y−ŷ)2, the sum of squared errors using the prediction equation,
which is the residual sum of squares.
Definition of Measure: The proportional reduction in error from using the prediction
equation ŷ = a + b1x1 + · · · + bpxp instead of ȳ to predict y is R-squared, also called
the coefficient of multiple determination.

R-Squared: The Coefficient of
Multiple Determination R2 = TSS − SSE

TSS
=

∑
(y − ȳ)2 − ∑

(y − ŷ)2∑
(y − ȳ)2

R2 measures the proportion of the total variation in y that is explained by the
predictive power of all the explanatory variables, through the multiple regression
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model. The symbol reflects that R2 is the square of the multiple correlation R. The
uppercase notation R2 distinguishes this measure from r2 for the bivariate model.
Their formulas are identical, and r2 is the special case of R2 applied to a regression
model with one explanatory variable. For the multiple regression model to be useful
for prediction, it should provide improved predictions relative not only to ȳ but also
to the separate bivariate models for y and each explanatory variable.

Example
11.3

Multiple Correlation and R2 for Mental Impairment For the data on y = mental
impairment, x1 = life events, and x2 = socioeconomic status in Table 11.1, Table
11.5 showed some output. Software (SPSS) also reports ANOVA tables with sums
of squares and shows R and R2. See Table 11.7.

TABLE 11.7: ANOVA Table and Model Summary for Regression of Mental Impairment on Life
Events and Socioeconomic Status from Mental Data File

ANOVA
Sum of Squares df Mean Square F Sig.

Regression 394.238 2 197.119 9.495 .000
Residual 768.162 37 20.761
Total 1162.400 39

Model Summary
R R Square Adjusted R Square Std. Error of the Estimate

.582 .339 .303 4.556

Predictors: (Constant), SES, LIFE
Dependent Variable: IMPAIR

From the Sum of Squares column, the total sum of squares is TSS = ∑
(y− ȳ)2 =

1162.4, and the residual sum of squares from using the prediction equation to predict
y is SSE = ∑

(y − ŷ)2 = 768.2. Thus,

R2 = TSS − SSE
TSS

= 1162.4 − 768.2
1162.4

= 0.339.

Using life events and SES together to predict mental impairment provides a 33.9%
reduction in the prediction error relative to using only ȳ. The multiple regression
model provides a substantially larger reduction in error than either bivariate model
(Table 11.6 reported r2-values of 0.138 and 0.159 for them). It is more useful than
those models for predictive purposes.

The multiple correlation between mental impairment and the two explanatory
variables is R = +√

0.339 = 0.582. This equals the correlation between the observed
y- and predicted ŷ-values for the model.

PROPERTIES OF R AND R2

The properties of R2 are similar to those of r2 for bivariate models.

• R2 falls between 0 and 1.

• The larger the value of R2, the better the set of explanatory variables
(x1, . . . , xp) collectively predicts y.

• R2 = 1 only when all the residuals are 0, that is, when all y = ŷ, so that predic-
tions are perfect and SSE = 0.
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• R2 = 0 when the predictions do not vary as any of the x-values vary. In that
case, b1 = b2 = · · · = bp = 0, and ŷ is identical to ȳ, since the explanatory
variables do not add any predictive power. The correlation is then 0 between y
and each explanatory variable.

• R2 cannot decrease when we add an explanatory variable to the model. It is
impossible to explain less variation in y by adding explanatory variables to a
regression model.

• R2 for the multiple regression model is at least as large as the r2-values for the
separate bivariate models. That is, R2 for the multiple regression model is at
least as large as r2

yx1
for y as a linear function of x1, r2

yx2
for y as a linear function

of x2, and so forth.

• R2 tends to overestimate the population value, because the sample data fall
closer to the sample prediction equation than to the true population regression
equation. Most software also reports a less biased estimate, called adjusted R2.
Exercise 11.61 shows its formula. For the mental impairment example, Table
11.7 reports its value of 0.303, compared to ordinary R2 = 0.339.

Properties of the multiple correlation R follow directly from the ones for R2,
since R is the positive square root of R2. For instance, R for the model E(y) = α +
β1x1 + β2x2 + β3x3 is at least as large as R for the model E(y) = α + β1x1 + β2x2.

The numerator of R2, TSS − SSE, summarizes the variation in y explained by
the multiple regression model. This difference, which equals

∑
(ŷ − ȳ)2, is called the

regression sum of squares. The ANOVA table in Table 11.7 lists the regression sum
of squares as 394.2. (Some software, such as Stata and SAS, labels this the Model
sum of squares.) The total sum of squares TSS of the y-values about ȳ partitions into
the variation explained by the regression model (regression sum of squares) plus the
variation not explained by the model (the residual sum of squares, SSE).

MULTICOLLINEARITY WITH MANY EXPLANATORY VARIABLES

When a study has many explanatory variables but the correlations among them are
strong, once you have included a few of them in the model, R2 usually doesn’t in-
crease much more when you add additional ones. For example, for the Houses data
file at the text website (introduced in Example 9.10 on page 280), r2 is 0.71 with the
house’s tax assessment as a predictor of selling price. Then, R2 increases to 0.77 when
we add house size as a second predictor. But then it increases only to 0.79 when we
add number of bathrooms, number of bedrooms, and whether the house is new as
additional predictors.

When R2 does not increase much, this does not mean that the additional vari-
ables are uncorrelated with y. It means merely that they don’t add much new power
for predicting y, given the values of the explanatory variables already in the model.
These other variables may have small associations with y, given the variables already
in the model. This often happens in social science research when the explanatory
variables are highly correlated, no one having much unique explanatory power. Sec-
tion 14.3 discusses this condition, called multicollinearity.

Figure 11.8, which portrays the portion of the total variability in y explained by
each of three explanatory variables, shows a common occurrence. The size of the set
for an explanatory variable in this figure represents the size of its r2-value in predict-
ing y. The amount a set for an explanatory variable overlaps with the set for another
explanatory variable represents its association with that predictor. The part of the
set for an explanatory variable that does not overlap with other sets represents the
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part of the variability in y explained uniquely by that explanatory variable. In Figure
11.8, all three explanatory variables have moderate associations with y, and together
they explain considerable variation. Once x1 and x2 are in the model, however, x3

explains little additional variation in y, because of its strong correlations with x1 and
x2. Because of this overlap, R2 increases only slightly when x3 is added to a model
already containing x1 and x2.

x3

x2x1

TSS

FIGURE 11.8: R2 Does
Not Increase Much when x3
Is Added to the Model
Already Containing x1
and x2

For predictive purposes, we gain little by adding explanatory variables to a model
that are strongly correlated with ones already in the model, since R2 will not increase
much. Ideally, we should use explanatory variables having weak correlations with
each other but strong correlations with y. In practice, this is not always possible,
especially when we include certain variables in the model for theoretical reasons.

The sample size you need to do a multiple regression well gets larger when
you want to use more explanatory variables. Technical difficulties caused by multi-
collinearity are less severe for larger sample sizes. Ideally, the sample size should be
at least about 10 times the number of explanatory variables (e.g., at least about 40
for 4 explanatory variables).

11.3 Inferences for Multiple Regression Coefficients
To make inferences about the parameters in the multiple regression function

E(y) = α + β1x1 + · · · + βpxp,

we formulate the entire multiple regression model. This consists of this equation
together with a set of assumptions:

• The population distribution of y is normal, for each combination of values of
x1, . . . , xp.

• The standard deviation, σ , of the conditional distribution of responses on y is
the same at each combination of values of x1, . . . , xp.

• The sample is randomly selected.

Under these assumptions, the true sampling distributions exactly equal those
quoted in this section. In practice, the assumptions are never satisfied perfectly.
Two-sided inferences are robust to the normality and common σ assumptions. More
important are the assumptions of randomization and that the regression function de-
scribes well how the mean of y depends on the explanatory variables. We’ll see ways
to check the latter assumption in Sections 11.4 and 14.2.

Multiple regression analyses use two types of significance tests. The first is a
global test of independence. It checks whether any of the explanatory variables are
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statistically related to y. The second studies the partial regression coefficients indi-
vidually, to assess which explanatory variables have significant partial effects on y.

TESTING THE COLLECTIVE INFLUENCE OF THE EXPLANATORY
VARIABLES

Do the explanatory variables collectively have a statistically significant effect on the
response variable? We check this by testing

H0: β1 = β2 = · · · = βp = 0

that the mean of y does not depend on the values of x1, . . . , xp. Under the infer-
ence assumptions, this states that y is statistically independent of all p explanatory
variables.

The alternative hypothesis is

Ha: At least one βi �= 0.

This states that at least one explanatory variable is associated with y, controlling for
the others. The test judges whether using x1, . . . , xp together to predict y, with the
prediction equation ŷ = a + b1x1 + · · · + bpxp, is significantly better than using ȳ.

These hypotheses about {βi} are equivalent to

H0: Population multiple correlation = 0 and Ha: Population multiple correlation > 0.

The equivalence occurs because the multiple correlation equals 0 only in those situ-
ations in which all the partial regression coefficients equal 0. Also, H0 is equivalent
to H0: population R-squared = 0.

For these hypotheses about the p predictors, the test statistic is

F = R2/p
(1 − R2)/[n − (p + 1)]

.

The sampling distribution of this statistic is called the F distribution.

THE F DISTRIBUTION

The symbol for the F test statistic and its distribution honors the most eminent statis-
tician in history, R. A. Fisher, who discovered the F distribution in 1922. Like the
chi-squared distribution, the F distribution can take only nonnegative values and it
is somewhat skewed to the right. Figure 11.9 illustrates this.

0 1.0 Observed
F

P

FIGURE 11.9: The F
Distribution and the
P-Value for F Tests. Larger
F -values give stronger
evidence against H0.

The shape of the F distribution is determined by two degrees of freedom terms,
denoted by df1 and df2:

df1 = p, the number of explanatory variables in the model.

df2 = n − (p + 1) = n− number of parameters in regression equation.
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The first of these, df1 = p, is the divisor of the numerator term (R2) in the F test
statistic. The second, df2 = n − (p + 1), is the divisor of the denominator term
(1 − R2). The number of parameters in the multiple regression model is p + 1, rep-
resenting the p beta terms and the y-intercept (α) term.

The mean of the F distribution is approximately2 equal to 1. The larger the R2-
value, the larger the ratio R2/(1 − R2), and the larger the F test statistic becomes.
Thus, larger values of the F test statistic provide stronger evidence against H0. Under
the presumption that H0 is true, the P-value is the probability the F test statistic is
larger than the observed F -value. This is the right-tail probability under the F distri-
bution beyond the observed F -value, as Figure 11.9 shows. Software for regression
and Internet applets3 report the P-value.

Example
11.4

F Test for Mental Impairment Data For Table 11.1 (page 325), we used multiple
regression for n = 40 observations on y = mental impairment, with p = 2 explana-
tory variables, life events and SES. The null hypothesis that mental impairment is
statistically independent of life events and SES is H0: β1 = β2 = 0.

In Example 11.3 (page 330), we found that this model has R2 = 0.339. The F test
statistic value is

F = R2/p
(1 − R2)/[n − (p + 1)]

= 0.339/2
0.661/[40 − (2 + 1)]

= 9.5.

The two degrees of freedom terms for the F distribution are df1 = p = 2 and df2 =
n − (p + 1) = 40 − 3 = 37, the two divisors in this statistic.

Part of the SPSS software output in Table 11.7 showed the ANOVA table

Sum of Squares df Mean Square F Sig.
Regression 394.238 2 197.119 9.495 .000
Residual 768.162 37 20.761

which contains the F statistic. The P-value, which rounded to three decimal places is
P = 0.000, appears under the heading Sig in the table. (R reports it as p-value, Stata
reports it as Prob > F, and SAS reports it as Pr > F.) This extremely small P-value
provides strong evidence against H0. We infer that at least one of the explanatory
variables is associated with mental impairment. Equivalently, we can conclude that
the population multiple correlation and R-squared are positive.

Normally, unless n is small and the associations are weak, this F test has a small
P-value. If we choose variables wisely for a study, at least one of them should have
some explanatory power.

INFERENCES FOR INDIVIDUAL REGRESSION COEFFICIENTS

When the P-value is small for the F test, this does not imply that every explana-
tory variable has an effect on y (controlling for the other explanatory variables in
the model), but merely that at least one of them has an effect. More narrowly fo-
cused analyses judge which partial effects are nonzero and estimate the sizes of those
effects. These inferences make the same assumptions as the F test.

For a particular explanatory variable xi in the model, the test for its partial effect
on y has H0: βi = 0. If βi = 0, the mean of y is identical for all values of xi, controlling

2The mean equals df2/(df2 − 2), which is usually close to 1 unless n is quite small.
3For example, the F distribution applet at www.pearsonglobaleditions.com/Agresti.

http://www.pearsonglobaleditions.com/Agresti
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for the other explanatory variables in the model. The alternative can be two-sided,
Ha: βi �= 0, or one-sided, Ha: βi > 0 or Ha: βi < 0, to predict the direction of the
partial effect.

The test statistic for H0: βi = 0, using sample estimate bi of βi, is

t = bi

se
,

where se is the standard error of bi. As usual, the t test statistic takes the best estimate
(bi) of the parameter (βi), subtracts the H0 value of the parameter (0), and divides
by the standard error. The formula for se is complex, but software provides its value.
If H0 is true and the model assumptions hold, the t statistic has the t distribution with
df = n − (p + 1), which is the same as df2 in the F test.

It is more informative to estimate the size of a partial effect than to test whether
it is zero. Recall that βi represents the change in the mean of y for a one-unit increase
in xi, controlling for the other variables. A confidence interval for βi is

bi ± t(se).

The t-score comes from the t table, with df = n − (p + 1). For example, a 95%
confidence interval for the partial effect of x1 is b1 ± t.025(se).

Example
11.5

Inferences for Individual Predictors of Mental Impairment For the multiple regres-
sion model for y = mental impairment, x1 = life events, and x2 = SES,

E(y) = α + β1x1 + β2x2,

let’s analyze the effect of life events. The hypothesis that mental impairment is statis-
tically independent of life events, controlling for SES, is H0: β1 = 0. If H0 is true, the
multiple regression equation reduces to E(y) = α + β2x2. If H0 is false, then β1 �= 0
and the full model provides a better fit than the bivariate model.

Table 11.5 contained the results,

B Std. Error t Sig.
(Constant) 28.230 2.174 12.984 .000
LIFE .103 .032 3.177 .003
SES -.097 .029 -3.351 .002

The point estimate of β1 is b1 = 0.103, which has standard error se = 0.032. The test
statistic is

t = b1

se
= 0.103

0.032
= 3.177.

This appears under the heading t in the table in the row for the variable LIFE. The
statistic has df = n − (p + 1) = 40 − 3 = 37. The P-value is 0.003, the probability
that the t statistic exceeds 3.177 in absolute value. The evidence is strong that mental
impairment is associated with life events, controlling for SES.

A 95% confidence interval for β1 uses t0.025 = 2.026, the t-value for df = 37
having a probability of 0.05/2 = 0.025 in each tail. This interval is

b1 ± t0.025(se) = 0.103 ± 2.026(0.032), which is (0.04, 0.17).

Controlling for SES, we are 95% confident that the change in mean mental impair-
ment per one-unit increase in life events falls between 0.04 and 0.17. An increase
of 100 units in life events corresponds to anywhere from a 100(0.04) = 4-unit to a
100(0.17) = 17-unit increase in mean mental impairment. The interval is relatively
wide because of the relatively small sample size. The interval does not contain 0.
This is in agreement with rejecting H0: β1 = 0 in favor of Ha: β1 �= 0 at the α = 0.05
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level. Since the confidence interval contains only positive numbers, the association
between mental impairment and life events is positive, controlling for SES.

How is the t test for a partial regression coefficient different from the t test of
H0: β = 0 for the bivariate model, E(y) = α + βx, presented in Section 9.5? That
t test evaluates whether y and x are associated, ignoring other variables, because it
applies to the bivariate model. By contrast, the test just presented evaluates whether
variables are associated, controlling for other variables.

A note of caution: Suppose multicollinearity occurs, that is, much overlap among
the explanatory variables in the sense that any one is well predicted by the others.
Then, possibly none of the individual partial effects has a small P-value, even if R2 is
large and a large F statistic occurs in the global test for the βs. Any particular variable
may uniquely explain little variation in y, even though together the variables explain
much variation.

VARIABILITY AND MEAN SQUARES IN THE ANOVA TABLE∗

The precision of the least squares estimates relates to the size of the conditional
standard deviation σ that measures variability of y at fixed values of the predictors.
The smaller the variability of y-values about the regression equation, the smaller the
standard errors become. The estimate of σ is

s =
√ ∑

(y − ŷ)2

n − (p + 1)
=

√
SSE
df

.

The degrees of freedom value is also df for t inferences for regression coefficients,
and it is df2 for the F test about the collective effect of the explanatory variables.
(When a model has only p = 1 predictor, df simplifies to n − 2, the term in the s
formula in Section 9.3 on page 268.)

From the ANOVA table in Table 11.7 (page 330) that contains the sums of
squares for the multiple regression model with the mental impairment data, SSE =
768.2. Since n = 40 for p = 2 predictors, we have df = n − (p + 1) = 40 − 3 = 37
and

s =
√

SSE
df

=
√

768.2
37

=
√

20.76 = 4.56.

If the conditional distributions are approximately bell shaped, nearly all mental im-
pairment scores fall within about 14 units (3 standard deviations) of the mean spec-
ified by the regression function.

SPSS reports the conditional standard deviation under the heading Std. Error of
the Estimate in the Model Summary table that also shows R and R2 (see Table 11.7).
This is a poor choice of label by SPSS, because s refers to the variability in y-values,
not the variability of a sampling distribution of an estimator.

The square of s, which estimates the conditional variance, is often called the error
mean square, often abbreviated by MSE, or the residual mean square. Software
shows it in the ANOVA table in the Mean Square column, in the row labeled Residual
(or Error in some software). For example, MSE = 20.76 in Table 11.7. Some software
(such as Stata and SAS) better labels the conditional standard deviation estimate s
as Root MSE, because it is the square root of the error mean square. R reports it as
Residual standard error.
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THE F STATISTIC IS A RATIO OF MEAN SQUARES∗

An alternative formula for the F test statistic for testing H0: β1 = · · · = βp = 0 uses
the two mean squares in the ANOVA table. Specifically, for our example,

F = Regression mean square
Residual mean square (MSE)

= 197.1
20.8

= 9.5.

This gives the same value as the F test statistic formula (page 333) based on R2.
The regression mean square equals the regression sum of squares divided by its

degrees of freedom. The df equals p, the number of explanatory variables in the
model, which is df1 for the F test. In the ANOVA table in Table 11.7, the regression
mean square equals

Regression SS
df1

= 394.2
2

= 197.1.

RELATIONSHIP BETWEEN F AND t STATISTICS∗

We’ve used the F distribution to test that all partial regression coefficients equal
0. Some regression software also lists F test statistics instead of t test statistics for
the tests about the individual regression coefficients. The two statistics are related
and have the same P-values. The square of the t statistic for testing that a partial
regression coefficient equals 0 is an F test statistic having the F distribution with
df1 = 1 and df2 = n − (p + 1).

To illustrate, in Example 11.5 for H0: β1 = 0 and Ha: β1 �= 0, the test statistic
t = 3.18 with df = 37. Alternatively, we could use F = t2 = 3.182 = 10.1, which has
the F distribution with df1 = 1 and df2 = 37. The P-value for this F -value is 0.002,
the same as Table 11.5 reports for the two-sided t test.

In general, if a statistic has the t distribution with d degrees of freedom, then
the square of that statistic has the F distribution with df1 = 1 and df2 = d. A dis-
advantage of the F approach is that it lacks information about the direction of the
association. It cannot be used for one-sided alternative hypotheses.

11.4 Modeling Interaction Effects
The multiple regression equation

E(y) = α + β1x1 + β2x2 + · · · + βpxp

assumes that the slope βi of the partial relationship between y and each xi is iden-
tical for all values of the other explanatory variables. This implies a parallelism of
lines relating the two variables, at various values of the other variables, as Figure 11.3
(page 321) illustrated.

This model is sometimes too simple to be adequate. Often, the relationship be-
tween two variables changes according to the value of a third variable. There is in-
teraction, a concept introduced in Section 10.3 (page 306).

Interaction
For quantitative variables, interaction exists between two explanatory
variables in their effects on y when the effect of one variable changes as the
level of the other variable changes.

For example, for y = annual income (thousands of dollars), x1 = years of work-
ing experience, and x2 = number of years of education, suppose E(y) = 18 + 0.25x1
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when x2 = 10, E(y) = 25 + 0.50x1 when x2 = 12, and E(y) = 39 + 1.00x1 when
x2 = 16. The slope for the partial effect of x1 changes markedly as the value for x2

changes. Interaction occurs between x1 and x2 in their effects on y.

CROSS-PRODUCT TERMS

The most common approach for modeling interaction effects introduces cross-
product terms of the explanatory variables into the multiple regression model. With
two explanatory variables, the model is

E(y) = α + β1x1 + β2x2 + β3x1x2.

This is a special case of the multiple regression model with three explanatory vari-
ables, in which x3 is an artificial variable created as the cross product x3 = x1x2 of the
two primary explanatory variables.

Let’s see why this model permits interaction. Consider how y is related to x1,
controlling for x2. We rewrite the equation in terms of x1 as

E(y) = (α + β2x2) + (β1 + β3x2)x1 = α′ + β ′x1,

where
α′ = α + β2x2 and β ′ = β1 + β3x2.

So, for fixed x2, the mean of y changes linearly as a function of x1. But the slope of
the relationship, β ′ = (β1 + β3x2), depends on the value of x2. As x2 changes, the
slope for the effect of x1 changes. In summary, the mean of y is a linear function of
x1, but the slope of the line changes as the value of x2 changes.

For the model containing the cross-product term, β1 is the effect of x1 only when
x2 = 0. Unless x2 = 0 is a particular value of interest for x2, it is not particularly
useful to form confidence intervals or perform significance tests about β1 (or β2) in
this model.

Similarly, the mean of y is a linear function of x2, but the slope varies according
to the value of x1. The coefficient β2 of x2 refers to the effect of x2 only at x1 = 0.

Example
11.6

Allowing Interaction in Modeling Mental Impairment For the data set on y = mental
impairment, x1 = life events, and x2 = SES, we create a third explanatory variable x3

that gives the cross product of x1 and x2 for the 40 individuals. For the first subject,
for example, x1 = 46 and x2 = 84, so x3 = 46(84) = 3864. Software makes it easy to
create this variable without doing the calculations yourself. Table 11.8 shows some
software output for the model that permits interaction. The prediction equation is

ŷ = 26.0 + 0.156x1 − 0.060x2 − 0.00087x1x2.

Figure 11.10 portrays the relationship between predicted mental impairment and
life events for a few distinct SES values. For an SES score of x2 = 0, the relationship
between ŷ and x1 is

ŷ = 26.0 + 0.156x1 − 0.060(0) − 0.00087x1(0) = 26.0 + 0.156x1.

When x2 = 50, the prediction equation is

ŷ = 26.0 + 0.156x1 − 0.060(50) − 0.00087(50)x1 = 23.0 + 0.113x1.

When x2 = 100, the prediction equation is

y = 20.0 + 0.069x1.
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TABLE 11.8: Output for Model Allowing Interaction, for y = Mental Impairment, x1 = Life
Events, and x2 = SES from Mental Data File

Sum of Mean
Squares DF Square F Sig

Regression 403.631 3 134.544 6.383 0.0014
Residual 758.769 36 21.077
Total 1162.400 39

R: .589 R Square: .347

B Std. Error t Sig
(Constant) 26.036649 3.948826 6.594 0.0001
LIFE 0.155865 0.085338 1.826 0.0761
SES -0.060493 0.062675 -0.965 0.3409
LIFE*SES -0.000866 0.001297 -0.668 0.5087

The higher the value of SES, the smaller the slope between predicted mental impair-
ment and life events, and so the weaker is the effect of life events. Perhaps subjects
who possess greater resources, in the form of higher SES, are better able to withstand
the mental stress of potentially traumatic life events.

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

35

40

45

x1

y

y 5 26.037 1 .156x1 (x2 5
 0)

ˆ
y 5 23.012 1 .113x1 (x2 5 50)

ˆ

y 5 19.987 1 .069x1 (x2 5 100)

ˆ

FIGURE 11.10: Portrayal
of Interaction between x1
and x2 in Their Effects on y

TESTING SIGNIFICANCE OF AN INTERACTION TERM

For two explanatory variables, the model allowing interaction is

E(y) = α + β1x1 + β2x2 + β3x1x2.

The simpler model assuming no interaction is the special case β3 = 0. The hypothesis
of no interaction is H0: β3 = 0. As usual, the t test statistic divides the estimate of the
parameter (β3) by its standard error.

From Table 11.8, t = −0.00087/0.0013 = −0.67. The P-value for Ha: β3 �= 0
is P = 0.51. Little evidence exists of interaction. The variation in the slope of the
relationship between mental impairment and life events for various SES levels could
be due to sampling variability. The sample size here is small, however, which makes
it difficult to estimate effects precisely.
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When the evidence of interaction is weak, as it is here with a P-value of 0.51, it
is best to drop the interaction term from the model before testing hypotheses about
partial effects such as H0: β1 = 0 or H0: β2 = 0. On the other hand, if the evidence of
interaction is strong, it no longer makes sense to test these other hypotheses. If there is
interaction, then the effect of each variable exists and differs according to the level
of the other variable.

CENTERING THE EXPLANATORY VARIABLES∗

For the mental impairment data, x1 and x2 are highly significant in the model with
only those predictors (Table 11.5) but lose their significance after entering the in-
teraction term, even though the interaction is not significant (Table 11.8). But we’ve
noted that the coefficients of x1 and x2 in an interaction model are not usually mean-
ingful, because they refer to the effect of a predictor only when the other predictor
equals 0.

An alternative way to parameterize the interaction model gives estimates and
significance for the effect of x1 and x2 similar to those for the no-interaction model.
The method centers the scores for each explanatory variable around 0, by subtracting
the mean. Let xC

1 = x1 −μx1 and xC
2 = x2 −μx2 , so that each new explanatory variable

has a mean of 0. Then, we express the interaction model as

E(y) = α + β1xC
1 + β2xC

2 + β3xC
1 xC

2

= α + β1(x1 − μx1 ) + β2(x2 − μx2 ) + β3(x1 − μx1 )(x2 − μx2 ).

Now, β1 refers to the effect of x1 at the mean of x2, and β2 refers to the effect of x2

at the mean of x1. Their estimates are usually similar to the estimated effects for the
no-interaction model.

When we rerun the interaction model for the mental health data after centering
the predictors about their sample means, that is, with

LIFE CEN = LIFE − 44.425 and SES CEN = SES − 56.60,

we get software output shown in Table 11.9. The estimate for the interaction term
is the same as for the model with uncentered predictors. Now, though, the estimates
(and standard errors) for the effects of x1 and x2 alone are similar to the values for the
no-interaction model. This happens because the coefficient for a variable represents
its effect at the mean of the other variable, which is typically similar to the effect for
the no-interaction model. Also, the statistical significance of x1 and x2 is similar as in
the no-interaction model.

TABLE 11.9: Output for Model Allowing Interaction, Using Centered Explanatory Variables

B Std. Error t Sig
(Constant) 27.359555 0.731366 37.409 0.0001
LIFE_CEN 0.106850 0.033185 3.220 0.0027
SES_CEN -0.098965 0.029390 -3.367 0.0018
LIFE_CEN*SES_CEN -0.000866 0.001297 -0.668 0.5087

In summary, centering the explanatory variables before using them in a model
allowing interaction has two benefits. First, the estimates of the effects of x1 and x2 are
more meaningful, being effects at the mean rather than at 0. Second, the estimates
and their standard errors are similar as in the no-interaction model.
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GENERALIZATIONS AND LIMITATIONS∗

When the number of explanatory variables exceeds two, a model allowing interaction
can have cross products for each pair of explanatory variables. For example, with
three explanatory variables, an interaction model is

E(y) = α + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3.

This is a special case of multiple regression with six explanatory variables, identifying
x4 = x1x2, x5 = x1x3, and x6 = x2x3. Significance tests can judge which, if any, of the
cross-product terms are needed in the model.

When interaction exists and the model contains cross-product terms, it is more
difficult to summarize simply the relationships. One approach is to sketch a collec-
tion of lines such as those in Figure 11.10 to describe graphically how the relationship
between two variables changes according to the values of other variables. Another
possibility is to divide the data into groups according to the value on a control vari-
able (e.g., high on x2, medium on x2, low on x2) and report the slope between y and
x1 within each subset as a means of describing the interaction.

11.5 Comparing Regression Models
When the number of explanatory variables increases, the multiple regression model
becomes more difficult to interpret and some variables may become redundant. This
is especially true when some explanatory variables are cross products of others, to
allow for interaction. Not all the variables may be needed in the model. We next
present a significance test of whether a model fits significantly better than a simpler
model containing only some of the explanatory variables.

COMPLETE AND REDUCED MODELS

We refer to the full model with all the explanatory variables as the complete model.
The model containing only some of these variables is called the reduced model. The
reduced model is said to be nested within the complete model, being a special case
of it.

The complete and reduced models are identical if the partial regression coeffi-
cients for the extra variables in the complete model all equal 0. In that case, none of
the extra explanatory variables increases the explained variability in y, in the pop-
ulation of interest. Testing whether the complete model is identical to the reduced
model is equivalent to testing whether the extra parameters in the complete model
equal 0. The alternative hypothesis is that at least one of these extra parameters is
not 0, in which case the complete model fits better than the reduced model.

For instance, a complete model with three explanatory variables and all two-
variable interaction terms is

E(y) = α + β1x1 + β2x2 + β3x3 + β4x1x2 + β5x1x3 + β6x2x3.

The reduced model without the interaction terms is

E(y) = α + β1x1 + β2x2 + β3x3.

The test comparing the complete model to the reduced model has H0: β4 = β5 =
β6 = 0.
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COMPARING MODELS BY COMPARING SSE VALUES OR R2-VALUES

The test statistic for comparing two regression models compares the residual sums
of squares for the two models. Denote SSE = ∑

(y − ŷ)2 for the reduced model by
SSEr and for the complete model by SSEc. Now, SSEr ≥ SSEc, because the reduced
model has fewer explanatory variables and makes poorer overall predictions. Even
if H0 were true, we would not expect the estimates of the extra parameters and the
difference (SSEr−SSEc) to equal 0. Some reduction in error occurs from fitting the
extra terms because of sampling variability.

The test statistic uses the reduction in error, SSEr – SSEc, that results from
adding the extra variables. An equivalent statistic uses the R2-values, R2

c for the com-
plete model and R2

r for the reduced model. The two expressions for the test statistic
are

F = (SSEr − SSEc)/df1

SSEc/df2
= (R2

c − R2
r )/df1

(1 − R2
c)/df2

.

Here, df1 is the number of extra terms in the complete model (e.g., 3 when we add
three interaction terms to get the complete model) and df2 is the residual df for the
complete model. A relatively large reduction in error (or relatively large increase in
R2) yields a large F test statistic and a small P-value. As usual for F statistics, the
P-value is the right-tail probability.

Example
11.7

Comparing Models for Mental Impairment For the mental impairment data, a com-
parison of the complete model

E(y) = α + β1x1 + β2x2 + β3x1x2

to the reduced model
E(y) = α + β1x1 + β2x2

analyzes whether interaction exists. The complete model has only one additional
term, and the null hypothesis is H0: β3 = 0.

The sum of squared errors for the complete model is SSEc = 758.8 (Table 11.8 on
page 339), while for the reduced model it is SSEr = 768.2 (Table 11.7 on page 330).
The difference

SSEr − SSEc = 768.2 − 758.8 = 9.4

has df1 = 1 since the complete model has one more parameter. From Table 11.8,
df2 = n−(p+1) = 40−(3+1) = 36, the residual df in that table. The F test statistic
equals

F = (SSEr − SSEc)/df1

SSEc/df2
= 9.4/1

758.8/36
= 0.45.

Equivalently, the R2-values for the two models are R2
r = 0.339 and R2

c = 0.347, so

F =
(
R2

c − R2
r

)
/df1

(1 − R2
c) /df2

= (0.347 − 0.339)/1
(1 − 0.347)/36

= 0.45.

From software, the P-value from the F distribution with df1 = 1 and df2 = 36 is P =
0.51. There is little evidence that the complete model is better. The null hypothesis
seems plausible, so the reduced model is adequate.

When H0 contains a single parameter, the t test is available. In fact, from the
previous section (and Table 11.8), the t statistic is

t = b3

se
= −0.00087

0.0013
= −0.67.
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It also has a P-value of 0.51 for Ha: β3 �= 0. We get the same result with the t test as
with the F test for complete and reduced models. In fact, the F test statistic equals
the square of the t statistic. (Refer to page 337.)

The t test method is limited to testing one parameter at a time. The F test can
test several regression parameters together to analyze whether at least one of them
is nonzero, such as in the global F test of H0: β1 = · · · = βp = 0 or the test comparing
a complete model to a reduced model. F tests are equivalent to t tests only when H0

contains a single parameter.

11.6 Partial Correlation∗

Multiple regression models describe the effect of an explanatory variable on the
response variable while controlling for other variables of interest. Related measures
describe the strength of the association. For example, to describe the association
between mental impairment and life events, controlling for SES, we could ask, “Con-
trolling for SES, what proportion of the variation in mental impairment does life
events explain?”

These measures describe the partial association between y and a particular
explanatory variable, whereas the multiple correlation and R2 describe the associ-
ation between y and the entire set of explanatory variables in the model. The partial
correlation is based on the ordinary correlations between each pair of variables. For
a single control variable, it is calculated as follows:

Partial Correlation

The sample partial correlation between y and x1, controlling for x2, is

ryx1·x2 = ryx1 − ryx2 rx1x2√(
1 − r2

yx2

) (
1 − r2

x1x2

) .

In the symbol ryx1·x2 , the variable to the right of the dot represents the controlled
variable. The analogous formula for ryx2·x1 (i.e., controlling x1) is

ryx2·x1 = ryx2 − ryx1 rx1x2√(
1 − r2

yx1

) (
1 − r2

x1x2

) .

Since one variable is controlled, the partial correlations ryx1·x2 and ryx2·x1 are called
first-order partial correlations.

Example
11.8

Partial Correlation between Education and Crime Rate Example 11.1 (page 320) dis-
cussed a data set for counties in Florida, with y = crime rate, x1 = education, and
x2 = urbanization. The pairwise correlations are ryx1 = 0.468, ryx2 = 0.678, and
rx1x2 = 0.791. It was surprising to observe a positive correlation between crime rate
and education. Can it be explained by their joint dependence on urbanization? This
is plausible if the association disappears when we control for urbanization.

The partial correlation between crime rate and education, controlling for urban-
ization, is

ryx1·x2 = ryx1 − ryx2 rx1x2√
(1 − r2

yx2
)(1 − r2

x1x2
)

= 0.468 − 0.678(0.791)√
(1 − 0.6782) (1 − 0.7912)

= −0.152.
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Not surprisingly, ryx1·x2 is much smaller than ryx1 . It even has a different direction,
illustrating Simpson’s paradox. The relationship between crime rate and education
may well be spurious, reflecting their joint dependence on urbanization.

INTERPRETING PARTIAL CORRELATIONS

The partial correlation has properties similar to those for the ordinary correlation be-
tween two variables. We list the properties below for ryx1·x2 , but analogous properties
apply to ryx2·x1 .

• ryx1·x2 falls between −1 and +1.

• The larger the absolute value of ryx1·x2 , the stronger the association between y
and x1, controlling for x2.

• The value of a partial correlation does not depend on the units of measurement
of the variables.

• ryx1·x2 has the same sign as the partial slope (b1) for the effect of x1 in the predic-
tion equation ŷ = a + b1x1 + b2x2, because the same variable (x2) is controlled
in the model as in the correlation.

• Under the assumptions for conducting inference for multiple regression (see
the beginning of Section 11.3), ryx1·x2 estimates the correlation between y and x1

at every fixed value of x2. If we could control x2 by considering a subpopulation
of subjects all having the same value on x2, then ryx1·x2 estimates the correlation
between y and x1 for that subpopulation.

• The sample partial correlation is identical to the ordinary bivariate correlation
computed for the points in the partial regression plot (page 326).

INTERPRETING SQUARED PARTIAL CORRELATIONS

Like r2 and R2, the square of a partial correlation has a proportional reduction in
error (PRE) interpretation. For example, r2

yx2·x1
is the proportion of variation in y

explained by x2, controlling for x1. This squared measure describes the effect of re-
moving from consideration the portion of the total sum of squares (TSS) in y that
is explained by x1, and then finding the proportion of the remaining unexplained
variation in y that is explained by x2.

Squared Partial Correlation

The square of the partial correlation ryx2·x1 represents the proportion of the
variation in y that is explained by x2, out of that left unexplained by x1. It
equals

r2
yx2·x1

= R2 − r2
yx1

1 − r2
yx1

= Partial proportion explained uniquely by x2

Proportion unexplained by x1
.

From Section 9.4 (page 271), r2
yx1

represents the proportion of the variation in
y explained by x1. The remaining proportion (1 − r2

yx1
) represents the variation left

unexplained. When x2 is added to the model, it accounts for some additional varia-
tion. The total proportion of the variation in y accounted for by x1 and x2 jointly is
R2 for the model with both x1 and x2 as explanatory variables. So, R2 − r2

yx1
is the

additional proportion of the variability in y explained by x2, after the effects of x1
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have been removed or controlled. The maximum this difference could be is 1 − r2
yx1

,
the proportion of variation yet to be explained after accounting for the influence
of x1. The additional explained variation R2 − r2

yx1
divided by this maximum possi-

ble difference is a measure that has a maximum possible value of 1. In fact, as the
above formula suggests, this ratio equals the squared partial correlation between y
and x2, controlling for x1. Figure 11.11 illustrates this property of the squared partial
correlation.

0
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1
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1R2

r2
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variation explained by x2

Proportion of variation
unexplained by x1

r2
yx1

FIGURE 11.11:
Representation of r2

yx2·x1

as the Proportion of
Variability That Can Be
Explained by x2, of That
Left Unexplained by x1

Example
11.9

Partial Correlation of Life Events with Mental Impairment We return to the example
with y = mental impairment, x1 = life events, and x2 = SES. Software reports the
correlation matrix

IMPAIR LIFE SES
IMPAIR 1.000 .372 -.399
LIFE .372 1.000 .123
SES -.399 .123 1.000

So, ryx1 = 0.372, ryx2 = −0.399, and rx1x2 = 0.123. The partial correlation between
mental impairment and life events, controlling for SES, is

ryx1·x2 = ryx1 − ryx2 rx1x2√(
1 − r2

yx2

) (
1 − r2

x1x2

) = 0.372 − (−0.399)(0.123)√
[1 − (−0.399)2] (1 − 0.1232)

= 0.463.

The partial correlation, like the correlation of 0.37 between mental impairment and
life events, is moderately positive.

Since r2
yx1·x2

= (0.463)2 = 0.21, controlling for SES, 21% of the variation in
mental impairment is explained by life events. Alternatively, since R2 = 0.339
(Table 11.7),

r2
yx1·x2

= R2 − r2
yx2

1 − r2
yx2

= 0.339 − (−0.399)2

1 − (−0.399)2
= 0.21.
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HIGHER-ORDER PARTIAL CORRELATIONS

The connection between squared partial correlation values and R-squared also ap-
plies when the number of control variables exceeds one. For example, with three
explanatory variables, let R2

y(x1,x2,x3) denote the value of R2. The square of the partial
correlation between y and x3, controlling for x1 and x2, relates to how much larger
this is than the R2-value for the model with only x1 and x2 as explanatory variables,
which we denote by R2

y(x1,x2). The squared partial correlation is

r2
yx3·x1,x2

=
R2

y(x1,x2,x3) − R2
y(x1,x2)

1 − R2
y(x1,x2)

.

In this expression, R2
y(x1,x2,x3) − R2

y(x1,x2) is the increase in the proportion of explained
variance from adding x3 to the model. The denominator 1−R2

y(x1,x2) is the proportion
of the variation left unexplained when x1 and x2 are the only explanatory variables
in the model.

The partial correlation ryx3·x1,x2 is called a second-order partial correlation, since
it controls two variables. It has the same sign as b3 in the prediction equation ŷ =
a + b1x1 + b2x2 + b3x3, which also controls x1 and x2 in describing the effect of x1.

11.7 Standardized Regression Coefficients∗

As in bivariate regression, the sizes of regression coefficients in multiple regression
models depend on the units of measurement for the variables. To compare the rel-
ative effects of two explanatory variables, it is appropriate to compare their coeffi-
cients only if the variables have the same units. Otherwise, standardized versions of
the regression coefficients provide more meaningful comparisons.

Standardized Regression
Coefficient

The standardized regression coefficient for an explanatory variable
represents the change in the mean of y, in y standard deviations, for a one
standard deviation increase in that variable, controlling for the other
explanatory variables in the model. We denote them by β∗

1 , β∗
2 , . . . .

If |β∗
2 | > |β∗

1 |, for example, then a standard deviation increase in x2 has a greater
partial effect on y than does a standard deviation increase in x1.

THE STANDARDIZATION MECHANISM

The standardized regression coefficients represent the values the regression coeffi-
cients take when the units are such that y and the explanatory variables all have equal
standard deviations, such as when we use standardized variables. We can obtain the
standardized regression coefficients from the unstandardized coefficients. Let sy de-
note the sample standard deviation of y, and let sx1 , sx2 , . . . , sxp denote the sample
standard deviations of the explanatory variables.

The estimates of the standardized regression coefficients relate to the
estimates of the unstandardized coefficients by

b∗
1 = b1

(
sx1

sy

)
, b∗

2 = b2

(
sx2

sy

)
, . . . .
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Example
11.10

Standardized Coefficients for Mental Impairment The prediction equation relating
mental impairment to life events and SES is

ŷ = 28.23 + 0.103x1 − 0.097x2.

Table 11.2 reported the sample standard deviations sy = 5.5, sx1 = 22.6, and
sx2 = 25.3. The unstandardized coefficient of x1 is b1 = 0.103, so the estimated stan-
dardized coefficient is

b∗
1 = b1

(
sx1

sy

)
= 0.103

(
22.6
5.5

)
= 0.43.

Since b2 = −0.097, the standardized value is

b∗
2 = b2

(
sx2

sy

)
= −0.097

(
25.3
5.5

)
= −0.45.

The estimated change in the mean of y for a standard deviation increase in x1,
controlling for x2, has similar magnitude as the estimated change for a standard de-
viation increase in x2, controlling for x1. However the partial effect of x1 is positive,
whereas the partial effect of x2 is negative.

Table 11.10, which repeats Table 11.5, shows how SPSS reports the estimated
standardized regression coefficients. It uses the heading BETA (as does Stata), re-
flecting the alternative name beta weights for these coefficients.

TABLE 11.10: SPSS Output for Fit of Multiple Regression Model to Mental Impairment Data
from Mental Data File, with Standardized Coefficients

Unstandardized coefficients Standardized coefficients
B Std. Error Beta t Sig.

(Constant) 28.230 2.174 12.984 .000
LIFE .103 .032 .428 3.177 .003
SES -.097 .029 -.451 -3.351 .002

PROPERTIES OF STANDARDIZED REGRESSION COEFFICIENTS

For bivariate regression, standardizing the regression coefficient yields the correla-
tion. For the multiple regression model, the standardized partial regression coeffi-
cient relates to the partial correlation (Exercise 11.65), and it usually takes a similar
value.

Unlike the partial correlation, however, b∗
i need not fall between −1 and +1. A

value |b∗
i | > 1 occasionally occurs when xi is highly correlated with the set of other

explanatory variables in the model. In such cases, the standard errors are usually
large and the estimates are unreliable.

Since a standardized regression coefficient is a multiple of the unstandardized
coefficient, one equals 0 when the other does. The test of H0: β∗

i = 0 is equivalent
to the t test of H0: βi = 0. It is unnecessary to have separate tests for these coeffi-
cients. In the sample, the magnitudes of the {b∗

i } have the same relative sizes as the
t statistics from those tests. For example, the explanatory variable with the great-
est standardized partial effect is the one that has the largest t statistic, in absolute
value.
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STANDARDIZED FORM OF PREDICTION EQUATION

Regression equations have an expression using the standardized regression coeffi-
cients. In this equation, the variables appear in standardized form.

Let zy, zx1 , . . . , zxp denote the standardized versions of the variables
y, x1, . . . , xp. For instance, zy = (y − ȳ)/sy represents the number of standard
deviations that an observation on y falls from its mean. Each subject’s scores on
y, x1, . . . , xp have corresponding z-scores for zy, zx1 , . . . , zxp . If a subject’s score on
x1 is such that zx1 = (x1 − x̄1)/sx1 = 2.0, for instance, then that subject falls two
standard deviations above the mean x̄1 on x1.

Let ẑy = (ŷ − ȳ)/sy denote the predicted z-score for the response variable. For
the standardized variables and the estimated standardized regression coefficients, the
prediction equation is

ẑy = b∗
1zx1 + b∗

2zx2 + · · · + b∗
pzxp .

This equation predicts how far an observation on y falls from its mean, in standard
deviation units, based on how far the explanatory variables fall from their means, in
standard deviation units. The standardized coefficients are the weights attached to
the standardized explanatory variables in contributing to the predicted standardized
response variable.

Example
11.11

Standardized Prediction Equation for Mental Impairment Example 11.10 found that
the estimated standardized regression coefficients for the life events and SES predic-
tors of mental impairment are b∗

1 = 0.43 and b∗
2 = −0.45. The prediction equation

relating the standardized variables is therefore

ẑy = 0.43zx1 − 0.45zx2 .

A subject who is two standard deviations above the mean on life events but two
standard deviations below the mean on SES has a predicted standardized mental
impairment of

ẑy = 0.43(2) − 0.45(−2) = 1.8.

The predicted mental impairment for that subject is 1.8 standard deviations above
the mean. If the distribution of mental impairment is approximately normal, this
subject might well have mental health problems, since only about 4% of the scores
in a normal distribution fall at least 1.8 standard deviations above their mean.

In the prediction equation with standardized variables, no intercept term ap-
pears. Why is this? When the standardized explanatory variables all equal 0, those
variables all fall at their means. Then, ŷ = ȳ, so

ẑy = ŷ − ȳ
sy

= 0.

So, this merely tells us that a subject who is at the mean on each explanatory variable
is predicted to be at the mean on the response variable.

CAUTIONS IN COMPARING STANDARDIZED REGRESSION
COEFFICIENTS

To assess which explanatory variable in a multiple regression model has the great-
est impact on the response variable, it is tempting to compare their standardized
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regression coefficients. Make such comparisons with caution. In some cases, the ob-
served differences in the b∗

i may simply reflect sampling error. In particular, when
multicollinearity exists, the standard errors are high and the estimated standardized
coefficients may be unstable.

For a standardized regression coefficient to make sense, the variation in the ex-
planatory variable must be representative of the variation in the population of inter-
est. It is inappropriate to compare the standardized effect of an explanatory variable
to others if the study purposely sampled values of that variable in a narrow range.
This comment relates to a warning in Section 9.6 (page 284) about the correlation:
Its value depends strongly on the range of explanatory variable values sampled.

Keep in mind also that the effects are partial ones, depending on which other
variables are in the model. An explanatory variable that seems important in one
system of variables may seem unimportant when other variables are controlled. For
example, it is possible that |b∗

2| > |b∗
1| in a model with two explanatory variables, yet

when a third explanatory variable is added to the model, |b∗
2| < |b∗

1|.
It is unnecessary to standardize to compare the effect of the same variable for

two groups, such as in comparing the results of separate regressions for females and
males, since the units of measurement are the same in each group. In fact, it is usu-
ally unwise to standardize in this case, because the standardized coefficients are more
susceptible than the unstandardized coefficients to differences in the standard devi-
ations of the explanatory variables. Two groups that have the same value for an esti-
mated regression coefficient have different standardized coefficients if the standard
deviation of the explanatory variable differs for the two groups.

11.8 Chapter Summary
This chapter generalized the bivariate regression model to include additional ex-
planatory variables. The multiple regression equation relating a response variable
y to a set of p explanatory variables is

E(y) = α + β1x1 + β2x2 + · · · + βpxp.

• The {βi} are partial regression coefficients. The value βi is the change in the
mean of y for a one-unit change in xi, controlling for the other variables in the
model.

• The multiple correlation R describes the association between y and the collec-
tive set of explanatory variables. It equals the correlation between the observed
and predicted y-values. It falls between 0 and 1.

• R2 = (TSS − SSE)/TSS represents the proportional reduction in error from
predicting y using the prediction equation ŷ = a + b1x1 + b2x2 + · · · + bpxp

instead of ȳ. It equals the square of the multiple correlation.

• A partial correlation, such as ryx1·x2 , describes the association between two
variables, controlling for others. It falls between −1 and +1. The squared partial
correlation between y and xi represents the proportion of the variation in y
that can be explained by xi, out of that part left unexplained by a set of control
variables.

• An F statistic tests H0: β1 = β2 = · · · = βp = 0, that the response variable
is independent of all the explanatory variables. F-values are nonnegative and
have two df values. A large F test statistic and small P-value suggest that the
response variable is correlated with at least one of the explanatory variables.

• Individual t tests and confidence intervals for {βi} analyze partial effects of each
explanatory variable, controlling for the other variables in the model.
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• Interaction between x1 and x2 in their effects on y means that the effect of
either explanatory variable changes as the value of the other one changes. We
can allow this by adding cross products of explanatory variables to the model,
such as the term β3(x1x2).

• To compare regression models, a complete model and a simpler reduced model,
an F test compares the SSE values or the R2-values.

• Standardized regression coefficients do not depend on the units of measure-
ment. The estimated standardized coefficient b∗

i describes the change in y, in y
standard deviation units, for a one standard deviation increase in xi, controlling
for the other explanatory variables.

To illustrate, with p = 3 explanatory variables, the prediction equation is

ŷ = a + b1x1 + b2x2 + b3x3.

Fixing x2 and x3, a straight line describes the relation between y and x1. Its slope b1

is the change in ŷ for a one-unit increase in x1, controlling for x2 and x3. The multiple
correlation R is at least as large as the absolute values of the correlations ryx1, ryx2,
and ryx3. The squared partial correlation r2

yx3·x1,x2
is the proportion of the variation of

y that is explained by x3, out of that part of the variation left unexplained by x1 and
x2. The estimated standardized regression coefficient b∗

1 = b1(sx1/sy) describes the
effect of a standard deviation change in x1, controlling for x2 and x3.

Table 11.11 summarizes the basic properties and inference methods for these
measures and those introduced in Chapter 9 for bivariate regression.

TABLE 11.11: Summary of Bivariate and Multiple Regression

Bivariate Regression Multiple Regression

Model E(y) = α + βx E(y) = α + β1x1 + · · · + βpxp

Prediction ŷ = a + bx ŷ = a + b1x1 + · · · + bpxp

equation

Overall effect of x Simultaneous effect Partial effect of
of x1, . . . , xp one xi

Measures b = Slope
r = Correlation,

standardized slope,
−1 ≤ r ≤ 1,
r has the same
sign as b

R = Multiple correlation,
0 ≤ R ≤ 1

bi = Partial slope
b∗

i = Standardized regres-
sion coefficient

r2 = PRE measure,
0 ≤ r2 ≤ 1

R2 = PRE measure,
0 ≤ R2 ≤ 1

Partial correlation,
−1 ≤ ryx1·x2 ≤ 1,
same sign as bi and b∗

i ,
r2
yx1·x2

is PRE measure

Tests of no
association

H0: β = 0 or H0: ρ = 0,
y not associated with x

H0: β1 = · · · = βp =
0, y not associated
with x1, . . . , xp

H0: βi = 0,
y not associated with
xi, controlling for other
x variables

Test statistic t = b
se = r√

1−r2
n−2

F = Regression MS
Residual MS t = bi

se

df = n − 2 = R2/p
(1−R2)/[n−(p+1)] , df = n − (p + 1)

df1 = p, df2 = n − (p + 1)
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The model studied in this chapter is somewhat restrictive, requiring that all the
explanatory variables be quantitative. The next chapter shows how a model can con-
tain categorical explanatory variables.

Exercises

Practicing the Basics
11.1. For students at Walden University, the relationship
between y = college GPA (with range 0–4.0) and x1 =
high school GPA (range 0–4.0) and x2 = verbal college
board score (range 200–800) satisfies E(y) = 0.20 +
0.50x1 + 0.002x2.

(a) Find the mean college GPA for students having (i)
high school GPA = 4.0 and college board score = 800,
(ii) x1 = 3.0 and x2 = 300.

(b) Show that the relationship between y and x1 for those
students with x2 = 500 is E(y) = 1.2 + 0.5x1.

(c) Show that when x2 = 600, E(y) = 1.4 + 0.5x1. Thus,
increasing x2 by 100 shifts the line relating y to x1 upward
by 100β2 = 0.2 units.

(d) Show that setting x1 at a variety of values yields a col-
lection of parallel lines, each having slope 0.002, relating
the mean of y to x2.

11.2. For recent data in Jacksonville, Florida, on y = sell-
ing price of home (in dollars), x1 = size of home (in square
feet), and x2 = lot size (in square feet), the prediction
equation is ŷ = −10,536 + 53.8x1 + 2.84x2.

(a) A particular home of 1240 square feet on a lot of
18,000 square feet sold for $145,000. Find the predicted
selling price and the residual, and interpret.

(b) For fixed lot size, how much is the house selling price
predicted to increase for each square-foot increase in
home size? Why?

(c) According to this prediction equation, for fixed home
size, how much would lot size need to increase to have
the same impact as a one-square-foot increase in home
size?

(d) Suppose house selling prices are changed from dollars
to thousands of dollars. Explain why the prediction equa-
tion changes to ŷ = −10.536 + 0.0538x1 + 0.00284x2.

11.3. The Social Progress Index (see www.socialprog-
ressimperative.org) is a measure of national
progress in delivering social and environmental value.
It is an average of three component measures: BHN =
basic human needs, incorporating basic medical care and
personal safety; FW = foundations of well-being, in-
corporating access to basic knowledge and ecosystem

sustainability; and Opp = opportunity, incorporating
personal rights and access to advanced education. The
SocialProgress data file at the text website shows
the values for SP = social progress index and its three
components, for nations in Europe and North America.
(a) Construct a scatterplot matrix for the four variables.
Interpret.
(b) Construct a correlation matrix for the four variables.
Interpret.
(c) Regress SP on BHN and FW . Report the prediction
equation and interpret the effects.
(d) Show how R2 changes when you regress SP on
(i) BHN, (ii) BHN and FW , (iii) BHN, FW , and Opp.
Interpret.

11.4. Use software with the Crime2 data file at the
text website, with murder rate (number of murders per
100,000 people) as the response variable and with per-
centage of high school graduates and the poverty rate as
explanatory variables.
(a) Construct the partial regression plots. Interpret. Do
you see any unusual observations?
(b) Report the prediction equation. Explain how to inter-
pret the estimated coefficients.
(c) Redo the analyses after deleting the D.C. observa-
tion. Describe the influence of this observation on the pre-
dicted effect of poverty rate. What does this tell you about
how influential outliers can be?

11.5. A regression analysis with recent UN data from sev-
eral nations on y = percentage of people who use the In-
ternet, x1 = per capita gross domestic product (in thou-
sands of dollars), and x2 = percentage of people using cell
phones has results shown in Table 11.12.
(a) Write the prediction equation.
(b) Find the predicted Internet use for a country with per
capita GDP of $10,000 and 50% of the people using cell
phones.
(c) Find the prediction equations when cell phone use is
(i) 0%, (ii) 100%, and use them to interpret the effect of
GDP.
(d) Use the equations in (c) to explain the no interaction
property of the model.

http://www.socialprogressimperative.org
http://www.socialprogressimperative.org


352 Chapter 11 Multiple Regression and Correlation

TABLE 11.12

B Std. Error t Sig
(Constant) -3.601 2.506 -1.44 0.159
GDP 1.2799 0.2703 4.74 0.000
CELLULAR 0.1021 0.0900 1.13 0.264

R Square .796

ANOVA
Sum of Squares DF

Regression 10316.8 2
Residual Error 2642.5 36
Total 12959.3 38

11.6. Refer to the previous exercise.
(a) Show how to obtain R-squared from the sums of
squares in the ANOVA table. Interpret it.
(b) r2 = 0.78 when GDP is the sole predictor. Why do
you think R2 does not increase much when cell phone use
is added to the model, even though it is itself highly asso-
ciated with y (with r = 0.67)? (Hint: Would you expect x1
and x2 to be highly correlated? If so, what is the effect?)

11.7. The Florida data file, shown partly on page 295,
has data from the 67 Florida counties on y = crime rate
(number per 1000 residents), x1 = median income (thou-
sands of dollars), and x2 = percentage in urban environ-
ment.
(a) Figure 11.12 shows a scatterplot relating y to x1. Pre-
dict the sign that the estimated effect of x1 has in the pre-
diction equation ŷ = a + bx1. Explain.
(b) Figure 11.13 shows partial regression plots relating y
to each explanatory variable, controlling for the other. Ex-
plain how these relate to the signs of b1 and b2 in the pre-
diction equation ŷ = a + b1x1 + b2x2.

(c) Table 11.13 shows some software output for the bivari-
ate and multiple regression models. Report the prediction
equation relating y to x1, and interpret the slope.

(d) Report the prediction equation relating y to both x1
and x2. Interpret the coefficient of x1, and compare to (c).
(e) The correlations are ryx1 = 0.43, ryx2 = 0.68, and
rx1x2 = 0.73. Use these to explain why the x1 effect seems
so different in (c) and (d).
(f) Report the prediction equations relating crime rate to
income at urbanization levels of (i) 0, (ii) 50, (iii) 100. In-
terpret.

11.8. Refer to the previous exercise. Using software with
the Florida data file at the text website,

(a) Construct box plots for each variable and scatterplots
and partial regression plots between y and each of x1 and
x2. Interpret these plots.
(b) Find the prediction equations for the (i) bivariate ef-
fects of x1 and of x2, (ii) multiple regression model. Inter-
pret the estimated regression coefficients.

FIGURE 11.12
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FIGURE 11.13

TABLE 11.13

BIVARIATE Coef. Std. Err. t P>|t|
income 2.609 0.675 3.866 0.0003
_cons -11.526 16.834 -0.685 0.4960

MULTIPLE Coef. Std. Err. t P>|t|
income -0.809 0.805 -1.005 0.3189
urban 0.646 0.111 5.811 0.0001
_cons 40.261 16.365 2.460 0.0166

(c) Find R2 for the multiple regression model, and show
that it is not much larger than r2 for the model using ur-
banization alone as the predictor. Interpret.

11.9. Recent UN data from several nations on y = crude
birth rate (number of births per 1000 population size),
x1 = women’s economic activity (female labor force as
percentage of male), and x2 = GNP (per capita, in thou-
sands of dollars) has prediction equation ŷ = 34.53 −
0.13x1 − 0.64x2. The bivariate prediction equation with
x1 is ŷ = 37.65 − 0.31x1. The correlations are ryx1 =
−0.58, ryx2 = −0.72, and rx1x2 = 0.58. Explain why the co-
efficient of x1 in the bivariate equation is quite different
from that in the multiple predictor equation.

11.10. For recent UN data for several nations, a regression
of carbon dioxide use (CO2, a measure of air pollution) on
gross domestic product (GDP) has a correlation of 0.786.
With life expectancy as a second explanatory variable, the
multiple correlation is 0.787.

(a) Explain how to interpret the multiple correlation.
(b) For predicting CO2, did it help much to add life ex-
pectancy to the model? Does this mean that life ex-
pectancy is very weakly correlated with CO2? Explain.

11.11. Table 11.14 shows Stata output from fitting the mul-
tiple regression model to recent statewide data, exclud-
ing D.C., on y = violent crime rate (per 100,000 peo-
ple), x1 = poverty rate (percentage with income below
the poverty level), and x2 = percentage living in urban
areas.

(a) Report the prediction equation.
(b) Massachusetts had y = 805, x1 = 10.7, and x2 = 96.2.
Find its predicted violent crime rate. Find the residual, and
interpret.
(c) Interpret the fit by showing the prediction equation
relating ŷ and x1 for states with (i) x2 = 0, (ii) x2 = 100.
Interpret.
(d) Interpret the correlation matrix.
(e) Report R2 and the multiple correlation, and interpret.

11.12. Refer to the previous exercise.

(a) Report the F statistic for testing H0: β1 = β2 = 0,
report its df values and P-value, and interpret.
(b) Show how to construct the t statistic for testing H0:
β1 = 0, report its df and P-value for Ha: β1 �= 0, and
interpret.
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TABLE 11.14

. regress violent poverty urban

Source | SS df MS Number of obs = 50
----------+------------------------- F(2, 47) = 31.249

Model | 2448368.07 2 1224184. Prob > F = 0.0001
Residual | 1841257.15 47 39175.68 R-squared = 0.5708
----------+------------------------- Adj R-squared = 0.5525

Total | 4289625.22 49 87543.37 Root MSE = 197.928

violent | Coef. Std. Err. t P>|t|
poverty | 32.622 6.677 4.885 0.0001
urban | 9.112 1.321 6.900 0.0001
_cons | -498.683 140.988 -3.537 0.0009

. corr violent poverty urban
violent poverty urban

violent 1.0000
poverty .3688 1.0000
urban .5940 -.1556 1.0000

(c) When we add x3 = percentage of single-parent fami-
lies to the model, we get the results in Table 11.15. Why
do you think the effect of poverty rate is much lower after
x3 is added to the model?

TABLE 11.15

Variable Coefficient Std. Error

Intercept −1197.538
Poverty 18.283 6.136
Urban 7.712 1.109
Single parent 89.401 17.836
R2 0.722

11.13. For 2014 GSS data on y = highest year of school
completed, x1 = mother’s highest year of school com-
pleted, and x2 = father’s highest year of school completed,
we obtain ŷ = 9.86 + 0.345x1 (r2 = 0.195), ŷ = 10.15 +
0.330x2 (r2 = 0.204), and ŷ = 9.30 + 0.194x1 + 0.212x2
(R2 = 0.243). In a single paragraph, summarize what you
learn from these results.

11.14. Table 11.16 comes from a regression analysis4 of
y = number of children in family, x1 = mother’s educa-
tional level in years (MEDUC), and x2 = father’s socioe-
conomic status (FSES), for a random sample of 49 college
students at Texas A&M University.

(a) Write the prediction equation. Interpret parameter
estimates.
(b) Find R2, and interpret it.

TABLE 11.16

Sum of Squares

Regression 31.8
Residual 199.3

b
(Constant) 5.25
MEDUC −0.24
FSES 0.02

11.15. The General Social Survey has asked subjects to
rate various groups using the “feeling thermometer.” The
rating is between 0 and 100, more favorable as the score
gets closer to 100 and less favorable as the score gets closer
to 0. For a small data set from the GSS, Table 11.17 shows
results of fitting the multiple regression model with feel-
ings toward liberals as the response, using explanatory
variables political ideology (scored from 1 = extremely
liberal to 7 = extremely conservative) and religious atten-
dance, using scores (1 = never, 2 = less than once a year,
3 = once or twice a year, 4 = several times a year, 5 =
about once a month, 6 = 2–3 times a month, 7 = nearly
every week, 8 = every week, 9 = several times a week).

(a) Report the prediction equation and interpret the ide-
ology partial effect.
(b) Report, and explain how to interpret, R2.
(c) Tables of this form often put * by an effect having
P < 0.05, ** by an effect having P < 0.01, and *** by an
effect having P < 0.001. Show how this was determined
for the ideology effect. Explain the disadvantage of sum-
marizing in this manner.

4Thanks to Barbara Finlay for these results.
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(d) Explain how the F -value can be obtained from the R2-
value reported. Report its df values, and explain how to
interpret its result.
(e) The estimated standardized regression coefficients are
−0.79 for ideology and −0.23 for religion. Interpret.

TABLE 11.17

Variable Coefficient Std. Error

Intercept 135.31
Ideology −14.07 3.16**

Religion −2.95 2.26
F 13.93**

R2 0.799
Adj. R2 0.742
n 10

11.16. Refer to Table 11.5 on page 328. Test H0: β2 = 0
that mental impairment is independent of SES, control-
ling for life events. Report the test statistic, and report and
interpret the P-value for (a) Ha: β2 �= 0, (b) Ha: β2 < 0.

11.17. For a random sample of 66 state precincts, data are
available on y = percentage of adult residents who are
registered to vote, x1 = percentage of adult residents own-
ing homes, x2 = percentage of adult residents who are
nonwhite, x3 = median family income (thousands of dol-
lars), x4 = median age of residents, x5 = percentage of res-
idents who have lived in the precinct for at least 10 years.
Table 11.18 shows some output used to analyze the data.

(a) Fill in all the missing values.
(b) Do you think it is necessary to include all five explana-
tory variables in the model? Explain.
(c) To what test does “F value” refer? Interpret the result
of that test.
(d) To what test does the t-value opposite x1 refer? Inter-
pret the result of that test.

TABLE 11.18

Sum of DF Mean F Sig R-Square
Squares Square ----

Regression ---- --- ---- ---- ----
Residual 2940.0 --- ---- Root MSE
Total 3753.3 --- ----

Parameter Standard
Variable Estimate Error t Sig
Intercept 70.0000
x1 0.1000 0.0450 ---- ----
x2 -0.1500 0.0750 ---- ----
x3 0.1000 0.2000 ---- ----
x4 -0.0400 0.0500 ---- ----
x5 0.1200 0.0500 ---- ----

11.18. Refer to the previous exercise. Find a 95% con-
fidence interval for the change in the mean of y for a
(a) 1-unit increase, (b) 50-unit increase in the percentage
of adults owning homes, controlling for the other vari-
ables. Interpret.

11.19. Use software with the Houses data file at the text
website to conduct a multiple regression analysis of y =
selling price of home (dollars), x1 = size of home (square
feet), x2 = number of bedrooms, x3 = number of bath-
rooms.
(a) Use scatterplots to display the effects of the explana-
tory variables on y. Explain how the highly discrete nature
of x2 and x3 affects the plots.
(b) Report the prediction equation and interpret the esti-
mated partial effect of size of home.
(c) Inspect the correlation matrix, and report the variable
having the (i) strongest association with y, (ii) weakest as-
sociation with y.
(d) Report R2 for this model and r2 for the simpler model
using x1 alone as the explanatory variable. Interpret.

11.20. Refer to the previous exercise.
(a) Test the partial effect of number of bathrooms, and
interpret.
(b) Find the partial correlation between selling price and
number of bathrooms, controlling for number of bed-
rooms. Compare it to the correlation, and interpret.
(c) Find the estimated standardized regression coeffi-
cients for the model, and interpret.
(d) Write the prediction equation using standardized vari-
ables. Interpret.

11.21. Exercise 11.11 showed a regression analysis for
statewide data on y = violent crime rate, x1 = poverty
rate, and x2 = percentage living in urban areas. When we
add an interaction term, we get ŷ = 158.9 − 14.72x1 −
1.29x2 + 0.76x1x2.
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(a) As the percentage living in urban areas increases, does
the effect of poverty rate tend to increase or decrease?
Explain.
(b) Show how to interpret the prediction equation, by
finding how it simplifies when x2 = 0, 50, and 100.

11.22. A study analyzes relationships among y = percent-
age vote for Democratic candidate, x1 = percentage of
registered voters who are Democrats, and x2 = percent-
age of registered voters who vote in the election, for sev-
eral congressional elections in 2016. The researchers ex-
pect interaction, since they expect a higher slope between
y and x1 at larger values of x2 than at smaller values. They
obtain the prediction equation ŷ = 20 + 0.30x1 + 0.05x2 +
0.005x1x2. Does this equation support the direction of
their prediction? Explain.

11.23. Use software with the Houses data file to allow
interaction between number of bedrooms and number of
bathrooms in their effects on selling price.

(a) Interpret the fit by showing the prediction equation re-
lating ŷ and number of bedrooms for homes with (i) two
bathrooms, (ii) three bathrooms.
(b) Test the significance of the interaction term.
Interpret.

11.24. A multiple regression analysis investigates the re-
lationship between y = college GPA and several explana-
tory variables, using a random sample of 195 students at

Slippery Rock University. First, high school GPA and to-
tal SAT score are entered into the model. The sum of
squared errors is SSE = 20. Next, parents’ education
and parents’ income are added, to determine if they have
an effect, controlling for high school GPA and SAT. For
this expanded model, SSE = 19. Test whether this com-
plete model is significantly better than the one containing
only high school GPA and SAT. Report and interpret the
P-value.

11.25. Table 11.19 shows results of regressing y = birth
rate (number of births per 1000 population) on x1 =
women’s economic activity and x2 = literacy rate, using
UN data for 23 nations.
(a) Report the value of each of the following:
(i) ryx1, (ii) ryx2, (iii) R2,
(iv) TSS, (v) SSE, (vi) mean square error,
(vii) s, (viii) sy, (ix) se for b1,
(x) t for H0: β1 = 0,
(xi) P for H0: β1 = 0 against Ha: β1 �= 0,
(xii) P for H0: β1 = 0 against Ha: β1 < 0,
(xiii) F for H0: β1 = β2 = 0,
(xiv) P for H0: β1 = β2 = 0.

(b) Report the prediction equation, and interpret the
signs of the estimated regression coefficients.
(c) Interpret the correlations ryx1 and ryx2.

(d) Report R2, and interpret its value.

TABLE 11.19

Mean Std Deviation N
BIRTHS 22.117 10.469 23
ECON 47.826 19.872 23
LITERACY 77.696 17.665 23

Correlations
BIRTHS ECON LITER

Correlation BIRTHS 1.00000 -0.61181 -0.81872
ECON -0.61181 1.00000 0.42056
LITERACY -0.81872 0.42056 1.00000

Sum of
Squares DF Mean Square F Sig

Regression 1825.969 2 912.985 31.191 0.0001
Residual 585.424 20 29.271
Total 2411.393 22

Root MSE (Std. Error of the Estimate) 5.410 R Square 0.7572

Unstandardized Coeff. Standardized
B Std. Error Coeff. (Beta) t Sig

(Constant) 61.713 5.2453 11.765 0.0001
ECON -0.171 0.0640 -0.325 -2.676 0.0145
LITERACY -0.404 0.0720 -0.682 -5.616 0.0001
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(e) Report the multiple correlation, and interpret.
(f) Though inference may not be relevant for these data,
report the F statistic for H0: β1 = β2 = 0, report its P-
value, and interpret.
(g) Show how to construct the t statistic for H0: β1 = 0,
report its df and P-value for Ha: β1 �= 0, and interpret.

11.26. Refer to the previous exercise.
(a) Find the partial correlation between y and x1, control-
ling for x2. Interpret the partial correlation and its square.
(b) Find the estimate of the conditional standard devia-
tion, and interpret.
(c) Show how to find the estimated standardized regres-
sion coefficient for x1 using the unstandardized estimate
and the standard deviations, and interpret its value.
(d) Write the prediction equation using standardized vari-
ables. Interpret.
(e) Find the predicted z-score for a country that is one
standard deviation above the mean on both explanatory
variables. Interpret.

11.27. Refer to Examples 11.1 (page 320) and 11.8
(page 343). Explain why the partial correlation between
crime rate and high school graduation rate is so different
(including its sign) from the bivariate correlation.

11.28. For the 2014 GSS, Table 11.20 shows estimates
(with se values in parentheses) for four regression models
for y = political party identification in the United States,
scored from 1 = strong Democrat to 7 = strong
Republican. The explanatory variables are number of
years of education in model 1, also annual income last
year (12 ordered categories, scored 1 to 12) in model 2,
also religion (1 = fundamentalist, 2 = moderate, 3 =
liberal) in model 3, and also political views (scored from
1 = extremely liberal to 7 = extremely conservative) in
model 4.
(a) Summarize what you learn from these four model fits.
(b) The effect of religion weakens considerably (and even
changes direction) after adding political views to the

model. Is it plausible that the relationship between y and
religion is spurious? Explain.

11.29. A multiple regression model describes the relation-
ship among a collection of cities between y = murder rate
(number of murders per 100,000 residents) and x1 = num-
ber of police officers (per 100,000 residents), x2 = me-
dian length of prison sentence given to convicted murder-
ers (in years), x3 = median income of residents of city
(in thousands of dollars), and x4 = unemployment rate
in city. These variables are observed for a random sam-
ple of 30 cities with population size exceeding 35,000. For
the model with these explanatory variables, software re-
ports the estimated standardized regression coefficients of
−0.075 for x1, −0.125 for x2, −0.30 for x3, and 0.20 for x4.
(a) Write the prediction equation using standardized vari-
ables.
(b) Which explanatory variable has the greatest partial ef-
fect on y? Explain.
(c) Find the predicted z-score on murder rate for a city
that is one standard deviation above the mean on x1, x2,
and x3, and one standard deviation below the mean on x4.
Interpret.

11.30. A recent study5 analyzed the effect of x1 = work
hours per day and x2 = commuting time to work on
y = political participation. For the cluster sample of 1001
adult Americans, x̄1 = 8.4 hours (s = 2.4) and x̄2 = 19.8
minutes (s = 13.6). Political participation, which was a
composite variable based on responses to several ques-
tions and coded to range from 0 to 1, has ȳ = 0.20
(s = 0.24). The multiple regression model, which also
included control and mediating variables, had estimated
effects 0.017 (se = 0.070) for work hours and −0.120
(se = 0.040) for commuting time.
(a) Find and interpret the estimated standardized regres-
sion coefficients.
(b) Explain how the estimates with their se values and
the standardized coefficients support their conclusion that
“While work itself exerted no effect on participation, the
amount of time spent getting to and from work does.”

TABLE 11.20

Model 1 Model 2 Model 3 Model 4
Variable Coef. (se) Coef. (se) Coef. (se) Coef. (se)

Education 0.004 (0.013) −0.015 (0.017) −0.003 (0.018) 0.010 (0.016)
Income 0.036 (0.018) 0.040 (0.018) 0.016 (0.016)
Religion −0.255 (0.069) 0.036 (0.061)
Political views 0.752 (0.032)
Constant 3.597 3.496 3.833 0.255

Multiple R 0.007 0.054 0.115 0.550

5B. Newman, J. Johnson, and P. Lown, American Politics Research, vol. 42 (2014), pp. 141–170.
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Concepts and Applications
11.31. Refer to the Students data file. Using software,
conduct a regression analysis using either (a) y = politi-
cal ideology with explanatory variables number of times
per week of newspaper reading and religiosity, or (b) y =
college GPA with explanatory variables high school GPA
and number of weekly hours of physical exercise. Pre-
pare a report, posing a research question and summarizing
your graphical analyses, bivariate models and interpreta-
tions, multiple regression models and interpretations, in-
ferences, checks of effects of outliers, and overall sum-
mary of the relationships.

11.32. Refer to the student data file created in Exer-
cise 1.12. For variables chosen by your instructor, fit a
multiple regression model and conduct descriptive and
inferential statistical analyses. Interpret and summarize
your findings.

11.33. Using industry-level data, a recent study6 analyzed
labor’s share of income, measured as total compensation
divided by total compensation plus the gross operating
surplus. The authors predicted this would decrease as the
degree of financialization of the company increased. Fi-
nancialization was measured as the ratio of financial re-
ceipts (e.g., interest, dividends, capital gains) to business
receipts from selling goods and services. The authors used
regression analyses. The prediction equation reported for
data from 1999 to 2008 for all nonfinance industries sam-
pled was

ŷ = α̂ − 0.882 f − 0.906u − 0.727ci − 0.367c + 0.880wm

+ 0.052ic + 8.697es + 0.850cc − 0.207ecr,

where f = financialization, u = percentage of workforce
in unions, ci = a measure of computer investment, c =
proportion of workers who are college graduates, wm =
proportion of workers who were non-Hispanic white men,
ic = industrial concentration, es = employment size, cc =
capital consumption, and ecr = error correction rate. The
se for financialization was 0.070. The authors stated, “the
model estimates support our hypothesis.” Explain how
the results stated here support this conclusion.

11.34. For the OECD data file at the text website, shown in
Table 3.13 (page 70), pose a research question about how
at least two of the variables shown in that table relate to
carbon dioxide emissions. Conduct appropriate analyses
to address that question, and prepare a one-page report
summarizing your analyses and conclusions.

11.35. Using software with the Crime data file at the text
website, conduct a regression analysis of violent crime
rate with the explanatory variables poverty rate, the per-
centage living in urban areas, and the percentage of high
school graduates. Prepare a report in which you state a re-

search question you could answer with these data, conduct
descriptive and inferential analyses, and provide interpre-
tations and summarize your conclusions.

11.36. For the previous exercise, repeat the analysis, ex-
cluding the observation for D.C. Describe the effect of this
observation on the various analyses.

11.37. For the UN data file at the text website (Table 3.9 on
page 65), construct a multiple regression model contain-
ing two explanatory variables that provide good predic-
tions for the fertility rate. How did you select this model?
(Hint: One way uses the correlation matrix.)

11.38. In about 200 words, explain to someone who has
never studied statistics what multiple regression does and
how it can be useful.

11.39. Analyze the Houses data file at the text website
(and introduced in Example 9.10 on page 280), using sell-
ing price of home, size of home, number of bedrooms, and
taxes. Prepare a one-page report summarizing your anal-
yses and conclusions.

11.40. For Example 11.2 on mental impairment, Table
11.21 shows the result of adding religious attendance as an
explanatory variable, measured as the approximate num-
ber of times the subject attends a religious service over
the course of a year. Write a report of about 200 words
interpreting the table.

TABLE 11.21

Variable Coefficient Std. Error

Intercept 27.422
Life events 0.0935 0.0313
SES −0.0958 0.0256
Religious attendance −0.0370 0.0219
R2 0.3582

11.41. A study7 of mortality rates found in the United
States that states with higher income inequality tended to
have higher mortality rates. The effect of income inequal-
ity disappeared after controlling for the percentage of a
state’s residents who had at least a high school education.
Explain how these results relate to analyses conducted us-
ing bivariate regression and multiple regression.

11.42. A study8 relating the percentage of a child’s life
spent in poverty to the number of years of education com-
pleted by the mother and the percentage of a child’s life
spent in a single-parent home reported the results shown
in Table 11.22. Prepare a one-page report explaining how
to interpret the results in this table.

6K.-H. Lin and D. Tomaskovic-Dewey, American Journal of Sociology, vol. 118 (2013), pp. 1970–2008.
7A. Muller, BMJ, vol. 324 (2002), pp. 23–25.
8http://www.heritage.org/Research/Family/cda02-05.cfm.

http://www.heritage.org/Research/Family/cda02-05.cfm
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TABLE 11.22

Unstandardized Standardized
Coefficients Coefficients
B Std. Error Beta t Sig.

(Constant) 56.401 2.121 12.662 .000
% single parent 0.323 .014 .295 11.362 .000
mother school -3.330 .152 -.290 -11.294 .000

F 611.6 (df = 2, 4731) Sig .000
R 0.453 R Square 0.205

11.43. The Economist magazine9 developed a quality-of-
life index for nations as the predicted value obtained by
regressing an average of life-satisfaction scores from sev-
eral surveys on gross domestic product (GDP, per capita,
in dollars), life expectancy (in years), an index of polit-
ical freedom (from 1 = completely free to 7 = unfree),
the percentage unemployed, the divorce rate (on a scale
of 1 for lowest rates to 5 for highest), latitude (to dis-
tinguish between warmer and cold climes), a political
stability measure, gender equality defined as the ratio
of average male and female earnings, and community
life (1 if country has high rate of church attendance or
trade union membership, 0 otherwise). Table 11.23 shows
results of the model fit for 74 countries, for which the
multiple correlation is 0.92. The study used the predic-
tion equation to predict the quality of life for 111 na-
tions. The top 10 ranks were for Ireland, Switzerland,
Norway, Luxembourg, Sweden, Australia, Iceland, Italy,
Denmark, and Spain. Other ranks included 13 for the
United States, 14 for Canada, 15 for New Zealand, 16 for
the Netherlands, and 29 for the United Kingdom.

(a) Which variables would you expect to have negative
effects on quality of life? Is this supported by the results?
(b) The study states that by itself “GDP explains more
than 50% of the variation in life satisfaction.” How does
this relate to a summary measure of association?
(c) The study reported that “Using so-called Beta coef-
ficients from the regression to derive the weights of the
various factors, life expectancy and GDP were the most
important.” Explain what was meant by this.
(d) Although GDP seems to be an important predictor, in
a bivariate sense and a partial sense, Table 11.23 reports a
very small coefficient, 0.00003. Why do you think this is?
(e) The study mentioned other explanatory variables that
were not included because they provided no further pre-
dictive power. For example, the study stated that educa-
tion seemed to have an effect mainly through its effects on
other variables in the model, such as GDP, life expectancy,
and political freedom. Does this mean there is no associ-
ation between education and quality of life? Explain.

TABLE 11.23

Coefficient Standard Error t Statistic

Constant 2.796 0.789 3.54
GDP per person 0.00003 0.00001 3.52
Life expectancy 0.045 0.011 4.23
Political freedom −0.105 0.056 −1.87
Unemployment −0.022 0.010 −2.21
Divorce rate −0.188 0.064 −2.93
Latitude −1.353 0.469 −2.89
Political stability 0.152 0.052 2.92
Gender equality 0.742 0.543 1.37
Community life 0.386 0.124 3.13

11.44. An article10 used multiple regression to predict a
measure of tolerance toward homosexuality.
(a) The researchers found that the effect of number of
years of education varied from essentially no effect for
political conservatives to a considerably positive effect
for political liberals. Explain how this is an example of
statistical interaction. Explain how it would be handled
by a multiple regression model.
(b) The best predictor of tolerance toward homosexual-
ity was educational level, with an estimated standardized
regression coefficient of 0.21. Interpret. In comparing this
effect with the effects of other predictors, explain the pur-
pose of using standardized coefficients.
11.45. An article11 that analyzed the effects of the levels
of the participant’s generosity and of the spouse’s gen-
erosity on a measure of marital quality reported that low
levels of both were associated with low marital quality
and high levels of both were associated with high mari-
tal quality. However, when the participant reported low
levels of generosity toward the spouse, but the spouse re-
ported high levels of generosity toward the participant,
marital quality also tended to be low. For a regression
model predicting marital quality, do you think it is ade-
quate to use main effects alone, or do you probably also
need an interaction term? Explain.
11.46. In Exercise 11.1 on y = college GPA, x1 = high
school GPA, and x2 = college board score, E(y) =

9www.economist.com/media/pdf/QUALITY OF LIFE.pdf.
10T. Shackelford and A. Besser, Individual Differences Research, vol. 5 (2007), pp. 106–114.
11J. Dew and W. B. Wilcox, Journal of Marriage and Family, vol. 75 (2013), pp. 1218–1228.

htt://www.economist.com/media/pdf/QUALITY_OF_LIFE.pdf


360 Chapter 11 Multiple Regression and Correlation

0.20 + 0.50x1 + 0.002x2. True or false: Since β1 = 0.50 is
larger than β2 = 0.002, this implies that x1 has the greater
partial effect on y. Explain.

11.47. Table 11.24 shows results of fitting various regres-
sion models to data on y = college GPA, x1 = high school
GPA, x2 = mathematics entrance exam score, and x3 =
verbal entrance exam score. Indicate which of the follow-
ing statements are false. Give a reason for your answer.

TABLE 11.24

Model
Estimates E(y) =

α + βx1

E(y) =
α+β1x1+β2x2

E(y) = α+β1x1

+ β2x2 + β3x3

Coefficient of x1 0.450 0.400 0.340
Coefficient of x2 0.003 0.002
Coefficient of x3 0.002

R2 0.25 0.34 0.38

(a) The correlation between y and x1 is positive.
(b) A one-unit increase in x1 corresponds to a change of
0.45 in the estimated mean of y, controlling for x2 and x3.
(c) In the third model, x1 has the strongest partial effect
on y.
(d) The value of r2

yx3
is 0.40.

(e) The partial correlation ryx1·x2 is positive.
(f) Controlling for x1, a 100-unit increase in x2 corre-
sponds to a predicted increase of 0.3 in college GPA.
(g) For the first model, the estimated standardized regres-
sion coefficient equals 0.50.

11.48. In regression analysis, which of the following state-
ments must be false? Why?

(a) ryx1 = 0.01, ryx2 = −0.75, R = 0.2
(b) The value of the residual sum of squares, SSE, can
increase as we add additional variables to the model.
(c) For the model E(y) = α + β1x1, y is significantly re-
lated to x1 at the 0.05 level, but when x2 is added to the
model, y is not significantly related to x1 at the 0.05 level.
(d) The estimated coefficient of x1 is positive in the bivari-
ate model but negative in the multiple regression model.
(e) When the model is refitted after y is multiplied by 10,
R2, ryx1 , ryx1·x2 , and the F statistics and t statistics do not
change.
(f) The F statistic for testing that all the regression coef-
ficients equal 0 has P < 0.05, but none of the individual t
tests have P < 0.05.
(g) If you compute the standardized regression coefficient
for a bivariate model, you always get the correlation.
(h) r2

yx1
= r2

yx2
= 0.6 and R2 = 1.2.

(i) The correlation between y and ŷ equals −0.10.

(j) For every F test, there is an equivalent test using the t
distribution.
(k) When |b1| > |b2| in a multiple regression prediction
equation, we can conclude that x1 has a stronger effect
than x2 on y.
(l) The estimated standardized regression coefficient for
an explanatory variable in a multiple regression model
can be interpreted as the value the ordinary slope would
equal for the linear prediction equation if that explana-
tory variable and y were scaled so that they both had the
same standard deviation value.
(m) If ŷ = 31.3 + 0.15x1 − 0.05x2 − 0.002x1x2, then the
estimated effect x1 on y decreases as x2 increases.
(n) Suppose ŷ = 31.3 + 0.15x1 − 0.05x2 − 0.002x1x2, with
x1 and x2 taking values between 0 and 100. Then, since
the coefficient of x1x2 is so small compared to the coeffi-
cients of x1 and of x2, we can conclude that the amount of
interaction is negligible.

For Exercises 11.49–11.52, select the correct answer(s) and
indicate why the other responses are inappropriate. (More
than one response may be correct.)

11.49. If ŷ = 2 + 3x1 + 5x2 − 8x3, then controlling for
x2 and x3, the predicted mean change in y when x1 is
increased from 10 to 20 equals
(a) 3, (b) 30, (c) 0.3, (d) cannot be given—depends on
specific values of x2 and x3.

11.50. If ŷ = 2 + 3x1 + 5x2 − 8x3,
(a) The strongest correlation is between y and x3.
(b) The variable with the strongest partial influence on y
is x2.
(c) The variable with the strongest partial influence on y
is x3, but one cannot tell from this equation which pair
has the strongest correlation.
(d) None of the above.

11.51. If ŷ = 2 + 3x1 + 5x2 − 8x3,
(a) ryx3 < 0.
(b) ryx3·x1 < 0.
(c) ryx3·x1,x2 < 0.
(d) Insufficient information to answer.
(e) Answers (a), (b), and (c) are all correct.

11.52. The F test for comparing a complete model to a
reduced model can be used to test
(a) The significance of a single regression parameter in a
multiple regression model.
(b) H0: β1 = · · · = βp = 0 in a multiple regression
equation.
(c) H0: no interaction, in the model

E(y) = α +β1x1 +β2x2 +β3x3 +β4x1x2 +β5x1x3 +β6x2x3.

(d) Whether the model E(y) = α+β1x1 +β2x2 gives a sig-
nificantly better fit than the model E(y) = α+β1x1 +β2x3.
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11.53. Explain the difference in the purposes of the
correlation, the multiple correlation, and the partial
correlation.

11.54. Let y = height, x1 = length of right leg, and x2 =
length of left leg. Describe what you expect for the rela-
tive sizes of rx1x2, ryx2, R, and ryx2·x1.

11.55. Give an example of three variables for which
you expect β �= 0 in the model E(y) = α + βx1
but for which it is plausible that β1 = 0 in the model
E(y) = α + β1x1 + β2x2.

11.56. For the models E(y) = α + βx and E(y) =
α + β1x1 + β2x2, express null hypotheses in terms of cor-
relations that are equivalent to the following:

(a) H0: β = 0.
(b) H0: β1 = β2 = 0.

11.57.* Whenever x1 and x2 are uncorrelated, then R2 for
the model E(y) = α+β1x1 +β2x2 satisfies R2 = r2

yx1
+r2

yx2
.

In this case, draw a figure that portrays the variability in
y, the part of that variability explained by each of x1 and
x2, and the total variability explained by both of them
together.

11.58.* Which of the following sets of correlations would
you expect to yield the highest R2-value? Why?

(a) ryx1 = 0.4, ryx2 = 0.4, rx1x2 = 0.0.
(b) ryx1 = 0.4, ryx2 = 0.4, rx1x2 = 0.5.
(c) ryx1 = 0.4, ryx2 = 0.4, rx1x2 = 1.0.

11.59.* Suppose the correlation between y and x1 equals
the multiple correlation between y and x1 and x2. What
does this imply about the partial correlation ryx2·x1?
Interpret.

11.60.* Software reports four types of sums of squares in
multiple regression models. The Type I sum of squares,
sometimes called sequential SS, represents the variabil-
ity explained by a variable, controlling for variables pre-
viously entered into the model. The Type III sum of
squares, sometimes called partial SS, represents the vari-
ability explained by that variable, controlling for all other
variables in the model.

(a) For any multiple regression model, explain why the
Type I sum of squares for x1 is the regression sum of
squares for the bivariate model with x1 as the explanatory
variable, whereas the Type I sum of squares for x2 equals
the amount by which SSE decreases when x2 is added to
the model.
(b) Explain why the Type I sum of squares for the last
variable entered into a model is the same as the Type III
sum of squares for that variable.

11.61.* Adjusted R2 is defined as

R2
adj = 1 − s2

s2
y
,

where s2 is the estimated conditional variance and s2
y is

the sample variance of y, both of which are unbiased. This
relates to ordinary R2 by

R2
adj = R2 −

[
p

n − (p + 1)

]
(1 − R2).

(a) Suppose R2 = 0.339 for a model with p = 2 explana-
tory variables, as in Table 11.5. Find R2

adj when n = 10,
40 (as in the text example), and 1000. Show that R2

adj

approaches R2 in value as n increases.
(b) Show that R2

adj < 0 when R2 < p/(n − 1). This is
undesirable, and R2

adj is equated to 0 in such cases. (Also,
unlike R2, R2

adj can decrease when we add an explanatory
variable to a model.)

11.62.* Let R2
y(x1,... xp) denote R2 for the multiple regres-

sion model with p explanatory variables. Explain why

r2
yxp·x1,...,xp−1

=
R2

y(x1,...,xp) − R2
y(x1,...,xp−1)

1 − R2
y(x1,...,xp−1)

.

11.63.* The numerator R2 – r2
yx1

of the squared partial
correlation r2

yx2·x1
gives the increase in the proportion of

explained variation from adding x2 to the model. This
increment, denoted by r2

y(x2·x1), is called the squared semi-
partial correlation. One can use squared semipartial
correlations to partition the variation in the response
variable. For instance, for three explanatory variables,

R2
y(x1,x2,x3) = r2

yx1
+(R2

y(x1,x2) − r2
yx1

)+ (R2
y(x1,x2,x3) − R2

y(x1,x2))

= r2
yx1

+r2
y(x2·x1) + r2

y(x3·x1,x2).

The total variation in y explained by x1, x2, and x3 to-
gether partitions into (i) the proportion explained by x1
(i.e., r2

yx1
), (ii) the proportion explained by x2 beyond that

explained by x1 (i.e., r2
y(x2·x1)), and (iii) the proportion ex-

plained by x3 beyond that explained by x1 and x2 (i.e,
r2

y(x3·x1,x2)). For a particular model, the semi-partial cor-
relations have the same ordering as the t statistics for
testing the partial effects, and some researchers use them
as indices of importance of the explanatory variables.
(a) In Example 11.2 on mental impairment, show that
r2

y(x2·x1) = 0.20 and r2
y(x1·x2) = 0.18. Interpret.

(b) Explain why the squared semipartial correlation
r2

y(x2·x1) cannot be larger than the squared partial corre-
lation r2

yx2·x1
.

11.64.* The least squares prediction equation provides
predicted values ŷ with the strongest possible correlation
with y, out of all possible prediction equations of that
form. Based on this property, explain why the multiple
correlation cannot decrease when you add a variable to
a multiple regression model. (Hint: The prediction equa-
tion for the simpler model is a special case of a prediction
equation for the full model that has coefficient 0 for the
added variable.)
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11.65.* Let b̄∗
i denote the estimated standardized regres-

sion coefficient when xi is treated as the response variable
and y as an explanatory variable, controlling for the same
set of other variables. Then, b̄∗

i need not equal b∗
i . The

squared partial correlation between y and xi, which is
symmetric, equals b∗

i b̄∗
i .

(a) Explain why the partial correlation must fall between
b∗

i and b̄∗
i . (Note: When a = √

bc, a is said to be the geo-
metric average of b and c.)
(b) Even though b∗

i does not necessarily fall between −1
and +1, explain why b∗

i b̄∗
i cannot exceed 1.

11.66.* Chapters 12 and 13 show how to incorporate cat-
egorical explanatory variables in regression models. This
exercise provides a preview. Table 11.25 shows some out-
put for a model for the Houses2 data set at the text
website, with y = selling price of home, x1 = size of home,
and x2 = whether the house is new (1 = yes, 0 = no).
(a) Report the prediction equation. By setting x2 = 0 and
then 1, construct the two separate lines for older and for

TABLE 11.25

B Std. Error t Sig
(Constant) -26.089 5.977 -4.365 0.0001
SIZE 72.575 3.508 20.690 0.0001
NEW 19.587 3.995 4.903 0.0001

new homes. Note that the model implies that the slope
effect of size on selling price is the same for each.
(b) Since x2 takes only the values 0 and 1, explain why
the coefficient of x2 estimates the difference of mean sell-
ing prices between new and older homes, controlling for
house size.

11.67.* Refer to the previous exercise. When we add an
interaction term, we get ŷ = −16.6 + 66.6x1 − 31.8x2 +
29.4(x1x2).
(a) Interpret the fit by reporting the prediction equation
between selling price and size of house separately for
new homes (x2 = 1) and for old homes (x2 = 0). Inter-
pret. (This fit is equivalent to fitting lines separately to the
data for new homes and for old homes.)

(b) A plot of the data shows an outlier, a new home with a
very high selling price. When that observation is removed
from the data set and the model is refitted, ŷ = −16.6 +
66.6x1 + 9.0x2 + 5.0(x1x2). Redo (a), and explain how an
outlier can have a large impact on a regression analysis.



Chapte r

12
Regression with
Categorical Predictors:
Analysis of Variance
Methods

CHAPTER
OUTLINE

12.1 Regression Modeling
with Dummy
Variables
for Categories

12.2 Multiple
Comparisons
of Means

12.3 Comparing Several
Means: Analysis
of Variance

12.4 Two-Way ANOVA
and Regression
Modeling

12.5 Repeated-Measures
Analysis
of Variance∗

12.6 Two-Way ANOVA
with Repeated
Measures
on a Factor∗

12.7 Chapter Summary

T he regression models presented so far have quantitative explanatory variables. This chapter
shows how a regression model can contain categorical explanatory variables.
Chapter 7 presented methods for comparing the means of two groups. Those methods extend

for comparing means of several groups. The methods relate to the association between a quantita-
tive response variable and a categorical explanatory variable. The mean of the quantitative response
variable is compared among groups that are categories of the explanatory variable. For example, for
a comparison of mean annual income among blacks, whites, and Hispanics, the quantitative re-
sponse variable is annual income and the categorical explanatory variable is racial–ethnic status.
We can use the regression methods of this chapter to do this.

Artificial variables called dummy variables can represent the categories of a categorical ex-
planatory variable in a regression model. The inferential method for testing equality of several means
is often called the analysis of variance, abbreviated as ANOVA. We’ll see that the name refers
to the way the significance test focuses on two types of variability in the data.

Categorical explanatory variables in ANOVA are called factors. ANOVA methods extend
to incorporate multiple factors, for example, to compare mean income across categories of both
racial–ethnic status and gender. We first present analyses for independent samples. When each
sample has the same subjects or the samples are matched, the samples are dependent and different
methods apply. We also present such methods, referred to as repeated-measures ANOVA.

12.1 Regression Modeling with Dummy
Variables for Categories

We can use a regression model for the relationship between a quantitative response
variable and a categorical explanatory variable. We shall use the following example
to illustrate methods.

Example
12.1

Political Ideology by Political Party ID Table 12.1 summarizes observations on po-
litical ideology for three groups, based on data from subjects of ages 18–27 in the
2014 General Social Survey. The three groups are the (Democrat, Independent, Re-
publican) categories of the explanatory variable, political party identification (ID).
Political ideology, the response variable, is measured on a seven-point scale, rang-
ing from extremely liberal (1) to extremely conservative (7). For each party ID,
Table 12.1 shows the number of subjects who made each response. For instance, of
83 Democrats, 5 responded extremely liberal, 18 responded liberal, . . . , 2 responded
extremely conservative.

363
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TABLE 12.1: Political Ideology by Political Party Identification (ID), for Respondents
of Age 18–27

Political Ideology Sample Standard
Party ID 1 2 3 4 5 6 7 Size Mean Deviation

Democrat 5 18 19 25 7 7 2 83 3.48 1.43
Independent 4 19 27 79 13 9 6 157 3.82 1.23
Republican 1 3 1 11 10 11 1 38 4.66 1.36

Note: For political ideology, 1 = extremely liberal, 2 = liberal, 3 = slightly liberal, 4 = moderate, 5 = slightly
conservative, 6 = conservative, 7 = extremely conservative.

Since Table 12.1 displays the data as counts in a contingency table, we could use
methods for categorical data (Chapter 8). The chi-squared test treats both variables
as nominal, however, whereas political ideology is ordinal. That test is not directed
toward detecting whether responses have a higher or lower mean in some groups
than others. The ordinal measure of association gamma is inappropriate, because it
requires both variables to be ordinal. Here, the groups, which are the categories of
political party ID, are nominal.

When an ordinal response has many categories, one approach assigns scores to
its levels and treats it as a quantitative variable. This is a reasonable strategy when
we want to focus on a measure of center (such as the mean) rather than on the pro-
portions in particular categories, and when the observations do not mainly fall at
one of the boundary categories. For Table 12.1, for instance, interest might focus on
how liberal or conservative the responses tend to be for each group, in some average
sense. We analyze these data by assigning the scores (1, 2, 3, 4, 5, 6, 7) to the lev-
els of political ideology and then comparing means. The higher the mean score, the
more conservative the group’s responses tended to be. For these scores, Table 12.1
shows the mean and standard deviation for each group. The overall sample mean is
ȳ = 3.83, not far from the score of 4.0 corresponding to moderate ideology.

REGRESSION WITH DUMMY (INDICATOR) VARIABLES

How can we enter a categorical explanatory variable such as party ID in a regression
model? We set up an indicator variable to equal 1 if an observation comes from a
particular category and 0 otherwise. With three categories (e.g., the party IDs), we
use two indicator variables. The first, denoted by z1, equals 1 for observations from
the first category and equals 0 otherwise. The second, denoted by z2, equals 1 for
observations from the second category and equals 0 otherwise. That is,

z1 = 1 and z2 = 0: observations from category 1.
z1 = 0 and z2 = 1: observations from category 2.
z1 = 0 and z2 = 0: observations from category 3.

It is unnecessary and redundant to create a variable for the last (third) category,
because values of 0 for z1 and z2 identify observations from it.

The indicator variables z1 and z2 are called dummy variables. They indicate the
category for an observation. That is, they give a classification, not a magnitude, for
the factor. Table 12.2 summarizes the dummy variables for three categories.

For three groups, denote the population means on y by μ1, μ2, and μ3. For the
dummy variables just defined, consider the multiple regression equation

E(y) = α + β1z1 + β2z2.
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TABLE 12.2: The Two Dummy Variables
for a Categorical Explanatory
Variable with Three Categories

Category z1 z2

1 1 0
2 0 1
3 0 0

For observations from category 3, z1 = z2 = 0. The equation then simplifies to

E(y) = α + β1(0) + β2(0) = α.

So, α represents the population mean μ3 of y for the last category. For observations
from category 1, z1 = 1 and z2 = 0, so

E(y) = α + β1(1) + β2(0) = α + β1

equals the population mean μ1 for that category. Similarly, α + β2 equals the popu-
lation mean μ2 for category 2 (let z1 = 0 and z2 = 1).

Since α + β1 = μ1 and α = μ3, the parameter β1 = μ1 − μ3. Similarly, β2 =
μ2 − μ3. Table 12.3 summarizes the parameters of the regression model and their
correspondence with the population means. The β coefficient of a dummy variable
represents the difference between the mean for the category that dummy variable
represents and the mean of the category not having its own dummy variable.

TABLE 12.3: Interpretation of Coefficients of Dummy Variables in
Model E(y) = α + β1z1 + β2z2 Having Explanatory
Variable with Three Categories

Category z1 z2 Mean of y Interpretation of β

1 1 0 μ1 = α + β1 β1 = μ1 − μ3
2 0 1 μ2 = α + β2 β2 = μ2 − μ3
3 0 0 μ3 = α

Dummy variable coding works because it allows the population means to take
arbitrary values, with no assumed distances between categories. Using a single vari-
able with coding such as z = 1 for category 1, z = 2 for category 2, and z = 3 for
category 3 would not work. The model E(y) = α+βz would then assume an ordering
as well as equal distances between categories. It treats the factor as if it were quan-
titative, which is improper. Whereas we need only one term in a regression model
to represent the linear effect of a quantitative explanatory variable, for a categorical
explanatory variable we need one fewer term than the number of categories.

Example
12.2

Regression Model for Political Ideology and Party ID For Table 12.1, the categorical
explanatory variable (political party ID) has three categories. The regression model
for y = political ideology is

E(y) = α + β1z1 + β2z2,

with z1 = 1 only for Democrats, z2 = 1 only for Independents, and z1 = z2 = 0
for Republicans. Table 12.4 shows some software output for fitting this regression
model. No dummy variable estimate appears in the table for party 3 (Republicans),
because it is redundant to include a dummy variable for the last category.
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TABLE 12.4: Software Output for Fitting Regression Model E(y) = α +
β1z1 +β2z2 to Data on y = Political Ideology with Dummy
Variables z1 and z2 for Political Party ID

IDEOLOGY Coef. Std. Err. t P>|t|
(Constant) 4.658 0.2126 21.91 <0.0001
PARTY 1 -1.176 0.2567 -4.58 <0.0001

2 -0.836 0.2369 -3.53 0.0005
3 0.000

The prediction equation is ŷ = 4.66 − 1.18z1 − 0.84z2. The coefficients in the
prediction equation relate to the sample means in the same manner that the regres-
sion parameters relate to the population means. Just as α = μ3, so does its esti-
mate 4.66 = ȳ3, the sample mean for Republicans. Similarly, the coefficient of z1 is
−1.18 = ȳ1 − ȳ3 and the coefficient of z2 is −0.84 = ȳ2 − ȳ3.

Some software codes factors so that the first category is the one lacking its own
dummy variable. The reported model parameter estimates then differ, but they yield
the same estimates for differences between category means. For example, R software
sets up dummy variables for categories 2 and 3 and yields estimates

Estimate
(Intercept) 3.48
party2 0.34
party3 1.18

The estimate for party1 (Democrats) is 0, so the estimated difference between the
means for Democrats and Republicans is still 0 − 1.18 = −1.18.

USING REGRESSION FOR A SIGNIFICANCE TEST COMPARING MEANS

For the three groups that are categories of a categorical explanatory variable with
three categories, consider H0: μ1 = μ2 = μ3. If H0 is true, then μ1 − μ3 = 0 and
μ2−μ3 = 0. Recall that μ1−μ3 = β1 and μ2−μ3 = β2 in the regression model E(y) =
α + β1z1 + β2z2 with dummy variables for categories 1 and 2. So, the hypothesis is
equivalent to H0: β1 = β2 = 0 in that model. If all β-values in the model equal 0,
then the mean of the response variable equals α for each category.

As usual, we assume randomization. This could be either a single random sam-
ple, with subjects then classified by group, or independent random samples from the
groups. The assumption for inferences in regression modeling that the conditional
distributions of y about the regression equation are normal with constant standard
deviation corresponds here to the population distributions for the groups being nor-
mal, with identical standard deviations.

We can perform the test using the F test of H0: β1 = β2 = 0 for the regression
model. As shown in Section 11.3 (page 332), the P-value is the right-tail probability
that the F test statistic exceeds the observed F -value. The larger the F test statistic,
the smaller the P-value. Table 12.5 shows the ANOVA table for the regression model
on political ideology and party ID. The F test statistic equals 10.51, with df1 = 2 and
df2 = 275, for testing H0: β1 = β2 = 0, which is equivalently H0: μ1 = μ2 = μ3 for the
three party IDs. The P-value is <0.0001, strong evidence against H0. We conclude
that a difference exists among the population mean political ideology values for the
three political party IDs.



Section 12.2 Multiple Comparisons of Means 367

TABLE 12.5: Software Output of ANOVA Table for Regression Model E(y) =
α + β1z1 + β2z2 for y = Political Ideology and Political Party
ID. The “regression sum of squares” is called the “model sum
of squares” by Stata and SAS.

Sum of Mean
Squares df Square F Value Prob>F

Regression 36.11 2 18.05 10.51 <0.0001
Residual 472.28 275 1.72
Total 508.39 277

ROBUSTNESS AND EFFECTS OF VIOLATIONS OF ASSUMPTIONS

In addition to randomization, each method presented in this chapter assumes that
the groups have population distributions that are normal with identical standard de-
viations. These are stringent assumptions that are never exactly satisfied in practice.

Moderate departures from normality of the population distributions can be tol-
erated. The F distribution still provides a good approximation to the actual sampling
distribution of the F test statistic. This is particularly true for larger sample sizes, since
the sampling distributions then have weaker dependence on the shape of the pop-
ulation distribution. Moderate departures from equal standard deviations can also
be tolerated. When the sample sizes are identical for the groups, the F test is very
robust to violations of this assumption.

Constructing histograms for each sample data distribution helps to check for ex-
treme deviations from these assumptions. Misleading results may occur in the F tests
if the population distributions are highly skewed and the sample size is small, or if
there are relatively large differences among the population standard deviations (say,
the largest sample standard deviation is several times as large as the smallest one)
and the sample sizes are unequal. When the distributions are very highly skewed, the
mean may not even be an appropriate summary measure.

As in other inferences, the quality of the sample is most crucial. Conclusions may
be invalid if the observations in the separate groups compared are not independent
random samples.

12.2 Multiple Comparisons of Means
When the P-value is small for comparing several means for groups corresponding to
categories of the explanatory variable, this does not indicate which means are differ-
ent or how different they are. In practice, it is more informative to estimate differ-
ences between the population means than merely to test whether they are all equal.
Confidence intervals do this. Even if the P-value is not small, it still is informative to
determine the plausible sizes of the differences among the population means.

CONFIDENCE INTERVALS COMPARING PAIRS OF MEANS

We can construct a confidence interval for each mean or for each difference be-
tween a pair of means. For a categorical variable with g categories corresponding
to g groups, denote the sample means by ȳ1, ȳ2, . . . , ȳg and the corresponding popu-
lations by μ1, μ2, . . . , μg. Let N = n1 + n2 + · · · + ng denote the total sample size.
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Confidence Intervals
for Pairwise Comparisons

of Means

A confidence interval for μi − μ j is

(
ȳi − ȳ j

) ± ts

√
1
ni

+ 1
nj

.

In this formula, s2 is the residual mean square in the regression model for g
groups. The t-value for the chosen confidence level has df = N − g.

The t-value is based on df for the variance estimate s2, which is df = N − g since the
model has g parameters. Evidence exists of a difference between μi and μ j when the
interval1 does not contain 0.

Confidence intervals, like tests, do not depend strongly on the normality assump-
tion. When the standard deviations are quite different, with the ratio of the largest to
smallest exceeding about 2, it is preferable to use intervals based on separate stan-
dard deviations for the groups rather than a single pooled value. For instance, the
confidence interval method presented in Section 7.3 for two groups does not assume
equal standard deviations.

Example
12.3

Comparing Mean Ideology of Democrats and Republicans For Table 12.1, let’s com-
pare population mean ideology of Democrats (group 1) and Republicans (group 3).
From Table 12.1 (page 364), ȳ1 = 3.48 for n1 = 83 Democrats and ȳ3 = 4.66 for
n3 = 38 Republicans. From the regression results in Table 12.5 (page 367), the esti-
mate of the population standard deviation is s = √

1.72 = 1.31, with df = 275. For
a 95% confidence interval with df = 275, the t-score is t.025 = 1.97. The confidence
interval for μ3 − μ1 is

(ȳ3 − ȳ1) ± t.025s

√
1
n1

+ 1
n3

= (4.66 − 3.48) ± 1.97(1.31)

√
1

83
+ 1

38

= 1.18 ± 0.51, or (0.67, 1.68).

We infer that population mean ideology was between 0.67 and 1.68 units higher
for Republicans than for Democrats. Since the interval contains only positive num-
bers, we conclude that μ3 − μ1 > 0; that is, μ3 exceeds μ1. On the average, Repub-
licans were more conservative than Democrats, with difference between the means
0.67 to 1.68 categories on the seven-category scale.

ERROR RATES WITH LARGE NUMBERS OF CONFIDENCE INTERVALS

With g groups, we can compare g(g− 1)/2 pairs of groups. When g is relatively large,
the number of comparisons can be very large. Confidence intervals for some pairs of
means may suggest they are different even if all of the population means are equal.

When g = 10, for example, there are g(g − 1)/2 = 45 pairs of means. Suppose
we form a 95% confidence interval for the difference between each pair. The er-
ror probability of 0.05 applies for each comparison. For the 45 comparisons, the ex-
pected number of intervals that would not contain the true differences of means is
45(0.05) = 2.25.

For 95% confidence intervals, the error probability of 0.05 is the probability that
any particular confidence interval will not contain the true difference in population

1 For g = 2 groups, df = N − g = n1 + n2 − 2; this interval then simplifies to the one in Section 7.5 (page 205)
introduced for μ2 − μ1 assuming a common standard deviation.
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means. When we form a large number of confidence intervals, the probability that at
least one confidence interval will be in error is much larger than the error probability
for any particular interval. The larger the number of groups to compare, the greater
is the chance of at least one incorrect inference.

BONFERRONI MULTIPLE COMPARISONS OF MEANS

When we plan many comparisons, methods are available that control the probability
that all intervals will contain the true differences. Such methods are called multi-
ple comparison methods. They fix the probability that all intervals contain the true
differences of population means simultaneously, rather than individually.

For example, with a multiple comparison method applied with g = 10 means and
95% confidence, the probability equals 0.95 that all 45 of the intervals will contain
the pairwise differences μi−μ j. Equivalently, the probability that at least one interval
is in error equals 0.05. This probability is called the multiple comparison error rate.

The Bonferroni multiple comparison method is simple and applies to a wide
variety of situations. This method uses the same formula for a confidence interval
introduced at the beginning of this section. However, it uses a more stringent confi-
dence level for each interval, to ensure that the overall confidence level is sufficiently
high.

To illustrate, suppose we would like a multiple comparison error rate of 0.10, that
is, a probability of 0.90 that all confidence intervals are simultaneously correct. If we
plan four comparisons of means, then the Bonferroni method uses error probability
0.10/4 = 0.025 for each one. That is, it uses a 97.5% confidence level for each inter-
val. This approach is somewhat conservative: It ensures that the actual overall error
rate is at most 0.10 and that the overall confidence level is at least 0.90. The method is
based on a probability inequality employed by the Italian probabilist Carlo Bonfer-
roni in 1935. It states that the probability that at least one of a set of events occurs can
be no greater than the sum of the separate probabilities of the events. For instance,
if the probability of an error equals 0.025 for each of four confidence intervals, then
the probability that at least one of the four intervals will be in error is no greater than
(0.025 + 0.025 + 0.025 + 0.025) = 0.10.

Example
12.4

Bonferroni Intervals for Political Ideology Comparisons For the g = 3 political party
IDs in Table 12.1, let’s compare the mean political ideologies: μ1 with μ2, μ1 with μ3,
and μ2 with μ3. We construct confidence intervals having overall confidence level at
least 0.95. For a multiple comparison error rate of 0.05 with three comparisons, the
Bonferroni method uses error probability 0.05/3 = 0.0167 for each interval. These
use the t-score with two-tail probability 0.0167, or single-tail probability 0.0083. For
df = 275, t0.0083 = 2.41.

The interval for μ3 − μ1, the difference between the population mean ideology
of Republicans and Democrats, is

(ȳ2 − ȳ1) ± ts

√
1
n1

+ 1
n2

= (4.66 − 3.48) ± 2.41(1.31)

√
1

83
+ 1

38

= 1.18 ± 0.62, or (0.56, 1.79).

We construct the intervals for the other two pairs of means in a similar way.
Table 12.6 displays them. The interval comparing Democrats and Independents con-
tains 0. They are not significantly different. The intervals comparing Republicans to
Democrats and to Independents do not contain 0. They show significant evidence
of a difference between the population means for Republicans and the other two
groups.
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TABLE 12.6: Bonferroni and Tukey 95% Multiple Comparisons of Mean Political
Ideology for Three Political Party ID Groups. The 95% confidence
applies to the entire set of three intervals, rather than each individual
interval.

Difference Estimated
of Means Difference Bonferroni Tukey

Groups μi − μ j ȳi − ȳ j 95% CI 95% CI

(Independent, Democrat) μ2 − μ1 0.34 (−0.09, 0.77) (−0.08, 0.76)
(Republican, Democrat) μ3 − μ1 1.18 (0.56, 1.79)∗ (0.57, 1.78)∗
(Republican, Independent) μ3 − μ2 0.84 (0.27, 1.41)∗ (0.28, 1.39)∗

Note: An asterisk ∗ indicates a significant difference.

The Bonferroni 95% multiple comparison confidence intervals are wider than
separate 95% confidence intervals. For instance, the ordinary 95% confidence inter-
val comparing Republicans and Democrats is (0.67, 1.68), whereas the Bonferroni
interval is (0.56, 1.79). This is because the multiple comparison method uses a higher
confidence level for each separate interval to ensure achieving the desired overall
confidence level for the entire set of comparisons.

TUKEY MULTIPLE COMPARISONS OF MEANS

Of the other methods available for multiple comparisons, we recommend Tukey’s
method. Proposed by the great statistician John Tukey, who also developed ex-
ploratory data analysis methods such as box plots and stem-and-leaf plots as well
as terminology such as software, this method has intervals that are slightly narrower
than the Bonferroni intervals. This is because they are designed to approximate the
nominal confidence level rather than to have at least that level. The Tukey method
uses a probability distribution (the Studentized range) that refers to the difference
between the largest and smallest sample means. We do not present this distribution
in this text, so we rely on software rather than a formula for the Tukey intervals.

Table 12.6 shows Tukey intervals for the political ideology data. For practical
purposes, they provide the same conclusions as the Bonferroni intervals.

12.3 Comparing Several Means: Analysis of Variance
The F test for comparing several population means can also be presented without
reference to any regression models. The method for doing this is called analysis of
variance (ANOVA). This is a test of independence between the quantitative response
variable and the categorical explanatory variable that defines the groups.

For g groups, the analysis of variance is an F test for

H0: μ1 = μ2 = · · · = μg.
Ha: at least two of the population means are unequal.

The assumptions for the ANOVA test are as follows:

• For each group, the population distribution of the response variable y is normal.

• The standard deviation of the population distribution is the same for each
group. Denote the common value by σ .

• The samples from the populations are independent random samples.
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These correspond precisely to the assumptions for the corresponding regression
model.

VARIABILITY BETWEEN AND WITHIN GROUPS

Why is a method for comparing population means called an analysis of variance?
The reason is that the F test statistic compares the means by using two estimates
of the variance, σ 2, for each group. One estimate uses the variability between each
sample mean ȳi and the overall mean ȳ. The other estimate uses the variability within
each group of the sample observations about their separate means—the observations
from the first group about ȳ1, the observations from the second group about ȳ2, and
so forth.

To illustrate, suppose randomly sampled observations from three groups are as
shown in Figure 12.1a. It seems clear that the means of the populations these samples
represent are unequal. The basis for this conclusion is that the variability between
sample means is large and the variability of the observations within each sample is
small.

By contrast, look at Figure 12.1b. It has the same sample means as in Figure
12.1a, so the variability between sample means is the same. But, in Figure 12.1b the
variability within the groups is much larger than in Figure 12.1a. Now it is not clear
whether the population means differ. Generally, the greater the variability between
sample means and the smaller the variability within each group, the stronger the
evidence against H0: equal population means.

(a) Sample 1
Sample 2
Sample 3

(b)
0

0
FIGURE 12.1: Two Cases.
The means are the same in
each case, so variability
between groups is the same.
Variability within groups is
less in the first case, which
gives stronger evidence
against H0: μ1 = μ2 = μ3.

THE F TEST STATISTIC IS A RATIO OF TWO VARIANCE ESTIMATES

For testing H0: μ1 = μ2 = · · · = μg, the test statistic is the ratio of the two estimates
of the population variance. The estimate that uses the variability between each sam-
ple mean ȳi, and the overall sample mean ȳ is called the between-groups estimate.
The estimate that uses the variability within each sample is called the within-groups
estimate. The F test statistic has the form

F = Between-groups estimate of variance
Within-groups estimate of variance

.

We’ll defer the computational details to later in the section. The great British statis-
tician R. A. Fisher developed the analysis of variance method in the 1920s, deriving
this test statistic and the F distribution for its sampling distribution.

The within-groups estimate is an unbiased estimate of σ 2 regardless of whether
H0 is true. By contrast, the between-groups estimate is unbiased only if H0 is true.
It then takes about the same value as the within-groups estimate. We then expect
values of F near 1.0, apart from sampling error. When H0 is true, the F test statistic
has an F sampling distribution. If H0 is false, however, the between-groups estimate
tends to overestimate σ 2. It then tends to be larger than the within-groups estimate,
and F tends to be larger than 1.0, more so with larger samples.
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Example
12.5

F Test Comparing Party IDs on Mean Political Ideology Software displays the results
of ANOVA F tests in an ANOVA table. Table 12.7 shows an ANOVA table for the
F test of H0: μ1 = μ2 = μ3 comparing population mean political ideology for three
political party IDs, using the data from Table 12.1.

In an ANOVA table,

• The two “mean squares” (abbreviated as MS by some software) are the
between-groups and within-groups estimates of the population variance σ 2.

• The F test statistic is the ratio of the two mean squares.

From the Mean Square column of Table 12.7, the between-groups estimate of the
variance is 18.05 and the within-groups estimate is 1.72. The F test statistic is F =
18.05/1.72 = 10.5. In other words, the between-groups estimate is more than 10 times
the within-groups estimate. The P-value is < 0.0001, very strong evidence against
H0: μ1 = μ2 = μ3.

TABLE 12.7: ANOVA Table for the F Test of Equal Means for Table 12.1.
The F test statistic is the ratio of the mean squares.

Sum of Mean
Source Squares df Square F Prob > F

Between-groups (party ID) 36.11 2 18.05 10.5 <0.0001
Within-groups 472.28 275 1.72
Total 508.39 277

For the ANOVA F test,

df1 = g − 1 = Number of groups − 1;

df2 = N − g = Total sample size − Number of groups.

These are reported in the df column of the ANOVA table. For these data, df1 =
g − 1 = 3 − 1 = 2 and df2 = N − g = 278 − 3 = 275.

In the “Between-groups” row of the ANOVA table, the between-groups sum of
squares (SS) divided by df1 gives a mean square, 36.11/2 = 18.05. In the “Within-
groups” row, the within-groups SS divided by df2 gives the other mean square,
472.28/275 = 1.72. The two df terms for the test are the denominators of the two
estimates of the variance.

Table 12.7 resembles Table 12.5, the ANOVA table from the regression analysis.
The between-groups SS in ANOVA is the regression SS in the regression analysis. The
within-groups SS in ANOVA is the residual SS (denoted SSE) in regression. This is
the variability within the groups unexplained by including parameters in the model
to account for the differences between the means. The residual SS divided by its
degrees of freedom is the residual mean square, which is the within-groups estimate
s2 = 1.72 of the variance of observations for each group. The regression mean square
is the between-groups estimate.

WITHIN-GROUPS ESTIMATE OF VARIANCE∗

We’ll now see how to construct the variance estimates that form the F statistic. The
within-groups estimate of σ 2 pools together the sums of squares of the observations
about their means. For the n1 observations from the first group,

∑
(y − ȳ1)2 is the

sum of squares of the observations about their mean. This sum of squares has n1 − 1



Section 12.3 Comparing Several Means: Analysis of Variance 373

degrees of freedom, the denominator for the sample variance s2
1 for group 1. For

the n2 observations from the second group,
∑

(y − ȳ2)2 is the sum of squares of the
observations about their sample mean, with n2 − 1 degrees of freedom. The sum of
these SS terms for all the samples is called the within-groups sum of squares, since
the sums of squares are calculated within each sample.

The within-groups sum of squares has degrees of freedom equal to the sum of
the df values of the component parts:

df = (n1 − 1) + (n2 − 1) + · · · + (ng − 1) = (n1 + n2 + · · · + ng) − g

= N − g = Total sample size − Number of groups,

where N denotes the total sample size. The ratio

s2 = Within-groups sum of squares
df

= Within-groups SS
N − g

is the within-groups estimate of the population variance σ 2 for the g groups.
This estimate summarizes information about variability from the separate sam-

ples. The estimate of σ 2 using only the first group is

s2
1 =

∑
(y − ȳ1)2

n1 − 1
.

In Table 12.1, for example, this is the square of the reported standard deviation, s1 =
1.43. Similarly, the sample variance for the second group is s2

2 = ∑
(y− ȳ2)2/(n2 −1),

and so forth for the remaining groups. Under the assumption that the population
variances are identical, these terms all estimate the same parameter, σ 2. The numer-
ator and denominator of s2 pool the information from these estimates by adding
their numerators and adding their denominators. The resulting estimate relates to
the separate sample variances by

s2 = (n1 − 1)s2
1 + (n2 − 1)s2

2 + · · · + (ng − 1)s2
g

N − g
.

This estimate is a weighted average of the separate sample variances, with greater
weight given to larger samples. With equal sample sizes, s2 is the mean of the g sample
variances.

BETWEEN-GROUPS ESTIMATE OF VARIANCE∗

The estimate of σ 2 based on variability between each sample mean and the overall
sample mean equals∑

i ni(ȳi − ȳ)2

g − 1
= n1(ȳ1 − ȳ)2 + · · · + ng(ȳg − ȳ)2

g − 1
.

Exercise 12.44 motivates this formula. Since this estimate describes variability among
g means, its

df = g − 1 = Number of groups − 1,

which is the denominator of the estimate.
The numerator of this estimate is called the between-groups sum of squares.

When the population means are unequal, the ȳi-values tend to be more variable than
if the population means are equal. The farther the population means fall from the H0:
μ1 = · · · = μg case, the larger the between-groups SS, the between-groups variance
estimate, and the F test statistic all tend to be.
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SUMS OF SQUARES IN ANOVA TABLES∗

The sum of the within-groups SS and between-groups SS in an ANOVA table is
called the total sum of squares. In fact, this is

TSS =
∑

(y − ȳ)2 = Between-groups SS + Within-groups SS,

the sum of squares of the combined sample of N observations about the overall
mean, ȳ.

The ANOVA partitions the total variability about the overall mean, TSS, into
two independent parts. One part, the between-groups SS, is the portion of the total
explained by the difference between each group mean and the overall mean. This
is also called the group sum of squares, and most software replaces the “Between-
groups” label in Table 12.7 by the name of the factor that is the group variable (e.g.,
PARTY ID). The other part, the within-groups SS, is the portion of the total vari-
ability that cannot be explained by the differences among the groups.

FOR TWO GROUPS, THE F TEST IS EQUIVALENT TO A t TEST

With two groups, Section 7.5 (page 205) presented a t test that compares the means
under the assumption of equal population standard deviations. In fact, if we apply
the ANOVA F test to data from g = 2 groups, the F test statistic equals the square
of that t test statistic. The P-value for the F test is exactly the same as the two-sided
P-value for the t test. We can use either test to conduct the analysis.

THE KRUSKAL–WALLIS TEST: A NONPARAMETRIC APPROACH∗

The Kruskal–Wallis test is an alternative to ANOVA for comparing several groups.
It is a nonparametric method, not requiring the normality assumption. The test statis-
tic uses only the ordinal information in the data. It ranks the observations and com-
pares mean ranks for the various groups. The test statistic is larger when the differ-
ences among the mean ranks are larger. It has an approximate chi-squared distribu-
tion with df = g − 1.

This test is especially useful for samples with which the effects of severe depar-
tures from normality may be influential. It is valid for comparing the group distri-
butions, even when the mean is not a relevant parameter. We shall not present the
test statistic here. Its result is similar to that of a chi-squared test for the effect of a
qualitative factor in a model for an ordinal response presented in Section 15.4.

Nonparametric tests also exist for more complex analyses. In practice, it is more
informative to use a modeling approach, because the model parameter estimates give
us information about the sizes of effects, which are more important than significance
testing. In addition, the modeling strategy presented in Section 12.1 adapts better to
multivariate analyses.

12.4 Two-Way ANOVA and Regression Modeling
We’ve learned how to compare means for groups that are categories of a factor.
Sometimes the groups result from cross-classifying two or more factors. For example,
the groups (white men, white women, black men, black women) result from cross-
classifying race and sex. The ANOVA method for comparing the mean of a quanti-
tative response variable across categories of each of two explanatory factors is called
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two-way ANOVA. The ANOVA presented in Section 12.3 for a single explanatory
factor is called one-way ANOVA.

MAIN EFFECT HYPOTHESES IN TWO-WAY ANOVA

Two-way ANOVA compares population means across categories of two factors.
Each null hypothesis states that the population means are identical across categories
of one factor, controlling for the other one.

To illustrate, we analyze mean political ideology using political party ID and sex
as factors. Six means result from the 2 × 3 = 6 combinations of their categories, as
Table 12.8 shows. Table 12.8a displays a set of population means satisfying the null hy-
pothesis that mean political ideology is identical for the three party IDs, controlling
for sex. Table 12.8b displays a set of population means satisfying the null hypothesis
that mean political ideology is identical for females and males, controlling for party
ID. The effects of individual factors tested in these two null hypotheses are called
main effects.

TABLE 12.8: Population Mean Political Ideology Satisfy-
ing Main Effect Null Hypotheses: (a) No
Effect of Political Party ID, (b) No Effect of
Sex

Political Party Identification

Table Sex Democrat Independent Republican

(a) Female 3.0 3.0 3.0
Male 4.6 4.6 4.6

(b) Female 3.5 4.0 5.0
Male 3.5 4.0 5.0

F TESTS ABOUT MAIN EFFECTS

The F tests for two-way ANOVA have the same assumptions as the F test for one-
way ANOVA: randomization, a normal population distribution for each group, with
the same standard deviation for each group. The test statistics have complex formu-
las except when the sample sizes in all cells are equal. We’ll rely on software and
corresponding regression modeling. As in one-way ANOVA, the test for a factor ef-
fect uses two estimates of the variance for each group. These estimates appear in the
mean square (MS) column of the ANOVA table. For testing the main effect for a
particular factor, the test statistic is the ratio of mean squares,

F = MS for the factor
Residual MS

.

The MS for the factor is a variance estimate based on between-groups variation for
that factor. That estimate tends to be inflated when H0 is not true. The residual MS
is a within-groups variance estimate that is always unbiased and is also used in con-
fidence intervals.

The MS variance estimates divide a sum of squares by its df value. For the F test
statistics, df1 = df for the numerator estimate, and df2 = df for the residual MS. The
value of df1 is always one less than the number of groups being compared.
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Example
12.6

Two-Way ANOVA for Political Ideology by Political Party ID and Sex Table 12.9
shows GSS data from 2014 for political ideology by political party ID and sex. The
table also shows the sample means and standard deviations of political ideology, for
the scores (1, 2, 3, 4, 5, 6, 7).

TABLE 12.9: GSS Data on Political Ideology by Political Party ID and Sex

Political Ideology Std.
Party ID Sex 1 2 3 4 5 6 7 n Mean Dev.

Democrat Female 33 88 77 208 52 21 6 485 3.51 1.28
Male 27 79 49 122 21 19 10 327 3.39 1.44

Independent Female 13 61 60 287 67 51 12 551 3.97 1.21
Male 12 56 51 224 68 48 13 472 4.01 1.27

Republican Female 0 7 8 70 60 101 25 271 5.16 1.15
Male 2 5 10 54 52 105 34 262 5.29 1.22

Let’s consider the validity of the assumptions for two-way ANOVA. The sam-
ple standard deviations are similar for the six groups (between 1.15 and 1.44). Also,
the sample sizes are large (262 and up), so the normality assumption is not crucial,
which is important because the observations are quite discrete (a seven-point scale).
The full GSS sample was randomly obtained, so we can regard the six samples as
independent random samples. ANOVA is suitable for these data.

Stata software reports Table 12.10 for summarizing the analyses. The residual
mean square, which estimates the population variance σ 2 within each cell, is

s2 = Residual MS = Residual SS
df

= 3784.47
2364

= 1.60.

TABLE 12.10: ANOVA Table (Edited from Stata) for Two-Way Analysis of Main Effects
of Political Party ID and Sex on Mean Political Ideology

Source | Partial SS df MS F Prob>F
Model | 1020.30 3 340.100 212.43 0.0000

|
party | 1020.27 2 510.134 318.66 0.0000
sex | 0.03 1 0.032 0.02 0.8870

|
Residual | 3784.47 2364 1.601

-------------+----------------------------------------------------
Total | 4804.77 2367 2.030

For the null hypothesis of identical mean political ideology for the three political
party IDs, controlling for sex, Table 12.10 shows that the F test statistic is

F = Party ID mean square
Residual mean square

= 510.13
1.60

= 318.66,

with df1 = 2 and df2 = 2364. The P-value is 0.0000. Extremely strong evidence ex-
ists of a difference among the means. Negligible evidence occurs that mean political
ideology varies by sex, within each political party ID (P-value = 0.89).
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INTERACTION IN TWO-WAY ANOVA

In practice, before conducting the main effects tests just described, we would first
test H0: no interaction. An absence of interaction between two explanatory variables
means that the effect of either variable on y (in the population) is identical at each
level of the other.

If no interaction exists between sex and political party ID in their effects on po-
litical ideology, then the difference between females and males in population mean
political ideology is the same for each political party ID. Table 12.11a shows pop-
ulation means satisfying this. The difference between females and males in mean
political ideology is −1.0 for each party. Similarly, the difference between each pair
of political parties in mean political ideology is the same for each sex. Figure 12.2
plots the means for the political party ID categories, within each sex. The order-
ing of categories on the horizontal axis is unimportant, since political party ID
is nominal. The absence of interaction is indicated by the parallel sequences of
points.

TABLE 12.11: Population Means for a Two-Way Classification,
Displaying (a) No Interaction, (b) Interaction

Political Party Identification

Table Sex Democrat Independent Republican

(a) Female 3.0 3.5 5.0
Male 4.0 4.5 6.0

(b) Female 3.0 4.0 5.0
Male 5.0 4.0 3.0

Females

Males

Democrat

Mean
Political
Ideology

5

6

4

3

2
Independent Republican

Party Identification

FIGURE 12.2: Mean
Political Ideology, by
Political Party ID and Sex,
Displaying No Interaction

By contrast, Table 12.11b and Figure 12.3 show population means displaying in-
teraction. The difference between females and males in mean political ideology is
−2 for Democrats, 0 for Independents, and +2 for Republicans. So, the difference
depends on the political party ID. Similarly, the political party ID effect on ideology
differs for females and males. For females, Republicans are the most conservative,
whereas for males, Democrats are the most conservative.
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Females

Males

Democrat

Mean
Political
Ideology

5

6

4

3

2
Independent Republican

Party Identification

FIGURE 12.3: Mean
Political Ideology, by
Political Party ID and Sex,
Displaying Interaction

In Table 12.11b, suppose the numbers of males and females are equal, for each
political party ID. Then the overall mean political ideology, ignoring sex, is 4.0 for
each political party. In a one-way comparison of mean political ideology by party ID,
party ID has no effect. However, in a two-way comparison, the interaction implies
differing party ID effects for males and females.

The F test statistic for H0: no interaction is the ratio of a mean square based
on the sample degree of interaction divided by the residual mean square. A small
P-value suggests that each factor has an effect on the response, but the size of effect
varies according to the category of the other factor. In that case, it is not meaningful
to test the main effects hypotheses. We conclude that each factor has an effect, but
the nature of that effect changes according to the category of the other factor. It is
then better to compare the means for one factor separately within categories of the
other. On the other hand, if the evidence of interaction is not strong, we then remove
the interaction terms from the model and test the two main effect hypotheses.

Table 12.9 showed the sample mean political ideology for the six combinations
of political party ID and sex. These means show no obvious evidence of interaction.
We’ll see that the test of H0: no interaction has F = 1.57 and a P-value of P = 0.21.
So, a lack of interaction is plausible, and the main effect tests are valid.

Next, it is natural to use confidence intervals to find out more about the political
party ID effect, controlling for sex. To do this, it is helpful to study two-way ANOVA
in the context of regression modeling.

TWO-WAY ANOVA AS A MULTIPLE REGRESSION ANALYSIS

To conduct the F tests as special cases of tests about parameters of a multiple re-
gression model, we set up dummy variables for each factor. We use the symbol p for
dummy variables for political party ID and s as a dummy variable for sex (whether
a subject is female). That is,

p1 =
{

1 if subject is Democrat,
0 otherwise.

p2 =
{

1 if subject is Independent,
0 otherwise.
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Both p1 and p2 equal 0 when the subject is Republican. Also,

s =
{

1 if subject is female,
0 if subject is male.

It is redundant to include dummy variables for the final categories.
The multiple regression model assuming a lack of interaction is

E(y) = α + β1 p1 + β2 p2 + β3s.

To find the correspondence between the population means and the regression pa-
rameters, we substitute the possible values for the dummy variables. To illustrate,
for Republicans (p1 = p2 = 0), the mean political ideology is

Males (s = 0): μ = α + β1(0) + β2(0) + β3(0) = α.
Females (s = 1): μ = α + β1(0) + β2(0) + β3(1) = α + β3.

For the six combinations of political party ID and sex, Table 12.12 shows the popu-
lation means in terms of the regression parameters. For each political party ID, the
difference in means between females and males equals β3. That is, the coefficient β3

of the dummy variable s for sex equals the difference between females and males in
mean political ideology, controlling for political party ID. Also, β1 is the difference
between the means for Democrats and Republicans, and β2 is the difference between
the means for Independents and Republicans, controlling for sex. The null hypothe-
sis of no differences among the parties in mean political ideology, controlling for sex,
is H0: β1 = β2 = 0.

TABLE 12.12: Population Mean Political Ideology for the Two-Way
Classification of Political Party ID and Sex, Assuming
No Interaction

Dummy Variables Population Mean of yPolitical
Sex Party ID p1 p2 s α + β1 p1 + β2 p2 + β3s

Female Democrat 1 0 1 α + β1 + β3
Independent 0 1 1 α + β2 + β3
Republican 0 0 1 α + β3

Male Democrat 1 0 0 α + β1
Independent 0 1 0 α + β2
Republican 0 0 0 α

Table 12.13 shows some output for fitting the complete regression model. The
prediction equation is

ŷ = 5.23 − 1.77p1 − 1.24p2 − 0.01s.

The coefficient −1.77 of p1 is the estimated difference between Democrats and Re-
publicans in mean political ideology, for each sex. The coefficient −1.24 of p2 is the
estimated difference between Independents and Republicans, for each sex. The es-
timated difference between Democrats and Independents is (−1.77) − (−1.24) =
−0.53, for each sex.

Substituting dummy variable values into the prediction equation yields esti-
mated means that satisfy the no interaction model. For instance, for female Republi-
cans, p1 = p2 = 0 and s = 1, so ŷ = 5.23 − 1.77(0) − 1.23(0) − 0.01(1) = 5.22. These
estimated means differ from the sample means in cells of the two-way classification,
because they impose the restriction of no interaction.
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TABLE 12.13: Fit of Regression Model for Two-Way Analysis of Mean Political
Ideology by Party Identification and Sex, Assuming No Interaction.
The estimate is 0 at the last level of each predictor, because a
dummy variable for that level would be redundant.

Parameter Estimate Std. Error t Pr(>|t|)
Intercept 5.2289 0.0609 85.80 0.000
party 1 -1.7651 0.0707 -24.97 0.000

2 -1.2366 0.0676 -18.29 0.000
3 0 . . .

sex 1 -0.0074 0.0524 -0.14 0.887
2 0 . . .

As usual, we use confidence intervals to estimate the sizes of effects. For instance,
the estimated difference β̂1 = −1.765 between Democrats and Republicans in mean
political ideology, controlling for sex, has standard error (reported in Table 12.13) of
0.0707. A 95% confidence interval is −1.765 ± 1.96(0.0707), or (−1.90,−1.63). For
each sex, Democrats are less conservative, on the average, by nearly two categories,
quite substantial in practical terms.

REGRESSION MODEL FOR TWO FACTORS WITH INTERACTION

Section 11.4 showed that cross-product terms in a multiple regression model can rep-
resent interaction. Here, we take cross products of dummy variables to obtain a re-
gression model that allows interaction effects. The interaction model for the two-way
classification of party ID and sex is

E(y) = α + β1 p1 + β2 p2 + β3s + β4(p1 × s) + β5(p2 × s).

We do not use cross products of dummy variables from categories of the same factor,
such as p1 p2. This is because no more than one dummy variable for a given predictor
can be nonzero for any observation, since an observation cannot fall in more than
one category. All such cross products would equal 0.

Table 12.14 shows an ANOVA table (using Stata) for the model that allows in-
teraction. The sum of squares for interaction, shown in the row with the product
label party#sex, is the amount of variability explained by the two interaction terms.
It equals the difference between the residual SS without and with these terms in the
model. We test H0: no interaction, that is, H0: β4 = β5 = 0, using

F = Interaction mean square
Residual mean square

= 2.51
1.60

= 1.57.

The test has P-value 0.21, not much evidence of interaction. The simpler model with-
out interaction terms is adequate, and the main effect tests presented in Table 12.10
for party ID and sex are valid. When the evidence of interaction is not significant, it
is better to use the model without interaction terms in testing the main effects of the
predictors and in constructing confidence intervals for the effects.

PARTIAL SUMS OF SQUARES IN ANOVA TABLES

The sums of squares for party, sex, and their interaction in Tables 12.10 and 12.14
are called partial sums of squares.2 Some software labels them as Type III sums of

2 See also Exercise 11.60 on page 361.
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TABLE 12.14: ANOVA Table (from Stata) for Two-Way Analysis of Mean Political Ideology
by Political Party ID and Sex, Allowing Interaction

Source | Partial SS df MS F Prob>F
Model | 1025.32 5 205.06 128.16 0.000

|
party | 1020.27 2 510.13 318.81 0.000
sex | 0.03 1 0.03 0.02 0.887
party#sex | 5.02 2 2.51 1.57 0.208

|
Residual | 3779.45 2362 1.60
----------------+------------------------------------------------

Total | 4804.77 2367 2.03

squares. They represent the variability in y explained by those terms, once the other
terms are already in the model. This equals the difference between the residual SS
values for the model without those terms and the model with them.

For example, consider the partial SS value of 5.02 for the interaction term in
Table 12.14. This equals the difference between the residual SS of 3784.47 for the
model without that interaction term (see Table 12.10 on page 376) and the residual
SS of 3779.45 with the term in the model (Table 12.14).

Unless the explanatory variables are independent, partial sums of squares for
different terms in a model overlap somewhat and do not add up exactly to the re-
gression model sum of squares. Likewise, the partial sum of squares explained by a
factor depends on which other factors or interaction terms are in the model.

FACTORIAL ANOVA

The methods of two-way ANOVA for two factors extend to several factors. A multi-
factor ANOVA with observations from all the combinations of the factors is called
factorial ANOVA. For instance, for three factors, the regression model has a set of
dummy variables for each factor and may contain cross products of pairs of dummy
variables for the two-factor interactions.

When you have two or more factors, why not instead perform separate one-way
ANOVAs? For instance, you could compare the mean political ideology for females
and males using a one-way ANOVA, ignoring the information about political party
ID, and you could perform a separate one-way ANOVA to compare the means for
the three political party IDs, ignoring the information about sex. The main reason is
that with factorial ANOVA we can learn whether there is interaction. When there
is, it is more informative to compare levels of one factor separately at each level of
the other factor. This enables us to investigate how the effect depends on that other
factor.

12.5 Repeated-Measures Analysis of Variance∗

The methods presented so far assume that the samples in the groups are independent,
each group having a separate sample of subjects. In many studies, however, each
group has the same subjects. Most commonly, this happens when there is repeated
measurement of the subjects over time or on several related response variables. The
samples are then dependent, and the analysis must take this into account.
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Example
12.7

Influences of Entertainment on Children A recent General Social Survey asked sub-
jects to respond about the influence on the daily lives of their children of movies, pro-
grams on network television, and rock music. The possible responses for influence
were (very negative, negative, neutral, positive, very positive). Table 12.15 shows re-
sponses for 12 of the sampled subjects, using scores (−2,−1, 0, 1, 2) for the cate-
gories. This is part of a much larger data file for more than 1000 respondents. We
analyze only this small sample here, which is the Influences data file at the text
website.

TABLE 12.15: Influences on Children of Three
Entertainment Types. The
influence scores represent −2 =
very negative, −1 = negative,
0 = neutral, 1 = positive, 2 =
very positive.

Subject Movies TV Rock

1 −1 0 −1
2 1 0 0
3 0 1 −2
4 2 0 1
5 0 −1 −1
6 −2 −2 −2
7 −1 −1 0
8 0 1 −1
9 −1 −1 −1
10 1 0 1
11 1 1 −1
12 −1 −1 −2

Mean −0.08 −0.25 −0.75

ONE-WAY ANOVA WITH REPEATED MEASUREMENT

For Table 12.15, H0 is the same as in ordinary one-way ANOVA: equal population
means for the groups. Is there much evidence that the population mean influence dif-
fers among movies, TV, and rock music? Ordinary ANOVA is inappropriate because
the three samples are not independent. Each sample has the same subjects.

Suppose we regard the rows of Table 12.15, like the columns, as a factor. Then,
the data layout resembles a two-way ANOVA. Each cell cross-classifies a subject (a
row) with entertainment type (a column). The test comparing population means is
then the main effect test for the column variable in the two-way ANOVA. In fact, this
approach provides the correct test statistic for this setting. This approach does not
extend to more complex analyses, but statistical software has specialized programs
for repeated-measures ANOVA3 that account for the dependence.

Table 12.16 shows the ANOVA table for a repeated-measures analysis of
Table 12.15. For

H0: Equal population mean influence for the three entertainment types,

3 For example, the R or Stata commands shown in Appendix A, or in SPSS using the Repeated Measures option
after selecting General Linear Model in the Analyze menu.
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the test statistic is F = 2.55, with df1 = 2 and df2 = 22. The P-value equals 0.10. The
evidence against H0 is not strong. But, with only 12 subjects, if H0 is false, the power
is probably low.

TABLE 12.16: Output for Repeated-Measures ANOVA of Influence by Entertainment Type
(Movies, TV, Rock Music), for Data in Table 12.15 from the Influences
Data File

Test of Within-Subjects Effects (Sphericity assumed)
Partial Mean

Source (Type III) SS df Square F Sig.
Entertainment 2.889 2 1.444 2.55 .101
Residual (Error) 12.444 22 .566

CONFIDENCE INTERVALS COMPARING DEPENDENT SAMPLES

To compare the three pairs of means simultaneously with confidence intervals, we
can use multiple comparison methods. Since n = 12 is small, we weaken the multiple
comparison confidence level a bit so that the intervals are not overly wide. The 90%
Bonferroni confidence intervals use error probability 0.10/3 = 0.0333 for each inter-
val. The error df = 22, and the t-score with probability 0.0333/2 = 0.0167 in each
tail is 2.27. The square root of the residual mean square is s = √

0.566 = 0.75. Each
group has 12 observations, so the margin of error for each confidence interval is

ts

√
1
ni

+ 1
nj

= 2.27(0.75)

√
1

12
+ 1

12
= 0.70.

For instance, the confidence interval for the difference between the mean on
movies and the mean on rock music is (−0.08) − (−0.75) ± 0.70, or (−0.03, 1.37). It
is plausible that the means are equal, but also plausible that the mean for movies is
much more in the positive direction than the mean for rock music. Table 12.17 shows
all three Bonferroni comparisons. Confidence intervals can convey useful informa-
tion even if the overall test statistic is not significant.

TABLE 12.17: Bonferroni Multiple Compari-
son 90% Confidence Intervals
for Comparing Mean Influence
for Three Entertainment Types

Entertainment Difference Confidence
Types of Means Interval

Movies, TV 0.17 (−0.53, 0.87)
Movies, Rock 0.67 (−0.03, 1.37)
TV, Rock 0.50 (−0.20, 1.20)

THE SPHERICITY ASSUMPTION AND COMPOUND SYMMETRY

The standard repeated-measures ANOVA assumes sphericity. Roughly speaking,
this means the following. For each pair of groups in the one-way ANOVA, consider
the difference between two paired observations, one from each group. This difference
is a variable, and the sphericity condition states that the standard deviation of the
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distribution of this difference is identical for each pair of groups. It is easier to get a
feel for a special case of sphericity, called compound symmetry. This condition holds
when the different groups have the same standard deviations and when each pair of
responses has the same correlation.

When the sphericity assumption is badly violated, the P-value tends to be too
small. Most software provides a formal significance test (Mauchly’s test) of the
sphericity assumption. When the data strongly contradict that assumption, an ap-
proximate test adjusts the degrees of freedom downward for the usual F test statistic,
using the Greenhouse–Geisser adjustment. The technical details for these tests and
adjustments are beyond the scope of this text, but standard software reports them.

Using a repeated measurement design can improve precision of estimation. For
a one-way ANOVA with repeated measures, having the same subjects in each group
helps to eliminate extraneous sources of error. For instance, other variables that af-
fect the response have the same values for each group, so differences between group
means cannot reflect differences between groups on those variables. Controlling for
possibly confounding factors by keeping them constant for each observation is re-
ferred to as blocking.

With only two groups and the same subjects in each, Section 7.4 showed that
inference uses the t distribution with difference scores. For testing equality of means,
the F statistic from repeated-measures ANOVA then simplifies to the square of the
t statistic from that matched-pairs t test.

FIXED EFFECTS AND RANDOM EFFECTS

Regarding the data file like one for a two-way ANOVA, we can express a regression
model for the previous analysis as

E(y) = α + β1m + β2t + γ1z1 + γ2z2 + · · · + γ11z11,

where y is the influence response, m is a dummy variable for movies (m = 1 for a
response on movies, 0 otherwise), t is a dummy variable for TV (t = 1 for a response
on TV, 0 otherwise), and m = t = 0 for a response on rock music. Similarly, z1 is
a dummy variable for subject 1, equaling 1 for that subject’s three responses and 0
otherwise, and likewise for 10 other subject dummy variables. We use γ (gamma)
instead of β for the coefficients of these terms for convenience, so the index of the
parameter agrees with the index of the dummy variable. As usual, each factor has
one fewer dummy variable than its number of categories.

A short-hand way to express this regression model is

E(y) = α + β j + γi,

where β j denotes the effect for entertainment type j and γi is the effect for subject
i. This equation expresses the expected response in the cell in row i and column j in
terms of a row main effect and a column main effect. Testing equality of the popula-
tion mean of y for the three types corresponds to testing H0: β1 = β2 = β3. As usual,
to avoid redundancy, we can set β3 = 0.

In this model, the {γi} depend on which subjects are in the sample. The subject
effect is called a random effect, because the categories of the subject factor represent
a random sample of all the possible ones. By contrast, the factor that defines the
groups, entertainment type, is called a fixed effect. The analyses use all the categories
of interest of a fixed effect, rather than a random sample of them. Models studied in
earlier sections of this chapter contained only fixed effects.

We treat random effects in statistical models differently from fixed effects. We’ll
learn more about this in Section 13.5, which presents regression models of more gen-
eral form containing both random and fixed effects.
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12.6 Two-Way ANOVA with Repeated Measures
on a Factor∗

Repeated measurement data sets often have more than one fixed effect. The repea-
ted measures usually occur across categories of one factor, but the categories of the
other factor(s) have independent samples. The following example illustrates this:

Example
12.8

Comparing Three Treatments for Anorexia For 72 young girls suffering from
anorexia, Table 12.18 (the Anorexia data file at the text website) shows their
weights before and after an experimental period.4 The girls were randomly assigned
to receive one of three therapies during this period. One group, a control group, re-
ceived the standard therapy. The study analyzed whether one treatment is better than
the others, with the girls tending to gain more weight under that treatment.

TABLE 12.18: Weights of Anorexic Girls, in Pounds, before and after
Receiving One of Three Treatments

Cognitive Behavioral Family Therapy Control

Weight Weight Weight Weight Weight Weight
before after before after before after

80.5 82.2 83.8 95.2 80.7 80.2
84.9 85.6 83.3 94.3 89.4 80.1
81.5 81.4 86.0 91.5 91.8 86.4
82.6 81.9 82.5 91.9 74.0 86.3
79.9 76.4 86.7 100.3 78.1 76.1
88.7 103.6 79.6 76.7 88.3 78.1
94.9 98.4 76.9 76.8 87.3 75.1
76.3 93.4 94.2 101.6 75.1 86.7
81.0 73.4 73.4 94.9 80.6 73.5
80.5 82.1 80.5 75.2 78.4 84.6
85.0 96.7 81.6 77.8 77.6 77.4
89.2 95.3 82.1 95.5 88.7 79.5
81.3 82.4 77.6 90.7 81.3 89.6
76.5 72.5 83.5 92.5 78.1 81.4
70.0 90.9 89.9 93.8 70.5 81.8
80.4 71.3 86.0 91.7 77.3 77.3
83.3 85.4 87.3 98.0 85.2 84.2
83.0 81.6 86.0 75.4
87.7 89.1 84.1 79.5
84.2 83.9 79.7 73.0
86.4 82.7 85.5 88.3
76.5 75.7 84.4 84.7
80.2 82.6 79.6 81.4
87.8 100.4 77.5 81.2
83.3 85.2 72.3 88.2
79.7 83.6 89.0 78.8
84.5 84.6
80.8 96.2
87.4 86.7

Source: Thanks to Prof. Brian Everitt, Kings College, London, for these data, which are
in the Anorexia data file at the text website.

4 We previously analyzed parts of this data set on pages 129, 160, and 206.
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Figure 12.4 shows box plots, graphically describing the response distributions
before and after the experimental period for each treatment. Table 12.19 shows the
summary sample means. The three treatments have similar distributions originally.
This is not surprising, because subjects were randomly allocated to the three groups
at that time. There is some evidence of a greater mean weight gain for the family
therapy group, though there are a few low outlying weight values.

Time: Before After

Family TherapyTreatment:  Cognitive Behavioral Control

AfterBefore AfterBefore

0

0

0

FIGURE 12.4: Box Plots
for Weights of Anorexic
Girls, by Treatment and
Time of Measurement

TABLE 12.19: Sample Mean Weight, by Treat-
ment and Time of Measurement, in
Anorexia Study

Time

Treatment Before After

Cognitive behavioral (CB) 82.7 85.7
Family therapy (FT) 83.2 90.5
Control (C) 81.6 81.1

REPEATED MEASURES ON ONE OF TWO FIXED EFFECTS

This experiment had two fixed effects. One of them, “Treatment,” has categories
(CB = cognitive behavioral, FT = family therapy, C = control). It defines three
groups of girls, represented by three independent samples. The second, “Time,”
consists of the two times for observations (before, after). Each time has the same
subjects, so the samples at its levels are dependent. Time is called a within-subjects
factor, because comparisons of its categories use repeated measurements on sub-
jects. Treatment is called a between-subjects factor, because comparisons of its cat-
egories use different subjects.

Although the two factors (treatment and time) are fixed effects, the analysis dif-
fers from ordinary two-way ANOVA. This is because the repeated measurements
on the within-subjects factor (time) create a third effect, a random effect for sub-
jects. Each subject is measured at every category of time. Subjects are said to be
crossed with the time factor. Each subject occurs at only one category of the between-
subjects factor (treatment). Subjects are said to be nested within the treatment factor.

As in ordinary two-way ANOVA, we can test each main effect as well as their
interaction. However, tests about the within-subjects factor (both its main effect and
its interaction with the other fixed effect) use a different error term than the test
about the between-subjects main effect. The ordinary sum of squared errors term
is partitioned into two parts. One part uses the variability between mean scores of
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subjects. It forms an error term for testing the between-subjects factor. The other part
is based on how the pattern of within-subject scores varies among subjects. It forms
an error term for any test involving the within-subjects factor. Figure 12.5 shows
the partitioning of the total sum of squares for a two-way ANOVA with repeated
measures on one factor.

Total

ErrorTreatment

Between
subjects

Within
subjects

Treatment 3 TimeTimeError

FIGURE 12.5: Partitioning
of Variability in Two-Way
ANOVA with Treatment
and Time Factors and
Repeated Measures on
Time. Tests involving the
within-subjects factor
(time) use a separate error
term.

Example
12.9

ANOVA F Tests Comparing Anorexia Treatments Table 12.20 shows software output
for the analysis of the anorexia study data. Since treatment has three categories, it
has two dummy variables in the regression model, and its sum of squares has df = 2.
Since time has two levels, it has one dummy variable, and its sum of squares has
df = 1. The interaction between these effects has two terms in the model, based on
the cross product of the two dummy variables for treatment with the dummy variable
for time, so its df = 2.

TABLE 12.20: Software Output for Two-Way ANOVA of the Anorexia Data File with
Treatment and Time Fixed Effects and Repeated Measures on Time

Tests of Within-Subject Effects
Partial Mean

Source (Type III) SS df Square F Sig
TIME 366.04 1 366.04 12.92 0.001
TIME*TREATMENT 307.32 2 153.66 5.42 0.006
Residual (subject|treatment) 1955.37 69 28.34

Tests of Between-Subjects Effects
Partial

Source (Type III) SS df Mean Square F Sig
TREATMENT 644.23 2 322.12 6.20 0.003
Residual (Error) 3584.03 69 51.94

The residual term for the between-subjects part of the table has df = 69, based
on 28 dummy variables for the 29 subjects receiving CB therapy, 16 dummy variables
for the 17 subjects receiving FT, and 25 dummy variables for the 26 subjects in group
C (28 + 16 + 25 = 69). The remaining variability, not accounted for by this residual
term or by the main effects and interaction terms, is the residual sum of squares for
the within-subjects effects.

The TIME*TREATMENT row of the ANOVA table indicates that the interac-
tion is highly significant (P-value = 0.006). The difference between population means
for the two times differs according to the treatment, and the difference between pop-
ulation means for a pair of treatments varies according to the time. Because of the
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significant interaction, we do not test the main effects. We instead use confidence
intervals to describe the interaction.

FOLLOW-UP CONFIDENCE INTERVALS

From the sample means in Table 12.19, the evidence of interaction is clear. The sam-
ple means for the three treatments are similar at the initial time. At the second time,
by contrast, the mean for the control group is similar to its mean at the initial time,
but the mean is larger for the other two treatments than their initial means, especially
for the FT group.

To construct confidence intervals comparing means at the two times, for each
treatment, the appropriate common standard deviation estimate is the square root
of the residual mean square from the within-subjects analysis. From Table 12.20, this
equals

√
28.34 = 5.3, with df = 69. We illustrate by constructing a 95% confidence

interval comparing the two means for family therapy (FT), which 17 girls received
at each time. The t-score for 95% confidence when df = 69 is 1.99. The confidence
interval is

(90.5 − 83.2) ± 1.99(5.3)

√
1
17

+ 1
17

, or 7.3 ± 3.6, or (3.6, 10.9).

We conclude that the population mean weight is between 3.6 and 10.9 pounds higher
following the treatment period. Similarly, a 95% confidence interval comparing the
two means equals (0.2, 5.8) for the CB therapy and (−3.4, 2.5) for the control group.
There is evidence of an increase, albeit a small one, for the CB therapy, but no evi-
dence of change for the control group.

To make between-subjects comparisons of treatments, for each time, we cannot
use the residual mean square from the between-subjects analysis. The reason is that
these separate comparisons involve both the treatment main effect and the interac-
tion, and these two sources of variation have different error terms in the repeated-
measures ANOVA. At a particular time, however, the subjects in the three treat-
ments are independent samples. Thus, we can compare three means at a given time
using a one-way ANOVA F test or using confidence intervals for those data alone.

For instance, for the 72 observations at time = after, the F test statistic for the
one-way ANOVA comparing the three means has P-value = 0.0004, very strong
evidence of a difference among the treatment means. For this one-way ANOVA, the
square root of the residual mean square is s = 7.3. The 95% confidence interval for
the difference between the FT and the CB treatment means, based on the 17 + 29
observations for the two groups, is

(90.5 − 85.7) ± 1.99(7.3)

√
1
17

+ 1
29

, or 4.8 ± 4.4, or (0.4, 9.2).

The true means may be essentially equal at the follow-up time, but if they differ, the
advantage could be quite noticeable for the family therapy. Table 12.21 shows the
confidence intervals for each pair of treatments.

TABLE 12.21: 95% Confidence Intervals Comparing
Treatment Means after the Treatment Period

Treatments Difference of Confidence Bonferroni
Compared Sample Means Interval Interval

FT − CB 4.8 (0.4, 9.2) (−0.7, 10.3)
FT − C 9.4 (4.9, 13.9) ( 3.8, 15.0)
CB − C 4.6 (0.7, 8.5) (−0.2, 9.4)
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In summary, evidence suggests that the mean weight increases during the exper-
imental period for both noncontrol treatments. Marginal evidence suggests that the
mean is higher after the experiment for the FT treatment than for the CB treatment.

At this stage, further interest may relate to whether the change in means, be-
tween time = after and time = before, differed for the two noncontrol treatments.
That is, do the difference scores for the FT treatment have a significantly higher mean
than the difference scores for the CB treatment? The difference scores have a mean
of (90.5 − 83.2) = 7.3 for the FT treatment and (85.7 − 82.7) = 3.0 for the CB treat-
ment, and we used these as the basis of separate confidence intervals for the mean
change, above. Since the two groups are independent samples, the variance of the
difference of these means is the sum of the variances. A 95% confidence interval for
the difference between the mean changes in weight is

(7.3 − 3.0) ± 1.99(5.3)

√
1
17

+ 1
17

+ 1
29

+ 1
29

, or 4.3 ± 4.6, or (−0.3, 8.8).

Although the mean change could be considerably larger for the FT treatment, it is
also plausible that the mean changes could be identical.

BONFERRONI MULTIPLE COMPARISONS OF TREATMENTS

To control the overall error rate for several comparisons, we can use the Bonferroni
multiple comparison method. Suppose we use three confidence intervals to com-
pare treatments at time = after and three confidence intervals to compare times
within the treatments. To ensure at least 90% confidence for the entire set, since
0.10/6 = 0.0167, we use a 98.33% confidence interval for each individual compari-
son. If we focus on the three intervals comparing treatments at time = after, these
are Bonferroni 95% confidence intervals.

Such intervals are wider than the ones just reported, since they use a t-score of
2.45 instead of 1.99. Table 12.21 shows them for the pairwise comparisons of treat-
ments at time = after. With this more conservative approach, only the difference
between the FT and C treatments is significant, with the interval not containing 0.

OTHER REPEATED-MEASURES ANALYSES

In the anorexia study, the repeated measurements occurred at two times. When ob-
servations occur at several times, the repeated-measures ANOVA is more complex.
In particular, the results depend on assumptions about the correlation structure of
the repeated measurements. The standard test for the within-subject effect assumes
sphericity, as in one-way repeated-measures ANOVA. Tests of the between-subjects
effects are not affected by violation of the sphericity assumption, so no adjustment
is needed for that F test.

In some studies with two fixed effects, repeated measures occur on both factors.
For instance, we may observe the same subjects for each treatment at each of several
times. Then, subjects (a random effect) are crossed with both factors (fixed effects),
and an observation occurs for every subject at every combination of factor levels. As
in ordinary two-way ANOVA, the effects of interest refer to the fixed effects—their
main effects and interaction.

Two-way ANOVA with repeated measures on one or both factors extends to
multiple factors. For example, a study may have three factors, A, B, and C, with re-
peated measures on C. Then subjects are crossed with C but nested within combina-
tions of levels of A and B. The complicating factor of these cases is that each test may
require a separate residual mean square. However, software can easily conduct the
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analyses. For details on the linkage of ANOVA methods with experimental designs,
see Howell (2012), Kirk (2012), and Winer et al. (1991).

MANOVA: MULTIVARIATE ANALYSIS OF VARIANCE

A more general ANOVA can test hypotheses comparing the means without any as-
sumptions about the correlation structure. It treats the set of repeated measures on
a subject as a multivariate vector of responses that has a multivariate version of the
normal distribution. By doing this, methods are available that are designed for multi-
variate response data. The tests are called MANOVA, short for multivariate analy-
sis of variance. The particular MANOVA test referred to by most software as Wilks’
lambda is a likelihood-ratio test, the idea of which we will introduce in Section 15.3.

The MANOVA approach has its own disadvantages, however. The main one is
that it loses power as the sacrifice for having weaker assumptions. If the assumptions
for traditional repeated-measures ANOVA are not badly violated, that method has
higher power for testing effects. MANOVA has lower power because it requires es-
timating a larger number of parameters.

REPEATED MEASURES USING MIXED MODELS AND
CORRELATION STRUCTURE

Repeated-measures ANOVA methods have limitations:

• The index for the repeated measurement enters in the model the same way for
each subject. In longitudinal studies, this means that we need to observe all
subjects at the same time points.

• The method cannot deal with missing data. Subjects with any missing observa-
tions get dropped from the analysis. This can lead to significant bias and ineffi-
ciency when the missing data are considerable.

• The correlations among observations on the same subject are assumed to satisfy
a sphericity structure, which is implied by common variability at all times and
the same correlation between each pair of observations.

Other types of methods are available for repeated measurement data. They vary
in the assumptions they make and in how they model the correlation structure of
the repeated observations. We just mentioned the multivariate ANOVA approach.
It also has the first two disadvantages, and has potentially low power. Section 13.5
introduces a more general linear modeling approach with random effects that
models the correlation structure for the repeated responses, permits observations at
different time points, and accommodates subjects in the analysis when some of their
observations are missing. The models also include fixed effects for the explanatory
variables (such as treatment) for which the analyses use all the categories of interest,
and can have both categorical and quantitative explanatory variables. Because its
effects are a mixture of random and fixed effects, the model is called a mixed model.

12.7 Chapter Summary
Chapters 9 and 11 presented regression models for a quantitative response vari-
able when the explanatory variables are also quantitative. This chapter has modeled
a quantitative response variable as a function of categorical explanatory variables,
called factors. Models of the next chapter include both quantitative and categorical
explanatory variables.
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This chapter also presented analysis of variance (ANOVA) methods for com-
paring several groups according to their means on a quantitative response variable.
The groups are categories of categorical explanatory variables.

• Analysis of variance methods are a special case of multiple regression analy-
ses. Dummy variables in the regression model are indicators that represent the
groups. Each dummy variable equals 1 for a particular group and 0 otherwise.

• Multiple comparison methods provide confidence intervals for differences
between pairs of means, while controlling the overall error probability. The
Bonferroni method does this using an error probability for each comparison
that equals the desired overall error probability divided by the number of
comparisons.

• One-way ANOVA methods compare means for categories of a single factor.
Two-way ANOVA methods compare means across categories of each of two
factors. Assuming no interaction, the main effects describe the effect of each
factor while controlling for the other one. Ordinary ANOVA methods compare
groups with independent random samples from the groups.

• For longitudinal and repeated-measures studies, different samples have the
same subjects, and are dependent. Methods for repeated-measures ANOVA re-
sult from regression models with random effects that represent the effects of
the random sample of observed subjects. Such methods treat within-subjects
effects (for repeated measurements on subjects) differently from between-
subjects effects (for independent samples of subjects).

Exercises

Practicing the Basics
12.1. For GSS data comparing the reported number of
good friends for those who are (married, widowed, di-
vorced, separated, never married), an ANOVA table re-
ports F = 0.80.
(a) Specify the null and alternative hypotheses for the
test.
(b) Software reports a P-value of 0.53. Explain how to in-
terpret it.
(c) State the hypotheses tested in terms of parameters of
a regression model. Define variables in that model.

12.2. A General Social Survey asked subjects how many
good friends they have. Is this associated with the respon-
dent’s astrological sign (the 12 symbols of the zodiac)?
The ANOVA table for the GSS data reports F = 0.61
based on df1 = 11, df2 = 813.
(a) Specify the null and alternative hypotheses for the
analysis.

TABLE 12.22

Source SS df Mean Square F Sig (Prob>F)
Religion 11.72 3 3.91 5.48 0.001
Residual (Error) 922.82 1295 0.71
Total 934.54 1298

(b) Software reports a P-value of 0.82. Explain how to in-
terpret it.
(c) State a regression model and corresponding null hy-
pothesis that can yield these results. Define variables in
that model.
12.3. A recent General Social Survey asked, “What is the
ideal number of kids for a family?” Show how to define
dummy variables, and formulate a model for this response
with explanatory variable religious affiliation (Christian,
Muslim, Jewish, Other or none).
12.4. Refer to the previous exercise. Table 12.22 shows an
ANOVA table for the model.
(a) Specify the hypotheses tested in this table.
(b) Report the F test statistic value and the P-value. In-
terpret the P-value.
(c) Based on (b), can you conclude that every pair of reli-
gious affiliations has different population means for ideal
family size? Explain.
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12.5. A recent GSS asked, “How often do you go to a bar
or tavern?” Table 12.23 shows descriptive statistics and an
ANOVA table for comparing the mean reported number
of good friends at three levels of this variable.

(a) State the (i) hypotheses, (ii) test statistic value,
(iii) P-value, (iv) decision for an α = 0.05-level test.

(b) Does any aspect of the summary here suggest that an
assumption for the F test may be badly violated? Explain.
(c) Set up dummy variables, and show the prediction
equation you would obtain, based on the results shown
in the table.

TABLE 12.23

How often go to bar or tavern?
Very often Occasional Never

Mean no. good friends 12.1 6.4 6.2
Standard deviation 21.3 10.2 14.0
Sample size 41 166 215

Sum of Mean
Source Squares df Square F Prob>F
Group 1116.8 2 558.4 3.03 0.049
Residual (Error) 77171.8 419 184.2
Total 78288.5 421

12.6. Table 12.24 shows scores on the first quiz (maximum
score 10 points) in a beginning French course. Students in
the course are grouped as follows:

Group A: Never studied foreign language before, but
have good English skills.
Group B: Never studied foreign language before; have
poor English skills.
Group C: Studied other foreign language.

Using software for regression or ANOVA, conduct a test
comparing the means. Report the assumptions, hypothe-
ses, test statistic, and P-value. Interpret the P-value.

TABLE 12.24

Group A Group B Group C

4 1 9
6 5 10
8 5

TABLE 12.25

Source SS df MS F Prob>F
Group 26.00 2 13.00 27.6 0.000
Residual (Error) 140.00 297 0.47
Total 60.00 299

12.7. Refer to the previous exercise.
(a) Suppose that the first observation in the second group
was actually 9, not 1. Then, the standard deviations are the
same, but the sample means are 6, 7, and 8 rather than 6, 3,
and 8. Do you think the F test statistic would be larger, the
same, or smaller? Explain your reasoning, without doing
any calculations.
(b) Suppose you had the same means as these data, but
the sample standard deviations were 1.0, 1.8, and 1.6, in-
stead of the actual 2.0, 2.8, and 2.6. Do you think the
F test statistic would be larger, the same, or smaller?
Explain your reasoning.

(c) Suppose you had the same means and standard devi-
ations as these data, but the sample sizes were 30, 20, and
30, instead of 3, 2, and 3. Do you think the F test statis-
tic would be larger, the same, or smaller? Explain your
reasoning.
(d) In (a), (b), and (c), would the P-value be larger, the
same, or smaller? Why?

12.8. In a study to compare customer satisfaction at
service centers for PC technical support in San Jose
(California), Toronto (Canada), and Bangalore (India),
each center randomly sampled 100 people who called dur-
ing a two-week period. Callers rated their satisfaction on
a scale of 0 to 10, with higher scores representing greater
satisfaction. The sample means were 7.6 for San Jose, 7.8
for Toronto, and 7.1 for Bangalore. Table 12.25 shows an
ANOVA table.
(a) Explain how to obtain the F test statistic value re-
ported in the table from the mean square values shown.
Report the df1 and df2 values for the F distribution, and
report and interpret the P-value.
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(b) Explain why the margin of error for separate 95%
confidence intervals is the same (0.19) for comparing the
population means for each pair of cities. Construct and
interpret the three intervals.
(c) The margin of error for Bonferroni or for Tukey 95%
multiple comparison confidence intervals is 0.23. Why is
it different from that in (b), and what is an advantage of
this approach?
(d) With dummy variables to represent the service cen-
ters, the prediction equation is ŷ = 7.1 + 0.5z1 + 0.7z2.
Show how the terms in this equation relate to the sample
means of 7.6, 7.8, and 7.1.

12.9. For g groups with n = 100 each, we plan to com-
pare all pairs of population means. We want the probabil-
ity to equal at least 0.80 that the entire set of confidence
intervals contains the true differences. For the Bon-
ferroni method, which t-score multiple of the standard
error should we use for each interval if (a) g = 10,
(b) g = 5? Describe how the t-score depends on g, and
explain the implication regarding width of the intervals.

12.10. A recent GSS asked, “Would you say that you are
very happy, pretty happy, or not too happy?” and “About
how many good friends do you have?” Table 12.26 sum-
marizes results, with number of friends as the response
variable.

TABLE 12.26

Very happy Pretty happy Not too happy
Mean 10.4 7.4 8.3
Standard deviation 17.8 13.6 15.6
Sample size 276 468 87

Source Sum of Squares df MS F Prob>F
Group 1626.8 2 813.4 3.47 0.032
Residual (Error) 193900.9 828 234.2
Total 195527.7 830

TABLE 12.27

Source SS df MS F Prob>F
Sex 2.22 1 2.22 0.35 0.555
Race 489.65 1 489.65 76.62 0.000
Residual (Error) 11094.16 1737 6.39
Total 11583.81 1739

TABLE 12.28

Source SS df MS F P-value
Gender 0.25 1 0.25 0.36 0.550
Race 16.98 1 16.98 24.36 0.000
Residual 868.67 1246 0.70
Total 886.12 1248

(a) State a research question you could answer with these
data.
(b) Interpret the result of the F test, but indicate one as-
sumption of the test that is clearly violated.
(c) Software reports Tukey 95% confidence intervals
of (0.3, 5.7) comparing very happy and pretty happy,
(−2.3, 6.5) comparing very happy and not too happy, and
(−5.1, 3.3) comparing pretty happy and not too happy.
Interpret.

12.11. When we use the GSS to evaluate how the mean
number of hours a day watching TV depends on sex and
race, for subjects of age 18–25, we get the results shown
in Table 12.27. The sample means were 2.66 for white fe-
males, 2.62 for white males, 3.48 for black females, and
3.14 for black males. Explain how these results seem to be
compatible with the results of the tests shown.

12.12. A recent GSS asked, “What is the ideal number of
kids for a family?” Table 12.28 shows results of evaluating
the effects of gender and race.
(a) Explain how to interpret the results of the F tests.
(b) Let s = 1 for females and 0 for males, and let r = 1
for blacks and 0 for whites. The no interaction model has
ŷ = 2.42 + 0.04s + 0.37r. Find the estimated mean for
each combination of gender and race. Explain how these
means satisfy “no interaction.”
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12.13. Table 12.13 on page 380 gave the prediction equa-
tion ŷ = 5.23 − 1.77p1 − 1.24p2 − 0.01s relating political
ideology to political party ID and to sex. Find the esti-
mated means for the six cells, and show that they satisfy a
lack of interaction.

12.14. Using software with theHouses data set at the text
website, conduct an ANOVA for y = house selling price
with factors whether the house is new and whether num-
ber of bathrooms exceeds two.

TABLE 12.29

Political Ideology Political Ideology
Religion Sex Mean Std Dev. Sex Mean Std. Dev.
Protestant Female 4.18 1.39 Male 4.28 1.51
Catholic Female 3.97 1.26 Male 4.05 1.46
Jewish Female 3.22 1.63 Male 3.00 1.52
None Female 3.86 1.60 Male 3.85 1.61

(a) Using α = 0.05, test the hypothesis of no interaction
between the factors in their effects on y.
(b) Assuming no interaction, conduct the test of the hy-
pothesis that the population mean of y is the same for new
and older homes, controlling for the bathrooms indicator.
Interpret.

12.15. For the 2014 GSS, when we regress y = number of
hours per day watching TV on s = sex (1 = male, 0 = fe-
male) and religious affiliation (r1 = 1 for Protestant, r2 = 1
for Catholic, r3 = 1 for Jewish, r1 = r2 = r3 = 0 for none
or other), we get ŷ = 2.7 + 0.1s + 0.4r1 + 0.2r2 − 0.2r3.
(a) Interpret the coefficient of r1.
(b) State a corresponding model for the population, and
indicate which parameters must equal zero for y to be
independent of religious affiliation, for each sex.

12.16. In the United States, the Bureau of Labor Statis-
tics recently reported that for males the current popula-
tion mean hourly wage is $22 for white-collar jobs, $11 for
service jobs, and $14 for blue-collar jobs. For females, the
means are $15 for white-collar jobs, $8 for service jobs, and
$10 for blue-collar jobs.
(a) Identify the response variable and the two factors.
(b) Show these means in a two-way classification of the
two factors.
(c) Compare the differences between males and females
for (i) white-collar jobs, (ii) blue-collar jobs. Explain why
there is interaction, and describe it.

12.17. In 2013, the U.S. Census Bureau reported that the
population median income was $29,127 for white females,
$26,006 for black females, $41,086 for white males, and
$30,394 for black males.
(a) Identify the response variable and the two factors,
and show these medians in a two-way classification of the
factors.

(b) Explain why there is interaction in terms of the
median.
(c) Show four population median incomes that would sat-
isfy H0: no interaction.

12.18. Table 12.29 summarizes responses on political ide-
ology in the 2014 General Social Survey by religion and
sex. The P-value is <0.01 for testing H0: no interaction.
Explain what this means in the context of this example,
and indicate one place in the table that may be responsi-
ble for the small P-value.

12.19. Table 12.30 shows results of an ANOVA on y =
depression index by gender and marital status (married,
never married, divorced). State the sample size and fill in
the blanks in the ANOVA table. Interpret results.

TABLE 12.30

Sum of Mean
Source Squares df Square F Sig

Gender 100 — — — —
Marital status 200 — — — —
Interaction 100 — — — —
Residual (error) — —
Total 4000 205

12.20. Twenty-five students in a statistics class were sur-
veyed about their attitudes toward divorce. Each received
a response score according to how many from a list of
seven possible reasons were regarded as legitimate for a
woman to seek a divorce. The students were also asked
whether they were fundamentalist or nonfundamentalist
in their religious beliefs and whether their religious atten-
dance was frequent (more than once a month) or infre-
quent. Table 12.31 below shows the data.

(a) Using regression methods in software, fit the
model that assumes no interaction. Interpret parameter
estimates.

TABLE 12.31

Visit Religious Religion
Places Fundamentalists Nonfundamentalists

Frequent 0, 1, 0, 0, 2, 3, 0, 0, 2, 2 1, 4, 0, 2, 2
Infrequent 3, 2, 2 5, 6, 3, 4, 5, 5, 4
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(b) Test the main effects for a two-way ANOVA, assum-
ing no interaction. Interpret.
(c) Analyze whether an analysis permitting interaction is
more appropriate.

12.21. The prediction equation ŷ = 16 + 2s + 3r + 8(s × r)
relates y = annual income (thousands of dollars), s = sex
(s = 1 for men, s = 0 for women), and r = race (r = 1
for whites, r = 0 for blacks). By finding the four predicted
means for this equation, show that the coefficient 8 of the
interaction term is the amount by which the mean for one
of the four groups must increase or decrease for the inter-
action to disappear.

12.22. For the 2014 GSS, Table 12.32 shows sample means
of political ideology (higher values being more conserva-
tive), classified by gender and by race, for those over 50
in age. For H0: no interaction, software reports F = 21.7,
df1 = 1 and df2 = 1081, and P-value <0.001.

(a) Suppose that instead of the two-way ANOVA, you
performed separate one-way ANOVAs for gender and
for race. Suppose the ANOVA for gender does not show
a significant effect. Explain how this could happen, even
though the two-way ANOVA implies that the gender ef-
fect varies by race. (Hint: Will the overall sample means
for females and males be more similar than they are for
each race?)
(b) Summarize what you would learn about the gender ef-
fect from a two-way ANOVA that you would fail to learn
from a one-way ANOVA.

TABLE 12.32

Race
Gender Black White
Female 3.75 (n = 95) 4.23 (n = 484)
Male 3.46 (n = 52) 4.36 (n = 454)

12.23. Refer to Table 12.15 (page 382) about the influence
of three entertainment types on children.

(a) Using software, conduct the repeated-measures anal-
yses of Section 12.5.
(b) Suppose you scored the influence categories
(−3,−2, 0, 2, 3). What would this assume about the re-
sponse categories? Repeat the analyses using these scores.
Are the conclusions sensitive to the choice of scores?

12.24. Recently the General Social Survey asked respon-
dents, “Compared with 10 years ago, would you say that
American children today are (1) much better off, (2) bet-
ter off, (3) about the same, (4) worse off, or (5) much
worse off.” Table 12.33 shows opinion responses for 10
of the subjects on three issues: quality of their educa-
tion, safety of the neighborhoods they live in, and getting
health care when they need it.

(a) For each of the following, indicate whether it is a fixed
effect, random effect, or response variable: (i) opinion,
(ii) issue, (iii) subject.
(b) Test the hypothesis that the population means are
equal. Report the P-value, and interpret.
(c) The first five respondents were female, and the last
five were male. Analyze these data using both gender and
issue as factors.

TABLE 12.33

Issue

Subject Education Neighborhood Healthy Care

1 4 4 3
2 2 4 2
3 3 3 4
4 1 2 1
5 3 4 3
6 2 5 4
7 1 4 2
8 3 3 3
9 4 5 3

10 2 4 2

12.25. The General Social Survey asks respondents to
rate various groups using the “feeling thermometer” on a
scale of 0 (most unfavorable) to 100 (most favorable). We
plan to study how the mean compares for rating liberals
and rating conservatives, for ratings in 2016 and ratings in
1986. Explain why a two-way ANOVA using time (1986,
2016) and group rated (Liberal, Conservative) as factors
would require methods for repeated measures. Identify
the within-subjects and between-subjects factors.

12.26. Using software, conduct the repeated-measures
ANOVA of the anorexia data in Table 12.18 (page 385),
available at the text website. Interpret results.

Concepts and Applications
12.27. Refer to the Students data file (Exercise 1.11 on
page 21), with response variable the number of weekly
hours engaged in sports and other physical exercise. Using
software, conduct an analysis of variance and follow-up
estimation, and prepare a report summarizing your analy-
ses and interpretations using (a) gender as the sole factor;
(b) gender and whether a vegetarian as factors.

12.28. For y = number of times used public transportation
in previous week and x = number of cars in family (which
takes value 0, 1, or 2 for the given sample), explain the dif-
ference between conducting a test of independence of the
variables using the ANOVA F test for comparing three
means and using a regression t test for the coefficient of
the number of cars in an ordinary regression model with a
linear effect for number of cars. Give an example of three
population means for which the regression test would be
less appropriate than the ANOVA test. (Hint: What does
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the regression linear model assume that the ANOVA F
test does not?)

12.29. Go to the GSS websitesda.berkeley.edu/GSS.
(a) Analyze the change over time (GSS variable YEAR)
in the mean of political ideology (POLVIEWS) by
political party identification (PARTYID). Compare
strong Republicans to strong Democrats in 1974 and in the
latest survey, and summarize the rather dramatic change.
(b) For the latest survey, report the sample mean politi-
cal ideology for the 2 × 2 cross-classification of RACE
(using black and white) and SEX. For the model E(y) =
α + β1r + β2s, where r = 1 for white and r = 0 for black
and s = 1 for male and s = 0 for female, give approximate
values (to one decimal place) that you would obtain for α̂,
β̂1, and β̂2.

12.30. A study5 described an experiment that randomly
assigned participants to receive $3 to spend on themselves
(self-interest), or to receive $3 to donate to a nonprofit
charity (imposed charity), or to receive $3 that they could
either spend on themselves or donate to charity (choice).
After receiving or donating the money, the participants
rated how happy they were with this experience, on a
seven-point scale (with 1 = not at all, 7 = an extreme
amount). The authors reported a significant effect (F =
9.08, P < 0.001), with follow-up t-tests confirming their
hypothesis that imposing self-interest increases outcome
happiness. For their analysis, identify the response vari-
able, the explanatory factor, and the hypothesis tested to
yield the reported F statistic and P-value.

12.31. A study6 compared verbal memory of men and
women for abstract words and for concrete words. It
found a gender main effect in favor of women. It also re-
ported, “There was no sex × word-type interaction (F =
0.408, P = 0.525), indicating that women were equally ad-
vantaged on the two kinds of words.” How would you ex-
plain what this sentence means to someone who has never
studied statistics?

12.32. (a) Explain carefully the difference between a
probability of Type I error of 0.05 for a single compari-
son of two means and a multiple comparison error rate of
0.05 for comparing all pairs of means.
(b) In multiple comparisons following a one-way
ANOVA with equal sample sizes, the margin of error
with a 95% confidence interval for comparing each pair
of means equals 10. Give three sample means illustrating
that it is possible that group A is not significantly differ-
ent from group B and group B is not significantly different
from group C, yet group A is significantly different from
group C.

12.33. For a two-way classification of means by factors A
and B, at each level of B the means are equal for the levels

of A. Does this imply that the overall means are equal at
the various levels of A, ignoring B? Explain the implica-
tions, in terms of how results may differ between two-way
ANOVA and one-way ANOVA.

12.34. Table 7.29 (page 224) summarized a study that re-
ported the mean number of dates in the past three months.
For men, the mean was 9.7 for the more attractive and 9.9
for the less attractive. For women, the mean was 17.8 for
the more attractive and 10.6 for the less attractive. Iden-
tify the response variable and the factors, and indicate
whether these data appear to show interaction. Explain
what you learn from a two-way ANOVA that you cannot
learn from a one-way ANOVA.

12.35. Construct a numerical example of means for a two-
way classification under the following conditions:
(a) Main effects are present only for the row variable.
(b) Main effects are present for each variable, with no
interaction.
(c) Interaction effects are present.
(d) No effects of any type are present.

12.36. The 25 women faculty in the humanities division
of a college have a mean salary of $76,000, and the five
women in the science division have a mean salary of
$90,000. The 20 men in the humanities division have a
mean salary of $75,000, and the 30 men in the science
division have a mean salary of $89,000.
(a) Construct a table of sample mean incomes for the 2×2
cross-classification of gender and division of college. Find
the overall means for men and women. Interpret.
(b) Discuss how the results of a one-way comparison of
mean incomes by gender would differ from the results of a
two-way comparison of mean incomes by gender, control-
ling for division of college. (Note: This reversal of which
gender has the higher mean salary, according to whether
one controls division of college, illustrates Simpson’s para-
dox. See Exercise 10.14 in Chapter 10.)

12.37. Refer to Exercise 12.20. The students were also
asked about their attitudes toward abortion. Each re-
ceived a score according to how many from a list of
eight possible reasons for abortion she would accept as
a legitimate reason for a woman to seek abortion. Table
12.34 below displays the scores, classified by religion and

TABLE 12.34

Visit Religious Religion
Places Fundamentalists Nonfundamentalists

Frequent 0, 1, 3, 0, 0, 3, 4, 2, 2 2, 3, 1, 5, 2, 1
Infrequent 3, 4, 3 6, 4, 3, 6, 4, 6, 7, 8

5 By J. Berman and D. Small, Psychological Science, vol. 23 (2012), pp. 1193–1199.
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frequency of visit to religious places. Using software, ana-
lyze the data and report your findings in a short report.

12.38. True or false? Suppose that for subjects aged un-
der 55, there is little difference in mean annual medical ex-
penses for smokers and nonsmokers, but for subjects aged
over 55 there is a large difference. Then, there is no inter-
action between smoking status and age in their effects on
annual medical expenses.

Select the correct response(s) in Exercises 12.39–12.42.
(More than one response may be correct.)

12.39. Analysis of variance and regression are similar in
the sense that

(a) They both assume a quantitative response variable.
(b) They both have F tests for testing that the response
variable is statistically independent of the explanatory
variable(s).
(c) For inferential purposes, they both assume that the re-
sponse variable y is normally distributed with the same
standard deviation at all combinations of levels of the ex-
planatory variable(s).
(d) They both provide ways of partitioning the variation
in y into explained and unexplained components.

12.40. One-way ANOVA provides relatively more evi-
dence that H0: μ1 = · · · = μg is false

(a) The smaller the between-groups variation and the
larger the within-groups variation.
(b) The smaller the between-groups variation and the
smaller the within-groups variation.
(c) The larger the between-groups variation and the
smaller the within-groups variation.
(d) The larger the between-groups variation and the
larger the within-groups variation.

12.41. For four means, a multiple comparison method
provides 95% confidence intervals for the differences
between the six pairs. Then

(a) For each confidence interval, there is a 0.95 chance
that it contains the population difference.
(b) P(all six confidence intervals are correct) = 0.70.
(c) P(all six confidence intervals are correct) = 0.95.
(d) P(all six confidence intervals are correct) = (0.95)6.

(e) P(at least one confidence interval does not contain the
true difference) = 0.05.
(f) The confidence intervals are wider than separate 95%
confidence intervals for each difference.

12.42. Interaction terms are needed in a two-way
ANOVA model when

(a) Each pair of variables is associated.
(b) Both explanatory variables have significant effects in
the model without interaction terms.
(c) The difference in means between two categories of
one explanatory variable varies greatly among the cate-
gories of the other explanatory variable.
(d) The mean square for interaction is huge compared to
the error mean square.

12.43. Use the ANOVA applet at www.pearsonglobal
editions.com/Agresti to illustrate how between-
groups and within-groups variability affect the result of
the ANOVA F test. Print results of two scenarios that re-
sult in relatively large and relatively small P-values.

12.44.* This exercise motivates the formula for the
between-groups variance estimate in one-way ANOVA.
Suppose the sample sizes all equal n and the population
means all equal μ. The sampling distribution of each ȳi
then has mean μ and variance σ 2/n. The sample mean of
the ȳi values is ȳ.

(a) Treating ȳ1, ȳ2, . . . , ȳg as g observations having sample
mean ȳ, explain why

∑
(ȳi − ȳ)2/(g−1) estimates the vari-

ance σ 2/n of the sampling distribution of the ȳi-values.
(b) Using (a), explain why

∑
n(ȳi − ȳ)2/(g− 1) estimates

σ 2. For the unequal sample size case, replacing n by ni
yields the between-groups estimate.

12.45.* You form a 95% confidence interval in five differ-
ent situations, with independent samples.

(a) Find the probability that (i) all five intervals contain
the parameters they are designed to estimate, (ii) at least
one interval is in error. (Hint: Use the binomial distribu-
tion.)
(b) If you use confidence level 0.9898 for each interval,
the probability that all five intervals contain the param-
eters equals exactly 0.95. Explain why. (Hint: What is
(0.9898)5?) Compare 0.9898 to the confidence coefficient
for each interval in the Bonferroni method.

6 By D. Kimura and P. Clarke, Psychological Reports, vol. 91 (2002), pp. 1137–1142.

http://www.pearsonglobaleditions.com/Agresti
http://www.pearsonglobaleditions.com/Agresti
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C hapter 11 introduced the multiple regression model to analyze the relationship between a
quantitative response variable and quantitative explanatory variables. Chapter 12 showed

that multiple regression models can also handle categorical explanatory variables, by construct-
ing dummy variables. In this chapter, we see that multiple regression can simultaneously handle
quantitative and categorical explanatory variables.

In the last chapter, we learned that models with a single categorical explanatory variable focus
on comparing the mean of y for several groups. The analysis of variance (ANOVA) F test relates to
that model. In many applications, it is useful to compare means while controlling for other variables,
some of which may be quantitative. For example, in comparing mean income for men and women
in some profession, we might control for possibly differing levels of job experience between men
and women. The quantitative control variable measuring job experience is called a covariate. The
use of regression for this type of comparison is often called analysis of covariance. It is one of
the many statistical contributions of R. A. Fisher, the brilliant British statistician.

Because effects may change after controlling for a variable, the results of analysis of covariance
may differ from the results of analysis of variance. For instance, job experience is usually positively
correlated with income. If men tend to have higher levels of experience than women in the pro-
fession studied, the results of a comparison of mean income for men and women will depend on
whether we control for experience.

In this chapter, we first show graphic representations of using both categorical and quanti-
tative explanatory variables. In regression models, we again use dummy variables for qualitative
explanatory variables. The models enable us to analyze effects of variables while controlling for
both quantitative and categorical explanatory variables. For example, we can adjust sample means
of y for different groups to reflect their predicted values after controlling for covariates.

The final section of the chapter introduces a more general model, called the linear mixed
model, which can have both quantitative and categorical explanatory variables but also includes
random effects. Whereas the ordinary regression model assumes that all observations are indepen-
dent, the linear mixed model handles situations in which some observations are correlated. This
type of model is useful for repeated-measures experiments, longitudinal studies, and for applica-
tions with clusters of observations such as families, since the observations are not all independent
in such studies.

13.1 Models with Quantitative and Categorical
Explanatory Variables

We introduce concepts using a single quantitative explanatory variable, denoted by
x, and a single categorical factor, denoted by z. When the categorical variable has
two categories, z is a dummy variable; when it has several categories, we use a set

399



400 Chapter 13 Regression with Quantitative and Categorical Predictors

of dummy variables. The analysis of the effect of x refers to the regression of y on x
within each category of the categorical variable, treating z as a control variable. The
analysis of the effect of the categorical variable z refers to comparing the means of
y for the groups defined by z, treating x as the control variable.

COMPARING REGRESSION LINES

Table 9.5 (page 280) introduced a data file on y = selling price of homes. One quan-
titative explanatory variable is x = size of home. One categorical variable is z =
whether a house is new (1 = yes, 0 = no). Studying the effect of x on y while control-
ling for z is equivalent to analyzing the regression of y on x separately for new and
older homes. We could find the best-fitting straight line for each set of points, one line
for new homes and a separate line for older homes. We could then compare charac-
teristics of the lines, for instance, whether they climb with similar or different slopes.

In this context, no interaction means that the true slope of the line relating ex-
pected selling price to the size of home is the same for new and older homes. Equality
of slopes implies that the regression lines are parallel. See Figure 13.1a. When the y-
intercepts are also equal, the regression lines coincide. See Figure 13.1b. If the rate
of increase in selling price as a function of size of home differed for new and existing
homes, then the two regression lines would not be parallel. There is then interaction.
See Figure 13.1c.

x

y

x

y

x

y
z 5 1

z 5 0

z 5 1

z 5 0

z 5 0 or 1

(a) No interaction (b) No interaction, with
      identical y-intercepts

(c) Interaction

FIGURE 13.1:
Regression Lines between
Quantitative Response and
Quantitative Explanatory
Variable, within Categories
of a Categorical Variable
with Two Categories

The effect of x while controlling for z may differ in substantial ways from the
bivariate relationship. For instance, the effect could disappear when we control for z.
Figure 13.2 displays a set of points having an overall positive relationship when z is

x

y
Overall
relationship

Partial
relationships

Category 1
Category 2
Category 3

FIGURE 13.2: An
Association between Two
Quantitative Variables
that Disappears after
Controlling for a
Categorical Variable
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ignored. Within each category of z, however, the regression line relating y to x is
horizontal. The overall positive trend is due to the tendency for the categories with
high (low) scores on y to have high (low) scores on x also. Example 10.1 in Chapter 10
(page 303) presented an example of this type, with y = math achievement test score
and x = height. The categorical variable was grade of school, with students coming
from grades 2, 5, and 8.

COMPARING MEANS ON y, CONTROLLING FOR x

Likewise, the effect of the categorical variable z may change substantially when we
control for x. For example, consider the relationship between y = annual income
and z = gender for managerial employees of a chain of fast-food restaurants. From a
two-sample comparison of men and women, mean annual income is higher for men
than for women. In this company, annual income of managers tends to increase with
x = number of years of experience. In addition, only recently have women received
many managerial appointments, so on the average they have less experience than the
men. In summary, men tend to have greater experience, and greater experience tends
to correlate with higher income. Perhaps this is why the overall mean annual income
is higher for men. A chain relationship may exist, with gender affecting experience,
which itself affects income. The difference between the mean incomes of men and
women could disappear when we control for experience.

To study whether the difference in mean incomes can be explained by differ-
ing experience levels of men and women, we compare mean incomes for men and
women having equal levels of experience. If there is no interaction, then the regres-
sion line between income and experience for the male employees is parallel to the
one for the female employees. In that case, the difference between mean incomes for
men and women is identical for all fixed values of x = number of years of experience.
Figure 13.3a illustrates this. If the same regression line applies to each gender, as in
Figure 13.3b, the mean income for each gender is identical at each level of experience.
In that case, no difference occurs between male and female incomes, controlling for
experience.

x

y

x

y

x

y

(a) No interaction (b) No interaction, with
      identical regression lines

Men
Women

(c) Interaction

FIGURE 13.3: Three
Scenarios for the
Regression of y = Income
on x = Number of Years
of Experience and
z = Gender

The results of this analysis may differ considerably from a comparison of
mean incomes while ignoring rather than controlling for experience. For example,
Figure 13.3b depicts a situation in which the sample mean income for men is much
greater than that for women. However, the reason for the difference is that men have
more experience. In fact, the same regression line fits the relationship between in-
come and experience for both genders. It appears that the mean incomes are equal,
controlling for experience.
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If interaction exists, then the regression lines are not parallel. In that case, the
difference between the mean incomes varies by level of experience. In Figure 13.3c,
for example, the mean income for men is higher than the mean income for women
at all experience levels, and the difference increases as experience increases. Exam-
ple 13.6 in this chapter shows an example of this type.

Example
13.1

Regression of Income on Education and Racial–Ethnic Group For a sample of adult
Americans aged over 25, Table 13.1 shows y = annual income (thousands of dollars),
x = number of years of education (where 12 = high school graduate, 16 = college
graduate), and z = racial–ethnic group (black, Hispanic, white). The data exhibit
patterns of a much larger sample taken by the U.S. Bureau of the Census. The sample
contains n1 = 16 blacks, n2 = 14 Hispanics, and n3 = 50 whites, for a total sample
size of N = 80.

TABLE 13.1: Observations on y = Annual Income (in Thousands
of Dollars) and x = Number of Years of Education, for
Three Racial–Ethnic Groups

Black Hispanic White White White

y x y x y x y x y x

16 10 32 16 30 14 62 16 50 16
18 7 16 11 48 14 24 10 50 14
26 9 20 10 40 7 50 13 22 11
16 11 58 16 84 18 32 10 26 12
34 14 30 12 50 10 34 16 46 16
22 12 26 10 38 12 52 18 22 9
42 16 20 8 30 12 24 12 24 9
42 16 40 12 76 16 22 14 64 14
16 9 32 10 48 16 20 13 28 12
20 10 22 11 36 11 30 14 32 12
66 16 20 10 40 11 24 13 38 14
26 12 56 14 44 12 120 18 44 12
20 10 32 12 30 10 22 10 22 12
30 15 30 11 60 15 82 16 18 10
20 10 24 9 18 12 24 12
30 19 88 17 26 12 56 20

46 16 104 14

Note: The data are in the Income data file at the text website.

Table 13.2 reports the mean income and education for these subjects. Although
the mean incomes differ among the three groups, these differences could result from
the differing educational levels. For instance, although white subjects had higher
mean incomes than blacks or Hispanics, they also had higher mean education. Per-
haps the differences would disappear if we could control for education, making com-
parisons among the racial–ethnic groups at fixed levels of education.

TABLE 13.2: Mean Income and Education, by Racial–Ethnic Group

Black Hispanic White Overall

Mean income y1 = 27.8 y2 = 31.0 y3 = 42.5 y = 37.6
Mean education x̄1 = 12.2 x̄2 = 11.6 x̄3 = 13.1 x̄ = 12.7
Sample size n1 = 16 n2 = 14 n3 = 50 N = 80
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As in Section 12.1, we represent a categorical factor in a regression model using
dummy variables, one fewer than the number of categories. With three categories,
the regression model is

E(y) = α + βx + β1z1 + β2z2.

Here, β (without a subscript) describes the effect of x = education on the mean of y
for each racial–ethnic group. For racial–ethnic status, one way to set up the dummy
variables is

z1 = 1 if subject is black, z1 = 0 otherwise;
z2 = 1 if subject is Hispanic, z2 = 0 otherwise;
z1 = z2 = 0 if subject is white.

Table 13.3 shows some output from using software to fit the regression model.
The [race = b] and [race = h] parameters refer to the coefficients of the dummy
variables z1 for blacks and z2 for Hispanics. The prediction equation is

ŷ = −15.7 + 4.4x − 10.9z1 − 4.9z2.

For blacks, z1 = 1 and z2 = 0, so the prediction equation is

ŷ = −15.7 + 4.4x − 10.9(1) − 4.9(0) = −26.6 + 4.4x.

The prediction equations for the other two racial–ethnic groups are

ŷ = −20.6 + 4.4x (Hispanics);

ŷ = −15.7 + 4.4x (whites).

TABLE 13.3: Output for Fitting Model to Table 13.1 from the Income Data File on y =
Income and Explanatory Variables Education and Racial–Ethnic Status, with
Dummy Variables for Black and Hispanic Categories

95% Conf. Int.
Parameter Coef. Std. Error t Sig Lower Upper
Intercept -15.663 8.412 -1.862 .066 -32.4 1.09
education 4.432 .619 7.158 .000 3.2 5.7
[race = b] -10.874 4.473 -2.431 .017 -19.8 -2.0
[race = h] -4.934 4.763 -1.036 .304 -14.4 4.6
[race = w] 0 . . .

race=w parameter is set to zero because it is redundant
R-Squared = .462

Figure 13.4 is a scatterplot showing the prediction equations for the three groups.
The lines are parallel, since they each have the same slope, 4.43. In each prediction
equation, 4.43 is the coefficient of x, reflecting the increase for each group in the
mean of y per one-year increase in education. The parallelism reflects the lack of in-
teraction terms for this model. Since z1 is a dummy variable for blacks, the coefficient
−10.9 of z1 represents the difference (−$10,900) between the estimated annual mean
income for blacks and for whites, controlling for education. The estimated mean in-
come is $10,900 lower for blacks than for whites, at each fixed level of education.
Since z2 is a dummy variable for Hispanics, the coefficient −4.9 of z2 represents the
difference (−$4900) between the estimated mean income for Hispanics and whites,
controlling for education.
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FIGURE 13.4: Plot of
Prediction Equation
for Model, Assuming
No Interaction, with
Quantitative and
Categorical Explanatory
Variables. Each line has the
same slope, so the lines
are parallel.

In summary, the coefficients of the dummy variables estimate differences in
means between each category and the final category, which does not have its own
dummy variable. Some software (such as R and Stata) uses the first category instead
of the final category as the baseline that does not have its own dummy variable. The
coefficients of the dummy variables then estimate differences in means between each
category and the first category, controlling for the other variables in the model.

Example
13.2

Regression of Income on Education and Racial–Ethnic Group, Permitting Interaction
A model that allows interaction between a quantitative explanatory variable x and
a categorical factor z allows a different slope for the effect of x in each category of
z. To allow interaction, as usual we take cross products of the explanatory variables.
For Table 13.1, we take cross products x × z1 and x × z2 of the dummy variables z1

and z2 for blacks and Hispanics with the education explanatory variable.
Software provides the results shown in Table 13.4. The overall prediction equa-

tion is

ŷ = −25.9 + 5.2x + 19.3z1 + 9.3z2 − 2.4(x × z1) − 1.1(x × z2).

TABLE 13.4: Output for Fitting Interaction Model to Table 13.1 from the Income Data File
on Income, Education, and Racial–Ethnic Status

Parameter Coef. Std. Error t Sig
Intercept -25.869 10.498 -2.464 .016
education 5.210 .783 6.655 .000
[race=b] 19.333 18.293 1.057 .294
[race=h] 9.264 24.282 .382 .704
[race=w] 0 . . .
[race=b]*education -2.411 1.418 -1.700 .093
[race=h]*education -1.121 2.006 -.559 .578
[race=w]*education 0 . . .

race=w parameters are set to zero because they are redundant
R-Squared 0.482



Section 13.1 Models with Quantitative and Categorical Explanatory Variables 405

The prediction equation with both dummy variables equal to zero (z1 = z2 = 0)
refers to the third racial–ethnic category, namely, whites. For that group,

ŷ = −25.9 + 5.2x + 19.3(0) + 9.3(0) − 2.4x(0) − 1.1x(0) = −25.9 + 5.2x.

For the first category (blacks), z1 = 1, z2 = 0, and

ŷ = −6.6 + 2.8x.

For the second category (Hispanics), z1 = 0, z2 = 1, and

ŷ = −16.6 + 4.1x.

The coefficient 19.3 of z1 describes the difference between the y-intercepts for
blacks and whites. However, this is the difference only at x = 0, since the equations
have different slopes. Since the 5.2 coefficient of x represents the slope for whites, the
coefficient of (x × z1) (i.e., −2.4) represents the difference in slopes between blacks
and whites. The two lines are parallel only when that coefficient equals 0. Similarly,
for the second category, the coefficient of z2 is the difference between the y-intercepts
for Hispanics and whites, and the coefficient of (x×z2) is the difference between their
slopes. Table 13.5 summarizes the interpretations of the estimated parameters in the
model.

TABLE 13.5: Summary of Prediction Equation
ŷ = −25.9 + 5.2x + 19.3z1 + 9.3z2 − 2.4(x × z1) − 1.1(x × z2)
Allowing Interaction, with z1 = 1 for Blacks and z2 = 1 for Hispanics

Difference from
White of

Group y-Intercept Slope Prediction Equation y-Intercept Slope

Black −25.9 + 19.3 5.2 − 2.4 (−25.9 + 19.3) + (5.2 − 2.4)x 19.3 −2.4
Hispanic −25.9 + 9.3 5.2 − 1.1 (−25.9 + 9.3) + (5.2 − 1.1)x 9.3 −1.1
White −25.9 5.2 −25.9 + 5.2x 0 0

Figure 13.5 plots the three prediction equations. The sample slopes are all pos-
itive. Over nearly the entire range of education values observed, whites have the
highest estimated mean income, and blacks have the lowest.
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FIGURE 13.5: Plot of
Prediction Equations for
Model with Interaction
Terms

When interaction exists, the difference between means of y for two groups varies
as a function of x. For example, the difference between the estimated mean of y for
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whites and Hispanics at a particular x-value is

(−25.9 + 5.2x) − (−16.6 + 4.1x) = −9.3 + 1.1x.

This depends on the value of x. As the education level x increases, the difference
between the estimated mean incomes is larger. Figure 13.5 shows that the difference
between the mean incomes of whites and blacks also gets larger at higher education
levels. When a variable occurs in an interaction term, it is inappropriate to use the
main effect term to summarize its effect, because that variable’s effect changes as the
value changes of a variable with which it interacts.

To summarize how much better the model permitting interaction fits, we can
check the increase in R2 or in the multiple correlation R. From the output for the
no-interaction model (Table 13.3 on page 403), R2 = 0.462. From the output for the
interaction model (Table 13.4), R2 = 0.482. The corresponding multiple correlation
values are

√
0.462 = 0.680 and

√
0.482 = 0.695. Little is gained by fitting the more

complex model, as R2 and R do not increase much.

REGRESSION WITH MULTIPLE CATEGORICAL AND QUANTITATIVE
PREDICTORS

The models generalize to add explanatory variables of either type. To introduce ad-
ditional quantitative variables, add a βx term for each one. To introduce another
categorical variable, add a set of dummy variables for its categories. To permit inter-
action, introduce cross-product terms.

With several explanatory variables, the number of potential models is quite large
when we consider the possible main effect and interaction terms. Also, some vari-
ables may overlap considerably in the variation they explain in the response variable,
so it may be possible to simplify the model by dropping some terms. Using inference,
as described in the next section, helps us select a model.

13.2 Inference for Regression with Quantitative
and Categorical Predictors

This section presents inference methods for models that contain both quantitative
and categorical explanatory variables. As in other multivariable models, we first test
whether the model needs interaction terms. We test hypotheses about model parame-
ters using the F test comparing complete and reduced regression models, introduced
in Section 11.5. For instance, the test of H0: no interaction between two explanatory
variables compares the complete model containing their cross-product interaction
terms to the reduced model deleting them. This test has a small P-value if the addi-
tion of the interaction terms provides a significant improvement in the fit.

Example
13.3

Testing Interaction of Education and Racial–Ethnic Group in Their Effects on Income
For Table 13.1, we now test H0: no interaction between education and racial–ethnic
group, in their effects on income. The complete model,

E(y) = α + βx + β1z1 + β2z2 + β3(x × z1) + β4(x × z2),

contains two interaction terms. The null hypothesis is H0: β3 = β4 = 0. The model
under H0 has a common slope β for all three lines relating E(y) to x. Figure 13.6
depicts the hypotheses for this test.
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HayFIGURE 13.6: Graphical
Representation of Null and
Alternative Hypotheses in
a Test of No Interaction,
for a Categorical Factor
with Three Categories and
a Quantitative Explanatory
Variable x

Table 13.6 shows how software summarizes sums of squares explained by various
sets of terms in the model with interaction terms. The variability explained by the
interaction terms, 691.8, equals the difference between the SSE values without and
with those terms in the model. These sums of squares are partial sums of squares (see
page 380). They represent the variability explained after the other terms are already
in the model.

TABLE 13.6: Software Output of Partial Sums of Squares Explained by Education, Racial–
Ethnic Group, and Their Interaction, in the Model Permitting Interaction

Partial Sum Mean
Source of Squares df Square F Sig
Race 267.319 2 133.659 .566 .570
Education 6373.507 1 6373.507 26.993 .000
Race*Education 691.837 2 345.918 1.465 .238
Residual (Error) 17472.412 74 236.114
Total 33761.950 79

For H0: no interaction, the F test statistic is the ratio of the interaction mean
square to the residual mean square. Table 13.6 shows that the test statistic is F =
345.9/236.1 = 1.46, with a P-value of 0.24. There is not much evidence of interaction.
We are justified in using the simpler model without cross-product terms.

TESTS FOR INDIVIDUAL PARTIAL EFFECTS

Possibly the model can be simplified further, if either of the main effects is not sig-
nificant. For the test of the main effect for the categorical factor, racial–ethnic group,
the null hypothesis states that each racial–ethnic group has the same regression line
between x and y. Equivalently, each group has the same mean on y, controlling for
x. This test compares the complete model

E(y) = α + βx + β1z1 + β2z2

to the reduced model
E(y) = α + βx

lacking effects of racial–ethnic group. The null hypothesis is

H0: β1 = β2 = 0 (coefficients of dummy variables = 0).

The complete model represents three different but parallel regression lines between
income and education, one for each racial–ethnic group. The reduced model states
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that the same regression line applies for all three groups. Figure 13.7 depicts this
test. The P-value is small if the complete model with separate parallel lines provides
a significantly better fit to the data than the reduced model of a common line.

x

H0 Hay

x

yFIGURE 13.7: Graphical
Representation of Null and
Alternative Hypotheses
in a Test of Equivalence
of Regression Lines,
when the Categorical
Factor Represents Three
Groups (Test Assumes No
Interaction)

We can also test for the effect of the quantitative variable (x = education), by
testing H0: β = 0 in the model. The hypothesis states that the straight line relating x
to the mean of y has slope 0 for each racial–ethnic group. Since H0 specifies a value
for a single parameter, we can perform the test using the t test.

Example
13.4

Testing Partial Effects of Racial–Ethnic Group and Education Table 13.7 shows how
software reports the results of tests for the no-interaction model. The F statistic for
the test of no effect of racial–ethnic group is 730.29/239.00 = 3.06. Its P-value equals
0.053. There is some evidence, but not strong, that the regressions of y on x are dif-
ferent for at least two of the racial–ethnic groups. The sample sizes for two of the
three groups are very small, so this test does not have much power.

TABLE 13.7: Software Output of Inferences about Education and Racial–Ethnic Group, in the
Model without Interaction for the Income Data File

Partial Sum Mean
Source of Squares df Square F Sig
Race 1460.58 2 730.29 3.06 .053
Education 12245.23 1 12245.23 51.23 .000
Residual (Error) 18164.25 76 239.00
Total 33761.95 79

From Table 13.3 (page 403), the estimated slope for the effect of education on
income of 4.432 has a standard error of 0.619. The test statistic is t = 4.432/0.619 =
7.2, which has a P-value of 0.000. The evidence is very strong that the true slope
is positive. Equivalently, the square of this t statistic equals the F statistic of 51.2
reported for the effect of education in Table 13.7.

Table 13.8 summarizes the hypotheses and R2-values for the models. In bivari-
ate models, education is a good predictor of income (R2 = 0.42), considerably bet-
ter than racial–ethnic group (R2 = 0.10). Some further reduction in error results
from using both explanatory variables, assuming no interaction, to predict income
(R2 = 0.46). A small and insignificant reduction in error occurs by allowing interac-
tion (R2 = 0.48).
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TABLE 13.8: Summary of Comparisons of Four Models for Predicting Income (y) Using
Education (x) and Racial–Ethnic Status (z)

Model: E(y) = α + βx E(y) = α + βx E(y) = α + βx E(y) = α

+β1z1 + β2z2 +β1z1 + β2z2 +β1z1 + β2z2

+β3(xz1) + β4(xz2)

R2 0.48 0.46 0.42 0.10

H0: no interaction Complete Reduced
F = 1.5, P = 0.24 model model — —

H0: β1 = β2 = 0
(equal means, Complete Reduced
control for x) model model

F = 3.1, P = 0.053 — —

H0: β = 0 Complete Reduced
(zero slopes) — model — model
F = 51.2, P = 0.000

13.3 Case Studies: Using Multiple Regression
in Research

Multiple regression analysis is a common statistical tool in social research. Many
studies start with a simple model containing an explanatory variable of primary fo-
cus, with the goal of studying its effect on the response and how that effect changes
as other explanatory variables enter the model. Each new model adds potential con-
founding variables to try to help account for the bivariate effect of the primary ex-
planatory variable on the response. The study often also adds potential mediating
variables that could be responsible for the original association. Social scientists typi-
cally attempt to evaluate some causal dynamics by using a sequence of models, with
primary interest in mediation processes and elimination of the possibility of spuri-
ousness due to confounding variables.

The explanatory variables entered in the model often include both categorical
variables and quantitative variables. Now that you’ve learned how regression can
use both these types of explanatory variables, you have sufficient background to un-
derstand most regression analyses in social research. This section summarizes three
such research studies1 for which the conclusions are based on results of regression
analyses.

Example
13.5

Regression for Modeling Adolescent Sexual Behavior A research study2 about ado-
lescent sexual behavior by Brian Soller and Dana Haynie used multiple regression
with a response variable that is a composite measure of sexual risk-taking. This index
incorporates information about inconsistent condom use, sexual intercourse with-
out first discussing contraception or sexually transmitted infections, and sexual inter-
course with more than one partner. The higher the composite measure, the greater

1 Thanks to Prof. Alfred DeMaris for suggesting this section and two of these articles.
2 Published in Sociological Inquiry, vol. 83 (2013), pp. 537–569; you may be able to access a PDF file of

this article through your university’s library at http://onlinelibrary. wiley.com/doi/10.1111/
soin.12019/abstract.

http://onlinelibrary.wiley.com/doi/10.1111/soin.12019/abstract
http://onlinelibrary.wiley.com/doi/10.1111/soin.12019/abstract
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the sexual risk-taking. The sample of 6255 adolescents, taken from a random sample
of high schools in the United States, ranged from 7th to 12th graders. The explanatory
variable of main interest was peer anticipation of college completion. If most of one’s
peers believed they would attend and complete college, does this tend to reduce a
respondent’s sexual risk-taking, controlling for relevant confounding variables?

Because of the very large sample size, multiple regression models can use many
explanatory variables. The study measured each respondent’s anticipation of college
completion as a binary variable (1 = pretty likely or more, 0 = less than pretty likely).
Peer anticipation of college completion was measured as the mean of the same binary
variable for up to five male and five female friends. Other explanatory variables mea-
sured the consequences of pregnancy or romantic relationships. The study included
control variables thought to be potential confounding variables, such as measures
intended to capture individual and peer investment in scholastic achievement and
measures of peer delinquency, impulsivity, family attachment, and religiosity. Other
quantitative control variables were age, parental SES, and prior sexual risk-taking.
Qualitative control variables included race, family structure, and whether the respon-
dent had taken an abstinence pledge (i.e., to remain a virgin until married).

The authors fitted four regression models in which peer anticipation of college
completion was an explanatory variable for y = sexual risk-taking. Model 1 analyzed
its effect, adjusting for the control variables and the respondent’s own anticipation of
college completion. The estimated effect of peer anticipation was β̂ = −0.13 (SE =
0.05). So, the estimated mean of sexual risk-taking was 0.13 lower for those whose
peers all felt pretty likely or more to attend college (and so had a variable value of
1) than for those whose peers all felt less than pretty likely to attend college (and so
had a variable value of 0), controlling for other variables.

The authors then investigated whether other variables mediated that associa-
tion. Model 2 added the consequences of pregnancy variables. The estimated effect
of peer anticipation then weakened a bit (β̂ = −0.11, SE = 0.05), suggesting a slight
mediating effect. Model 3 removed the pregnancy variables and added relationship
measures. The estimated effect of peer anticipation was then similar (β̂ = −0.12,
SE = 0.05). Model 4 (the full model) added both the pregnancy variables and the re-
lationship variables. The effect again weakened only slightly (β̂ = −0.10, SE = 0.05).

Table 13.9 shows some of the explanatory variables and their means and standard
deviations and estimated effects in Model 4. Here are some results worth noting:

• The respondents’ own anticipation of college completion was not significantly
associated with sexual risk-taking, controlling for the other variables in the
model.

• The authors concluded, “Results from our study underscore the importance
of peers in shaping adolescent sexual behavior.” For all the models, however,
the effect of peer anticipation of college completion on sexual risk-taking
is only about −0.1. This effect seems quite weak, because its magnitude is
a small fraction of the standard deviation of y = sexual risk-taking, which
was reported to equal 0.81. For example, Table 13.9 reports peer anticipation
of college completion to have a standard deviation of 0.25, so the estimated
standardized regression coefficient for this variable for the full model is only
(−0.10)(0.25)/0.81 = −0.03. Although the effect was statistically significant at
the 0.05 level for all these models and confirmed the authors’ theoretical pre-
diction that it would be negative, could this be a case of statistical significance
but not practical significance, reflecting the very large n? In practice, often so-
cial scientists investigate whether a theoretical effect is truly there, even if it is
quite small, to confirm a research hypothesis. With human behavior and imper-
fect measurement of constructs, large observed effect sizes are not common.
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• The article does not mention anything about checking for interactions. Could
the effect of peer anticipation of college completion depend on the respon-
dent’s level of anticipation of college completion, or on sex or some other
variable?

TABLE 13.9: Explanatory Variables and Effects in Multiple Regression
Model Predicting Adolescent Sexual Risk-Taking

Variable Mean (Std. Dev.) β̂ (SE)

Control variables
Age 16.63 (0.99) 0.05 (0.01)
Sex (male=1, female=0) 0.54 −0.10 (0.03)
SES 0.00 (0.79) 0.01 (0.02)
Religiosity −0.02 (0.82) −0.04 (0.02)
Abstinence pledge 0.12 −0.06 (0.03)
GPA 2.75 (0.79) −0.04 (0.02)
Anticipation of college completion 0.76 (0.43) 0.02 (0.04)

Peer variables
Peer anticipation of college completion 0.76 (0.25) −0.10 (0.05)
Peer delinquency 0.93 (0.13) 0.25 (0.08)
Peer GPA 2.77 (0.50) −0.05 (0.03)

Note: Standard deviations were not reported for sex and abstinence pledge.

Example
13.6

Regression for Modeling the Earnings Gender Gap For many professions, men and
women have similar mean salaries when first employed after college graduation,
but over time men’s salaries tend to grow more quickly than women’s salaries. The
difference between the mean salaries increases with time. What is responsible for
this? A research study3 by Marianne Bertrand, Claudia Goldin, and Lawrence Katz
addressed this using multiple regression models for a sample of 1856 men and 629
women MBA graduates from the University of Chicago.

Their use of multiple regression started with a dummy variable for gender, to
enable comparing means, and then successively added various explanatory variables
that could potentially explain differences in mean incomes. Some, such as under-
graduate GPA and verbal and quantitative GMAT scores, were quantitative. Some,
such as race, reasons for choosing the job, and whether the undergraduate institution
was a “top 10” institution, were categorical. Some were potentially quantitative but
were measured with ordered categories and represented by dummy variables, such as
weekly hours worked (<20, 20–29, 30–39, 40–49, 50–59, 60–69, 70–79, 80–89, 90–99,
≥100) and number of years since receiving the MBA (0, 1, 3, 6, 9, ≥10). Fitting such
models enabled the authors to study how the difference in mean income between
men and women changed over time, controlling for relevant variables.

Upon starting a job after receiving the MBA, the mean salary was $130,000 for
men and $115,000 for women. After nine years on the job, the mean was about
$400,000 for men and about $250,000 for women. For the overall pooled sample,
the mean was 36% higher for men. The initial regression model had a dummy vari-
able for gender, dummy variables for five of the six categories for number of years
since receiving the MBA, and five interaction terms to allow the difference between
men and women to vary by time. This regression model had R2 = 0.15.

3 Published in American Economic Journal: Applied Economics, vol. 2 (2010), pp. 228–255; you may be able
to access a pdf file of this article through your university’s library at https://www.aeaweb.org/articles
.php?doi=10.1257/app.2.3.228.

https://www.aeaweb.org/articles.php?doi=10.1257/app.2.3.228
https://www.aeaweb.org/articles.php?doi=10.1257/app.2.3.228
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When the model adds the number of weekly hours worked as an explanatory
variable, R2 increases to 0.26. Controlling for this explanatory variable, the mean
salary for men is now 19% higher than the mean salary for women. When the model
next includes pre-MBA characteristics such as race and undergraduate GPA and
GMAT scores, MBA GPA, and the fraction of MBA classes that were in finance,
R2 = 0.40, and controlling for all the explanatory variables, the mean salary for
men is 10% higher than the mean salary for women. Finally, when the model adds
a dummy variable for the presence of any post-MBA career interruption (such as
caring for a baby) and variables dealing with reasons for choosing the job, the job
function, and the employer type, R2 = 0.54. At this stage, controlling for all explana-
tory variables in the model, the mean salary for men is only 4% higher than the mean
salary for women, and the difference is not statistically significant.

• The authors concluded that three factors account for most of the gender gap
in earnings: a modest male advantage in training prior to the MBA; greater
weekly hours working for men, the difference increasing with years since MBA;
greater career interruptions for women combined with large earnings losses as-
sociated with any career interruption. They noted that the greater career inter-
ruptions and shorter work hours for women than men were largely associated
with motherhood.

• The authors used the logarithm of salary as the response variable but failed
to clearly explain how to interpret the estimated regression coefficients. Data
analysts sometimes use the log transform for variables such as income that have
distributions very highly skewed to the right, as it “pulls in” values that are
far out in the right tail and makes the distribution less skewed. Section 14.4
in the next chapter (page 447) presents an alternative model for such skewed
response data, and Section 14.6 shows another setting in which the logarithm
transform is effective.

Example
13.7

Modeling the Consequences of Stigma for Self-Esteem of the Mentally Ill A research
study4 by Bruce Link, Elmer Struening, Sheree Neese-Todd, Sara Asmussen, and Jo
Phelan analyzed whether stigma affects the self-esteem of people who have serious
mental illnesses, using a sample of 70 members of a clubhouse program for people
with mental illness. To measure self-esteem, the study asked participants whether
they strongly agreed, agreed, disagreed, or strongly disagreed with 10 statements
such as “At times, you think you are no good at all.” Each item had scores (1, 2, 3, 4)
with a high score reflecting high self-esteem. The overall self-esteem measure was the
mean of these 10 scores. The study measured self-esteem initially, after six months of
an intervention designed to facilitate coping with stigma, and after 24 months. The
initial measure had a mean of 2.7 and standard deviation of 0.5.

The primary explanatory variables were two quantitative stigma measures: One
(perceived devaluation discrimination) measured the extent to which a person be-
lieves that other people devalue someone who has a mental illness. The other (stigma
withdrawal) quantified the extent to which participants endorse withdrawal as a way
to avoid rejection. Each of these was also scaled from 1 to 4, and had means of 2.76
and 2.82 and standard deviations of 0.50 and 0.42. Control variables included sex
(male = 1, female = 0), diagnosis (schizophrenia and other nonaffective psychotic
disorders = 1, other diagnoses = 0), and a quantitative assessment of depression
(which ranged from 0 to 42).

4 Published in Psychiatric Service, vol. 52 (2001), pp. 1621–1626; you can access a pdf file of this article at
http://ps.psychiatryonline.org/doi/pdf/10.1176/appi.ps.52.12.1621.

http://ps.psychiatryonline.org/doi/pdf/10.1176/appi.ps.52.12.1621
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Table 13.10 shows results of four regression models fitted to the self-esteem re-
sponse after six months. The first model uses the control variables as explanatory
variables and the initial self-esteem as a covariate. Models 2 and 3 add each stigma
variable separately, and each shows a significant effect. Model 4 adds them together
to determine their combined effect, which increased R2 from 0.43 to 0.55. The stigma
effects were negative in Models 2–4, although the effect of stigma withdrawal was
weaker and not statistically significant in Model 4.

TABLE 13.10: Regression Analyses for Self-Esteem at Six Months

Model 1 Model 2 Model 3 Model 4

Variable Coeff. (se) Coeff. (se) Coeff. (se) Coeff. (se)

Sex −0.133 (0.088) −0.165 (0.081) −0.121 (0.084) −0.152 (0.080)
Diagnosis −0.098 (0.084) −0.144 (0.077) −0.081 (0.080) −0.101 (0.076)
Self-esteem initial 0.352 (0.113) 0.343 (0.103) 0.338 (0.108) 0.337 (0.102)
Depression −0.018 (0.007) −0.010 (0.007) −0.013 (0.007) −0.008 (0.006)
Stigma devaluation −0.321 (0.085) −0.261 (0.091)
Stigma withdrawal −0.302 (0.104) −0.182 (0.107)
R2 0.43 0.53 0.49 0.55

• The authors stated, “We also tested for interactions between the stigma vari-
ables and age, sex, diagnosis, and depressive symptoms. Only one interaction
was significant, and, given that we tested 16, this one may have occurred by
chance.” So, they did not report results of models with interaction terms.

• The authors noted that an unmeasured confounding variable could potentially
account for the association between stigma and self-esteem. However, they ar-
gued that the stigma measures strongly predicted self-esteem, and thus any un-
measured confounder would need to have very strong associations with both
the stigma measures and self-esteem in order to eliminate the associations.

• How would you assess whether the stigma measures truly did strongly predict
self-esteem, controlling for the other explanatory variables?

13.4 Adjusted Means∗

We have seen that categorical explanatory variables often refer to groups to be com-
pared. This section shows how to estimate means on y for the groups, while control-
ling for the other variables in the model.

ADJUSTING RESPONSE MEANS, CONTROLLING
FOR OTHER VARIABLES

To estimate the means of y for the groups while taking into account the groups’ dif-
fering means on the other explanatory variables, we can report the values expected
for the means if the groups all had the same means on those other variables. These
values, which adjust for the groups’ differing distributions on the other variables, are
adjusted means (also called least squares means).

Adjusted Mean

The adjusted mean of y for a particular group is the regression function for
that group evaluated at the overall means of the explanatory variable values
for all the groups. It represents the expected value for y at the means of the
explanatory variables for the combined population.
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Adjusted means are mainly relevant for models without interaction terms among the
explanatory variables, so differences among them are the same at all values of those
variables.

Figure 13.8 illustrates the population adjusted means for three groups when the
model has a single covariate x. Let μx denote the mean of x for the combined popu-
lation. The adjusted mean of y for a particular group equals that group’s regression
function evaluated at μx. The sample adjusted mean of y for a group is the prediction
equation for that group evaluated at x̄, the overall sample mean of x. This estimates
the value for the group’s mean of y if the mean of x for the group had equaled the
overall mean of x. We denote the sample adjusted mean for group i by y′

i.

x

y

Adjusted mean,
category 1

Adjusted means

mx

Category 1

Category 3

Category 2

FIGURE 13.8: Population
Adjusted Means with a
Covariate x, when a
Categorical Explanatory
Factor Has Three
Categories

Example
13.8

Adjusted Mean Incomes, Controlling for Education From Table 13.3 (page 403) for
the example regressing income on education and racial–ethnic status, the prediction
equation for the model is

ŷ = −15.7 + 4.4x − 10.9z1 − 4.9z2.

Table 13.11 lists the equations predicting income using education, for the three
racial–ethnic groups. The table also shows the unadjusted mean incomes and the
adjusted mean incomes, controlling for education.

TABLE 13.11: Prediction Equations, Sample Unadjusted Mean
Incomes, and Adjusted Means (Controlling for
x = Education)

Prediction Mean Mean Adjusted
Group Equation of x of y Mean of y

Blacks ŷ = −26.54 + 4.43x 12.2 27.8 29.7
Hispanics ŷ = −20.60 + 4.43x 11.6 31.0 35.6
Whites ŷ = −15.66 + 4.43x 13.1 42.5 40.6

From Table 13.2 (page 402), the mean education for the combined sample of 80
observations is x̄ = 12.7. Using the three prediction equations, the sample adjusted
means for blacks, Hispanics, and whites are

y′
1 = −26.54 + 4.43x̄ = −26.54 + 4.43(12.7) = 29.7,

y′
2 = −20.60 + 4.43(12.7) = 35.6,

y′
3 = −15.66 + 4.43(12.7) = 40.6.
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COMPARING ADJUSTED MEANS, AND GRAPHICAL INTERPRETATION

The coefficients of the dummy variables in the model refer to differences between
adjusted means. To illustrate, the estimated difference between adjusted mean in-
comes of blacks and whites is y′

1 − y′
3 = 29.7 − 40.6 = −10.9 (i.e., −$10,900). This is

precisely the coefficient of the dummy variable z1 for blacks in the above prediction
equation. Similarly, the estimated difference between the adjusted means of Hispan-
ics and whites is y′

2 − y′
3 = −4.9, which is the coefficient of z2. Figure 13.9 depicts

the sample adjusted means. The vertical distances between the lines represent the
differences between these adjusted means.
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FIGURE 13.9: Sample
Adjusted Means on
Income, Controlling for
Education, for Three
Racial–Ethnic Groups

Figure 13.10 depicts the relationship between the adjusted and unadjusted
means. The prediction equation predicts a value of yi at the x-value of x = x̄i for
group i. In particular, the prediction line for the group i passes through the point
with coordinates (x̄i, yi). In other words, the unadjusted mean yi is the value of the
prediction equation for that group evaluated at the x-value of x̄i, the mean of the
x-values for that group alone [see points such as (x̄1, y1) in this figure].
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Black

12.712.2
11.6 13.1

Hispanic

x2 x1 x x3

(x2, y2)_
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_

_ _

_ _

_ _ _ _

FIGURE 13.10:
Adjustment Process for
Income by Racial–Ethnic
Group, Controlling for
Education. The ordinary
mean for a group is the
predicted value at the mean
of x for that group alone,
whereas the adjusted mean
is the predicted value at the
mean x for all the data.

The adjusted mean y′
i for group i is the value of that prediction equation evalu-

ated at the overall mean x̄ for the combined sample. Hence, the prediction line for
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that category also passes through the point (x̄, y′
i), as Figure 13.10 shows for each of

the three groups.
The adjustment process moves an ordinary sample mean upward or downward

according to whether mean education for the group is below or above average. For
whites, for instance, the adjusted mean income of 40.6 is smaller than the unad-
justed mean of 42.5. The reason is that the mean education for whites (x̄3 = 13.1)
is larger than the mean education for the combined sample (x̄ = 12.7). Since a
positive relationship exists between income and education, the model predicts that
whites would have a lower mean income if their mean education were lower (equal
to x̄ = 12.7).

The difference between a group’s adjusted and unadjusted means depends di-
rectly on the difference between x̄ for the combined sample and x̄i for that group.
The adjusted means are similar to the unadjusted means if the x̄i-values are close to
the overall x̄, or if the slope of the prediction equations is small.

MULTIPLE COMPARISONS OF ADJUSTED MEANS

Following an analysis of variance, the Bonferroni method compares all pairs of
means simultaneously with a fixed overall confidence level. This method extends di-
rectly to multiple comparison of adjusted means. We can form t confidence intervals
using these estimates and their standard errors.

Example
13.9

Confidence Intervals for Comparing Adjusted Mean Incomes Let’s construct 95%
confidence intervals for differences between the three pairs of adjusted mean in-
comes, using the Bonferroni multiple comparison approach. The error probabil-
ity for each interval is 0.05/3 = 0.0167. The t-score with single-tail probability
0.0167/2 = 0.0083 and df = 76 (which is the residual df for the model) is 2.45.

Table 13.3 (page 403) showed the racial–ethnic effects from the model fit,

Parameter Coef. Std. Error t Sig
[race = b] -10.874 4.473 -2.431 .017
[race = h] -4.934 4.763 -1.036 .304

The estimated difference between adjusted mean incomes of Hispanics and
whites is the coefficient −4.934 of the dummy variable z2 for Hispanics in the pre-
diction equation. This coefficient has a standard error of 4.763, so the Bonferroni
confidence interval equals

−4.934 ± 2.45(4.763), or (−16.6, 6.7).

Controlling for education, the difference in mean incomes for Hispanics and whites
is estimated to fall between −$16,600 and $6700. Since the interval contains 0, it is
plausible that the true adjusted mean incomes are equal. The sample contained only
14 Hispanics, so the interval is wide. The confidence interval comparing blacks and
whites is −10.874 ± 2.45(4.473), or (−21.8, 0.1). To get the standard error for the
estimate b1 − b2 = (−10.87 − (−4.93)) = −5.94 comparing blacks and Hispanics,
we could fit the model with one of these categories as the baseline category lacking
a dummy variable. Or, we could use the general expression to get se from the values
se1 for b1 and se2 for b2 as

se =
√

(se1)2 + (se2)2 − 2Cov(b1, b2),

where Cov(b1, b2) is taken from the covariance matrix of the parameter estimates,
which software can provide. For these data, the standard error for b1 −b2 equals 5.67,
and the confidence interval is (−19.8, 8.0).



Section 13.4 Adjusted Means∗ 417

Table 13.12 summarizes the comparisons. We can be 95% confident that all three
of these intervals contain the differences in population adjusted means. None of the
intervals show a significant difference, which is not surprising because the F test of
the group effect has a P-value of 0.053. Nonetheless, the intervals show that the ad-
justed means could be quite a bit smaller for blacks or Hispanics than for whites.
More precise estimation requires a larger sample.

TABLE 13.12: Bonferroni Multiple Comparisons of Differences
in Adjusted Mean Income by Racial–Ethnic
Group, Controlling for Education

Racial–Ethnic Estimated Difference 95% Bonferroni
Groups in Adjusted Means Confidence Intervals

Blacks, whites y′
1 − y′

3 = −10.9 (−21.8, 0.1)
Hispanics, whites y′

2 − y′
3 = −4.9 (−16.6, 6.7)

Blacks, Hispanics y′
1 − y′

2 = −5.9 (−19.8, 8.0)

A CAUTION ABOUT HYPOTHETICAL ADJUSTMENT

Adjusted means can be useful for comparing several groups by adjusting for differ-
ences in the means of a covariate x. Use them with caution, however, when the means
on x are greatly different. The control process is a hypothetical one that infers what
would happen if all groups had the same mean for x. If large differences exist among
the groups in their means on x, the results of this control may be purely speculative.
We must assume (1) that it makes sense to conceive of adjusting the groups on this
covariate and (2) that the relationship between y and x would continue to have the
same linear form within each category as the x mean shifts for each category.

To illustrate, recall the relationship between annual income and experience and
gender shown in Figure 13.3b (page 401). The same line fits the relationship between
income and experience for each gender, so it is plausible that the adjusted means
are equal. However, nearly all the women have less experience than the men. The
conclusion that the mean incomes are equal, controlling for experience, assumes that
the regression line shown also applies to women with more experience than those in
the sample and to men with less experience. If it does not, then the conclusion is
incorrect.

Figure 13.11 portrays a situation in which the conclusion would be misleading.
The dotted lines show the relationship for each group over the x-region not observed.

True regression
curve for men
for small x

True regression
curve for women
for large x

Income

Men

Experience

Women

FIGURE 13.11: A
Situation in Which
Adjusted Means Are
Misleading, Comparing
Mean Incomes for Men and
Women while Controlling
for Experience
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At each fixed x-value, a difference persists between the means of y. In practice, in ob-
servational studies we cannot manipulate x-values to force groups to have the same
means on covariates, so inferences about what would happen if this could be done
are merely hypothetical.

Whenever we use adjusted means, we should check the degree to which the dis-
tributions differ on the mean of x. Excessively large differences may mean that the
conclusions need strong qualification.

13.5 The Linear Mixed Model∗

The analyses so far in this chapter apply with independent observations. Some stud-
ies have sets of observations that are correlated. For example, longitudinal studies
observe each person at multiple times, and different observations of the same person
are typically positively correlated. We next introduce a regression model for quanti-
tative and categorical explanatory variables that permits correlated observations.

MIXED EFFECTS MODELS: RANDOM EFFECTS AND FIXED EFFECTS

As explained on page 384, with repeated measures on the subjects, models can in-
clude a dummy variable for each subject. The coefficient of a dummy variable repre-
sents a random effect for a particular subject. For example, a positive random effect
means that each observation for that subject tends to be higher than the average for
all the subjects who share the same values of the explanatory variables as that sub-
ject. The subject factor consists of all these subject-specific random effects. The term
random effects reflects that we regard the subjects observed as a random sample of
all the possible subjects who could have been sampled.

Regression models also include fixed effects for ordinary explanatory variables.
These are ordinary parameters. By contrast, we treat the random effects as unob-
served random variables rather than as parameters. That is, the terms in the model
for the subjects are assumed to come from a particular probability distribution, usu-
ally the normal distribution. Regression models for which the effects of explanatory
variables are a mixture of random and fixed effects are called linear mixed mod-
els. The linear adjective refers to the effects in the right-hand side of the regression
model equations having an additive rather than multiplicative structure.

MODELING CORRELATION STRUCTURE WITH LINEAR
MIXED MODELS

For the ordinary regression model, with one observation per subject, let yi denote
the value of the response variable y for subject i, let xi1 denote the value of the ex-
planatory variable x1 for subject i, and so forth. To identify variables at the subject
level in the model, we express the model as

yi = α + β1xi1 + β2xi2 + · · · + βpxip + εi.

As usual, when some explanatory variables are categorical, we use dummy variables
for them. In this equation, the error term εi reflects variability in responses for sub-
jects at particular values of explanatory variables. Its sample value is the residual
for subject i. The error term has expected value 0, so we delete it when we write
the corresponding model formula for E(yi). The ordinary regression model assumes
independent {εi}, and hence independent {yi}.
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We now generalize this ordinary regression model to the linear mixed model,
which permits multiple observations per subject that are correlated. Let yi j denote
observation j for subject i. For example, in a longitudinal study, the index j may re-
fer to the jth time of observation. For three times of observations, we have response
outcomes (yi1, yi2, yi3) for subject i. Likewise, let xi j1 denote observation j for subject
i on explanatory variable x1, and similarly for the other explanatory variables. Some
of these explanatory variables take the same value for each observation, whereas
some may vary. For instance, in a study of health over time, demographic character-
istics such as race and sex are constant, but health characteristics such as weight and
blood pressure level may vary. Let si denote a random effect for subject i. For par-
ticular fixed values of explanatory variables, a subject with a large positive si tends
to make a relatively high response on y for each j, whereas a subject with a large
negative si tends to make a relatively low response on y for each j. The random ef-
fects are usually assumed to have a normal distribution with mean 0 and unknown
variance σ 2

s .
The linear mixed model has the form

yi j = α + β1xi j1 + β2xi j2 + · · · + βpxi jk + si + εi j.

The fixed effects are the effect parameters (β1, . . . , βp) for the explanatory variables.
The random effects are the subject-specific terms (s1, . . . , sn). These subject terms do
not involve the explanatory variables, so we can add them to the ordinary intercept
term. That is, (α + si) is a random intercept for subject i.

The model has a separate error term εi j for each observation on a subject. The
model is completed by making an assumption about the correlation structure of
(εi1, εi2, . . .) and hence the cluster of observations (yi j1, yi j2, . . .). A popular choice
is the compound symmetry structure of equal pairwise correlations for the different
observations of a subject. With this choice, the random effects term is redundant,
because it also implies compound symmetry. In practice, with software we can ob-
tain the compound symmetry structure either (i) deleting the random intercept and
assuming equally correlated error terms or (ii) inserting the random intercept but
taking the error terms to be independent. In longitudinal studies, often observations
closer together in time tend to be more highly correlated than observations farther
apart. The autoregressive structure is a way to permit this. Another possible struc-
ture is an unstructured one that makes no assumption about the correlation pattern.
When there are many observations per subject, this has the disadvantage of a very
large number of correlation parameters.

The model-fitting process for linear mixed models accounts for the assumption
about the correlated observations by yielding estimates of {β1, . . . , βp} that have
standard errors based on that assumption and that therefore recognize the within-
subject correlation. As usual, statistical inference assumes normality for y, and this
assumption becomes less important with larger sample sizes. The correlations for
the assumed correlation structure among the error terms are themselves parame-
ters that are estimated. This structure also implies correlations among the repeated
responses. For example, with the compound symmetry structure based on having a
random intercept but independent error terms, the model implies theoretical corre-
lations equal to

σ 2
s /(σ 2

s + σ 2)

for each pair of observations by a subject. This is called an intraclass correlation.
Greater variability σ 2

s among random effects implies that the repeated responses are
more strongly positively correlated.
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LINEAR MIXED MODELS FOR CLUSTERED DATA

In linear mixed models, the random effects are not restricted to individual subjects.
They can represent clusters of subjects that are similar in some way.

For example, some studies sample families and observe variables for every per-
son in each family. We can regard all the people in a particular family as a cluster. For
given values of explanatory variables, two people in the same family tend to be more
alike than two people in different families. Identifying the families in the model us-
ing a random effect for each family accounts for the correlation among observations
within a family.

Example
13.10

Regression Modeling of Family-Clustered Data Here, we use a small example5 to
illustrate the use of linear mixed models with clustered data. Table 13.13 shows re-
sponses for people from eight families on y = evaluation of President Obama’s per-
formance, x1 = political party orientation, and x2 = sex (1 = female, 0 = male).
The quantitative variables y and x1 are measured on an integer scale of 0 to 10, with
higher values representing better performance for y and stronger orientation toward
Democrat for x1.

TABLE 13.13: Data for People within Families on y = Evaluation of Presi-
dent’s Performance, x1 = Political Party Orientation, and x2 =
Sex. Data are in the Family data file at the text website.

Family y x1 x2 Family y x1 x2 Family y x1 x2

1 8 8 1 4 9 9 1 6 8 9 0
1 7 9 0 4 8 10 0 7 1 3 1
1 7 7 1 5 2 1 1 7 1 1 0
2 4 6 0 5 1 1 0 7 2 3 1
2 3 3 1 5 3 4 0 7 1 3 0
3 1 1 1 6 9 9 1 8 8 6 1
3 1 2 0 6 9 10 0 8 9 5 1

For observation j in family i, we use the model

yi j = α + β1xi j1 + β2xi j2 + si + εi j,

where si is a random effect for family i. We assume that {si} are independent from
a normal distribution with mean 0 and standard deviation σs. For each family, we
treat {εi1, εi2, . . .} as independent from a normal distribution with mean 0 and stan-
dard deviation σ . Variation among the random effects induces a common positive
correlation (compound symmetry) among responses within a family. A family with
a large positive si has a high probability that everyone in the family gives the Pres-
ident a high rating, whereas a family with a large negative si has a high probability
that everyone in the family gives a low rating.

Table 13.14 shows linear mixed model parameter estimates and standard errors.
It also shows naive estimates and standard errors that we would get if we treated the
observations within a family as independent, instead of allowing them to be corre-
lated. Estimates and standard errors can be quite far from the more sensible ones
that recognize observations within families as being correlated.

5 The example is unrealistically small, to make it simple to show the entire data file. To read about an actual
study that used a linear mixed model, see Exercise 13.37.
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TABLE 13.14: Estimates and Standard Errors for Clus-
tered Family Data of Table 13.13

Linear Mixed Model Naive Linear Model

Effect β̂ Std. Error β̂ Std. Error

Intercept 1.449 0.974 −0.921 0.628
Party 0.598 0.125 0.949 0.087
Sex 0.806 0.300 1.538 0.562

Software reports that the estimated variance of the family random effects is
σ̂ 2

s = 3.05 and the estimated variance of the error term is s2 = 0.36. The ratio
σ̂ 2

s /(σ̂ 2
s + s2) = 0.89 estimates the within-family (intraclass) correlation implied by

this linear mixed model. Such estimates are extremely imprecise with such a small
number of families.

LINEAR MIXED MODELS FOR REPEATED-MEASURES ANALYSES

Sections 12.5 and 12.6 introduced ANOVA for repeated measurement of subjects on
one or two categorical factors. This ANOVA method has limitations. For example,
the method cannot deal with missing data, so subjects with any missing observa-
tions get dropped from the analysis. Also, the correlations among observations on
the same subject are assumed to satisfy a sphericity structure, implied by common
variability at all times and the same correlation between each pair of observations.
Linear mixed models do not have these limitations. In addition, linear mixed models
can accommodate both quantitative and categorical explanatory variables.

Suppose a study has repeated measures of subjects across categories of a single
factor. That is, the data file has one within-subjects factor but no between-subjects
factor, the scenario for repeated-measures ANOVA in Section 12.5. For simplicity,
suppose each subject has T observations, such as at T times. When T = 2, for exam-
ple, the purpose of the study may be to compare means before and after receiving
some treatment. The linear mixed model is

yi j = α + β1t1 + β2t2 + · · · + βT−1tT−1 + si + εi j,

where t1 is a dummy variable for time 1 (i.e., t1 = 1 when j = 1), t2 is a dummy
variable for time 2, and so forth. The parameters of main interest to be estimated are
the fixed-effects parameters {βt}.

We can generalize this model by adding additional factors, such as between-
subjects effects in addition to the within-subjects effects. We can also add quantitative
explanatory variables, by adding terms of the form βx. For instance, if we expect a
linear trend in the means over time in the above model, we could replace the T − 1
fixed effects terms for the T times by βt, thus using one slope parameter instead of
T − 1 separate time parameters. A more general version of this linear mixed model
has a second type of random-effect term to allow the slopes to vary by subject around
the mean of β. The linear mixed model then has the form

yi j = α + (β + bi)t + si + εi j,

in which si are subject-specific random effects that permit variability in the intercept
and bi are subject-specific random effects that permit variability in the slopes. Then,
(β +bi) is a random slope and (α + si) is a random intercept. Moreover, such a linear
mixed model can permit bi and si to be correlated.
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MISSING DATA: ASSUMPTION OF “MISSING AT RANDOM”

The linear mixed model, unlike ordinary repeated-measures ANOVA, permits some
observations to be missing. For any particular subject, it uses the available data.

Depending on what causes observations to be missing, resulting estimates of
fixed effects may or may not be unbiased. They are unbiased when the missing data
are missing at random. This means that the probability an observation is missing does
not depend on the value of the unobserved response.

Example
13.11

Quality of Life with Treatments for Alcohol Dependence Gueorguieva and Krystal
(2004) analyzed data from a clinical trial for the effect of using a particular drug (nal-
trexone) in addition to psychosocial therapy in treating 627 veterans suffering from
chronic, severe alcohol dependence. The response variable was a satisfaction score
that averaged four items on a quality of life scale. Each item had potential values
1 (terrible) to 7 (delighted). For each subject, this response was observed initially
and then after 4, 26, 52, and 78 weeks. However, complete results for all five times
were available for only 211 of the 627 subjects. The rest of the data are missing. The
study had three treatments: 12 months of the drug, 3 months of the drug followed
by 9 months of placebo, or 12 months of placebo. This is a between-subjects factor.
Table 13.15 shows the sample mean satisfaction scores for the 3×5 combinations of
treatment and time.

TABLE 13.15: Sample Mean Satisfaction for Subjects Suffering Alcohol
Dependence, by Treatment and Time of Measurement.
Treatment is a between-subjects factor and time is a within-
subjects factor.

Time

Treatment Initial 4 Weeks 26 Weeks 52 Weeks 78 Weeks

Long-term drug 3.9 4.0 4.3 4.5 4.4
Short-term drug 3.7 4.0 4.1 4.3 4.3
Placebo 3.6 3.9 3.9 4.2 4.3

This data set is the sort we analyzed in Section 12.6 using ANOVA with two
factors and repeated measures on one of them. Here, the repeated measures occur
across the five levels of time. Let’s consider the linear mixed model that we’ll abbre-
viate by

yi j = Si + D + T + (D × T) + εi j,

where Si denotes a random intercept α + si for subject i, D denotes drug treatment,
T denotes time, and (D × T) denotes a drug-by-time interaction, which allows the
effect of time to vary by the drug treatment. In the model formula, we represent D
by (β1d1 + β2d2) for dummy variables {d1, d2} for the two drugs. If we treat time
as categorical, we represent T by (β3t1 + β4t2 + β5t3 + β6t4) using dummy variables
{t1, t2, t3, t4} for the first four times, and then (T ×D) denotes interaction terms for the
eight cross products of T and D dummy variables. If we instead expect linear trends
in the response means, with possibly different slopes for different drug treatments,
then we use a simpler model that treats T as quantitative. Then we represent T by a
term β3t for scores for t such as (0, 4, 26, 52, 78) or (0, 1, 2, 3, 4), with (T × D) then
denoting cross products of t with each of the two dummy variables for D.
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Gueorguieva and Krystal (2004) noted that repeated-measures two-way
ANOVA, treating time as categorical, shows no evidence of a treatment-by-time in-
teraction (P-value = 0.69) and no evidence of a treatment effect (P-value = 0.80).
However, that analysis could only use results for the 211 of the 627 subjects with no
missing data, thus ignoring the data for the 416 subjects who had some missing data.
With the linear mixed model approach, which also uses data for the subjects miss-
ing some observations, the power is much greater. When used with an unstructured
pattern for the correlations, no evidence occurs of interaction (P-value = 0.63), but
slight evidence occurs of a treatment effect (P-value = 0.07). This shows the benefit
of a linear mixed model approach when many observations are missing. The stan-
dard ANOVA approach discards much information, such that evidence about the
treatment effect changes from marginal (P = 0.07) to very weak (P = 0.80).

Statistical software can fit linear mixed models assuming various correlation
structures for the repeated observations. For further details, see Fitzmaurice et al.
(2011) and Hedeker and Gibbons (2006). The analysis requires some sophistica-
tion to avoid inappropriate models. For simple factorial designs having observations
taken at the same times and no missing data and for which common correlations
seem like a plausible assumption, it is simpler to use standard repeated-measures
ANOVA.

13.6 Chapter Summary
This chapter showed that multiple regression can describe the relationship between
a quantitative response variable and both quantitative and categorical explanatory
variables.

• The multiple regression model has linear terms (such as βx) for quantitative
explanatory variables and dummy variable terms for categorical factors.

• In this context, no interaction between a quantitative variable x and a categor-
ical group factor in their effects on y means that the slope of the line relating
x to E(y) is the same for each group. The model then provides a set of parallel
lines. We allow interaction and different slopes by entering cross products of
quantitative explanatory variables with dummy variables in the model.

• Adjusted means summarize the means on y for the groups while controlling
for other variables. They represent the model’s prediction for the means of y
for the groups at the overall means of the other variables. Adjusted means are
meaningful only when there is no interaction.

• One can test the hypothesis of no interaction as well as the hypothesis of equal
adjusted means using F tests for the relevant parameters in the model.

• When the model is used to compare the mean of y for different groups that
are the categories of a categorical variable while controlling for a quantitative
covariate, the analysis is called an analysis of covariance.

The linear mixed model is a generalization of the multiple regression model
that contains random effects as well as fixed effects and permits various correla-
tion structures among observations within clusters indexed by the random effect
term. This general model can handle the correlations that occur from having multi-
ple observations on subjects, such as in longitudinal studies and with various types of
clustered data.
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Exercises

Practicing the Basics
13.1. The regression equation relating y = education
(number of years completed) to race (z = 1 for whites,
z = 0 for nonwhites) in a certain country is E(y) = 11+2z.
The regression equation relating education to race and to
father’s education (x) is E(y) = 3 + 0.8x − 0.6z.
(a) Ignoring father’s education, find the mean education
for whites, the mean education for nonwhites, and the dif-
ference between them.
(b) Plot the relationship between x and the mean of y for
whites and for nonwhites.
(c) Controlling for father’s education, find the difference
between the mean education of whites and nonwhites.
Illustrate by finding the mean education for each group
when father’s education equals 12 years.

13.2. Table 3.9 on page 65 showed data for several nations
on y = C02 emissions (in metric tons per capita) and x =
per capita GDP (in thousands of dollars). Let z = whether
the nation is in Europe (1 = yes, 0 = no).
(a) The prediction equation for the effect of z is ŷ =
10.61 − 2.48z. Interpret the coefficients.
(b) The prediction equation for the effects of x and z is
ŷ = 2.10 + 0.22x − 3.58z. Interpret the coefficients.

13.3. A regression analysis for the 100th Congress pre-
dicted the proportion of each representative’s votes on
abortion issues that took the “pro-choice” position.6 The
prediction equation was

ŷ = 0.350 + 0.011id + 0.094r + 0.005nw + 0.005inc

+ 0.063s − 0.167p,

where r = religion (1 for non-Catholics), s = sex (1 for
women), p = political party (1 for Democrats), id = ideo-
logy is the member’s ADA score (ranging from 0 at most
conservative to 100 at most liberal), nw = nonwhite is the
percentage nonwhite of the member’s district, and inc =
income is the median family income of the member’s
district.
(a) Interpret the coefficient for political party.
(b) Using standardized variables, the prediction equa-
tion is

ẑy = 0.83zid +0.21zr +0.18znw +0.05zinc +0.03zs −0.18zp.

Comment on the relative sizes of the partial effects. Inter-
pret the coefficient of ideology.

13.4. For 2014 data, the GSS website yields the prediction
equation ŷ = 9.59+0.166x1 +0.347x2 for y = highest year
of school completed, x1 = sex (1 = male, 2 = female), and
x2 = highest year of mother’s education completed.
(a) Interpret the estimated partial effects.

(b) A more usual dummy coding for sex would be 0 =
male and 1 = female. Would the estimated effects of x1
and x2 then change? Explain.

13.5. Based on a national survey, Table 13.16 shows re-
sults of a prediction equation for y = alcohol consump-
tion, measured as the number of alcoholic drinks the
subject drank during the past month.

(a) For x = alcohol consumption three years ago and
dummy variables f for whether father died in the past
three years, s for sex, and (m1, m2, m3) for the four cat-
egories of marital status, report the prediction equation.
(b) Find the predicted alcohol consumption for a divorced
male whose father died in the previous three years and
whose consumption three years previously was (i) 0 drinks
per month, (ii) 10 drinks per month.

TABLE 13.16

Explanatory Variable Estimate Std. Error

Intercept 8.3
Death of father in past three years (0 = no) 9.8 2.9
Sex (0 = male) −5.3 1.6
Marital status (0 = married)

Divorced, separated 7.0 2.0
Widowed 2.0 3.6
Never married 1.2 2.4

Alcohol consumption three years ago 0.501 0.023

13.6. Consider the results in the previous exercise.

(a) Marital status has three estimates. Dividing the coeffi-
cient of the divorced dummy variable by its standard error
yields a t statistic. What hypothesis does it test?
(b) What would you need to do to test the effect of mari-
tal status (all categories at once), controlling for the other
variables?

13.7. For the Houses data file at the text website, Table
13.17 shows results of modeling y = selling price (in dol-
lars) in terms of size of home (in square feet) and whether
the home is new (1 = yes; 0 = no).

TABLE 13.17

Parameter Coef. Std. Error t Sig
Intercept -40230.867 14696.140 -2.738 .007
size 116.132 8.795 13.204 .000
new 57736.283 18653.041 3.095 .003

(a) Report and interpret the prediction equation, and
form separate equations relating selling price to size for
new and for not new homes.

6 R. Tatalovich and D. Schier, American Politics Quarterly, vol. 21 (1993).
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(b) Find the predicted selling price for a home of 3000
square feet that is (i) new, (ii) not new.

13.8. For the previous exercise, Table 13.18 shows results
of fitting the model allowing interaction.

(a) Report the lines relating the predicted selling price to
the size for homes that are (i) new, (ii) not new.
(b) Find the predicted selling price for a home of 3000
square feet that is (i) new, (ii) not new.
(c) Find the predicted selling price for a home of 1500
square feet that is (i) new, (ii) not new. Comparing to
(b), explain how the difference in predicted selling prices
changes as size of home increases.

TABLE 13.18

Parameter Coef. Std. Error t Sig
Intercept -22227.808 15521.110 -1.432 .155
size 104.438 9.424 11.082 .000
new -78527.502 51007.642 -1.540 .127
new#size 61.916 21.686 2.855 .005

13.9. Using software, replicate all the analyses shown in
Sections 13.1 and 13.2 using the Income data file at the
text website.

13.10. The software outputs in Table 13.19 show results of
fitting two models to data from a study of the relationship

TABLE 13.19

NO INTERACTION MODEL
Source Partial SS df Mean Square F Sig
race 40.08 2 20.04 1.07 .354
register 2317.43 1 2317.43 123.93 .000

Sum of Mean Parameter Estimate
Source Squares df Square INTERCEPT -2.7786
Model 7936.734 3 2645.578 REGISTER 0.7400
Residual 673.166 36 18.699 RACE a -1.3106
Total 8609.900 39 b -2.8522

ma 0.0000

INTERACTION MODEL
Source Partial SS df Mean Square F Sig
race*register 53.79 2 27.89 1.47 .243

Sum of Mean Parameter Estimate
Source Squares df Square INTERCEPT -8.245
Model 7990.523 5 1598.105 REGISTER 0.878
Residual 619.377 34 18.217 RACE a 6.974
Total 8609.900 39 b 9.804

ma 0.000
REGISTER*RACE a -0.175

b -0.283
ma 0.000

between y = percentage of adults voting, percentage of
adults registered to vote, and racial–ethnic representa-
tion, for a random sample of 40 precincts in the state
of Texas for a gubernatorial election. Racial–ethnic rep-
resentation of a precinct is the group (Anglo, black, or
Mexican American) having the strongest representation
in a precinct.
(a) State a research question that could be addressed
using these data.
(b) Report the prediction equation for the model assum-
ing no interaction. Interpret the parameter estimates.
(c) Report the prediction equation for the model allow-
ing interaction. Interpret the parameter estimates and
describe the nature of the estimated interaction.
(d) Test whether the regression lines for the three cate-
gories have the same slope. Report the test statistic and
P-value, and interpret.
(e) For the model assuming no interaction, test whether
the mean voting percentages are equal for the three cate-
gories of racial–ethnic representation, controlling for per-
centage registered. Report the test statistic and P-value,
and interpret.
(f ) Report the test statistic and P-value for testing the null
hypothesis that percentage voting and percentage regis-
tered are independent, controlling for racial–ethnic rep-
resentation. Interpret.
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(f) Summarize what you have learned about the question
posed in (a) from your analyses.

13.11. Refer to the previous exercise. The means of per-
centage registered for the three categories are x̄1 = 76.2,
x̄2 = 49.5, and x̄3 = 39.7. The overall mean x̄ = 60.4.

(a) Find the adjusted mean of the percentage voting for
Anglos. Compare it to the unadjusted mean of 52.3, and
interpret.
(b) Sketch a plot of the no-interaction model for these
data, and identify on it the unadjusted and adjusted means
for Anglos.

13.12. Table 13.1 did not report the observations for 10
Asian Americans. Their (x, y) values were

Subject 1 2 3 4 5 6 7 8 9 10
Education 16 14 12 18 13 12 16 16 14 10
Income 70 42 24 56 32 38 58 82 36 20

(a) Conduct the analyses for the no-interaction model
shown in Sections 13.2 and 13.4, after adding these data
to the Income data file at the text website. Summarize
your analyses, and interpret.
(b) Conduct the analyses for the interaction model and
for comparing that model to the no-interaction model, as
shown in Sections 13.1 and 13.2, after adding these data.

13.13. Exercise 13.1 reported the regression equation re-
lating y = education to race (z = 1 for whites) and to
father’s education (x) of E(y) = 3 + 0.8x − 0.6z. The
means ȳ = 11 for nonwhites, ȳ = 13 for whites, and overall
ȳ = 12.

(a) Find the adjusted mean educational levels for whites
and nonwhites, controlling for father’s education.
(b) Explain why the adjusted means differ as they do from
the unadjusted means.

13.14. Refer to the regression modeling of the family-
clustered data in Table 13.13. Add to the Family data
file the data for family 9, who had (y, x1, x2) values (0, 2,
0) and (1, 2, 1). Fit the linear mixed model to all the data,
and interpret results.

Concepts and Applications
13.15. Refer to the Students data file (Exercise 1.11).
Using software, prepare a report presenting graphical,
descriptive, and inferential analyses with

(a) y = political ideology and the predictors religiosity
and whether a vegetarian.
(b) y = college GPA with predictors high school GPA,
gender, and religiosity.

13.16. Refer to the data file your class created in
Exercise 1.12. For variables chosen by your instructor, use

regression analysis as the basis of descriptive and inferen-
tial statistical analyses. Summarize your findings in a re-
port in which you state the research question posed and
describe and interpret the fitted models and the related
analyses.

13.17. Refer to the OECD data file at the text website,
shown in Table 3.13 (page 70). Pose a research question
about how the human development index and whether a
nation is in Europe relate to carbon dioxide emissions.
Conduct appropriate analyses to address that question,
and prepare a report summarizing your analyses and con-
clusions.

13.18. An article7 on predicting attitudes toward homo-
sexuality modeled a response variable with a four-point
scale in which homosexual relations were scaled from 1 =
always wrong to 4 = never wrong, with x1 = education
(in years), x2 = age, x3 = political conservative (1 = yes,
0 = no), x4 = religious fundamentalist (1 = yes, 0 = no),
and x5 = whether live in same city as when age 16 (1 =
yes, 0 = no). The prediction equation allowing interaction
between x1 and x3 is

ŷ = 0.94 + 0.13x1 − 0.01x2

+ 1.10x3 − 0.38x4 − 0.15x5 − 0.12(x1 × x3).

Report the prediction equations for political conserva-
tives and nonconservatives. Explain how these suggest
that greater education corresponds to less negative views
about homosexuality for nonconservatives but may have
no effect for conservatives.

13.19. For the 2014 GSS, Table 13.20 shows estimates
(with se values in parentheses) for four regression models
for y = political party identification in the United States,
scored from 1 = strong Democrat to 7 = strong Republi-
can. The explanatory variables are sex (0 = male, 1 = fe-
male), race (0 = white, 1 = black), religion (scored 1 =
fundamentalist, 2 = moderate, 3 = liberal), and politi-
cal views (scored from 1 = extremely liberal to 7 = ex-
tremely conservative). Summarize your main conclusions
from these model fits in a report of about 200 words.

TABLE 13.20

Model 1 Model 2 Model 3 Model 4

Variable Coef. (se) Coef. (se) Coef. (se) Coef. (se)

Sex −0.332 (0.081) −0.228 (0.083) −0.255 (0.083) −0.165 (0.075)
Race −1.777 (0.110) −1.947 (0.113) −1.630 (0.102)
Religion −0.410 (0.055) −0.098 (0.051)
Political

views
0.674 (0.027)

Constant 3.95 4.23 5.13 1.60
Multiple R 0.082 0.333 0.365 0.581

7 T. Shackelford and A. Besser, Individual Differences Research, vol. 5 (2007), pp. 106–114.
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13.20. Table 13.21 shows output for GSS data with y =
index of attitudes toward premarital, extramarital, and
homosexual sex, for which higher scores represent more
permissive attitudes. The categorical explanatory vari-
ables are race (0 for whites, 1 for blacks), gender (0 for
males, 1 for females), region (0 for South, 1 for non-
South), and religion (r1 = 1 for liberal Protestant sect,
r2 = 1 for conservative Protestant, r3 = 1 for fundamen-
talist Protestant sect, r4 = 1 for Catholic, r5 = 1 for Jew-
ish; no religious affiliation when r1 = · · · = r5 = 0).
The quantitative explanatory variables are age, educa-
tion (number of years), attendance at church (higher val-
ues represent more frequent attendance), and a variable
for which higher values represent greater intolerance of
freedom of speech for atheists and communists.

(a) Based on the parameter estimates, give a profile of
a person you would expect to be (i) least permissive,
(ii) most permissive, with respect to sexual attitudes.
(b) Summarize your main conclusions from studying the
output.

TABLE 13.21

Analysis of Variance
Sum of Squares df Mean Square F

Regression 2583.326 12 215.277 54.098
Residual 4345.534 1092 3.979

R Square 0.373

Variable Coef. Std. Error Beta t Sig
(Constant) 9.373
RACE 0.993 0.2040 0.125 4.869 .000
AGE -0.029 0.0042 -0.189 -6.957 .000
SEX -0.289 0.1230 -0.058 -2.353 .019
EDUC 0.073 0.0223 0.092 3.281 .001
REGION 0.617 0.1401 0.115 4.403 .000
ATTEND -0.286 0.0255 -0.304 -11.217 .000
R1 -0.296 0.2826 -0.049 -1.048 .295
R2 -0.605 0.2782 -0.113 -2.174 .030
R3 -1.187 0.3438 -0.128 -3.454 .001
R4 -0.127 0.2856 0.023 0.446 .656
R5 0.521 0.4417 0.034 1.179 .238
FREESPCH -0.465 0.0581 -0.227 -8.011 .000

13.21. You plan a study of factors associated with fertility
(a woman’s number of children) in a Latin American city.
Of particular interest is whether migrants from other cities
or migrants from rural areas differ from natives of the city
in their family sizes. The groups to be compared are urban
natives, urban migrants, and rural migrants. Since fertility
is negatively related to educational level, and since edu-

cation might differ among the three groups, you control
that variable. Table 13.22 shows some of the data for a
random sample of married women above age 45. Analyze
the complete data, which are the Fertility data file at
the text website. In your report, provide graphical presen-
tations as well as interpretations for all your analyses, and
summarize the main results.

TABLE 13.22

Urban Natives Urban Migrants Rural Migrants

Education Fertility Education Fertility Education Fertility

0 7 0 7 0 4
0 5 0 6 0 6
1 5 0 7 0 10
1 4 1 5 0 8

13.22. Analyze the Houses2 data file at the text website
by modeling selling price in terms of size of house and
whether it is new.

(a) Fit the model allowing interaction, and test whether
the interaction term is needed in the model.
(b) Construct a scatterplot, identifying the points by
whether the home is new or not. The observation with the
highest selling price is a new home that is somewhat re-
moved from the general trend of points. Fit the interac-
tion model after removing this single observation. Again,
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test whether the interaction term is needed in the model.
Note what a large impact one observation can have on the
conclusions.

13.23. For the Crime2 data file at the text website, let z
be a dummy variable for whether a state is in the South,
with z = 1 for AL, AR, FL, GA, KY, LA, MD, MS, NC,
OK, SC, TN, TX, VA, WV.

(a) Not including the observation for D.C., analyze the re-
lationship between y = violent crime rate and z, both ig-
noring and controlling for x = poverty rate. Summarize
results.
(b) Repeat the analysis with D.C. in the data set, setting
z = 1 for it. Is this observation influential? Summarize
results.

13.24. You have two groups, and you want to compare
their regressions of y on x, to test the hypothesis that the
true slopes are identical for the two groups. Explain how
to do this using regression modeling.

13.25. In analyzing GSS data relating y = frequency of
having sex in the past year to frequency of going to bars,
DeMaris (2004, p. 62) noted that the slope for unmarried
subjects is more than double the slope for married sub-
jects. Introducing notation, state a model that you think
would be appropriate.

13.26. Let y = death rate and x = mean age of residents,
measured for each county in Louisiana and in Florida.
Sketch a hypothetical scatterplot, identifying points for
each state, when the mean death rate is higher in Florida
than in Louisiana when mean age is ignored but lower
when it is controlled.

13.27. Draw a scatterplot with sets of points representing
two groups such that H0: equal means would be rejected
in a one-way ANOVA but not in an analysis of covariance.

13.28. For a regression model fitted to annual income
(thousands of dollars) using predictors age and marital
status, Table 13.23 shows the sample mean incomes and
the adjusted means. How could the adjusted means be so
different from the unadjusted means? Draw a sketch to
help explain.

TABLE 13.23

Mean Mean Adjusted Mean
Group Age Income Income

Married 44 40 30
Divorced 35 30 30
Single 26 20 30

In Exercises 13.29–13.30, select the correct response(s).
(More than one response may be correct.)

13.29. In the model E(y) = α + β1x + β2z, where z = 1
for females and z = 0 for males,
(a) The categorical factor has two categories.
(b) One line has slope β1 and the other has slope β2.
(c) β2 is the difference between the mean of y for females
and males.
(d) β2 is the difference between the mean of y for females
for males, controlling for x.

13.30. In the United States, the mean annual income for
blacks (μ1) is smaller than for whites (μ2), the mean num-
ber of years of education is smaller for blacks than for
whites, and annual income is positively related to number
of years of education. Assuming that there is no interac-
tion, the difference in the mean annual income between
whites and blacks, controlling for education, is
(a) Less than μ2 − μ1.
(b) Greater than μ2 − μ1.
(c) Possibly equal to μ2 − μ1.

13.31. Summarize the differences in purpose of a one-way
analysis of variance and an analysis of covariance.

13.32.* Suppose we use a centered variable for the covari-
ate and express the interaction model when the categori-
cal factor has two categories as

E(y) = α + β1(x − μx) + β2z + β3(x − μx) × z.

Explain how to interpret β2, and explain how this differs
from the interpretation for the model without a centered
covariate.

13.33.* Using the graphical representation in Figure
13.10, explain why

y′
i = yi + b(x̄ − x̄i),

where b is the estimated slope. So, when b > 0, yi is ad-
justed upward if x̄ > x̄i and adjusted downward if x̄i < x̄.

13.34. Explain the reason for entering random effects into
a regression model. Describe a study in which it would be
helpful to use this approach.

13.35. Explain what is meant by the term mixed model,
and explain the distinction between a fixed effect and a
random effect.

13.36. Summarize advantages of using a linear mixed
model to analyze repeated-measures data, compared to
using standard repeated-measures ANOVA.

13.37. A recent study8 examined the role of family
structure in the financial support parents provide for
their children’s college education. Using data for 5070
children from 1519 families from the Health and Re-
tirement Study, one aspect of the study modeled the
parents’ financial support of tuition costs. Access the
article at www.ncbi.nlm.nih.gov/pmc/articles/

8 By J. C. Henretta, D. Wolf, M. Van Voorhis, and B. Soldo, Social Science Research, vol. 41 (2012), pp. 876–887.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461181
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PMC3461181. Consider the results shown in Table 2 of
the article, for this response variable.
(a) Identify the explanatory variables that seem espe-
cially relevant, and describe the direction of their esti-
mated effects.

(b) Explain why this analysis used a linear mixed model
with random effects. Report the estimated standard devi-
ation of those random effects.
(c) Using the estimated standard deviations in Table 2,
find the intraclass correlation. Interpret.

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461181
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T his chapter introduces tools for building regression models and evaluating the effects on their
fit of unusual observations or highly correlated predictors. It also shows ways of modeling

variables that badly violate the assumptions of straight-line relationships with a normal response
variable.

We first discuss criteria for selecting a regression model by deciding which of a possibly large
collection of variables to include in the model. We then introduce methods for checking regression
assumptions and evaluating the influence of individual observations. We also discuss effects of
multicollinearity—such strong “overlap” among the explanatory variables that no one of them
seems useful when the others are also in the model.

Section 14.4 introduces a generalized linear model that can handle response variables hav-
ing distributions other than the normal. For example, the gamma distribution is useful for positive
variables that exhibit skew to the right and have variability that grows with the mean. We also
introduce models for nonlinear relationships, such as exponential increase or decrease. The final
section introduces alternative regression methods with weaker assumptions, such as not assuming
a functional form for the relationship or common response variability.

14.1 Model Selection Procedures
Social research studies usually have several explanatory variables. For example, for
modeling mental impairment, potential predictors include income, educational at-
tainment, an index of life events, social and environmental stress, marital status, age,
self-assessment of health, number of jobs held in previous five years, number of rel-
atives who live nearby, number of close friends, membership in social organizations,
and frequency of church attendance.

Usually, the regression model for a study includes some explanatory variables
for theoretical reasons, such as to analyze whether a predicted effect truly occurs
under certain controls. Other explanatory variables may be included to see if they
mediate the predicted effects. Others may be included for exploratory purposes, to
check whether they explain other variability in the response variable. The model
might also include terms to allow for interactions. In such situations, it is not simple
to decide which variables to include and which to exclude from a final model.

SELECTING EXPLANATORY VARIABLES FOR A MODEL

A strategy that you might first consider is to include every potentially useful explana-
tory variable and then delete those terms not making statistically significant partial
contributions at some preassigned α-level. Unfortunately, this usually is inadequate.

431
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Because of correlations among the explanatory variables, any one variable may have
little unique predictive power, especially when the number of predictors is large. It
is conceivable that few, if any, explanatory variables would make significant partial
contributions, given that all of the other explanatory variables are in the model.

Here are three general guidelines for selecting explanatory variables:

1. Include the relevant variables to make the model useful for theoretical pur-
poses, so you can address hypotheses posed by the study, with sensible control
and mediating variables.

2. Include enough variables to obtain good predictive power.

3. Keep the model simple.

Goal 3 is a counterbalance to goal 2. Having a large number of explanatory vari-
ables in a model has disadvantages. The correlations among them can result in in-
flated standard errors of the parameter estimates, and may make it impossible to
assess the partial contributions of variables that are important theoretically. To avoid
multicollinearity, it is helpful for the explanatory variables to be correlated with the
response variable but not highly correlated among themselves.

Goal 2 of obtaining good predictive power might suggest “Maximize R2” as a
criterion for selecting a model. Because R2 cannot decrease as you add variables to
a model, however, this approach would lead you to the most complex model in the
set being considered. Related to the goal 3 of simplicity, don’t try to build a complex
model if the data set is small. If you have only 25 observations, you won’t be able
to untangle the complexity of effects among 10 explanatory variables. With small to
moderate sample sizes (say, 100 or less), it is safer to use relatively few predictors.

Keeping these thoughts in mind, no unique or optimal approach exists for se-
lecting explanatory variables. For p potential predictors, since each can be either
included or omitted (two possibilities for each variable), there are 2p potential sub-
sets. For p = 2, for example, there are 2p = 22 = 4 possible models: one with both
x1 and x2, one with x1 alone, one with x2 alone, and one with neither variable. The
set of potential models is too large to evaluate practically if p is even moderate; with
p = 7, there are 27 = 128 potential models.

Statistical software has automated variable selection procedures that scan the
explanatory variables to construct a model. These routines sequentially enter or re-
move variables, one at a time according to some criterion. For any particular sample
and set of variables, however, different procedures may select different subsets of
variables, with no guarantee of selecting a sensible model. The most popular auto-
mated variable selection methods are backward elimination, forward selection, and
stepwise regression.

BACKWARD ELIMINATION

Backward elimination begins by placing all of the explanatory variables under con-
sideration in the model. It deletes one at a time until reaching a point where the
remaining variables all make significant partial contributions to predicting y. The
variable deleted at each stage is the one that is the least significant, having the largest
P-value in the significance test for its effect.

Here is the sequence of steps for backward elimination: The initial model con-
tains all potential explanatory variables. If all variables make significant partial
contributions at some fixed α-level, according to the usual t test or F test, then that
model is the final one. Otherwise, the explanatory variable having the largest P-
value, controlling for the other variables in the model, is removed. Next, the model
is refitted with that variable removed, and the partial contributions of the variables
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remaining in the model are reassessed, controlling for the other variables still in the
model. If they are all significant, that model is the final model. Otherwise, the variable
having the largest P-value is removed. The process continues until each remaining
predictor explains a significant partial amount of the variability in y.

Example
14.1

Selecting Explanatory Variables for House Selling Price Example 9.10 (page 280)
introduced a data set consisting of 100 observations on house selling prices with sev-
eral explanatory variables. The data are in the Houses data file at the text website.
We use y = selling price of home, with explanatory variables size of home (denoted
SIZE), annual taxes (TAXES), number of bedrooms (BEDS), number of bathrooms
(BATHS), and a dummy variable for whether the home is new (NEW). We use back-
ward elimination with these variables as potential explanatory variables but without
interaction terms, requiring a variable to reach significance at the α = 0.05 level for
inclusion in the model.

Table 14.1 shows the first stage of the process, fitting the model containing all
the explanatory variables. The variable making the least partial contribution to the
model is BATHS. Its P-value (P = 0.85) is the largest. Although BATHS is mod-
erately correlated with the selling price (r = 0.56), the other explanatory variables
together explain most of the same variability in selling price. Once those variables
are in the model, BATHS is essentially redundant.

TABLE 14.1: Model Fit at Initial Stage of Backward Elimination for
Predicting House Selling Price

Variable Coef. Std. Error t Sig
(Constant) 4525.75 24474.05
SIZE 68.35 13.94 4.90 .000
NEW 41711.43 16887.20 2.47 .015
TAXES 38.13 6.81 5.60 .000
BATHS -2114.37 11465.11 -.18 .854
BEDS -11259.10 9115.00 -1.23 .220

When we refit the model after dropping BATHS, the only nonsignificant variable
is BEDS, having a t statistic of −1.31 and P-value = 0.19. Table 14.2 shows the third
stage, refitting the model after dropping BATHS and BEDS as explanatory variables.
Each variable now makes a significant contribution, controlling for the others in the
model. Thus, this is the final model. Backward elimination provides the prediction
equation

ŷ = −21,353.8 + 61.7(SIZE) + 46,373.7(NEW) + 37.2(TAXES).

Other things being equal, an extra thousand square feet of size increases the pre-
dicted selling price by about 62 thousand dollars, and having a new home increases

TABLE 14.2: Model Fit at Third Stage of Backward Elimination for Predicting House Selling
Price

Variable Coef. Std. Error Std. Coeff t Sig
(Constant) -21353.8 13311.49
SIZE 61.70 12.50 0.406 4.94 .000
NEW 46373.70 16459.02 0.144 2.82 .006
TAXES 37.23 6.74 0.466 5.53 .000
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it by about 46 thousand dollars. With standardized variables, the equation is

ẑy = 0.406zS + 0.144zN + 0.464zT .

SIZE and TAXES have similar partial effects.
If we had included interactions in the original model, we would have ended up

with a different final model. However, the model given here has the advantage of
simplicity, and it has good predictive power (R2 = 0.790, compared to 0.793 with all
the explanatory variables).

FORWARD SELECTION AND STEPWISE REGRESSION PROCEDURES

Whereas backward elimination begins with all the potential explanatory variables
in the model, forward selection begins with none of them. It adds one variable at a
time to the model until no remaining variable not yet in the model makes a significant
partial contribution to predicting y. At each step, the variable added is the one that is
most significant, having the smallest P-value. For quantitative explanatory variables,
this is the variable having the largest t test statistic, or equivalently the one providing
the greatest increase in R2.

For the data on selling prices of homes, Table 14.3 depicts the process. The vari-
able most highly correlated with selling price is TAXES, so it is added first. Once
TAXES is in the model, SIZE provides the greatest boost to R2, and it is significant
(P = 0.000), so it is the second variable added. Once both TAXES and SIZE are in
the model, NEW provides the greatest boost to R2 and it is significant (P = 0.006),
so it is added next. At this stage, BEDS gives the greatest boost to R2 (from 0.790 to
0.793), but it does not make a significant contribution (P = 0.194), so the final model
does not include it. In this case, forward selection reaches the same final model as
backward elimination.

TABLE 14.3: Steps of Forward Selection for Predicting
House Selling Price. The model chosen has
predictors TAXES, SIZE, and NEW.

Variables P-Value
Step in Model for New Term R2

0 None — 0.000
1 TAXES 0.000 0.709
2 TAXES, SIZE 0.000 0.772
3 TAXES, SIZE, NEW 0.006 0.790
4 TAXES, SIZE, NEW, BEDS 0.194 0.793

Once forward selection provides a final model, not all the explanatory variables
appearing in it are necessarily significantly related to y. The variability in y explained
by a variable entered at an early stage may overlap with the variability explained by
variables added later, so it may no longer be significant. Figure 14.1 illustrates this.
The figure portrays the portion of the total variability in y explained by each of three
explanatory variables. Variable x1 explains a similar amount of variability, by itself,
as x2 or x3. However, x2 and x3 between them explain much of the same variation
that x1 does. Once x2 and x3 are in the model, the unique variability explained by x1

is minor.
Stepwise regression is a modification of forward selection that drops variables

from the model if they lose their significance as other variables are added. The ap-
proach is the same as forward selection except that at each step, after entering the
new variable, the procedure drops from the model any variables that no longer make
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x1

x2x3

TSS

FIGURE 14.1: Variability
in y Explained by x1, x2,

and x3. The shaded portion
is the amount explained by
x1 that is also explained by
x2 and x3.

significant partial contributions. A variable entered into the model at some stage may
eventually be eliminated because of its overlap with variables entered at later stages.

For the home sales data, stepwise regression behaves the same way as forward
selection. At each stage, each variable in the model makes a significant contribution,
so no variables are dropped. For these variables, backward elimination, forward se-
lection, and backward elimination all agree. This need not happen.

LIMITATIONS AND ABUSES OF AUTOMATIC SELECTION
PROCEDURES

It may seem appealing to select explanatory variables automatically according to
established criteria. But any variable selection method should be used with caution
and should not substitute for theory and careful thought. There is no guarantee that
the final model chosen will be sensible.

For instance, suppose we specify all the pairwise interactions as well as the main
effects as the potential explanatory variables. In this case, it is inappropriate to re-
move a main effect from a model that contains an interaction composed of that vari-
able. Yet, most software does not have this safeguard. To illustrate, we used forward
selection with the home sales data, including the 5 explanatory variables as well as
their 10 cross-product interaction terms. The final model has R2 = 0.866, using four
interaction terms (SIZE×TAXES, SIZE ×NEW, TAXES×NEW, BATHS×NEW)
and the TAXES main effect. It is inappropriate, however, to use these interactions
as explanatory variables without the SIZE, NEW, and BATHS main effects.

Also, a variable selection procedure may exclude an important explanatory vari-
able that really should be in the model according to other criteria. For instance, using
backward elimination with the five explanatory variables of home selling price and
their interactions, TAXES was removed. At a certain stage, TAXES explained an
insignificant part of the variation in selling price. Nevertheless, it is the best single
predictor of selling price, having r2 = 0.709 by itself. (Refer to step 1 of the forward
selection process in Table 14.3.) Since TAXES is such an important determinant of
selling price, it seems sensible that any final model should include it as an explanatory
variable.

Although P-values provide a guide for making decisions about adding or drop-
ping variables in selection procedures, they are not the true P-values for the tests
conducted. We add or drop a variable at each stage according to a minimum or max-
imum P-value, but the sampling distribution of the maximum or minimum of a set of
t or F statistics differs from the sampling distribution for the statistic for an a priori
chosen test. For instance, suppose we add variables in forward selection according to
whether the P-value is less than 0.05. Even if none of the potential explanatory vari-
ables truly affect y, the probability is considerably larger than 0.05 that at least one
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of the separate test statistics provides a P-value below 0.05 (Exercise 14.48). At least
one variable that is not really important may look impressive merely due to chance.

Similarly, for the final model suggested by a particular selection procedure, any
inferences conducted with it are highly approximate. In particular, P-values are likely
to appear smaller than they should be and confidence intervals are likely to be too
narrow, because the model was chosen that most closely reflects the data, in some
sense. The inferences are more believable if performed for that model with a new set
of data. (See the related discussion about cross-validation on page 437.)

EXPLORATORY VERSUS EXPLANATORY (THEORY-DRIVEN) RESEARCH

There is a basic difference between explanatory and exploratory modes of model se-
lection. Explanatory research has a theoretical model to test using multiple regres-
sion. We might test whether a hypothesized spurious association disappears when
other variables are controlled, for example. In such research, automated selection
procedures are usually not appropriate, because theory dictates which variables are
in the model.

Exploratory research, by contrast, has the goal not of examining theoretically
specified relationships but merely finding a good set of explanatory variables. This
approach searches for explanatory variables that give a large R2, without concern
about theoretical explanations. Thus, educational researchers might use a variable
selection procedure to search for a set of test scores and other factors that predict
well how students perform in college. They should be cautious about giving causal
interpretations to the effects. For example, possibly the best predictor of students’
success in college is whether their parents use the Internet for voice communication
(with a program such as Skype).

In summary, automated variable selection procedures are no substitute for
careful thought in formulating models. For most scientific research, they are not
appropriate.

INDICES FOR SELECTING A MODEL: ADJUSTED R2, PRESS, AND AIC

Instead of using an automated algorithm to choose a model, we could specify a set
of potentially adequate models, and then use some established criterion to select
among them. We next present some possible criteria.

Recall that maximizing R2 is not a sensible criterion, because the most compli-
cated model will have the largest R2-value. This reflects the upward bias that R2 has as
an estimator of the population value of R2. This bias can be considerable with small
n or with many explanatory variables. In comparing predictive power of different
models, it is more helpful to use adjusted R2 instead of R2. This is

R2
adj = s2

y − s2

s2
y

= 1 − s2

s2
y
,

where s2 = ∑
(y − ŷ)2/[n − (p + 1)] is the estimated conditional variance (i.e., the

residual mean square) and s2
y = ∑

(y − ȳ)2/(n − 1) is the sample variance of y. This
is a less biased estimator of the population R2. Unlike ordinary R2, if we add a term
to a model that is not especially useful, then R2

adj may even decrease. This happens

when the new model has poorer predictive power, in the sense of a larger value of
s2. A possible criterion for selecting a model is to choose the one having the greatest
value of R2

adj. This is, equivalently, the model with smallest residual MS.

Most other criteria for selecting a model attempt to find the model for which the
predicted values tend to be closest to the true expected values. One type of method
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for doing this uses cross-validation. For a given model, you fit the model using some
of the data and then analyze how well its prediction equation predicts the rest of
the data. In one version, you use all observations except one to fit the model, and
then check how well it predicts the remaining observation. Suppose we fit a model
using all the data except observation 1. Using the prediction equation we get, let
ŷ(1) denote the predicted selling price for observation 1. That is, we find a prediction
equation using the data for observations 2, 3, . . . , n, and then we substitute the values
of the explanatory variables for observation 1 into that prediction equation to get
ŷ(1). Likewise, let ŷ(2) denote the prediction for observation 2 when we fit the model
to observations 1, 3, 4, . . . , n, leaving out observation 2. In general, for observation
i, we leave it out in fitting the model and then use the resulting prediction equation
to get ŷ(i). Then, (yi − ŷ(i)) is a type of residual, measuring how far observation i falls
from the value predicted for it using the prediction equation generated by the other
(n − 1) observations.

In summary, for a model for n observations, this version of cross-validation fits
the model n times, each time leaving out one observation and using the prediction
equation to predict that observation. We then get n predicted values and corre-
sponding prediction residuals. The predicted residual sum of squares, denoted by
PRESS, is

PRESS =
∑

(yi − ŷ(i))2.

The smaller the value of PRESS, the better the predictions tend to be, in a summary
sense. According to this criterion, the best-fitting model is the one with the smallest
value of PRESS.

The AIC, short for Akaike information criterion, attempts to find a model for
which the {ŷi} tend to be closest to {E(yi)} in an average sense. The AIC is also scaled
in such a way that the lower the value, the better the model. The best model is the one
with the smallest AIC. We do not show its formula here, but it is sufficient to know
that for ordinary regression models, minimizing the AIC corresponds to minimizing

n log(SSE) + 2p,

where p is the number of model parameters. So, this criterion penalizes a model for
having more parameters than are useful for getting good predictions. An advantage
of the AIC is that its general definition also makes it applicable for models that as-
sume nonnormal distributions for y, in which case a sum of squared errors is often
not a useful summary.

Example
14.2

Using Indices to Select a Model for House Selling Price Table 14.4 shows the model
selection indices for five models for the house selling price data. The table shows
the models in the order built by forward selection (reverse order for backward
elimination).

TABLE 14.4: Model Selection Criteria for Models for House Selling
Price

Variables in Model R2 R2
adj PRESS AIC

TAXES 0.709 0.706 3.17 2470.5
TAXES, SIZE 0.772 0.767 2.73 2448.0
TAXES, SIZE, NEW 0.790 0.783 2.67 2442.0
TAXES, SIZE, NEW, BEDS 0.793 0.785 2.85 2442.2
TAXES, SIZE, NEW, BEDS, BATHS 0.793 0.782 2.91 2444.2

Note: Actual PRESS equals value reported times 1011.
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According to the criterion of minimizing adjusted R2, the selected model has
all the explanatory variables except BATHS. It has R2

adj = 0.785. To illustrate that

R2
adj can decrease when variables are added, note that this model as well as the

model with SIZE, NEW, and TAXES predictors have R2
adj values that are higher

than R2
adj = 0.782 for the full model with all the explanatory variables.

According to the criterion of minimizing the predicted residual sum of squares,
the selected model has explanatory variables TAXES, SIZE, and NEW. It has the
minimum PRESS = 2.67. (The y values were in dollars, so squared residuals tended to
be huge numbers, and the actual PRESS values are the numbers reported multiplied
by 1011.) This was also the model selected by backward elimination and by forward
selection.

According to the criterion of minimizing AIC, the selected model is also the one
with explanatory variables TAXES, SIZE, and NEW. It has the minimum AIC =
2442.0. The model also containing NEW fits essentially as well.

14.2 Regression Diagnostics
Once we have selected the explanatory variables for a model, how do we know
that model fits the data adequately? This section introduces diagnostics that indicate
(1) when model assumptions are grossly violated and (2) when certain observations
are highly influential in affecting the model fit or inference about model parameters.

Recall that inference about parameters in a regression model has these
assumptions:

• The true regression function has the form used in the model (e.g., linear).

• The conditional distribution of y is normal.

• The conditional distribution of y has constant standard deviation through-
out the range of values of the explanatory variables. This condition is called
homoscedasticity.

• The sample is randomly selected.

In practice, the assumptions are never perfectly fulfilled, but the regression model
can still be useful. It is adequate to check that no assumption is grossly violated.

EXAMINE THE RESIDUALS

Several checks of assumptions use the residuals, y − ŷ. One check concerns the nor-
mality assumption. If the observations are normally distributed about the true re-
gression equation with constant conditional standard deviation σ , then the residuals
should be approximately normally distributed. To check this, plot the residuals about
their mean value 0, using a histogram. They should have approximately a bell shape
about 0.

A standardized version of the residual equals the residual divided by its stan-
dard error, which describes how much residuals vary because of ordinary sampling
variability. In regression, this is called1 a studentized residual. Under the normality
assumption, a histogram of these residuals should have the appearance of a standard
normal distribution (bell shaped with mean of 0 and standard deviation of 1).

1 Some software reports also a standardized residual, which divides y − ŷ by s, which is slightly larger than the
standard error of the residual.
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If a studentized residual is larger than about 3 in absolute value, the observation
is a potential outlier and should be checked. If an outlier represents a measurement
error, it could cause a major bias in the prediction equation. Even if it is not an
error, it should be investigated. It represents an observation that is not typical of the
sample data, and it may have too much impact on the model fit. Consider whether
there is some reason for the peculiarity. Sometimes the outliers differ from the other
observations on some variable not included in the model, and once that variable is
added, they cease to be outliers.

Example
14.3

Residuals for Modeling Home Selling Price For theHouses data file, with y = selling
price, variable selection procedures in Example 14.1 (page 433) and the AIC and
PRESS indices in Example 14.2 suggested the model with prediction equation

ŷ = −21,353.8 + 61.7(SIZE) + 46,373.7(NEW) + 37.2(TAXES).

Figure 14.2 is a histogram of the studentized residuals for this fit. No severe nonnor-
mality seems to be indicated, since they are roughly bell shaped about 0. However,
the plot indicates that two observations have relatively large residuals. On further
inspection, we find that observation 6 had a selling price of $499,900, which was
$168,747 higher than the predicted selling price for a new home of 3153 square feet
with a tax bill of $2997. The residual of $168,747 has a studentized value of 3.88. Ob-
servation 64 had a selling price of $225,000, which was $165,501 lower than the pre-
dicted selling price for a non-new home of 4050 square feet with a tax bill of $4350.
Its residual of −$165,501 has a studentized value of −3.93.
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of Studentized Residuals
for Multiple Regression
Model Fitted to House
Selling Prices, with
Explanatory Variables
Size, Taxes, and New

A severe outlier on y can substantially affect the fit, especially when the values of
the explanatory variables are not near their means. So, we refitted the model without
these two observations. The R2-value changes from 0.79 to 0.83, and the prediction
equation changes to

ŷ = −32,226 + 68.9(SIZE) + 20,436(NEW) + 38.3(TAXES).
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The parameter estimates are similar for SIZE and TAXES, but the estimated effect
of NEW drops from 46,374 to 20,436. Moreover, the effect of NEW is no longer
significant, having a P-value of 0.17. Because the estimated effect of NEW is affected
substantially by these two observations, we should be cautious in making conclusions
about its effect. Of the 100 homes in the sample, only 11 were new. It is difficult to
make precise estimates about the NEW effect with so few new homes, and results
are highly affected by a couple of unusual observations.

PLOTTING RESIDUALS AGAINST EXPLANATORY VARIABLES

The normality assumption is not as important as the assumption that the model pro-
vides a good approximation for the true relationship between the explanatory vari-
ables and the mean of y. If the model assumes a linear effect but the effect is actually
strongly nonlinear, some conclusions may be faulty.

For bivariate models, the scatterplot provides a simple check on the form of the
relationship. For multiple regression, it is also useful to construct a scatterplot of each
explanatory variable against the response variable. This displays only the bivariate
relationships, however, whereas the model refers to the partial effect of each explana-
tory variable, with the others held constant. The partial regression plot introduced on
page 326 provides some information about this.

For multiple regression models, plots of the residuals (or studentized residuals)
against the predicted values ŷ or against each explanatory variable also help us check
for potential problems. If the residuals appear to fluctuate randomly about 0 with no
obvious trend or change in variation as the values of a particular xi increase, then no
violation of assumptions is indicated. The pattern should be roughly like Figure 14.3a.

(b) Nonconstant standard deviation(a) Assumptions satisfied (c) Nonlinear term needed
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FIGURE 14.3: Possible
Patterns for Residuals (e),
Plotted against an
Explanatory Variable x

In practice, most response variables can take only nonnegative values. For such
responses, a fairly common occurrence is that the variability increases as the mean
increases. For example, suppose we model y = annual income (in dollars) us-
ing several explanatory variables. For those subjects having E(Y) = $10,000, the
standard deviation of income is probably much less than for those subjects having
E(Y) = $200,000. Plausible standard deviations might be $4000 and $80,000. When
this happens, the conditional standard deviation of y is not constant, whereas ordi-
nary regression assumes that it is. An indication that this is happening is when the
residuals are more spread out as the yi-values increase. If we plot the residuals against
a predictor that has a positive partial association with y, such as number of years of
education, the residuals are then more spread out for larger values of the predictor,
as in Figure 14.3b.

Figure 14.3c shows another possible abnormality, in which y tends to be below
ŷ for very small and very large xi-values (giving negative residuals) and above ŷ
for medium-sized xi-values (giving positive residuals). Such a scattering of residuals
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suggests that y is actually nonlinearly related to xi. Sections 14.5 and 14.6 show how
to address nonlinearity.

For the model relating selling price of home to size, taxes, and whether new for all
100 observations, Figure 14.4 plots the residuals against size. There is some suggestion
of more variability at the higher size values. It does seem sensible that selling prices
would vary more for very large homes than for very small homes. A similar picture
occurs when we plot the residuals against taxes.
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If the change in variability is severe, then a method other than ordinary least
squares provides better estimates with more valid standard errors. Section 14.4
presents a generalized regression model that allows the variability to be greater when
the mean is greater.

In practice, residual patterns are rarely as neat as the ones in Figure 14.3. Don’t let
a few outliers or ordinary sampling variability influence too strongly your interpreta-
tion of a plot. Also, the plots described here just scratch the surface of the graphical
tools now available for diagnosing potential problems. Fox (2015, Section III) de-
scribed a variety of modern graphical displays and diagnostic tools.

TIME SERIES DATA AND LONGITUDINAL STUDIES

Some social research studies collect observations sequentially over time. For eco-
nomic variables such as a stock index or the unemployment rate, for example, the
observations often occur daily or monthly. The observations are then recorded in se-
quence, rather than randomly sampled. Sampling subjects randomly from some pop-
ulation ensures that one observation is not statistically dependent on another, and
this simplifies derivations of sampling distributions and their standard errors. How-
ever, neighboring observations from a time sequence are usually correlated rather
than independent. For example, if the unemployment rate is relatively low in January
2018, it will probably also be relatively low in February 2018.

A plot of the residuals against the time of making the observation checks for this
type of dependence. Ideally, the residuals should fluctuate in a random pattern about
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0 over time, rather than showing a trend or periodic cycle. The methods presented
in this text are based on independent observations and are inappropriate when time
effects occur. For example, when observations next to each other tend to be positively
correlated, the standard error of the sample mean is larger than the σ/

√
n formula

that applies for independent observations.
The term time series refers to relatively long sequences of observations over time.

Books specializing in econometrics, such as Kennedy (2008), present methods for
time series data. The term longitudinal data refers to studies, common in the social
sciences and public health, that observe subjects over a relatively small number of
times. For analyzing such data, see the linear mixed model in Section 13.5 and books
by Fitzmaurice et al. (2011) and Hedeker and Gibbons (2006).

DETECTING INFLUENTIAL OBSERVATIONS: RESIDUAL AND LEVERAGE

Least squares estimates of parameters in regression models can be strongly influ-
enced by an outlier, especially when n is small. A variety of statistics summarize
the influence each observation has. These statistics refer to how much the predicted
values ŷ or the model parameter estimates change when we remove an observation
from the data set. An observation’s influence depends on two factors: (1) how far
its y-value falls from the overall trend in the data and (2) how far the values of the
explanatory variables fall from their means.

The first factor on influence (how far y falls from the overall trend) is mea-
sured by the observation’s residual, y – ŷ. The larger the residual, the farther the
observation falls from the overall trend. We can search for observations with large
studentized residuals (say, larger than about 3 in absolute value) to find observations
that may be influential.

The second factor on influence (how far the explanatory variables fall from their
means) is summarized by the leverage of the observation. The leverage is a nonnega-
tive statistic such that the larger its value, the greater weight that observation receives
in determining the ŷ-values (hence, it also is sometimes called a hat value). The for-
mula for the leverage in multiple regression is complex. For the bivariate model, the
leverage for observation i simplifies to

hi = 1
n

+ (xi − x̄)2∑
(x − x̄)2

.

So, the leverage gets larger as the x-value xi for observation i gets farther from the
mean. It gets smaller as the sample size increases. When calculated for each obser-
vation in a sample, the average leverage equals the number p of parameters in the
model divided by n.

DETECTING INFLUENTIAL OBSERVATIONS: DFFIT AND DFBETA

For an observation to be influential, it must have both a relatively large residual and
a relatively large leverage. Statistical software reports diagnostics that depend on the
residuals and the leverages. Two popular ones are called DFFIT and DFBETA.

For an observation, DFBETA summarizes the effect on the model parameter esti-
mates of removing the observation from the data set. For the effect β j of xj, DFBETA
equals the change in the estimate β̂ j due to deleting the observation. The larger the
absolute value of DFBETA, the greater the influence of the observation on that
parameter estimate. Each observation has a DFBETA value for each parameter in
the model.
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DFFIT summarizes the effect on the fit of deleting the observation. For observa-
tion i, DFFIT equals the change in the predicted value due to deleting that obser-
vation (i.e., ŷi − ŷ(i)). The DFFIT value has the same sign as the residual. Cook’s
distance is an alternative measure with the same purpose. Cook’s distance and
DFFIT are based on the effect that observation i has on all the parameter estimates.
They summarize more broadly the influence of an observation, as each observation
has a single DFFIT value and a single Cook’s distance, whereas it has a separate
DFBETA for each parameter. The larger their absolute values, the greater the influ-
ence that observation has on the fitted values.

Some software reports standardized versions of the DFBETA and DFFIT mea-
sures, often denoted by DFBETAS and DFFITS. The standardized DFBETA divides
the change in the estimate β̂ j due to deleting the observation by the standard error
of β̂ j for the adjusted data set. For observation i, the standardized DFFIT equals
the change in the predicted value due to deleting that observation, divided by the
standard error of ŷ for the adjusted data set.

In practice, scan or plot these diagnostic measures to see if some observations
stand out from the rest, having relatively large values. Each measure has approximate
cutoff points for noteworthy observations. For example, a Cook’s distance larger than
about 4/n indicates a potentially large influence. A standardized DFBETA larger
than 1 suggests a substantial influence on that parameter estimate. However, Cook’s
distance, DFBETA, and DFFIT tend to decrease as n increases, so normally it is
a good idea to examine observations having extreme values relative to the others.
Individual data points have less influence for larger sample sizes.

Example
14.4

DFBETA and DFFIT for an Influential Observation Example 14.3 (page 439) showed
that observations 6 and 64 were influential on the equation for predicting home sell-
ing price using size of home, taxes, and whether the house is new. The prediction
equation for all 100 observations is

ŷ = −21,354 + 61.7(SIZE) + 46,373.7(NEW) + 37.2(TAXES).

For observation 6, the DFBETA values are 12.5 for size, 16,318.5 for new, and −5.7
for taxes. This means, for example, that if this observation is deleted from the data
set, the effect of NEW changes from 46,373.7 to 46,373.7 − 16,318.5 = 30,055.2. Ob-
servation 6 had a predicted selling price of ŷ = 331,152.8. Its DFFIT value is 29,417.0.
This means that if observation 6 is deleted from the data set, then ŷ at the explana-
tory variable values for observation 6 changes to 331,152.8 − 29,417.0 = 301,735.8.
This analysis shows that this observation is quite influential.

Example
14.5

Influence Diagnostics for Crime Data Table 9.1 (page 260) listed y = murder rate for
the 50 states and the District of Columbia (D.C.), with explanatory variables x1 =
percentage of families below the poverty level and x2 = percentage of single-parent
families. The data are in the Crime2 data file at the text website. The least squares
fit of the multiple regression model is

ŷ = −40.7 + 0.32x1 + 3.96x2.

Table 14.5 shows the influence diagnostics for the model fit, including the standard-
ized versions of DFBETA and DFFIT. The studentized residuals fall in a reasonable
range except the one for the last observation (D.C.), which equals 14.2. The observed
murder rate of 78.5 for D.C. falls far above the predicted value of 55.3, causing a large
positive residual. This is an extreme outlier. In addition, the leverage for D.C. is 0.54,
more than three times as large as any other leverage and nine times the average
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TABLE 14.5: Influence Diagnostics for Model Using Poverty Rate and Single-Parent Percent-
age to Predict Murder Rate for 50 U.S. States and District of Columbia

Dep Var Predict Student Leverage POVERTY SINGLE
Obs MURDER Value Residual Resid h Dffits Dfbeta Dfbeta
AK 9.0 18.88 −9.88 −2.04 0.162 −0.895 0.714 −0.761
AL 11.6 10.41 1.18 0.22 0.031 0.039 0.024 −0.011
AR 10.2 8.07 2.13 0.40 0.079 0.117 0.100 −0.069
AZ 8.6 12.16 −3.55 −0.65 0.022 −0.099 −0.005 −0.025
CA 13.1 14.63 −1.53 −0.28 0.034 −0.053 −0.027 −0.004
CO 5.8 10.41 −4.61 −0.87 0.060 −0.220 0.174 −0.134
CT 6.3 2.04 4.25 0.79 0.051 0.185 −0.130 0.015
DE 5.0 7.73 −2.73 −0.50 0.043 −0.107 0.079 −0.045
FL 8.9 6.97 1.92 0.35 0.048 0.080 0.059 −0.047
GA 11.4 15.12 −3.72 −0.69 0.042 −0.145 0.071 −0.105
HI 3.8 −2.07 5.87 1.11 0.059 0.279 −0.153 −0.058
IA 2.3 −1.74 4.04 0.75 0.045 0.164 −0.034 −0.081
ID 2.9 1.12 1.77 0.32 0.035 0.063 0.012 −0.040
IL 11.4 9.21 2.18 0.40 0.020 0.058 −0.013 0.011
IN 7.5 5.99 1.50 0.27 0.023 0.043 −0.014 −0.000
KS 6.4 2.71 3.68 0.68 0.029 0.117 0.013 −0.062
KY 6.6 7.79 −1.19 −0.22 0.088 −0.070 −0.061 0.043
LA 20.3 26.74 −6.44 −1.29 0.161 −0.568 −0.412 −0.055
MA 3.9 5.91 −2.01 −0.37 0.033 −0.068 0.042 −0.014
MD 12.7 9.95 2.74 0.51 0.060 0.130 −0.104 0.077
ME 1.6 4.72 −3.12 −0.57 0.031 −0.104 0.058 −0.008
MI 9.8 15.72 −5.92 −1.10 0.033 −0.204 0.035 −0.124
MN 3.4 2.23 1.16 0.21 0.029 0.037 −0.007 −0.013
MO 11.3 7.62 3.67 0.67 0.027 0.115 0.059 −0.049
MS 13.5 25.40 −11.90 −2.45 0.126 −0.933 −0.623 −0.151
MT 3.0 6.84 −3.84 −0.70 0.023 −0.108 −0.033 0.039
NC 11.3 7.87 3.42 0.62 0.020 0.090 0.009 −0.013
ND 1.7 −3.83 5.53 1.04 0.057 0.259 0.016 −0.184
NE 3.9 −0.15 4.05 0.75 0.039 0.153 −0.047 −0.056
NH 2.0 −1.07 3.07 0.57 0.044 0.123 −0.039 −0.047
NJ 5.3 0.82 4.47 0.83 0.035 0.158 −0.041 −0.058
NM 8.0 19.53 −11.53 −2.25 0.046 −0.499 −0.017 −0.308
NV 10.4 11.57 −1.17 −0.22 0.069 −0.060 0.048 −0.040
NY 13.3 14.85 −1.55 −0.28 0.028 −0.048 −0.005 -0.019
OH 6.0 8.62 −2.62 −0.48 0.022 −0.072 0.024 −0.015
OK 8.4 9.62 −1.22 −0.22 0.067 −0.061 −0.051 0.031
OR 4.6 7.84 −3.24 −0.59 0.027 −0.101 0.054 −0.029
PA 6.8 1.55 5.24 0.97 0.034 0.183 0.036 −0.115
RI 3.9 5.67 −1.77 −0.32 0.028 −0.056 0.029 −0.006
SC 10.3 13.99 −3.69 −0.68 0.038 −0.137 −0.084 0.008
SD 3.4 1.07 2.32 0.43 0.042 0.091 0.036 −0.067
TN 10.2 9.92 0.27 0.05 0.060 0.013 0.010 −0.006
TX 11.9 11.60 0.29 0.05 0.029 0.009 0.005 −0.001
UT 3.1 2.34 0.75 0.13 0.032 0.025 −0.010 −0.004
VA 8.3 3.21 5.08 0.94 0.039 0.192 −0.119 0.010
VT 3.6 6.08 −2.48 −0.46 0.040 −0.094 0.067 −0.028
WA 5.2 9.52 −4.32 −0.80 0.029 −0.139 0.078 −0.059
WI 4.4 4.53 −0.13 −0.02 0.023 −0.003 0.000 0.001
WV 6.9 3.60 3.29 0.66 0.178 0.307 0.274 −0.229
WY 3.4 6.34 −2.94 −0.54 0.021 −0.079 0.006 0.012
DC 78.5 55.28 23.22 14.20 0.536 15.271 −0.485 12.792



Section 14.3 Effects of Multicollinearity 445

leverage of p/n = 3/51 = 0.06. Since D.C. has both a large studentized residual and
a large leverage, it has considerable influence on the model fit.

Not surprisingly, DFFIT for D.C. is much larger than for the other observations.
This suggests that the predicted values change considerably if we refit the model after
removing this observation. The DFBETA value for the single-family explanatory
variable x2 is much larger for D.C. than for the other observations. This suggests
that the effect of x2 could change substantially with the removal of D.C. By contrast,
DFBETA for poverty is not so large.

These diagnostics suggest that the D.C. observation has a large influence, partic-
ularly on the coefficient of x2 and on the fitted values. The prediction equation for
the model fitted without the D.C. observation is

ŷ = −14.6 + 0.36x1 + 1.52x2.

Not surprisingly, the estimated effect of x1 did not change much, but the coefficient
of x2 is now less than half as large. The standard error of the coefficient of x2 also
changes dramatically, decreasing from 0.44 to 0.26.

An observation with a large studentized residual does not have a major influence
if its values on the explanatory variables do not fall far from their means. Recall that
the leverage summarizes how far the explanatory variables fall from their means. For
instance, New Mexico has a relatively large negative studentized residual (−2.25)
but a relatively small leverage (0.046), so it does not have large values of DFFIT or
DFBETA. Similarly, an observation far from the mean on the explanatory variables
(i.e., with a large leverage) need not have a major influence if it falls close to the pre-
diction equation and has a small studentized residual. For instance, West Virginia has
a relatively large poverty rate and its leverage of 0.178 is triple the average. However,
its studentized residual is small (0.66), so it has little influence on the fit.

14.3 Effects of Multicollinearity
In many social science studies using multiple regression, the explanatory variables
“overlap” considerably. A variable may be nearly redundant, in the sense that it can
be predicted well using the others. If we regress an explanatory variable on the oth-
ers and get a large R2-value, this suggests that it may not be needed in the model
once the others are there. This condition is called multicollinearity, or sometimes
simply collinearity. This section describes the effects of multicollinearity and ways to
diagnose it.

VIF: MULTICOLLINEARITY CAUSES VARIANCE INFLATION

Multicollinearity causes inflated standard errors for estimates of regression param-
eters. The standard error of the estimator of the coefficient β j of x j in the multiple
regression model can be expressed as

se = 1√
1 − R2

j

[
s√

n − 1sxj

]
,

where s is the square root of the residual mean square and sxj denotes the sample
standard deviation of x j values. Let R2

j denote R2 from the regression of x j on the
other explanatory variables from the model. So, when x j overlaps a lot with the other
explanatory variables, in the sense that R2

j is large for predicting x j using the other
explanatory variables, this se is relatively large. Then, the confidence interval for β j
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is wide, and the test of H0: β j = 0 has a large P-value unless the sample size is very
large or the effect is very strong.

In this se formula for the estimate of β j, the quantity

VIF = 1/(1 − R2
j)

is called a variance inflation factor (VIF). It represents the multiplicative increase
in the variance (squared standard error) of the estimator due to xj being correlated
with the other explanatory variables. When any R2

j -value from regressing each ex-
planatory variable on the other explanatory variables in the model is close to 1, say
above 0.90, severe multicollinearity exists.

For example, if R2
j > 0.90, then VIF > 10 for the effect of that explanatory

variable. That is, the variance of the estimate of β j inflates by a factor of more than
10. The standard error inflates by a factor of more than

√
10 = 3.2, compared to the

standard error for uncorrelated explanatory variables. When an explanatory variable
is in the model primarily as a control variable, and we do not need precise estimates
of its effect on the response variable, it is not crucial to worry about its VIF value.

For the model selected in Section 14.1 that predicts house selling price using
taxes, size, and whether the house is new, software reports the VIF values

VIF
TAXES 3.082
SIZE 3.092
NEW 1.192

The standard error for whether the house is new is not affected much by correla-
tion with the other explanatory variables, but the other two standard errors multiply
by a factor of roughly

√
3.1 = 1.76.

OTHER INDICATORS OF MULTICOLLINEARITY

Even without checking VIFs, various types of behavior in a regression analysis can
indicate potential problems due to multicollinearity. A warning sign occurs when the
estimated coefficient for a predictor already in the model changes substantially when
another variable is introduced. For example, perhaps the estimated coefficient of x1

is 2.4 for the bivariate model, but when x2 is added to the model, the coefficient of
x1 changes to 25.9.

Another indicator of multicollinearity is when a highly significant R2 exists be-
tween y and the explanatory variables, but individually each partial regression coef-
ficient is not significant. In other words, H0: β1 = · · · = βk = 0 has a small P-value
in the overall F test, but H0: β1 = 0, H0: β2 = 0, and so forth do not have small
P-values in the separate t tests. Thus, it is difficult to assess individual partial effects
when severe multicollinearity exists. Other indicators of multicollinearity are sur-
prisingly large standard errors, or standardized regression coefficients that are larger
than 1 in absolute value.

When multicollinearity exists, it is rather artificial to interpret a regression coeffi-
cient as the effect of an explanatory variable when other variables are held constant.
For instance, when |rx1x2 | is high, then as x1 changes, x2 also tends to change in a linear
manner, and it is artificial to envision x1 or x2 as being held constant.

REMEDIAL ACTIONS WHEN MULTICOLLINEARITY EXISTS

Remedial measures can help to reduce the effects of multicollinearity. One solu-
tion is to choose a subset of the explanatory variables, removing those variables that



Section 14.4 Generalized Linear Models 447

explain a small portion of the remaining unexplained variation in y. If x4 and x5 have
a correlation of 0.96, it is only necessary to include one of them in the model.

When several explanatory variables are highly correlated and are indicators of a
common feature, you could construct a summary index by combining responses on
those variables. For example, suppose that a model for predicting y = opinion about
president’s performance in office uses 12 explanatory variables, of which three refer
to the subject’s opinion about whether a woman should be able to obtain an abor-
tion (1) when she cannot financially afford another child, (2) when she is unmarried,
and (3) anytime in the first three months. Each of these items is scaled from 1 to
5, with a 5 being the most conservative response. They are likely to be highly posi-
tively correlated, contributing to multicollinearity. A possible summary measure for
opinion about abortion averages (or sums) the responses to these items. Higher val-
ues on that summary index represent more conservative responses. If the items were
measured on different scales, we could first standardize the scores before averaging
them. Socioeconomic status is a variable of this type, summarizing the joint effects
of education, income, and occupational prestige.

Often multicollinearity occurs when the explanatory variables include interac-
tion terms. Since cross-product terms are composed of other explanatory variables
in the model, it is not surprising that they tend to be highly correlated with the other
terms. The effects of this are diminished if we center the explanatory variables by
subtracting their sample means before entering them in the interaction model (see
page 340).

Other procedures, beyond the scope of this chapter, can handle multicollinear-
ity. For example, factor analysis is a method for creating artificial variables from
the original ones in such a way that the new variables can be uncorrelated. In most
applications, though, it is more advisable to use a subset of the variables or create
some new variables directly, as just explained.

Multicollinearity does not adversely affect all aspects of regression. Although
multicollinearity makes it difficult to assess partial effects of explanatory variables,
it does not hinder the assessment of their joint effects. If newly added explanatory
variables overlap substantially with ones already in the model, then R and R2 will
not increase much, but the fit will not be poorer. So, the presence of multicollinearity
does not diminish the predictive power of the equation. For further discussion of the
effects of multicollinearity and methods for dealing with it, see DeMaris (2004), Fox
(2015, Chapter 13), and Kutner et al. (2008).

14.4 Generalized Linear Models
The models presented in this book are special cases of generalized linear models.
This broad class of models includes ordinary regression models for response variables
assumed to have a normal distribution, alternative models for continuous variables
that do not assume normality, and models for discrete response variables including
categorical variables. This section introduces generalized linear models. We use the
acronym GLM.

NONNORMAL DISTRIBUTIONS FOR A RESPONSE VARIABLE

As in other regression models, a GLM identifies a response variable y and a set of
explanatory variables. The regression models presented in Chapters 9–14 are GLMs
that assume that y has a normal distribution.

In many applications, the potential outcomes for y are binary rather than contin-
uous. Each observation might be labeled as a success or failure, as in the methods for
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proportions presented in Sections 5.2, 6.3, and 7.2. For instance, in a study of factors
that influence votes in U.S. presidential elections, the response variable indicates the
preferred candidate in the previous presidential election—the Democratic or the Re-
publican candidate. In this case, models usually assume a binomial distribution for y.

In some applications, each observation is a count. For example, in a study of
factors associated with family size, the response variable is the number of children in
a family. GLMs for count data most often use two distributions for y not presented
in this text, called the Poisson and the negative binomial.

Binary outcomes and counts are examples of discrete variables. Regression mod-
els that assume normal distributions are not optimal for models with discrete re-
sponses. Even when the response variable is continuous, the normal distribution may
not be optimal. When each observation must take a positive value, for instance, the
distribution is often skewed to the right with greater variability when the mean is
greater. In that case, a GLM can assume a gamma distribution for y, as discussed
later in this section.

THE LINK FUNCTION FOR A GLM

In a GLM, as in ordinary regression models, μ = E(y) varies according to values of
explanatory variables, which enter linearly as predictors on the right-hand side of the
model equation. However, a GLM allows a function g(μ) of the mean rather than
just the mean μ itself on the left-hand side. The GLM formula states that

g(μ) = α + β1x1 + β2x2 + · · · + βpxp.

The function g(μ) is called the link function, because it links the mean of the re-
sponse variable to the explanatory variables.

For instance, the link function g(μ) = log(μ) models the log of the mean. The log
function applies to positive numbers, so this log link is appropriate when μ cannot
be negative, such as with count data. GLMs that use the log link,

log(μ) = α + β1x1 + β2x2 + · · · + βpxp,

are often called loglinear models. The final section of this chapter shows an example.
For binary data, the most common link function is g(μ) = log[μ/(1−μ)]. This is

called the logit link. It is appropriate when μ falls between 0 and 1, such as a proba-
bility, in which case μ/(1−μ) is the odds. When y is binary, this link is used in models
for the probability of a particular outcome, for instance, to model the probability that
a subject votes for the Republican candidate. A GLM using the logit link, called a
logistic regression model, is presented in the next chapter.

The simplest possible link function is g(μ) = μ. This models the mean directly
and is called the identity link. It specifies a linear model for the mean response,

μ = α + β1x1 + β2x2 + · · · + βpxp.

When employed with a normal assumption for y, this is the ordinary regression
model.

A GLM generalizes ordinary regression in two ways: First, y can have a distri-
bution other than the normal. Second, it can model a function of the mean. Both
generalizations are important, especially for discrete responses.

GLMS VERSUS ORDINARY REGRESSION FOR TRANSFORMED DATA

Before GLMs were developed in the 1970s, the traditional way of analyzing “nonnor-
mal” data was to transform the y-values. The goal of this approach is to find a function
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g such that g(y) has an approximately normal distribution, with constant standard de-
viation at all levels of the explanatory variables. Square root or log transforms are
often applied to do this. If the variability is then more nearly constant, least squares
works well with the transformed data. In practice, this may not work well. Simple
linear models for the explanatory variables may fit poorly on that scale. If the orig-
inal relationship is linear, it is no longer linear after applying the transformation. If
we fit a straight line and then transform back to the original scale, the fit is no longer
linear. Also, technical problems can occur, such as taking logarithms of 0. Moreover,
conclusions that refer to the mean response on the scale of the transformed variable
are less relevant.

With the GLM approach, it is not necessary to transform data and use normal
methods. This is because the GLM fitting process utilizes the maximum likelihood
estimation method (page 138), for which the choice of distribution for y is not re-
stricted to normality. Maximum likelihood employs a generalization of least squares
called weighted least squares. It gives more weight to observations over regions that
show less variability. In addition, in GLMs the choice of link function is separate from
the choice of distribution for y. If a certain link function makes sense for a particular
type of data, it is not necessary that it also stabilize variation or produce normality.

The family of GLMs unifies a wide variety of statistical methods. Ordinary re-
gression models as well as models for discrete data (Chapter 15) are special cases of
one highly general model. In fact, the same fitting method yields parameter estimates
for all GLMs. Using GLM software, there is tremendous flexibility and power in
the model-building process. You pick a probability distribution that is most appro-
priate for y. For instance, you might select the normal option for a continuous re-
sponse or the binomial option for a binary response. You specify the variables that
are the explanatory variables. Finally, you pick the link function, determining which
function of the mean to model. Software then fits the model and provides the maxi-
mum likelihood estimates of model parameters. For further details about GLMs, see
Fox (2015), Gill (2000), and King (1989).

GLMS FOR A RESPONSE ASSUMING A GAMMA DISTRIBUTION

The residual analysis in Example 14.3 for modeling selling prices of homes showed
a tendency for greater variability of selling prices at higher house size values. (See
Figure 14.4 on page 441.) Small homes show little variability in selling price, whereas
large homes show high variability. Large homes are the ones that tend to have higher
selling prices, so variability in y increases as its mean increases.

This phenomenon often happens for positive-valued response variables. When
the mean response is near 0, less variation occurs than when the mean response is
high. For such data, least squares is not optimal. Least squares is identical to maxi-
mum likelihood for a GLM in which y is assumed to have a normal distribution with
identical standard deviation σ at all values of explanatory variables.

An alternative approach for data of this form assumes a distribution for y for
which the standard deviation increases as the mean increases (i.e., that permits het-
eroscedasticity). The family of gamma distributions has this property. When y has a
gamma distribution with mean μ, then y has

Variance = φμ2, Standard deviation =
√

φμ,

where φ is called a scale parameter. The standard deviation increases proportionally
to the mean: When the mean doubles, the standard deviation doubles. The gamma
distribution falls on the positive part of the line. It exhibits skewness to the right, like
the chi-squared distribution, which is a special case of the gamma.
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The scale parameter, or an equivalent shape parameter that is the reciprocal of
the scale parameter, determines the shape of the distribution. The gamma distribu-
tion becomes more bell shaped as φ decreases, being quite bell shaped when φ < 0.1.
It becomes more skewed as φ increases, being so highly skewed when φ ≥ 1 that the
mode is 0.

With GLMs, you can fit a regression model assuming a gamma distribution for
y instead of a normal distribution. Even if the data are close to normal, this alter-
native fit is more appropriate than the least squares fit when the standard devia-
tion increases proportionally to the mean. Just as ordinary regression models assume
that the variance is constant for all values of the explanatory variables, software for
gamma GLMs assumes a constant scale parameter and estimates it as part of the
model-fitting process.2

When the relationship is closer to linear on a log scale for E(y), it is preferable
to apply the log as a link function with a gamma GLM. The log link is also used when
a linear model for the mean would give negative values at some explanatory variable
values, because negative values are not permitted with a gamma distribution.

Example
14.6

Gamma GLM for House Selling Price The least squares fit of the model to the data on
y = selling price using explanatory variables size of home, taxes, and whether new,
discussed in Example 14.1 (page 433), is

ŷ = −21,353.8 + 61.7(SIZE) + 46,373.7(NEW) + 37.2(TAXES).

However, Example 14.3 (page 439) showed that two outlying observations had a sub-
stantial effect on the estimated effect of NEW. Figure 14.4 showed that the variability
in selling prices seems to increase as its mean does. This suggests that a model assum-
ing a gamma distribution may be more appropriate, because the gamma permits the
standard deviation to increase as the mean does.

We can use software, as explained in Appendix A, to fit GLMs that assume a
gamma distribution for y. For these data, we obtain

ŷ = −940.9 + 48.7(SIZE) + 32,868.0(NEW) + 37.9(TAXES).

The estimated effect of TAXES is similar as with least squares, but the estimated
effect of SIZE is weaker and the estimated effect of NEW is much weaker. Moreover,
the effect of NEW is no longer significant, as the ratio of the estimate to the standard
error is 1.5. This result is similar to what we obtained in Example 14.4 (page 443)
after deleting observation 6, an outlier corresponding to a large new house with an
unusually high selling price. The outliers are not as influential for the gamma fit,
because that model expects more variability in the data when the mean is larger.

The estimate of the scale parameter is φ̂ = 0.07. The estimated standard devia-
tion σ̂ of the conditional distribution of y relates to the estimated conditional mean
μ̂ by

σ̂ =
√

φ̂μ̂ =
√

0.07μ̂ = 0.27μ̂.

For example, at explanatory variable values such that the estimated mean selling
price is μ̂ = $100,000, the estimated standard deviation of selling prices is σ̂ =
0.27($100,000) = $27,000. By contrast, at explanatory variable values such that μ̂ =
$400,000, σ̂ = 0.27($400,000) = $108,000, four times as large.

2 R, SPSS, and Stata estimate the scale parameter, whereas SAS estimates the shape parameter.
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14.5 Nonlinear Relationships: Polynomial Regression
The ordinary multiple regression model assumes that the relationship between the
mean of y and each quantitative explanatory variable is linear, controlling for other
explanatory variables. Although social science relationships are not exactly linear,
the degree of nonlinearity is often so minor that they can be reasonably well ap-
proximated with linearity. Occasionally, though, such a model is inadequate, even
for approximation. A scatterplot may reveal a highly nonlinear relationship. Or, you
might expect a nonlinear relationship because of the nature of the variables. For ex-
ample, you might expect y = medical expenses to have a curvilinear relationship with
x = age, being relatively high for the very young and the very old but lower for older
children and young adults (Figure 14.5a). The relationship between x = per capita
income and y = life expectancy for a sample of countries might be approximately a
linearly increasing one, up to a certain point. However, beyond a certain level, addi-
tional income would probably result in little, if any, improvement in life expectancy
(Figure 14.5b).

Medical
Expenses

(a) Age (b) Per Capita GNP

Life
Expectancy

FIGURE 14.5: Two
Nonlinear Relationships

If we use straight-line regression to describe a curvilinear relationship, what can
go wrong? Measures of association designed for linearity, such as the correlation,
may underestimate the true association. Estimates of the mean of y at various x-
values may be badly biased, since the prediction line may poorly approximate the
true regression curve. Two approaches are common to deal with nonlinearity. The
first approach, presented in this section, uses a polynomial regression function.
The class of polynomial functions includes a diverse set of functional patterns, in-
cluding straight lines. The second approach, presented in Section 14.6, uses a gen-
eralized linear model with a link function such as the logarithm. For example, for
certain curvilinear relationships, the logarithm of the mean of the response variable
is linearly related to the explanatory variables.

QUADRATIC REGRESSION MODELS

A polynomial regression function for a response variable y and single explanatory
variable x has the form

E(y) = α + β1x + β2x2 + · · · + βpxp.

In this model, x occurs in powers from the first (x = x1) to some integer p. For
p = 1, this is the straight line E(y) = α + β1x. The index p, the highest power in the
polynomial equation, is called the degree of the polynomial function.

The polynomial function most commonly used for nonlinear relationships is the
second-degree polynomial

E(y) = α + β1x + β2x2.
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This is called a quadratic regression model. The graph of this function is parabolic,
as Figure 14.6 portrays. This shape is limited in scope for applications, because it is
symmetric about a vertical axis. That is, its appearance when increasing is a mirror
image of its appearance when decreasing.

X

Y
b2 . 0 (convex)

b2 , 0 (concave)

Cubic
FIGURE 14.6: Graphs
of Two Second-Degree
Polynomials (Quadratic
Functions) and a
Third-Degree Polynomial
(Cubic Function)

If a scatterplot reveals a pattern of points with one bend, then a second-degree
polynomial usually improves upon the straight-line fit. A third-degree polynomial
E(y) = α+β1x+β2x2 +β3x3, called a cubic function, is a curvilinear function having
two bends. See Figure 14.6. But it is rarely necessary to use higher than a second-
degree polynomial to describe the trend.

INTERPRETING AND FITTING QUADRATIC REGRESSION MODELS

The quadratic regression model E(y) = α + β1x + β2x2, plotted for the possible val-
ues of α, β1, and β2, describes the possible parabolic shapes. Unlike straight lines,
for which the slope remains constant over all x-values, the mean change in y for a
one-unit increase in x depends on the value of x. For example, as the value of x in-
creases, a straight line drawn tangent to the parabola in Figure 14.7 first has positive
slope, then zero slope where the parabola achieves its maximum value, and then neg-
ative slope. The rate of change of the line varies to produce a curve having a smooth
bend.

b2 , 0 for concave shape

a

Slope b 1 .
 0

2b1

2b2
x 5

x0

FIGURE 14.7:
Interpretation of
Parameters of the
Quadratic Model
E(y) = α + β1x + β2x2

The sign of the coefficient β2 of the x2 term determines whether the function
is bowl shaped (opens up) relative to the x-axis or mound shaped (opens down).
Bowl-shaped functions, also called convex functions, have β2 > 0. Mound-shaped
functions, also called concave functions, have β2 < 0. See Figure 14.6.

As usual, the coefficient α is the y-intercept. The coefficient β1 of x is the slope of
the line that is tangent to the parabola as it crosses the y-axis. If β1 > 0, for example,
then the parabola is sloping upward at x = 0 (as Figure 14.7 shows). At the point at
which the slope is zero, the relationship changes direction from positive to negative
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or from negative to positive. This happens at x = −β1/2β2. This is the x-value at
which the mean of y takes its maximum if the parabola is mound shaped and its
minimum if it is bowl shaped.

To fit quadratic regression models, we treat them as a special case of the multiple
regression model

E(y) = α + β1x1 + β2x2 = α + β1x + β2x2

with two explanatory variables. We identify x1 with the explanatory variable x and x2

with its square, x2. The data for the model fit consist of the y-values for the subjects
in the sample, the x-values (called x1), and an artificial variable (x2) consisting of the
squares of the x-values. Software can create these squared values for us. It then uses
least squares to find the best-fitting function out of the class of all second-degree
polynomials.

Example
14.7

Fertility Predicted Using Gross Domestic Product (GDP) Table 14.6 shows values re-
ported by the United Nations for several nations on y = fertility rate (the mean
number of children per adult woman) and x = per capita gross domestic product
(GDP, in tens of thousands of dollars). Fertility tends to decrease as GDP increases.
However, a straight-line model may be inadequate, since it might predict negative
fertility for sufficiently high GDP. In addition, some demographers predict that af-
ter GDP passes a certain level, fertility rate may increase, since the nation’s wealth
makes it easier for a parent to stay home and take care of children rather than work.

TABLE 14.6: Data on Fertility Rate and Per Capita Gross Domestic Product GDP
(FertilityGDP Data File at the Text Website)

Fertility Fertility Fertility
Nation GDP Rate Nation GDP Rate Nation GDP Rate

Algeria 0.21 2.5 Germany 2.91 1.3 Pakistan 0.06 4.3
Argentina 0.35 2.4 Greece 1.56 1.3 Philippines 0.10 3.2
Australia 2.63 1.7 India 0.06 3.1 Russia 0.30 1.3
Austria 3.13 1.4 Iran 0.21 2.1 S. Africa 0.35 2.8
Belgium 2.91 1.7 Ireland 3.85 1.9 Saudi Ar. 0.95 4.1
Brazil 0.28 2.3 Israel 1.65 2.9 Spain 2.04 1.3
Canada 2.71 1.5 Japan 3.37 1.3 Sweden 3.37 1.6
Chile 0.46 2.0 Malaysia 0.42 2.9 Switzerland 4.36 1.4
China 0.11 1.7 Mexico 0.61 2.4 Turkey 0.34 2.5
Denmark 3.93 1.8 Netherlands 3.15 1.7 UK 3.03 1.7
Egypt 0.12 3.3 New Zealand 1.98 2.0 United States 3.76 2.0
Finland 3.11 1.7 Nigeria 0.04 5.8 Vietnam 0.05 2.3
France 2.94 1.9 Norway 4.84 1.8 Yemen 0.06 6.2

Source: hdr.undp.org/en/data.

Figure 14.8, a scatterplot for the 39 observations, shows a clear decreasing trend.
The linear prediction equation is ŷ = 3.04−0.415x, and the correlation equals −0.56.
This prediction equation gives absurd predictions for very large x-values; ŷ is negative
for x > 7.3 (i.e., $73,000). However, the predicted values are positive over the range
of x-values for this sample. To allow for potential nonlinearity and for the possibility
that fertility rate may increase for sufficiently large GDP, we could fit a quadratic
regression model to these data.
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FIGURE 14.8: Scatterplot
and Best-Fitting
Straight-Line Model and
Quadratic Model for Data
on Fertility Rate and Per
Capita GDP from the
FertilityGDP Data File

Table 14.7 shows some output for the quadratic regression of y = fertility rate
on x = GDP. Here, GDP2 denotes an artificial variable constructed as the square of
GDP. The prediction equation is

ŷ = 3.28 − 1.054x + 0.163x2.

Figure 14.8 plots the linear and quadratic prediction equations in the scatter diagram.

TABLE 14.7: Some Output for Quadratic Regression Model for y = Fertility
Rate and x = GDP from the FertilityGDP Data File

Variable Coef. Std. Error t Sig
INTERCEP 3.278 .257 12.750 .000
GDP -1.054 0.366 -2.880 .007
GDP2 .163 0.090 1.810 .079

R-square 0.375

A bowl-shaped quadratic equation takes its minimum at x = −β1/2β2. For these
data, we estimate this point to be x = 1.054/2(0.163) = 3.23. The predicted fertility
rate increases as GDP increases above this point (i.e., $32,300).

DESCRIPTION AND INFERENCE ABOUT THE NONLINEAR EFFECT

For a polynomial model, R2 for multiple regression describes the strength of the as-
sociation. In this context, it describes the proportional reduction in error obtained
from using the quadratic model, instead of y, to predict y. Comparing this measure
to r2 for the straight-line model indicates how much better a fit the curvilinear model
provides. Since a polynomial model has additional terms besides x, R2 always is at
least as large as r2. The difference R2 − r2 measures the additional reduction in pre-
diction error obtained by using the polynomial instead of the straight line.
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For Table 14.6, the best-fitting straight-line prediction equation has r2 = 0.318.
From Table 14.7 for the quadratic model, R2 = 0.375. The best quadratic equa-
tion explains about 6% more variability in y than does the best-fitting straight-line
equation.

If β2 = 0, the quadratic regression equation E(y) = α + β1x + β2x2 simplifies to
the linear regression equation E(y) = α + β1x. Therefore, to test the null hypothesis
that the relationship is linear against the alternative that it is quadratic, we test H0:
β2 = 0. The usual t test for a regression coefficient does this, dividing the estimate of
β2 by its standard error. The assumptions for applying inference are the same as for
ordinary regression: randomization for gathering the data, a conditional distribution
of y-values that is normal about the mean, with constant standard deviation σ at
all x-values. The set of nations in Table 14.6 is not a random sample of nations, so
inference is not relevant for those data.

CAUTIONS IN USING POLYNOMIAL MODELS

Some cautions are in order before you take the conclusions in this example too se-
riously. The scatterplot (Figure 14.8) suggests that the variability in fertility rates is
considerably higher for nations with low GDPs than it is for nations with high GDPs.
The fertility rates show much greater variability when their mean is higher. A GLM
that permits nonconstant standard deviation by assuming a gamma distribution for
y (see page 449) provides somewhat different results, including stronger evidence of
nonlinearity (Exercise 14.14).

In fact, before we conclude that fertility rate increases above a certain value, we
should realize that other models for which this does not happen are also consistent
with these data. For instance, Figure 14.8 suggests that a “piecewise linear” model
that has a linear decrease until GDP is about $25,000 and then a separate, nearly
horizontal, line beyond that point fits quite well. A more satisfactory model for these
data is one discussed in the next section of this chapter for exponential regression.
Unless a data set is very large, several models may be consistent with the data.

In examining scatterplots, be cautious not to read too much into the data. Don’t
let one or two outliers suggest a curve in the trend. Good model building follows the
principle of parsimony: Models should have no more parameters than necessary to
represent the relationship adequately. One reason is that simple models are easier to
understand and interpret than complex ones. Another reason is that when a model
contains unnecessary variables, the standard errors of the estimates of the regression
coefficients tend to inflate, hindering efforts at making precise inferences. Estimates
of the conditional mean of y also tend to be poorer than those obtained with well-
fitting simple models.

When a polynomial regression model is valid, the regression coefficients do not
have the partial slope interpretation usual for coefficients of multiple regression
models. It does not make sense to refer to the change in the mean of y when x2 is in-
creased one unit and x is held constant. Similarly, it does not make sense to interpret
the partial correlations ryx2·x or ryx·x2 as measures of association, controlling for x or
x2. However, the coefficient r2

yx2·x does measure the proportion of the variation in y
unaccounted for by the straight-line model that is explained by the quadratic model.
In Example 14.7, applying the formula for r2

yx2·x1
from page 344 yields

r2
yx2·x = R2 − r2

yx

1 − r2
yx

= 0.375 − 0.318
1 − 0.318

= 0.08.

Of the variation in y unexplained by the linear model, about 8% is explained by the
introduction of the quadratic term.
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With multiple explanatory variables, we may find that the fit improves by per-
mitting one or more of them to have quadratic effects. For example, the model

E(y) = α + β1x1 + β2x2 + β3x2
2

allows nonlinearity in x2. For fixed x1, the mean of y is a quadratic function of x2. For
fixed x2, the mean of y is a linear function of x1 with slope β1. This model is a special
case of multiple regression with three explanatory variables, in which x3 is the square
of x2. Models allowing both nonlinearity and interaction are also possible.

14.6 Exponential Regression and Log Transforms∗

Although polynomials provide a diverse collection of functions for modeling non-
linearity, other mathematical functions are often more appropriate. The most impor-
tant case is when the mean of the response variable is an exponential function of the
explanatory variable.

Exponential Regression
Function An exponential regression function has the form E(y) = αβx.

In this equation, the explanatory variable appears as the exponent of a parame-
ter. Unlike a quadratic function, an exponential function can take only positive val-
ues, and it continually increases (if β > 1) or continually decreases (if β < 1). In
either case, it has a convex shape, as Figure 14.9 shows. We provide interpretations
for the model parameters later in this section.

y y

x x 

b . 1 b , 1

FIGURE 14.9: The
Exponential Regression
Function E(y) = αβx

For the exponential regression function, the logarithm of the mean is linearly
related to the explanatory variable. That is, if μ = E(y) = αβx, then

log(μ) = log α + (log β)x.

The right-hand side of this equation has the straight-line form α′ +β ′x with intercept
α′ = log(α), the log of the α parameter, and slope β ′ = log(β), the log of the β

parameter for the exponential regression function. This model form is the special
case of a generalized linear model (GLM) using the log link function. If the model
holds, a plot of the log of the y-values should show approximately a linear relation
with x. (Don’t worry if you have forgotten your high school math about logarithms.
You will not need to know this in order to understand how to fit or interpret the
exponential regression model.)

You can use GLM software to estimate the parameters in the model log[E(y)] =
α′ + β ′x. The antilogs of these estimates are the estimates for the parameters in the
exponential regression model E(y) = αβx, as shown below.



Section 14.6 Exponential Regression and Log Transforms∗ 457

Example
14.8

Exponential Population Growth Exponential regression models well the growth of
some populations over time. If the rate of growth remains constant, in percentage
terms, then the size of that population grows exponentially fast. Suppose that the
population size at some fixed time is α and the growth rate is 2% per year. After
one year, the population is 2% larger than that at the beginning of the year. This
means that the population size grows by a multiplicative factor of 1.02 each year.
The population size after one year is α(1.02). Similarly, the population size after two
years is

(Population size at the end of one year)(1.02) = [α(1.02)]1.02 = α(1.02)2.

After three years, the population size is α(1.02)3. After x years, the population size
is α(1.02)x. The population size after x years follows an exponential function αβx

with parameters given by the initial population size α and the rate of growth factor,
β = 1.02, corresponding to 2% growth.

Table 14.8 shows the U.S. population size (in millions) at 10-year intervals be-
ginning in 1890. Figure 14.10 plots these values over time. Table 14.8 also shows the
natural logarithm of the population sizes. (This uses the base e, where e = 2.718 . . .

is an irrational number that appears often in mathematics. The model makes sense
with logs to any base, but software fits the GLM using natural logs, often denoted by
loge or LN.)

TABLE 14.8: U.S. Population Sizes and Log Population Sizes
by Decade from 1890 to 2010, with Predicted
Values for Exponential Regression Model

No. Decades Population
Since 1890 Size

Year x y loge(y) ŷ

1890 0 62.95 4.14 73.2
1900 1 75.99 4.33 82.7
1910 2 91.97 4.52 93.5
1920 3 105.71 4.66 105.6
1930 4 122.78 4.81 119.4
1940 5 131.67 4.88 134.9
1950 6 151.33 5.02 152.4
1960 7 179.32 5.19 172.3
1970 8 203.30 5.31 194.7
1980 9 226.54 5.42 220.0
1990 10 248.71 5.52 248.7
2000 11 281.42 5.64 281.0
2010 12 308.75 5.73 317.5

Source: U.S. Census Bureau; data file Population at the text website.

Figure 14.11 plots these log of population size values over time. The log pop-
ulation sizes appear to grow approximately linearly. This suggests that population
growth over this time period was approximately exponential, with a constant rate of
growth. We now estimate the regression curve, treating time as the explanatory vari-
able x. For convenience, we identify the time points 1890, 1900, . . . , 2010 as times
0, 1, . . . , 12; that is, x represents the number of decades since 1890.

We use software to estimate the generalized linear model log(μ) = α′ + β ′x,
assuming a normal distribution for y. The prediction equation is

loge(μ̂) = 4.29285 + 0.12233x.
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FIGURE 14.10: U.S.
Population Size Since 1890.
The fitted curve is the
exponential regression,
ŷ = 73.2(1.1301)x.

FIGURE 14.11: Log
Population Sizes Since
1890. The prediction
equation iŝlog y = 4.29 + 0.122x.

Antilogs of these estimates are the parameter estimates for the exponential regres-
sion model. For natural logs, the antilog function is the exponential function ex. That
is, antilog(4.29285) = e4.29285 = 73.175, and antilog(0.12233) = e0.12233 = 1.1301.
Thus, for the exponential regression model E(y) = αβx, the estimates are α̂ = 73.175
and β̂ = 1.1301. The prediction equation is

ŷ = α̂β̂x = 73.175(1.1301)x.

The predicted initial population size (in 1890) is α̂ = 73.2 million. The predicted
population size x decades after 1890 is ŷ = 73.175(1.1301)x. For 2010, for instance,
x = 12, and the predicted population size is ŷ = 73.175(1.1301)12 = 317.5 million.
Table 14.8 shows the predicted values for each decade. Figure 14.10 plots the expo-
nential prediction equation.
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The predictions are quite good, except for the first couple of observations. The
total sum of squares of population size values about their mean is TSS = 76,791,
whereas the sum of squared errors about the prediction equation is SSE = 419. The
proportional reduction in error is (76,791 – 419)/76,791 = 0.995. The ordinary linear
model E(y) = α + βx also fits quite well, having r2 = 0.980.

A caution: The fit of the model log[E(y)] = α′ + β ′x that you get with GLM
software will not be the same as you get by taking logarithms of all the y-values and
then fitting a straight-line model using least squares. The latter approach3 gives the
fit for the model E[log(y)] = α′ + β ′x. For that model, taking antilogs does not take
you back to E(y), because E[log(y)] is not equivalent to log[E(y)]. So, in software
it is preferable to use a generalized linear modeling option rather than an ordinary
regression option.

INTERPRETING EXPONENTIAL REGRESSION MODELS

Now let’s take a closer look at how to interpret parameters in the exponential regres-
sion model, E(y) = αβx. The parameter α represents the mean of y when x = 0. The
parameter β represents the multiplicative change in the mean of y for a one-unit
increase in x. The mean of y at x = 12 equals β multiplied by the mean of y at x = 11.
For instance, for the equation ŷ = 73.175(1.1301)x, the predicted population size at
a particular date equals 1.1301 times the predicted population size a decade earlier.

By contrast, the parameter β in the linear model E(y) = α + βx represents the
additive change in the mean of y for a one-unit increase in x. In the linear model, the
mean of y at x = 12 is β plus the mean of y at x = 11. The prediction equation for
the linear model (i.e., identity link) fitted to Table 14.8 is ŷ = 46.51 + 20.33x.
This model predicts that the population size increases by 20.33 million people
every decade.

In summary, for the linear model, E(y) changes by the same quantity for each
one-unit increase in x, whereas for the exponential model, E(y) changes by the same
percentage for each one-unit increase. For the exponential regression model with Ta-
ble 14.8, the multiplicative effect of 1.1301 for each decade corresponds to a predicted
13.01% growth per decade.

Suppose the growth rate is 15% per decade, to choose a rounder number. This
corresponds to a multiplicative factor of 1.15. After five decades, the population
grows by a factor of (1.15)5 = 2.0. That is, after five decades, the population size
doubles. If the rate of growth remained constant at 15% per decade, the population
would double every 50 years. After 100 years, the population size would be quadru-
ple the original size, after 150 years it would be 8 times as large, after 200 years it
would be 16 times its original size, and so forth.

The exponential function with β > 1 has the property that its doubling time is a
constant. As can be seen from the sequence of population sizes at 50-year intervals,
this is an extremely fast increase even though the annual rate of growth (1.4% annu-
ally for a decade increase of 15%) seems small. In fact, this has been the approximate
growth of the world population in the past century. (See Exercise 14.22.)

Example
14.9

Exponential Regression for Fertility Data When β < 1 in the exponential regression
model, β ′ = log(β) < 0 in the log-transformed GLM. In this case, the mean of
y decreases exponentially fast as x increases. The curve then looks like the second
curve in Figure 14.9.

3 For example, as SPSS gives by selecting Regression in the Analyze menu, followed by the choice of Curve
Estimation with the Exponential option.
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In Example 14.7 with Table 14.6 (page 453), we modeled y = fertility rate for
several countries, with x = per capita GDP. If we expect E(y) to continually decrease
as x increases, an exponentially decreasing curve may be more appropriate. In fact,
the exponential regression model provides a good fit for those data. Using the GLM
with log link for y = fertility rate and x = per capita GDP and assuming a normal
distribution for y, we get the prediction equation

loge(μ̂) = 1.148 − 0.206x.

Taking antilogs yields the exponential prediction equation

ŷ = α̂β̂x = e1.148(e−0.206)x = 3.15(0.81)x.

The predicted fertility rate at GDP value x + 1 equals 81% of the predicted fertility
rate at GDP value x; that is, it decreases by 19% for a $10,000 increase in per capita
GDP.

With this fit, the correlation between the observed and predicted fertility rates
equals 0.59, nearly as high as the value of 0.61 achieved with the quadratic model,
which has an extra parameter. If we expect fertility rate to decrease continuously as
GDP increases, the exponential regression model is a more realistic model than the
quadratic regression model, which predicted increasing fertility above a certain GDP
level. Also, unlike the straight-line model, the exponential regression model cannot
yield negative predicted fertility rates.

Since the scatterplot in Figure 14.8 suggests greater variability when the mean
fertility rate is higher, it may be even better to assume a gamma distribution for y
with this exponential regression model. The prediction equation is then

loge(μ̂) = 1.112 − 0.177x, for which ŷ = e1.112(e−0.177)x = 3.04(0.84)x.

This gives a slightly shallower rate of decrease than the fit 3.15(0.81)x for the normal
response model.

TRANSFORMING THE EXPLANATORY VARIABLE TO
ACHIEVE LINEARITY

Other transformations of the response mean or of explanatory variables are useful in
some situations. For example, suppose y tends to increase or decrease over a certain
range of x-values, but once a certain x-value has been reached, further increases in
x have less effect on y, as in Figure 14.5b. For this concave increasing type of trend,
x behaves like an exponential function of y. Taking the logarithms of the x-values
often linearizes the relationship. Another possible transform for this case uses 1/x
as the explanatory variable.

14.7 Robust Variances and Nonparametric Regression∗

Recent years have seen yet other ways developed to generalize regression to handle
violations of assumptions for the ordinary linear model. Detailed explanations of
such generalizations are beyond the scope of this book, but in this section we briefly
introduce two popular ones.

ROBUST VARIANCE ESTIMATES

The ordinary regression model assumes a normal distribution for y with constant
variability at all settings of the explanatory variables. Section 14.4 introduced the
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generalized linear model, which permits alternative distributions that have noncon-
stant variability, such as the gamma distribution. An alternative approach uses the
least squares estimates but does not assume constant variance in finding standard
errors. Instead, it adjusts ordinary standard error formulas to reflect the empirical
variability displayed by the sample data.

This alternative standard error estimate is sometimes called the sandwich esti-
mate, because of how its formula sandwiches the empirical variability between two
terms from the ordinary formula. It is also referred to as a robust standard error esti-
mate, because it is more valid than the ordinary se when the true response variability
is not constant. Some software4 now makes this available. If you use it and find stan-
dard errors quite different from those given in an ordinary regression analysis, basic
assumptions are likely violated and you should treat its results skeptically.

To illustrate, we found robust standard errors for the house selling price data
analyzed on page 450 with least squares and with a gamma GLM. For the effects
of (size, new, taxes), the robust se values are (22.4, 26245, 9.3), compared to (12.5,
16459, 6.7) for the ordinary se values. Such highly different results make us wary of
the ordinary se values. As explained previously, the clear increase in the variability
of y = selling price as its mean increases made us skeptical of the ordinary regression
results.

This robust variance approach also extends to handle violations of the assump-
tion of independent observations, such as those that occur with clustered data and
longitudinal studies. This approach incorporates the empirical variability and cor-
relation within clusters to generate standard errors that are more reliable than ones
that treat observations within clusters as independent. This method for clustered cor-
related data uses generalized estimating equations (GEEs) that resemble equations
used to obtain maximum likelihood estimates, but without a parametric probability
distribution incorporating correlations.

This way of handling clustered data is an alternative to the linear mixed model
introduced in Section 13.5. The linear mixed model assumes normality for the re-
sponse variable and adds random effects to an ordinary model. Likewise, we can add
random effects to a generalized linear model to obtain a generalized linear mixed
model to handle clustering with nonnormal responses such as the binomial. The ro-
bust variance approach has the advantage of not requiring an assumption about the
distribution of y or the correlation structure within clusters. However, it has the dis-
advantage that (because of the lack of a distribution assumption) likelihood-based
methods such as maximum likelihood estimates and likelihood ratio tests are not
available.

NONPARAMETRIC REGRESSION

Recent advances make it possible to fit models to data without assuming particular
functional forms, such as straight lines or parabolas, for the relationship. These ap-
proaches are nonparametric, in terms of having fewer (if any) assumptions about the
functional form and the distribution of y. It is helpful to look at a plot of a fitted
nonparametric regression model to learn about trends in the data.

One nonparametric regression method, called generalized additive modeling, is
a further generalization of the generalized linear model. It has the form

g(μ) = f1(x1) + f2(x2) + · · · + fp(xp),

where f1, . . . , fp are unspecified and potentially highly complex functions. The GLM
is the special case in which each of these functions is linear. The estimated functional

4 For example, Stata with the robust option for its regress command.
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form of the relationship for each explanatory variable is determined by a computer
algorithm, using the sample data. As in GLMs, with this model you can select a par-
ticular link function g and also a distribution for y. This model is useful for smoothing
data to reveal overall trends.

Other nonparametric smoothing methods do not even require selecting a link
function or a distribution for y. Popular smoothers are LOESS and kernel methods
that get the prediction at a particular point by smoothly averaging nearby values.
The smoothed value is found by fitting a low-degree polynomial while giving more
weight to observations near the point and less weight to observations further away.
You can achieve greater smoothing by choosing a larger bandwidth, essentially by
letting the weights die out more gradually as you move away from each given point.

Figure 14.12 shows two plots of nonparametric regression fits for the fertility
rate data of Table 14.6. The first plot employs greater smoothing and has a curved,
decreasing trend. It is evident that the response may not eventually increase, as a
quadratic model predicts. This fit suggests that the exponential regression model is
more satisfactory than the quadratic model for these data.

To learn more about robust regression and nonparametric regression, see Fox
(2015, Chapters 18 and 19).
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FIGURE 14.12: Fits of
Nonparametric Regression
Model (Using SPSS) to
Smooth the Fertility Rate
Data of Table 14.6. Fit (a)
employs greater smoothing
(bandwidth = 5) than fit
(b) (bandwidth = 1).

14.8 Chapter Summary
This chapter discussed issues about building regression models and showed how to
check assumptions and how to ease some restrictions of the basic linear model.

• With a large number of potential explanatory variables for a model, the back-
ward elimination and forward selection procedures use a sequential algorithm
to select variables. These are exploratory in purpose and should be used with
caution. Fit indices such as adjusted R2, PRESS, and AIC also provide criteria
for model selection.

• Plots of the residuals check whether the model is adequate and whether the
assumptions for inferences are reasonable. Observations having a large lever-
age and large studentized residual have a strong influence on the model fit.
Diagnostics such as DFBETA and DFFIT describe which observations have a
strong influence on the parameter estimates and the model fit.
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• Multicollinearity, the condition by which the set of explanatory variables
contains some redundancies, causes inflation of standard errors of estimated
regression coefficients and makes it difficult to evaluate partial effects.

• Generalized linear models allow the response variable to have a distribution
other than the normal, such as the binomial for binary data and the gamma
for positive responses having greater variation at greater mean values. Such
models permit modeling a function of the mean, called the link function.

• Nonlinear relationships are modeled through the use of polynomial (particu-
larly quadratic) functions and exponential functions. Quadratic functions have
a parabolic appearance, whereas exponential functions have a convex increas-
ing or convex decreasing appearance. The exponential regression model is a
generalized linear model for the log of the mean.

Exercises

Practicing the Basics
14.1. For Example 11.2 (page 324) on y = mental impair-
ment, x1 = life events, and x2 = SES, the multiple regres-
sion model has output

Coef. Std. Error t Sig.
(Constant) 28.230 2.174 12.984 .000
LIFE .103 .032 3.177 .003
SES -.097 .029 -3.351 .002

and the model allowing interaction has output

Coef. Std. Error t Sig
(Constant) 26.036649 3.948826 6.594 0.0001
LIFE 0.155865 0.085338 1.826 0.0761
SES -0.060493 0.062675 -0.965 0.3409
LIFE*SES -0.000866 0.001297 -0.668 0.5087

SES had a P-value of 0.011 in the bivariate model con-
taining only that explanatory variable, and LIFE had a P-
value of 0.018 in the bivariate model containing only that
explanatory variable. Select explanatory variables from
the set x1, x2, x3 = x1x2, with α = 0.05,

(a) Using backward elimination.
(b) Using forward selection.

14.2. Table 11.23 (page 359) showed results of a multiple
regression using nine predictors of the quality of life in a
country.

(a) In backward elimination with these nine predictors,
can you predict which variable would be deleted (i) first?
(ii) second? Explain.
(b) In forward selection with these nine predictors, can
you predict which variable would be added first? Explain.

14.3. For the Houses2 data file at the text website, Table
14.9 shows a correlation matrix and a model fit using four
predictors of selling price. With these four predictors,

(a) For backward elimination, which variable would be
deleted first? Why?

(b) For forward selection, which variable would be added
first? Why?
(c) Why do you think that BEDS has such a large P-value
in the multiple regression model, even though it has a sub-
stantial correlation with PRICE?

TABLE 14.9

Correlation coefficients
price size beds baths new

price 1.000 0.899 0.590 0.714 0.357
size 0.899 1.000 0.669 0.662 0.176
beds 0.590 0.669 1.000 0.334 0.267
baths 0.714 0.662 0.334 1.000 0.182
new 0.357 0.176 0.267 0.182 1.000

Variable Estimate Std. Error t Sig
INTERCEP -41.795 12.104 3.45 0.0009
SIZE 64.761 5.630 11.50 0.0001
BEDS -2.766 3.960 0.70 0.4868
BATHS 19.203 5.650 3.40 0.0010
NEW 18.984 3.873 4.90 0.0001

14.4. Refer to the previous exercise. Using software with
these four predictors, find the model that would be se-
lected using the criterion. (a) R2

adj, (b) PRESS, (c) AIC.

14.5. Use software with the Crime2 data file at the text
website, excluding the observation for D.C. Let y = mur-
der rate. For the five explanatory variables in that data file
(excluding violent crime rate), with α = 0.10 in tests,
(a) Use backward elimination to select a model. Interpret
the result.
(b) Use forward selection to select a model. Interpret the
result.
(c) Use stepwise regression. Interpret the result.
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FIGURE 14.13

(d) Compare results of the three selection procedures.
How is it possible that a variable (percentage with a high
school education) can be the first variable dropped in
(a) yet the second added in (b)?
(e) Now include the D.C. observation. Repeat (a) and (b),
and compare to results excluding D.C. What does this sug-
gest about the influence outliers can have on automatic
selection procedures?

14.6. Figure 14.13 is a plot of the residuals versus the pre-
dicted y-values for the model discussed in Example 13.1

TABLE 14.10

Studentized Leverage DFBETA
Obs Residual Residual h DFFIT Fem_econ Literacy
1 -1.1374 -1.3088 0.0935 -0.4204 0.1989 0.0726
2 0.2782 0.3216 0.1792 0.1503 -0.1001 0.1226
6 -0.1299 -0.1424 0.0915 -0.0452 0.0235 -0.0302
8 -0.1695 -0.1921 0.1490 -0.0804 0.0496 -0.0640
9 -0.5515 -0.6682 0.2378 -0.3732 -0.3215 0.1017
11 -0.9491 -1.1198 0.1589 -0.4868 -0.0620 0.3707
15 -1.0803 -1.2174 0.0665 -0.3249 0.0285 -0.1583
16 -0.9529 -1.1093 0.1372 -0.4424 -0.1055 0.3435
17 -1.1469 -1.3358 0.1118 -0.4738 0.3516 -0.1326
19 0.8765 0.9912 0.0982 0.3270 0.0799 0.1407
21 0.4208 0.4559 0.0596 0.1148 0.0142 0.0336
22 -0.0490 -0.0543 0.1102 -0.0191 0.0119 -0.0133
25 2.2503 3.0631 0.0867 0.9438 0.3476 -0.6337
27 -0.2954 -0.3522 0.2273 -0.1910 -0.0300 0.1562
28 1.0084 1.1396 0.0808 0.3380 -0.0232 0.1929
29 -0.4741 -0.5551 0.1901 -0.2689 -0.1750 -0.0323
30 0.7329 0.8843 0.2165 0.4648 -0.4057 0.1705
31 0.1204 0.1292 0.0512 0.0300 0.0015 0.0057
35 -0.1409 -0.1517 0.0571 -0.0373 -0.0119 -0.0014
38 0.1027 0.1294 0.3124 0.0872 0.0780 -0.0270
39 1.2868 1.7217 0.2847 1.0862 0.0098 -0.8342

(page 402) relating income to education and racial–ethnic
group. What does this plot suggest?

14.7. For the data for 21 nations in the UN2 data file at the
text website that are not missing observations on literacy,
Table 14.10 shows various diagnostics from fitting the mul-
tiple regression model relating fertility (mean number of
births per woman) to literacy rate and women’s economic
activity.
(a) Study the studentized residuals. Are there any appar-
ent outliers?
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(b) Which, if any, observations have relatively large lever-
age values?
(c) Based on the answers in (a) and (b), does it seem as if
any observations may be especially influential? Explain.
(d) Study the DFFIT values. Identify an observation that
may have a strong influence on the fitted values.
(e) Study the DFBETA values. Identify an observation
that is influential for the literacy estimate but not for the
economic activity estimate.

14.8. For the Crime2 data file at the text website, fit the
linear regression model with y = violent crime rate and
x = percentage living in metropolitan areas, for all 51
observations.
(a) Plot the studentized residuals. Are there any clear
outliers?
(b) Identify any observations with noticeable leverage.
(c) Based on (a) and (b), do any observations seem to be
particularly influential? Explain.
(d) Study the DFFIT values. Which, if any, observations
have a strong influence on the fitted values?
(e) Study the DFBETA values. For each term, which if
any observations have a strong influence on the parame-
ter estimate?
(f) Remove the observation that seems most influential,
and refit the model. Is the prediction equation substan-
tively different in any way?

14.9. In Exercise 14.3, backward elimination and forward
selection choose the model with explanatory variables
SIZE, BATHS, and NEW.
(a) Fit this model with the Houses2 data set. Inspect the
leverages and the DFFIT and DFBETA values for SIZE.
Refit the model without the three highly influential ob-
servations. Compare the prediction equation, standard er-
rors, and R2 to the fit for the complete data set. Summarize
the influence of the influential observations.
(b) For this model, report the VIF values. Interpret them,
and indicate whether the degree of multicollinearity is
severe.

14.10. For the Houses2 data file, fit the model to y = sell-
ing price using house size, whether the house is new, and
their interaction.

(a) Show that the interaction term is highly significant.
(b) Show that observation 5 is highly influential in affect-
ing the fit in (a).
(c) Show that the interaction effect is not significant when
observation 5 is removed from the data set.
(d) Now fit the model in (a) using a GLM assuming a
gamma distribution for y. Note how the estimated interac-
tion effect differs considerably from that in (a), and note
that it is not significant. (Observation 5, highly influential
for ordinary least squares, is not so influential in this anal-
ysis. See also Exercise 13.22.)

14.11. Three variables have population correlations
ρx1x2 = 0.85, ρyx1 = 0.65, and ρyx2 = 0.65. For these, the
partial correlations are ρyx1·x2 = ρyx2·x1 = 0.244. In a sam-
ple, rx1x2 = 0.90, ryx1 = 0.70, and ryx2 = 0.60, not far from
the population values. For these, the sample partial corre-
lations are ryx1·x2 = 0.46 and ryx2·x1 = −0.10. What does
this large difference suggest about standard errors of par-
tialcorrelationswhenmulticollinearityexists?(Anunwary
observer might conclude that the partial effects of x1 and
x2 have opposite signs and that the partial effect of x1 is
much stronger, when they are identical in the population.)

14.12. For a data set for 100 adults on y = height, x1 =
length of left leg, and x2 = length of right leg, the model
E(y) = α + β1x1 + β2x2 is fitted. Neither H0: β1 = 0 nor
H0: β2 = 0 has a P-value below 0.05.
(a) Does this imply that length of leg is not a good predic-
tor of height? Why?
(b) Does this imply that H0: β1 = β2 = 0 would not have
a P-value below 0.05? Why?
(c) Suppose ryx1 = 0.901, ryx2 = 0.902, and rx1x2 = 0.999.
Using forward selection and the potential predictors x1
and x2 with α = 0.05 for tests, which model would you
expect to be selected? Why?

14.13. Refer to the plot of residuals in Figure 14.13 for
Exercise 14.6.
(a) Explain why a more valid fit may result from assum-
ing that income has a gamma distribution, rather than a
normal distribution.
(b) Table 14.11 shows results for the normal GLM and the
gamma GLM. Summarize how results differ for the two
models.

TABLE 14.11

NORMAL GLM GAMMA GLM
Parameter Coef. se Sig Coef. se Sig
Intercept -15.663 8.412 .066 -1.927 5.169 .709
education 4.432 .619 .000 3.289 .412 .000
[race = b] -10.874 4.473 .017 -8.905 2.842 .002
[race = h] -4.934 4.763 .304 -5.953 3.187 .062
[race = w] 0 . . 0 . .

(Scale) .117
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(c) Interpret the scale parameter estimate by estimating
the standard deviation of income when its conditional
mean is (i) $20,000 (ii) $50,000.

14.14. Refer to the data from Example 14.7 on fertility
rates and GDP (page 453). To allow for greater variation
at higher values of mean fertility, fit a quadratic GLM with
a gamma distribution for fertility rate and the identity link
function. Find the GDP value at which predicted fertil-
ity rate takes its minimum value. Compare estimates and
their significance to those using least squares.

14.15. Table 14.12 shows the results of fitting two models
to 54 observations on y = mental health score, x1 = degree
of social interaction, and x2 = SES. The variables x1 and
x2 are measured on scales of 0–100, and larger y-scores
represent better mental health. The variable symbol x1**2
represents x2

1, and x1*x2 represents x1x2.

(a) When model 1 is fitted, which best describes the result
over the range 0–100 of x1-values?

(i) ŷ is a bowl-shaped function of x1, first decreasing and
then increasing.

(ii) ŷ is an increasing bowl-shaped function of x1.
(iii) ŷ is a mound-shaped function of x1, first increasing

and then decreasing.
(iv) ŷ is an increasing mound-shaped function of x1.
(b) When model 2 is fitted, which best describes the result
over the observed ranges?

(i) ŷ is a linear function of x1 with positive slope that is
the same for all x2.

(ii) ŷ is a linear function of x1 with positive slope for some
values of x2 and negative slope for others.

(iii) ŷ is a linear function of x1 with positive slope, but the
magnitude of that slope is smaller for larger values of
x2.

(iv) ŷ is a quadratic function of x1 and x2.

TABLE 14.12

Model Variable Estimate Model Variable Estimate

1. Intercept 15 2. Intercept 16
x1 0.200 x1 0.07

x1**2 –0.001 x2 0.04
x1*x2 –0.0006

14.16. Sketch the following mathematical functions on
the same set of axes, for values of x between 0 and 4. Use
these curves to describe how the coefficients of x and x2

affect their shape.
(a) ŷ = 10 + 4x (b) ŷ = 10 + 4x + x2

(c) ŷ = 10 + 4x − x2 (d) ŷ = 10 − 4x
(e) ŷ = 10 − 4x + x2 (f) ŷ = 10 − 4x − x2

14.17. For the Houses data file, Table 14.13 shows results
of fitting a quadratic regression model with s = size as the
predictor.

(a) Interpret the coefficients of this equation. What shape
does it have?
(b) Find the predicted selling price for homes with (i) s =
1000 square feet, (ii) s = 2000 square feet, (iii) s = 3000
square feet. Explain why the effect of a 1000-square-foot
increase in s increases as s increases.

TABLE 14.13

Variable Estimate Std. Error t Sig
Intercept 5507.551 35626.650 .155 .877
size 65.156 36.289 1.795 .076
size*size .014 .008 1.740 .085

14.18. Refer to the previous exercise.

(a) Using size as a straight-line predictor, r2 = 0.695,
whereas R2 = 0.704 for the quadratic model. Is the degree
of nonlinearity major, or minor? Is the linear association
strong, or weak?
(b) Test whether the quadratic model gives a significantly
better fit than the straight-line model. Interpret.

14.19. The Crime2 data file at the text website illustrates
how a single observation can be highly influential in de-
termining whether the model should allow nonlinearity.

(a) With all 51 observations, fit the quadratic model be-
tween y = murder rate and x = percentage in poverty.
Test whether the quadratic term is needed. Report the P-
value, and interpret.
(b) Refit the model, deleting the observation for D.C. Re-
port the P-value for testing the quadratic term, and inter-
pret.
(c) Compare (a) and (b), and use the scatterplot to ex-
plain how a single observation can have a large impact on
whether the quadratic term seems needed. Show how you
would be warned of this by influence diagnostics for the
fit in (a).

14.20. For data from 2005 to 2011 from Facebook on y =
number of people (in millions) worldwide using Face-
book, the prediction equation ŷ = 2.13(2.72)x fits well,
where x = number of years since January 1, 2005.

(a) Predict the number using the Internet at the beginning
of (i) 2005 (take x = 0), (ii) 2011.
(b) Interpret the estimate 2.72.
(c) Illustrate the dangers of extrapolation, by predicting y
on January 1, 2015.
(d) The straight-line model fitted to the data gives ŷ =
−114 + 95x. Explain why this model is inappropriate for
these data.

14.21. For data shown in the article “Wikipedia: Mod-
elling Wikipedia’s growth” at en.wikipedia.org, the num-
ber of English language articles in Wikipedia was well ap-
proximated from 2001 to 2008 by ŷ = 22,700(2.1)x, where
x is the time (in years) since January 1, 2001.
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(a) Interpret the values 22,700 and 2.1 in this prediction
equation.
(b) A plot in this article shows that the growth has been
more linear than exponential since 2007. If the exponen-
tial equation had continued to hold, predict the number
of English Wikipedia articles on January 1, 2016. Com-
pare to the actual number of about 5 million, and explain
the dangers of model extrapolation.

14.22. For United Nations data on y = world population
size (billions) between 1900 and 2010, the exponential re-
gression model with x = number of years since 1900 gives
ŷ = 1.4193(1.014)x.
(a) Explain why the model fit corresponds to a rate of
growth of 1.4% per year.
(b) Show that the predicted population size (i) doubles
after 50 years, (ii) quadruples after 100 years.
(c) The correlation equals 0.948 between y and x and
0.985 between log(y) and x. Based on this, which model
seems more appropriate? Why?

14.23. Draw rough sketches of the following mathemat-
ical functions on the same set of axes, for x between 0
and 35.
(a) ŷ = 6(1.02)x. (ŷ = predicted world population size in
billions x years after 2000, if there is a 2% rate of growth
every year.)
(b) ŷ = 6(0.95)x. What does this represent?
(c) Use these plots to explain the effect of whether β > 1
or β < 1 in the model E(y) = αβx.

14.24. Consider the formula ŷ = 4(2)x.
(a) Plot ŷ for integer x between 0 and 5.
(b) Plot loge ŷ against x. Report the intercept and slope of
this line.

14.25. For white men in the United States, Table 14.14
presents the number of deaths per thousand individuals
of a fixed age within a period of a year.

TABLE 14.14

Age Death Rate (Per Thousand)

30 3
40 6
50 14
60 27
70 60
80 125

(a) Plot x = age against y = death rate and against log y.
What do these plots suggest about a good model for the
relationship?
(b) Find the correlation between (i) x and y, (ii) x and
log(y). What do these suggest about an appropriate
model?

(c) Using generalized linear models, find the prediction
equation for the model log[E(y)] = α + βx.
(d) Find the prediction equation for ŷ. Interpret the pa-
rameter estimates.

14.26. Consider the fertility and GDP data in Table 14.6,
from the FertilityGDP data file.

(a) Using GLM software, fit the exponential regression
model, assuming fertility rate has a (i) normal, (ii) gamma
distribution. Interpret the effect of GDP on fertility rate
for the gamma fit.
(b) What advantages does the exponential regression
model have over the quadratic model?

Concepts and Applications
14.27. Refer to the Students data file (Exercise 1.11).

(a) Conduct and interpret a regression analysis using y =
political ideology, selecting predictors from the variables
in that file. Prepare a report describing the research ques-
tion(s) posed and analyses and diagnostic checks that you
conducted, and indicate how you selected a final model.
Interpret results.
(b) Repeat the analysis, using y = college GPA.

14.28. Refer to the data file the class created in Exercise
1.12. Select a response variable, pose a research question,
and build a model using other variables in the data set.
Interpret and summarize your findings.

14.29. Analyze the Crime data set at the text website,
deleting the observation for D.C., with y = violent crime
rate. Use methods of this chapter. Prepare a report de-
scribing the analyses and diagnostic checks that you con-
ducted, and indicate how you selected a model. Interpret
results.

14.30. For the Mental data file at the text website and
the model predicting mental impairment using life events
and SES, conduct an analysis of residuals and influence
diagnostics.

TABLE 14.15

Year Population Year Population

1830 34,730 1920 968,470
1840 54,477 1930 1,468,211
1850 87,445 1940 1,897,414
1860 140,424 1950 2,771,305
1870 187,748 1960 4,951,560
1880 269,493 1970 6,791,418
1890 391,422 1980 9,746,324
1900 528,542 1990 12,937,926
1910 752,619 2000 15,982,378

2010 18,804,623

Source: U.S. Census Bureau.

14.31. Table 14.15 shows the population size of Florida,
by decade from 1830 to 2010. Analyze these data, which
are the data file FloridaPop at the text website. Explain
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why a linear model is reasonable for the restricted period
1970–2010.
14.32. For the UN2 data file at the text website, using
methods of this chapter,

(a) Find a good model relating x = per capita GDP to y =
life expectancy. (Hint: What does a plot of the data sug-
gest?)
(b) Find a good prediction equation for y = fertility. Ex-
plain how you selected variables for the model.

14.33. Give an example of a response variable and a pair
of explanatory variables for which an automated variable
selection procedure would probably produce a model with
only one explanatory variable. Explain.

14.34. A sociologist’s first reaction upon studying auto-
mated variable selection routines was that they had the
danger of leading to “crass empiricism” in theory build-
ing. From a theoretical perspective, describe the dangers
with such methods. What guidelines would you suggest for
avoiding these problems?

14.35. Give an example of two variables that you expect
to have a nonlinear relationship. Describe the pattern you
expect for the relationship. Explain how to model that
pattern.

14.36. You plan to model y = fertility rate (the mean
number of children per adult woman) and x = per capita
gross domestic product (GDP, in tens of thousands of
dollars). For the ordinary bivariate model, explain what
might be inappropriate about the (a) constant standard
deviation assumption and (b) straight-line assumption.
State a model that you think might be more valid.

14.37. Using the formula s/s j

√
(n − 1)(1 − R2

j) for the
standard error of the estimator of β j in multiple regres-
sion, explain how precision of estimation is affected by

(a) Multicollinearity.
(b) The conditional variability of the response variable.
(c) The variability of the explanatory variables.
(d) The sample size.

14.38. A recent newspaper article quoted a planner in a
city as saying, “This city has been growing at the rate of
3.2% per year. That is not slow growth by any means. It
corresponds to 32% growth per decade.” Explain what is
incorrect about this statement. If, in fact, the current pop-
ulation size of the city is 10,000 and in each of the next
10 years the city increases in size by 3.2% relative to the
previous year, then

(a) What is the population size after a decade?
(b) What percentage growth occurs for the decade?

14.39. Example 14.8 showed a predicted U.S. popula-
tion size (in millions) x decades after 1890 of ŷ =
73.175(1.130)x.

(a) Show this is equivalent to 1.23% predicted growth per
year. [Hint: (1.0123)10 = 1.130.]
(b) Explain why the predicted U.S. population size x years
after 1890 is 73.175(1.0123)x.

14.40. You invest $1000 in an account with interest com-
pounded annually at 9%.
(a) How much money do you have after x years?
(b) How long does it take your savings to triple in size?
For multiple-choice exercises 14.41–14.44, select the correct
response(s). (There may be more than one.)

14.41. In the model E(y) = α + β1x + β2x2, the coeffi-
cient β2

(a) Is the mean change in y as x2 is increased one unit with
x held constant.
(b) Is a curvature coefficient that describes whether the
regression equation is bowl shaped or mound shaped.
(c) Equals 0 if the relationship between y and x is linear.
(d) Equals 0 if the population value of R2 for this model
equals ρ2

yx.

14.42. The log transformation of the mean response in
regression is useful when
(a) E(y) is approximately a logarithmic function of x.
(b) E(y) is approximately an exponential function of x.
(c) log E(y) is approximately a linear function of x.
(d) Unit changes in x have a multiplicative, rather than
additive, effect on the mean of y.

14.43. Forward selection and stepwise regression are sim-
ilar in the sense that, if they have the same α-level for test-
ing a term,
(a) They always select the same final regression model.
(b) They always select the same initial regression model
(when they enter the first explanatory variable).
(c) Any variable not in the final model does not have a
significant partial association with y, controlling for the
variables in the final model.
(d) It is impossible that all the variables listed for poten-
tial inclusion are in the final model.

14.44. Evidence of multicollinearity exists in a multiple
regression fit when
(a) Strong intercorrelations occur among explanatory
variables.
(b) The R2-value is very large.
(c) The F test of H0: β1 = · · · = βk = 0 has a small
P-value, but the individual t tests of H0: β1 = 0, . . . ,
H0: βk = 0 do not.
(d) A predictor variable has VIF = 12.

14.45. True or false?
(a) Adjusted R2 can possibly decrease when an explana-
tory variable is added to a regression model.
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(b) Possible effects of an influential observation include
changing a correlation from positive to negative, a P-value
from 0.01 to 0.99, and R2 from 0.01 to 0.99.
(c) When multicollinearity exists, one can still obtain
good estimates of regression parameters, but R2 may be
adversely affected.
(d) If y = annual medical expenses relates to x = age by
E(y) = 1400 − 22x + 0.4x2, then the change in the mean
of y for every unit change in x equals −22.

14.46. Select the best response for each of the following
terms (not every response is used):

Heteroscedasticity
Multicollinearity
Forward selection
Interaction
Exponential model
Stepwise regression
Studentized residual
Generalized linear model

(a) The mean of y multiplies by β for each unit increase
in x.
(b) The log of E(y) is linearly related to the log of x.
(c) A residual plot indicates that the residuals are much
more spread out at high x than at low x.
(d) The bivariate effect of x1 on y differs from the partial
effect of x1 on y, controlling for x2.
(e) There are strong intercorrelations among explanatory
variables.

(f) At each stage, the variable considered for entry into
the model has the smallest P-value in the test of its partial
effect on y.
(g) The response variable need not be normal, and we can
model a function of the mean as a linear function of the
explanatory variables.
(h) At each stage after entering a new variable, all vari-
ables in the model are retested to see if they still have a
significant partial effect on y.
(i) The slope between E(y) and x1 changes as the value of
x2 changes.
(j) Measures the number of standard errors that an obser-
vation falls from its predicted value.

14.47.* Show that using a cross-product term to model
interaction assumes that the slope of the relationship
between y and x1 changes linearly as x2 changes. How
would you suggest modeling interaction if, instead, the
slope of the linear relationship between y and x1 first
increases as x2 changes from low to moderate values
and then decreases as x2 changes from moderate to high
values?

14.48.* Forward selection is used with 10 potential ex-
planatory variables for y. In reality, none are truly cor-
related with y or with each other. For a random sample,
show that the probability equals 0.40 that at least one is
entered into the regression model when the criterion for
admission is a P-value below 0.05 for the t test. (Hint: Use
the binomial distribution.)
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15.8 Chapter Summary

T he regression models studied in the past six chapters assume that the response variable is
quantitative. This chapter presents generalized linear models for response variables that are

categorical.
The logistic regression model applies to binary response variables—variables having only

two possible outcomes. For instance, logistic regression can model

• A voter’s choice in a U.S. presidential election (Democrat or Republican), with explanatory
variables political ideology, annual income, education level, and religious affiliation.

• Whether a person uses illegal drugs (yes or no), with explanatory variables education level,
whether employed, religiosity, marital status, and annual income.

Multicategory versions of logistic regression can handle ordinal response variables and nominal
response variables. Loglinear models describe association structure among a set of categorical
response variables. We can check the goodness of fit of models when data have contingency table
form. All the models of this chapter use the odds ratio to summarize the strength of the associations.

15.1 Logistic Regression
For a binary response variable y, denote its two categories by 1 and 0, commonly re-
ferred to as success and failure. Recall1 that the mean of 0 and 1 outcomes equals the
proportion of outcomes that equal 1. Regression models for binary response variables
describe the population proportion, which also represents the probability P(y = 1)
for a randomly selected subject. This probability varies according to the values of the
explanatory variables.

Models for binary data ordinarily assume a binomial distribution for the re-
sponse variable (Section 6.7). This is natural for binary outcomes. The models are
special cases of generalized linear models (Section 14.4).

LINEAR PROBABILITY MODEL

For a single explanatory variable, the simple model

P(y = 1) = α + βx

implies that the probability of success is a linear function of x. This is called the linear
probability model.

1 From the discussion of Table 3.6 on page 52 and Example 4.6 on page 95.

471



472 Chapter 15 Logistic Regression

This model is simple but often inappropriate. As Figure 15.1 shows, it implies that
probabilities fall below 0 or above 1 for sufficiently small or large x-values, whereas
probabilities must fall between 0 and 1. The model may be valid over a restricted
range of x-values, but it is rarely adequate when the model has several explanatory
variables.

0

1

Linear

Logistic (1)

Logistic (2)

P(y 5 1)

x

FIGURE 15.1: Linear
and Logistic Regression
Models for a Binary (0, 1)
Response, for Which
E(y) = P(y = 1)

THE LOGISTIC REGRESSION MODEL FOR BINARY RESPONSES

Figure 15.1 also shows more realistic response curves, which have an S-shape. With
these curves, the probability of a success falls between 0 and 1 for all possible x-
values. These curvilinear relationships are described by the formula

log
[

P(y = 1)
1 − P(y = 1)

]
= α + βx.

The ratio P(y = 1)/[1−P(y = 1)] equals the odds (see page 242). For instance, when
P(y = 1) = 0.75, the odds are 0.75/0.25 = 3.0, meaning that a success is three times
as likely as a failure. Software uses natural logarithms in fitting the model. However,
we won’t need to use (or understand) logarithms to interpret the model and conduct
inference using it.

This formula uses the log of the odds, log [P(y = 1)/(1 − P(y = 1))], called the
logistic transformation, or logit for short. The model, abbreviated as

logit[P(y = 1)] = α + βx,

is called the logistic regression model.
When the logit follows this straight-line model, the probability P(y = 1) itself

follows a curve such as in Figure 15.1. When β > 0, P(y = 1) increases as x increases,
as in curve (1) in Figure 15.1. When β < 0, P(y = 1) decreases as x increases, as in
curve (2) in Figure 15.1. If β = 0, P(y = 1) does not change as x changes, so the
curve flattens to a horizontal straight line. The steepness of the curve increases as |β|
increases. For instance, |β| for curve (2) is greater than β for curve (1).

When P(y = 1) = 0.50, the odds P(y = 1)/[1 − P(y = 1)] = 1, and log[P(y =
1)/(1 − P(y = 1))] = 0. So, to find the value of x at which P(y = 1) = 0.50, we
equate this log odds value of 0 to α + βx and then solve for x. We then find that
P(y = 1) = 0.50 when x = −α/β.

Software uses maximum likelihood (page 138) to fit the model. For binary data,
this method is more appropriate than least squares.
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Example
15.1

Political Ideology and Belief in Evolution The 2014 General Social Survey asked,
“Human beings, as we know them today, developed from earlier species of animals.
True or false?” Is the response to this question associated with one’s political ideol-
ogy? Let y = opinion about evolution (1 = true, 0 = false). Let x = political ideology
(1 = extremely conservative, 2 = conservative, 3 = slightly conservative, 4 = moder-
ate, 5 = slightly liberal, 6 = liberal, 7 = extremely liberal). Table 15.1 shows 4 of the
1064 observations.

TABLE 15.1: GSS Data on y = Opinion about Evolution
(1 = True, 0 = False) and x = Political Ideo-
logy (from 1 = Extremely Conservative to
7 = Extremely Liberal)

Subject x y

1 4 1
2 3 0
3 2 0
4 6 1

Source: Complete data file Evolution for n = 1064 is at the text
website.

Political ideology is an ordinal variable. As with any model, we can treat an or-
dinal explanatory variable in a quantitative manner if we expect a trend upward
or a trend downward in y as x increases. We treat it as categorical with dummy
variables for more general effects other than trends. For these data, if we expect
that the probability of belief in evolution continually increases or continually de-
creases as a person is more liberal, we treat x as quantitative. The model is then
more parsimonious and simpler to interpret than if we use dummy variables for cat-
egories of x. In fact, the sample proportion of responses in the true category, shown in
Figure 15.2, continually increases from 0.23 to 0.86 as political ideology moves from
the most conservative to the most liberal. For a quantitative approach, it seems
sensible to assign equally spaced scores for political ideology, such as the category
numbers (1, 2, 3, 4, 5, 6, 7).

FIGURE 15.2: Sample
Proportions Believing in
Evolution for Seven
Political Ideology
Categories, and Logistic
Regression Prediction
Curve for the Probability
of Believing in Evolution
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Figure 15.2 also shows the prediction curve for the fit of the logistic regression
model. Table 15.2 shows some results that software provides for the model. The pre-
diction equation is

logit[P̂(y = 1)] = −1.757 + 0.494x.

Since β̂ = 0.494 > 0, the estimated probability of believing in evolution increases
as political ideology moves in the more liberal direction (i.e., higher x scores). The
estimated probability equals 0.50 at x = −α̂/β̂ = 1.757/0.494 = 3.55. The estimated
probability of believing in evolution is below 0.50 for the three categories for which
political ideology is conservative.

TABLE 15.2: Logistic Regression Model Output (R Software) for the Evolution Data File
on Belief in Evolution and Political Ideology

> summary(glm(y ˜ polviews, family=binomial(link="logit"))

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.75658 0.20500 -8.569 <2e-16
polviews 0.49422 0.05092 9.706 <2e-16

LOGISTIC REGRESSION EQUATION FOR PROBABILITIES

An alternative equation for logistic regression expresses the probability of success
directly. It is

P(y = 1) = eα+βx

1 + eα+βx
.

Here, e raised to a power represents the antilog of that number, using natural logs.2

We use this formula to estimate values of P(y = 1) at particular predictor values.
From the estimates in Table 15.2, a person with political ideology x has estimated

probability of believing in evolution

P̂(y = 1) = e−1.757+0.494x

1 + e−1.757+0.494x
.

For subjects with ideology x = 1, the most conservative category, the estimated prob-
ability equals

P̂(y = 1) = e−1.757+0.494(1)

1 + e−1.757+0.494(1)
= e−1.262

1 + e−1.262
= 0.283

1.283
= 0.221.

For x = 7, the most liberal category, the estimated probability equals 0.846.

INTERPRETING THE LOGISTIC REGRESSION MODEL

We’ve seen how to estimate P(y = 1), and we’ve seen that the sign of β tells us
whether P(y = 1) is increasing or decreasing as x increases. How else can we inter-
pret β? Unlike in the linear probability model, β is not the slope for the change in
P(y = 1) as x changes. Since the curve for P(y = 1) is S-shaped, the rate at which the
curve climbs or descends changes according to the value of x.

The simplest way to use β to interpret the steepness of the curve uses a straight-
line approximation to the logistic regression curve. A straight line drawn tangent to

2 Most calculators have an ex key that provides these antilogs, and software can report estimated probabilities.
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the curve at a particular x-value has slope βP(y = 1)[1 − P(y = 1)], where P(y = 1)
is the probability at that x. Figure 15.3 illustrates this. The slope is greatest when
P(y = 1) = 1/2, where it is β(1/2)(1/2) = β/4. When P(y = 1) is near 1/2, one-
fourth of the β effect parameter in the logistic regression model is the approximate
rate at which P(y = 1) changes per one-unit increase in x.

0

1

1

x

P(y 5 1)

Slope bP(y 5 1) [1 2 P(y 5 1)]

bP(y 5 1) [1 2 P(y 5 1)]

FIGURE 15.3: A Line
Drawn Tangent to a
Logistic Regression
Curve Has Slope
βP(y = 1)[1 − P(y = 1)],
Which Is about β/4 when
P(y = 1) Is near 1/2

For the political ideology and belief in evolution data, β̂ = 0.494. At x = 4
(moderate ideology), the estimated probability of believing in evolution is P̂(y =
1) = 0.555. A line drawn tangent to the curve at that point has slope approximately
equal to β̂/4 = 0.494/4 = 0.12. So, a one-category increase in political ideology
(i.e., from “moderate” to “slightly liberal”) has approximately a 0.12 increase in the
estimated probability of belief in evolution.

Software can also fit the linear probability model, P(y = 1) = α + βx. This
model seems reasonable for these data, since the logistic fit in Figure 15.2 is not
much different from a straight line, and a linear fit is simpler to interpret. The maxi-
mum likelihood fit is P̂(y = 1) = 0.108 + 0.110x. This formula suggests about a 0.11
increase in P̂(y = 1) per category increase in political ideology.

Another way to describe the effect of x compares P̂(y = 1) at different values
of x. We’ve seen that when x increases from its smallest to its largest value in the
sample, P̂(y = 1) increases from 0.221 to 0.846. Such a very large change represents
a strong effect.

INTERPRETATION USING THE ODDS AND ODDS RATIO

Another interpretation of the logistic regression parameter β uses the odds ra-
tio (page 242). Applying antilogs to both sides of the logistic regression equation
log[P(y = 1)/(1 − P(y = 1))] = α + βx yields the model expressed in terms of the
odds,

P(y = 1)
1 − P(y = 1)

= eα+βx = eα(eβ)x.

The right-hand side of this equation has the exponential regression form studied in
Section 14.6, a constant multiplied by another constant raised to the x power. This
exponential relationship implies that every unit increase in x has a multiplicative
effect of eβ on the odds.

In Example 15.1, the antilog of β̂ is eβ̂ = e0.494 = 1.64. When political ideology
increases by one category in the liberal direction, the estimated odds of belief in
evolution multiply by 1.64; that is, they increase by 64%. When x = 5, for example,
the estimated odds of belief in evolution are 1.64 times what they are when x = 4.
When x = 4,

Estimated odds = P̂(y = 1)

1 − P̂(y = 1)
= e−1.757+0.494(4) = 1.246,
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whereas when x = 5,

Estimated odds = P̂(y = 1)

1 − P̂(y = 1)
= e−1.757+0.494(5) = 2.043,

which is 1.64 times the value of 1.246 at x = 4. In other words, eβ̂ = e0.494 = 1.64 =
2.043/1.246 is an estimated odds ratio, equaling the estimated odds at x = 5 divided
by the estimated odds at x = 4.

Odds ratios also apply to changes in x other than 1. For example, the six-unit
change in x from category 1 to category 7 in political ideology corresponds to a
change of 6β in the log odds, and a multiplicative effect of e6β = (eβ)6 on the odds.
When x = 7, the estimated odds of belief in evolution equal (1.64)6 = 19.4 times the
estimated odds when x = 1. This is an extremely strong effect.

LOGISTIC REGRESSION CAN USE GROUPED OR UNGROUPED
DATA FILES

Table 15.1 showed the data file in the usual form of one row of data for each subject.
When the explanatory variables are categorical and the data can take the form of a
contingency table, an alternative data file has a row of data for each cell count. The
data are then said to be grouped instead of ungrouped.

For example, for the data set on political ideology and opinion about evolution,
in category 1, 11 people said evolution was true and 37 people said it was false. In
Stata software, we could represent this as two rows of a data file with columns x, y,
count, having rows

----------------------
1 1 11
1 0 37
----------------------

As Appendix A shows, the model-fitting command then includes an [fweight = count]
part to tell Stata that a row has as many observations as the variable count lists. In
other software, such as SPSS and R, one could include both the count of y = 1 values
and the sample size for that setting of x in a single row, such as

----------------------
1 11 48
----------------------

which indicates that when x = 1, 11 observations out of 48 total had y = 1. See
Appendix A for details. The results (estimates, standard errors, tests, confidence in-
tervals) are the same for both forms of the data file.

PROBIT MODELS AND INTERPRETATIONS∗

The logit link is the most popular for modeling binary response variables. We’ve seen
that the linear probability model, which models the probability itself as a linear func-
tion of explanatory variables, has limited scope but is simpler to interpret.

Another alternative, using the probit link, results from the following construc-
tion: Suppose there is some underlying continuous variable y∗ such that we observe
y = 1 when y∗ ≥ T for some particular threshold T and we observe y = 0 when
y∗ < T . We cannot actually observe the variable y∗, which is called a latent variable,
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or the threshold T . But, assuming this underlying model, we can interpret a coeffi-
cient β of an explanatory variable x in the probit model as the predicted change in
y∗, in standard deviation units, per one-unit increase in x.

We illustrate for Example 15.1 on x = political ideology and y = belief in evolu-
tion (1 = yes, 0 = no). When we use software to fit the model

probit[P(y = 1)] = α + βx,

we obtain β̂ = 0.3036 with se = 0.0300. We estimate that each one-unit increase
in political ideology (i.e., a one-category increase in liberalism) corresponds to a 0.3
standard deviation increase in the underlying latent variable y∗ that measures be-
lief in evolution. For a six-unit increase (from extremely conservative to extremely
liberal), we predict a 6(0.3036) = 1.82 standard deviation increase in the underlying
response. This is an enormous effect.

BINARY REGRESSION MODELS WITH RANDOM EFFECTS∗

Section 13.5 showed how to handle repeated measurement and other forms of cor-
related response data by including random effects in the model, called a linear mixed
model. That section referred to continuous responses and modeling the mean. Simi-
lar approaches have been developed for categorical responses and modeling propor-
tions using logits or probits.

For example, we can include random effects in a logistic regression model to
account for within-subject associations in studies with repeated measures on a binary
variable. In Example 15.1 on political ideology and belief in evolution, suppose we
sampled families and measured y = belief in evolution (1 = yes, 0 = no) and x =
political ideology for everyone in each family. We would expect the family-specific
responses to be associated. Let (yi j, xi j) be the outcomes for subject j in family i. We
could use the model

logit[P(yi j = 1)] = α + βxi j + si,

where si is a random effect for family i.
Logistic models with random effects can be computationally difficult to fit, but

software is now widely available. For details about ways of handling categorical re-
sponses with correlated observations, see Agresti (2007, Chapters 9 and 10).

15.2 Multiple Logistic Regression
Logistic regression can handle multiple predictors. The multiple logistic regression
model has the form

logit[P(y = 1)] = α + β1x1 + · · · + βpxp.

The formula for the probability itself is

P(y = 1) = eα+β1x1+···+βpxp

1 + eα+β1x1+···+βpxp
.

Exponentiating a beta parameter provides the multiplicative effect of that explana-
tory variable on the odds, controlling for the other variables. The farther a βi falls
from 0, the stronger the effect of the predictor xi, in the sense that the odds ratio falls
farther from 1.

As in ordinary regression, cross-product terms allow interactions between pairs
of explanatory variables. To include categorical explanatory variables, you can use
dummy variables, as the next example illustrates.
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Example
15.2

Death Penalty and Racial Predictors Table 15.3 is a three-dimensional contingency
table from a study3 of the effects of racial characteristics on whether individuals con-
victed of homicide receive the death penalty. The variables in Table 15.3 are death
penalty verdict, the response variable, having categories (yes, no), and the explana-
tory variables race of defendant and race of victims, each having categories (white,
black). The 674 subjects were defendants in indictments involving cases with multiple
murders in Florida.

TABLE 15.3: Death Penalty Verdict by Defendant’s Race
and Victims’ Race, for Cases with Multiple
Murders in Florida

Defendant’s Victims’ Death Penalty Percentage
Race Race Yes No Yes

White White 53 414 11.3
Black 0 16 0.0

Black White 11 37 22.9
Black 4 139 2.8

For each of the four combinations of defendant’s race and victims’ race, Table
15.3 also lists the percentage of defendants who received the death penalty. For white
defendants, the death penalty was imposed 11.3% of the time when the victims were
white and 0.0% of the time when the victims were black, a difference of 11.3% −
0.0% = 11.3%. For black defendants, the death penalty was imposed 22.9% − 2.8% =
20.1% more often when the victims were white than when the victims were black.
Thus, controlling for defendant’s race by keeping it fixed, the percentage of yes death
penalty verdicts was considerably higher when the victims were white than when they
were black.

Now, consider the association between defendant’s race and the death penalty
verdict, controlling for victims’ race. When the victims were white, the death penalty
was imposed 22.9% − 11.2% = 11.7% more often when the defendant was black than
when the defendant was white. When the victims were black, the death penalty was
imposed 2.8% more often when the defendant was black than when the defendant
was white. In summary, controlling for victims’ race, black defendants were some-
what more likely than white defendants to receive the death penalty.

For y = death penalty verdict, let y = 1 denote the yes verdict. Since defendant’s
race and victims’ race each have two categories, a single dummy variable can repre-
sent each. Let d be a dummy variable for defendant’s race and v a dummy variable
for victims’ race, where

d = 1, defendant = white, d = 0, defendant = black,

v = 1, victims = white, v = 0, victims = black.

The logistic model with main effects for these explanatory variables is

logit[P(y = 1)] = α + β1d + β2v.

Here, eβ1 is the odds ratio between the response variable and defendant’s race, con-
trolling for victims’ race, and eβ2 is the odds ratio between the response and victims’
race, controlling for defendant’s race.

3 M. Radelet and G. Pierce, Florida Law Review, vol. 43 (1991), pp. 1–34; see Exercise 15.5 for more recent data.
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Table 15.4 shows software output for the model fit. The prediction equation is

logit[P̂(y = 1)] = −3.596 − 0.868d + 2.404v.

Since d = 1 for white defendants, the negative coefficient of d means that the esti-
mated odds of receiving the death penalty are lower for white defendants than for
black defendants. Since v = 1 for white victims, the positive coefficient of v means
that the estimated odds of receiving the death penalty are higher when the victims
were white than when they were black.

TABLE 15.4: Parameter Estimates for Logistic Model for Death Penalty Data (Stata Output).
Race dummy variables (de f and vic) are coded as 1 for white and 0 for black.

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
def | -.8677969 .3670742 -2.36 0.018 -1.587 -.1483
vic | 2.404444 .600616 4.00 0.000 1.227 3.582

_cons | -3.596104 .5069138 -7.09 0.000 -4.590 -2.603

The antilog of β̂1, namely, eβ̂1 = e−0.868 = 0.42, is the estimated odds ratio be-
tween defendant’s race and the death penalty, controlling for victims’ race. The esti-
mated odds of the death penalty for a white defendant equal 0.42 times the estimated
odds for a black defendant. We list white before black in this interpretation, because
the dummy variable was set up with d = 1 for white defendants. If we instead let
d = 1 for black defendants rather than white, then we get β̂1 = 0.868 instead of
−0.868. Then, e0.868 = 2.38, which is 1/0.42; that is, the estimated odds of the death
penalty for a black defendant equal 2.38 times the estimated odds for a white defen-
dant, controlling for victims’ race.

For victims’ race, e2.404 = 11.1. Since v = 1 for white victims, the estimated odds
of the death penalty when the victims were white equal 11.1 times the estimated odds
when the victims were black, controlling for defendant’s race. This is a very strong
effect.

This model assumes that both explanatory variables are associated with the re-
sponse variable, but with a lack of interaction: The effect of a defendant’s race on
the death penalty verdict is the same for each victim’s race and the effect of victims’
race is the same for each defendant’s race. This means that the estimated odds ratio
between each explanatory variable and the response variable takes the same value
at each category of the other predictor. For instance, the estimated odds ratio of 11.1
between victims’ race and the death penalty is the same when the defendants were
white as when the defendants were black.

MULTIPLICATIVE EFFECTS ON ODDS

The parameter estimates for the logistic regression model are linear effects, but on
the scale of the log of the odds. It is easier to understand effects on the odds scale
than the log odds scale. The antilogs of the parameter estimates are multiplicative
effects on the odds.

To illustrate, for the data on the death penalty, the prediction equation

log
[

P̂(y = 1)

1 − P̂(y = 1)

]
= −3.596 − 0.868d + 2.404v

refers to the log odds (i.e., logit). The corresponding prediction equation for the
estimated odds is

Odds = e−3.596−0.868d+2.404v = e−3.596e−0.868de2.404v.
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For white defendants, d = 1, and the estimated odds equal e−3.596e−0.868e2.404v . For
black defendants, d = 0, and the estimated odds equal e−3.596e2.404v . The estimated
odds for white defendants divided by the estimated odds for black defendants equal
e−0.868 = 0.42. This shows why the antilog of the coefficient for d in the prediction
equation is the estimated odds ratio between defendant’s race and death penalty
verdict, for each fixed victim’s race. The effect of the defendant’s race being white
is to multiply the estimated odds of a yes death penalty verdict by e−0.868 = 0.42
compared to its value for black defendants. The actual values of the odds depend on
victims’ race, but the ratio of the odds is the same for each.

The logit model expression for the log odds is additive, but taking antilogs yields
a multiplicative expression for the odds. In other words, the antilogs of the parameters
are multiplied to obtain odds. We can use this expression to calculate odds estimates
for any combination of defendant’s race and victims’ race. For instance, when the
defendant is black (d = 0) and the victims were white (v = 1), the estimated odds of
the death penalty are

Odds = e−3.596−0.868d+2.404v = e−3.596−0.868(0)+2.404(1) = e−1.192 = 0.304.

EFFECTS ON PROBABILITIES ARE SIMPLER TO INTERPRET

We’ve seen that we can summarize the effects of explanatory variables by estimat-
ing odds ratios. Many researchers find it easier to get a feel for the effects by viewing
summaries that use the probability scale. Such summaries can report estimated prob-
abilities at particular values of a variable of interest. This evaluation is done at fixed
values of the other variables, such as at their means or at certain values of interest.

The formula for the estimated probability of receiving the death penalty is

P̂(y = 1) = e−3.596−0.868d+2.404v

1 + e−3.596−0.868d+2.404v
.

For instance, when the defendant is white and the victims were white, d = v = 1, so

P̂(y = 1) = e−3.596−0.868(1)+2.404(1)

1 + e−3.596−0.868(1)+2.404(1)
= e−2.059

1 + e−2.059
= 0.128

1.128
= 0.113.

When the defendant is black and the victims were white, d = 0 and v = 1, so

P̂(y = 1) = e−3.596−0.868(0)+2.404(1)

1 + e−3.596−0.868(0)+2.404(1)
= 0.233.

The estimated probability of receiving the death penalty is about twice as high for
black defendants. The sample effect is quite strong.

These estimated probabilities are close to the sample proportions (Table 15.3).
The estimated probabilities, unlike sample proportions, perfectly satisfy the model.
The closer the sample proportions fall to the estimated probabilities, the better the
model fits.

The probability modeled relates to the odds by

P̂(y = 1) = Odds
1 + Odds

,

a formula we first used in Section 8.4. For instance, when the estimated odds = 0.304,
as we found above when d = 0 and v = 1, then P̂(y = 1) = 0.304/(1 + 0.304) =
0.233, as we just found directly.

With a quantitative explanatory variable x, you can report the change in P̂(y = 1)
at the means of the other explanatory variables when x increases by a certain amount,
such as (1) by a fixed value (e.g., 1), (2) by a standard deviation, (3) over its range
from its lowest to greatest value, or (4) over its interquartile range from the lower
quartile to the upper quartile. Approach (4) is, unlike (1), not affected by the choice
of scale and, unlike (2) and (3), not affected by outliers.
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STANDARDIZED EFFECTS

To compare effects of explanatory variables having different units, you can compare
regression parameter estimates after the model has been fitted using standardized
explanatory variables. An estimate then refers to the effect on the logit of a stan-
dard deviation increase in the value of the explanatory variable. If sxj is the standard
deviation of explanatory variable xj, the standardized estimate is

β̂∗
j = β̂ jsx j .

Example
15.3

Alcohol Consumption and Unprotected Sex Table 15.5 summarizes results of fitting
four logistic regression models, from a study4 that examined the effects of alcohol
consumption and drug use on sexual behavior, for 549 undergraduate students at a
university in the southeastern United States. The response variable is whether the
subject engaged in unprotected sex (no condom used) in the past three months (1 =
yes, 0 = no). Participants were asked how much they had used drugs such as mari-
juana and cocaine in the past three months. (Ecstasy, meth, ketamine, and poppers
are not shown in Table 15.5.) Drug use was treated as quantitative in models, with 1
= never, 2 = once or twice, 3 = several times, and 4 = at least once a week. Partici-
pants were also asked how many times per month they drink alcohol without energy
drinks and how many times a month they drink alcohol mixed with energy drinks
(AmED). The demographic variables measured included sex, age, race (1 = white,
0 = nonwhite), and long-term relationship (1 = yes, 0 = no).

TABLE 15.5: Logistic Regression Estimates (with se in Parentheses) for Modeling
the Probability of Engaging in Unprotected Sex

Model 1 Model 2 Model 3 Model 4

Variable Coef. (SE) Coef. (SE) Coef. (SE) Coef. (SE)

Sex 0.138 (0.196)
Age 0.005 (0.073)
Race 0.369 (0.188)
Relationship 1.203 (0.220)
Sexual orientation −0.540 (0.327)
Year in school 0.098 (0.149)
Marijuana use 0.396 (0.104)
Cocaine use 1.744 (0.676)
Alcohol use 0.175 (0.030)
AmED use 0.174 (0.072)

The first model entered six demographic variables as the explanatory variables.
The second model added the marijuana use and cocaine use variables, to analyze
their effects while controlling for the demographic variables. The authors did not
report how the effects of the demographic variables changed after adding those two
variables to the model. The third model analyzed the effect of alcohol use, controlling
for demographic variables and drug use. The fourth model added AmED use.

From Table 15.5, other things being fixed, the probability of engaging in unpro-
tected sex increases with marijuana use and with cocaine use, controlling for the
demographic variables, and it increases with alcohol use and with AmED use,
controlling for the variables previously entered in the model. How can we com-
pare effects, such as those of cocaine use in Model 2 and alcohol use in Model 3?

4 By D. Snipes and E. Benotsch, Addictive Behaviors, vol. 38 (2013), pp. 1418–1423.
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Suppose cocaine use (which is on a scale of 1 to 4) has a standard deviation of 0.50
and monthly alcohol use has a standard deviation of 5.0. Then, the corresponding
standardized estimates are 1.744(0.50) = 0.872 and 0.175(5.0) = 0.875. Even though
the unstandardized parameter estimates are very different, a standard deviation in-
crease in cocaine use has a similar effect on the logit as a standard deviation increase
in monthly alcohol use.

PROPENSITY SCORES: SELECTION BIAS IN OBSERVATIONAL STUDIES∗

We finish this section by mentioning a use of logistic regression for the very chal-
lenging goal of adjusting for selection bias in comparing two groups when we want
to control for possibly confounding variables. In experimental studies, researchers
don’t worry about such bias because of the randomized assignment of subjects to the
groups. The groups are approximately in balance for all other variables, measured or
unmeasured. But for observational studies, subjects typically select the group (e.g.,
deciding whether to attend college). Researchers face the issue that the group mem-
bership may be associated with a confounding variable that is itself associated with
the response variable and thus affects summaries such as the difference of means.

Here, y could be continuous or categorical, and the focus is on a binary explana-
tory variable that refers to two groups we want to compare. Suppose we have iden-
tified a set of potential confounding variables that we could include as explanatory
variables in the model of interest, such as a regression model. The propensity is the
probability of being in a particular one of the two groups, for a given setting of the
explanatory variables. We can use logistic regression to estimate how the propensity
depends on the explanatory variables.

In comparing the groups on the response variable y, you can control for dif-
fering distributions of the groups on the explanatory variables by adjusting for the
estimated propensity. This is done by using the propensity (1) to match samples from
the groups, or (2) to subclassify subjects into several strata consisting of intervals of
propensity scores, or (3) to adjust directly by entering the propensity in the model.
With approaches (1) and (2), propensity score matching attempts to mimic random-
ization by matching a person in one group with a person in the other group who is
comparable on the observed explanatory variables. With the matching, one is avoid-
ing the assumption about model structure made in using regression to control for the
possible confounding variables. However, some subjects may not be matchable.

This method does not solve the main potential problem in using an observational
study. Any study that is observational rather than randomized still has the limitation
that propensity score methods adjust only for observed confounding variables and
not for unobserved ones. Also, the methods work better in larger samples, so the
observed confounding variables are more truly balanced in the subclassifications.
For details about the use of propensity scores, see Guo and Fraser (2014).

15.3 Inference for Logistic Regression Models
As usual, statistical inference assumes randomization for gathering the data. It also
assumes a binomial distribution for the response variable. The model identifies y as
having a binomial distribution and uses the logit link function for P(y = 1), which is
the mean of y.

As in ordinary regression modeling, the logistic regression model

logit[P(y = 1)] = α + β1x1 + · · · + βpxp

has three types of hypotheses. The global null hypothesis H0: β1 = · · · = βp = 0 states
that none of the explanatory variables has an effect on P(y = 1). An individual null
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hypothesis such as H0: β1 = 0 states that x1 has no effect on y, controlling for the
other explanatory variables. That is, the variables are conditionally independent. A
third type of test focuses on a subset of the parameters to compare nested models,
for example, to test that a set of interaction effects are 0.

LIKELIHOOD-RATIO TEST COMPARING LOGISTIC REGRESSION
MODELS

In ordinary regression, we use an F test to compare nested models (Section 11.5). For
logistic regression, the analogous test is the likelihood-ratio test. This is a general-
purpose test in statistical inference that provides a way to compare two models, a full
model and a simpler model. It tests that the extra parameters in the full model equal
zero. The test uses a key ingredient of maximum likelihood inference, the likelihood
function. Denoted by �, this gives the probability of the observed data as a function
of the parameter values. The maximum likelihood estimates maximize this function.
(Specifically, the estimates are the parameter values for which the observed data are
most likely; see page 138.)

Let �0 denote the maximum of the likelihood function when H0 is true, and let �1

denote the maximum without that assumption. The formula for the likelihood-ratio
test statistic is

−2 log
(

�0

�1

)
= (−2 log �0) − (−2 log �1).

It compares the maximized values of (−2 log �) when H0 is true and when it need not
be true. There is a technical reason for using −2 times the log of this ratio, namely,
that the test statistic then has approximately a chi-squared distribution for large sam-
ples. The df value equals the number of parameters in the null hypothesis.

To illustrate, for the analyses in Example 15.3 about predictors of unprotected
sex (page 481), the authors reported that (−2 log �) dropped by 40.5 when they added
six drug-use variables (marijuana, cocaine, ecstasy, meth, ketamine, poppers) to the
model containing only demographic explanatory variables. This is a chi-squared
statistic with df = 6, since the more complex model has six additional parameters.
This shows extremely strong evidence of a better fit for the more complex model
(P < 0.0001). So, at least one of these variables provides an improvement in predic-
tive power.

For H0: β1 = · · · = βp = 0, the likelihood-ratio statistic has df = p. The test
compares the (−2 log �) values for the full model and for the model containing only
an intercept term, to test the joint effects of all the explanatory variables.

LIKELIHOOD-RATIO AND WALD TESTS ABOUT EFFECTS

The likelihood-ratio test can also be used for an individual parameter such as H0:
βi = 0. The estimate β̂ of β has an approximate normal sampling distribution. So,
another possible test for H0: βi = 0 uses as test statistic z = β̂i/se. Some software
instead reports the square of this statistic, called a Wald statistic. The Wald statistic
and the likelihood-ratio statistics for H0: βi = 0 have chi-squared null distributions
with df = 1. The Wald statistic has the same P-value as the z statistic for the two-
sided Ha: βi �= 0.

For testing H0: βi = 0 with large samples, the Wald test and likelihood-ratio
test usually provide similar results. For small to moderate sample sizes or when the
effect is extremely strong, the likelihood-ratio test often tends to be more powerful
than the Wald test. The likelihood-ratio and Wald methods also have corresponding
confidence intervals.
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Example
15.4

Inference for Death Penalty and Racial Predictors For the death penalty data, Ex-
ample 15.2 (page 478) used the model

logit[P(y = 1)] = α + β1d + β2v,

with dummy variables d and v for defendant’s race and victims’ race, respectively.
Software (Stata) shows the results in Table 15.6.

TABLE 15.6: Logistic Regression Inference (Stata Output) for Death Penalty Data of
Table 15.3

LR chi2(2) = 21.89
Prob > chi2 = 0.0000

y | Coef. Std. Err. z P>|z| [95% Conf. Interval]
def | -.8677969 .3670742 -2.36 0.018 -1.587249 -.1483447
vic | 2.404444 .600616 4.00 0.000 1.227258 3.581629

_cons | -3.596104 .5069138 -7.09 0.000 -4.589637 -2.602571

The likelihood-ratio (LR) statistic of 21.89 shown at the top of the output is the
test of H0: β1 = β2 = 0, that neither defendant’s race nor victims’ race has an effect.
With p = 2 parameters, it is a chi-squared statistic with df = 2, and has P-value =
0.0000. We conclude that at least one of the two explanatory variables has an effect.

If β1 = 0, the death penalty verdict is independent of defendant’s race, control-
ling for victims’ race. The defendant’s race effect β̂1 = −0.868 has a standard error
of 0.367. The z test statistic for H0: β1 = 0 is z = β̂1/se = −0.868/0.367 = −2.36. For
the two-sided alternative, the P-value is 0.018. Similarly, the test of H0: β2 = 0 has
P = 0.000. The tests provide strong evidence of individual effects.

The parameter estimates are also the basis of confidence intervals for odds ra-
tios. Since the estimates refer to log odds ratios, after constructing the interval for
a β j we take antilogs of the endpoints to form the interval for the odds ratio. For
instance, since the estimated log odds ratio of 2.404 between victims’ race and the
death penalty verdict has a standard error of 0.601, a 95% confidence interval for the
true log odds ratio is

2.404 ± 1.96(0.601), or (1.23, 3.58).

The confidence interval for the odds ratio is (e1.23, e3.58) = (3.4, 35.9). For a given de-
fendant’s race, when the victims were white, the estimated odds of the death penalty
are between 3.4 and 35.9 times the estimated odds when the victims were black.

Most software can also provide confidence intervals for probabilities. Ninety-
five percent confidence intervals for the probability of the death penalty are (0.14,
0.37) for black defendants with white victims, (0.01, 0.07) for black defendants with
black victims, (0.09, 0.15) for white defendants with white victims, and (0.003, 0.04)
for white defendants with black victims.

15.4 Logistic Regression Models for Ordinal Variables∗

Many applications have a categorical response variable with more than two cate-
gories. For instance, the General Social Survey recently asked subjects whether gov-
ernment spending on the environment should increase, remain the same, or decrease.
An extension of logistic regression can handle ordinal response variables.
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CUMULATIVE PROBABILITIES AND THEIR LOGITS

For an ordinal response variable y, let P(y ≤ j) denote the probability that the re-
sponse falls in category j or below (i.e., in category 1, 2, . . ., or j). This is called a
cumulative probability. With four categories, for example, the cumulative probabil-
ities are

P(y = 1), P(y ≤ 2) = P(y = 1) + P(y = 2),

P(y ≤ 3) = P(y = 1) + P(y = 2) + P(y = 3),

and the final cumulative probability uses the entire scale, so P(y ≤ 4) = 1.
A c-category response has c cumulative probabilities. The order of forming the

cumulative probabilities reflects the ordering of the response scale. The probabilities
satisfy

P(y ≤ 1) ≤ P(y ≤ 2) ≤ · · · ≤ P(y ≤ c) = 1.

The odds of response in category j or below is the ratio

P(y ≤ j)
P(y > j)

.

For instance, when the odds equal 2.5, the probability of response in category j or
below equals 2.5 times the probability of response above category j. Each cumulative
probability can convert to an odds.

A popular logistic model for an ordinal response variable uses logits of the cu-
mulative probabilities. With c = 4, for example, the logits are

logit[P(y ≤ 1)] = log
[

P(y = 1)
P(y > 1)

]
= log

[
P(y = 1)

P(y = 2) + P(y = 3) + P(y = 4)

]
,

logit[P(y ≤ 2)] = log
[

P(y ≤ 2)
P(y > 2)

]
= log

[
P(y = 1) + P(y = 2)
P(y = 3) + P(y = 4)

]
,

logit[P(y ≤ 3)] = log
[

P(y ≤ 3)
P(y > 3)

]
= log

[
P(y = 1) + P(y = 2) + P(y = 3)

P(y = 4)

]
.

Since the final cumulative probability necessarily equals 1.0, we exclude it from the
model. These logits of cumulative probabilities are called cumulative logits. Each
cumulative logit regards the response as binary by considering whether the response
is at the low end or the high end of the scale, where “low” and “high” have a different
definition for each cumulative logit.

CUMULATIVE LOGIT MODELS FOR AN ORDINAL RESPONSE

A model can simultaneously describe the effect of explanatory variables on all the
cumulative probabilities for y. For each cumulative probability, the model looks like
an ordinary logistic regression, where the two outcomes are low = “category j or be-
low” and high = “above category j.” With a single explanatory variable, this model is

logit[P(y ≤ j)] = α j − βx, j = 1, 2, . . . , c − 1.

For c = 4, for instance, this single model describes three relationships: the effect
of x on the odds that y ≤ 1 instead of y > 1, the effect on the odds that y ≤ 2
instead of y > 2, and the effect on the odds that y ≤ 3 instead of y > 3. The model
requires a separate intercept parameter α j for each cumulative probability. Since the
cumulative probabilities increase as j increases, so do {α j}.
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Why is the model written with a minus sign before β? This is not necessary, but
it is how the model is parameterized by some software, such as Stata (the ologit func-
tion) and SPSS. That way, when β > 0, when x is higher cumulative probabilities are
lower. But cumulative probabilities being lower means it is less likely to observe rel-
atively low values and thus more likely to observe higher values of y. So, this param-
eterization accords with the usual formulation of a positive association, in the sense
that a positive β corresponds to a positive association (higher x tending to occur
with higher y). Statistical software for fitting the model has no standard convention.
Software (such as SAS and the VGAM library in R) that specifies the model as

logit[P(y ≤ j)] = α j + βx

will report the opposite sign for β̂. You should be careful to check how your software
defines the model so that you interpret effects properly.

The parameter β describes the effect of x on y. When β = 0, each cumulative
probability does not change as x changes, and the variables are independent. The
effect of x increases as |β| increases. In this model, β is the same for each cumula-
tive probability. It has the same value for each cumulative logit. In other words, the
model assumes that the effect of x is the same for each cumulative probability. This
cumulative logit model with this common effect is often called the proportional odds
model.

Figure 15.4 depicts the model for four response categories with a quantitative
explanatory variable. The model implies a separate S-shaped curve for each of the
three cumulative probabilities. For example, the curve for P(y ≤ 2) has the appear-
ance of a logistic regression curve for a binary response with the pair of outcomes
(y ≤ 2) and (y > 2). At any fixed x-value, the three curves have the same ordering
as the cumulative probabilities, the one for P(y ≤ 1) being lowest.

P(y # 2)

P(y # 1)

P(y # 3)

P(y # j)

1

0 x

FIGURE 15.4: Depiction
of Curves for Cumulative
Probabilities in a
Cumulative Logit Model
for a Response Variable
with Four Categories

The size of |β| determines how quickly the curves climb or drop. The common
value for β means that the three response curves have the same shape. In Figure 15.4,
the curve for P(y ≤ 1) is the curve for P(y ≤ 2) moved to the right and the curve
for P(y ≤ 3) moved even further to the right. To describe the association, eβ is a
multiplicative effect of x on odds. For each j, the odds that y > j multiply by eβ for
each one-unit increase in x.

Model fitting treats the observations as independent from a multinomial distri-
bution, the generalization of the binomial distribution from two outcome categories
to multiple categories. Software estimates the parameters using all the cumulative
probabilities at once. This provides a single estimate β̂ for the effect of x, rather than
the three separate estimates we’d get by fitting the model separately for each cumu-
lative probability. If you reverse the order of categories of y (i.e., listing from high to
low instead of from low to high), the model fit is the same, but the sign of β̂ reverses.
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Cumulative logit models can handle multiple explanatory variables, which can
be quantitative and/or categorical. The model has the form

logit[P(y ≤ j)] = α j − β1x1 − β2x2 − · · · − βpxp, j = 1, 2, . . . , c − 1.

When an explanatory variable is categorical, dummy variables can represent the cat-
egories. The model has the proportional odds assumption that the effect of an ex-
planatory variable is the same on each cumulative probability.

Example
15.5

Comparing Political Ideology of Democrats and Republicans In the United States,
do Republicans tend to be more conservative than Democrats? Table 15.7, for sub-
jects in the 2014 General Social Survey, relates political ideology (EC = extremely
conservative, C = conservative, SC = slightly conservative, M = moderate, SL =
slightly liberal, L = liberal, EL = extremely liberal) to political party affiliation. We
treat political ideology as the response variable. In Example 15.1, we treated it as a
quantitative explanatory variable by assigning scores to categories. Now, we treat it
as an ordinal response variable in a cumulative logit model.

TABLE 15.7: Political Ideology by Political Party Affiliation

Political Political Ideology

Party EC C SC M SL L EL

Democratic 16 40 73 330 126 167 60
Republican 59 206 112 124 18 12 2

Let x be a dummy variable for political party affiliation, with x = 1 for
Democrats and x = 0 for Republicans. Table 15.8 shows results of fitting the cumu-
lative logit model. The response variable (political ideology) has seven categories,
so the table reports six intercept parameter estimates, referred to as cuts because of
how their ordered values are cutpoints on the real line. These estimates are not as
relevant as the estimated effect of the explanatory variable (party affiliation), which
is β̂ = 2.527. Since the dummy variable x is 1 for Democrats and since high values of
y represent greater liberalism, the positive β̂-value means that Democrats tend to be
more liberal than Republicans. Democrats are more likely than Republicans to fall
toward the liberal end of the political ideology scale.

TABLE 15.8: Output (Stata) for Cumulative Logit Model Fitted to Table 15.7

. ologit response party

Ordered logistic regression LR chi2(1) = 506.60
Prob > chi2 = 0.0000

------------------------------------------------------------------
ideology | Coef. Std. Err. z P>|z| [95% Conf. Int.]
party | 2.527265 .1224756 20.63 0.000 2.2872 2.7673
/cut1 | -1.969594 .1249231 -2.2144 -1.7247
/cut2 | -.0430447 .083657 -.20701 .12092
/cut3 | .8684324 .0896656 .69269 1.0442
/cut4 | 2.781418 .1172596 2.5516 3.0112
/cut5 | 3.481216 .1264142 3.2334 3.7290
/cut6 | 5.077736 .1690398 4.7464 5.4090
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We can also interpret β̂ = 2.527 by exponentiating β̂ to form an estimated odds
ratio using cumulative probabilities. For any fixed j, the estimated odds that a Demo-
crat’s response is in the liberal direction rather than the conservative direction (i.e.,
y > j rather than y ≤ j) are eβ̂ = e2.527 = 12.5 times the estimated odds for Repub-
licans. Specifically, this odds ratio applies to each of the six cumulative probabilities
for Table 15.7.

To illustrate, using the third of the six cumulative probabilities, the estimated
odds that a Democrat is in a liberal category, rather than a moderate or a conservative
category, are 12.5 times the corresponding estimated odds for a Republican. The
value 12.5 is far from the no-effect value of 1.0. The sample has a strong association,
Democrats tending to be more liberal than Republicans.

INFERENCE FOR EFFECTS ON AN ORDINAL RESPONSE

When β = 0 in the cumulative logit model, the variables are independent. We test
independence by testing H0: β = 0. As usual, the z test statistic divides β̂ by its
standard error. The square of that ratio is the Wald statistic, which is chi-squared
with df = 1. The likelihood-ratio test is based on the difference in (−2 log �) values
with and without the explanatory variable in the model. Most software can report
both these tests. With multiple explanatory variables, the likelihood-ratio statistic
also tests H0: β1 = · · · = βp = 0.

From Table 15.8, the effect of party affiliation has estimate β̂ = 2.527 and
standard error = 0.122. So, z = 2.527/0.122 = 20.63 and the Wald statistic is
(20.63)2 = 425.8. The table also reports the likelihood-ratio test statistic for this
hypothesis, which equals 506.6, based on df = 1. With either statistic, the P-value is
0.000 for testing H0: β = 0 (independence of political ideology and party) against
Ha: β �= 0. These tests and β̂ provide extremely strong evidence that Democrats tend
to be politically more liberal than Republicans.

These tests of independence take into account the ordering of the response cat-
egories. They are usually more powerful than tests of independence that ignore the
ordering, such as the Pearson chi-squared test of Section 8.2. When there truly is
dependence, the ordinal test usually yields a smaller P-value.

With multiple explanatory variables, to check the fit of the model we can an-
alyze whether extra terms such as interactions provide a significant improvement
in the model fit. One way to do this uses a likelihood-ratio test of whether the
extra parameters equal 0. Some software also provides a chi-squared test for the
proportional odds assumption that the β effects are the same for all cumulative
probabilities.

As in other statistical endeavors, don’t put too much emphasis on statistical
tests, whether of effects or of goodness of fit. Results are sensitive to sample size,
more significant results tending to occur with larger sample sizes. Test statistics
merely indicate the level of parsimony that is possible. It is important to supple-
ment the tests with estimation methods that describe the strength of effects and
with residual analyses that detect parts of the data for which the overall trend fails
to hold.

A confidence interval for the odds ratio describes the association for the cumu-
lative logit model. Since β̂ = 2.527 with se = 0.122, the 95% confidence interval
for the population log odds ratio represented by β equals 2.527 ± 1.96(0.122), or
(2.29, 2.77). The confidence interval for the odds ratio is (e2.29, e2.77), or (9.8, 15.9).
The odds that a Democrat’s response falls in the liberal direction are more than about
10 times the odds for Republicans. To illustrate, using the fourth of the six cumulative
probabilities, we conclude that the odds that a Democrat is in a liberal category,
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rather than a moderate or a conservative category, fall between 9.8 and 15.9 times
the odds for a Republican.

INVARIANCE TO CHOICE OF RESPONSE CATEGORIES

When the cumulative logit model fits well, it also fits well with similar effects for
any collapsing of the response categories. For instance, if a model for categories (ex-
tremely conservative, conservative, slightly conservative, moderate, slightly liberal,
liberal, extremely liberal) fits well, approximately the same estimated effects result
when we fit the model to the data after collapsing the response scale to (conservative,
moderate, liberal). This invariance to the choice of response categories is a nice fea-
ture of the model. Two researchers who use different response categories in studying
an association should reach similar conclusions.

To illustrate, we collapse Table 15.7 to a three-category response, combining
the three liberal categories and combining the three conservative categories. The
estimated effect of party affiliation changes only from 2.527 (se = 0.122) to 2.535
(se = 0.127). Some slight loss of efficiency occurs in collapsing ordinal scales, result-
ing in larger standard errors. In practice, when observations are spread fairly evenly
among the categories, the efficiency loss is minor unless the collapsing is to a binary
response. It is not advisable to collapse ordinal data to binary.

The cumulative logit model implies trends upward or downward among distri-
butions of y at different values of explanatory variables. When x refers to two groups,
as in Table 15.7, the model fits well when subjects in one group tend to make higher
responses on the ordinal scale than subjects in the other group. The model does
not fit well when the response distributions differ in their variability rather than
their average. If Democrats tended to be primarily moderate in political ideology,
while Republicans tended to be both very conservative and very liberal (i.e., at the
two extremes of the scale), then the Republicans’ responses would show greater
variability than the Democrats’. The two political ideology distributions would be
quite different, but the model would not detect this if the average responses were
similar.

15.5 Logistic Models for Nominal Responses∗

For nominal response variables (i.e., unordered categories), an extension of the bi-
nary logistic regression model provides an ordinary logistic model for each pair of
response categories. The models simultaneously use all pairs of categories by spec-
ifying the odds of outcome in one category instead of another. The order of listing
the categories is irrelevant, because the response scale is nominal.

BASELINE-CATEGORY LOGITS

Logit models for nominal response variables pair each category with a baseline cat-
egory. Most software uses the last category as the baseline. With three response cat-
egories, for example, the baseline-category logits are

log
[

P(y = 1)
P(y = 3)

]
and log

[
P(y = 2)
P(y = 3)

]
.

For c outcome categories, the baseline-category logit model is

log
[

P(y = j)
P(y = c)

]
= α j + β jx, j = 1, ... , c − 1.
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Given that the response falls in category j or the last category, this models the log
odds that the response is j. It looks like an ordinary logistic regression model, where
the two outcomes are category j and category c.

Each of the c − 1 logit equations has its own parameters. With multiple explana-
tory variables, the model

log
[

P(y = j)
P(y = c)

]
= α j + β j1x1 + β j2x2 + · · · + β jpxp, j = 1, ... , c − 1,

can have a large number of parameters. Software for multicategory logit models fits
all the equations simultaneously, assuming independent observations from multi-
nomial distributions.

Example
15.6

Belief in Afterlife by Sex and Race Table 15.9, from a General Social Survey, has
y = belief in life after death, with categories (yes, undecided, no), and explanatory
variables sex and race. Let s = 1 for females and 0 for males, and r = 1 for blacks
and 0 for whites. With no as the baseline category for y, the model is

log
[

P(y = 1)
P(y = 3)

]
= α1 + β1S s + β1R r,

log
[

P(y = 2)
P(y = 3)

]
= α2 + β2S s + β2R r.

The S and R subscripts identify the sex and race parameters. For example, β1S com-
pares females and males (controlling for race) on the log odds of responding yes
rather than no to belief in life after death, whereas β2S compares females and males
on the log odds of responding undecided instead of no.

TABLE 15.9: Belief in Afterlife by Sex and Race

Belief in Afterlife

Race Sex Yes Undecided No

Black Female 64 9 15
Male 25 5 13

White Female 371 49 74
Male 250 45 71

The model assumes a lack of interaction between sex and race in their effects
on belief in life after death. Table 15.10 shows the parameter estimates. For the first
equation, for the log odds of a yes rather than a no response on belief in the afterlife,
β̂1S = 0.419 and β̂1R = −0.342. Since the dummy variables are 1 for females and for
blacks, given that a subject’s response was yes or no, the estimated probability of a
yes response was higher for females than for males (given race) and lower for blacks
than for whites (given sex).

The effect parameters represent log odds ratios with the baseline category. For
instance, β̂1S = 0.419 is the conditional log odds ratio between sex and response cat-
egories 1 and 3 (yes and no), given race. For females, the estimated odds of response
yes rather than no on life after death are e0.419 = 1.52 times those for males, con-
trolling for race. For blacks, the estimated odds of response yes rather than no on
life after death are e−0.342 = 0.71 times those for whites, controlling for sex. These
odds ratios suggest that, conditional on the response being yes or no, females are
more likely than males to respond yes, and whites are more likely than blacks to
respond yes.
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TABLE 15.10: Output (Stata) for Baseline-Category Logit Model Fitted to Table 15.9. The first
equation uses belief categories (yes, no) and the second equation uses belief
categories (undecided, no).

. mlogit afterlife sex race [fweight = count], base(3)

afterlife | Coef. Std. Err. z P>|z| [95% Conf. Int.]
1 sex | .4185504 .171255 2.44 0.015 .0829 .7542

race | -.3417744 .2370375 -1.44 0.149 -.8064 .1228
_cons | 1.224826 .1281071 9.56 0.000 .9737 1.476

|
2 sex | .1050638 .2465096 0.43 0.670 -.3781 .5882

race | -.2709753 .3541269 -0.77 0.444 -.9651 .4231
_cons | -.4870336 .1831463 -2.66 0.008 -.8460 -.1281

|
3 | (base outcome)

ARBITRARY PAIRS OF RESPONSE CATEGORIES, AND FITTED
RESPONSE DISTRIBUTIONS

The choice of the baseline category is arbitrary. We can use the equations for a given
choice to get equations for any pair of categories. For example, using properties of
logarithms,

log
[

P(y = 1)
P(y = 2)

]
= log

[
P(y = 1)
P(y = 3)

]
− log

[
P(y = 2)
P(y = 3)

]
.

So, to get the prediction equation for the log odds of belief yes instead of undecided,
we take

(1.225 + 0.419s − 0.342r) − (−0.487 + 0.105s − 0.271r) = 1.71 + 0.314s − 0.071r.

For example, the odds of a response yes instead of undecided are higher for females
(for whom s = 1) than males (s = 0).

Since the odds ratios for this model refer to conditional probabilities, given out-
come in one of two categories, it is also useful to have software report the estimated
unconditional probabilities based on the model fit. These fitted probabilities for the
model sum to 1 over the full response scale. These are also simpler to interpret than
odds ratios. Table 15.11 shows how to use R software to enter the four multinomial
distributions, fit the model (with the last category as the baseline, by default), and
show the fitted probabilities. The estimated probability of saying yes for belief in an
afterlife varies between 0.622 for black males and 0.755 for white females.

INFERENCE FOR BASELINE-CATEGORY LOGIT MODELS

Inference applies as in ordinary logistic regression, except now to test the effect of
an explanatory variable we consider all its parameters for the various equations.
Likelihood-ratio tests compare the fits of the models with and without the explana-
tory variable in the model.

For example, for the data on belief in an afterlife, the test of the sex effect has
H0: βS

1 = βS
2 = 0. The likelihood-ratio test compares the model to the simpler model

dropping sex as an explanatory variable. The test statistic (not shown in Tables 15.10
and 15.11) equals 6.75. It has df = 2, since H0 has two parameters. The P-value of
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TABLE 15.11: Output (R) for Baseline-Category Logit Model Fitted to Table 15.9, Also
Showing Fitted Probabilities

> race <- c(1,1,0,0); sex <- c(1,0,1,0)
> y1 <- c(64,25,371,250); y2 <- c(9,5,49,45); y3 <- c(15,13,74,71)
> library(VGAM)
> fit <- vglm(cbind(y1,y2,y3) ˜ race + sex, family=multinomial)
> summary(fit)

Estimate Std. Error z value Pr(>|z|)
(Intercept):1 1.2248 0.1281 9.561 < 2e-16
(Intercept):2 -0.4870 0.1831 -2.659 0.00783
race:1 -0.3418 0.2370 -1.442 0.14934
race:2 -0.2710 0.3541 -0.765 0.44416
sex:1 0.4186 0.1713 2.444 0.01452
sex:2 0.1051 0.2465 0.426 0.66996
---
> fitted(fit)

y1 y2 y3
1 0.7073517 0.10018119 0.1924671
2 0.6221640 0.12055943 0.2572766
3 0.7545608 0.09956287 0.1458763
4 0.6782703 0.12244794 0.1992817

0.03 shows evidence of a sex effect. By contrast, the effect of race is not significant,
the likelihood-ratio statistic equaling 1.99 on df = 2. This partly reflects the larger
standard errors that the effects of race have, due to a much greater imbalance be-
tween sample sizes in the race categories than in the sex categories.

15.6 Loglinear Models for Categorical Variables∗

Logistic regression models are similar in structure to ordinary regression models,
both types predicting a response variable using explanatory variables. By contrast,
loglinear models are appropriate for contingency tables in which each classification
is a response variable. Loglinear analysis resembles a correlation analysis more than
a regression analysis. The loglinear focus is on studying associations between pairs of
variables rather than modeling the response on one of them in terms of the others.

Loglinear models are special cases of generalized linear models that assume that
each cell count in a contingency table has a Poisson distribution. This distribution
is defined for discrete variables, such as counts, that can take nonnegative integer
values. Equivalently, given the overall sample size, they assume a multinomial distri-
bution for the counts in the cells of the contingency table.

The loglinear model formulas express the logs of cell expected frequencies in
terms of dummy variables for the categorical variables and interactions between
those variables. The actual model formulas can be cumbersome, and this section
instead uses a symbolic notation that highlights the pairs of variables that are as-
sociated. Exercise 15.39 shows why the models are called loglinear models.

Example
15.7

Students’ Use of Alcohol, Cigarette, and Marijuana Table 15.12 is from a survey
by the Wright State University School of Medicine and the United Health Services
in Dayton, Ohio. The survey asked senior high school students in a nonurban area
near Dayton, Ohio, whether they had ever used alcohol, cigarettes, or marijuana.
Table 15.12 is a 2 × 2 × 2 contingency table that cross-classifies responses on these
three items.
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TABLE 15.12: Alcohol, Cigarette, and Marijuana Use for
High School Seniors

Alcohol Use Cigarette Use Marijuana Use

Yes No
Yes Yes 911 538

No 44 456

No Yes 3 43
No 2 279

Source: Thanks to Prof. Harry Khamis, Wright State University, for these
data.

In this table, all three variables are response variables, rather than one being
a response variable and the others explanatory. The models presented in this sec-
tion describe their association structure. They analyze whether each pair of variables
is associated and whether the association is the same at each category of the third
variable.

A HIERARCHY OF LOGLINEAR MODELS FOR THREE VARIABLES

Loglinear models apply to contingency tables with any number of dimensions. We
use three-way tables to introduce basic ideas, illustrating for Table 15.12. Denote the
three categorical response variables by x, y, and z.

Loglinear models describe conditional associations in partial tables that relate
two of the variables while controlling for the third one. A pair of variables could
be statistically independent at each category of the third variable. In other words,
the population version of each partial table could satisfy independence. In that case,
the variables are said to be conditionally independent, and the odds ratios equal 1 in
the partial tables. Or, associations might exist in some or all of the partial tables. We
now introduce a hierarchy of five loglinear models, ordered in terms of the extent of
association.

1. All three pairs of variables are conditionally independent. That is,
x is independent of y, controlling for z;
x is independent of z, controlling for y;
y is independent of z, controlling for x.

2. Two of the pairs of variables are conditionally independent. For example,
x is independent of z, controlling for y;
y is independent of z, controlling for x;
x and y are associated, controlling for z.

3. One of the pairs of variables is conditionally independent. For example,
x is independent of z, controlling for y;
x and y are associated, controlling for z;
y and z are associated, controlling for x.

4. No pair of variables is conditionally independent, but the association between
any two variables is the same at each category of the third. We then say there
is homogeneous association.

5. All pairs of variables are associated, but there is interaction; that is, the associ-
ation between each pair varies according to the category of the third variable.

Each model has a symbol that indicates the pairs of variables that are associated.
Associated variables appear together in the symbol. For instance, (xy, z) denotes the
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model for case 2 (above) in which x and y are associated but the other two pairs are
conditionally independent. The symbol (xy, xz, yz) denotes the model for case 4, in
which all three pairs are associated but the association is homogeneous. Table 15.13
lists the symbols for the models described above. All the models provide some struc-
ture for the pattern of association except for the one symbolized by (xyz). This model
fits any sample three-way table perfectly, allowing the associations to be nonhomo-
geneous. It is called the saturated model.

TABLE 15.13: Some Loglinear Models for Three-Dimensional Contingency Tables

Model Symbol Interpretation

(x, y, z) All pairs are conditionally independent.
(xy, z) x and y are the only associated pair.
(xy, yz) x and z are the only conditionally independent pair.
(xy, yz, xz) Each pair is associated, controlling for the third

variable, but the association is homogeneous.
(xyz) All pairs are associated, but the association is nonhomogeneous (interaction).

ODDS RATIO INTERPRETATIONS FOR LOGLINEAR MODELS

Interpretations of associations in loglinear models, like those in logistic regression
models, can use the odds ratio. In 2×2 contingency tables, independence is equivalent
to a population odds ratio of 1.0. In a three-way table, conditional independence
between x and y means that the population odds ratios in the xy partial tables all
equal 1.0. Homogeneous association means that the population odds ratios in the xy
partial tables are identical at each category of z.

For instance, a 2 × 2 × 3 table consists of three partial tables each of size 2×2,
with two categories for x and two categories for y measured at three levels of z.
When loglinear model (xz, yz) holds, x and y are conditionally independent, and the
xy population odds ratio is 1.0 at the first level of z, 1.0 at the second level of z, and
1.0 at the third level of z. If the population odds ratio = 2.2 at the first level of z,
2.2 at the second level of z, and 2.2 at the third level of z, then there is conditional
association but it is homogeneous. So, model (xy, xz, yz) holds. When the xy odds
ratios are the same at all levels of z, necessarily the xz odds ratios are the same at all
levels of y and the yz odds ratios are the same at all levels of x.

In fitting loglinear models, software provides expected frequency estimates (also
called fitted values) having odds ratios that perfectly satisfy the model. If the model
fits well, these odds ratios help us interpret the associations implied by the model.

Example
15.8

Estimated Odds Ratios for Substance Use Data Denote the variables in Table 15.12
by A for alcohol use, C for cigarette use, and M for marijuana use. Table 15.14 con-
tains estimated expected frequencies for the loglinear model (AC, AM,CM) that per-
mits an association for each pair of variables but assumes homogeneous association,
with the odds ratio between two variables being the same at each level of the third
variable. The estimated expected frequencies are very close to the observed counts,
so the model seems to fit well.

Let’s study the estimated association between cigarette use and marijuana use,
controlling for alcohol use, using the estimated expected frequencies. For those who
have used alcohol, the estimated odds ratio between C and M is

910.4 × 455.4
538.6 × 44.6

= 17.3.
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TABLE 15.14: Estimated Expected Frequencies for the Log-
linear Model (AC, AM,CM) for Alcohol (A),
Cigarette (C), and Marijuana (M) Use for High
School Seniors

Alcohol Use Cigarette Use Marijuana Use

Yes No
Yes Yes 910.4 538.6

No 44.6 455.4

No Yes 3.6 42.4
No 1.4 279.6

Similarly, for those who have not used alcohol, the estimated odds ratio between C
and M is

3.6 × 279.6
42.4 × 1.4

= 17.3.

For each category of A, students who have smoked cigarettes have estimated odds
of having smoked marijuana that are 17.3 times the estimated odds for students who
have not smoked cigarettes. The model assumes homogeneous association, so the
estimated odds ratio is the same at each category of A.

Software for loglinear models provides tables of model parameter estimates
from which one can also find estimated odds ratios. Table 15.15 illustrates this. (Soft-
ware also provides estimates for intercept and main effect parameters. They are not
shown here, because interpretations use the interaction terms to describe conditional
associations.) For each pair of variables, the association parameter estimate refers to
the log odds ratio. For the CM conditional association, therefore, the estimated odds
ratio at each level of A equals e2.848 = 17.3. Similarly, the estimated odds ratio equals
e2.054 = 7.8 between A and C at each level of M, and the estimated odds ratio equals
e2.986 = 19.8 between A and M at each level of C. The estimated conditional associ-
ation is very strong between each pair of variables.

TABLE 15.15: Output of Association Parameter (Log Odds Ratio)
Estimates for the Loglinear Model (AC, AM,CM) for
Substance Use Data

Parameter Estimate Std. Error z Sig.
A*C 2.0545 0.1741 11.80 .000
A*M 2.9860 0.4647 6.43 .000
C*M 2.8479 0.1638 17.38 .000

The model (AC, AM,CM) permits conditional association for each pair of vari-
ables. Other possible loglinear models for these data delete at least one of the associ-
ations. To illustrate the association patterns implied by some of these models, Table
15.16 presents estimated conditional odds ratios for the estimated expected frequen-
cies for the models. For example, the entry 1.0 for the AC conditional association for
the model (AM,CM) is the common value of the estimated AC odds ratios at the
two categories of M. This model implies conditional independence between alcohol
use and cigarette use, controlling for marijuana use. It has estimated odds ratios of
1.0 for the AC conditional association.
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TABLE 15.16: Summary of Estimated Conditional
Odds Ratios for Various Loglinear
Models Fitted to Substance Use Data

Conditional Odds Ratio

Model AC AM CM

(A,C, M) 1.0 1.0 1.0
(AC, M) 17.7 1.0 1.0
(AM,CM) 1.0 61.9 25.1
(AC, AM,CM) 7.8 19.8 17.3
(ACM) Level 1 13.8 24.3 17.5
(ACM) Level 2 7.7 13.5 9.7

Table 15.16 shows that estimated conditional odds ratios equal 1.0 for each
pairwise term not appearing in a model, such as the AC association in the model
(AM,CM). The odds ratios for the sample data are those reported for the saturated
model (ACM), which provides a perfect fit. For that model, the odds ratios between
two variables are not the same at each level of the third variable, so they are reported
separately for each level. In each case, they are strong at both levels.

We see in Table 15.16 that estimated conditional odds ratios can vary dramati-
cally from model to model. This highlights the importance of good model selection.
An estimate from this table is informative only to the extent that its model fits well.
The next section shows how to check loglinear model goodness of fit.

15.7 Model Goodness-of-Fit Tests for Contingency
Tables∗

A goodness-of-fit test for a model is a test of the null hypothesis that that model
truly holds in the population of interest. Section 8.2 introduced the chi-squared test
of independence for contingency tables. That test is a goodness-of-fit test for the log-
linear model that states that the two categorical variables are statistically indepen-
dent. The chi-squared statistic compares the observed frequencies to the estimated
expected frequencies that satisfy the independence model. Likewise, logistic regres-
sion and loglinear models for multidimensional contingency tables have chi-squared
goodness-of-fit tests.

CHI-SQUARED GOODNESS-OF-FIT STATISTICS

Each model for a contingency table has a set of cell estimated expected frequen-
cies, which are numbers that perfectly satisfy the model and give the best fit to the
observed counts. The model goodness of fit is tested by comparing the estimated ex-
pected frequencies, denoted by { fe}, to the observed frequencies { fo}. Chi-squared
test statistics summarize the discrepancies. Larger differences between the { fo} and
{ fe} yield larger values of the test statistics and stronger evidence that the model is
inadequate.

Two chi-squared statistics, having similar properties, can test goodness of fit. The
Pearson chi-squared statistic

X 2 =
∑ ( fo − fe)2

fe
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was introduced on page 231 for testing independence. Another statistic, the
likelihood-ratio chi-squared statistic, is

G2 = 2
∑

fo log
(

fo

fe

)
.

It equals the difference between the (−2 log �) values for the model being tested and
for the most complex model possible.5 Both X 2 and G2 statistics equal 0 when there
is a perfect fit (i.e., all fo = fe). Since large values indicate a poor fit, the P-value for
testing a model is the right-tail probability above the observed value.

If the model truly holds, both test statistics have approximate chi-squared distri-
butions. The degrees of freedom (df ) for the statistics depend on the model fitted.
The df resemble the error df in regression, equaling the number of responses mod-
eled on the left-hand side of the equation minus the number of parameters on the
right-hand side of the model. For logistic regression models, for instance, the num-
ber of responses modeled is the number of sample logits for the model. This equals
the number of combinations of levels of explanatory variables having observations
on the binary response, since there is one logit for each combination. Thus, df =
number of logits modeled − number of parameters. The simpler the model, in the
sense of fewer parameters, the larger the df for the test.

The chi-squared approximation is better for larger sample sizes. The Pearson
statistic is preferred when the expected frequencies average between about 1 and
10, but neither statistic works well if most of the expected frequencies are less than
about 5. These tests are not appropriate if any of the explanatory variables are not
categorical. The chi-squared sampling distributions result only when they are applied
to contingency tables with relatively large counts.

Example
15.9

Logistic Model Goodness of Fit for Death Penalty Data For Table 15.3 on death
penalty verdicts, Examples 15.2 (page 478) and 15.4 (page 484) used the model

logit[P(y = 1)] = α + β1d + β2v

to describe how the probability of receiving the death penalty depends on defen-
dant’s race d and victims’ race v. A goodness-of-fit test analyzes whether this model
with main effects is adequate for describing the data. The more complex model con-
taining the interaction term is necessary if the main effects model fits poorly.

Software automatically finds the model’s estimated expected frequencies and
the goodness-of-fit statistics. For instance, this model estimated a probability of 0.233
that a black defendant receives the death penalty for having white victims. Table 15.3
showed there were 48 such black defendants, so the estimated expected number
receiving the death penalty is 48(0.233) = 11.2. This is the estimated expected fre-
quency for the cell in the table having observed frequency 11.

The df equal the number of logits minus the number of parameters in the model.
The death penalty data have four logits, one for each combination of defendant’s race
and victims’ race. The model has three parameters, so both goodness-of-fit statistics
have

df = Number of logits − Number of parameters = 4 − 3 = 1.

Table 15.17 shows software results of chi-squared goodness-of-fit tests for the
logistic model for the death penalty data. The null hypothesis for the tests is that the
logistic model with main effects truly holds; that is, no interaction occurs between
defendant’s race and victims’ race in their effects on the death penalty verdict. The

5 Software for generalized linear models calls this statistic the deviance.
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Pearson test statistic is X 2 = 0.20 and the likelihood-ratio test statistic is G2 = 0.38.
These test statistic values are small, so neither P-value is small. The model fits the
data well. The null hypothesis that the model holds is plausible.

TABLE 15.17: Chi-Squared Goodness-of-Fit Tests for Logistic
Model with Main Effects Fitted to Death Penalty
Data (Table 15.3)

Goodness-of-fit Tests
Value df Sig.

Likelihood Ratio .380 1 .538
Pearson Chi-Square .198 1 .656

STANDARDIZED RESIDUALS

The chi-squared goodness-of-fit statistics provide global measures of lack of fit. When
the fit is poor, a closer look at the cells of the table may reveal the nature of the lack
of fit. Software for logistic and loglinear models can report standardized residuals
(sometimes called adjusted residuals), which make a cell-by-cell comparison of fo

and fe. Each standardized residual has the form

Standardized residual = fo − fe

Standard error of ( fo − fe)
.

When the model truly holds, standardized residuals behave like standard normal
variables. A large standardized residual (say, exceeding 3 in absolute value) provides
strong evidence of lack of fit in that cell. The standardized residuals presented in Sec-
tion 8.3 (page 237) are special cases for the bivariate model of independence.

For the logistic model for the death penalty data, the standardized residuals all
equal ±0.44. They are small and provide no evidence of lack of fit. This is not sur-
prising, since the goodness-of-fit statistics are small. In fact, when df = 1 for the
goodness-of-fit test, only one standardized residual is nonredundant, and the square
of any of them equals the X 2 test statistic.

LOGLINEAR MODEL GOODNESS OF FIT

The same goodness-of-fit formulas apply to loglinear models. Likewise, standard-
ized residuals compare individual cell counts to expected frequencies satisfying the
model.

Examples 15.7 (page 492) and 15.8 (page 494) used loglinear models to describe
associations among alcohol use, cigarette use, and marijuana use, for high school stu-
dents. Table 15.18 displays results of Pearson X 2 and likelihood-ratio G2 goodness-
of-fit tests for various loglinear models, ranging from the model (A,C, M) for which
each pair of variables is independent to the model (AC, AM,CM) for which each
pair is associated but the association between two variables is the same at each level
of the third. The smaller the chi-squared statistics, the better the fit. Small P-values
contradict the null hypothesis that the model is adequate. It is usually preferable to
select the simplest model that provides a decent fit to the data. If no model fits well,
the standardized residuals highlight cells contributing to the lack of fit.

From Table 15.18, the only model that passes the goodness-of-fit test is
(AC, AM,CM). This model allows association between all pairs of variables but
assumes that the odds ratio between each pair is the same at each category of the
third variable. The models that lack any associations fit poorly, having P-values of
0.000.
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TABLE 15.18: Goodness-of-Fit Tests for Loglinear Mod-
els of Alcohol (A), Cigarette (C), and
Marijuana (M) Use, with Likelihood-
Ratio (G2) and Pearson (X2) Chi-Squared
Test Statistics

Model G2 X2 df P-Value

(A,C, M) 1286.0 1411.4 4 0.000

(A,CM) 534.2 505.6 3 0.000
(C, AM) 939.6 824.2 3 0.000
(M, AC) 843.8 704.9 3 0.000

(AC, AM) 497.4 443.8 2 0.000
(AC,CM) 92.0 80.8 2 0.000
(AM,CM) 187.8 177.6 2 0.000

(AC, AM,CM) 0.4 0.4 1 0.54

COMPARING MODELS BY COMPARING G2-VALUES

Table 15.18 illustrates two important properties of the likelihood-ratio G2 statistic.
First, G2 has similar properties as the SSE (sum of squared residuals) measure in
regression. Both compare observed responses to values expected if a model holds,
and both cannot increase as the model becomes more complex. For instance,
(A,CM) is a more complex model than (A,C, M), since it allows one association.
Hence, it provides a better fit and its G2-value is smaller. Similarly, G2 drops further
for the model (AC,CM) and further yet for (AC, AM,CM). The Pearson X 2 statis-
tic, unlike the likelihood-ratio G2, does not have this property. It could potentially
increase as a model gets more complex, although in practice this rarely happens.

The second property of G2 refers to model comparison, a topic discussed for
logistic models on page 483. Section 11.5 introduced an F test comparing complete
and reduced regression models, based on the reduction in SSE. A similar test com-
paring models for categorical responses uses the reduction in G2-values. To test the
null hypothesis that a model truly holds versus the alternative hypothesis that a more
complex model fits better, the test statistic is the difference in G2-values. This dif-
ference is identical to the difference in (−2 log �) values for the two models. It is a
chi-squared statistic with degrees of freedom equal to the difference in df values for
the two G2-values. This is the likelihood-ratio test for comparing the models.

To illustrate, we compare loglinear models (AC,CM) and (AC, AM,CM). We
test the null hypothesis that the reduced model (AC,CM) is adequate against
the alternative that the more complex model (AC, AM,CM) is better. The
likelihood-ratio test analyzes whether we can drop the AM association from the
model (AC, AM,CM). The test statistic is the difference between their G2-values,
92.0 − 0.4 = 91.6, based on df = 2 − 1 = 1. This chi-squared statistic has a P-value
of P = 0.000. So, the model (AC, AM,CM) fits significantly better than (AC,CM).

It is not possible to use G2 to compare a pair of models such as (A,CM) and
(AC, AM). Neither is a special case of the other, since each allows association that
the other excludes.

DISTINCTION BETWEEN LOGISTIC AND LOGLINEAR MODELS

Logistic regression models distinguish between a single response variable and a
set of explanatory variables. By contrast, loglinear models treat every variable as a
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response variable. Most applications have a single response variable. It is then more
natural to use a logistic regression model than a loglinear model. The logistic anal-
ysis focuses on the effects of the explanatory variables on the response, much as in
ordinary regression modeling. For that reason, logistic regression has greater scope
in practice.

15.8 Chapter Summary
Chapter 8 presented methods for analyzing association between two categorical vari-
ables. The methods of this chapter showed how to model a categorical response vari-
able in terms of possibly several explanatory variables, which can be categorical or
quantitative or both.

• For binary response variables, the logistic regression model describes how the
probability of a particular category depends on explanatory variables. It uses a
linear model for the logit transform of the probability, which is the log of the
odds. For a quantitative explanatory variable, an S-shaped curve describes how
the probability changes as the explanatory variable changes.

• The antilog of a β̂ parameter estimate in logistic regression is a multiplicative
effect on the odds for the response variable, for each one-unit increase in the
explanatory variable of which it is a coefficient. Thus, for logistic regression the
odds ratio is a natural measure of the nature and strength of an association.

• A parameter value of β = 0 corresponds to a predictor having no effect on
the response. To test H0: β = 0, we can use the normal test statistic, z = β̂/se.
The Wald test uses the square of this ratio. The likelihood-ratio test compares
values of (−2 log �) for models with and without that term, where � is the max-
imized likelihood function. The large-sample distribution of these test statis-
tics is chi-squared with df = 1. The likelihood-ratio statistic can also test H0:
β1 = · · · = βp = 0 in multiple logistic regression (with df = p) or compare
nested models.

• For ordinal response variables, an extension of logistic regression uses cumu-
lative logits, which are logits of cumulative probabilities. The model is called a
cumulative logit model. The effects of the explanatory variables are the same
for each cumulative probability.

• For nominal response variables, an extension of logistic regression forms log-
its by pairing each category with a baseline category. Each logit equation has
separate parameters in this baseline-category logit model.

• Loglinear models are useful for investigating association patterns among a set
of categorical response variables. They consider possible conditional indepen-
dence patterns and use conditional odds ratios to describe association.

• For models for contingency tables, Pearson and likelihood-ratio chi-squared
statistics test the goodness of fit of models to the data.

Karl Pearson introduced the chi-squared test for bivariate contingency tables in
1900. The models presented in this chapter did not become popular until near the end
of the 1900s. They are examples of generalized linear models, which apply to discrete
as well as continuous response variables. Social scientists now have available a wide
variety of tools for analyzing categorical data.
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Exercises

Practicing the Basics
15.1. A logistic regression model describes how the prob-
ability of voting for Candidate X in an election depends
on x = voter’s total family income (in thousands of dol-
lars) in the previous year. The sample prediction equation
is

log
[

P̂(y = 1)

1 − P̂(y = 1)

]
= −2.00 + 0.03x.

(a) Identify β̂ and interpret its sign.
(b) Find the estimated probability of voting for the candi-
date when (i) income = 5000, (ii) income = 10000.
(c) At which income level is the estimated probability
of voting for the candidate (i) equal to 0.50? (ii) greater
than 0.50?
(d) For the region of x-values for which P(y = 1) is near
0.50, give a linear approximation for the change in the
probability for an increase of $1000 in income.
(e) Explain the effect of a $10,000 increase in family in-
come on the odds of voting for the candidate.

15.2. Refer to the previous exercise. When the explana-
tory variables are x1 = family income, x2 = number of
years of education, and s = sex (1 = male, 0 = female),
the prediction equation is

logit[P̂(y = 1)] = −2.40 + 0.03x1 + 0.05x2 + 0.40s.

For this sample, x1 ranges from 6 to 157 with a standard de-
viation of 25, and x2 ranges from 7 to 20 with a standard
deviation of 3.

(a) Find the estimated probability of voting for Candi-
date X for (i) a man with 10 years of education and in-
come $50,000, (ii) a woman with 10 years of education and
income $50,000.
(b) Convert the probabilities in (a) to odds, and find the
odds ratio, the odds for men divided by the odds for fe-
males. Interpret.
(c) Show how the odds ratio in (b) relates to the sex effect
in the prediction equation.
(d) Holding the other variables constant, find the esti-
mated effect on the odds of voting the candidate of (i) a
standard deviation change in x2, (ii) a standard deviation
change in x1. Which explanatory variable has the larger
standardized effect? Interpret.

15.3. A sample of 54 elderly men take a psychiatric
examination to determine whether symptoms of senil-
ity are present. A subtest of the Wechsler Adult Intel-
ligence Scale (WAIS) is the explanatory variable. The
WAIS scores range from 4 to 20, with a mean of 11.6.
Higher values indicate more effective intellectual func-
tioning. Software shows the following results:

(a) Show (i) P̂(y = 1) = 0.50 at x = 7.2, (ii) P̂(y = 1) <

0.50 for x > 7.2.

----------------------------------------------------------
Variable Coef. Std. Error Wald Chi-square Sig.
INTERCEPT 2.0429 1.0717 3.6338 0.0566
WAIS -0.2821 0.1007 7.8487 0.0051

----------------------------------------------------------

(b) Estimate the probability of senility at x = 20.
(c) The fit of the linear probability model is P̂(y = 1) =
0.847 − 0.051x. Estimate the probability of senility at x =
20. Does this make sense?
(d) Test H0: β = 0 against Ha: β �= 0. Report and interpret
the P-value.

15.4. Table 15.19, the data file Credit at the text web-
site, shows data for a sample of 100 adults randomly se-
lected for an Italian study on the relation between annual
income and having a travel credit card, such as American
Express or Diners Club. At each level of annual income
(in thousands of euros), the table indicates the number of
subjects in the sample and the number of those having at
least one travel credit card. Let x = annual income and
y = whether have a travel credit card (1 = yes, 0 = no).
For instance, for the five observations at x = 30, y = 1
for two subjects and y = 0 for three subjects. Using soft-
ware, (a) find the logistic regression prediction equation,
and (b) fit the probit model. In each case, interpret the es-
timated effect and show the change in the estimated prob-
ability between the lowest and the highest income values.
Attach software output to your solution.

TABLE 15.19

No. Credit No. Credit No. Credit
Income Cases Cards Income Cases Cards Income Cases Cards

12 1 0 21 2 0 34 3 3
13 1 0 22 1 1 35 5 3
14 8 2 24 2 0 39 1 0
15 14 2 25 10 2 40 1 0
16 9 0 26 1 0 42 1 0
17 8 2 29 1 0 47 1 0
19 5 1 30 5 2 60 6 6
20 7 0 32 6 6 65 1 1

Source: Thanks to R. Piccarreta, Bocconi University, Milan, for
original form of data.
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15.5. For first-degree murder convictions6 in East Baton
Rouge Parish, Louisiana, between 1990 and 2008, the
death penalty was given in 3 out of 25 cases in which a
white killed a white, in 0 out of 3 cases in which a white
killed a black, in 9 out of 30 cases in which a black killed
a white, and in 11 out of 132 cases in which a black killed
a black. Table 15.20 shows software output for fitting a lo-
gistic regression model, where d = 1 (d = 0) for black
(white) defendants and v = 1 (v = 0) for black (white)
victims. Interpret the estimates and the inference results
in this table.

TABLE 15.20

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.0232 0.6137 -3.297 0.000978
d 1.1886 0.7236 1.643 0.100461
v -1.5713 0.5028 -3.125 0.001778

Residual deviance: 0.16676 on 1 degrees of freedom

15.6. Table 12.1 in Chapter 12 reported GSS data on po-
litical ideology (scaled 1 to 7, with 1 being most liberal) by
party affiliation of

1 2 3 4 5 6 7
Democrat 5 18 19 25 7 7 2
Republican 1 3 1 11 10 11 1

Use logistic regression to describe the effect of political
ideology on the probability of being a Democrat.

(a) Report the prediction equation, and estimate the
probability of Democratic affiliation at ideology level (i)
1 = extremely liberal, (ii) 7 = extremely conservative.
(b) Use the model to test whether the variables are inde-
pendent. Report the test statistic, P-value, and interpret.
(c) Use the odds ratio to describe the effect on party affili-
ation of a change in ideology from (i) 1 = extremely liberal
to 2 = liberal, (ii) 1 = extremely liberal to 7 = extremely
conservative.
(d) Construct and interpret a 95% confidence interval for
the population odds ratio in (c), case (i).

15.7. A multination study of whether a country transi-
tioned from autocracy to democracy during the study pe-
riod7 reported the prediction equation

logit[P̂(y = 1)] = −3.30 + 0.55t + 1.12(OECD)

− 1.16m − 0.01 f − 0.07g,

where y = 1 if the nation made that transition, t = num-
ber of past transitions, OECD is membership in the Or-
ganization for Economic Cooperation and Development

(1 = yes, 0 = no), m = Muslim share of population, f =
fuel exports (percentage of merchandise exports), and g =
GDP growth (annual percentage).
(a) Interpret the coefficient of OECD.
(b) Interpret the coefficient of t.
(c) The estimated Muslim effect had se = 0.61 and P-
value of 0.06. When the model was refit excluding coun-
tries regarded as the major oil-exporters, the estimated
Muslim effect of −1.00 had se = 0.64 and P-value = 0.12.
The authors concluded that the statistical significance of

the Muslim effect might be explained by the major oil-
exporting countries tending to be high on m. Give an
alternative explanation, involving the sample size.

15.8. Let P(y = 1) denote the probability that a ran-
domly selected respondent supports current laws legaliz-
ing abortion, estimated using sex of respondent (s = 0,
male; s = 1, female), religious affiliation (r1 = 1, Hindu,
0 otherwise; r2 = 1, Christian, 0 otherwise; r1 = r2 = 0,
Muslim), and political party affiliation (p1 = 1, Party A, 0
otherwise; p2 = 1, Party B, 0 otherwise; p1 = p2 = 0, No
Affiliation). The logistic model with main effects has the
prediction equation

logit[P̂(y = 1)] = 0.12 + 0.15s − 0.60r1 − 0.68r2 + 0.49p1.

(a) Give the effect of sex on the odds of supporting legal-
ized abortion; that is, if the odds of support for females
equal θ times the odds of support for males, report θ̂ .
(b) Give the effect of being in support of Party A instead
of not being affiliated on the estimated odds of support
for legalized abortion.
(c) Give the effect of being in support of Party A instead
of in support of Party B on the estimated odds of support
for legalized abortion.
(d) Find the estimated probability of supporting legalized
abortion, for (i) female Muslim supporters of Party A,
(ii) male Christian supporters of Party B.

15.9. Table 15.21 summarizes logistic regression results
from a study8 of how family transitions relate to first home
purchase by young married households. The response
variable is whether the subject owns a home (1 = yes,

6 From G. Pierce and M. Radelet, Louisiana Law Review, vol. 71 (2011), pp. 647–673.
7 By M. Gassebner et al., Journal of Conflict Resolution, vol. 57 (2013), pp. 171–197.
8 From J. Henretta, Social Forces, vol. 66 (1987), pp. 520–536.
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0 = no). Explanatory variables include a categorical vari-
able for marital status two years after the year of observa-
tion (categories married, married with a working wife, sin-
gle, with single the omitted category for the two dummy
variables), a dummy variable for whether the family has
more children aged 0–17 two years after the year of obser-
vation, and a dummy variable for whether the subject’s
parents owned a home in the last year that the subject
lived in the parental home.

TABLE 15.21

Variable Estimate Std. Error

Intercept −2.870 —
Husband’s earnings ($10,000) 0.569 0.088
Wife’s earnings ($10,000) 0.306 0.140
Number of years married −0.039 0.042
Married in two years (1 = yes) 0.224 0.304
Working wife in two years (1 = yes) 0.373 0.283
Number of children 0.220 0.101
Additional child in two years (1 = yes) 0.271 0.140
Household head’s education (no. of years) −0.027 0.032
Parents’ home ownership (1 = yes) 0.387 0.176

(a) Which explanatory variable seems to have the great-
est partial impact on owning a home?
(b) Describe the partial effect of each additional $10,000
increase in (i) husband’s income, (ii) wife’s income.
(c) To describe the effect of husband’s earnings, find the
estimated probability of home ownership when wife’s
earnings = $50,000, years married = 3, not married in
two years, the wife is working in two years, number of
children = 0, additional child in two years = 0, head’s
education = 16 years, parents’ home ownership is no,
when husband’s earnings equal (i) $20,000, (ii) $100,000.

15.10. For Table 15.12 on page 493, Table 15.22 shows
output for a logistic model treating marijuana use as the
response variable and alcohol use and cigarette use as
explanatory variables.

(a) Set up dummy variables and report the prediction
equation. Interpret the signs of the effects of alcohol use
and cigarette use.

TABLE 15.22

Parameter DF Estimate Std Err ChiSquare Pr > Chi
INTERCEPT 1 -5.309 0.4752 124.820 0.0001
ALCOHOL yes 1 2.986 0.4647 41.293 0.0001
ALCOHOL no 0 0.000 0.0000 0. 0.
CIGARETT yes 1 2.848 0.1638 302.141 0.0001
CIGARETT no 0 0.000 0.0000 0. 0.

(b) Why are the estimates in the table equal to 0 at the
second category of each explanatory variable?

15.11. A sample of inmates being admitted to the Rhode
Island Department of Corrections were asked whether
they ever injected drugs and were tested for hepatitis
C virus (HCV). The numbers who reported injecting
drugs were 306 of the 887 men who tested HCV posi-
tive, 61 of the 3044 men who tested HCV negative, 110
of the 197 women who tested HCV positive, and 13 of
the 288 women who tested HCV negative. The authors9

concluded that the prevalence of HCV may be under-
estimated by testing only those who reported injecting
drugs.

(a) Report the results as a contingency table.
(b) Define dummy variables and specify a model for
which the odds ratios between HCV status and whether
injected drugs are identical in the population for each
sex.
(c) Fit the model in (b), and report the model-based esti-
mate of the odds ratio in (b).

15.12. Table 15.23 refers to individuals who applied for
admission into graduate school at the University of
California in Berkeley. Data10 are presented for five of
the six largest graduate departments at the university. The
variables are
A: Whether admitted (yes, no).
S: Sex of applicant (male, female).
D: Department to which application was sent
(D1, D2, D3, D4, D5).

(a) Construct the two-way table for sex and whether ad-
mitted, collapsing the table over department. Find the
odds ratio and interpret.
(b) Treating A as the response and D and S as categorical
explanatory variables, fit the logistic model having main
effects. Report the prediction equation. Interpret the co-
efficient of S in this equation by finding the estimated con-
ditional odds ratio between A and S, controlling for D.
(c) Contrast the model estimated conditional odds ratio
between A and S in (b) with the odds ratio reported in
(a). Explain why they differ so much, satisfying Simpson’s
paradox.

9 G. Macolino et al., American Journal of Public Health, vol. 95 (2005), pp. 1739–1740.
10 From Statistics by D. Freedman, R. Pisani, and R. Purves (W. W. Norton, 1978), p. 14.
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TABLE 15.23

Admitted

Department Sex Yes No

D1 Male 353 207
Female 17 8

D2 Male 120 205
Female 202 391

D3 Male 138 279
Female 131 244

D4 Male 53 138
Female 94 299

D5 Male 22 351
Female 24 317

15.13. Consider Table 8.16 on page 245, treating happi-
ness as the response variable. Table 15.24 shows results
of fitting the cumulative logit model logit[P(y ≤ j)] =
α j + βx, using scores (1, 2, 3) for income, and the chi-
squared test of independence.
(a) Why does the table report two intercept estimates?
(b) Report and interpret the income effect.
(c) Using the model, test the hypothesis of no income ef-
fect. Report the test statistic and P-value, and interpret.
(d) Suppose we instead used the Pearson chi-squared test
of independence. Report the test statistic and P-value, and
compare results to those in (c). Why are they so different?

TABLE 15.24
Estimate Std. Error z Sig.

INTERCP1 [happy=1] -1.102 .275 -4.00 .000
INTERCP2 [happy=2] 1.305 .277 4.70 .000
INCOME -0.267 .151 -1.77 .077

Statistic DF Value Sig.
Pearson Chi-square 4 4.092 0.394

15.14. Using software with Table 8.16, replicate the results
shown in the previous exercise for the cumulative logit
model. Indicate whether the sign for β̂ agrees with the
negative sign for β̂ in Table 15.24, according to how your
software parameterizes the model.
15.15. Table 15.25 refers to passengers in autos and light
trucks involved in accidents in the state of Maine. The ta-
ble, available as the Accidents data file at the text web-
site, classifies subjects by sex, location of accident, seat
belt use, and a response variable having categories (1)
not injured, (2) injured but not transported by emergency
medical services, (3) injured and transported by emer-
gency medical services but not hospitalized, (4) injured
and hospitalized but did not die, (5) injured and died.
(a) Fit a cumulative logit model having main effects for
sex (s = 1 for males and 0 for females), location (r = 1
for rural and 0 for urban), and seat belt use (s = 1 for yes
and 0 for no). State the prediction equation. Interpret the
sign of the effect for each explanatory variable.

(b) Report and interpret an odds ratio describing the ef-
fect of wearing a seat belt.
(c) Construct a 95% confidence interval for the true odds
ratio for the effect of wearing a seat belt. Interpret.
(d) Conduct a test of the hypothesis of no effect of seat
belt use on the response, controlling for sex and location.
Report the P-value and interpret.
(e) Fit the model that also has the three two-way interac-
tions. Use a likelihood-ratio test to compare this model to
the main effects model. Interpret.

TABLE 15.25

Response

Sex Location Seat Belt 1 2 3 4 5

Female Urban No 7287 175 720 91 10
Yes 11,587 126 577 48 8

Rural No 3246 73 710 159 31
Yes 6134 94 564 82 17

Male Urban No 10,381 136 566 96 14
Yes 10,969 83 259 37 1

Rural No 6123 141 710 188 45
Yes 6693 74 353 74 12

Source: Dr. Cristanna Cook, Medical Care Development,
Augusta, Maine.

15.16. Explain why the cumulative logit model is not valid
with a nominal response variable, but a baseline-category
logit model is valid with an ordinal response variable.

15.17. A baseline-category logit model fit predicting pref-
erence for U.S. President (Democrat, Republican, In-
dependent) using x = annual income (in $10,000) is
log(π̂D/π̂I) = 3.3 − 0.2x and log(π̂R/π̂I) = 1.0 + 0.3x.

(a) For each equation, interpret the sign of the estimated
effect of x.
(b) Find and interpret the prediction equation for
log(π̂R/π̂D).
(c) Use an estimated odds ratio to describe how the
choice between Republican and Democrat depends on
income.
15.18. For a sample of people in a developed city, for the
most recent time each person shopped for clothes, you
plan to model the choice to shop downtown or on the
Internet. Explanatory variables include annual income,
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whether a student, and distance of residence from down-
town. Explain the type of model you would use, and
why.

15.19. Refer to the 3×7 table in Table 12.1 (page 364) on
party identification and political ideology.
(a) Fit a baseline-category logit model, treating party affil-
iation as the response and political ideology as a quantita-
tive explanatory variable. Interpret the political ideology
effect for the choice between Democrat and Republican.
(b) Fit a cumulative logit model, treating political ideol-
ogy as the response. Interpret the cumulative odds ratio
for comparing Democrats and Republicans on ideology.

15.20. Using software, replicate the results in Example
15.6 (page 490) on belief in an afterlife, sex, and race.

15.21. Consider the fit of the loglinear model (AC,

AM,CM) to Table 15.12 for the survey of high school
seniors.
(a) Use the estimated expected frequencies in Table 15.14
to estimate the conditional odds ratios between A and M
at each level of C.
(b) Show how to obtain the estimated odds ratio in (a)
from the parameter estimates for the model in Table 15.15.
(c) By contrast, what is the estimated conditional odds ra-
tio between A and M for the loglinear model denoted by
(AC,CM)?

15.22. Refer to the loglinear model analyses reported in
Examples 15.7 and 15.8 for use of marijuana, alcohol, and
cigarettes. Use software to replicate all the analyses shown
there.

15.23. For a four-way cross-classification of variables w, x,
y, and z, state the symbol for the loglinear model in which
(a) All pairs of variables are independent.
(b) x and y are associated, but other pairs of variables are
independent.
(c) All pairs of variables are associated, but the condi-
tional associations are homogeneous.

15.24. For Table 15.3 on the death penalty, the logistic
model that has an effect of victims’ race but assumes
that the death penalty is independent of defendant’s race
(given victims’ race) has a Pearson goodness-of-fit statis-
tic equal to 5.81 with df = 2 (P-value 0.055). Specify H0
for this test, and interpret the P-value.

15.25. Refer to the survey data for high school seniors in
Table 15.12 and the goodness-of-fit statistics reported in
Table 15.18 (page 499). Use these results to illustrate (a)
when a model fits well and when a model fits poorly, (b)
how G2 decreases as the model becomes more complex.

Concepts and Applications
15.26. Refer to the Students data file (Exercise 1.11).
Using software, conduct and interpret a logistic regression
analysis using y = opinion about abortion with explana-
tory variables
(a) Political ideology.
(b) Sex and political ideology.

15.27. In a one-page report, analyze Table 15.7 by treating
party affiliation as the response variable and political ide-
ology as a quantitative explanatory variable. Fit an appro-
priate model, conduct statistical inference, and interpret
results. Attach annotated software output to your report.

15.28. The data shown in Exercise 10.14 in Chapter 10
came from an early study on the death penalty and racial
characteristics. Analyze those data using methods of this
chapter. Summarize your main findings in a way that you
could present to the general public, using as little technical
jargon as possible.

15.29. One year, the Metropolitan Police in London,
England, reported11 30,475 people as missing in the year
ending March 1993. For those of age 13 or less, 33 of 3271
missing males and 38 of 2486 missing females were still
missing a year later. For ages 14–18, the values were 63 of
7256 males and 108 of 8877 females; for ages 19 and above,
the values were 157 of 5065 males and 159 of 3520 females.
Analyze and interpret these data.

15.30. In a study of whether an educational program
makes sexually active adolescents more likely to obtain
condoms, adolescents were randomly assigned to two ex-
perimental groups. The educational program, involving
a lecture and videotape about transmission of the HIV
virus, was provided to one group but not the other. In
logistic regression models, factors observed to influence
a teenager to obtain condoms were sex, socioeconomic
status, lifetime number of partners, and the experimental
group. Table 15.26 summarizes results.

TABLE 15.26

Variables Odds Ratio 95% Confidence Interval

Group (education versus none) 4.04 (1.17, 13.9)
Sex (males versus females) 1.38 (1.23, 12.88)
SES (high versus low) 5.82 (1.87, 18.28)
Lifetime number of partners 3.22 (1.08, 11.31)

Source: V. I. Rickert et al., Clinical Pediatrics, Vol. 31 (1992), pp. 205–210.

(a) Find the parameter estimates for the fitted model, us-
ing (1, 0) dummy variables for the first three explanatory
variables.

11 The Independent newspaper, March 8, 1994; thanks to Dr. P. Altham for this.
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(b) Explain why either the estimate of 1.38 for the odds ra-
tio for sex or the corresponding confidence interval seems
incorrect. The confidence interval is based on taking an-
tilogs of endpoints of a confidence interval for the log odds
ratio. Show that if the reported confidence interval is cor-
rect, then 1.38 is actually the log odds ratio, and the esti-
mated odds ratio equals 3.98.

15.31. A Canadian survey of factors associated with
whether a person is a hunter of wildlife showed the re-
sults in Table 15.27. Explain how to interpret the results in
this table. The study abstract12 stated, “Men are 10 times
more likely to hunt wildlife than females.” Comment on
how this conclusion was reached, and whether it is cor-
rect. Which explanatory variables other than sex seem as
if they are important?

TABLE 15.27

Coef. S.E. Wald Sig Exp(B)
Constant -5.04 0.16 943.1 .000
Male 2.34 0.15 259.9 .000 10.39
Live in rural area 0.98 0.10 106.2 .000 2.67
Not married -0.04 0.12 0.1 .717 .96
Not employed -0.36 0.12 8.8 .003 .70
Age: 15 to 29 0.21 0.13 2.5 .113 1.24
Age: 50 or more -0.27 0.12 4.7 .030 .77
Education up to HS 0.38 0.10 14.9 .000 1.46
Naturalist club member 1.64 0.11 228.6 .000 .42

15.32. A study13 compared the relative frequency of men-
tal health problems of various types among U.S. Army
members before deployment to Iraq, U.S. Army members
after serving in Iraq, U.S. Army members after serving in
Afghanistan, and U.S. Marines after serving in Iraq. The
study stated, “Potential differences in demographic fac-
tors among the four study groups were controlled for in
our analysis with the use of logistic regression.” For this
study, identify the response variable, the primary explana-
tory variable, and likely control variables.

15.33. A report (www.oas.samhsa.gov) by the Office
of Applied Studies for the Substance Abuse and Mental
Health Services Administration about factors that predict
marijuana use stated, “Multiple logistic regression also
confirmed that the risk of recent marijuana initiation in-
creased with increasing age among youths aged 12 to 14,
but the risk decreased with increasing age among those
aged 15 to 25.” What does this suggest about the way that
age appears in the model used?

15.34. Analyze the data in Exercise 8.16 (page 253) on
happiness and marital status using a cumulative logit
model. Interpret the results in a report of about 200 words.

15.35. For Table 15.4 (page 479), show that the associa-
tion between the defendant’s race and the death penalty
verdict satisfies Simpson’s paradox. What causes this?

15.36. For a person, let y = 1 represent death during the
next year and y = 0 represent survival. For adults in the
United Kingdon and in the United States, the probability
of death is well approximated by the model, logit[P(y =
1)] = −10.5 + 0.1x, where x = age in years. Show how
the probability of death in the next year increases as x in-
creases from 20 to 60 to 100.

15.37. State the symbols for the loglinear models for cat-
egorical variables that are implied by the causal diagrams
in Figure 15.5.

X
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FIGURE 15.5

15.38.* For the logistic regression model, from the linear
approximation β/4 for the rate of change in the probabil-
ity at the x-value for which P(y = 1) = 0.50, show that
1/|β| is the approximate distance between the x-values at
which P(y = 1) = 1/4 (or P(y = 1) = 3/4) and at which
P(y = 1) = 1/2. Thus, the larger the value of |β|, the
less the x-distance over which this change in probability
occurs.

12 By R. Mitchell, Crossing Boundaries, vol. 1 (2001), pp. 107–117.
13 C. Hoge et al., New England Journal of Medicine, vol. 351 (2004), pp. 13–21.

http://www.oas.samhsa.gov
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15.39.* For a two-way contingency table, let ri denote the
ith row total, let c j denote the jth column total, and let n
denote the total sample size. Section 8.2 (page 230) stated
that the cell in row i and column j has fe = ric j/n for the
independence model. Show that the log of the expected
frequency has an additive formula with terms represent-
ing the influence of the ith row total, the jth column total,
and the sample size. This formula is the loglinear model
for independence in two-way contingency tables.

15.40.* Logistic regression has infinite maximum likeli-
hood estimates when the cases with y = 1 are separate
from the cases with y = 0 in the space of explanatory
variable values. When this happens, most software merely
reports large estimates with huge standard errors. Check
what your software does when
(a) y = 0 at x = 1, 2, 3, but y = 1 at x = 4, 5, 6.

(b) in a 2×2 table, the numbers of (0, 1) outcomes are
(5, 0) for females but (0, 5) for males. (In practice, infi-
nite estimates occur whenever a factor has only y = 0 or
only y = 1 for some category.)

15.41.* Explain what is meant by the absence of statis-
tical interaction in modeling the relationship between a
response variable y and two explanatory variables x1 and
x2 in each of the following cases. Use graphs or tables to
illustrate.

(a) y, x1, and x2 are quantitative.

(b) y and x1 are quantitative; x2 is categorical.

(c) y is quantitative; x1 and x2 are categorical.

(d) y, x1, and x2 are binary.

(e) y is binary; x1 and x2 are quantitative.
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APPENDIX

R, Stata, SPSS, and SAS
for Statistical Analyses

Major statistical software packages have procedures for the methods presented in
this text. This appendix discusses and illustrates the use of R, Stata, SPSS, and SAS
for these methods. We deal with basic use of the software rather than the great va-
riety of options provided by the procedures. For ease of reference, the material is
organized by chapter of presentation in this text. The full data files for most of the
text examples and exercises are available at

www.pearsonglobaleditions.com/Agresti.

If you use Stata or SPSS, data files in the respective formats are available at

www.pearsonglobaleditions.com/Agresti.

Introduction to R
R is free software maintained and regularly updated by many volunteers. At www.
r-project.org you can download R and find documentation. The discussion in
this appendix refers to R version 3.2.0.

You can get help about R with many books tailored to implementing statistical
methods using R and at many sites on the Internet, such as

www.ats.ucla.edu/stat/R.

For a particular command, using R you can get help by placing a ? before the name,
for example, entering

> ?hist

for information about the command to construct a histogram. At the end of the help
window, you will see an example of the use of the command.

R has a rather steep learning curve, and for use in a basic statistics course, some
prefer to use R Commander, which is a basic-statistics graphical user interface to R
that has a simple menu/dialog-box interface. The menu and dialog-box selections
generate R commands. For details and installation notes, see

http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/.

Many packages have been created to perform analyses not available in basic R.
You can install the package on your computer and then use it. For example, to install
the Rcmdr (R commander) package, use the command

> install.packages("Rcmdr")

509
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http://socserv.mcmaster.ca/jfox/Misc/Rcmdr
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Once it is installed, to load the package, enter the command

> library(Rcmdr)

READING DATA FILES AND USING R

This appendix shows R commands for requesting statistical analyses from the com-
mand line. A very basic command loads a data file from the text website. To illustrate,
to create a data file with the name Crime from the data file at the text website that
has the name Crime.dat, use the command

> Crime <- read.table("http://www.stat.ufl.edu/~aa/smss/data/
+ Crime.dat", header=TRUE)

The header=TRUE part of the command tells R that the variable names are at the
top of the file.

CHAPTER 2: SAMPLING AND MEASUREMENT

On page 28, we showed how to use R to select a simple random sample, such as

--------------------
> sample(1:60, 4)
[1] 22 47 38 44
--------------------

to select four people from a population numbered 01 to 60.

CHAPTER 3: DESCRIPTIVE STATISTICS

After loading the data file Crime, here is how to request a histogram and a box plot
for the violent crime rates in Table 3.2:

---------------------------------------------------------------------
> attach(Crime)
> hist(violent) # histogram
> hist(violent, right=FALSE) # intervals don’t include right boundary
> boxplot(violent, xlab="violent", horizontal=TRUE)
---------------------------------------------------------------------

The summary function provides the five-number summary and the mean. You
can also get the mean and standard deviation with the mean and sd functions:

--------------------------------------------------------
> summary(violent)
> mean(violent); sd(violent)
--------------------------------------------------------

You can obtain percentiles using the quantile function, such as for a vari-
able y,

> quantile(y, c(.90, .95, .99))

for the 90th, 95th, and 99th percentiles.
You can construct scatterplots and find correlations and regression prediction

equations using the plot, cor, and lm functions, such as

http://www.stat.ufl.edu/~aa/smss/data/+Crime.dat
http://www.stat.ufl.edu/~aa/smss/data/+Crime.dat
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--------------------------------------------------------------
> plot(GDP, Fertility)
> cor(GDP, Fertility); cor(GDP, Internet); cor(GDP, GII)
> lm(Fertility ˜ GDP) # lm is short for ‘linear model’
--------------------------------------------------------------

CHAPTER 4: PROBABILITY DISTRIBUTIONS

For the normal distribution, the functionpnorm(z) gives the cumulative probability
falling below μ+zσ , such as pnorm(2.0) for the cumulative probability falling below
μ + 2.0σ . The function qnorm(p) gives the z-value for a cumulative probability p,
such as qnorm(0.975) to request the z-score for a cumulative probability of 0.975 and
a right-tail probability of 0.025.

CHAPTER 5: ESTIMATION

A simple way to construct a confidence interval for the proportion uses the
prop.test function, such as

> prop.test(396, 1200, correct=FALSE)$conf.int

for the example on page 119. This confidence interval has a more complex formula
than the one in Section 5.2. Called the score or Wilson confidence interval, Exercise
5.77 explains the idea behind it.

To find the t-value from the t distribution having a cumulative probability p,
use the qt(p, df) function, such as qt(0.975, 28) to find the t-score with a
right-tail probability of 0.025 when df = 28. To find a cumulative probability for a
particular t-value, use the pt(t, df) function.

To construct a confidence interval for the mean, use the ttest function, such
as for a variable called y,

> t.test(y, conf.level=0.99)$conf.int

For a textbook exercise in which you know n, ȳ, and s, you can find results yourself,
such as for the anorexia example on page 129:

----------------------------------------------------------------------
> 3.007-qt(0.975,28)*7.309/sqrt(29); 3.007+qt(0.975,28)*7.309/sqrt(29)
[1] 0.2268051
[1] 5.787195
----------------------------------------------------------------------

CHAPTER 6: SIGNIFICANCE TESTS

To find the P-value for a two-sided significance test of whether a variable y in the
data file has a particular mean of μ0 = 0,

> t.test(y, mu = 0, alternative = "two.sided")$p.value

Replace two-sided by greater or less for one-sided alternatives.
For a textbook exercise in which you know n, ȳ, and s, you can find results your-

self, such as for the anorexia example on page 160:
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------------------------------------------------------------
> t = (3.007 - 0)/(7.309/sqrt(29))
> t
[1] 2.215514
> 2*(1 - pt(t, df=28)) # two-sided P-value when t > 0
[1] 0.03502822
------------------------------------------------------------

Here is how to conduct two-sided and one-sided tests for a proportion using
summary results, illustrating for the example on page 165:

----------------------------------------------------------------------
> prop.test(624,1200,p=0.50, alternative=c("two.sided"), correct=FALSE)
> prop.test(624,1200,p=0.50, alternative=c("greater"), correct=FALSE)
----------------------------------------------------------------------

The z test statistic is the square root of the value called “X-squared” on the R output,
which is a form of test statistic having a chi-squared null distribution (introduced in
Chapter 8) with df = 1. The correct=FALSE option stops R from using a continuity
correction, which is not recommended.

CHAPTER 7: COMPARISON OF TWO GROUPS

You can conduct inference comparing proportions by entering the counts in the cat-
egory of interest and the sample sizes. For example, for Examples 7.2 and 7.3 on the
efficacy of prayer,

> prop.test(c(315,304),n=c(604,597),conf.level=0.95,correct=FALSE)

For a data file with response variable y and group variable called group, use the
command

> t.test(y˜group,mu=0,alt="two.sided",conf=0.95,var.equal=F,paired=F)

to perform a two-sided test and confidence interval comparing means. If y1 is a vari-
able giving values of a response variable for group 1, and y2 is a variable for group
2, you can get a confidence interval and test comparing the means by

> t.test(y1,y2,alt="two.sided",conf.level=0.95,var.equal=FALSE)

In each case, replace FALSE by TRUE to get the inference that assumes σ1 = σ2.

CHAPTER 8: ANALYZING ASSOCIATION BETWEEN CATEGORICAL
VARIABLES

With a data file having categorical variables x and y, you can cross-classify them and
obtain the chi-squared statistic using

> chisq.test(x,y)

If the table is of size 2×2, add correct=FALSE to the command so that R does not
use the Yates continuity correction. If you already have cell counts, you can proceed
as was shown in Table 8.8. To get the standardized residuals, use

> chisq.test(x,y)$stdres

Use fisher.test to perform Fisher’s exact test.
The vcd package can construct gamma and its standard error, as well as many

other measures for contingency tables. See the website

cran.us.r-project.org/web/packages/vcdExtra/vignettes/vcd-tutorial.pdf.
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CHAPTER 9: LINEAR REGRESSION AND CORRELATION

With a data file having quantitative variables x and y, you can conduct a basic regres-
sion analysis using the lm (linear models) function:

------------------------------------------------------------------
> plot(x, y) # scatterplot with variable names for x and y
> fit <- lm(y ˜ x) # regressing a variable y on a variable x
> summary(fit) # shows results of the model fit
> cor(x, y) # correlation
------------------------------------------------------------------

CHAPTER 11: MULTIPLE REGRESSION AND CORRELATION

Here is how to conduct a multiple regression analysis with the Mental data set
analyzed in this chapter:

> Mental<-read.table("http://www.stat.ufl.edu/~aa/smss/data/
----------------------------------------------------------------------

+ Mental.dat", header=TRUE)
> attach(Mental)
> pairs(˜ impair + life + ses) # scatterplot matrix
> cor(cbind(impair, life, ses)) # correlation matrix
> fit <- lm(impair ˜ life + ses) # lm function for regression modeling
> summary(fit) # shows the output
> fit2 <- lm(impair ˜ life + ses + life:ses) # permits interaction
----------------------------------------------------------------------

Put a colon between two variables to represent an interaction term, such as in fit2.
The car package in R has a function avPlots for partial regression (added-

variable) plots, with a command of the form

> avPlots(fit)

applied to the model fit. You can obtain partial correlations with the ppcor package.
With a command of the form

> pcor(datafile)

where datafile is the name of the data file, it computes the partial correlation between
each pair of variables, controlling for the others. Standardized regression coefficients
can be found with the QuantPsyc package, with a command of the form

> lm.beta(fit)

applied to the model fit. Alternatively, they can be found by applying the scale
function to each variable, which standardizes, and using the scaled variables in an
ordinary model fit, such as

> fit <- lm(scale(impair) ˜ scale(life) + scale(ses))

CHAPTER 12: REGRESSION WITH CATEGORICAL PREDICTORS:
ANALYSIS OF VARIANCE METHODS

To include categorical explanatory variables in a regression model, apply the linear
models function by creating factors with dummy variables:

> fit <- lm(y ˜ factor(x1) + factor(x2))

http://www.stat.ufl.edu/~aa/smss/data/+Mental.dat
http://www.stat.ufl.edu/~aa/smss/data/+Mental.dat
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R takes the first category as the baseline that does not have its own dummy variable.
If you want to use the last category, then you could create the factor from variable
x1 with four categories with a command such as

> x1fac <- factor(x1, levels = c(4,1,2,3))

To conduct ANOVA, use commands such as

------------------------------------------------------------------
> A <- factor(x1); B <- factor(x2) # creates dummy variables
> fit <- aov(y ˜ A) # one-way ANOVA
> fit2 <- aov(y ˜ A + B) # two-way ANOVA, no interaction
> fit2.int <- aov(y ˜ A + B + A:B) # two-way ANOVA, interaction
------------------------------------------------------------------

For the ANOVA fit, Tukey multiple comparisons are available with

> TukeyHSD(fit, conf.level = 0.95)

To conduct a repeated-measures ANOVA, the data must be in the “long” form in
which the repeated measurements are on separate lines of the data file. For example,
for Table 12.15 on influences for three types of entertainment, the data file has the
form

------------------------------------
person type y

1 1 -1
1 2 0
1 3 -1

...

12 3 -2
------------------------------------

If a data file has all observations for a subject on one row, you can use the make.rm
command in R to put it in the required form. For a one-way repeated-measures
ANOVA, use a command

> fit <- aov(y ˜ type + Error(person/type))

after declaring type and person as factors, so they are not treated as quantitative.
For the anorexia data of Table 12.18 (with group as the variable label for the three
treatments), the “long” form of the data file is

------------------------------------------------------------------
person time group y

1 1 1 80.5
1 2 1 82.2

...
72 1 3 89.0
72 2 3 78.8

------------------------------------------------------------------

For two-way ANOVA with repeated measures on a factor such as time and indepen-
dent samples for different groups, use a command of the form

> fit <- aov(y ˜ group + time + group:time + Error(person/time))
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Declare group, time, and person as factors, so they are not treated as quantitative.

CHAPTER 13: MULTIPLE REGRESSION WITH QUANTITATIVE AND
CATEGORICAL PREDICTORS

To fit models containing both quantitative and categorical explanatory variables, en-
ter categorical variables as factors, such as

> fit <- lm(y ˜ x1 + factor(x2))

The first category is the baseline without its own dummy variable. Put a colon be-
tween variables to create an interaction term, such as

> fit <- lm(y ˜ x1 + factor(x2) + x1:factor(x2))

To construct adjusted means, use the lsmeans package or use the effect func-
tion in the effects package, such as

----------------------------------------------------------------
> library(effects)
> x2 <- factor(race)
> fit <- lm(y ˜ education + x2)
> effect("x2", fit) # finds adjusted means for categories of x2
----------------------------------------------------------------

To fit the linear mixed model for clustered data, such as Table 13.13 with the data
file containing values for family, y, x1, and x2, use the lme4 package:

> fit <- lmer(y ˜ x1 + x2 + (1|family))

This model assumes compound symmetry structure for correlations within families.

CHAPTER 14: MODEL BUILDING WITH MULTIPLE REGRESSION

Automatic selection methods such as backward elimination and forward selection
are available with the stepAIC function in the MASS library or with the regsub
sets function in the leaps package.

After fitting a model, you can obtain residuals and form a histogram for them
and plot them against the predicted values (i.e., fitted values) and find influence
diagnostics:

----------------------------------------------------------------------
> fit <- lm(y ˜ x1 + x2 + x3)
> hist(residuals(fit)) # histogram of residuals
> plot(fitted(fit), residuals(fit), ylab="Residuals", xlab="Predicted y")
> dffits(fit); dfbetas(fit); cooks.distance(fit)
----------------------------------------------------------------------

Several packages in R contain functions for finding VIF to assess potential mul-
ticollinearity. For example,

----------------------------------
> fit <- lm(y ˜ x1 + x2 + x3)
> library("car")
> vif(fit)
----------------------------------
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To fit generalized linear models, use the glm function. For instance, to fit a
gamma regression model with the identity link, such as done in the text for the home
selling price example (page 450), use

> fit <- glm(y ˜ x1 + x2 + x3, family=Gamma(link = "identity"))

To fit a quadratic regression model, you can define a squared term and put it in
an ordinary regression model, such as

------------------------------------------------------------------
> x2 = x*x
> fit <- lm(y ˜ x + x2)
> summary(fit)
------------------------------------------------------------------

You can fit exponential regression models by fitting the corresponding normal
GLM with log link, using the glm function, such as

> fit <- glm(y ˜ x, family = gaussian(link = "log"))

CHAPTER 15: LOGISTIC REGRESSION: MODELING CATEGORICAL
RESPONSES

You can fit logistic regression models by treating them as generalized linear models
using the binomial distribution and logit link. If the data file has a column of 0 and 1
values for a response variable y, use a command such as

> fit <- glm(y ˜ x1 + x2, family = binomial(link = "logit"))

For grouped data, with a column y of numbers of successes and a column n of bino-
mial sample sizes, use a command such as

> fit <- glm(y/n ˜ x1 + x2, weight=n, family=binomial(link="logit"))

To fit a model with probit link, merely change logit to probit in these statements.
You can fit cumulative logit models to contingency tables using the VGAM pack-

age. For Table 15.7, you can enter the cell counts and fit the model as follows:

-----------------------------------------------------------------------
> party <- c(1,0)
> y1 <- c(16,59); y2 <- c(40,206); y3 <- c(73,112); y4 <- c(330,124);
> y5 <- c(126,18); y6 <- c(167,12); y7 <- c(60,2)
> fit <- vglm(cbind(y1,y2,y3,y4,y5,y6,y7) ˜ party,
+ family = cumulative(parallel = TRUE))
> summary(fit)

Estimate Std. Error z value Pr(>|z|)
party -2.52727 0.12238 -20.651 <2e-16
-----------------------------------------------------------------------

The parallel=TRUE option requests the same effect for each logit (i.e., proportional
odds). Here, β̂ = −2.527 instead of 2.527 because this package uses the parameteri-
zation logit[P(y ≤ j)] = α j + βx instead of logit[P(y ≤ j)] = α j − βx.

Table 15.11 showed how to use the VGAM package to fit baseline-category logit
models, for grouped data in a contingency table.

R can fit loglinear models by regarding them as generalized linear models with
response count having a Poisson distribution, using the log link. For example, for
a 2×2×2 table such as Table 15.12 constructed from a data file with three columns
(x, y, z) of indicators for the variables and a column of cell counts, fit the homoge-
neous association model as follows:
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------------------------------------------------------------------
> A <- factor(x); B <- factor(y); C <- factor(z)
> fit <- glm(count ˜ A+B+C+A:B+A:C+B:C, family=poisson(link="log"))
------------------------------------------------------------------

Introduction to Stata
Basic support information is available from Stata at

www.stata.com/support.

Many Internet sites can help you learn how to use Stata, such as the many resources
listed at

www.stata.com/links/resources-for-learning-stata.

Also, examples are shown for a previous edition of this textbook at

www.ats.ucla.edu/stat/stata/examples/smss/.

These tutorials and the discussion below show commands to enter to perform
various statistical analyses. Commands are case-sensitive. To get information about
a command, use the help command, such as

help histogram

for help about the command for forming histograms. Click on the first entry in the
help file to get much further information from the extensive documentation that
Stata includes with every installation. This documentation is also available at the
Help menu that Stata provides. In this documentation, for each command you will
find a large number of options that we do not have space to present in this appendix.

Rather than entering commands in Stata, you can use the Statistics and Graphics
menus. Once you select a particular topic and subtopic from a menu, you get a dialog
box in which you can select the particular analyses you would like.

READING DATA FILES AND USING STATA

After starting Stata, it is helpful to create a log file that keeps a record of the com-
mands you enter and the output. To do this, use a command such as

log using exampleoutput

which will create this file at the directory Stata tells you.
You can enter data or access a data file in various ways. See, for example,

www.stata.com/manuals14/u21.pdf.

The text website has Stata data files (with extension .dta) for most examples and data
exercises. For example, to load the Crime data file that is used extensively in Chapter
3, you can enter the command

use "http://www.stat.ufl.edu/~aa/smss/data/Stata/Crime.dta"

CHAPTER 3: DESCRIPTIVE STATISTICS

To form a histogram of a variable named y, use the command

histogram y

http://www.stata.com/support
http://www.stata.com/links/resources-for-learning-stata
http://www.ats.ucla.edu/stat/stata/examples/smss
http://www.stata.com/manuals14/u21.pdf
http://www.stat.ufl.edu/~aa/smss/data/Stata/Crime.dta
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To construct a stem-and-leaf plot, use the command stem followed by the variable
name.

Typing the command codebook shows many summary statistics for each vari-
able in the data file. You can obtain basic descriptive statistics for a variable named
y with the command

summarize y, detail

To find the median and other percentiles, use the centile command. For ex-
ample, for a variable called y, we get the quartiles by

centile y, centile(25, 50, 75)

Construct a box plot with the graph box command followed by the variable name.
You can find correlations for each pair of a set of variables with the corr com-

mand or the pwcorr command, such as

corr GDP GII Fertility

You can find the prediction equation for a regression analysis with the regress
command, such as

regress Fertility GDP

to predict Fertility using GDP as the explanatory variable.

CHAPTER 4: PROBABILITY DISTRIBUTIONS

To find a normal cumulative probability for a particular z-value, use the display
normal(z) command, such as

display normal(2.0)

to find the probability falling below 2.0 for a standard normal curve. To find the z-
value having a cumulative probability p, use the display invnormal(p) com-
mand, such as

display invnormal(0.975)

to find the z-value having a cumulative probability of 0.975 and thus a right-tail prob-
ability of 0.025.

CHAPTER 5: ESTIMATION

To construct confidence intervals for mean and proportions, you can use dialog boxes
or use the ci command. For example, for the mean of a variable called y,

ci y

If you have only summary statistics, Stata can construct the interval using them. You
can use the cii command,1 by entering n, ȳ, and s (here, n = 29, ȳ = 3.007, s =
7.309):

cii means 29 3.007 7.309

Or, you can launch a dialog box and fill in what you want, using

db cii

1 Here, i following ci stands for immediate.
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or in the Statistics menu, select Summaries, tables, and tests and then Classical tests
of hypotheses and then t test calculator.

For the confidence interval for a proportion for a binary variable y that is a col-
umn in the data file that takes the values 0 and 1,

ci proportions y, wald

Or, you can find it directly from the sample size and count in the category of interest,
such as

cii proportions 1200 396, wald

for the example in the text with 396 people out of n = 1200 sampled who favored
restricting access to abortion.

The mean command also provides a confidence interval for the mean. For exam-
ple, for the mean of a variable called y,

mean y

To find the t-value having a cumulative probability p, use the display
invt(df, p) command, such as

display invt(28, 0.975)

to find the t-value having a cumulative probability of 0.975 and thus a right-tail proba-
bility of 0.025 when df = 28. To find a cumulative probability for a particular t-value,
use the display tprob(df, t) command, such as

display tprob(28, 2.0)

to find the probability falling below 2.0 for a t distribution with df = 28.
For information on using Stata for the bootstrap, see

www.stata.com/features/overview/bootstrap-sampling-and-
estimation.

For examples, see Example 5.9 on page 141.
Explicit confidence intervals can be formed for the median (e.g., Exercise 5.79)

that do not require the bootstrap. Use the centile function as shown above.

CHAPTER 6: SIGNIFICANCE TESTS

To conduct a t test of whether a variable y in the data file has a mean of 0, use the
ttest command:

ttest y == 0

If you already have summary statistics, you can use the ttesti command, by enter-
ing n, ȳ, s, and μ0, such as for the text anorexia example:

ttesti 29 3.007 7.309 0

To conduct a significance test of whether a categorical variable y that takes values
0 and 1 in the data file has a population proportion of 0.50 that take the value 1:

prtest y == 0.50

If you already have summary statistics, you can use the prtesti command, by en-
tering n, π̂ , and π0, such as for the example on page 165:

prtesti 1200 0.52 0.50

http://www.stata.com/features/overview/bootstrap-sampling-and-estimation
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To find a right-tail probability for a particular t-value with a certain df value,
such as to find a one-sided P-value, use

display tprob(df, t)

to find the cumulative probability, and then subtract from 1.

CHAPTER 7: COMPARISON OF TWO GROUPS

Stata can construct confidence intervals and tests comparing two proportions using
the command prtest. To test equality of proportions for a variable y between two
groups defined by a variable called group (such as gender), you can use

prtest y, by(group)

If you have summary statistics, you can find the inferences directly from the sample
size and proportion in the category of interest for each group, such as

prtesti 604 0.522 597 0.509

for the efficacy of prayer example on pages 194, 196, and 198.
To construct inference for means, use the ttest command. For example, to test

that the mean of a variable called y is equal between two groups defined by a cate-
gorical variable called group, use

ttest y, by(group)

to use the method of Section 7.5 that assumes σ1 = σ2. Use

ttest y, by(group) unequal

to allow unequal population standard deviations as in Section 7.3. The commands
also yield confidence intervals comparing the group means.

If you already have summary statistics, you can conduct the inferences with the
ttesti command, by entering n, ȳ, and s for each group, such as

ttesti 583 8.3 9.4 693 11.9 12.7, unequal

for the housework example on pages 200 and 201 in the text.
For the paired-difference t analyses with matched-pairs data in variables called

y1 and y2, use

ttest y1 == y2

Alternatively, you can create a new variable of difference scores, and use the t meth-
ods described for Chapters 5 and 6. When y1 and y2 are binary, you can get McNe-
mar’s test using

mcc y1 y2

The output shows a chi-squared statistic that is the square of the z statistic we present
in the text. The P-value for the chi-squared test is the two-sided P-value for the z
statistic. Using the summary counts in the contingency table that cross-classifies y1
and y2, you can get McNemar’s test for the example on page 210 using

mcci 875 162 9 168

For two categorical variables y1 and y2, you can construct a contingency table
and perform Fisher’s exact test using the command

tab y1 y2, exact
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You can also enter the counts yourself from the contingency table that cross-classifies
y1 and y2 and request this test. For the example on page 212,

tabi 10 18 \ 1 22, exact

To conduct the Wilcoxon test with a response variable y and groups defined by a
variable x, use

ranksum y, by(x) porder

The porder option requests an estimate of the probability that one group is higher
than the other.

CHAPTER 8: ANALYZING ASSOCIATION BETWEEN CATEGORICAL
VARIABLES

With thetabulate command (tab for short), you can construct contingency tables,
find percentages in the conditional distributions (within-row relative frequencies),
get expected frequencies for H0: independence, get the chi-squared statistic and its
P-value, and conduct Fisher’s exact test. For categorical variables x and y in a data
file, for instance, you can use

tab x y, row expected chi2 exact gamma

If you already have the cell counts, you can enter them by row. For the example on
page 234, use

tabi 495 590 272 \ 330 498 265, row expected chi2 exact gamma

To get standardized residuals, you currently must download a routine written by
Nicholas Cox. Within Stata, use the command

ssc install tab_chi

then followed (if you have the cell counts) by

tabchii 495 590 272 \ 330 498 265, adjust

to get the standardized (adjusted) residuals.

CHAPTER 9: LINEAR REGRESSION AND CORRELATION

You can conduct a basic linear regression analysis for a response variable y and ex-
planatory variable x with the regress command

regress y x

For a scatterplot, use

scatter y x

For the correlation for variables x and y, use

corr y x

or use pwcorr to have additional options such as P-values. List several variables,
and you get a correlation matrix. To get a confidence interval for the correlation, use
the package corrci:

ssc install corrci
corrci x y
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CHAPTER 11: MULTIPLE REGRESSION AND CORRELATION

For a scatterplot matrix, use the graph matrix command, such as

graph matrix impair life ses

for the Mental data set at the text website that is analyzed in this chapter. To con-
struct a correlation matrix, use the command of the form

corr w x y z

entering the variable names. You can conduct a multiple regression analysis for a
response variable y and explanatory variables with the command of the form

regress y x1 x2 x3

For a partial regression plot of the response variable y against each explanatory vari-
able, follow this by the command avplots (Added-variable plot is an alternative
name for partial regression plot).

To include an interaction term in a model, you can put a # between the variables
and add the prefix c to represent that the variable is continuous (actually, quantita-
tive), such as

regress y x1 x2 c.x1#c.x2 x3

Alternatively, a command such as

regress y c.x1##c.x2

includes the interaction and the corresponding main effects.
To get partial correlations (and semipartial correlations) of y with each explana-

tory variable, controlling for the others in the model, use a command of the form

pcorr y x1 x2 x3

To obtain the standardized regression coefficients, use

regress impair life ses, beta

The name, and the heading Beta in the output, reflects the alternative name beta
weights for these coefficients.

CHAPTER 12: REGRESSION WITH CATEGORICAL PREDICTORS:
ANALYSIS OF VARIANCE METHODS

To use the regress function with a categorical variable, declaring it to be a factor
using the i. prefix to create indicator (dummy) variables, such as for a variable called
party,

regress y i.party

The first category is deleted for the dummy variables. To instead use category 3 for
the base category, for instance, enter the categorical variable as b3.party.

For pairwise multiple comparisons of means for a factor called party, follow the
regress command by

pwcompare party, mcompare(bonferroni)

substituting tukey for bonferroni to get the less conservative Tukey intervals.
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To conduct a one-way ANOVA with a response variable y and a factor A, use
the command

anova y A

The variable A is assumed to be categorical. You can also do one-way ANOVA with
the oneway command,

oneway y A

For a two-way ANOVA with response variable y and factors A and B, without
interaction, use

anova y A B

To allow for interaction, use

anova y A B A#B

or simply

anova y A##B

Entering regress after requesting an ANOVA fit yields the model fit for the cor-
responding regression model with dummy variables.

Alternatively, you can do a factorial ANOVA by applying the regress func-
tion to the factors, declaring them to be factors using the i. prefix to create indicator
(dummy) variables, such as

regress y i.A i.B

To conduct a repeated-measures ANOVA, the data must be in the “long” form
with the repeated measurements on separate lines of the data file, as shown above
on page 523 for R software. If a data file has all observations for a subject on one
row, you can use the reshape command in Stata to put it in the required form. For
example, if a row of the data file showed all the observations for a particular person,
with variable labels trt, y1, and y2, then use the command

reshape long y, i(person) j(time)

The one-way repeated-measures analysis of Section 12.5 for types of entertain-
ment is obtained by

anova y person type, repeated(type)

The two-way analysis of Section 12.6, for “long” data file as shown above in the R
section, is obtained by

anova y group / person|group time group#time, repeated(time)

CHAPTER 13: MULTIPLE REGRESSION WITH QUANTITATIVE AND
CATEGORICAL PREDICTORS

Stata can fit regression models having both quantitative and categorical explanatory
variables using the regress function. Prefix a categorical factor with i. to specify
indicators for each category of the variable, such as

regress y education i.race

By default, Stata deletes the first category for the dummy variables.
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To interact a quantitative variable with a categorical factor, prefix the quantita-
tive variable with c. (for continuous), such as

regress y education i.race c.education#i.race

Having fitted a model with no interaction, you can obtain adjusted means by

margins i.race, at( (mean) education)

To fit the linear mixed model for the clustered family data of Table 13.13, use the
command

mixed y x1 x2 || family:, residuals(ex, t(family)) reml

or else

mixed y x1 x2 || family:, covariance(exchangeable) reml

both of which yield an exchangeable (compound symmetry) structure for correla-
tions within families.

CHAPTER 14: MODEL BUILDING WITH MULTIPLE REGRESSION

You can conduct automatic variable selection methods using the stepwise com-
mand. For backward elimination, with 0.10 as the α-level in tests, use a command
such as (with five potential explanatory variables)

stepwise, pr(0.10): regress y x1 x2 x3 x4 x5

where pr stands for the probability needed to be exceeded for removal. For forward
selection, use

stepwise, pe(0.10): regress y x1 x2 x3 x4 x5

where pe stands for the probability needed to be below to be eligible for addition.
The command

stepwise, pr(0.10) pe(0.10) forward: regress y x1 x2 x3 x4 x5

uses the stepwise variation of forward selection that removes a previously entered
term if it is no longer significant.

After fitting a model with the regress command, to obtain the residuals and
plot them against the model’s fitted values, use

rvfplot, yline(0)

(Here, rvf stands for residual-versus-fitted plot.) Use rvpplot to plot them against
a predictor x,

rvpplot x, yline(0)

Use the predict command with the rstudent option to generate the studentized
residuals. Here, we name them r and then form a histogram and plot them against a
predictor.

------------------------
. predict r, rstudent
. histogram r
. scatter r x1
------------------------
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With the dfbeta and dfits commands, Stata will form DFBETA values for all
the model parameters and DFFIT values for all the observations. Use dfbeta(x1)
with the variable name in parentheses to inspect DFBETA values for a particular
parameter.

After fitting a model, to assess multicollinearity you can obtain VIF values with
the command

vif

To fit GLMs, use the glm command. For instance, to fit a gamma regression
model with the identity link, use a command such as

glm y x1 x2, family(gamma) link(identity)

To fit a quadratic regression model, you can use the command

regress y x c.x#c.x

You can fit exponential regression models by fitting the normal GLM with log link,
using the glm command, such as

glm y x, family(gaussian) link(log)

CHAPTER 15: LOGISTIC REGRESSION: MODELING CATEGORICAL
RESPONSES

Stata can fit logistic regression models with the logit command, for which the stan-
dard output is the model parameter estimates, or thelogistic command, for which
the standard output is the odds ratios obtained by exponentiating the estimates. For
example, the logit command for a binary response variable with three explanatory
variables is

logit y x1 x2 x3

Adding the or option to this command requests the odds ratio form of estimate. Stata
can also fit the model with the glm command, treating the model as a generalized
linear model for a binomial distribution with logit link, such as

glm evolved ideology, family(binomial) link(logit)

If the data are counts in a contingency table, and each row of the data file has
a value for each explanatory variable, the 0 or the 1 value for y, and a variable (say,
called count) containing the cell counts, you can use the command

logit y x1 x2 x3 [fweight = count]

Here, fweight = count indicates that the data file has data grouped according to the
variable called count.

To do a likelihood-ratio test about an individual explanatory variable, store the
results for the full model, fit the simpler model without that variable, and then request
the likelihood-ratio test comparing the models. For example, to test the effect of
defendant’s race for the death penalty data of Table 15.3,

------------------------------------------------------------------
. logit y d v [fweight = count]
. estimates store full
. logit y v [fweight = count]
. lrtest full
------------------------------------------------------------------
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A command such as

test race

conducts the Wald test about an explanatory variable (i.e., the square of the z test
statistic), which is not as reliable a test as the likelihood-ratio test.

Linear probability models can be fitted with the glm command, treating the
model as a generalized linear model for a binomial distribution with identity link,
such as

glm evolved ideology, family(binomial) link(identity)

Probit models are fitted like logistic regression models, merely substituting probit
for logit in the command. Propensity-score matching is obtained with the command
teffects psmatch, such as

teffects psmatch (y) (group x1 x2 x3 x4)

to compare two groups identified by the variable group in their response on y after
using logistic regression to get propensity scores for predicting group using x1, x2,
x3, and x4.

Stata fits the cumulative logit model with the ologit (ordinal logit) command,
such as

ologit response party

If the data file contains grouped data (i.e., cell counts in the response categories), such
as columns labeled party (a 1/0 indicator), response (giving the response category),
and count, fit the model with the command

ologit response party [fweight = count]

Stata fits the baseline-category logit model with the mlogit (multinomial logit)
command, such as

mlogit response sex race, base(3)

where base(3) indicates the baseline category for the logits. If the data file contains
grouped data (i.e., cell counts in the response categories), such as columns labeled
race, sex, response (giving the response category), and count, fit the model with the
command

mlogit response sex race [fweight = count], base(3)

Stata can fit loglinear models by regarding them as generalized linear models
with response count having a Poisson distribution, using the log link. For example, for
a 2×2×2 table such as Table 15.12 constructed from a data file with three columns of
levels for the variables and a column of cell counts, fit the homogeneous association
model with the command

glm count i.a i.c i.m i.a#i.c i.a#i.m i.c#i.m, family(poisson)
link(log)

Introduction to SPSS
SPSS has a windows-with-menus structure that makes requesting statistical proce-
dures simple. Our discussion below applies to version 23. It can help to look at the
online manual at
www.spss-tutorials.com

http://www.spss-tutorials.com
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and view sites such as
www.ats.ucla.edu/stat/spss

that have sample analyses.
Various versions of SPSS have student discounts. A Base Grad Pack has ba-

sic statistical analyses, including basic regression and contingency table analysis.
A Standard Grad Pack has some advanced methods such as for repeated measures
and MANOVA, logistic regression and the ordinal extension and loglinear models,
and generalized linear models such as gamma regression. A Premium Grad Pack is
more advanced yet, having capabilities such as handling missing data and doing some
exact small-sample analyses for contingency tables.

READING DATA FILES AND USING SPSS

When you start a session, you see a Data Editor window that contains a menu bar
with a wide variety of separate menus. These include a FILE menu for creating a
new file or opening an existing one, an ANALYZE menu that displays options for
selecting a statistical method, a GRAPHS menu for creating a graph of some type,
and menus for choosing other special features. The Data Editor window displays the
contents of the data file. The Output window shows results of the analyses after you
request them from the menus. You can edit and save this for later use or printing. The
text website has SPSS data files (which have extensions .sav) for most text examples.
For example, to load the Crime data file that is used extensively in Chapter 3, click
the FILE menu and choose the OPEN option and INTERNET DATA suboption.
Enter the web location and file name

www.stat.ufl.edu/~aa/smss/data/SPSS/Crime.sav.

Select files of type SPSS and click on ok.
In the Variable View of the Data Editor window, SPSS should identify quanti-

tative variables as NUMERIC and categorical variables (with labels for the cate-
gories) as STRING. You can re-define names and characteristics for each variable.
In the Measure column, make sure SPSS has not inappropriately labeled a variable
as NOMINAL that should be SCALE (interval) or ORDINAL.

You can select a statistical procedure from the ANALYZE menu on the Data
Editor. When you do so, a dialog box opens that shows you the source variables in
your data set. You highlight the ones you want to use currently and click on the arrow
to the right of the list to move them to the selected variables list further to the right.
You then click on OK and the procedure runs, showing results in the output window.
For many procedures, you can click on Options and an additional subdialog box will
open that displays extra available options for the method.

CHAPTER 3: DESCRIPTIVE STATISTICS

To construct frequency distributions, histograms, and basic summary statistics, on the
ANALYZE menu select the DESCRIPTIVE STATISTICS option with the FRE-
QUENCIES suboption. A FREQUENCIES dialog box will open. Select the vari-
ables you want from the list for your file. Then, clicking on OK provides a frequency
distribution in the Output window. Clicking on CHARTS in the FREQUENCIES
dialog box presents you with a FREQUENCIES: CHARTS dialog box containing
a histogram option for quantitative variables and a bar chart option for categori-
cal variables. You can also construct a histogram from the GRAPHS menu on the
Data Editor window by selecting CHART BUILDER and then HISTOGRAM. To
construct a stem-and-leaf plot, from the DESCRIPTIVE STATISTICS option in the

http://www.ats.ucla.edu/stat/spss
http://www.stat.ufl.edu/~aa/smss/data/SPSS/Crime.sav
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ANALYZE menu, select the EXPLORE suboption. The EXPLORE dialog box con-
tains a Plots option; clicking on it reveals stem-and-leaf and histogram plot options.

To obtain basic measures of central tendency, variability, and position, select
the DESCRIPTIVE STATISTICS option with the FREQUENCIES suboption, and
click on STATISTICS, which presents you with a FREQUENCIES: STATISTICS di-
alog box containing options.

To construct a box plot, on the GRAPHS menu in the Data Editor window select
CHART BUILDER and then select BOXPLOT and drag the box plot icon into the
open canvas. Select the variable for the box plot and click OK. CHART BUILDER
also has options for side-by-side box plots according to the value of a categorical
variable.

To obtain correlation and regression results, on the ANALYZE menu select the
REGRESSION option with the LINEAR suboption. You will then see a LINEAR
REGRESSION dialog box in which you can identify response (dependent) and ex-
planatory (independent) variables. To construct a scatterplot, enter the GRAPH
menu and select REGRESSION VARIABLE PLOTS, which has the option of
showing the prediction equation line over the plot. Or, you can select CHART
BUILDER, and in the dialog box, drag the appropriate variables to the y and x axes.

CHAPTERS 5 AND 6: ESTIMATION AND SIGNIFICANCE TESTS

The ANALYZE menu has a COMPARE MEANS option with a ONE-SAMPLE T
TEST suboption. The default with that option is a 95% confidence interval for the
mean and a two-sided t test that the true mean equals 0. The options permit you to
select a different confidence level. To test that the mean equals a constant μ0, put that
number in the Test Value box on the ONE-SAMPLE T TEST dialog box. Options
also allow you to use the bootstrap to obtain inference for the mean.

CHAPTER 7: COMPARISON OF TWO GROUPS

The ANALYZE menu has a COMPARE MEANS option with an INDEPENDENT-
SAMPLES T TEST suboption. Select the response variable (labeled the Test vari-
able) and the variable that defines the two groups to be compared (labeled the
Grouping variable), which can be a numeric or a string variable. With Define Groups
under the Grouping Variable label, identify the two levels of the grouping variable
that specify the groups to be compared. In the Output window, in the Equal variances
row, this procedure provides the results of the t test assuming the two populations
have σ1 = σ2. The procedure also provides the 95% confidence interval for compar-
ing the means. The output also shows results for the method that does not assume
equal variances, in the Unequal variances row.

The COMPARE MEANS option also has a SUMMARY INDEPENDENT-
SAMPLES T TEST suboption, in which you can input n, ȳ, and s for each group,
and then get results of the significance test and confidence interval. The COMPARE
MEANS option also has a PAIRED-SAMPLES T TEST suboption, which supplies
the dependent-samples comparisons of means. For Fisher’s exact test, see the de-
scription for the following chapter.

CHAPTER 8: ANALYZING ASSOCIATION BETWEEN CATEGORICAL
VARIABLES

The DESCRIPTIVE STATISTICS option on the ANALYZE menu has a subop-
tion called CROSSTABS, which provides several methods for contingency tables.
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After identifying the row and column variables in CROSSTABS, clicking on
STATISTICS provides a wide variety of options, including the chi-squared test. The
output lists the Pearson chi-squared statistic (X 2), its degrees of freedom, and its P-
value (labeled Asymptotic Significance). It also reports an alternative test statistic,
called the likelihood-ratio statistic. Chapter 15 (page 497) introduces this statistic.
You can request Fisher’s exact test by clicking on EXACT in the CROSSTABS dia-
log box and selecting the exact test.

In CROSSTABS, clicking on CELLS provides options for displaying observed
and expected frequencies, as well as the standardized residuals, labeled as Adjusted
standardized.

In CROSSTABS, the options in STATISTICS include measures of association.
One option, labeled Risk, provides as output for 2×2 tables the odds ratio and its con-
fidence interval. For the ordinal measure gamma, the output includes a test statistic
that the true measure equals zero, which is the ratio of the estimate to its standard
error. This test uses a simpler standard error that only applies under independence
and is inappropriate for confidence intervals.

Suppose you enter the data as cell counts for the various combinations of the
two variables, rather than as responses on the two variables for individual subjects;
for instance, perhaps you call COUNT the variable that contains these counts. Then,
select the WEIGHT CASES option on the DATA menu in the Data Editor window,
which instructs SPSS to weight cases by COUNT.

CHAPTER 9: LINEAR REGRESSION AND CORRELATION

To construct a scatterplot, enter the GRAPH menu and select REGRESSION
VARIABLE PLOTS, which has the option of showing the prediction equation line
over the plot. Or, you can select CHART BUILDER, and in the dialog box, drag
the appropriate variables to the y and x axes.

To fit the regression line, on the ANALYZE menu select REGRESSION and
then LINEAR. You identify the response (Dependent) variable and the explanatory
(Independent) variable. Various options are available by clicking on Statistics in the
LINEAR REGRESSION dialog box, including estimates of the model parameters,
confidence intervals for the parameters, and model fit statistics. After selecting what
you want, click on CONTINUE and then back in the LINEAR REGRESSION di-
alog box click on OK. Output for the Estimates option includes the estimates for
the prediction equation (labeled B), their standard errors, the t statistic for testing
that a regression parameter equals 0 and the associated P-value (labeled Sig), and
a standardized regression coefficient (labeled as Beta) that in this bivariate model is
merely the correlation.

Output for the model fit option in a Model Summary table includes the corre-
lation (labeled as R), the r2-value, and the estimate s of the conditional standard
deviation (labeled Std. Error of the Estimate). In the LINEAR REGRESSION box,
when you click on Save you can request unstandardized predicted values and residu-
als and studentized residuals. After running the regression, they appear in your saved
data file (with .sav extension).

CHAPTER 11: MULTIPLE REGRESSION AND CORRELATION

For a multiple regression analysis, choose REGRESSION from the ANALYZE
menu with the LINEAR suboption, and add additional variables to the list of inde-
pendent variables. Among the options provided by clicking on Statistics in the dialog
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box are estimates of the coefficients and confidence intervals based on them and
detail about the model fit. For the Estimates option, the output includes standard
errors of the estimates, the t statistic for testing that the regression parameter equals
zero and its associated two-sided P-value, and the estimated standardized regression
coefficient (labeled Beta).

Requesting the Model fit option in the STATISTICS sub-dialog box provides ad-
ditional information. For instance, F in the ANOVA table is the test statistic for the
hypothesis that the coefficients of the explanatory variables all equal 0. Also pro-
vided in a Model Summary table are the multiple correlation R, R2, and the estimate
s of the conditional standard deviation (labeled as Std. Error of the Estimate).

In the ANALYZE menu, selecting CORRELATE and then BIVARIATE gives
a BIVARIATE CORRELATIONS sub-dialog box. You select the variables you
want, check PEARSON CORRELATION, and then click OK, and the output win-
dow shows a correlation matrix with the P-values for testing the significance of each.

To construct a scatterplot matrix, from the GRAPHS menu in the Data Editor
choose the CHART BUILDER option. Then click the GALLERY tab and select
SCATTER/DOT in the Choose From list. Drag the Scatterplot Matrix icon onto the
blank canvas. Drag the wanted variables to the Scattermatrix drop zone, and then
click on OK. You’ll see the graph in the Output window.

To produce all partial regression plots, click on PLOTS in the LINEAR
REGRESSION dialog window for the REGRESSION option and LINEAR sub-
option and then click on Produce all partial plots in the LINEAR REGRESSION:
PLOTS dialog box.

To obtain a partial correlation analysis, choose the PART AND PARTIAL
CORRELATIONS option in the STATISTICS option box in the LINEAR
REGRESSION window for the REGRESSION option and LINEAR suboption.
Or, in the ANALYZE menu choose the CORRELATE option with the PARTIAL
suboption. In the resulting PARTIAL CORRELATIONS dialog box, select the vari-
ables to correlate and select at least one variable to control.

To model interaction, you can construct an interaction variable within the SPSS
data editor by selecting the COMPUTE VARIABLE option on the TRANSFORM
menu. Provide a name for the new variable in the Target Variable box. Create the
mathematical formula for the interaction term in the Numeric Expressions box, such
as LIFE*SES for the explanatory variables LIFE and SES (the * symbol represents
multiplication). Click OK, and in the data file in the Data Editor you will see a new
column of observations for the new variable. This variable can then be entered into
the model formula when requesting a regression equation.

Here’s a second way to build an interaction term in a model, one that is espe-
cially useful for models in following chapters that also have categorical predictors.
This second method is well suited for forming multiple interaction terms but presents
output in a slightly different form and offers fewer options for data analysis. Choose
the GENERAL LINEAR MODEL in the ANALYZE menu and select the UNI-
VARIATE suboption. Enter the response variable into the Dependent Variable box
and the explanatory variables into the Covariate(s) box. Now click on the Model box
and select the Custom option. Using the Build Term(s) arrow, enter the covariates
as Main effects. Highlight a pair of variables for which you want a cross product and
enter them by selecting Interaction on the Build Term(s) arrow. Or, you can select
the All 2-way option for the Build Term(s) arrow to request interaction terms for all
pairs of variables. After specifying the terms for the model, click Continue and re-
turn to the UNIVARIATE dialog box. To display model parameter estimates, select
the Options box and check the Parameter Estimates option. Click Continue to re-
turn to the UNIVARIATE dialog box and then click OK to perform the regression
analysis.
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CHAPTER 12: REGRESSION WITH CATEGORICAL PREDICTORS:
ANALYSIS OF VARIANCE METHODS

To conduct a one-way ANOVA, on the ANALYZE menu select the COMPARE
MEANS option with the ONE-WAY ANOVA suboption. Select the dependent vari-
able and select the factor that defines the groups to be compared. (This must be coded
numerically for SPSS to display it as a potential factor, even though it is treated
as nominal scale. Otherwise, use the approach in the following paragraph.) Results
provided include the F test statistic and its P-value, and sums of squares and mean
squares for between-groups and within-groups variation. Clicking on Post Hoc in the
ONE-WAY ANOVA dialog box provides a variety of options for multiple compari-
son procedures, including the Bonferroni and Tukey methods. The LSD (least signif-
icant difference) option provides ordinary confidence intervals with the confidence
level applying to each interval. Clicking on Options in the ONE-WAY ANOVA di-
alog box provides the Descriptive statistics option of additional descriptive statistics,
including the mean, standard deviation, standard error, and a 95% confidence inter-
val for each group.

You can also conduct a one-way ANOVA on the ANALYZE menu by select-
ing the GENERAL LINEAR MODEL option with the UNIVARIATE suboption.
With this approach, the categorical variable that is selected as the Fixed Factor can
be coded with labels rather than numerically (i.e., a string variable in SPSS). In the
UNIVARIATE dialog box, click on Options and you can request Descriptive statis-
tics and Parameter estimates for displaying the regression parameter estimates from
viewing the analysis as a special case of a regression analysis. Return to the UNI-
VARIATE dialog box and click on Post Hoc to select ordinary confidence intervals
for comparing means (LSD) or multiple comparison intervals such as Bonferrroni
or Tukey.

To conduct a two-way or higher-way factorial ANOVA, on the ANALYZE menu
select the GENERAL LINEAR MODEL option with the UNIVARIATE subop-
tion. Select the dependent variable and select the Fixed Factor(s) that define the
cross-classification for the means. (If you have set up dummy variables yourself, they
would be entered as Covariates.) The default model is a full factorial model con-
taining all interactions. Click on Model to build a customized model that contains
only some or none of the interactions. Highlight variables, select Interaction or Main
Effects from the Build Term(s) list, and click on the arrow to move the terms to
the model list on the right. Return to the UNIVARIATE dialog box and click on
Options. You can request Descriptive statistics, Parameter estimates, and you can se-
lect particular factors and request Display Means to see the observed and predicted
means for subgroups defined by the factors. Return to the UNIVARIATE dialog box
and click on Contrasts to display parameter estimates with standard errors, t statis-
tics, and confidence intervals for comparing means for levels of each factor. Change
the contrast type to Simple to compare each level to a baseline level, either the last
(such as in setting up (1, 0) dummy variables for all categories but the last one) or
the first. Return to the UNIVARIATE dialog box and click on Post Hoc to select
confidence intervals for comparing means (LSD) or multiple comparison intervals
such as Bonferrroni or Tukey.

Alternatively for ANOVA, you could set up dummy variables in your data file
and then use ordinary regression. On the ANALYZE menu, you would then select
the REGRESSION option and LINEAR suboption, as in Chapter 11.

You can conduct repeated-measures ANOVA using the GENERAL LINEAR
MODEL option on the ANALYZE menu, with the REPEATED MEASURES sub-
option. This assumes that for each subject, the data file has the “short” form in which
each outcome for the response falls in a different column. For Example 12.8 on three
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influences, in a given row you would put the response for Movies in one column,
for TV in a separate column, and for Rock in a third column. In the REPEATED
MEASURES DEFINE FACTOR(S) dialog window, type the name and number of
levels of the within-subjects factor (such as influence and 3) and click on Add. Then
click on Define to define the model. Now, in the REPEATED MEASURES dialog
box, select the between-subjects factors (if there are any), and select the response
variable for each level of the within-subjects factor (such as Movies, TV, Rock). The
default is a model containing all the factor interactions. Click on Model, and cus-
tomize the model if you want to delete an interaction. Return to the REPEATED
MEASURES dialog box and click on Contrasts, and options are provided for display-
ing parameter estimates and confidence intervals for contrasts comparing means in
different factor levels, and for individual or Bonferroni confidence intervals. Change
the contrast type to Simple for estimates of the between-subjects factors to refer
to comparing each factor level to the first or last level. Return to the REPEATED
MEASURES dialog box and click on Options, and you can request between-subjects
observed and estimated means and various model diagnostics.

For repeated-measures analyses, SPSS also reports results of standard multivari-
ate (MANOVA) tests that do not make the assumption of sphericity for the joint
distribution of the repeated responses (see Section 16.1). They are less powerful
than the repeated-measures ANOVA methods when the sphericity assumption is
not violated.

CHAPTER 13: MULTIPLE REGRESSION WITH QUANTITATIVE AND
CATEGORICAL PREDICTORS

To fit an analysis of covariance model, you can set up dummy variables for categor-
ical predictors and use ordinary regression procedures, such as described earlier for
Chapter 11. To create cross-product terms for interactions, after creating the data
file, you can select COMPUTE VARIABLE on the TRANSFORM menu and cre-
ate products of appropriate variables.

Alternatively, on the ANALYZE menu select the GENERAL LINEAR
MODEL option with the UNIVARIATE suboption. Proceed as described above
for Chapter 11, now adding quantitative covariates in the Covariate(s) box. As in
ANOVA, add categorical predictors to the Fixed Factor(s) box. Click on Model to
build a custom model that contains only some or none of the interactions. Select In-
teraction or Main Effects from the Build Term(s) list, and click on the arrow to move
the terms to the model list on the right. Click on Options in the UNIVARIATE di-
alog box and under Estimated Marginal Means you can select a factor on which to
find adjusted means. The output also includes a table with F tests for the between-
subjects effects.

In the ANALYZE menu, there is a MIXED MODELS option with a LINEAR
suboption. At that menu, you choose the variable that identifies the subjects (clus-
ters) who have random effects and the variable on which the observations are re-
peated at the subject (cluster) level. After clicking on Continue, you identify the
dependent variable, factors, and covariates.

CHAPTER 14: MODEL BUILDING WITH MULTIPLE REGRESSION

In the LINEAR REGRESSION dialog window for the REGRESSION choice on
the ANALYZE menu, you can select a Method for fitting the model, among which
are options such as BACKWARD, FORWARD, and STEPWISE for selecting pre-
dictors in the model (or ENTER for adding all of them).
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In the LINEAR REGRESSION dialog window, you can plot studentized residu-
als (labeled SRESID) and request all partial regression plots by clicking on Plots and
then making appropriate selections in the PLOTS dialog box. To obtain predicted
values, residuals, studentized residuals, leverage values, and influence diagnostics,
click on Save in the LINEAR REGRESSION dialog box. The resulting LINEAR
REGRESSION: SAVE dialog box contains options for these, such as Standardized
DfBeta(s) for DFBETAS and Standardized DfFit for DFFITS. To find VIF (variance
inflation factors), click on Statistics in the LINEAR REGRESSION dialog box and
select Collinearity diagnostics.

To fit generalized linear models, on the ANALYZE menu select the GENER-
ALIZED LINEAR MODELS option and the GENERALIZED LINEAR MOD-
ELS suboption. Click on the Type of Model tab at the top of the dialog box and make
a selection. If you want to use the identity link function with the gamma distribution
or the Poisson distribution for the response variable, you must select a Custom model
and then select the desired combination of distribution for y and link function. Then,
click on Response and select the Dependent Variable and click on the Predictors tab
and enter quantitative variables as Covariates and categorical variables as Factors.
Click on the Model tab and enter these variables as main effects, and construct any
interactions that you want in the model. Click on OK to run the model. (If you build a
model assuming the gamma distribution, with the Estimation tab you can select Max-
imum Likelihood Estimate or Pearson chi-square for the Scale Parameter Method.)
At the Statistics tab, you can select likelihood-ratio test statistics and profile likeli-
hood confidence intervals, which are preferable to the Wald method. With the Save
tab, you can request predicted values and diagnostics such as standardized Pearson
residuals and Cook’s distance values.

To fit a quadratic regression model, on the ANALYZE menu select the
REGRESSION option with the CURVE ESTIMATION suboption. Then, in the
CURVE ESTIMATION dialog box, select the variables and choose the Quadratic
model. The PLOT MODELS option provides a plot of the fitted curve. It can
be useful to choose the Linear and Quadratic models so that this plot shows
the comparison.

To obtain a LOESS smoothing curve, on the GRAPHS menu select the
REGRESSION VARIABLE PLOTS, pick the variables, and then under OPTIONS
select the LOESS option.

To fit the exponential regression model, on the ANALYZE menu select the
GENERALIZED LINEAR MODELS option and the GENERALIZED LINEAR
MODELS suboption. With the Type of Model tab, select custom and pick the nor-
mal distribution with the log link function. Use the Response and Predictor tabs to
select those variables.

There is also an option for an exponential regression model by selecting
the CURVE ESTIMATION suboption under the REGRESSION option in the
ANALYZE menu. However, this provides a somewhat different fit than using GLM
software, since it assumes that the log of y, rather than y, is normally distributed with
constant variance. As discussed following Example 14.9 (page 459), it fits the model
E[log(y)] = α + βx rather than the model log[E(y)] = α + βx.

CHAPTER 15: LOGISTIC REGRESSION

To fit logistic regression models, on the ANALYZE menu select the REGRESSION
option and the BINARY LOGISTIC suboption. In the LOGISTIC REGRESSION
dialog box, identify the binary response (dependent) variable and the explanatory
predictors (covariates). Highlight variables in the source list and click on a ∗ b to
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create an interaction term. Identify the explanatory variables that are categorical and
for which you want dummy variables by clicking on Categorical and declaring such a
covariate to be a Categorical Covariate in the LOGISTIC REGRESSION: DEFINE
CATEGORICAL VARIABLES dialog box. Highlight the categorical covariate and
under Change Contrast you will see several options for setting up dummy variables.
The Simple contrast constructs them with the final category as the baseline.

In the LOGISTIC REGRESSION dialog box, click on Method for stepwise
model selection procedures, such as backward and forward selection. Click on Save
to save predicted probabilities, measures of influence such as Cook’s distance and
DFBETAS, and standardized residuals. Click on Options to open a dialog box that
contains an option to construct confidence intervals for exponentiated parameters.

Another way to fit logistic regression models is with the GENERALIZED LIN-
EAR MODELS option and suboption on the ANALYZE menu. You pick the Bi-
nary response and Binary logistic model. With the Response tab, you can also enter
the data as the number of successes out of a certain number of trials, which is useful
when the data are in contingency table form such as with the death penalty example
in Table 15.3 on page 478. For example, suppose in one column you have the number
of successes at each particular setting of predictors, and in a separate column you
have the sample size that number of successes is based on. Then, you identify the
dependent variable as the variable listing the number of successes, you click the box
“Variable represents binary response or number of events,” and then “Number of
events occurring in a set of trials,” entering the variable listing the sample sizes as
the “Trials variable.”

SPSS can also fit logistic models for categorical response variables having sev-
eral response categories. On the ANALYZE menu, choose the REGRESSION op-
tion and then the ORDINAL suboption for a cumulative logit model. (This model
is also available under the GENERALIZED LINEAR MODELS option on the
ANALYZE menu.) Select the MULTINOMIAL LOGISTIC suboption for a
baseline-category logit model. In the latter, click on Statistics and check Likelihood-
ratio tests under Parameters to obtain results of likelihood-ratio tests for the effects
of the predictors.

For loglinear models, use the LOGLINEAR option with GENERAL subop-
tion in the ANALYZE menu. (You can also select a Poisson loglinear model with
the GENERALIZED LINEAR MODELS option on the ANALYZE menu.) You
enter the factors for the model. The default is the saturated model, so click on Model
and select a Custom model. Enter the factors as terms in a customized (unsaturated)
model and then select additional interaction effects. Click on Options to show op-
tions for displaying observed and expected frequencies and adjusted residuals. When
the data file contains the data as cell counts for the various combinations of factors
rather than as responses listed for individual subjects, weight each cell by the cell
count using the WEIGHT CASES option in the DATA menu.

Introduction to SAS
In learning SAS, you can get help at sites such as

www.ats.ucla.edu/stat/sas,

support.sas.com/documentation/onlinedoc/stat.

In the SAS language, all statements must end with a semicolon. The data follow the
DATALINES statement, one line per subject, unless the INPUT statement ends with
@@. After the data lines, a line containing only a semicolon ends the data set. Fol-
lowing the data entry, PROC statements invoke the statistical procedures. A typical

http://www.ats.ucla.edu/stat/sas,support.sas.com/documentation/onlinedoc/stat
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PROC statement lists the procedure, such as MEANS, and then also may select some
options.

CHAPTER 3: DESCRIPTIVE STATISTICS

Table A.1 shows the format for entering the data and performing basic analyses,
using the data set in Table 3.2 on violent crime rates for the 50 states. When you input
characters rather than numbers for a variable, such as the state labels, the variable
has an accompanying $ label in the INPUT statement, such as state does in Table A.1.

TABLE A.1: SAS for Printing Data, Computing Basic Summary Statistics, and Preparing Plots

data crime ;
input state $ violent;
datalines;
AL 43
AK 64
...

;
proc print; var state violent;
proc freq; tables violent;
proc chart; vbar violent;
proc means; var violent;
proc univariate plot; var violent; id state;
run ;

PROC FREQ provides a frequency distribution for the variable listed following
TABLES. PROC CHART provides a histogram of the variable listed in the VBAR
statement. Options exist for choosing the number of bars (e.g., VBAR VIOLENT
/ LEVELS = 5) or their midpoints and for forming horizontal rather than vertical
bars (HBAR instead of VBAR). PROC MEANS provides the mean and standard
deviation. The PROC UNIVARIATE statement requests a greater variety of basic
statistics, including the quartiles. The ID statement, which is optional, names STATE
as the variable to identify some of the extreme observations in part of the display
from this procedure. Listing the PLOT option in PROC UNIVARIATE requests
stem-and-leaf and box plots for the variables listed.

CHAPTERS 5 AND 6: ESTIMATION AND SIGNIFICANCE TESTS

Use PROC FREQ for a table of counts of two types to get confidence intervals
for proportions and a test of H0: π = 0.50. Table A.2 shows code for the example
on page 137 about estimating the proportion of vegetarians. The binomial(ac)
option gives the Agresti–Coull confidence interval, which is appropriate with
small samples.

The estimated standard error for a sample mean is provided by PROC
UNIVARIATE. Table A.3 shows how to obtain the standard error and the t-score
for the data from Example 6.2. The two arguments for the TINV function are half the
error probability and the df value. For instance, the statement in Table A.2 requests
the t-score with left-tail probability equal to 0.025 (for a 95% confidence interval)
when df = 28, which equals −2.048. That table also shows how to input data for two
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TABLE A.2: SAS Code for Confidence Intervals for a Proportion

data veg;
input response $ count;
datalines;
no 25
yes 0
;
proc freq data=veg; weight count;
tables response / binomial(ac) alpha=.05;
run;

TABLE A.3: SAS for Obtaining Standard Errors, t-Scores, and t Test

data anorexia ;
input weight1 weight 2 ;
change = weight2 - weight1;
datalines;
80.5 82.2
84.9 85.6
...

;
proc univariate ; var diff ;
data findt;

tvalue = tinv(.025, 28) ;
proc print data = findt ;
proc ttest h0=0 sides=2 alpha=0.05; var change;
run ;

dependent samples (WEIGHT1 and WEIGHT2 being the weights of anorexic girls
at two times) and create a new variable (CHANGE) that is the difference between
WEIGHT2 and WEIGHT1 and perform the t test and 95% confidence interval.

CHAPTER 7: COMPARISON OF TWO GROUPS

Table A.4 performs a two-sample t test for comparing two means (Section 7.3), using
the data in the anorexia example. The input variables are THERAPY, the levels
of which are the two groups to be compared, and CHANGE, the change in weight
(the response variable). PROC SORT sorts the data into groups, according to the
levels of therapy, and then PROC MEAN finds means and standard deviations for
the observations in each group, when you use BY followed by the group variable.
SAS uses the BY statement to do an analysis separately for each level of the variable
specified in the BY statement.

PROC TTEST is a procedure for two-sample t tests with independent samples.
The CLASS statement names the variable that identifies the groups to be compared,
and the VAR statement identifies the response variable.

With PROC FREQ, for contingency tables the RISKDIFF option provides con-
fidence intervals for the proportions and their difference. For contingency tables hav-
ing small cell counts, the EXACT statement in PROC FREQ can provide Fisher’s
exact test, with the keyword FISHER.
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TABLE A.4: SAS for Two-Sample t Test for Example 7.8 (See Table 12.18 for the Data)

data depress;
input therapy $ change ;
datalines;
cogbehav 1.7
cogbehav 0.7
...
control -0.5
control -9.3
...
;
proc sort; by therapy ;
proc means; by therapy ; var change ;
proc ttest; class therapy ; var change ;
run;

CHAPTER 8: ANALYZING ASSOCIATION BETWEEN CATEGORICAL
VARIABLES

Table A.5 illustrates the analysis of two-way contingency tables. PROC FREQ con-
ducts chi-squared tests of independence using the CHISQ option and provides ex-
pected frequencies with the EXPECTED option. The MEASURES option provides
measures of association (including gamma) and their standard errors. For 2×2 tables,
this option provides confidence intervals for the odds ratio (labeled “case-control”
on output). The EXACT option provides Fisher’s exact test. SAS lists the category
levels in alphanumeric order unless you state ORDER=DATA in the PROC di-
rective, in which case the levels have the order in which they occur in the input
data.

TABLE A.5: SAS for Chi-Squared Test with Table 8.1

data politics;
input gender $ party $ count @@;
datalines;
Female Democ 495 Female Indep 590 Female Repub 272
Male Democ 330 Male Indep 498 Male Repub 265

;
proc freq; weight count ;

tables gender*party / chisq expected measures ;
proc genmod; class gender party;
model count = gender party / dist=poi link=log obstats residuals;
run;

You can also perform chi-squared tests using PROC GENMOD. This procedure,
discussed in greater detail below for Chapter 14, uses a generalized linear modeling
approach introduced in Section 14.4. (The code in Table A.5 views the independence
hypothesis as a “loglinear model” for Poisson counts with main effects of gender and
party but no interaction.) The OBSTATS and RESIDUALS options in GENMOD
provide cell residuals; the output labeled StReschi is the standardized residual.
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CHAPTER 9: LINEAR REGRESSION AND CORRELATION

Table A.6 performs linear regression, with data as shown in Table 9.1. The PROC
PLOT statement requests a scatterplot for murder rate and poverty rate; the first
variable listed goes on the y-axis. The PROC REG statement requests a regression
analysis, predicting murder rate using poverty rate. The P option following this model
statement requests the predicted values and residuals for all observations. The PROC
CORR statement requests the correlation between each pair of variables listed in the
VAR list.

TABLE A.6: SAS for Regression Analysis with Table 9.1

data crime ;
input state $ violent murder metro white hs poverty single ;
datalines;
AK 761 9.0 41.8 75.2 86.6 9.1 14.3
AL 780 11.6 67.4 73.5 66.9 17.4 11.5
....

;
proc plot; plot murder*poverty ;
proc reg; model murder = poverty / p;
proc corr; var violent murder metro white hs poverty single ;
run;

CHAPTER 11: MULTIPLE REGRESSION AND CORRELATION

Table A.7 performs multiple regression. You list every explanatory variable in the
model to the right of the equal sign in the model statement. The PARTIAL option
provides partial regression scatterplots, PCORR2 provides squared partial corre-
lations, and STB provides standardized regression coefficients. We create centered
variables by subtracting the means from the predictors and then define a variable
life ses to be the cross product of centered life events and ses. We enter that variable
in the second regression model to permit interaction in the model.

TABLE A.7: SAS for Multiple Regression Analysis with Table 11.1

data mental ;
input impair life ses ;
life_cen = life - 44.425; ses_cen = ses - 56.60;
life_ses = life_cen*ses_cen;
datalines;
17 46 84
19 39 97
....

;
proc plot ; plot impair*life impair*ses ;
proc reg; model impair = life ses / partial stb pcorr2 ;
proc reg; model impair = life ses life_ses ;
run;
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CHAPTER 12: REGRESSION WITH CATEGORICAL PREDICTORS:
ANALYSIS OF VARIANCE METHODS

Table A.8 performs one-way ANOVA with Table 12.1 and two-way ANOVA with
Table 12.9 . The first PROC MEANS statement requests sample means on ideology
for the data grouped by party. PROC GLM is a procedure for general linear models.
It is similar in many ways to PROC REG except that PROC GLM can use CLASS
statements to create dummy variables for categorical predictors.

TABLE A.8: SAS for One-Way ANOVA with Table 12.1 and Two-Way ANOVA with
Table 12.9

data anova;
input party $ sex $ ideology ;
datalines;
Dem F 1
...
Rep M 7

;
proc means; by party; var ideology;
proc glm; class party ;

model ideology = party / solution;
means party / bon tukey alpha=.10;

proc means; by party sex; var ideology;
proc glm; class party sex;

model ideology = party sex / solution;
means party / bon tukey;

proc glm; class party sex;
model ideology = party sex party*sex;

run;

The first GLM statement requests a one-way ANOVA. The CLASS statement
requests dummy variables for party. The MEANS option provides multiple compar-
ison confidence intervals. Here, we request the Bonferroni and Tukey methods and
specify alpha = 0.10 for overall 90% confidence. The SOLUTION option requests
the estimates for the prediction equation.

The second PROC MEANS requests sample means on ideology for each com-
bination of party and gender. A GLM statement then conducts a two-way ANOVA,
setting up dummy variables for party and gender with the CLASS statement. A
MEANS option then requests multiple comparisons across levels of party, assum-
ing a lack of interaction. The final GLM statement adds an interaction term to the
model.

Table A.9 shows SAS for the repeated-measures ANOVA with Table 12.15. You
can use PROC REG or else PROC ANOVA. The latter applies for “balanced” anal-
yses having the same number of responses at each level of a factor. The analysis is fol-
lowed by a multiple comparison of means across the levels of type of entertainment.

Table A.10 shows an alternative way of inputting data for a repeated-measures
ANOVA. The model statement indicates that the repeated responses are modeled
as a function of therapy and that the levels at which the repeated measurements oc-
cur refer to a variable labeled as occasion. The analysis is followed by a Bonferroni
multiple comparison of the response means by category of therapy.
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TABLE A.9: SAS for Repeated-Measures ANOVA with Table 12.15

data repeat;
input subject $ type $ opinion @@;
datalines;
1 M -1 1 T 0 1 R -1
....
12 M -1 12 T -1 12 R -2
;
proc anova; classes subject type;

model opinion = type subject ;
means type / tukey bon;

run;

TABLE A.10: SAS for Two-Way Repeated-Measures ANOVA with Table 12.18

data repeat2;
input subject $ therapy $ weight1-weight2;
datalines;
1 CB 80.5 82.2
2 CB 84.9 85.6
3 CB 81.5 81.4
....
72 C 89.0 78.8
;
proc anova; class therapy ;
model weight1-weight2 = therapy ;
repeated occasion / short printe;

means therapy / bon ;
run;

You can also conduct repeated-measures ANOVA in SAS using PROC MIXED,
to have additional options for the covariance structure of the random effect
(see Section 13.7). This procedure, unlike PROC ANOVA or GLM, can use data
from subjects that have missing observations. Other advantages of PROC MIXED
are that you can use continuous variables in within-subject effects, instead of only
classification variables, and you can omit the between–within interaction effects from
the model. See Littell et al. (2006) for details.

CHAPTER 13: MULTIPLE REGRESSION WITH QUANTITATIVE AND
CATEGORICAL PREDICTORS

Table A.11 fits models to Table 13.1. The PLOT statement requests a plot of in-
come by education, with symbols indicating which race each observation has. The
first GLM statement fits the model, assuming no interaction, using a CLASS state-
ment to provide dummy variables for race. This is followed by a request for adjusted
means (also called “least squares means” and abbreviated by SAS as LSMEANS) on
the response for the different levels of race, with Bonferroni multiple comparisons.
The second GLM statement adds an interaction of race and education.
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TABLE A.11: SAS for Regression Models with Table 13.1

data ancova ;
input income educ race $ ;
datalines;
16 10 black
18 7 black
26 9 black
....
56 20 white
;
proc plot; plot income*educ = race;
proc glm; class race; model income = educ race / solution;
lsmeans race adjust=bon ;
proc glm; class race; model income = educ race educ*race/solution;
run;

Use PROC MIXED to fit linear mixed models, as shown in Table A.12.

TABLE A.12: SAS for Linear Mixed Model for Table 13.13, with Compound Symmetry
Correlation Structure

data smss;
input family opinion party sex;

datalines;
1 8 8 1
1 7 9 0
1 7 7 1
2 4 6 0
...
;
proc mixed data=smss;

class family;
model opinion = party sex / solution; random family / vcorr;
repeated/type=cs subject=family r rcorr;

run;

CHAPTER 14: MODEL BUILDING WITH MULTIPLE REGRESSION

Table A.13 analyzes the house sales data. The BACKWARD, FORWARD, and
STEPWISE choices for the SELECTION option yield these selection procedures.
The P option yields predicted values and the PRESS model diagnostic. The INFLU-
ENCE option yields studentized residuals, leverage values, and measures of influ-
ence such as DFFITS and DFBETAS. The PLOT option following the second model
statement requests plots of residuals against the predicted values and against size of
home. The code sets up an artificial variable size 2 that is the square of size. Entering
it in the model, as in the third regression statement, provides a quadratic regression
model.

PROC GENMOD fits generalized linear models. GENMOD specifies the distri-
bution in the DIST option ( “nor” for normal, “gam” for gamma, “poi” for Poisson,
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TABLE A.13: SAS for Various Analyses Conducted with House Sales Data

data housing ;
input price size bed bath new;
size_2 = size*size;
datalines;
279900 2048 4 2 0
146500 912 2 2 0
....

;
proc reg; model price = size bed bath new / selection=backward;
proc reg; model price = size bath new / p influence partial;
plot r.*p. r.*size ;
proc reg; model price = size size_2 ;
proc genmod; model price = size / dist = nor link = identity;
proc genmod; model price = size / dist = gam link = identity;
run;

“bin” for binomial) and has a LINK option (including “log,” “identity,” and “logit”).
The first GENMOD statement in Table A.13 gives the same results as using least
squares with PROC REG or GLM. The second GENMOD statement assumes a
gamma distribution for price.

Table A.14 uses PROC GENMOD to fit an exponential regression model to the
population growth data of Table 14.8.

TABLE A.14: SAS for Fitting Exponential Regression Model as a Generalized Linear Model to
Table 14.8

data growth ;
input decade popul ;
datalines;
0 62.95
1 75.99
....
;
proc genmod; model popul = decade / dist = nor link = log ;
run;

CHAPTER 15: LOGISTIC REGRESSION

For logistic regression, Table A.15 applies PROC GENMOD and PROC LOGIS-
TIC to Table 15.1. These procedures order the levels of the response variable
alphanumerically, forming the logit, for instance, as log[P(Y = 0)/P(Y = 1)].
The DESCENDING option reverses the order. Following the LOGISTIC model fit,
Table A.15 requests predicted probabilities and lower and upper 95% confidence
limits for the true probabilities.

For PROC GENMOD and PROC LOGISTIC with binomial models, the re-
sponse in the model statements can have the form of the number of successes divided
by the number of cases. Table A.16 fits a logistic model with categorical predictors to
the death penalty data in Table 15.3. The OBSTATS option in GENMOD provides



Appendix R, Stata, SPSS, and SAS for Statistical Analyses 543

TABLE A.15: SAS for Fitting Logistic Regression Model to Table 15.1

data binary ;
input ideology opinion ;
datalines;
4 1
3 0
....
;
proc genmod descending;

model opinion = ideology / dist = bin link = logit ;
proc logistic descending; model opinion = ideology / influence;

output out=predict p=pi_hat lower=LCL upper=UCL;
proc print data = predict;
run;

predicted probabilities and their confidence limits, and the RESIDUALS option pro-
vides standardized residuals (labeled StReschi). In models with multiple predictors,
the TYPE3 option in GENMOD provides likelihood-ratio tests.

TABLE A.16: SAS for Fitting Logistic Model to Table 15.3

data death ;
input vic def yes n ;
datalines;
1 1 53 467
1 0 11 48
0 1 0 16
0 0 4 143

;
proc genmod; model yes/n = def vic / dist=bin link=logit residuals
obstats type3;

proc logistic; model yes/n = def vic;

Table A.17 fits the loglinear model (AC, AM,CM) to the student survey data
of Table 15.12. The AM association is represented by A ∗ M. The OBSTATS and

TABLE A.17: SAS for Fitting Loglinear Models to Table 15.12

data drugs ;
input a $ c $ m $ count @@ ;
datalines;
yes yes yes 911 yes yes no 538
yes no yes 44 yes no no 456
no yes yes 3 no yes no 43
no no yes 2 no no no 279
;
proc genmod; class a c m ;
model count = a c m a*c a*m c*m / dist=poi link=log obstats

residuals;
run;
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RESIDUALS options provide expected frequencies (predicted values) and diagnos-
tics, including standardized residuals.

For ordinal responses, PROC LOGISTIC provides ML fitting of the pro-
portional odds version of cumulative logit models. PROC GENMOD fits this
model using options DIST=MULTINOMIAL and LINK=CLOGIT. PROC LOGIS-
TIC fits the baseline-category logit model for nominal responses with the option
LINK=GLOGIT. For examples of these and other methods for categorical data, see
www.stat.ufl.edu/~aa/cda/Sas web.pdf.

http://www.stat.ufl.edu/~aa/cda/Sas
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A
Additive models, 459, 461
Adjusted R2, 331, 361, 436
Adjusted means, 413–417
Agresti-Coull confidence interval,

138
AIC, 437
Alpha level, 162–168

confidence level, 170
Type I error, 169

Alternative hypothesis, 152–153, 155,
159

choice of, 161
Analysis of covariance, 399–418

controlling for a categorical variable,
399–401

controlling for quantitative variable,
401–402, 413–417

model with interaction, 404–407
model without interaction, 402–404,

406–417
Analysis of variance

F test in regression, 337
analysis of covariance, 408, 413
assumptions, 367, 370, 375, 383
interaction in, 377–378, 380–381,

387
multiple regression, 378–381, 384
multivariate (MANOVA), 390
one-way, 370–374, 382–384
ranks, 374
repeated-measures, 381–390
two-way, 374–381

Anecdotal evidence, 301
ANOVA table

one-way, 372
two-way, 376

Applet
ANOVA, 397
binomial distribution, 179
bootstrap, 142
chi-squared distribution, 233
chi-squared test, 234, 238
comparing means, 201, 208
comparing proportions, 198
comparing two proportions, 211
errors and power, 176, 187
explore coverage, 124, 148
F distribution, 334
Fisher’s exact test, 212
inference for mean, 130, 160
inference for proportion, 120, 138,

150, 166, 190
normal probabilities, 86, 88
quantitative data, 76
random numbers, 93

regression, 77, 264, 292
sampling distribution, 94, 101,

110–111, 148
t distribution, 128, 157

Association, 63
causality, 300–302
contingency table, 239–250
nominal variables, 239–245, 489–492,

496
ordinal variables, 245–250, 484–489
partial, 343–346
quantitative variables, 271–278,

343–346
Autoregressive correlation structure,

419
Average (mean), 47

B
Backward elimination procedure,

432–434
Bar graph, 42
Baseline-category logits, 489–492
Bayesian statistics, 80, 150
Bell-shaped distribution, 46, 53, 84
Beta weights, 347, 522
Between-groups estimate of variance,

371, 373, 397
Between-groups sum of squares,

373
Between-subjects factor, 386
Bias, 30, 31, 482
Biased estimator, 116, 139
Bimodal distribution, 53
Binary variable, 191, 471–477
Binomial distribution, 177–181, 471
Binomial test, 180–181
Bivariate analysis, 63, 191, 322
Bivariate probability distributions,

91–92
Blocks (blocking), 384
Bonferroni multiple comparisons,

369–370, 389
Bootstrap, 140–142
Box plot, 60, 263

C
Categorical variables, 24, 194–199,

210–213, 227–257, 471–507
Category choice, 250, 489
Causal dependence, 299
Causality

criteria for, 299–302
multiple causes, 308
time order, 300

Censored data, 70
Centering predictor values, 340, 428

Central Limit Theorem, 100–106
inference for means, 125, 163
inference for proportions, 118

Chain relationship, 307–308
Chi-squared distribution, 231–237

relation to standard normal, 483
Chi-squared test of homogeneity, 236
Chi-squared tests

association, 240
effect of sample size, 312
goodness of fit, 496–499
ordinal variables, 237, 249–250
test of independence, 231–237, 496,

497
two-by-two tables, 234–235

Cluster sampling, 34–35, 420–421
Clustered data, 420–421
Coefficient of determination

(r-squared), 277
Coefficient of multiple determination

(R2), 329–331
Comparing models, 341–343, 499

likelihood-ratio test, 483
Comparing several groups (summary),

390
Comparing two measures, 312
Complete and reduced regression

models, 341
Compound symmetry, 384, 419–421
Computer software, 18, 509–544
Conceptual population, 18
Concordant pairs, 245–247
Conditional distribution

contingency table, 199, 228–230
linear regression model, 268–271
multiple regression model, 332, 336

Conditional independence, 493
Conditional probability, 81, 199, 491
Conditional standard deviation (in

regression), 269–271, 278, 336
Confidence interval, 115, 117

compared to tests, 158, 172
correlation, 283, 298
difference in means, 199–206
difference in measures of association,

312
difference in proportions, 196–197,

199
gamma, 248
mean, 125–132, 143
mean of y at fixed value of x, 298
median, 141–142, 150
partial regression coefficient, 335
proportion, 118–125, 143, 150
simultaneous intervals for adjusted

means, 416
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Confidence interval (continued)
simultaneous intervals for means,

369–370
slope, 283

Confidence level, 117
relationship to α-level, 170

Confounding variable, 311, 409, 482
Consistent estimator, 139
Contingency partial tables, 304
Contingency table, 64, 199, 227–229,

477, 492
Continuous variables, 25–26, 82–83
Control variable, 304, 319
Controlling

analysis of covariance, 399–402,
413–417

analysis of variance, 374–378
categorical variables, 493
multiple regression, 319, 322
partial correlations, 343–346
variables, 302–313

Cook’s distance, 443
Correlation, 65, 91–92, 272–276,

280
comparing two correlations, 298
confidence interval for, 298
multiple, 329–331
partial, 343–346
Pearson r, 273
r, 272
range of x values, 286
standardized slope, 272–276
test for, 280
units of measurement, 274
z-scores, 92, 273, 298

Correlation matrix, 280
Covariance, 91–92, 416

analysis of, 399–418
Covariate, 399
Cross-classification table, see

Contingency table
Cross-over study, 202
Cross-product ratio, 241–243
Cross-product terms (for interaction),

404–406
Cross-sectional study, 192
Cross-validation, 437
Crossed effects, 386
Cubic function, 452
Cumulative distribution, 485
Cumulative logits, 485–489
Cumulative probability, 86, 485
Curvilinear relationships, 451–460

D
Data, 14
Data file, 19–20

Degree of polynomial function, 451
Degrees of freedom

bivariate regression, 270
chi-squared test, 232–233, 235
difference in means, 206
goodness-of-fit test, 497–498
inference for mean, 126, 156
interpretations, 150, 235
t test for means, 206

Dependence
contingency table, 229–230

Dependent samples, 192, 202, 205,
381–390

comparing means, 202–205
comparing proportions, 210–211

Dependent variable, 63
Descriptive statistics, 16–17
Design of experiment, 16
Deterministic model, 268
Deviance, 497
Deviation

about mean, 54, 78
about regression line, 266

DFBETA, 442–445
DFFIT, 442–445
Dichotomous variable, 191
Difference of proportions, 234–235,

240
Difference scores, 202–204
Discordant pairs, 245–247
Discrete variables, 25–26, 190, 484–507
Distribution, of data, 42
Dummy variables, 364–367, 478

regression models, 402–406
two-way analysis of variance,

378–380

E
Ecological fallacy, 297
Effect size, 172, 209, 214
Efficient estimator, 116, 139
Empirical Rule, 56–58, 84, 87
Error mean square

analysis of variance, 376
regression, 336

Error probability, 123
Errors, Type I and Type II, 168–170,

175–182
Estimation, 144

biased, 116
interval, 115, 117
point, 115–117
sample size, 132–138
versus hypothesis testing, 170–174

Estimator
biased, 116
unbiased, 116–117

Expected frequencies, 494–498
chi-squared test, 230–231, 235

Expected value, 84, 268
Experimental designs, 16, 28
Explanatory research, 436
Explanatory variable, 63, 191

regression, 259
Exploratory research, 436
Exponential regression function,

456–460, 475
Extrapolation, 287

F
F distribution, 333–334

mean, 334
relation to t distribution, 337

F test
comparing models, 341–342
comparing variances, 208
identical regression lines, 407–408
no interaction, analysis of

covariance, 406–407
one-way analysis of variance,

371–374, 382
partial regression coefficients,

333–334, 337, 341–342
two-way analysis of variance,

375–380, 387
Factorial, 178
Factorial ANOVA, 381
Factors, 363
Finite population correction, 112
First-order partial correlation, 343
Fisher’s exact test, 212–213

extension for r-by-c tables, 236
Fisher, R. A., 138, 212, 333, 371, 399
Fixed effects, 384, 390, 418
Forward selection procedure, 434
Frequency distribution, 42
Frequency histogram, 44–46

G
Galton, Sir Francis, 275
Gamma, 246–250

2 × 2 tables (Yule’s Q), 256
confidence interval for, 248
test for, 248–250

Gamma distribution, 449–450
General Social Survey, 15, 28
Generalized additive model, 461
Generalized estimating equations

(GEE), 461
Generalized linear mixed model, 461
Generalized linear model (GLM),

447–450
Goodness of fit, 496–499
Gosset, W. S. (Student), 132
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Graphical techniques, 42, 44–46, 60, 61,
438–442

Greenhouse-Geisser adjustment,
384

GSS, 15

H
Hat value, 442
Heteroscedasticity, 449
Histogram, 44

probability distribution, 82
Homogeneous association, 493
Homoscedasticity, 438
Hypergeometric distribution, 212
Hypothesis, 151

alternative, 152, 155, 159
null, 152
research, 153

Hypothesis testing
parts, 152–154, 182
summary of bivariate tests, 289

I
Independence

statistical, 229–230
test for nominal variables, 230–239
test for ordinal variables, 248–250
test for several quantitative variables,

333–334
Independence (statistical)

binary response, 482
conditional, 493–494
multidimensional contingency tables,

493–494
summary of bivariate tests, 289

Independent samples, 192, 205
Independent variable, 63
Inferential statistics, 16–18
Infinite population, 112
Influence diagnostics, 442–445
Influential observation, 265, 285
Interaction, 469

analysis of covariance, 404–407
analysis of variance, 377–378,

380–381, 387
categorical variables, 311, 479,

493–494
definition, 309
loglinear analysis, 493–494
regression, 337–341

Intercept (y-intercept), 260
Interquartile range, 60, 112
Interval estimate, 115, 117
Interval scales, 24–26

ratios, 40
treating ordinal data as interval, 25,

51, 214, 224

Intervening variable, 307
Intraclass correlation, 419

J
Joint distribution, 228

K
Kendall’s tau-b, 247
Kernel smoothing, 462
Kruskal-Wallis test, 374

L
Latent variable, 477
Law of large numbers, 112
Least squares

multiple regression model, 324
property of mean, 78

Least squares estimates, 266–268
Least squares means, 413
Level of statistical significance, see

(P-value)
Levels of measurement, 24–25
Leverage, 442
Likelihood function, 139, 483
Likelihood-ratio statistics, 483, 488,

497
Linear functions, 260–262
Linear mixed model, 418–423, 461
Linear model, 260–262, 268–271
Linear probability model, 471
Linear regression function, 268
Link function (in GLM), 448
LOESS, 462
Log link (in GLM), 448
Logarithmic transformation, 449,

456–460, 472
Logistic regression, 472–492, 497

goodness of fit, 497
infinite estimates, 507
nominal variables, 489–492
ordinal variables, 484–489
standardized residual, 498

Logit, 472
Logit model, 448
Loglinear models, 448, 492–500, 507
Longitudinal data analysis, 390, 418
Longitudinal study, 32, 192, 442
Lower quartile, 59
Lurking variable, 305

M
Main effects, 375
Mann-Whitney test, 213
MANOVA, 390
Margin of error, 17, 30, 115, 117,

132–133, 142, 143
mean, 125, 127, 135–136
proportion, 122–123, 132–135

Marginal distribution
contingency table, 228
regression, 271, 278

Matched pairs, 202, 211
Maximum likelihood, 138–140, 449, 472
McNemar test, 211
Mean, 47–49

adjusted, 413–417
compared to median, 51
comparing, controlling for covariate,

401–402, 407–408, 413–417
comparing, using analysis of

variance, 370–374
confidence interval, 129, 143
effect of rescaling data, 56, 78
inference for difference in means,

192–194, 199–204, 209–210, 216
multiple comparisons, 368–370
population, 67, 83, 97
probability distribution, 84
ratio of two means, 194
sample size needed to estimate,

135–136
skewness, 48–49
test about, 164
testing hypotheses about, 155–164
weighted average, 49

Mean squares
analysis of variance, 372, 378
error mean square, 336, 378
regression, 337
residual, 336

Measure of association
definition, 239
difference of proportions, 240
gamma, 246–250
multiple correlation, 329–331
partial correlation, 343–346
phi-squared, 256

Measurement, 23
levels of, 24–25
scale, 23

Measures
center, 47
position, 58–62
variability, 53–62

Median, 49–52
confidence interval, 141–142, 150
standard error, 142

Mediator variable, 307, 409
Method of least squares, 266–268, 324
Missing at random, 422
Missing data, 32, 422
Misuses of statistics, 19–20
Mixed model, 390, 418–423
Mode, 52–53
Model, 209, 262, 289
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Model selection procedures, 431–438
Model sum of squares, 284
Mu (μ) (population mean), 67
Multicollinearity, 331, 336, 445–447
Multinomial distribution, 231, 486, 492
Multiple comparisons

adjusted means, 416
analysis of covariance, no

interaction, 416
error rate, 369
means, 369–370, 389

Multiple correlation, 329–331, 361
Multiple regression model, 319–323

categorical predictors, 363–367,
374–381

inferences, 332–337, 339, 341
quantitative and categorical

predictors, 399–429
two-way analysis of variance,

378–381
Multiplicative models, 459, 475–476,

480
Multistage sample, 35
Mutually exclusive categories, 43

N
N (population size), 112
n (sample size), 26, 138
Negative binomial distribution, 448
Nested effects, 386
Nominal scales, 24–25

chi-squared test, 231–237
measures of association for, 239–245
models for, 489–496

Nonlinear relationships, 263
logarithmic, 456–460
polynomials, 451–456
residuals, 441

Nonparametric methods, 213–216
Nonparametric regression, 461–462
Nonprobability sampling, 30
Nonresponse bias, 32
Normal distribution, 84–92, 106

assumption in t test, 199
assumption in analysis of variance,

367, 370
assumption in confidence interval for

mean, 131
assumption in regression, 279, 332
binomial approximation, 180
bivariate, 91
formula, 85, 112
multivariate, 390
probabilities, 84–92
regression model, 438–439

Null hypothesis, 152–153
one-sided, 161

O
Observational data, 29
Observations, 14
Observed frequencies (in chi-squared

test), 230
Odds, 241, 242

logistic regression models, 472,
475–476, 479–480

Odds ratio, 241–245
confidence interval for, 257
logistic regression model, 484
logit model, 482
loglinear model, 494–496

Omitted variable bias, 311
One-sided alternative hypothesis,

159–161
One-way analysis of variance, 370–374,

382–384
Ordinal measures of association

concordance and discordance,
245–247

gamma, 246–250, 256
Ordinal scales, 24, 50

comparing groups on, 213, 214, 224,
374

models for, 484–489
testing for association, 248–250
treated as interval, 25, 51, 214, 224

Ordinal variable, 24
Outlier, 48, 58, 61, 112, 265, 285, 443

P
P-value, 153

alpha level, 162–168
confidence level, 170
misleading, 173
t test, 157
test for mean, 156, 161, 162
test for proportion, 165

Paired-difference t test, 204–205
Parabolas, 451
Parameter, 17, 67, 83
Parametric statistics, 213
Parsimony (of model building), 455
Part correlation, 361
Partial association, 313, 343–346
Partial correlation, 343–346

higher-order, 346
R2, 344, 361
relation to standardized regression

coefficients, 362
Partial regression coefficient, 322–323

inference, 333–337
Partial regression plot, 326, 440
Partial sum of squares, 361, 380–381,

407
Partial tables, 304, 493

Pearson chi-squared statistic, 231, 496
Pearson, Karl, 231, 273, 500
Percentage, 41

comparisons in contingency table,
228

Percentiles, 59, 88
Phi-squared, 256
Point estimate, 115–117, 138
Poisson distribution, 448, 492
Polynomial regression function,

451–456
Pooled estimate

proportions, 197
variance, 206

Population, 16–18
Population distribution, 45, 83
Population growth, 457–459
Population mean, 83, 97
Population parameters, 17, 83
Population size, 112
Population standard deviation, 83, 97,

112
Power of a test, 177
Prediction equation, 264, 323
Prediction error (residual), 266–268,

276, 324
Prediction interval, 298
PRESS, 437
Probabilistic model, 268
Probability, 79–106
Probability distribution, 81

binomial, 177–181
chi-squared, 231–237
continuous variable, 82
discrete variable, 81–82
normal, 84–92
sampling, 92–106
t, 164

Probability rules, 80
Probability sampling, 30
Probit models, 476–477
Propensity scores, 482
Proportion, 41

Bayes estimate, 150
comparing two proportions, 194–213,

216
confidence interval, 118–125, 143
confidence interval small n, 137–138
dependent samples, 210–211
difference of, as measure of

association, 240
equivalence of chi-squared test with

comparison of two proportions,
234–235

logit models for, 472
mean, special case, 52, 96, 118, 471
point estimate of, 117, 118
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ratio of two proportions, 194
sample size needed to estimate,

133–135
sampling distribution of, 118–133
test about, 164–167
test about, small-sample, 180–181

Proportional odds model, 486, 488
Proportional reduction in error, 276

r-squared), 278

Q
Quadratic function, 451–456
Quantile, 59
Quantitative variables, 24
Quartiles, 59, 62, 112

R
R2 (coefficient of multiple

determination), 329–331, 342
r-squared, 277

proportional reduction in error,
276–278

R (software), 18, 509
aov function, 514
avPlots function, 513
boxplot function, 510
chisq.test function, 236, 238,

512
cooks.distance function, 515
cor.test function, 282
cor function, 66, 510
dffits function, 515
effect function, 515
factor function, 513
glm function, 474, 516
hist function, 510
lm.beta function, 513
lmer function, 515
lm function, 66, 282, 510, 513
mean function, 59
pcor function, 513
plot function, 66, 510
pnorm function, 86
ppcor package, 513
prop.test function, 120, 166, 511,

512
pt function, 156
qnorm function, 88
qt function, 127, 511
quantile function, 510
read.table command, 510
sample function, 28
scale function, 513
sd function, 55
summary function, 59, 510
t.test function, 129, 160, 511, 512
TukeyHSD function, 514

VGAM package, 491
vglm function, 491, 516
vif function, 515

Random effects, 384, 386, 389, 418
binary regression model, 477

Random intercept model, 419
Random numbers, 27–28, 93
Random sample, 26–28, 33–35
Random variable, 81
Randomization, 26
Randomized block design, 207
Randomized response, 150
Range, 54

biased estimate, 116
interquartile, 60

Ranks, 213
Ratio scales, 40
Regression, 66

categorical and quantitative
predictors, 399–429

categorical predictors, 363–397
coefficients, 268
error term, 287–288
function, 268
generalized linear model,

448–449
inference, 278–284
linear, 268
logistic, 471–484
multinomial, 489–492
ordinal, 484–489
regression toward the mean, 276
sum of squares, 284

Regression coefficients, 261
Regression function, 319

comparing regression lines, 399–401,
407–408

dummy variables, 364–367, 378–381
multiple, 319–323
nonlinear, 451–456
polynomial, 451–456

Regression mean square, 337
Regression sum of squares, 331, 337
Rejection region, 168
Relative frequency, 41, 79
Relative frequency distribution, 42
Relative risk, 194
Reliability, 23
Repeated measures, 202
Repeated-measures ANOVA, 381–390,

418
Research hypothesis, 153
Residual sum of squares, 329
Residuals, 324, 438–442

contingency table, 237–239
regression, 266–268, 288
standardized, 498

Response bias, 31
Response variable, 63, 191

regression, 259
Rho

population correlation, 280
Robust variance estimate, 460–461
Robustness, 131, 163

analysis of variance, 367

S
Sample, 16–18
Sample data distribution, 45, 106
Sample size, 26, 47

choice of, 132–138
effect on chi-squared statistic, 241
effect on width of confidence

interval, 122, 143
Sample survey, 28
Sampling, 26–35

frame, 27
Sampling bias, 30
Sampling distribution, 92–106
Sampling error, 30, 100
Sampling variability, 94–96
Sandwich variance estimate, 461
SAS, 18, 534–544
Saturated models, 494
Scale of measurement, 23
Scatterplot, 65, 262
Scatterplot matrix, 325
Selection bias, 31, 482
Semipartial correlation, 361
Sequential sum of squares, 361
Shape of distribution, 46
Sigma (σ ) (population standard

deviation), 67
Sigma (summation sign), 48
Significance level, 162

practical versus statistical
significance, 171–174, 240

Significance testing
compared to confidence intervals,

170–174
Significance tests, 151

difference in means, 206–210
difference in proportions, 197–198
mean, 155–164
null and alternative hypotheses,

152
parts, 152–154, 182
proportion, 164, 167
proportion, small-sample, 180–181
relation to confidence intervals,

201
statistical versus practical

significance, 171–172
testing versus estimation, 172–174
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Simple random sample, 26–28
Simpson’s paradox, 311, 315, 317, 321,

344, 396, 506
Simultaneous confidence intervals,

369–370
Skewed distributions, 46, 51, 58, 100
Skip number, 33
Slope, 260–262

correlation, 272–276
inference, 278–283
partial slope, 323
standardized, 346

Software, 18
Somers’ d, 247
Spearman’s rho-b, 247
Sphericity, 383
SPSS, 18, 526
Spurious association, 306–308
Standard deviation, 55–60

bootstrap confidence interval, 142
conditional, in regression, 269–271
confidence interval, 142
distribution of ȳ, 100
effect of rescaling data, 56
estimate of population, 117
interpretation using Empirical Rule,

56–58
n vs. (n − 1) in denominator, 56
pooled estimate, 206
population, 67, 83
probability distribution, 83–84, 112
sample, 55
sampling distribution of ȳ, 97

Standard error, 97–100
difference of estimates, 193
estimated regression coefficient, 445,

468
mean, 97
proportion, 98–100, 112

Standard normal distribution, 91, 132
similarity of t distribution, 127

Standard score, 90
Standardized regression coefficient

bivariate regression, 273
multiple regression, 346–349
relationship to partial correlation,

362
Standardized regression equation,

348
Standardized residual, 237–238, 498
Standardized variables, 348
Stata (software), 18, 517
mlogit command, 491
anova command, 523
bootstrap command, 142
centile command, 518
ci proportions command, 519

cii means command, 130, 518
cii proportions command, 120,

138, 519
ci command, 518
corrci command, 521
corr command, 518, 521, 522
csi command, 257
display invnormal command,

88, 518
display invt command, 519
display normal command, 86,

518
display tprob command, 519,

520
fweight option, 476
glm command, 525, 526
graph box command, 518
graph matrix command, 522
help command, 517
histogram command, 517
invt command, 128
logit command, 525
lrtest command, 525
margins command, 524
mcci command, 520
mcc command, 520
mean command, 519
mixed command, 524
mlogit command, 491, 526
ologit command, 487, 526
oneway command, 523
pcorr command, 522
predict command, 524
prtesti command, 519, 520
prtest command, 166, 198, 519,

520
pwcompare command, 522
pwcorr command, 518, 521
ranksum command, 521
read data from website, 517
regress command, 461, 518,

521–524
reshape command, 523
rstudent option, 524
rvfplot command, 524
rvpplot command, 524
scatter command, 521
ssc command, 521
stem command, 518
stepwise command, 524
summarize command, 60, 518
tabchii command, 521
tabi command, 521
tab command, 233, 248, 520, 521
teffects psmatch command,

526
test command, 526

ttail command, 157
ttesti command, 519, 520
ttest command, 160, 201, 208, 519,

520
Statistic, 17
Statistical control, 302–305
Statistical independence, see

Independence, statistical
Statistical inference, 16–18
Statistical interaction, see Interaction
Statistical significance, 162

practical significance, 171–172, 240
Statistics, 13
Statistics software, 509–544
Stem-and-leaf plot, 45
Stepwise regression procedure,

434–435
Strata, 34
Stratified random sample, 33–34

disproportional, 34
proportional, 34

Student’s t distribution, 132
Studentized residual, 438
Subjects, 16
Sum of squared errors (in regression),

267, 276, 298
multiple regression, 324

Sum of squares, 55, 78
Summation sign, 48
Suppressor variable, 309
Symmetric distributions, 46, 50, 53,

84
Systematic random sample, 33

T
t distribution, 126–132, 164

t test for mean, 164
t statistic, 156
t test for mean, 164

comparing two means, 200–210
paired difference, 204–205

t-score, 127–131
Tchebysheff’s theorem, 78
Test statistic, 153
Testing hypotheses, see Significance

tests
chi-squared test of independence,

231–237
goodness of fit, 496
identical regression lines, 407–408
parallel regression lines, 406–407
partial regression coefficients and

partial correlations, 333
slope and correlation, 279–282
statistical versus practical

significance, 240
Time series, 441–442



Index 557

Total sum of squares (TSS), 271, 276,
329

analysis of variance, 374
Transformations, 448

logarithmic, 449, 456–460
Treatments, 18, 28
TSS (total sum of squares), 271, 276,

329, 374
Tukey’s multiple comparison method,

370
Two sample test

means, 200–204, 206–210
proportions, 197–198, 216
using ranks, 213

Two-by-two table, 234–235
Two-sided alternative hypothesis, 155,

161
Two-way analysis of variance, 374–378,

385–390
multiple regression, 378
using multiple regression, 381

Type I error, 168–170, 173, 176
Type I sum of squares, 361
Type II error, 168–170, 175–182
Type III sum of squares, 361, 380–381

U
U-shaped distribution, 46
Unbiased estimator, 116–117
Upper quartile, 59

V
Validity, 23
Variability, 53–62

effect on sample size, 136
Variable, 23–35

continuous, 25–26
discrete, 25–26
interval, 24
nominal, 24
ordinal, 24
ȳ and s as variables, 67

Variance
comparing two variances, 208
conditional, in regression, 269–271,

278, 336
explained and unexplained, 278
pooled estimate, 199, 206
population, 56
probability distribution, 84

sample, 55
sum of variables, 112
z-score, 348

Variance inflation factor (VIF), 446
VIF (variance inflation factor), 446
Volunteer sampling, 30

W
Wald statistic, 483, 488
Weighted average, 49
Weighted least squares, 449
Wilcoxon test, 213
Within-groups estimate of variance,

371–373, 397
Within-groups sum of squares, 373
Within-subjects factor, 386

Y
ȳ (mean), 47
Yule’s Q, 256

Z
z statistic, 164
z-score, 62, 89–92



Key Formulas for Statistical Methods

Chapter 3 Descriptive Statistics

Mean ȳ =
∑

yi

n
Standard deviation s =

√∑
(yi − ȳ)2

n − 1

Chapter 4 Probability Distributions

z-score z = y − μ

σ
Standard error σȳ = σ√

n

Chapter 5 Statistical Inference: Estimation

Confidence interval for mean ȳ ± z(se) with se = s√
n

Confidence interval for proportion π̂ ± z(se) with se =
√

π̂(1−π̂)
n

Chapter 6 Statistical Inference: Significance Tests

H0 : μ = μ0 test statistic t = ȳ − μ0

se
with se = s√

n , df = n − 1

H0 : π = π0 test statistic z = π̂ − π0

se0
with se0 =

√
π0(1 − π0)

n

Chapter 7 Comparison of Two Groups

Compare means: (ȳ2 − ȳ1) ± t(se) with se =
√

s2
1

n1
+ s2

2

n2

Test H0 : μ1 = μ2 using t = ȳ2 − ȳ1

se

Compare proportions: (π̂2 − π̂1) ± z(se) with se =
√

π̂1(1−π̂1)
n1

+ π̂2(1−π̂2)
n2

Chapter 8 Analyzing Association Between Categorical Variables

Chi-squared test of H0: Independence, X 2 =
∑ ( fo − fe)2

fe
, df = (r − 1)(c − 1)

Ordinal measure γ̂ = C − D
C + D

, −1 ≤ γ̂ ≤ 1, z = γ̂

σ̂γ̂

, γ̂ ± zσ̂γ̂

Chapter 9 Linear Regression and Correlation

Linear regression model E(y) = α + βx, prediction equation ŷ = a + bx

Pearson correlation r =
(

sx

sy

)
b, −1 ≤ r ≤ 1

r2 = TSS − SSE
TSS

, TSS =
∑

(y − ȳ)2, SSE =
∑

(y − ŷ)2, 0 ≤ r2 ≤ 1

Test of independence H0 : β = 0, t = b
se

, df = n − 2



Chapter 11 Multiple Regression and Correlation

Multiple regression model E(y) = α + β1x1 + β2x2 + · · · + βpxp

Global test H0 : β1 = · · · = βp = 0

Test statistic F = Model mean square
Error mean square

= R2/p
(1 − R2)/ [n − (p + 1)]

df1 = p, df2 = n − (p + 1)

Partial test H0 : βi = 0, test statistic t = bi

se
, df = n − (p + 1)

Chapter 12 Regression with Categorical Predictors: Analysis of Variance Methods

H0 : μ1 = · · · = μg, One-way ANOVA test statistic

F = Between-groups sum of squares/(g − 1)
Within-groups sum of squares/(N − g)

, df1 = g − 1, df2 = N − g

Chapter 13 Multiple Regression with Quantitative and Categorical Predictors

E(y) = α + βx + β1z1 + · · · + βg−1zg−1, zi = 1 or 0 is dummy variable for group i

Chapter 14 Model Building with Multiple Regression

Quadratic regression E(y) = α + β1x + β2x2

Exponential regression E(y) = αβx (log of mean is linear in x)

Chapter 15 Logistic Regression: Modeling Categorical Responses

Logistic regression logit = log(odds) = log
(

P(y=1)
1−P(y=1)

)
= α + βx

P(y = 1) = eα+βx

1+eα+βx = odds
1+odds



TABLE A: Normal curve tail probabilities. Standard normal probability in right-hand tail (for negative values of z,
probabilities are found by symmetry).

0

Probability

z

Second Decimal Place of z

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641
0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247
0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859
0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3483
0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121
0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776
0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451
0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148
0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867
0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611
1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379
1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170
1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985
1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823
1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681
1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559
1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455
1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367
1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294
1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233
2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183
2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143
2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110
2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084
2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064
2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048
2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036
2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026
2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019
2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014
3.0 .00135
3.5 .000233
4.0 .0000317
4.5 .00000340
5.0 .000000287
Source: R. E. Walpole, Introduction to Statistics (New York: Macmillan, 1968).



TABLE B: t Distribution Critical Values

0

Probability

t

Confidence Level
80% 90% 95% 98% 99% 99.8%

Right-Tail Probability
df t.100 t.050 t.025 t.010 t.005 t.001

1 3.078 6.314 12.706 31.821 63.656 318.289
2 1.886 2.920 4.303 6.965 9.925 22.328
3 1.638 2.353 3.182 4.541 5.841 10.214
4 1.533 2.132 2.776 3.747 4.604 7.173
5 1.476 2.015 2.571 3.365 4.032 5.894
6 1.440 1.943 2.447 3.143 3.707 5.208
7 1.415 1.895 2.365 2.998 3.499 4.785
8 1.397 1.860 2.306 2.896 3.355 4.501
9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144
11 1.363 1.796 2.201 2.718 3.106 4.025
12 1.356 1.782 2.179 2.681 3.055 3.930
13 1.350 1.771 2.160 2.650 3.012 3.852
14 1.345 1.761 2.145 2.624 2.977 3.787
15 1.341 1.753 2.131 2.602 2.947 3.733
16 1.337 1.746 2.120 2.583 2.921 3.686
17 1.333 1.740 2.110 2.567 2.898 3.646
18 1.330 1.734 2.101 2.552 2.878 3.611
19 1.328 1.729 2.093 2.539 2.861 3.579
20 1.325 1.725 2.086 2.528 2.845 3.552
21 1.323 1.721 2.080 2.518 2.831 3.527
22 1.321 1.717 2.074 2.508 2.819 3.505
23 1.319 1.714 2.069 2.500 2.807 3.485
24 1.318 1.711 2.064 2.492 2.797 3.467
25 1.316 1.708 2.060 2.485 2.787 3.450
26 1.315 1.706 2.056 2.479 2.779 3.435
27 1.314 1.703 2.052 2.473 2.771 3.421
28 1.313 1.701 2.048 2.467 2.763 3.408
29 1.311 1.699 2.045 2.462 2.756 3.396
30 1.310 1.697 2.042 2.457 2.750 3.385
40 1.303 1.684 2.021 2.423 2.704 3.307
50 1.299 1.676 2.009 2.403 2.678 3.261
60 1.296 1.671 2.000 2.390 2.660 3.232
80 1.292 1.664 1.990 2.374 2.639 3.195

100 1.290 1.660 1.984 2.364 2.626 3.174
∞ 1.282 1.645 1.960 2.326 2.576 3.091

Source: “Table of Percentage Points of the t-Distribution.” Computed by Maxine Merrington, Biometrika, 32 (1941):
300. Reproduced by permission of the Biometrika trustees.



A GUIDE TO CHOOSING A STATISTICAL METHOD

Quantitative Response Variable (Analyzing Means)

1. If no other variables, use descriptive methods of Chapter 3 and inferential
methods of Section 5.3 (confidence interval) and Section 6.2 (significance test)
for a mean.

2. Categorical explanatory variable: If two levels, use methods for comparing
two means from Section 7.3 (two independent samples) or Section 7.4 (two de-
pendent samples). If several levels, use ANOVA methods for comparing sev-
eral means from Sections 12.1–3 (several independent samples) or Section 12.6
(several dependent samples). These are equivalent to regression methods with
dummy variables for predictors. If several categorical variables, use ANOVA
methods of Sections 12.4 or 12.6 or use regression with dummy variables.

3. Quantitative explanatory variable: Use regression and correlation methods of
Chapter 9. If several quantitative predictors, use multiple regression methods
of Chapters 11 and 14.

4. Quantitative and categorical explanatory variables: Use analysis of covari-
ance methods of Chapter 13, which are regression methods with dummy
variables for categorical predictors.

Categorical Response Variable (Analyzing Proportions)

1. If no other variable, use descriptive methods of Section 3.1 and inferential
methods of Section 5.2 (confidence interval) and Section 6.3 (significance test)
for proportions.

2. Categorical explanatory variable: Use contingency table methods of Chap-
ter 8, with Section 7.2 for special case of comparing proportions for two groups
and Section 8.5 for ordinal classifications.

3. If binary response with quantitative explanatory variable or multiple quan-
titative and/or categorical predictors, use logistic regression methods of
Chapter 15.

4. If ordinal response with quantitative and/or categorical predictors, use ordinal
logit model of Section 15.4.
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