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Preface

This book is based on my 50 years of experience in navigation of Earth entry vehi-
cles, Minuteman ballistic missiles, and planetary spacecraft. At the Jet Propulsion
Laboratory, I worked on the Mariner 6, Viking, Pioneer, Galileo, and Near Earth
Asteroid Rendezvous missions. At KinetX Inc. I worked on the MESSENGER
and New Horizons missions. In writing this book I have drawn on engineering
memoranda, conference papers, and publications I have written as well as many
notes that I have accumulated over many years. My purpose is to present a book
that will describe how navigation is done. The emphasis is on mathematics that
have been coded in computer programs used for mission operations. Therefore, the
derivations are given in detail since relatively little mathematics actually makes it
into operational software. The mathematics that do are generally straightforward,
but the programs are large and complex and must be virtually error free. In writing
this book, I have frequently checked the mathematics by looking at computer code
that I am confident is correct.

Chapter 1 contains the equations of motion exclusive of the force models. Since
navigation is concerned with everything that moves, the equations of motion include
the kinetic theory of gasses and propagation of electromagnetic waves. The force
models are given in Chap. 2. Since motion is in a straight line without force
being applied, the force models enable spacecraft to go somewhere. Chapter 3
describes the procedure for designing the trajectory a spacecraft will follow. A
detailed derivation of Kepler’s equation and Lambert’s theorem is given. Just
about all trajectory design is based on these two individuals’ work aside from
Newton of course. Trajectory optimization is described in Chap. 4. Most trajectory
optimization is performed by developing an intuitive feel for the problem being
solved. Sometimes it is necessary to perform a detailed constrained parameter
optimization when there are many more control parameters than constraints. The
first constrained parameter optimization using a computer program was the Viking
orbit insertion maneuver. Previously, the trajectory designs were mostly Hohmann
transfers. Chapter 5 describes the probability and statistics needed for navigation
analysis. This is probably the most important navigation design function since it
relates directly to the probability of achieving mission success. Orbit determination
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is described in Chap. 6. At the beginning of planetary spacecraft navigation, orbit
determination was a major problem. The Mariner class spacecraft had to contend
with orbit determination errors of several thousand kilometers. Missions were flown
so we could do orbit determination, not science. Today, the orbit determination error
at Mars is on the order of tens of kilometers. This progress may be attributed to the
introduction of VLBI. There is still the problem of orbit convergence and this prob-
lem is addressed in some detail. The measurements and calibrations are described
in Chap. 7. Navigation is primarily concerned with the physical quantity being
measured and not the hardware required to perform the measurement. However,
some detailed knowledge of the measurement implementation is necessary to write
navigation software. The navigation system is described in Chap. 8. The navigation
system and navigation operations procedures are constantly evolving. An overview
is given that applies to all navigation systems. It is conservatively estimated that
there is at least one navigation system for each person doing navigation operations.
The final chapter is anecdotal and describes some navigation analyses I performed
over the years. My purpose is to describe the type of analyses the reader would
be expected to perform if he or she pursued a career in navigation. I hope I have
succeeded in convincing the reader that navigation is a lot of fun.

Planetary spacecraft navigation is the result of the work of many individuals
including the author of this book. The person who had the original idea is often not
known. I have mentioned some individuals in the text who I am aware of and made
some significant contribution. Some are contemporary and known personally, but
often these individuals are mathematicians and have lived over a 100 years ago. I
have made little effort to search the literature and track down the original source.
Most of my acknowledgments are anecdotal and the source is discussions in the
coffee room that have not been verified. There are a few who have contributed
directly to the writing of this book. My wife, Dr. Connie Weeks, Professor Emeritus
of Mathematics, Loyola Marymount University, is the source of a large amount of
my limited knowledge of mathematics. I cannot recall a question about mathematics
where she did not have an immediate answer. The person most responsible for this
book being written is Dr. Gerald Hintz who teaches at the University of Southern
California. I have known him for about 50 years and since I started writing this book
20 years ago, he has kept encouraging me to finish. Writing this book has not been
as difficult as I thought it would be, but rather an enjoyable experience. I must also
acknowledge my mother, Eunice Miller, who thought it would be a good idea for
me to be the first one on either side of my family to go to college. My sisters, Peggy
Joyce, Nan Elizabeth, and Linda Lee, also got behind this major effort and I will be
forever indebted to them.

I am particularly indebted to the editors at Springer International Publishing.
Hannah Kaufman and Maury Solomon showed great patience in leading me
through the process. The production people headed by Batmanadan Karthikeyan
transformed my manuscript into what I regard as a work of art.

Porter Ranch, CA, USA James Miller
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Chapter 1
Equations of Motion

1.1 Introduction

The equations of motion describe the path that a spacecraft, planet, satellite,
molecule, electromagnetic wave, or any body will follow. In space, the path that
a spacecraft follows is called a trajectory and for a planet it is called an ephemeris.
For the purpose of navigation, a planet is defined as any object that orbits the sun
and, thus, includes comets and asteroids. A satellite is any body that orbits a planet.
Flight operations are generally conducted using solutions of Newton’s equation of
motion obtained by numerical integration. Analytic solutions of Newton’s equation
of motion provide some insight into trajectory design and navigation analysis, but
these solutions are seldom used in the conduct of flight operations. For spacecraft
near the Sun and Jupiter, and for the planet ephemerides, Newton’s equations of
motion are augmented with terms from the n-body solution of General Relativity.

In this chapter, Newton’s equations of motion are applied to molecules in a
container to obtain the kinetic theory of gasses and a rigid body to obtain the
rotational equations of motion. Equations for the motion of a spacecraft and photon
are developed from the equation of geodesics which describes motion in the vicinity
of a massive body obtained from the general theory of relativity. Finally, numerical
integration of the equations of motion is described.

1.2 Particle Dynamics

A body in space will continue to move in a straight line at a constant velocity unless
acted on by some external force. The same body in the atmosphere or on the surface
of the Earth will move in a given direction at constant speed provided that there are
no forces acting on the body. Since the Earth’s gravity combined with atmospheric
drag will result in force components along the direction of motion and normal to
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2 1 Equations of Motion

the direction of motion, the case of straight line or rectilinear motion can only be
approximated. Newton’s equation of motion describes the departure from rectilinear
motion of a body when acted on by external forces and is given by,

F = m a (1.1)

where m is the mass of the body, F is the applied force vector, and a is the resultant
acceleration vector. Once the applied forces have been characterized, Newton’s
equation is the only equation that one needs to solve to determine the motion of
a body provided that the effects of General Relativity and quantum mechanics are
small enough to be ignored.

When one body exerts a force on another body, there is an equal and opposite
reaction of the second body exerting the same force on the first body. This property
of force results in the conservation of certain mathematical properties called
energy and momentum when Newton’s equation of motion is applied. Consider the
collision of two elastic spheres. As the spheres collide, they are compressed by a
force that acts along the line joining their centers. As the spheres separate, this same
force acts like a spring and the spheres are returned to their previous spherical shape.
The geometry of the collision is shown in Fig. 1.1.

The spheres have velocities V1 and U1 before the collision and velocities V2 and
U2 after the collision and receive incremental changes in velocity of �V1 and �U1,
respectively. The masses of the two bodies are mv and mu. The x coordinate axis is
along the line joining the centers at impact and V1 is in the x − y plane. During the
time interval of contact, the motion is given by Eq. (1.1).

Fudt = mudU (1.2)

Fvdt = mvdV (1.3)

Fig. 1.1 Particle dynamics y

x

mu

mv

mv
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V2

V1

U2
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1.2 Particle Dynamics 3

Since the forces are equal and opposite and Fu is the negative of Fv, the following
result is obtained by integrating Eq. (1.2) and Eq. (1.3) and adding the results,

mu(U2 − U1) + mv(V2 − V1) = 0 (1.4)

If momentum is defined as the product of mass and velocity, Eq. (1.4) reveals that
momentum is conserved during impact. The momentum increase of one body is
equal to the momentum decrease of the other body. An equally important result
may be obtained if the components of the vectors are examined. Before the impact,
the velocities are given by

V1 = [Vx1, Vy1, 0]
U1 = [Ux1, Uy1, Uz1]

and after the impact the velocities are

V2 = [Vx1 + �Vx1, Vy1, 0]
U2 = [Ux1 + �Ux1, Uy1, Uz1]

Taking the square of the velocity magnitudes before and after impact and
differencing,

V 2
2 − V 2

1 = 2Vx1�Vx1 + �V 2
x1

U2
2 − U2

1 = 2Ux1�Ux1 + �U2
x1

Multiplying the x component of Eqs. (1.2) and (1.3) by Ux and Vx , respectively, the
following equations are obtained.

Fu dx = mu Ux dUx (1.5)

Fv dx = mv Vx dVx (1.6)

Integrating the force over the distance traveled during the interval of contact and
adding the results from Eqs. (1.5) and (1.6)

mu

[
(Ux1 + �Ux1)

2

2
− U2

x1

2

]
+ mv

[
(Vx1 + �Vx1)

2

2
− V 2

x1

2

]
= 0

mu

[
2Ux1�Ux1 + �U2

x1

2

]
+ mv

[
2Vx1�Vx1 + �V 2

x1

2

]
= 0

and

mu

[
U2

2 − U2
1

2

]
+ mv

[
V 2

2 − V 2
1

2

]
= 0 (1.7)
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which may also be written

1

2
mu U2

2 + 1

2
mv V 2

2 = 1

2
mu U2

1 + 1

2
mv V 2

1 (1.8)

Energy is defined as force acting over distance and Eq. (1.7) and Eq. (1.8) show that
the energy of a particle is one half of the product of mass and the magnitude of
velocity squared and reveals that energy is also conserved during impact.

Particle impacts have been assumed to be impulsive. The force is assumed to be
constant over a small interval of time or distance. The integral is defined as the sum
of an infinite number of impacts as the time interval approaches zero and is referred
to as a Riemann sum. Consider the sum

Un+1, Vn+1 = U1, V1 + �U1,�V1 + �U2,�V2 + �U3,�V3 + · · · �Un,�Vn

If Ui+1, Vi+1 is the result of the velocity change from Ui , Vi , then Ui+1, Vi+1
will have the same energy and momentum as Ui , Vi and by extension Un+1, Vn+1
will have the same energy and momentum as U1, V1 even if the force vectors are
different for each interval. Thus, the conservation of momentum and energy may be
extended to all collisions, electrostatic interactions, gravitational interactions, and
electromagnetic emanations. They all obey Newton’s action equals reaction. When
we fire a rocket engine or hit a baseball with a bat or fall out of a tree, the energy is
conserved by the molecules colliding with one another, the gravitational force on the
molecules or the electrostatic repulsion and attraction of the protons and electrons
comprising the molecule. This may be an oversimplified view of the universe but
will enable us to navigate anywhere in the solar system.

1.3 n-Body Equations of Motion

For a system of n bodies, the resultant gravitational force on the i’th body is the sum
of the individual contributions from the other j bodies and

Fi = G

n∑
j=1

mimj

rj − ri

r3
ij

+ mimj∇Oi(rj − ri) + mimj∇Oj(ri − rj) + O(�r3)

where G is the gravitational constant, r and m are the position and mass of a body,
and ∇O refers to the oblateness. When i = j , the terms vanish and may be omitted.
The acceleration of body i is obtained by simply dividing through by mi .

ai = Gmj

n∑
j=1

rj − ri

r3
ij

+ ∇Oi(rj − ri) + ∇Oj(ri − rj) (1.9)
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The center of the coordinate system is at rest and may be determined from the
following equation.

r0 = 1

mt

n∑
i=1

miri

Taking the derivative with respect to time,

ṙ0 = 1

mt

n∑
i=1

mi ṙi

Since the exchange of momentum of body i with body j results in no change in
the sum, the total momentum exchange of all the bodies must be zero and the
summation terms remain constant as a function of time. Since mt is the total system
mass and r0 is the center of mass, the center of mass may be stationary or move at
a constant velocity with respect to inertial space. The n-body equations of motion
given by Eq. (1.9) are referred to as the barycentric formulation. The barycenter is
the center of mass of the system containing n bodies. These equations are generally
integrated numerically to obtain planetary and satellite ephemerides. Since the mass
of one or more of the bodies may be assumed to be zero, a spacecraft or other point
mass object may be included in the system of equations to be integrated. For high-
precision ephemerides, other force models and additional terms from the general
theory of relativity may be included in the integration.

For a spacecraft that is orbiting or flying close to a gravitating body, an
alternative form of the n-body equations is often used. An increase in the accuracy
of integration may be obtained if the coordinate system is located at the center
of mass of the nearby dominant body. For this configuration, bodies that are far
away from the spacecraft enter as a tidal acceleration that is differenced before
the integration thus potentially improving the numerical accuracy. This formulation
is referred to as planetocentric and may be obtained by simply subtracting the
barycentric acceleration of the body that is close to the spacecraft from all the other
bodies including the spacecraft. For convenience, assume that the spacecraft is body
number one and the central body is body number 2.

a2 = 0 r2 = 0

a1 = Gmj

n∑
j=2

{
rj − r1

r3
1j

+ ∇O1(rj − r1) + ∇Oj(r1 − rj)

}

−Gmj

n∑
j=2

{
rj

r3
j

+ ∇O1(rj) + ∇Oj(−rj)

}
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1.4 Translational Variational Equations

Orbit determination, trajectory optimization, trajectory design, and propulsive
maneuver design require partial derivatives of spacecraft state, planet ephemerides,
and planet attitude with respect to constant dynamic parameters. The constant
parameters (q) include initial conditions, gravity harmonics, solar pressure model
parameters, propulsive maneuver model parameters, and other force model param-
eters. For orbit determination, the partial derivatives of measurements (Z) with
respect to q may be obtained by application of the chain rule.

∂Z

∂q
= ∂Z

∂(r, v)

∂(r, v)

∂q

where r and v are the spacecraft position and velocity at some time t referred to
as the spacecraft state. The partial derivative of Z with respect to spacecraft state
is called the data partial. The measurement and data partials are a function of the
spacecraft state and constant parameters (q). The partial derivatives of spacecraft
state with respect to q are called the variational partials. If Z is replaced by target
parameters, the partial derivatives needed for trajectory design or optimization are
obtained. If spacecraft state is replaced by planet state, the planetary variational
partials are obtained. If spacecraft state is replaced by planet attitude, the rotational
variational partials are obtained.

The translational variational partial derivatives are obtained by integrating the
partial derivatives of acceleration with respect to the dynamic parameters. The
spacecraft acceleration is a function of spacecraft state and q.

A = f (r, v, q)

Differentiating with respect to q, we obtain

∂A
∂q

= ∂A
∂r

∂r
∂q

+ ∂A
∂v

∂v
∂q

+ ∂A
∂q

|r,v constant (1.10)

The acceleration (A) and the partial derivatives of A with respect to r , v, and q are
described below in the chapter on Force Models. The equations are given for A but
are actually the force on the body when the acceleration is multiplied by the mass of
the body. Since, in the limit as the mass of the body goes to zero, the force also goes
to zero, and the ratio is the acceleration, it is convenient to compute the acceleration
directly for a spacecraft. The mass of the spacecraft is small relative to a planet and
can be ignored.

The partial derivatives of spacecraft state with respect to the dynamic parameters
are obtained by numerical integration.
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∂r
∂q

=
∫ t

0

∂v
∂q

dt

∂v
∂q

=
∫ t

0

∂A
∂q

dt

Recall that r0 and v0, the initial state, are the first six elements of q. Determination
of the variational partial derivatives by numerical integration requires derivation of
partial derivatives for many force models. The gravitational partial derivatives are
particularly difficult to derive and program. However, orbit determination requires
precise partial derivatives to assure convergence. Trajectory optimization can
usually be performed with less accurate partial derivatives. Finite-difference partial
derivatives may be obtained with a simple algorithm that only requires propagation
of the initial state. For example, consider the case of a spacecraft launched from
Earth with an initial condition r0, v0. The spacecraft state at some later time may be
obtained by numerical integration or conic orbit element propagation of the initial
state.

r, v = f (t, r0, v0, q)

The variational partial derivatives of spacecraft state at some later time with respect
to state at the initial time or epoch may be computed by finite difference.

∂r, v
∂r0, v0

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (t, r0+�rx, v0, q)−f (t, r0,v0,q)
�rx

f (t, r0+�ry, v0, q)−f (t, r0,v0,q)

�ry
f (t, r0+�rz, v0, q)−f (t, r0,v0,q)

�rz
f (t, r0, v0+�vx, q)−f (t, r0,v0,q)

�vx
f (t, r0, v0+�vy, q)−f (t, r0,v0,q)

�vy
f (t, r0, v0+�vz, q)−f (t, r0,v0,q)

�vz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

The 6 by 6 matrix in the brackets is called the state transition matrix.

1.5 Rotational Equations of Motion

A rigid body may be regarded as a collection of point masses that are constrained
to not move with respect to one another. Newton’s equation may be applied to
each point mass with the appropriate constraints and summed or integrated over the
body to obtain the rotational equations of motion. Consider the rigid body shown
in Fig. 1.2. The body is constrained to rotate about the z axis or axle and a force
(F0) is applied in a direction tangential or perpendicular to the radius vector (R0)
drawn to the point of application. The force may be the result of a small thruster
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Fig. 1.2 Rotating body y

x

dm

r

wz

dF0

R0

F0

or a hand crank as long as it continues to act tangentially. The applied force is
distributed among all the mass elements that make up the rigid body. Since the axle
constrains the particles in the body to move only in the tangential or (Fθ ) direction,
we may disregard forces in the z and r directions since they result in no motion
or energy transfer. A typical mass element is shown in Fig. 1.2 with mass dm and
it is accelerated by a force dFθ . The motion of this mass element is governed by
Newton’s equation of motion.

dFθ = dm aθ

Multiplying by the local tangential velocity (ωzr) and substituting (ω̇zr) for the
tangential acceleration,

ωzr dFθ = ωzr ω̇zr dm

The term on the left is the rate of accumulation of energy or power being applied
to the mass element. Integrating over the entire body gives the total power being
applied to the rigid body which must equal the externally applied power.

∫
ωzr dFθ = ωz F0R0

Dividing out the ωz term and integrating,

∫
r dFθ = F0 R0 =

∫
r2 dm ω̇z
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The applied moment is defined by

Mz =
∫

r dFθ = F0 R0

and the moment of inertia about the z axis is defined by,

Izz =
∫

r2 dm =
∫

ρ (x2 + y2) dV

where ρ is the density. The rotational equation of motion, where the motion is
constrained to a single axis, is thus

Mz = Izz ω̇z

When the constraint on the axis of rotation is removed, the torque about the z axis
will cross couple into angular accelerations about axes normal to the z axis. These
angular accelerations about the x and y axes are obtained by integrating along the z

axis and the components of the force are resolved in the x and y directions.

ωzx dFθ = ωzx (−ω̇xz) dm

ωz(−y dFθ ) = ωzy ω̇yz dm

Proceeding as above,

Mz = Izx ω̇x + Izy ω̇y + Izz ω̇z

where,

Izx = −
∫

xz dm = −
∫

ρ xz dV

Izy = −
∫

yz dm = −
∫

ρ yx dV

If an infinitesimal rotation is allowed over an interval of time dt , angular
momentum is accumulated which is analogous to linear momentum and is also
conserved.

dHz =
∫

Mz dt = Izx dωz + Izy dωz + Izz dωz
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After an interval of time, angular momentum is accumulated and the one-
dimensional result may be extended to three dimensions.

H = I �

� = [ωx, ωy, ωz]
H = [Hx, Hx, Hx]

I =
⎡
⎣ Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

⎤
⎦

and the complete inertia tensor is defined by,

Ixx =
∫

ρ (y2 + z2) dV

Iyy =
∫

ρ (x2 + z2) dV

Izz =
∫

ρ (x2 + y2) dV

Ixy = Iyx = −
∫

ρ xy dV

Ixz = Izx = −
∫

ρ xz dV

Iyz = Izy = −
∫

ρ yz dV

and

Ḣ = M

The coordinate axes are fixed on the body and the accelerations are given in
inertial space. When the body fixed axes rotate, the inertia tensor or the accelerations
computed with respect to body fixed axes must be allowed to vary. The standard
convention is to integrate in body fixed coordinates. Keeping the axes fixed on the
body makes the inertia tensor constant but requires the introduction of angles to
describe the orientation of the body fixed axes in inertial space. The time derivative
of angular momentum is the sum of two parts. The body fixed angular momentum
and the time derivative of the coordinate axes given by,

Ḣ = Ḣx x̂ + Ḣy ŷ + Ḣz ẑ + Hx
˙̂x + Hy

˙̂y + Hz
˙̂z
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An elementary property of vectors may be used for a more compact form of the
equations.

˙̂x = � × x̂

˙̂y = � × ŷ

˙̂z = � × ẑ

Since,

Hx � × x̂ + Hy � × ŷ + Hz � × ẑ = � × (Hx x̂ + Hy ŷ + Hz ẑ) = � × H

the final form of Euler’s equation is given by

M = I �̇ + � × H (1.11)

The selection of body fixed axes can result in a considerable simplification of
Euler’s equation. The initial selection of body fixed axes is arbitrary and often
governed by other considerations such as the location of landmarks. Once the body
axes have been defined and the inertia tensor obtained by integration or solution of
the gravity potential, it may be convenient to redefine the direction of the body fixed
axes. Consider a new body fixed coordinate system defined by a simple orthogonal
rotation (R). The new moment and angular momentum vectors are primed.

M′ = R M

�̇
′ = R �̇

�′ × H′ = R (� × H)

Making the above substitutions into Eq. (1.11) gives

RT M′ = I RT �̇
′ + RT (�′ × H′)

and

M′ = [R I RT ] �̇
′ + �′ × H′

The matrix I is positive definite and so is the matrix in brackets. The inertia tensor
may be diagonalized by solving for its eigenvalues and the matrix of eigenvectors,

I = [T λ T T ]

and λ is a diagonal matrix of eigenvalues. If the rotation matrix R is selected to be
the transpose or inverse of T,

M′ = I ′ �̇
′ + �′ × H′ (1.12)
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Fig. 1.3 Transformation to
planetary body fixed
coordinates

y

Planet
equator

Earth
equator

W

90 – d

a + 90  

Prime
meridianPole

(a, d)

x

z

The new primed coordinates define principal axes and the inertia tensor is diagonal.
The principal axes are often used for body fixed axes and every rigid body has at
least one set of principal axes. For a sphere or a cube, every axis set is principal.

The choice to integrate the rotational equations of motion in body fixed axes
requires the introduction of angles to describe the orientation of the body fixed axes
in inertial space. The conventional method for describing the attitude of a rotating
body is a set of Euler angles. The Euler angles define consecutive rotations about
the body fixed axes that transform a vector from a reference frame to body fixed
axes. For a body in space, it is convenient to select the same Euler angle set as is
used to define the pole and prime meridian of a planet. The Euler angles are right
ascension (α) and declination (δ) of the pole and the angle W from the intersection
of the body equator with the Earth’s equator at epoch January 1, 2000 (J2000) to the
prime meridian as shown in Fig. 1.3. The first rotation is a right-hand rotation about
the z axis through the angle right ascension (α). The second rotation is a right-hand
rotation about the y axis through the angle 90◦ − δ that places the z axis in the
direction of the pole. The third rotation is another right-hand rotation about the z

axis through the angle 90◦ + W to place the x axis on the prime meridian of the
body.
The rotations from inertial space to body fixed axes are

T =
⎡
⎣ − sin W cos W 0

− cos W − sin W 0
0 0 1

⎤
⎦
⎡
⎣ sin δ 0 − cos δ

0 1 0
cos δ 0 sin δ

⎤
⎦
⎡
⎣ cos α sin α 0

− sin α cos α 0
0 0 1

⎤
⎦
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and may be combined to obtain

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin W sin δ cos α − sin W sin δ sin α sin W cos δ

− cos W sin α + cos W cos α

− cos W sin δ cos α − cos W sin δ sin α cos W cos δ

+ sin W sin α − sin W cos α

cos δ cos α cos δ sin α sin δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The body fixed spin rates are related to the Euler angle rates by

⎡
⎢⎢⎢⎢⎢⎣

ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

sin W cos δ − cos W 0

cos W cos δ sin W 0

sin δ 0 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

α̇

δ̇

Ẇ

⎤
⎥⎥⎥⎥⎥⎦

A unit vector in the direction of each Euler angle rate is transformed to body fixed
axes and the resultant vectors are assembled into the above transformation matrix.
This transformation is not orthogonal. The inverse transformation that relates the
Euler angle rates to the body fixed spin rates is obtained by matrix inversion and is
given by

⎡
⎢⎢⎢⎢⎢⎣

α̇

δ̇

Ẇ

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

sin W sec δ cos W sec δ 0

− cos W sin W 0

− sin W tan δ − cos W tan δ 1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎦

The body fixed spin vector may be obtained by integration of Euler’s equation.
First, Euler’s equation must be solved for the angular acceleration. Thus, we have
for Euler’s equation,

�̇ = I−1{M − � × H} (1.13)

H = I �

and the angular rates are obtained by integrating

�(t) =
∫

�̇ dt
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The attitude may be obtained as a function of time by integrating the Euler angle
rates computed from the spin vector.

�(t) =
∫

�̇ dt

The attitude, shown here as the data vector �, is defined by the Euler angles,

� =
⎡
⎣ α

δ

W

⎤
⎦

and the rates are

�̇ =

⎡
⎢⎢⎢⎢⎢⎣

sin W sec δ cos W sec δ 0

− cos W sin W 0

− sin W tan δ − cos W tan δ 1

⎤
⎥⎥⎥⎥⎥⎦�

1.6 Rotational Variational Equations

From the equations of motion, the angular acceleration may be obtained as an
explicit function of the attitude, spin rate, and dynamic parameters (q).

�̇ = f
̇(φ,�, q) (1.14)

where the dynamic parameters (q) consist of the initial attitude and spin rate,
moments of inertia, and the applied moment.

q = (φo,�o, Ie, M) (1.15)

where Ie denotes a column matrix containing the six unique inertia tensor elements.
The Euler angle attitude rates may be explicitly related to the attitude and body fixed
spin rate and are given by

φ̇ = fφ̇(φ,�) (1.16)



1.6 Rotational Variational Equations 15

The variational equations are obtained by differentiating Equation 1.14 with respect
to the dynamic parameters.

∂�̇

∂q
= ∂f
̇

∂φ

∂φ

∂q
+ ∂f
̇

∂�

∂�

∂q
+ ∂f
̇

∂q
(1.17)

∂φ̇

∂q
= ∂fφ̇

∂φ

∂φ

∂q
+ ∂fφ̇

∂�

∂�

∂q
(1.18)

Thus, we have, for the case of free-body rotation or a constant applied moment in
body fixed coordinates,

∂f
̇

∂φ
= 0 (1.19)

∂f
̇

∂�
= −I−1

⎧⎨
⎩
⎡
⎣ 0 hz −hy

−hz 0 hx

hy −hx 0

⎤
⎦ −

⎡
⎣ 0 ωz −ωy

−ωz 0 ωx

ωy −ωx 0

⎤
⎦ I

⎫⎬
⎭ (1.20)

∂fφ̇

∂�
=

⎡
⎢⎢⎢⎢⎢⎣

sinW sec δ cosW sec δ 0

−cosW sinW 0

−sinW tan δ −cosW tan δ 1

⎤
⎥⎥⎥⎥⎥⎦ (1.21)

∂fφ̇

∂φ
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
(ωx sin W + ωy cos W) tan δ

cos δ

ωx cos W − ωy sin W

cos δ

0 0 ωx sin W + ωy cos W

0
−ωx sin W − ωy cos W

cos2 δ
(−ωx cos W + ωy sin W) tan δ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
(1.22)

With respect to attitude at epoch (q = φo,�o)

The variational equations that relate the current attitude to the attitude at epoch are
given by

∂φ̇

∂φo

= ∂fφ̇

∂φ

∂φ

∂φo

(1.23)

∂φ̇

∂�o
= ∂fφ̇

∂φ

∂φ

∂�o
+ ∂fφ̇

∂�

∂�

∂�o
(1.24)

∂�̇

∂φ0
= 0
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∂�̇

∂�o
= ∂f�̇

∂�

∂�

∂�o
(1.25)

We obtain these partial derivatives as a function of time by integrating as in

∂φ

∂φo

=
∫

∂φ̇

∂φo

dt (1.26)

∂φ

∂�o
=

∫
∂φ̇

∂�o
dt (1.27)

∂�

∂φo

= 0 (1.28)

∂�

∂�o
=

∫
∂�̇

∂�o
dt (1.29)

With respect to elements of inertia tensor (q = Ie)

The variational equations for the elements of the inertia tensor are given by

∂�̇

∂Ie

= ∂f�̇

∂�

∂�

∂Ie

+ ∂f�̇

∂Ie

(1.30)

∂φ̇

∂Ie

= ∂fφ

∂φ

∂φ

∂Ie

+ ∂fφ̇

∂�

∂�

∂Ie

(1.31)

where Ie is a column matrix, restricted to the independent elements of I,

Ie = [
Ixx Iyy Izz Ixy Ixz Iyz

]T

The matrix that defines the partial derivative of angular acceleration with respect to
the elements of the moment of inertia tensor may be obtained by differentiating the
equations of motion (Eq. 1.13).

I
∂�̇

∂Ie

+ ∂I

∂Ie

�̇ + ∂(� × H)

∂H
∂H
∂Ie

= 0 (1.32)

The terms in the above matrix equation are given by

∂I

∂Ie

�̇ =
⎡
⎣ ω̇x 0 0 ω̇y ω̇z 0

0 ω̇y 0 ω̇x 0 ω̇z

0 0 ω̇z 0 ω̇x ω̇y

⎤
⎦

∂(� × H)

∂H
=

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦
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∂H
∂Ie

=
⎡
⎣ωx 0 0 ωy ωz 0

0 ωy 0 ωx 0 ωz

0 0 ωz 0 ωx ωy

⎤
⎦

The above partial derivatives are obtained by performing the indicated matrix mul-
tiplication to obtain the individual equations, differentiating, and then reassembling
the result in matrix form. Solving for the partial derivative of angular acceleration
with respect to the elements of the inertia tensor, we obtain

∂f
̇

∂Ie

= −I−1

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦
⎡
⎣ωx 0 0 ωy ωz 0

0 ωy 0 ωx 0 ωz

0 0 ωz 0 ωx ωy

⎤
⎦

−I−1

⎡
⎣ ω̇x 0 0 ω̇y ω̇z 0

0 ω̇y 0 ω̇x 0 ω̇z

0 0 ω̇z 0 ω̇x ω̇y

⎤
⎦ (1.33)

The inertia tensor partial derivatives as a function of time are obtained by integrating
the rates and

∂�

∂Ie

=
∫

∂�̇

∂Ie

dt (1.34)

∂φ

∂Ie

=
∫

∂φ̇

∂Ie

dt (1.35)

With respect to applied moment (q = M)

The variational equations for a constant body fixed applied moment are given by

∂�̇

∂M
= ∂f
̇

∂


∂�

∂M
+ ∂f
̇

∂M
(1.36)

∂φ̇

∂M
= ∂fφ̇

∂φ

∂φ

∂M
+ ∂fφ̇

∂


∂


∂M
(1.37)

The final matrix that is needed in the above variational equations defines the direct
effect of the applied moment on the angular acceleration and is given by

∂f
̇

∂M
= I−1 (1.38)

We obtain the applied moment partial derivatives as a function of time by integrating
the rates and

∂�

∂M
=

∫
∂�̇

∂M
dt (1.39)
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∂φ

∂M
=

∫
∂φ̇

∂M
dt (1.40)

The above rotational variational equations may be integrated with the equations of
motion to describe the body attitude state (Euler angle and spin vector) and partial
derivatives of state with respect to initial attitude, moments of inertia, and applied
moments as a function of time.

1.7 Kinetic Theory of Gases

An interesting application of Newton’s equation of motion to a system of particles
is the kinetic theory of gasses that results in the ideal gas law and several other
laws that govern the behavior of gasses. The motion of a gas molecule, neglecting
rotations, may be described by assuming the molecules of gas to be rigid spheres.
It was postulated by Maxwell, Boltzmann, and others that the simplicity of the
experimental behavior of gasses implied simplicity on the molecular scale. An
extension of the principals governing particle dynamics may be applied to molecules
bouncing around in a container to obtain the gas laws. The motion of gas molecules
is of interest to spacecraft navigation for two reasons. The rapid expulsion of gas
molecules from a rocket engine provides the thrust force that changes the velocity of
a spacecraft and the incidental expulsion of gas molecules from a spacecraft causes
small accelerations that must be accounted for in solving for the trajectory of the
spacecraft. The former is essential for the success of the mission and the latter is
a nuisance to navigation. An example of the latter is the venting from a parachute
that may be carried on a spacecraft or the expulsion of gas from propulsion system
leaks.

Consider a gas molecule of mass μ within a container that comes into contact
with a wall. The mass of the molecule is approximately the product of the molecular
weight (M) times the mass of a proton or neutron (μ0). The exact relationship
involves the mass associated with the binding energy and as a standard μ0 is taken
as one sixteenth of the mass of the O16 molecule. The molecular weight (M) is
dimensionless and generally nearly an integer representing the total number of
protons and neutrons in a molecule. For a molecule moving in the vx direction,
Newton’s equation may be used to describe the motion during the time that the
molecule interacts with the wall.

Fi = μi

dvx

dt∫ t+�t

t

Fi dt = μi

∫ −vx

vx

dvx

Fi�ti = −2μivx
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A thin layer of gas next to a wall of thickness δx and area A will contain δN

molecules moving at an average speed vx and half of these molecules will be moving
in the plus vx direction and half will be moving in the −vx direction. Thus, 1

2δN

molecules will strike the wall in the time interval δt . Summing all the impacts over
the time interval δt and volume Aδx gives

1

2
δN δx Fi�ti = 1

2
δN (−2μi v2

x) δt

vx = δx

δt

Over the time interval δt , the total force exerted by the gas on the wall must be
opposite and equal to the total force exerted by the wall on the gas. This is a
direct consequence of the requirement that the momentum exchange at the surface
of the wall must be zero. Consider a thin massless rigid coating that is applied to
the wall at the interface. The momentum of this coating, which is sum of the gas
molecules pushing outward and the container wall pushing inward, must be zero.
This momentum balance is given by

1

2
δN Fi�ti = −Fδt

which simplifies to

Fδx = δN μi v2
x

The number density (N ) is the number of molecules per unit volume and is given by,

N = δN

Aδx

and

P = N μi v2
x

F = PA

The square of the magnitude of the velocity is simply the sum of the squares of the
components.

v2 = v2
x + v2

y + v2
z

Due to symmetry, the average magnitudes of the velocity components must be equal
and vx = vy = vz. The gas law derived from kinetic theory is now,

P = 1

3
N μi v2 (1.41)
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The agreement with the ideal gas law derived from experimentation would be
complete if the temperature of the gas is related to the kinetic energy of the gas
molecules. It may be argued from first principals that temperature is a measure of
the kinetic energy of the gas molecule. The liquid in a thermometer rises in response
to the expansion of the liquid and this is directly proportional to the kinetic energy
of the liquids molecules. It may be concluded that temperature is proportional to
energy of a gas molecule and the constant of proportionality is assumed to be 3

2k

where k is Boltzmann’s constant. The scaling of k by three halves is arbitrary and
designed to yield a familiar form for the end result.

Eμ

T
= 3

2
k

Eμ = 1

2
μi v2

Making these substitutions, the kinetic theory description of an ideal gas becomes

P = NkT

The number density N is simply the total number of gas molecules Nt enclosed
within the volume (V ) divided by the volume.

N = Nt

V

The total number of molecules is equal to the total mass (m) dived by the mass of
one molecule.

Nt = m

Mμ0

Making these substitutions, the gas law becomes

PV = m

M

k

μ0
T (1.42)

The conventional experimental form of the ideal gas law is

PV = m

M
RT (1.43)

or

P = ρ

M
RT (1.44)
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where the density is given by,

ρ = m

V

The kinetic theory gas constant and experimental gas constant are related by,

R = k

μ0

The number of molecules contained in a sample of gas of mass m in grams equal
to the molecular weight (M) is a constant (N0) called Avogadro’s number. The
reciprocal of Avogadro’s number is numerically equal to μ0, one sixteenth of the
mass of O16, or approximately the mass of atomic hydrogen. The ratio of the mass
to the molecular weight is called the mole fraction (n) and Avogadro’s number
is simply the number of molecules in one mole. The relationship of Boltzmann’s
constant to the universal gas constant is also given by,

R = N0 k (1.45)

A mixture of gases with different molecular weights will reach an equilibrium and
all molecules will have the same energy and consequently the same temperature.
Molecules of higher than average energy transfer energy to the walls of the container
when they collide with the walls and conversely molecules of lower than average
energy will receive energy from the wall. As the gasses mix, they will converge to
the same average energy. Since the two groups of molecules with different masses
have the same temperature and move independently, the total pressure may be
obtained by summing the pressures that each group of molecules would exert if
it occupied the container alone. This observation of the behavior of gas mixtures is
called Dalton’s law of partial pressures.

If a container of gas is vented to space, the momentum of the gas molecules
will exert a force on the container which is transmitted to the spacecraft resulting
in an acceleration of the spacecraft. From Newton’s equation, we have for a small
quantity of gas that is vented,

δF = δm
dv

dt

The average velocity of the gas molecules is constant and

v2 = 3kT

μi

= 3Rμ0T

μi

and since μi = Mμ0,

v =
√

3RT

M
(1.46)
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Since v may be assumed to be constant, Newton’s equation of motion may be put in
the form,

F =
√

3RT

M

dm

dt
(1.47)

Analysis of the propulsion system gas leaks for the 1975 Viking mission to Mars
provides a typical example of the application of the kinetic theory of gasses to
navigation of a spacecraft. The gas leak rate is specified to be less than 100 standard
cubic centimeters of Helium per hour. The problem for navigation is to place an
upper bound on the acceleration of the Viking spacecraft that may be expected. The
density of helium at standard temperature and pressure is ρ = 0.166 kg/m3, where
P = 1.013 × 105 nt/m2 (1 atmosphere), M = 4, R = 8317 m2/s2K, and T = 293 K.
The velocity of the vented helium molecules, assuming that all molecules are vented
in the same direction, is v = 1351 m/s. The mass flow rate is simply the density times
the volumetric flow rate.

dV

dt
= 100 cm3/h = 2.78 × 10−8 m3/s

dm

dt
= ρ

dV

dt
= 4.62 × 10−9 kg/s

The net force on the spacecraft is 6.25 × 10−6 nt. The acceleration of the spacecraft
of mass msc = 3468 kg is given by

asc = F

msc

= 1.8 × 10−9 m/s2

The acceleration computed in this manner from the kinetic theory of gasses will
yield a result that is a little high. The vented molecules do not all vent in the same
direction and there is some loss of energy as the molecules leave the container. These
inefficiencies reduce the total acceleration.

1.8 General Relativity Equations of Motion

The General Theory of Relativity, which includes Special Relativity, replaces
classical Newtonian theory. For spacecraft navigation, General Relativity enters into
the equations of motion and computation of measurements. The effect is small
and generally could be ignored for trajectory design but can be observed when
performing orbit determination. For this reason, Generally Relativity is formulated
as a perturbation to Newtonian theory. The effect of General Relativity on orbit
determination is ubiquitous. The orbit of Mercury is perturbed, radio signals from
the spacecraft are bent and delayed if they pass near the sun, and clocks slow down
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if they are near a massive body or have significant velocity with respect to the
solar system barycenter. These perturbations may be determined by integrating the
equation of geodesics or computed from simple formulas.

The details of the solution of the Einstein field equations are omitted here and
the solutions for the equations of motion are initiated from the metric tensor. The
metric tensor is the solution to the field equations. The equation of geodesics
operates on the metric tensor to generate the equations of motion. The application of
Einstein’s summation notation is fairly straightforward. The resultant equations of
motion require no further understanding of relativity theory except for some simple
applications of Special Relativity. A detailed understanding of General Relativity is
not needed to navigate spacecraft.

1.8.1 Einstein Field Equation

The Einstein field equation relates the curvature of space to the distribution of mass,
energy, and stress. The mathematical statement of general relativity is simply

G = 8π T

This equation replaces Newton’s law of gravitation. G is the Einstein tensor
that describes the geometry and T is the stress energy tensor that describes the
distribution of mass, energy, and stress in the same coordinate system as the
geometry. The Einstein tensor is a specific description of curved space that is
extracted from the general Riemann tensor in a way to satisfy the basic postulates
of general relativity. The Einstein field equation has been solved exactly for the case
of a particle moving in the spherically symmetric gravitational field of a body. For
this distribution of matter, the stress energy tensor inside the body is given by

T =

⎡
⎢⎢⎣

p 0 0 0
0 p 0 0
0 0 p 0
0 0 0 ρ

⎤
⎥⎥⎦

Outside the body, T is equal to zero. The variable ρ is the scalar invariant density of
matter and the variable p is the pressure that is obtained in hydrostatic equilibrium.
The solution was obtained by Schwarzschild about a month after Einstein published
the theory of general relativity and is given by the following metric tensor.

gij =

⎡
⎢⎢⎣

g11 g12 g13 g14

g21 g22 g23 g24

g31 g32 g33 g34

g41 g42 g43 g44

⎤
⎥⎥⎦
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where

g11 = grr = − 1

c2

(
1 − 2m

r

)−1

g22 = gθθ = − 1

c2
r2

g33 = gφφ = − 1

c2
r2 sin2 θ

g44 = gtt =
(

1 − 2m

r

)

m = μ

c2

and all the offdiagonal elements are zero. The metric tensor takes the place of the
potential in classical theory.

1.8.2 Geodesic Equation

The geodesic equation describes the acceleration of a particle in space-time
coordinates and takes the place of the gradient in classical theory.

d2xα

ds2
+ α

uv

dxu

ds

dxv

ds
= 0 (1.48)

The Christoffel symbols (′s) establish the connection between curved space
and the observed world. For this reason, they are sometimes called connection
coefficients. The Christoffel symbols are obtained by integrating the line element
between two points and then solving for the path that gives the minimum time which
is the speed of light and a straight line in curved space. The Christoffel symbols are
given by

u
αβ = guvvαβ

uαβ = 1

2

(
∂guα

∂xβ
+ ∂guβ

∂xα
− ∂gαβ

∂xu

)

In Einstein summation notation, raising both indices of the metric tensor is matrix
inversion. The Christoffel symbols for the Schwarzschild solution are given by

r
rr = 1

11 = −m

r2

(
1 − 2m

r

)−1

r
φφ = 1

33 = −r

(
1 − 2m

r

)
sin2 θ
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r
tt = 1

44 = mc2

r2

(
1 − 2m

r

)

r
θθ = 1

22 = −r

(
1 − 2m

r

)

t
rt = 4

14 = m

r2

(
1 − 2m

r

)−1


φ
rφ = 3

13 = 1

r


φ
θφ = 3

23 = cot θ

θ
rθ = 2

12 = 1

r

θ
φφ = 2

33 = − sin θ cos θ

The equations of motion are obtained by substituting the Christoffel symbols into
the geodesic equation. Since the motion is planar, we may rotate to a coordinate
system such that the motion is in the x-y plane. The θ dependency is thus removed
and for θ = 2π , we obtain from the geodesic equation

d2r

ds2 = m

r2

(
1 − 2m

r

)−1 (
dr

ds

)2

+r

(
1 − 2m

r

)(
dφ

ds

)2

− mc2

r2

(
1 − 2m

r

)(
dt

ds

)2

d2φ

ds2 = 2

r

dr

ds

dφ

ds

A clock carried on the particle will provide a measure of proper time defined by
the line element

ds2 = −
{
(1 − 2m

r
)−1 dr2 + r2 dθ2 + r2 sin2 θ dφ2

}
+ (1 − 2m

r
) c2dt2

For ds2 = c2 dτ 2, this equation yields

(
dt

dτ

)2

=
(

1 − 2m

r

)−1

+ 1

c2

(
1 − 2m

r

)−2 (
dr

dτ

)2

+ r2

c2

(
1 − 2m

r

)−1 (
dφ

dτ

)2

Substituting the metric equation into the geodesic equation gives the following
equations of motion.

d2r

dτ 2 = − μ

r2 +
(

r − 3μ

c2

)(
dφ

dτ

)2

(1.49)



26 1 Equations of Motion

d2φ

dτ 2
= −2

r

dr

dτ

dφ

dτ
(1.50)

(
dt

dτ

)2

=
(

1 − 2m

r

)−1

+ 1

c2

(
1 − 2m

r

)−2 (
dr

dτ

)2

+ r2

c2

(
1 − 2m

r

)−1 (
dφ

dτ

)2

(1.51)

The trajectory of a photon differs from that of a particle or spacecraft moving
at the speed of light even in the limit of very small mass for the spacecraft. The
difference arises because a photon has zero rest mass and thus there is no force of
gravity acting on the photon that gives rise to Newtonian acceleration. The photon
follows the contour of curved space and the resulting path is the called the null
geodesic. Consider the metric associated with a particle traveling at the speed of
light

ds2 = 0 = − 1

c2

{
(1 − 2m

r
)−1 dr2 + r2 dθ2 + r2 sin2 θ dφ2

}
+ (1 − 2m

r
) dt2

Since ds is zero, the geodesic equation degenerates to indeterminate forms that
must be evaluated in the limit as ds goes to zero. The indeterminate form ds/ds,
which has the value of 1 for a spacecraft, has the value 0 for a photon in the limit as
ds approaches zero. We resolve the problem of ds approaching zero in the geodesic
equation by introducing the affine parameter τ that acts like a clock on the photon.
We know from special relativity that an observer’s clock on the photon will not
register any passage of time as the photon moves from point A to point B. However,
we may imagine a universe filled with clocks all running at a rate dependent on the
local gravity field. The proper time associated with a photon is simply the integral of
these rates along the path of the photon. The difference of the affine parameter (τ )
between two points times the speed of light is the distance that one would measure
with a meter stick along the path of the photon. The equations of motion for a photon
are given by

d2r

dτ 2 =
(

r − 3μ

c2

)(
dφ

dτ

)2

(1.52)

d2φ

dτ 2 = −2

r

dr

dτ

dφ

dτ
(1.53)

(
dt

dτ

)2

= 1

c2

(
1 − 2m

r

)−2 (
dr

dτ

)2

+ r2

c2

(
1 − 2m

r

)−1 (
dφ

dτ

)2

(1.54)



1.8 General Relativity Equations of Motion 27

1.8.3 Isotropic Schwarzschild Coordinates

In the Newtonian world, before general relativity, the trajectories of the planets were
observed through telescopes and the data fit to a model of the solar system based
on Newton’s equations of motion. From this model, the gravitational constant of the
sun and the planetary ephemerides were estimated to an accuracy consistent with
the measurement and model errors. With the introduction of general relativity to
the model, the data was refit and a new set of constants and planetary ephemerides
determined. However, since the relativistic effects are small, the differences between
the numerical values associated with the curved space coordinates and the classical
coordinates are also small. This small difference often results in confusion of the
two coordinate systems.

In order to make the classical system more nearly coincide with the relativistic
system, a coordinate transformation or change of variable was devised to make the
local curved space coordinates come into alignment with Euclidean coordinates.
This transformation makes the relativistic coordinates look more classical but does
not really change anything. The transformed coordinate system is called isotropic
Schwarzschild coordinates and the transformation is given by

r =
(

1 + μ

2c2r̄

)2
r̄

φ = φ̄

where r̄ and φ̄ are the isotropic coordinates. In order to obtain the isotropic form
of the equations of motion, we simply substitute the above equation for r into the
exact Schwarzschild equations. The exact isotropic Schwarzschild line element is
given by

ds̄2 =
(

1 − μ

2c2r̄

)2

(
1 + μ

2c2r̄

)2
dt2 − 1

c2

(
1 + μ

2c2r̄

)4 (
dr̄2 + r2dφ̄2

)

and this is approximated by

ds̄2 =
(

1 − 2μ

c2r̄

)
dt2 − 1

c2

(
1 + 2μ

c2r̄

)(
dr̄2 + r2dφ̄2

)
The exact isotropic Schwarzschild equations of motion for a spacecraft become

d2r̄

dτ 2 = − μ

r̄2

(
1 + μ

2c2r̄

)−4 +
(

1 − μ2

4c4r̄2

)−1

×
{

μ3

2c4r̄5

(
1 + μ

2c2r̄

)−4
(

dr̄

dτ

)2

+
[(

1 + μ

2c2r̄

)2
r̄ − 3μ

c2

](
dφ

dτ

)2
}



28 1 Equations of Motion

d2φ̄

dτ 2 = −

(
1 − μ2

4c4r̄2

)
(

1 + μ

2c2r̄

)2

2

r̄

dr̄

dτ

dφ̄

dτ

d2 t̄

dτ 2 =
(

1 + μ

2c2r̄

)2

(
1 − μ

2c2r̄

)2 + 1

c2

(
1 + μ

2c2r̄

)6

(
1 − μ

2c2r̄

)2

[(
dr̄

dτ

)2

+ r̄2
(

dφ̄

dτ

)2
]

and these may be approximated by

d2r̄

dτ 2
= − μ

r̄2

(
1 − 2μ

c2r̄

)
+

(
r̄ − 2μ

c2

)(
dφ

dτ

)2

(1.55)

d2φ̄

dτ 2 = −
(

1 − μ

c2r̄

) 2

r̄

dr̄

dτ

dφ̄

dτ
(1.56)

d2 t̄

dτ 2
= 1 + 2μ

c2r̄
+ 1

c2

(
1 + 4μ

c2r̄

)[(
dr̄

dτ

)2

+ r̄2
(

dφ̄

dτ

)2
]

(1.57)

The exact isotropic Schwarzschild equations of motion for a photon become

d2r̄

dτ 2 =
(

1 − μ2

4c4r̄2

)−1 { −μ2

2c4r̄3

(
dr̄

dτ

)2

+
[(

1 + μ

2c2r̄

)2
r̄ − 3μ

c2

](
dφ

dτ

)2
}

d2φ̄

dτ 2
= −

(
1 − μ2

4c4r̄2

)
(

1 + μ

2c2r̄

)2

2

r̄

dr̄

dτ

dφ̄

dτ

d2 t̄

dτ 2
= 1

c2

(
1 + μ

2c2 r̄

)6

(
1 − μ

2c2r̄

)2

[(
dr̄

dτ

)2

+ r̄2
(

dφ̄

dτ

)2
]

and these may be approximated by

d2r̄

dτ 2 =
(

r̄ − 2μ

c2

)(
dφ

dτ

)2

(1.58)

d2φ̄

dτ 2
= −

(
1 − μ

c2r̄

) 2

r̄

dr̄

dτ

dφ̄

dτ
(1.59)

d2 t̄

dτ 2 = 1

c2

(
1 + 4μ

c2r̄

)[(
dr̄

dτ

)2

+ r̄2
(

dφ̄

dτ

)2
]

(1.60)
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1.8.4 Mercury Perihelion Shift

Integration of the classical equations of motion for the orbit of Mercury reveals
a shift in perihelion that cannot be accounted for with Newtonian theory. For
navigation, it is necessary to modify the equations of motion to account for
perihelion precession which is caused by the relativistic curvature of space near
the sun. This may be accomplished by use of a well-known formula or numerical
integration of the relativistic equations of motion. The results obtained by numerical
integration of the relativistic equations of motion may be compared with this
formula. The well-known formula is simply

δφ0 = 6πμs

c2a(1 − e2)

where μs is the gravitational constant of the sun, a is the semimajor axis of
Mercury’s orbit, e is the orbital eccentricity, and c is the speed of light.

A simple derivation of the precession of Mercury’s periapsis may be obtained by
assuming that all the additional potential energy from General Relativity goes into
increasing the period of the orbit. The addition of the General Relativity acceleration
does not change the mean motion. After one revolution of the classical orbit, the
perturbed orbit and the classical orbit have nearly the same angular orientation. At
periapsis on the classical orbit, the perturbed orbit is descending for an additional
δP to its periapsis. The precession is thus given by

δφ0 = 2π
δP

P

δP = 3P

2a
δa

δa = a2

μ
δC3

and

δφ = 2π

P

3P

2a

a2

μ
δC3 = 3πa

μ
δC3

From the Schwarzschild isotropic equations of motion (Eq. 1.55), the radial accel-
eration is given by

d2r̄

dτ 2 = − μ

r̄2

(
1 − 2μ

c2r̄

)
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Integrating the acceleration from r̄ to infinity yields the potential energy and the
General Relativity contribution is

δEr = μ2

c2r̄2

If the average radius (r̄2) is approximated by b2 = a2(1−e2), the energy addition is

δC3 = 2μ2

c2a2(1 − e2)
= 2δEr

Collecting terms, the Mercury precession is approximated by

δφ0 = 2π

P

3P

2a

a2

μ
δC3 = 3πa

μ

2μ2

c2a2(1 − e2)
= 6πμ

c2a(1 − e2)

The equations of motion are integrated with the initial conditions computed from
the state vector of Mercury at perihelion. After one complete revolution of Mercury
about the sun, the integrated results are transformed to osculating orbit elements and
the argument of perihelion is computed. In order to remove the integration error, the
Newtonian equations of motion are integrated by the same numerical integrator in
parallel with the relativistic equations of motion. The arguments of perihelion are
differenced and compared with the formula. The same integration is repeated, only
this time the isotropic form of the Schwarzschild equations of motion is compared.
The results are displayed below.

Mercury perihelion shift

Perihelion shift formula 502.527 × 10−9 rad

Exact Schwarzschild integration 502.559 × 10−9 rad

Isotropic Schwarzschild integration 502.267 × 10−9 rad

The above results indicate that the formula for perihelion shift is quite accurate.
The difference of 3 × 10−11 rad between the formula and the exact Schwarzschild
integration may be attributed to the formula or perhaps integration error. The
difference between the formula and the isotropic Schwarzschild integration is also
small (26 × 10−11 rad). This difference may also be attributed to integration error
but may be the truncation error associated with the isotropic metric.

1.8.5 Radar Delay

The transit time of a photon or electromagnetic wave between two points in space is
a measurement that is used to determine the orbits of the planets and spacecraft
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for the purposes of navigation and science. Both the navigation of a spacecraft
and science experiments, particularly associated with General Relativity, require
precise measurements of the transit time. Since the Deep Space tracking stations
can measure times to within 0.1 ns or about 3 cm, it is necessary to model the transit
time to this accuracy.

The transit time of a photon or electromagnetic wave between two points in
space is often referred to as the radar delay. This terminology originated with
radar where a radio wave is transmitted and the delay in the reception of the
reflected return is measured to determine the range. The time delay included that
associated with transmission media and the path length. Individual delay terms from
the troposphere, ionosphere, and solar plasma are identified and used to calibrate
the measured delay. For planetary spacecraft, the path length is computed from
the theory of General Relativity. For a round trip travel time, the additional delay
attributable to the curved space of General Relativity, over what would be computed
assuming flat space, can amount to approximately 250µs.

ds2 =
(

1 − μ

2c2r

)2

(
1 + μ

2c2r

)2 c2dt2 −
(

1 + μ

2c2r

)4 (
dr2 + r2dφ2 + r2 sin2 θdθ2

)

For a photon, ds2 = 0 and the equation to be integrated for the elapsed coordinate
time (t) is obtained by transforming to Cartesian coordinates and solving for dt .

dt = 1

c

(
1 + μ

2c2r

)3

(
1 − μ

2c2r

) (
dx2 + dy2 + dz2

) 1
2

Expanding in a Taylor series and retaining terms of order c−5,

dt = 1

c

(
1 + 2μ

c2r
+ 7

4

μ2

c4r2

)[
dx2 + dy2 + dz2

] 1
2

(1.61)

The photon trajectory geometry is shown in Fig. 1.4. The motion is constrained
to the y − z plane and targeted from y1, z1 to y2, z2 such that the photon arrives at
the same y coordinate which is taken to be R. For this geometry, the x coordinate is
zero and the y coordinate variation is much smaller than the z coordinate variation.
Since for this problem dy

dz
∼ 10−4, the line element differentials may be expanded

as a Taylor series,

(
dx2 + dy2 + dz2

) 1
2 ≈ dz + 1

2

dy2

dz
+ O(

dy4

dz3
) (1.62)
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Changing the y variable of integration to z and inserting Eq. (1.62) into Eq. (1.61),

dt = 1

c

(
1 + 2μ

c2r
+ 7

4

μ2

c4r2

)(
dz + 1

2

dy2

dz2 dz + O(
dy4

dz3 )

)
(1.63)

Fully expanded, there are nine terms in Eq. (1.63) and four of them are of order 1/c5

or greater. Consider a photon grazing the surface of the Sun. A maximum error of
about 10 cm or 0.3 ns is desired. To achieve this accuracy, numerical integration of
the equation of geodesics reveals that only four of the terms in Eq. (1.63) need be
retained and these are

t2 − t1 = 1

c

∫ z2

z1

[
1 + 2μ

c2r
+ 1

2

dy2

dz2
+ 7

4

μ2

c4r2

]
dz (1.64)

In carrying out the integration, care should be taken in geometrically interpreting
the results. A “straight line” in curved space geometry, the shortest measured
distance between two points, is the photon trajectory and not the dashed line shown
in Fig. 1.4. Consider the first term of Eq. (1.64)

�tf = 1

c

∫ z2

z1

dz = 1

c
(z2 − z1) (1.65)

This is called the flat space term. If the end points were in flat space, �tf would
be the time a photon travels from point 1 in Fig. 1.4 to point 2. In curved space,
there is no such thing as a straight line that connects these two points. The

Y

(y1, z1) (y2, z2)

Z

r

Photon
Trajectorydf

f

dy

R

Fig. 1.4 Photon trajectory geometry
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real interpretation of the term given by Eq. (1.65) is the mathematical result of
performing the integration on the first term of Eq. (1.64).

The second term of Eq. (1.64) is called the logarithmic term for reasons that will
become obvious.

�t ′log = 2μ

c3

∫ z2

z1

dz

r

Integration requires an equation for r as a function of z. An iterative solution may be
obtained by assuming a solution for r and integrating to obtain a first approximation
for t and y as a function of z. This solution is inserted into the remainder term, the
difference between the assumed and actual function, and a second iterated solution
may be obtained for t and y. This method of successive approximations is continued
until the required accuracy is achieved. As a starting function, “straight line” motion
is assumed. Making use of the approximation that

r ≈
√

z2 + R2

�t ′log = 2μ

c3

∫ z2

z1

[
1√

z2 + R2
+

(
1

r
− 1√

z2 + R2

)]
dz = �tlog + �trr

(1.66)

The first term of Eq. (1.66) integrates to the well-known equation for the time delay.

�tlog = 2μ

c3
ln

⎡
⎣z2 +

√
z2

2 + R2

z1 +
√

z2
1 + R2

⎤
⎦ (1.67)

The second term of Eq. (1.66), which will be referred to as the radial remainder term
(�trr ), requires a more accurate equation for r to be evaluated.

In order to evaluate the terms associated with bending of the trajectory, an
equation for y as a function of z is needed. The y coordinate is associated with
the bending of the photon trajectory. Consider two photons in the plane of motion
separated by �R. The plane containing these two photons and perpendicular to the
velocity vector is the plane of the wave front. The bending is simply the distance
one photon leads the other divided by their separation.

δ = c�td

�R

In the limit as �R approaches zero, the equation for bending is

δ = c
dtd

dR
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The equation for the delay is taken to be the logarithmic term given by Eq. (1.67)
and for simplicity the bending is computed starting at closest approach (z2 = 0) to
the origin.

td = 2μ

c3 ln

[
z + √

z2 + R2

R

]

Taking the derivative with respect to R,

δ = c
dtd

dR
= − 2μ

c2R

z√
z2 + R2

Therefore, the accumulated bending from z1 to z, expressed as differentials, is
given by

dy

dz
= δf − 2μ

c2R
(

z√
z2 + R2

− z1√
z2

1 + R2
) (1.68)

where δf is the initial angle between the photon velocity vector and the horizontal
line shown in Fig. 1.4. Referring to Fig. 1.4, the y component of the photon is

y = R + δy

δy(z) =
∫ z

z1

⎛
⎝δf − 2μ

c2R
(

z′
√

z′2 + R2
− z1√

z2
1 + R2

)

⎞
⎠ dz′

and

δy = δf (z − z1) − 2μ

c2R

⎛
⎝√

z2 + R2 − zz1 + R2√
z2

1 + R2

⎞
⎠ (1.69)

The angle δf may be determined by evaluating the bending over the interval from
z1 to z2. The coordinates are rotated to target the photon to the point z = z2, where
δy = 0 and the constant gravitational aberration angle δf was determined as

δf = 1

z2 − z1

2μ

c2R

⎛
⎝√

z2
2 + R2 − z2z1 + R2√

z2
1 + R2

⎞
⎠ (1.70)

The angle δf simply rotates the coordinates of Fig. 1.4 such that y1 and y2 have the
same value R.
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The geometrical part of the radial remainder term may be approximated by
making use of

1

r
− 1√

R2 + z2
= 1√

(R + δy)2 + z2
− 1√

R2 + z2
≈ −Rδy

(R2 + z2)
3
2

The complete radial remainder term (�trr ) is then given by

�trr =−2μ

c3

∫ z2

z1

R

(R2 + z2)
3
2

⎡
⎣δf (z − z1)− 2μ

c2R

⎛
⎝√

z2 + R2 − zz1 + R2√
z2

1 + R2

⎞
⎠
⎤
⎦ dz

�trr = 2μ

c3R

⎧⎨
⎩δf

⎡
⎣z1z2 + R2√

z2
2 + R2

−
√

z2
1 + R2

⎤
⎦

− 2μ

c2

⎡
⎣arctan

(z1

R

)
− arctan

(z2

R

)
+ R(z2 − z1)√

z2
1 + R2

√
z2

2 + R2

⎤
⎦
⎫⎬
⎭

(1.71)

The third term of Eq. (1.64) is the direct contribution of the trajectory bending to
the time delay. This term is referred to as the bending term and is given by

�tb = 1

2c

∫ z2

z1

(
dy

dz

)2

dz

Substituting Eq. (1.69) for the slope into the above equation gives

�tb = 1

2c

∫ z2

z1

⎛
⎝δf − 2μ

c2R
(

z√
z2 + R2

− z1√
z2

1 + R2
)

⎞
⎠

2

dz

Carrying out the integration

�tb = 1

2c

⎧⎨
⎩δ2

f (z2 − z1) − 4μ

c2R
δf

⎡
⎣√

z2
2 + R2 − z1z2 + R2√

z2
1 + R2

⎤
⎦

+ 4μ2

c4R2

[
R2(z1 + z2) + 2z2

1z2

R2 + z2
1

− 2z1

√
z2

2 + R2

z2
1 + R2

+ R
[
arctan

(z1

R

)
− arctan

(z2

R

)]]}
(1.72)
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The fourth and final term of Eq. (1.64) is the c5 approximation to the error in the
metric. This is a small term and contributes less than a nanosecond to the delay. The
equation is given by

�tm = 7

4

μ2

c5

∫ z2

z1

1

r2
dz ≈ 7

4

μ2

c5

∫ z2

z1

1

R2 + z2
dz

Carrying out the integration

�tm ≈ 7

4

μ2

c5R

[
arctan

(z2

R

)
− arctan

(z1

R

)]
(1.73)

The complete equation for the coordinate time delay of a photon moving from
(y1, z1) to (y2, z2) is obtained by summing all the individual terms and

t2 − t1 = �tf + �tlog + �trr + �tb + �tm (1.74)

Before evaluating the individual terms of Eq. (1.74), the parameters used in the
individual terms must be determined unambiguously from the end points of the
photon trajectory. If two arbitrary end points in the y−z plane are defined by (y′

1, z
′
1)

and (y′
2, z

′
2), the vectors from the origin to these points are given by

r1 = (0, y′
1, z

′
1) and r2 = (0, y′

2, z
′
2)

and the vector from point 1 to point 2 is

r12 = (0, y′
2 − y′

1, z
′
2 − z′

1)

The angles between the vectors r1 and r2 and the vector r12 are computed from the
dot products.

φ1 = arccos

(
r1 · r12

r2r12

)
, φ2 = arccos

(
r2 · r12

r2r12

)

The parameters needed in Eq. (1.64), with the coordinates rotated as shown in
Fig. 1.4 are then given by

R = r1 sin φ1 = r2 sin φ2

z1 = r1 cos φ1, z2 = r2 cos φ2
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and the angle δf is given by Eq. (1.70). The fully expanded equation for the transit
time is given by,

t2 − t1 ≈ 1

c
(z2 − z1) + 2μ

c3 ln

⎡
⎣z2 +

√
z2

2 + R2

z1 +
√

z2
1 + R2

⎤
⎦

+ 2μ

c3R

⎧⎨
⎩δf

⎡
⎣z1z2 + R2√

z2
2 + R2

−
√

z2
1 + R2

⎤
⎦

− 2μ

c2

⎡
⎣arctan

(z1

R

)
− arctan

(z2

R

)
+ R(z2 − z1)√

z2
1 + R2

√
z2

2 + R2

⎤
⎦
⎫⎬
⎭

+ 1

2c

⎧⎨
⎩δ2

f (z2 − z1) − 4μ

c2R
δf

⎡
⎣√

z2
2 + R2 − z1z2 + R2√

z2
1 + R2

⎤
⎦

+ 4μ2

c4R2

[
R2(z1 + z2) + 2z2

1z2

R2 + z2
1

− 2z1

√
z2

2 + R2

z2
1 + R2

+ R
[
arctan

(z1

R

)
− arctan

(z2

R

)]]

+ 7

4

μ2

c5R

[
arctan

(z2

R

)
− arctan

(z1

R

)]

After simplification this equation takes the following form

t2 − t1 ≈ 1

c
(z2 − z1)(1 + 1

2
δ2
f ) + 2μ

c3 ln

⎡
⎣z2 +

√
z2

2 + R2

z1 +
√

z2
1 + R2

⎤
⎦

+ 2μ

c3R
δf

⎡
⎣ (z1z2 − z2

2)

√
z2

1 + R2 + (z1z2 − z2
1)

√
z2

2 + R2√
z2

1 + R2
√

z2
2 + R2

⎤
⎦

+ 2μ2

c5R2

⎡
⎣R2(z1 + z2) + 2z2

1z2

z2
1 + R2

− 2z2(z1z2 + R2)√
z2

1 + R2
√

z2
2 + R2

⎤
⎦

+ 15

4

μ2

c5R

[
arctan

(z2

R

)
− arctan

(z1

R

)]

δf ≈ 1

z2 − z1

2μ

c2R

⎛
⎝√

z2
2 + R2 − z2z1 + R2√

z2
1 + R2

⎞
⎠ (1.75)
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Fig. 1.5 Time delay for solar graze

Equation (1.75) is the time delay associated with a photon or electromagnetic wave
that passes through the gravitational field of a massive spherical body. The time
delay is a function of only the gravitational constant of the massive body and
the parameters z1, z2, and R which may be computed directly from the isotropic
Schwarzschild coordinates of the end points.

In order to determine the veracity of Eq. (1.75), a comparison with the time
delay computed from numerical integration of the geodesic equations of motion was
made and the result plotted in Fig. 1.5. In carrying out the numerical integration, a
photon was initialized with a z coordinate of −149,000,000 km and y coordinate of
696,000 km. The y component of velocity was set to zero and the z component to
c. The x coordinates of position and velocity were set to zero. Thus, the photon is
initialized with a velocity magnitude equal to the speed of light and parallel to the z

axis about 1 A.U. from the sun and on a flight path that would graze the surface of
the Sun if there were no bending due to General Relativity. The polar coordinates of
the initial conditions were used to initialize the equations of motion and these were
integrated by a fourth-order Runge-Kutta integrator with fifth-order error control.
The integration was stopped at various times along the flight path and Eq. (1.75)
was evaluated. The required parameters were computed from the initial coordinates
and the integrated coordinates at the time of the evaluation.

Also shown in Fig. 1.5 are some of the individual groupings of terms from
Eq. (1.64). The linear term has been omitted since this term would require an
additional 6 cycles of logarithmic scale. The dashed curve is the difference between
the time delay computed by Eq. (1.75) and the results of numerical integration. This
difference is attributed to error in the numerical integration algorithm. This was
verified by setting the mass of the Sun to zero and integrating straight line motion
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in the same coordinate system. Unfortunately, the integration error masked the error
in the metric. Therefore, Eq. (1.75) could only be verified to about 0.05 ns which
is about the same level of error as the error in the metric. The integration error of
about 10−14 t is consistent with the error obtained integrating spacecraft orbits for
navigation. Observe that the radial remainder term and bending term cause errors
on the order of 10 ns or 37 cm.

1.8.6 Light Deflection

Light deflection is the bending of a photon or radio wave trajectory as it passes by a
massive object. An experiment performed during a solar eclipse in 1919 measured
the deflection of star light and was the first confirmation of General Relativity theory.
For this comparison, we integrate the equations of motion for a photon and compare
it with an analytic formula. The analytic formula is for a photon arriving at the Earth
from infinity. This formula has been adapted to provide a continuous measure of the
bending between any two points and is given by

δφ = 2μ

c2R
{(cos(90 + φ1) − cos(90 + φ2)}

where R is the closest approach to the sun, φ1 is the angle from the y axis to the
source, and φ2 is the angle from the y axis to the receiver. The y axis is in the
direction of closest approach as illustrated in Fig. 1.4. Einstein’s formula for the
total bending is simply

δφ12 = 4μ

c2R

where φ1 = −90◦ and φ2 = 90◦.
Another formula for the bending is derived in Sect. 1.8.5 for the radar delay and

is given by Eq. (1.69).

δf = 1

z2 − z1

2μ

c2R

⎛
⎝√

z2
2 + R2 − z2z1 + R2√

z2
1 + R2

⎞
⎠

If we take the limit as z1 approaches minus infinity and z2 approaches plus infinity,
δf is one half of the Einstein bending formula. Since the total bending is the sum
of the approach and departure bending, which are equal, the δf formula, when
multiplied by two, is the Einstein formula.

Comparison of the Einstein formula with numerical integration of the isotropic
Schwarzschild equations of motion is a little tricky because we must define what is
meant by bending in curved space. The generally accepted definition is the angle
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between the local tangent of the photon trajectory and the straight line path that
the photon would follow if the sun was removed. Thus, in isotropic Schwarzschild
coordinates the deflection is given by

δφ = tan−1
(

Vr cos φ − Vn sin φ

Vr cos φ + Vn sin φ

)

where

Vr = dr

dτ

Vn = r
dφ

dτ

and the undeflected photon is assumed to move parallel to the z axis.
The equations of motion are initialized with the position and velocity of the

photon. We place the photon far from the sun on a trajectory that will graze the
surface of the sun. The initial state vector is given by

r1 = 149, 001, 625 km

φ1 = −89.73236◦

dr1

dτ
= −299, 789.729 km/s

dφ1

dτ
= 9.3982872536 × 10−6 rad/s

and the constants are

μ = 1.327124399 × 1011 km3/s2

c = 299792.458 km/s

The equations of motion are integrated along a trajectory that grazes the sun and
terminated at

τ2 = 954.901039554 s (affine parameter time)

t2 = 954.901158130 s (coordinate time)

r2 = 137, 274, 407 km

φ2 = 89.70998749◦

dr2

dτ
= 299, 789.146 km/s

dφ2

dτ
= 11.072650234 × 10−6 rad/s
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A comparison of the total bending obtained by numerical integration with the
theoretical formula derived by Einstein gives

Total light deflection angle

Einstein’s formula 8.48622 × 10−6 rad

Exact Schwarzschild integration 8.48642 × 10−6 rad

1.9 Numerical Integration

Integration of a function on a computer makes use of the definition of a derivative
and some results that are associated with proof of the fundamental theorem of
calculus. The definition of an integral is a Riemann sum in the limit as the number of
sums approaches infinity and the width of the interval approaches zero. A computer
cannot deal with infinity so the Riemann sums must be finite. This does not impose
a limit on accuracy since given a required accuracy (ε) the width of the Riemann
sum intervals may be made small enough (δ) to achieve this accuracy. Given an
epsilon, there is a delta which is a refrain used by mathematicians in proving
theorems. The real limitation of accuracy on a computer is machine precision
which may be overcome by computing in extended precision. Orbit determination
software is written in double precision which was a problem when computers
were expensive. Computation of the Doppler observable strains the limit of double
precision (64 bits).

1.9.1 Fundamental Theorem of Calculus

The fundamental theorem of calculus involves performing two operations on an
arbitrary function (f ) and then showing that the resultant function is also f . The
two operations are integration over an interval and differentiation. The integral is
defined as the area under the curve defined by f (s) and the s axis and the derivative
is defined as the slope of f (s). The function (f(s)) is continuous and has continuous
first and second derivatives. A continuous function is defined here as one that can
be drawn on graph paper without lifting the pencil and is the only kind of function
needed for navigation of spacecraft.

d

dx

∫ x

α∗
f (s) ds = f (x)
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Fig. 1.6 Plot of function
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Figure 1.6 shows a plot of the geometry. An intermediate evaluation value α is
defined that is within an infinitesimal interval of the value x. The reason for doing
this is that the integral from α∗ to α will be a constant (not a function of x) and have
a derivative of zero.
In the limit as �x approaches zero

f (s) = f (α) + m (s − α)

where

m = df (s)

ds
≈ f (x) − f (α)

x − α

The integral from α to x is thus the area under that part of the curve which is the
slim addition of width �x. The big area from α∗ to α can be ignored because this
area is not a function of x and will have a derivative of zero with respect to x.

∫ x

α

f (s) ds = f (α) (x − α) + 1

2
m (x − α)2

From the definition of the derivative, we have in the limit as δx goes to zero.

d

dx

[∫ x

α

f (s) ds

]
=

lim
δx→0

f (α)(x − α) + 1
2 m(x − α)2 − f (α)(x − α − δx) − 1

2 m(x − α − δx)2

δx

d

dx

[∫ x

α

f (s) ds

]
= f (α) + m(x − α) = f (x)
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The proof would be complete if the slope or straight line in Fig. 1.6 was the same
as the curve. The problem is the small area between the curve and the slope. In the
limit as �x approaches zero, this small area vanishes. However, the triangle which
defines the change in the function also vanishes. We have to show that the small
area vanishes faster than the triangle or the ratio of the small area to the triangle
approaches zero. The integral is the infinite sum of the infinitely small triangles.
This is called a squeeze by mathematicians. If we assume that

f (s) = f (α) + m (s − α) + c2(s − α)2 + · · · cn(s − α)n

and process this function as described above, we obtain

f (x) = f (α) + m (x − α) + c2(x − α)2 + · · · cn(x − α)n

The change in f (x) over the interval from α to x is

�f (x) = m (x − α) + c2(x − α)2 + cn · · · (x − α)n

Dividing by (x − α)

�f (x)

(x − α)
= m + c2(x − α) + · · · cn(x − α)n−1

In the limit as (x − α) approaches zero,

f (x) = f (α) + m(x − α)

This proof is a bit circular in that the fundamental theorem of calculus is probably
needed to prove that the function can be represented by a Taylor series over a small
interval. Tom Apostle provides two proofs of this theorem in his book on calculus.
A third proof is given in Mathematical Analysis and this is probably the best proof.
All of his proofs involve elegant squeezes. Newton’s proof is similar to the one
given here but would probably not be accepted today by mathematicians. Newton
and Leibnitz stated the theorem and thus get all the credit. The proof is secondary.

1.9.2 Runge-Kutta Numerical Integration

Numerical integration uses many of the ideas associated with proving the fundamen-
tal theorem of calculus. The difference is that the fundamental theorem of calculus
is an exact result and numerical integration is an approximation that is exact in
the limit as the integration interval goes to zero which can never be achieved on a
computer. Numerical integration is in a sense more difficult because the result is
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f (x)

x

h
k1

k2

k3 k4

average slope

t0

Fig. 1.7 Fourth-order Runge-Kutta

unknown and the integration uses the result. Therefore, numerical integration is a
boot strapping process. Given,

dx

dt
= f (x, t)

numerical integration involves finding f (x, t) knowing only the derivative. We first
obtain the following derivatives over the interval from t0 to t0 + h. The geometry is
illustrated in Fig. 1.7.

k1 = f (x(t0), t0)

k2 = f

(
x(t0) + k1

h

2
, t0 + h

2

)

k3 = f

(
x(t0) + k2

h

2
, t0 + h

2

)

k4 = f (x(t0) + k3 h, t0 + h)

The average slope over the interval is a weighted average and x(t0 + h) is thus,

x(t0 + h) = x(t0) + k1 + 2k2 + 2k3 + k4

6
h
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Euler integration involves only one derivative evaluation. The derivative evalu-
ated at the left side of the integration interval and extended across the interval is
given by,

x(t0 + h) = x(t0) + f (x(t0), t0) h

An orbit was integrated around one full revolution of the sun to test various
numerical integrator accuracies. The orbit had a semi-major axis of 149.4×106 km,
an eccentricity of 0.8, and orientation angles in the plane of the ecliptic. The
gravitational constant for the sun was 0.132712440017987 × 1012 km3/s2 which
is far more digits than required for the test. The orbit period is about 1 year and
periapsis is inside the Earth’s orbit. The integration was started 11,805,133.8 s from
periapsis to avoid the symmetry associated with starting at periapsis. The results
are tabulated below for the Euler integration error. The number of steps is tabulated
along with the position error, energy error, and momentum error. The integration
step size is the period of the orbit divided by the number of steps. Thus, 365 steps
would be about one day. The dimensionless errors are obtained by dividing the
actual error by the parameter nominal value. Thus, 10−2 would be a one percent
error. The exponents indicate the number of decimal places of accuracy.

Euler integration error

Steps � x � y Energy Momentum

36,500 10−1 10−1 10−1 10−1

365,000 10−2 10−1 10−2 10−1

3,650,000 10−3 10−2 10−3 10−2

36,500,000 10−4 10−3 10−4 10−3

The Euler integration does not do very well. It takes a one second step size to
get four-decimal place accuracy. However, a 100 s step size (step = 365,000) may
be accurate enough for some applications and only requires a few lines of computer
code to implement.

The classical fourth-order Runge-Kutta algorithm results are shown below. An
864 s step size yields 11 decimal place accuracy which is sufficient for planetary
spacecraft navigation. This algorithm was used for about 10 years by the author
without any need for more accuracy. It was used in the Mars Orbit Insertion software
for the Viking mission to Mars in 1976. The original coding was to replace an analog
computer integrator with digital computer code.
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Fourth-order Runge-Kutta integration error

Steps � x � y Energy Momentum

365 10−3 10−2 10−3 10−3

3650 10−9 10−6 10−8 10−8

36,500 10−11 10−11 10−13 10−12

365,000 10−10 10−9 10−12 10−12

The integrator used today is the fifth-order Runge-Kutta-Fehlberg integrator with
sixth degree error control. This integrator achieves 13-decimal place accuracy for an
865 s step size and this integrator was used for the Near Earth Asteroid Rendezvous
software. It was necessary to tailor the error control for integrating spacecraft
by planets. The variable step size had a tendency to miss planets or asteroids and
flyby without reducing the step size enough.

Fifth-order Runge-Kutta-Fehlberg integration error

Steps � x � y Energy Momentum

365 10−2 10−1 10−4 10−3

3650 10−9 10−7 10−8 10−8

36,500 10−13 10−11 10−15 10−15

365,000 10−13 10−11 10−13 10−13

The Fehlberg integrator is accurate enough to predict solar eclipses at the time of
Alexander the Great.

1.10 Summary

The equations of motion have been developed for motion that is relative to
navigation. Flight operations software is dominated by numerical integration of
Newton’s equations of motion. Energy and momentum are useful concepts for
understanding motion but there are very few equations in operational software that
explicitly acknowledge their existence. One notable example is the momentum
and energy supplied by springs as a probe separates from a spacecraft. Energy
and momentum are more an artifact of Newton’s second law. The equations of
motion describing particle collisions and the kinetic theory of gasses acknowledge
energy and momentum, but operational software does not explicitly integrate these
equations. Therefore, a knowledge of Newton’s equations of motion is just about all
one needs to navigate spacecraft.

One minor exception is the Theory of General Relativity. Clocks, the path of
photons near the Sun, and the precession of Mercury’s orbit are affected by general
relativity and enter as corrections or calibrations of the data or equations of motion.
Since these corrections can be seen in the data, they are included in the flight
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operations software. However, sufficiently accurate navigation could be performed
ignoring General Relativity. Navigators, who conduct mission operations, generally
regard General Relativity as a curiosity.

Since the computer is used in the conduct of flight operations, understanding of
the mathematics of algorithms contained in computer software is needed. Numerical
integration algorithms and finite difference partial derivatives or difference equa-
tions are examples. Analytic partial derivatives, that are in the provence of calculus
text books, are also needed for orbit determination.

Exercises

1.1 A basketball is dropped on the floor from a height of 1.5 m and rebounds to a
height of 1.5 m neglecting energy loss. A golf ball also rebounds to the same height.
The golf ball is now held above the basketball and they are both dropped together.
The basketball rebounds and hits the golf ball. How high will the golf ball go? The
basketball weighs 560 g and the golf ball weighs 45 g. The acceleration is assumed
to be uniform at 9.82 m/s2.

1.2 The partial derivatives of the gravitational acceleration with respect to position
is needed for the variational equations. If the gravitational acceleration is given by

a = −μ

r3 r

determine
∂a
∂r

which is a 3×3 matrix.

1.3 The spin vector of the Earth precesses around the Ecliptic pole with a period
of about 26,000 years. The applied moment is from the Sun and Moon gravity
gradients. The applied moment is given by applying the result from Exercise 1.2.

M = me

∂a
∂r

�r�rl

⎡
⎣ sin(α)

cos(α)

0

⎤
⎦

where me is the mass of the Earth, �r is the separation of the dipole associated
with oblateness, and �rl is the effective moment arm. Assume that the product
me �r �rl is given by

me�r �rl = Izz − (Ixx + Iyy)/2.

Determine an equation for the applied moment.

1.4 For the purpose of computing gravity gradient torques, a body may be
represented by dipole point masses distributed on the body fixed coordinate axes.
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Since Izz = m k2
z , two point masses may be located on the z axis at plus and minus

kz. The torque may be calculated from the Ixx and Izz point masses by projecting
the positions of the point masses on to the moment arm and sun vector directions.
Show that

sin ε cos ε �r�rl = sin ε cos ε (Izz − Ixx)

where ε is the complement of the angle between the sun vector and body fixed z

axis.

1.5 The precession contributed by the Sun is given by

α̇ = M

2ωeIzz

The factor of two is needed to attenuate the vector magnitude by the average
of sine function squared associated with the orbital motion and separation of
precession from nutation. Determine the precession rate for the sun contribution
where (Ixx − Iyy)/Izz = 3.27376 × 10−3, ωe = 7.292 × 10−5 s−1, GM =
0.132712 × 1012 km3s−2, r = 0.149577 × 109 km, ε = 23.439◦.

1.6 Show that the partial derivative of angular acceleration with respect to the
inertia tensor is given by

∂f
̇

∂Ie

= −I−1

⎡
⎣ 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤
⎦
⎡
⎣ωx 0 0 ωy ωz 0

0 ωy 0 ωx 0 ωz

0 0 ωz 0 ωx ωy

⎤
⎦

−I−1

⎡
⎣ ω̇x 0 0 ω̇y ω̇z 0

0 ω̇y 0 ω̇x 0 ω̇z

0 0 ω̇z 0 ω̇x ω̇y

⎤
⎦ (1.76)

The elements of the inertia tensor are contained in a column matrix of dimension
six. Unless highly skilled in tensor algebra, this problem can be solved by expanding
the vectors and matrices as equations in terms of their elements, differentiating, and
then reassembling into the above matrices. The result in this form can be easily
programmed on a computer.

1.7 Determine the root-mean-square velocity of a nitrogen gas molecule (M = 14)
at room temperature (72◦F).

1.8 A sample of air at standard temperature and pressure (0◦C, 1.01325 nt/m2)
occupies a volume of 22,421 cm3. A mole of any gas at standard temperature and
pressure will occupy a volume of 22,421 cm3 and contain Avogadro’s number of
molecules (6.022 × 1023). Assume the air is an ideal gas with molecular weight of
29 and the diameter of an air molecule is 3 Å. Determine the mean free path length
of a molecule between collisions and the number of collisions per second.
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1.9 On Jan 1, 65,000,000 12:00:00 BC, a tyrannosaurus rex sets his atomic watch
at high noon. At the same time, a photon is emitted from a distant galaxy and sets
his identical watch to the same time. On Jan 1, 2017 12:00:00, the photon hits t rex.
Both watches gain 3 × 10−16 seconds for each second of elapsed time, the same
accuracy as the atomic clocks used by the DSN. What time will both watches read?

1.10 Perform Euler integration of the sine function from 0 to 90◦ assuming an
integration step size of 30◦ and evaluating the function at the right side of the
interval. Repeat evaluating the function in the middle of the interval. Repeat again
only assume an integration step size of 10◦.
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Chapter 2
Force Models

The acceleration of a spacecraft is proportional to the vector sum of all the forces
acting on the spacecraft. Each component of the resultant force is computed by
individual force models. The required accuracy of force models is dependent on
the magnitude of the force and the observability of the force in orbit determination
software. By far the most important force model is gravity. Gravity force models are
formulated as acceleration but this is only a matter of convenience because the mass
of the spacecraft factors out of the equations of motion. Force models are generally
independent of motion. Even though solar pressure and rocket thrust involve motion
of molecules and photons, the force on the spacecraft does not depend on its motion.
A notable exception is atmospheric drag forces that are dependent on the velocity
of the spacecraft relative to the atmosphere.

2.1 Rocket Equation

The acceleration of a spacecraft from a rocket engine is accomplished by ejecting
gas molecules at high velocity. The energy source can be gas stored in a container
under pressure. Cold gas rocket thrusters were used by early spacecraft for attitude
control. In order to attain the high thrust and high efficiency of modern rocket
engines, the gas molecules are heated to a very high temperature by burning rocket
fuel in a thrust chamber that directs the gas in a steady stream opposite to the
direction of acceleration. The acceleration of a spacecraft subject to the thrust T

is given by,

dv

dt
= T

msc
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If the rocket exhaust is throttled to flow at a constant velocity (u), the thrust is
given by the rate of change of momentum as described above for particle impacts.

T = u
dm

dt

The propellant is assumed to be an integral part of the spacecraft and the equation
for the velocity change of the total mass including spacecraft and propellant is

dv = u
dm

m

Integrating gives what is known as the rocket equation,

�v = u ln
m0

m
(2.1)

where �v is the change in velocity of the spacecraft and m0 is the initial mass. The
propellant burned is the difference between m and m0. The simplicity of the rocket
equation belies its usefulness. Interpretation of the parameters of the rocket equation
provides considerable insight into the design of rocket engines. The key parameter
is the rocket exhaust velocity. Historically, the designers of rocket engines have
attempted to maximize the exhaust velocity and have devised a parameter called the
specific impulse (Isp) to provide a measure of efficiency. The specific impulse is
defined by,

Isp = u

g0

The constant g0 is the acceleration of Earth’s gravity at sea level and appears to be
a relic from the time when pound mass was used instead of the slug which is the
current unit of mass in the English system. The unit of specific impulse is a second
and provides a measure of the time a particle would fall near the surface of the Earth
to attain the speed of the rocket exhaust which is a fairly meaningless concept. In
the modern era, the Isp is a measure of the overall efficiency of the rocket engine
and has been incorporated into the rocket equation.

�v = g0Isp ln
m0

m
(2.2)

The specific impulse that is quoted for rocket engines is not directly proportional
to the exhaust velocity. It factors in inefficiencies associated with the flow of
the exhaust gas and is adjusted to give the right performance when used in the
rocket equation. The specific impulse associated with a cold gas rocket engine or
with discreet venting from a spacecraft may be computed from the ideal gas law
(Eq. 1.46).

Isp = 1

g0

√
3RT

M
(2.3)
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Observe that the specific impulse and hence the overall efficiency of this type
of rocket engine is only a function of the temperature and molecular weight of the
gas that is expelled. For this reason, rocket engine designers tend to favor hydrogen
as a fuel because of its low-molecular weight. Solid rocket motors use propellant
with a relatively high-molecular weight and attain specific impulses in the range of
200 s. Liquid propellant rocket motors that use hydrogen as a fuel attain specific
impulses in the high 300’s. The temperature of the fuel is also a major factor. Cold
gas systems attain specific impulses in the 50 s range. In order to attain really high
temperatures for the gas molecules, the gas may be ionized and accelerated with an
electric field. Ion drive engines can obtain specific impulses of several thousand.

2.2 Aerodynamic Forces

A spacecraft moving through a planetary atmosphere or through the tail of a comet
experiences aerodynamic forces opposite to the direction of motion called drag and
normal to the direction of motion called lift or side slip. The drag force is generally
beneficial to spacecraft since it may be used to remove kinetic energy from the
spacecraft. During descent to the planet’s surface, the drag force acts in a direction
to aid thrusters used for braking and in orbit the drag force may be used to circularize
the orbit. Consider a spacecraft that may be approximated by a flat plate oriented
perpendicular to the velocity vector relative to an atmosphere. Since the moving
spacecraft encounters atmospheric molecules at rest, a force must be applied by the
spacecraft to accelerate the atmosphere molecules from rest to the velocity of the
spacecraft. This force is given by,

F = m
dv

dt

The rate of change of energy or power that must be supplied by the spacecraft to
accelerate the gas molecules of mass m is given by,

F v = mv
dv

dt

Over an incremental distance (dx), the work (dE) done on the atmosphere is

dE =
∫ x+δx

x

F dx = Fδx = m

∫ v

0
v dv = m

v2

2

The mass of the atmosphere swept out is ρAδx where A is the cross section area of
the spacecraft and ρ is the atmospheric density. Thus, we have

F = Aρ
v2

2
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for the force on the spacecraft. The force distributed over the spacecraft is the
pressure (q) times the area (F = qA). The pressure exerted on the spacecraft is
called dynamic pressure and is given by,

q = 1

2
ρv2

The drag force is given by,

Fd = CdqA (2.4)

where the drag coefficient Cd is a parameter computed by aerodynamicists to
account for the flow of the atmosphere around the spacecraft and has a maximum
value of one. As the spacecraft moves through the atmosphere, the gas molecules
that are accelerated to the velocity of the spacecraft build up in front of the spacecraft
and form a wedge that deflects some of the molecules encountered to flow around
the spacecraft. As a result, not all of the molecules are accelerated to the velocity of
the spacecraft and the drag coefficient is less than one. If the spacecraft is tilted by
some angle, aerodynamic forces are generated that are normal to the velocity vector
called lift. For spacecraft navigation in an atmosphere, an aerodynamic model is
required to enable the computation of all the force components as a function of q

for all the permissible attitudes into which the spacecraft may be maneuvered. The
aerodynamic coefficients are computed by an aerodynamicist or reduced from wind
tunnel data and supplied to navigation enabling the trajectory of the spacecraft to be
computed.

2.3 Solar Pressure

Photons emanating from the sun impinge on the spacecraft resulting in a force that
accelerates the spacecraft. The force results from the change in momentum as the
photon decelerates from the speed of light (c) to rest with respect to the spacecraft
and is converted to heat assuming that the spacecraft is a black body. The force is
related to the change in linear momentum given by,

F = d(mc)

dt
(2.5)

The incremental energy required to decelerate the photon is

dE = Fdx

and the power supplied to the spacecraft is obtained by dividing by dt.

dE

dt
= Fc (2.6)
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Over the time interval dt , the photon moves an infinitesimal amount dx. The
mathematics are a bit oversimplified, but if Eq. (2.5) is substituted into Eq. (2.6)
we get E = mc2 and this result is consistent with Special Relativity. The force of
the photons on the spacecraft creates a pressure over the exposed surface area (A)
and the net force is obtained by integrating all the photons over the area (A) of the
spacecraft.

F = 1

c

dE

dt

dE

dt
= I A

The power supplied to the spacecraft per unit area (I ) may be computed from the
solar intensity measured at Earth (Ie) and scaled by the inverse square of the distance
from the sun.

I =
(

Re

Rs

)2

Ie (2.7)

Collecting terms and solving for the force on the spacecraft gives

F = K A

R2
s

K = 1

c
R2

e Ie (2.8)

where

Ie = 1, 353 w/m2, c = 2, 999, 793.458 m/s2, and Re = 149.4 × 109 m

and

K = 1.01 × 1017 kg m/s2 = 1.01 × 108 kg km3/m2 s2

K is given in both MKS units and mixed units since area is generally given in
m2 and distance in km. The solar pressure model used for navigation is more
complicated than the simple flat plate black body model described above suggests.
The above result for the force assumes that all the photons are absorbed by the
spacecraft and are directed radially away from the Sun. Some of the photons will be
reflected from the spacecraft which will increase the solar pressure. If the spacecraft
were a perfect mirror, the force would be doubled. The incident and reflected
momentum exchange would be in the same direction. The reflected solar energy
is composed of specular and diffuse radiation. For specular reflection, the angle of
incidence is equal to the angle of reflection and for diffuse radiation, the energy
is scattered by the cosine of the sun angle. The solar pressure model used for
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Table 2.1 Solar pressure
model parameters

Front side Cylindrical side Back side Antenna
Area 8.92 m2 2.22 m2 11.25 m2 2.33 m2

γ 0.165 0.039 0.750 0.750

β 0.742 0.101 0.100 0.107

ε −0.112 0.400 0.400 0.398

the Near Earth Asteroid Rendezvous (NEAR) mission had three components. The
specular radiation component is γ , the diffuse radiation component is β, and the
third component ε accounts for thermal reradiation. Table 2.1 gives the values of
these coefficients for each part of the spacecraft. A separate set of coefficients was
specified for the front side, cylindrical side, back side, and antenna.

2.4 Gravity Models

The gravitational acceleration (A) of a point mass by a body may be obtained by
integrating Newton’s inverse square law of gravity a(x, y, z) over the body and is
given by,

A =
∫

V

a(x, y, z) dx dy dz = Gρi

∞∑
i=0

ri − r′

|ri − r′|3 r2
i cos φi dri dφi dλi (2.9)

where G is the gravitational constant and ρ is the density. Equation (2.9) is a
mathematical statement of Newton’s law of gravity and requires no proof. The
acceleration may be replaced by force per unit mass. Thus, a problem in dynamics is
replaced by a problem in statics which greatly simplifies the physics. We no longer
need to be concerned with the concept of energy and momentum. The vector r
is from the center of the coordinate system to the mass element and the vector r′
is to the spacecraft. The geometry is illustrated in Fig. 2.1. The right side of the
above equation is simply the definition of a volume integral transformed to spherical
coordinates. In the limit as the index (i) goes to infinity, the size of the volume
elements goes to zero. The volume elements may be replaced by mass elements
defined by,

dmi = ρ r2
i cos φi dri dφi dλi

The sum of the mass elements is the total mass of the body. If ρ equals one, the
sum is the volume of the body. The density on the surface (ρ) may be defined by an
expansion of Legendre polynomials and associated functions as

ρ =
∞∑

n=0

n∑
m=0

P m
n (sin φ)[Anm cos mλ + Bnm sin mλ] (2.10)

Alternatively, the density could be given in a table as a function of latitude and
longitude.
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Fig. 2.1 Planet or asteroid
body gravity geometry

POINT MASS

BRILLOUIN SPHERE

dm

q x

y

r'

r

r–r'

y2

r0 x2

2.4.1 Harmonic Expansion Model

The gravitational acceleration given by Eq. (2.9) may be recast as the sum of inverse
square relationships for each mass element,

A =
∞∑
i=0

−μi(r′ − ri )

|r′ − ri |3 (2.11)

where μi = Gmi . Integrating the total acceleration term by term, we obtain the
following,

U =
∞∑
i=0

μi

|r′ − ri | (2.12)

If we take the derivatives of A term by term with respect to x′, y′, and z′ and sum
them, we obtain after a little algebra,

∇ · A =
∞∑
i=0

3μi

|r′ − ri |3 − 3μi

|r′ − ri |5
[
(x′ − xi)

2 + (y′ − yi)
2 + (z′ − zi)

2
]

= 0

(2.13)
Since the right side of Eq. (2.11) is the gradient of the right side of Eq. (2.12) and
the right side of Eq. (2.13) are the derivatives of the right side of Eq. (2.11) summed,
the same relationships hold for the left sides and
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A = ∇U (2.14)

∇2U = ∂2U

∂x′2 + ∂2U

∂y′2 + ∂2U

∂z′2 = 0 (2.15)

Equation (2.15) for the divergence of U may be solved for U . For U to be unique,
the boundary condition must be satisfied. The fundamental theorem of calculus will
then guarantee that the gradient of U will be the acceleration. For heat flow, the
above differential equation for U is the flow of energy across the faces of the volume
elements. For electric charge, Michael Faraday, the father of electrical engineering,
postulated a flux. The real mathematical basis for the divergence theorem is the
inverse square relationship. Heat, gravity, and electric charge are all inverse square
and obey Newton’s action equals reaction and acceleration equals force divided by
mass.

Since Eq. (2.15) for the divergence is linear and homogeneous, it may be solved
by separation of variables. It is interesting to note that Legendre’s equation is
obtained from the offset point mass given in Eq. (2.11). The solution for the potential
is given by,

U = μ

r

{
C00 +

∞∑
n=1

( ro

r

)n
n∑

m=0

P m
n (sin φ)[Cnm cos mλ + Snm sin mλ]

}

(2.16)
The acceleration is obtained by taking the gradient of U, which involves first
derivatives of Legendre polynomials that are generally obtained by recursion
relationships. An explicit formula for the Legendre polynomials and associated
functions that do not involve recursion relationships is given by Heiskanen and
Moritz. For orbit determination, the partial derivatives of acceleration with respect
to state and gravity coefficients are needed for the variational equations. These
partials are difficult to derive because they involve second derivatives of Legendre
polynomials and transformations back and forth between spherical and Cartesian
coordinates.

2.4.2 Point Mass Model

The next gravity model to be considered is the point mass model. In Europe, this
model is called the punctual model. In German, punc means point as we know from
the radios in Mercedes Benz manufactured by Blau Punc (blue dot). Equation (2.9)
may be modified by replacing the spherical volume element with the Cartesian
volume element.

A = G

∞∑
i=0

ρi

ri − r′

|ri − r′|3 dxdydz (2.17)
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On a computer, the body is divided into a large number of cubes or parallelepipeds
that define each volume element of size dx by dy by dz. The volume elements do not
have to be of the same size, but they must sum to the correct volume. No overlapping
is allowed. An easy way to do this summing on a computer is to circumscribe the
body with a parallelepiped and then use a triple do loop to access all the volume
elements of the parallelepiped. Volume elements outside the body are discarded or
assigned a density of zero. This is the same technique used by Michelangelo. He
simply procured a large block of marble and chipped away the part that was not
David’s. Each volume element is assigned a density. One way of determining ρ is to
compute the density as a function of latitude and longitude from the above harmonic
expansion. The density would thus be constant along any radius vector. This is the
density distribution that will be exploited by a later gravity model.

The point mass model is singular when r′ − ri is equal to zero. This singularity
can only occur when the point where the gravitational acceleration is being
computed (r′) is below the surface of the body. Of course, the actual acceleration
cannot reach infinity, because there is no such thing as infinite density. When r′ is
inside a mass element, the mass element can be replaced with a sphere of equal
volume and density. The geometry is illustrated in Fig. 2.2. The radius of the sphere
is given by,

Ro =
[

3 dx dy dz

4π

] 1
3

The acceleration inside a sphere is zero at the center of gravity and the magnitude
is linear from the center to the surface where the acceleration is Gm over R2

o . The
acceleration inside a little cave inside the mass element is simply,

ai = G
4π

3
ρi(ri − r′)

2.4.3 Pyramid Model

The acceleration of a point mass or spacecraft is determined by summing or inte-
grating the acceleration contribution of each mass element (dm) in a gravitationally
attractive body. The mass of the spacecraft is assumed to be too small to affect
the gravity field of the attractive body. The geometry is illustrated in Fig. 2.1. The
acceleration is

A = G

∫
V

r − r′

|r − r′|3 dm (2.18)

dm = ρ r2 cos φ dr dφ dλ
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Fig. 2.2 Internal mass
element model

dx

Ro

r′ – ri

where V denotes the irregularly shaped body. The vector r is from the center of
the coordinate system to the mass element and the vector r′ is to the spacecraft.
The density ρ is defined by an expansion of Legendre polynomials and associated
functions as defined by Eq. (2.10). The components of the vectors r and r′ in
Cartesian coordinates are

r = (r cos λ cos φ, r sin λ cos φ, r sin φ)

r′ = (x′, y′, z′)

Substituting the vector components into Eq. (2.18) gives

A = G

∫
V

(r cos λ cos φ − x′, r sin λ cos φ − y′, r sin φ − z′)[
(r cos λ cos φ − x′)2 + (r sin λ cos φ − y′)2 + (r sin φ − z′)2

] 3
2

dm

(2.19)
Before integrating with respect to r , a rotation of coordinates may be defined

that will simplify the integrand. The y2 axis is placed through the location of the
spacecraft (r′) and the x2 axis is placed in the plane defined by the mass element
(dm) and r′.

⎡
⎣x2

y2

z2

⎤
⎦ = T

⎡
⎣x

y

z

⎤
⎦
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T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r′ × (r × r′)
|r′ × (r × r′)|

r′

|r′|
r × r′

|r × r′|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The coordinates of the spacecraft r′
2 and a mass element r2 in the rotated coordinate

system are

r′
2 = (0, r ′, 0)

r2 = (r cos θ, r sin θ, 0)

θ = 90 − cos−1
(

r · r′

rr ′

)

and

A = G

∫
V

T T [r cos θ, r sin θ − r ′, 0]T[
(r2 cos2 θ + (r sin θ − r ′)2

] 3
2

dm

Replacing the mass element (dm) with ρ r2 cos φdrdφdλ gives

A = G

∫
S

ρ T T

∫ R

0

[cos θ, sin θ − r ′

r
, 0]T

(
(cos2 θ + (sin θ − r ′

r
)2

) 3
2

dr cos φ dφ dλ

where R is the radius of the body as a function of λ and φ. The density (ρ) and
coordinate transformation (T ) factor out of the r integration since they are only a
function of latitude and longitude. Performing the r integration gives

A = G

∫
S

ρ T T

⎡
⎣a2x(R) − a2x(0)

a2y(R) − a2y(0)

0

⎤
⎦ cos φ dφ dλ (2.20)

a2x(r) = r2 cos2 θ + r ′ sin2 θ(r sin θ − r ′) + cos2 θ(2r ′2 − 5rr ′ sin θ)

cos θ
√

r2 + r ′2 − 2rr ′ sin θ
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+ 3 cos θ sin θr ′ ln

[
2r − 2r ′ sin θ + 2

√
r2 + r ′2 − 2rr ′ sin θ

]

a2y(r) = rr ′ cos2 θ + r2 sin θ − 5rr ′ sin θ2 + 3r ′2 sin θ√
r2 + r ′2 − 2rr ′ sin θ

− r ′(1 − 3 sin2 θ) ln

[
2r − 2r ′ sin θ + 2

√
r2 + r ′2 − 2rr ′ sin θ

]

a2z = 0

The gravitational acceleration computed assuming constant density will generally
not yield sufficient accuracy for navigation of a spacecraft. Therefore, the density is
varied as a function of latitude and longitude. The density is assumed to be uniform
from the surface to the center of mass of the body. This assumption enables the
density to be factored out of the r integration, simplifying the mathematics. The
resultant mass distribution does not model reality inside the body but provides an
exact model of the external gravity field. The integral given in Eq. (2.20) may be
evaluated by tiling the unit sphere with area patches that are nearly square and sum
to exactly 4π over the unit sphere. The total acceleration is obtained by evaluating
the integrand of Eq. (2.20) at the center of each area patch, multiplying by the area
and summing over all the area patches. Observe that the shape of the body (R) enters
explicitly through the limit of integration with respect to r . The shape of the object
may be obtained from a shape model or input directly from a table of radii as a
function of latitude and longitude. The surface integral is not over the surface of the
body, but rather over the unit sphere. The integration is performed by an algorithm
developed for integration over the actual surface of a body and this algorithm is
described below under Shape Model Gravity.

2.4.4 Polyhedral Model

The concept behind a polyhedral model is to pack polyhedrons inside a body and
sum the gravitational acceleration from each polyhedra. An easy way to do this is
to fill the body with cubes or parallelepipeds. This approach works fine for uniform
density, provided that the cubes are small enough such that the error resulting from
the cubes overlapping the surface of the body is small. Another approach that may
be tried is to partition the equatorial plane into small squares and stack long thin
parallelepipeds on the equatorial plane that reach the surface. A variable density may
be accommodated by assigning a different density to each column or parallelepiped.
This approach will not work because a sphere with a density gradient along the
column length will always have the center of gravity on the equatorial plane because
each column has uniform density and the columns are parallel to each other.
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Another approach which does work is to pack tetrahedrons into the body. If the
surface is defined by a triangular plate model, the base of the tetrahedron is on the
surface and the apex is at the center of the reference coordinate system which is
usually the center of mass. For a parallelepiped shape of the body, the body can
be filled with 12 tetrahedrons by passing a diagonal through each of the six faces.
This polyhedra model was implemented by Werner and the numerical comparisons
with other models indicate that this model is exact for constant density. If the
triangles are made small enough and the apex of all the polyhedra are at the center,
this model would look like the pyramid model described above. Variable density
could probably be accommodated by assigning density as a function of latitude and
longitude as was done for the pyramid model. Since Werner’s polyhedral model is
exact for large tetrahedra, the final triangularly shaped model is exact. The pyramid
model requires thousands of area patches to achieve the same accuracy but has other
advantages when applied to the problem of orbit determination. The problem of
variable density requires a large number of tetrahedrons and the pyramid model
probably requires less computation per tetrahedron.

2.4.5 Mass Distribution of an Irregularly Shaped Body

A cross section of the pyramid gravity model is shown in Fig. 2.3. The cross section
of Eros is used as an example viewed looking down on the North pole with longitude
measured counterclockwise, or East, from the x axis. The cross hatched segments
have uniform density from the surface defined by latitude and longitude to the
center of mass. Each cross hatched segment may have a different density. In three
dimensions, the cross hatched segments are actually pyramids with the apex at
the center of figure and the base defined by rectangular patches whose sides are
delimited by latitude and longitude. In the limit, as the size of the area patches
approaches zero, the gravity potential on the surface is exact. If the surface gravity
potential is exact, the resulting external gravity field in vacuum is exact. The internal
mass distribution is of little interest for navigation since there is an infinity of mass
distributions that will yield the same external field. The mass distribution of the
pyramid model is selected because it is mathematically convenient.

Since any object may be replaced by an infinite cluster of point masses, verifying
the pyramid model for a single point mass verifies the model for the object. The
acceleration of a spacecraft that is outside the body is simply the sum of the
accelerations from all the point masses. The geometry is illustrated in Fig. 2.4. The
mass distribution is computed for two bodies. One has the shape of the asteroid Eros
and the other is a sphere. Imagine that the two bodies are composed of a massless
surface shell filled with cotton candy and a small lump of uranium hidden inside.
The object is to compute a density distribution for the interior of the body that
will have the same external gravity field as the lump of uranium. Another sphere
is defined that circumscribes the bodies and the acceleration of the point mass is
computed at sample points that cover the larger sphere. A typical sample point is
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y
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Fig. 2.3 Irregular body cross section

shown in the figure. The pyramid model acceleration is also computed for each
sample point. As a first guess, the bodies are assumed to have uniform density
and the mass is the same as the point mass. The magnitude of the acceleration
is computed for the point mass and the body of interest. Using a square root
information filter (SRIF), a least square solution is obtained for the density harmonic
coefficients which give the magnitude of the acceleration of a spacecraft at the
sample point. If the acceleration magnitudes of the point mass and gravity model
are equal on the sampled sphere, the gradient of the potential is equal and a solution
is obtained for the density harmonic coefficients.

The observable used for obtaining a solution for the density harmonic coefficients
is defined by

a2 = a2
x + a2

y + a2
z

and the required partial derivatives are

∂a

∂(Anm,Bnm)
= ∂a

∂(ax, ay, az)

∂(ax, ay, az)

∂ρ

∂ρ

∂(Anm,Bnm)
(2.21)
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∫
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⎡
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Fig. 2.4 Surface density of point mass

∂ρ

∂Anm

= P m
n (sin φ) cos mλ

∂ρ

∂Bnm

= P m
n (sin φ) sin mλ

The above partial derivatives and the difference between the observed acceleration
and computed acceleration are packed into a square root information matrix which
is inverted after all the sample points have been processed to obtain the solution for
the density harmonic coefficients.

A simple test to verify the pyramid theory involves computing the pyramid
distribution for a point mass offset from the center of the coordinate system. The
point mass is located at 10◦ longitude, 10◦ latitude, and 6 km from the center of the
sphere. The radius of the sphere is 8.43259 km which is sized to equal the volume of
Eros. The geometry is illustrated in Fig. 2.4. Accelerations of a spacecraft from the
point mass and the pyramid model are computed at various sample points that cover
a sphere of radius 18 km. A plot of the surface density is shown in Fig. 2.5 for the
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Fig. 2.5 Surface density on sphere from point mass

sphere. Since the gravity field is spherically symmetrical about the point mass, one
would expect the contours of constant density on the sphere to be circles centered
at the point on the surface of the sphere closest to the point mass. Figure 2.5 shows
the maximum density at 10◦ latitude and 10◦ longitude and the contours of constant
density are circles with a minimum density 180◦ from the maximum density. The
spacecraft acceleration from the pyramid model and point mass are equal to very
high precision.

2.4.6 Pyramid Gravity Model Comparison with Eros Harmonic
Model

A comparison of the pyramid model with the gravity of Eros may be obtained by
processing real data from an orbiting spacecraft in an orbit determination program.
A high-quality set of data is available for the NEAR spacecraft orbiting the asteroid
Eros. For 1 month, the spacecraft was in a 25-km polar orbit and nearly continuous
Doppler data was obtained. Processing this data with the pyramid gravity model
would require some modification of existing orbit determination software. However,
we have a harmonic expansion of the gravity field obtained during Eros flight
operations. This harmonic expansion closely replicated an independent gravity
model obtained by integrating a laser altimetry derived shape model over the
surface assuming constant density. This verification of the pyramid gravity model
for constant density provided confidence in its use for Eros landing.

As a substitute for real data, the Eros harmonic expansion was used to compute
acceleration at sample points on the 18-km sphere defined above. These acceleration
data points were processed in a square root information filter to obtain surface
density harmonic coefficients. Figure 2.6 shows the result of this simulation and
provides insight into the possible nonuniformity of the Eros mass distribution.
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Fig. 2.6 Surface density of Eros from harmonic expansion

Inspection of Fig. 2.6 indicates that a large object may be buried at 260◦ longitude
and 0◦ latitude. This conclusion is a bit premature since further analysis indicated
that the Eros shape model is shifted about 100 m along the y axis. This apparent
discrepancy was also observed when comparing the LIDAR shape model with the
optical shape model derived independently by Peter Thomas. It should also be noted
that this discrepancy is small compared to the mean density of Eros and did not
affect the Eros landing trajectory.

2.4.7 Comparison of Gravity Model Mass Distributions

A mass distribution is defined for a parallelepiped or brick that encloses the asteroid
Eros. The density is scaled such that the mass of the brick is equal to the mass
of Eros. As a result, the mean density of the brick is less than the mean density
of Eros. The brick is 32 km long, 18.48 km wide, and 11.28 km high. The density
varies from 10% below the mean density at the bottom or south pole to 10% above
the mean density at the top or north pole. The brick and Eros are thus layered with
layers of constant density parallel to the equatorial plane.

A gravity field is computed for the brick, the cross section shown on the left
side of Fig. 2.7, using the point mass model which is assumed to be exact. The
gravitational acceleration is computed from the point mass model as a function of
latitude and longitude distributed over a sphere of radius 18 km. At each latitude
and longitude, the acceleration is also computed on the surface. These accelerations
are treated as measurements and packed into a SRIF modified to provide a simple
least square solution. The SRIF matrix is inverted to determine the coefficients
of Legendre polynomials and associated functions that define the density of the
pyramid gravity model as a function of latitude and longitude. A cross section of
the pyramid model through the center of the coordinate system is shown on the
right side of Fig. 2.7. Because of symmetry, all cross sections through the center
will look the same.
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Layered Parallelepiped Cross Section Pyramid Model Cross Section

Fig. 2.7 Parallelepiped and pyramid gravity model mass distributions

The equal sign between the layered parallelepiped on the left and the radially
distributed density on the right indicates that the external gravity field of these
two parallelepipeds are the same. This counterintuitive result suggests that attempts
to determine internal structure of planets or asteroids or the Moon by gravity
measurements are highly suspicious. The first degree coefficients of a harmonic
expansion provide the location of the center of mass, which gives some insight
into mass distribution. The second degree coefficients give the ratios of inertia
tensor elements and provides additional insight into mass distribution. However,
a key piece of information, namely the trace of the inertia tensor, is missing from
gravity measurements. The trace can be determined by observation of non-principal
axis rotation as was attempted on the NEAR mission. Unfortunately, Eros and
most other bodies are nearly in principal axis rotation. Direct comparison of the
gravity coefficients determined by orbit determination tracking measurements and
computed from a shape model from laser altimetry measurements revealed that the
harmonic coefficients through degree six were very nearly the same. This result
indicated that Eros was very nearly constant density and provided a valuable set of
coefficients that were used as a priori for subsequent orbit solutions.

In the above discussion, the gravity fields of two bodies were computed using
different gravity models. The pyramid model uses a universal mass distribution
that will produce the same gravity field as for any actual mass distribution. This
property of the pyramid model enables the production of two bodies with radically
different internal mass distributions that have the same gravity field outside the
bodies. With a 3D printer, one can actually go down into his or her basement and
manufacture these bodies. However, it is easier to do this on a computer. We select
the parallelepiped shape for a numerical demonstration. Eros shape models may
not be readily available for those who may want to repeat this demonstration. The
shape has a Cartesian coordinate system centered at the geometric center with the
x axis along the length from −16 km to +16 km, the y axis along the width from
−9.24 km to +9.24 km, and the z axis along the height from −5.64 km to +5.64 km.
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The total acceleration is obtained by summing the acceleration associated with each
mass element given by,

Ai = Gρavg vi

(
1 + riz

rmaxz

δρ

)
ri − r′

|ri − r′|3

The average density times G is Gρavg = 6.5826 × 10−8, the volume of the
mass element is vi , the z component of the mass element is riz, the maximum
z component is rmaxz = 5.64 km, and the density variation is δρ = 0.1. The
volume of the parallelepiped is 6670.54 km3 and thus the GM of the body is
GM = Gρavg × 6670.54 = 4.3909 × 10−4 km3/s2 which is the GM of Eros. For
a parallelepiped divided into 200×100×75 = 1,500,000 mass elements, the volume
of each mass element is vi = 4.447 × 10−3 km3.

For the second mass distribution, the same point mass model is used to compute
the gravity and the density distribution is computed from the expansion of Legendre
polynomials and associated functions determined by the pyramid model. The
acceleration is thus given by,

Ai = Gρi vi

ri − r′

|ri − r′|3

Gρi =
∞∑

n=0

n∑
m=0

P m
n (sin φ)[Anm cos mλ + Bnm sin mλ]

φ = arctan
riz√

ri2
x + ri2

y

λ = arctan
riy

rix

The harmonic coefficients, Anm and Bnm, are given in Table 2.2 through degree
and order eight. Observe that the A00 term is G times the average density. When
multiplied by the volume of the parallelepiped, the GM of the parallelepiped is
obtained, 4.3909×10−4 km3/s2, which is the same as for Eros. The assumed density
of the parallelepiped was scaled to give this result. For any position vector (r ′), the
computed accelerations from the two mass distributions are equal.

2.4.8 Comparison of Density Distributions for Eros-Shaped
Gravity Models

The density of the asteroid Eros is assumed to be uniform as a comparison of
shape-derived gravity harmonic coefficients with tracking data gravity harmonic
coefficients indicates. They are essentially the same. If a layered mass distribution
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Table 2.2 Parallelepiped density harmonic coefficients

is imposed on Eros where the density uniformly varies from 10% below the mean at
the south pole to 10% above the mean at the north pole, the resultant surface density
is shown in Fig. 2.8. The contour plot makes it difficult to discern the geometry. A
cross section parallel to the x-z plane or y-z plane would show horizontal lines and
a cross section parallel to the x-y plane would show constant density. The density
harmonic coefficients for the pyramid model are computed as described above for
the parallelepiped.

Figure 2.9 shows the density distribution of the modified Eros for the pyramid
gravity model. Recall that for the pyramid model, the density is uniform from
the surface to the center of Eros. The apparent mass concentrations do not exist.
They are artifacts of the gravity modeling. Figure 2.8 is the assumed actual mass
distribution. For extreme mass distributions, the modeled density may be negative.
This is not a problem. If we constructed an Eros with a mass distribution indicated
by the pyramid model, the external gravity field would be the same as for the real
Eros. If the density is negative, we simply fill those places with some anti matter.
The pyramid model makes no assumption about the actual mass distribution.
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Fig. 2.8 Assumed Eros surface density

Fig. 2.9 Eros surface density-pyramid gravity model

2.4.9 Comparison of Gravity Model Accelerations

The output from the various gravity models of real interest is the acceleration of
a point mass above the surface of the body. Contours of constant acceleration
or potential are often plotted as a function of latitude and longitude. Since the
difference in the models are small, the contours of constant acceleration would
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Fig. 2.10 Eros acceleration magnitude as function of radial distance

be nearly the same and thus not meaningful. The acceleration of most interest is
at the NEAR landing site since a spacecraft was actually there and a great deal
of high-quality data was obtained. In Fig. 2.10, the magnitude of the acceleration
is displayed as a function of radial distance from the center of Eros. The model
of Eros includes the 20% variation in density from the south pole to the north
pole. The radial line segment passes through the NEAR landing site and extends
to 30 km. The total acceleration is computed from the pyramid gravity model,
which was selected as an arbitrary reference. The landing site radius and sphere
of maximum radius are also shown in the figure. An interesting result is that the
peak acceleration occurs about a kilometer above the landing site. At the landing
site, the gravitational acceleration from the ends of Eros tend to cancel each other.
Inside Eros, the acceleration magnitude is nearly linear. It is linear for a sphere.
Inside Eros, the acceleration is really the acceleration of an object in a small cave
or mine and is not related to the pressure of the compressed body. The differences
between other model accelerations and the pyramid model are shown in Fig. 2.10
and the differences are small and can be easily explained.

Figure 2.11 shows the bottom part of Fig. 2.10 with the scale expanded by
a factor of ten. Plotted is the difference between the pyramid model and other
models as labeled. The curve labeled harmonic expansion represents the error in
the harmonic expansion model obtained on the NEAR mission. The error increases
dramatically as the spacecraft moves inside the sphere of maximum radius. During
the NEAR mission, the spacecraft entered this region only once on landing. For orbit
determination, the harmonic expansion error is significant out to 30 km, which is not
obvious from the figure. Orbit determination is sensitive to acceleration errors down
to 10−12 km/s2. The curve labeled constant density was obtained from Werner’s
polyhedral model. This difference may be completely attributed to the assumption
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of constant density and vanishes if the density of Eros is assumed to be uniform.
The point mass curve matches the pyramid model down to a kilometer above the
surface. Here, the resolution of the pyramid model or the number of mass elements
in the point mass model introduces error. If the resolution of the pyramid model and
point mass model is increased, this difference vanishes. Inside Eros, the problem is
magnified. A random error associated with the mass element that contains the point
where the acceleration is being determined is introduced, depending on how far the
evaluation point is from the center of the mass element. If we are unlucky and we hit
the exact center, the error can go to infinity. This error source may be ameliorated
by assuming a spherical mass distribution for this mass element.

2.4.10 Comparison of Gravity Model Accuracy
and Computational Speed

The harmonic expansion model used for NEAR navigation operations about the
asteroid Eros was sufficiently accurate for orbital operations down to 25 km radial
distance from Eros. The time to make an orbit determination run, map the solution to
10 days in the future, and compute maneuvers could be about 20 min if time critical.
Since the round trip light time was about 40 min and several days were allocated
for navigation operations, computer run time was not a major consideration. For
time critical missions, ground-based navigation operations cannot be performed
faster than the round trip light time so 20 min for an orbit determination run
is a good target for program design. During NEAR operations, a 12◦ and order
harmonic expansion was used. This involved solving for 169 harmonic coefficients
every 10 days and provided about 20◦ resolution. The pyramid model and Werner’s
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polyhedral model were used for computing the landing trajectory. The shape model
had 7700 triangular plates which provided about 5◦ resolution. This was more
than adequate for propagating trajectories but would not have sufficed for orbit
determination if the spacecraft were tracked inside the sphere of maximum radius.
There was no orbit determination below 25 km radius. Future missions could require
orbit determination at altitudes around 5 km which would require about 1◦ resolution
for the gravity model.

The harmonic expansion model clearly would not be satisfactory for close
orbital operations around a small body. One degree resolution would require a 200◦
and order harmonic expansion involving about 40,000 coefficients. A 40,000 by
40,000 matrix would have to be inverted. The computer run time would also be
prohibitive. The point mass model would require about eight million mass elements
and eight million acceleration computations for each total acceleration to achieve 1◦
resolution. The computer run time would be prohibitive. However, the point mass
model is useful as a research tool because it is simple to implement and is exact both
inside and outside the body. Polyhedral models are exact for any polyhedron shape
that assumes constant density such as the triangular plate model used for NEAR
operations. However, for variable density and 1◦ resolution, about 40,000 polyhedra
would be required. A seamless transition in resolution would require changing the
number of polyhedra and would be difficult to implement in computer code.

The pyramid model appears to be the best option for satisfying all accuracy
and speed requirements. The resolution of the surface integration increases as the
square of the number of function evaluations while the resolution of the point mass
model increases as the cube. The number of computations required for one area
patch is probably considerably less than required for one polyhedra. The polyhedra
model computes an exact acceleration for every polyhedron. The base and edges
require considerable computation and thus limits the polyhedral model to about
10,000 polyhedra. The pyramid model uses an approximation for each area patch
and is exact only in the limit as the number of area patches approaches infinity. The
pyramid model can be thought of as a porcupine quill model. A quill pierces the
center of each area patch and has a cross section area proportional to the square
of the radius. The mass per unit length of the quill increases as the square of the
distance from the center. The mean value theorem gives a good approximation of
the integrand over the integration interval but is exact only in the limit. Recall that
π is also not exact on a computer and is only known to several hundred decimal
places. Several hundred is a long way from infinity. Therefore, any mathematical
equation becomes an approximation on a computer.

Another consideration related to computational speed is the ability to vary the
resolution or accuracy of the gravity model as a function of the accuracy needed.
For example, numerical integrators used for trajectory propagation vary the step
size depending on the acceleration. Near a gravitating body where the trajectory
curvature is great, the integration step size is reduced to minutes or hours. Far
from a gravitating body, where the spacecraft moves in nearly a straight line, the
step size may be several days. The pyramid model permits a simple adjustment of
accuracy and computational speed by changing the size of the surface integration
area patches. A similar adjustment of speed and accuracy for the polyhedral model
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could be achieved by increasing the number of triangles that comprise the shape
model. A simple way to do this is to add additional vertices at the centroid of each
triangle and thus replace each triangle with three smaller triangles.

A further consideration related to complexity and therefore computational speed
is the need to compute variational partial derivatives for orbit determination. The
partial derivatives of acceleration with respect to density harmonic coefficients and
spacecraft position are needed. Consider that the exact solution for the potential of
a parallelepiped requires about one page of Fortran code and there probably is not a
more efficient language than Fortran for this application. The acceleration requires
an additional differentiation of this potential function with respect to each coordinate
axis and results in several pages of Fortran code. The variational partial derivatives
would require many more pages of Fortran code. The variational partial derivatives
for the harmonic expansion model have been derived and are available in computer
code, either Fortran or C. This code could be modified to provide variational partial
derivatives for the pyramid model. This job is much easier because the pyramid
model does not require a potential function to be determined.

2.4.11 Gravitational Variational Equations

For orbit determination, the partial derivatives of acceleration with respect to the
dynamic parameters are required. Recall that the translational variational equations
are obtained by integrating

∂A
∂q

= ∂A
∂r

∂r
∂q

+ ∂A
∂v

∂v
∂q

+ ∂A
∂q

|r,v constant

Consider the following subset of constant dynamic parameters that pertain to
specific columns of the above matrix.

q = (r0, v0, Cn,m, Sn,m)

The gravitational variational equations are

∂A
∂r

= ∂A
∂Ab

∂Ab(x, y, z)

∂Ab(r, λ, φ)

∂Ab(r, λ, φ)

∂rb(r, λ, φ)

∂rb(r, λ, φ)

∂rb(x, y, z)

∂rb

∂r

∂A
∂v

= 0

∂A
∂(Cnm, Snm)

= ∂A
∂Ab

∂Ab(x, y, z)

∂Ab(r, λ, φ)

∂Ab(r, λ, φ)

∂(Cnm, Snm)

The ∂rb

∂r is simply the orthogonal transformation matrix from inertial EME
J2000 coordinates to body fixed coordinates from the Rotational Equations of
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Motion described in Chap. 1. The ∂A
∂Ab

is simply the inverse of this transformation
and transforms acceleration from body fixed to inertial coordinates. Similarly, the
matrices ∂rb(r,λ,φ)

∂rb(x,y,z)
and ∂Ab(x,y,z)

∂Ab(r,λ,φ)
transform from Cartesian to spherical coordinates

and back from spherical coordinates to Cartesian coordinates.
The ∂Ab(r,λ,φ)

∂rb(r,λ,φ)
is dependent on the particular gravity model whose partial

derivatives are being computed. For the harmonic expansion model, we have

∂Ab(r, λ, φ)

∂rb(r, λ, φ)
= ∂∇U

∂rb(r, λ, φ)
=
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2.5 Shape Model

The shape of an asteroid or comet nucleus may be determined by optical observation
of landmarks and laser altimetry measurements. Optical observations must be
stereoscopic which is achieved by imaging landmarks from different points in the
spacecraft orbit around the body. Laser altimetry determines the distance from the
spacecraft to the surface by measuring the round trip light time. From the attitude
control system pointing angles, a vector may be determined that goes from the
spacecraft to a point on the surface of the body. The vector from the center of the
body to a point on the surface may be determined by simply adding the spacecraft
position vector to the laser altimetry vector.

2.5.1 Triangular Plate Model

The vectors from the center of mass of the body to the surface are called vertices.
A shape model may be determined by fitting a surface to these vertices. A simple
way to do this is to connect a mosaic of polygons to the vertices. This process is
called tessellation. A convenient way to do this is with rectangles. The problem with
rectangles, or any polygon with more than three sides, is that the vertices are not in
the same plane and the volume, moments of inertia, and gravity model parameters
computed from the shape model are not exact. For this reason, a triangular plate
model is used for navigation. Figure 2.12 shows a triangular plate model in the
shape of the asteroid Eros.

This triangular plate model has 3872 vertices and 7740 plates. The vertices are
numbered and written to a file. The plates are also written to the same file and are
defined by three integer vertex numbers. An interesting relationship, determined
by Euler and probably many mathematicians from antiquity, relates the number of
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Fig. 2.12 Eros shape model

plates (p) and edges (e) to the number of vertices (v).

p = 2v − 4 (v > 3)

e = 3v − 6 (v > 3)

A triangular shape model can be designed to accurately represent any shape
provided that the triangles are small enough. Consider a cube or a parallelepiped.
A triangular shape model can be obtained by passing a diagonal through each face.
Since there are six faces, the triangular shape model has 12 plates. The number of
vertices is eight which is the same as for the cube. The number of edges is 18, 12
for the cube plus six for the diagonals that were added. Thus, the formulas work for
a cube or parallelepiped. The resolution of the triangular plate model is inversely
proportional to the number of plates. One degree resolution would require 41,253
plates. Therefore, the resolution of the shape model shown in Fig. 2.12 is about
41,253/p or 5.33◦.

2.5.2 Harmonic Expansion Shape Model

The triangular plate model is useful for creating images and precision analysis of
inertial properties but is not amenable to use for orbit determination. There are too
many parameters for an orbit determination filter to assimilate. A more convenient
surface can be defined by an expansion of Legendre polynomials and associated
functions.
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R =
∞∑

n=0

n∑
m=0

P m
n (sin φ)[Anm cos mλ + Bnm sin mλ] (2.22)

R is the radius of a point on the surface at longitude λ and latitude φ. The harmonic
coefficients are obtained by integrating over the unit sphere.

Anm =
∫∫

S

P m
n (sin φ) cos (mλ) R dλ dφ

Bnm =
∫∫

S

P m
n (sin φ) sin (mλ) R dλ dφ

The integration is performed on a computer using an algorithm developed for
determining the out-gassing acceleration of a spacecraft near a comet. The surface
integral is not over the surface of a body, but rather over the unit sphere. This
algorithm is also used to determine gravity harmonic coefficients of an irregularly
shaped body and other applications that require surface integration. The idea behind
this surface integration algorithm is to first cover the surface of the unit sphere with
area patches whose sides are great circle lines of constant longitude or small circle
lines of constant latitude. An exact tiling of the unit sphere is given by a soccer ball
which is a dodecahedron projected onto a sphere. It is not possible to tile a unit
sphere with small spherical rectangles or other polygons with more sides than the
dodecahedron. We only need the area patches to have nearly the same area and sum
to exactly 4π . In the limit as the area patches approach zero, it is not necessary for
the area patches to have the exact size and shape. The procedure used here is to
divide the northern and southern hemispheres into bands defined by small circles
of constant latitude which define latitude bands. The width of the latitude bands
determines the resolution. The latitude bands are divided into equal area patches as
close to being square as possible. When we get to the poles, the small circle around
the pole is divided into four equally shaped spherical triangles. For 1◦ resolution,
there will be 41,253 area patches and they will sum to exactly 4π . In the limit as the
resolution goes to zero and the number of patches goes to infinity, we get an exact
surface integral. The reader may be troubled by summing a bunch of area patches of
different sizes and shapes and getting a result that is exact. The fundamental theorem
of calculus does not require that the width of all integration intervals be the same.
The only requirement is that the width of all the intervals approaches zero as the
number of intervals approaches infinity.

A spherical harmonic shape model for the asteroid Eros was obtained by
integrating over the surface of the triangular plate model shown in Fig. 2.12.
The degree and order of the expansion was 34. The resultant surface is shown
in Fig. 2.13. The low degree and order coefficients were determined with high
precision. Since orbit determination is most sensitive to coefficients below degree
and order six, this model provided valuable a prior gravity harmonic coefficients
during the NEAR mission. The higher degree and order coefficients tend to average
out and do not contribute much to orbit determination accuracy.
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Fig. 2.13 Eros shape model (34×34 harmonic expansion)

2.5.3 Gravity Harmonic Expansion from Shape Model

The gravity field and inertial properties that are needed for analysis may be
determined from the shape model of an irregularly shaped body. The volume,
moments of inertia, and gravity harmonic coefficients are obtained by integrating
over the volume of the body assuming constant density. It will be convenient to first
determine the volume and center of mass of the body and then shift coordinates to
the center of mass before determining the inertia tensor and gravity harmonics by
another integration. Since the center of mass and inertia tensor place constraints on
the gravity harmonic coefficients, these relationships may be used as a check on the
numerical integration.

The mass is first determined by integration over the volume of the body and is
given by

M =
∫∫∫

V

ρ(r, λ, φ) dV (2.23)

where ρ is the density and the surface R is defined by the function

R = f (λ, φ)

The volume integral may be performed numerically on a computer by dividing the
body into a finite number of concentric shells and then by partitioning the outer
surface of each shell into a finite number of area patches. The volume within a given
shell that is under a given area patch comprises an individual volume element. The
volume integral is obtained by simply summing the value of the function evaluated
at the center of each volume element over all the volume elements.
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In order to obtain a reasonable accuracy, the body must be partitioned into a
very large number of volume elements. For 1◦ resolution, each shell contains about
40,000 volume elements. With the assumption of uniform density, the number of
function evaluations can be greatly reduced by extracting a spherical core from the
center of the body and performing the volume integral from the outer surface of
this core of radius rc to the surface of the body (R). Thus, we have for the mass of
the body

M = 4

3
πρ̄r3

c +
∫∫∫ R

rc

ρ(r, λ, φ) dV

dV = r2 cos φ drdλdφ

The amount of computation may also be reduced by performing the integration
with respect to r analytically and then integrating over the unit sphere. Thus, we
also have for the mass of the body

M = ρ̄

∫∫
S

R3

3
d
 (2.24)

d
 = cos φ dλ dφ

The center of mass is defined by the following three integrals.

x̄ = 1

M

∫∫∫
V

x ρ(r, λ, φ) dV

ȳ = 1

M

∫∫∫
V

y ρ(r, λ, φ) dV

z̄ = 1

M

∫∫∫
V

z ρ(r, λ, φ) dV (2.25)

where

x = r cos λ cos φ

y = r sin λ cos φ

z = r sin φ

For the case of constant density, we may perform the integration with respect to r

analytically as described above for the mass and we have
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x̄ = ρ̄

M

∫∫
S

cos λ cos φ
R4

4
d


ȳ = ρ̄

M

∫∫
S

sin λ cos φ
R4

4
d


z̄ = ρ̄

M

∫∫
S

sin φ
R4

4
d


The inertia tensor and gravity harmonic coefficients may be defined with respect
to any origin. However, the dynamics of the translational and rotational motion of
the body are best described with the origin at the center of mass. The true center of
mass is the assumed center of the planetocentric coordinate system as determined by
observation of spacecraft motion and the body translational and rotational dynamics.
Thus, the center of mass determined directly from the figure of the body assuming
constant density provides some insight as to the internal mass distribution. This
interpretation of the data may be facilitated by transforming to the center of mass
determined from the figure. The primed coordinates are defined with respect to the
center of figure and we have for the translation from planetocentric coordinates to
figure-centered coordinates

x′ = r cos λ cos φ − x̄

y′ = r sin λ cos φ − ȳ

z′ = r sin φ − z̄

r ′ =
√

x′2 + y′2 + z′2

φ′ = sin−1 z′

r ′

λ′ = tan−1 y′

x′

The elements of the inertia tensor with respect to the center of figure are defined
by the following integrals:

Ixx =
∫∫∫

V

(y′2 + z′2) ρ(r ′, λ′, φ′) dV ′

Iyy =
∫∫∫

V

(z′2 + x′2) ρ(r ′, λ′, φ′) dV ′
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Izz =
∫∫∫

V

(x′2 + y′2) ρ(r ′, λ′, φ′) dV ′

Ixy = −
∫∫∫

V

x′y′ ρ(r ′, λ′, φ′) dV ′

Iyz = −
∫∫∫

V

y′z′ ρ(r ′, λ′, φ′) dV ′

Ixz = −
∫∫∫

V

x′z′ ρ(r ′, λ′, φ′) dV ′

Performing the integration with respect to r analytically, we obtain

Ixx = ρ̄

∫∫
S

(sin λ′2cos φ′2 + sin φ′2) R′5

5
d
′

Iyy = ρ̄

∫∫
S

(cos λ′2cos φ′2 + sin φ′2) R′5

5
d
′

Izz = ρ̄

∫∫
S

cos φ′2 R′5

5
d
′

Ixy = ρ̄

∫∫
S

cos φ′2 sin λ′ cos λ′ R′5

5
d
′

Iyz = ρ̄

∫∫
S

sin λ′ sin φ′ cos φ′ R′5

5
d
′

Ixz = ρ̄

∫∫
S

cos λ′ sin φ′ cos φ′ R′5

5
d
′

The unnormalized gravity harmonic coefficients are computed in a similar manner.
The coefficient generating functions are given by the following volume integrals:

Cn0 = 1

M

∫∫∫
V ′

(
r ′

ro

)n

Pn(sin φ′) ρ(r ′, λ′, φ′) dV ′

Cnm = 2

M

(n − m)!
(n + m)!

∫∫∫
V ′

(
r ′

ro

)n

P m
n (sin φ′) cos mλ′ ρ(r ′, λ′, φ′) dV ′

Snm = 2

M

(n − m)!
(n + m)!

∫∫∫
V ′

(
r ′

ro

)n

P m
n (sin φ′) sin mλ′ ρ(r ′, λ′, φ′) dV ′

These volume integrals may also be converted to integrations over the unit sphere
for the case of constant density by performing the r integration analytically.
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Cn0 = ρ̄

M

∫∫
S′

1

n + 3

(
R′n+3

ron

)
Pn(sin φ′) d
′

Cnm = 2ρ̄

M

(n − m)!
(n + m)!

∫∫
S′

1

n + 3

(
R′n+3

ron

)
P m

n (sin φ′) cos mλ′ d
′

Snm = 2ρ̄

M

(n − m)!
(n + m)!

∫∫
S′

1

n + 3

(
R′n+3

ron

)
P m

n (sin φ′) sin mλ′ d
′

The second degree gravity harmonics and elements of the inertia tensor share the
same integrals and are thus not independent. The differences in the inertia tensor
elements may be determined as a function of the second degree gravity harmonics.
Since there are five differences and six parameters, a third equation is needed.
This third equation could be the trace of the inertia tensor which would enable
determining the inertia tensor and gravity harmonics as functions of each other and
thus save six parameters that need to be estimated. Twelve parameters that are well
understood would be replaced by six parameters that are not so well understood. A
better approach is to estimate all twelve parameters and place an a prior constraint
on the relationship between the parameters. This is accomplished by processing five
dummy measurements with zero measurement error. The equations of constraint are

Ixx − Iyy = −4Ma2C22

Iyy − Izz = Ma2(C20 + 2C22)

Izz − Ixx = −Ma2(C20 − 2C22)

Ixy = −2Ma2S22

Iyz = −Ma2S21

Ixz = −Ma2C21

2.6 Comet Atmosphere

The comet nucleus is a source of a stream of dust and gas molecules that accelerate
the spacecraft away from the nucleus. Although the actual size and mass of comets
are generally unknown, most short-period comets considered for missions have
estimated radii between 1 and 5 km. The solar radiation input to the surface of
a comet nucleus heats an outer mantle of dust and debris that is generally a
few centimeters thick. Heat is conducted through the mantle and results in the
sublimation of ice and other volatile compounds that are covered by the mantle.
Gas produced by sublimation, which is comprised mainly of water vapor, percolates
through the mantle and escapes to the vacuum of space. The expanding gas
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molecules attain a velocity of several hundred meters per second immediately on
leaving the surface and flow radially outward from the comet. A spacecraft orbiting
the comet nucleus will experience dynamic pressure with a resultant force that is
nearly radial. Since the spacecraft velocity is much smaller than the gas molecule
velocity, the normal dynamic pressure attributable to the spacecraft motion may
be neglected. The aerodynamics of a spacecraft orbiting a comet nucleus are more
analogous to a sail boat than to an airplane.

As the comet approaches the sun and the mantle is heated to higher temperatures,
the percolation of gas through the mantle becomes so intense that large pieces
of the mantle are sloughed off exposing the bare ice to direct solar radiation
and the vacuum of space. The local activity becomes very intense and huge jets
appear where the surface activity is perhaps an order of magnitude greater than the
surrounding surface covered by the mantle. The model of comet nucleus outgassing
must accommodate several discrete jets in addition to the normal background
outgassing of the comet.

A spacecraft orbiting a comet nucleus will experience a force from the pressure
of expanding gas and dust that varies widely depending on the position of the
spacecraft relative to the comet, the distance of the comet from the Sun, and the
activity of the local comet surface in response to solar energy input. For navigation,
a model must be developed that takes all of these factors into account but is simple
enough to be incorporated into existing navigation software.

A simplified two-part empirical model of accelerations on the spacecraft due to
comet nucleus outgassing and dust emissions is defined. The first part describes the
accelerations acting on the spacecraft from the comet outgassing that results from
the solar radiation input. For this model, the spacecraft acceleration is assumed to be
directed radially from the comet nucleus and varies with the cosine of the sun angle
and inversely with the square of the distance. The second part describes the behavior
of a gas vent or jet and the spacecraft acceleration is described in the same manner
as for the outgassing, except that the acceleration is directed away from a specific
region on the comet nucleus surface. Thus the outgassing model could be interpreted
as the integration of many gas and dust jets over the entire surface of the comet.

2.6.1 Outgassing Model

The outgassing model assumes that the spacecraft acceleration is directed radially
from the comet nucleus and varies with the cosine of the sun angle and inversely
with the square of the distance. It is defined by three variables AD , AT , and
AN , which represent acceleration magnitudes acting on a spacecraft, each at the
reference radius rref = 10 km from the center of the comet. AD is the acceleration
magnitude directly over the subsolar point (the position on the comet directly under
the sun). AT , the acceleration magnitude over the terminator, which is the edge of
the sunlit side of the comet, was assumed to be 0.5 AD . AN is the acceleration over
the anti-subsolar point, the position on the night side of the comet directly opposite



2.6 Comet Atmosphere 85

Fig. 2.14 Empirical
outgassing model SUN
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to the subsolar point. AN was assumed to be 0.1 AD . Intermediate accelerations are
defined as follows, using the angle θ measured from the anti-subsolar direction.

A = (AT − AD) cos θ + AT for 90 < θ < 180

A = (AN − AT ) cos θ + AT for 0 < θ < 90

cos θ = r · rc

r rc

The acceleration vector of the spacecraft due to outgassing is thus given by

A = A r2
ref

r
r3 .

Figure 2.14 displays the comet outgassing geometry.

2.6.2 Jet Model

The vent or gas jet model follows the steady gas pressure model with some minor
revisions. Here, the acceleration of the jet Aj is described as a function of the
angle φ and represents the acceleration from a region surrounding the body fixed
coordinates of the jet. The activity of the jet is thus determined by its exposure to
the sun attaining a maximum when the sun is directly over head and decreasing to a
minimum on the dark side of the comet. The geometry is illustrated in Fig. 2.15.
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Fig. 2.15 Internal mass element model

The body fixed position of the jet is first converted to inertial coordinates:

rj = T T rjb

where T is the transformation matrix describing the attitude of the comet in inertial
space. The angle φ describes the location of the jet and is given by

cos φ = rj · rc

rj rc
.

Intermediate acceleration magnitudes due to the jet are defined as follows, using the
angle φ:

Aj = (ATj
− ADj

) cos φ + ATj
for 90 < φ < 180

Aj = (ANj
− ATj

) cos φ + ATj
for 0 < φ < 90

where the parameters ATj
, ADj

, and ANj
are defined in a similar manner to the

corresponding definitions of the parameters AT , AD , and AN for the outgassing
model. The position of the spacecraft relative to the gas jet is described by the angle
α given by

cos α = (r − rj ) · rj

rj |r − rj |
and the acceleration of the spacecraft is directed away from the jet and given by

Aj = Aj r2
ref cos α

r − rj

|r − rj |3 .
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2.6.3 Thermodynamic Model

The thermodynamic model of the nucleus of a comet relates the surface temperature
and gas production rate to the solar energy input. The heat equation describes
the flow of heat within the core and mantle where the heat transfer is dominated
by conduction. Heat transfer into the nucleus can be modeled by partitioning
the nucleus into a set of concentric shells surrounding a central core and then
partitioning each shell into individual volume elements so that a heat equation can be
written for each element. The thickness of these shells depends on the conductivity
and heat capacity.

The governing equation of the heating rate per unit area of the dust that comprises
the mantle is given by:

cmρm�rmṪsurf = (1 − A)In − (1 − A)σbT
4
surf − 2kd(tsurf − T sub)

�rm
(2.26)

where cm, ρm, and �rm are the specific heat, density, and thickness of the mantle. A
is the albedo, In is the incident solar intensity, σb is the Stefan-Boltzmann constant,
and kd is the constant of proportionality for heat conduction. Tsub is the temperature
of the comet mantle below the top layer of ice. The first term on the right of
Eq. (2.26) is the input solar energy, the second term is the heat radiation to space, and
the third term is the conduction into the mantle. The heating rate, Ṫsurf , is given by

Ṫsurf = (1 − A)

cmρm�rm
In − (1 − A)

cmρm�rm
σbT

4
surf − 2kd(tsurf − T sub)

cmρm�r2
m

In = Is

(
rearth

rcomet

)2

r̂comet · r̂n

where Is is the solar energy flux at the Earth, rearth is the distance from the Earth to
the Sun, rcomet is the distance from the comet to the Sun, and r̂comet and r̂n are unit
vectors from the comet to the sun and normal to the surface of the nucleus.

The heat equation must be integrated with respect to both space and time. In
order to compute the variation of temperature as a function of space and time, we
need to compute the Laplacian ∇2T . The Laplacian is an operator that appears
in many engineering applications and states that the volumetric accumulation of
some physical quantity is equal to the flow across the boundary of an elementary
volume element. This physical quantity is conserved in this process and the flow is
proportional to the gradient of a scalar potential function. In our case, the physical
quantity is heat and the scalar potential function is temperature. In Cartesian
coordinates, the Laplacian is given by:

∇2T = ∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2 = 0 (2.27)
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Fig. 2.16 Volume elements

Fig. 2.17 Volume element
cross section
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A computer solution of this equation can be achieved by breaking the comet
nucleus into many cubical volume elements and developing the required second
partial derivatives by finite differences. When using this approach, the volume
elements must be very small or varied in size to accommodate variations in the
gradient of temperature. For a comet nucleus, ideally we could use small volume
elements near the surface, where the thermal gradients are relatively large, and large
volume elements near the center, where the thermal gradients are not so large. A
simple algorithm for defining these volume elements is to enclose the comet in a
parallelepiped as illustrated in Fig. 2.16.

The coordinates of the volume elements x, y, and z may be related to the indices i,
j, and k. In computer terms, a triple-indexed do loop may be programmed to access
each of the volume elements individually. Those volume elements outside of the
comet surface are discarded. The required partial derivatives are computed by finite
difference. Figure 2.17 shows a typical cross section of volume elements.
The thermal gradient with respect to the x coordinate is
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∂T

∂x(i − 1
2 , j, k)

= Ti,j,k − Ti−1,j,k

�x

∂T

∂x(i + 1
2 , j, k)

= Ti+1,j,k − T i, j, k

�x

and

∂2T

∂x2 = Ti+1,j,k − 2Ti,j,k + Ti−1,j,k

�x2

∂2T

∂y2 = Ti,j+1,k − 2Ti,j,k + Ti,j−1,k

�y2

∂2T

∂z2
= Ti,j,k+1 − 2Ti,j,k + Ti,j,k=1

�z2

The heating rate of the comet nucleus is then given by

Ṫ = kd

cmρm

[
∂2T

∂x2 + ∂2T

∂y2 + ∂2T

∂z2

]

subject to the boundary condition that T = Tsub on the surface of the nucleus.
For navigation, the temperature variation of the nucleus is of interest over a

time interval of several weeks to several years. The temperature of the surface,
which controls the amount of outgassing, varies periodically with respect to a
baseline which evolves over hundreds of years. In order to establish this baseline, the
thermodynamic model must be integrated over hundreds of years. This integration
was performed for the asteroid Eros and the results are illustrated in Fig. 2.18.

Fig. 2.18 Eros surface temperature distribution
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Fig. 2.19 Eros surface temperature distribution

For this integration, the temperature was integrated using the known shape, orbit,
and attitude of Eros. The diurnal temperature variation was averaged over a single
revolution of Eros as a function of the Sun’s latitude. Given the direction of Eros’s
spin axis, the poles are warmer than the equatorial regions as shown in Fig. 2.18.

During the NEAR mission, Eros was extensively mapped in the infrared.
Figure 2.19 shows a map of Eros infrared spectral parameters for the northern
hemisphere. The southern hemisphere was dark during the time that the data was
acquired. In Fig. 2.19, longitude is defined as positive West. Navigation coordinate
systems are right handed and longitude is defined positive East. The warm region
located at 80◦ North and 60◦ East in Fig. 2.18 corresponds to the high-spectral
intensity located at 80◦ North and 300◦ West in Fig. 2.19. The cooler regions of
Psyche and Himeros located at 30◦ North also correspond.

In order to compute acceleration of the spacecraft, the thermodynamic model
can be interfaced with the empirical jet model. It is envisioned that in navigation
operations a number of models would be available that vary in accuracy and number
of parameters that need to be estimated. These would range from simple empirical
models that would suffice during approach to a comet to high-precision physical
models that may be needed for low-altitude orbits. Integration of the thermodynamic
model with the jet model involves integration over the surface of the comet.
Since the albedo varies as a function of location on the surface, an expansion of
Legendre polynomials and associated functions may be employed. The coefficients
of this expansion would be parameters to be determined by the orbit determination
software.
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2.7 Summary

Force models are accessed by the numerical integrator in order to compute the
acceleration of the spacecraft required by the equations of motion. Since the
equations of motion use the vector sum of all the force models, each force model
may be packaged in a separate subroutine. For convenience, the force is divided
by the mass of the spacecraft and acceleration vectors are computed. In addition,
the partial derivatives of acceleration with respect to spacecraft position, velocity,
and constant parameters are included in the subroutine. If there are a large number
of force models, the number of constant parameters may be too many for the
orbit determination filter to process. The NEAR mission had over 600 parameters.
Therefore, the force models must be designed to provide only the number of
parameters to accurately model the acceleration. The accuracy of the required force
model will depend on the mission phase. For example, the gravity model requires
one coefficient when the spacecraft is far from the central body but may require
several hundred coefficients when in a close orbit.

The solar pressure model is needed for long-term orbit prediction during cruise.
In orbit, the solar pressure is overwhelmed by gravity harmonic uncertainties and
does not have much effect on short-term predictions. Atmospheric drag models are
only needed when the spacecraft is in an atmosphere. Propulsion system models
generally use the rocket equation and assume constant thrust. Another consideration
in designing force models is computation of the partial derivatives. These partial
derivatives are needed for integration of the variational equations and can impose a
significant burden on computer time.

Exercises

2.1 A small unguided rocket weighs 26 pounds of which 4.86 pounds is fuel. The
Isp of the fuel is 120 s. Determine the range and maximum altitude if it is launched
at an angle θ = 25◦ with respect to the local horizontal plane. Assume that the
velocity is applied as an impulse and the trajectory is a parabola. The range (R) and
maximum altitude (H) are given by

R = �v2
0 sin(2θ)

g0
H = �v2

0 sin2(θ)

2g0

2.2 The rocket in Exercise 2.1 is 2.75 in in diameter and the burn time was 5 s.
Determine the thrust and drag force at burn out. The density of air is 2.508 ×
10−3 slugs/ft3 and the drag coefficient is 0.6. Navigation receives input from many
sources that work in different systems of units. Engineers working in wind tunnels
measuring drag like to work in English units. Making conversions is an important
part of navigation operations.
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2.3 Derive the equations of motion of the rocket in Exercise 2.1, determine the
range and maximum altitude, and show that the trajectory is a parabola.

2.4 A spent rocket is found that weighs 30 pounds and is 6 ft long and 3 in in
diameter. It is estimated that the fuel would weigh 5 pounds and probably have
an Isp of 200 s. Determine the maximum range for this rocket assuming a launch
angle of 45◦. This was a real problem.

2.5 The rocket in Exercise 2.1 was planned to be fired at a hillside that is 1042 ft
downrange and 275 ft high. The target is at an elevation of 250 ft above the launch
site. Determine the launch angle. Just before the launch, the launcher was moved
225 ft back so the range was now 1267 ft. Determine the new launch angle. Where
does the rocket go if the correction to the launch angle is not made and the rocket
is launched with the original launch angle for the 1042 ft range. This was also a real
problem and the actual rocket went as predicted. Hint, the hill was only 275 ft high
and there was ocean behind it but no fisherman.

2.6 A spacecraft is in a circular orbit about the sun with a radius of 1 AU (149 ×
106 km). A solar sail is unfurled with an area of 800 m2 and oriented facing the
sun. The spacecraft weighs 500 kg and the solar sail is a perfect specular reflector.
Determine the orbit of the spacecraft which is a conic section.

2.7 Determine the size of a solar sail in Exercise 2.6 that would enable the
spacecraft to escape from the sun. Assume that the total mass remains at 500 kg.
Neglecting general relativity, determine the size of a sail that would leave the solar
system at one tenth the speed of light.

2.8 A spacecraft is maneuvered into a circular orbit about an asteroid. The plane
of the spacecraft orbit faces the sun and the spacecraft is 10 km from the asteroid
center. The asteroid is 1 AU from the sun and has a radius of 5 km and specific
gravity of three. The universal gravitational constant is 6.674×10−20 km3 kg−1 s−2.
The spacecraft is a black body with an area of 10 m2 and mass of 500 kg. Determine
the orbit of the spacecraft and the period of the orbit.

2.9 The integrand of the volume integral for the second degree gravity harmonic
coefficients may be expressed as Cartesian components of the volume elements.
Show that Iyy − Izz = Ma2(C20 + 2C22).
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Chapter 3
Trajectory Design

The problem of trajectory design requires the determination of spacecraft position
and velocity as a function of time that satisfy design constraints. The constraints
that must be satisfied are supplied to the trajectory designer as parameters that are
generally functions of the Cartesian state. Thus, the main interest in developing
solutions of the equations of motion for navigation is to enable computation of
parameters that satisfy mission constraints and state vectors that may be used
to initialize numerical integration for further refinement of the trajectory design.
Analytic solutions of the equations of motion are of intrinsic interest because of
their mathematical elegance. However, when applied to trajectory design, solutions
are sought that enable the full Cartesian state to be determined with high precision
and these solutions are numerical.

3.1 Restricted Two-Body Trajectories

The solution of the equations of motion for a point mass that is accelerated by a
spherical central body was first obtained by Kepler. The trajectory is an ellipse,
hyperbola, circle, or parabola depending on the initial conditions. Kepler’s solution
reveals that the trajectory shape is dependent on the energy and angular momentum
of the spacecraft. Since the circle and parabola are limiting cases of an ellipse or
hyperbola, only the solution for the ellipse or hyperbola is needed. Circular orbits
are generally avoided because of singularities in determining the orbit and parabolic
orbits are generally encountered only during the transition between elliptical and
hyperbolic motion when the spacecraft is being accelerated by propulsive thrust or
atmospheric drag. The solution of the equations of motion could be obtained by
numerical integration from an initial state vector. Since there are six degrees of
freedom associated with the initial conditions, six orbit parameters are required to
describe the trajectory in addition to the central body gravity constant. Since there
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are many parameters that describe an ellipse or hyperbola and its orientation in
space, a set of parameters is desired that will permit determination of the Cartesian
state at various points along the trajectory and thus obtain the same result as could
be obtained by numerical integration. Two of these parameters must be shape
parameters, three are needed to orient the orbit in space, and an additional parameter
is needed to specify the position of the point mass or body in the orbit at a particular
time.

3.1.1 Elliptical Orbit

The equations of motion are first developed for an ellipse. The state vector (X), or
state column matrix to be more precise, is comprised of the elements or components
of the position and velocity vectors.

X = [x, y, z, ẋ, ẏ, ż]T
r = (x, y, z)

v = (ẋ, ẏ, ż)

The magnitudes of the position and velocity vectors are

r =
√

x2 + y2 + z2

v =
√

ẋ2 + ẏ2 + ż2

The angular momentum vector, which is also the pole of the orbit plane, is given by,

h = r × v

The magnitude of the angular momentum vector (h) is the angular momentum orbit
parameter. The energy parameter is obtained by summing the kinetic and potential
energy.

C3 = v2 − 2GM

r
(3.1)

The actual energy is obtained by multiplying C3 by one half of the mass of the
body. Since the body is assumed to be a point mass, the body mass is assumed to
be zero or small compared to the central body mass. Since the acceleration is the
ratio of force to body mass, in the limit as the body mass approaches zero, it cancels
from the acceleration. The force equation contains the product of the central body
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mass and body mass leaving GM instead of GMm for the gravity parameter. The
factor of one half, that accounts for acceleration from rest to v, is omitted from the
energy parameter. The spacecraft mass is also removed from the angular momentum
parameter.

h = r2η̇ (3.2)

where η is the true anomaly or polar angle that specifies the angular position of
the body in the plane of the orbit. The angle η is measured counterclockwise from
periapsis in the plane of the orbit. The velocity magnitude (v) may be computed
from the radial and azimuthal components of velocity and is given by

v2 = ṙ2 + r2η̇2 (3.3)

Substituting Eq. (3.3) into Eq. (3.1), the vis viva equation is obtained.

ṙ2 + r2η̇2 = C3 + 2GM

r
(3.4)

The time parameter may be eliminated from the vis viva equation by substituting η̇

from Eq. (3.2) and making use of

ṙ = dr

dη
η̇

yielding

h2

r4

(
dr

dη

)2

+ h2

r2 = C3 + 2GM

r
(3.5)

The vis viva equation may be put into an integrable form by substituting

dr

dη
= −r2

d(
1

r
)

dη

and

dη =
d

(
h

r

)
√

C3 + 2 GM

r
− h2

r2

(3.6)
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Completing the square in the denominator,

dη =
d

(
h

r

)
√(

C3 + GM2

h2

)
−

(
h

r
− GM

h

)2

A change of variable to φ defined by

φ = h

r
− GM

h

dφ = d

(
h

r

)

gives

dη = dφ√(
C3 + GM2

h2

)
− φ2

The solution is the vis viva integral.

cos η = φ√
GM2

h2
+ C3

Replacing the dummy variable φ and solving for r , the equation of an ellipse in
polar coordinates is obtained.

r =
h2

GM

1 +
√

1 + h2C3

GM2 cos η

(3.7)

The equation for an ellipse in polar coordinates is given by,

r = p

1 + e cos η
(3.8)

Comparing Eq. (3.7) and Eq. (3.8), the parameter of orbit (p) and eccentricity (e)
may be written from inspection.
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p = h2

GM
(3.9)

e =
√

1 + h2C3

GM2 (3.10)

From the geometry shown in Fig. 3.1, the following geometric parameters may be
computed.

e =
√

1 − b2

a2

rp = p

1 + e

ra = p

1 − e

c = ae

p = a(1 − e2)

These geometric parameters have names that describe the geometry of an ellipse.
These names can be found in the geometry literature and can be derived by
inspection of Fig. 3.1. Since the same names are applied to different geometrical
parameters for a hyperbola that share the same equations for a two-body orbit,
it is left as an exercise for the reader to sort out all the possible orbit elements.
Introducing the results obtained by integration of the vis viva integral, some
additional parameters that are of interest may be determined.

C3 = −GM

a

cos η = p − r

re
(3.11)

ṙ = e

√
GM

p
sin η

The radial component of velocity may be obtained from the dot product of the
position and velocity vectors yielding an equation for sin η.

sin η = r · v
re

√
p

GM
(3.12)

The true anomaly (η) is obtained from a four-quadrant arctangent evaluation of sin η

and cos η. The quadrants are selected from the signs of the sine and cosine functions.

η = tan−1(sin η, cos η) (3.13)
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Fig. 3.1 Elliptical orbit
geometry
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The two shape parameters, p and e, are selected for inclusion in the set of six
parameters that are used to describe the orbit. The third parameter that is needed
to define the orbit solution is the time elapsed from the last periapsis passage to the
epoch of the point in the orbit defined by the Cartesian state vector. The equation for
true anomaly as a function of time is not integrable with simple functions. A change
of variable to the angle E, referred to as the eccentric anomaly, yields an equation
that can be integrated and the resulting equation is called Kepler’s equation. From
the geometry shown in Fig. 3.1, the following equation relates r and cos η to cos E.

r cos η = a cos E − ae (3.14)

Substituting Eq. (3.1.1) into (3.14), another equation for r as a function of E is
obtained.

r = a − ae cos E (3.15)

Squaring Eqs. (3.14) and (3.15) and subtracting gives an equation that relates r and
sin η to sin E,

r sin η = b sin E

An equation that may be integrated for time as a function of E may be obtained by
eliminating r from the vis viva integral. The vis viva integral may be put into a form
that involves only r , ṙ , and constant parameters.

r2ṙ2 = − r2GM

a
+ 2GM r − GM a(1 − e2) (3.16)
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Differentiating Eq. (3.15) with respect to time gives

ṙ = ae sin E Ė (3.17)

Substituting Eqs. (3.17) and (3.15) into Eq. (3.16) gives, after many cancelations,

a3

GM
(1 − e cos E)2 Ė2 = 1 (3.18)

and

dt =
√

a3

GM
(1 − e cos E) dE (3.19)

The integral from periapsis, E = 0, to the point in the orbit of interest is Kepler’s
equation.

t − tp =
√

a3

GM
(E − e sin E) (3.20)

The period of the orbit may be obtained by integrating over one complete revolution
and

P = 2π

√
a3

GM
(3.21)

The parameter tp is the epoch of periapsis passage and is selected as the third
parameter to characterize the orbit solution. The final set of parameters are the
longitude of the ascending node (
), inclination (i), and argument of periapsis
(ω). The geometry is shown in Fig. 3.2. The longitude of the ascending node
and inclination may be determined from the components of the pole or angular
momentum vector.


 = tan−1
(

hx

−hy

)
(3.22)

i = tan−1

⎛
⎝
√

h2
x + h2

y

hz

⎞
⎠ (3.23)

The argument of periapsis is obtained by first computing the argument of latitude
(ωn), the angle from the nodal crossing to the orbit point, and subtracting the true
anomaly. A coordinate system is defined with x̂1 in the direction of the ascending
node and ẑ1 in the direction of the orbit pole.
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Fig. 3.2 Orbit orientation in
space
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The angle ωn is defined by the components of the position vector (r) and

ωn = tan−1
(

sin ωn

cos ωn

)
= ω + η

where

sin ωn = ŷ1 · r̂

cos ωn = x̂1 · r̂

and

ω = ωn − η (3.24)

The orbit element set that has been derived to describe two-body motion is

Oc = [p, e, tp,
, i, ω] (3.25)

and these elements may be obtained as a function of the state at some point in the
orbit. The orbit element set (Oc) will be referred to here as classical orbit elements.
In the literature, the semimajor axis (a) is often specified in place of the parameter
of orbit (p).
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Oc(t) = fc(X,GM, t) (3.26)

X = (r, v)

The inverse function may be obtained by solving the above equations for the state
as a function of the orbit elements. Starting with Kepler’s equation, the eccentric
anomaly (E) may be obtained from the time of periapsis (tp) and the time (t). A
closed form solution for Kepler’s equation in terms of elementary functions cannot
be obtained. Therefore, it is necessary to iterate using Newton’s method to obtain
E as a function of t and tp. The true anomaly (η) and radius (r) are then computed
from the eccentric anomaly and orbit elements p and e. The position and velocity is
determined in the orbit plane coordinate system with x2 in the direction of periapsis
and z2 in the direction of the orbit pole (see Fig. 3.2). The position of the body in
the plane of the orbit coordinate system is

r2 = (r cos η, r sin η, 0)

and the velocity may be obtained by differentiating r2.

v2 = (−
√

GM

p
sin η,

√
GM

p
(e + cos η), 0)

The position and velocity in the reference coordinate system is obtained by rotating
through the angles defined in Fig. 3.2.

r = RT
c r2

v = RT
c v2

Rc =
⎡
⎣ cos ω sin ω 0

− sin ω cos ω 0
0 0 1

⎤
⎦
⎡
⎣1 0 0

0 cos i sin i

0 − sin i cos i

⎤
⎦
⎡
⎣ cos 
 sin 
 0

− sin 
 cos 
 0
0 0 1

⎤
⎦

The inverse function permits transformation of the classical orbit element set into
the state (X) at t .

X(t) = f −1
c (Oc,GM, t)

The function fc and its inverse permit a one to one mapping from state vector to
classical orbit elements and back to state vector. These functions may be coded into
subroutines on a computer and used to propagate a spacecraft trajectory from some
time t1 to a later time t2. For example, the orbit elements may be computed from the
state vector at t1

Oc(t1) = fc(X(t1),GM, t1)
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The time is advanced to t2 and X(t2) is computed from the inverse function.

X(t2) = f −1
c (Oc,GM, t2)

Trajectory propagation is thus accomplished with two calls to subroutines which
can be accomplished with three lines of Fortran code or several lines of C code.

3.1.2 Hyperbolic Orbit

The transformation of a state vector to classical orbit elements for an ellipse may
be modified to transform to a hyperbola. The eccentric anomaly is replaced by the
hyperbolic eccentric anomaly (F ) defined by

sinh F = r sin η

b

cosh F = (a + r)

ae

and

F = ln(sinh F + cosh F)

Kepler’s equation for the hyperbola becomes

t − tp =
√

a3

GM
(e sinh F − F) (3.27)

For the inverse transformation from classical orbit elements to state vector, it is
necessary to solve Kepler’s equation for the hyperbola by iteration.

The classical orbit elements (Oc) are not convenient for describing a hyperbolic
trajectory during flyby of a planet or other celestial body. A different set of six
elements are defined for this purpose. The geometry is illustrated in Fig. 3.3 in the
plane of the orbit. The parameters are essentially the same as for an ellipse. The
classical shape parameters p and e are replaced by the hyperbolic impact parameter
(b), which is also the semiminor axis of the hyperbola, and the hyperbolic excess
velocity (V∞).

b = √
ap

V∞ = √
C3

The orientation of the hyperbola in space is defined with respect to the approach
asymptote (S) and pole of the orbit plane. In the plane of the orbit, the limiting true
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Fig. 3.3 Hyperbolic orbit geometry

anomaly as the body goes to infinity is

ηl = cos−1
(

1

e

)

The direction of the approach asymptote, see Fig. 3.3, is given by the following
vector sum,

Ŝ = (ĥ × r̂) sin(η − ηl) − r̂ cos(η − ηl)

The T coordinate axis is perpendicular to S and in the x − y plane of the reference
coordinate system. The unit vector in the direction of T is given by,

T̂ = Ŝ × ẑ

|Ŝ × ẑ|
and the unit vector in the direction of the R coordinate axis, that completes the
right-hand system, is given by,
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R̂ = Ŝ × T̂

The orientation of the hyperbola in space is shown in Fig. 3.4. The B-plane is defined
perpendicular to the approach asymptote and passes through the center of the central
body. The orientation of the plane of the orbit is defined by the angle θ between
the T coordinate axis and the B vector that is in the plane of the orbit. The angle
θ is determined from a four-quadrant arctangent function where the signs of the
numerator and denominator are used to place the angle in the proper quadrant.

θ = tan−1

(
T̂ · ĥ

−R̂ · ĥ

)

The direction of the approach asymptote is defined by the right ascension (α∞) and
declination (δ∞). The four-quadrant arctangent is used to place α∞ in the proper
quadrant.
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α∞ = tan−1

(
Ŝy

Ŝx

)

δ∞ = sin−1 Ŝz

A modified orbit element set has been derived to describe two-body hyperbolic
motion.

Oh = [b, θ, tp, V∞, α∞, δ∞]

Oh may also be obtained as a function of the state at some point in the orbit as was
done for the classical orbit element set.

Oh(t) = fh(X,GM, t)

The inverse function for the hyperbola is obtained by solving the above equations
for the state as a function of the orbit elements as was done for the ellipse. Kepler’s
equation is solved by iteration to obtain F as a function of t and tp. The true
anomaly (η) and radius (r) are then computed from F and the orbit elements p

and e. The elements p and e may be computed from b and V∞. The position and
velocity in the plane of the orbit are computed as for the classical elements. The
final transformation from orbit plane coordinates to the reference coordinate system
is given by,

r = RT
h r2

v = RT
h v2

and

Rh =
⎡
⎣ sin ηl 0 cos ηl

− cos ηl 0 sin ηl

0 1 0

⎤
⎦
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦

⎡
⎣1 0 0

0 sin δ∞ − cos δ∞
0 cos δ∞ sin δ∞

⎤
⎦
⎡
⎣ sin α∞ − cos α∞ 0

cos α∞ sin α∞ 0
0 0 1

⎤
⎦

From the inverse function, the state may be computed as a function of the hyperbolic
orbit elements and GM .

X(t) = f −1
h (Oh,GM, t)

For interplanetary trajectory design, the outgoing hyperbolic asymptote is often
needed. A modified set of hyperbolic orbit elements may be defined that has the
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outgoing departure asymptote direction as part of the set of orbit elements replacing
the incoming approach asymptote direction. For the conversion of a state vector
to the modified hyperbolic elements, the following procedure may be used. First,
change the direction of the velocity vector and compute the incoming hyperbolic
elements.

Ohi = fh(Xi,GM, t)

Xi = [x, y, z,−ẋ,−ẏ,−ż]
Ohi = [bi, θi, tpi

, V∞i , α∞i , δ∞i]

The outgoing elements may then be computed from the incoming elements.

Oho = [bo, θo, tpo
, V∞o, α∞o, δ∞o]

where the direction of the outgoing asymptote is

α∞o = 180 − α∞i

δ∞o = −δ∞i

The remaining outgoing parameters are the same as the incoming parameters. The
inverse function may be obtained by simply reversing the procedure defined above.
In summary, the hyperbolic elements with respect to the outgoing asymptote as a
function of the state and the inverse function are given by,

Oho(t) = fho(X,GM, t)

X(t) = f −1
ho (Oho,GM.t)

3.1.3 Injection Flight Plane Hyperbolic Trajectory

The design of the Earth departure hyperbola must be interfaced with the launch
vehicle ascent trajectory design. The interface point is generally defined shortly
after final stage burnout and the spacecraft position and velocity at this point are
referred to as injection conditions. The injection conditions are described by a
convenient set of parameters called injection flight plane coordinates. The departure
hyperbolic orbit elements are also used to design Earth departure trajectories.
However, hyperbolic orbit elements do not relate very well to the launch vehicle
ascent trajectory and are generally not used for describing the trajectory when the
position of the spacecraft near the Earth is of interest. The injection flight plane
coordinates are shown schematically in Fig. 3.5. The departure hyperbola is shown
propagated back from the injection point defined by the vector r to the Earth’s
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equator. This two-body conic trajectory does not pass through the launch site but
flies over the latitude of the launch site (φl) as shown in the figure. At the launch
site latitude overfly point, the azimuth angle (Az) is defined by measuring clockwise
from north in the local tangent plane. In Fig. 3.5, Az is shown with respect to the
local East vector. The hyperbolic trajectory continues from launch latitude overfly
to the injection point. The central angle (ωx) from launch site latitude overfly to
injection is the third injection flight plane coordinate. The remaining parameters are
the velocity magnitude (Vi), the flight path angle (γi), and the inertial longitude (λi).
The flight path angle is the angle between the velocity vector and local horizontal
plane. The inertial longitude is measured from the vernal equinox to the projection
of the injection vector on the Earth’s equator. This unusual set of coordinates was
devised by General Dynamics to interface Atlas launch vehicle trajectories with
injected payloads and has continued in use to the present time.

The rationale behind the selection of injection flight plane parameters is related to
launch vehicle constraints. The individual parameters are a function of both position
and velocity at injection. In the design of interplanetary trajectories, it is necessary
to separate position from velocity. The spacecraft velocity is sought that results
in a trajectory between two positions determined by the location of the planets.
Thus, the injection flight plane parameters must be separable into parameters that
are related to position and are fixed and parameters that are related to velocity and
are permitted to vary. For design of interplanetary trajectories, the fixed parameters
are r , γi and either ωx or Az and the variable parameters are V , λi and either ωx
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or Az. The choice of fixing either ωx or Az depends on the type of launch vehicle
ascent trajectory that is used. The launch vehicle ascent trajectory may be direct or
into a parking orbit. For a direct ascent, the launch vehicle rises vertically until it
clears the gantry and is then tipped a fixed angle to start a gravity turn. For a gravity
turn, the launch vehicle is accelerated in the direction of the velocity vector and is
slowly turned by gravity. The initial horizontal direction is roughly in the direction
of the launch azimuth (Az). The detailed launch vehicle trajectory design must take
into account the rotation of the Earth and the actual Earth fixed azimuth differs some
from the inertial azimuth. During the launch vehicle ascent, the trajectory traverses a
central angle of ωx which is a characteristic of the launch vehicle and corresponds to
about 3000 km downrange from the launch site which is assumed to be the Kennedy
space center. For a direct ascent, ωx is fixed. For some launch vehicles, the ability
exists to shut down the rocket engine at the instant a circular orbit is achieved. The
spacecraft and upper stage may coast in a parking orbit for some fraction of an orbit
and restarted. For a parking orbit ascent, Az is fixed and ωx is permitted to vary.
The injection flight path angle (γi) is determined by the launch vehicle performance
and is generally small to take advantage of the Earth’s rotation. The parameter λi is
used to control the direction of departure from the Earth in the ecliptic plane. The
direction of departure is controlled by simply selecting the time of day to launch
or the launch window. The launch azimuth and coast time are used to control the
velocity component out of the Ecliptic plane.

The injection flight plane coordinates may be computed as a function of the
Cartesian state at injection. The classical elements Oc and hyperbolic elements
Oh and their inverses may be used to propagate the spacecraft along the ascent
hyperbola and determine state vectors at launch site overfly and injection. From
these state vectors, the injection flight plane parameters may be computed.

Oi(ri) = fi(X,GM) (3.28)

where

Oi = [φl, ri , ωx,Az, V, γi, λi]

Also, the state at injection may be computed from the inverse relationships as a
function of the injection flight plane parameters.

X(ri) = f −1
i (Oi,GM) (3.29)

3.1.4 Lambert’s Problem

An important problem relating to the determination of orbits and design of
interplanetary trajectories was defined by Lambert and Euler. Given the flight
time between two position vectors, Lambert’s problem is to determine the orbit
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that transfers from the first position vector to the second in the given flight time.
Lambert’s problem is fundamental to interplanetary trajectory design since the
position vectors of interest are generally the ephemerides of two planets and the
problem is to design a trajectory that will go from one planet to another in a specified
interval of time. Problems of this type are referred to as two-point boundary value
problems. In the current age of computers, Lambert’s problem may be easily
solved by targeting the second position vector. The velocity at the first position
vector is varied iteratively using Newton’s method until the propagated trajectory
intersects the second position vector at the time specified. The partial derivatives
required by the three-parameter search can be computed by finite difference and the
trajectory propagation performed by solution of the two-body equations of motion
as described in Sects. 3.1.1 and 3.1.2.

An analytic solution of Lambert’s problem was provided by Lagrange, who
was proud of this accomplishment as well he should be, and showed his solution
to Lambert about a year before he died. Since that time, a considerable amount
of research has been expended identifying singularities and developing efficient
algorithms for digital computers. Even in the modern era of high-speed computers,
where analytic methods have generally given way to much simpler numerical
methods, analytic solutions of Lambert’s problem are often preferred for designing
large numbers of trajectories that are required for surveying possible missions to the
planets and other celestial bodies.

Figure 3.6 shows the geometry of Lambert’s problem. A trajectory is sought that
transfers a spacecraft from position r1 at time t1 to position r2 at time t2. The transfer
time is given by solution of Kepler’s equation at the two end points.

t2 − t1 =
√

a3

GM
[(E2 − E1) − e(sin E2 − sin E1)]

Making use of the identity

cos

(
E1 + E2

2

)
sin

(
E2 − E1

2

)
= 1

2
(sin E2 − sin E1)

t2 − t1 =
√

a3

GM

[
(E2 − E1) − 2e cos

(
E1 + E2

2

)
sin

(
E2 − E1

2

)]

Lagrange defined two angles, α and β, for his solution and these are related to the
eccentric anomaly at the end points by

α − β

2
= E2 − E1

2
and cos

(
α + β

2

)
= e cos

(
E2 + E1

2

)

Kepler’s equation becomes
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Fig. 3.6 Orbit transfer geometry

t2 − t1 =
√

a3

GM

[
α − β − 2 cos

(
α + β

2

)
sin

(
α − β

2

)]

t2 − t1 =
√

a3

GM
[(α − sin α) − (β − sin β)] (3.30)

The solution involves developing equations for α and β as a function of known
parameters and a, the semimajor axis, and iterating on a using Newton’s method
until the desired transfer time (t2 − t1) is achieved. From the geometry shown in
Fig. 3.6, the law of cosines may be applied to the triangle and

c2 = r2
1 + r2

2 − 2r1r2 cos θt

c2 = (r1 + r2)
2 − 4r1r2 cos2

(
θt

2

)

The chord may also be obtained by simply differencing the position vectors and
computing the magnitude.

c = |r2 − r1| (3.31)

It can be shown from the geometry that

r1 + r2 + c = 2a(1 − cos α)

r1 + r2 − c = 2a(1 − cos β)
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and

sin2
(α

2

)
= r1 + r2 + c

4a
(3.32)

sin2
(

β

2

)
= r1 + r2 − c

4a
(3.33)

Before Eq. (3.30) can be solved iteratively for the semimajor axis (a) of the
transfer orbit, the quadrant of the angles α and β must be determined. The pole
of the orbit is computed by taking the cross product of the two position vectors.
In order to resolve the transfer angle, it is assumed that the orbit is direct and the
spacecraft goes from r1 to r2. If a retrograde orbit is desired, the solution is obtained
for the direct orbit in the opposite direction and the resulting inclination and node are
adjusted to give the desired retrograde orbit. With this assumption, the pole vector
(P ) is opposite to the cross product of the position vectors. If this cross product
is in the southern hemisphere, the transfer angle (θt ) is assumed to be greater than
180◦. For a direct orbit, the pole vector is in the northern hemisphere. The pole
vector and transfer angle for the cross product of the position vectors in the northern
hemisphere is given by

P = r1 × r2 (3.34)

θt = cos−1
(

r1 · r2

r1r2

)

and for the cross product of the position vectors in the southern hemisphere,

P = −r1 × r2 (3.35)

θt = 360 − cos−1
(

r1 · r2

r1r2

)

The quadrant of the angle β is assigned following the convention determined by
Battin.

0 ≤ β ≤ π for θt ≤ π

−π ≤ β ≤ 0 for θt ≥ π

The inclination and longitude of the ascending node are computed in the usual
manner from the pole vector which is in the same direction as the angular
momentum vector.


 = tan−1
(

Px

−Py

)
(3.36)
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i = tan−1

⎛
⎝
√

P 2
x + P 2

y )

Pz

⎞
⎠ (3.37)

Equation (3.30) is solved iteratively for a. Some experimentation may be
required to determine the quadrant of α and select either the hyperbolic or
elliptical version of Kepler’s equation. Once a solution is found, the energy may be
determined from a. This effectively proves Lambert’s theorem but the solution is in
terms of parameters that are not convenient. The angular momentum, or parameter
of orbit (p), requires some further solution of the orbit. The following identities
may be determined from the geometry. One could draw an ellipse and spot the
positions r1 and r2 on the ellipse and verify these identities by direct measurement.
For example, one could measure a and b and compute e from its definition.

p

(
r1 + r2

r1r2

)
= 2 + 2e cos

(
η2 + η1

2

)
cos

(
η2 − η1

2

)
(3.38)

√
r1r2 cos

(
θt

2

)
= 2a sin

α

2
sin

β

2
(3.39)

√
r1r2 cos

(
η2 + η1

2

)
= a

e
cos

(
α + β

2

)
− ae cos

(
α − β

2

)
(3.40)

Multiplying Eq. (3.40) by e, adding Eq. (3.39), and replacing a(1 − e2) by p gives

e
√

r1r2 cos

(
η2 + η1

2

)
= p cos

(
α − β

2

)
− √

r1r2 cos

(
θt

2

)
(3.41)

Substituting Eq. (3.41) into Eq. (3.38) and solving for p,

p =
2r1r2 sin2

(
θt

2

)

r1 + r2 − 2
√

r1r2 cos

(
θt

2

)
cos

(
α − β

2

) (3.42)

and the eccentricity is given by

e =
√

1 − p

a

From the geometry, a compact formula for p can be derived.

p = 4ar1r2

c2 sin2
(

α + β

2

)
sin2

(
θt

2

)
(3.43)
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The true anomaly may then be computed using the four-quadrant arctangent

η1 = tan−1 (sin η1, cos η1) (3.44)

where

cos η1 = p − r1

r1e

cos η2 = p − r2

r2e

sin η1 = cosη1 cos θt − cos η2

sin θt

The argument of periapsis ω is the angle from the ascending node (�) to periapsis.
The true anomaly (η1) is the angle from periapsis to the position vector (r1). We
need the angle from the ascending node to r1. The ascending node vector is given
by the cross product of the z axis with the pole vector.

� = ẑ × P

the angle from the ascending node to r1 is

ωn = tan−1 (sin ωn, cosωn)

sin ωn = −PxPzr1x + PyPzr1y + (P 2
x + P 2

y )r1z

cos ωn = −r1xPy + r1yPx

The argument of periapsis is then

ω = ωn − η1 (3.45)

The final parameter needed to describe the transfer orbit is the time of periapsis
passage.

tp = t1 −
√

a3

GM
(E1 − e sin E1) (3.46)

The solution of Lambert’s problem yields a classical set of orbit elements (Ol)
defined as a function of the time and position vectors of two points relative to a
central body with gravitational parameter GM .

Ol(t1) = fl(t1, r1, t2, r2,GM) (3.47)

Ol = [p, e, tp,
, i, ω] (3.48)
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The solution of Lambert’s theorem was coded into a subroutine by the author in
1966. This subroutine, along with subroutines previously described for transforming
orbit elements into state vectors and state vectors into orbit elements, was coded
in Fortran 2. At that time, the aerospace industry operated with closed shops for
computer programming so the work was done under the table. These subroutines
have been incorporated into many programs for analysis and flight operations and
are in their original form except for some minor corrections. The archaic “if”
statements are still in the code. An important principle of computer programming is
not to tamper with a program that works.

An alternative to the above mathematical solution is to solve Lambert’s problem
by targeting. Lambert’s problem reduces to finding the velocity at t1 that results
in the desired position at t2 when the trajectory is propagated from t1 to t2. The
complete state (r1, v1) can then be converted to the required orbit elements (Ol)
using the subroutine described earlier. The targeting procedure involves first making
an initial guess for v1. The velocity vector in a circular orbit passing through r1
provides an initial guess, but zero velocity also works. The state at t1 is converted to
the orbit elements Oc(t1) as described in Sect. 3.1.1. The trajectory is propagated to
t2 by computing the inverse at t2.

X(t2) = O−1
c (t2)

The position at t2 is compared with the desired position. If they do not agree, a
Newton Raphson iteration is performed. The state transition matrix is obtained as
described in Sect. 1.4 only conic propagation of the trajectory is used. The upper-
right 3×3 partition of the state transition matrix is inverted and multiplied by
the position miss at t2 to obtain a correction to the velocity at t1. After several
iterations, the miss goes to zero. When compared with the mathematical solution,
the targeted solution agreed within ten decimal places. The advantage of the targeted
solution is the avoidance of complexity associated with resolving issues associated
with transfer angles, energy, and direction that plagues the mathematical solution.
A solution to Lambert’s problem may be obtained by using the orbit element
transformation subroutines exclusively.

3.2 Interplanetary Transfer

The problem of interplanetary trajectory design is initially concerned with finding
a trajectory that will transfer a spacecraft from one planet to another where the
calendar date is specified at the beginning and end. This problem is a two-point
boundary value problem where the two points are the positions of the first planet at
the start time and the second planet at the end time.
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3.2.1 Hohmann Transfer

The existence of two-body transfer orbits solves only part of the interplanetary
trajectory design problem. The transfer trajectory is generally initiated by a large
rocket motor burn at the first planet, the Earth, and terminated by a large rocket
motor burn at the target planet that inserts the spacecraft into orbit. For a planetary
flyby, the second motor burn is omitted. For preliminary trajectory design, the two
rocket motor burns are generally computed as impulsive burns and a trajectory is
desired that minimizes the magnitudes of the velocity changes at the end points
to achieve transfer. The velocity change is from the orbital velocity of the planets
to the velocity of the spacecraft and is generally specified in terms of the energy
parameter (C3) associated with the hyperbolic departure and approach conic orbits.
This interplanetary orbit transfer problem is referred to as the optimum two-impulse
transfer problem and a solution was first obtained by the German rocket engineer
Walter Hohmann in 1925.

The geometry of the Hohmann transfer orbit is shown in Fig. 3.7 for a transfer
orbit from Earth to Mars. The Hohmann transfer orbit is tangential to the Earth
orbit at launch and tangential to Mars orbit at encounter. The transfer angle is
180◦. The optimality appears obvious from Fig. 3.7 since energy is added in the
direction of the Earth’s orbital velocity and subtracted in the direction of Mars
orbital velocity. The proof of optimality is a bit mathematically tedious and is best
demonstrated numerically by obtaining the Hohmann transfer orbit as a solution
to the problem of constrained trajectory optimization which is described in a
later chapter. The opportunity for a Hohmann transfer from Earth to Mars occurs
when the planets have the alignment shown in Fig. 3.7. This alignment occurs at a
frequency determined by the difference of Earth and Mars angular orbital rates or
about every 1.64 years. The launch opportunity occurs on the day when Mars is at
a particular angle with respect to the Earth. The spacecraft must be launched at the
time that the transfer orbit will encounter Mars at the encounter time. Thus, Mars
must lag the encounter point by an angle of about 136◦ at the time of launch. The
lag angle may be computed from the periods of the spacecraft and Mars orbits.

A problem with the Hohmann transfer orbit is that the solution is at a singular
point associated with elliptic transfer orbits. A 180◦ orbit transfer trajectory must be
in the plane of the Earth, Mars, and Sun. If Mars is slightly out of the ecliptic plane,
as it generally is except at the nodal crossings, the transfer orbit must also be out
of the ecliptic plane. For Mars, near the 180◦ transfer point, the transfer orbit plane
may be far out of the ecliptic plane requiring an enormous expenditure of rocket
fuel to make the plane change. For some cases, the Hohmann transfer trajectory is
over the Sun’s ecliptic pole. One simple remedy is to introduce a small midcourse
plane change maneuver and another remedy is to simply avoid the singularity. For
most interplanetary trajectory designs, the latter remedy is used and the launch and
encounter dates are biased a few days. Fortunately, since the optimum solution is
obtained for launch and encounter dates where the derivative of the cost function
is zero with respect to these times, substantial deviations from optimality may be
made with a small performance penalty.
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Fig. 3.7 Earth–Mars Hohmann transfer

Once the launch date and encounter date are determined, a preliminary trajectory
design may be implemented using the tools described in Sects. 3.1.1 through 3.1.4.
The design process involves interfacing the interplanetary transfer trajectory with
departure and approach hyperbolic trajectories that satisfy design constraints at
Earth and the target planet. The Earth injection hyperbola must be achievable by
the launch vehicle and the encounter hyperbola must result in the desired geometry
at the target. A simple method to design an interplanetary trajectory is by patched
conics. The principal behind patched conics is that the motion of the spacecraft may
be computed by including the acceleration of only the dominant central body and
ignoring the tidal accelerations associated with all other bodies. The error introduced
by ignoring tidal acceleration is generally small enough that the resulting trajectory
may be used to evaluate other mission constraints and to provide an initial guess for
precision targeting programs that are employed for the final design.

Figure 3.8 illustrates schematically the patched conic design process for an Earth
to Mars trajectory. In order to initialize the process, the Earth position vector at the
Earth injection time (ti) and the Mars position vector at the Mars encounter time
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are obtained from a planetary ephemeris file. The conic Earth ephemeris and Mars
ephemeris orbit elements are computed as described is Sect. 3.1.

Oce(ti) = fc(Xe(ti),GMs, ti)

Ocm(tm) = fc(Xm(tm),GMs, tm)

From Lambert’s orbit transfer solution, a two-body sun-centered conic is computed
from the center of Earth to the center of Mars.

Ol = fl(te, re, tmrm,GMs)

The position vectors re and rm are obtained from the inverse conic element
transformations O−1

ce and O−1
cm . Two patch points are defined at t1 and t2 about

2.5 days from Earth injection and 2 days from Mars encounter. At these times,
the spacecraft is about 2 million km from the planets where the tidal acceleration
of the Sun is about equal to the central body acceleration of the planets. The tidal
acceleration of the Sun is simply the difference between the Sun’s acceleration of the
spacecraft and the Sun’s acceleration of the planet. The state vector of the spacecraft
and planets are computed at the patch points.

X(t1) = f −1
c (Ol,GMs, t1)

Xe(t1) = f −1
c (Oce,GMs, t1)

X(t2) = f −1
c (Ol,GMs, t2)

Xm(t2) = f −1
c (Ocm,GMs, t2)

The hyperbolic orbit elements of the spacecraft are computed with respect to Earth
and Mars at the patch points from the planet relative state vectors. The incoming
asymptote is computed for Mars and the outgoing asymptote for Earth.

Ohi = fhi(X(t2) − Xm(t2),GMm, t2)

Oho = fho(X(t1) − Xe(t1),GMe, t1)

The encounter conditions at Mars (bi, θi) are set equal to the target encounter
conditions (b∗

i , θ
∗
i ) and the outgoing encounter conditions at Earth (bo, θo) are set

equal to the injection conditions (b∗
o, θ

∗
o ). For the initial iterations, the injection

conditions at Earth are b∗
o = 20,000 km and θ∗

o = 180◦. Planet relative state
vectors are then computed at the patch points and another Lambert transfer orbit
is computed connecting the new patch points.

X1(t1) = fho(Oho,GMe, t1)

X2(t2) = fhi(Ohi,GMm, t2)

Ol = fl(t1, r(t1) + re(t1), t2, r(t2) + rm(t2),GMs)
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Fig. 3.8 Earth–Mars trajectory design schematic diagram

New Sun-centered state vectors are computed and the above process is repeated
several times until the solution converges to the target encounter conditions. The
Earth departure hyperbola target conditions are then modified to bring the injection
position into alignment with the launch vehicle ascent trajectory as specified
by injection flight plane coordinates. The true anomaly of the injection point is
computed from the defined injection radius (ri). From the true anomaly and the
departure hyperbolic orbit elements, the eccentric anomaly is computed and the
time of injection is determined from Kepler’s equation. The injection state vector is
then computed from,

Xi = fho(Oho,GMe, ti)

The injection flight plane coordinates are then computed from the injection state
vector (Eq. 3.28).

Oi = fi(X,GM)

The injection flight plane coordinates are then replaced with the target values. For
example, the injection flight path angle may be set equal to the target value (γi = γ ∗

i )
and the central angle from the launch site to injection is set equal to its target value
(ωx = ω∗

x) to define O∗
i . The injection state vector and new outgoing hyperbolic

encounter target parameters are then computed.
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Table 3.1 Earth–Mars trajectory design iterations

Earth injection flight plane Mars encounter hyperbola

ωx
a γi

a Vi Az λi ba θa V∞ α∞ δ∞
i (deg) (deg) (km/s) (deg) (deg) (km) (deg) (km/s) (deg) (deg)

1 32.68 28.74 10.94 127.97 113.54 2219.34 43.72 3.00 253.96 −14.64

2 21.10 23.26 10.99 133.79 119.00 28887.02 257.29 3.44 254.24 −12.19

3 19.53 22.44 10.99 134.43 119.37 10633.94 253.18 3.45 254.17 −11.72

4 19.32 22.33 10.99 134.50 119.40 6965.54 235.98 3.45 254.18 −11.66

5 19.29 22.31 10.99 134.51 119.41 6489.04 233.95 3.45 254.18 −11.66

6 19.29 22.31 10.99 134.51 119.41 6429.07 233.65 3.45 254.18 −11.65

7 19.29 22.31 10.99 134.52 119.41 6421.31 233.62 3.45 254.18 −11.65

8 19.29 22.31 10.99 134.52 119.41 6420.32 233.61 3.45 254.18 −11.65

9 19.29 22.31 10.99 134.52 119.41 6420.20 233.61 3.45 254.18 −11.65

10 15.92 18.00 10.99 134.75 112.99 6420.18 233.61 3.45 254.18 −11.65

11 16.01 17.98 10.99 134.77 112.78 6479.39 233.95 3.46 254.18 −11.65

12 16.06 18.00 10.99 134.77 112.77 6428.60 233.65 3.46 254.18 −11.65

13 16.06 18.00 10.99 134.77 112.77 6421.32 233.62 3.46 254.18 −11.65

14 16.06 18.00 10.99 134.77 112.77 6420.34 233.61 3.46 254.18 −11.65
a Target parameters

Xi2 = f −1
i (O∗

i , GMe)

O∗
ho = fho(Xi2,GMe, ti)

The outgoing hyperbola target parameters are reset to correspond to the desired
injection flight plane coordinates. After several iterations, the solution converges to
the target injection coordinates at Earth and the encounter parameters at the target
planet.

An example of the design of an interplanetary trajectory is the Mars Odyssey
spacecraft launched on April 7, 2001 and arrived at Mars on October 24, 2001.
The flight time of 199.4 days is considerably less than the nominal Hohmann
transfer time of about 258 days. The transfer angle of 140.2◦ is also considerably
less than the 180◦ Hohmann transfer angle. The odyssey spacecraft was launched
about 3 months later than the Hohmann optimum transfer time. Launches late in
the launch period, surrounding the optimum transfer time of Jan 11, 2001, require
additional launch energy to achieve the required injection conditions. However,
the cost savings associated with shortening the flight time and consequently
mission operations time may well offset the additional launch energy cost provided
that the launch vehicle has the additional capability. Table 3.1 shows the result
of implementing the interplanetary trajectory design procedure described above.
Tabulated are the injection conditions at Earth and encounter conditions at Mars
following each iteration cycle. The converged solution agrees reasonably well with
the trajectory that was actually designed. The velocities at injection and at encounter
agree within about 50 m/s.
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3.3 Three-Body Trajectory

Gravity assist trajectories are an important class of trajectories that have been used
by Voyager, Galileo, Cassini, and other missions to tour the solar system. The
accessibility of a target planet, particularly those beyond the orbit of Jupiter, depends
on finding a transfer orbit with energy relative to the Earth, within the capability of
the launch vehicle. The use of gravity assist to increase the transfer orbit energy has
opened up the exploration of planets that otherwise would not be accessible with
current launch vehicle capability.

Most interplanetary and planetary orbiter mission trajectories, since the begin-
ning of the space age, have used Keplerian two-body motion in their design.
Missions requiring three-body transfers are generally limited to those involving
the satellites of the major planets, for example, missions to Lagrange points in
the Earth–Moon system. Even though gravity assist trajectories can be designed
by repeated application of two-body theory, they are included in the three-body
classification because the gravity assist requires a simultaneous exchange of energy
among three bodies. The three-body theory employed for the design of gravity assist
trajectories involves the use either of vectors defining the approach and departure
hyperbolic asymptotes with respect to the gravity assist planet or of Tisserand’s
criterion which pertains to the interplanetary Keplerian orbits connecting the launch,
gravity assist, and target planets. It will be shown that while both design techniques
follow from the Jacobi integral, they yield significantly different results, since they
represent different approximations of the true equations of motion.

3.3.1 Jacobi Integral

An important integral describing constraints on energy transfer for the restricted
three-body problem was discovered by Carl Gustav Jacob Jacobi in the Nineteenth
century. A point mass moving in the vicinity of two massive bodies in circular orbits
about their barycenter will conserve a certain function of the state and gravitational
parameters of the massive bodies referred to as Jacobi’s integral. The constant of
integration is called Jacobi’s constant. The equations of motion for a spacecraft near
two massive bodies are given by,

ẍ = GM1
x1 − x

r3
1

+ GM2
x2 − x

r3
2

ÿ = GM1
y1 − y

r3
1

+ GM2
y2 − y

r3
2

z̈ = GM1
z1 − z

r3
1

+ GM2
z2 − z

r3
2

(3.49)



3.3 Three-Body Trajectory 123

The two massive bodies rotate around the barycenter and the rotation rate is simply
2π divided by the period of the orbit,

ω =
√

GM1 + GM2

ρ3
(3.50)

where ρ is the distance separating the two massive bodies. The geometry is
illustrated in Fig. 3.9. The primed coordinate system (x′, y′, z′) represents a rotating
coordinate system in which the two massive bodies lie on the x′ axis, with

x = x′ cos ωt − y′ sin ωt

y = x′ sin ωt + y′ cos ωt

z = z′ (3.51)

After differentiating Eq. (3.51) twice and substituting into Eq. (3.49), the following
result is obtained. The sine and cosine terms are elimination by first rotating
Eq. (3.51) its alignment with the rotating frame.

ẍ′ − 2ωẏ′ − ω2x′ = −GM1
x′

1 − x′

r3
1

− GM2
x′

2 − x′

r3
2

ÿ′ + 2ωẋ′ − ω2y′ = −
(

GM1

r3
1

+ GM2

r3
2

)
y′

z̈′ = −
(

GM1

r3
1

+ GM2

r3
2

)
z′ (3.52)

Equation (3.52) may be put into a form that can be integrated by defining the
function

U = 1

2
ω2(x′2 + y′2) + GM1

r1
+ GM2

r2
(3.53)

and substituting into Eq. (3.52).

ẋ′ẍ′ − 2ωẋ′ẏ′ = ẋ′ ∂U

∂x′

ẏ′ÿ′ + 2ωẋ′ẏ′ = ẏ′ ∂U

∂y′

ż′z̈′ = ż′ ∂U

∂z′ (3.54)

Adding Eqs. (3.54),
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Fig. 3.9 Restricted two-body
geometry
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ẋ′ẍ′ + ẏ′ÿ′ + ż′z̈′ = ẋ′ ∂U

∂x′ + ẏ′ ∂U

∂y′ + ż′ ∂U

∂z′ = dU

dt
(3.55)

The integral of Eq. (3.55), called the Jacobi integral, is

ẋ′2 + ẏ′2 + ż′2 = 2U − C

or

ẋ′2 + ẏ′2 + ż′2 = ω2x′2 + ω2y′2 + 2
GM1

r1
+ 2

GM2

r2
− C (3.56)

where C is the constant of integration.

3.3.2 Tisserand’s Criterion

Francois Felix Tisserand was a nineteenth century astronomer who discovered a
unique application of Jacobi’s integral to identify comets. In the restricted three-
body problem, a certain function of the orbit elements before and after a planetary
encounter is conserved. If this function is computed for two comet observations on
different orbits and the results are the same, one may conclude that the observations
are of the same comet and the comet has encountered a planet between the
observations. This may be confirmed by propagating the orbits forward or backward
in time to see if they encountered a planet.

In the application of Tisserand’s criterion to gravity assist trajectory design, the
procedure is reversed. Transfer trajectories from the launch planet to the intermedi-
ate planet and from the intermediate planet to the target planet are computed using
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Lambert’s theorem. These trajectories are matched based on Tisserand’s criterion
to identify viable launch and encounter opportunities. Tisserand’s criterion follows
directly from Jacobi’s integral. The Jacobi integral is transformed back to inertial
coordinates (the unprimed coordinates in Fig. 3.9).

ẋ2 + ẏ2 + ż2 = 2ω(xẏ − yẋ)+

2
GM1

r1
+ 2

GM2

r2
− C (3.57)

For GM1 much greater than GM2, the z component of the angular momentum vector
is given by,

xẏ − yẋ = hz = h cos i (3.58)

h =
√

GM1 a(1 − e2)

and from the vis viva integral the energy is given by,

ẋ2 + ẏ2 + ż2 = GM1(
2

r1
− 1

a
) (3.59)

Substituting Eqs. (3.58) and (3.59) into Eq. (3.57) gives

GM1(
2

r1
− 1

a
) − 2ω

√
GM1 a(1 − e2) cos i =

2
GM1

r1
+ 2

GM2

r2
− C

Substituting Eq. (3.50) for ω and for small GM2 compared with GM1,

C ≈ GM1

a
+ 2GM1

√
a(1 − e2)

ρ3 cos i (3.60)

In the literature, Tisserand’s criterion is often developed in dimensionless coordi-
nates and the Jacobi constant modified to remove constant parameters. If a is divided
by ρ to define ā and Eq. (3.60) is multiplied through by ρ and divided by GM1,
Tisserand’s criterion in dimensionless coordinates becomes

Cρ

GM1
≈ 1

ā
+ 2

√
ā(1 − e2) cos i

If the first observation of a spacecraft or comet has orbit elements a1, e1, and i1 and
the second observation after a planetary encounter has orbit elements a2, e2, and i2,
then
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1

a1
+ 2

√
a1(1 − e2

1)

ρ3 cos i1 ≈

1

a2
+ 2

√
a2(1 − e2

2)

ρ3
cos i2

3.3.3 Gravity Assist Vector Diagram

Figure 3.10 shows the encounter geometry in the vicinity of the intermediate planet
that supplies the gravity assist energy boost to the spacecraft. The incoming velocity
of the spacecraft (V1) is subtracted from the planet velocity (Vp) to obtain the planet
relative approach velocity (vi) as shown in the upper vector diagram in Fig. 3.10.
The lower vector diagram shows the same relationship for the outgoing velocity
vectors. If the incoming and outgoing velocities are computed far from the planet yet
close enough to the planet that the heliocentric energy may be assumed constant, the
velocities vi and vo are approximately the v∞ vectors associated with the two-body
hyperbola about the planet. In the limit of two-body motion assumed for patched
conic trajectories, vi and vo are equal in magnitude. Since the planet velocity is
also assumed to be constant during the relatively short-time interval of the planet
encounter, the outgoing vector diagram may be superimposed on the incoming
vector diagram as shown in Fig. 3.10. The outgoing heliocentric spacecraft velocity
magnitude is greater than the incoming velocity magnitude and the spacecraft has
acquired additional orbit energy relative to the Sun. The energy acquired by the
spacecraft comes from the Sun and the planet.

Consider the triangle formed by the spacecraft and planet heliocentric velocity
vectors and the incoming velocity vector. From the law of cosines,

v2
i = V 2

p + V 2
1 − 2VpV1 cos A (3.61)

The orbit of the planet about the Sun may be approximated by a circle with velocity
magnitude given by,

Vp =
√

GMs

ρ

The heliocentric orbit of the spacecraft may be regarded as a two-body conic. The
velocity magnitude is given by

V1 =
√

2GMs

ρ
− GMs

a1
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Fig. 3.10 Gravity assist vector diagram

In the plane of the orbit, the angle A is simply the flight path angle (γ ). For the
general case, the angle A is a function of γ and the inclination of the spacecraft
orbit plane with respect to the planet orbit plane i1 and

cos A = cos γ cos i1

cos γ =
√

GMsa1(1 − e2
1)

V1r1

Making these substitutions into Eq. (3.61) gives

v2
i = 2GMs

ρ
− GMs

a1
+ GMs

ρ
−

2V1

√
GMs

ρ

√
GMsa1(1 − e2

1)

ρ2V 2
1

cos i1

The energy of the spacecraft relative to the planet, the potential energy of the
spacecraft relative to the Sun and the velocity of the planet relative to the sun may
be regarded as constant. Collecting these “constant” terms on the left side gives
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C ≈ 3GMs

ρ
− v2

i

≈ GMs

a1
+ 2GMs

√
a1(1 − e2

1)

ρ3 cos i1 (3.62)

Equation (3.62) provides an interesting insight into the geometrical meaning of
Jacobi’s constant in the limit where one of the gravitating bodies is much more
massive than the other. The terms in the Jacobi integral are related to the velocity
vector diagram of the participating bodies.

3.3.4 Cassini Trajectory Design

The Cassini mission to Saturn provides an example of the application of Tisserand’s
criterion to the design of a gravity assist trajectory. The segments of the Cassini
trajectory that are of interest are from Earth to Jupiter and from Jupiter to Saturn.
The first step is to determine the encounter times at Jupiter and Saturn. An initial
guess of the encounter times of Jupiter and Saturn is made based on the approximate
flight times associated with a Hohmann transfer. Point-to-point conic solutions
for the trajectory segments from Earth to Jupiter and from Jupiter to Saturn are
computed using the solution of Lambert’s theorem. A point to point conic solution
assumes zero mass for the planets and only the gravity of the sun is included. The
solution of Lambert’s theorem gives the two-body conic connecting two position
vectors where the flight time is known. The two position vectors are obtained from
the planetary ephemerides and the conic trajectory is computed from planet center
to planet center as shown in Fig. 3.11.
The next step is to compute the velocity vectors relative to Jupiter, one for the
incoming trajectory segment (vi) and one for the outgoing trajectory (vo). If the
Jacobi constants for the trajectory segments do not match, then the following
procedure can be used to find potentially viable encounter time solutions. The
encounter time of Jupiter is fixed and the encounter times of Earth and Saturn
are permitted to vary over a suitable range of times. For each pair of Earth–
Jupiter encounter times and Jupiter–Saturn encounter times, a Lambert solution is
computed and the Jacobi constant is computed from the orbit elements. The Jacobi
constants for the two interplanetary trajectory legs are matched and the results are
cross plotted in Fig. 3.12. Several approximations may be used for computing the
Jacobi constant. Results for Tisserand’s criterion and the Jupiter energy criterion
are shown in Fig. 3.12 as dashed lines. The Jupiter energy criterion (Eq. 3.62) is
equivalent to matching the incoming and outgoing velocity magnitudes relative to
Jupiter. A criterion is used that matches the average of Tisserand’s criterion and the
Jupiter energy criterion and is shown in Fig. 3.12 as the solid line. The equation for
this criterion, after simplification to remove constant parameters, is given by,



3.3 Three-Body Trajectory 129
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√
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(3.63)

For a given pair of Earth launch and Saturn encounter times indicated in
Fig. 3.12, the approach and departure velocity vectors at Jupiter are obtained and
the hyperbolic conic relative to Jupiter is computed. A preliminary assessment of the
viability of the Jupiter centered hyperbola is performed. A trajectory that intersected
the surface of Jupiter, for example, or hits one of Jupiter’s satellites would not be
viable. Next, the encounter conditions at Earth and Saturn are examined for viability.
If the energy at Earth or Saturn is unacceptable, the trajectory is not viable. If a
viable trajectory is not found for all the launch date encounter date pairs indicated
by Fig. 3.12, the above procedure is repeated for another Jupiter encounter time.

Once a viable set of encounter times has been determined, a patched conic
trajectory is designed that connects Earth, Jupiter, and Saturn. The procedure
involves computing the approach and departure velocity vectors at the patch points
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shown in Fig. 3.13 from the point-to-point conic solution. The two-body hyperbolic
trajectory is then computed with respect to each of the participating planets. For
Earth and Saturn, the departure and approach target plane positions are given. A
new set of patch point positions relative to the Sun are computed. The states relative
to Earth, Jupiter, and Saturn are added to the respective planetary ephemerides at
the appropriate times. The patch point times are selected such that the spacecraft
position is near the sphere-of-influence of the planets. The planetary ephemerides
may be computed from two-body orbit elements with respect to the Sun. This
procedure is repeated several times for the new patch points until a ballistic
trajectory is obtained from Earth to Saturn. It will be necessary to allow the Saturn
encounter time to vary a small amount from the point-to-point solution. The results,
shown in Fig. 3.12 for three launch dates, compare favorably with the point-to-
point solutions. Also, the Cassini design point, obtained by numerical integration, is
shown in Fig. 3.12 for comparison.

The patched conic solution is used as a starting point for targeting an integrated
trajectory. A comparison of the Cassini integrated trajectory and the patched conic
solution is shown in Fig. 3.14. State vectors are computed from the patched conic
trajectory and differenced with state vectors obtained from the integrated Cassini
ephemeris. The magnitude of the position difference is plotted as a function of
time and the heliocentric range of the spacecraft is also plotted for comparison.
The maximum error is less than one percent of the heliocentric range. Since the
period of the Saturn orbit is 29 years, an error of several months in the predicted
encounter time at Saturn from the point-to-point conic solutions should be expected.
This error in computing the encounter times is exacerbated by accelerations from the
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third body that has been ignored for the two-body computations. However, a design
error of only one percent enables a fairly accurate assessment of mission design
constraints from the conic solution.

3.4 Four-Body Trajectory

An early investigation of flight to the Moon by V. A. Egorov in 1958 identified
several problems relating to the design and navigation of translunar trajectories.
These included hitting the Moon, circumnavigation of the Moon with a return to
Earth at a flat entry angle, using the Moon’s gravity for assist in reaching the
planets, and the possibility of the Moon capturing a projectile launched from the
Earth. Based on consideration of the three-body problem and its associated Jacoby
integral, solutions can be demonstrated for these problems with the exception of the
Moon capturing a projectile launched from Earth. For the problem of lunar capture,
Egorov concluded that the Moon could not possibly capture a projectile launched
from the Earth on the first circuit of the trajectory no matter what initial conditions
are specified. This conclusion was based on analysis of the three-body problem and
did not consider the Sun’s gravity.
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Fig. 3.14 Cassini conic design error

The first example of a ballistic trajectory of a spacecraft launched from the Earth
into orbit about the Moon was discovered in 1990 while analyzing a plan to salvage
the Muses A (Hiten) spacecraft in a highly eccentric orbit about the Earth. The
key to the discovery was the utilization of the Sun’s gravity to affect the transfer
to a lunar capture orbit. The result was a numerical solution to the restricted four-
body problem of the Earth, Moon, Sun, and a point mass spacecraft. Lunar transfer
trajectories that require analysis that goes beyond that provided by three-body theory
and the Jacobi integral are referred to as four-body trajectories. Examples are Hiten,
Lunar A, and the Genesis return trajectory from the vicinity of the Moon to Earth.
These trajectory designs cannot be fully explained or analyzed using three-body
theory and the Jacobi integral. As is the case for the three-body problem, a complete
analytic solution of the four-body problem has not been obtained. Furthermore,
an integral relationship similar to the Jacobi integral has not been found for the
four-body problem and the prospects for finding such an integral are dim. Current
theories, such as Weak Stability Theory, are explanatory and not predictive and
thus cannot be used for design of trajectories that require a simultaneous four-body
solution without some intervention by the trajectory designer.

In the absence of a predictive four-body theory, the trajectory designer may use
the existing solution of the two-body problem and the Jacobi integral to piece
together trajectory segments and achieve the desired result. Indeed, most lunar
transfer trajectory designs are obtained by patching together conic orbits where the
Earth’s gravity dominates to conic orbits where the Moon’s gravity dominates. By
extension, the trajectory segment dominated by the Earth, Moon, and spacecraft
Jacobi integral may be pieced together with the trajectory segment dominated by the
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Sun, Earth, and spacecraft Jacobi integral to obtain continuous ballistic trajectories
that connect Earth departure or arrival with capture orbits about the Moon and the
nearby Lagrange points.

3.4.1 Moon Capture of Projectile Launched from Earth

A spacecraft in a lunar capture orbit will approach the Moon in a nearly circular orbit
about the Earth that is just inside the Moon’s orbit or just outside the Moon’s orbit.
As the spacecraft approaches the Moon, the Moon’s gravity provides the necessary
acceleration to slow down or speed up the spacecraft depending on whether the
approach orbit is inside or outside the Moon’s orbit. If the spacecraft has just the
right approach velocity, it is drawn into orbit about the Moon. The orbital mechanics
of capture orbits are well documented in the literature. A spacecraft is placed in an
orbit that is loosely bound to the Moon and whose semimajor axis is just inside
the Moon’s sphere of influence. The lunar periapsis is directed toward the Earth and
apoapsis is therefore directed away from the Earth. The orbit is integrated for several
revolutions about the Moon and if it remains captured the apoapsis altitude is raised
slightly. A convenient orbit parameter for raising apoapsis is the eccentricity which
will tend to keep the energy of the orbit about the Moon constant. After several trys,
the spacecraft will escape from the Moon and enter into an orbit about the Earth.
Since the equations of motion are reversible, a capture trajectory can be obtained by
repeating the above procedure only integrating the equations of motion backward.

The resulting capture orbits are generally nearly circular about the Earth and
either inside or outside the Moon’s orbit. For a critical value of the starting
eccentricity of the orbit about the Moon, the spacecraft will just escape the Earth–
Moon system and go into orbit about the Sun. Raising the eccentricity slightly
will result in an eccentric orbit with a periapsis radius relative to the Earth that
is inside the Moon’s orbit. The results of generating several capture orbits are
shown in Fig. 3.15. For a range of starting eccentricities from 0.94151 to 0.943,
most of the capture orbits either escape from the Earth–Moon system or fall into an
uninteresting eccentric orbit about the Earth with periapsis radius less than that of
the Moon’s orbit. This behavior of capture orbits including the reduction in periapsis
radius with respect to the Earth has been observed and is common knowledge.

A remarkable result was obtained during study of the Hiten trajectory during
Memorial day weekend of 1990. If the starting eccentricity of the Moon’s orbit was
adjusted to 0.94171, the spacecraft falls into a highly eccentric orbit that returns
to Earth as shown in Fig. 3.15. This was a surprising result, but Ed Belbruno was
not surprised because of his work with weak stability theory. Previous studies of the
possibility of the Moon capturing a projectile launched from the Earth indicated that
this result was very improbable. Analysis by Fesenkov based on the Jacobi integral
concluded that this result was impossible. Egorov introduced a term not considered
by Fesenkov that opened the possibility of capture after more than one circuit. He
acknowledged that the Sun may provide a perturbation that could enable capture.
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Fig. 3.15 Examples of lunar
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The discovery of a capture orbit was not made by systematically perturbing
eccentricity, as suggested by Fig. 3.15, until the result was observed. The approach
used in finding this orbit was from a different direction. In attempting to design
a trajectory for the Hiten spacecraft to get to the Moon, a bielliptic transfer was
attempted. The idea was to design a capture orbit that escapes from the Earth–Moon
system and intersects a direct trajectory from Earth orbit. The capture trajectory was
integrated backward and the trajectory from Earth orbit was integrated forward. At
the intersection, a maneuver was performed to join the two trajectory segments.
It was soon discovered that an escape trajectory would not work. The velocity
correction required at the intersection was too big. It was also observed that the
minimum velocity at the intersection point near the boundary of escape to orbit
about the sun was about 250 m/s. While fine-tuning the eccentricity of the capture
orbit, it was observed that the velocity change began to drop. It became apparent
that the minimum velocity change was zero and the result was an orbit similar to the
orbit shown in Fig. 3.15.
Attempts to extend the result shown in Fig. 3.15 to other initial orbit conditions
revealed a strong dependence on the location of the Sun relative to the Earth and
Moon. Clearly, the tidal acceleration of the Sun was the vehicle for transforming a
nearly circular orbit coincident with the Moons orbit into a highly eccentric orbit
that intersects the Earth. The affect of the Sun on the transfer trajectory can be seen
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Fig. 3.16 Earth–Moon ballistic transfer

from inspection of Fig. 3.16. Shown is an Earth to Moon ballistic transfer trajectory
with the orbit of the Sun in Earth-centered inertial coordinates superimposed. The
Sun’s orbit has been reduced by a scale factor of 100. As the backward integrated
trajectory spirals outward from the Moon, the Sun is on the opposite side of the Earth
from the spacecraft. The spacecraft is in the second quadrant near apoapsis while
the Sun is in the fourth quadrant. The net effect of the solar tide is to reduce the
angular momentum sufficiently to lower periapsis radius to the radius of the Earth.
Reversing the direction of integration gives the desired lunar capture trajectory.

The lunar transfer trajectory from the Earth’s surface to capture by the Moon
may be modified slightly to enable transfer from a variety of Earth orbits to lunar
capture. Also, Fig. 3.16 suggests that capture orbits may be designed to escape from
the Earth to the Sun–Earth Lagrange points. With a little imagination, these capture
orbits may be pieced together with the Earth transfer trajectory to design orbits that
go from near Earth orbit to the Lagrange points briefly capturing the Moon along
the way. An example of a lunar capture transfer trajectory with modified initial
conditions near Earth orbit is shown in Fig. 3.17. The spacecraft is launched into
an elliptic staging orbit about the Earth with apoapsis radius that reaches the orbit
of the Moon. The spacecraft remains in the staging orbit until the Sun is in the right
position for a lunar capture orbit. The spacecraft is timed to arrive at the Moon for a
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gravity assist that places the spacecraft on the capture orbit. Figure 3.17 displays the
characteristic kidney shape often associated with the 3-month variety of the capture
orbit.

3.4.2 Angular Momentum and Energy Management

An important tool for design of lunar capture orbits is the management of angular
momentum. Raising of the periapsis radius of the Earth-centered orbit from near
the surface of the Earth to the radius of the Moon’s orbit requires the addition of
angular momentum to the orbit. This requires placing the spacecraft in a region
of space where the angular momentum rate of increase from the solar tide can
raise the angular momentum to that required for capture. The energy and angular
momentum management is accomplished by starting from a lunar capture orbit
with the correct angular momentum and energy (approximately the same as the
Moon) and integrating backward to a region of space where the angular momentum
is reduced to a small enough value to intersect the Earth’s surface. The spacecraft
then falls back to the Earth and the energy required is supplied by the launch vehicle
when the direction of integration is reversed.

The angular momentum of the orbit relative to the Earth is given by

h = √
p GMe (3.64)
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where p is the parameter of orbit and GMe is the Earth’s gravitational constant.
For a spacecraft launched from the Earth that nearly escapes the Earth–Sun system,
the orbit is nearly parabolic and p is approximately twice the radius of the Earth
(12,000 km). At lunar capture, p is approximately the radius of the Moon’s orbit
(384,000 km). Equation (3.64) requires raising the angular momentum (h) from
69,000 km2/s to 390,000 km2/s, a net increase of 321,000 km2/s.

The angular momentum orbit parameter (h) is the magnitude of the angular
momentum vector given by,

h = r × v

Consider an Earth-centered rotating coordinate system with the x axis pointing at
the Sun and the z axis in the direction of the orbit angular momentum vector. The
geometry is shown in Fig. 3.18. Neglecting the rotation about the Sun and the tidal
acceleration of the Moon, the rate of change of angular momentum is given by

ḣ = ṙ × v + r × v̇ (3.65)

where

r = (x, y, 0)

ṙ = v = (ẋ, ẏ, ż)

v̇ = (ax, 0, 0)

Carrying out the indicated substitutions, the angular momentum rate is approxi-
mately

ḣ = −y ax (3.66)

The tidal acceleration (ax) is approximately in the x direction since the Sun is far
from the Earth at the scale shown in Fig. 3.18. The tidal acceleration of the Sun is
simply the difference between the acceleration of the spacecraft and the acceleration
of the Earth caused by the Sun’s gravity and

ax = GMs

(rs + x)2 − GMs

r2
s

which may be approximated by

ax = ax(x = 0) + dax

drs
δx

ax = 2GMs

r3
s

x
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Fig. 3.18 Sun–Earth angular momentum transfer contours

Substituting into the equation for angular momentum rate (Eq. 3.66) yields

ḣ = −2GMs

r3
s

x y (3.67)

Equation (3.67) is the equation for a hyperbola as a function of x and y. A family of
hyperbolas are plotted in Fig. 3.18 for various values of the angular momentum rate
in the units of km2/s2. As an example of the application of the angular momentum
contours, consider a spacecraft launched from Earth into the second or fourth
quadrant of Fig. 3.18 where the angular momentum rate attributable to the solar
tide is positive. At coordinate x = 1, 400, 000 km and y = −750, 000 km, the
angular momentum rate of increase is 0.084 km2/s2. In order to raise the periapsis
radius from the Earth surface to the radius of the Moon’s orbit, an increase in
angular momentum of 321,000 km2/s is required. Thus, the spacecraft would need
to dwell near the indicated coordinates for 3,821,000 s or about 44 days. The actual
time required to achieve the required angular momentum increase can be obtained
by performing a line integral along the actual flight path and include the tidal
acceleration of the Moon. For an actual trajectory integration, the average value
of the angular momentum rate would be about half the value used in this example
and the Moon’s tidal acceleration contribution would be small. The total flight time
is therefore approximately 90 days.
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3.4.3 Genesis Earth Return Trajectory

The Genesis return trajectory starts from a Lagrange point and flies by the orbit of
the Moon on a trajectory that is nearly captured and proceeds on a transfer orbit
to the Earth. The portion of the orbit from near the Moon’s orbit to the Earth is an
example of a four-body transfer. The Genesis return trajectory is plotted in Fig. 3.19
along with the ballistic capture trajectory. The coordinate frame is the same as
shown in Fig. 3.18 with the Earth at the center and the Sun in the +x direction. Both
trajectories go from the vicinity of the Moon’s orbit to the Earth. In the rotating
coordinate system, both trajectories execute a slow loop in the first quadrant where
the maximum rate of angular momentum removal is about 0.1 km2/s2 as indicated
by the hyperbolic contours shown in Fig. 3.18. The Genesis trajectory experiences
a higher rate of angular momentum removal in the first quadrant which is partially
restored in the fourth quadrant where the sign changes to positive. The total angular
momentum removal is about the same for both trajectories which is characteristic
of the four-body transfer.

Since the trajectories shown in Fig. 3.19 are initiated at different times, the
position of the Moon in its orbit relative to the Genesis trajectory is not clear.
The ballistic capture orbit originates at the Moon. The Genesis trajectory in the
vicinity of the Moon’s orbit comes under significant influence of the Moon’s gravity.
The boundary between domination by Earth–Sun gravity and domination by Earth–
Moon gravity is a region of space that has been referred to as the Weak Stability
Boundary.
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In order to gain some insight into the behavior of the trajectory dynamics near
the Moon’s orbit, a coordinate transformation is performed to a rotating coordinate
system centered at the Moon with the +x axis in the direction of the Earth–Moon
vector and the z axis in the direction of the angular momentum vector. The Genesis
return trajectory and the ballistic capture orbit4 are plotted in this coordinate system
as shown in Fig. 3.20. The departure from the vicinity of the Moon of the two
trajectories are essentially the same. The motion near the Moon requires further
investigation. The ballistic capture orbit enters into a close capture orbit of the Moon
and the Genesis trajectory comes within 300,000 km of the Moon and executes a
strange loop.

3.4.4 Jacobi Integral and Capture

When the spacecraft comes close to the Moon, the tidal perturbation from the Sun
is small compared to the perturbations from the Moon and Earth. In this region
of space, the trajectory may be analyzed using restricted three-body theory. In the
rotating primed coordinates, a certain integral relating to the energy of the point
mass, referred to as the Jacobi Integral, is constant. The Jacobi integral in the
rotating coordinate frame is given by

ẋ′2 + ẏ′2 + ż′2 = ω2x′2 + ω2y′2 + 2
GM1

r1
+ 2

GM2

r2
− C (3.68)
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Fig. 3.21 Jacobi zero velocity contours

Consider a point mass or spacecraft moving with zero velocity relative to the
massive bodies. In inertial space, the rotation of both massive bodies about each
other is ω. For zero velocity relative to the massive bodies, the Jacoby integral
reduces to

ω2x′2 + ω2y′2 + 2
GM1

r1
+ 2

GM2

r2
= C (3.69)

A spacecraft moving with velocity or kinetic energy that is small compared to the
gravitational potential energy will tend to move in a direction that keeps C constant.
Thus, contours of constant C will describe the motion in the rotating coordinate
frame. Contours of constant C, referred to as Jacobi zero velocity contours or Hill’s
surfaces, may be plotted in rotating coordinates as shown in Fig. 3.21. The familiar
zero velocity contours are for two massive bodies that are of the same order of
magnitude in mass. The five stable Lagrange points are labeled as L1 through L5.
A spacecraft placed at one of the stable Lagrange points will stay there unless
perturbed by some external force. The zero velocity contours suggest other stable
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trajectories such as circular orbits about the massive bodies, a circular orbit about the
center of mass and outside the orbits of the massive bodies, and circumnavigation of
one massive body and return to the other on a free return trajectory. It also appeared
to Fesenkov and Egorov that a direct trajectory from one body to a close orbit about
the other would not be possible because of the stricture near L1.

The zero velocity contours for the Earth–Moon system are highly distorted from
the contours shown in Fig. 3.21. Since the Earth is about 80 times more massive than
the moon, the teardrop regions around L4 and L5 encircle the Earth and are joined
through L3. A spacecraft in orbit near L4 or L5 can migrate back and forth between
L4 and L5 through L3 without encountering the Moon. A trajectory of an asteroid
in the Earth–Sun system has been recently discovered that exhibits this motion.

The actual zero velocity contours for the Earth–Moon system in the vicinity of
the Moon are shown in Fig. 3.22. Also, plotted are the Genesis return trajectory
and a ballistic capture orbit. As both orbits approach zero velocity relative to the
Earth–Moon rotating frame, they fall onto the same Jacobi contour indicating that
the orbits have essentially the same Jacobi constant or energy. The bifurcation that
separates the two trajectories on departure from the Moon’s orbit is a property of
chaotic trajectories.
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3.5 NEAR Orbit Phase Trajectory Design

Trajectory design of the orbit phase of the Near Earth Asteroid Rendezvous (NEAR)
mission involves procedures that depart significantly from those used for previous
missions. On previous missions, the trajectory design involved finding a flight path
that satisfied a rigid set of spacecraft and mission design constraints. A precise
spacecraft trajectory was designed well in advance of arrival at the target body.
For NEAR, the uncertainty in the dynamic environment did not permit a precise
spacecraft trajectory to be defined in advance of arrival at Eros. The principal cause
of this uncertainty is limited knowledge of the gravity field and rotational state of
Eros. As a result, the concept for NEAR trajectory design was to define a number
of rules for satisfying spacecraft and mission constraints and to apply these rules to
various assumptions for the model of Eros.

3.5.1 Spacecraft and Mission Constraints

The spacecraft constraints that apply to Eros trajectory design include limits on
fuel consumption, solar panel illumination, and momentum wheel management.
Other constraints define the flexibility and speed with which mission operations may
be conducted. Probably the most important spacecraft constraint is to perform the
prime mission within the allocated propellant budget. The propellant consumption
constraint translates into about a 50–100 m/s delta velocity change during the orbit
phase of the primary mission. This was a fairly generous allocation and was not
difficult to satisfy.

The most difficult spacecraft constraint to satisfy relates to solar panel illumi-
nation. Since the science instruments are fixed with respect to the spacecraft body,
it is necessary to tum the spacecraft to point these instruments at Eros. In order
to satisfy spacecraft power requirements, the solar panels cannot be turned more
than about 30◦ off the Sun-line. If the angle between the line to nadir and the plane
perpendicular to the Sun-line is greater than 30◦, the nadir point cannot be imaged
without turning the spacecraft more than 30◦. A coordinate frame is defined with the
z axis pointing away from the Sun and the equatorial or x-y plane perpendicular to
the Sun-line and is referred to as the Sun Plane-Of-Sky (POS) coordinate frame. In
the Sun POS coordinate frame, orbits with inclination less than 30◦ direct or greater
than 150◦ retrograde will not violate the solar panel constraint permitting imaging
of nadir from any point in the orbit.

Another important constraint relates to the time to conduct mission operations.
In order to conduct the mission smoothly without resorting to round the clock
operations, the minimum time between spacecraft propulsive maneuvers is limited
to 1 week. The real limitation is the time to compute accurate orbit determination
solutions in support of propulsive maneuvers that are required to keep the spacecraft
on course. The differential velocity change resulting from maneuver execution
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errors corrupts the orbit solution. A rapid redetermination of the orbit places a
large amount of pressure on the Mission Operations team to deliver accurate data
and process this data into reliable solutions for the spacecraft orbit. By allowing a
minimum of 1 week between maneuvers, this pressure is considerably reduced. A
further benefit is that the amount of data available for the orbit solution is increased
and the data quality is increased. The more maneuvers that are performed, the
more the orbit is corrupted and the more the quality of science is compromised.
In addition, more risk to the mission is incurred because of poor trajectory control.

A trajectory design constraint related to orbit stability is that all low-inclination
orbits retrograde with respect to the asteroid equator. Retrograde orbits are more
stable because the faster relative motion of the spacecraft with respect to the asteroid
tends to average out the effects of gravity harmonics. For this reason, synchronous
direct orbits are particularly unstable since the spacecraft lingers over the same point
on the asteroid’s surface and may exchange enough energy to escape from or collide
with the asteroid. In low orbit, even retrograde synchronous orbits may be unstable.

Science constraints on the trajectory design take the form of desires to obtain
some particular orbital geometry and are generally not easily quantified. The
requirement of the gamma ray spectrometer to obtain low-altitude orbits drove the
trajectory design to achieve these orbits in a timely manner. The plan to stage the
trajectory through a series of successively smaller circular orbits seems to satisfy
most science and navigation requirements and makes the trajectory relatively simple
to design. The general plan is to spend a specified amount of time in a series of
circular orbits of predetermined radius. This keeps the mission on schedule and
enables a general imaging or mapping plan to apply for any Eros gravity field that
may be encountered. Transfer orbits between the circular orbits may also provide
a unique opportunity for science observations from a perspective different from the
circular orbits. However, the need to get to desired circular orbits may also make
the transfer orbits unattractive for science. In any event, the transfer orbits need to
be designed to achieve circular orbits and only limited science constraints can be
accommodated in these orbits.

3.5.2 Targeting Strategy

The general approach to the targeting strategy is to develop a broad set of objectives
and compute a series of propulsive maneuvers that will steer the spacecraft in the
direction of satisfying these objectives. This differs substantially from the traditional
approach of defining a number of constraints and searching for the trajectory that
globally maximizes some performance index. The NEAR approach is to compute a
maneuver that satisfies a local set of constraints and then propagate the trajectory
into the future. At the appropriate time, a minimum of 1 week in the future, the
constraints are reevaluated and another maneuver is computed. This strategy is
repeated until all the science objectives are achieved.
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The spacecraft is first placed in an orbit that is in the Sun POS. The solar panel
illumination constraint dictates that the spacecraft remain close to this plane for
most of the mission. Otherwise, the solar panels would have to be turned too far
off the Sun-line in order to image nadir. Also, staying in this plane for the first few
weeks of the mission will minimize the effect of solar pressure on the trajectory and
on the attitude control momentum management. This is particularly important at
high altitudes where the solar pressure acceleration is a large contributor to the total
acceleration and is much easier to model when the spacecraft is pointed directly at
the Sun.

At the time of arrival at Eros, the spin axis of Eros is pointed away from the
Sun. Since the Sun POS coordinate frame z axis also points away from the Sun, a
retrograde orbit in the Sun POS will also retrograde in the asteroid equator. This
is the direction that is established for the initial orbits. As Eros moves in its orbit
about the Sun, the Eros spin axis first points away from the Sun, then perpendicular
to the Sun-line, and then toward the Sun. The spin axis, which remains essentially
fixed in inertial space, appears to rotate in the Sun POS frame. During the time that
the spin axis is pointed almost directly away from the Sun, a retrograde orbit in the
asteroid equator will be close to being in the Sun POS and thus suitable for imaging
Eros without turning far off the Sun-line. Retrograde equatorial orbits are generally
very stable and thus the orbit altitude may be lowered to 35 km for gamma ray
spectrometer observations. As the Eros spin axis aligns perpendicular to the Sun-
line, the Sun POS orbit results in a polar orbit with respect to Eros. This is also a
stable orbit. A problem occurs when the Eros spin axis is about 45◦ off the Sun-
line. For these orbits, the node of the orbit plane with respect to the asteroid equator
precesses at a fast rate sometimes approaching 5◦ per day. During this transition
zone, the spacecraft orbit must be actively controlled with maneuvers to keep the
spacecraft within 30◦ inclination of the Sun POS. As Eros spin axis rotates from
perpendicular to the Sun POS to near alignment with the direction toward the Sun, it
passes through another transition region and then is placed in a retrograde equatorial
orbit for the second time. This orbit is direct with respect to the Sun POS. Therefore,
at the time the spacecraft is in the polar orbit and the Eros spin axis crosses the Sun
POS, it is necessary to execute a “plane flip” maneuver sequence to reverse the
direction of the Sun POS orbit from retrograde to direct. When this sequence is
completed, the Eros equator orbit remains polar.

3.5.3 Targeting Algorithm

The trajectory design is accomplished by transforming the targeting strategy into a
specific step-by-step procedure referred to as the targeting algorithm. The general
approach is first to translate spacecraft and science constraints to geometrical param-
eters that may be computed directly from the spacecraft trajectory about Eros. When
necessary, propulsive maneuvers are targeted to these trajectory-related geometrical
parameters and spacecraft and science constraints are implicitly satisfied. Therefore,
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the success of the targeting strategy depends on the ability to define geometrical
parameters that relate directly to mission constraints. The geometric parameters of
interest that may be closely related to mission constraints are distances from Eros
and angular positions of various celestial bodies with respect to Eros. A problem
with these angles and distances is that they vary rapidly as the spacecraft orbits Eros
and are thus difficult to target. For the targeting to be successful, a set of parameters
that vary slowly with time need to be defined. A convenient set of parameters
are classical orbit elements. The classical elements describe the size, shape, and
orientation of a spacecraft orbit about a central body that may be represented as
a point mass. As long as the spacecraft acceleration is dominated by the central
gravity, the classical orbit elements do not vary significantly. This was true during
a large part of the NEAR mission. In high orbits, the solar pressure becomes a
significant perturber relative to the central body gravity and in low orbits the gravity
harmonics cause the classical orbit elements to osculate. However, we may use
the osculating orbit elements as short-term predictors of spacecraft motion and
thus control the trajectory and satisfy mission constraints by targeting to these
parameters.

The classical orbit parameters of interest for targeting the NEAR trajectory may
be separated into several general categories. The first category describes the size
and shape of the orbit which relates directly to energy and angular momentum.
The radius of periapsis and radius of apoapsis may be used to control the size and
shape of the orbit. These parameters also implicitly control the period of the orbit.
The second category describes the orientation of the orbit in inertial space. The
longitude of the ascending node, argument of periapsis, and inclination orient the
orbit in inertial space. These angles may be computed in either the Sun POS or
asteroid equator coordinate frames. The solar panel illumination constraint may be
satisfied by keeping the inclination in the Sun POS coordinate frame less than 30◦.
The asteroid equator coordinate frame may be used to target polar or low-inclination
orbits. The final category of orbit parameters, obtained by solution of Kepler’s
equation, are the times that the spacecraft arrives at various points in the orbit.
The true anomaly of the spacecraft, which is the angle measured from periapsis,
is also included in this category. These points are candidate maneuver placements.
The times of periapsis, apoapsis, and crossings of the line of nodes or reference
planes are of interest for maneuver placement. In addition to the classical elements,
the Cartesian components of position and velocity in various coordinate frames may
be used as target parameters. Also, the Cartesian components may be mixed with
classical elements to define target parameter sets.

The first step of the targeting algorithm is to determine the time of the next
propulsive maneuver. The spacecraft orbit is propagated into the future and the
values of the target parameters are computed. If a constraint is violated or a point is
reached in the mission where it is desirable to change the orbit size or orientation, a
complete set of orbit elements is displayed which describes the local region of the
trajectory. We assume that the orbit elements are osculating slow enough that the
conic trajectory propagation is sufficiently accurate. The conic orbit propagation is
generally good for several orbits. A suitable maneuver placement point is selected
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which is normally at periapsis, apoapsis, or the crossing of some reference plane.
A precision trajectory is propagated to the nominal maneuver time obtained by
solution of Kepler’s equation. The osculating orbit elements are reevaluated and a
few iterations may be required to determine the precise time of maneuver placement.

The next step is to select three target parameters that describe the post maneuver
orbit. These parameters must be independent and include the maneuver point on
the post maneuver orbit. The independence of the parameters may be verified by
determining that the Jacoby matrix is nonsingular. For example, the parameters
periapsis radius, apoapsis radius, and eccentricity would not be independent because
eccentricity may be determined from the other two. However, the parameters
periapsis radius, apoapsis radius, and inclination are independent and would be
suitable for targeting. The inclusion of the maneuver point on the post maneuver
orbit is a subtle condition to satisfy. An example would be transfer to a 35 km
circular orbit from a maneuver placement at 50 km. Clearly, this would not be
possible because the 35 km orbit would not contain any point at 50 km. A more
subtle example would be transfer to zero inclination. For this target parameter to
converge, the maneuver placement point would have to be in the reference plane.

The third step is to determine the time to evaluate the target parameter con-
straints. Most of the time, this is immediately after the maneuver. However, for
some orbits that are osculating severely, the constraints may be evaluated sometime
in the future where it is desired to control some parameter of particular interest.
For example, if we are trying to control the precise periapsis radius, the constraint
may be evaluated at the nominal time of periapsis passage several orbits after the
maneuver thus forcing the minimum radius to occur at this time.

The final step is to determine the finite burn velocity correction that satisfies
the constraint parameters. The matrix of partial derivatives that relate the target
parameters to the maneuver velocity components is computed by finite difference
from precision trajectory propagations. This 3 by 3 matrix is inverted and multiplied
times the required target parameter correction to obtain the delta velocity correction.
The Newton-Raphson iteration is repeated several times until the desired target
parameters are achieved.

3.5.4 NEAR Trajectory Design

The design of the NEAR orbit phase trajectory involves repeated application of the
above targeting algorithms. The orbit phase begins after a series of rendezvous burns
that slow the spacecraft down from an approach speed of about 1 km/s–5 m/s. The
NEAR orbit phase trajectory is divided into 27 segments beginning with the Eros
Orbit Insertion (EOI) maneuver (segment 0). Each segment begins with an OCM
and the final segment ends on February 6, 2000, the nominal end of the mission.
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3.5.5 Approach Through 100 km Orbit

An orbit insertion maneuver is performed at closest approach to transfer the
spacecraft from an approach hyperbola with a periapsis radius of 1000 km to a
highly eccentric ellipse with a periapsis radius of 400 km as shown in Fig. 3.23.
When the spacecraft arrives at 400 km radius, a maneuver is executed to transfer
the spacecraft to an orbit with a periapsis radius of 200 km. At 200 km radius, the
orbit is circularized and science observations are carried out for about 9 days. Two
more maneuvers are executed to lower the spacecraft orbit to 100 km. The projection
of the spacecraft orbit into the Sun POS coordinate frame is shown in Fig. 3.23
for the initial orbits through 100 km radius. The view is from behind Eros looking
toward the Sun. The spacecraft moves in a retrograde (clockwise) direction while
the Eros rotation is counterclockwise when viewed from this direction. The initial
orbit following the orbit insertion burn is in the Sun POS with a radius of periapsis
of 400 km. The approach trajectory is targeted to cross the Sun POS at a radius of
1000 km periapsis on the side of Eros that results in a retrograde orbit. The orbit
insertion bum is placed at the point where the approach hyperbola pierces the Sun
POS; that is, the plane perpendicular to the Sun-line that passes through the center
of Eros. The target parameters are radius of periapsis, true anomaly, and inclination
in the Sun POS.

The target parameter constraints are computed on Jan 20, 1999 16:00:00. This
targeting strategy provides a 10-day separation between maneuvers and results in
the spacecraft arriving at a periapsis radius of 400 km on January 20 in an orbit with
an inclination of 178◦ in the Sun POS. A 178◦ inclination orbit with respect to the
Sun POS is 2◦ inclination retrograde or very nearly in the Sun POS. By targeting
to orbit elements evaluated on January 20, 1999, the effect of solar pressure on the
orbit elements was mitigated.

The first orbit correction maneuver (OCM) is placed at periapsis of the initial
transfer orbit. This maneuver is targeted to a periapsis radius of 200 km, apoapsis
radius of 400 km, and inclination of 177◦ in the Sun POS. OCM 2 is also performed
at periapsis using the same targeting strategy and circularizes the orbit at 200 km
radius.

After 9 days, which is about one revolution in the 200 km orbit, a transfer orbit
is computed to lower the spacecraft orbit to 100 km. At this time, the Sun POS
inclination is about 171◦. Recall that the Sun POS coordinate frame rotates as Eros
orbits about the Sun and the orbit plane tends to remain fixed with respect to inertial
space. In order to keep the spacecraft in the Sun POS, we must perform the orbit
circularization maneuver at 100 km in the Sun POS. This may be accomplished by
biasing the transfer orbit to a periapsis altitude of 84 km such that the spacecraft is
at 100 km radius when the spacecraft crosses the Sun POS. This little trick saves a
maneuver and the spacecraft orbit is circularized with another maneuver placed at
the point where the spacecraft crosses the Sun POS at 100 km. In order to maintain 1
week separation between maneuvers, the spacecraft remains in the 200 km by 84 km
transfer orbit for 2 and one half revolutions about Eros. The period of this transfer
orbit is 5 days.
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Fig. 3.23 Approach through 100 km orbit

3.5.6 Subsolar Overfly Through 50 km Orbit

An important science objective is to obtain infrared images of Eros at low phase
angle. In order to obtain these images, it is necessary to place the spacecraft in
an orbit that overflies the subsolar point. This may be accomplished by raising the
inclination in the Sun POS coordinate frame to 90◦. A convenient time to perform
this over flight is early in the mission from the 100 km orbit. After the subsolar
overfly, the spacecraft is parked in an elliptical transfer orbit for a week before
the orbit is circularized at 50 km radius. Figure 3.24 shows the projection of the
spacecraft trajectory in the Sun POS for the subsolar overfly through the initial
50 km circular orbit.

OCM 5 is targeted for overfly of the subsolar point. An orbit that flies over
the subsolar point will also fly over the point opposite from the subsolar point or
the anti-subsolar point. Therefore, if left in this overfly orbit, the spacecraft will
fly through the shadow of Eros and violate an important spacecraft constraint to
keep the solar panels illuminated. In order to avoid flying through the shadow and
maintain 1 week separation between maneuvers, the spacecraft is placed in an orbit
that flies over the subsolar point at a radius of about 150 km and continues out to an
apoapsis altitude of about 500 km. The apoapsis radius is selected to give an orbit
period of 2 weeks. After 1 week, at the point where the spacecraft crosses the Sun
POS, OCM 6 is targeted for an elliptical return trajectory in the Sun POS and at a
periapsis radius of 100 km. The periapsis radius of the return trajectory is selected
to be 100 km in order to avoid being on an impact trajectory should the maneuver
execution error associated with OCM 6 exceed the required accuracy. On return
to periapsis, the spacecraft is parked in a 170 km by 50 km elliptical orbit for 1
week. This orbit is a compromise that enables the circular 50 km orbit to return to
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Fig. 3.24 Subsolar overfly through 50 km orbit

the Sun POS and avoids some of the rapid precession of the nodes associated with
the 50 km orbit at this time. The spacecraft is then placed in a circular 50 km orbit
where it remains until the Eros spin vector comes into favorable alignment for an
equatorial orbit about Eros with a low inclination in the Sun POS. OCMs 6 through
9 are all targeted to radius of periapsis, radius of apoapsis, and inclination in the Sun
POS.

3.5.7 Transfer to Southern Illuminated 35 km Orbit

A major science objective of the NEAR mission is to obtain low altitude gamma
ray and x-ray spectrometer measurements of Eros. From a 35 km orbit, Eros fills
the field of view and long integration times are required to obtain the data needed
to characterize the composition of Eros. Figure 3.25 shows the projection of the
spacecraft orbit on the Sun POS for the transfer orbit from 50 Ian to 35 km and the
35 km orbit.

OCM 9 is targeted for an elliptic transfer orbit from the 50 km circular orbit to a
35 km circular orbit. The actual dimensions of the nominal transfer orbit is 54 km by
32 km. For these low orbits, the conic elements are osculating such that the actual
dimensions of the orbit vary in a complicated way. The dimensions of the orbit
are contained by targeting the energy and angular momentum. The orbit elements
periapsis and apoapsis radius are used to control energy and angular momentum.
The orbital distances and velocity are controlled implicitly by managing energy and
angular momentum. Even the energy and angular momentum are not conserved with
respect to the two-body motion of the spacecraft about Eros. The gravity harmonics



3.5 NEAR Orbit Phase Trajectory Design 151

Fig. 3.25 Transfer to southern illuminated 35 km orbit

act to exchange energy between the spacecraft orbit and Eros’s rotation. In some
cases, the gravity harmonics may act to eject the spacecraft from Eros orbit. The
spacecraft actually receives a gravity assist from the gravity harmonics and the
rotation of Eros. The basket weave appearance of the orbit shown in Fig. 3.25 is
caused by the rapid precession of the spacecraft orbit about Eros in inertial space
and not by some artifact of a rotating coordinate system. After one month in the
elliptic transfer orbit, the orbit is circularized at 35 km radius with OCM 10. For the
transfer orbit and 35 km circular orbit, the target parameters are radius of periapsis,
radius of apoapsis, and inclination in the Eros equatorial coordinate frame.

3.5.8 Active POS Control, Polar Orbits, and Plane Flip

The projection of the spacecraft orbit on the Sun POS for the period of active POS
control through the polar orbits and plane flip maneuver are shown in Fig. 3.26.

As Eros moves in its orbit about the Sun, the Eros equatorial plane rotates from
alignment with the Sun POS to being perpendicular to the Sun POS and back to
alignment. This rotation of the planes with respect to one another occurs because
the Eros spin axis remains fixed in inertial space while the Sun POS coordinate
frame slowly rotates with Eros in its orbit around the Sun. During the time of the
35 km equatorial orbits, these planes are nearly aligned. As they change to an angle
greater than about 30◦, it is no longer possible to stay in an Eros equatorial orbit and
at the same time satisfy the Sun constraint defined in the Sun POS. During the time
that the angle between these planes is about 30–60◦, the precession of the orbit about
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Fig. 3.26 Active POS control, polar orbits, and plane flip

the Eros equator causes the Sun constraint to be violated if left unattended. Active
POS control must be executed to prevent the Sun constraint from being violated.
Eventually, the angle between the planes approaches 90◦ and the spacecraft orbit
may be transferred to a polar orbit with respect to Eros and at the same time satisfy
the Sun constraint. In the polar orbit, the mission is once again interrupted for
another overfly of the subsolar point. During this overfly sequence of maneuvers,
the direction of the orbit in the Sun POS is reversed from retrograde to direct. This
sequence of maneuvers is referred to as the plane flip.

OCM 11 transfers the spacecraft from the 35 km circular orbit to a 55 km by
35 km elliptical transfer orbit. The apoapsis radius of 55 km is set in anticipation of
circularizing the orbit at 50 km and returning to the Sun POS. OCM 12 circularizes
the orbit a week later at 50 km and the plane of the orbit remains in the Eros
equatorial plane. A week later, the orbit plane is transferred to the Sun POS with
OCM 13 and the period of active plane of sky control begins. Precession of the line
of nodes with respect to Eros equator causes a break in the longitude of ascending
node and a gradual increase in inclination as observed in the Sun POS. One week
later or at the time the inclination reaches 30◦, a maneuver is performed to flip the
line of nodes in the Sun POS by 180◦. The target parameters for this maneuver are
periapsis radius, apoapsis radius, and the z component of velocity in the Sun POS.
Reversing the z component of velocity is a device to flip the line of nodes 180◦.
This strategy will result in the inclination with respect to the Sun POS decreasing
from 30◦ to 0◦ and then increasing again to 30◦ as the node precesses with respect
to the Eros equatorial plane. This strategy is repeated several times through OCM
17 where the plane flip maneuver sequence is executed. The strategy for the plane
flip sequence is the same as executed previously for the subsolar point overfly only
the spacecraft returns in a direct orbit. After the plane flip sequence is completed,
the spacecraft returns to a polar orbit about Eros.



3.6 Summary 153

60

40

20

0

–20

–20 20 40 60 800

–40

–40
–60

–60–80

Fig. 3.27 Northern illuminated 50 km and 35 km orbits

3.5.9 Northern Illuminated 50 km and 35 km Orbits

Following the polar orbits, the spacecraft is placed in a 50 km by 45 km orbit for
several weeks and active POS control is performed to keep the spacecraft from
violating the Sun constraint. The targeting strategy is the same as used previously.
When the north pole of Eros comes within 30◦ of alignment with the Sun direction, a
transfer to a 35 km equatorial orbit is executed. The spacecraft remains in the 35 km
circular orbit until the end of the mission. The projection of the spacecraft orbit into
the Sun POS for these orbits is illustrated in Fig. 3.27.

3.6 Summary

The objective of the design of a spacecraft trajectory is to determine the initial state
that will result in satisfying navigation and mission design constraints when the
trajectory is integrated to the end of the mission. With experience, the spacecraft
initial state can sometimes be guessed and a search conducted to satisfy constraints.
In space, the spacecraft motion is usually dominated by the acceleration from the
most massive nearby body. This motion was determined by Kepler and is either
an ellipse or a hyperbola. Therefore, a very good approximation to the desired
trajectory may generally be obtained by patching together the conic solutions with
respect to the planet or satellite that is dominant. This is referred to as a two-body
solution.

When the spacecraft is in a region of space where the gravitational accelerations
from two nearby bodies are nearly equal, such as the Earth and Moon, it is more
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difficult to patch together two-body conic trajectories. These trajectories are referred
to as three-body or restricted three-body if one of the bodies has very little mass.
Another example of three-body motion is gravity assist trajectories where the three
bodies are the sun, a planet, and the spacecraft. If the time the spacecraft is in limbo
between two massive bodies is short, a reasonably accurate initial orbit may be
obtained by patching two-body conics together. By extension, a four-body trajectory
involves a spacecraft and three bodies with nearly equal gravitational accelerations.
The best example is the Sun, Earth, Moon, and spacecraft orbit that was used to
navigate the Hiten, Genesis, and other spacecraft from the Earth to Lunar orbit.
Four-body trajectories can be obtained by patching together three-body orbits.

Perhaps, the easiest trajectories to design are orbits about planets, asteroids, or
satellites of planets. The orbits are easy to design, but satisfying all the mission
constraints can result in a lot of complicated maneuvering. The solution is to just
stay in orbit a long time until everybody gets the data they want. The Viking and
NEAR missions are a good examples of this design process.

Exercises

3.1 For a hyperbolic orbit, the argument F in Kepler’s equation can be computed
by F = ln(sinh(F ) + cosh(F )) for positive F and F = − ln(cosh(F ) − sinh(F ))

for negative F. Why are two formulas, which are mathematically the same, needed.

3.2 The flight path angle (γ ) is defined as the angle between the velocity vector and
the local horizontal plane. Derive the flight path angle for a spacecraft in an elliptical
orbit.

3.3 When a spacecraft flies by a target body, errors in the trajectory are amplified by
the target body and are corrected by a maneuver performed shortly after encounter.
An error in energy after the encounter is particularly troublesome. The energy error
is directly related to the error in the magnitude of the B vector (Δb). Show that the
ΔV correction is given by

ΔV = 2V 3∞ GM

GM2 + b2 V 4∞
Δb

3.4 Show that the following identity (Eq. 3.38) is true by making use of Eq. (3.8).

p

(
r1 + r2

r1r2

)
= 2 + 2e cos

(
η2 + η1

2

)
cos

(
η2 − η1

2

)

3.5 Show that the following identity (Eq. 3.39) is true.
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3.6 Determine an equation for the lag angle required for a Hohmann transfer and
then compute the time between launch opportunities for an Earth–Mars transfer.

3.7 In Eq. (3.57) and Eq. (3.58), show that

ω2x′2 + ω2y′2 = 2ω(xẏ − yẋ)
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Chapter 4
Trajectory Optimization

Navigation operations require the refinement of the design trajectory to obtain a
high-precision trajectory for flight path control and science operations. The pre-
liminary trajectory design often involves approximate solutions of boundary value
problems that provide sufficient accuracy for mission design but are not accurate
enough for flight operations. The final precision trajectory is obtained by driving
a high-precision trajectory model with targeting and optimization algorithms that
yield the final high-precision solution. The preliminary trajectory design provides
an initial guess for starting the targeting algorithm. With experience, the preliminary
design may sometimes be omitted and the trajectory design obtained directly by
targeting.

Targeting algorithms can be separated into two classes: those that involve the
solution of a two-point boundary value problem with no optimization and those that
target a reduced set of parameters and optimize some performance criterion such
as fuel expenditure. The former is sometimes called shooting and the solution is
obtained by first computing the partial derivatives of the target parameters with
respect to the initial condition or control parameters. These partial derivatives
are used to compute a correction to the initial condition and control parameters
iteratively using the Newton–Raphson technique. The latter type of algorithm is
called an optimizer and performs a similar search for a solution that achieves the
target and minimizes a performance criterion.

4.1 Parameter Optimization

When properly formulated, an optimizer may be used to solve a wide variety of
problems that extend far beyond navigation of spacecraft. For example, problems
of the calculus of variations may be solved with an optimizer by parameterizing the
solution and solving for the parameters. Consider the problem of finding the shape of
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a wire, strung between two points, that a bead will slide down in minimum time. This
problem is called the brachistochrone problem and was first posed by John Bernoulli
in 1697. The shape of the wire may be represented by a polynomial, and the problem
converted to a parameter optimization problem where the independent parameters
are the coefficients of the polynomial. The problem in trajectory optimization of
finding the optimum programmed thrust direction for a rocket may be solved in a
similar fashion.

An optimization algorithm is described that solves the problem of constrained
optimization by the method of explicit functions. This method was originally
devised to minimize propellant expenditure for the Viking mission to Mars.
Additional arbitrary constraint functions are adjoined to the given equations of
constraint to completely span the space of the independent parameters. The
search is performed on the arbitrary constraint parameters to obtain the values of
these parameters that minimizes the performance criterion. First derivatives of the
constraint functions with respect to the independent parameters are used to drive the
dependent constraint variables or target variables to satisfy the desired constraints,
and second partial derivatives of the minimization criterion with respect to the same
independent parameters are used to drive the optimization condition to zero. The
search is referred to as a second-order gradient search.

The partial derivatives that are required by the optimization algorithm may
be obtained analytically or by finite difference. Analytic partial derivatives are
often not pursued because of the difficulty in obtaining the partial derivatives,
particularly the second derivatives. A problem with exact second derivative finite
difference equations is the large number of function evaluations that are required to
compute the derivatives for one iteration. These grow as the square of the number of
parameters. Approximate techniques may be used to accelerate the computation of
the second derivatives, and a method along the lines suggested by Fletcher-Powell-
Davidon was investigated. However, these acceleration techniques generally work
well only for the problems they were designed to solve and require modification for
specific problems making parameter optimization more of an art than a science.

Because of nonlinearity and ill-conditioned problems, a second order gradient
search will often diverge. An algorithm is developed to enable inequality constraints
to control the search for a solution. Constraining the dependent target variables to
an interval permits the optimization algorithm to find a minimum solution within
the interval and prevents the search from diverging to a local maximum or inflection
point outside the interval.

4.2 Statement of Problem

A performance index (J ) is defined that is a function of N independent variables
(U). We also have M equations of constraint (M < N ) that define the target
variables (ZC), and the equations of constraint are also functions of U. Thus we
have,
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J = f (U) (4.1)

ZC = g(U) (4.2)

and

J = f (U1, U2, U3, . . . UN)

ZC1 = g1(U1, U2, U3, . . . UN)

ZC2 = g2(U1, U2, U3, . . . UN)

· · ·
ZCM = gM(U1, U2, U3, . . . UN)

The problem is to find a U∗ such that

ZC(U∗) = C (4.3)

where C are constant target parameters and J is a minimum for all U subject to the
constraint C.

4.3 Condition for Optimum Solution

A simple method, in principal, for solving the problem of constrained optimization
is to solve the equations of constraint (g) for a selected subset of the independent
parameters (UC) and substitute these expressions into the objective function (f ),
thus reducing the number of unknowns from N to N − M where M is the number
of constraint functions. The partial derivative of J with respect to the remaining
independent parameters is obtained and set equal to zero. These equations are solved
in conjunction with the equations of constraint. The selection of which independent
control parameters to include in UC is arbitrary. However, the choice may have some
effect on performance when a numerical solution is sought.

The method of explicit functions carries this concept a step further. In place of the
arbitrary selection of control parameters, additional arbitrary constraint functions
(ZF ) are defined to bring the total number of Z parameters to N. The ZF functions
are not completely arbitrary in that a one to one mapping must exist between U
and Z. At the solution point, any change in U holding ZC constant will increase
J . Since a one to one mapping must exist, any unique change in ZF holding ZC

constant will cause a unique change in U holding ZC constant and consequently
increase J . Mathematically, the partial derivative of J with respect to ZF holding
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ZC constant being set equal to zero is a necessary and sufficient condition for a
stationary point which is a minimum if J is properly defined and ZC is properly
constrained. The performance criterion and augmented equations of constraint are
given by,

J = f (U1, U2, U3, . . . UN)

ZC1 = g1(U1, U2, U3, . . . UN)

ZC2 = g2(U1, U2, U3, . . . UN)

· · ·
ZCM = gM(U1, U2, U3, . . . UN)

· · ·
ZF N = gN(U1, U2, U3, . . . UN)

and the solution is obtained by solving

ZC = C (4.4)

∂J

∂ZF

= 0 (4.5)

Observe that the above solution reduces to direct elimination if ZF is taken to be
identically equal to a subset of U of dimension N minus M.

Because of the difficulty in obtaining the inverse functions analytically, direct
solution of the above equations is only practical for relatively simple systems of
equations. For complex systems, solutions may be obtained by searching using
Newton’s method. The theory behind techniques currently in use such as Lagrange
multipliers and gradient projection follow directly from the method of explicit
functions.

The method of explicit functions involves adjoining to the equations of constraint
some additional equations that define the parameters ZF . The ZF parameters replace
the independent parameters selected by the method of direct elimination for the
purpose of minimizing J . An equation that relates the optimization condition to the
independent control parameters, equations of constraint, and performance criterion
may be obtained by application of the chain rule.

∂J

∂U
= ∂J

∂Z
∂Z
∂U

(4.6)

The partial derivatives of Z with respect to the independent parameters U are
contained in a square matrix of dimension N by N. The partial derivatives of J with
respect to U and Z are row matrices also of dimension N. Partitioning the above
matrices separating the ZC dependent elements from the ZF dependent elements
yields,



4.3 Condition for Optimum Solution 161

[
∂J

∂U

]
=

[
∂J

∂ZC

∂J

∂ZF

]⎡
⎢⎣

∂ZC

∂U
∂ZF

∂U

⎤
⎥⎦ (4.7)

The above partitioned matrices may be factored to further separate those submatri-
ces dependent on ZC from those dependent on ZF and after rearranging terms the
following equation is obtained.

∂J

∂U
− ∂J

∂ZC

∂ZC

∂U
= ∂J

∂ZF

∂ZF

∂U
(4.8)

Equation (4.8) provides a fundamental relationship that may be used to tie together
various methods of constrained parameter optimization including the methods of
Lagrange multipliers, gradient projection, and explicit functions. Comparison of
these methods provides insight into which approach may work best depending on
the problem.

4.3.1 Lagrange Multipliers

The classic solution of constrained parameter optimization was derived by the
eighteenth-century mathematician Joseph Luis Lagrange. This solution is particu-
larly appealing since a choice of independent parameters is not necessary. Referring
to Eq. (4.8), at the solution point the right side is zero because the partial derivative
of J with respect to the ZF must be zero as required by Eq. (4.5).

∂J

∂U
− ∂J

∂ZC

∂ZC

∂U
= 0 (4.9)

The terms of Eq. (4.9) may be readily obtained from the equations of constraint and
the equation for the performance index with the exception of the partial derivative of
J with respect to the ZC . Lagrange’s insight was to make the elements of this term
parameters to be solved for in conjunction with the equations of constraint. These
parameters are called Lagrange multipliers and are defined by

λ = − ∂J

∂ZC

(4.10)

The sign of the Lagrange multipliers is arbitrary and it may be conjectured that
Lagrange selected the minus sign for convenience. He was certainly aware of
Eq. (4.8) but apparently did not consider the right side important since the computer
had not been invented in his time. The equations that must be solved to obtain an
optimum are thus,
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ZC = C (M equations) (4.11)

∂J

∂U
+ λ

∂ZC

∂U
= 0 (N equations) (4.12)

The method of Lagrange multipliers requires the solution of M+N equations
for N U parameters and M Lagrange multipliers. This method is well suited for
obtaining analytic solutions since the equations of constraint need not be solved for
the independent U parameters as a function of the Z parameters. However, the need
to solve for the Lagrange multipliers makes numerical solutions more complicated
than necessary.

4.3.2 Explicit Functions

The methods of explicit functions and gradient projection use the right side of
Eq. (4.8) to obtain a solution and thus avoid the need to solve for Lagrange
multipliers. The method of explicit functions requires an equation for the partial
derivative of J with respect to ZF . Application of the chain rule gives,

∂J

∂Z
= ∂J

∂U
∂U
∂Z

(4.13)

The partial derivatives of U with respect to the dependent target parameters Z are
obtained by matrix inversion.

[
∂J

∂ZC

∂J
∂ZF

]
=

[
∂J

∂U

]⎡
⎢⎣

∂ZC

∂U
∂ZF

∂U

⎤
⎥⎦

−1

(4.14)

where

∂U
∂Z

=
[

∂Z
∂U

]−1

=
⎡
⎢⎣

∂ZC

∂U
∂ZF

∂U

⎤
⎥⎦

−1

The equations that must be solved to obtain an optimum are the equations of
constraint and the last N − M columns of Eq. (4.14).

ZC = C (M equations) (4.15)

∂J

∂ZF

= 0 (N − M equations) (4.16)
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The method of explicit functions requires the solution of N equations for N control
parameters U. This algorithm is well suited for obtaining numerical solutions on
a computer but not for analytic solutions since it involves matrix inversion of a
matrix with analytic functions for elements. Observe that the Lagrange multipliers
are obtained as a by-product of Eq. (4.14) (the first M columns).

4.3.3 Gradient Projection

The method of gradient projection is a special case of the method of explicit
functions. The independent parameters are partitioned into what are referred to as
state parameters (UC) and decision parameters (UF ). The choice between which
independent parameters to designate as decision parameters is not unique. The
distinction between state and decision parameters is generally only a matter of
convenience. However, the decision parameters must determine the state parameters
through the constraint relations. Expanding Eq. (4.14), separating the UC dependent
elements from the UF dependent elements, yields,

[
∂J

∂ZC

∂J

∂ZF

]
=

[
∂J

∂UC

∂J

∂UF

]⎡
⎢⎣

∂ZC

∂UC

∂ZC

∂UF
∂ZF

∂UC

∂ZF

∂UF

⎤
⎥⎦

−1

(4.17)

The ZF constraint relationships have yet to be specified. Depending on the choice of
which U are included in UF , some reordering of the rows and columns of Eq. (4.17)
may be necessary. Since the selection of the ZF equations of constraint is arbitrary,
ZF may be made identically equal to UF . Equation (4.17) then reduces to,

[
∂J

∂ZC

∂J

∂ZF

]
=

[
∂J

∂UC

∂J

∂UF

]⎡
⎣ ∂ZC

∂UC

∂ZC

∂UF

0 I

⎤
⎦

−1

(4.18)

Performing the indicated matrix inversion yields,

[
∂J

∂ZC

∂J

∂ZF

]
=

[
∂J

∂UC

∂J

∂UF

]⎡
⎣ ∂ZC

∂UC

−1

− ∂ZC

∂UC

−1 ∂ZC

∂UF

0 I

⎤
⎦ (4.19)

and

∂J

∂ZF

= ∂J

∂UF

− ∂J

∂UC

∂ZC

∂UC

−1 ∂ZC

∂UF

= 0 (4.20)
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Equation (4.20) is solved in conjunction with the equation of constraint to obtain an
optimum as is done for the method of explicit functions. Observe that the Lagrange
multipliers are obtained as a by-product from both the method of explicit functions
and gradient projection.

λ = − ∂J

∂ZC

= − ∂J

∂UC

∂ZC

∂UC

−1

(4.21)

Even though the Lagrange multipliers do no enter into the optimal solution, they are
useful for determining which bound is appropriate for inequality constraints.

4.4 Sample Problem

A sample problem is solved to illustrate the various methods of constrained
parameter optimization. Consider an ellipse with semi-major axis a and semi-
minor axis b oriented along the coordinate axes. The problem is to find the greatest
rectangle with sides parallel to the coordinate axes that will fit inside the ellipse. The
geometry is illustrated in Fig. 4.1. The equation of constraint describes an ellipse and
the performance criterion is the area of the rectangle. The area in the first quadrant
is multiplied by four and assigned a minus sign since we are seeking a maximum.

Zc = U2
1

a2 + U2
2

b2 = C = 1 (4.22)

J = −4U1U2 (4.23)

U2

U1

U1

(U1U2)

2 2
Zc =

U2 = C = 1+
a2

b

2

a

b

b2

2
a

J = –4U1U2

Fig. 4.1 Sample problem
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4.4.1 Solution by Method of Lagrange Multipliers

The method of Lagrange multipliers requires a solution of Eq. (4.12) in conjunction
with the equation of constraint (Eq. 4.22). For the sample problem

∂J

∂U
= [−4U2 −4U1

]
(4.24)

∂ZC

∂U
=

[
2U1

a2

2U2

b2

]
(4.25)

Substituting into Eq. (4.12) gives the following two equations:

−4U2 + λ
2U1

a2 = 0 (4.26)

−4U1 + λ
2U2

b2
= 0 (4.27)

which may be solved in conjunction with the equation of constraint (Eq. 4.22) to

obtain the solution, U1 = a√
2

, U2 = b√
2

and λ = 2ab.

4.4.2 Solution by Method of Explicit Functions

The method of explicit functions requires a solution of Eq. (4.14) in conjunction
with the equation of constraint (Eq. 4.22). Since there are two independent param-
eters, an additional equation of constraint is needed to square up the system of
equations. For numerical solutions, a good choice is a function that is nearly normal
to the constraint function. A hyperbola is selected for ZF .

ZF = U2
1

c2
− U2

2

d2
(4.28)

For the sample problem, the terms of Eq. (4.14) are given by,

⎡
⎢⎣

∂ZC

∂U
∂ZF

∂U

⎤
⎥⎦ =

⎡
⎢⎣

2U1

a2

2U2

b2

2U1

c2 −2U2

d2

⎤
⎥⎦ (4.29)

The required matrix inverse is
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⎡
⎢⎣

∂ZC

∂U
∂ZF

∂U

⎤
⎥⎦

−1

= 1

4U1U2

(
a2b2c2d2

a2d2 + b2c2

)⎡
⎢⎣

2U2

d2

2U2

b2

2U1

c2

−2U1

a2

⎤
⎥⎦ (4.30)

Substituting Eqs. (4.24) and (4.30) into Eq. (4.14) yields,

[
∂J

∂ZC

∂J

∂ZF

]
= −1

4U1U2

(
a2b2c2d2

a2d2 + b2c2

)[
8d2U2

1 + 8c2U2
2

c2d2

8a2U2
2 − 8b2U2

1

a2b2

]

(4.31)

The equation

8U2
2

b2
− 8U2

1

a2
= 0 (4.32)

is solved in conjunction with Eq. (4.22) to obtain U1 = a√
2

and U2 = b√
2

. The

Lagrange multiplier, obtained from the first column of Eq. (4.31), is λ = 2ab.
Observe that at the solution point, the constants c and d completely cancel from
the solution, as expected, verifying that Eq. (4.28) is arbitrary.

4.4.3 Solution by Method of Gradient Projection

The method of gradient projection requires a solution of Eq. (4.21) in conjunction
with Eq. (4.22). For the sample problem, U1 is selected for UC and U2 for UF .
Because of symmetry, the selection of which independent parameter is a “state”
parameter and which is a “decision” parameter is arbitrary.

∂J

∂UC

= −4U2 (4.33)

∂J

∂UF

= −4U1 (4.34)

∂ZC

∂UC

= 2U1

a2 (4.35)

∂ZC

∂UF

= 2U2

b2
(4.36)

Substituting the above equations into Eq. (4.21) yields
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[−4U1] − [−4U2]
[

a2

2U1

] [
2U2

b2

]
= 0

−4U2
1 b2 + 4U2

2 a2 = 0 (4.37)

which is solved in conjunction with Eq. (4.22) to obtain U1 = a√
2

and U2 = b√
2

.

The Lagrange multiplier, which is also obtained as a by-product, is given by
substituting into Eq. (4.21).

λ = −[−4U2]
[

2U1

a2

]−1

= 2ab (4.38)

4.5 Second-Order Gradient Search

Parameter optimization problems with constraints, where the dependent parameters
are obtained by numerical integration, are difficult if not impossible to solve
analytically. Numerical solutions may be obtained by searching using an iterative
technique like Newton’s method. For the explicit method, the equations that need to
be solved are

ZC = C (M equations) (4.39)

and from the last N − M columns of

[
∂J

∂ZC

∂J

∂ZF

]
=

[
∂J

∂U

]⎡
⎢⎣

∂ZC

∂U
∂ZF

∂U

⎤
⎥⎦

−1

(4.40)

the following equation is extracted:

∂J

∂ZF

= 0 (N − M equations) (4.41)

From the definition of the derivative, the following difference equations may be
written:

�ZC = ∂ZC

∂U
�U (4.42)

�
∂J

∂ZF

= ∂2J

∂U∂ZF

�U (4.43)
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The search for a solution involves finding a change in the independent control
parameters that will move the current values of the constraint parameters and
optimization condition to their desired values. The desired changes in the constraint
parameters and optimization condition are given by

�Zi
C = C − Zi

C (4.44)

�
∂J i

∂ZF

= 0 − ∂J i

∂ZF

(4.45)

corresponding to a change in the control parameters from Ui to Ui+1,

�U = Ui+1 − Ui (4.46)

Solving for Ui+1, an iterative equation is obtained for the ith iteration.

Ui+1 = Ui −
⎡
⎢⎣

∂ZC

∂U
∂2J

∂U∂ZF

⎤
⎥⎦

−1 ⎡
⎣Zi

C − C
∂J i

∂ZF

⎤
⎦ (4.47)

The partial derivatives required by the second-order gradient search are obtained
by finite difference. Computation of these finite difference partial derivatives
requires repeated evaluation of the functions f and g for the performance index
and constraint parameters at each iteration.

∂J

∂Ui

= f (U + �Ui ) − f (U − �Ui )

2�Ui

(4.48)

The �Ui vector is zero except for the ith element that contains the partial derivative
step size. �Ui is the ith element of �Ui . The partial derivatives of the constraint
parameters with respect to the independent control parameters are given by

∂Zj

∂Ui

= gj (U + �Ui ) − gj (U − �Ui )

2�Ui

(4.49)

The matrix of second partial derivatives in Eq. (4.47) is a mixed tensor that is covari-
ant in U and contravariant in Z. It serves the same purpose as the covariant Hessian
in optimization theory and may be a Hessian depending on the definition. The
Hessian matrix was developed by the nineteenth-century mathematician Ludwig
Otto Hesse. The elements of the required matrix of second partial derivatives are
given by

∂2J

∂Uj∂Zi

= 1

2�Uj

{ [f (U + �Uj + �Ui ) − f (U + �Uj − �Ui )]
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[gi (U + �Uj + �Ui ) − gi (U + �Uj − �Ui )]−1

− [ f (U − �Uj + �Ui ) − f (U − �Uj − �Ui )]
[gi (U − �Uj + �Ui ) − gi (U − �Uj − �Ui )]−1} (4.50)

The partial step size for the first partial derivatives should be as small as possible
to achieve linearity but large enough, relative to the machine precision, to maintain
accuracy. The partial step size for the second partial derivatives (�Uj ) should be
about 5–10 times larger than the corresponding (�Ui). The computation of the
second partial derivatives (Eq. 4.50) will require 4N2 evaluations of the performance
index and constraint functions. For six control parameters, 144 function evaluations
are needed. Several methods have been explored to accelerate the computation
of the second partial derivatives. Since the optimization conditions are not a
function of the second partial derivatives, approximations may be used to speed
up the search without compromising accuracy. An approximation that worked well
for optimization of the Viking orbit insertion maneuver was to set all the terms
of Eq. (4.50) where i = j to zero. For this approximation, 2N + 1 function
evaluations are required. Another approach was suggested by Fletcher-Powell-
Davidon. The matrix of second partial derivatives is primed with an approximate
solution. Subsequent changes in the control parameters computed during the search
are used to estimate and thus improve the second partial derivative matrix. This
bootstrap approach can greatly speed up the search but may lead to instabilities if
the search is not properly controlled.

4.6 Inequality Constraints

Sometimes the constraint on a Z parameter is not a specific target value but a range
of values. In other situations, the second-order gradient search described above may
not converge to the desired minimum if the initial guess required to start the search is
too far from the solution but wander off toward a local maximum or inflection point.
For these reasons, it is often convenient to specify inequality constraints where the
Z are constrained to a specified range of values.

CLi ≤ Zi ≤ CU i (4.51)

An algorithm has been devised to transform the problem of optimization with
inequality constraints into the problem of optimization with equality constraints
described above. At any step in the iteration for a solution, the Zi parameters are
tested and sorted into the ZC category or ZF category. The algorithm is diagrammed
in Fig. 4.2.
The following conditions result in the Zi target variable being placed in the
constrained ZC category:
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Fig. 4.2 Inequality constraint status determination

(a) If CLi = CU i , Ci is set equal to CLi and Zi is a hard constraint
(b) If Zi > CU i , Ci is set equal to CU i and Zi is a soft constraint
(c) If Zi < CLi , Ci is set equal to CLi and Zi is a soft constraint

The following conditions result in the Zi target variable being placed in the
unconstrained ZF category:

(d) If CLi < Zi < CU i and the constraint is released
(e) If |Zi − CLi | < εb and ∂J

∂Zi
< 0 and the constraint is released

(f) If |Zi − CU i | < εb and ∂J
∂Zi

> 0 and the constraint is released

The following conditions result in convergence if true for all Zi .

(g) If |Zi − CLi | < εb and CLi = CU i , hard constraint
(h) If |Zi − CLi | < εb and ∂J

∂Zi
> 0, soft constraint

(i) If |Zi − CU i | < εb and ∂J
∂Zi

< 0, soft constraint

(j) If CLi < Zi < CU i and ∂J
∂Zi

< εp, a true minimum satisfying the constraints

A soft constraint applies to the current iteration and may be released as the search
progresses. A hard constraint is an equality constraint and applies throughout the
search. The tolerance εb is on the value of the constrained variable and the tolerance
εp is on the partial derivative of J with respect to Zi . The conditions for control
of the search and confirmation of a solution are lettered a-j and shown in Fig. 4.2.
There are three possible cases that each constraint variable may describe provided
the optimization problem has been properly defined and constrained. The constraint
variable may either be an increasing monotone across the constraint interval, achieve
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a minimum within the constraint interval, or be a decreasing monotone across
the constraint interval. If a maximum is sought, the sign of J is changed and the
algorithm searches for a minimum. These three cases are illustrated in Fig. 4.2. For
the first case, conditions (a) or (c) will select the lower bound and condition (f) will
release the constraint from the upper bound. At the solution point (g,h), the partial
derivative of J with respect to Zi , the negative of the Lagrange multiplier, indicates
that releasing the constraint will result in an increase in J . The solution is thus held
at the lower bound. For the second case, conditions e or f will release the constraint
from the lower and upper bounds, respectively and a minimum is obtained (d,j)
between the bounds. The third case is simply the mirror image of the first case.

4.7 Mission to Mercury

The MESSENGER spacecraft was launched on August 3, 2004, on a mission to
explore the planet Mercury. The trajectory reencountered the Earth a year after
launch, to obtain a gravity assist, and then proceeded on to several encounters with
Venus and Mercury before being inserted into Mercury orbit in 2011. The initial
injection error at Earth launch resulted in a 20 m/s under burn. Two Trajectory
Correction Maneuvers (TCMs) were scheduled to make up the energy deficit and
place the spacecraft on the proper trajectory. Two TCMs are necessary to achieve the
target: The first corrects the energy and the second corrects the orbit plane. Because
of the near 360◦ transfer, the first maneuver, which is performed shortly after launch,
is unable to correct the orbit plane. The second maneuver, which is performed
about three months after launch, is less efficient in correcting energy or flight time.
Since there are only two constraints that need to be satisfied related to the position
relative to the Earth at the second encounter and there are six maneuver components
available to control the trajectory, the remaining four degrees of freedom may be
used to minimize propellant expenditure.

The initial Earth launch injection conditions (X0) on August 3, 2004, are
propagated to the nominal time of Earth return on August 2, 2005. Two TCMs were
initially planned for August 18, 2004 and November 19, 2004. The spacecraft state
at Earth return is determined by numerical integration.

Xe = g1(t0, X0, t1, �V1, t2, �V2, te)

The maneuver velocity components, �V1 and �V2, are applied as finite burns at
the maneuver start times t1 and t2. At the end time (te), the Cartesian state vector is
transformed into hyperbolic orbit elements.

He = g2(Xe)

He = [B ·R, B ·T , tp, V∞, α∞, δ∞]
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The hyperbolic elements B ·R and B ·T (see Fig. 3.4) are the coordinates of the
approach asymptote in the target B-plane, tp is the time of closest approach, V∞ is
the approach hyperbolic velocity magnitude, and α∞ and δ∞ are the right ascension
and declination of the approach asymptote. The optimization problem is to find
the velocity change components of the two TCMs that will acquire the target and
eventually arrive at Mercury and minimize propellant consumption which is related
to the sum of the magnitudes of the maneuver velocity change associated with each
maneuver.

The optimization problem described above must first be cast into the framework
required by the optimization method being used. The following constraint variables,
constraint parameters, performance index, and control variables are defined:

ZC = [B ·R, B ·T ]
CC = [−14, 463.00 km,−17, 793.00 km]

J = |�V1| + |�V2|
U = [�V1x, �V1y, �V1z, �V2x, �V2y, �V2z]

The B-plane parameters are restored to their nominal prelaunch target values, and all
the other hyperbolic parameters at the second Earth flyby including flight time are
permitted to float. Experience has revealed that the flight time and approach velocity
errors are small enough to be corrected by subsequent maneuvers. For the method
of explicit functions, four additional equations of constraint (ZF ) must be defined.
A natural choice are the four hyperbolic parameters that are not constrained.

ZF = [tp, V∞, α∞, δ∞]

A problem with this choice for ZF is the sensitivity of the first maneuver
to parameters defined after the second maneuver. The first maneuver must be
determined through the second maneuver. For this reason, a preliminary search is
conducted with ZF defined by tp and the three velocity components of the second
maneuver rotated to along track, cross track, and out of plane components. The
inplane velocity components for the second maneuver are constrained to zero, and
a solution is obtained that is within 5 m/s of optimum.

The initial guess is input to initialize the optimizer which uses the method of
explicit functions. The results after each iteration are given in Table 4.1.
The search algorithm attempts to drive the constraint variables to their desired values
at the same time the performance index is being driven to a minimum value. At
iteration 2, for example, a substantial reduction in J is achieved at the expense of
driving the constraint variables away from their desired values. At iteration 4, a
slight increase in performance index is obtained as the constraint variables nearly
achieve their objective. From iteration 5 through 9, convergence is achieved as the
optimization algorithm drives the optimization conditions to smaller values. The
solution achieves an optimum within 0.1 mm/s before machine precision prohibits
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any further reduction. The velocity components of the two maneuvers in the Earth
mean equator of J2000 are

�V1 = [12.186085,−13.684292,−8.4862428] m/s

�V2 = [3.6276212,−3.4959270, 1.7057893] m/s

The first maneuver was a bit large for the maneuver system that had not been tested
in space and was delayed until August 24, 2004, and only about 80% of the required
velocity change was executed at this time. A small makeup maneuver was executed
on September 24, 2004. The maneuver scheduled for November 19, 2004, was
executed as planned.

The same problem may be solved by the method of gradient projection. This
method requires an awkward choice of which independent parameters are “state”
parameters and which are “decision” parameters. A choice of four UF parameters
must be made from two sets of maneuver parameters each of dimension three. The
following arbitrary partition of maneuver velocity components into the categories
required by gradient projection was used for the search:

UC = [�V1x, �V1y] (4.52)

UF = [�V1z, �V2x, �V2y, �V2z] (4.53)

The gradient projection search algorithm was implemented by making ZF equal
to UF and using the same explicit function algorithm as above. The search was
started with the maneuver velocity components set to zero, and the results after each
iteration are given in Table 4.2. The first iteration moved the target variables from
about 2 million km to within 20,000 km of the desired target. By the third iteration
the target variables were within 200 km of their desired value and the performance
index was within 1 m/s of optimum. Iterations 4–8 were within the linear region of
the second partial derivatives, and quadratic convergence is observed. The indication
of quadratic convergence is an order of magnitude reduction in the optimization
condition after each iteration until the machine precision limit is reached.

4.8 Multiple Encounter Optimization

For the problem of multiple encounter trajectory design, the independent control
parameters are the components of propulsive maneuvers strategically placed along
the flight path to enable the spacecraft to attain the target body. The candidate
constraint variables are simply the position or some simple function of the position
of the spacecraft with respect to the various bodies that the spacecraft encounters
or some simple function of the independent parameters such as the magnitude or
direction of propulsive maneuvers. For a typical trajectory design problem, the
constraint variables may be the two components of the position vector in the final
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target body B-plane, the time of closest approach to the final target body and the
altitude of closest approach at some of the intervening bodies. The performance
criterion is the sum of the magnitudes of the propulsive maneuvers. At least two
propulsive maneuvers are placed between each encounter en route to the target body.
For example, a multiple encounter mission to Mercury that is launched from Earth
and encounters the Earth one additional time, Venus two times, and Mercury three
times before arriving at the fourth and final Mercury encounter would have 7 legs
with 14 propulsive maneuvers for a minimum total of 42 independent parameters.
The constraint variables are the target body B-plane parameters including time of
closest approach at the fourth Mercury encounter. This strategy was implemented
and a multiple encounter trajectory designed from Earth to Mercury. Since this
trajectory design is similar to the actual design of the MErcury Surface Space
ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury,
the results will be compared.

4.8.1 Multiple Encounter Strategy

Application of parameter optimization algorithms to the problem of multiple
planetary encounter trajectory optimization from Earth launch to the target planet
encounter is impractical. The number of independent parameters is excessive. For
a seven-encounter mission from Earth to Mercury with 18 propulsive maneuvers,
four more than the minimum required, the number of independent parameters is
54 corresponding to three velocity components for each maneuver. The number of
function evaluations per iteration required by the method of explicit functions is
four times the square of the number of parameters or 11,664. Other methods, such
as gradient projection, would probably not fair any better. Each function evaluation
involves integrating the trajectory from each propulsive maneuver to the final
planetary encounter. With current computer technology, the computer processing
time would be excessive. Another problem is even more insidious. The sensitivity of
a position perturbation at the target to a velocity perturbation near the Earth is about
1032 s. In order to successfully target maneuvers, the trajectory calculations would
need to be carried out in quadruple precision (116 bits). A velocity perturbation
of one Angstrom per 20 billon years at Earth launch would result in a 15 km
perturbation at the final planetary encounter.

The strategy for reducing sensitivity to velocity perturbations is to divide the
trajectory into several legs and then group the legs into segments for optimization.
A trajectory leg starts shortly after a planetary encounter and ends shortly after the
next planetary encounter. A trajectory segment consists of two successive trajectory
legs. For a given trajectory, the trajectory segments overlap and this results in the
number of trajectory segments being one less than the number of legs. This strategy
is illustrated on Fig. 4.3.

The ith leg is integrated from the initial time (toi) to the final time (tfi) and
the integration is stopped at each propulsive maneuver (tai, tbi, tci , · · · ) and at
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Segment 1

Segment 2

E  Earth
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M  Mercury
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Fig. 4.3 Definition of segments and legs
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∂Xf
∂xo

∂xo

Fig. 4.4 Trajectory leg schematic diagram

the nominal time of the planetary encounter (tei). The spacecraft states and partial
derivatives that are needed by the optimization algorithm are saved. This strategy
is schematically represented on Fig. 4.4. The trajectory optimization algorithm is
initialized with a preliminary design obtained by patching conic sections using Lam-
bert’s theorem and other design techniques including shooting. This preliminary
design fixes the time of the maneuvers and trajectory end points. The initial state
is obtained for each leg along with nominal values for the deterministic propulsive
maneuvers and planetary encounter aim points. At the conclusion of an optimization
iteration, the propulsive maneuver velocity components are updated along with
the time and aim points at each planetary encounter. Because of nonlinearity and
machine precision, the initial state and propulsive maneuvers result in the trajectory
missing the desired encounter conditions at the planetary encounter associated with
each leg. The intermediate planetary encounter times and aim points are needed to
shepherd the trajectory to the final planetary encounter.

For the ith trajectory leg, the initial state and propulsive maneuvers that occur
during the ith leg are input to a precision trajectory propagator and the trajectory
is integrated from toi to tfi . The spacecraft state at the planetary encounter of the
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ith leg will differ from the desired B-plane encounter conditions. A correction is
computed for one of the propulsive maneuvers in the ith leg to force the trajectory
through the desired position in the B-plane. The velocity error is left uncontrolled
and is permitted to accumulate. Restoring the position error will tend to also restore
the velocity error. Thus, if the first maneuver in the ith leg is selected,

�Vai =
[
∂Bpi

∂Vai

]−1

(Bti − Bpi) (4.54)

B is a column matrix containing B-plane parameters that are a simple transformation
of the spacecraft state at encounter into a two-body conic. Bpi contains the first three
elements of B corresponding to position, and Bti are the desired target values at the
ith encounter.

B = (B ·T ,B ·R, tp, V∞, α∞, δ∞)

B ·T and B ·R are the coordinates of the approach asymptote in the target plane
normal to the approach asymptote, tp is the time of periapsis passage, V∞ is the
magnitude of the approach velocity vector, and α∞ and δ∞ are the right ascension
and declination of the approach asymptote, respectively. There is a one to one
correspondence between the Cartesian state of the spacecraft and the B plane
parameters.

Bi (t) = f (Xei, μi, tei) (4.55)

where μ is the gravitational parameter of the ith planet and tei is the time of the
state vector Xei at the ith planetary encounter. The incremental velocity change
(�Vai) is added to Vai and the trajectory integrated again from toi to tfi . The
targeting calculations are repeated iteratively until the B-plane error is nulled to an
acceptable tolerance.

The 3×3 matrix of partial derivatives in Eq. (4.54) may be obtained from the first
three rows of the full state maneuver matrix that may be computed from the matrices
illustrated in Fig. 4.4.

[
∂Bi

∂Vai

]
=

[
∂Bi

∂Xei

] [
∂Xei

∂Xoi

] [
∂Xfi

∂Xoi

]−1 [
∂Xfi

∂Vai

]

The state at the end of the ith trajectory leg is used to initialize the state at the
beginning of the i+1th leg. Starting with the first leg and continuing to the final leg,
adjustments are made to the propulsive maneuvers that result in a smooth trajectory
from launch to the final encounter that passes through the desired aim point at
each planetary encounter with no position or velocity discontinuities. Since the
propulsive maneuvers are modeled as finite burns, there is no velocity discontinuity
associated with propulsive maneuvers.
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4.8.2 Trajectory Segment Optimization

The trajectory optimization algorithm refines the constraint parameters and reduces
the total �V required for propulsive maneuvers. This algorithm is applied iteratively
until no further decrease is obtained. Between each iteration, the trajectory must be
retargeted to remove position discontinuities introduced by nonlinearity. Because
of the sensitivity of state perturbations at the end of a trajectory leg to velocity
perturbations in the previous leg, it will be convenient to break the trajectory into
segments that span two successive trajectory legs as illustrated on Fig. 4.3. For a
given trajectory segment, the initial state of the first leg and final state of the second
leg are constrained to their current values and the only parameters that are permitted
to vary are those associated with the propulsive maneuvers that occur during the
segment and the planetary encounter of the first leg. Since the legs are defined such
that there are no propulsive maneuvers after the planetary encounter, constraining
the end state of the second leg is equivalent to constraining the planetary encounter
on the second leg.

The constrained parameter optimization algorithm requires as input target values
for the constraint parameters, nominal values for the control parameters and
constraint parameters along with their partial derivatives obtained by precision
numerical integration of the state and variational equations. In addition, tolerances
on finite difference partial step sizes and convergence tolerances are needed. A linear
correction to the control parameters is output that lowers the performance index and
holds the constraint parameters at their target values. This processing is repeated
for each trajectory segment starting with the first two legs and proceeding to the
final leg. At the completion of each segment, the encounter time and aim point for
the first leg in the segment must be updated. This update consists of mapping the
velocity change associated with propulsive maneuvers that occur during the first leg
of each segment to the first leg encounter.

�Bi = ∂Bi

∂Vai

�Vai + ∂Bi

∂Vbi

�Vbi + ∂Bi

∂Vci

�Vci + · · · (4.56)

The encounter time and aim point for the second encounter need not be updated
since they are constrained. The second encounter of a trajectory segment becomes
the first encounter of the next segment and is updated as part of the processing of that
segment. The updated control and encounter aim points are targeted as described
above to remove position discontinuities between the segments caused by nonlin-
earity. The targeting and optimization processing is repeated until convergence is
obtained.



180 4 Trajectory Optimization

4.8.3 Multiple Encounter Example

As an example, a seven-encounter trajectory from Earth to Mercury is targeted
to minimize propellant expenditure. This example is close to the MESSENGER
Mission trajectory. The major differences are in the trajectory propagator, and
initial conditions assumed. The initial state after launch is determined by processing
several weeks of Doppler and range tracking data, and the resulting optimum
trajectory includes removal of actual launch vehicle injection errors. The first leg is a
return to Earth trajectory, and the first segment includes the first encounter of Venus
leg. Subsequent legs are a return to Venus and four Mercury encounters. In order to
prevent the trajectory design from intersecting the surfaces of Venus and Mercury,
the second Venus encounter altitude is constrained to be no less than 300 km and the
first three Mercury encounter altitudes are constrained to be no less than 200 km.

The velocity change associated with each maneuver is shown in Table 4.3.
The initial solution was obtained from the MESSENGER prelaunch trajectory
design modified to remove the launch vehicle injection error. Because of minor
trajectory model errors, probably associated with solar pressure, the first iteration
diverges from the prelaunch reference trajectory and the total propulsive �V is
about 1187 m/s. The next four iterations reduce the �V by about 130 m/s resulting
primarily from optimizing allocation between maneuvers on the same leg. Some
�V is shifted from leg 2 to leg 4 by adjusting the encounter aim point and arrival
time at leg 3. The last four iterations refine the propellant allocation among the
maneuvers and achieve another 10 m/s reduction in �V .

The MESSENGER postlaunch trajectory design results are shown at the bottom
of Table 4.3. The total �V of 1042 m/s is 3 m/s less than obtained here. The �V

allocation to the individual legs may differ by 10–20 m/s. These differences may be
attributed to modeling errors and curvature of the performance index function near
the optimum solution. The performance index function is nearly flat at the solution
point. Large changes in the control parameters that satisfy the constraints result in
small changes in the performance index or �V . This behavior of the performance
index function makes it difficult to find the true minimum. However, it does not cost
much to be a little suboptimum.

4.9 Summary

Trajectory optimization performed for navigation involves searching for the initial
conditions and deterministic propulsive maneuvers that acquire the target, satisfy
mission constraints, and minimize some performance criterion such as fuel expen-
diture. Analytic solutions are only approximate because their does not exist a closed
form solution for the trajectory that is accurate enough. The method of Lagrange
multipliers, that is useful for an analytic solution, does not perform well when
incorporated into a numerical search algorithm. The methods of explicit functions or
gradient projection provide accurate numerical solutions. Since the solution does not
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depend on programming exact partial derivatives, finite difference partial derivatives
are computed for the search. This is fortunate because a new set of analytic partial
derivatives would have to be derived for every new problem. Once a solution is
obtained, the high- precision trajectory can verify optimality by systematically
perturbing the constraints.

A problem with trajectory optimization is the large number of function eval-
uations required when there are many constraint and control parameters. For the
MESSENGER mission, it was necessary to segment the trajectory into overlapping
segments and optimize each segment. The resulting segments had to be retargeted
a small amount after each iteration to remove position discontinuities caused by
nonlinearity. The segments also removed the extreme sensitivity of constraints to
the propulsive maneuvers.

Exercises

4.1 A cylindrical oil can is being manufactured and, for a given volume, the cost of
the steel is proportional to the surface area of the can if it is assumed to have uniform
thickness. The problem is to find the height and radius that minimize the amount
of steel. This problem can be formulated as a constrained parameter optimization
problem where U1 = r , the radius, and U2 = h, the height.

Zc = πU2
1 U2

J = V = 2πU2
1 + 2πU1U2

Using one of the optimization methods described in Sect. 4.4, determine the
optimum U1 and U2. If the method of explicit functions is selected and Zf =
πU1U

2
2 , the matrix inversion is simple and the solution is straightforward.

4.2 A sphere is inscribed inside the oil can of Exercise 4.1. Determine the ratio of
the volume of this sphere to the volume of the oil can. This problem was solved by
Archimedes and a cylinder and sphere were atop his tomb according to Cicero.

4.3 The Hessian matrix (
∂2J

∂U∂ZF

) which is used to obtain a minimum in a Newton–

Raphson search can be used to verify that a minimum has been obtained. For the
sample problem in Sect. 4.5, determine the Hessian and verify that it is positive
indicating a minimum.

4.4 For interplanetary maneuvers, the spacecraft is often targeted to B ·R and B ·T
and the time of flight is not corrected and permitted to float. The optimum maneuver
can be found by solving a constrained parameter optimization problem.

Zc = (B ·R,B ·T )
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Zf = tp

J = |�V|

This maneuver is called a critical plane maneuver and can be computed from the K
matrix defined by

[
∂B ·R, B ·T , tp

∂V

]

Determine the critical plane maneuver directly from the K matrix and the B-plane
miss.

4.5 A spacecraft that is approaching Mars is inserted directly into orbit with a
periapsis altitude of 1500 km and an orbit period of 24 h. The approach velocity
(V∞) is 2.54 km/s, GM is 42,828 km3/s2, and the radius of Mars is 3310 km. A
second spacecraft with the same approach velocity is inserted into an orbit with a
periapsis altitude of 1000 km and the same apoapsis radius as the first spacecraft.
A maneuver is executed at apoapsis to raise the periapsis altitude to 1500 km.
Assuming the orbit insertion maneuvers are impulsive, determine the total �v

required for each strategy. Which strategy is most fuel efficient?

4.6 Show that a Hohmann transfer between two circular orbits minimizes the launch
energy from the first orbit and the orbit insertion energy at the second orbit. The
minimum energy transfer orbit will be tangential at the second orbit and ra will
equal the radius of the second orbit. Crossing the second orbit requires more energy.
The problem is thus reduced to minimizing v with respect to the flight path angle γ

subject to the constraint that ra is the radius of the second orbit and r is the radius
of the first orbit where

v =
√

GM p

r cos γ

4.7 If γ happens to be zero in Exercise 4.6, minimizing v also minimizes the
velocity change since v and the orbital velocity are in the same direction. Compute
the launch energy from Earth for a mission to Mars and the orbit insertion energy
at Mars where re = 0.149 × 109 km, rm = 0.227 × 109 km, GM = 0.132 ×
1012 km3s−2
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Chapter 5
Probability and Statistics

Navigation of planetary spacecraft requires determining a nominal design trajectory
that obeys the laws of physics and has a high probability of achieving mission
success within the constraints of the mission objectives and the cost of the spacecraft
design and mission operations. It is relatively easy to design a trajectory that satisfies
all the physical laws but cannot be flown. For example, a trajectory describing the
path of a coin that is tossed on the floor and rolls to a stop remaining on its edge
is easy to design. However, the perturbations that the coin encounters as it rolls on
the floor almost guarantees that it will not remain on its edge. Spacecraft trajectory
design encounters this same problem in many forms. Statistical perturbations of the
trajectory along the flight path may result in failure to meet mission objectives if
not complete failure as in the case of the coin. Therefore, the trajectory designer
and navigator must give as much attention to the mathematics of probability and
statistics as to the laws of physics.

5.1 Normal Probability Distribution Function (PDF)

An arrow or unguided rocket would score a direct hit on the target provided they
were launched with the proper initial conditions and there were no perturbing
forces acting during transit. However, a body moving through the atmosphere will
encounter dust particles or random hits from gas molecules that will deflect it from
the target. If a large number of arrows or rockets are launched, a pattern emerges
for the distribution of the impacts around the target. It is the characterization of
this distribution that is of interest. Consider the case of a body that is launched and
encounters dust particles on the way to the target. Assume that the dust particles
deflect the body a fixed amount either to the right or to the left with equal probability.
The geometry is illustrated on Fig. 5.1. The first impact is identified by m = 0 and
the body moves an equal amount to the right or to the left. Both paths are shown
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Fig. 5.1 Pascal’s triangle

in Fig. 5.1. Each generation of impacts, corresponding to increasing values of m,
double the number of possible paths. At the end of m generations, there are 2m

possible paths. The number beside each of the nodes is the total number of paths
that pass through the node. Therefore, the probability that a path will pass through
a given node is the number beside the node divided by the total number of possible
paths since all paths are equally likely. The triangle illustrated on Fig. 5.1 is called
Pascal’s triangle, and the number of paths passing through each node is given by

p(m, k) =
(

m

k

)
(

m

k

)
= m!

(m − k)! k!

where k is the node numbered from the left starting at k = 0. For any given node of
Pascal’s triangle, the number is the sum of the two numbers immediately above.

(
m + 1
k + 1

)
=

(
m

k

)
+

(
m

k + 1

)

The rows of Pascal’s triangle are the coefficients of the binomial expansion. It
will be shown later that the mth row of Pascal’s triangle may be approximated by
the normal probability distribution function (PDF) given by

dP (x)

dx
= 1

σ
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠

(5.1)
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after x is properly scaled. In the limit as m goes to infinity, the approximation is
exact. The probability that x is in the interval from x1 to x2 is given by

P(x1, x2) =
∫ x2

x1

1

σ
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠
dx

and

∫ ∞

−∞
1

σ
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠
dx = 1

A convenient measure of the spread of a PDF is given by the second moment
about the y axis, which is the moment of inertia, and when applied to a PDF is
called the variance. The variance is simple to compute and has the property of
giving increased weight to the tails of the distribution just as the moment of inertia
gives more weight to mass that is further from the axis of rotation. The variance is
given by

V =
∫ ∞

−∞
x2 p(x)dx

Since the integral of the normal PDF from minus infinity to infinity is one, the
following is obtained after differentiating with respect to σ .

∫ ∞

−∞
x2

σ 4
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠
dx −

∫ ∞

−∞
1

σ 2
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠
dx = 0

After multiplying by σ 3, the variance is given by

V =
∫ ∞

−∞
x2

σ
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠
dx = σ 2

∫ ∞

−∞
1

σ
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠
dx = σ 2 (5.2)

The variance (σ 2) provides a measure of the error associated with a random variable
and the reciprocal provides a measure of the accuracy. Since the application of
variance is often in its minimization, the square or quadratic form is mathematically
convenient since the minimum of a function of σ 2 is also the minimum of a function
of σ . The simple result obtained for the variance was no accident but followed
directly from the scaling assumed in Eq. (5.1).
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5.2 n-Dimensional Normal PDF

The joint PDF of n independent normally distributed random variables
(y1, y2, . . . yn) is defined as the probability that y is in all of the intervals from
yi to yi + �yi . The PDF is obtained by multiplying together n normal PDFs.

p(y1, y2, . . . yn) = 1

(2π)
n
2 (σy1σy2σy3 . . . σyn)

exp

(
−1

2

n∑
i=1

y2
i

σ 2
yi

)

In matrix notation, the normal joint PDF becomes

p(Y ) = 1

(2π)
n
2 |A|− 1

2

exp

(
−1

2
YT AY

)
(5.3)

where

Y =

⎡
⎢⎢⎢⎣

σy1

σy2
...

σy1

⎤
⎥⎥⎥⎦

and

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
σ 2

y1
0 0 . . . 0

0 1
σ 2

y2
0 . . . 0

0 0 1
σ 2

y3
. . . 0

...
...

...
. . .

...

0 0 0 . . . 1
σ 2

y1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

If a new random variable X is defined that is a transformation or mapping of Y then

p(X) = 1

(2π)
n
2 |B|− 1

2

exp

(
−1

2
XT BX

)
(5.4)

where

X = R Y

B = RAR−1

The matrix B is called the information matrix and the inverse of B is called the
covariance matrix. Each diagonal element of B−1 is the variance of the associated
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random variable. The covariance matrix of the new multidimensional normal PDF
of the random variables X is given by

B−1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

σ 2
x1

ρ12σx1σx2 ρ13σx1σx3 . . . ρ1nσx1σx3

ρ21σx2σx1 σ 2
x2

ρ23σx2σx3 . . . ρ2nσx2σxn

ρ31σx3σx1 ρ32σx3σx2 σ 2
x3

. . . ρ3nσx3σxn

...
...

...
. . .

...

ρn1σxnσx1 ρn2σxnσx2 ρn3σxnσx3 . . . σ 2
xn

⎤
⎥⎥⎥⎥⎥⎥⎦

Given B−1, the mapping matrix R can be found by extracting the eigenvalues of
B−1. The matrix R is the matrix of eigenvectors, and the diagonal matrix A−1 has
the eigenvalues on the diagonal.

5.3 Bivariate Normal PDF

The multidimensional normal PDF for n = 2 is called the bivariate normal PDF. The
probability that x is in the interval from x1 to x1 + �x1 and in the interval from x2
to x2 +�x2 is the probability that x is in the region defined by these intervals. If we
assume that x1 and x2 are the Cartesian coordinates x and y, respectively, then the
bivariate PDF gives the probability density associated with areas in the x − y plane.
Let X and Y be joint normal random variables. The covariance and determinate of
B−1 are given by,

B−1 =
[

σ 2
x ρσxσy

ρσxσy σ 2
y

]

|B−1| = (1 − ρ2)σ 2
x σ 2

y

and

B = 1

1 − ρ2

[ 1
σ 2

x
− ρ

σxσy

− ρ
σxσy

1
σ 2

y

]

The bivariate normal PDF is thus given by

p(x, y) = 1

2πσxσy

√
1 − ρ2

exp

(
− 1

2(1 − ρ2)

[
x2

σ 2
x

− 2ρxy

σxσy

+ y2

σ 2
y

])
(5.5)

Contours of constant p(x, y) plotted in the x − y plane are ellipses given by
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x2

σ 2
x

− 2ρxy

σxσy

+ y2

σ 2
y

= C

where C is a constant. These ellipses have semi-major and semi-minor axes Cλ1 and
Cλ2, respectively, given by

λ2
1 = 1

2
(σ 2

x + σ 2
y ) +

√√√√(
σ 2

x − σ 2
y )

2

)2

+ ρ2σ 2
x σ 2

y

λ2
2 = 1

2
(σ 2

x + σ 2
y ) −

√√√√(
σ 2

x − σ 2
y )

2

)2

+ ρ2σ 2
x σ 2

y

The major axis of the error ellipse is inclined to the x axis at an angle (θ) given by

θ = 1

2
tan−1

(
2ρσxσy

σ 2
x − σ 2

y

)

It can be shown that the probability that the random variables (x, y) are inside the
error ellipse is

p(x, y) = 1 − e

−
⎛
⎝C2

2

⎞
⎠

For integer values of C the corresponding error ellipses are often referred to as the
C sigma error ellipses. Thus, the probability of X being in the one sigma or three
sigma error ellipse is 0.393 and 0.989, respectively.

An example of the application of the bivariate PDF to navigation was provided
by the Viking mission to Mars. The Viking lander was targeted to a landing site
defined by target coordinates xt and yt . Analysis of the accuracy of the orbit of
the Viking orbiter and the lander descent trajectory revealed a footprint centered
at the targeted landing site and oriented as shown schematically in Fig. 5.2. The
footprint is jargon for a bivariate PDF. Orbiter reconnaissance images of the landing
site region revealed a large crater just outside of the footprint. The crater is also
shown in Fig. 5.2 overlaid with a grid of rectangles of width �x and �y. The center
of each rectangle within the crater has coordinates (xi, yj ). The probability that
the lander will land in the crater is obtained by integrating the associated bivariate
PDF over the crater area. This integral, in the limit as �x and �y approach zero, is
given by

P =
∑

p(xi, yj )�x�y

The numerical integration revealed a probability of less than 10−5, and this was
judged to be small enough that the lander was not retargeted.
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Fig. 5.2 Lander footprint

target
(xt,yt)

xi, yj

footprint
(1s bivariate PDF)

crater

x

y

5.4 Rayleigh PDF

A special case of the bivariate PDF occurs when σx and σy are equal and x and y are
independent (ρ = 0). The resulting error ellipse is a circle and the PDF reduces to

p(x, y) = 1

2πσ 2
e

−
⎛
⎝x2 + y2

2σ 2

⎞
⎠

The probability of the random variable X being in the circle is obtained by
integrating the PDF over the circle. A change of variable to polar coordinates
simplifies the integration and

P(r, θ) = 1

2πσ 2

∫ 2π

0

∫ r

0
e

−
⎛
⎝ r2

2σ 2

⎞
⎠
rdrdθ

Performing the θ integration first,

P(r) = 1

σ 2

∫ r

0
e

−
⎛
⎝ r2

2σ 2

⎞
⎠
rdr

and the PDF associated with r is given by

p(r) = r

σ 2 e

−
⎛
⎝ r2

2σ 2

⎞
⎠
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and is called the Rayleigh PDF. The Rayleigh PDF has many applications in
probability and statistics. One application is in setting accuracy requirements for
armament such as artillery and rockets. Several rounds are fired, and a circle is
drawn around the target that encompasses the impacts of exactly half of the rounds.
This circle and its associated probability is called the Circular Error Probable in
military jargon or simply CEP. The probability of impact within the circle may be
obtained by carrying out the integration of the Rayleigh PDF with respect to r .

P(r) = 1 − e

−
⎛
⎝ r2

2σ 2

⎞
⎠

(5.6)

The probability of being in a circle of radius one sigma where the PDF is Rayleigh
is the same as being in a one sigma error ellipse where the PDF is bivariate. The
equivalence of these probabilities can be shown by an appropriate scaling of the x

and y axes of the bivariate PDF. For the CEP, where the probability is one half, the
corresponding error ellipse of the bivariate is at 1.17741 sigma.

5.5 Central Limit Theorem

The artifically contrived problem of an arrow or unguided rocket being deflected to
the left or to the right with equal probability is equivalent to the problem of flipping
a coin to decide the path to follow. An interesting result has been obtained. The sum
of many trials involving a probability distribution function that has only two states
of equal probability results in the normal distribution function. The central limit
theorem considers the problem of a sum drawn from a large number of probability
distribution functions of arbitrary distribution. The central limit theorem states,
in essence, that this sum also has a normal distribution. The proof is nontrivial
and involves some complex issues. However, the central limit theorem is of such
importance to probability and statistics that a simplified outline of this proof,
provided by Harry Lass, is given.

Consider an arbitrary probability density function of zero mean and variance σ .
The Fourier transform is obtained from the moment generating function and

Fx(ω) = 1 − σ 2ω2

2
+ K3ω

3 + K4ω
4 + . . .

The PDF of the sum of two samples drawn from Fx is obtained by evaluation of
the convolution integral associated with the probability distribution of each sample.
The convolution of probability density functions involves a double integral that
sums the probabilities associated with all the ways that two numbers can sum to
a third number. The Fourier transform of the convolved functions is simply the
product of the Fourier transform associated with each function. Therefore, the
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Fourier transform of the sum of n samples from Fx is obtained by raising Fx to
the nth power. As the number of convolutions approaches infinity, the variance of
the resulting probability distribution function will also approach infinity. In order
to bound the resulting variance, the variance of Fx must be scaled down and this is
accomplished by scaling the variable ω to ω√

n
. The scaling preserves the variance

without changing the shape of the probability distribution function. The Fourier
transform of the resulting probability distribution becomes,

Fy(ω) =
[

1 − σ 2ω2

2n
+ K(

ω√
n
)
ω3

n
3
2

]n

= f (n)n

Making use of the relationship

Fy = [f (n)]n = exp[n ln f (n)] = exp

(
ln f (n)

n−1

)

The limit of Fy , as n approaches infinity, is obtained by applying L’Hospital’s rule.

lim
n→∞ Fy = lim

n→∞ exp

⎡
⎢⎢⎣

σ 2ω2

2 n−2 − 3
2K( ω√

n
)ω3n− 5

2 − 1
2

∂K( ω√
n
)

∂( ω√
n
)

ω4n
−5
2

−n−2f (n)

⎤
⎥⎥⎦

lim
n→∞ Fy = exp

(−σ 2ω2

2

)

In the limit as n approaches infinity, the inverse Fourier transform of Fy is the normal
PDF.

5.6 Monte Carlo Methods

Navigation requirements are generally based on an analysis of various errors
that affect the determination and control of a spacecraft trajectory. The errors
in parameters that are of interest are generally expressed in the elements of the
covariance matrix associated with these parameters. Instrumentation and spacecraft
execution errors are evaluated to determine the covariance matrix that describes
the errors in design parameters such as closeness of the spacecraft to the target or
the amount of fuel that may be consumed in performing the mission. Conversely,
the desired maximum value for the errors in mission design parameters drives the
accuracy requirements on navigation instrumentation and spacecraft system design.

For a spacecraft approaching a planet or in a well-determined orbit, the covari-
ance matrix is often used to describe the errors of interest. Since the errors in
trajectory parameters in deep space far from a planetary body are small compared to
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the magnitude of the parameters being determined, the statistics tend to be normally
distributed owing to the central limit theorem. Also, for small perturbations from the
nominal value of these parameters, the design parameters are linear, the linear theory
that orbit determination is based on is validated, and the normal PDF associated with
the covariance matrix provides an excellent description of the error distribution.

As a spacecraft approaches a planetary body and is inserted into orbit or descends
from an orbit to land on a body, the errors in knowledge of trajectory grow and may
exceed the region where linear theory may be applied. The resulting probability
distribution is often distorted from the normal curve. Unfortunately, the probability
distribution of the spacecraft state on achieving orbit or at touchdown of a lander
is of considerable interest to trajectory design. The probability distribution may
be determined by application of a simple but powerful technique called Monte
Carlo mapping named after the gambling casinos of Monte Carlo. The Monte
Carlo technique consists of defining a mathematical model of the system being
investigated including all the error sources that affect the outcome and performing
a statistical analysis of the outcome of many executions of the mathematical model.

For application of the Monte Carlo method to navigation analysis, a precision
model of the spacecraft trajectory must be defined. This model involves numerical
integration of the equations of motion, including propulsive events, from initial
conditions determined, for example, on approach to a planetary body to final
conditions computed in orbit. The error sources include initial spacecraft state and
propulsion system execution errors. Error sources are described by their associated
PDF which is generally normal or uniform. A random number generator is used to
generate samples of the PDF associated with each error source. A separate random
number generator is required for each PDF and may not be readily available. Most
computers have a random number generator that will generate random numbers
between 0 and 1 that are uniformly distributed. One method for obtaining these
numbers might be to take the first 10 digits of pi and put a decimal point in front
of them. The next random number may be formed from the next 10 digits of pi.
The uniform random number generators for most computers are more sophisticated
than this simple example but using pi would suffice since the digits are random. The
normal PDF can be formed from uniform random numbers by use of the central limit
theorem. For example, 6 random numbers uniformly distributed between −1 and 1
are obtained and added together. Since the variance of a single sample is one third,
the PDF obtained by adding 6 samples has a variance of 2 and standard deviation√

2. The resultant PDF may be scaled to have unity variance by dividing each sum
of 6 samples by

√
2. The result is a PDF that approximates the normal PDF and is

bounded by plus and minus 3
√

2-sigma. Figure 5.3 shows a histogram with a bin
width of 0.05 generated from 2 million samples of this normal PDF approximation.
The normal PDF (dashed line) is also shown for comparison.

Random numbers generated from a normal PDF with a variance of one are
multiplied times the standard deviation of all the independent parameters that
contribute to the final result. Included in this set of independent parameters are
initial conditions and random parameters associated with propulsive events. The
trajectory is propagated from the initial condition to the final condition n times,
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Fig. 5.3 Histogram of normal approximation

and the parameters of interest are saved in n random vectors Xi . For each of the n

trajectory propagations, new random numbers are drawn for each of the independent
parameters. The number of Monte Carlo samples (n) generated is limited by the
computer time required to generate each sample. The more samples, the better, and
the minimum required is generally around 500. Once the samples are generated, the
results may be displayed in a form that is useful for navigation analysis.

The sample mean is obtained by summing the samples and dividing by the total
number of samples.

Xμ = 1

n

n∑
i=1

Xi

The sample variance is obtained by summing the squares of the difference between
the samples and the true sample mean and dividing by the number of samples. The
sample covariance is obtained by summing both the squares and cross-products of
the sample differences and dividing by the number of samples (n). The square and
cross-product of a sample column vector is obtained by taking the outer product or
post multiplying by its transpose. If the sample mean is used for the true mean, it
can be shown that the best estimate of the covariance is obtained by dividing by
n − 1 and the best estimate of the sample covariance is given by,

Cov = 1

n − 1

n∑
i=1

(Xi − Xμ)(Xi − Xμ)T

The Monte Carlo method is generally used when the uncertainties of the parameters
of interest are greater than can be determined using linear theory. As a result, the
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distribution is generally not normal and cannot be represented by simple functions.
Therefore, it is necessary to display the results in a format that permits observation
of the true distribution. A histogram is useful for this purpose. The maximum and
minimum values of each parameter are determined, and the range of each variable is
divided into 10–25 intervals called bins. A bar graph is generated with the number of
samples in each bin plotted as a function of the parameter of interest. The histogram
gives some insight into the probability that certain critical design values may or may
not be exceeded.

As a rule of thumb, the one sigma probability level is of interest for parameters
that are loosely controlled. For example, a probability of obtaining some science
observation of around 50% may be acceptable if the observation may be easily
repeated. For parameters that are critical to mission success, a higher probability
level is often required. A 99% probability of success is generally acceptable for
situations where the total mission objectives may not be met but most of the mission
may be salvaged in the event of failure. An example of a parameter that is controlled
to 99% probability is the amount of fuel required to do the mission. If the spacecraft
runs out of fuel and most of the mission objectives are satisfied, a 99% success rate
is generally acceptable. For design parameters that can result in catastrophic loss of
the mission, a much higher probability of success is required. A failure rate less than
10−5 is often specified. Examples of requirements that must be met with very high
probability of success are planetary quarantine and unintended planetary impact.

The histogram is generally not a satisfactory tool for evaluating probability levels
at the high or low end or tails of the PDF. One approach is to display the actual
samples on a graph and inspect for samples that may exceed design limits. Figure 5.4
shows a plot of 250 Monte Carlo samples obtained for analysis of the NEAR
landing. Plotted is the sub-latitude point of the NEAR spacecraft as a function
of time from the beginning of the descent to landing on the surface of Eros. The
variations in latitude on the way down are caused by a series of braking maneuvers
designed to slow the spacecraft’s descent and the initial orbit determination error.
The spread in latitude for all the sample trajectories reveals one component of the
landed footprint. Other parameters may be displayed on similar plots to gain insight
into the landing site dispersions. The spread in latitude shown in Fig. 5.4 indicates a
one sigma error of about 2◦. The actual landing was within about one degree of the
intended target.

Another approach is to order the Monte Carlo samples from low to high and
estimate the probability level directly from the sample. For example, the cumulative
99% probability level may be estimated from a sample size of 500 by determining
the fifth largest sample. On the average, 1% or about 5 samples will be above the
99% cumulative probability level. A problem with estimating probability levels
from the tails of a distribution is the uncertainty or confidence associated with
these estimates. By application of order statistics using the binomial distribution,
the confidence level associated with estimates of the cumulative probability may be
determined.
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Fig. 5.4 NEAR landing Monte Carlo samples

5.7 Binomial Theorem

It has been said that all problems in probability and statistics can be solved
by flipping coins. This may not be true, but it seems to be true for problems
associated with navigation of spacecraft. The binomial theorem is the basis for
solving problems associated with flipping coins. The normal probability distribution
function, the gamma function, and the mathematics associated with computing
gambling odds and predicting elections are all based on the binomial expansion.
For navigation, the prediction of where a spacecraft will be in the future and the
amount of fuel that will be needed is an example of application of the binomial
theorem.

5.7.1 Confidence Limits

In determining estimates of cumulative probability levels, the mean and variance of
the statistics do not provide a useful measure of the error in these estimates. The
closeness of the estimate to the true value is less interesting than the probability
that the estimate is bounded by some value. For the cumulative probability, a “best”
estimate may be obtained by determining the value that bounds the probability for
50% of the sample sets obtained. The actual cumulative probability is above the
estimate for 50% of the sample sets and below the estimate for the other 50%. Thus,
the estimate of the 99% cumulative probability from a single sample set of 500
samples would bound this probability for 50% of all of the sample sets obtained.
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The usefulness of the 99% cumulative probability level obtained in this manner
may be called into question since the actual cumulative probability may exceed this
value for half the sample sets. An estimate of the probability that the estimated
cumulative probability may exceed some value may be obtained by examining the
values of samples that are greater than the fifth highest sample for 500 samples.
This probability, referred to as the confidence, may be determined by computing
the probability that exactly 4, 3, 2, 1, or 0 samples will exceed the cumulative
probability level for a particular sample set.

The cumulative probability function for the PDF p(x) is defined by,

pc(xq) =
∫ xq

−∞
p(x)dx = Prob(x < xq)

The confidence probability function is defined by,

w(q, xw) = Prob(xq < xw)

For a Monte Carlo sample set of n samples, the above functions are only defined on
integer values and may be made continuous by linear interpolation between these
values. Consider a sample Xk from a set of n samples that are ordered in a decreasing
monotone for increasing k. X1 is the highest sample and Xn is the lowest. The
problem of determining w may be cast as an application of Bernoulli trials using
the binomial theorem. If the probability wk , for the kth sample, that Xk is greater
than xq is defined as failure and Xk being less than xq is defined as success, then the
probability of failure may be obtained from the binomial theorem and

wk = 1 −
k∑

i=0

(
n

i

)
qi (1 − q)n−i

where q = 1 − pc is the probability that a particular sample will exceed xq .
The quantities being summed are Bernoulli trials that give the probability

that exactly i samples will exceed xq . The summation is needed to compute the
probability that exactly 0 or 1 or . . . k samples exceed xq and this result is subtracted
from 1 to obtain the desired probability. The probability that Xk exceeds the pc

probability level is wk . An interesting property of wk is that the probability is
independent of the distribution.

k Sample number wk Xk

0 500 0.992 3.39
1 499 0.966 3.08
2 498 0.883 2.69
3 497 0.742 2.45
4 496 0.566 2.35
5 495 0.391 2.28
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An application of confidence limits to navigation was in the determination of
the amount of fuel required for the Viking and Galileo missions. The amount
of fuel loaded at launch is the amount required for deterministic maneuvers, an
additional amount for statistical maneuvers and project reserve for contingencies.
The statistical component was determined by Monte Carlo analysis and was sized to
give 99% probability of not running out of fuel. In order to account for uncertainties
in determining the statistical component associated with sample size, the statistical
fuel budget for Viking was increased by 20%.

5.7.2 Normal PDF from Binomial Coefficients

For a given row (m) of Pascal’s triangle, the probability (P(k)) that the body will
pass through a given node of number k is given by the number of paths that reach
node p(k) divided by the total number of possible paths (2m). All paths are assumed
to be equally likely.

P(k) = 1

2m
p(k) = 1

2m

m!
(m − k)! k!

Connecting the integer values of p(k) with straight lines, a continuous function may
be defined. The derivative of p(k) with respect to k is given by

d

dk
p(k) = p(k + 1) − p(k)

k + 1 − k

The derivative with respect to k is discontinuous at integer values of k, so the
derivative is defined approaching k from the right. Extracting common factors from
p(k + 1), the following differential equation is obtained:

d

dk
p(k) = p(k)

m − 2k − 1

k + 1

Since the function p(k) is symmetrical about the y axis, as shown in Fig. 5.1, it will
be convenient to shift the y axis and define k2 such that it is zero in the middle of
the distribution function. Also, for convenience, let m be even.

k2 = k − m

2

and

dp(k2)

dk2
= −4k2 − 2

2k2 + m + 2
p(k2)
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In the limit as both m and k2 approach infinity and for k2 <<< m

dp(k2)

dk2
= −4k2

m
p(k2)

The differential equation for p(k2) has the solution

p(k2) = p(0) e

−2k2
2

m

p(0) =
(

m
m

2

)

The above formula provides approximate values for the mth row of Pascal’s triangle.
The approximation is good for small values of k2 near the middle and for large
values of m. Some typical values for the numbers in Pascal’s triangle are compared
with the approximate formula in the table below

k2 m k

(
m

k

)
p(0)e

−2k2
2

m

0 20 10 184,756 184,756
1 20 11 167,960 167,174
5 20 15 15504 15,165
5 40 25 4.02E10 3.95E10
9 40 29 2.31E09 2.40E09

The probability that the body defined above will pass through a node at location
k2 is the value from Pascal’s triangle divided by 2m. The probability of passing
through an interval between two nodes is obtained by integrating or summing p(k2)

from k2(1) to k2(2) and the integral of p(k2) from −m
2 to +m

2 is one. The probability
is given by

P =
∫ k2(2)

k2(1)

1

2m
p(k2) dk2

A more convenient method of evaluating the same probability may be obtained
by scaling k2 by an appropriate factor and normalizing the integral. A change of
variable from k2 to x, where x is defined by,

x =
√

4

m
σ k2

yields
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p(x) = C1 e

−
⎛
⎝ x2

2σ 2

⎞
⎠

Observe that for a given probability the ratio of x to σ is constant,

x

σ
= 2k2√

m
= C2

In the limit as m approaches infinity, the ratio of k2 to m is

lim
m→∞

k2

m
= lim

m→∞

√
m C2

2m
= 0

and the assumption that k2 is much smaller than m is valid. Since the integral of p(x)
from minus infinity to plus infinity must be one, the final form of p(x) is obtained
after evaluating the constant C1.

∫ ∞

−∞
exp

−
⎛
⎝ x2

2σ 2

⎞
⎠

dx = σ
√

2π

p(x) = 1

σ
√

2π
e

−
⎛
⎝ x2

2σ 2

⎞
⎠

The function p(x) is called the normal probability distribution function (PDF) and
has wide application in the field of probability and statistics. Many applications
of the normal PDF involve solving for system parameters that minimize the error
or spread of the PDF associated with random variables that are of interest. These
random variables may describe the distance of a spacecraft from its intended target
or the amount of fuel consumed during the mission.

5.7.3 Approximate Binomial Coefficients from Normal PDF

Recall that the difference equation for the binomial coefficients is given by

d

dk2
Bm(k2) = −4 k2 − 2

2 k2 + m + 2
Bm(k2)

k2 = k − m

2

In the limit as m becomes much greater than k2, the central part of the distribution
function corresponding to k2 much smaller than m is given by the following
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differential equation:

dBm(k2)

dk2
= −4 k2

m
Bm(k2)

where Bm are the binomial coefficients for the mth row of Pascal’s triangle. The
differential equation for Bm(k2) has the solution

Bm(k2) = Bm(0) e

−2 k22

m

Bm(0) =
(

m
m

2

)

The probability of being in the interval defined by Bm(0) of width one is obtained
by integrating the PDF from k2 = − 1

2 to k2 = + 1
2 .

Bm(0)

2m
=

∫
1

σ
√

2π
dx =

∫
1

σ
√

2π

√
4

m
σ dk2

The binomial coefficients are thus given by the following formula:

Bm(k2) = m!
(m − k)! k! ≈

√
2

π

2m

√
m

exp

−2 k22

m

5.7.4 Stirling Approximation

The binomial coefficients may also be obtained by direct application of Stirling’s
approximation to the factorial functions defining the binomial coefficients. The
Stirling approximation to the gamma function is given by

ln(n!) ≈ n ln(n) − n + 1

2
ln(2πn) = ln

(√
2πn

(n

e

)n)
n! ≈ √

2πn
(n

e

)n

The results of approximating the binomial coefficients using the Stirling approxi-
mation and the normal approximation derived in Sect. 5.7.3 are shown in Fig. 5.5.
The Stirling approximation for the binomial coefficients is exact for large values
of m but does not do as well in the interior of the PDF. The normal distribution
approximation is also exact as m approaches infinity. Observe that the normal and
Stirling approximations are equal at the peak of the distribution corresponding to
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Fig. 5.5 Binomial coefficients approximation

k = 50. This suggests that the Stirling approximation has the normal Gaussian
distribution embedded. This is indeed the case as the following identity shows:

Bm(0) = m!(
m
2 !)2

≈
√

2

π

2m

√
m

=
√

2πm
(

m
e

)m
[√

πm
(

m
2e

)m
2
]2

The above identity suggests that the Stirling approximation may be extracted
directly from the binomial coefficients. In the following equation, all the numerators
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are canceled by the denominators in the preceeding term except for the first
numerator which is m!.

m! = m!(
m
2 !)2

( (
m
2 !)(

m
4 !)2

)2 ( (
m
4 !)(

m
8 !)2

)4

· · ·
(

2!
1!2

)N

N = 2
ln m
ln 2 −1

where N is 2 raised to the number of terms in the approximation for m! minus one.
N is also the power of two corresponding to the m! that exceeds the desired m!.
The desired m! is obtained by interpolation. The terms in the above product may be
approximated by

m! =
N∏

n=0

⎛
⎜⎝

(
m!
2n !

)
(

m
2n+1 !

)2

⎞
⎟⎠

2n

≈
N∏

n=0

⎛
⎝√

2

π

2
m
2n√
m
2n

⎞
⎠

2n

If Bm(0) is factored out of each of the terms, m! is approximated by

m! ≈
N∏

n=0

(√
2

π

2m

√
m

)2n (
2

m
2n −m

2
−n
2

)2n

The logarithm of m! is approximated by

ln m! ≈ (m+1) ≈ ln

(√
2

π

2m

√
m

)
N∑

n=0

2n+ln(2)

N∑
n=1

(n2n−1−m2n+m) (5.7)

The finite series can be replaced by closed form expressions and an approximation
for m! is obtained that is exact in the limit as m approaches infinity. The last term
is needed to account for the error in the normal binomial coefficients for small m.
Thus, we have a closed form expression for ln(m!) as a function of only m.

ln m! ≈ ln

(√
2

π

2m

√
m

)[
2N+1 − 1

]

+ ln(2)
[
1 − 2N + N2N − m(2N+1 − 2) + mN

]
− 0.08105638054266 m

N = 2

ln m − ln 2

ln 2 (5.8)

The constant in the above equation was obtained by forcing the approximation
to equal the actual value of m! at m = 128. Over the range of m from 1 to
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158, the above approximation is twice as accurate as the Stirling approximation. If
5.0862526726×10−6 m is added to the Stirling approximation, both approximations
agree to 14 decimal places over the same range. This agreement indicates that a
simple correction term can be found to make both approximations exactly equal and
the deep underlying mathematical basis for both approximations is the normal PDF
or the binomial coefficients.

5.8 Maxwell–Boltzmann Probability Distribution

Significant trajectory perturbations have been observed on interplanetary missions
that have been attributed to expulsion of gas from the spacecraft. In 1969, the
Mariner 6 spacecraft experienced a large trajectory perturbation and loss of attitude
control lock on the star Canopus because of hydrogen gas expelled during a scan
platform unlatching event. The scan platform was held in the latched position by
pressure from hydrogen gas. Hydrogen gas was expelled by firing a squib and
venting to a tee. The tee was supposed to vent the gas in opposite directions,
resulting in no net forces on the spacecraft and the observed trajectory and attitude
perturbations were a mystery. A complete third spacecraft was built and was sitting
on display in Von Karman Auditorium at the Jet Propulsion Laboratory. After
some searching, the tee was located in a large cavity under the scan platform.
The cavity served as a big rocket engine and the thrust, computed from kinetic
theory, matched the velocity change observed in the orbit determination solution.
The applied moment was also consistent with the attitude recovered from sun sensor
telemetry. The result of this analysis was used to predict the velocity change that
Mariner 7 experienced a few weeks later. On the Viking Mission in 1975, venting of
gas trapped in the parachute, at least this was the theory, resulted in a perturbation of
the spacecraft for about a week after launch making determination of the spacecraft
orbit difficult. Kinetic theory was used to predict the velocity change associated with
several gas venting events during cruise. Perhaps the most significant application of
kinetic theory was in analyzing the acceleration of the MESSENGER spacecraft
after launch in 2004. The orbit could not be accurately determined for a couple of
weeks. This acceleration was attributed to liquid evaporating from various surfaces
on the spacecraft with various time constants, depending on solar illumination. It
would take about one cubic inch of water distributed over the spacecraft to produce
enough water vapor to cause the observed acceleration.

Several models of particle collisions have been developed for the purpose of
observing the kinetics. A simple model involving only particle velocity yields the
Maxwell–Boltzmann PDF. The position of the particles is resolved into a number of
probability assumptions, and the simulation uses Monte Carlo techniques to obtain
the velocity distribution. Depending on the assumption used for the probability of
impact, two PDFs referred to as the Maxwell–Boltzmann distribution and velocity-
dependent distribution are obtained. Another model includes both position and
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velocity and is completely deterministic. No probability assumptions or Monte
Carlo sampling is included, and this model verified the velocity-dependent model.

The equations of motion in the position/velocity-dependent model are simply
Newton’s laws of motion. These are the equations of motion for an ideal gas, the
so-called “billiard ball” theory. The particles move in a straight line until they
impact another particle or a wall of the container. Energy and momentum are
conserved. When the particles collide, the velocity change of the two particles,
which are assumed to be spheres, is along the line connecting the centers. The angle
between the line connecting the spheres and the relative velocity vector is called the
“scattering” angle or “Rutherford scattering” angle for molecules. The scattering
angle for molecules is a bit more complicated than for billiard balls. It can be shown
by arguments of symmetry that the scattering angle has no effect on the final PDF.
If the scattering angle affected the PDF, then different gases would have different
PDFs and many of the laws of physics pertaining to gasses would be invalidated.

The results of a computer simulation of 400,000 particles and 8,000,000 colli-
sions are shown in Fig. 5.6. Figure 5.6a shows the component velocity distribution
in some arbitrary direction. Because of symmetry, all directions have the same
distribution. The velocity component is sorted into 50 bins. The abscissa is velocity
and zero velocity is bin 25. The scale is not important, because only the shape of
the curve is of interest. For simplicity, the root mean square velocity magnitude is
initialized with an average value of one. The particles are also assigned a radius
of one and all particles have the same mass, also one. The container is sized such
that the space between particles averages 30 radii. After proper scaling, it can be
shown that the particles have the same temperature and pressure as an ideal gas.
The ordinate is the number of molecules in each bin. The probability is obtained by
dividing by the total number of molecules.

Also shown by the fine line in Fig. 5.6a is the normal distribution predicted from
Maxwell–Boltzmann theory. At zero component velocity, the velocity-dependent
model is about 3.0% above the Maxwell–Boltzmann PDF. The difference between
the velocity-dependent model and the Maxwell–Boltzmann PDF is plotted in
Fig. 5.6b. The peak value of 800 above the 30,000 particles in the associated bin
in Fig. 5.6a gives an overshoot of 800/30,000 or 2.67%. The difference may be
attributed to the assumed probability of impact. The Maxwell–Boltzmann computer
simulation, which assumes equal probability of impact, gives the same result as
the theoretical Maxwell–Boltzmann PDF (a normal curve). The velocity-dependent
model assumes the probability of impact is dependent on the particle velocity and
is confirmed by computer simulation that includes position. It appears that the only
way to obtain a Maxwell–Boltzmann PDF by computer simulation is to randomly
select the collision participants and ignore their position.

Figure 5.7 shows the same computer simulation results for the velocity magni-
tude. The velocity magnitude distribution is obtained by mapping three orthogonal
velocity component distributions into velocity magnitude and is the well-known
Maxwell–Boltzmann PDF of Maxwell–Boltzmann theory. Also shown for com-
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Fig. 5.6 Velocity component distribution comparison

parison is the computer simulation velocity-dependent model results. Here, the
velocity-dependent model is about 4% below the Maxwell–Boltzmann PDF (shown
by a fine line) at the peak which occurs around bin 13. In Fig. 5.7a, the left side of
bin 1 is zero velocity magnitude. Figure 5.7b shows the difference.
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Fig. 5.7 Velocity-dependent model comparison

5.8.1 Experimental Results

An experimental verification of the Maxwell–Boltzmann theory was performed in
1955. The experiment consisted of heating potassium and thallium in an oven to
900◦C and venting the atoms through a velocity selector into a detector. The velocity
selector was a cylinder with a slot on one side and a curved slot on the other that
rotated at 4000 rpm such that atoms would cross the cylinder and enter the curved
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slot at various transit times depending on their velocity and the rotation rate of
the cylinder. The detector would measure the intensity, or number of atoms, at
the velocity corresponding to the angle that the cylinder rotates dependent on the
rotation rate. The device was quite sophisticated, being cooled with liquid nitrogen
and sealed to provide a high vacuum.

The results of the potassium and thallium experiments are shown in Fig. 5.8a.
Also plotted is the theoretical Maxwell–Boltzmann PDF. The agreement is very
good and verifies the overall veracity of the Maxwell–Boltzmann theory. The
agreement with the position/velocity- dependent model does not, at first, appear
very good. Inspection of this comparison shown in Fig. 5.7a reveals a gap between
Maxwell–Boltzmann theory and the computer model result at the peak intensity or
most probable velocity. This gap, if it exists, would not show up in the experimental
results because the scaling between intensity and the actual number of molecules is
not known precisely. Therefore, the experimental results were scaled to force them
to equal the Maxwell–Boltzmann theory at the peak. Also, the temperature was
adjusted so that the low-velocity experimental results matched Maxwell–Boltzmann
theory. The problem with these adjustments, which do not affect the experiment
since only the shape of the distribution is of interest, is that the PDF is a single
parameter theory. Once the temperature is fixed, the probabilities and shape of the
curve are also fixed. If the gap shown in Fig.5.7a is real, the area between the
curves at the peak will be distributed elsewhere. This redistribution is evident in
Fig. 5.8a. Close inspection of the high-velocity side of the curve reveals that the
experimental results are above the Maxwell–Boltzmann theory prediction. If these
results are accurate, they present a problem, since the integral from zero to plus
infinity is one and the experimental results are greater than one. R. C. Miller and
P. Kusch acknowledged this problem. In their words, “It is seen that the largest
discrepancies occur on the high velocity side of the maximum, where there is a
small excess of atoms in the experimental distribution. It should be noted that the
experimental points could be plotted with the high-velocity side matched to the
theoretical curve. The intensities at the maximum velocity would no longer coincide
and the experimental distribution would then appear to be deficient of atoms on the
low velocity side.” In other words, the theoretical curve could be shifted to the right
by adjusting the temperature, but the area under the curve would still be greater than
one.

Another approach, that is relatively simple to implement, would be to scale the
computer model results to force the peak to coincide with the Maxwell–Boltzmann
PDF and adjust the temperature to match the curves on the low-velocity side. These
results could then be compared directly with the experimental results. Figure 5.8
shows the results of this procedure. The experimental results in Fig. 5.8a depart a
small amount from the theoretical Maxwell–Boltzmann PDF at a reduced velocity
of 1.4. The computer model results in Fig. 5.8b also depart a small amount. One
may conclude that the experimental results confirm the velocity-dependent model.

Another experiment performed by J. F. C. Wang and H. Y. Wachman in 1976
involved venting molecules from an oven into a detector. The observed flight time
is a measure of velocity magnitude. The results of this experiment are plotted in



212 5 Probability and Statistics

REDUCED VELOCITY  V

.2 .6

20a

b

15

10

5

0
1.0 1.4 1.8

IN
T

E
N

S
IT

Y

14000

0

2000

4000

6000

8000

10000

12000

0 5 10 15 20

Maxwell Fit

Model2

25
Scaled Velocity Magnitude

S
ca

le
d 

P
ro

ba
bi

lit
y

30 35 40 45 50

RUN 97
RUN 99

Fig. 5.8 Miller and Kusch experiment and theory comparison

Fig. 5.9. The experimental results fall below the theory prediction by about the same
amount and in the same place as the Miller/Kusch results are above the theoretical
curve. Both experimenters forced the experimental results to agree at the peak
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of the PDF. Miller and Kusch scaled up the experimental results and Wang and
Wachman scaled down the theoretical prediction. Since the theoretical prediction
must integrate to one from minus infinity to plus infinity, the theory must be higher
on the tails of the distribution function as can be seen in Fig. 5.9. Observe that the
experimental results trend back to the best fit to the theory farther out on the tail of
the PDF. The position/velocity computer model results shown in Fig. 5.8b also trend
back on the tail only from the opposite side consistent with the assumptions on how
the data was fit to the theory for the two experiments. An alternative explanation for
the above observations is that the experimental apparatus used for the experiments
had equal and opposite systematic errors. There appears to be no other alternative.

5.9 Summary

Statistical analysis of the outcome of a navigation strategy is performed to determine
the probability that the spacecraft will safely arrive at the target or the end of the
mission and satisfy mission design constraints. These constraints may be related to
the probability of impacting the target body, running out of fuel, or acquiring science
data. For example, if it is desired to occult a planet, the occultation may be mapped
to a region in the B-plane and the probability that the spacecraft will pass through
this region would constrain the amount of data that would need to be acquired and
maneuver placement. These simple constraints may be satisfied by linear mapping
of the orbit determination error. Since the orbit determination error is a mapping of
measurement errors that may be characterized with high precision, the confidence
in the results of this analysis is high.

Examination of data residuals confirms the accuracy of the measurements and
that the probability distribution is normal or white noise. This result was not easy
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to obtain but resulted from years of analysis by the Jet Propulsion Laboratory to
develop high precision models and calibrations of the radio metric data, and a
similar analysis was performed to model and calibrate optical data. The normal
distribution of the measurement errors and independence of measurements greatly
simplifies the statistical analysis. We do not have to be concerned with colored
noise or biases. The normal probability distribution function is derived from the
binomial coefficients. The binomial theorem is thus the basis for the statistical
analysis performed for spacecraft navigation. The binomial coefficients describe the
results that are obtained from flipping many coins or rolling dice, and thus have
many applications beyond spacecraft navigation.

A powerful method of statistical analysis is referred to as the Monte Carlo
method named after the casinos in Monte Carlo. Weather forecasters refer to this
method as ensemble statistical analysis. An astronaut sitting on top of a rocket or
citizens in a hurricane shelter probably feel better if their life depends on ensemble
statistical analysis rather than rolling dice. Monte Carlo analysis enables precision
mapping of measurement and model errors when the system is nonlinear. Civil
engineers use safety factors to design bridges and buildings. In the past, the safety
factors were rather large. The Brooklyn bridge and Empire State building have been
around for a long time and it does not appear they will fall down soon. Rockets
and spacecraft are built with much lower safety factors. Statistical analysis permits
operations much closer to the edge. A critical statistical determination is the amount
of extra fuel to put in the fuel tanks to complete the mission. When the Viking
spacecraft arrived in orbit about Mars, there was twice as much fuel as was needed
to complete the mission. Every extra pound of fuel reduced the science payload by
the same amount. Because of problems in selecting launch vehicles and a rocket
motor burn failure, the Galileo and Near spacecraft completed their missions with
little fuel remaining in the tanks.

Exercises

5.1 Determine the probability of drawing a 5-card royal straight flush (ace, king,
queen, jack, and ten of the same suit) from a 52-card deck.

5.2 Determine the probability that the first 5 samples of 500 Monte Carlo samples
will be the largest.

5.3 A cannon with a CEP of 50 yards is fired into the Collisiem aiming for the
center. Caesar’s box is 9 feet by 9 feet and located 100 yards from the center of
the Collisiem. Assuming that the PDF is constant within the box, determine the
probability that the cannon ball will land in Caesar’s box.

5.4 If the cannon in Exercise 5.3 was aimed at Caesar’s box, what is the probability
of hitting Caesar’s box?
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5.5 Show that the sum of the binomial coefficients (k) for a given row of Pascal’s
triangle (m) is equal to 2m.

5.6 Show that the binomial coefficients are given by

B(m, k) =
(

m

k

)
= m!

(m − k)! k!

5.7 Show that the derivative of p(k) with respect to k holding m constant and
assuming linear interpolation between values of k is given by

d

dk
p(k) = p(k)

m − 2k − 1

k + 1

where

p(k) = m!
(m − k)! k!
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Chapter 6
Orbit Determination

Determination of the orbit of a spacecraft and all the constant and dynamic
parameters that affect the orbit is an application of estimation theory. A model
of the spacecraft motion as a function of initial conditions and certain constant
and dynamic parameters is developed that may be used to predict the flight path
and compute the value of measurements that are obtained during the space flight.
Orbit determination involves adjusting the value of the independent parameters
that need to be determined until the computed measurements are close to the
actual measurements. Since there are many more measurements than independent
parameters, the solution is found that minimizes the error in the measurements. This
solution will also minimize the error in the estimated parameters.

A measure of orbit determination accuracy is the square of the difference between
the computed measurement from the model and the actual measurement summed
over all the measurements. An orbit determination filter processes the measurements
and computes an update to the estimated parameters starting from an initial guess
referred to as the a priori. An orbit determination filter does not actually determine
an orbit, but takes an initial guess and finds another orbit that is closer to the actual
orbit. The actual orbit is never known because we do not have perfect measurements.

In searching for a solution, an orbit determination program will sometimes have
problems converging. Before computers, astronomers determined orbits with a few
measurements. This process is referred to as deterministic orbit determination and
an algorithm is devised for determining an orbit about a body with six Doppler
measurements strategically placed around the orbit.
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Fig. 6.1 Relationship of measurements to estimated parameters

6.1 Kalman Filter Algorithm

The Kalman filter algorithm computes updates to the a priori estimated parameters
one measurement at a time. The solution after the current update is used as a priori
for the next update. This simple one step algorithm, devised by R. E. Kalman in
the early 1960s, provides a simple method of computing parameter estimates on a
digital computer and is well suited for many applications.

Given an a priori estimate of a set of parameters (X0) and the associated
covariance P0, a measurement Zm and its covariance and a model of the dynamics,
the relationships are illustrated in Fig. 6.1 in two dimensions. Selecting any two
parameters, the values of the a priori estimated parameters are shown on the left
along with the actual value and new estimate of X. The coordinate system is cen-
tered at the actual value (Xa) which is unknown. However, the mapping function to
the measurement space on the right is known for all values of X. A two-dimensional
measurement is shown corresponding to, for example, lines and pixels of an optical
measurement. For most measurement updates, the measurements are uncorrelated
and Z is one-dimensional. Indeed, lines and pixels are generally processed as two
one-dimensional measurements since they are generally assumed to be independent.
The actual measurement Zm is shown along with the measurement(Z0) computed
from the model based on the a priori estimate (X0). The measurement covariance
Pm is indicated by the ellipse drawn around the measurement. The estimated
measurement (Ze) is also shown along with the post fit measurement error (ε).

The computed measurement is obtained from the model and is given by

Z0 = f (X0)
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The data residual (�Z) is the difference between the actual measurement and the
computed measurement and the Kalman gain matrix (K) multiplied times the data
residual and combined with the a priori (X0) provides a new estimate (Xe).

�Z = Zm − Z0

�X = K�Z

Xe = X0 + �X

The desired solution for Xe is Xa . Since Xa is not known, and can never be known
exactly, a gain matrix K is desired that moves the solution as close to Xa as can
be determined from the information available. Therefore, a solution is sought that
minimizes the distance of Xe, shown in Fig. 6.1, from the origin. Minimizing the
square of the magnitude of a random column vector, or variance, also minimizes the
magnitude and since the column vectors shown in Fig. 6.1 are all examples drawn
from a random probability distribution function, the solution that minimizes the
variance of Xe is the desired solution. In the terminology used here, a matrix with
one column is referred to as a column vector or data vector because of the similarity
to real vectors. The random column vectors of interest are defined to have zero mean
and are given by

�X0 = X0 − Xa

�Xe = Xe − Xa

�Zm = Zm − Za

�Z0 = Z0 − Za

From the model of the equations of motion and data, the partial derivatives of the
measurement with respect to the estimated parameters may be computed and these
are given by

A = ∂Z

∂X

The partial derivatives may be used to map column vectors defined in the estimate
space to data vectors in the measurement space. The column vector �X0 thus maps
to the data vector �Z0 and

�Z0 = A �X0

Some other relationships, shown in Fig. 6.1, are needed to tie X and Z together.

�Xe = �X0 + �X

�Zm = �Z0 + �Z
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The solution for �Xe is then given by

�Xe = K�Zm + (I − KA)�X0 (6.1)

and this result can be extended to higher dimension in X and Z even though the
dimension of Z is usually taken to be one. Exact values for �X0, �Xe, �Z0,
and �Zm cannot be determined. However, we can obtain from prior experience
estimates of their errors. The expected value of �Xe is given by

Pe = E
(
�Xe�XT

e

)
Assuming the measurement is independent of the estimated parameters,

E
(
�Xe�XT

e

)
= E

(
K �Zm�ZT

m KT + (I − KA) �X0�XT
0 (I − KA)T

)
and

Pe = KPmKT + (I − KA)P0(I − KA)T

where

Pm = E
(
�Zm�ZT

m

)
P0 = E

(
�X0�XT

0

)
are the measurement and estimated parameters a priori covariances, respectively.
The minimum variance estimate is found by taking the variation of Pe with respect
to the gain matrix K and setting this result to zero.

δPe = δKB + BT δKT

BT = KPm − P0A
T + KAP0A

T

For a minimum, B is zero and the Kalman gain matrix (K) is given by

K = P0A
T
[
Pm + AP0A

T
]−1

(6.2)

Substituting K into the estimated covariance gives

Pe = (I − KA)P0 (6.3)
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6.2 Weighted Least Squares

The same result as obtained for the Kalman Filter may be obtained by a different
approach to parameter estimation. Since the classical approach grew out of attempts
to fit data, the minimization of the measurement residual is the objective rather than
the error in the estimated parameters. It will be shown that both approaches yield
the same result. Referring to Fig. 6.1, the error in the measurement (εm) is given by

εm = Zm − Ze = �Z − A�X

Since some measurements may be more accurate than others, the square of the
residual error may be weighted by dividing by its variance. Thus, a minimum
variance estimate may be obtained by dividing the measurement errors by their
standard deviation. Dividing by the standard deviation is obtained by multiplying
by the square root of the inverse of the measurement covariance. The weighting
matrix is defined by

W = P −1
m

and the weighted measurement error is

ε = W
1
2 (�Z − A�X)

The sum of the squares of the weighted residuals (J ) is the scalar parameter that is
to be minimized.

J = εT ε = (W
1
2 �Z − W

1
2 A�X)T (W

1
2 �Z − W

1
2 A�X)

The minimum J may be found by taking the variation with respect to �X and
setting this result equal to 0.

δJ =(W
1
2 �Z−W

1
2 A�X)T (−W

1
2 Aδ�X)−δ�XT AT (W

1
2 )T (W

1
2 �Z−W

1
2 A�X)

For a minimum, δJ is set equal to 0 and the solution for �X is

�X = (AT WA)−1AT W�Z

Assuming that the a priori error covariance is infinite, the estimated error covariance
is given by

Pe = E(�X�XT )
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From the equation for the data update,

AT WA�X�XT (AT WA)T = AT W�Z�ZT WT A

AT WAPe(A
T WA)T = AT WPmWT A

and

Pe = (AT WA)−1

The weighted least square solution, as derived here, assumes all the data is included
in A and there is no a priori. The A matrix may be partitioned separating the a
priori data from the new data and the filter equations put in the same form as for
the Kalman filter. The data update for the weighted least squares sequential filter
becomes

K = (AT WA + P −1
0 )−1AT W (6.4)

Pe = (AT WA + P −1
0 )−1 (6.5)

The two equations for the Kalman gain (Eq. (6.2) and Eq. (6.4)) solve the same
problem but do not appear to be equal. The equivalence of these two solutions may
be shown by invoking Shur’s identity as was done by Anderson and others in the
early 1960s. Shur’s identity gives the inverse of a partitioned matrix.

⎡
⎣A B

C D

⎤
⎦
⎡
⎣ (A − BD−1C)−1 −A−1B(D − CA−1B)−1

−D−1C(A − BD−1C)−1 (D − CA−1B)−1

⎤
⎦ =

⎡
⎣ I1 0

0 I2

⎤
⎦

Consider the following matrix product obtained by application of Shur’s identity.

⎡
⎣P −1

0 AT

A −W−1

⎤
⎦
⎡
⎣ (AT WA + P −1

0 )−1 P0A
T (W−1 + AP0A

T )−1

WA(AT WA + P −1
0 )−1 −(W−1 + AP0A

T )−1

⎤
⎦=

⎡
⎣ I1 0

0 I2

⎤
⎦

Since the inverse of a symmetric matrix must also be symmetric,

⎡
⎣P −1

0 AT

A −W−1

⎤
⎦
⎡
⎣ (AT WA + P −1

0 )−1 P0A
T (W−1 + AP0A

T )−1

(W−1 + AP0A
T )−1AP0 −(W−1 + AP0A

T )−1

⎤
⎦=

⎡
⎣ I1 0

0 I2

⎤
⎦

The equation for the I1 identity submatrix is

I1 = P −1
0 (AT WA + P −1

0 )−1 + AT (W−1 + AP0A
T )−1AP0
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and

P0 − P0AT (W−1 + AP0A
T )−1AP0 = (AT WA + P −1

0 )−1 (6.6)

The AT W term is factored out of the Kalman gain given by Eq. (6.1).

K = P0A
T
[
Pm + AP0A

T
]−1 [(W−1 + AP0A

T )W − AP0A
T W ]

I = [(W−1 + AP0A
T )W − AP0A

T W ]

and

K = [P0 − P0A
T (W−1 + AP0A

T )−1AP0]AT W

Substituting the result obtained from Eq. (6.6) results in the weighted least square
formula for the Kalman gain.

K = (AT WA + P −1
0 )−1AT W

The equivalence of the estimated covariance solutions is simpler to show. Substitute
the Kalman gain from the least squares solution into the estimated covariance given
by the Kalman filter solution and factor out the desired result.

Pe = (I − KA)P0

Pe = P0 − (AT WA + P −1
0 )−1AT WAP0

Pe = (AT WA + P −1
0 )−1

[
(AT WA + P −1

0 )P0 − AT WAP0

]
Pe = (AT WA + P −1

0 )−1

6.3 Square Root Information Filter (SRIF)

The SRIF discrete data update algorithm follows directly from the least square data
update. The least square solution is given by

X̂ =
[
AT

n �Wn An

]−1
AT

n �Wn Ẑn

The measurements can be normalized by factoring �Wn into

�Wn = √
�Wn

T √
�Wn



224 6 Orbit Determination

and

X̂ =
[
AT

n

√
�Wn

T √
�WnAn

]−1
AT

n

√
�Wn

T √
�Wn Ẑn

By inspection we can see that

Rn = √
�Wn An

so after substitution we have

X̂ = (RT
nRn)

−1RT
n

√
�WnẐn

For the first m measurements, the number of estimated parameters (m) is equal to
the number of measurements and Rn is square.

X̂ = R−1
n

√
�WnẐn

Multiplying through by Rn gives what is called the data equation.

Rn X̂ = √
�WnẐn = η̂n (6.7)

where η̂n is the normalized measurement. A new measurement can be appended to
the data equation resulting in

⎡
⎣ Rn

√
�Wn+1 An+1

⎤
⎦ X̂ =

⎡
⎣ η̂n

η̂n+1

⎤
⎦

Adding additional measurements results in the row dimension of R exceeding the
column dimension. The information matrix would then be given by

�m = RT
nm Rnm

where the row dimension n exceeds the column dimension m. Since Rnm is not
unique, it can be replaced by an upper triangular Rm of dimension m by m.

�m = RT
m Rm

The Householder algorithm enables one to obtain the matrix Rm without explicitly
computing �m. If T is an orthogonal matrix which has the property

T T T = I (6.8)
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then we have

�m = RT
nm T T T Rnm

The Householder algorithm finds a T that gives Rm when multiplied times Rnm.
The right side of the data equation (η̂) is also multiplied by T to obtain a new
data equation in upper triangular form. The Householder algorithm thus serves the
same purpose in updating the SRIF matrix and right side as the Kalman update
algorithm serves to update the covariance and state estimate. An updated state
estimate can be obtained from the data equation by simply inverting the SRIF matrix
and multiplying times the right side.

6.3.1 Discrete Process Noise Update

For the simple case of exponentially time correlated process noise, the differential
equation may be solved by performing a discrete update over a fixed time interval
referred to as a batch.

dp

dt
=

(−1

τ

)
p + ω(t)

The solution is

p(t) = e

t − t0

τ p(t0) +
t∫

to

e

−(t − ζ )

τ ω(ζ )dζ

The variance of p(t) is given by

σ 2
p(t) = e

−2(t − t0)

τ σ 2
p(t0) +

t∫
to

e

−2(t − ζ )

τ σ 2
ω(ζ )dζ

The process noise variance may also be obtained by solution of the following
differential equation,

dσ 2
p(t)

dt
=

(−2

τ

)
σ 2

p(t) + q̇(t)

where

q̇ = 2σ 2
s

τ
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and σ 2
s is the steady state noise variance. In difference equation form these give

pj+1 = Mpj + ωj

σ 2
pj+1

= M2σ 2
pj

+ �q

where

�q = (1 − M2)σ 2
s ≈

(
2�t

τ

)
σ 2

s

M = e

−�t

τ

�t = tj+1 − tj

The data equation obtained as a result of processing data from tj to tj+1 is given by

⎡
⎣ Rp Rpx Rpy

Rxp Rx Rxy

0 0 Ry

⎤
⎦
⎡
⎣ pj

xj+1

y

⎤
⎦ = η̂j

For the discrete process noise data update, the value of the stochastic parameters
(pj ) are held constant over the interval tj to tj+1 while the SRIF matrix is mapped
forward. At the time tj+1, the process noise variance accumulated over this same
time interval is introduced via the following data equation as a discrete impulse.

Rω ω̂j = η̂ω

where

Rω = 1

σω

Replacing ω̂j by the equation in terms of pj and pj+1 we have

Rω p̂j+1 − RωM p̂j = η̂ω = 0

The updated data equation is obtained by partitioning and combining with the above
noise data equation.

⎡
⎢⎢⎣

−RωM Rω 0 0
Rp 0 Rpx Rpy

Rxp 0 Rx Rxy

0 0 0 Ry

⎤
⎥⎥⎦
⎡
⎢⎢⎣

pj

pj+1

xj+1

y

⎤
⎥⎥⎦ =

⎡
⎣ 0

η̂j

⎤
⎦
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The data equation is partially triangularized over the first columns corresponding to
the process noise terms to obtain

⎡
⎢⎢⎢⎣

R∗
pj R∗

ppj R∗
pxj R∗

pyj

0 R+
p R+

px R+
py

0 R+
xp R+

x R+
xy

0 0 0 R+
y

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

pj

pj+1

xj+1

y

⎤
⎥⎥⎦ =

⎡
⎢⎣ η̂∗

j

η̂j+1

⎤
⎥⎦

where the plus superscript is introduced to indicate a change in the numerical values
after the process noise update. The stochastic parameter update is completed by
stripping off the top rows corresponding to pj , those containing the asterisk, and
these may be saved along with the right side (η̂∗

j ) for smoothing.

6.3.2 Solution Epoch

The SRIF formulation computes an estimate of the spacecraft state, target body
ephemeris, and target body attitude at the initial epoch. This is purely a matter of
convenience since the state and covariance at any future epoch may be obtained
by simply mapping the epoch state solution. An epoch state formulation enables the
trajectory and variational partial derivatives to be computed before data is processed
by the filter. When stochastic parameters are present, the current state cannot be
determined by mapping the epoch state solution. The true epoch state solution is
obtained by smoothing. Since the final state solution is the solution of most interest
and it is desirable to avoid smoothing, the contribution of stochastic parameters
is mapped back to epoch creating what is called a pseudo epoch state solution.
The pseudo epoch state solution is an exact least squares fit to the data when it
is mapped to the current or final state. The pseudo epoch state filter adopted by the
Jet Propulsion Laboratory is really a current state filter when mapped to epochs in
the future and used for prediction. In the early 1970s orbit determination was a very
challenging problem. The high-precision modeling of the solar system, media and
station locations made possible by VLBI has reduced the need for stochastic param-
eters to cover modeling errors. Indeed, most missions are now flown without the
need for stochastic parameters and all the data could be processed in a single batch.

6.3.3 Computed and Consider Covariance

After all the data has been processed and a solution obtained, the covariance matrix
of the estimated parameters is computed and mapped to an epoch of interest. The
SRIF matrix R is inverted to obtain the square root covariance matrix (S) and this
matrix is multiplied by its transpose to obtain the covariance matrix (P ).
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R =
[

Rx Rxc

0 Rc

]

S = R−1

P = SST

The R matrix has been partitioned into (Rx) and Rc. The Rx SRIF matrix contains
the state, stochastic parameters, and most of the constant parameters. The Rc

matrix contains parameters that are suspect because they represent models that are
not as accurate as the data can measure. In the early days of the space program
station location errors fell into this category. These are called consider parameters.
The estimate of consider parameters obtained above can be too optimistic and
the modeling errors associated with these parameters can infiltrate into the other
estimated parameters which include spacecraft state. One strategy is to just ignore
these parameters. This can easily be done by truncating columns pertaining to these
parameters from (R). The Rc parameters have been conveniently placed at the end
of R for this purpose. The result is called the computed covariance and is given by

Sx = R−1
x

Px = Sx ST
x

The reduced set of estimated parameters associated with the computed covari-
ance can enable orbit determination operations to proceed smoothly, but the
infiltration of model errors can result in overly optimistic error estimates. In order
to determine the effect of consider parameters on other estimated parameters, the
consider covariance is computed. The consider covariance reveals the sensitivity
of orbit estimation to modeling errors, but has no affect on the orbit solution. The
consider covariance is computed by discarding the rows of R corresponding to Rc

and replacing them with the a priori consider covariance. The correlation of the
consider parameters with the other estimated parameters determined by processing
data is preserved. We simply add some negative information to the SRIF matrix
that gives us the desired square root covariance for the consider parameters. This
can be done by employing some mathematical trickery. Since the triangularization
of a SRIF matrix is not unique, if matrix can be partially triangularized. The
triangularization is stopped at the row corresponding to the first consider parameter
and the square root consider a priori consider covariance is inserted. This process is
mathematically equivalent to the following.

Rc =
[

Rx Rxc

0 R∗
c

]
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where R∗
c = S−1

con and for independent consider parameters the square root
covariance Scon is a diagonal matrix of consider a priori sigmas. Making use of
the Schur identity given in Sect. 6.2, the consider square root covariance is given by

Sc = R−1
c =

[
R−1

x −R−1
x Rxc S−1

con

0 Scon

]

and the consider covariance is

Pc = Sc ST
c

6.3.4 Smoothing

A current state orbit determination filter provides a best estimate of the spacecraft
state at the end of the data arc. An estimate of the state at the beginning of the
data arc or at some time in between may be obtained by mapping the final state
back to the epoch of interest. This mapping may also be obtained by integrating
the trajectory backwards from the final state. If there are no stochastic parameters,
these mappings will also provide a best estimate. When stochastic parameters are
included, a best estimate may be obtained by processing the data backwards and
this is referred to as a smoothed best estimate. If only a few estimation epochs are
of interest a smoothed best estimate may be obtained while processing the data
forward. This processing is referred to as single point smoothing and was used by
the Galileo project for obtaining an estimate of the probe state at separation.

Data is processed from launch to the separation epoch. At the time of separation
or the time that a smoothed best estimate is desired the data processing is halted.
The covariance at this time is given by P(ts)

P (ts) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(p) P (p, x1) 0 P(p, y)

P (x1, p) P (x1) 0 P(x1, y)

0 0 P(xs) 0

P(y, p) P (y, x1) 0 P(y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The smoothed a prior covariance (P(xs)) is a place holder and has no affect on the
computed covariance (P(ts)). The data partials associated with P(xs) are all zero
up to the time ts . At the smoothing epoch, the computed covariance is updated with
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P(ts)
+ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P(p) P (p, x1) P (p, x1) P (p, y)

P (x1, p) P (x1) P (x1) P (x1, y)

P (x1, p) P (x1) P (x1) P (x1, y)

P (y, p) P (y, x1) P (y, x1) P (y)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This update forces the smoothed spacecraft state to be equal to the computed
spacecraft state and be perfectly correlated. The smoothed spacecraft state also
assumes the same correlation with stochastic parameters (P(p)) and constant
parameters (P(y)). The data filter continues to the end of the data arc. The data
partials for xs remain at zero and the smoothed best estimate is updated through its
correlation with the other estimated parameters. For the implementation of single
point smoothing in the orbit determination program used for Galileo, the update at
the smoothing epoch was performed by processing six artificial measurements that
forced the spacecraft state to equal the smoothed state at the smoothing epoch.

6.4 Continuous Filter Equations

A data filter processes data in order to obtain an estimate of parameters that are
related to the data by a mathematical model. Data filters exist in many forms
and use the covariance of the state parameters, or some equivalent representation,
along with the measurements and a simulation of the measurements including
partial derivatives, to obtain the desired estimate. Data filters may be separated into
two categories depending on how the state covariance is evolved as a function of
time. Continuous data filters evolve the state covariance by integration of a matrix
differential equation or Riccati equation and discrete data filters evolve the state
covariance by mapping over a finite time interval. Discrete filters are thus obtained
by solving the continuous equations over some finite time interval. The covariance
matrix of the state may be represented by its inverse or information matrix or square
root factorizations of either of these matrices.

The system dynamics may be described as a linear perturbation of a reference
function of the state variables. Given the nominal values of the state variables
described by the function x̄(t) and a perturbation of the state (δx) at the initial
epoch (t0), the perturbed state variables are described by

x(t) = x̄(t) + �(t, t0) δx(t0)

where the state transition matrix (�) is given by

� = ∂x(t)

∂x(t0)
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The state transition matrix may be obtained as a solution of the following differential
equation or by numerical integration.

∂ẋ(t)

∂x(t0)
= ∂ẋ(t)

∂x(t)

∂x(t)

∂x(t0)

�̇(t, t0) = F �(t, t0)

where

F = ∂ẋ(t)

∂x(t)

The above differential equation, describing the evolution of the state variation, may
be generalized to include other parameters and process noise.

Ẋ = F X + G


where G is the mapping of 
, the process noise. Here, the δ’s have been dropped and
the variation δx is represented by X. The state vector variation X may be generalized
to include constant parameters (y) and stochastic parameters (p) as well as the
dynamic state variables (x). The process noise (
) contains white noise (ω) on the
stochastic parameters. Thus we have

X =
⎡
⎣p

x

y

⎤
⎦ 
 =

⎡
⎣ω

0
0

⎤
⎦

The stochastic parameters (p) provide a means of introducing process noise into the
state variables. These are defined by scalar differential equations of the form

ṗi = − 1

τi

pi + ωi

where τi is the correlation time and ωi is the white noise associated with the i’th
stochastic parameter. Thus, white noise is introduced directly to the parameter p

and indirectly to the state via the mapping matrix F .
An estimate of the state is obtained from a mathematical model of the system

dynamics that include measurements processed by a data filter. The “best” estimate
of the variation of the state (X̂) is described by the following equations,

˙̂
X = FX̂ + G
̂ + KẐ

Ẑ = Z − AX̂

A = ∂Z

∂X
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where K is the Kalman gain, 
̂ represents an estimate of the process noise, Z are
the actual measurements, and A is the matrix of data partials. The Kalman gain
is computed as a function of the measurement error, the data partials, and the state
error covariance (P ). Thus, in order to obtain a complete set of equations that would
enable the computation of the estimated state we need an equation for the Kalman
gain and an equation for evolving P as a function of time.

The covariance of the state estimate is defined by the expected value repre-
sented by

P = E
{
XXT

}
As an alternative, we may compute the information matrix (�), the square root of
the covariance (S), or the square root of the information matrix (R). The equations
that define these matrices are given by

P = �−1

P = SST

P −1 = RTR

Thus, we are interested in obtaining differential equations of the form

Ṗ = Ṗm + Ṗq + Ṗd (6.9)

�̇ = �̇m + �̇q + �̇d (6.10)

Ṡ = Ṡm + Ṡq + Ṡd (6.11)

Ṙ = Ṙm + Ṙq + Ṙd (6.12)

where the subscript m refers to the mapping terms, the subscript q refers to process
noise terms, and the subscript d refers to the data update terms.

The evolution of the covariance as a function of time may be obtained by
mapping the state covariance obtained at some epoch (t0) to some time in the future
(t) with the state transition matrix.

P(t) = �(t, t0) P (t0) �(t, t0)
T

Taking the derivative with respect to time we obtain

Ṗ (t) = �̇(t, t0) P (t0) �(t, t0)
T + �(t, t0) P (t0) �̇(t, t0)

T

Since the state transition matrix is obtained by integrating

�̇(t, t0) = F(t) �(t, t0)
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we obtain after substitution

Ṗm = FP + PF T (6.13)

6.4.1 Process Noise Term

In the covariance matrix differential equation, process noise enters as an addition to
the covariance. Thus we have

P(t + �t) = P(t) + G�QGT

where �Q is the covariance of the process noise admitted over the time interval �t

and

�Q = Q �t

where Q is the rate of accumulation of process noise. Thus, in the continuum we
have

Ṗq = lim
�t→0

{
P(t + �t) − P(t)

�t

}
= G Q GT (6.14)

6.4.2 Data Update Term

The discrete covariance update may be obtained assuming an additional measure-
ment An+1 is added to a previously determined estimate based on measurements An

with covariance Pn.

Pn+1 =
[
AT

n�WnAn + AT
n+1�Wn+1An+1

]−1

In the notation used here, An is a matrix with n rows corresponding to the
measurements and m columns corresponding to the state parameters. An+1 is a row
matrix of dimension m. We also have for the covariance update,

P −1
n+1 = P −1

n + AT
n+1 �Wn+1 An+1

and since

� = P −1

�n+1 = �n + AT
n+1 �Wn+1 An+1
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Over the time interval �t between measurements, information accumulates at a rate
W and

�Wn+1 = W �t

�n+1 − �n = AT
n+1 W�t An+1

Dividing by �t and taking the limit as �t approaches zero,

�̇m = AT W A (6.15)

we obtain a differential equation for the evolution of the information matrix due to
addition of data.

6.4.3 Continuous Filter Differential Equations

Collecting the terms derived above, we have the following matrix differential
equation or Riccati equation for the covariance filter,

Ṗ = FP + PF T + GQGT + Ṗd

K = P AT W

and for the information filter,

�̇ = �̇m + �̇q + AT W A

K = �−1 AT W

The data update term (Ṗd) is missing from the covariance equation and the mapping
(�̇m) and process noise (�̇q) terms are missing from the information filter equation
and these may be obtained by transformation using matrix identities. For the
covariance and information equations, we need the following matrix identities.

P� = I

Ṗ� + P�̇ = 0

Ṗ = −P�̇�−1 = −P �̇ P

�̇ = −P −1 Ṗ � = −�Ṗ �

Applying these identities to the above matrix differential equations, we have

Ṗ = FP + PF T + GQGT − PAT W AP

K = P AT W



6.4 Continuous Filter Equations 235

The covariance filter in this form is called the continuous form of the Kalman-Bucy
filter. For the information filter, we have

�̇ = −�F − F T� − �GQGT � + AT W A

K = �−1 AT W

A similar set of matrix identities, derived by Scheeres, may be developed for the
square root covariance filter (SRCF) and the square root information filter (SRIF)
that may be used to transform the covariance time derivative.

P = SST

Ṗ = ṠST + SṠT

[
SṠT − 1

2
Ṗ

]
+

[
ṠST − 1

2
Ṗ

]
= 0

Because of symmetry associated with the above terms in the brackets, both terms in
the brackets must be zero and

Ṡ = 1

2
Ṗ S−T

A similar derivation for the SRIF matrix gives the identity

Ṙ = −1

2
RṖ RTR

Applying these identities to the covariance and information filter equations gives the
following matrix differential equations for the SRCF and SRIF matrices.

Ṡ = 1

2

[
FS + SSTF TS−T

]
+ 1

2
GQGTS−T − 1

2
SSTATWAS

Ṙ = −1

2

[
RF + R−1F TRTR

]
− 1

2
RGQGTRTR + 1

2
R−TAT W A

The mapping terms for both the SRCF and SRIF contain matrix inverses. These may
be eliminated by introducing a different factorization of the square roots. Consider
the mapping of the square root covariance from an initial epoch t0 to the epoch t .

P(t) = �(t, t0) S(t0)S(t0)
T �(t, t0)

T

The mapped square root is simply

S(t) = �(t, t0) S(t0)
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Taking the derivative with respect to time,

Ṡ(t) = �̇(t, t0) S(t0)

Ṡ(t) = �̇(t, t0)�(t, t0)
−1S(t)

Ṡ(t) = F(t)S(t)

For the SRIF matrix we have

S(t)R(t) = I

Ṡ(t)R(t) + S(t)Ṙ(t) = 0

Ṙ(t) = −R(t)Ṡ(t)S(t)−1

Ṙ(t) = −R(t) F (t)

Making the above substitutions for the mapping terms, the matrix differential
equations and Kalman gain for the covariance, information, square root covariance,
and square root information filters are summarized below.
Covariance (Kalman-Bucy) Filter

Ṗ = FP + PF T + GQGT − PAT W AP (6.16)

K = P AT W (6.17)

Information Filter

�̇ = −�F − F T� − �GQGT � + AT W A (6.18)

K = �−1 AT W (6.19)

Square Root Covariance Filter (SRCF)

Ṡ = FS + 1

2
GQGTS−T − 1

2
SSTATWAS (6.20)

K = SSTAT W (6.21)

Square Root Information Filter (SRIF)

Ṙ = −RF − 1

2
RGQGTRTR + 1

2
R−TAT W A (6.22)

K = R−1R−T AT W (6.23)

The data update and process noise terms of the above filter equations exhibit a
symmetry or duality when the information filters are compared with the covariance
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filters. For example, the data update term of the information filter may be obtained
by replacing Q with W and G with AT in the process noise term of the covariance
filter. Also, the process noise update term of the information filter may be obtained
by making similar replacements in the data update term of the covariance filter.
These same dual relationships exist for the filters in their square root form. The
existence of duality enables algorithms designed for data updating to be used
for process noise updating and vice versa. For example, the Potter square root
covariance data update algorithm may be used to update process noise in the SRIF.

6.5 Continuous SRIF with Discrete Data Update

The selection of a filter algorithm depends on many competing criteria related to
accuracy, computational efficiency, memory utilization, and simplicity of design.
Consideration of accuracy seems to favor factorized or square root filters and
computational efficiency seems to favor discrete filters. With the proliferation of
personal computers, computational efficiency has become less important since
computer processing time is now relatively cheap. Simplicity of design and memory
utilization favor a continuous approach to filtering. The system dynamics and data
partial derivatives enter directly into the filter and the need to compute a state
transition matrix is completely eliminated. However, data is generally in the form of
discrete data points and may not be easily transformed to the continuous form. This
suggests a hybrid approach which allows system dynamics and process noise to be
treated continuously and data to be treated as a discrete update.

The continuous SRIF, with discrete data update, is selected for development of a
filter algorithm. Information filters have the advantage that a priori on the constant
parameters does not have to be placed on the filter until after all the data is processed.
During filtering, the information arrays may be sparse resulting in less computation.

6.5.1 Process Noise Duality

The continuous process noise update enables one to introduce process noise directly
as a differential equation to the filter. This form is convenient for describing process
noise and enables the investigation of a wide variety of process noise models
without explicitly solving the differential equation. The continuous process noise
update term in the information filter has the same form as the data update term in
the covariance filter. The Potter square root covariance data update algorithm [6]
provides a means of performing a scalar data update to the square root covariance
filter. Because of duality, the discrete Potter data update algorithm can be adapted
to the SRIF for a discrete scalar process noise update. Taking the limit as �t

approaches zero enables one to convert the discrete process noise update to a
continuous process noise update.
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Starting with the process noise update term in the information filter (Eq. (6.18)),
which is the dual of the data update term of the covariance filter (Eq. (6.16)), we
have

�̇q = −�GQGT � = lim
�t→0

�n+1 − �n

�t

and in the discrete form,

� = �̃ − �̃G�QGT �̃

where the notation for �n, the information matrix before the update or priori, is
replaced by �̃ and �n+1 is replaced by �. Since

� = RTR

we have for the POTTER approximation

RTR = R̃T
[
I − v �QvT

]
R̃

where

v = R̃ G

�Q = Q�T

If �Q and G are assumed to be diagonal (i.e., uncorrelated process noise parame-
ters), then each diagonal element of �Q is given by a scalar �qi . Dropping the i

subscript, we have for the i’th row of R and diagonal element of �Q,

I − �qvvT = (I − �αvvT)2

I − �qvvT = I − 2�α vvT + �α2vvTvvT

Since vTv is a scalar, the solution of the above quadratic equation is given by

�α = 1 − √
1 − vTv�q

vTv

and

RTR = R̃T(I − �α vvT)T (I − �α vvT)R̃

R = (I − �α vvT)R̃

R = R̃ − �α R̃ GGT R̃TR̃
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In the continuum we have

Ṙ = −�α̇R̃ GGT R̃TR̃

and

�α̇ = 1

2
(1 − vTv�q)−

1
2 �q̇

In the limit as �q and �t go to zero we have

�α̇ = 1

2
�q̇

and

Ṙ = −1

2
�q̇ R GGT RTR

If we have more than one stochastic parameter, the �q̇ ′s can be assembled into a
diagonal matrix Q and we have

Ṙ = −1

2
R GQGT RTR (6.24)

This is the same equation as derived above for the continuous SRIF process noise
update only we have assumed diagonal Q and G.

6.5.2 Numerical Integration of SRIF Matrix

The continuous SRIF data processing algorithm involves mapping the SRIF matrix
from the time of a discrete data or process noise update to the time of the next
data point or process noise update. The mapping is accomplished by numerical
integration of the SRIF matrix differential equation. The numerical integration is
performed with a suitable algorithm. The fifth order Runge-Kutta-Fehlberg method
with error control has been successfully employed. Recall the matrix differential
equation derived above for the SRIF (Eq. (6.22)) and discard the data update term.

Ṙ = −RF − 1

2
RGQGTRTR

Consider the following partition.
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Ṙ = −
[

Rd Rdy

0 Ry

] [
Fd

0

]
−

⎡
⎣Rp Rpx Rpy

0 Rx Ry

0 0 Ry

⎤
⎦
⎡
⎣ 1

2GQGTRT
pRp

0
0

⎤
⎦

where Rd corresponds to the dynamic parameters and the matrix Fd contains only
the rows of F corresponding to the dynamic parameters. This equation simplifies to

Ṙ = −Rd Fd − 1

2
Rp GQGT RT

pRp

We only have to integrate the top rows of the SRIF matrix corresponding to the
dynamic parameters and the derivative is a function of only the Rd partition of the
SRIF matrix. For the simple case of exponentially correlated process noise we have

Fd =
⎡
⎢⎣

∂ṗ

∂p
0 0

∂ẋ

∂p

∂ẋ

∂x

∂ẋ

∂y

⎤
⎥⎦

∂ṗ

∂p
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

− 1

τ1

− 1

τ2
. . .

− 1

τi

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

2σ 2
s1

τ1
2σ 2

s2

τ2
. . .

2σ 2
si

τi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and G is the identity matrix.

6.6 Direct Orbit Determination

Direct orbit determination is a method for determining a spacecraft orbit directly
from measurements. For Doppler data, the measurement recorded on a tracking
data file contains the motion of the Earth, the central body, media and other orbit
perturbations. After removing known components from the Doppler signature, the
portion of the signature due only to the spacecraft motion relative to the central body
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can be parameterized. A Newton-Raphson method may be applied to obtain the
solution. Parameters which yield a nearly diagonally dominant partials matrix are
defined. This method is particularly important for orbits around asteroids and comets
where a velocity error of only a few meters per second can place the spacecraft in
an entirely unknown orbit.

Another example of direct orbit determination was devised by Hamilton and
Melbourne for determining the position of a spacecraft far from the Earth. A single
range measurement gives the distance to the spacecraft but provides no information
of the position normal to the line-of-sight or the right ascension and declination of
the spacecraft. By observing the rotation of a tracking station about the Earth’s spin
axis, which appears in the Doppler data like a spacecraft orbiting a planet, the right
ascension and declination may be determined. The accuracy of this measurement
is about 0.25µrad or less than one tenth of an arc second which is about the same
accuracy as the Hubble space telescope.

The determination of a spacecraft orbit can be hampered by the lack of conver-
gence of an orbit determination program, in the case of poor a priori information
or highly nonlinear measurements. The convergence problem is likely to occur
following a large propulsive maneuver where execution errors may result in a
poor prediction of the post maneuver orbit. However, the problem may also arise
for a spacecraft that is left in orbit unattended for some time. The most common
occurrences result from launch into Earth orbit and planetary orbit insertion. In
either of these cases, a guidance or propulsion system failure can leave the spacecraft
on a trajectory far from the nominal that is generally used as the a priori position
estimate for the orbit determination solution. Due to nonlinearity, a perturbation of
a few degrees in the orbit elements describing orientation or a few percent in period
may result in the failure of an orbit determination program to converge.

For a spacecraft orbiting a planet, the energy required to perturb the spacecraft
orbit far enough away from its original path to cause an orbit convergence problem
is considerable. A planetary orbit insertion maneuver does have the potential for
large anomalous orbit perturbations. This subject received much attention on the
Viking mission to Mars and the Magellan mission to Venus. If a motor burn anomaly
large enough to cause an orbit convergence problem had occurred on either of these
missions, it could have been very difficult to recover.

For a spacecraft orbiting a comet or asteroid, a relatively small propulsive
maneuver can radically alter the orbit. Only a few meters per second of velocity
change are required to reverse the direction of the spacecraft velocity vector. If
this were to happen due to an anomalous burn, the spacecraft might be left in
a completely unknown orbit. The available data would be Earth-based Doppler
tracking since the signal could be recovered by pointing the DSN antennas at the
asteroid, and it is assumed that the spacecraft would be able to acquire celestial
references and point its antenna at Earth even though the relative direction of the
central body is not known. Conventional methods for redetermining the spacecraft
orbit based solely on processing Doppler data in an orbit determination program
may not be adequate.
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The Doppler observable provides a direct measure of the spacecraft velocity
projected onto the line-of-sight between the tracking station antenna and the
spacecraft. The Doppler measurement is a measure of the difference in range over
some time interval scaled by a constant determined by the transmitted frequency,
the speed of light and the length of the time interval or count time. The range from
the tracking antenna to the spacecraft may be expressed as the sum of the directed
distances of the spacecraft to the central body, the central body position relative to
the Sun, the Earth position relative to the Sun and the location of the tracking station
relative to the center of the Earth, including a small correction for media. For the
orbit determination problem, all of the distances referred to above are well known
except for the spacecraft position relative to the central body. The contribution of
this component may be isolated by subtracting the effect of the known distances and
the media delay from the raw Doppler measurement. A multidimensional Newton-
Raphson method is then applied for the solution of the spacecraft orbital elements.

6.6.1 Model of Doppler Data Signature

The spacecraft orbit may be determined in terms of six orbit elements in the plane-
of-sky coordinate system shown in Fig. 6.2. After deriving a mathematical model
for the spacecraft central body component of the Doppler signature, target positions
on the signature are chosen that approximately define six target parameters, each of
which is directly related to one of the orbital elements to be determined.

Figure 6.2 displays the spacecraft orbital plane with respect to the plane-of-sky
coordinate system (X,Y,Z). The plane-of-sky is the plane perpendicular to the line-
of-sight between the Earth and the central body of the spacecraft orbit. The X and Y
axes lie in the plane-of-sky, and the Z axis points from the central body to the Earth.
The plane-of-sky coordinate system is particularly useful for Doppler data, because
the line of sight is along the Z axis.

The spacecraft orbit is oriented with respect to the plane-of-sky as follows: the
node 
 is the smallest positive angle between the X axis and the line of nodes,
which is the intersection of the plane-of-sky with the spacecraft orbital plane. The
inclination i is the angle from the plane-of-sky to the spacecraft orbital plane, and
the argument of periapsis ω is the angle from the line of nodes to the semi-major
axis through periapsis. To convert plane-of-sky coordinates to coordinates in the
orbital plane of the spacecraft, rotations through the three angles 
, i, and ω must
be performed.
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Fig. 6.2 The plane-of-sky
coordinate system
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The object is to determine an approximate two-body elliptical spacecraft orbit in
terms of six elements, the semi-major axis a, the eccentricity e, the time of periapsis
tp, the node 
, inclination i, and argument of periapsis ω. This set of orbital elements
may be readily converted to a Cartesian initial state vector that may be input to orbit
determination software for further refinement.

The signature of the spacecraft orbital velocity projected onto the Earth line-
of-sight is simply the z component of the spacecraft velocity in the plane-of-sky
coordinate system. In the spacecraft orbital plane, the spacecraft position is

X3 = r cos η

Y3 = r sin η

Z3 = 0.

where η is the true anomaly, or periapsis-central body-spacecraft angle, and r is the
distance from the central body to the spacecraft. Thus the velocity components are:

Ẋ3 = ṙ cos η − rη̇ sin η

Ẏ3 = ṙ sin η + rη̇ cos η

Ż3 = 0.
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To get velocity coordinates in the plane-of-sky, we transpose the rotations through

, i, and ω, respectively.
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The Doppler measurement Kρ̇ is KŻ. After the application of some standard
trigonometric identities and two-body orbit element formulas,

r = a (1 − e2)

1 + e cos η

r η̇ =
√

GM a (1 − e2)

r

ṙ = r η̇ e sin η

1 + e cos η.

the following equation for the Doppler signature is obtained.

K ρ̇ =
√

GM√
a

sin i√
1 − e2

[cos (η + ω) + e cos ω] K (6.25)

GM is the gravitational constant of the central body of the spacecraft orbit, and K
is a scaling constant which is related to the transmitted frequency. It converts the
Doppler observable into Hertz:

K = 2 C3 Ft

c

where Ft is the transmitted frequency, C3 = 240/221 is the spacecraft turnaround
ratio, and c is the speed of light. Ft = 2, 112, 200, 640 Hz for X-band Doppler.

The representation of the Doppler signature is a function of the time-varying true
anomaly η rather than an explicit function of time. The signature may be plotted
as a function of time by performing the following computations: for a fixed time t,
time of periapsis tp, and parameters a, e, i, and ω, we may solve for the eccentric
anomaly E from

t = tp + 1/2π (E − e sin E) P (6.26)

P is the period, which is related to the semi-major axis a by the standard formula
from two-body elliptical motion,
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P = 2 π

√
a3

GM
(6.27)

Newton’s method with an initial condition Eo = π/2 is effective for this
computation. Given the eccentric anomaly E, the true anomaly η may be obtained
from

η = tan−1
(

sin η

cos η

)
(6.28)

where

sin η = (sin E) (a/r) (1 − e2)1/2 and cos η = cos E − e

1 − e cos E
.

6.6.2 Parameterization of Doppler Signature

Figure 6.3 displays the slowly increasing or decreasing amplitude of a simulated
Doppler signature, on which six target positions are identified. In the case of an
actual mission, the raw Doppler data may be processed by an orbit determination
program to remove the known components of the signature due to the relative
motions of the Sun, Earth, tracking stations and central body of the spacecraft
orbit. The resulting quasi-periodic signature, corresponding to the spacecraft-central
body component, may be similarly plotted and the six target positions identified.
When the spacecraft passes through the plane-of-sky, the observed signature is at a
maximum or minimum. A maximum is attained moving away from the Earth, and a
minimum is attained moving toward the Earth. At the zero crossings, the spacecraft
range to Earth is at a local minimum or maximum. If the slope is negative at the zero
crossing, the spacecraft is on the far side of the central body away from the Earth;
and if the slope is positive at the zero crossing, the spacecraft is on the near side of
the central body toward the Earth.

The six target positions defined on the signature yield the set of target parameters
{zi} below:

z1 = t5 − t1 a semi-major axis
z2 = t1 tp time of periapsis
z3 = h2 + h4 e eccentricity
z4 = h2 − h4 i inclination
z5 = t4 − t2 ω argument of periapsis
z6 = h6 − h2 
 the node

The six parameters relate to the plane-of-sky orbit elements as indicated. The
difference in time between t5 and t1 is approximately the orbit period, from which
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Fig. 6.3 The Doppler signature with target positions

the semi-major axis is obtained from (13). The parameter z2 is the time of the zero
crossing with positive slope, which is related to the time of periapsis, and the third
parameter z3 is related to the eccentricity, because e cos ω determines the bias offset,
or integrated average, of the graph. The amplitude

z4 =
√

GM√
a

sin i√
1 − e2

is closely related to the inclination in the plane-of-sky. Also, the argument of
periapsis affects the downward slope of the signature, which is related to z5, but
the dependence is not apparent from Eq. (6.25), which is not time-dependent. The
nonlinear relationship between ω and time can be observed in Eqs. (6.26)–(6.28).
Finally, the node in the plane-of-sky is related to a slow change in amplitude,
measured by z6, that may be attributed to the relative motion of the asteroid with
respect to the Earth. The node 
 changes as the planet or asteroid rotates around
the Sun, and consequently around the Earth. A change in node indirectly changes
the inclination i and argument of periapsis ω, which causes an upward or downward
shift in the Doppler signature, measured by the difference in two peaks.

To the first order, the true anomaly is the only time-dependent parameter in
the mathematical model of the spacecraft-central body component of the Doppler
signature (11). The equation does not explicitly incorporate the node in the plane-
of-sky. The relation to 
 may be obtained by solving Kepler’s equation. We may
obtain a first order equation that includes the node by introducing the rotation of the
central body about the Earth as second order inclination and argument of periapsis
rates. We have for the rotation of the planet or asteroid about the Earth
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�e = Rz × Vz

|Rz|2

where Rz and Vz are the position and velocity of the central body with respect to
the Earth. Transforming into the plane-of-sky we have

�pos = T �e

The following Euler angle rates may be obtained from the rotation of the plane-of-
sky coordinate system.

⎡
⎢⎢⎢⎢⎢⎢⎣

di

dt

0

0

⎤
⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎣

cos 
 sin 
 0

− sin 
 cos 
 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ �pos

⎡
⎢⎢⎢⎢⎣

0

0
dω

dt

⎤
⎥⎥⎥⎥⎦ = −

⎡
⎢⎢⎢⎢⎢⎣

1 0 0

0 cos i sin i

0 − sin i cos i

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

cos 
 sin 
 0

− sin 
 cos 
 0

0 0 1

⎤
⎥⎥⎥⎥⎥⎦ �pos

6.6.3 Solution by Newton-Raphson

The determination of the spacecraft orbit convergence problem thus reduces to
finding the plane-of-sky orbit elements that generate the observed signature. We
estimate the vector of orbital parameters O = (a, tp, e, i, ω,
)T by measuring the
vector of target parameters Z = (z1, z2, z3, z4, z5, z6)

T. Values computed for six
points shown in Fig. 6.3 may be compared with the observed values in a Newton-
Raphson algorithm to solve for the plane-of-sky orbit elements.

The vector of target parameters Zo is computed from the spacecraft-central body
component of the Doppler signal. An initial set of orbital elements Oo is processed
by an orbit determination program, which includes a model of the irregular gravity
field of the asteroid, or other central body. The computed signature is obtained
by integrating the equations of motion of the spacecraft, projecting the spacecraft
velocity vector into the line-of-sight relative to Earth, and scaling by the constant K .
The target parameters Z1 are computed from the simulated signal.

The Newton-Raphson method involves the recursive solution of the following
equation:
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On+1 = On +
(

∂Z

∂O

)−1

(Zn − Z0)

where Zn is the vector of target parameters computed from the estimated vector
of spacecraft orbital elements On. Partial derivatives of the target parameters with
respect to the elements of Oj are computed by perturbing each orbital element in
Oj from the nominal, generating a signal, measuring the perturbations in the target
parameters, and computing

� zi

� oj
, 1 ≤ (i, j) ≤ 6.

A new set of reference orbital elements On+1 and corresponding set of reference
target parameters Zn+1 are then computed. The process is continued to convergence.
Since the computed and measured Z may be obtained along with the partial
derivatives with high precision, the major weakness is the initial guess of the orbit
elements. Since a diagonally dominant system will converge from just about any
initial guess, it is desirable to define a parameter set that has a matrix of partial
derivatives that is as close to diagonal as practical. The above parameter set (zi)

was selected with this purpose in mind. The near diagonal dominance of the matrix
of partial derivatives associated with this parameter set ensures convergence over
a wide range of initial starting points. Also, the converged orbit elements may
be transformed to a high-precision state vector that may be input directly to orbit
determination software. The accuracy of the Newton-Raphson solution depends
only on the accuracy of the independent parameters (measurements) and their
relation to the dependent parameters (the model). The accuracy does not depend on
the initial guess or partial derivatives which control the convergence to a solution.

6.6.4 Magellan Example

As an example of the application of the above method, consider the determination
of the Magellan spacecraft orbit about Venus. Two orbits of raw Doppler data from
DSS 15 at Goldstone, California and DSS 45 at Canberra, Australia were acquired
on February 7–8, 1991, and are shown in Fig. 6.4.

The gaps in the data coverage were due to a loss of Doppler data while the
spacecraft was being rotated for the purpose of science data acquisition. Similar
gaps could be caused by the unavailability of tracking stations or the occultation
of the spacecraft by the planet. The target parameters described above require
complete data, in the absence of which the parameter set must be modified to make
best use of the data available. Because in general complete data is available, the
second approach was to generate simulated data to supplement the actual data.
Figure 6.5 displays the Magellan spacecraft-Venus component of the Doppler signal
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with simulated data. From a cursory view of Fig. 6.5, some of the plane-of-sky orbit
elements are apparent. The period is observed to be approximately three hours, and
the amplitude indicates a high inclination. The eccentricity is less obvious, but the
slight negative shift of the curve indicates a small eccentricity. The large difference
between the upward and downward slopes indicates ω is near ±90◦.

With complete data the ideal parameters were chosen as described in Fig. 6.3.
The resulting convergence ranges for each orbital parameter are displayed in
Fig. 6.6. The arrows indicate the true orbital parameters for the Magellan mission
at that time. The intervals displayed represent convergence by introducing an
erroneous initial condition for one orbital parameter at a time, and using the correct
values for the other orbit elements. It was not possible, given time constraints, to
completely characterize a six-dimensional convergence region. However, conver-
gence was tested by varying all orbit elements from the true values at once, and
results indicated a substantial region of convergence.

A second approach was to use only the real data, choosing alternative target
parameters. We select as parameters positions on the signal consisting of the times of
two consecutive zero crossings which approximately defines the period and phasing
of the spacecraft orbit and four other points at fixed epochs near the maxima and
minima of the Doppler signature. The loss of near diagonal dominance resulted in a
slower convergence rate than other cases, but even with the sparse data, convergence
was observed over a wide range of initial values (Fig. 6.7).

A comparison of the convergence obtained by processing a complete data set
including simulated data (Fig. 6.7) with the convergence obtained by processing
the actual sparse data set (Fig. 6.6) indicates a substantial range of convergence for
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both. However, the node 
 was better determined by the ideal target parameters used
with the simulated data. The node is the most difficult of all the orbital elements to
determine, because its effect on the signature is indirect, and because it changes so
little over a few orbital periods.



6.7 Summary 251

8925

0.08570 90
98 195

110 130 150 170 190

70

w

80
84 113

90 99 110 120 130

-223 -183
-178

-143 -103 -63
-53

-23 -17

0.185
0.009 0.725

0.285 0.386 0.485 0.585 0.685

9425 9925 10423 10925 11425 11925
117699812

-9000 -8000
-8040 -1998

-7000 -5839 -4000 -3000 -2000

Ω a

ei

TP

Fig. 6.7 Convergence region for Magellan with real data

6.7 Summary

Orbit determination is performed by searching for a set of parameters that minimize
the error in the measurements computed from a model or by direct solution of the
orbit from a minimum set of observations ignoring the error in the measurements.
Included in the parameters is the initial spacecraft state or orbit elements. The orbit
determined during flight operations is almost exclusively obtained by fitting data
to a model and direct orbit determination is seldom used. This is contrary to orbits
determined before the invention of the computer when orbit determination was by
direct observation. The computer algorithm for searching for a solution is called a
data filter. A data filter filters out bad data points. There are many types of data filters
that operate on the error of the measurements and the covariance of the estimated
parameters, the inverse of the covariance, the square root of the covariance, and the
square root of the covariance inverse. Covariance filters may be based on weighted
least squares or the Kalman filter algorithm. It can be shown that all of the filter
options solve the same problem and get the same result and the performance is
more dependent on the implementation than the filter algorithm.

Planetary spacecraft navigation uses weighted least squares implemented in a
square root information filter. When large number of parameters are estimated, the
data filter formulation requires the inversion of a large matrix. The Kalman filter
algorithm is a clever algorithm for matrix inversion. An upper triangular square root
covariance is easier to invert than a covariance matrix or at least this is the opinion
of square root filter advocates. The SRIF algorithm follows directly from work of
Gauss and has survived to this day without any significant improvement. During
the NEAR mission, 600 parameters were estimated every 3 days for over a year
with only minor problems in obtaining solutions for the spacecraft orbit, the Eros
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ephemeris, the Eros attitude, gravity harmonics, landmark locations, solar pressure
model parameters, and propulsive maneuvers.

The discreet form of a data filter may be replaced by continuous differential equa-
tions for the elements of the covariance matrix. The advantage of the continuous
formulation is the elimination of the need to compute a state transition matrix for
data processing and mapping of stochastic parameters. Once the filter formulation
has been obtained for the covariance filter, it can be readily adapted to information,
square root covariance, and square root information filters. A continuous filter was
implemented for the NEAR mission but was not used during navigation operations.
Continuous filtering requires more study before committing to actual mission
operations.

An algorithm for performing direct orbit determination was derived for a
spacecraft in orbit about a body. Six points were spotted on the Doppler signature
and the orbit that passed through these points was determined by performing a
Newton-Raphson search. Since there are six orbit elements, there is only one orbit
solution and this orbit can be determined to a higher precision than one may suspect.
Doppler data is very accurate. Direct orbit determination is an interesting backup
procedure, but has yet to be implemented during flight operations. In practice,
difficulties in determining orbit solutions have been solved by doing more searches.

Exercises

6.1 The Kalman filter algorithm is essentially matrix inversion. Show how a matrix
can be inverted by formulating a parameter estimation problem and processing the
“data” with the Kalman gain matrix and the weighted least square gain matrix.

6.2 An orbit determination analyst notices a ramp of about 3.5 mHz over 20 min
in the Doppler data. This corresponds to an unknown acceleration of 1.906 ×
10−10 km/s2. The spacecraft is near Earth and a planet is suspected. In the early
days of the space program, planets were sometimes omitted from the equations of
motion. What planet is the best guess? It wasn’t Jupiter.

6.3 A single point smoothed estimate requires an update to the computed covari-
ance at the smoothing epoch. Show how this update may be accomplished by
processing six artificial measurements at the smoothing epoch.

6.4 An orbit determination estimate X1 with covariance P1 is obtained by process-
ing data up to t1. Some additional data (Z1,2) is obtained from t1 to t2 and another
estimate X2 is computed with covariance P2. If the new data is weak, X2 will be
nearly the same as X1. In a Monte Carlo program, a sample drawn from P2 must
nearly equal a sample drawn from P1. Thus, we must know the correlation between
P1 and P2 in order to draw the correct sample at t2. For an optimum filter without
stochastic parameters, determine the cross correlation matrix P1,2 = E(X1X

T
2 ).
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6.5 The samples in Exercise 6.3 may be drawn by forming the matrix

P =
[

P1 P1,2

P1,2 P2

]

and drawing a sample from P . Drawing a sample from P involves computing the
eigenvalues and eigenvectors of P , generating independent normally distributed
random variables with sigmas equal to the square root of the eigenvalues and
multiplying these random variables by the matrix of eigenvectors. If there are
more than two orbit determination estimates in the sequence, the dimension of
the P matrix may become too large. Determine a sampling algorithm that involves
drawing a sample X1 from P1 and computing a conditional sample X2.

6.6 A spacecraft that is a great distance from Earth is being tracked by the DSN. The
tracking station is 5000 km off the Earth’s spin axis. The tracking station longitude
error is 1.5 m and the spin axis error is 1.0 m. The Earth’s radius and rotation rate are
6150 km and 7.26×10−5 rad/s, respectively. Three Doppler data points are obtained
at station rise, zenith, and station set. Determine the contribution of the station
location errors in determining the errors in the right ascension and declination of
the spacecraft as a function of declination.

6.7 Given the same data as in Exercise 6.6, determine the error in right ascension
and declination of the spacecraft for perfect station location knowledge and a
Doppler measurement error of 1.0 mm/s.

6.8 Repeat Exercise 6.7 for a range measurement error of 1 m.
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Chapter 7
Measurements and Calibrations

The measurement system is a collection of instruments on board the spacecraft
and on the ground that provide observations of the spacecraft motion with respect
to Earth and specific target bodies. Instruments of this kind are the Deep Space
Network (DSN), a solid-state imaging (SSI) device, and a laser altimeter. The
DSN tracking stations transmit radio frequency signals to the spacecraft and
receive signals via the spacecraft transponder and antenna. The received signals
constitute observations of range and Doppler data by conventional methods and
observations of angles by VLBI methods. An SSI allows optical observations of
planets, satellites, comets, and asteroids to be made against the background of the
fixed stars and direct observation of landmarks. A laser altimeter bounces laser
beams off the surface of a body and measures the round trip light time.

7.1 Radiometric Tracking Data

The major components of the radio tracking system include the telecommunication
subsystem on-board the spacecraft, the Deep Space Stations (DSSs) of the Deep
Space Network (DSN), and the general purpose computers of the Space Flight
Operations Facility (SFOF) located at the Jet Propulsion Laboratory (JPL) in
Pasadena or other control centers.

The parts of the telecommunications subsystem used for orbit determination are
S-band and X-band receivers and coherently driven S- and X-band transmitters.
They provide a coherent two-way communications link for tracking observables,
Doppler and range. Also, the spacecraft carrier is modulated with special tones for
wideband �VLBI. The DSN is a network of tracking stations located around the
globe at Goldstone, California; Madrid, Spain; and Canberra, Australia. Each DSS
is a complex of a 72-m antenna and several 34-m antennae and special purpose
hardware and computers for extracting Doppler, range, and VLBI observables from
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received spacecraft signals and VLBI from extragalactic radio sources. This data is
relayed via high-speed data lines to the control center where software on general
purpose computers process the data to obtain estimates of the spacecraft trajectory
and compute propulsive maneuvers for trajectory control.

7.1.1 Doppler Data

Doppler data is the work horse of the measurement system. Most missions can
be navigated with Doppler data as the only data type input to orbit determination
software. Doppler data provides a direct measure of line-of-sight velocity of a
spacecraft relative to a tracking antenna. The accuracy of this measurement is about
1 mm/s when the two-way Doppler count is integrated for 1 min. A single Doppler
measurement provides no information on position or velocity normal to the line-
of-sight. For those phases of the mission where the spacecraft is being accelerated
rapidly, such as near a planetary encounter, a series of Doppler measurements permit
a quite accurate complete orbit determination by observing the orbit dynamics
signature. When the spacecraft is far from a planet, comet, or asteroid, the
gravitational accelerations are not sufficient to observe this signature. However,
the “velocity parallax” due to the tracking stations rotation with Earth provides a
measure of position normal to the line-of-sight. By measuring the amplitude and
phase of the tracking stations signature, the right ascension and cosine of declination
may be determined to about 0.25µrad. Thus, at Jupiter distance, the Earth-relative
orbit determination error is about 200 km.

The functional definition of Doppler data as line-of sight velocity is useful for
analyzing the orbit determination errors that are spacecraft or trajectory dependent
but is of little use for analyzing error sources close to the actual measurement such as
media or hardware errors. The actual measurement is a count derived from the signal
received from the spacecraft and a frequency standard maintained at the tracking
station that controls the frequency of the transmitted signal. Thus, a precision model
of the Doppler observable includes a model of the signal path as well as hardware
elements. In practice, the hardware errors are small compared to media, station
location, and spacecraft dynamics errors.

7.1.2 Doppler Measurement Model

A model of the Doppler observable has been developed that idealizes some of the
hardware error sources yet precisely models the external environment. This model
is sufficiently precise for computation of the observable and is essentially the model
contained in orbit determination software. Of particular interest are models that are
external to the tracking station hardware yet pertain directly to the signal path.
Media and the effect of general relativity on station clocks are examples. Other
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models, such as station locations and polar motion, though not directly part of the
Doppler measurement system, may be treated as measurement calibrations.

The Doppler measurement is simply an electronic count of the number of cycles
from a frequency standard (Nc) minus the number of cycles of the spacecraft signal
received by the tracking station (Nr) and scaled by the count time interval (�Tc).
Thus we have

Zm = (Nc − Nr) + n

�Tc

where n is the measurement noise which is about 1/10 of a cycle. The received
frequency and standard frequency need not be counted individually and differenced
but may be added together electronically and the beat frequency counted. This is a
detail that is dependent on the hardware implementation. The numerical value of Zm

is the number that is recorded on a tracking data file and used for orbit determination.
In the orbit determination software we need to obtain a computed value for Zm

as a function of parameters that are available. This function can be derived from the
equations of motion and a physical model of the system. We start by developing a
frequency standard that can be compared with the frequency of the transmitted and
received signals. The frequency standard is obtained by scaling a reference oscillator
frequency fq , obtained from an atomic clock, to equal the transmitted frequency (ft )

times the spacecraft turn around ratio (C3) which would nominally be the received
frequency if there were no spacecraft Doppler shift or additional delay. The turn
around ratio is necessary so that the downlink will not interfere with the uplink.

Nc = C3 ft �Tc

where for S band Doppler,

C3 = 240

221

ft = 96 fq

�Tc = T3e − T3s

The count time (�Tc) is defined as the difference between the reception time at
the start of the count time interval (T3s ) and the reception time at the end of the
interval (T3e ). For a schematic representation of these times, see Fig. 7.1. In the
above equation, all of the parameters are constant or arbitrarily specified including
the reception times. The real information content of the measurement is contained
within the count Nr . Thus, in order to obtain a complete equation for the computed
measurement, we need an equation for Nr . It is tempting to differentiate and work
in the frequency domain; however, the hardware works with phase which makes
it convenient to formulate the measurement in terms of phase thus bypassing an
explicit equation for the received frequency.
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Fig. 7.1 Doppler observable schematic diagram

The equation that relates the measurement to the observable parameters is

Nr = 240

221
Nt

where

Nt = ft (T1e − T1s )

ft = 96 fq

The above equation for Nr states that the number of cycles counted at the receiver
is equal to the number of cycles transmitted Nt times the spacecraft turn around
ratio. This equation is true because they are effectively the same cycles. Thus, the
information content of the measurement is now contained in the transmit times T1e

and T1s . Since both of these times are unknown, we need some additional equations
to tie into the observable quantities. At this point in the development, we have the
following equation for the computed measurement.

Zc = (T3e − T3s − T1e + T1s )
C3ft

�Tc

We need equations for the times in the above equation and these will be
developed as functions of ephemeris time t . We have for the atomic clock at the
station

T = t + F(t, x, y)

The station time T is equal to the ephemeris time t modified by a small correction
due to general relativity and any other parameter that may affect the running of the
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clock. The calibration function (F ) is a function of t , the state of the solar system
(x), and other constant parameters (y). Here, x and y can be thought of as parameter
vectors. The relevant times shown in Fig. 7.1 relating to the Doppler measurement
are

T1s = t1s + F(t1s , x, y)

T1e = t1e + F(t1e , x, y)

T3s = t3s + F(t3s , x, y)

T3e = t3e + F(t3e , x, y)

Making the above substitutions, the equation for the computed measurement
becomes

Zc = (t3e − t3s − t1e + t1s )
C3ft

�Tc

+ [
F(t3e , x, y) − F(t3s , x, y) − F(t1e , x, y) + F(t1s , x, y)

] C3ft

�Tc

(7.1)

Since the speed of light is constant in any reference frame, we may obtain by
integrating along the light path

t3e − t1e = ρ12e + ρ23e

c
+ �tm1e

+ �tm3e

t3s − t1s = ρ12s + ρ23s

c
+ �tm1s

+ �tm3s

where the ρ terms represent the integrated distance along the light path and the tm

terms represent the additional delay caused by media. The distances along the light
path are obtained by integrating the equations of motion.

ρ12s =
∫∫ t2s

t1s

ρ̈ dtdt

ρ23s =
∫∫ t3s

t2s

ρ̈ dtdt

ρ12e =
∫∫ t2e

t1e

ρ̈ dtdt

ρ12e =
∫∫ t3e

t2e

ρ̈ dtdt

These equations are referred to as the light time equations and are solved iteratively
for the arguments of integration. The media delay is included in the measurement
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equation by evaluating the calibration function (G) at the appropriate times.

�tm = G(t, x, y)

�tm1s
= G(t1s , x, y)

�tm1e
= G(t1e , x, y)

�tm3s
= G(t3s , x, y)

�tm3e
= G(t3e , x, y)

The final equation for the computed measurement includes the observable equations
as well as clock and media calibration functions.

Zc = ρ12e + ρ23e − ρ12s − ρ23s

c

C3ft

�Tc

+ [
F(t3e , x, y) − F(t3s , x, y) − F(t1e , x, y) + F(t1s , x, y)

] C3ft

�Tc

+ [
G(t3e , x, y) − G(t3s , x, y) + G(t1e , x, y) − G(t1s , x, y)

] C3ft

�Tc

(7.2)

7.1.3 Data Noise

Recall that the measurement noise is scaled by the count time (�Tc).

Zm = Nc − Nr

�Tc

+ n

�Tc

(7.3)

The data noise is approximately 1/10 of the cycle count and is independent of
frequency. For a 60 s count time, the data noise is 1.66 mHz. Doppler data is scaled
by the count time to make the recorded measurement proportional to velocity. The
Doppler measurement sensitivity to line-of-sight velocity is given by

Zρ̇ ≈ 2 C3ft

c
ρ̇ (7.4)

At S-band frequency, typical values for the constants in the above equation are

C3 = 240

221

ft = 96 fq

fq = 22 × 106 Hz

c = 299792.458 km/s
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and for ρ̇ = 1 mm/s the measurement gives the well-known result Zρ̇ = 15.3 mHz.
In order to obtain this result, the above equation must be entered with a consistent
set of units for each of the parameters. At X-band frequency, 1 mm/s velocity
corresponds to about 56 mHz.

7.1.4 One-Way Doppler Data

The one-way Doppler data type provides a measure of the change in the line-of-
sight range between a DSN station and a spacecraft over some interval of time. The
measurement makes use of the Doppler frequency shift of a source when the receiver
is moving with respect to the source. When the change in range is divided by the
time interval, a measure of the average range rate over the time interval is obtained.
The source is a radio signal whose frequency is controlled by an oscillator or clock
on the spacecraft. The transmitted radio wave is received by a DSN tracking station
and the individual cycles are counted. If the spacecraft is stationary with respect
to the DSN antenna or there is no net change in range over the count interval, the
measured cycle count divided by the time interval will equal the frequency of the
radio signal transmitted by the spacecraft. If the spacecraft is moving with respect to
the antenna, the difference between the cycle count transmitted and the cycle count
received times the wavelength of the transmitted radio signal is a measure of the
range change over the count time interval and is the measurement that may be used
to determine the orbit of the spacecraft. A problem with one-way Doppler is the
frequency of the transmitted radio signal. The frequency control of a radio signal
on a spacecraft is marginal at best. The spacecraft does not have access to high-
precision atomic clocks to control the frequency and the measurement is accurate
to about 1 cm/s even with ultra-stable oscillators on the spacecraft. An atomic clock
on the spacecraft is needed and is under development.

The first step in processing a one-way Doppler data point is to read the first
data record from the tracking data file and obtain the time tag, frequency, and the
measurement. For the first one-way Doppler point, the count time is subtracted from
the recorded time tag to initialize the station time associated with receipt of the
Doppler measurement at the start of the Doppler count. For subsequent one-way
Doppler points, the start of the Doppler count is exactly the end time of the previous
Doppler count. Thus, the first Doppler point requires two solutions of the light-time
equation and subsequent points require only one. When the continuity is interrupted,
the time tags are not separated by the exact count time and the one-way Doppler
count is restarted.

The computation of the observable involves integrating the transmitted and
received frequencies over the appropriate time intervals. The transmitted frequency
is controlled by the oscillator on the spacecraft which tends to drift. The frequency
may be modeled as a polynomial function of time given by

ft = FRQ0 + FRQ1(t − tf ) + FRQ2(t − tf )2
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where FRQi are the coefficients of the polynomial and tf is the ephemeris time
associated with FRQ0. The FRQ0 coefficient is set equal to the frequency obtained
from the tracking data file data record and the linear and quadratic coefficients
are generally initially set to zero. The time interval for the integration is from the
ephemeris time at the spacecraft obtained from the light time solution at the start of
the count (t2s) to the end of the count (t2s). The required integral is given by

f qt =
∫ t2e

t2s

ft dt

f qt = FRQ0(t2s − t2e) + FRQ1

2

[
(t2s − tf )2 − (t2e − tf )2

]

+FRQ2

3

[
(t2s − tf )3 − (t2e − tf )3

]

The received frequency (fr ) may be modeled as a polynomial function of
received station time by mapping the function for the transmit time to the Earth
and converting to station time.

fr = FRQ0 + FRQ1(t − tf ) + FRQ2(t − tf )2

The received radio signal is integrated over the count time interval defined by the
time tags.

f qdn =
∫ t3e

t3s

fr dt

f qdn = FRQ0(t3s − t3e) + FRQ1

2

[
(t3s − tf )2 − (t3e − tf )2

]

+FRQ2

3

[
(t3s − tf )3 − (t3e − tf )3

]

The one-way Doppler observable (Zowd ) is given by

Zowd = C3(f qdn − f qt )

COUNT

7.1.5 Three-Way Doppler Data

The three-way Doppler data type provides a measure of the change in the total
line-of-sight range from a transmitting DSN station to a spacecraft and back to
a separate receiving station over some interval of time. The measurement makes
use of the Doppler frequency shift of a radio signal source that is moving with
respect to a receiver. When the change in range is divided by twice the time
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interval, an approximate measure of the average range rate over the time interval is
obtained. If the transmitting station is widely separated from the receiving antenna,
the interpretation of the measurement as range rate is ambiguous. The three-way
Doppler measurement is essentially the same as the two-way Doppler measurement.
The only significant difference is the inclusion of a second separate tracking station
on the downlink. The three-way Doppler measurement has a geometrical advantage
over conventional two-way single station Doppler which may be attributed to
the baseline between the participating tracking stations. However, the frequency
standard must be maintained at two stations resulting in some loss of coherence and
accuracy. The data processing for three-way Doppler is the same as for two-way
Doppler except that a second station is substituted in computing the downlink.

7.1.6 Range Data

The range data type provides a measure of the range between a DSN station and
a spacecraft. The range is inferred from the time it takes a radio signal to travel
from the DSN station to the spacecraft and back to the station. The radio signal
is transmitted to the spacecraft where it is received and retransmitted back to the
tracking station. The round trip light-time is determined by impressing a pattern,
referred to as a range code, on the transmitted carrier and detecting this pattern in
the received radio signal. The range code provides time markers in the transmitted
and received radio signal that may be measured with high precision by an atomic
clock. For orbit determination, a computed value of the measurement is obtained
from a mathematical model similar to the model used for Doppler data.

Range data has essentially the same information content as Doppler data. Range
data provides the integral of Doppler data over some time interval. This integrated
Doppler can be determined by differencing two range measurements. The integrated
Doppler is more accurate than differenced range. However, the range data provides
the constant of integration. Doppler data alone determines range through the orbit
dynamics. For this reason, an orbit determination strategy has evolved to process a
single loosely weighted range point for each station pass to initialize the Doppler.
Processing range and Doppler together at the same weight can result in aliasing.
Both data types determine the right ascension and declination independently and
they may disagree.

The first step in computing the two-way range observable is to assemble all the
input data required by the orbit determination software. These are essentially the
same models as used for Doppler data with some minor exceptions. Models of the
transmission media, station locations and the affect of General relativity are virtually
the same as used for computing the Doppler observable. One exception is the sign
of delays associated with charged particles in the ionosphere and solar plasma. For
Doppler data, the charged particles speed up the velocity of the carrier and the delay
is subtracted. For range data, the velocity of the carrier is slowed down and the delay
is added as for all the other media delays. The magnitude of the velocity increase
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associated with charged particles for Doppler data is equal to the velocity decrease
or delay for range data.

A range data point is read from the tracking data file to obtain the time tag
(T IMT AG), frequency (FRQCY ), lowest ranging component (NLOW ), and
the measurement (ROBS). The light-time equation is solved for the transmit and
spacecraft times t1 and t2. The station receive time (t3) is equal to T IMT AG.

The next step is to integrate the ramp tables for the uplink and downlink. The
ramp tables keep the received signals in the center of the carrier bandwidth. Since
the range code is modulated on the carrier, the range traveled by the radio signal
equals the sum of the wavelengths associated with all the cycles between the
spacecraft and the DSN antenna and is equal to the cycle count times the speed
of light after correcting for media. The cycle count (fq ) is obtained by integrating
the uplink ramp table from t1 to t3. The range observable (Zr ) is computed from the
output of the ramp table integration which is scaled by an integer ratio corresponding
to the frequency dividers used in the actual hardware implementation to give the
measurement in range units (Ru). For S-band frequency, the conversion to range
units is

Ru = 1

2
f q

For X-band frequency, the conversion for the 34-m Az-EL high efficiency antenna
(HEF) is

Ru = 11

75
f q

and for 34-m Block 5 Receivers (BVR)

Ru = 221

749 × 2
f q

The range code is a pattern consisting of square waves whose frequency
decreases by powers of two. Thus, the range code is repeated at a rate determined by
the lowest frequency square wave or range component. This results in an ambiguity
in the determination of range that must be resolved by introducing information from
other sources, most notably the Doppler measurement which has no ambiguity. The
range ambiguity manifests itself as a roll over to zero in the range unit counter. Thus,
if the computed number of range units is greater than the ambiguity, the ambiguity
is repeatedly subtracted from the computed measurement until it is in the proper
range. The range ambiguity is computed from NLOW , which is obtained from the
tracking data file, and is given by

AMBIG = 2(NLOW+6)

The number of roll overs of the range unit counter is the integer part of
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Na = Integer

(
Ru

AMBIG

)

The adjusted value for the range unit count is then

Rua = Ru − Na AMBIG

At the time the computed observable rolls over, it cannot be determined from
the computed range alone whether the actual observable has just rolled over or is
about to roll over. This ambiguity may be resolved by inspecting the measurement
residual. The measurement residual is simply

RESID = ROBS − Rua

where ROBS is obtained from the tracking data file. If the absolute value of ROBS

is greater than 1.5 × AMBIG, the ambiguity resolution is skipped. Otherwise, the
following adjustment is made to the computed observable.

If (RESID > 0.5 × AMBIG) Zr = Rua + AMBIG

If (RESID < 0.5 × AMBIG) Zr = Rua − AMBIG

Otherwise, Zr = Rua . The residual (RESID) is then recomputed with the new value
for Zr .

RESID = ROBS − Zr

This correction to the range measurement can be dangerous. If the ambiguity is
set too low and the computed measurement is not known within the ambiguity, the
range measurement will be in error and the resultant orbit solution can be off by
several hundred kilometers. The range and Doppler residuals could be flat making
it difficult to detect this error.

7.1.7 Very Long Baseline Interferometry

Plane radio waves from the spacecraft or an extragalactic radio source (EGRS) are
received at two tracking stations separated by an intercontinental baseline as shown
in Fig. 7.2. As originally implemented, the received signals are clipped, digitized,
and recorded on video recorders at each tracking station. Special tones are impressed
on the spacecraft transmitted signal to obtain the required bandwidth. The EGRS
signal is passed through filters to obtain the proper spectral bandwidth. Since the
spacecraft signal is considerably stronger than that obtained from an EGRS, the
tracking strategy consists of recording an EGRS for about 20 min, slewing the
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Fig. 7.2 VLBI functional implementation

antennas to the spacecraft and recording for 5 min, and if necessary slewing back
to the EGRS and recording for another 20 min.

After recording the radio signals, it is necessary to bring the two recordings
together at a central correlator. The tapes may be physically transported to the
correlator or played back across high-speed data lines. The function of the correlator
is to match the two recordings and determine the delay. Correlation involves
shifting, multiplying, and integrating the bit streams together until a maximum is
found. The delay is a measure of the angle between the baseline and the direction
of the plane radio wave. Differencing the spacecraft and EGRS delay effectively
provides a measure of their angular separation. Combining observations on an
East-West baseline (Goldstone/ Madrid) with a North-South baseline (Goldstone/
Canberra) gives a precise measure of spacecraft right ascension and declination
accurate to about 5 nrad relative to the EGRS. As currently implemented, the
configuration shown in Fig. 7.2 has been updated and replaced by more sophisticated
software and hardware, but the function and accuracy remains about the same as
originally implemented.

7.1.8 Differential Wide Band VLBI

Differential Very Long Baseline Interferometry (�VLBI) consists of near simul-
taneous interferometric tracking of a spacecraft and an angularly nearby EGRS.
The accuracy of �VLBI is dependent on the angular separation of the spacecraft
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and EGRS. Separation angles less than about ten degrees are needed in order to
achieve cancelation of errors due to media effects and station location uncertainties.
An extensive survey of the sky has developed a radio source catalog. To be useful
for VLBI observations, the source flux must be greater than 0.20 Jy and the source
structure should be smaller than about 5 nrad in diameter. Another consideration
is the variability of source strength. Once identified, precise VLBI measurements
of source position are made for inclusion in the source catalog. In the search for
radio sources, emphasis is given to the portion of the sky near the ecliptic plane
because missions to the planets place spacecraft on trajectories that are within a few
degrees of the ecliptic plane. For orbit determination, the difference between the
EGRS VLBI measurement and the spacecraft VLBI measurement is processed as a
data type.

7.1.9 Differential Narrow Band VLBI

The narrow band VLBI observable provides a measure of the change in the angle
between the wave front of a radio signal from a radio source and the baseline
between two tracking stations in the plane of the tracking stations and radio source
over an interval of time. Narrow band VLBI differs from wide band VLBI by the
manner of detection of the received radio signals. For a spacecraft, narrow band
VLBI tracks the carrier and determines a count of the number of cycles received
over an interval of time referred to as the count time. It is directly analogous to
Doppler. A problem with narrow band VLBI is the existence of a singularity in
the measurement at zero declination relative to the Earth’s equator. Therefore, it is
generally only used when wide band VLBI cannot be obtained. Low signal level or
the absence of tones on the carrier would preclude wide band VLBI.

For quasar VLBI, the same algorithm for the light time solution is used as for
Doppler and spacecraft VLBI. The same approach is used for the quasar as for
the spacecraft only the equations for ρ12, ρ23 and their derivatives with respect
to time must be modified. Since the quasar is effectively located at infinity, an
invariant plane is defined as illustrated in Fig. 7.3 to provide a reference for defining
t2. The invariant plane is defined, for the purpose of illustration, to be 7000 km
from the center of the Earth and perpendicular to the direction of the quasar being
observed. The actual distance of the invariant plane from the center of the Earth
is arbitrary. Plane radio waves from the quasar will cross this invariant plane at
the same time which is taken to be the t2 time. The modifications necessary for
the downlink portion of the light time algorithm relate to the computation of ρ23
and its derivatives. First, the spin vector of the Earth in inertial space is computed.
For a quasar, some additional signal processing is required. Since the quasar
radiates essentially white noise, it is necessary to condition the signal to obtain
the monochromatic tone required by narrow band VLBI. This is accomplished by
passing the quasar signal through a pass band filter before recording on the video
recorder. The two recordings obtained from the participating stations are correlated
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which produces a difference in the cycle count over the count time interval. This
cycle count provides a measure of the change in delay which is a measure of the
change in the angle (θ ) between the baseline (B) and the direction of the plane radio
wave front as illustrated in Fig. 7.2. For orbit determination, a computed value of
the measurement is obtained from a mathematical model similar to the model used
for Doppler data.

7.2 Radiometric Data Calibrations

The radiometric data observables require high-precision models of the hardware and
path length from the DSN tracking stations to the spacecraft as well as the location
of the tracking stations relative to the center of Earth. Some of the contributors
to the path length are small enough to be ignored or require only approximate
models. The solar radiation pressure on the planets and the momentum transfer
from charged particles impacting the spacecraft can be ignored. Other physical
perturbations to the path length are included as calibrations, but are not included in
the equations of motion of the spacecraft. Examples of calibrations that are included
are troposphere and ionosphere and the effect of General Relativity on the curvature
of space and time. The tectonic plate motion of the continents and solid Earth tides
enter as calibrations. For very high-precision VLBI, the Lorentz contraction of the
Earth resulting from its velocity relative to the Sun’s barycenter contributes a few
centimeters.
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7.2.1 Clock Calibration

According to the special theory of relativity, a clock running in a frame of reference
that is moving with respect to an observer’s frame of reference will appear to run
slower by the observer. According to the general theory of relativity, a clock running
in a gravitational potential field will run slower than a clock removed from the field.
Therefore, an observer that is stationary with respect to the solar system will see the
atomic clocks at the tracking stations running slower than his hypothetical clock.
The observer is placed stationary with respect to the barycenter of the solar system
because the equations of motion are written with respect to this center and placed
far away to escape the effect of the gravitational acceleration of the Sun and planets.
The coordinate time thus defined is called post-Newtonian time (PNT).

The relationship between PNT and the proper time measured by an atomic clock
is given by the metric. For a particle moving in an orbit around the Sun, the metric
in isotopic Schwarzschild coordinates is given by

ds2 =

(
1 − U

2c2

)2

(
1 + U

2c2

)2
c2dt2 −

(
1 + U

2c2

)4 (
dx2 + dy2 + dz2

)

Retaining terms to order c2, the metric may be approximated by

ds2 =
(

1 − 2U

c2

)
c2dt2 − v2 dt2

where

v2 =
(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

Solving for proper time (ds2 = c2 dτ 2) we obtain

dτ

dt
=

√
1 − 2U

c2 −
(v

c

)2

which may be further approximated by

dτ

dt
= 1 − μs

c2r
− 1

2

v2

c2 − μe

c2re

where the Earth’s gravitational potential is separated from the Sun’s. The atomic
clock time (τ ) is obtained as a function of t by integrating the metric in conjunction
with the equations of motion.
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τ =
∫ t

t0

(1 − L) dt

where

L = μ

c2r
+ 1

2

v2

c2 + μe

c2 re

The function L can be separated into a constant term (L0), secular terms that grow
with time (Ls), and periodic terms (Lp). Thus we have

L = L0 + Ls + Lp

The constant term (L0) is obtained by averaging L over all time and can be
represented by

L0 = 1

c2

(
μ

r0
+ 1

2
v2

0

)
+ μe

c2 re

where r0 and v0 are constants that give the correct average value for L0. For the
Earth’s orbit about the Sun, r0 is approximately the semi-major axis of the orbit and
v0 approximately the mean orbital velocity. Since the orbit is nearly an ellipse,

μ

a
= 2μ

r
− v2

and for r = a,

L0 ≈ 3μ

2c2 a
+ μe

c2 re

The secular terms Ls are assumed to be zero because of conservation of energy and
momentum. This leaves the periodic terms and these are given by

Lp = 1

c2

(
μ

r
− μ

r0
+ 1

2
v2 − 1

2
v2

0

)

and

τ = t +
∫ t

t0

−L0 − 1

c2

(
μ

r
− μ

r0
+ 1

2
v2 − 1

2
v2

0

)
dt (7.5)

An approximate analytic formula for the periodic terms, derived by Brooks Thomas,
is given by
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τ ≈ t − L0 (t − t0) − 2

c2 (ṙs
b · rs

b) − 1

c2 (ṙc
b · rb

e) − 1

c2 (ṙc
e · re

b) − 1

c2 (ṙc
s · rs

b)

− μj

c2(μj + μs)
(ṙs

j · rs
j ) − μsa

c2(μsa + μs)
(ṙs

sa · rs
sa) (7.6)

In the notation used above, the position of the body identified by the subscript is
with respect to the body identified by the superscript, where c = the solar system
barycenter, s = the Sun, b = the Earth-Moon barycenter, e = the Earth, j = Jupiter,
and sa = Saturn.

7.2.2 Troposphere Calibration

A radio signal passing through the Earth’s troposphere will be delayed depending
on the dielectric constant of the media and path length.

�tt = Gt(t, x, y)

The troposphere delay has been conveniently separated into wet and dry components
that are functions of delay at zenith (z) and elevation angle (γ ).

Gt(t, x, y) = Rd + Rw

The first term in the above equation represents the nonlinearity of the dry tro-
posphere mapping function and the second term represents the variation in the
dry troposphere z height due to local weather. The next two terms are the same
quantities for the wet troposphere. The troposphere wet and dry mapping functions
are tabulated as delay as a function of spacecraft elevation angle. Empirical formulas
for these mapping functions are given by

Rd = zd

sin γ + Ad

Bd + tan γ

Rw = zw

sin γ + Aw

Bw + tan γ

where

sin γ = cos δ cos λ cos φ + sin λ cos φ + sin φ sin δ

λ = ωet + λs − α
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The dry component of the troposphere (Rd) is a function of the delay at zenith (zd),
the elevation angle (γ ), and constants Ad and Bd that are provided to model the
bending at low elevation angles. The wet component (Rw) is similarly defined. The
elevation angle (γ ) is computed as a function of the latitude of the tracking station
(φ), the declination of the spacecraft (δ), and the local hour angle with respect to
the spacecraft (λ). The local hour angle is zero when the spacecraft is at zenith and
is a function of the Greenwich hour angle (ωet), the station longitude (λs), and the
right ascension of the spacecraft (α).

The troposphere dry component is assumed to be stable and most of the
variability is associated with the wet component. The variation in the wet component
may be modeled as a periodic variation in the z height (zw). The hourly variation in
the wet component of the troposphere appears as a random walk that would require
a high order Fourier series to represent analytically. The variation may be modeled
as a simple sinusoid with amplitude and frequency selected to be representative of
the short-term variation.

zw = zw0 + zw1 sin(ωw1 t)

7.2.3 Ionosphere Calibration

A radio signal passing through the ionosphere experiences a reduction in group
velocity and an equal increase in phase velocity that is a function of the frequency
and the number of charged particles along the signal path. The Doppler measure-
ment is dependent on the phase velocity and the advance of the signal is functionally
defined by

�ti = Gi(t, x, y)

An empirical formula for the effect of the ionosphere on the Doppler measurement
is given by

Gi = −1

c

n∑
j=0

k Cj Xj

X = 2

(
t − ta

tb − ta

)
− 1

where the Cj ,s are coefficients of a polynomial in time (t) from ta to tb normalized
over the interval of −1 to +1 and k is a proportionality factor.
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7.2.4 Earth Platform

The accuracy of radio metric data is strongly dependent on the calibration of the
Earth as an observational platform. It is essential to know the location of each
tracking station on the Earth’s crust to within several centimeters and the location
of the pole and prime meridian in inertial space to the same accuracy. The locations
of the DSN stations are computed in a geocentric cylindrical coordinate system.
Before VLBI data was available, solutions for the coordinates were obtained from
two-way Doppler tracking of spacecraft encounters with the planets. Included were
the Mariner and Viking class spacecraft encounters with the inner planets and
Voyager and Pioneer class spacecraft encounters with Jupiter and Saturn. As each
spacecraft encounters one of the planets, the Doppler tracking provides a means
of precisely estimating the spacecraft orbit relative to the encountered planet and
also the coordinates of the tracking stations. For each planetary encounter data arc,
a strong solution for the tracking stations spin radii and longitudes are obtained. A
station location database was developed. Since there is no information content in the
Doppler tracking on the height of the station above the Earth’s equator, the station
location database was augmented with survey data. At the current time, station
locations are obtained from VLBI observations of quasars and the accuracy is less
than a meter in all coordinates.

7.2.5 Polar Motion

The Earth is slowing down irregularly. In addition, the Earth’s principal axis
wobbles about its spin axis with an amplitude slowly varying between 0 and 10 m.
Timing and polar motion corrections are determined astronomically and provided
to the orbit determination software by the Earth Orientation Parameters file.

7.2.6 Continental Drift

The continents are slowly drifting on the Earth’s magma at a rate of about 3 cm per
year. Over a period of 120 million years South America drifted away from Africa
and formed the South Atlantic ocean. The continents are still drifting at about the
same rate and carrying along the tracking stations. The rates are tabulated below for
each tracking station complex in Earth body fixed Cartesian coordinates from the
initial epoch of January 1, 2003. These rates are used to adjust the tracking station
coordinates.
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Continental drift

DSN station x-cm/year y-cm/year z-cm/year

Goldstone −1.80 0.65 −0.38

Madrid −3.35 −0.41 3.92

Australia −1.00 2.42 1.56

7.2.7 Solid Earth Tide

As the Earth rotates on its axis the tidal forces from the Sun and Moon raise and
lower the oceans resulting in the tides everyone is familiar with. The Earth’s crust
and magma are also subjected to the same tidal forces which may be computed by
taking the gradient of Eq. (1.9). Every rock or mountain on the planet is stretched
a small amount by these forces. The result is a raising and lowering of the tracking
stations every 12 h. The amplitude of the displacement of tracking stations from
there nominal locations can be as large as 30 cm. A model of solid Earth tides is
used to adjust the station location coordinates.

7.2.8 Plane Wave Propagation Through Ionized Gas

The propagation of a plane wave through an ionized gas such as the Sun’s corona is
described by Maxwell’s equations, specifically the laws of Faraday and Ampere in
vector form.

∇× E = −μ0
∂H
∂t

∇× H = ε0
∂E
∂t

+ J

If we assume a plane transverse wave in the z direction with associated electrical
field E, magnetic field H, and current density J, Maxwell’s equations reduce to the
one dimensional wave equation in E.

∂2E

∂z2 = μ0ε0
∂2E

∂t2 + μ0
∂J

∂t
(7.7)

Equations describing the motion of free electrons in a time varying electric field are
also needed. The force (F) on an electron in an electric field (E) is proportional to
the charge (e), and equal to the mass of the electron times its acceleration in the
direction of (F):

F = eE = m
d2r
dt2
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The current density is simply the electron charge (e) times the electron flux, or the
number of electrons that pass through a given area per unit time. The electron flux
is the product of the electron density (N ) and the velocity of the electrons.

J = Ne
dr
dt

For a plane transverse wave these equations for the electron reduce to

m
d2r

dt2
= eE

J = Ne
dr

dt

which, when substituted into the wave equation (7.7) results in the following.

∂2E

∂z2 = μ0ε0

(
∂2E

∂t2 + Ne2

mε0
E

)
(7.8)

A solution to this one-dimensional wave equation for an ionized atmosphere is

E = E0 sin [ωt − kz] (7.9)

from which we obtain

ω2
p = Ne2

mε0

k2 = ω2μ0ε0

{
1 − Ne2

ω2mε0

}
= ω2μ0ε0

{
1 − ω2

p

ω2

}
(7.10)

The phase velocity of the wave is defined by the locus of points along z where Ez is
constant. Thus we have

ωt − kz = constant

which implies

v = dz

dt
= ω

k
.

Substituting k from Eq. (7.10), the phase velocity of the wave is

v = c(
1 − ω2

p

ω2

) 1
2

(7.11)

making use of the well-known relation c = 1/
√

μ0ε0.
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Fig. 7.4 Wave packets
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We next consider the delay in the group velocity, which is associated with the
range data. The concept of group velocity arises when we have electromagnetic
waves that are nearly the same frequency traveling in the same direction through
the same medium. Because linearity holds for electromagnetic waves, any electro-
magnetic wave may be regarded as the sum of its individual frequency components.
Consider the case of two electromagnetic waves that differ in frequency and wave
number by an infinitesimal amount δω and δk, respectively. When added together
we obtain the wave packets illustrated in Fig. 7.4.

The resultant wave is the higher frequency carrier that moves with phase velocity
v as described above and the wave packets formed by the beating of the two nearly
equal in frequency waves that move at a different group velocity (u). Doppler
tracking data is associated with the phase velocity and range data is associated with
the group velocity. In a vacuum, the phase and group velocities are equal to the
speed of light. The two electromagnetic waves alluded to above are given by

ψ1 = sin(ωt − kz)

ψ2 = sin [(ω + δω)t − (k + δk)z]

We must perturb both the frequency and wave number in order to get the correct
velocity which is controlled by the medium. The resultant wave is obtained by
adding. After some trigonometric substitutions we have

ψ = ψ1 + ψ2 = 2 cos

(
δωt − δkz

2

)
sin

[
(ω + δω

2
)t − (k + δk

2
)z

]

The carrier is given by the sine term and the modulation of the carrier is given by
the cosine term. In a dispersive medium, the carrier wave moves at a velocity greater
than the speed of light as shown above and the wave packet described by the cosine
term moves at a velocity slower than the speed of light. The velocity of the wave
packet is obtained in the same manner as described above for the carrier. The locus
of points along z where the amplitude of the wave packet is constant is given by
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δωt − δkz

2
= constant

The group velocity is thus

u = dz

dt
= δω

δk
= dω

dk

and we get the desired group velocity.

u = k

ω
c2 = c2

(
1 − ω2

p

ω2

) 1
2

Because the group and phase velocities are close to the speed of light, ωp is small
and we may make the following approximations.

v ≈ c (1 + ω2
p

2ω2 )

u ≈ c (1 − ω2
p

2ω2 )

7.2.9 Solar Plasma Time Delay

The phase velocity in a dispersive medium is always greater than the speed of light.
This apparent contradiction of special relativity is possible because the radio signal
phase velocity does not describe the actual velocity of mass or energy, but rather the
velocity of a pattern, or mathematical entity. Since it is critical to our analysis that
ωp/ω be less than 1.0, it is helpful to estimate it at this time. For this it is necessary
to estimate N, the electron density in the plasma, which depends on the distance of
the signal path from the Sun. Because a spacecraft is occasionally occulted by the
Sun, the closest approach distances of the signal path goes to zero, but at less than 18
Solar radii, the signal is often degraded beyond usability. At 18 Solar radii, previous
estimates have placed N at on the order of 103 electrons per cubic centimeter, which
yields an ωp of less than 1.0 MHz. For an X-band signal, ω = 2π f where f is
approximately 8.9 GHz. Thus (ω2

p/ω2) is small, on the order of 10−8. Since N
decreases with increasing distance from the Sun, this is an upper bound.

The range delay associated with a plane wave passing through the Sun’s corona
is obtained by integrating the group velocity of propagation along the path length.

∫ t2

t1

dt =
∫ z2

z1

dz

uz

=
∫ z2

z1

1

c

[
1 + e2

2mε0ω2 N(z)

]
dz
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The electron density varies approximately as the inverse square of the distance from
the Sun.

N(z) = N0r
2
s

r2
= N0r

2
s

R2 + z2

R is the perpendicular distance from the center of the Sun to the light path or the
distance of closest approach to the Sun. The constant N0 is the effective electron
density at the surface of the Sun and rs is the radius of the Sun. Carrying out the
integration, we have for the delay,

t2 − t1 = z2 − z1

c
+ e2

2 cmε0ω2

N0r
2
s

R

{
tan−1

(−z1

R

)
+ tan−1

(z2

R

)}

The time advance of the Doppler signal, which is associated with the phase velocity,
is the same equation as above except with a minus sign.

7.3 Optical Data

Optical imaging is a powerful data type for determining the position of a spacecraft
relative to a nearby central body. This method involves imaging the target body
on a star background. For this purpose, the Solid State Imager (SSI) science
instrument on board the spacecraft is well suited as a precision optical mea-
surement instrument for navigation. The use of science imaging instruments for
navigation was developed during the Mariner 6, 7, and 9 missions and provided
prime navigation measurements for the Viking, Voyager and many other missions.
The SSI instrument was developed specifically for Galileo, replacing standard
vidicon instruments used on previous missions. The principal attributes of the SSI
instrument affecting navigation are its low image distortion and high sensitivity.
The low distortion virtually eliminates the need for special calibration and the high
sensitivity minimizes the exposure time required for imaging dim stars. For optical
navigation, the imaged satellite lit limb may be fit and the center determined to better
than one pixel. The star background may also be determined to less than one pixel
even though the star images may spread over several pixels. From the focal length
and pixel spacing, the angular accuracy may be computed and is about 10µrad. For
navigation analysis there are some systematic errors associated with SSI imaging
that must be accounted for. These include shape and albedo variations that cause
the center of brightness to not coincide with the center of mass. Image distortion
also may impair satellite center determination. For conservatism, an optical center
finding error of 1% of the satellite radius is assumed.

Optical data provides a measure of the direction of a vector from a spacecraft to
a point on a target body. The target body may be a planet, asteroid, comet or satellite
of one of these bodies. When combined with a data type that provides a measure of
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distance, such as range, a complete three-dimensional fix of the spacecraft may be
inferred from the data providing a determination of the spacecraft orbit and physical
parameters describing the central body gravity and inertial properties.

There are many variations of optical measurement systems that are used for
orbit determination. The most accurate optical measurement systems focus on a
specific point on the target body. This point may be the center-of-mass or a point
associated with a feature on the surface of the body. The feature may be a crater or
the intersection of fracture lines. The point of interest for a crater is the geometric
center of the rim and is referred to as a landmark. Tracking the center of mass
of primary body satellites, as was done for the Mariner, Viking, Voyager, Galileo
and Cassini missions, provided sufficient accuracy for these missions but the error
associated with determining the center-of-mass from limb data limits the accuracy
obtainable. Landmark tracking accuracy is limited only by the resolution of the
camera. For this reason landmark tracking was used for the NEAR mission where
high accuracy optical and radio metric navigation was required.

7.3.1 Optical Data Processing

The raw data required for computing the optical observable consists of a sequence
of images of the target body, the shutter time of each image, the spacecraft and
camera attitude at the shutter time and ancillary data such as camera parameters and
a star catalog. The raw data is processed to extract certain geometric parameters
that are written to a picture sequence file. The parameters on the picture sequence
file define an interface between navigation and measurement data preparation. The
detailed data processing required to produce the picture sequence file is analogous
to the data processing required for Doppler calibration or VLBI correlation.

The picture sequence file contains a header with the camera focal length, pixel
and line spacing, the focal plane alignment matrix, camera distortion parameters
and the boresight offset from the camera axis. The header parameters are obtained
from preflight and inflight test images. A sequence of optical image data records
are written for each image. Each optical image data record contains the image
number, the image shutter time or time tag, the spacecraft attitude, filter setting,
exposure time and a sequence of records for each landmark identified on the image.
The landmark records contain a unique landmark number and the measurement
which is the pixel and line location of the landmark in the image. The detection,
identification, and numbering of landmarks may be performed visually by an optical
navigation analyst or by a computer algorithm without human intervention. In
addition to the picture sequence file, a separate landmark location file is generated
containing a priori landmark locations for each landmark. The line and pixel
coordinates of landmarks that appear near the limb in an image are not observed
very well. The elevation angle of the spacecraft above the horizon when viewed
from the landmark may be used as a test to reject data points.
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Fig. 7.5 Observer and source relative motion

7.3.2 Planetary and Stellar Aberration

The observed direction of light from a distance source differs from the actual
direction obtained by solution of the light time equation due to the velocity parallax
of the observer with respect to the photons or incoming wave front. This velocity
parallax is referred to as aberration by astronomers and is aptly named. The first
definition of aberration in the Webster’s second edition dictionary is deviation from
what is right, natural or normal. Light is red shifted or blue shifted in frequency
depending whether the source is moving away from or toward the observer. The
Doppler frequency shift is determined by the relative velocity. The observed
direction of the light wave front is also affected by the motion of the source with
respect to the observer but only the source velocity contributes to aberration. This
apparent contradiction of Special Relativity may be resolved by examining the light
time solution in conjunction with aberration in an inertial frame. Consider the case
of an observer moving with respect to a stationary source as shown on the left side
of Fig. 7.5.
Assume that closest approach occurs at time t . The observer at time t, identified by
O(t), will receive an incoming light wave from the direction ρ which is the solution
of the light time equation. The observer was at O(t − τ) when the photons were
emitted by the source so aberration should not be confused with the solution of the
light time equation. Because of aberration, due to the relative motion of the source
with respect to the photons, the observer will see the source in the direction defined
by the vector ρ̄. The geometry is analogous to rain drops falling straight down. If the
person starts to move, the rain drops appear slanted with respect to the local vertical.

Now suppose the observer is stationary and the relative motion of the source
with respect to the observer is the same. In this case, shown on the right side of
Fig. 7.5, the source appears to be moving in the opposite direction with velocity v.
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The observer at time t sees a plane wave emanating from the location of the source
at t − τ . There is no aberration. This is consistent with Special Relativity since the
observer sees the source in the same direction for both cases. Since the Doppler
shift is dependent on the relative velocity, the observer sees the same Doppler shift
for both sides of Fig. 7.5. Furthermore, the speed of light will be the same for both
observations due to time dilation and Lorentz contraction.

The geometry associated with an observer moving with respect to a source is
illustrated in Fig. 7.6. In the stationary inertial frame, the source emits a photon at
time t = 0 from the origin and this photon arrives at the observer at time t = τ with
coordinates (x, y). The light time solution vector is R and the travel time is given by

τ = R

c

If a coordinate system is defined that is moving with the observer (x̄, ȳ) in the
+x direction with velocity v and the origins coincide at time t = 0, the observed
direction of the photon is given by R̄. The angle between R and R̄ is the aberration
angle κ and

sin(κ) = |R × R̄|
R R̄

(7.12)

The angle θ is between the velocity vector and the vector from the observer to the
source (−R).
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If classical Galilean motion is assumed, where the speed of light is not constant,
the observed vector is given by

P̄ =

⎡
⎢⎢⎣

1 0 0 0
−v 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ P =

⎡
⎢⎢⎢⎢⎢⎣

R

c

−Rv

c
− R cos θ

R sin θ

0

⎤
⎥⎥⎥⎥⎥⎦ (7.13)

where time is artificially carried along as the first component of P and R is contained
in the last three components of P.

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

c

−R cos θ

R sin θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The angle κ is obtained by substituting the position vectors obtained from the second
through third components of P and P̄ into Eq. (7.1).

sin κ = v sin θ

c

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
1 + v2

c2
+ 2v cos θ

c

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

Making use of the approximation

1√
1 + v2

c2 + 2v cos θ

c

≈ 1 − v cos θ

c
− v2

2c2

and

sin θ cos θ = 1

2
sin(2θ)

the aberration angle may be approximated to second order by

sin κ ≈ v

c
sin θ − 1

2

v2

c2 sin(2θ) + . . .
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The classical result assumes that the speed of light in the moving frame
is different from the speed of light in the inertial frame at rest. The Lorentz
transformation from Special Relativity is used to get the correct result.

P̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1√
1 − v2

c2

−v

c2

√
1 − v2

c2

0 0

−v√
1 − v2

c2

1√
1 − v2

c2

0 0

0 0 1 0
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

P

The Lorentz transformation is given in conventional engineering coordinates where
time has the units of time and the existence of c is explicitly acknowledged. Since
c is a constant, a system of space-time coordinates can be defined with c = 1 and
time given the dimension of length. For these coordinates, favored by relativists, the
Lorentz transformation matrix is symmetrical. The advantage of the conventional
coordinates used here is that it is immediately obvious that the approximation to
first order reduces to the Galilean transformation given by Eq. (7.2) in the limit as
c approaches infinity. Since the “at rest” coordinate system is arbitrary, the inverse
of the Lorentz transformation matrix can be obtained by changing the sign of v.
The Galilean transformation also has this property. Another property of the Lorentz
transformation is that the Minkowski metric must be preserved.

ds2 = c2dt2 − dx2 − dy2 − dz2 (7.14)

Since ds2 is null for a photon (ds2 = 0) then ds̄2 must also be null. The observation
vector in the moving frame is given by

P̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

R

c

√
1 − v2

c2

+ Rv cos θ

c2
√

1 − v2

c2

− Rv

c

√
1 − v2

c2

− R cos θ√
1 − v2

c2

R sin θ

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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When P̄ is substituted into the Minkowski metric (Eq. 7.9) it is demonstrated that
ds̄2 is null. Proceeding as for the classical solution, the angle κ corrected for Special
Relativity is obtained.

κ = arcsin

⎛
⎜⎜⎝

v sin θ

c
+

(
1 −

√
1 − v2

c2

)
sin θ cos θ

1 + v

c
cos θ

⎞
⎟⎟⎠

Making use of the approximations

√
1 − v2

c2 ≈ 1 − 1

2

v2

c2

1

1 + v

c
cos θ

≈ 1 − v

c
cos θ

the first two terms of the series expansion for sin κ are

sin κ ≈ v

c
sin θ − 1

4

v2

c2 sin(2θ) + . . .

The aberration corrected vector is in the same plane as the source velocity vector
and light time solution vector. The calculation of this vector from the aberration
angle κ and the angle between the velocity vector and the vector from the observer
to the source (θ ) is illustrated in Fig. 7.7. The vector ρin is the light time solution
from the observer to the source. The vector ρ̄ is the direction that the source is
observed and the direction that one would point a telescope. The angle κ between
these vectors is the aberration angle as defined above. From the geometry, the vector
formula for planetary aberration is simply

ρ̄ =
{
ρin +

[
ρin sin κ

v sin θ

]
v −

[
sin κ

tan θ

]
ρin

}

If the source is a star or remote object, the magnitude of the light time solution
vector approaches infinity. The formula for stellar aberration (ρ̄s) may be obtained
by taking the limit and

ρ̄s =
{
ρ̂in +

[
sin κ

v sin θ

]
v −

[
sin κ

tan θ

]
ρ̂in

}
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7.4 Altimetry

Altimetry provides a measure of the magnitude of a vector from a spacecraft to
a target body that may be a planet, asteroid, comet, or a satellite of one of these
bodies. The altimetry measurement is the distance or slant range from the spacecraft
to a point on the surface of the target body which is inferred from the time that it
takes an electromagnetic wave to traverse the distance. The electromagnetic wave
is transmitted and the reflected signal received by the altimeter instrument and the
slant range is determined by multiplying the signal delay time by the speed of light.
The altimeter may transmit and receive a radar signal or laser beam. Radar based
altimeters are limited by range and have only been used for landing spacecraft on a
target body such as the Surveyor spacecraft on the Moon or the Viking spacecraft
on Mars. Laser altimeters can operate out to several hundred kilometers and are thus
useful for measurements in orbit about a target body. When combined with optical
imaging of landmarks, altimetry provides a complete three-dimensional fix of the
spacecraft orbit. However, since the accuracy is limited by the error in determining
the surface of the target body, laser altimetry is only marginally useful for ground-
based spacecraft orbit determination. In the future, laser altimetry may be used for
medium accuracy autonomous navigation since the measurement may be readily
obtained on board the spacecraft. An important application of laser altimetry is
in determining the shape of a target body given the orbit of the spacecraft. This
application was used on the NEAR mission to determine a high precision shape
model of Eros that was used to support landing operations.
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Fig. 7.8 Altimetry observable iteration geometry

7.4.1 Altimetry Data Measurement Model

The observed vector from the spacecraft to the target body surface is referenced to
a coordinate system that is fixed to the instrument platform that is movable if the
instruments are mounted on a scan platform or is fixed to the spacecraft body. The z

axis is in the direction of the nominal boresight of the instruments, y is to the right
and x is down. The definition of down is arbitrary, but is generally taken to be in
the direction of decreasing declination on the star background. The transformation
matrix (T C) describes the pointing direction which is generally taken to be the
camera boresight.

The altimeter may be mounted on the spacecraft at a location that may be as far
away as a meter from the spacecraft center-of-gravity. The altimeter position must
be corrected for this offset and

�rcg = [T C]T rcg

where rcg is the location of the altimeter focal plane relative to the spacecraft center-
of-gravity in instrument platform coordinates.

The altimeter boresight is offset slightly from the instrument axes as defined by
two angles ψa and χa . The vector that defines the altimeter boresight is given by

B̂a = [cos χa sin ψa, sin χa, cos χa cos ψa]T

The vector from the spacecraft to the surface is computed as illustrated in Fig. 7.8.
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The vector from the center-of-mass of the target body to the altimeter in target body
fixed coordinates is given by

rb = [T (α, δ,W)](r + �rcg)

where [T (α, δ,W)] is the transformation matrix from J2000 coordinates to the pole
and prime meridian of the target body as defined by Fig. 1.3. The unit vector ρ̂ is
the altimeter boresight direction in target body fixed coordinates given by

ρ̂ = [T (α, δ,W)][T C]T B̂b

An initial guess is needed for the magnitude of ρ and this is taken to be

ρi = r − rao

where rao is the average radii of the target body. The first step of the iteration for the
observation vector ρ is to compute the vector from the center-of-mass of the target
body to the surface.

rai = rb + ρi ρ̂

A test is performed to determine if rai is on the surface of the target body. The
surface of the target body is obtained from a harmonic expansion of Legendre
polynomials and associated functions as a function of latitude and longitude.

ra =
∞∑

n=0

n∑
m=0

P m
n (sin φa){Anm cos mλa + Bnm sin mλa}

where λa and φa are the longitude and latitude at the solution point and Anm and
Bnm are the harmonic coefficients. The longitude and latitude of the surface point
are given by

λa = tan−1
(

raiy

raix

)

φa = sin−1
(

raiz

rai

)

respectively and the harmonic coefficients (Anm and Bnm) are input constant
parameters. The error in computing the surface radius vector is

�ra = rai − ra

If |�ra| is less than an input tolerance, nominally 10−7 km, convergence is obtained
and the observable is computed from ρi . If convergence is not obtained, then ρ is
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lengthened or shortened by �ρ as shown in Fig. 7.8. In order to compute �ρ, a
model of the target body surface is needed. This model consists of a vector to a
point on the surface and the local tangent plane and ra is the vector to the point on
the surface given by

ra = [ra cos φa cos λa, ra cos φa sin λa, ra sin φa]T

The surface normal vector may be computed by taking the gradient of the surface
defined by

S = ra −
∞∑

n=0

n∑
m=0

P m
n (sin φa){Anm cos mλa + Bnm sin mλa}

where the surface of interest corresponds to S = 0. The normal vector is then given by

S =
[

∂S

∂ra

∂S

∂φa

∂S

∂λa

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos φa cos λa cos φa sin λa sin φa

− sin φa cos λa

ra
− sin φa sin λa

ra

cos φa

ra

− sin λa

ra cos φa

cos λa

ra cos φa

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

∂S

∂ra
= 1

∂S

∂φa

= −
∞∑

n=0

n∑
m=0

∂P m
n (sin φa)

∂φa

{Anm cos mλa + Bnm sin mλa}

∂S

∂λa

= −
∞∑

n=0

n∑
m=0

P m
n (sin φa){−Anm m sin mλa + Bnm m cos mλa}

The change in the slant range (�ρ) may be computed by application of the law of
sines to the small triangle shown in Fig. 7.8 whose sides are the extension of the ra

vector (�ra), the extension of the ρ vector (�ρ), and the intersection of the local
tangent plane with the plane containing ra , ρ and rb. The intersection of the local
tangent plane (ti) with the plane of Fig. 7.8 is given by

ti = (rb × ra) × S

The angle opposite the �ρ side of the triangle is

αρ = arccos

(
ti · ra

ti ra

)
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and the angle opposite the �ra side of the triangle is

αra = arccos

(
ti · ρ

ti ρ

)

The lengthening or shortening of the ρ vector is then obtained from the law of sines
and

�ρ = sin αρ �ra

sin αra

ρi+1 = ρi + �ρ

Using ρi , a new ρi+1 is computed and repeated until convergence is obtained. If
convergence is not obtained after several iterations, the data point is rejected. Since
two solutions are possible, a check is made to determine if the surface intersection
point is in view from the spacecraft. The elevation angle (E�) of the spacecraft above
the horizon when viewed from the surface may be used as a test.

E� = sin−1
(

− ρ ·S
ρ ∇S

)

If E� < 0, the solution is rejected and the range is shortened by

ρi+1 = ρi − 2ra sin E�

After several more iterations, the data point is rejected if a valid solution has not
been found. Once a valid solution has been found, the observable is computed.

7.4.2 Altimetry Variational Partial Derivatives

The partial derivatives of the altimetry observable with respect to state and constant
parameters are given by

∂Za

∂(r0, ṙ0, q)
= ∂Za

∂ρ

[
∂ρ

∂rb

∂rb

∂r
∂r

∂(r0, ṙ0, q)
+ ∂ρ

∂q

]

where

∂Za

∂ρ
= 1

∂rb

∂r
= [T (α, δ,W)]
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tangent body

spacecraft

ra

r

dr

d rb
d rb

dr

d∇S r

r

∇S

rb

Fig. 7.9 Altimetry observable variation geometry

and the partial derivative of ρ with respect to the target body fixed spacecraft state
(rb) may be determined by geometrical construction. The observational geometry is
shown in Fig. 7.9 where the parallelogram formed by the vector ρ and the spacecraft
position variation δrb and the vector constructions are all in the plane of Fig. 7.9.
The normal vector S and target body center are not necessarily in the plane of the
figure. The spacecraft position variation vector is projected on to the normal vector
and

δ∇S = S · δrb

∇S

The extension of the observation vector (δρ), projected on to the normal vector, has
the same magnitude as δ∇S.

δ∇S = δρ
−ρ ·S
ρ ∇S

Solving for δρ gives

δρ = −ρ
S · δrb

ρ ·S
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The required partial derivative may be obtained by taking the limit as δrb approaches
zero. In this rudimentary application of differential geometry, the parallelograms
and triangles with sides defined by variational symbols shrink to a point at the end
of the ra vector and

∂ρ

∂rb

= −ρ
S

ρ ·S

7.5 Summary

The measurements that are used for orbit determination may be separated into
several broad categories. These include radiometric tracking data from the DSN
and optical imaging and altimetry from the spacecraft. Radiometric measurements
include Doppler, range, and VLBI. Orbit determination involves a three-dimensional
determination of the spacecraft position and velocity. Radiometric data is one
dimensional and the process of extracting a measurement from instrumentation is
cleanly separated from navigation. Navigation instrumentation can be designed in
a laboratory with little knowledge of its ultimate use. Therefore, navigators are
primarily concerned with the physical quantity being measured and a model of
the measurement that can be programmed into orbit determination software and
need not be concerned with the details of instrument design. Electrical engineers
design the instrumentation and navigators navigate. The external environment has
an effect on measurements. If the motion of the spacecraft is not perturbed, these
environmental disturbances are modeled and a correction to the measurement
is computed by the orbit determination software. Examples are the troposphere,
ionosphere, solar plasma and polar motion for radiometric data, aberration for
optical data and a shape model of the target body for altimetry.
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Chapter 8
Navigation Operations

Navigation operations is the process of identifying a destination, finding the path
to the destination, and performing the necessary tasks to transport a vehicle to the
destination along with the passengers which may be people or science instruments.
Navigation operations are synonymous with exploration and it is performed by
engineers and explorers or ordinary people when they get in their car, turn on the
GPS, and drive to the mall. The GPS navigation system requires a GPS receiver and
a map. GPS alone does not navigate. Spacecraft navigation to the bodies in the solar
system is a bit more complicated than driving to the mall. The closest analogy to
planetary spacecraft navigation is the navigation performed on eighteenth-century
and earlier sailing ships. The navigator knows his home port and has a vague idea of
the location of his destination. Once the ship sails beyond the horizon, its location is
not known very well. The major problem is determining time. In order to determine
longitude, the navigator must know the time in his home port where 12:00 p.m.
is high noon. If high noon occurs at 1:00 p.m. he knows he is about 700 miles
West of his home port depending on his latitude that can be determined from the
elevation of stars above the horizon. Magellan carried 18 h glasses for his voyage
around the world. In determining a route, he must have some knowledge of wind
and ocean currents. For planetary navigation, the navigator knows his home port,
namely the Earth. He has a vague idea of his destination. If his destination is a
planet, he can go out at night and look up and see his destination. The problem
of determining where the spacecraft is located and plotting a route is shared with
sailors of antiquity. Determination of time with atomic clocks enables the navigator
to determine range to the spacecraft and is the key to planetary orbit determination.
The major advantage of planetary spacecraft navigators over sailors of antiquity is
that they perform navigation in a comfortable flight operations facility and do not
die if they make a mistake.

Planetary navigation operations consist mainly of collecting data from a number
of sources, inputing this data to navigation software, determining the orbit, com-
puting trajectory correction maneuvers, and transmitting maneuver commands to
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the spacecraft. This process does not require a deep understanding of mathematics
or navigation and can be performed by anyone with a rudimentary knowledge of
navigation and computers. However, the navigation operations team is comprised
of individuals who are highly educated and dedicated. Their job is to analyze the
navigation system and prepare solutions for problems that may arise as well as
perform the routine navigation operations. The job can be frustrating because the
interesting problems arise quickly and often have no solution. Most of the time is
spent doing routine operations.

8.1 Navigation System

The navigation system is a collection of hardware, instrumentation, and computer
software that enable navigation. For planetary spacecraft navigation, the navigation
system is comprised of a spacecraft, the Deep Space Network (DSN), and proce-
dures that are encoded in software that resides on the spacecraft or on the ground
at a space flight operations facility. The spacecraft hardware includes transponders,
imagers, an attitude control system, and a propulsion system. The DSN is comprised
of tracking stations located at Goldstone California, Madrid Spain, and Canberra
Australia and the Space Flight Operations Facility (SFOF) located at the Jet
Propulsion Laboratory (JPL) and at other locations depending on the mission. The
SFOF houses the software required to extract and format the data and the navigation
team required to operate the navigation software. For some missions, the navigation
team and software may be located elsewhere.

8.1.1 Deep Space Network

The tracking stations that comprise the DSN are in a complex containing a 72-m
antenna, several 34-m antennae, and special- purpose hardware end computers for
extracting Doppler, range, and VLBI observables from received spacecraft signals
and VLBI from extragalactic radio sources. This data is relayed via high-speed data
lines to the SFOF. Propulsive maneuver commands are sent to a DSS via the same
high-speed data lines and then transmitted to the spacecraft.

8.1.2 Spacecraft

The spacecraft is designed to enable acquisition of data by the DSN and provide
propulsive maneuvers to enable the spacecraft to arrive at the target body. The
hardware systems onboard the spacecraft include transmitters and receivers with
a Doppler transponder, imaging and altimetry instruments, a telecommunications
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system for downloading images and receiving maneuver commands, an attitude
control system for pointing cameras and propulsive motors in the desired direction,
and a propulsion system for changing the flight path of the spacecraft.

8.2 Orbit Determination

The launch vehicle injects the spacecraft on a trajectory that goes from the launch
site to the target body. The initial problem for planetary spacecraft navigation is
to find the spacecraft after launch. The DSN searches the sky in the direction
of the predicted launch trajectory. This is a three-dimensional search in tracking
station pointing angles and carrier frequency. Near the Earth the search is difficult;
however, as the spacecraft departs the Earth’s gravity the search is easier. The
spacecraft location in the sky and carrier frequency becomes well defined, provided
the spacecraft is headed toward the target planet. Once the spacecraft is located,
orbit determination software determines the trajectory. A block diagram of the orbit
determination software is shown in Fig. 8.1. In the example used here, the Near
Earth Asteroid Rendezvous software configuration is described. The rectangular
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blocks are files that need to be created. The circles are the programs that create the
files. Prior to launch, state vectors for the spacecraft and planets are obtained and
included in a file called STATES. The file MODELS contains the Earth’s gravity
model, propulsive maneuvers, station locations, Earth orientation, solid Earth tides,
tectonic plate motion, and landmark locations. The troposphere, ionosphere, and
solar plasma are contained in the MEDIA file.

The first file to arrive at the SFOF after launch is the tracking data file (DATA)
containing Doppler and range data. The orbit determination program outputs a SRIF
matrix and files of spacecraft ephemeris, central body ephemeris, and central body
attitude consisting of segments of Chebyshev polynomials. The program SOLVE
inverts the SRIF along with the measurement residuals to obtain corrections for
all the estimated parameters. The corrected estimated parameters are fed back to
ODP, and another solution is attempted. When convergence is achieved, the program
UPDATE is executed to provide files that may be exported to the science team and
others outside of navigation.

8.2.1 Orbit Determination Strategy

Orbit determination strategy involves selecting the estimated parameters, acquiring
the necessary data, assigning error uncertainties to the measurements and a priori
estimated parameters and analysis of the residual errors. The estimated parameters
include spacecraft state, central body state, central body Euler angels and spin
rates, gravity coefficients, propulsive maneuvers, landmark locations, solar pressure
model parameters, and other parameters that are needed for trajectory propagation.

The amount of data to be processed by the orbit determination filter, or the length
of the data arc, must also be specified. A given orbit determination run presents
the analyst with many options. One strategy is to start with a short data arc and
obtain convergence. Then the data arc is lengthened, admitting more data, until a
satisfactory solution is obtained. If the data arc is too long, the filter may choke on
too much data. Unmodeled errors will eventually destroy the validity of the solution
and computed statistics. Introduction of stochastic noise in the form of a random
walk may help. The stochastic parameters cause the filter to deweight earlier data,
and thus the filter tends to forget and rely on more recent data. A problem with
stochastic parameters is they tend to falsely smooth out the residual errors and
introduce instability.

8.2.2 Multiple Data Types

The problem of orbit determination is exacerbated when multiple data types are
processed. For a single data type, which would generally be Doppler only data, the
solution is not dependent on the data weight provided all the measurements are given
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equal weight and there are no stochastic parameters. When multiple data types are
processed, the solution becomes dependent on relative weight. For example, when
range and optical data are processed with Doppler data the solution will depend
on how the optical data is weighted compared to the Doppler data. For planetary
approach, the optical and Doppler data determine components of the spacecraft state
that are orthogonal and a natural separation is obtained. The optical data determines
the coordinates in the B plane, and Doppler data determines flight time and the
approach velocity vector. Range data is redundant to Doppler data but provides
the constant of integration. In orbit, the separation is less apparent. For the NEAR
mission, optical data provided the orientation of the orbit in space and Doppler data
provided a measure of the distance traveled by the spacecraft. These measurements
were complimentary and provided about one meter in orbit measurement accuracy.
This was important for orbit prediction. It was necessary to predict the orbit ten days
into the future to an accuracy of about 100 m which required orbit determination
accuracy of about 1 m. This accuracy could be achieved relative to the center of
mass of Eros even though the location of landmarks on the surface was known only
to about 50 m. In computing the optical observable, the offset of the camera from
the center of mass of the spacecraft was included.

8.2.3 Simulated Data

Another technique for detecting problems with orbit convergence is analysis of the
signatures in the data residuals. For example, a timing error during a planetary
encounter has a distinct signature that looks like the tangent function near 90◦.
Analysis of residual errors requires considerable experience. The first time a new
error appears in the data, the signature is generally not recognized. Experience in
recognizing these data signatures is best obtained by processing simulated data prior
to conducting navigation operations.

Simulated data is an important tool for analysis of orbit determination per-
formance. It proved to be valuable during the NEAR mission which involved
introduction of new data types. A simulated tracking data file was prepared that
consisted essentially of time tags of the Doppler and range data points. The
simulated tracking data file also included header data such as station number
necessary for computing the observable. In assigning time tags, care had to be taken
to assure that the spacecraft was above the horizon. Simulated images of the asteroid
were prepared by ray tracing asteroid brightness on the surface of the asteroid to
each pixel in the camera and a picture sequence file prepared with image time and
camera pointing angles. A simulated LIDAR data file was generated that contained
the time of each measurement and instrument pointing angles. Media and clock
calibration files were prepared and were assumed to be the same for each station.

The simulated data files were input to the orbit determination software. As each
data point was processed, the computed measurement was modified by adding
noise obtained from a random number generator to generate a measurement. New
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simulated data files were output by the orbit determination software with the
simulated measurement. The spacecraft state, Eros ephemeris, Eros attitude, and
all the input model parameters were modified and given to a second party along
with the data files and simulated images. The modification of the input a priori
data used the same process as adding noise to the measurement; however, for some
inputs the error was considerably larger than the a priori error would indicate. The
second party did not know the real assumed value of the estimated parameters or
the assumed value of the measurements. The second party extracted line and pixel
locations from the simulated images, created a landmark tracking file, and ran the
orbit determination software to determine the simulated orbit. If the second party
failed to determine the orbit, the process would be repeated until he was successful.
There was more than one second party and they all got it right the first time, but
we repeated the exercise to be sure. On the Viking mission, we repeated simulated
navigation operations many times until we got it right. During mission operations,
the NEAR navigation team determined many orbits and computed many maneuvers
and made no significant mistakes, which proves that practice makes perfect.

8.3 Maneuver Targeting

Once the orbit has been determined, it may be necessary to perform a propulsive
maneuver to steer the spacecraft back on course. Since both the position and velocity
are in error, requiring the correction of six components of position and velocity, two
propulsive maneuvers may be required. A propulsive maneuver can correct only
three components.

8.3.1 Interplanetary Maneuvers

When the spacecraft is far from the target body, the position and velocity errors are
generally relatively small and can easily be corrected to put the spacecraft back on
the nominal trajectory. However, this strategy is not optimum with regard to fuel
usage. The fuel optimum strategy is to propagate the trajectory and determine the
position error with respect to the target body. This position error is determined in B
plane coordinates of B·R, B·T , and time of arrival. A single maneuver is targeted to
correct the position error at the target body. The arrival velocity is permitted to float.
Correcting position at the target body will also tend to correct velocity. If this is not
true, then two maneuvers will need to be performed. The magnitude of the velocity
correction at the time of the planned maneuver may be very small. The magnitude
of the velocity correction maneuver increases inversely proportional to time of flight
to the target body. If encounter time is 2 years in the future, then delaying the
propulsive maneuver by 1 year will double the required velocity change. This may
be a small penalty to pay for minimizing the number of maneuvers. The propulsive
trajectory correction maneuver may be delayed and combined with a deterministic
maneuver.
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8.3.2 In Orbit Maneuvers

If the mission involves inserting the spacecraft into orbit about the target body,
the maneuver strategy for interplanetary maneuvers must be modified a little. One
exception is orbits about Jupiter where the approach to the Galilean satellites
behaves more like an interplanetary trajectory. The target parameter set becomes
three orbit elements. The use of orbit elements in this context should not be
confused with the use of orbit elements for patched conic trajectory propagation.
The osculating orbit elements computed at a specific time in an orbit provide a
measure of energy and angular momentum that is as accurate as the input state
vector (see Sect. 3.1.1). Certain distances, angular orientation, and period are close
to their actual values, if computed at the right place in the orbit. The input state
vector is obtained from a high-precision integrated trajectory. In orbit, the principle
that a single maneuver can correct the orbit is tested. Two maneuvers are often
required, but, since there are generally many more deterministic maneuvers, the
second maneuver can be combined.

8.3.3 K Matrix

The K matrix relates propulsive maneuver velocity change to the change in position
at the target body. When the spacecraft is far from the target body, correcting
position errors at the target body also tends to correct velocity errors. If the
spacecraft trajectory goes from the Earth to the target planet, conservation of energy
will result in the spacecraft arriving with the designed velocity. Since velocity errors
are small, analysis of interplanetary trajectory errors can be performed by mapping
the K matrix to the target and the inverse of the K matrix back to the position of
the spacecraft where a propulsive maneuver is executed. The K matrix is a covariant
tensor and its inverse is contravariant.

For the K matrix, the position at the target is defined by B plane parameters
(B ·R,B ·T , tl). These parameters may be directly related to the hyperbolic orbit
elements defined in Sect. 3.1.2.

B ·R = b cos(θ)

B ·T = b sin(θ)

tl = tp −
√

a3

GM
ln(e)

The parameter tl is called linearized flight time. As a spacecraft approaches a
planet, it is accelerated by the gravity of the planet and the time of periapsis is a
function of B, the magnitude of the B vector. In order to remove this dependency,
tl is defined as the time of arrival if the planet had no mass. The modified B plane
parameters are thus
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Oh = [B ·R,B ·T , tl, V∞, α∞, δ∞]

The state transition matrix defines the mapping from a maneuver to the target
body in Cartesian coordinates. The state transition matrix may be determined by
finite difference of conic propagation of the trajectory or directly by integration
of the translational variational equations. The Cartesian state at the target body is
transformed to B plane parameters by multiplying by the local Jacobian or partial
derivative matrix of B plane parameters with respect to Cartesian state.

B = ∂Oh

∂X(t)

∂X(t)

∂X(t0)
=

⎡
⎢⎣

∂(B ·R,B ·T , tl)

∂(x0, y0, z0)

∂(B ·R,B ·T , tl)

∂(ẋ0, ẏ0, ż0)
∂(V∞, α∞, δ∞)

∂(x0, y0, z0)

∂(V∞, α∞, δ∞)

∂(ẋ0, ẏ0, ż0)

⎤
⎥⎦

The K matrix is the upper right 3 by 3 partition of the 6 by 6 transformed state
transition matrix.

K = ∂(B ·R,B ·T , tl)

∂(ẋ0, ẏ0, ż0)

For the first 15 years of the space program, interplanetary maneuver analysis
involved B planes and K matrices almost exclusively. For example to compute �V,
we obtain the miss in B plane parameters (� Ok) and multiply by K inverse,

� V = K−1 � Ok

where � Ok = (�B ·R,�B ·T ,�tl)

K matrices were also used to map orbit determination errors to the B plane.
Mission design and science objectives could also be mapped to the B plane. The
capture radius of a planet and the region in the B plane where occultation occurs
can be plotted along with the orbit determination error ellipse, and the probability
of impact or occultation can be computed. Another useful application of K matrices
is analysis of singularities. The state transition matrix can never be singular, but K
matrices are singular for 180–360◦ transfers. A Hohmann transfer, which is 180◦,
will pass through the line of nodes connecting the Earth and the target body. The
mapping of orbit determination errors to the line of nodes on the far side of the body
will be positive semi-definite. For 360◦ transfers, such as the MESSENGER mission
returning to the Earth, the spacecraft will return to the same point in its orbit about
the Sun.

As the space program moved on to orbiting and landing on various bodies,
interest in B planes waned. Everyone grew tired of looking at B planes. However,
the concept was adapted for analysis of orbits about planets and asteroids. The
local Jacobian of B-plane elements was replaced by a local Jacobian of elliptical
orbit elements, and the same methods that were useful for interplanetary maneuver
analysis were adapted to in orbit and landing analysis.
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8.4 Summary

Navigation operations are conducted by a navigation team in a spaceflight oper-
ations facility. Data is received from the spacecraft at a DSN tracking station,
formatted into files, and transmitted to the navigation team. The navigation team
receives the tracking data and telemetry from the DSN and also receives files
containing calibration data from a variety of sources. These files are processed
in navigation software to obtain solutions for the spacecraft trajectory and other
model parameters. Examples of model parameters are gravity harmonic coefficients,
propulsive maneuver thrust or velocity change, and solar pressure acceleration
coefficients. The orbit determination solutions are written to files and distributed
to the science team, spacecraft team, and DSN. The trajectory is propagated to the
target, and propulsive maneuver components are computed to correct the trajectory.
The propulsive maneuvers are forwarded to the spacecraft team, and maneuver
commands are formatted and transmitted to the spacecraft via the DSN.

During flight operations, the DSN, spacecraft team, science team, and navigation
team work independently and are not generally colocated. Prior to flight operations,
the format and content of the files that are communicated are agreed upon. It is
important to get the file interface correct because of the high degree of compart-
mentalization of the participants. During the navigation design, it is necessary for
the participating teams to work together. However, the compartmentalization often
carries over to the design of the navigation system and the resulting design is often
compromised due to lack of communication.



Chapter 9
Navigation Analysis

Navigation analysis is performed to aid mission design and to verify the veracity
of the navigation system. The latter can be separated into three time ordered phases
being pre-flight, during mission operations, and post-flight. Pre-flight analysis is
probably the most important. It involves imagining problems that the navigation
system could have during flight and determining the performance of the proposed
navigation system. These problems are resolved and the spacecraft and navigation
system design can be modified as appropriate. After launch, it is too late to alter the
spacecraft design. During mission operations the spacecraft is generally in the cruise
mode for long periods of time. Navigation analysis continues as before launch with
an emphasis on navigation operations. There is not much interest in discovering
during cruise that the spacecraft design cannot achieve mission success. Another
source of problems arise from unexpected performance of the navigation system.
These problems can be mission catastrophic. However, sometimes there is enough
time to solve the problem and salvage the mission. This generally only happens if
the problem is simple to solve. During mission operations, a computer solution that
takes a week to implement will probably be too late. Post-flight analysis could be
useful for problems that may arise during future mission operations. However, funds
are generally not available if the mission was determined to be a success.

Often the navigation analyses described below were performed before the
spacecraft was launched and the actual spacecraft and mission were not the same
as analyzed preflight. These differences are usually minor when the analyses are for
the original mission design. All of the navigation analyses described below were for
missions that were actually flown. In the sections that follow, problems that occurred
during navigation design or navigation operations are defined and analyzed in detail.
Some of these problems are of interest to navigators and some were useful for the
design and implementation of the navigation system. Most of navigation analysis
is concerned with problems associated with a potential failure of the navigation
system. Since the probability of failure is small, most of the failure modes analyzed
have never occurred. However, these low probability failure modes are often the
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most interesting from an analysis point of view. The analyses described below are a
small subset of all the analyses performed. The objective is to cover a wide range of
the type of problems encountered with emphasis on the first time the problem was
encountered.

9.1 Viking

Two Viking spacecraft were launched on separate Titan/Centaur rockets on August
20,1975 and September 9, 1975 from Cape Canaveral on a mission to explore Mars
and determine the possible existence of life on Mars. The spacecraft consisted of
an orbiter and sterilized lander capsule. Viking 1 was inserted into Mar’s orbit on
June 19,1976 and the lander touched down on July 20,1976 at the Chryse Planitia.
Viking 2 followed and was inserted into Mars orbit on August 7, 1976 and the
lander touched down on September 3, 1979 at the Utopia Planitia. For several years
the Viking orbiters and landers mapped the Mars topography, searched for life, and
analyzed the geology.

9.1.1 Planetary Quarantine

Since the primary purpose of the mission was to determine the existence of life
on Mars, a major concern was the possible introduction of life from Earth and
contamination of the planet. The purpose of planetary quarantine analysis was
to guarantee that the probability of contamination was below an agreed upon
probability. The agreements were international and were taken very seriously. The
lander was sterilized at considerable cost to the project. Navigation was concerned
with the probability that large objects like the orbiter, Centaur and various space
junk, like the shroud, would introduce microbes from Earth to the Mars surface.
The probability analysis consisted of sub allocating probabilities to the various
sources of contamination. The probability equation is similar to Drake’s equation for
determining the possible existence of life in the universe. Navigation was allocated a
probability of 3.027 × 10−5. This navigation suballocation was further suballocated
to the mission phases. In addition, a fuel allocation that was enough to change
the velocity of the orbiter and lander by a total of 41 m/s was allocated. The
suballocation of the probability and fuel navigation allocation to the various mission
phases is given in Table 9.1.

When the spacecraft is injected into its trans-Mars trajectory, the Centaur boost
vehicle and associated hardware follow along and also make the trip to Mars. These
objects must be aimed far away from the desired target in order to avoid impacting
Mars. The injection aim point is about 400,000 km away from Mars or about as far
away as the Moon is from Earth. Figure 9.1 shows the geometry drawn to scale
for Viking 2. At this scale Mars appears as a small circle as would the Earth and
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Table 9.1 Planetary
quarantine large impactables
allocation

Trajectory
phase

Probability
sub allocation �V suballocation

Injection 0.227 × 10−5 7.5 m/s

Midcourse 0.200 × 10−5 5.0 m/s

MOI 2.500 × 10−5 28.5 m/s

Orbit
trims
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Fig. 9.1 Viking 2 injection dispersion

Moon drawn to the same scale. The ellipse, which is actually a cross section of a tri-
axial ellipsoid, defines the region where 99% of Earth injections would arrive or the
probability is 99% that the spacecraft is inside the ellipse. Observe that the achieved
injection is outside the 99% ellipse. This would imply that we had a bad injection.
However, careful analysis revealed that, due to nonlinearity, the ellipse shown on
the figure is actually bent like a banana. The achieved injection was actually inside
the real 99% contour.

The first midcourse maneuver, which is not performed midcourse but near the
Earth, delivers the spacecraft to the point in the B-plane shown in Fig. 9.2. Modern
terminology refers to maneuvers performed during the interplanetary phase of the
mission as Trajectory Correction Maneuvers (TCMs). The achieved trajectory is
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statistically closer to the target than at injection and this may be attributed to the
luck of the draw. The first midcourse was also biased to satisfy planetary quarantine
per the suballocations given in Table 9.1. It would appear from the figure that the
probability of impacting Mars is greater than the planetary quarantine allocation.
However, if the probability of the orbiter being able to perform a subsequent
maneuver to move the spacecraft off the capture circle is included in the probability
calculation, the probability is within the allocation.

Near Mars, the mapping of maneuver execution errors is much smaller and
planetary quarantine constraints are easier to satisfy. Once in orbit, the orbit trim
maneuvers are too small to result in impact. Orbit lifetime may result in eventual
orbit decay and impact. This suballocation is considered separately and not included
in the navigation suballocation. The strategy for the planetary quarantine bias
required for MOI is included in the MOI maneuver design discussed below.

9.1.2 Orbit Insertion Maneuver Design

During approach to Mars, the Viking orbiter and lander was maneuvered into a
trajectory that provided the optimum initial condition for a large propulsion motor
burn that inserted the orbiter and lander into an orbit about Mars. The design of
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the approach trajectory and orbit insertion burn involved finding the ignition time,
magnitude, and direction of two propulsion maneuvers. The constraints on the
trajectory design included the period of the inserted orbit, periapsis altitude, latitude
of the landing site and sun elevation angle at the landing site. Since the number
of control parameters related to the propulsive motor burns exceeded the number
of mission constraints, a solution could be found that satisfied the constraints
and minimized a performance criterion. The performance criterion was the total
amount of fuel consumed. A numerical solution to a classical constrained parameter
optimization problem was needed. A constrained parameter optimization algorithm
was devised by the author for this purpose and is referred to as the method of explicit
functions described earlier in Chap. 4.

The first problem was to optimize the final approach maneuver in conjunction
with the orbit insertion burn. The control parameters are given by the propulsive
maneuver components �V1, �V2 and the ignition time. The �V maneuver
components are the integral of the thrust over the finite burn time of about 40 min.
The candidate constraint parameters are period of the post MOI orbit (P0), the
periapsis altitude (hp), the latitude of a point in the orbit, referred to as the PER
point,φPER , the longitude of the sub PER point at the time of touchdown (θPER)
and the sun elevation angle of the landing site at touchdown (SEA). The PER point
is at a fixed true anomaly on the separation orbit and is directly over the lander at
touchdown. The performance criterion is

J = |�V1| + |�V2|

The constraint on periapsis altitude is necessary to prevent the optimization
algorithm from collapsing onto the planet surface. The optimum solution involves
targeting to as low a periapsis as possible and then raising periapsis altitude by
doing a maneuver at apoapsis. The periapsis altitude was constrained to be 1500 km
to avoid hitting Mars. At that time, radiometric orbit determination was several
hundred kilometers. During the actual approach to Mars, optical data was able to
determine the orbit to within 25 km however, optical data was not accepted as a
primary data source and was regarded as a backup.

After the final approach maneuver was executed, the spacecraft continued about
10 days to encounter with Mars. During this time additional radiometric tracking
revealed that the spacecraft was not on course. The orbit insertion burn was thus
adjusted to satisfy the important mission constraints. For this optimization, the
periapsis altitude was not a target constraint. The desired 1500 km altitude could not
be achieved or would require too much fuel. The MOI control parameters, constraint
parameters, and performance criterion were reduced to

U = (t2, �V2)

�c = (P0, φPER)

J = |�V2|
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and the other parameters were permitted to float. Of course, periapsis altitude could
not be permitted to float too far from the nominal value of 1500 km. If the tracking
data revealed that the spacecraft was getting too close to Mars or too far away, an
emergency propulsive maneuver would be executed to restore the target periapsis
altitude.

Another approach to partially restore hp to its target is to adjust the performance
criterion to enable some propellant to be expended to raise or lower hp. Consider
the following modification.

J = |�V2| + G |hp − 1500.|

The gain G would achieve this purpose. A value for G may be obtained from the
trajectory optimization performed for the last maneuver targeting. The Lagrange
multiplier associated with hp may be obtained as a by-product of the optimization.

λhp = − ∂J

∂hp

The Lagrange multiplier provides a measure of the cost of maintaining hp at
1500 km. Recall that the optimum solution would allow hp to be much lower. If
we set G = −λhp, the optimization algorithm will partially restore hp to 1500 km
at a cost that has already been committed.

9.2 Galileo

The Galileo spacecraft was launched to Jupiter on October 18, 1989. An atmo-
spheric entry probe was released 150 days prior to Jupiter encounter. Following
probe release, the orbiter portion of the spacecraft was deflected for a close flyby
of the Galilean satellite Io. The orbiter was then configured for recording and relay
to Earth of probe entry data. Immediately following relay of probe data, the orbiter
was reconfigured for a Jupiter Orbit Insertion (JOI) motor burn. The orbiter was
then inserted into a highly eccentric 200-day orbit about Jupiter. At apojove, a large
motor burn raised the perijove radius to a less severe radiation region. The orbiter
then began a series of close encounters of the Galilean satellites Europa, Ganymede,
and Callisto.

9.2.1 Probe Delivery to Jupiter

The first major orbit determination activity during the Jupiter approach phase is
determination of the spacecraft trajectory so that Trajectory Correction Maneuvers
(TCMs) can place the probe on the proper Jupiter atmosphere entry trajectory.
This process combines trajectory state estimates with the nominal probe-orbiter
separation velocity to determine estimates of six Jupiter-relative entry parameters.



9.2 Galileo 309

The six entry parameters are latitude, longitude, speed, heading angle, time of entry,
and entry flight path angle. Entry is at a defined altitude of 450 km above the
reference ellipsoid with an equatorial radius of 71,398 km and flattening of 0.065.
This ellipsoidal surface is assumed to represent the l-bar pressure level in the Jovian
atmosphere. The probe was not expected to encounter perceptible atmosphere until
about 100 km below the reference 450 km point, but use of a fixed reference is
convenient because of uncertainties in the actual entry point.

During the 2-year interplanetary cruise from Earth to Jupiter, the spacecraft is
tracked to monitor the effect of nongravitational accelerations such as solar pressure,
gas leaks, and attitude control thruster imbalance. As the spacecraft approaches
Jupiter’s sphere of influence, the orbit determination error was predicted to be about
500 km. This total error represents a statistical combination of the Jupiter ephemeris
error and the 0.25µrad tracking error characteristic of Doppler tracking.

The probe is released from the orbiter 150 days prior to entry. Control of the
six entry parameters is dependent on the initial position error and the mapping of
separation velocity errors to entry. Errors in solar pressure and probe outgassing
modeling have little effect on the predicted probe trajectory.

9.2.2 Gravity Focusing

The mapping of probe position errors from probe separation to entry is best
described in an orthogonal rotating frame with the X axis parallel to the velocity
vector (the downtrack direction), the Z axis normal to the plane-of-motion (the
out-of-plane direction), and the Y axis normal to the velocity vector and in the plane-
of-motion (the crosstrack direction). The mapping of a spherical position error in
downtrack and crosstrack from far out on the approach asymptote to entry is shown
schematically in Fig. 9.3. Observe that the downtrack error increases as the probe

FOCUSSED
ERROR AT
ENTRY

DOWNTRACK
X

JUPITER

SPHERICAL
ERROR APPROACHING
JUPITER

Fig. 9.3 Gravity focusing
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approaches Jupiter (defocuses) whereas the crosstrack error decreases (focuses).
The out-of-plane error focusing is similar to the crosstrack error focusing.

The exact relationships describing gravity focusing of the orbiter state (X, Y,Z)

with respect to the initial state at minus infinity (X∞, Y∞, Z∞) have been derived
by Kent Russell and are given by

∂X

∂X∞
=

[
1 − 2

e cosh(F ) − 1

] 1
2

∂X

∂Y∞
=

(
−2(e2 − 1)

1
2

e

)[
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1
2
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∂Y

∂Y∞
=

(
1 + exp(F )
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∂Z
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e

)

where the hyperbolic eccentric anomaly (F) is defined by its relation to the mean
anomaly (M) as

M = V 3∞
GM

(t − tca) = e sinh F − F

where V∞ is the hyperbolic excess velocity, e is the orbiter eccentricity, tca is the
time of closest approach, and GM is Jupiter’s gravity. For the Galileo probe, the
approach hyperbola has the orbit elements V∞ = 5.86 km/s, e = 1.0193, and entry
occurs 276 s before periapsis. From Russell’s equations, the crosstrack focusing is
0.19, the out-of-plane focusing is 0.04, and the downtrack defocusing is 10.0. The
coupling of crosstrack into downtrack is 1.91. For a 500 km spherical delivery error
on the approach asymptote, the downtrack error at entry is 5080 km, the crosstrack
error is 98 km, and the out-of-plane error is 20 km.

9.2.3 Probe Entry Dispersions

A detailed covariance analysis was performed to determine the dispersions of Jupiter
relative atmosphere entry parameters. Computer simulations of data scheduling,
trajectory propagation, data filtering, and mapping resulted in the probe delivery
entry parameter errors given in Table 9.2. The effect of gravity focusing is somewhat
obscured by Jupiter’s rotation rate. Since the probe enters near Jupiter’s equator at a
heading angle that is about due East, the latitude dispersion is predominantly caused
by the out-of-plane trajectory error. Similarly, the flight path angle error is related
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Table 9.2 Predicted probe
delivery entry parameter
errors

Entry parameter Error (99%)

Latitude 0.05◦

Longitude 2.7◦

Time-of-entry 256 s

Speed 0.035 km/s

Heading angle 0.16◦

Flight path angle 0.94◦

to the crosstrack error. The downtrack error maps into the time-or-entry error. The
longitude error is related to the time-of-entry error by Jupiter’s rotation rate.

9.2.4 Probe Entry Flight Path Angle

Probe entry flight path angle, the angle between the relative velocity vector and local
horizontal plane, is the most critical entry parameter. It was required to deliver the
probe to an entry angle corridor with 99% probability between −7.2◦ and −10.0◦.
The upper limit is related to skip out of the Jovian atmosphere and the lower limit
is related to structural limitations. For the purpose of analysis, it is convenient
to relate entry parameters to orbit determination errors in the B-plane coordinate
system shown in Fig. 3.4 which has its T-axis parallel to the Jupiter equatorial plane.
Since the Jupiter equatorial plane, the ecliptic plane, and the trajectory plane are
nearly coplanar, B · T is essentially in the trajectory plane and B · R is essentially
perpendicular to the trajectory plane. On the approach asymptote, B · T is nearly
in the crosstrack direction defined above and B · R is nearly in the out-of-plane
direction. The magnitude of the B-vector is the hyperbolic impact parameter. The S-
vector shown in Fig. 3.4 is the unit vector in the direction of the approach asymptote.
It is in the direction of the hyperbolic excess velocity (V∞) and is in the downtrack
direction on the approach asymptote.

The entry flight path angle is most strongly dependent on the encounter impact
parameter (B) which is a measure of the “miss” of the approach hyperbola
asymptote with respect to the center of the planet. The relationship between the
impact parameter (B) and the inertial entry angle γI is given by

cos γI = B√
re

(
2GM
V 2∞

+ re

)

An approximate relationship for the relative flight path angle, which assumes 90◦
heading, is given by
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tan γe = sin γI

cos γI − ωJ re
VI

where ωJ is Jupiter’s rotation rate, VI is the inertial entry velocity, and re is the
reference entry radius.

In terms of B, expected delivery error to Jupiter was approximately 1300 km
(99%). This delivery error is dominated by the Jupiter ephemeris error. The effect
of this error on entry angle delivery is shown in Fig. 9.4. The relative entry angle
is plotted as a function of the hyperbolic impact parameter. Superimposed on the
abscissa is the targeted B and the 99% orbit determination delivery error. Projected
onto the ordinate is the 99% relative entry angle dispersion. The entry angle delivery
error is shown to be about 1.1◦. The margin indicated by these results is small but
adequate.

9.2.5 Probe Entry Angle-of-Attack

Another aspect of probe delivery is control of the entry angle-of- attack which is the
angle between the relative velocity vector at entry and the probe spin axis. Since the
probe has no active attitude control, it is necessary to deploy the probe in an attitude
such that it will enter the perceptible Jovian atmosphere at near zero angle-of- attack.
Since the plane of the orbit is near Jupiter’s equatorial plane, the angle-of-attack dis-
persion is the difference between the relative entry angle and true anomaly or inertial
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longitude dispersion at entry. The 99% angle-of-attack delivery caused by trajectory
errors is about 0.6◦. This is well within the Galileo project requirement of 4.5◦.

9.2.6 Trajectory Bending

As the orbiter approaches Jupiter, the gravitational acceleration causes the orbiter
to deviate from the approach asymptote. The resultant bending of the trajectory can
be measured with �V LBI and range data and the position of the orbiter relative
to Jupiter may be inferred. The trajectory of the orbiter may be obtained from
solution of

r = r0 + V∞(t − t0) +
∫∫

GM

r3 r dtdt

For orbit determination, the partial derivatives of the observable with respect
to the estimated parameters are needed. In the simplified analysis presented here,
the observable is orbiter position (X,Y,Z) and the Jupiter position (Xp, Yp, Zp)

is estimated. When the orbiter is far out on the approach asymptote, these partial
derivatives may be approximated as follows:

∂X

∂Xp

=
∫∫ −2GM

r3
dtdt

∂Y

∂Yp

=
∫∫

GM

r3 dtdt

∂Z

∂Zp

=
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GM

r3 dtdt

where

r = Xp − X

In the limit, the above integrals may be evaluated by making the assumption that
velocity (V∞) remains constant on the approach asymptote and by performing a
change of variable from time to r.

lim
r→−∞

∂X

∂Xp

= −2GM

V 2∞
1

2r
= −2 exp(F )

e
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V 2∞
1

2r
= exp(F )
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where

r = a(e cosh(F ) − 1)

and

lim
F→−∞ cosh(F ) = exp(−F)

2

The above result may also be derived from Russell’s equations by taking the limit
as F approaches minus infinity. An interesting observation is that on the approach
asymptote, the crosstrack and out-of-plane partial derivatives are equal and the
downtrack partial derivative is greater by a factor of two. Recall that the crosstrack,
out-of-plane, and downtrack directions are nearly coincident with the B·T, B·R, and
time-of-flight or S directions, respectively. This implies that the Jupiter approach
orbit determination B ·R and B ·T errors is equal and the S orbit determination error
is one half of the B · R and B · T errors. The orbit determination error is proportional
to the reciprocal of the measurement sensitivity. Of course these idealized results
provide only an approximate insight into the actual errors.

9.2.7 Jupiter Approach Orbit Determination

The Jupiter approach orbit determination error as a function of time from encounter
is shown in Fig. 9.5. The orbit determination error is mapped to the Jupiter B-
plane. Prior to Encounter (E) minus 40 days, the B-plane errors are dominated by
Jupiter’s ephemeris error. Starting at about E-40 days, the �VLBI measurements
begin to sense the gravitational acceleration of Jupiter. The B · R and B · T errors are
approximately equal as predicted by the above analysis. The S error is predicted to
be less than B · R and B · T errors by a factor of two. The time-of-flight error (TL),
which is equivalent to the S error divided by V∞, is greater than predicted by the
above simplified analysis until about E-5 days. However, the qualitative agreement
with the results of detailed computer simulations that include optical and Doppler
data is good. At about E-5 days, the B · R error levels off at around 25 km. This
may be attributed to a systematic optical center finding error of 1% of Io’s radius.
Near Jupiter periapsis, the orbit determination error decreases rapidly because of the
strong orbit dynamics signature in the Doppler data.

The same orbit determination error is shown on the right side of Fig. 9.5 mapped
to Io closest approach. The in-plane B · T and TL components tend to follow the
Jupiter relative TL component shown on the left side of Fig. 9.5. The ratios of Io
relative B.T and TL errors to the Jupiter relative TL error may be computed from
the orbiter and Io velocities. The orbiter trajectory crosses Io’s orbit at an angle of
36◦. From the geometry, the ratios of Io-relative B · T and TL errors to the Jupiter
relative TL error are 16 and 1.25, respectively. This result may also be obtained from
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Fig. 9.5 Jupiter approach orbit determination errors

the gravity focusing formulas. The Io-relative B.R component shown in Fig. 9.5 is
much better determined because of the effect of Jupiter gravity focusing. The orbit
estimate at E-5 days is used for the TCM at E-3 days that delivers the orbiter to Io.

9.2.8 Relay Link

The Galileo mission probe-to-orbiter communications relay link is illustrated
schematically in Fig. 9.6. The link begins with transmission of coded science and
engineering data from a transmitter within the probe descent module through a
relatively broad-beam antenna fixed to the aft end of the probe so that normally
its axis is oriented along the local vertical. The signal is received by the relatively
narrow-beam Relay Radio Antenna (RRA) on-board the orbiter and retransmitted
in real time to the DSN through the orbiter high gain antenna. A few days after
probe separation, the RRA is deployed to a position such that the antenna axis will
be pointing in the direction of the predicted probe location approximately 20 min
after probe entry. This optimizes relay link performance during the first 30 min of
the relay. During the latter half of the relay, the RRA is repointed several times so as
to minimize the RRA aspect angle. Ten days before probe entry, the RRA pointing
is updated in accordance with the improved orbit determination.

The dynamic behavior of the link geometry as a function of time past entry is
also illustrated in Fig. 9.6. Note that at signal acquisition, the signal enters the RRA
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Fig. 9.6 Relay link geometry

to the left of the RRA axis, while 30 min later, it enters to the right of the axis. If the
RRA remains inertially pointed, the signal arrives far off the RRA axis at the end of
probe mission. The dashed line represents a repointing of the RRA to improve the
relay link performance in the later portion of the mission.

Four pertinent antenna angles are defined in Fig. 9.7. The reference direction for
the probe aspect angle is the local vertical. The orbiter aspect angle is referenced to
the +Z-axis of the orbiter. The direction of the axis of the RRA is also referenced
to th orbiter Z-axis. Then, the operating point in the RRA pattern is defined by the
difference between these two angles.

These angles may all be calculated at any time during the probe mission, based
on reference trajectories for the orbiter and the probe, allowing the RRA and probe
antenna gains to be calculated. However, the values for probe and orbiter antenna
aspect angles at any given time will be perturbed by deviations in the trajectories of
the two spacecraft and by errors and changes in the attitudes of the two spacecraft.
It should be noted that for probe and orbiter trajectories, the relative motion of
the probe in the orbiter frame of reference is almost exclusively in the cone-angle
direction. The RRA may be articulated in this direction by rotation of the boom on
which it is mounted. RRA pointing in the clock or cross-cone direction is controlled
by orientation of the de-spun portion of the dual-spin orbiter spacecraft.

Delivery orbit determination errors of the relay link parameters for a data arc
ending at the time of probe separation and knowledge orbit determination errors at
10 days before encounter are given in the Table 9.3.
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Fig. 9.7 Aspect angle definition

Table 9.3 Predicted probe delivery entry parameter errors

Relay link delivery errors

Parameter Requirement error (99%) Capability error (99%)

Orbiter aspect angle 2.0◦ 1.8◦

Probe aspect angle 3.0◦ 2.4◦

Time-of-entry 480 s 256 s

9.2.9 Jupiter Orbit Insertion

The final event of the Jupiter approach phase is insertion of the orbiter into orbit
about Jupiter. Immediately following the relay of probe data, the orbiter is placed
into a 200-day period orbit around Jupiter by the Jupiter Orbit Insertion (JOI)
maneuver. The initiation of the JOI maneuver is time critical because the relay link
ends after Jupiter periapsis and delay results in expenditure of additional propellant
to get into orbit. The amount of propellant required for JOI and subsequent orbit
trims is also dependent on how accurately the orbiter is delivered to Io and prior
knowledge of Io delivery that would permit a late update of the JOI motor burn. A
final Jupiter approach TCM is performed 3 days prior to Io encounter. This TCM
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is based on data taken up to 5 days prior to Io encounter. The Io relative orbit
determination error is shown in Fig. 9.5 as a function of time from encounter. At E-5
days the B · T orbit determination error is about 60 km. The post JOI orbit period is
most sensitive to the in-plane B ·T delivery to Io. The B ·T orbit determination error
decreases to around 25 km at E-1.5 days. A systematic optical center finding error
of 1% of Io’s radius holds the B · T and B · R errors at this level. A late update of
the JOI maneuver is planned based on data taken up to E-1.5 days. This late update
results in a savings of several kilograms of propellant for the orbit trim subsequent
to the JOI motor burn.

9.2.10 Probe Entry Trajectory Reconstruction

The final orbit determination activity associated with the Jupiter approach phase
is reconstruction of the probe entry trajectory. Of particular interest is the probe
entry flight path angle. The determination of Jupiter atmosphere scale height is
dependent on accurate knowledge of the entry angle. On-board probe measurement
of deceleration cannot accurately determine whether the probe is descending rapidly
through a relatively thin atmosphere or entering on a shallow angle through a dense
atmosphere.

The entry angle reconstruction procedure consists of tracking the orbiter during
the entire Jupiter approach phase through Io closest approach. A smoothed best
estimate of spacecraft trajectory state relative to Jupiter is determined at the time
of separation. The separation spring impulse is added to the probe velocity and the
probe trajectory state is mapped ahead to the reference entry altitude. This state
vector and its covariance are provided to the Jupiter atmosphere scientists.

Data types that are used for reconstruction include Doppler, range, �V LBI , and
optical imaging of Io. Orbiter accelerometer data of the separation impulse is also
included. The major error sources that affect entry angle reconstruction are Jupiter’s
ephemeris, execution errors associated with TCMs, and velocity perturbations of
the probe and orbiter that occur during the separation sequence. Radio metric
tracking data through Jupiter closest approach provides a powerful solution for
Jupiter’s ephemeris. When �V LBI data is included, the TCMs both before and
after separation including the orbit deflection maneuver may be determined with
precision.

The major error sources that affect entry angle reconstruction are velocity
perturbations of the probe and orbiter that occur during the separation sequence.
During this sequence, the orbiter turns to the attitude required for zero angle-of-
attack at entry. A spin-up maneuver is performed to give the probe the required
angular momentum to maintain a stable attitude during the 150-day ballistic transit
to the Jovian atmosphere. The probe is separated from the orbiter by springs and the
orbiter then performs a spin-down and returns to normal cruise attitude.

A feature of the separation sequence is that two-way lock is lost when the orbiter
turns off Earth-line. An accurate measurement of separation velocity is obtained
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from Doppler data. The total orbiter velocity change associated with the turn, spin-
up, separation springs, spindown, and return to cruise attitude may be determined
to 1 mm/s when the orbiter returns to Earth-line and two-way lock is reestablished.
However, the velocity given to the probe cannot be completely separated from the
orbiter velocity changes associated with the spin up, spin down, and turns. The probe
velocity must be inferred from the observed orbiter velocity change.

Analysis has shown that it is difficult to meet the entry angle reconstruction
error requirement of 0.15◦ (99%) with the sequence defined above. There are
several methods being studied to reduce the entry angle reconstruction error. They
include use of orbiter accelerometer data, performing an Earth-line separation and
entering the Jovian atmosphere at some small angle-of-attack, special calibrations
of the attitude control system, and performing a more accurate calibration of the
separation springs. Assuming perfect determination of the velocities associated with
separation, the probe entry angle could be reconstructed to an accuracy of 0.05◦
(99%). With worst case estimates of separation velocity errors and no calibrations,
the reconstruction error could be as bad as 0.45◦ (99%). The current best estimate
of entry flight path angle reconstruction error is 0.2◦ (99%). With implementation
of some or all of the above methods, the goal is to meet the atmosphere science
requirement on entry angle reconstruction.

9.3 Pioneer

In July of 1992, the Pioneer Venus Orbiter (PVO) spacecraft began a series of orbits
that entered the Venus atmosphere. At first the orbit periapsis just grazed the upper
atmosphere but, because of the perturbing effect of the sun, the periapsis altitude was
pushed deeper into the atmosphere. With the limited propellant available, a series
of propulsive maneuvers were executed to raise the periapsis altitude and extend the
life of the spacecraft.

During the entry phase, navigation is required for support of propulsive maneu-
vers and entry science. Of particular interest to science is the determination of the
velocity change imparted to the spacecraft while in the Venus atmosphere. The
velocity change may be directly related to the drag experienced by the spacecraft and
hence the atmospheric density. Determination of the spacecraft orbit was extremely
hampered by the lack of tracking data. Continued deterioration of solar cells resulted
in a critical power shortage that limited the time that the spacecraft transmitter was
operated. As a result, tracking coverage was limited to a total of 2 h for each orbit.

A strategy was planned for determining the orbit with the limited data available.
The strategy involved determining the velocity change directly and then relating this
quantity to the atmospheric drag.
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9.3.1 Orbit Determination Strategy

The orbit determination strategy defines the data types and data acquisition required
for orbit determination. For PVO, the data type is two way coherent Doppler
obtained by tracking the spacecraft from the Deep Space Network. During times
of high spacecraft activity, such as during maneuvers or when the spacecraft is
perturbed by external forces, it is desired to have continuous tracking coverage.
With the solar array degradation being experienced by PVO, the total tracking
coverage during the atmospheric entry phase is about 2 h per day. Science playback
and commanding for maneuvers require about 30 min of coverage at periapsis and
apoapsis. With this as a baseline tracking coverage, a study was undertaken to
determine the minimum coverage needed to meet science and mission accuracy
requirements. Tracking data was simulated and the strategy for placement of
tracking passes varied to determine the optimum tracking coverage. As a general
rule, it was discovered that the length of individual tracking passes spaced around
the orbit had little effect on orbit determination accuracy. Orbit determination
accuracy is primarily determined by the number and geometric placement of the
passes. For example, it was found that six tracking passes each 15 min in length and
geometrically spaced evenly around the orbit would determine the orbit nearly as
well as continuous tracking coverage. However, an hour of tracking at periapsis and
another hour in the vicinity of apoapsis does not do nearly as well.

Further investigation of the placement of tracking passes revealed that the num-
ber of passes required per revolution could be substantially reduced by processing
several consecutive orbits of data. With this strategy, three consecutive orbits con-
taining three periapsis passages would require four tracking passes per revolution to
obtain orbit determination accuracy comparable to continuous coverage. The four
tracking passes would be 15–30 min in length and placed at periapsis, apoapsis, and
roughly geometrically in between at plus and minus 4 h from periapsis.

9.3.2 Orbit Determination Results from 1980

In order to quantify and verify these observations, a series of atmospheric entry
passes from 1980 were selected and the data processed in a manner similar to that
described above. First a baseline case was run processing all the data available.
These were orbits number 503 through 506 extending from April 20 to April
23, 1980. The estimated parameters were spacecraft state, the maneuver velocity
components at apoapsis 505, and the magnitude of the velocity change that occurred
during each periapsis passage. The atmospheric drag was modeled as a small retro
propulsive maneuver in a direction opposite to the nominal direction of the velocity
vector at periapsis. The length of the burn was taken to be about 300 s which is
approximately the length of time that the spacecraft was in the atmosphere. It will
be shown later that the detailed modeling of the atmospheric drag is not critical
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since the orbit determination filter responds primarily to the total impulse. The filter
model also included stochastic acceleration components around the entire orbit and
solar radiation pressure.

The results of processing the baseline case for orbit numbers 503 through 506 are
shown in Fig. 9.8. The abscissa is time measured in days from periapsis passage 503
which is assigned the day number 503. The ordinate is milli Hertz (mHz) of Doppler
residual. Except for the data near periapsis, the fit is good to within 15 mHz which
corresponds to a velocity error of 1 mm/s. Analysis of these residuals indicates that
the data near periapsis is corrupted by errors in modeling the Venus gravity field. A
better fit may be obtained by estimating gravity harmonics or deleting the data near
periapsis as has been demonstrated on previous missions.

Here, we have elected to fit through the periapsis data and the results are tabulated
below in Table 9.4. Shown is (�V ) that was estimated at each of the periapsis
passages indicated under the heading “Revolution.” Atmospheric drag was modeled
as a finite motor burn directed opposite to the nominal velocity vector and centered
around periapsis with a nominal burn time of 300 s.
The associated orbit period change (�Pbase) was computed from the partial
derivative of period with respect to velocity and given by
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Fig. 9.8 Pioneer orbits 503–505 data residuals—continuous tracking

Table 9.4 Pioneer 1980 orbit
determination baseline

�V

(mm/s)
�Pbase

(s)
�P80
(s)Revolution

503 1.863 0.573 0.574

504 0.413 0.128 na

505 60.07 18.463 18.522
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�Pbase = ∂P

∂vp
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where vp is the velocity at periapsis, rp is the radius of periapsis, and GM is
the Venus gravitational constant. For comparison, the period change obtained in
1980 at the time of the actual atmospheric entry is also shown (�P80). The period
changes agree within 0.06 s even though obtained by somewhat different methods.
Subsequent analysis of additional orbit cases has shown general agreement to within
10 ms. The differences may be attributed to small perturbations from the sun and
nongravitational accelerations. During the 1992 atmospheric entry phase much less
tracking data was available as discussed above. As a test, the sparse data tracking
strategy can be applied to the 1980 data. The tracking data residuals are shown in
Fig. 9.9.

Since the spacecraft is normally occulted by the planet near periapsis this data
is deleted. Included are two 30 min tracking data arcs just before and after the
simulated occultation and several 15 min tracking data arcs spaced around the orbit.
The resulting �V ′s and corresponding period changes are shown in Table 9.5.

Fig. 9.9 Pioneer orbits 503–505 data residuals—sparse tracking
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Table 9.5 Pioneer 1980 orbit
determination sparse data

�V

(mm/s)
�Psparse

(s)
�Pbase

(s)Revolution

503 1.851 0.569 0.573

504 0.409 0.126 0.128

505 60.05 18.487 18.463

The sparse data solution compares quite favorably with the solution obtained by
processing all the available data.

9.3.3 Estimation of Drag

The estimation of drag from orbit tracking data involves separating the velocity
imparted to the spacecraft associated with atmospheric drag from the velocity
imparted by all other sources including both gravitational and nongravitational
accelerations. The significant other sources include the Venus gravity harmonics,
solar tide, solar radiation pressure, and any spacecraft propulsive or attitude
maneuvers. Over a relatively short data arc of a few hours, the solar tide and
nongravitational accelerations are predictable and do not contribute significantly to
the drag estimation error. The Venus gravity harmonics, on the other hand, result in a
large perturbation of the orbit that reaches a maximum near periapsis just where the
drag acceleration attains a maximum. Thus, the main orbit determination problem
is separating the gravity harmonic perturbation from the drag perturbation.

In order to gain some insight into the problem of drag estimation it is useful
to examine the response of the tracking data to errors in the values of key
parameters involved in the estimation process. The tracking data response to
estimated parameters is most useful when displayed as perturbations on the data
residual which is referred to as the parameter signature. Figure 9.10 shows data
residual signatures of the two key parameter sets describing gravity harmonics and
drag. The drag is described by the atmospheric density and is the curve consisting of
the o’s, the lower curve. The gravity harmonic truncation error is approximated by
the sum of the perturbations caused by the gravity harmonics of degree 21 and is the
curve described by the x’s, the upper curve. The representation of the gravity field
truncation error by the highest degree harmonics available is somewhat arbitrary.
The actual error in the truncation of the gravity field is some weighted average of
all the harmonics that have been omitted from the solution.

The data residual signatures of atmospheric density and gravity harmonics shown
in Fig. 9.10 were obtained by the following procedure. First, a single orbit of
Doppler data was fit and residuals similar to those shown in Fig. 9.8 were obtained.
These residuals are simply a plot of the difference between the actual measurement
obtained at the tracking station and the measurement computed from a model of
the system after the parameters of the model have been adjusted by least squares
to minimize the residual error. At this point we intervene and generate a simulated
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Fig. 9.10 Pioneer drag and gravity harmonic signatures

data set of measurements that are equal to the computed measurements. When we
process this new data set, the residuals are exactly zero for each data point. Next,
we adjust some parameter in the model that we are interested in and process the
simulated data thus exposing the sensitivity of the adjusted parameter. Shown in
Fig. 9.10 is the result of performing this procedure for atmospheric density and the
degree 21 gravity harmonics. The orbit determination filter effectively looks at these
two curves and separates one parameter from another based on the characteristic
response or signature of the parameter. If we restrict the orbit determination solution
to data near periapsis, say from 42,000 to 46,000 s on Fig. 9.10, the filter will not be
able to determine the drag since the perturbation of the spacecraft is dominated by
gravity harmonics in this region. However, the gravity harmonics tend to conserve
energy around a closed orbit and their signature is periodic whereas the atmospheric
drag reduces the energy resulting in a signature that grows with time. An hour or
so of tracking data after periapsis reveals a secular growth in the atmospheric drag
signature that may be easily separated from the gravity harmonics signature by the
filter. Comparison of the atmospheric density residual with the gravity harmonic
residual indicates that the orbit period change associated with the drag may be
estimated to an accuracy of about 15 ms.

9.3.4 Relating Drag �V to Period Change

The orbit determination software provides an estimate of the �V attributable to
drag as the spacecraft flies through the Venus atmosphere. The problem faced by
science is to relate this �V to the parameters of a detailed spacecraft aerodynamic
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and planet atmosphere model. The procedure that has been used in the past is
to map the spacecraft state to some reference epoch and compute the difference
between the osculating orbit periods with and without the effect of atmospheric
drag. The atmospheric scientists may then adjust the parameters of their model until
they obtain the same period difference at the same reference epoch. The theory of
small perturbations then applies provided the velocity change associated with the
drag acceleration is small compared to the spacecraft velocity at periapsis. This is
certainly the case since the spacecraft is moving at approximately 10 km/s relative
to the planet and the velocity change attributable to drag is on the order of 1 m/s.

Consider a simplified model consisting of flat plate drag and a simple exponential
atmosphere. We thus have for the force model,

Ad = −Cd A

m
q

q = 1

2
ρ v2

ρ = ρo e

−(r − ro)

ho

where ρo, ro, and ho are the atmosphere base density, reference altitude, and
scale height, respectively and Cd , A, m, and v are the spacecraft drag coefficient,
reference area, mass, and speed, respectively. The atmospheric density (ρ), drag
acceleration (Ad), and dynamic pressure (q) are functions of these quantities.

The above drag equations in conjunction with the two body equations of motion
are solved for �VR .

�VR = Cd A

m
ρrp

√
πGMho

2e
(1 + e)

ρrp = ρo e

−(rp − ro)

ho

The actual Venus atmosphere has considerable more structure than is represented
by the simple exponential atmosphere and furthermore it is not convenient to solve
for atmospheric model parameters in orbit determination software. Since the filter
primarily responds to the total impulse and is insensitive to the time variation of the
acceleration in the atmosphere, a much simpler model of the drag should suffice.
After some experimentation, a model was selected where the drag is a constant
acceleration over a fixed interval of time. The direction is opposite to the velocity
vector and therefore the spacecraft executes a gravity turn trajectory during the time
that the acceleration is active and is ballistic when the acceleration is inactive. The
actual acceleration describes a bell shaped curve as a function of time centered at
periapsis and this is replaced by a constant acceleration over a fixed time interval
centered at periapsis. The width of the time interval is selected such that the modeled
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acceleration profile is close to the actual acceleration profile. The total integrated
drag acceleration is thus given by

�Vc = Ac �Tc

We desire a value for the time interval (�Tc) such that the constant acceleration
(Ac) is close or a best fit to the actual acceleration. This will occur when the constant
acceleration is some constant K times the actual peak acceleration experienced by
the spacecraft at periapsis and is given by

Ac = K Ap

Ap = −Cd A

m
qp

qp = 1

2
ρp v2

p

We may solve the above equations for �Tc by equating �Vc with the actual
integrated velocity change which is approximately �VR and obtain

�Tc = 2(1 + e)

v2
p

√
πGMh0

e

where, from inspection, the value of K is seen to be a little less than one and has
been arbitrarily assigned the value

K = 1√
2

The atmosphere reconstruction procedure thus consists of estimating the total
integrated velocity change or �V experienced by the spacecraft during passage
through the atmosphere and relating this quantity to the parameters of a detailed
precise model of the spacecraft and atmosphere.

Consider the following numerical experiment that may be performed on a
computer. A trajectory program is initialized with the spacecraft state about 5 min
prior to periapsis. The trajectory is integrated through the Venus atmosphere and
terminated 5 min after periapsis. A precision integrator is employed and all the
significant force models are turned on that perturb the spacecraft. For the first
integration, the atmospheric density is set equal to zero and the osculating period
at the end of the trajectory is recorded as Pnom. We repeat the integration, only this
time we turn on the atmosphere and at the end of the trajectory we compute the
change in the osculating period which is

�Pint = P − Pnom
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In order to test the linearity, we may compute the expected osculating period change
from

�P = ∂P

∂v
�V

�PR = ∂P

∂v
�VR

where �V is obtained by direct integration of the drag acceleration. The partial
derivative is also computed from osculating orbit elements obtained by trans-
formation of the Cartesian state vector at periapsis. We next take the precision
integrated �V and divide by �Tc of 100 s to obtain a constant acceleration A100 for
comparison. A third precision integrated trajectory is computed using the constant
acceleration model and the osculating period (P100) is computed at the reference
epoch 5 min after periapsis. A fourth precision integrated trajectory is computed
only this time the entire �V is applied as an impulse at periapsis resulting in Pimp.
Finally, this entire experiment is repeated at several atmospheric base densities
resulting in �V ’s that range from a fraction of a millimeter per second to over a
meter per second and the results are displayed in Table 9.6.

Shown in Table 9.6 is the velocity change (�V ) obtained by numerical integra-
tion and the velocity change (�VR) obtained from the formula. We would expect
close agreement since both of these results are based on the same equations of
motion and the difference represents only errors in the approximations. Also shown
is the period change that would be predicted by the partial derivative assuming
linearity of the equations of motion. When compared with the precision integrated
period change the error is about 1%. A more relevant comparison is between the
period change obtained by integrating the drag assuming an exponential atmosphere
and the period change obtained by integrating a constant acceleration. Here, the
agreement is generally less than 0.1%. It is reasonable to assume that the actual
modeling error attributable to orbit determination software based on a constant
acceleration model will also be less than 0.1%. In order to obtain this accuracy
the actual integrated drag acceleration must be compared. If the osculating periods
are compared, they must be corrected for nonlinearity or the error will be about 1%.

Table 9.6 Drag �V and resulting period change

�V

(m/s)
�VR

(m/s)
�Pint

(s)

∂P

∂v
�V

(s)

∂P

∂v
�VR

(s)

�Pimp

(s)
�P100
(s)

0.2016 × 10−3 0.2016 × 10−3 0.06295 0.06220 0.06221 0.06257 0.06254

0.2016 × 10−2 0.2016 × 10−2 0.6226 0.6220 0.6221 0.6224 0.6219

0.2016 × 10−1 0.2016 × 10−1 6.2186 6.220 6.2205 6.220 6.2183

0.201677 0.201690 62.1525 62.201 62.205 62.166 62.150

1.008444 1.008467 310.02 311.01 311.03 310.09 310.01



328 9 Navigation Analysis

9.3.5 Covariance Analysis Results

In order to determine the orbit determination error, a covariance analysis of all the
error sources that contribute must be performed. Since the actual orbit determination
error is primarily a function of the mapping of the gravity field error, it is difficult to
assign a numerical value. Analysis of residuals indicates that the gravity harmonics
contribute about 15–20 ms one sigma to the period estimation error and about
200 m to the periapsis altitude estimation error. Another component of the orbit
determination error is data noise which is related to the orbit determination error by
the measurement error, number of data points, and observability of the system.

For PVO atmosphere entry we are primarily interested in predicting the space-
craft state at periapsis and reconstructing the drag acceleration. Both of these
navigation requirements are related to prediction and estimation of the period
(P ) and periapsis altitude (Hp). In order to gain some insight into the affect of
data noise, a covariance analysis was performed where the amount and geometric
placement of the data was varied. The results are shown in Table 9.7.

The first case consisted of processing all the data available form orbits 503
through 505. The period error attributable to data noise is about 6 ms in period and
less than a meter in periapsis altitude. If the gravity field were perfectly known, these
would have been the orbit determination errors when the experiment was performed
back in 1980. However, when the affect of gravity harmonic errors is included, the
actual orbit determination error is about 20 ms in period and 200 m in periapsis
altitude.

The second case shows the orbit determination error attributable to data noise
for the sparse tracking expected in 1992 as shown in Fig. 9.9. The data noise period
error of 21 ms is now comparable to the gravity harmonic period error. The periapsis
altitude error remains relatively unaffected by the reduced data. Since the orbit
determination error is now dominated by data noise we are much more susceptible
to degradation from loss of data quality or loss of tracking data.

The third and final case is intended to show the accuracy of predicting the next
periapsis based on data taken up to a few hours after the previous periapsis passage.
These results indicate that the time of the next periapsis may be predicted to well
within the required 1 s and the periapsis altitude can be predicted to about 200 m
when gravity harmonics are taken into account. These predictions assume a ballistic
arc free of maneuvers and will deteriorate some when maneuvers are included.

Table 9.7 Pioneer orbit determination errors

Data (Arc) Sigma P (s) Sigma Hp (km)

Continuous tracking apoapsis 503 to apoapsis 506 5.74 × 10−3 .334 × 10−3

Sparse tracking apoapsis 503 to apoapsis 506 20.9 × 10−3 1.20 × 10−3

Sparse tracking apoapsis 503 to periapsis 505 + 1 h 34.2 × 10−3 1.21 × 10−3
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9.4 Near Earth Asteroid Rendezvous

Prior to the NEAR mission, little was known about Eros except for its orbit,
spin rate, and pole orientation, which could be determined from ground based
telescope observations. Radar bounce data provided a rough estimate of the shape
of Eros. On December 23, 1998, after an engine misfire, the NEAR spacecraft flew
by Eros on a high velocity trajectory that provided a brief glimpse of Eros and
allowed for an estimate of the asteroids pole, prime meridian, and mass. This new
information, when combined with the ground based observations, provided good a
priori estimates for processing data in the orbit phase. After a 1 year delay, NEAR
orbit operations began when the spacecraft was successfully inserted into a 320 ×
360 km orbit about Eros on February 14, 2000. Since that time, the NEAR spacecraft
was in many different types of orbits where radiometric tracking data, optical
images, and NEAR Laser Rangefinder (NLR) data allowed a determination of the
shape, gravity, and rotational state of Eros. The NLR data, collected predominantly
from the 50-km orbit, together with landmark tracking from the optical data has
been processed to determine a 24th degree and order shape model. Radiometric
tracking data and optical landmark data were used in a separate orbit determination
process. As part of this latter process, the spherical harmonic gravity field of Eros
was primarily determined from the 10 days in the 35-km orbit . Although the gravity
field of Eros has been determined to degree and order 10, differences between the
measured gravity field and one determined from a constant density shape model
are detected only to degree and order 6. The offset between the center-of-figure
and the center-of-mass is only about 30 m indicating a very uniform density (1%
variation) on a large scale (35 km). Variations to degree and order 6 (about 6 km)
may be partly explained by the existence of a 100 m regolith or by small internal
density variations. The best estimate for the J2000 right ascension and declination
of the pole of Eros is α = 11.3692 ± 0.003◦ and δ = 17.2273 ± 0.006◦,
respectively. The rotation rate of Eros is 1639.38922 ± 0.00015◦/day which gives
a rotation period of 5.27025547 h. No wobble for Eros has been detected that is
greater than 0.02◦. Solar gravity gradient torques would introduce a wobble of at
most 0.001◦.

The original plan for Eros orbit insertion called for a series of rendezvous burns
beginning on December 20, 1998, that would insert the NEAR spacecraft into Eros
orbit in January 1999. As a result of an unplanned termination of the first rendezvous
burn, NEAR continued on its high-velocity approach trajectory and passed within
3900 km of Eros on December 23, 1998. At this time, it was not possible to place
the NEAR spacecraft in orbit about Eros. Instead, a modified rendezvous burn was
executed on January 3, 1999, which resulted in the spacecraft being placed on a
trajectory that slowly returned to Eros with a subsequent delay of the Eros orbit
insertion maneuver until February 2000. The flyby of Eros provided a brief glimpse
and allowed for a crude estimate of the pole and prime meridian with an error of
2◦ along with a 10% mass solution. Orbital operations commenced on February 14,
2000, with an orbit insertion burn that placed the spacecraft into a nearly circular
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Table 9.8 Eros orbit segments

Segment

Start
date time
(UTC)

Length
(days)

Orbit (km
× km)

Period
(days)

Inc. (deg.)
ATEa

Inc. (deg.)
SPOSb

1 2/14/00 15:33 10.1 366 × 318 21.8 35 176

2 2/24/00 17:00 8.1 365 × 204 16.5 33 172

3 3/3/00 18:00 29.3 205 × 203 10.0 37 171

4 4/2/00 02:03 9.8 210 × 100 6.6 55 178

5 4/11/00 21:20 10.8 101 × 99 3.4 59 177

6 4/22/00 17:50 8.0 100 × 50 2.2 64 179

7 4/30/00 16:15 68.1 51 × 49 1.2 90 160

8 7/7/00 18:00 6.3 50 × 35 1.0 90 165

9 7/14/00 03:00 10.6 37 × 35 0.7 90 163

10 7/24/00 17:00 7.1 50 × 37 1.0 90 161

11 7/31/00 20:00 8.2 51 × 49 1.2 90 159

12 8/8/00 23:25 18.0 52 × 50 1.2 105 178

13 8/26/00 23:25 10.0 102 × 49 2.3 112 179

14 9/5/00 23:00 37.3 102 × 100 3.5 115 150

15 10/13/00 05:45 7.6 100 × 50 2.2 130 179

16 10/20/00 21:40 5.0 52 × 50 1.2 133 178

17 10/25/00 22:10 0.8 50 × 20 0.7 133 168
aATE Asteroid True Equator
bSPOS Sun Plane of Sky

350 km orbit. A series of propulsive burns lowered the spacecraft orbit to a 50 km
and then a 35 km circular orbit where the data acquired allowed precise estimates
of Eros physical parameters. Table 9.8 lists the orbit phases for the NEAR mission
included in this study from the beginning on February 14, 2000 to the close flyby
within 5 km of the surface of Eros on October 25, 2000.

Estimates of the initial attitude and spin rate of Eros, as well as of reference
landmark locations used for optical navigation, were obtained from images of
the asteroid. In the planned navigation strategy, these initial estimates were used
as a priori values for a more precise refinement of these parameters by an orbit
determination technique which processes optical measurements combined with
Doppler and range tracking. Although laser altimetry could be included in the
orbit determination process, these data were processed separately using the orbits
determined from the optical and radiometric data.

In addition to allowing accurately determined orbits about Eros, the gravity
harmonics place constraints on the internal structure of Eros. The shape model
was obtained by processing optical landmark and laser altimetry data. This shape
model was then integrated over the entire volume, assuming constant density, to
produce a predicted gravity field. A comparison of the true gravity field with this
predicted gravity field from the shape model then provides insight into Eros’ internal
structure. The location of the center of mass derived from the first degree harmonic
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coefficients directly indicates the overall mass distribution. The second degree
harmonic coefficients provide insight into the orientation of Eros principal axes.
Higher degree harmonics may be compared with surface features to gain additional
insight into mass distribution.

9.4.1 Orbit Determination Strategy

Several strategies have been used to determine the NEAR orbits and the phys-
ical parameters of Eros. The data types used for determining NEARs orbit are
radiometric X-band (8.4 GHz downlink) Doppler and range, and optical imaging
of landmarks. A SRIF filter is used to process the data and this sequential filter
is designed to handle up to 800 parameters including 18 state parameters. The
estimated parameter set includes initial spacecraft state, propulsive maneuvers, solar
pressure parameters, stochastic accelerations, Eros ephemeris, Eros attitude and
rotation state, and physical parameters that describe the size, shape, and gravity
of Eros. Eros physical parameters include gravitational harmonics to degree and
order 12, inertia tensor elements, and the location of over 100 landmarks. The
solution for nongravitational accelerations presents a particular challenge to the
orbit determination filter. These accelerations include attitude control gas leaks
and solar pressure. The solar pressure is modeled as a collection of reflecting
surfaces with 12 separate parameters. Solar pressure mismodeling and any residual
accelerations associated with outgassing from the spacecraft are lumped together
and treated both as a constant acceleration and as stochastic accelerations. The
stochastic accelerations are modeled as three orthogonal independent exponentially
correlated process noise components with an amplitude of 1.0 × 10−12 km/s2 and
a correlation time of 1 day. The total number of estimated parameters for a typical
orbit determination solution is about 600.

The differences in the moments of inertia may be determined from the gravity
harmonic coefficients, but a particular moment of inertia about any axis cannot
be determined from these difference alone. In the orbit determination software,
the joint solution for both the gravity and rotational motion of Eros permits a
determination of the principal moments of inertia provided the angular acceleration
(or wobble about the principal axes) can be detected by the orbit determination
filter. The solution strategy involved processing several days of data at a time to
converge slowly on the orbit solution. First, about 2 days of data are processed
and the solution is fed back to the filter and the data are processed again. This
process is repeated until convergence is achieved. At this point several more days
of data are introduced to the filter and processed iteratively until another solution
is obtained. Additional data are introduced in batches of several days until all the
data are processed. Otherwise, processing longer batches of data, especially at the
beginning of the mission, resulted in divergence. Once the filtering is complete, the
spacecraft trajectory, Eros ephemeris, and Eros attitude files are produced containing
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Chebyshev polynomials as a function of time. Gravity harmonic, landmark location,
maneuver parameter, and shape harmonic coefficient files are also produced.

Optical tracking of landmarks in the imaging data taken by NEAR’s Multi-
spectral Imager (MSI) is a powerful data type for determining NEARs trajectory
and the rotation of Eros. Tracking individual landmarks, which are small craters,
enables orbit determination accuracies on the order of the camera resolution
or several meters. This exceeds the accuracy that can be obtained from radio
metric data alone, from fitting limb data or from any measurement scheme that is
dependent on developing a precise shape model. We need only develop a database
of landmarks and identify the landmarks on more than one image in order to obtain
useful information about the spacecraft orbit or Eros’ rotation. The procedure of
identifying and cataloging landmarks is aided by referring the landmarks to a model
of the topographic surface or shape model. The actual identification of individual
landmarks depends upon observing them in an image having many landmarks of
various sizes to provide a context.

In addition to the one data arc (July 3 to August 7) used to determine the gravity
field and rotation of Eros, three other data arcs were used to process the NLR data
(April 30 to June 1, June 1 to July 3, and August 7 to September 12). For all the
data arcs, the attitude of Eros is fixed to the solution obtained from the gravity
solution data arc. This is to maintain consistency when comparing the estimated
gravity solution with the shape model gravity solution. Once a good solution was
obtained for both the spacecraft trajectory and Eros attitude as a function of time,
some additional processing was required to transform the results to a more usable
format and to solve for the shape. The solution for the shape of Eros is obtained by
processing NLR data in a separate program that reads the spacecraft ephemeris and
Eros attitude files.

Although Eros is a very irregular body, the gravitational potential is modeled by
a spherical harmonic expansion with normalized coefficients (Cnm, Snm) given by

U = GM

r

∞∑
n=0

n∑
m=0

( r0

r

)n

Pnm(sin(φ) [Cnm cos(mλ) + Snm sin(mλ)]

where n is the degree and m is the order, Pnm are the Legendre polynomials and
associated functions, r0 is the reference radius of Eros (16.0 km), φ is the latitude,
and λ is the longitude. The harmonic coefficients of degree one are set to zero since
the origin of the coordinate system is chosen to be the center of mass of the body.
This expansion converges outside the smallest sphere enclosing Eros. All the NEAR
data employed are outside this sphere and so spherical harmonics is the simplest way
to compare the gravity and shape models. All gravity and shape results are mapped
onto a sphere of radius 16 km. For mapping the gravity field to the surface of Eros,
one must use alternative methods such as direct integration over the volume of Eros
defined by the shape model.
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9.4.2 Eros A Priori Physical Model

Determination of the spacecraft orbit about Eros is intimately associated with the
development of an accurate physical model of Eros. Eros is the principal source
of perturbations on the spacecraft’s trajectory and the principal source of data for
determining the orbit. The model of Eros used for orbit determination is similar to
the model used for science investigation. The major difference is in emphasis of
detail.

During a particularly close Earth approach (0.15 AU) in January 1975, there
was a coordinated ground-based observation campaign to characterize the physical
nature of Eros. Photometric, spectroscopic, and radar measurements provided a
diverse data set that allowed the asteroid’s size, shape and spectral class to be
determined. Eros is an S-class asteroid with a geometric albedo of about 0.27. The
absolute magnitude of Eros (at zero phase angle and one AU from both the sun and
Earth) is 11.16. From the light curve, which reaches 1.47 magnitudes in amplitude,
the rotation period and pole direction were determined.

During the December 1998 flyby, a crude estimate of Eros mass and pole
location was obtained. The pole location confirmed ground-based measurements
to an accuracy of about 2◦. Observation of the lit portions of Eros by the
Multispectral Imager (MSI) permitted a rough shape determination. The gravity
harmonic coefficients were computed from this shape determination, by numerical
integration assuming constant density. Light curve data obtained during the flyby
yielded a precise rotation rate for Eros and enabled location of the prime meridian
with respect to a large crater discernible in the images. This information was used
as a priori data for the orbit phase solution.

9.4.3 Orbit Determination Solution

In addition to the models describing the estimated parameters, calibrations obtained
from other models are applied to the Doppler, range and optical data. The calibration
data included seasonal and daily troposphere and ionosphere models based upon
on-site GPS and weather measurements and a solar plasma model. DSN station
locations are modeled to about 4 cm accuracy with Earth precession, nutation, polar
motion, ocean tidal loading, solid Earth tide, and tectonic plate motion. A landmark
file consisting of a priori landmark locations and unique identification numbers was
assembled along with a picture sequence file that contained camera pointing and
image coordinates for each landmark that was identified. Additional models that
were needed for parameter estimation include the spacecraft clock model, a solar
pressure model, propulsive maneuvers, and initial state vectors for the equations
describing the motion of the spacecraft, planets and Eros.

The gravity and pole solution data arc, which included Doppler, range and
optical imaging of landmarks, extended from July 3, 2000 through August 7, 2000.
Nearly continuous Doppler data were processed and the post fit residuals for this
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Fig. 9.11 NEAR Doppler residuals

solution are shown in Fig. 9.11. The ordinate is the measurement residual in hertz.
A spacecraft radial velocity component of 1 mm/s measured along the line of sight
from a particular DSN tracking station corresponds to approximately 0.054 Hz of
Doppler phase shift over the count time interval which is typically 60 s. The Doppler
signature shown in Fig. 9.11 reveals noise with a periodic amplitude of 0.002 Hz
(0.03 mm/s) rms.

Optical data residuals are shown in Fig. 9.12. The ordinate of this figure is the
measurement error in pixel(x) or line (y) direction in an image. One line subtends
165µrad and one pixel 95µrad. In a 50 km orbit, the line and pixel measurement
error translate to 5.6 m and 3.2 m, respectively, when observing landmarks on the
ends of Eros. The rms of the measurement error is about two lines and pixels
and permits sub-meter accuracy when more than 3000 optical observations are
processed by the orbit determination filter. High-precision orbits are obtained by
processing optical data since individual landmarks may be located with an accuracy
of a few meters with respect to the center of mass. With the optical data giving
highly accurate orbits with an accuracy of about 1.5 m, the range data are able to tie
down the Eros ephemeris.

Including the NLR data in the orbit determination solution does not improve the
spacecraft orbit. The shape model has errors on the order of a hundred meters which
is far greater than the orbit error. However, the NLR data were useful for determining
a shape model that is accurate to about 100 m. This was accomplished by processing
a high precision spacecraft ephemeris file and Eros attitude file, obtained from the
orbit determination solution, in a separate program that solves only for the shape
model harmonic coefficients and NLR bias parameters. The post fit residuals are
shown in Fig. 9.13.
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Fig. 9.12 NEAR optical residuals
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Fig. 9.13 NLR residuals

The rms error is 109 m and measurement errors greater than 400 m were rejected
by the filter. The large rms error of the NLR measurement belies the accuracy of
the NLR since this residual error is dominated by modeling errors in determining
the shape. The instrument error is only a few meters. Since the modeling error is
unbiased, a considerable reduction in the determination of the mean radius of Eros
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may be expected when the 263,490 NLR observations are processed. Eros volume
may be estimated to an accuracy of less than 1% using this solution strategy.

9.4.4 Eros Results

The solution for Eros’ physical parameters is summarized in Table 9.9.
The mass and volume combine to give a bulk density of 2.67 g/cm3 with an

accuracy of 1%. The errors for the pole and GM are at the formal statistical errors
from the solution covariance but scaled higher by a factor of three to give a more
realistic error. The GM solution based upon the radio metric data only is very
sensitive to the initial pole value. The GM solution with the optical data is 10 times
more accurate than the radio metric only solution. However, when the pole is fixed
to the optically determined values, the radio metric GM solution agrees well with
the optical solution and the uncertainty decreases.

Table 9.9 Eros physical parameters

Parameters Values

Size and density

Volume 2503 ± 25 km3

Bulk density 2.67 ± 0.03 g/cm3

Xcg of figure −9.7 m

Ycg of figure 2.4 m

Zcg of figure 32.6 m

Mass properties

Mass (6.6904 ± 0.003) × 1015 kg

GM (optical radiometric) (4.4631 ± 0.0003) × 10−4 km3/s2

GM (radiometric) (4.4584 ± 0.0030) × 10−4 km3/s2

GM (radiometric and optical pole) (4.4621 ± 0.0015) × 10−4 km3/s2

Ixx (normalized) 17.09 km2

Iyy (normalized) 71.79 km2

Izz (normalized) 74.49 km2

X principal axis 9.29◦ East (definition)

Pole (optical)

Right ascension 11.369 ± 0.003◦

Declination 17.227 ± 0.006◦

Rotation rate 1639.38885 ± 0.0005◦/day

Prime meridian 326.06◦ (at epoch and equinox J2000)

Pole (radiometric)

Right ascension 11.363 ± 0.01◦

Declination 17.230 ± 0.02◦

Rotation rate 1639.38922 ± 0.0002◦/day
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9.4.5 Shape Model

The Eros shape model obtained from the NLR data is in the form of harmonic
coefficients through degree and order 24. One may use the harmonic expansion to
compute the radius of Eros as a function of latitude and longitude. The resulting
topographic map, shown in Fig. 9.14, reveals two mountainous looking features
about the size of Mount Everest. This is an illusion since these features are simply
the elongated ends of Eros. The contour lines shown are accurate to about 100 m, and
this can be verified by comparing the shape of Eros projected into two dimensions
to actual images of Eros taken by the MSI. Where the curvature is high, the shape
model error is as high as 200 m.

The accuracy of the shape model may also be confirmed by computing the radius
vectors for reference landmarks whose locations have been determined to about
5 m. The locations of about 43 landmarks were confirmed to be on the shape model
surface with an rms error of about 50 m. A few of the landmarks were above or
below the shape model surface by as much as 200 m in the regions of Eros where
the nadir pointed NLR intersected the surface at a high incidence angle.

Even though the local variation in the shape model error suggests an accuracy
of about 100 m, the error in determining the average radius integrated over the
entire surface is much smaller. The trajectory error and instrument measurement
error combined are about 10 m. Since the shape model error associated with the
harmonic coefficients is unbiased, the error in determining the average radius, which
is directly related to the volume determination, may be reduced considerably by
taking many measurements and statistically averaging. This averaging, which is
implicitly performed by the orbit determination filter, is effective when a large
number of measurements are processed, since the error in the average radius is
reduced by the square root of the number of measurements. For 263,490 NLR

Fig. 9.14 Eros shape model
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measurements, the modeling error may be reduced by a factor of about 500, which
is well below the level where systematic errors dominate. Thus the volume of Eros
and the low order shape harmonic coefficients may be determined to an accuracy
of 1% provided the surface is sampled randomly and systematic errors associated
with the trajectory and instrument biases are about 10 m. The NLR data acquisition
strategy for NEAR resulted in fairly uniform coverage of Eros, owing to the circular
50 km polar orbit and the relatively rapid rotation of Eros. The random character
of the sampling is at very small scales. Statistically, NLR samples that measure the
surface at the top of boulders are compensated by samples that fall in craters. This
mathematical property of laser altimetry gives this method a distinct advantage over
optical imaging where shadows tend to obscure the surface at small scales.

9.4.6 Gravity Harmonics

Determination of the gravity harmonic coefficients of Eros is a direct result of the
spacecraft orbit determination process necessary to navigate the spacecraft. The
harmonic coefficients are estimated by observing the acceleration of the spacecraft
in orbit. As the spacecraft is maneuvered closer to Eros, the degree of the harmonic
expansion must be increased in order to provide the required accuracy for orbit
prediction. This results in determining Eros gravity field to fairly high precision. At
degree 10, the uncertainty or noise in the gravity field is roughly equal to the signal
as given by the rms of the coefficients.

An a priori gravity model can be developed by integrating the potential function
over the shape model determined by NLR or MSI observations assuming constant
density. The results are shown in Table 9.10 for comparison. The close agreement
of the gravity coefficients obtained from spacecraft dynamics and those obtained
from the NLR-derived shape model provides a high degree of confidence in the
results when used for NEAR spacecraft navigation. Since the shape-derived gravity
coefficients assumed a constant density, the closeness of the agreement for the two
sets of coefficient values (Table 9.17) indicates that the material within the interior
of Eros is nearly of uniform density.

Of particular interest are the first degree and order terms of the harmonic
expansions. For the spacecraft orbit solution, these terms were explicitly set to zero
forcing the center of the coordinate system to coincide with the center of mass of
Eros. Thus, the values of these coefficients from the shape model provide a direct
measure of the offset of the center of figure from Eros center of mass, since the
vector from the origin to the center of mass may be determined by multiplying the
first degree and order coefficients by the reference radius (16 km). The coefficients
shown in Table 9.17 reveal that the center of figure offset vector for Eros, obtained
independently from NLR measurements, is (−9.7, 2.4, 32.6). This result indicates
that the bulk density of the octants of Eros, defined arbitrarily by the planes of
the reference coordinate axes, agrees within one percent. This is another strong
indication of the uniformity of Eros internal structure.
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Table 9.10 Eros gravity harmonic coefficients

Coefficient (R0 =16.0 km) Solution spacecraft dynamics Solution shape model integration

C10 0 0.001175

C11 0 −0.000348

S11 0 0.000088

C20 −0.052478 (0.000051) −0.052851

C21 0 0.000102

S21 0 0.000012

C22 0.082483 (0.000061) 0.083148

S22 −0.027909 (0.000035) −0.028197

C30 −0.001400 (0.000030) −0.001747

C31 0.004059 (0.000006) 0.004086

S31 0.003375 (0.000006) 0.003401

C32 0.001791 (0.000016) 0.002127

S32 −0.000691 (0.000016) −0.000840

C33 −0.010373 (0.000027) −0.010492

S33 −0.012104 (0.000027) −0.012216

C40 0.012900 (0.000070) 0.013077

C41 −0.000106 (0.000014) −0.000145

S41 0.000136 (0.000015) 0.000165

C42 −0.017488 (0.000035) −0.017647

S42 0.004577 (0.000030) 0.004624

C43 −0.000320 (0.000044) −0.000313

S43 −0.000141 (0.000044) −0.000194

C44 0.017552 (0.000062) 0.017694

S44 −0.009009 (0.000061) −0.009118

The gravity field of Eros as a function of latitude and longitude is shown in
Fig. 9.15 for harmonics up to degree 8. The gravity field is displayed in milligals
(1 gal = 1 cm/s ) on a sphere with a radius of 16 km. The central body (GM) term
of the harmonic expansion is not included in computing the acceleration and this
accounts for the negative values. Comparison of the gravity field map with the
topographic map shown in Fig. 9.14 does not reveal a high degree of correlation.
The ends of Eros stand out, but surface features on a smaller scale are not seen.
This is because the surfaces of constant gravity potential do not conform well to
the shape of Eros and, when displayed on a sphere, the ends of Eros are given more
weight than the central part. The advantage, however, for displaying the gravity field
on a sphere is that the formal gravity uncertainty is very nearly uniform and is about
0.3 mgals for coefficients to degree 6 and 2.0 mgals to degree 8. Instead of using
Fig. 9.14, a more meaningful comparison is to compare the Eros gravity map with
the gravity map obtained from the Eros shape model assuming constant density.
Since the gravity map from Eros shape would look very much like the actual Eros
gravity map, the difference between the two maps is plotted as a function of latitude
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Fig. 9.15 Radial acceleration
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Fig. 9.16 Bouguer map

and longitude. This difference map (estimated gravity minus gravity from shape
integration) is known as a Bouguer map and is shown in Fig. 9.16 for coefficients
through degree 6. Differences in the gravity field reveal peaks and valleys uniformly
distributed over Eros with maxima and minima of 3–4 mgal. The Bouguer variations
are about ten times the formal uncertainty derived from the gravity covariance and
these differences are about 1–2% of the maximum gravity amplitude.

Given the Bouguer map, there is no unique solution for the mass distribution of
Eros. Several possible explanations for the observed mass deficiency at the ends of
Eros include a less dense regolith covering on the order of 100 m distributed perhaps
uniformly over the surface of Eros or a more dense concentration of material near
the center of Eros. At degree 6, a 100 m uniform covering with a density contrast
of 0.6 g/cm3 produces a signature of −1.0 and −0.4 mgal at the asteroid ends. The
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observed signature therefore requires a higher density contrast, thicker regolith, or
a variable thickness regolith that may be correlated with greater thicknesses for
the highest potential areas. The Bouguer map also displays a shift of the negative
anomaly to the northern hemisphere indicating less dense material. This may be
related to higher potential areas also being shifted to the north where less dense
regolith may accumulate. An increase in density of 5% for the central part of Eros,
in the form of a sphere with 20% of the volume of Eros, results in a −3.0 mgal
signature in the Bouguer map and very nearly matches the observed variation in
Fig. 9.14.

9.4.7 Polar Motion

An important result that may be obtained from the NEAR data is an estimate of
the moments of inertia about the principal axes. As described earlier, the moments
of inertia provide insight into the radial distribution of mass. Estimates of the
moments of inertia cannot be obtained if Eros is in principal axis rotation and there
is no free precession. Therefore, one of the priorities of the NEAR mission is to
measure the free precession of Eros. Precession results from disturbances of Eros’
rotational motion from quakes, impacts, or gravitational torques. The free precession
resulting from distinct events will damp out depending on the rate of internal energy
dissipation. The forced precession from external gravity sources persists, but is low
in amplitude. The Sun’s gravity gradient produces a small forced precession and
nutation.

The response of Eros to the solar gravity gradient torque depends on the orbit of
Eros, the attitude and body fixed spin vector of Eros at some reference epoch, and the
inertia tensor. All of these parameters may be solved for with high precision except
the diagonal elements of the inertia tensor and the components of spin in body fixed
coordinates normal to the spin axis. The second degree gravity harmonic coefficients
provide the differences in the values of the diagonal elements of the inertia tensor,
but the trace or any one diagonal element is needed to complete the inertia tensor.
The complete inertia tensor may be obtained by numerical integration of the shape
model. In order to minimize the error, only the smallest diagonal element is needed
to complete the gravity harmonic based inertia tensor. Thus, the Ixx term of the
shape model inertia tensor is used to construct the gravity based inertia tensor.

The determination of the spin vector components normal to the spin vector is
needed to completely determine the free precession of Eros. These spin vector
components place the angular momentum vector in Eros body-fixed coordinates.
The normal spin vector components are too small to be resolved; however, the
magnitude of the spin vector can be determined with very high precision. This high
precision measurement is obtained by observing for several weeks small craters near
the ends of Eros whose motions can be observed at the one meter level. The motion
of the principal z axis projected onto the sky is shown in the top plot in Fig. 9.17 as
a function of right ascension and declination. The amplitude of the free precession



342 9 Navigation Analysis

Fig. 9.17 Eros polar motion

is about 36 milliarcseconds and the forced precession over 3 days moves the pole
and angular momentum vector about one arc second. This motion is too small to
detect by the orbit determination filter. The precession is about 0.01◦ over 9 years,
which is well beyond the lifetime of the NEAR mission. However, the short-period
nutation has an amplitude of 0.02◦ over 6 months, as shown on the bottom plot of
Fig. 9.17, and this could be detected. The solution obtained by processing 6 weeks
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of navigation data does not indicate free precession above that induced by the Suns
gravity. However, this does not rule out free precession from other sources with
amplitudes up to as much as 0.02◦.

9.5 MESSENGER

For a month after the launch of the MESSENGER mission to Mercury, the
spacecraft trajectory was perturbed by nongravitational accelerations that resulted in
a migration of several thousand kilometers in the target B-plane. It is speculated that
the accelerations were due to outgassing of water trapped in the composite materials
of the spacecraft. Nongravitational accelerations are difficult to model, leading to
inconsistent solutions for the spacecraft state from Doppler and range data. These
nongravitational accelerations may be modeled as a sum of exponentially decaying
stochastic vectors with different correlation times.

Immediately after a spacecraft is launched on an interplanetary trajectory,
tracking data is acquired, and an orbit determination solution is computed for
the outgoing trajectory and mapped to the target planet. The initial solution
includes estimates of the spacecraft state, and of small turbulent accelerations that
act on the spacecraft during the first few weeks, referred to as nongravitational
accelerations. These accelerations are usually attributed to errors in the solar
pressure or propulsion models. Although nongravitational accelerations are very
small, on the order of 10−11 km/s2, the orbit determination process is very sensitive
to them. When they are not estimated accurately, it is difficult to obtain convergence,
and the Doppler and range solutions are inconsistent. After a few weeks, the
nongravitational accelerations diminish, and good solutions are obtained. However,
after the Viking spacecraft was launched, significant nongravitational accelerations
attributed to air trapped in the lander parachute were observed for several weeks.

For a month after the launch of the MESSENGER mission to Mercury, the
spacecraft was perturbed by nongravitational accelerations that resulted in a migra-
tion of several thousand kilometers in the target B-plane. These accelerations were
greater in magnitude and lasted longer than usual. It is conjectured that they may
be attributed to outgassing of water vapor and other gases trapped in the newer
composite materials of the spacecraft.

It is difficult to model accelerations due to volatile elements escaping from
the spacecraft, which are assumed to be comprised of water vapor, and radiate in
all directions. Only the total acceleration of the spacecraft can be estimated from
Doppler and range data. Most volatile elements evaporate after a few days. Isotropic
radiation (in all radial directions equally) results in negligible net acceleration of
the spacecraft, and would not be observed. However, differences in the surface
temperature of the spacecraft would result in anisotropic radiation. Initially, more
gas would radiate toward the Sun, resulting in net accelerations away from the Sun.
Later, because the same amount of gas is present on both sides, the net acceleration
would be toward the Sun. The correlation time of surfaces exposed to the Sun would
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be greater than that of surfaces in shade. A stochastic model of gas radiated with
several correlation times seems appropriate.

9.5.1 Initial Post-Launch Orbit Determination

After launch, the data types were X-band Doppler and range, with one sigma
errors of 0.1 mm/s and 0.7 m, respectively. Figure 9.18 displays Doppler and range
residuals from initial orbit determination results for the first month after launch
of the MESSENGER mission. Only one stochastic vector is used to represent

Fig. 9.18 Doppler data only solution
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nongravitational accelerations. The data arc extends from shortly after launch on
8/3/04 07:13:35 GMT and extends to 9/4/2004. The estimated parameters are the
initial state, Earth ephemeris, a propulsive maneuver on 8/24/2004, solar pressure
model parameters and one stochastic acceleration vector Ae−t/τ , where A is a
stochastic three-dimensional vector with white noise components of one sigma
1 × 10−12 km/s2 (one nanometer/s2), and τ is a 2-day correlation time (172,800 s).
One such vector has usually been adequate to model nongravitational accelerations
after launch. The data consisted of radiometric Doppler weighted at 6 mHz and
loosely weighted range. It shows an apparent range bias of 1000 range units (about
143 m) until the first maneuver and about 200 range units after the maneuver. The
Doppler residuals show an rms error of about 10 mHz (0.175 mm/s) for the first 9
days decreasing to about 6 mHz there after. The early sinusoidal signature in the
Doppler data can be attributed to a slow spacecraft spin which was not modeled.

Figure 9.19 shows the same data arc and estimation strategy, but the Doppler
data is loosely weighted and the range data is weighted at 500 range units. Now
the range solution fits well, but the Doppler signature shows scalloping that might
be attributed to a time error. It is unlikely that the discrepancy between Figs. 9.18
and 9.19 can be explained by problems with the data. The observed error must
be attributable to a common source, which could not be a tracking station, since
tracking stations around the Earth all give consistent results. The likely cause of this
discrepancy is unmodeled accelerations acting on the spacecraft. A more accurate
model for the accelerations is required.

One way to model a stochastic acceleration would be to represent each
component as an orthogonal series, such as a Fourier sine series or a set of
Tchebyshev polynomials. The coefficients would be estimated as stochastic
parameters. The interval of the series expansion would move forward in time
as batches of data are processed, and as noise introduced to the filter modulates the
coefficients.

Here an alternate approach is applied. The orbit determination filter is already
designed to process one exponentially correlated stochastic vector. Instead, a sum of
several exponentially correlated stochastic acceleration vectors with generic integer
correlation times is used. For five sets of stochastic acceleration vectors, a total of
15 components are estimated. To illustrate the method, MESSENGER Doppler and
range tracking data are processed from launch through the first 4 months of the
mission. The resulting time history of nongravitational accelerations is analyzed to
verify the reasonableness of the results. The suspected outgassing could come from
several sources. A single stochastic acceleration vector may not suffice because the
time constant of the exponential decay is unknown and more than one source may
be present. This suggests a stochastic model consisting of a sum of exponentially
decaying stochastic acceleration vectors with varying time constants. While one
might expect such a series to model effectively only processes that are exponentially
decaying, it will be shown later that such a model can represent any function over
a reasonable time interval much the same as a half range Fourier expansion can
be used. Figure 9.20 shows the result for the same data arc where the number of
stochastic acceleration vectors was increased from one to five with correlation times
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Fig. 9.19 Range data only solution

of 1, 2, 4, 8, and 16 days. A much better fit to the data is obtained. The position and
velocity errors along the line-of-sight from the tracking stations are less than 20 m
and 0.1 mm/s, respectively.

In Fig. 9.21, the time history of stochastic nongravitational accelerations
attributable to outgassing is broken down by components. Ax is the component
of the acceleration along the spacecraft-Sun line. The Ay and Az acceleration
components are normal to the Sun line with Ay in the orbit plane and Az normal
to the orbit plane. Solar pressure acceleration is not included. It would contribute
another 60 nm/s2 in the Ax direction. The accelerations were obtained by summing
the five stochastic acceleration vectors described above. The dominant component
is along the Sun line away from the Sun as one might expect. The volatile elements
on the Sun side of the spacecraft would be heated to a higher temperature and
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Fig. 9.20 Doppler and range data solution

consequently apply more force in this direction. The reversal in direction of the
normal components would be explained by the presence of different sources
outgassing in a given direction. One source would expel gas with a short time
constant and be over taken by another source with a longer time constant.

The individual components of the acceleration along the Sun line due to the
exponential model with various correlation times are shown in Fig. 9.22. Initially,
the acceleration is dominated by components with 1-day and 8-day correlation
times. After several weeks, the 8-day and 16-day components dominate. The
migration from high frequency to low frequency components is consistent with the
initial outgassing of the more highly volatile elements with short time constants.
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Fig. 9.22 Stochastic acceleration components along the sun line
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After the supply of gas is largely exhausted, the longer time constant, less volatile
elements then dominate, but at a diminished amplitude.

The filter can go unstable if too much stochastic white noise is introduced. It
is desirable to have a stochastic model with coefficients that vary slowly as the
acceleration is changing. Since the correlation time of each component is fixed,
the filter adjusts the amplitude of each component at the beginning of each batch
of data that is processed. This adjustment must be small since the a priori white
noise is only 1.0 nm/s2 while the observed acceleration is as high as 40.0 nm/s2. The
exponential character of each of the components confirms that small adjustments
are taking place.

Figure 9.23 shows Doppler and range residuals for a long arc solution from
launch to December 9, 2004. The filter estimation strategy is the same, but two
additional maneuvers on September 24, 2004 18:00:46 GMT and November 18,
2004 19:31:04 GMT are included. The rms range error is less than 70 range units or
10 m over the entire data arc. The solution mapped to the B-plane at Earth return in
August of 2005 is within a few hundred km of short arc solutions with data through
May of 2005.

Figure 9.24 shows the outgassing acceleration history for the long arc solu-
tion. The solution is good through mid November where accelerations of about
5.0 × 10−12 nm/s2 appear. These are probably associated with some unmodeled
accelerations related to attitude and solar pressure mismodeling. Attempts to extend
the long arc solution beyond December 9, 2004 into January of 2005 resulted in the
solution migrating a few thousand km in the b-plane at Earth return on August 3,
2005. While this error is small for this time in the mission, orbit determination and
long term prediction require high precision modeling of small accelerations on the
order of 1.0 × 10−12 nm/s2.

9.5.2 Estimated Accelerations from Assumed Water Vapor

Figure 9.24 indicated that the magnitude of the unmodeled accelerations was
approximately 40.0 nm/s2. If water vapor is the dominant source, it would be
of interest to compute the amount of water necessary to cause the observed
accelerations. The kinetic theory of gases will be used to determine the net thrust.
Gas vented to space applies an acceleration to a spacecraft in a manner similar to
that of a rocket engine. A small amount of gas released to space from a spacecraft
will expand to the vacuum of space and exert a pressure against the spacecraft.
Gas confined to a closed container would produce no net force. Gas evaporating
from materials in the side of the spacecraft would expand against the side of the
spacecraft, but be unobstructed in the direction away from the spacecraft, resulting
in a net pressure transient and acceleration of the spacecraft. From Newton’s laws,
the pressure of a gas on a spacecraft is equal to the rate of change of momentum
associated with the gas molecules striking the spacecraft.
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Fig. 9.23 Filter performance over 4 months

The velocity of a gas molecule may be obtained from the kinetic theory of gasses
(Eq. 1.46) and is given by

v̄2 = 3RT

M

If it is assumed that the gas is vented at a constant rate, then from Newton’s law,

F = v̄
dm

dt
= MscAsc

where m is the mass of gas vented, Msc is the spacecraft mass, and Asc is the
spacecraft acceleration. Solving for the gas mass flow rate,
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dm

dt
= Msc√

3RT
M

Asc

From Fig. 9.24, the spacecraft acceleration component attributable to outgassing is
observed to decay exponentially after launch with a time constant (τ ) of about 5
days.

Asc = A0e
−t
τ

where A0 = 4.0 × 10−8 m/s and τ = 432, 000 s. After substituting the spacecraft
acceleration and integrating from 0 to ∞, the total mass of gas expended is

�m = MscA0τ√
3RT
M

If the gas expended is water vapor (M = 0.018 kg/mol) at room temperature (293◦
K), the total amount of water vapor expended is approximately 0.014 kg. For this
calculation, the gas constant (R) is 8314 kg · m2/(s2 · mol · K), and the mass of the
spacecraft (Msc) is 512 kg. Using 61 cubic inches of water per kilogram, less than
one strategically placed cubic inch of water can cause the observed acceleration.
Somewhat more water would be needed if distributed over the spacecraft.
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9.5.3 Curve Fitting with Exponential Functions

The functions chosen for modeling are stochastic exponentials because one such
function is built into the stochastic model and filter used for orbit determination. It
might be expected that a series of exponentially decaying functions would only
be effective when applied to the modeling of exponentially decaying processes.
However, a truncated series of this type can be shown to represent any piecewise
continuous function on an interval as effectively as that of other truncated series
representations by common orthogonal functions that arise from Sturm-Liouville
problems, such as half-range expansions or polynomial series.

Figure 9.25 shows a comparison of a triangle function, over an interval normal-
ized from 0 to 1, with several fifth degree representations. The coefficients of a sine
series was computed from the half range Fourier expansion and by least squares.
Surprisingly, the least squares fit does much better than the Fourier expansion. A
sum of 5 decaying exponentials with varying time constants was fit to the same
triangle. It is even more surprising that the decaying exponentials did better than the
Fourier series. The apparent explanation is that the least square fit is able to better
alias the higher degree terms that are simply truncated by the Fourier series. One
reason for the difference is the criterion for best estimate of f(t) on the interval [0,1].
The least squares best estimate f̂ of the form

f̂ (x) =
N∑

n=1

Cnsin(nx)

Fig. 9.25 Comparison of triangle function with various representations
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is to choose the constants Ci to minimize

m∑
i=1

(
f̂ (xi) − f (xi)

)2

where x1, . . . xm are measurement points in the interval [0, 1]. The constants in the
Fourier series estimate for f(x) are computed by integration on [0,1]

Cn =
∫ 1

0
f (x) sin(nx)dx

and minimize

∫ 1

0
|f̂ (x) − f (x)|2 dt

In order to gain some insight into the nature of curve fitting versus expansions
based on orthogonal functions, consider the ramp function shown in Fig. 9.26. The
first five terms of the convergent Fourier half range expansion is compared with a
least square fit to the same sine function series, a least square fit to a sum of decaying
exponential functions and power series obtained from both the sine function and
exponential function sum. The curve fitting and power series methods result in a
high precision fit over the interval [0,1], while the Fourier series, by comparison,
does not perform very well.

Fig. 9.26 Comparison of ramp function with various representations
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The reason is obvious from close examination of the power series method for the
decaying exponentials. We approximate each exponential function by the first five
terms of its power series expansion.

e−xn ≈ 1 − nx + n2

2! x
2 − n3

3! x
3 + n4

4! x
4 − n5

5! x
5

Suppose an arbitrary function of x is represented as a sum of five exponentially
decaying functions.

f (x) ≈
5∑

n=1

Cn e−xn

so that

f (x) =
5∑

n=1

Cn(1 − nx + n2

2! x
2 − n3

3! x
3 + n4

4! x
4 − n5

5! x
5)

To fit the ramp function, the
∑

n Cn must be 1 and all the Cn associated with
powers of x multiplied by the appropriate factors in the exponential series must sum
to 0. The ramp function has only the linear term. All the other powers of x must be
annihilated. In matrix notation the above equation becomes

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1

0 −1 −2 −3 −4 −5

0
1

2!
22

2!
32

2!
42

2!
52

2!

0
1

3!
23

3!
33

3!
43

3!
53

3!

0
1

4!
24

4!
34

4!
44

4!
54

4!

0
1

5!
25

5!
35

5!
45

5!
55

5!

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

C0

C1

C2

C3

C4

C5

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Inverting the matrix and multiplying times the right side results in the following
coefficients.

{Cn} = {217

60
, −5, 5, −3

1

3
, 1

1

4
, −1

5
}



9.6 New Horizons 355

The error in the power series expansion is caused by the higher than 5◦ terms of
the exponential series that have been truncated. If a least square fit of the data over
the interval 0–1 is performed, the error will be less because the truncation error is
aliased. The coefficients for the least square fit that are directly comparable to Cn are

{Cn} = {2.78, −8.15, 12.99, −13.50, 7.73, −1.85}

Observe that the least square coefficients {Cn} are greater than the power series
coefficients {Cn}. Given any collection of functions with enough available powers of
x, the least squares solution will effectively generate a power series representation
of the function to be modeled.

A least squares series solution using a small number of functions is clearly better
able to alias the error from truncating higher order terms, but as more terms are
added to a least squares solution, all lower order constants Ci must be recomputed,
and experimentation indicates the constants Ci can grow without bound. This
observation is more apparent for the triangle function. The properties of orthogonal
series of eigenfunctions such a Fourier series are well known, and may be found in
any reference that discusses Sturm-Liouville theory and boundary value problems.

9.6 New Horizons

Navigation of the New Horizons spacecraft during approach to Pluto and its satellite
Charon presented several new challenges related to the distance from the Earth
and Sun and the dynamics of two body motion when the mass ratio results in the
barycenter being outside the radius of the primary body. Since the Earth is about
30 a.u. from the spacecraft during the approach to Pluto and Charon, the round trip
light time is greater than 8 h making two-way Doppler tracking difficult. The great
distance from the Sun also reduces the visibility of Pluto since Pluto receives about
1/900 of the solar radiation as the Earth. The two body motion involves Pluto and
Charon moving in elliptic orbits about each other, and the system mass is a simple
function of the period and semi-major axis of the orbit. The period can be measured
to high precision from Earth based telescope observations and the orbit diameter
can be measured to a precision of perhaps 100 km enabling the system mass to be
determined within 1 %.

The mass ratio or the allocation of mass between Pluto and Charon is more
difficult to discern from Earth based observations. Pluto and Charon orbit about
their barycenter in elliptical orbits whose semi-major axes are inversely proportional
to their mass. Therefore, the mass ratio can only be determined by observing the
motion on a star background over some time and removing the heliocentric orbital
motion. Since these measurements are difficult to make from Earth based telescopes,
it is expected that the mass ratio and corresponding orbit sizes about the barycenter
will not be determined accurately until spacecraft based optical measurements are
obtained during approach.
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The New Horizons approach navigation strategy must be designed to enable
precision determination of the Charon orbit about Pluto and the spacecraft orbit
relative to Pluto and Charon as well as to control the spacecraft approach trajectory
and deliver the spacecraft to a position for science observations. The initial
navigation activity after detection of Pluto is to separate the orbit of Charon from
the orbit of Pluto about their common barycenter. In order for these observations
to be useful, Charon must be separated from Pluto by more than 100 pixels. As a
by product, a more precise estimate of the system mass and spacecraft trajectory is
obtained. As the spacecraft approaches the planetary system, the aim point relative
to Pluto and the timing of Charon in its orbit is determined to an accuracy that
permits an orbit correction maneuver to be executed so that the spacecraft is placed
on the correct trajectory for science observations. If a substantial time adjustment
is necessary to intercept Charon in its orbit about Pluto, it is important that this
maneuver be performed as early as possible. Time change maneuvers are expensive
to perform when the spacecraft is close to the Pluto/Charon system. During the
approach to Pluto and Charon, the time of closest approach is not well determined.
The error in the time of closest approach is proportional to the error in the range from
Earth which is dominated by the Pluto and Charon ephemeris error. The distance of
the spacecraft from Pluto and Charon cannot be determined with high precision until
the spacecraft is close enough to observe the position parallax. This occurs during
the final 1–2 days before encounter for Pluto only observations or during the final
2–4 days before encounter for observations of both Pluto and Charon. The timing
of science observations during flyby is critically dependent on knowledge of the
time of closest approach. A late update of the encounter sequence timing is planned
based on optical navigation images acquired during approach.

9.6.1 Pluto and Charon Approach

The Pluto/Charon approach phase begins at about 120 days prior to Pluto encounter.
Navigation activities that are performed during the approach phase include initial
detection of Pluto, search for co-orbitals, ephemeris refinement, and a sequence of
approach maneuvers that are designed to place the spacecraft on a trajectory that
is optimum for science observations. The detection of Pluto as early as possible
is advantageous from the standpoint of ephemeris verification and improvement
to assure early tracking in support of the initial approach TCM and subsequent
maneuvers. The optical measurement is obtained from an image of either Pluto
or Charon using the LORRI or MVIC camera. The accuracy of this data type
is a function of the picture element (pixel) spacing and the focal length of the
camera optics. For the LORRI camera, the resolution is about 5µrad per pixel
and for the MVIC the resolution is about 20µrad per pixel. Detection depends on
Pluto’s brightness as seen from the spacecraft and the imaging cameras sensitivity.
The sensitivity of the camera depends on its light gathering capability (i.e., its
aperture), the lens/filter/sensor light transfer and conversion efficiency, and the
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various electronic processes that produce image noise. The MVIC and LORRI
cameras are able to detect an object when the brightness is greater than magnitude
10. Figure 9.27 gives the apparent magnitude of Pluto and Charon as the spacecraft
approaches the system. The figure shows the point on approach at which the
theoretical apparent magnitude is brighter than magnitude 10 for Pluto and Charon.
Pluto reaches apparent magnitude 10 at about 510 days prior to closest approach
and Charon at about 210 days prior to closest approach.

As the spacecraft range closes, Pluto’s image will become brighter and expand
thus improving the optical navigation image location accuracy. Optical navigation
begins to exceed the performance of Earth-based observations approximately when
the spacecraft camera resolution exceeds that of Earth-based telescopes. Figure 9.28
shows the resolution of the two spacecraft cameras as a function of time from
Pluto. A value of 0.043 arcsec/pixel is used as the reference Hubble resolution of
the Wide Field Planetary Camera. The plot shows that resolution of the primary
MVIC camera becomes better than that of Earth-based observations at 44 days
before the encounter, whereas the LORRI camera resolution exceeds the Earth-
based resolution at 170 days before the encounter.

9.6.2 Pluto Approach Time-of-Flight Determination

As the spacecraft approaches Pluto and Charon from a great distance, the orbit
determination error relative to Pluto is a statistical combination of the independently
determined spacecraft and Pluto ephemeris errors. The spacecraft is initially too
far from Pluto to make use of direct observation of Pluto. As the spacecraft enters
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Pluto’s sphere of influence, the Doppler and range measurements are able to detect
the gravitational acceleration of the Pluto/Charon system and the onboard optical
navigation camera is able to detect the Pluto and Charon angular position on the star
background. These measurements, either processed separately or in combination,
can determine the approach velocity and position in the B-plane with high precision.
The velocity determination error is within 1 mm/s in all three Cartesian components
and the position error is about 5µrad times the range from the spacecraft to Pluto
for the two Cartesian components in the B-plane. The third component of position,
along the down track or time-of-flight direction, is not very well determined.
The time-of-flight error is determined by observation of the Pluto gravitational
acceleration by the Doppler and range data or the position parallax associated with
the angular motion of Pluto and Charon on the star background.

For Doppler data, an approximate analytic formula for the time-of-flight error
may be derived that provides insight into the problem of time-of-flight or range-
to-go determination. The time-of-flight error is simply the range-to-go distance
error times the approach velocity (V∞). The geometry is illustrated in Fig. 9.29. As
the spacecraft approaches Pluto, it is accelerated by Pluto’s gravity. The approach
velocity magnitude and direction is known to very high precision as a result of
tracking the spacecraft and observing Pluto’s motion for years. The velocity along
the line-of-sight from Earth (ρ̇) can also be measured with high precision by the
DSN. The change in velocity magnitude is given by

�v = ṙ − V∞
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The velocity change can be obtained by integrating the gravitational acceleration
during approach to Pluto.

�v =
∫ t

−∞
GMp

r2
dt

Since the integrated acceleration is small relative to V∞, the range may be
approximated by

r ≈ V∞ t

and

�v ≈
∫ t

−∞
GMp

V 2∞ t2 dt

resulting in

�v ≈ −GMp

V 2∞ t

The sensitivity of the approach velocity with respect to time-of-fight variation is
obtained by taking the partial derivative.

δ�v ≈ GMp

V 2∞ t2 δt

The sensitivity of the Earth line-of-sight range rate to approach velocity is simply
its projection onto the approach velocity vector and

δρ̇ ≈ GMp cos αdop

V 2∞ t2 δt
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A formula for the time-of-flight error (σ(t)) as a function of time from Pluto and
Doppler measurement error is then given by

σ(t) ≈ V 2∞ t2

GMp cos αdop

σ (ρ̇)

For optical data, another approximate formula may be derived for the time-of-
flight error. The geometry is illustrated on Fig. 9.30. As the spacecraft approaches
Pluto from a great distance, images of Pluto on a star background provide a
strong determination of the direction of the approach asymptote. As the spacecraft
approaches Pluto, the angular position of Pluto on the star background will begin
to move away from the approach asymptote direction because of position parallax.
The observation of Pluto’s motion on the star background may be used to determine
the range-to-go and time-of-flight.

From the geometry, the tangent of the angle between Pluto and the approach
velocity vector is given by

tan αopt = B

s

The distance (s) from the spacecraft to the B-plane may be approximated by

s ≈ V∞ t

Taking the partial derivative of αopt with respect to t gives

sec2αopt δαopt ≈ −B

V∞ t2 δt

The formula for the time-of-flight error as a function of time from Pluto closest
approach and optical measurement error is then given by

σ(t) ≈ V∞ t2

B cos2 αopt

σ (αopt )
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Fig. 9.31 Analytic Pluto approach time-of-flight error

The error in the time-of-flight estimation as a function of time from Pluto
closest approach is shown in Fig. 9.31 for Doppler data, Doppler and Pluto optical
data and Doppler, Pluto optical and Charon optical data. For this analysis V∞ is
13.7 km/s, B is 13,000 km for the aim point and 19,000 km for the radius of Charon’s
orbit and αdop is 14◦. The Doppler and optical measurement errors are 1.1 mm/s
and 5µrad, respectively, assuming the LORRI camera. Pluto observation science
requires knowledge of the time-of-flight to be less than 100 s which corresponds
to about 1300 km down track error. As shown in Fig. 9.29, the Doppler only orbit
determination error does not decrease below 100 s until about 6 h before closest
approach, too late to be of use for a science instrument pointing update. With optical
data, the time-of-flight error is about 39 s 1 day before Pluto closest approach. The
addition of Charon optical data decreases the error about 50% from that obtained
with only Pluto optical data. The Charon orbit baseline is about 50% greater than
the baseline provided by the approach asymptote aim point and Pluto.

9.6.3 Pluto and Charon Approach Covariance Analysis

A detailed covariance analysis was performed of navigation and orbit errors during
approach to Pluto and Charon. This analysis included all the error sources that
affect navigation accuracy and the data acquisition strategy that will be used. The
orbit determination error is determined by filtering simulated data using the same
square root information filter that will be used for flight operations. The filtered best
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estimate of the orbit is mapped to Pluto closest approach to provide a common basis
for comparison.

During approach to the Pluto/Charon system, the spacecraft orbit determination
error relative to Pluto is a statistical combination of the spacecraft ephemeris error
and the planet ephemeris error. Both of these ephemerides are determined by Earth
based observations. The spacecraft ephemeris error is determined by radio metric
tracking data acquired by the DSN and the planet ephemeris error is determined
by telescope observations. Both of these determinations are accurate to about one
thousand kilometers. For the Pluto ephemeris error, it is assumed that an observation
campaign will be conducted about 1 year before Pluto encounter to reduce the
effect of long-term velocity mapping errors. An approach ephemeris error of several
thousand kilometers is sufficient to ensure initial acquisition of Pluto and control the
approach to Pluto/Charon until optical data is acquired by the imager onboard the
spacecraft. The approach navigation strategy is to acquire radio metric and optical
data during the distant approach and refine the spacecraft orbit relative to Pluto. A
sequence of maneuvers are planned to maneuver the spacecraft to the desired aim
point in the Pluto B-plane. These maneuvers are scheduled after performing a trade
between the improved knowledge of the spacecraft orbit as more data is acquired
and the cost in propellant of delaying the adjustment to the aim point.

The estimated parameters during approach to Pluto and Charon include space-
craft state, propulsive maneuver components, solar pressure model parameters,
stochastic accelerations and Pluto and Charon ephemerides, gravity, pole, prime
meridian, and rotation rate. For navigation, the accuracy of spacecraft ephemeris
estimation is of prime interest. The sensitivity of the spacecraft ephemeris estima-
tion error for various data acquisition strategies in shown in Figs. 9.32 through 9.34.
On these figures, the spacecraft position error is shown as a function of time
from Pluto closest approach mapped to the Pluto B-plane. Figure 9.32 shows the
spacecraft orbit determination error for Doppler and range data starting at 20 days
before Pluto encounter and continuing to encounter. Prior to encounter minus 20
days, the Doppler and range data cannot measure the Pluto/Charon gravitational
acceleration and the orbit is determined from Earth based observations. As can be
seen in Fig. 9.32, the Doppler and range orbit determination error does not improve
until a few hours before encounter which is consistent with the analytic result
shown in Fig. 9.31 for the time-of-flight error. Studies of planetary approach orbit
determination show that the B-plane position errors are theoretically one half the
down track position or time-of-flight error. Since the down track (s) position error is
equal to V∞ times the time-of-flight error the numerical values shown in Fig. 9.32 a
few hours before encounter for the B-plane position are roughly a factor of 26 times
the time-of-flight numerical values allowing for the mixed units.

Figure 9.33 shows the spacecraft orbit determination error when optical obser-
vations of Pluto are included with the radio metric data. The components of
the spacecraft position error in the B-plane, the plane normal to the approach
velocity vector, are reduced proportional to the range from Pluto times the angular
measurement error. The angular measurement error is 5µrad associated with the
LORRI camera. For the MVIC camera, these results should be inflated by about
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Fig. 9.32 Pluto approach—Doppler and range data only
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Fig. 9.33 Pluto approach—Doppler, range and optical imaging of Pluto
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a factor of four (20µrad). Several events occur during approach that temporarily
distort this simplified analysis. Most notably, a propulsive maneuver executed at
encounter minus 7 days inflates the mapped orbit determination error until the
Doppler and range data are able to resolve the spacecraft velocity a couple of days
later. At about encounter minus 13 days, the B-plane errors are suddenly reduced
by the introduction of new optical images. A uniform reduction in B-plane position
error occurs when the images are acquired on a uniform time schedule as occurs
from encounter minus 13 days through encounter. Throughout the approach to Pluto,
until a few days before encounter, the time-of-flight error remains essentially the
same as for the Doppler and range only case shown in Fig. 9.32. As discussed above,
the time-of-flight error is reduced when the position parallax can be observed as
shown in Fig. 9.31. This occurs about 1 day before Pluto closest approach.

When observations of Charon are included during approach, the approach
orbit determination errors are essentially the same as obtained with only Pluto
observations until about 2 days before encounter as shown in Fig. 9.34. Since the
baseline provided by the Pluto/Charon orbit is about 50% larger than the baseline
provided by the Pluto/B-plane aim point, the time-of-flight error is about 50%
smaller. This provides significantly more margin for a late science instrument
pointing update. It should be noted that introduction of Charon data adds some
complexity to the approach orbit estimation strategy. The orbit determination filter
must be able to solve for the Charon orbit and gravity with considerably more
accuracy than has been determined by Earth based observations. However, even
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Fig. 9.34 Doppler, range and optical imaging of Pluto and Charon



9.6 New Horizons 365

with Pluto only observations, the dynamics of Pluto and Charon’s orbit must be
included in the solution. The barycenter of Pluto/Charon is outside the surface of
Pluto and uniform motion of Pluto on a star background during approach cannot be
assumed.

9.6.4 Spacecraft Orbit Reconstruction

As the spacecraft encounters the Pluto/Charon system, the gravitational perturbation
of the spacecraft and observation of craters on both Pluto and Charon permit an
accurate determination of the spacecraft trajectory and certain physical parameters
that characterize both Pluto and Charon. The improvement in the spacecraft
ephemeris during the encounter phase is useful for determining where the spacecraft
is headed after encounter. An extended mission to the Kuiper belt is planned. The
determination of Pluto and Charon physical parameters is useful for future missions
to Pluto/Charon and is of interest for science investigations.

During the encounter phase, radio metric data and many images of Pluto and
Charon are obtained. Table 9.11 shows the results of processing this data from
before encounter until several days after encounter. In addition to the parameters
estimated for approach navigation, some additional parameters are estimated that
describe Pluto and Charon. These include the pole and prime meridian angles,
rotation rate, gravitational parameters, and the location of craters on the surface
of Pluto and Charon. Optical imaging of Pluto and Charon when combined with
Doppler tracking data should enable determination of the location of craters relative
to the respective centers of mass to an accuracy of about 100 m. The observations
that are most useful are obtained within several hours of encounter. During this time
interval, the bodies rotate several degrees enabling a determination of the poles,
prime meridians and rotation rates. The accuracy is optimistically estimated to be
about 0.05◦ as given in Table 9.11. The a priori values for the poles and rotation

Table 9.11 Pluto and Charon parameter estimation errors

Error (1 sigma)
Parameters Pluto/Charon nominal values Pluto Charon

Pole and prime meridian

α (deg) 313.02 0.05 0.075

δ (deg) 9.09 0.05 0.075

W(deg) 236.77 0.05 0.075

Ẇ (deg/day) −56.3623195 3.0×10−4 4.5×10−4

Mass properties

GM (km3/s2) 874.05/73.16 0.41×10−3 0.33×10−2

Gravity harmonics

C20 0/0 0.81×10−2 Not available
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rates assume that both Pluto and Charon rotate at the orbital period of the Charon
orbit about Pluto and are thus in gravity lock. This assumption is not necessary
for determination of these parameters since the data obtained during encounter will
be much more powerful than Earth based observational data including the Hubble
space telescope. The solution will not be a priori limited. If Pluto and Charon are in
gravity lock and the orbit is not exactly circular, the pole and prime meridian angles
will librate about their nominal values. Further study is needed to determine if the
libration angles will be large enough to be detected.

Pluto and Charon gravitational parameters are determined from the Doppler
tracking data acquired during encounter. The values for the errors given in
Table 9.11 were obtained by detailed covariance analysis of simulated data.
When combined with the volume of the bodies obtained from optical imaging,
a refined estimate of the bulk densities may be obtained that will be at least an
order of magnitude better than obtained from Earth based observations. Also,
observation of the Charon orbit about Pluto will enable an even more precise
determination of the system mass, an artifact of the equations of motion, that is
of marginal interest to physical science but is essential for accurate ephemeris
development. The normalized gravitational harmonic C20, which is related to the
oblateness, can be resolved to an accuracy of about 0.008 which is at least an order
of magnitude greater than the nominal value expected from analysis of the spin and
hydrodynamics. The flyby distances will probably be too great for the Doppler data
to detect gravity harmonics.

In addition to the physical parameters of Pluto and Charon, the orbit of Charon
about Pluto and the heliocentric orbit of the Pluto/Charon barycenter will be
determined. This “normal point” will permit an improved ephemeris for these
bodies.

9.7 Phobos

The Phobos gravity field provides useful insight into the physical makeup of Phobos
and is needed for determination of the orbit of a spacecraft in the vicinity of Phobos.
When combined with a figure model and observations of the forced libration of
Phobos in its orbit about Mars, certain physical parameters such as mean density
and moments of inertia may be determined.

Direct observation of the gravity field of Phobos is limited. The most accurate
data that has been obtained is from tracking spacecraft that have flown by or orbited
near Phobos. These observations have yielded an important determination of the
mass. Indirect determination of the gravity field may be obtained from the figure
model. An extensive map of the Phobos topography has been obtained from stereo
imaging of the surface by the Mariner 9 and Viking missions. The resulting figure
may be integrated to obtain gravity harmonic coefficients, the inertia tensor, and
volume assuming constant density. The rotational motion of Phobos may then be
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integrated around one Martian orbit and the results compared with observation of
the forced libration to obtain some insight into the internal structure of Phobos.

9.7.1 Phobos Inertial Properties

The combination of a photographic determination of the figure of Phobos with
observations of spacecraft and Phobos dynamics provides an estimate of some of
the inertial properties of Phobos. With this limited knowledge, some insight of
the internal structure of Phobos may be inferred. The most useful information is
contained in the low degree gravity harmonics and moments of inertia.

The key mass properties that have been determined are given in Table 9.12. The
gravitation constant (GM) has been determined by tracking spacecraft that have
flown in the immediate vicinity of Phobos, most recently the Soviet Phobos Mission,
and the mass is obtained by simply dividing by the universal gravitation constant.
Integration over the observed surface of Phobos gives the volume (V ) and the mean
density is simply the mass divided by the volume.
Integration of the first moment over the volume of Phobos gives the center of figure
relative to the center of the planetocentric coordinate system. The center of the
planetocentric coordinate system is the center of mass as determined by observation
of spacecraft and Phobos dynamics. If the density of Phobos is uniform, the center
of figure as defined by the above integration is also the center of mass. Thus, the
difference may be attributed to inhomogeneity of Phobos or the accuracy of the data.
The observed offset from the Viking measurements was too small to be significant
and was incorporated into the reduction of the images. This supports a fairly uniform
mass distribution for Phobos as far as can be determined from the first moment.

Another perspective of the mass distribution of Phobos may be obtained from
the integration of the second moment over the volume of Phobos. The results of
this integration for the inertia tensor are given in Table 9.13. The orientation of
the Phobos centered coordinate axes are also defined by observation of spacecraft
and Phobos dynamics. The x axis of Phobos points toward the center of Mars on
the average and the z axis is normal to the Phobos orbit plane. Therefore, the
Phobos centered body fixed axes should also be principal axes since this is the
orientation that is attained in the steady state over many revolutions. From the
cross products of inertia given in Table 9.13, we may compute the location of the
principal axes of Phobos figure and these are given in Table 9.14. The offset of the

Table 9.12 Phobos mass
properties

Parameter Value Units Definition

GM 7.22 × 10−4 km3/s2 Gravitation parameter

M 1.082 × 1016 kg Mass

V 5.673 × 1012 m3 Volume

ρ 1.91 g/cm3 Mean density (cgs)
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Table 9.13 Phobos inertia
tensor

I =
⎡
⎢⎣ Ixx Ixy Ixz

Ixy Iyy Iyz

Ixz Iyz Izz

⎤
⎥⎦

Phobos centered body fixed coordinates

I =
⎡
⎢⎣ 4.72 −.0338 −.0341

−.0338 5.50 −.0280

−.0341 −.0280 6.48

⎤
⎥⎦ × 1023 kg − m2

Phobos centered principal axes

I =
⎡
⎢⎣ 4.72 0 0

0 5.50 0

0 0 6.48

⎤
⎥⎦ × 1023 kg − m2

Table 9.14 Phobos principal
axes of inertia directions

Axis Latitudea

(deg)
Longitudea

(deg)

xp 1.14 2.53

yp 1.53 92.5

zp 88.1 235.8
a Phobos centered inertial

figure principal axes of inertia from the Planetocentric coordinate system may be
attributed to asymmetric mass distribution or accuracy of the data. The small offset
that is observed also supports a uniform distribution of Phobos density within the
accuracy of the observations.

9.7.2 Phobos Gravity Field

The gravity harmonic coefficients may also be obtained by integration over the
figure of Phobos assuming constant density. The results of this integration are given
in Table 9.15. The harmonic coefficients through degree and order two may be
directly related to the center of gravity and part of the inertia tensor and thus provide
essentially the same insight into the mass distribution as has been discussed above.
For the center of gravity, these relationships are

xcg = C11r0

ycg = S11r0

zcg = C10r0

and for the inertia tensor

Ixx − Iyy = −4Mr2
oC22
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Table 9.15 Phobos gravity field

GMp = 7.22 × 10−4 km3/s2, r0 = 11.1 km

Coefficient m = 0 m = 1 m = 2 m = 3 m = 4

C2m −0.1035E+00 0.2556E-02 0.1457E-01

S2m 0.2098E-02 0.1269E-02

C3m 0.8243E-02 −0.4800E-02 −0.3091E-02 0.6721E-03

S3m 0.2093E-02 −0.3110E-03 −0.1323E-02

C4m 0.1892E-01 0.1949E-02 −0.4758E-03 −0.2116E-03 0.6139E-04

S4m −0.9897E-03 −0.5637E-03 0.1983E-03 −0.3234E-04

Iyy − Izz = Mr2
o (C20 + 2C22)

Izz − Ixx = −Mr2
o (C20 − 2C22)

Ixy = −2Mr2
oS22

Iyz = −Mr2
oS21

Ixz = −Mr2
oC21 (9.1)

The above six equations for the inertia tensor elements place constraints on the
relationship between the inertia tensor and gravity harmonic coefficients. However,
only five of these equations are independent. The third equation may be obtained
by adding the first two equations. For this reason, it is not possible to completely
describe the inertia tensor from gravity measurements alone.

The higher degree terms of the gravity field expansion are useful for predicting
the acceleration of a spacecraft that orbits near Phobos. Thus, they are vital
for precision navigation. In their own right, the higher order gravity harmonics
provide some insight into the homogeneity of Phobos when they are compared
with those obtained from the figure assuming constant density (i.e., the coefficients
in Table 9.15). At this time, a direct determination of the higher order harmonic
coefficients that would be obtained by tracking spacecraft is not available.

9.7.3 Phobos Rotational Dynamics

Consider the rotational equations of motion that relate the observed angular
acceleration �̇ and body-fixed spin rates to the applied moment (M).

M = I �̇ + � × H

H = I �
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Table 9.16 Mars gravity field

GMm = 42828.44 km3/s2, rm = 3, 394. km

Coefficient m = 0 m = 1 m = 2 m = 3 m = 4

C2m −0.1960E-02 0 −0.5473E-04

S2m 0 0.3140E-04

C3m 0.3145E-04 0.4477E-05 −0.5579E-05 0.4845E-05

S3m 0.2690E-04 0.2895E-05 0.3607E-05

C4m −0.1889E-04 0.3494E-05 −0.2077E-06 0.4175E-06 −0.3614E-08

S4m 0.3990E-05 −0.2199E-05 0.1625E-07 −0.2765E-06

As Phobos orbits Mars, Phobos is subjected to a torque from the gradient of the
Mars gravity field. The total applied moment to Phobos is obtained by integrating
this force times the moment arm over the density and volume of Phobos.

M =
∫∫∫

V

(
r × dF

dm

)
ρ(r, λ, φ) dV (9.2)

The gravitational force (F) is exerted on an elemental volume element of mass dm.
This force is obtained from the Mars gravity field and is given by

dF
dm

= fg(rp, α, δ,W,GMm, rm,CMnm, SMnm)

where rp is the vector from the center of Mars to an elementary volume element
of Phobos, GMm is the gravitational constant of Mars, rm is the reference radius
of Mars, and CMnm and SMnm are the Mars gravity coefficients as determined by
Balmino and are given in Table 9.16.

For the orbit of Phobos about Mars, a state vector was computed at Mars
periapsis from the orbit elements given in Table 9.17. The above rotational equations
of motion were integrated over one complete orbit of Mars in conjunction with
the translational equations of motion and the moment obtained by simultaneous
repeated integrations over Phobos’s volume. Of particular interest is the forced
libration in longitude of Phobos. This is simply the inertial attitude about the z axis
minus the mean rotation about the same axis. The amplitude of 0.994◦ obtained by
numerical integration provides some insight into the radial distribution of density.

9.7.4 Analytic Approximation of Forced Libration

The moment about Phobos’s coordinate axes may be approximated by assuming that
the Mars gravity gradient is constant over the entire volume of Phobos. With this
assumption, the moment about Phobos is determined by the second degree gravity
harmonics of Phobos which are related to a certain ratio of the moments of inertia.
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Table 9.17 Initial conditions

Parameters Values

Phobos ephemeris Phobos-centered

Xo =

⎡
⎢⎢⎢⎢⎢⎣

apo

epo


po

ipo

ωpo

⎤
⎥⎥⎥⎥⎥⎦ Xo =

⎡
⎢⎢⎢⎢⎢⎣

9378.5 km

.015364

242.703 deg

1.0324 deg

227.073 deg

⎤
⎥⎥⎥⎥⎥⎦

Phobos attitude and rates Rotations from Phobos centered frame

�o =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

αo

δo

Wo

ωxo

ωyo

ωzo

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

�o =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 deg

90 deg

0 deg

1.077×10−4 rad/s

1.077×10−4 rad/s

8.725×10−3 rad/s

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The gravitational force of Mars on an elementary mass element of Phobos may be
approximated by

dF = GMm

|rp − r|3 (rp − r) dm

where rp is the vector from the center of Mars to the center of Phobos. Substituting
the gravity force into the moment equation we obtain

M = GMm

∫∫∫
V

r × (rp − r)
|rp − r|3 ρ(r, λ, φ) dV (9.3)

where the distance from Mars to the mass elements may be obtained by projecting
the location of the mass elements onto the Mars-Phobos vector ignoring parallax,

|rp − r| = rp − rp · r

and the required inverse cube may be approximated by the first two terms of the
Taylor series

1

|rp − r|3 = 1

r3
p

[
r2
p + 3rp · r

r2
p

]

Replacing the vectors by components we obtain
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M = GM

r5
p

∫∫∫
V

⎡
⎣ yzp − zyp

zxp − xzp

xyp − yxp

⎤
⎦ [r2

p +3(xxp +yyp +zzp)] ρ(r, λ, φ)dV (9.4)

Since the origin of the coordinate system is the center of mass, the first order terms
in x, y, and z integrate to zero and the second order terms integrate to moments and
products of inertia.

M = 3 GMm

r5
p

⎡
⎢⎣ypzp(Izz − Iyy) + (y2

p − z2
p)Iyz − xpzpIxy + xpypIxz

xpzp(Ixx − Izz) + (z2
p − x2

p)Ixz − xpypIyz + ypzpIxy

xpyp(Iyy − Ixx) + (x2
p − y2

p)Ixy − ypzpIxz + xpzpIyz

⎤
⎥⎦

(9.5)
As Phobos rotates about Mars, the x coordinate axis very nearly points towards
Mars and the moment about Phobos may be approximated by

M ≈ 3 GMm

r5
p

⎡
⎣ 0

0
xpyp(Iyy − Ixx)

⎤
⎦ (9.6)

For small angular deviations of the x coordinate axis in longitude we have

M ≈ 3 GMm

r3
p

⎡
⎣ 0

0
�θ(Iyy − Ixx)

⎤
⎦ (9.7)

The rotational equations of motion may also be simplified for the special case of
rotation and moments only about the z axis. Thus Euler’s equations of motion may
be approximated by

M ≈
⎡
⎣ 0

0
Izz θ̈

⎤
⎦ (9.8)

We thus obtain the following second order differential equation for the rotation of
Phobos.

θ̈ = 3 GMm

r3
p

Iyy − Ixx

Izz

�θ

The forcing function is simply the difference between Phobos’s x coordinate axis
and the vector from Mars to Phobos which is defined by

�θ = η − θ
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where η is the true anomaly of Phobos orbital motion about Mars.
The orbital motion of Phobos about Mars may be described by Kepler’s equation

and we have

M = E − e sin E

where M is now the mean anomaly, E is the eccentric anomaly, and e is the orbit
eccentricity. We also have the relationships

M =
√

GMm

a3
p

(t − tp) = n(t − tp)

where ap is the semi major axis of Phobos orbit, tp is the time of periapsis passage,
and n is the mean motion. An approximate formula for η may be obtained by
assuming the point on the circle that defines E is coincident with the point on the
orbit that defined η. Thus we have

E − M = e sin E (9.9)

and from the geometry shown in Fig. 3.1

sin(η − E) ≈ c sin E

r

If the point on the circle shown in Fig. 3.1 is coincident with the point on the ellipse,
then r ≈ a ≈ b, sin(η − E) ≈ η − E, M ≈ E and since c = ae

η − E = e sin M (9.10)

Adding equations Eq. (9.9) and Eq. (9.10) an approximate equation for η as a
function of time is obtained

η = nt + 2e sin nt

The differential equation for the rotation of Phobos about the z axis thus becomes

θ̈ = 3γ n2(nt + 2e sin nt − θ)

where

γ = Iyy − Ixx

Izz

Taking the Laplace transformation we obtain
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s2θ − sθ0 − θ̇0 = 3γ n3

s2
+ 6γ en3

(s2 + n2)
− 3γ n2θ

Solving for θ as a function of s we obtain

θ = s

s2 + 3γ n2 θ0 + 1

s2 + 3γ n2 θ̇0 + 3γ n3

s2(s2 + 3γ n2)
+ 6γ n3e

(s2 + n2)(s2 + 3γ n2)

Transforming from the frequency domain back to the time domain we obtain

θ = nt + 6γ e

3γ − 1
sin nt + θ0 cos(

√
3γ nt) + 1√

3γ
sin(

√
3γ nt)

[
θ̇0

n
− 1 − 6γ e

3γ − 1

]
(9.11)

The above equation describes the rotation of Phobos as a function of the initial
attitude(θ0), initial attitude rate(θ̇0), gravity torque forcing function, and inertial
properties of Phobos. Over many Phobos orbits, energy dissipation will result in the
amplitude of the attitude oscillations attaining a minimum. This minimum energy
condition imposes the following boundary condition on the initial attitude and
attitude rate at periapsis.

θ0 = 0.

θ̇0 =
(

1 + 6γ e

3γ − 1

)
n

Substituting the boundary conditions into the equation of motion, we obtain for the
attitude of Phobos

θ = nt + 6γ e

3γ − 1
sin nt + Af sin(nt

√
3γ + θf ) (9.12)

Observe that this equation contains an additional term for the free libration of
Phobos of amplitude Af and phase θf . The minimum energy boundary condition
results in this term vanishing except for a small residual that may be attributed to
other external forcing functions and the initial attitude and rate that existed when
Phobos became locked in rotation with Mars. The forced libration may be separated
from the free libration through their respective frequency signatures. The amplitude
of the forced libration from Eq. (9.12) is 0.978◦ where γ = 0.12037 and e = 0.0151.
This compares very well with the result (0.9937◦) obtained by numerical integration
of the rotational equations of motion.
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9.8 Summary

Navigation analyses are performed to verify that the navigation system will deliver
a spacecraft to its destination and satisfy mission constraints associated with the
spacecraft design and acquisition of science data. These objectives are satisfied by
designing the trajectory and computing the probabilities of successful execution
of the mission. A secondary purpose of analysis is to anticipate possible failure
modes and design procedures for recovery. Analyses that have been performed in
support of various missions have been described in some detail. These examples
have been selected from a long list of navigation design and operations that have
been experienced over many years. The criterion for selection of examples are those
that provide insight into the navigation system and operations. Some of the more
dramatic examples have not been included. Little is learned when a spacecraft blows
up or falls in the ocean.

The first example of navigation analysis is associated with planetary quarantine.
Since this was a major concern of the Viking mission to Mars, the analysis is
described in detail. The next example is the Galileo probe delivery. This problem
was of interest because of the narrow entry corridor that was targeted 150 days
before arrival at Jupiter. The Pioneer (PVO) mission provided an opportunity to
analyze atmospheric entry. The Magellan mission used aerodynamic braking to
control the orbit around Venus. The NEAR mission was analyzed in detail since
this mission presented many new challenges and the introduction of new data
types. The MESSENGER post launch perturbation from outgassing provided an
opportunity to analyze small nongravitational accelerations. The New Horizons
spacecraft was the first to navigate to Pluto. The long round trip light time of 8 h
presented many challenges in orbit determination and data acquisition. Finally, the
numerous missions to Phobos, a satellite of Mars, provided data that was used to
predict the libration of Phobos. Since small perturbations to the attitude of a body
can have a large effect on the gravity field determination, future analysis of missions
to binary comets or asteroids will benefit.

Exercises

9.1 During approach to Jupiter, the original navigation design involved separating
the probe from the orbiter at encounter minus 50 days at a cost of 50 m/s. The 50 m/s
was needed to deflect the orbiter from an entry trajectory to the orbit insertion aim
point. In order to save �V, the separation was moved back to encounter minus 150
days. Determine the savings in �V.

9.2 Show that for a heading angle due East in the same direction as Jupiter’s
rotation, the relative entry angle is given by



376 9 Navigation Analysis

tan γe = sin γI

cos γI − ωJ re
VI

cos γI = B√
re

(
2 GM
V 2∞

+ re

)

where ωJ is Jupiter’s rotation rate, re is the entry radius, VI is the inertial velocity at
entry, V∞ is the hyperbolic excess velocity, GM is Jupiter’s gravitational constant,
and γi is the inertial entry angle.

9.3 For the separation at minus 150 days in Exercise 9.1, the 99% impact parameter
delivery error is ±1300 km. Determine the 99% relative entry angle delivery error
for V∞ = 5.86 km/s, B = 724, 300 km, re = 71, 398 km, Vi = 59.9 km/s, ωj =
1.77 × 10−4 rad/s and GM = 0.126 × 109 km3/s2.

9.4 For the estimation of atmospheric drag on a spacecraft in orbit about a planet
with an atmosphere, the relationship between the velocity change at periapsis and
the period of the orbit is needed. Show that

∂P

∂vp

= 6π
vp a

5
2

GM
3
2

9.5 A spacecraft is in a circular 30 km orbit about Eros. The plane of the orbit (x−y)
is perpendicular to the sun line. The sun is in the plus z direction. A maneuver is
executed as the spacecraft crosses the x axis that places the spacecraft in a circular
orbit that flies over the sub-solar point which is on the z axis. The spacecraft makes
a 90◦ turn and flies over the subsolar point on the surface of Eros. Determine the
maneuver components in the inertial x, y, z coordinate system. The gravitational
parameter of Eros is 4.463 × 10−4 km3/s2.

9.6 In turning the spacecraft to the maneuver attitude in Exercise 9.4, an error
results in the rocket motor being pointed in the direction of the spacecraft velocity
vector. The thrust is in the opposite direction that the rocket motor is pointed.
The magnitude of the burn or �V remains the same as for subsolar over-flight.
Determine the periapsis radius of the resulting trajectory.

9.7 A model of Phobos is suspended on the surface of the Earth with an axel along
the z axis and the x axis pointing down. If Phobos is perturbed by a small torque
about the z axis, determine the period of oscillation. The moments of inertia of
Phobos are Ixx = 4.72, Iyy = 5.50, Izz = 6.48, GMe = 398, 600 km3/s2, re =
6378 km. From the observed period, the gravity gradient may be determined and
thus we have a crude gravity gradiometer.



Bibliography 377

Bibliography

Bursa, M., Z. Martinec, K. Pec 1990. Principal Moments of Inertia, Secular Love Number and
Origin of Phobos. Adv. Space Res. Vol 10, No 3–4, pp.(3)67–(3)70.

Capen, E. B. and A. E. Joseph, “Software Requirements Document Viking Project - MOIOP”, JPL
Report, 1973.

Dunham, D. W., McAdams, 1. V., Mosher, L. E. and Helfrich, C. E., “Maneuver Strategy for
NEAR’s Rendezvous with 433 Eros”, Paper IAF-97-A.4.01 presented at the 48th International
Astronautical Federation Congress, Turin, Italy, Oct. 6–10,1997.

Dunham, D. W., et al, 1999. Recovery of NEARŠs ăMission to Eros. International Astronautical
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Answers to Selected Exercises

Chapter 1

1.1 For an ideal basketball and golf ball, the golf ball would rebound to a height of
10.9 m. For a real basketball and golf ball dropped on a driveway, the height
was only about 4 m which resulted in the golf ball being lost on the garage
roof.

1.2 A 3×3 matrix containing the outer product of r

∂a
∂r

= −μ

r3

[
I − 3

r ⊗ r
r2

]

1.3

My(α = 0) = 3 GM

r3 (Izz − Ixx)
rxrz

r2 = 3 GM

r3 (Izz − Ixx) sin ε cos ε

1.4

rl = kz cos ε − kx sin ε + kz cos ε − kx sin ε

�r = kz sin ε − kx cos ε − kz sin ε + kx cos ε

1.5

α̇ = 3

2

(
GM

r3

)[
Izz − Ixx

Izz

cos ε

ωe

]
= 2.450 × 10−12 rad/s
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1.6 This problem makes use of the following:

[
∂(I
)

∂Ie

]T

= 
T ∂IT

∂Ie

∂IT

∂Ie

=
⎡
⎣1 0 0 1 1 0

0 1 0 1 0 1
0 0 1 0 1 1

⎤
⎦

1.7 v̄ = 725 m/s
1.8 Assume that the volume swept out by all the molecules between collisions

is equal to the volume of the container and the frequency of collisions is
the reciprocal of the mean time between collisions. The mean free path is
approximately 5.029 × 10−7 m and the number of collisions per second for
one molecule is 9.639 × 108.

1.9 Tyrannosaurus rex’s watch will have gained 0.61 s and will read Jan 1 2017
12:00:01 AD if we round up. Photon’s watch will read Jan 1, 65,000,000
12:00:00 BC. Photon will have no memory of the trip and t rex was probably
wiped out by an asteroid, but his watch survived.

1.10 For 30◦ integration step size and evaluating function on right side of interval,

∫ 90

0
sin(x)dx ≈ π

6
[sin(30) + sin(60) + sin(90)] = 1.23

For evaluation in middle of interval,

∫ 90

0
sin(x)dx ≈ π

6
[sin(15) + sin(45) + sin(75)] = 1.01

For 10◦ integration step size and evaluation on right side of interval the integral
was 1.084 and for evaluation in middle of interval the integral was 1.0013

Chapter 2

2.1 R = 15,255 ft, H = 1800 ft
2.2 R = 5.80 miles
2.3 The thrust is 1164 pounds and the drag force is 19.8 pounds.
2.4 The equations of motion are

y = v0 sin(θ)t − t2

2g0

x = v0 cos(θ) t
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and the trajectory is

y = tan(θ) x − g0

2v2
0 cos2 θ

x2

2.9

C20 = 1

Ma2

∫∫∫
V

(−1

2
x2 − 1

2
y2 + z2) ρ(r, λ, φ) dV

C21 = 1

Ma2

∫∫∫
V

xz ρ(r, λ, φ) dV

S21 = 1

Ma2

∫∫∫
V

yz ρ(r, λ, φ) dV

C22 = 1

4Ma2

∫∫∫
V

(x2 − y2) ρ(r, λ, φ) dV

S22 = 1

2Ma2

∫∫∫
V

xy ρ(r, λ, φ) dV (1.1)

Chapter 3

3.2 For F negative, sinh(F ) + cosh(F ) = eF which for large negative F is
very small. Since eF is obtained by differencing two very large numbers
(sinh(F ), cosh(F )) their is a loss of significance.

3.3 sin γ =
(

GM

vh

)
e sin(η)

3.4 The first spacecraft had an orbit insertion maneuver of 1021 m/s and the second
spacecraft had an orbit insertion maneuver of 975 m/s followed by a maneuver
at apoapsis of 30 m/s for at total of 1005 m/s. The second strategy is more fuel
efficient.

3.7 1.638 years

Chapter 4

4.1 The radius of the can is h = (
V
2π

)
and the height is twice the radius.

4.2 1/3
4.3 The relevant term that determines the sign of the Hessian is given by 16a2U2 −

16b2U1. Since a is greater than b, the Hessian is positive and the solution is a
minimum.



382 Answers to Selected Exercises

4.4 The critical plane is defined in the velocity space. A maneuver performed in
this plane will acquire the target and minimize �V .

4.6 In computing the partial derivatives of v with respect to γ , the partial of ra with
resect to γ is zero. The terms that multiply ∂v/∂γ are factored out and divided
to form a fraction. The denominator may be discarded and the numerator is zero
only if γ is zero.

Chapter 5

5.1 p = 4

(
52
2

)
= 1.539 × 10−6

5.2 p =
(

500
5

)
= 3.265 × 10−14

5.3 Caesar’s box is in a narrow annulus of width 3 yards where the PDF is constant.

σ = 50

1.17741
p =

⎡
⎢⎢⎢⎣ e

−98.52

2σ 2 − e

−101.52

2σ 2

⎤
⎥⎥⎥⎦ 3

200π
= 4.96 × 10−5

5.4 The probability of hitting Caesar’s box, if that is the target, is approximately

p = 1 − e

−32

2σ 2 = 2.49 × 10−3

5.5 The binomial coefficients for m = 2 are obtained from

(1 + x)m = 1 + 2x + x2

Since each coefficient for the next row of Pascal’s triangle is the sum of the two
coefficients in the row above, B(m + 1, k + 1) = B(m, k) + B(m, k + 1) and
the solution is

B(m, k) = m!
(m − k)! k!

where (
m

k

)
m + 1

k + 1
=

(
m

k

)
+

(
m

k

)
m − k

k + 1

after factoring out B(m,k). The demonstration is complete if B(2, k) = 1, 2, 1
which it does.
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Chapter 6

6.1 The rows of the matrix are A(i, j). The measurement covariance (Pm), the
inverse of the a prior matrix (P0) and the estimated parameter a prior are set
equal to zero. The number of measurements, which are assumed to be exact, is
equal to the dimension of the matrix. Both the Kalman gain and the weighted
least square gain give A(i, j)−1.

6.2 Venus is the best guess since the maximum acceleration from Mars would
be too small. In the real world, it was Mars. An early version of an orbit
determination program left Mars out of the Equations of motion because the
acceleration was believed to be too small to be detected. The actual ramp in
the Doppler data was smaller than postulated for this problem and Venus was
included in the equations of motion.

6.3 E(X2X
T
1 ) = K E(Z1,2X

T
1 ) + (I − KA) E(X1X

T
1 )

Since the data taken after t1 is uncorrelated with X1, E(Z1,2X
T
1 ) = 0 and

P1,2 = P2
6.4 Draw a sample from P1 − P2 = KAP1 and add it to X1.

Chapter 9

9.1 33.3 m/s
9.4 �Vx = −3.858 m/s, �Vy = 0, �Vz = 3.858 m/s
9.5 rp = 3.04 km. The spacecraft crashes into Eros.
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