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Preface

This book was written for two groups of people, philosophically informed
mathematicians with a serious interest in the philosophy of their subject, and
philosophers with a serious interest in mathematics. Perhaps, therefore, I
should begin by paying tribute to my publisher for expressing no nervous-
ness concerning the size of the likely readership. Frege (1893–1903, I, p. xii)
predicted that the form of his Grundgesetze would cause him to

relinquish as readers all those mathematicians who, if they bump into logical expres-
sions such as ‘concept’, ‘relation’, ‘judgment’, think: metaphysica sunt, non leguntur, and
likewise those philosophers who at the sight of a formula cry: mathematica sunt, non
leguntur.

And, as he rightly observed, ‘the number of such persons is surely not small’.
As then, so now. Any book which tries to form a bridge between math-

ematics and philosophy risks vanishing into the gap. It is inevitable, however
hard the writer strives for clarity, that the requirements of the subject matter
place demands on the reader, sometimes mathematical, sometimes philosoph-
ical. This is something which anyone who wants to make a serious study of
the philosophy of mathematics must simply accept. To anyone who doubts it
there are two bodies of work which stand as an awful warning: the philosoph-
ical literature contains far too many articles marred by elementary technical
misunderstandings,1 while mathematicians have often been tempted, espe-
cially in later life, to commit to print philosophical reflections which are either
wholly vacuous or hopelessly incoherent.
Both mathematicians and philosophers, then, need to accept that studying

the philosophy of mathematics confronts them with challenges for which their
previous training may not have prepared them. It does not follow automat-
ically, of course, that one should try, as I have done here, to cater for their
differing needs in a single textbook. However, my main reason for writing the
book was that I wanted to explore the constant interplay that set theory seems
to exemplify between technical results and philosophical reflection, and this
convinced me that there was more than expositional economy to be said for
trying to address both readerships simultaneously.

1I should know: I have written one myself.
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In this respect the book differs from its predecessor, Sets: An Introduction
(1990), which was directed much more at philosophically ignorant mathem-
aticians than at philosophers. The similarities between the new book and the
old are certainly substantial, especially in the more technical parts, but even
there the changes go well beyond the cosmetic. Technically informed readers
may find a quick summary helpful.
At the formal level the most significant change is that I have abandoned

the supposition I made in Sets that the universe of collections contains a sub-
universe which has all the sets as members but is nevertheless capable of be-
longing to other collections (not, of course, sets) itself. The truth is that I only
included it for two reasons: to make it easy to embed category theory; and to
sidestep some irritating pieces of pedantry such as the difficulty we face when
we try, without going metalinguistic, to say in standard set theory that the
class of all ordinals is well-ordered. Neither reason now strikes me as sufficient
to compensate for the complications positing a sub-universe creates: the cat-
egory theorists never thanked me for accommodating them, and if they want
a sub-universe, I now think that they can posit it for themselves; while the
pedantry is going to have to be faced at some point, so postponing it does no
one any favours.
The style of set-theoretic formalism in which the sets form only a sub-

universe (sometimes in the literature named after Grothendieck) has never
found much favour. (Perhaps category theory is not popular enough.) So in
this respect the new book is the more orthodox. In two other respects, though,
I have persisted in eccentricity: I still allow there to be individuals; and I still
do not include the axiom scheme of replacement in the default theory.
The reasons for these choices are discussed quite fully in the text, so here

I will be brief. The first eccentricity — allowing individuals — seems to me
to be something close to a philosophical necessity: as it complicates the treat-
ment only very slightly, I can only recommend that mathematicians who do
not see the need should regard it as a foible and humour me in it. The second
— doing without replacement — was in fact a large part of my motivation to
write Sets to begin with. I had whiled away my student days under the delusion
that replacement is needed for the formalization of considerable amounts of
mathematics, and when I discovered that this was false, I wanted to spread the
word (spread it, that is to say, beyond the set theorists who knew it already).
On this point my proselytizing zeal has hardly waned in the intervening dec-
ade. One of the themes which I have tried to develop in the new book is the
idea that set theory is a measure (not the only one, no doubt) of the degree
of abstractness of mathematics, and it is at the very least a striking fact about
mathematical practice, which many set theory textbooks contrive to obscure,
that even before we try to reduce levels by clever use of coding, the over-
whelming majority of mathematics sits comfortably inside the first couple of
dozen levels of the hierarchy above the natural numbers.



Preface vii

The differences from standard treatments that I have described so far affect
our conception of the extent of the set-theoretic hierarchy. One final differ-
ence affecting not our conception of it but only the axiomatization is that the
axioms I have used focus first on the notion of a level, and deduce the properties
of sets (as subcollections of levels) only derivatively. The pioneer of this style of
axiomatization was Scott (1974), but my earlier book used unpublished work
of John Derrick to simplify his system significantly, and here I have taken the
opportunity to make still more simplifications.
Lecturers on the look-out for a course text may feel nervous about this. No

executive, it is said, has ever been sacked for ordering IBM computers, even
if they were not the best buy; by parity of reasoning, I suppose, no lecturer is
ever sacked for teaching ZF. So it is worth stressing that ZU, the system which
acts as a default throughout this book, is interpretable in ZF in the obvious
manner: the theorems stated in this book are, word for word, theorems of
ZF. So teaching from this book is not like teaching from Quine’sMathematical
Logic: you will find no self-membered sets here.
Most of the exercises have very largely been taken unchanged from my

earlier book. I recommend browsing them, at least: it is a worthwhile aid to
understanding the text, even for those students who do not seriously attempt
to do them all.
It is a pleasure, in conclusion, to record my thanks: to Philip Meguire and

Pierre Matet for correspondence about the weaknesses of my earlier book;
to the members of the Cambridge seminar which discussed chapters of the
new book in draft and exposed inadequacies of exposition; and especially to
Timothy Smiley, Eric James, Peter Clark and Richard Zach, all of whom
spent more time than I had any right to expect reading the text and giving me
perceptive, judicious comments on it.

M. D. P.
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Introduction to Part I

This book, as its title declares, is about sets; and sets, as we shall use the
term here, are a sort of aggregate. But, as a cursory glance at the literature
makes clear, aggregation is far from being a univocal notion. Just what sort of
aggregate sets are is a somewhat technical matter, and indeed it will be a large
part of the purpose of the book merely to get clear about this question. But in
order to begin the task, it will help to have an idea of the reasons one might
have for studying them.
It is uncontroversial, first of all, that set-theoretic language can be used as

a vehicle for communication. We shall concentrate here on the mathematical
case, not because this is the only context in which set talk is useful — that is
far from being so — but rather because ordinary language cases do not seem
to need a theory of anything like the same complexity to underpin them. But
in this role set theory is being used merely as a language. What will interest us
here much more are those uses of set theory for which a substantial theory is
required. Three strands can be distinguished.
The first of these is the use of set theory as a tool in understanding the infin-

ite. This strand will lead us to develop in part III of the book the theory of two
distinct types of infinite number, known as cardinals and ordinals. These two
theories are due in very large part to one man, Georg Cantor, who worked
them out in the last quarter of the 19th century. This material is hardly con-
troversial nowadays: it may still be a matter of controversy in some quarters
whether infinite sets exist, but hardly anyone now tries to argue that their ex-
istence is, as a matter of pure logic, contradictory. This has not always been so,
however, and the fact that it is so now is a consequence of the widespread ac-
ceptance of Cantor’s theories, which exhibited the contradictions others had
claimed to derive from the supposition of infinite sets as confusions resulting
from the failure to mark the necessary distinctions with sufficient clarity.
The revolution in attitudes to the infinitely large which Cantor’s work en-

gendered was thus as profound as the roughly simultaneous revolution caused
by the rigorous development of the infinitesimal calculus. In the 20th cen-
tury, once these two revolutions had been assimilated, the paradoxes of the
infinitely small (such as Zeno’s arrow) and of the infinitely large (such as the
correspondence between a set and its proper subset) came to be regarded not
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as serious philosophical problems but only as historical curiosities.
The second role for set theory, which will occupy us throughout the book

but especially in part II, is the foundational one of supplying the subject matter
of mathematics. Modern textbooks on set theory are littered with variants
of this claim: one of them states baldly that ‘set theory is the foundation of
mathematics’ (Kunen 1980, p. xi), and similar claims are to be found not just
(as perhaps one might expect) in books written by set theorists but also in many
mainstream mathematics books. Indeed this role for set theory has become
so familiar that hardly anybody who gets as far as reading this book can be
wholly unaware of it. Yet it is worth pausing briefly to consider how surprising
it is. Pre-theoretically we surely feel no temptation whatever to conjecture that
numbers might ‘really’ be sets — far less sets built up from the empty set alone
— and yet throughout the 20th century many mathematicians did not merely
conjecture this but said that it was so.
One of the themes that will emerge as this enquiry progresses, however,

is that what mathematicians say is no more reliable as a guide to the inter-
pretation of their work than what artists say about their work, or musicians.
So we certainly should not automatically take mathematicians at their set-
theoretically reductionist word. And there have in any case been notable re-
cusants throughout the period, such asMac Lane (1986) andMayberry (1994).
Nevertheless, we shall need to bear this foundational use for set theory in mind
throughout, both because it has been enormously influential in determining
the manner in which the theory has been developed and because it will be one
of our aims to reach a position from which its cogency can be assessed.
A third role for set theory, closely related to the second but nonetheless dis-

tinguishable from it (cf. Carnap 1931), is to supply for diverse areas of math-
ematics not a common subject matter but common modes of reasoning. The
best known illustration of this is the axiom of choice, a set-theoretic principle
which we shall study in part IV.
Once again, the historical importance of this role for set theory is unques-

tionable: the axiom of choice was the subject of controversy among mathem-
aticians throughout the first half of the 20th century. But once again it is at
least debatable whether set theory can indeed have the role that is ascribed
to it: it is far from clear that the axiom of choice is correctly regarded as a
set-theoretic principle at all, and similar doubts may be raised about other
purported applications of set-theoretic principles in mathematics.
These three roles for set theory — as a means of taming the infinite, as a

supplier of the subject matter of mathematics, and as a source of its modes of
reasoning — have all been important historically and have shaped the way
the subject has developed. Most of the book will be taken up with present-
ing the technical material which underpins these roles and discussing their
significance.
In this first part of the book, however, we shall confine ourselves to the
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seemingly modest goal of setting up an elementary theory of sets within which
to frame the later discussion. The history of such theories is now a century old
— the theory we shall present here can trace its origins to Zermelo (1908b)
— and yet there is, even now, no consensus in the literature about the form
they should take. Very many of the theories that have been advanced seek to
formalize what has come to be known as the iterative conception of sets, and
what we shall be presenting here is one such theory. However, it is by no
means a trivial task to tease out what the iterative conception amounts to. So
the goal of this part of the book will turn out not to be quite as modest as it
seems.



Chapter 1

Logic

This book will consist in very large part in the exposition of a mathematical
theory — the theory (or at any rate a theory) of sets. This exposition will
have at its core a sequence of proofs designed to establish theorems. We shall
distinguish among the theorems some which we shall call lemmas, propositions
or corollaries. Traditionally, a lemma is a result of no intrinsic interest proved
as a step towards the proof of a theorem; a proposition is a result of less inde-
pendent importance than a theorem; and a corollary is an easy consequence
of a theorem. The distinctions are of no formal significance, however, and we
make use of them only as a way of providing signposts to the reader as to the
relative importance of the results stated.
One central element in the exposition will be explicit definitions to explain

our use of various words and symbols. It is a requirement of such a definition
that it should be formally eliminable, so that every occurrence of the word
defined could in principle be replaced by the phrase that defines it without
affecting the correctness of the proof. But this process of elimination must stop
eventually: at the beginning of our exposition there must be mathematical
words or symbols which we do not define in terms of others but merely take
as given: they are called primitives. And proof must start somewhere, just as
definition must. If we are to avoid an infinite regress, there must be some
propositions that are not proved but can be used in the proofs of the theorems.
Such propositions are called axioms.

1.1 The axiomatic method

The method for expounding a mathematical theory which we have just de-
scribed goes back at least to Euclid, who wrote a textbook of geometry and
arithmetic in axiomatic form around 300 B.C. (It is difficult to be certain quite
how common the axiomatic method was before Euclid because his textbook
supplanted previous expositions so definitively that very little of them survives
to be examined today.)
The axiomatic method is certainly not universal among mathematicians

even now, and its effectiveness has been overstated in some quarters, thereby
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providing an easy target for polemical attack by empiricists such as Lakatos
(1976). It is nevertheless true that pure mathematicians at any rate regard its
use as routine. How then should we account for it?
Responses to this question fall into two camps which mathematicians have

for some time been wont to call realist and formalist. This was not an alto-
gether happy choice of terminology since philosophers had already used both
words for more specific positions in the philosophy of mathematics, but I shall
follow the mathematicians’ usage here.
At the core of attitudes to the axiomatic method that may be called realist

is the view that ‘undefined’ does not entail ‘meaningless’ and so it may be
possible to provide a meaning for the primitive terms of our theory in advance
of laying down the axioms: perhaps they are previously understood terms
of ordinary language; or, if not, we may be able to establish the intended
meanings by means of what Frege calls elucidations — informal explanations
which suffice to indicate the intended meanings of terms. But elucidation,
Frege says, is inessential. It merely

serves the purpose of mutual understanding among investigators, as well as of the
communication of science to others. We may relegate it to a propaedeutic. It has no
place in the system of a science; no conclusions are based on it. Someone who pursued
research only by himself would not need it. (1906, p. 302)

If the primitive terms of our theory are words, such as ‘point’ or ‘line’, which
can be given meanings in this manner, then by asserting the axioms of the
theory we commit ourselves to their truth. Realism is thus committed to the
notion that the words mathematicians use already have a meaning independ-
ent of the system of axioms in which the words occur. It is for this reason
that such views are described as realist. If the axioms make existential claims
(which typically they do), then by taking them to be true we commit ourselves
to the existence of the requisite objects.
Nevertheless, realism remains a broad church, since it says nothing yet

about the nature of the objects thus appealed to. Two sorts of realist can
be distinguished: a platonist takes the objects to exist independently of us and
of our activities, and hence (since they are certainly not physical) to be in
some sense abstract; a constructivist, on the other hand, takes the objects to
exist only if they can be constructed, and hence to be in some sense mental.
But ‘in some sense’ is usually a hedging phrase, and so it is here. To say that
a number owes its existence to my construction of it does not of itself make
the number mental any more than my bookcase is mental because I built it:
what is distinctive of constructivism in the philosophy of mathematics (and
hence distinguishes numbers, as it conceives of them, from bookcases) is the
idea that numbers are constituted by our constructions of them. I said earlier
that philosophers of mathematics use the word ‘realist’ differently, and this
is the point where the difference emerges, since constructivism would not be
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counted realist on their usage: it counts here as a species of realism because it
interprets mathematical existence theorems as truths about objects which do
not owe their existence to the signs used to express them.
During the 19th century, however, there emerged another cluster of ways

of regarding axioms, which we shall refer to as formalist. What they had in
common was a rejection of the idea just mentioned that the axioms can be
regarded simply as true statements about a subject matter external to them.
One part of the motivation for the emergence of formalism lay in the different
axiom systems for geometry — Euclidean, hyperbolic, projective, spherical
— which mathematicians began to study. The words ‘point’ and ‘line’ occur
in all, but the claims made using these words conflict. So they cannot all be
true, at any rate not unconditionally. One view, then, is that axioms should
be thought of as assumptions which we suppose in order to demonstrate the
properties of those structures that exemplify them. The expositor of an ax-
iomatic theory is thus as much concerned with truth on this view as on the
realist one, but the truths asserted are conditional: if any structure satisfies
the axioms, then it satisfies the theorem. This view has gone under various
names in the literature — implicationism, deductivism, if-thenism, eliminat-
ive structuralism. Here we shall call it implicationism. It seems to be plainly
the right thing to say about the role axioms play in the general theories —
of groups, rings, fields, topological spaces, differential manifolds, or whatever
— which are the mainstay of modern mathematics. It is rather less happy,
though, when it is applied to axiomatizations of the classical theories — of
natural, real or complex numbers, of Euclidean geometry — which were the
sole concern of mathematics until the 19th century. For by conditionalizing
all our theorems we omit to mention the existence of the structure in question,
and therefore have work to do if we are to explain the applicability of the the-
ory: the domain of any interpretation in which the axioms of arithmetic are
true is infinite, and yet we confidently apply arithmetical theorems within the
finite domain of our immediate experience without troubling to embed it in
such an infinite domain as implicationism would require us to do. Implica-
tionism seems capable, therefore, of being at best only part of the explanation
of these classical cases.
Nonetheless, the axiomatic method was by the 1920s becoming such a

mathematical commonplace, and implicationism such a common attitude to-
wards it, that it was inevitable it would be applied to the recently founded the-
ory of sets. Thus mathematicians such as von Neumann (1925) and Zermelo
(1930) discussed from a metatheoretic perspective the properties of structures
satisfying the set-theoretic axioms they were considering. One of the evident
attractions of the implicationist view of set theory is that it obviates the tedious
requirement imposed on the realist to justify the axioms as true and replaces it
with at most the (presumably weaker) requirement to persuade the reader to
be interested in their logical consequences. Even in the extreme case where



The axiomatic method 9

our axiom system turned out to be inconsistent, this would at worst make its
consequences uninteresting, but we could then convict the implicationist only
of wasting our time, not of committing a mistake.
There is an evident uneasiness about this way of discussing set theory, how-

ever. One way of thinking of a structure is as a certain sort of set. So when we
discuss the properties of structures satisfying the axioms of set theory, we seem
already to be presupposing the notion of set. This is a version of an objection
that is sometimes called Poincaré’s petitio because Poincaré (1906) advanced it
against an attempt that had been made to use mathematical induction in the
course of a justification of the axioms of arithmetic.
In its crudest form this objection is easily evaded if we are sufficiently clear

about what we are doing. There is no direct circularity if we presuppose sets
in our study of sets (or induction in our study of induction) since the first occur-
rence of the word is in the metalanguage, the second in the object language.
Nevertheless, even if this is all that needs to be said to answer Poincaré’s ob-
jection in the general case, matters are not so straightforward in the case of
a theory that claims to be foundational. If we embed mathematics in set the-
ory and treat set theory implicationally, then mathematics — all mathematics
— asserts only conditional truths about structures of a certain sort. But our
metalinguistic study of set-theoretic structures is plainly recognizable as a spe-
cies of mathematics. So we have no reason not to suppose that here too the
correct interpretation of our results is only conditional. At no point, then,
will mathematics assert anything unconditionally, and any application of any
part whatever of mathematics that depends on the unconditional existence of
mathematical objects will be vitiated.
Thoroughgoing implicationism — the view that mathematics has no sub-

ject matter whatever and consists solely of the logical derivation of con-
sequences from axioms — is thus a very harsh discipline: many mathem-
aticians profess to believe it, but few hold unswervingly to what it entails. The
implicationist is never entitled, for instance, to assert unconditionally that no
proof of a certain proposition exists, since that is a generalization about proofs
and must therefore be interpreted as a conditional depending on the axioms
of proof theory. And conversely, the claim that a proposition is provable is
to be interpreted only as saying that according to proof theory it is: a further
inference is required if we are to deduce from this that there is indeed a proof.
One response to this difficulty with taking an implicationist view of set the-

ory is to observe that it arises only on the premise that set theory is intended
as a foundation for mathematics. Deny the premise and the objection evap-
orates. Recently some mathematicians have been tempted by the idea that
other theories — topos theory or category theory, for example — might be
better suited to play this foundational role.
Maybe so, but of course this move is only a postponement of the problem,

not a solution. Those inclined to make it will have to address just the same dif-
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ficulties in relation to the axioms of whatever foundational theory they favour
instead (cf. Shapiro 1991). Perhaps it is for this reason that some mathem-
aticians (e.g. Mayberry 1994) have tried simply to deny that mathematics has
a foundation. But plainly more needs to be said if this is to be anything more
substantial than an indefinite refusal to address the question.
Another response to these difficulties, more popular amongmathematicians

than among philosophers, has been to espouse a stricter formalism, a version,
that is to say, of the view that the primitive terms of an axiomatic theory refer
to nothing outside of the theory itself. The crudest version of this doctrine,
pure formalism, asserts that mathematics is no more than a game played with
symbols. Frege’s demolition of this view (1893–1903, II, §§86–137) is treated
by most philosophers as definitive. Indeed it has become popular to doubt
whether any of the mathematicians Frege quotes actually held a view so stu-
pid. However, there are undoubtedly some mathematicians who claim, when
pressed, to believe it, and many others whose stated views entail it.
Less extreme is postulationism—which I have elsewhere (Potter 2000) called

axiomatic formalism. This does not regard the sentences of an axiomatic
theory as meaningless positions in a game but treats the primitive terms as
deriving their meaning from the role they play in the axioms, which may now
be thought of as an implicit definition of them, to be contrasted with the explicit
definitions of the non-primitive terms. ‘The objects of the theory are defined
ipso facto by the system of axioms, which in some way generate the material
to which the true propositions will be applicable.’ (Cartan 1943, p. 9) This
view is plainly not as daft as pure formalism, but if we are to espouse it, we
presumably need some criterion to determine whether a system of axioms
does confer meaning on its constituent terms. Those who advance this view
agree that no such meaning can be conferred by an inconsistent system, and
many fromHilbert on have thought that bare consistency is sufficient to confer
meaning, but few have provided any argument for this, and without such
an argument the position remains suspect. Moreover, there is a converse
problem for the postulationist if the axiom system in question is not complete:
if the language of arithmetic has its meaning conferred on it by some formal
theory T , for instance, what explanation can the postulationist give of our
conviction that the Gödel sentence of T , which is expressed in this language,
is true?
Nevertheless, postulationism, or something very like it, has been popu-

lar among mathematicians, at least in relation to those parts of mathemat-
ics for which the problem of perpetual conditionalizing noted above makes
implicationism inappropriate. For the great advantage of postulationism
over implicationism is that if we are indeed entitled to postulate objects with
the requisite properties, anything we deduce concerning these objects will
be true unconditionally. It may be this that has encouraged some authors
(Balaguer 1998; Field 1998) to treat a position very similar to postulationism
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as if it were a kind of realism— what they called full-blooded (Balaguer) or plen-
itudinous (Field) platonism — but that seems to me to be a mistake. Field,
admittedly, is ready enough to concede that their position is in one sense ‘the
antithesis of platonism’ (1998, p. 291), but Balaguer is determined to classify
the view as realist, not formalist, because it

simply doesn’t say that ‘existence and truth amount to nothing more than consist-
ency’. Rather it says that all the mathematical objects that logically possibly could
exist actually do exist, and then it follows from this that all consistent purely mathem-
atical theories truly describe some collection of actually existing mathematical objects.
(1998, p. 191)

In order to make full-blooded platonism plausible, however, Balaguer has to
concede that mathematical theories have a subject matter only in what he calls
a ‘metaphysically thin’ sense, a sense which makes it wholly unproblematic
how we could ‘have beliefs about mathematical objects, or how [we] could
dream up stories about such objects’ (p. 49). It is this that makes me classify the
view as formalist despite Balaguer’s protestations: for a view to count as realist
according to the taxonomy I have adopted here, it must hold the truth of the
sentences in question to be metaphysically constrained by their subject matter
more substantially than Balaguer can allow. A realist conception of a domain
is something we win through to when we have gained an understanding of the
nature of the objects the domain contains and the relations that hold between
them. For the view that bare consistency entails existence to count as realist,
therefore, it would be necessary for us to have a quite general conception of
the whole of logical space as a domain populated by objects. But it seems quite
clear to me that we simply have no such conception.

1.2 The background logic

Whichever we adopt of the views of the axiomatic method just sketched, we
shall have to make use of various canons of logical reasoning in deducing the
consequences of our axioms. Calling this calculus ‘first-order’ marks that the
variables we use as placeholders in quantified sentences have objects as their
intended range. Very often the variables that occur in mathematical texts are
intended to range over only a restricted class of objects, and in order to aid
readability mathematicians commonly press into service all sorts of letters to
mark these restrictions: m, n, k for natural numbers, z, w for complex num-
bers, a, b for cardinal numbers, G, H for groups, etc. In the first two chapters
of this book, however, the first-order variables are intended to be completely
unrestricted, ranging over any objects whatever, and to signal this we shall use
only the lower-case letters x, y, z, t and their decorated variants x ′, x ′′, x1, x2,
etc.
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First-order predicate calculus is thus contrasted with the second-order ver-
sion which permits in addition the use of quantified variables ranging over
properties of objects. It is a common practice, which we shall follow at least
until the end of the next chapter, to use the upper case letters X, Y, Z , etc. for
such variables.
When we need to comment on the features that certain formulae have in

common, or to introduce uniform abbreviations for formulae with a certain
pattern, we shall find it helpful to use upper-case Greek letters such as Φ, Ψ,
etc. to represent arbitrary formulae; if the formula Φ depends on the variables
x1, . . . , xn , we can write it Φ(x1, . . . , xn) to highlight that fact. These Greek
letters are to be thought of as part of the specification language (metalanguage)
which we use to describe the formal text, not as part of the formal language
itself.
At this point one possible source of confusion needs to be highlighted. Brad-

man was the greatest batsman of his time; ‘Bradman’ is a name with seven let-
ters. Confusion between names and the objects which they denote (or between
formulae and whatever it is that they denote) can be avoided by such careful
use of quotation marks. Another strategy, which any reader attuned to the
distinction between use and mention will already have observed in the last
few paragraphs, is to rely on common sense to achieve the same effect. We
shall continue to employ this strategy whenever the demands of readability
dictate.
In this book the canons of reasoning we use will be those of the first-order

predicate calculus with identity. It is common at this point in textbooks of set
theory for the author to set down fully formal formation and inference rules for
such a calculus. However, we shall not do this here: from the start we shall use
ordinary English to express logical notions such as negation (‘not’), disjunction
(‘or’) and conjunction (‘and’), as well as the symbols ‘⇒’ for the conditional,
‘⇔’ for the biconditional, and ‘∀’ and ‘∃’ for the universal and existential
quantifiers. We shall use ‘=’ for equality, and later we shall introduce other
binary relation symbols: if R is any such symbol, we shall write x R y to express
that the relation holds between x and y, and x �R y to express that it does not.
There are several reasons for omitting the formal rules of logic here: they

can be found in any of a very large number of elementary logic textbooks; they
are not what this book is about; and their presence would tend to obscure
from view the fact that they are being treated here only as a codification of
the canons of reasoning we regard as correct, not as themselves constituting a
formal theory to be studied from without by some other logical means.
The last point, in particular, deserves some emphasis. I have already men-

tioned the popularity of the formalist standpoint among mathematicians, and
logicians are not exempt from the temptation. If one formalizes the rules of
inference, it is important nonetheless not to lose sight of the fact that they
remain rules of inference — rules for reasoning from meaningful premises to



Schemes 13

meaningful conclusions.
It is undoubtedly significant, however, that a formalization of first-order

logic is available at all. This marks a striking contrast between the levels of
logic, since in the second-order case only the formation rules are completely
formalizable, not the inference rules: it is a consequence of Gödel’s first in-
completeness theorem that for each system of formal rules we might propose
there is a second-order logical inference we can recognize as valid which is
not justified by that system of rules.
Notice, though, that even if there is some reason to regard formalizability

as a requirement our logic should satisfy (a question to which we shall re-
turn shortly), this does not suffice to pick out first-order logic uniquely, since
there are other, larger systems with the same property. An elegant theorem
due to Lindström (1969) shows that we must indeed restrict ourselves to reas-
oning in first-order logic if we require our logic to satisfy in addition the
Löwenheim/Skolem property that any set of sentences which has a model
has a countable model. But, as Tharp (1975) has argued, it is hard to see why
we should wish to impose this condition straight off. Tharp attempts instead
to derive it from conditions on the quantifiers of our logic, but fails in turn (it
seems to me) to motivate these further conditions satisfactorily.

1.3 Schemes

By eschewing the use of second-order variables in the presentation of our the-
ory we undoubtedly follow current mathematical fashion, but we thereby limit
severely the strength of the theories we are able to postulate. On the classical
conception going back to Euclid, the axioms of a systemmust be finite in num-
ber, for how else could they be written down and communicated? But it is —
to take only one example — a simple fact of model theory that no finite list
of first-order axioms has as its models all and only the infinite sets. So if we
wish to axiomatize the notion of infinity in a first-order language, we require
an infinite list of axioms.
But how do we specify an infinite list with any precision? At first it might

seem as though the procedure fell victim to a variant of Poincaré’s petitio since
we presuppose the notion of infinity in our attempt to characterize it. But once
again Poincaré’s objection can be met by distinguishing carefully between ob-
ject language and metalanguage. We cannot in the language itself assert an
infinite list of object language sentences, but we can in the metalanguage make
a commitment to assert any member of such a list by means of a finite descrip-
tion of its syntactic form. This is known as an axiom scheme and will typically
take the following form.
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If Φ is any formula of the language of the theory, then this is an axiom:

. . .Φ . . .

(Here ‘. . .Φ . . . ’ is supposed to stand for some expression such that if every ‘Φ’
in it is replaced by a formula, the result is a sentence of the object language.)
The presence of an axiom scheme of this form in a system does nothing

to interfere with the system’s formal character: it remains the case that the
theorems of a first-order theory of this kind will be recursively enumerable, in
contrast to the second-order case, because it will still be a mechanical matter
to check whether any given finite string of symbols is an instance of the scheme
or not.1

Recursive enumerability comes at a price, however. Any beginner in model
theory learns a litany of results — the Löwenheim/Skolem theorems, the ex-
istence of non-standard models of arithmetic — that testify to the unavoidable
weakness of first-order theories. Kreisel (1967a, p. 145) has suggested — on
what evidence it is unclear — that this weakness ‘came as a surprise’ when it
was discovered by logicians in the 1910s and 1920s, but there is a clear sense
in which it should not have been in the least surprising, for we shall prove
later in this book that if there are infinitely many objects, then (at least on the
standard understanding of the second-order quantifier) there are uncountably
many properties those objects may have. A first-order scheme, on the other
hand, can only have countably many instances (assuming, as we normally do,
that the language of the theory is countable). So it is to be expected that the
first-order theory will assert much less than the second-order one does.
So much, then, for the purely formal questions. And for the formalist those

are presumably the only questions there are. But for a realist there will be a
further question as to how we finite beings can ever succeed in forming a com-
mitment to the truth of all the infinitely many instances of the scheme. One
view, common among platonists, is that we do not in fact form a commitment
to the scheme at all, but only to the single second-order axiom

(∀X) . . . X . . .

If we state the much weaker first-order scheme, that is only because it is the
nearest approximation to the second-order axiom which it is possible to ex-
press in the first-order language.
Notice, though, that even if we abandoned the constraint of first-order ex-

pression and did state the second-order axiom, that would not magically en-
able us to prove lots of new theorems inaccessible to the first-order reasoner: in

1Although schemes are one way of generating infinite sets of axioms without destroying a sys-
tem’s formal character, they are not the only way: a theory whose set of finite models is not
recursive will not be axiomatizable by schemes, even though it may be axiomatizable (see Craig
and Vaught 1958). However, a result of Vaught (1967) shows that this distinction is irrelevant
in formalizing set theory, where examples of this sort cannot arise.



Schemes 15

order to make use of the second-order axiom, we need a comprehension scheme to
the effect that if Φ is any first-order formula in which the variables x1, . . . , xn

occur free, then

(∃X)(∀x1, . . . , xn)(X (x1, . . . , xn) ⇔ Φ).

The difference is that this scheme is categorized as belonging to the back-
ground logic (where schematic rules are the norm rather than the exception)
and, because it is logical and hence topic-neutral, it will presumably be taken
to hold for any Φ, of any language. If we at some point enlarge our language,
no fresh decision will be needed to include the new formulae thus generated
in the intended range of possible substitutions for Φ in the comprehension
scheme, whereas no corresponding assumption is implicit in our commitment
to a scheme within a first-order theory. On the view now under consideration,
therefore, we are all really second-order reasoners in disguise. Our commit-
ment to a first-order scheme is merely the best approximation possible in the
particular first-order language in question to the second-order axiom that ex-
presses what we genuinely believe.
But it is important to recognize that this view is by no means forced on us

simply by the presence of a scheme. It may, for instance, be axiomatic that if a
dogΦs a man, then a man isΦed by a dog; but there is surely no temptation to
see this scheme as derived from a single second-order axiom— if only because
it is hard to see what the second-order axiom would be.
The issue is well illustrated by the arithmetical case. Here the second-order

theorist states the principle of mathematical induction as the single axiom

(∀X)((X (0) and (∀x)(X x ⇒ X (sx)) ⇒ (∀x)X x),

whereas the first-order reasoner is committed only to the instances

(Φ(0) and (∀x)(Φ(x) ⇒ Φ(sx)) ⇒ (∀x)Φ(x)

for all replacements ofΦ by a formula in the first-order language of arithmetic.
It is by no means obvious that the only route to belief in all these instances is
via a belief in the second-order axiom. Isaacson (1987), for example, has ar-
gued that there is a stable notion of arithmetical truth which grounds only the
first-order axioms, and that all the familiar examples of arithmetical facts not
provable on their basis require higher-order reflection of some kind in order to
grasp their truth. If this is right, it opens up the possibility that someone might
accept all the first-order axioms formulable in the language of arithmetic but
regard higher-order reflection as in some way problematic and hence resist
some instance of the second-order axiom.
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1.4 The choice of logic

The distinction between first- and second-order logic that we have been dis-
cussing was originally made by Peirce, and was certainly familiar to Frege,
but neither of them treated the distinction as especially significant: as van
Heijenoort (1977, p. 185) has remarked, ‘When Frege passes from first-order
logic to a higher-order logic, there is hardly a ripple.’ The distinction is
given greater primacy by Hilbert and Ackermann (1928), who treat first- and
higher-order logic in separate chapters, but the idea that first-order logic is
in any way privileged as having a radically different status seems not to have
emerged until it became clear in the 1930s that first-order logic has a com-
plete formalization but second-order logic does not. The result of this was
that by the 1960s it had become standard to state mathematical theories in
first-order form using axiom schemes. Since then second-order logic has been
very little studied by mathematicians (although recently there seems to have
been renewed interest in it, at least among logicians).
So there must have been a powerful reason driving mathematicians to first-

order formulations. What was it? We have already noted the apparent fail-
ure of attempts to supply plausible constraints on inference which character-
ize first-order logic uniquely, but if first- and second-order logic are the only
choices under consideration, then the question evidently becomes somewhat
simpler, since all we need do is to find a single constraint which the one satis-
fies but not the other. Yet even when the question is simplified in this manner,
it is surprisingly hard to say for sure what motivated mathematicians to choose
first-order over second-order logic, as the texts one might expect to give reas-
ons for the choice say almost nothing about it.
Very influential on this subject among philosophers (at least in America)

was Quine: he argued that the practice of substituting second-order variables
for predicates is incoherent, because quantified variables ought to substitute,
as in the first-order case, for names; and he queried whether there is a well-
understood domain of entities (properties, attributes or whatever) that they
can be taken to refer to. Now Quine’s criticisms are not very good — for a
persuasive demolition see Boolos 1975 — but in any case they are evidently
not of the sort that would have influenced mathematicians even if they had
read them.
A more likely influence is Bourbaki (1954), who adopted a version of first-

order logic. It is unquestionable that Bourbaki’s works were widely read by
mathematicians, in contrast to Quine’s: Birkhoff (1975), for instance, recalls
that their ‘systematic organization and lucid style mesmerized a whole gen-
eration of American graduate students’. But the mere fact that Bourbaki
adopted a first-order formulation certainly cannot be the whole of an ex-
planation: many other features of Bourbaki’s logical system (his use of Hil-
bert’s ε-operator, for instance, or his failure to adopt the axiom of foundation)
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sank without trace. What may have influenced many mathematicians was the
philosophy of mathematics which led Bourbaki to adopt a first-order formula-
tion of his system. This philosophy has at its core a conception of rigour that
is essentially formalist in character. In an unformalized mathematical text, he
says,

one is exposed to the danger of faulty reasoning arising from, for example, incor-
rect use of intuition or argument by analogy. In practice, the mathematician who
wishes to satisfy himself of the perfect correctness or ‘rigour’ of a proof or a theory
hardly ever has recourse to one or another of the complete formalizations available
nowadays . . . In general, he is content to bring the exposition to a point where his ex-
perience and mathematical flair tell him that translation into formal language would
be no more than an exercise of patience (though doubtless a very tedious one). If,
as happens again and again, doubts arise as to the correctness of the text under con-
sideration, they concern ultimately the possibility of translating it unambiguously into
such a formalized language: either because the same word has been used in different
senses according to the context, or because the rules of syntax have been violated by
the unconscious use of modes of argument which they do not specifically authorize.
Apart from this last possibility, the process of rectification, sooner or later, invariably
consists in the construction of texts which come closer and closer to a formalized text
until, in the general opinion of mathematicians, it would be superfluous to go any
further in this direction. In other words, the correctness of a mathematical text is veri-
fied by comparing it, more or less explicitly, with the rules of a formalized language.
(Bourbaki 1954, Introduction)

This conception of the formalism as an ultimate arbiter of rigour has cer-
tainly been influential among mathematicians.

I think there is clear evidence that the way in which doubts (about a piece of math-
ematics) are resolved is that the doubtful notions or inferences are refined and cla-
rified to the point where they can be taken as proofs and definitions from existing
notions, within some first order theory (which may be intuitionistic, non-classical, or
category-theoretical, but in mainstream mathematics is nowadays usually some part
of set theory, at least in the final analysis). (Drake 1989, p. 11)

The attraction of this view is that in principle it reduces the question of the
correctness of a purported proof to a purely mechanical test. Adopting a
fully formalized theory thus has the effect of corralling mathematics in such a
way that nothing within its boundary is open to philosophical dispute. This
seems to be the content of the observation, which crops up repeatedly in the
mathematical literature, that mathematicians are platonists on weekdays and
formalists on Sundays: if a mathematical problem is represented as amounting
to the question whether a particular sentence is a theorem of a certain formal
system, then it is certainly well-posed, so the mathematician can get on with
the business of solving the problem and leave it to philosophers to say what its
significance is.

On foundations we believe in the reality of mathematics, but of course when philo-
sophers attack us with their paradoxes we rush behind formalism and say: ‘Mathem-
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atics is just a combination of meaningless symbols.’ . . . Finally we are left in peace to
go back to our mathematics and do it as we have always done, with the feeling each
mathematician has that he is working with something real. (Dieudonné 1970, p. 145)

But this view gives rise to a perplexity as to the role of the formalism in ground-
ing our practice. For Gödel’s incompleteness theorem shows that no formal-
ism encompasses all the reasoning we would be disposed to regard as correct;
and even if we restrict ourselves to a fixed first-order formal theory, Gödel’s
completeness theorem shows only that what is formally provable coincides
extensionally with what follows from the axioms (see Kreisel 1980, pp. 161–2).
The role the formal rules play in actual reasoning is in fact somewhat

opaque, and indeed the authors of Bourbaki were uncomfortably aware of
this even as they formulated the view just quoted: the minutes of their meet-
ings report that Chevalley, one of the members involved in writing the text-
books, ‘was assigned to mask this as unhypocritically as possible in the general
introduction’ (Corry 1996, pp. 319–20). At the beginning of the text proper
(Bourbaki 1954) they state a large number of precise rules for the syntactic
manipulation of strings of symbols, but then, having stated them, immediately
revert to informal reasoning. So ‘the evidence of the proofs in the main text
depends on an understood notion of logical inference’ (Kreisel 1967b, p. 210),
not on the precise notion defined by the formal specification of syntax. At
the time they were writing the book, this was a matter of straightforward ne-
cessity: they realized that to formalize even simple mathematical arguments
using the formalism they had chosen would take too long to be feasible. They
seriously under-estimated just how long, though: they claimed that the num-
ber of characters in the unabbreviated term for the cardinal number 1 in their
formal system was ‘several tens of thousands’ (Bourbaki 1956, p. 55), but the
actual number is about 1012 (Mathias 2002). Only much more recently has it
become possible to contemplate using computers to check humanly construc-
ted mathematical arguments against formal norms of correctness; but this is
still no more than an ongoing research project, and even if it is carried out
successfully, it will remain unclear why the fact that a proof can be formalized
should be regarded as a criterion of its correctness.

1.5 Definite descriptions

If Φ(x) is a formula, let us abbreviate (∀y)(Φ(y) ⇔ x = y) as Φ!(x). The
formula (∃x)Φ!(x) is then written (∃!x)Φ(x) and read ‘There exists a unique
x such that Φ(x)’. Strictly speaking, though, this definition of Φ!(x) is unsatis-
factory as it stands. If Φ(x) were the formula ‘x = y’, for example, we would
find that Φ!(x) is an abbreviation for (∀y)(y = y ⇔ x = y), which is true iff x
is the only object in existence, whereas we intended it to mean ‘x is the unique
object equal to y’, which is true iff x = y. What has gone wrong is that the
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variable y occurs in the formula Φ(x) and has therefore become accidentally
bound. This sort of collision of variables is an irritating feature of quantified
logic which we shall ignore from now on. We shall assume whenever we use
a variable that it is chosen so that it does not collide with any of the other
variables we are using: this is always possible, since the number of variables
occurring in any given formula is finite whereas the number of variables we
can create is unlimited. (We can add primes to x indefinitely to obtain x ′, x ′′,
etc.).
If Φ(x) is a formula, then we shall use the expression ι!xΦ(x), which is read

‘the x such that Φ(x)’, to refer to the unique object which is Φ if there is one,
and to nothing otherwise. Expressions of this form are called definite descriptions.
More generally, expressions of the sort that denote objects are called terms. If
Φ(x, x1, . . . , xn) is a formula depending on the variables x, x1, . . . , xn , then

ι!xΦ(x, x1, . . . , xn) is a term depending on x1, . . . , xn . Proper names are also
terms, but they do not depend on any variables. We shall use lower-case
Greek letters such as σ, τ, etc. to stand for arbitrary terms; if the term σ
depends on the variables x1, . . . , xn , then we can write it σ(x1, . . . , xn) to
highlight that fact. These schematic lower-case Greek letters are, like the
upper-case Greek letters we brought into service earlier to stand for formulae,
part of the metalanguage, not of the object language: they stand in a schematic
sentence in the places where particular terms stand in an actual sentence.
If a term ‘σ’ denotes something, then we shall say that σ exists. It is a

convention of language that proper names always denote something. The
same is not true of definite descriptions: consider for example the description

ι!x(x �= x). In general, ι!xΦ(x) exists iff (∃!x)Φ(x). We adopt the convention
that if σ and τ are terms, the equation σ = τ is to be read as meaning ‘If one
of σ and τ exists, then they both do and they are equal’.
Because definitions are formally just ways of introducing abbreviations, the

question of their correctness is simply one of whether they enable us mech-
anically and unambiguously to eliminate the expression being defined from
every formula in which it occurs; the correctness in this sense of the defini-
tions in this book will always (I hope) be trivially apparent. (The question of
their psychological potency is of course quite a different matter.)
The things for which definitions introduce abbreviations will be either for-

mulae or terms. If they are terms, then apart from their formal correctness
(i.e. unambiguous eliminability) there is the question of the existence of ob-
jects for them to refer to. It is not wrong to use terms which do not denote
anything; but it may be misleading, since the rules of logic are not the same
for them as they are for ones which do. (For example, the move from Φ(σ)
to (∃x)Φ(x) is fallacious if σ does not exist.) So the introduction of a new
symbol to abbreviate a term will sometimes be accompanied by a justification
to show that this term denotes something; if no such justification is provided,
the reason may well be that the justification in question is completely trivial.
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Notes

The logical spine of this book will be the informal exposition of a particular
axiomatic theory. No knowledge of metalogic is needed in order to follow
that exposition, but only what Bourbaki famously called ‘a certain capacity
for abstract thought’. The commentary that surrounds this spine, which aims
to flesh out the exposition by means of various more or less philosophical re-
flections on its intended content, does occasionally allude to a few metalogical
results, however. Most readers will no doubt be familiar with these already,
but those who are not will find enough for current purposes in the enjoyably
opinionated sketch by Hodges (1983): they should pay special attention to the
limitative results such as the Löwenheim/Skolem theorems and the existence
of non-standard models of first-order theories.
I have cautioned against regarding formalizability as a criterion of the cor-

rectness of mathematical reasoning. Nonetheless it is of considerable import-
ance to note that the theory which forms the spine of this book is capable
of formalization as a first-order theory, since it is this that ensures the ap-
plicability to it of the metalogical results just alluded to. Implicit through-
out the discussion, therefore, will be the distinction between object language
and metalanguage, and the related distinction between use and mention. Al-
though I have promised to ignore these distinctions whenever it aids readab-
ility to do so, it is important to be aware of them: Quine (1940, §§ 4–6) offers
a bracing lecture on this subject.
Goldfarb (1979) illuminates the context for the rise to dominance of first-

order logic without really attempting an explanation for it. Some further clues
are offered by G.H. Moore (1980). However, there is much about this matter
that remains obscure.
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Collections

2.1 Collections and fusions

The language of aggregation is everywhere: a library consists of books, a uni-
versity of scholars, a parliament of crooks. Several words are commonly used,
depending on context, to describe these formations of one thing from many:
my library is a collection of books on a manifold of different subjects; it includes a
set of Husserl texts, which belong, alas, to the class of books I have never quite
got round to reading; the extension of my library is not that of all the books
that I own, since I keep many others at home, but in sum, I was surprised to
discover recently, they weigh well over a ton.
It will turn out that there are several different concepts here sheltering un-

der one umbrella, and we shall need quite shortly to press several of these
words — set, class, extension, collection — into technical service to express
them. In the meantime, therefore, we shall reserve the word ‘aggregate’ as
our umbrella term for all such notions.
But what is an aggregate? What, that is to say, is the subject matter of the

theory we wish to set up? Wemight start by saying that an aggregate is, at least
in the standard cases of which ordinary language usually treats, a single entity
which is in some manner composed of, or formed from, some other entities.
But the standard cases have a tendency to obscure the distinction between two
quite different ways in which it has been taken that things can be aggregated
— collection and fusion. Both are formed by bundling objects together, but a
fusion is no more than the sum of its parts, whereas a collection is something
more. Whatmore it is is disconcertingly hard to say, and this has inclined some
philosophers, especially those with nominalist sympathies, to prefer fusions:
a fusion, they say, is no more than an alternative way of referring, in the
singular, to the objects that make it up, which we might otherwise refer to in
the plural.

To be sure, if we accept mereology [the science of this sort of aggregation], we are
committed to the existence of all manner of mereological fusions. But given a prior
commitment to cats, say, a commitment to cat-fusions is not a further commitment.
The fusion is nothing over and above the cats that compose it. It just is them. They
just are it. Take them together or take them separately, the cats are the same portion
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of Reality either way. Commit yourself to their existence all together or one at a
time, it’s the same commitment either way. If you draw up an inventory of Reality
according to your scheme of things, it would be double counting to list the cats and
then also list their fusion. In general, if you are already committed to some things, you
incur no further commitment when you affirm the existence of their fusion. The new
commitment is redundant, given the old one. (Lewis 1991, pp. 81–2)

A collection, by contrast, does not merely lump several objects together into
one: it keeps the things distinct and is a further entity over and above them.
Various metaphors have been used to explain this — a collection is a sack
containing its members, a lasso around them, an encoding of them — but
none is altogether happy.1 We need to be aware straightaway, therefore, that
collections are metaphysically problematic entities if they are entities at all,
and need to be handled with care.
The contrast between collections and fusions becomes explicit when we

consider the notion of membership. This is fundamental to our conception of
a collection as consisting of its members, but it gets no grip at all on the notion
of a fusion. The fusion of the cards in a pack is made up out of just those cards,
but they cannot be said to be its members, since it is also made up out of the
four suits. A collection has a determinate number of members, whereas a
fusion may be carved up into parts in various equally valid (although perhaps
not equally interesting) ways.
The distinction between collections and fusions is at its starkest when we

consider the trivial case of a single object such as my goldfish Bubble. The
collection whose only member is Bubble is usually called a singleton and written
{Bubble}. It is not the same object as Bubble, since it has exactly one member
(Bubble), whereas Bubble itself, being a goldfish, does not have any members
at all. The fusion of Bubble, by contrast, is just Bubble itself, no more and no
less.
And what if we try to make something out of nothing? A container with

nothing in it is still a container, and the empty collection is correspondingly
a collection with no members. But a fusion of nothing is an impossibility: if
we try to form a fusion when there is nothing to fuse, we obtain not a trivial
object but no object at all.
The distinction between collections and fusions, and the corresponding one

between membership and inclusion, were not clearly drawn until the end of
the 19th century. In textbooks the distinction between membership and in-
clusion is sometimes attributed to Peano, who introduced different notations
for the two concepts in 1889, §4. But it is perhaps a little generous to give
Peano all the credit: only a page or two later we find him asserting that if
k is contained in s, then k is also an element of s just in case k has exactly

1See Lewis 1991 for an excellent discussion of the difficulty of making good metaphysical sense
of such metaphors.
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one member, which is to make precisely the blunder he had apparently just
avoided. A year later (1890, p. 192) he did indeed introduce a notation to
distinguish between a set b and the singleton {b} (which he denoted ιb), but
his motivation for this was somewhat quaint: ‘Let us decompose the sign =
into its two parts is and equal to; the word is is already denoted by ε; let us
also denote the expression equal to by a sign, and let ι (the first letter of ισoς) be
that sign; thus instead of a = b one can write aειb.’ Evidently, then, Peano’s
motivation was overwhelmingly notational. The language of classes was for
him, at this stage at least, just that — a language — and there is little evidence
that he conceived of classes as entities in their own right.
It seems in fact to be Frege who deserves credit for having first laid out the

properties of fusions clearly. A fusion, he said, ‘consists of objects; it is an
aggregate, a collective unity, of them; if so it must vanish when these objects
vanish. If we burn down all the trees of a wood, we thereby burn down the
wood. Thus there can be no empty fusion.’ (1895, pp. 436–7, modified) But
the work Frege was reviewing when he made this remark (Schröder 1890–5)
was very influential for a time: it gave rise to a tradition in logic which can be
traced through to the 1920s. And it was plainly fusions, not collections, that
Dedekind had in mind in Was sind und was sollen die Zahlen? when he avoided
the empty set and used the same symbol for membership and inclusion (1888,
nos. 2–3) — two tell-tale signs of a mereological conception. He drafted an
emendation adopting the collection-theoretic conception only much later (see
Sinaceur 1973).
Given the early popularity of fusions, then, it is striking how complete and

how quick the mathematical community’s conversion to collections was. In
practical terms it was no doubt of great significance that Zermelo chose col-
lections, not fusions, as the subject of his axiomatization in 1908b. And the
distinctions which mereology elides, such as that between the cards in a pack
and the suits, are ones which mathematicians frequently wish to make: so
talk of collections has something to recommend it over talk of fusions, where
mathematics is concerned. But this cannot be the whole explanation: as in
the parallel case of first- and second-order logic that we noted earlier, more
remains to be said.

2.2 Membership

Collections, unlike fusions, can always be characterized determinately by their
membership. In our formalism we shall therefore treat the relation of mem-
bership as primitive. In other words, the language of the theory of collections
has in it as a non-logical primitive a binary relation symbol ‘∈’. The formula
‘x ∈ y’ is read ‘x belongs to y’.
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But of course we must not lose sight of the fact that the theory of collections
is of no use in itself: its point is to let us talk about other things. We shall not
make any presuppositions here about what those other things are. We shall
simply assume that we start with a theory T about them. We shall call the
objects in the domain of interpretation of T individuals. Some other authors
call them ‘atoms’, and many, in tribute to the dominance of German writers
in the development of the subject, call them ‘Urelemente’ (literally ‘original
elements’). Before we start talking about collections, we need to ensure that
we do not unthinkingly treat the claims made by T about the individuals as if
they applied to collections. (If T were a formalization of Newtonian mech-
anics, for instance, we would not want to find ourselves claiming without
argument that collections are subject to just the same physical laws as their
members.) To ring-fence the individuals, then, we introduce a predicate U(x)
to mean that x is an individual, and we relativize all the axioms of T to U.
That is to say, we replace every universal quantifier ‘(∀x) . . . ’ in an axiom
of T with ‘(∀x)(U(x) ⇒ . . . )’ and every existential quantifier ‘(∃x) . . . ’ with
‘(∃x)(U(x) and . . . )’; and for every constant ‘a’ in the language of T we add
U(a) as a new axiom.
Having relativized T to the individuals in this manner, we are now in a

position to introduce the central idea of the collection of objects satisfying a
property Φ.

Definition. If Φ(x) is a formula, the term ι!y(not U(y) and (∀x)(x ∈ y ⇔
Φ(x))) is abbreviated {x :Φ(x)} and read ‘the collection of all x such that
Φ(x)’.

In words: {x : Φ(x)}, if it exists, is the unique non-individual whose ele-
ments are precisely the objects satisfying Φ. We shall also use variants
of this notation adapted to different circumstances: for instance, we of-
ten write {x ∈ a :Φ(x)} instead of {x : x ∈ a and Φ(x)}; we write {y} for
{x : x = y}, {y, z} for {x : x = y or x = z}, etc.; and we write {σ(x) :Φ(x)} for
{y : (∃x)(y = σ(x) and Φ(x))}. The objects satisfying Φ are said to be elements
or members of {x :Φ(x)}; they may, but need not, be individuals. The collec-
tion {x :Φ(x)}, on the other hand, is constrained by definition not to be an
individual.

(2.2.1) Lemma. If Φ(x) is a formula such that a = {x :Φ(x)} exists, then
(∀x)(x ∈ a ⇔ Φ(x)).

Proof . This follows at once from the definition.

It would, I suppose, have been more accurate to call this a ‘lemma scheme’,
since it cannot be formalized as a single first-order proposition but has to be
thought of as describing a whole class of such propositions. We shall not be



Russell’s paradox 25

this pedantic, however, and will continue to describe such schemes as lemmas
(or propositions, or corollaries, or theorems, as the case may be).

(2.2.2) Lemma. If Φ(x) and Ψ(x) are formulae, then

(∀x)(Φ(x) ⇔ Ψ(x)) ⇒ {x :Φ(x)} = {x :Ψ(x)}.
Proof . If (∀x)(Φ(x) ⇔ Ψ(x)), then (∀x)(x ∈ y ⇔ Φ(x)) ⇔ (∀x)(x ∈ y ⇔
Ψ(x)), and so {x :Φ(x)} = {x :Ψ(x)}.
Note that this lemma has to be interpreted according to the convention we
introduced in §1.5: the collections derived from logically equivalent formulae
are equal if they exist.

2.3 Russell’s paradox

Let us call a property collectivizing if there is a collection whose members are
just the objects which have it. One of the matters that will interest us is to try
to settle which properties are collectivizing: not all of them can be, for that
supposition rapidly leads to a contradiction.

(2.3.1) Russell’s paradox (absolute version). {x : x /∈ x} does not exist.
Proof . Suppose that a = {x : x /∈ x} exists. Then (∀x)(x ∈ a ⇔ x /∈ x)
[lemma 2.2.1]. Therefore in particular a ∈ a ⇔ a /∈ a. Contradiction.

The first thing to notice about this result is that we have proved it before
stating any axioms for our theory. This serves to emphasize that Russell’s
paradox is not a challenge to, or refutation of, any one theory of collections,
but a feature that has to be taken account of in any such theory. It is worth
noting, too, how elementary is the logic that is used to derive the paradox.
That is not to say, of course, that the paradox is derivable in any logical system
whatever. By the simple device of writing out the proof in full we could no
doubt identify a restricted logic which blocks its derivation. This heroic course
has indeed been recommended by some authors, but it is an extremely desperate
strategy, since the restrictions these authors have to impose (e.g. denying the
transitivity of implication) risk crippling logic irreparably.
Non-self-membership was not the first instance of a non-collectivizing prop-

erty to be discovered: Cantor told Hilbert in 1897 that ‘the set of all alephs
. . . cannot be interpreted as a definite, well-defined finished set’. Nor was the
sad appendix which Frege added to the second volume of the Grundgesetze the
first reference in print to a paradox of this kind: Hilbert referred in his (1900)
lecture on the problems of mathematics to ‘the system of all cardinal numbers
or even of all Cantor’s alephs, for which, as may be shown, a consistent sys-
tem of axioms cannot be set up’. What is particularly striking about Russell’s
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paradox, however, is that it is in essence more purely logical than the others:
for any binary relation R it is a first-order logical truth that

not (∃y)(∀x)(x R y ⇔ not x R x).

By contrast, the other set-theoretic paradoxes involve cardinal or ordinal
numbers in some way.2 Curiously, Hilbert described these other paradoxes
(in a letter to Frege) as ‘even more convincing’: it is not clear why.

2.4 Is it a paradox?

A paradox is a fact which is contrary to expectation (from the Greek παρα +
δoξα, ‘beyond expectation’). Whether Russell’s result is a paradox presumably
depends on how one understands the notion of a collection. It was certainly a
surprise to Frege to be told that one of the axioms of his formal system led to
contradiction, but what he was trying to capture was probably not the notion
of a collection but a notion more closely connected to logic which we shall
here call a class. So although there was undoubtedly a serious flaw in Frege’s
understanding (a flaw which we shall discuss in appendix B), that does not yet
give us any reason to think that the flaw infects the notion of a collection.
Indeed it is quite common nowadays to find books presenting the notion

of a collection in such a way that what Russell discovered appears not to be
a paradox at all, but rather something we should have expected all along.
However, this Panglossian view should be treated with a little scepticism, since
even if all parties now agree that there is a coherent notion of collection, they
do not yet seem to agree on what it is.
In any case, the idea that the paradoxes are not really so paradoxical if

we only think about them in the right way is hard to find in print before
Gödel (1944) and did not become widespread until much later. In 1940 Quine
thought the paradoxes ‘were implicit in the inferential methods of uncritical
common sense’ (1940, p. 166) and as late as 1951 he could still assert that
‘common sense is bankrupt for it wound up in contradiction. Deprived of his
tradition, the logician has had to resort to myth-making.’ (1951, p. 153) Even
now there are still many who would agree with him (e.g. Weir 1998a).
It is also worth being cautious about the significance of the set-theoretic

paradoxes for the foundations of mathematics. The 30 years following their
discovery are often referred to as the period of the crisis of foundations, but
it is not obvious that they deserve this title. Certainly there was a crisis in
the foundations of set theory, but even here many mathematicians continued
to work informally in ways that did not depend on one resolution or other of

2We shall look at the technicalities of these other paradoxes in later sections when we have
defined the notions of cardinal and ordinal numbers on which they depend.
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the paradoxes: Hausdorff’s (1914) textbook on set theory, for example, barely
mentions them. And there is no reason to regard even this as a crisis in the
foundations of mathematics more generally unless one already accepts the set-
theoretic reduction of mathematics; but in advance of a satisfying resolution
of the paradoxes the more natural reaction would be simply to treat them as
a refutation of the possibility of such a reduction.
There is nonetheless a more general threat which the set-theoretic para-

doxes have sometimes been interpreted as presenting, namely that the canons
of reasoning which we ‘naively’ (i.e. pre-theoretically) find compelling are in
fact contradictory. Those who have argued this have not, however, agreed on
what follows from it. One moral, favoured by the more logically inclined, is
that as common sense can lead us astray, we should not trust it but rely instead
on the outputs of a formal system; but others (e.g. Priest 1995; Restall 1992)
have thought instead that we should learn to accept that common sense (which
is in the end all we have) is inevitably contradictory — learn, in short, to tol-
erate contradictions.
Now this last issue is to some extent tangential to the concerns of this book,

since it does not arise only in relation to the set-theoretic paradoxes: the moral
that common sense is contradictory could just as well have been drawn from
a consideration of the liar paradox or the paradox of the unexpected hanging.
So it is hard to see why this is any more pressing an issue for set theorists than
for anyone engaged in rational argument. I shall therefore confine myself
here to recording my faith in tutored common sense as a tool for deductive
reasoning, and continue to make free use of this tool in what follows.
But even if the set-theoretic paradoxes are not uniquely troubling, they are

troubling nevertheless: simply saying that we ought never to have expected
any property whatever to be collectivizing, even if true, leaves us well short of
an account which will settle which properties are collectivizing and which are
not. What we must do if we are to achieve this last objective is evidently to
refine our conception of what a collection is, and it will be a large part of the
task of this book to explore the prospects for a satisfactory resolution of the
paradoxes by this means.

2.5 Indefinite extensibility

One idea that has cropped up repeatedly (e.g. Lear 1977; Dummett 1993) is
that it is central to the correct resolution of the paradoxes to limit ourselves to
intuitionistic logic, i.e. to forswear the law of the excluded middle as a general
principle applicable to any proposition that concerns collections. It needs to
be emphasized straightaway that this proposal does not belong to the class we
mentioned earlier of attempts to resolve the paradoxes simply by weakening
the logic while clinging onto the naive view that every property is collect-
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ivizing. The argument we gave in §2.3 to show that the property of non-
self-membership is not collectivizing makes no use of excluded middle and is
therefore intuitionistically valid. So the intuitionistic reasoner is barred from
the naive view just as firmly as the classicist.3

A rejection of intuitionistic logic when reasoning about collections can
therefore only be one part of a resolution of the paradoxes and not the whole.
It is unsurprising, therefore, that most of the arguments that may be given for
this are intimately linked to particular conceptions of what a collection is. For
this reason we shall at present confine ourselves to exploring one argument,
due to Dummett, which does not on its face depend on any particular con-
ception. His argument is that the correct logic to use when reasoning about
what he calls an indefinitely extensible concept is intuitionistic. He takes the
paradoxes to show that the concept of a collection is indefinitely extensible,
but this is not, according to him, the only example. So his argument would,
if correct, lead to intuitionism in a variety of spheres of discourse, of which
mathematics is only the most prominent.
But not in all. Although indefinite extensibility is endemic in mathemat-

ics and logic, Dummett is not claiming that it infects our ordinary sublunary
discourse. According to Heck (1993, p. 233), this is

a new argument for intuitionism, quite different in character from the meaning-
theoretic arguments for which Dummett is well known. It is a local argument for
anti-realism about mathematics, one which depends upon considerations peculiarly
mathematical in character; it therefore has not the propensity to generalize which the
meaning-theoretic arguments have.

In one respect Heck is not quite right: the argument was not in fact new
when Dummett presented it in 1991 but can already be found in his earlier
writings, for instance in 1973, pp. 529–30 and 568–9. What is new in his
publications of the 1990s is rather his conception of how this local argument
for intuitionism in mathematics is related to the global considerations to which
Heck alludes. What has changed is that Dummett no longer imagines that a
wholly general argument from considerations of meaning could deliver a global
anti-realism — a reason, that is to say, to abandon classical logic tout court.
Instead he now sees these considerations as doing no more than provide a
scheme whose instances are the outlines of arguments for anti-realism local
to particular spheres of discourse. How such an outline is to be fleshed out
will then depend on parochial features of the sphere of discourse in question.
What this framework does, therefore, is permit us to see Dummett’s ‘new’

3The reason this needs some emphasis is that one commonly finds the argument establishing
Russell’s paradox expressed as a dilemma: the collection a either belongs to itself or not, but
either supposition leads to contradiction. Put like this, the argument does indeed depend on the
law of the excluded middle; but as we have seen, this is not the only way to put it.
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argument for intuitionism as indicating a way in which the outline argument
can be fleshed out in the case where the sphere of discourse is mathematics.
What, then, is Dummett’s argument? As I have suggested, Dummett usu-

ally argues via an intermediate stage. First he presents an analysis of the failure
of a concept to be collectivizing as owing to its indefinite extensibility. Then he
argues that the correct logic to use in any reasoning that involves quantifica-
tion over the range of an indefinitely extensible concept is intuitionistic. Let
us consider these two stages of Dummett’s argument in turn.
The first stage, the analysis of collectivization failure as due to indefinite

extensibility, was originated not by Dummett but by Russell, who as early as
1906b called such properties self-reproductive. A property is self-reproductive or
indefinitely extensible if, ‘given any class of terms all having [the] property,
we can always define a new term also having the property’ (Russell 1973a,
p. 144). More precisely, a property F is indefinitely extensible if there is a
process which, when applied to some Fs, gives rise to another object which is
not among them but is nevertheless an F .
As an analysis of the known paradoxes, this is quite persuasive. Not only

Russell’s paradox but others we shall come across later, such as Burali-Forti’s
(§11.2), can without too much distortion be put into a form whereby what they
exhibit is that a certain property — the one whose instances we are attempt-
ing to collect — is indefinitely extensible in Dummett’s sense. It is less clear,
though, what reason there is to think that any non-collectivizing property will
be indefinitely extensible. We might well think that vagueness is a second,
distinct reason why some collections — the collection of balding men, or of
short words — fail to exist. If we exclude vague properties by fiat, we have,
of course, an inductive argument for the claim, since, as just observed, all the
proofs we have found so far of failure to collectivize go via indefinite extensib-
ility; but we can hardly regard that as compelling, especially since some of the
paradoxes did not arise independently but were discovered by analysing the
forms of argument employed in those already known: if there is a set-theoretic
paradox that is not analysable in terms of indefinite extensibility, then by the
nature of the case it involves a wholly new idea, and we plainly have little idea
in advance how likely this is to occur.
Notice, too, that even if we agree that the failure to collectivize is always

a result of indefinite extensibility, the route from there via Dummett’s second
claim to his conclusion — that indefinite extensibility leads to the abandon-
ment of classical logic in all mathematical reasoning — depends on some sort
of set-theoretic reductionism. For that reason, perhaps, Dummett has also
attempted to argue directly (i.e. independent of any such reduction) that in-
definite extensibility is a feature not just of the concept set but of natural number
and real number. These direct arguments are problematic, but this is not the
place to discuss them. Instead let us move on to Dummett’s second main
claim, namely that the correct logic to use when reasoning about the range of
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an indefinitely extensible concept is intuitionistic and not classical.
It is no exaggeration to say that commentators have found Dummett’s ar-

gument for this claim obscure. Boolos (1993), Clark (1993a; 1998), Oliver
(1998) and Wright (1999) are among those who have struggled to understand
it. At times the argument has seemed to centre on the idea that indefinite
extensibility is a species of vagueness, and this has understandably puzzled
commentators, since it is hard to see how the paradoxes lend encouragement
to the thought that it is vague which objects are sets.
What seems most likely is that Dummett’s failure to articulate clearly why

indefinite extensibility should lead inexorably to intuitionism is explained by
the level of generality at which the argument is couched. Precisely because this
move cannot resolve the paradoxes on its own, the reason for making it cannot
be independent of the conception driving the other parts of the resolution. We
should therefore return to this issue once we have fleshed out in more detail
some strategies for resolving the paradoxes.

2.6 Collections

We have defined ‘collection of . . . ’, but not ‘collection’ on its own. The naive
idea is that collections are precisely objects of the form {x :Φ(x)} for some
formulaΦ(x); but this does not work under the formal restrictions we imposed
on ourselves in chapter 1 (since the phrase ‘for some formula’ is not first-
order). It turns out, though, that we can get what we want from the following
definition, which is first-order.

Definition. We say that b is a collection if b = {x : x ∈ b}.
(2.6.1) Lemma. No collection is an individual.

Proof . This follows at once from the definitions.

So nothing is both a collection and an individual. We have not yet said, and
will not make any assumption that commits us to saying, that everything is one
or the other. Something else which we have not assumed, but which we might
have added for the sake of tidiness, is that individuals do not have members.

(2.6.2) Lemma. Suppose that Φ(x) is a formula. If {x :Φ(x)} exists, then it
is a collection.

Proof . If b = {x :Φ(x)} exists, then
(∀x)(x ∈ b ⇔ Φ(x)) [lemma 2.2.1],

so that {x : x ∈ b} exists and
b = {x :Φ(x)} = {x : x ∈ b} [lemma 2.2.2].
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In the remainder of this chapter and in the following one, a, b, c, a′, b′, c′, etc.
will always denote collections.

In particular the quantifiers ‘(∀a)’ and ‘(∃a)’ should be read ‘For every col-
lection a’ and ‘For some collection a’ respectively. We continue to use x , y, z,
etc. as variables ranging over everything — collections, individuals, whatever.
We write (∀x ∈ a)Φ instead of (∀x)(x ∈ a ⇒ Φ), and (∃x ∈ a)Φ instead

of (∃x)(x ∈ a and Φ). We also write Φ(a) for the result of replacing every
quantifier ‘(∀x)’ or ‘(∃x)’ in Φ with the corresponding relativized quantifier
‘(∀x ∈ a)’ or ‘(∃x ∈ a)’ respectively.

(2.6.3) Lemma. Suppose that Φ(x) is a formula.

(∃a)(∀x)(x ∈ a ⇔ Φ(x)) ⇔ {x :Φ(x)} exists.
Proof . If a is a collection such that (∀x)(x ∈ a ⇔ Φ(x)), then

a = {x : x ∈ a} = {x :Φ(x)} [lemma 2.2.2]
and so {x :Φ(x)} exists. Conversely, if a = {x :Φ(x)} exists, then it is a collec-
tion [lemma 2.6.2] and (∀x)(x ∈ a ⇔ Φ(x)) [lemma 2.2.1].

(2.6.4) Extensionality principle.

(∀x)(x ∈ a ⇔ x ∈ b) ⇒ a = b.

Proof . Suppose that a and b are collections. Then a = {x : x ∈ a} and b =
{x : x ∈ b}. But if (∀x)(x ∈ a ⇔ x ∈ b), then

{x : x ∈ a} = {x : x ∈ b} [lemma 2.2.2],
and so a = b.

In words: a collection is determined by its elements.
The extensionality principle is taken as an axiom by Zermelo (1908b) —

he calls it the axiom of definiteness (Axiom der Bestimmtheit) — and by most
treatments since. The presentation we have given here, which makes it a
theorem rather than an axiom, emphasizes its purely definitional character: a
collection is just the sort of thing that is determined by its elements.
The formula (∀x)(x ∈ a ⇒ x ∈ b) is abbreviated a ⊆ b and read ‘a is

contained in b’ or ‘b contains a’ or ‘a is a subcollection of b’; the formula
‘a ⊆ b and a �= b’ is abbreviated a ⊂ b and read ‘a is strictly contained in b’
or ‘a is a proper subcollection of b’.
We say that a collection a is empty if (∀x)(x /∈ a).

Definition. Ø = {x : x �= x}.
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If it exists, Ø is evidently empty; but as we have not stated any axioms, we
cannot yet hope to be able prove formally that any collections exist, and so in
particular we cannot prove that an empty collection exists. What we can do
already is to prove that if such a collection exists, it is unique. For if a and a′

are both empty, i.e. if (∀x)(x /∈ a) and (∀x)(x /∈ a′), then

(∀x)(x ∈ a ⇔ x ∈ a′),

from which it follows by the extensionality principle that a = a′.

Definition. a � b = {x : x ∈ a and x /∈ b} (‘relative complement of b in a’).

Definition. P(a) = {b : b ⊆ a} (‘power of a’).

Definition.
⋂

a = {x : (∀b ∈ a)(x ∈ b)} (‘intersection of a’).

Definition.
⋃

a = {x : (∃b ∈ a)(x ∈ b)} (‘union of a’).

These last two notations are often varied in particular cases: we write a ∪
b instead of

⋃{a, b}, ⋃
Φ σ instead of

⋃{σ :Φ}; and correspondingly for
intersections. Thus, for instance, a∪b = {x : x ∈ a or x ∈ b} and⋃

x∈a τ(x) =
{y :(∃x ∈ a)y = τ(x)}.
Two collections a and b are said to be disjoint if they have no members in

common. A collection of collections is said to be pairwise disjoint if every pair of
them is disjoint, i.e. if no object belongs to more than one of them.
One feature of these definitions needs to be stressed, though: no claim is

being made yet that the terms we are introducing denote anything. For this
reason they should be treated with caution. For example, we cannot even
prove yet that two collections a and b are disjoint if and only if a ∩ b = Ø
since the latter statement is trivially true if it happens that neither a ∩ b nor Ø
exists, whether or not a and b are disjoint.

Notes

The theory of fusions has been almost totally neglected by mathematicians
over the last century. Interest has been somewhat greater among philosoph-
ers and philosophical logicians: Lesniewski’s studies (see Fraenkel, Bar-Hillel
and Levy 1958, pp. 200ff.) led to work by Lejewski (1964), Henry (1991) and
others, as well as to a calculus of individuals (Leonard and Goodman 1940)
of particular interest to nominalist metaphysicians. But the target of this work
has been different. Very little investigation has been done into the adequacy of
the theory of fusions as a foundation for mathematics. Indeed the collection-
theoretic way of thinking is so entrenched among mathematicians that it is
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easy for them to forget how natural it is to think of a line, say, as the sum of its
points rather than as the collection of them.
Some of the resolutions of the paradoxes that have been attempted place

restrictions on the principle of extensionality. The reason we shall not give
such resolutions house room here is that according to the approach we have
adopted, which takes extensionality as a definition, they are guilty of simply
changing the subject: whatever else it is, a theory which denies extensionality
is not a theory of collections. This view is widely shared: Boolos (1971, p. 230),
for example, hesitates to call extensionality analytic of the concept set only
because of Quinean doubts as to whether anything is analytic.
The other kind of solution we shall devote no space to is that which retains

naive comprehension. The difficulty this strategy faces is encapsulated in the
fact noted earlier that Russell’s paradox arises directly from the sentence

not(∃y)(∀x)(x R y ⇔ not x R x),

which is both a classical and an intuitionistic logical truth. A solution to the
paradoxes which clings onto naive comprehension will therefore have to be
one which makes this not a logical truth. A valiant attempt to motivate this
desperate strategy is made by Weir (1998b; 1999).
However, there is a respectable tradition in the subject that denies the exist-

ence of a hierarchical notion of collection and recognizes only fusions. Frege,
for instance, drew the distinction between the two notions precisely in order
to deny the coherence of the first. Russell similarly found the empty collection
and singletons problematic. More recently, Lewis (1991) has investigated at
length the idea of splitting the notion of collectionhood into two parts: the
mereological notion of fusion and the distinctively collection-theoretic opera-
tion of singleton formation. Lewis thus claims only to isolate the metaphysical
problem, not to solve it, since he purports to be mystified as to what this last
operation could be. I have questioned elsewhere (1993) whether he has loc-
ated the difficulty correctly, and there remains a doubt in any case whether
the relation of inclusion between collections can be assimilated to the mere-
ological relation of part to whole (see Oliver 1994).



Chapter 3

The hierarchy

In the last chapter we encountered the fact that some properties, such as non-
self-membership, are not collectivizing (i.e. do not give rise to collections). I
discouraged the notion that this is particularly surprising in itself, but I did
not provide a diagnosis. Now that we have the task of selecting axioms that
characterize some properties as collectivizing, we need to consider the matter
in more detail.

3.1 Two strategies

We can distinguish two broad strategies that have guided realists in formulat-
ing axiomatizations not just of the concept of a collection but of many other
notions in mathematics: I shall call these strategies the regressive and the intuitive.
The regressive strategy takes the purpose of the theory to be the formation

of a theoretical foundation for mathematics and regards an axiomatic base
as successful if it is strong enough to generate as theorems those results we
already believe on other grounds to be true, but not so strong as to prove
those we believe to be false. ‘The attitude is frankly pragmatic; one cures
the visible symptoms [of the paradoxes] but neither diagnoses nor attacks the
underlying disease.’ (Weyl 1949, p. 231)
According to this view, then, the object of a good axiomatization is to retain

as many as possible of the naive set-theoretic arguments which we remember
with nostalgia from our days in Cantor’s paradise, but to stop just short of
permitting those arguments which lead to paradox. ‘There is at this point
nothing left for us to do but to proceed in the opposite direction and, starting
from set theory as it is historically given, to seek out the principles required for
establishing the foundations of this mathematical discipline.’ (Zermelo 1908b,
p. 261) Note that we can make use of the regressive method only if we have a
prior commitment to some species of realism, since it enjoins us to assess the
plausibility of a putative axiom on the basis of whether it has consequences
we already believe to be true. This means of justification is not open to the
postulationists, since they hold that the terms occurring in a coherent theory
get their meaning from the axioms; so if we formulate a new theory, we cannot
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test its consequences for truth, since we cannot have any prior understanding
of what they mean, far less whether they are true.
The literature on the foundations of mathematics is littered with more or

less explicit examples of the application of the regressive method in the selec-
tion of axioms, but we need to exercise care in identifying such cases, since
formalism is so widespread among mathematicians that what appears at first
sight to be a regressive justification for an axiom may in fact be a formalist
one. Thus, for example, when Bourbaki (1949a, p. 3) says that absence of
contradiction is to be regarded ‘as an empirical fact rather than as a meta-
physical principle’, it is not immediately obvious whether this is a regressive
or a formalist remark.
But although the adoption of the regressive method is quite distinct from

formalism, it shares many of its disadvantages. For one thing, the security of
a theory that is justified by either method seems to depend on no more than
its failure so far to lead to contradiction.

During the 40 years since we have formulated with sufficient precision the axioms of
[set theory] and drawn their consequences in the most varied branches of mathemat-
ics, we have never come across a contradiction, and we are entitled to hope that one
will never be produced. (Bourbaki 1954, p. 8)

Of course, it is impossible to deny that the century which has elapsed without
a contradiction being found is psychologically influential in engendering con-
fidence in the system. But this can scarcely be regarded as amounting to very
much. The claim that the system is formally consistent is in principle refut-
able simply by exhibiting a proof of a contradiction in it. But mathematicians
routinely use only a tiny fragment of the generality permitted by the theory,
and it would presumably only be by pushing the theory to its limits that a con-
tradiction could be obtained. So the lapse of time can contribute significantly
to confidence only if attempts are being made to produce such a refutation: I
know of no such attempts.
It may be significant that the position is different for certain other theories,

notably Quine’s NF (1937) and ML (1940): the emphasis on syntactic analysis
in the studies which have been undertaken of Quine’s systems is no doubt to
some extent a consequence of the syntactic paradox-barring which motivated
them, but the question of their consistency is nonetheless regarded by many
mathematicians as having a genuinely open character that the corresponding
question for ZF does not share.1

A second, and even more serious, difficulty which the regressive method in-
herits from formalism is that it seems powerless to justify a theory that aspires
to be epistemologically foundational, since it depends on our having another

1One might wonder whether it is coincidental that ML was contradictory as initially formulated
(Rosser 1942) and needed emendation to reach its current form.
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method already available to us for assessing the truth or falsity of our axio-
matic theory’s consequences. If our knowledge that 2+2 = 4 lends support to
a theory that has it as a theorem, then it is not clear how the theory can play
a significant part in our account of that knowledge.
If the regressive strategy has its difficulties, what is the alternative? The

intuitive method invites us instead to clarify our understanding of the concepts
involved to such an extent as to determine (some of) the axioms they satisfy.
The aim should be to reach sufficient clarity that we become confident in the
truth of these axioms and hence, but only derivatively, in their consistency.
If the intuitive method is successful, then, it holds out the prospect of giving

us greater confidence in the truth of our theorems than the regressive method.
We shall therefore do what we can in pursuit of the intuitive method here.
The aim, then, will be to supply a motivation for a conception of collections
that gives us reason to believe that the axioms we shall be stating are true
independent of their consequences.

3.2 Construction

The first sort of motivation for the theory of collections to become popular
among mathematicians was the one now known as the limitation of size con-
ception. We shall consider it in §13.5. In the meantime we shall focus on
another possible motivation based on the idea that there is a fundamental re-
lation of presupposition, priority or, as we shall usually say, dependence between
collections. The conception of the theory it gives rise to is now known as the
iterative conception. In contrast with the limitation of size conception, it took a
long time to emerge. It is not mentioned directly in Russell’s (1906a) discussion
of possible solutions to the paradoxes, and the writings of the 1920s supply no
more than glimmerings of it. However, in an attempt to make the history of
the subject read more like an inevitable convergence upon the one true reli-
gion, some authors have tried to find evidence of the iterative conception quite
far back in the history of the subject. Wang, for instance, says rather implaus-
ibly that it is ‘close to Cantor’s original idea’ (1974, p. 187) and seems con-
vinced (p. 193) that it is implicit in Zermelo’s 1908b, an article which makes
no mention of it at all. Traces of the idea are to be found in Bernays (1935,
p. 55), which refers to ‘iterating the use of the quasi-combinatorial concept of a
function and adding methods of collection’, although it is perhaps a little gen-
erous of Wang to claim that Bernays here ‘develops and emphasizes’ (1974,
p. 187) the iterative conception. It is popular for modern writers to locate the
iterative conception in Zermelo (1930), but for reasons that I will explain be-
low (§3.9) I am sceptical about this. It is not really until Gödel (1947) that
we find a clear description of one version of the iterative conception in print
(although Gödel mentioned it in lectures several times in the 1930s). Even
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then it was slow to catch on: there is no mention of the iterative conception
in Bourbaki (1954), for example, and as late as (1971, p. 218n.) Boolos could
remark that although it is well known among logicians, ‘authors of set theory
texts either omit it or relegate it to back pages; philosophers, in the main, seem
unaware of it’.
It is only quite recently, then, that the idea has emerged of deriving our

conception of collections from a relation of dependence between them. When
we come to consider the properties of this relation, we have to distinguish
carefully the rather different understanding of it provided by the constructivist
and the platonist.
For the constructivist a collection depends on the objects from which it is

formed. This gives us, at least in outline, a criterion for the existence of a col-
lection: it is possible to construct a collection if and only if the objects which it
presupposes are available. Presumably, then, the relation of dependence must
be transitive and irreflexive: no object can be used in its own construction.
Moreover, the construction of a collection is supposed by the constructivist
to take place in thought, and we might take this to imply that the relation of
dependence is well-founded— that, in other words, dependence must termin-
ate eventually. The argument for this is presumably something to do with our
conception of what it amounts to (at any rate for a finite being) to understand
something.
But if the structural properties the constructivist’s relation of dependence

would need to have are tolerably clear, it is far less clear what the relation
should be. The objects a collection depends on are, we might say, those that
we require in order to construct it. But which are they?
In the case of a finite collection, all we need, at least in principle, are its

members. The same might also be said of a countable collection if we permit
supertasks, i.e. tasks which can be performed an infinite number of times in
a finite period by the device of speeding up progressively (so that successive
performances might take 1 second, 1/2 second, 1/4 second, etc., and the su-
pertask would be complete in 2 seconds). But there seems to be little hope of
extending this idea to the uncountable case (see §11.1).
What we need in general is a method for comprehending infinite collections

by means of something that is finite and hence capable of being grasped by a
finite mind, namely the property which the members of the collection satisfy.
Moreover, if this property involves other objects, they too might be presup-
posed by collections comprehended in this way. But what does ‘involve’ mean
here? One natural answer would be that a property expressed by a formula
Φ(x) involves all the objects in the range of the quantifiers occurring in Φ.
The suggestion would then be that the relation of dependence between col-
lections, which is our primary target, is in some way parasitic on a relation of
involvement between intensionally individuated properties.
There is, however, a severe difficulty with this conception, and it arises be-



38 The hierarchy

cause of the difference in individuation conditions between collections and
properties. Any one collection could, it seems, be comprehended in any
number of ways involving any number of other objects. For instance, if
a = {x :Φ(x)}, then also a = {x :Φ(x) and y = y}, no matter what y is,
but we presumably do not wish to say that a presupposes y. The only obvious
alternative is to say that a collection presupposes only those objects involved
in all ways of comprehending it, but now the difficulty is that it is very hard to
see why this should be true. There is no obvious reason why there should not
be a collection such that we require for its comprehension some object other
than its members but it does not matter which one: if so, then although we are
quite clear what it is that the collection presupposes — namely some object
not a member of it — we cannot express that presupposition relationally in
the manner that our account requires.

3.3 Metaphysical dependence

This is not a difficulty faced by the platonist, for whom the existence of a
collection is in no way dependent on our ability to comprehend it: a collection
therefore presupposes not the objects needed to think about it but only those
needed to constitute it, namely its members. These in turn will presuppose
their members, and so on down. The platonist’s relation of presupposition or
dependence is thus what we shall later call the ancestral of the membership
relation. This relation is then supposed to act as a metaphysical constraint on
existence: no collection exists if its doing so would come into conflict with this
constraint.
The difficulty the platonist now faces is to say what the relation of priority

amounts to. One possible strategy which seems to be implicit in the thinking
of many mathematicians is to regard platonism as a sort of limiting case of con-
structivism: it is, roughly, what constructivism would become if we removed
all the constraints on the creating subject. An account of the iterative concep-
tion on these lines has been given by Wang (1974, pp. 81–90), for example.
The most urgent doubt concerning this proposal, however, is whether it even
makes sense. The constructivist conception of the creating subject is of a fi-
nite, reflective, thinking being in time. Which parts of this conception are to
be regarded as ‘constraints’ to be thrown off? Presumably not the ‘thinking’
or the ‘reflective’ parts. But do we understand what it would be for a non-
temporal being to think? And what about finiteness? Later parts of this book
will be very largely concerned with tracing the rapidly growing confidence
with which mathematicians were able to handle the infinite, but it remains to
this day a real philosophical perplexity to say how we finite beings achieve this
feat of comprehending the infinite (or, indeed, whether we fully do so). Even
if the idea of an infinite set is unproblematic, it certainly does not follow that
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the idea of an infinite thinking being is. The point is not that we should be
concerned because the account has taken a sudden turn towards the theistic
and left the atheist mathematician in the lurch, but rather that the appeal to
an infinite being is of quite the wrong shape for the task in hand.
Suppose, then, that we reject the idea of treating platonism as a limiting

case of constructivism, and try instead to give an account of dependency as a
relation holding between collections independent of our (or God’s) thinking of
them. What should this account be?
The etymology of ‘prior’ is of course temporal, and one popular method of

explaining the dependence of a collection on its members has been in terms
of time: my 1990 was perhaps a more or less typical example of the genre.
But this is to make illicit appeal to the constructivist conception: according to
the platonist a collection does not exist in time and hence cannot be subject
to temporal relations. If they do not want their position to reduce to the
limiting case of constructivism we have just rejected, platonists are therefore
forced to admit hastily that the appeal to time is a ‘mere metaphor’. No
doubt we should not dismiss it out of hand for that reason alone: without
metaphor, philosophy would be a hard subject to do, and a much harder one
to communicate about. Nevertheless, it is difficult to see how this particular
metaphor helps: to be told that collections are subject to a time-like structure
that is not time is not to be told very much (cf. Lear 1977).
Another route we could try would be to see the modality involved as some

kind of necessity. We might say, perhaps, that one object presupposes an-
other if the one would not have existed without the other. This notion of
dependence dates back to Plato, to whom Aristotle in the Metaphysics (1971,
1019a1-4) attributes the view that a thing is ‘prior in respect of its nature and
substance when it is possible for it to be without other things, but not them
without it’. What this amounts to if the thing is a collection is that it would not
have existed if its members had not. But once again we run into difficulties
very soon, since in the case of pure collections — the empty collection and
other collections depending on it alone — the platonist presumably believes
that the members exist necessarily and so the antecedent of the conditional
cannot be realized. We might hope to deal with applied collections by the
proposed route and then treat pure collections by analogy as some sort of spe-
cial case, but even this does not work, for although it is no doubt true that the
singleton of my goldfish would not have existed if Bubble had not existed, the
platonist is equally committed to the converse: Bubble would not have exis-
ted if its singleton had not. So the platonist cannot, even in the applied case,
appeal to counterfactual reasoning to explain the relation of priority between
collections (cf. Fine 1995).
There is therefore little choice but to conclude that priority is a modality

distinct from that of time or necessity, a modality arising in some way out of
the manner in which a collection is constituted from its members. But if it
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is distinct, we cannot rely on our understanding of these other modalities in
determining its structural properties. The relation of dependence is transitive
by definition, of course, and it is presumably irreflexive, but ought we now to
suppose that it is well-founded, i.e. that every chain of dependencies terminates
in a finite number of steps? The argument that it is well-founded has a long
history, since it is in effect a version of one of the classical arguments for sub-
stance: any chain of ontological presupposition must terminate, it is claimed,
in entities which do not presuppose anything else for their existence, and in
traditional metaphysics these entities are termed ‘substance’.
The most renowned proponent of substance among 20th century philo-

sophers was Wittgenstein, who based his argument for the existence of sub-
stance on the requirement that sense be determinate. In the context in which
he deployed the argument this assumption is legitimate: the world whose sub-
stance he wished to demonstrate was intrinsically a represented world, a world
standing in a certain relation to the thoughts by means of which its state is
represented. And there is a perspective, which I shall call internal platonism,
from which the argument is available in the current context too.
No corresponding argument is available to the uncritical platonists with

whose position internal platonism is here being contrasted: if there were a
bar to our grasping any collection not obtainable from individuals in a finite
number of steps, that would still not be, for them, an argument against the
existence of such collections. But the internal platonist regards mathematics
as part of our attempt to represent the world and thinks that this imposes
constraints on the form it can take. One of these constraints is that no set can
lie at the head of an infinite descending ∈-chain. This is not an epistemological
issue, even in an idealized sense: the point is not that we could not know
about a set at the top of an infinite descending ∈-chain. Nor is it a point about
what we can construct or imagine, even in an idealized sense. The point is
rather that any conceptual scheme which genuinely represents a world cannot
contain infinite backwards chains of meaning, and so collections which mirror
such chains could only be idle wheels in such a scheme.

3.4 Levels and histories

If we are to examine these issues further, it will be helpful to develop a way of
classifying collections according to their presuppositions. Once this classifica-
tion is in place, we will be able to distinguish two quite distinct aspects to the
problem of collection existence that confronts us.
The classification goes like this. The initial level has as its members the

objects which already exist independently, i.e. the individuals, and in each
subsequent level are the collections which presuppose only those collections
which occur on a lower level. So in general the elements of each level will
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be precisely the individuals plus the elements and subcollections of all lower
levels. The collection of all levels prior to a given level is called a ‘history’, and
the whole structure is called the cumulative iterative hierarchy (‘iterative’ because
the account proceeds by describing the levels successively, starting with the
individuals; ‘cumulative’ because a collection contained in one level is also
contained in all succeeding levels).
Notice, though, that what we have just said by way of introduction, however

accurately it describes the intended hierarchy, cannot constitute a definition
of it ab initio because it involves the word ‘level’ which we have not defined
explicitly. It would therefore be natural at this point to suppose that we need
to treat ‘level’ as an extra primitive in our axiomatized theory, but in fact there
is an elegant trick (due to Scott 1974) which allows us to define what a level is
explicitly in terms of the membership relation. The trick is to define what we
mean by a history first: it turns out that we can do this independently without
using the concept of a level, and then we can define levels in terms of histories.

Definition. acc(a) = {x : x is an individual or (∃b ∈ a)(x ∈ b or x ⊆ b)}
(‘the accumulation of a’).

In words, the accumulation of a collection a has as members all the individuals
together with all the members and subcollections of all the members of a. (The
same caution is required in working with this definition as with those at the
end of §2.6, since we cannot yet prove that acc(a) always exists.)

Definition. V is called a history if (∀V ∈ V)(V = acc(V ∩ V )).

Definition. The accumulation of a history is called a level. More precisely,
if V is a history, acc(V) (if it exists) is called the level with history V .
If Ø exists, it is trivially a history since it has no elements: if its accumulation
exists, it is the collection of all the individuals.

Definition. A collection is said to be grounded, or to be a set, if it is a
subcollection of some level.

(3.4.1) Proposition. If V is a level with history V , then any member V ′ of V
is a level belonging to V with history V ∩ V ′.

Proof . Suppose that V is a level with history V and V ′ ∈ V . Certainly V ′ ⊆
V ′ ∈ V and so V ′ ∈ acc(V) = V . Also V ′ = acc(V ∩ V ′) since V is a history.
So V ′ will be a level provided that V ∩ V ′ is a history. But if V ′′ ∈ V ∩ V ′,
then V ′′ ⊆ acc(V ∩ V ′) = V ′, so that V ∩ V ′′ = (V ∩ V ′) ∩ V ′′ and hence

acc((V ∩ V ′) ∩ V ′′) = acc(V ∩ V ′′) = V ′′

since V is a history. Hence V ∩ V ′ is indeed a history as required.

In the remainder of this chapter and the next V , V ′, V1, etc. will always be
levels. In particular, the quantifiers (∀V ) and (∃V ) should be read ‘For every
level V ’ and ‘For some level V ’ respectively.



42 The hierarchy

3.5 The axiom scheme of separation

A level is the accumulation of its history and thus contains, in addition to the
individuals, all the members and subcollections of all the lower levels. We may
think of it as being justified by the account of dependency between collections
which we gave earlier, since the collections we include in a level are just those
which depend only on collections which occur at lower levels in the hierarchy.
We shall occasionally refer to this as the first principle of plenitude.2

A platonist might well feel, however, that this principle is deficient when
taken on its own: we have so far said nothing about what subcollections there
are. What prevents us from doing so, according to at least one variety of
platonist, is merely our self-denying insistence on formalizing everything in
a first-order language. If we abandoned that constraint, we could say that b
strongly accumulates a if:

(1) (∀x)(x ∈ b ⇔ x is an individual or (∃c ∈ a)(x ∈ c or x ⊆ c)); and

(2) (∀X)(∀c ∈ a)({x ∈ c : X x} ∈ b).

We could then use strong accumulations in our definition of ‘level’ in place
of accumulations, and it would be trivial to prove the following second-order
principle:

Separation principle.3 (∀X)(∀V )({x ∈ V : X x} exists).
In the first-order system, however, none of this is open to us. So instead we
introduce as axioms all the instances of the second-order separation principle
that are formulable in our first-order system.

Axiom scheme of separation. If Φ(x) is a formula, then the following is
an axiom:

(∀V )({x ∈ V :Φ(x)} exists).
It is no accident, incidentally, that we have found ourselves introducing an
axiom scheme at some stage in our axiomatization: the theory we are aim-
ing towards cannot be finitely axiomatized in the first-order language we are
working in, and so the presence in our system of at least one scheme is inevit-
able. It will turn out, in fact, that separation is our only scheme, and so part of
our interest in it will be as the focus for the concerns we raised in §1.3 about
what is involved in asserting a scheme at all.
The difference between the first-order scheme and second-order separation

is important, since the scheme falls well short of giving effect to what the pla-
tonist might be thought to intend. If we regard the issue metatheoretically,

2The second principle of plenitude, which we shall state in §4.1, addresses the question of how
many levels there are in the hierarchy.
3Whenever we set down an axiom, as here, for discussion without intending to add it to our
default theory, we signal this by not emboldening its name.
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the reason for this inadequacy is clear enough: in the case where the level V
is infinite, second-order separation encompasses uncountably many instances
(cf. Cantor’s theorem 9.2.6), whereas the first-order scheme has only count-
ably many instances since the language of set theory is countable. So the
first-order scheme is only at best an inadequate surrogate for second-order
separation.
Notice, though, that all of this applies only on the platonist understanding

of the dependence relation. On the stricter constructivist understanding, we
are entitled at each stage to construct only those collections which we can
specify in terms of collections already constructed. To capture the first-order
content of this idea, it would be necessary to restrict the quantifiers in our
formula to the level V in question. We would then be left with the following
much weaker separation principle.

Predicative separation. If Φ(x) is a formula and x1, . . . , xn are the variables
other than x on which it depends, then

(∀V )(∀x1, . . . , xn ∈ V )({x ∈ V :Φ(V )(x)} exists)
is an axiom.

Such a predicative form of the axiom scheme of separation would restrict very
substantially what we could prove in our theory.

3.6 The theory of levels

In §2.3 we proved the absolute version of Russell’s paradox: this showed that
we cannot consistently assume what is sometimes called the naive comprehension
principle, namely that every property is collectivizing. Now that we have the
axiom scheme of separation, we can relativize this argument so as to show
that no set has all its own subsets as members.

(3.6.1) Proposition. There is no set b such that (∀a)(a ⊆ b ⇒ a ∈ b).

Proof . Suppose that b is a set. So there is a level V such that b ⊆ V . Let
a = {x ∈ b : x /∈ x}. Then a = {x ∈ V : x ∈ a and x /∈ x}, which exists by the
axiom scheme of separation. If a ∈ b then a ∈ a ⇔ a /∈ a, which is absurd.
So a is a subcollection of b but not a member of it.

(3.6.2) Russell’s paradox (relative version). There is no set of all sets.

Proof . Every subcollection of a set is a set. So the set of all sets would, if it
existed, have all its own subcollections as members, contrary to what we have
just proved.
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Russell actually discovered the relative version of the paradox first, as an easy
consequence of a theorem proved by Cantor (theorem 9.2.6). It was by ana-
lysing the proof of this result that he arrived at the absolute version some time
in 1901 (see Schilpp 1944, p. 13). Zermelo had derived the same contradiction
independently in 1900 or 1901 (Rang and Thomas 1981).
We turn now to the task of proving theorem 3.6.4 below, which asserts (in

the set-theoretic jargon) that the membership relation is well-founded on each
history. What is remarkable is that Russell’s paradox actually provides the key
to the proof. With this goal in mind let us (temporarily) write a ≺ b just in
case every subcollection of a belongs to b. Proposition 3.6.1 then becomes the
statement that there is no set b such that b ≺ b.

(3.6.3) Lemma. If V is a history and V, V ′ ∈ V , then V ∈ V ′ ⇔ V ≺ V ′.

Proof . Suppose that V, V ′ ∈ V . If V ≺ V ′, then trivially V ∈ V ′. So suppose
conversely that V ∈ V ′. Then V ∈ V ∪ V ′. So if a ⊆ V , then a ∈ acc(V ∩
V ′) = V ′. It follows that V ≺ V ′.

(3.6.4) Theorem. If V is a history and a is a non-empty subcollection of V ,
then there is a member of a that is disjoint from it.

Proof . Suppose on the contrary that a has no ∈-minimal member. Let b =⋂
a, which exists by the axiom scheme of separation. Suppose that V ∈ a.

Then by hypothesis there exists V ′ ∈ a such that V ′ ∈ V . Hence V ′ ≺ V
[lemma 3.6.3]. Now b ⊆ V ′. So every subset of b is a subset of V ′ and hence
belongs to V . Since V was arbitrary, it follows that every subset of b belongs
to b, i.e. b ≺ b. But this contradicts proposition 3.6.1.

Definition. A collection a is transitive if (∀b ∈ a)(∀x ∈ b)(x ∈ a).

(3.6.5) Proposition. Every level is transitive.

Proof . Let V be a history of V and suppose that x ∈ b ∈ V . If

a = {V ′ ∈ V : b ⊆ V ′ or b ∈ V ′},
then a is non-empty by definition, and so there exists V ′ ∈ a such that V ′ is
disjoint from a [theorem 3.6.4]. So either b ⊆ V ′ or b ∈ V ′. But if b ∈ V ′,
then because b is not an individual, there exists V ′′ ∈ V ∩ V ′ such that b ∈ V ′′

or b ⊆ V ′′ [proposition 3.4.1], and so V ′′ ∈ V ′ ∩ a, contradicting the choice
of V ′. Hence b ⊆ V ′, whence x ∈ V ′ ∈ V and so x ∈ V .

(3.6.6) Proposition. a ∈ V ⇒ a ⊆ V .

Proof . Trivial from proposition 3.6.5.

(3.6.7) Proposition. a ⊆ b ∈ V ⇒ a ∈ V .
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Proof . Suppose that a ⊆ b ∈ V . As in the proof of proposition 3.6.5, we can
obtain V ′ ∈ V such that b ⊆ V ′. But then a ⊆ V ′ and so a ∈ V .

(3.6.8) Proposition. V = acc{V ′ : V ′ ∈ V }.
Proof . Suppose that V is a history of V . Then

x ∈ V ⇔ x ∈ acc(V)

⇔ x is an individual or (∃V ′ ∈ V)(x ∈ V ′ or x ⊆ V ′)
⇒ x is an individual or (∃V ′ ∈ V )(x ∈ V ′ or x ⊆ V ′)

[proposition 3.4.1]

⇔ x is an individual or (∃V ′ ∈ V )(x ⊆ V ′) [proposition 3.6.6]
⇒ x ∈ V [proposition 3.6.7].

If V1 ∈ V2, we shall sometimes say that V1 is lower than V2. With this termino-
logy a level may be said to be the accumulation of all lower levels.
The hierarchy of levels is cumulative: if an object belongs to a particular

level, then it belongs to all subsequent levels.

(3.6.9) Lemma. If V is a level, then {V ′ : V ′ ∈ V } is a history whose level is
V .

Proof . Let V = {V ′ : V ′ ∈ V } and suppose that V ′ ∈ V . Then V ′′ ∈ V ′ ⇒
V ′′ ∈ V [proposition 3.6.5] and so V ∩ V ′ = {V ′′ : V ′′ ∈ V ′}. Now V ′ is a level
and so

V ′ = acc{V ′′ : V ′′ ∈ V ′} [proposition 3.6.8]
= acc(V ∩ V ′).

This shows that V is a history. Moreover, acc(V) = V [proposition 3.6.8], i.e.
V is a history of V .

(3.6.10) Proposition. If Φ is a formula, this is a theorem:

(∃V )Φ(V ) ⇒ (∃V0)(Φ(V0) and not (∃V ′ ∈ V0)Φ(V ′)).

Proof . Suppose that Φ(V ) and let a = {V ′ ∈ V :Φ(V ′)}. If a is empty, then
we can simply let V0 = V . If not, then note that a is a subset of the history
{V ′ : V ′ ∈ V } [lemma 3.6.9] and so there exists V0 ∈ a such that V0 is disjoint
from a [theorem 3.6.4]; therefore Φ(V0) and

V ′ ∈ V0 ⇒ V ′ ∈ V ⇒ not Φ(V ′).

(3.6.11) Proposition. V1 ∈ V2 or V1 = V2 or V2 ∈ V1.
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Proof . Suppose not. So we can find levels V1 and V2 such that V1 /∈ V2,
V1 �= V2 and V2 /∈ V1: hence more particularly we can choose V1 in such a
way that

(∀V ∈ V1)(∀V ′)(V ∈ V ′ or V = V ′ or V ′ ∈ V ) (1)

[proposition 3.6.10] and, having chosen V1, we can then choose V2 in such a
way that

(∀V ∈ V2)(V ∈ V1 or V = V1 or V1 ∈ V ) (2)

[proposition 3.6.10 again]. We shall now prove that with these choices of V1
and V2 we have

(∀V )(V ∈ V1 ⇔ V ∈ V2). (3)

Suppose first that V ∈ V1. Then V �= V2 since V2 /∈ V1. Also V2 /∈ V since
otherwise V2 ∈ V1 [proposition 3.6.5], contrary to hypothesis. Since V ∈ V1,
we must therefore have V ∈ V2 by (1). If V ∈ V2, on the other hand, then the
same arguments as before show that V1 �= V and V1 /∈ V . Hence V ∈ V1 by
(2). This proves (3). But then

x ∈ V1 ⇔ x is an individual or (∃V ∈ V1)(x ⊆ V ) [proposition 3.6.8]

⇔ x is an individual or (∃V ∈ V2)(x ⊆ V ) by (3)

⇔ x ∈ V2 [proposition 3.6.8],

and so V1 = V2 as required.

These two propositions provide us with what turns out to be a useful method
of definition: if (∃V )Φ(V ) then there is exactly one level V such that Φ(V )
but not (∃V ′ ∈ V )Φ(V ). This unique level is called the lowest V such that
Φ(V ).

(3.6.12) Proposition. V /∈ V .

Proof . If there exists a level V such that V ∈ V , then there exists a lowest such
V , but this leads immediately to a contradiction.

(3.6.13) Proposition. If V is a history of the level V , then V = {V ′ : V ′ ∈ V }.
Proof . Suppose V is a history of V . Certainly V ′ ∈ V ⇒ V ′ ∈ V . So suppose
now that V ′ /∈ V . Then for every V ′′ ∈ V we have V ′′ �= V ′ and V ′ /∈ V ′′

(since if V ′ ∈ V ′′ ∈ V then V ′ ∈ V ), and so V ′′ ∈ V ′ [proposition 3.6.11].
So V ⊆ {V ′′ : V ′′ ∈ V ′}, whence V = acc(V) ⊆ {V ′′ : V ′′ ∈ V ′} = V ′ and
therefore V ′ /∈ V (since otherwise V ′ ∈ V ′).

(3.6.14) Proposition. V ⊆ V ′ ⇔ (V ∈ V ′ or V = V ′).
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Proof . If V = V ′, then trivially V ⊆ V ′; if V ∈ V ′, then again V ⊆ V ′

[proposition 3.6.6]. If, on the other hand, neither V ∈ V ′ nor V = V ′,
then V ′ ∈ V [proposition 3.6.11] and V ′ /∈ V ′ [proposition 3.6.12], so that
V �⊆ V ′.

(3.6.15) Proposition. V ⊆ V ′ or V ′ ⊆ V .

Proof . If V �⊆ V ′, then V /∈ V ′ and V �= V ′ [proposition 3.6.14], whence
V ′ ∈ V [proposition 3.6.11] and so V ′ ⊆ V [proposition 3.6.14].

(3.6.16) Proposition. V ⊂ V ′ ⇔ V ∈ V ′.

Proof . V ⊂ V ′ ⇔ (V ⊆ V ′ and V �= V ′) ⇔ V ∈ V ′ [propositions 3.6.12
and 3.6.14].

Exercise

Show that these two assertions are equivalent:

(i) (∀x)(∃V )(x ∈ V );

(ii) (∀a)(∃V )(a ⊆ V ) and (∀V )(∃V ′)(V ∈ V ′).

3.7 Sets

A set, according to our earlier definition, is a collection which occurs some-
where in the iterative hierarchy. One of the great advantages of this concep-
tion of set is that it generates a simple criterion to determine which formulae
define sets. A set has to be located in the hierarchy at a level which is after
the levels of all its members. It follows that things form a set only if there is
a level to which they all belong: for if there is not, there will be nowhere in
the hierarchy for a set of them to be located. We can give this thought precise
expression within our theory as follows.

(3.7.1) Proposition. If Φ(x) is a formula, then {x :Φ(x)} is a set iff there is a
level V such that (∀x)(Φ(x) ⇒ x ∈ V ).

Necessity. If a = {x :Φ(x)} is a set, then there is a level V such that a ⊆ V and
so for all x

Φ(x) ⇒ x ∈ a ⇒ x ∈ V .

Sufficiency. If there is a level V such that (∀x)(Φ(x) ⇒ x ∈ V ), then

{x :Φ(x)} = {x ∈ V :Φ(x)},
which exists [axiom scheme of separation] and is evidently a set.

(3.7.2) Proposition. The members of a set are all either sets or individuals.
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Proof . Immediate [proposition 3.6.8].

Definition. If a is a set, the lowest level V such that a ⊆ V is called the
birthday of a and denoted V(a).

(3.7.3) Proposition. If a is a set, a /∈ a.

Proof . If a ∈ a, then a ∈ V(a) (since a ⊆ V(a)). Hence (∃V ∈ V(a))(a ⊆ V )
[proposition 3.6.8], contradicting the definition of V(a).

(3.7.4) Proposition. If Φ is a formula and a is a set, then {x ∈ a :Φ(x)} is a
set.

Proof . Evidently {x ∈ a :Φ(x)} = {x ∈ V(a) :Φ(x)}, which exists by the ax-
iom scheme of separation, and is a set since it is contained in the level
V(a).

(3.7.5) Foundation principle. If a is a non-empty set, then it has a member
which is either an individual or a set b such that a and b are disjoint.

Proof . Suppose that the non-empty set a has no individuals as members. So
all its members are sets [proposition 3.7.2], and we can choose a set b ∈ a
of lowest possible birthday: if c ∈ b ∩ a, then c ∈ V(b) and so, since c is a
set, there exists V ′ ∈ V(b) such that c ⊆ V ′ [proposition 3.6.8], i.e. V(c) is
lower than V(b), which contradicts the fact that c ∈ a; therefore b ∩ a = Ø
as required.

(3.7.6) Proposition. If a is a non-empty set of sets, then
⋂

a is a set.

Proof . If c is a set belonging to a, then

a′ = {x ∈ c :(∀b ∈ a)(x ∈ b)}
is a set [proposition 3.7.4]. But then

x ∈ a′ ⇔ (x ∈ c and (∀b ∈ a)(x ∈ b)) ⇔ (∀b ∈ a)(x ∈ b)

since c ∈ a. So a′ = {x :(∀b ∈ a)(x ∈ b)} = ⋂
a.

(3.7.7) Proposition. If a and b are sets, then a ∩ b is a set.

Proof . a ∩ b = {x ∈ a : x ∈ b}, which is a set [proposition 3.7.4].
(3.7.8) Proposition. If a and b are sets, then a � b is a set.

Proof . a � b = {x ∈ a : x /∈ b}, which is a set [proposition 3.7.4].
(3.7.9) Proposition. If a is a set, then

⋃
a is a set.
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Proof . If a is a set,

x ∈ b ∈ a ⇒ x ∈ b ∈ V(a) ⇒ x ∈ V(a)

[proposition 3.6.5]; hence⋃
a = {x ∈ V(a) :(∃b ∈ a)(x ∈ b)}

exists [axiom scheme of separation] and is a set.

(3.7.10) Proposition. If a and b are sets, then a ∪ b is a set.

Proof . Either V(a) ⊆ V(b) or V(b) ⊆ V(a) [proposition 3.6.15]: suppose the
latter for the sake of argument. Then a, b ∈ V(a) and so

(x ∈ a or x ∈ b) ⇒ x ∈ V(a).

Hence
a ∪ b = {x ∈ V(a) : x ∈ a or x ∈ b}

exists [axiom scheme of separation] and is a set.

(3.7.11) Proposition. If Φ is a formula,

(∃a)Φ(a) ⇒ (∃a)(Φ(a) and not (∃b ∈ a)Φ(b)).

Proof . Consider the lowest V such that (∃a ∈ V )Φ(a).

Definition. The transitive closure of a is

tc(a) = {x : x ∈ b for every transitive b ⊇ a}.
(3.7.12) Proposition. If a is a set, then tc(a) is a set.

Proof . The birthday V(a) of a is a transitive set containing a [proposition
3.6.5]. So tc(a) is a set by separation.

Transitive closures are much used by set theorists as a tool for studying how
properties may be transmitted up the hierarchy. As an instance of this let
us mention a common usage among set theorists according to which for any
property F a set is said to be hereditarily F if both it and all the members of
its transitive closure have F . In this book, though, we shall not be studying
the hierarchy from the set theorist’s perspective, and a symptom of this is that
transitive closures will play hardly any part in what follows.

Exercises

1. (a) Show that a ⊆ b ⇒ V(a) ⊆ V(b).
(b) Show that a ∈ b ⇒ V(a) ∈ V(b).

2. Show that there do not exist sets a and b such that a ∈ b and b ∈ a.
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3.8 Purity

The main purpose of defining the transitive closure here is to facilitate the
formal definition of the notion of a pure set.

Definition. A set is said to be pure if no individuals belong to its transitive
closure.

An alternative way to define this notion would have been to develop a the-
ory of pure levels: these are defined just as levels were in §3.4 except that the
accumulations are replaced throughout by pure accumulations, defined as

accp(a) = {c :(∃b ∈ a)(c ∈ b or c ⊆ b)}.
By mimicking the proofs in §3.6 it is easy to show that the pure levels form
a hierarchy in the same way as the hierarchy of levels: the difference is only
that in the formation of pure levels individuals are omitted, so that the earliest
pure level is Ø, the pure level after U is P(U ), and a limit pure level is the
union of all the lower pure levels. Thus a set is pure iff it is a subset of some
pure level.
Consider now the following axiom candidate.

Axiom of purity. Every set is pure.

This axiom will certainly be true if there are no individuals. In fact, if a the-
ory in which this is assumed had been our target all along, we could have
simplified our presentation right at the beginning: there would have been no
need to bring in the predicate U(x) since nothing in the theory would satisfy
it. We could then have simplified our definition of collection terms in §2.2 by
deleting the condition that a collection should not be an individual, so that the
definition would now read simply

{x :Φ(x)} = ι!y(∀x)(x ∈ y ⇔ Φ(x)),

and we could have simplified our account of the theory of levels by omitting
the references to individuals.
The axiom of purity, or something equivalent to it, is assumed in almost

every modern treatment of set theory in the literature. The main reason for
this is that, as was discovered fairly early, it is not necessary to assume the
existence of individuals in order that set theory should act as a foundation for
mathematics, while if we rule them out from the outset, we can simplify the
theory, getting rid of one primitive and tidying up the development consider-
ably. If the only objective is to give mathematicians a theory which can act as
a foundation, it is inevitable that they will choose the one that seems simplest
to them.
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Indeed individuals would probably have made an exit from set theory
earlier than they did if it had not been for an accident in the progress of
work in the metatheory. In 1922a Fraenkel discovered a method for showing
the independence of the axiom of choice from theories such as ZU that allow
individuals. This method was refined (Lindenbaum and Mostowski 1938) and
then exploited by others (e.g. Mendelson 1956; Mostowski 1945) to prove the
independence from such theories of various other set-theoretic claims. It was
not until 1963 that Cohen showed how to convert this into a method that
works for theories like Z which ban individuals. In the intervening period
there was therefore a reason for set theorists (who tend, after all, to be the
people who write set theory books) to regard permitting individuals as worth
the extra effort. After 1963, however, not even set theorists had any use for
individuals. Worse, there are proofs in set theory that do not work if we have
to allow for them. So it is unsurprising that in the last 40 years individuals
have largely disappeared from view.
However, we shall not follow this trend here. The reason is that to do so

would cut our theory off from at least one of its intended applications. It is by
no means obvious what justifies the applicability of mathematics in general to
what lies outside it, and it may well be that the reduction of mathematics to
set theory does not supply such a justification. But even if set theory’s role as a
foundation for mathematics turned out to be wholly illusory, it would earn its
keep through the calculus it provides for counting infinite sets. The most nat-
ural, if not literally the only, way to ensure that that calculus is available to be
applied to counting non-mathematical things — chairs, electrons, thoughts,
angels — is to allow such things into the theory as individuals.

3.9 Well-foundedness

The particular treatment of the hierarchy of levels adopted here did not be-
come known until the 1970s. But the grounded collections were first singled
out for study much earlier. Mirimanoff’s (1917) remarkable treatment called
them ‘ordinary’ collections: they are often called ‘well-founded’ in the literat-
ure, but we avoid that usage here in order to reserve that word for a closely
related property of the membership relation, namely that expressed in pro-
position 3.7.11.
The well-foundedness of the membership relation gives the grounded col-

lections an especially simple structure which makes it inevitable that they
would be singled out for special study eventually. But Mirimanoff did not
make the further move of suggesting that every collection is a set. He did not,
that is to say, propose to add the following axiom to the theory of sets.

Axiom of foundation. Every collection is grounded.
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One way of putting this informally would be to use the language of classes: let
M be the class of all collections and V the grounded part ofM, i.e. the class of all
sets; the axiom of foundation then asserts thatV = M. As matters stand, how-
ever, this way of putting the matter is informal, since we have not introduced
any formal machinery for referring to classes within our theory.4 The idea
of limiting the formal theory to the grounded collections only was first con-
sidered by von Neumann (1925) and Zermelo (1930), who proposed axioms
designed to achieve it. But neither of these authors had an argument that there
are no ungrounded collections. Their motive in restricting the theory to sets
was simply that they wanted to discuss the possibility of proving categoricity
results, and the clear structure of the universe of sets makes such results easier
to come by if we restrict ourselves to that domain. Zermelo (1930, p. 31), for
instance, said only that the axiom ‘has always been satisfied in all practical
applications to date, and therefore introduces for the moment no essential
restriction of the theory’.
But even if the axiom of foundation made it easier to prove categoricity

results, it remained without any application outside the theory of collections. I
have already remarked on the prominent role the regressive method played in
determining the theory mathematicians adopted. So the fact that they showed
no inclination to adopt the axiom of foundation is unsurprising. The pattern
remained that it was treated solely as a tool for specialists in the theory of
collections. Thus as late as 1954 Bourbaki saw no reason to include it in
his axiom system, which was explicitly intended to act as a foundation for
mathematics and not as a basis for metatheoretic study.
Treated as a case study in the history of mathematics this episode thus

provides strong evidence for the influence of the regressive method on the
practice of axiom selection in the foundations of mathematics. Because the
axiom of foundation did not have mathematical consequences, mathematicians
showed no inclination to adopt it: interest in it was limited to specialists con-
cerned with its metatheoretic consequences.
Matters began to change only when Gödel (1947, p. 519) presented the

grounded collections not merely, as Mirimanoff had done, as a sub-universe of
the universe of collections but rather as an independently motivated hierarchy
which, as he pointed out, ‘has never led to any antinomy whatsoever’. Since
the 1960s the assumption that every collection is grounded has been adopted
enthusiastically by set theorists, and the idea that the only coherent conception
is the iterative one has become widespread.
But the literature contains very few arguments in favour of the claim that

every collection is a set. Most of those who do attempt an argument draw
attention to the difficulty of conceiving of an ungrounded collection. Suppes
(1960, p. 53) simply challenges the reader who doubts this to try to come up

4For more on this issue, see appendix C.
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with an example. Mayberry (1977, p. 32) suggests that ‘anyone who tries . . . to
form a clear picture of what a non-well-founded collection might be . . . will see
why extensionality forces us to accept the well-foundedness of the membership
relation.’ Drake (1974, p. 13) stigmatizes ungrounded collections as ‘strange’
and says it is ‘difficult to give any intuitive meaning’ to them. Parsons (1983,
p. 296) regards the evidence of the principle as ‘more a matter of our not be-
ing able to understand how non-well-founded [collections] could be possible
rather than a stricter insight that they are impossible’.
I am not as pessimistic as Parsons about the prospects for a non-psycho-

logistic argument for the iterative conception. In §3.3 I sketched an argu-
ment that the hierarchy is well-founded. It is true that that argument seems
to require a premise which I there characterized as internalist — that col-
lections should be representable, or available to reason, or whatever — but
that does not reduce the argument to psychologism. And it would, if correct,
rule out the possibility Parsons (1983, p. 296) is prepared to countenance that
‘someone might conceive a structure very like a “real” ∈-structure which viol-
ated foundation but which might be thought of as a structure of sets in a new
sense closely related to the old’.
Even if the argument for well-foundedness that I gave earlier is correct,

though, it undeniably depends on an extra premise that goes beyond mere
realism — the premise which I branded ‘internalist’. It therefore seems
prudent, lest I lose readers who do not feel the internalist pull so strongly,
not to assume the axiom of foundation. In practice that is no great conces-
sion, however, since we shall focus exclusively on grounded collections (i.e.
sets) in everything that we do from now on. Readers who believe there are
ungrounded collections as well will thus find nothing here with which they
can reasonably disagree: the most they are entitled to is a mounting sense of
frustration that I am silent about them.

Notes

In 1906aRussell canvassed three forms a solution to the paradoxes might take:
the no-class theory, limitation of size, and the zigzag theory. It is striking that a
century later all of the theories that have been studied in any detail are recog-
nizably descendants of one or other of these. Russell’s no-class theory became
the theory of types, and the idea that the iterative conception is interpretable
as a cumulative version of the theory of types was explained with great clarity
by Gödel in a lecture he gave in 1933 (printed in Gödel 1986–2003, vol. III),
although the view that it is an independently motivated notion rather than a
device to make the theory more susceptible to metamathematical investiga-
tion is hard to find in print before Gödel 1947. The analysis of this motivation
given here is greatly indebted to Parsons (1977). Wang (1974, ch. 6) and Boo-
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los (1971; 1989) are also central to the modern philosophical literature on the
topic. The doctrine of limitation of size (discussed in §13.5) has received rather
less philosophical attention, but the cumulatively detailed analysis in Hallett
1984 can be recommended. The principal modern descendant of Russell’s
zigzag theory — the idea that a property is collectivizing provided that its syn-
tactic expression is not too complex — are Quine’s two theories NF and ML.
Research into their properties has always been a minority sport: for the cur-
rent state of knowledge consult Forster 1995. What remains elusive is a proof
of the consistency of NF relative to ZF or any of its common strengthenings.
Aczel 1988 is a lucid introduction to non-well-founded set theory. Rieger

2000 and Barwise and Etchemendy 1987 are recent attempts to argue for its
philosophical significance. On predicative set theory the standard reference
is Wang 1963. The theory of levels which we gave in §3.6 is due to Scott
(1974), but his treatment used an extra assumption (the ‘axiom of accumula-
tion’) which is redundant. The proof of this redundancy which I gave in my
earlier book was due to John Derrick, who had been lecturing on the subject
at Leeds for some years. The slightly different version I have given here makes
use of an idea from Doets 1999.
The relationship between the hierarchy and the law of the excluded middle

has been extensively discussed by Dummett (1993). Lear (1977) gives a novel
argument, which has in turn been criticized by Paseau (2003).



Chapter 4

The theory of sets

We know quite a lot now about sets, but one thing we cannot yet prove is that
there are any. The reason for this is that all the axioms we are committed to
so far, the instances of separation, take the form of universal generalizations
and are therefore vacuously satisfied if there are no levels to instantiate them.
It is time now to rescue our theory from this vacuity. Doing so will require us
to enter into some ontological commitments concerning levels.

4.1 How far can you go?

What this amounts to is that we need to determine how many levels there
are in the hierarchy. The constructivist, of course, has a criterion by which
to settle this: the levels owe their existence to our construction of them in
thought, and so to discover how many levels there can be, we need only de-
termine the limits of our capacities for performing such constructions. There
may be different answers to this depending on how liberal our conception of
the creative subject is, but it is at least clear what the terms of the debate the
constructivist must engage in should be.
For the platonist, by contrast, the matter is much more problematic. The

difficulty is that everything we have said so far about the platonist’s under-
standing of the dependency relation is negative. The argument has been that
the nature of collections constrains them by means of the metaphysical re-
quirements of dependency, but this constraint does nothing in itself to show
that there are any collections.
The iterative conception is often presented as if it on its own delivered the

existence of at least a significant number of levels in the hierarchy, but the
only version of platonism which has much prospect of justifying this is that
which regards it as a limiting case — constructivism without the shackles of
time and finiteness. For this reason, perhaps, limiting case platonism is a
commonplace of expositions of the iterative conception. It seems to underpin
the account in Boolos 1971, for instance. Since I have already disparaged
limiting case platonism in §3.2, let us put it to one side. The question that
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remains is whether any other sort of platonism is entitled to the resources to
rescue the theory of sets from vacuity. What is needed is plainly a further
principle to which our concept of set can be seen to be answerable, one not
entailed by what we have said about the concept so far.
The principle, which we shall call the second principle of plenitude (after

Parsons 1996), states, roughly, that all levels exist which are not ruled out by
the metaphysical constraints on the dependency relation already mentioned.
But this is rough, and as it stands it is far from unproblematic. We are

entitled to an existence principle asserting that everything exists which is not
ruled out only if we have a reason to believe that we have stated all relevant
constraints, and how are we to know that? Moreover, even if we could be
sure that we have stated all the constraints on collections implicit in their meta-
physical nature, what would be the reason for supposing that the existence of
any collections followed? The claim being made here is evidently related to
the postulationist’s idea that consistency implies existence. It is not, of course,
the wholly general claim of the postulationist that the consistency of any ax-
iom system implies the existence of mathematical objects with the properties
postulated, but it is a particular case of it. We therefore owe an explanation
of what it is in the concept collection that makes such a principle of ontolo-
gical plenitude applicable to it. If consistency does not imply existence quite
generally, why should it do so here?
And the difficulty we face in coming up with such an explanation is that

it is far from clear how to give the principle of plenitude a coherent formu-
lation. The most natural way to express it is by means of a modality: there
exist all the collections it is possible for there to be. But if this is not to be
vacuous, the modality in question cannot be one according to which mathem-
atical objects exist necessarily. Presumably the modality is to be constrained
by the metaphysical restrictions we placed on collections in the last chapter,
but then the difficulty is to see how it can be prevented from delivering too
much. Whatever levels there are in the hierarchy, why could there not be
another one beyond them? The answer must be that for there to be another
level beyond those there are would violate the metaphysical constraints, but a
great deal more would have to be said to make that response convincing.
Indeed in the crude version we have stated so far the principle of plenitude

has a crippling flaw. We cannot simply insist that there are all the sets that
are logically possible, because however many there are it is logically possible for
there to be more. This is no doubt the reason why we often find the prin-
ciple expressed in terms of other sorts of possibility — conceptual, perhaps, or
metaphysical. But to impose a conceptual variant of the principle of plenitude
seems to import constructivist considerations which the platonist deems inap-
propriate; and the metaphysical variant is in danger of collapsing into vacuity
once more.
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4.2 The initial level

These are deep waters, and we shall return to them later, but in the meantime
we need to make progress, and to do that we shall have to state axioms which
make existence claims. In this section we shall do this only in the most modest
way that our theory of levels permits, namely by asserting that there is at least
one level (or, equivalently, that there is at least one set).

Temporary axiom. There is at least one level.

The reason we call this assumption a temporary axiom is that very shortly
(§4.9) we shall add another axiom which entails this one, and at that point we
shall be able to withdraw the temporary axiom from service. Since a level is
defined to be the accumulation of a history, our temporary axiom asserts that
there is at least one history that has an accumulation. We have already noted
that Ø is a history if it exists, so our temporary axiom amounts to the same as
asserting that the collection acc(Ø) = {x : x is an individual} exists.
Definition. Let V0 be the earliest level.

(4.2.1) Proposition. V0 = {x : x is an individual}.
Proof . Immediate [proposition 3.6.8].

(4.2.2) Corollary. If Φ is any formula, then

{x : x is an individual and Φ(x)}
is a set.

Proof . Immediate.

The temporary axiom does no more than guarantee that the individuals form
a set and does not allow us to prove the existence of any sets that are not sets
of individuals. The theory with only it and separation as axioms is therefore
probably as fair a representation as a formal theory can be of our ordinary
language uses of the term ‘set’, since these uses do not generally countenance
iterative constructions such as sets of sets and the like.
Given the axiom scheme of separation in the form we stated in the last

chapter, the existence of any set entails the existence of V0, and so we cannot
deny V0 without reducing our theory of sets to triviality. But even if we had
not assumed the existence of a set of all individuals, it would still have been
possible to develop a theory of pure levels. We could then have restricted
the axiom scheme of separation only to them, and so could have assumed
the existence of a hierarchy of sets without thereby committing ourselves to
the existence of a set of individuals. This is of some significance because, as
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Parsons (1977, p. 359, n. 4) has remarked, whether the existence of a set of
individuals is even consistent depends to some extent on the nature of the
individuals. The example he quotes is that of the ordinal numbers. We shall
introduce ordinals in §11.2 as a particular kind of set, and will demonstrate
there the Burali-Forti paradox, which shows that the ordinals do not form
a set. This result does not threaten inconsistency in the temporary axiom
of our system, of course, since we have ensured quite explicitly that sets, and
therefore in particular ordinals as we shall define them, are not individuals and
hence are not potentially problematic candidates for membership of V0. But
Parsons’ point is that it would be possible to formulate a theory of ordinals
quite independent of and prior to the theory of sets. Conceived of in this
way ordinals would be individuals and not sets. It would then be natural to
worry about whether there could indeed be a set V0 of all individuals as the
temporary axiom insists.
The point is well taken. What it serves to highlight is that individuals are

to be conceived of as being, in the language we have been using to describe
the hierarchy, conceptually prior to sets. If we are to present ordinals as in-
dividuals, therefore, it is a requirement that our theory of ordinals should be
independent of our theory of sets. If so, there would be nothing to prevent the
ordinals forming a set. Burali-Forti’s contradiction would arise only if we then
made the mistake of adding a further principle linking ordinals to sets (e.g. an
axiom claiming that we can index the levels of the hierarchy in such a way
that every ordinal has a level corresponding to it).
The dependency theorist expresses this point by saying that all the indi-

viduals are prior to all the collections. As we noted earlier, though, the prior-
ity conception on its own is purely restrictive in effect and does not underpin
even the modest ontological commitment expressed by the temporary axiom
without the addition of some positive principle.

4.3 The empty set

(4.3.1) Proposition. Ø is a set.

Proof . V0 exists [temporary axiom], so the set a = {x ∈ V0 : x �= x} exists
[axiom scheme of separation], and

x ∈ a ⇒ x �= x ⇒ contradiction,

i.e. a is empty.

The existence of the empty set is entailed, in the presence of the axiom scheme
of separation, by the existence of any set whatever. But, just as in the much
older case of the number zero, the existence of the empty set was not at first
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wholly uncontroversial. What is hard to disentangle now is whether the early
suspicions really amounted to an argument that the empty set is illegitimate or
to a continuing confusion between this and the uncontroversial point noted
earlier that there can be no such thing as an empty fusion. One important
early source on this issue is Dedekind (1888): he regarded what he called
the empty system as no more than a convenient fiction, but this is scarcely
surprising since, as we have already noted, there is other evidence that he
meant by ‘system’ what we now call a fusion. Lewis (1991), whose sympathies
are with fusions rather than collections every time, is also reduced to giving a
regressive justification for the empty set.

You’d better believe in it, and with the utmost confidence; for then you can believe with
equal confidence in its singleton, . . . and so on until you have enough modelling clay
to make the whole of mathematics. (p. 12)

Of course, for these regressive purposes the empty set does not actually have to
be empty — to be, as Lewis puts it (p. 13), ‘a little speck of sheer nothingness,
a sort of black hole in the fabric of Reality itself . . . a special individual with a
whiff of nothingness about it.’ So Lewis just makes an arbitrary choice — the
fusion of all the individuals, as it happens — and lets that serve as the empty
set. Of course, this stipulation has the minor disadvantage that if there were
nothing at all, there would be no such fusion (since there cannot be a fusion
of nothing), but in that case, he says, ‘maybe we can let mathematics fall. Just
how much security do we really need?’
Thus Lewis at his most fey. But what is rather more puzzling is that Zer-

melo (1908b, p. 263), who was certainly dealing with collections and not fu-
sions, also called the empty set ‘improper’; and Gödel (1944, p. 144) was will-
ing at least to tolerate, if not actually to endorse, a similar idea.
One might wonder whether these repetitions of the idea that the empty

set is fictitious or has to be constructed arbitrarily show the persistence of
intuitions derived from fusions in the conception of aggregation being em-
ployed; but this can be no more than a conjecture since neither Zermelo nor
Gödel gives in the texts mentioned any argument for regarding the empty set
as merely fictitious. On the other hand, it is rare to find in the literature any
direct reason for believing that the empty set does exist, except for variants of
the argument from convenience originally deployed by Dedekind. But notice
that convenience seems hardly sufficient, even for someone who subscribes to the
regressive method, to constitute an argument for the truth of the assumption
that the empty set exists, since it is so evidently possible (although admittedly
inconvenient) to manage without it.
According to the formal development we have adopted here, no collection

is an individual, and hence in particular the empty set is not one. This was
achieved by taking the notion of an individual as primitive by means of the
predicate U(x). Authors who do not do this (e.g. Fraenkel et al. 1958) are left
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with the awkwardness that they are unable to distinguish formally between
Ø and an individual, since individuals, we may suppose, share with Ø the
property of having no members. Two solutions to this formal problem are
possible, neither of them altogether satisfactory.
The first solution, adopted by Quine, is to say that an individual x is not

in fact memberless as we had supposed, but to stipulate that it has itself as a
member, so that x = {x}. Individuals then become collections, albeit non-
grounded ones, and sets are distinguished from individuals by being collec-
tions which do not belong to themselves. This procedure is also suggested by
Frege (1893–1903, §18, n. 1), but for the somewhat different (although equally
technical) reason that it enables him to settle the truth-conditions of statements
identifying an individual with a set. The principal disadvantage of proceeding
in this way, however, is that it is so obviously just a device: there is no ground
whatever for thinking that individuals really do belong to themselves, so why
adopt a theory according to which it is true?
The second solution is to say that the empty set is an individual, but one

picked at random to fulfil this role (see Fraenkel et al. 1958, p. 24). This is an
instance of a procedure which is very common in the foundations of mathem-
atics and which we shall meet again in these pages, namely the procedure of
arbitrary choice. It arises when we attempt to reduce one theory to another by
means of an embedding and discover that there is more than one way of doing
it. On some occasions there is an extrinsic reason to prefer one embedding to
another; on others, as now, the various embeddings are quite on a par and so
we must either make a wholly arbitrary choice or abandon the reduction.

4.4 Cutting things down to size

We mention now a technical device which is sometimes useful in cases where
the set {x :Φ(x)} does not exist. The idea, which is due to Scott (1955) and
Tarski (1955), is that instead of attempting the doomed task of forming the
non-existent set of all those x such that Φ(x), we restrict ourselves to collecting
only such x of earliest possible birthday, i.e. those occurring as low as possible
in the hierarchy of levels. This defines a set in every case — and indeed
one which may retain enough information about Φ to be useful as a partial
representation of it.

Definition. Suppose that Φ(x) is a formula. If V is the earliest level such
that (∃x ∈ V )Φ(x), then we let 〈x :Φ(x)〉 = {x ∈ V :Φ(x)}. If there is no such
level, then we let 〈x :Φ(x)〉 = Ø.

(4.4.1) Proposition. If Φ is a formula and V is a level, then

(∃y ∈ V )Φ(y) ⇔ Ø �= 〈x :Φ(x)〉 ⊆ V .
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Proof . Suppose first that y ∈ V and Φ(y). Then there exist elements z of
earliest possible birthday such that Φ(z), i.e. 〈x :Φ(x)〉 �= Ø. Moreover, if
z ∈ 〈x :Φ(x)〉, then either z is an individual, in which case certainly z ∈ V , or
it is a set, in which case z ⊆ V(z) ⊆ V(y) ∈ V and hence again z ∈ V ; thus
〈x :Φ(x)〉 ⊆ V . The converse implication is trivial.

We shall put this device to use when we define the notion of cardinality in
§9.1.

4.5 The axiom of creation

Definition. The level above a level V is the lowest level V ′ such that V ∈ V ′.

(4.5.1) Proposition. If V ′ is the level after the level V , then x belongs to V ′

iff x is either an individual or a subcollection of V .

Proof . Now V ′′ ⊆ V ⇒ V ′′ ∈ V ′ [proposition 3.6.7] and

V ′′ ∈ V ′ ⇒ V /∈ V ′′

⇒ V ′′ ∈ V or V ′′ = V [proposition 3.6.11]

⇒ V ′′ ⊆ V [proposition 3.6.14].

Hence
V ′′ ∈ V ′ ⇔ V ′′ ⊆ V, (1)

and so

x ∈ V ′ ⇔ x is an individual or (∃V ′′ ∈ V ′)(x ⊆ V ′′) [proposition 3.6.8]
⇔ x is an individual or (∃V ′′ ⊆ V )(x ⊆ V ′′) by (1)
⇔ x is an individual or x ⊆ V .

Axiom of creation. For each level V there exists a level V ′ such that
V ∈ V ′.

More briefly: there is no highest level. This axiom ensures that for every
level V there is a level above it: by the previous proposition this level will be
V0 ∪ P(V ). We are thus immediately guaranteed the existence of infinitely
many levels V0, V0 ∪ P(V0), V0 ∪ P(P(V0)), etc.

(4.5.2) Lemma. If a is a set, then there is a level V such that a ∈ V .

Proof . If a is a set, there is a level V such that a ⊆ V(a) ∈ V [axiom of
creation], and so a ∈ V [proposition 3.6.8].

The axiom of creation allows us to extend our inventory of legitimate methods
of set formation.
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(4.5.3) Proposition. If a is a set, then P(a) is a set.

Proof . If a is a set, there exists V such that a ∈ V [lemma 4.5.2]. Now

(b ∈ V and b ⊆ a) ⇔ b ⊆ a

[proposition 3.6.6], whence P(a) = {b ∈ V : b ⊆ a} exists [axiom scheme of
separation] and is a set.

(4.5.4) Proposition. If a is a set, then {a} is a set.
Proof . There is a level V such that a ∈ V [lemma 4.5.2]. So {a} = {x ∈
V : x = a}, which exists [axiom scheme of separation].
(4.5.5) Proposition. If x and y are either sets or individuals, then {x, y}
exists.

Proof . If either x or y is an individual, then its singleton is a set by corollary
4.2.2; if it is a set, the singleton is a set by proposition 4.5.4. Either way,
{x} ∪ {y} is then a set by proposition 3.7.10.
These results obviously give the axiom of creation some regressive support: in
the practice of mathematics it is undoubtedly convenient to be able to make
free use of such constructions as the power set P(a) of a set a. This is in fact
the central case: since the level above V is V0 ∪ P(V ), whether the axiom of
creation is true really hinges on whether every set has a power set. But is there
a non-regressive argument to think this is so?
The dependency theorist might try to give such an argument on the basis

of the principle of plenitude: if a is a set, it is possible for there to be a power
set of a, and our principle of plenitude will then tell us that there is one. Once
again, though, there has been a tendency, at least among platonists, to suppose
that this key step is so obvious as not to require argument at all. Some who
have thought about the issue have been reduced to regarding the power set
operation as essentially primitive. But to say that it is ‘primitive’ or a ‘given’ is
evidently only to label the difficulty, not to solve it.
A constructivist will, as we have seen, be likely to adopt a different hier-

archy, in which the next level after V is not V0 ∪ P(V ). If we had adopted
such a hierarchy, the axiom of creation and the existence of power sets would
come apart: we would have to address the possibility that for every level there
is a next level but that this process never exhausts even the subsets of the first
level. Something like this idea is expressed by Lusin (1927, pp. 32–3), who
suggests that in order to encompass all the subsets of an infinite set in one set,
we would have to be able to circumscribe the laws for defining such sets, which
he claims is impossible. A somewhat different argument against the existence
of the power set of an infinite set is to be found in Mayberry (2000).
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4.6 Ordered pairs

The ordered pair (x, y) is supposed to be a single object which codes within it
in some way the identities of the two objects x and y. What is required is that
the ordered pair principle,

(x, y) = (z, t) ⇒ x = z and y = t,

should be satisfied for all x, y, z, t . When we are working within the theory of
sets there are various technical tricks that enable us to do this. The first satis-
factory method is due to Wiener (1914), but here we shall use one discovered
by Kuratowski (1921).

Definition. (x, y) = {{x}, {x, y}} (‘the ordered pair of x and y’).

We shall write (x, y, z) for ((x, y), z), (x, y, z, t) for ((x, y, z), t), etc. Ordered
pairs evidently exist whenever their terms are either sets or individuals [pro-
position 4.5.5], but before we make use of them we need to demonstrate that
they satisfy the ordered pair principle enunciated above.

(4.6.1) Lemma. If x, y, z are sets or individuals, then

{x, y} = {x, z} ⇒ y = z.

Proof . Suppose that {x, y} = {x, z}. Then y ∈ {x, y} = {x, z}, so that either
y = z as required or y = x : but if y = x , then z ∈ {x, z} = {x, y} = {y}, and
so y = z in this case as well.

(4.6.2) Proposition. If x, y, z, t are sets or individuals, then

(x, y) = (z, t) ⇒ x = z and y = t .

Proof . Suppose that (x, y) = (z, t), i.e. {{x}, {x, y}} = {{z}, {z, t}}. So either
{x} = {z}, in which case x = z, or {x} = {z, t}, in which case x = z = t .
Hence in either case {x} = {z}, so that {x, y} = {z, t} [lemma 4.6.1] and
therefore y = t [lemma 4.6.1 again].

If it were our purpose to minimize the number of axioms, the advantage of
being able to define ordered pairs would be clear: Whitehead and Russell
(1910–13) did not know about such devices and therefore had no choice but
to develop two parallel but distinct theories, one of collections and one of re-
lations, and to state most of their axioms twice, once for each case. Neverthe-
less, when Russell learnt about the possibility of defining ordered pairs from
Wiener, he did not express ‘any particular approval’ (Wiener 1953, p. 191),
and he did not bother to mention the manoeuvre at all in the introduction to
the 2nd edition of Principia (Whitehead and Russell 1927).
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One reason to be wary of it is that all the explicit definitions of pairing
terms have, because of their arbitrariness, various more or less accidental
consequences. This is a case of an issue that has plagued the foundations
of mathematics — the problem of doing too much. It is sometimes referred to in
the literature as Benacerraf’s problem, because he famously raised an instance
of it in ‘What numbers could not be’ (1965), but in fact it dates back at least to
Dedekind.
The problem typically arises when we try to synthesize in some theory a

notion of which we take ourselves already to have a conception independent
of that theory: we have to choose some particular way of modelling the no-
tion within our theory, and in doing so we invest the model with extraneous
properties which we could not have derived from our prior conception of the
notion.
At the formal level one way out of this difficulty is to introduce the prob-

lematic entity explicitly by means of a new primitive term governed by appro-
priate axioms. In the case at hand, this would involve treating ‘(x, y)’ as a
primitive term and stating the ordered pair principle as an axiom. If we adop-
ted this practice, the derivation of proposition 4.6.2 would continue to have
a metamathematical interest, since it would demonstrate that the theory with
the ordered pair axiom included is conservative over the old theory without
the axiom, but it would not be needed for the formal development.
There is a difficulty with this strategy, however. It is caused by the fact that

among the objects we wish to form ordered pairs of are the sets themselves. If
we are serious about the idea that ordered pairs are not sets but distinct entities
of which we have an independent conception, we shall therefore have to alter
our definition of ‘level’ to ensure that ordered pairs get included in the hier-
archy. One way of doing this would be to replace accumulations with exten-
ded accumulations: the extended accumulation of a consists of the accumulation
of a together with the ordered pairs whose terms belong to the accumulation
of a. This manoeuvre would of course complicate the formal development
slightly, but if it were adopted, hardly anything in the rest of the book would
have to be changed.
The problem of doing too much is one that most mathematicians would

regard as irrelevant to their concerns: they are habituated by frequent use to
the practice of modelling one theory within another and simply disregarding
the extraneous properties which this practice throws up. Moreover, they are
undoubtedly aided in this by the fact that the properties at issue are extraneous
— answers to questions it would never occur to us to ask, lying out among
what Quine evocatively calls the ‘don’t cares’. Kuratowski’s trick has certainly
proved popular: among those writing after it became well-known, Bourbaki
(1954) is the rare exception in not making use of it, instead treating the ordered
pair as an extra primitive in his formal system; but even Bourbaki relented
eventually and (in the 4th edition of Théorie des ensembles) followed what had by
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then become the universal practice among mathematicians of adopting the
trick as a definition of the ordered pair.
As the reader will note, I have chosen to follow this practice here too. I

must therefore give up the idea that the collections called ‘ordered pairs’ here
are the genuine article. The reason is that the moral Benacerraf drew — that
since their numerical properties do not determine which sets numbers are,
numbers are not sets — applies in this case too. If there are such things as
ordered pairs in the proper sense — entities governed solely by the ordered
pair principle — then for the same reason they are not sets. So the theory
of sets does not contain the theory of ordered pairs, but only a convenient
surrogate of it. But that is all we need: {{x}, {x, y}} is a single set that codes
the identities of the two objects x and y, and it is for that purpose that we use
it; as long as we do not confuse it with the genuine ordered pair (if such there
is), no harm is done. In other words, the ordered pair as it is used here is to be
thought of only as a technical tool to be used within the theory of sets and not
as genuinely explanatory of whatever prior concept of ordered pair we may
have had.

Definition. If z is an ordered pair, let

dom(z) = ι!x(∃y)(z = (x, y)) (‘the first coordinate of z’);

im(z) = ι!y(∃x)(z = (x, y)) (‘the second coordinate of z’).

Thus dom(x, y) = x and im(x, y) = y.

4.7 Relations

According to the standard conception, relations correspond to binary predic-
ates in the same way that sets correspond to unary ones.

Definition. A set is called a relation if every element of it is an ordered pair.

If Φ(x, y) is a formula, then {(x, y) :Φ(x, y)} is a relation provided that it
is a set; it is said to be the relation between x and y defined by the formula
Φ(x, y). Conversely, any relation r is defined by the formula (x, y) ∈ r ,
which is customarily written x r y. The set {(y, x) : x r y} is called the inverse
of r — some authors call it the ‘converse’ — and it is denoted r−1. The sets
dom[r] = {dom(z) : z ∈ r} and im[r] = {im(z) : z ∈ r} are called the domain
and image of r respectively. If c is a set, we let

r[c] = {y :(∃x ∈ c)(x r y)}.
An element y is said to be r-minimal if there is no x such that x r y. If r and s
are relations, then we let r ◦ s denote the relation

{(x, z) :(∃y)(x s y and y r z)}.
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The order of r and s in the definition of r ◦ s is not what one might expect: it
is dictated by the widespread practice, which we shall follow here, of writing
function symbols on the left of their arguments (see below). If r ⊆ s, we say
that s is an extension of r and that r is a restriction of s.

Definition. a × b = {z : dom(z) ∈ a and im(z) ∈ b} (‘the cartesian product
of a and b’).

The members of a × b are thus the ordered pairs whose first coordinate is in
a and whose second coordinate is in b.

(4.7.1) Proposition. If a and b are sets, then a × b is a set.

Proof . Every ordered pair with a first coordinate in a and a second coordinate
in b is a member of P(P(a ∪ b)). The result follows [propositions 3.7.10 and
4.5.3].

Definition. A relation which is a subset of a × b is said to be a relation
between a and b. A relation between a set a and itself (i.e. a subset of a × a) is
said to be a relation on a.

For example, the formula x = y defines on any set a a relation which is often
called the diagonal of a. If c is a subset of a, then the restriction r ∩ (c × c) of r
is a relation on c which is denoted rc.
We conclude this section by mentioning another technical device that is

occasionally useful. It depends on picking once for all two definite objects.
For the trick to work, all that matters is that the chosen objects are distinct:
once we have got round to defining the natural numbers 0 and 1 (which will
be in §5.4), we might as well use them for this purpose, so we shall state the
definition as if those are the ones we have chosen, but nothing of importance
hinges on the matter.

Definition. a � b = (a × {0}) ∪ (b × {1}) (‘disjoint union’).
The purpose of this definition is to tag each member of a with the label 0 and
each member of b with the label 1, so that they retain their distinctness when
we form the union.

Exercises

1. (a) Show that {x} × {x} = {{{x}}}.
(b) Suppose that a is a set. Show that a × a = a ⇔ a = Ø. [If a is non-empty,

consider an element of a of earliest possible birthday.]
(c) Give an example of sets a, b, c, d such that a × b = c × d but a �= c and b �= d.

2. Suppose that r , s and t are relations.
(a) Show that (r ◦ s) ◦ t = r ◦ (s ◦ t).
(b) Show that (r ◦ s)−1 = s−1 ◦ r−1.
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4.8 Functions

A relation f between a and b is said to be functional if for every x ∈ a there
is exactly one y ∈ b such that x f y. Functional relations between a and
b are more usually called functions from a to b. If τ(x) is a term, then the set
{(x, τ(x)) : x ∈ a} (if it exists) is a function which is said to be defined by the
term τ(x); it is denoted (τ(x))x∈a or ‘x �→ τ(x) (x ∈ a)’. or, if the domain
is clear from the context, simply (τ(x)) or ‘x �→ τ(x)’.1 Conversely, if f is a
function from a to b, it is defined by the term ι!y(x f y), which is denoted
f (x) and called the value of f for the argument x .
Another terminology which we shall sometimes use is to call a function a

family, its domain the indexing set and its image the range of the family: if the
members of the range all have some property F , we call it a family of Fs.
When we are using this terminology, it is usual to express the value of f for
the argument x as fx .
One function that crops up often enough to be worth singling out is the

function ida from a set a to itself given by the assignment x �→ x (x ∈ a): it
is sometimes known as the identity function on a, although it is in fact the same
thing as the diagonal relation on a.
The set of all functions from a to b is denoted ab. Somewhat more generally,

if (bx)x∈a is a family of sets, we write
∏

x∈a bx for the set of all the functions f
from a to

⋃
x∈a bx such that f (x) ∈ bx for all x ∈ a; so ab = ∏

x∈a b.
The fact that most authors use f (x) to denote the value of the function f at

x rather than (x) f or x | f is a historical accident with nothing except tradition
to commend it. Dedekind used the notation x | f in an early draft ofWas sind
und was sollen die Zahlen? (see Dugac 1976, app. LVI), but changed this to f (x)
in the published version.

(4.8.1) Proposition. If ( fi)i∈I is a family of functions such that fi ∪ f j is a
function for all i, j ∈ I , then

⋃
i∈I fi is a function.

Proof . Suppose that (x, y), (x, z) ∈ ⋃
i∈I fi . So there exist i, j ∈ I such that

(x, y) ∈ fi and (x, z) ∈ f j . So (x, y) and (x, z) belong to fi ∪ f j , which is a
function by hypothesis, and therefore y = z.

If f is a function from a to b and c ⊆ a, then the restriction f ∩ (c × b) of f is
a function from c to b which is denoted f |c. If f |c = g|c, i.e. if f (x) = g(x)
for all x ∈ c, we say that f and g agree on c.
A function f from a to b is said to be one-to-one if for each y ∈ b there is at

most one x ∈ a such that y = f (x); it is said to be a function onto b if for each
y ∈ b there is at least one x ∈ a such that y = f (x). It is said to be a one-to-one

1The term (τ(x))x∈a does not depend on x ; in this expression, the letter x is being used as a
dummy variable and could be replaced by any other variable which does not already occur in
the expression.
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correspondence between a and b if it is a one-to-one function from a onto b: this is
so just in case for each y ∈ b there is exactly one x ∈ a such that y = f (x), or
equivalently if the inverse relation f −1 is a function from b to a. We shall say
that a and b are equinumerous if there is a one-to-one correspondence between
them.

Exercises

1. If f is a one-to-one function from a to b and g is a one-to-one function from b to
c, show that g ◦ f is a one-to-one function from a to c.

2. If f is a function from a onto b and g is a function from b onto c, show that g ◦ f
is a function from a onto c.

3. If f is a function from a to b, show that f −1 is a function from im[ f ] onto a iff f
is one-to-one.

4.9 The axiom of infinity

There is a lowest level, and for each level there is another level above it. It
follows from this that there are infinitely many levels, but not that there is
any level with infinitely many levels below it — with, that is to say, an infinite
history. For that we need another axiom.

Definition. A limit level is a level that is neither the initial level nor the level
above any other level.

(4.9.1) Proposition. If V is a level other than the lowest, then it is a limit
level iff (∀x ∈ V )(∃V ′ ∈ V )(x ∈ V ′).

Necessity. Suppose that V is a limit level and x ∈ V . Then x is either a set or
an individual [proposition 3.7.2]. If x is an individual, x ∈ V0 ∈ V . If x is not
an individual, on the other hand, x ⊆ V ′ ∈ V [proposition 3.6.8] and so if V ′′

is the level above V , then x ∈ V ′′ ∈ V .

Sufficiency. If V is not a limit level, then it is the level above some level V ′, and
V ′ ∈ V but there is no level V ′′ such that V ′ ∈ V ′′ ∈ V .

Axiom of infinity. There is at least one limit level.

To explain why we have called this the axiom of infinity, we need to introduce
a definition of infinity due to Dedekind.

Definition. A set is infinite if it is equinumerous with a proper subcollection
of itself.

Definition. The lowest limit level is denoted Vω.

(4.9.2) Proposition. The history of Vω is infinite.
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Proof . The history of Vω is the set of levels belonging to it. Consider the
function which maps each such level to the one above it: this function is one-
to-one, but the initial level V0 is not in its image. The history of Vω is therefore
infinite.

Our intuitions about infinite collections are undoubtedly more nebulous and
more capable of arousing controversy than those about finite ones. Indeed
many of the properties of infinite collections are paradoxical at first sight.
When Cantor wrote his works on set theory, an abhorrence of actually in-
finite collections had been commonplace since Aristotle: they were, for ex-
ample, scrupulously avoided by Euclid (c.300 B.C.). There were certainly a
few heretics — Galileo and Bolzano, for example — but Aristotle’s views had
been widely accepted.
It was just at the time when infinitesimals had been successfully expunged

from analysis by Weierstrass (Cantor’s teacher) — not to be rehabilitated until
the 1950s — that Cantor himself tamed the paradoxes of the actual infinite
in his work on cardinal and ordinal arithmetic. However, he had to brook
considerable opposition and devoted lengthy passages in his published work
to the defence of his views against what he called the horror infiniti, ‘a kind
of shortsightedness which destroys the possibility of seeing the actual infinite’
(1886, p. 230).
Perhaps the most influential of those whom Cantor (1886, pp. 225–6)

took to be opponents of the actual infinite was Gauss, who had protested
in a frequently quoted letter to Schumacher ‘against treating infinite mag-
nitudes as something completed, which is never admissible in mathematics’
(Gauss 1860–65, vol. II, p. 269) As so often, however, it pays to examine the
quotation in context. In the letter to which Gauss was responding Schu-
macher had tried to prove that space is Euclidean by an ingenious but fal-
lacious argument involving the construction of a large semi-circle. If the semi-
circle is kept fixed and the triangle is made small, Schumacher’s argument
does indeed show that the sum of the angles of the triangle will tend to 180◦.
What Gauss quite correctly objected to, though, was Schumacher’s use of the
opposite procedure — keeping the triangle fixed and letting the radius of the
semi-circle tend to infinity — to show that the sum of the angles of the triangle
is 180◦.
But even if Gauss was not in this famous quotation opposing the notion of

an actually infinite set, there were certainly many others who did. Indeed it was
not uncommon at first to regard the paradoxes of set theory as paradoxes of
the infinite. Some years after Cantor’s work Poincaré (1906, p. 316) could still
assert that ‘there is no actual infinite; the Cantorians forgot this and fell into
contradiction’. On the issue of bare consistency, however, Cantor’s views did
eventually prevail: hardly anyone would now try to argue that the existence
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of infinite collections is inconsistent: the modern finitist is more likely to make
the much weaker claim that there is no reason to suppose they exist.
That is not to say, of course, that we can prove the logical consistency of

the axiom of infinity. We might indeed be able to supply an argument for
this: however, it would not be a proof ab initio, but only relative to some other
infinitary theory for which we might have some independent ground (e.g. Eu-
clidean geometry). Even if that were possible, though, it would heavily qualify
our theory’s suitability to take on the foundational role for which we were
grooming it: in the case just quoted, for example, the theory would obviously
be ruled out as a candidate to act as a foundation for Euclidean geometry.
More importantly, though, it would not even meet the case since, as we have
already seen, there seems to be no reason to think the mere logical possibil-
ity of a set implies its actual existence, and indeed it is dubious whether the
supposition that it does imply it is even coherent.
Modern mathematical practice makes use of infinite collections every-

where, at least if we take its surface grammar at face value: not only does the
construction of proxies for the standard objects of mathematics in set theory
that we shall outline in part II need there to be at least one infinite set in order
for it to get started, but even independently of that construction mathem-
aticians quite routinely use infinite sets in reasoning about these standard ob-
jects. So if we believe that what mathematicians say is true, there is nowadays
a regressive justification for assuming an axiom of infinity, i.e. an axiom assert-
ing the existence of at least one infinite collection. But there are two distinct
ways in which we could have done this, depending on whether we supposed
the infinite collections to exist because there are infinitely many individuals or
because there are levels infinitely far up the hierarchy. If we had opted for the
first of these, our axiom would have been as follows.

Axiom of infinity1. V0 is infinite.

The axiom of infinity which we have asserted here is of the second sort. (In
the next section we shall suggest an informal way of picturing the hierarchy
according to which the first of these suppositions makes the hierarchy infinitely
wide and the second makes it infinitely high.)
The requirement of mathematics is sets from which to construct the relev-

ant objects, and we do not care much which sets they are. So the regressive
method does not directly give us a ground for preferring one sort of axiom of
infinity over the other. In fact, it makes remarkably little difference to any-
thing that follows which of these two axioms we assume: for mathematical
purposes it would be sufficient to assume the following axiom, which is en-
tailed by each of them.

Axiom of infinity2. There exists an infinite set.
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One route that has been tried, most famously by Dedekind but also by Russell
(1903, p. 357) and others, is to give a direct (i.e. non-regressive) argument for
the existence of infinitely many individuals. Such an argument would not be
attractive to set theorists since the individuals are (by definition) not sets, so for
mathematics to depend on them in this manner would be for it to depend on
facts extraneous to it. Philosophers, whose subject habituates them to seeking
any port in a storm, might not be so dismissive. Dedekind’s argument is as
follows:

My own realm of thoughts, i.e. the totality S of all things which can be objects of my
thought, is infinite. For if s signifies an element of S, then the thought s′ that s can be
an object of my thought, is itself an element of S. If we regard this as an image φ(s)
of the element s, then the mapping φ of S thus determined has the property that the
image S′ is part of S; and S′ is certainly a proper part of S, because there are elements
in S (e.g. my own ego) which are different from such a thought s′ and therefore are not
contained in S′. Finally it is clear that if a, b are different elements of S, their images
a′, b′ are also different, and that therefore the mapping φ is one-to-one. Hence S is
infinite, which was to be proved. (Dedekind 1888, no. 66)

Of course, this does not purport to be a proof that the empirical world must
be infinite, but only that the realm of thought must. If it were to turn out
that mathematics depends for its truth on an inevitable feature of that realm,
that would certainly be a radical conclusion, for it would at a stroke convert
our philosophy of mathematics into idealism, but it is far from clear that this
would be absurd.
Note, though, that even if it is sound, Dedekind’s proof shows the existence

only of infinitely many objects, not of a set to which they all belong. But the
axioms we have stated already demonstrate that, for we can prove the existence
of, for instance, the sets

Ø, {Ø}, {{Ø}}, . . .
Dedekind’s proof is therefore of use only to a dependency theorist who, in-
voking Aristotle’s celebrated distinction between potential and actual infinity,
regards the relation of dependency that holds between the levels as showing
that they form only a potential infinity, not an actual one, and for that reason
hesitates to assert that there is a set Vω containing all of them. For such a
person Dedekind’s proof is not redundant, since it attempts to demonstrate
that the individuals are actually, not just potentially, infinite in number, and
therefore gives a stronger ground for believing that there is a set containing all
of them.
In any case, we have chosen here not to follow the course of supposing

that there are infinitely many individuals. Our reason is that to have done so
would have limited the applicability of our theory: if we assumed that there
are infinitely many individuals, the resulting theory would be inconsistent in
those cases where the theory T to which set theory is being added had only
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finite models. That would contravene our (surely reasonable) desire to provide
a theory of sets that can, at the very least, be adjoined to any theory T without
introducing inconsistency.
Instead, therefore, we have asserted that there is a level Vω which has an

infinite history — a level, in other words, which depends on infinitely many
lower levels. The constructivist’s route to establishing this principle is relat-
ively clear and depends solely on the coherence of the notion of a supertask,
as already discussed. Platonists, on the other hand, seem to have frustratingly
little they can say by way of justification for this form of infinity axiom.

4.10 Structures

The general framework we set up in §2.2 consisted of a prior theory T , to
which we added a predicate U(x) to mean ‘x is an individual’, before relativ-
izing the axioms of T to U. Let Z[T ] be the theory obtained by adding to this
framework the axioms of creation and infinity together with all the instances
of the separation scheme. (Although it will not figure prominently in this
book, we should also mention the corresponding second-order theory Z2[T ],
in which the separation scheme is replaced by the second-order separation
principle.) Two special cases are worthy of note. If we start from the theory
null which has no axioms at all, so that nothing whatever is assumed about
the individuals, the theory Z[null] thus obtained is usually denoted simply
ZU. If we start from the theory empty whose only model is empty, we get a
theory Z[empty] which is usually denoted simply Z. When empty is relativ-
ized to U, it asserts that there are no individuals, so another way of arriving at
Z would be to obtain it from ZU by adding the axiom of purity of §3.8.
But treating its objects as individuals is not the only way in which a theory

can be embedded in set theory.

Definition. An ordered pair (A, r) is called a structure if r is a relation on
A.

We shall sometimes refer to A as the carrier set of the structure and to (A, r) as
the result of endowing it with the relation r . There is a widely used convention,
which we shall occasionally make use of, that (A, r) may be denoted simply
by A if the identity of the relation r is clear from the context.
Consider now a formal language in which the only non-logical symbol is

a binary relation symbol R. If (A, r) is a structure, in the sense just defined,
we can interpret any sentence in the language as making a set-theoretic claim
about (A, r). If the language is first-order, we do this by replacing x R y
with (x, y) ∈ r and relativizing all the quantifiers in the sentence to A. If the
language is second-order, then because our theory of sets is first-order, this
procedure will leave us with second-order quantifiers relativized to A which
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we still need to interpret: we do this by interpreting them as ranging over all
the subsets of A. The result of this process of interpretation is that we can talk
of a sentence in the language as being true in a particular structure (A, r).2

If all the sentences of T are true in (A, r), we say that it is a set-theoretic model
of T . This method of interpreting a theory in a structure is indeed a gener-
alization of the method considered earlier. For the proposal then was that
starting from a theory T we add a predicate U(x) to mean ‘x is an individual’
and relativize the axioms of T to U. If we do this, we can form a structure by
taking its domain to be the set V0 of all the individuals; interpret each binary
relation symbol R in the language of T by the relation on V0 defined by the
formula x R y (and similarly for relation symbols of other arities); and inter-
pret each unary function symbol f by the function on V0 defined by the term
f (x) (and similarly for function symbols of other arities). The result will be a
set-theoretic model of T since the relativizations to U of all the axioms of T
have been adopted as axioms of ZU[T ].

Definition. An isomorphism between structures (A, r) and (A′, r ′) is a one-
to-one correspondence f between the sets A and A′ such that

(∀x, y ∈ A)(x r y ⇔ f (x) r ′ f (y)). (2)

Two structures are said to be equivalent if just the same sentences are true in
each of them, and elementarily equivalent if just the same first-order sentences
are true in each of them. Isomorphic structures are evidently equivalent, and
hence in particular elementarily equivalent.
If the notion of a set-theoretic model generalizes the ideas of §2.2 by in-

cluding them as the special case in which the domain of the model consists of
individuals, it is natural to ask under what circumstances it is a genuine general-
ization. If, in other words, we have a theory T which has a set-theoretic model
(A, r), under what circumstances is there a model whose domain consists of
individuals? It is easy to see that this is an issue that hinges solely on how many
individuals there are. For if the domain A is equinumerous with any other set
A′ (whether a set of individuals or not), we can use (2) as a definition of a relation
r ′ on A′ which will make (A, r) and (A, r ′) isomorphic. And as isomorphic
structures are equivalent, if (A, r) is a model of T , (A′, r ′) will be one too.3

From ametatheoretic perspective we can also proceed in the other direction
and, given some set-theoretic structures, ask whether there is a theory whose

2The case we have dealt with here is that of a language with a single binary relation symbol,
but it can easily be generalized to more elaborate languages, and we shall occasionally use the
vocabulary we have just introduced in this generalized meaning, so that for instance the ordered
triple (ωωωω, s, 0) will be referred to as a ‘structure’ in §5.5.
3This simple observation is the nub of a telling objection made by Newman (1928) to Russell’s
(1927) causal theory of perception.
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set-theoretic models are just those structures. As an instance of this, consider
the following properties.

Definition. A relation r on A is said to be:

reflexive on A if (∀x ∈ A)(x r x);

irreflexive on A if (∀x ∈ A)(not x r x);

transitive if (∀x, y, z)((x r y and y r z) ⇒ x r z);

symmetric if (∀x, y)(x r y ⇒ y r x);

antisymmetric if (∀x, y)((x r y and y r x) ⇒ x = y).

Each of these classes of structure evidently corresponds to a first-order axiom
in the language of the binary relation symbol ‘R’. Thus the reflexive struc-
tures, for example, are just the set-theoretic models of the first-order axiom

(∀x) x R x .

But not all the classes of structure we might be interested in can be char-
acterized by first-order axioms in this way. Model theory is a rich source of
results on what is possible in this regard. For instance, logicians have been es-
pecially interested in theories that are categorical, which means that any two set-
theoretic models are isomorphic to each other, but it is an easy consequence
of the compactness theorem for first-order logic that no first-order theory with
an infinite set-theoretic model can be categorical.

Notes

What we have given here is only an outline of the elementary theory of sets,
functions and relations. It is described in greater detail in many, many text-
books: one that is quite close in spirit to ours is Tourlakis 2003, vol. II.
The issue concerning the validity of the axiom of creation, which amounts

to the question whether every set has a power set, has not always received as
much attention as it deserves. Some sceptical thoughts on this are to be found
in Hobson 1921 and Lusin 1927.
The argument about the status of the infinite has a long and tangled history,

the best introduction to which is A. W. Moore 1990. Waterhouse 1979 is a
clear account of the correspondence between Gauss and Schumacher.
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Although we shall discuss other set-theoretic axioms later in the book, we shall
not adopt them as part of our system, which will be ZU. This is sufficiently
important that it deserves to be repeated with emphasis.

We shall assume the axioms of ZU throughout the remainder of this book.

ZU — the theory whose axioms are creation (§4.5), infinity (§4.9) and all the
instances of separation (§3.5) that can be stated in the language of the theory
— will, that is to say, be our default theory. When we state a theorem, therefore,
what we are claiming is that the statement in question is provable in ZU. Of
course, it follows at once a fortiori that it is also a theorem of Z[T ] for any
theory T , and in particular a theorem of Z.
As I have said, we shall encounter other set-theoretic axioms later. One

warning in the meantime, though: what plays the role of the default theory in
other textbooks is most often a theory of sets equivalent either to ZF, which is
obtained from Z by adding a stronger axiom of infinity ensuring the existence
of many more levels in the hierarchy, or to ZFC, which is obtained from ZF
by adding the axiom of choice as well.1 But anything that is a theorem of ZU
is also a theorem of these stronger theories, so what is said here remains valid
in these other contexts too.
I have already commented at some length on two other respects in which

our default theory is weaker than standard formulations in other books: it
allows for there to be both individuals and ungrounded collections. Of these
two permissions the latter is the less significant. I have argued that platonists
with internalist sympathies might well be willing to grant that all collections
are grounded. In recognition of this we shall adopt the convention from now
on that our quantifiers are restricted to range over sets and individuals only.
So if the theory I have chosen leaves room for ungrounded collections, it is

only because I do not want to pick a fight unnecessarily. That it leaves room
for individuals, on the other hand, is central to ensuring its applicability. We
deduce directly from Ramsey’s theorem in combinatorics, for instance, that

1For explanations of these theories see part IV; for a discussion of the rather different sort of
axiomatization of ZF used in most other books see appendix A.



Conclusion to Part I 77

at a party attended by ten people there must be either four acquaintances or
three strangers. But if our theory of sets is pure, we cannot do this, at any
rate not directly: we are only entitled to apply the theorem to Ø and sets
formed from it by iterations of the power-set operation; and it begins to seem
miraculous that mathematics applies to the world at all.
If for some reason we were determined to study only the pure theory, all

would not be lost quite yet, it is true: we could try to repair the damage later by
adding appropriate bridging principles connecting the pure sets of our theory
to the denizens of the real world that we want eventually to be able to count.
But it is very hard to see what the point would be of proceeding in this fashion.
Although our theory is non-standard in the two respects just mentioned, we

have sided with the majority in two others, the adoption of classical logic and
the acceptance of impredicative definitions. Denial of these two principles
has long been a badge of constructivism, but it is worth noting that in fact
they are independent of each other, not just technically but philosophically:
semi-intuitionists such as Poincaré argued against impredicative sets without
querying classical logic, while others (e.g. Lear 1977) argued for intuitionistic
logic in set theory without bringing impredicative sets into question.
It is worth noting, too, that if it were only the proof-theoretic strength of

the resulting system that concerned us, only the elimination of impredicative
sets would represent a significant restriction. This is because there are meth-
ods (such as the so-called negative translation) for re-interpreting the classical
connectives in any sentence intuitionistically so as to preserve provability (from
which, of course, we may deduce that the classical system is consistent if the
intuitionistic one is). In the case of arithmetic, for which the result was proved
by Gödel (1933), the translation is especially simple because the atomic sen-
tences (i.e. numerical equations) are intuitionistically decidable, and hence can
be left intact. In the case of set theory we have to translate the atomic formula
x ∈ y into its double negation, and the treatment of extensionality is also
rather delicate. This lessens somewhat the naturalness of the translation, and
it is not as clear in this case as in the arithmetical one that its existence cre-
ates problems for arguments that aim to reject excluded middle on grounds of
manifestability (see Potter 1998).
Nonetheless, any translation, whether natural or not, gives us a relative con-

sistency result. Impredicativity, by contrast, makes an enormous difference to
the formal strength of the first-order system we are studying, and it does so
independently of whether the underlying logic is classical. There are various
ways of explaining the reason for this, but one is that impredicativity allows
for elaborate feedback loops between different levels in the hierarchy, greatly
enriching its structure. This is immediately clear if we imagine the difficulty
involved in constructing from scratch a model of the theory. We can use a set
at one level V to define a set at a higher level, but then we may have to go
back to V and construct further sets forced on us because they can be defined
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by instantiating quantifiers in a term of the form {x ∈ V :Φ}. In the predicat-
ive theory, by contrast, there are no such feedback loops, and which sets we
include in some level of a model depends only on the preceding levels. The
consequences of the richness of structure which the impredicative form of the
separation scheme permits will be a constant theme of this book. In particu-
lar, the whole theory of infinite cardinals which we develop in part III would
be impossible without it.
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Introduction to Part II

In the first part of this book we have developed a theory with wide application.
It systematizes our talk in what might be called the extensional mode— talk, that
is to say, that depends only on which objects have a property rather than on
how the property is presented to us. The use of the extensional mode is by no
means confined to mathematics — it is a commonplace of almost every sphere
of discourse that comes to mind— but in mathematics it is of especial import-
ance. Mathematicians are persistently inclined, once they have proved two
properties extensionally equivalent, to ignore the difference and treat them
thereafter as one. They therefore find a particular utility in a language which
shares this blindness. Set theory thus gives us a way to systematize manners of
talking and patterns of reasoning that are already widespread in mathematics.
But what we have introduced is not simply a language: the axioms of the

theory carry existential commitments significant enough for their truth to be a
matter of some controversy. If my goldfish Bubble exists, set theory asserts that
Bubble’s singleton exists too; and it is by no means clear that this is something
to which the belief in Bubble of itself commits me. This lack of ontological
innocence has caused set theory to be pressed into the service of a different
and more ambitious project which aims not merely to express certain ways of
grouping objects that are common in mathematics but to supply the objects
themselves.
The principal locus of this latter project has traditionally been the part of

mathematics that is usually called either ‘calculus’ or ‘analysis’ — that is,
roughly, the study of real-valued functions of a real variable, together with
the corresponding case for the complex numbers. The idea of studying such
functions is certainly not new— Archimedes, for example, used methods that
recognizably belong to the calculus to prove results on the areas of various
figures — but the subject owes its modern importance to the extraordinarily
fruitful developments which began with the discoveries of Newton and Leibniz
in the late 17th century. For over a hundred years, however, the methods that
mathematicians used to prove the theorems of the calculus made apparently
ineliminable use of diagrams. If it is indeed ineliminable, this use of diagrams
has consequences for both the nature of mathematical knowledge and its cer-
tainty, since our knowledge of the theorems of the calculus will be of the same
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nature as our knowledge of the diagrams and no more certain than it.
Of these two issues — the nature of knowledge and its certainty — the

former is a philosophical, the latter a practical one. Inevitably, then, it was
overwhelmingly the latter that motivated mathematicians, not the former.
Berkeley in The Analyst (1734) famously mocked the unclarity and lack of
rigour to be found in the arguments used by early expositors of the calcu-
lus, but his criticisms had little effect on the practice of mathematicians. What
eventually came to concern them were cases where appeal to diagrams was
shown to be capable of leading them into error. The examples that gave rise
to this concern are well known. Here I shall mention one of the most strik-
ing, which arises when we investigate the relationship between the two most
important properties that fall within the scope of the calculus, continuity and
differentiability. A function f of a real variable is said to be continuous at an
argument a if f (x) tends to f (a) as x tends to a; it is said to be differentiable at
a if f (x)− f (a)

x−a tends to a limit as x tends to a, the limit being called the derivative
of f at a and denoted f ′(a). Every differentiable function is continuous, but
it is easy to give examples where the converse fails. The modulus function
x �→ |x |, for instance, is continuous but not differentiable at 0. If we call the
set of points at which a continuous function fails to be differentiable its excep-
tional set, it is then natural to wonder what sorts of sets can be exceptional in
this sense. It is not hard to see by extending the example of the modulus func-
tion that every finite set of real numbers is exceptional. And by constructing
a function which performs a damped oscillation we can see that some infinite
sets, such as {1, 1/2, 1/4, . . . }, are exceptional. But intuitions derived from dia-
grams suggest (or at any rate suggested to some 19th century analysts) that
there should be some sense in which all exceptional sets are small. If, for ex-
ample, we imagine a particle traversing the graph of a continuous function,
then an exceptional point will be one at which the particle abruptly changes
its direction in a discontinuous manner. This is an instance of a familiar no-
tion from kinematics: it is what is supposed occurs in an elastic collision. But
could a particle change direction discontinuously at every moment? It seems
clear that this is impossible. For this reason, or reasons similar to it, analysts
supplied various properties of smallness which, they conjectured, all excep-
tional sets must have. One consequence these conjectures had in common
was that the whole real line could not be an exceptional set: there could not,
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in other words, be a function which is continuous everywhere and differenti-
able nowhere.
But there can. Consider the sequence ( fn) of functions defined on the unit

interval as follows. First let f0(x) = x . Then, when fn has been defined, let

fn+1(
k
3n

) = fn(
k
3n

)

fn+1(
k
3n
+

1
3n+1

) = fn(
k
3n
+

2
3n+1

)

fn+1(
k
3n
+

2
3n+1

) = fn(
k
3n
+

1
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)

and complete the definition by requiring that fn+1 should be linear in each
of the 3n+1 intervals [ k

3n+1 ,
k+1
3n+1 ] (0 � k < 3n+1). It can be shown that these

functions converge to a limit function f which is continuous throughout the
unit interval but not differentiable anywhere in it.
The first example of a continuous nowhere differentiable function was dis-

covered by Bolzano in 1840, but he did not publish it, and the phenomenon
did not influence the mathematical community until Weierstrass discovered
another example, which he published in 1872. From the pragmatic perspect-
ive that most mathematicians adopt, what this surprising example and others
like it demonstrate is the need for rigour. The research programme to which
they thus gave birth was prosecuted in the second half of the 19th century,
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most prominently by Weierstrass himself, who in lecture courses he gave at
the University of Berlin gradually developed the rigorous treatment of ana-
lysis that was being sought.
What this rigorous treatment did was to remove from proofs the appeal

to what is obvious from the diagram, and replace it with symbolic reasoning
from axioms. By the end of this period it had thus become possible to prove
all the results of the calculus solely on the assumption that the real numbers
form what is called a complete ordered field.1

This systematization of the calculus thus shifted the epistemic focus away
from what we can glean from diagrams and onto two issues which could now
be seen to be distinct: the status of the symbolic reasoning used in diagram-
free proofs; and the status of the initial assumption presupposed by that reas-
oning, namely that the real numbers form a complete ordered field.
The first of these issues was addressed above all by Frege, whose Begriffs-

schrift (1879) provided not only a notation for expressing arguments involving
multiple generality but a codification of the rules of proof used in such ar-
guments. Frege’s work was ignored, however: it was left to Peano to invent
a more typographically tractable notation, and to others such as Russell and
Hilbert to turn the logic of multiple generality into a manageable tool for the
codification of mathematical reasoning. This logic came to be seen by some,
indeed, as not only a tool but a canon: whether an argument could be symbol-
ized in the formal system came to be seen as a criterion of its very correctness.
It was Gödel’s first incompleteness theorem that put paid to this inflated am-
bition by showing that no formal system codifies all the types of argument that
we are entitled to regard as correct.
It is also worth adding the further caveat that even if a type of argument can

be codified within the currently accepted formal system (which in the present
work is, as already noted, taken to be the classical first-order predicate calculus
with identity), this does not answer the epistemological question of how we
know that the argument is valid: it merely postpones that question by palming
it off on the underlying logic. In particular, the fact that proofs in analysis
proceed by modes of reasoning formalizable in the accepted formal system
does not in itself show that Kant was wrong when he talked of continued
appeal to intuition in mathematics: this further conclusion will follow only
if there is a route independent of intuition to the correctness of the formal
system.
Nevertheless, it took some time for this further problem to emerge as a

central issue in the justification of mathematical analysis. What concerned the
more foundationally minded mathematicians much more pressingly was the

1This expression will be defined in chapter 8. It means that, in addition to the ordinary algebraic
properties satisfied by the order relation and the operations of addition and multiplication, the
real numbers have the completeness property: every non-empty bounded set of real numbers
has a least upper bound.
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second of the two parts into which Weierstrass’ work had allowed the question
to be split, namely that of justifying his assumption that the real numbers form
a complete ordered field.
Once again this relates both to the certainty and to the character of the

truths of analysis. It relates to their certainty because the conception of the real
numbers to which Weierstrass’ axiomatization is answerable is not the only
one that is available. To see why, we need to say a little more about the detail
of his treatment. The characteristic form of argument that is deployed in the
calculus seems prima facie to involve the idea of a real number quantity tending
to a limit. The method Weierstrass used for representing such arguments
replaces this locution with quantified variables. The key point to note, of
course, is that the word ‘variable’ here is now to be understood in the sense in
which it is used in logic, and there is no longer any requirement to conceive of
a quantity as actually varying. This is what is usually known as the epsilon-delta
method, so called because in textbook expositions it is traditional for epsilon
and delta to be used as the variables. Thus Weierstrass treated the expression

f (x) tends to f (a) as x tends to a

as meaning that

(∀ε > 0)(∃δ > 0)(∀x ∈ R)(|x − a| < δ⇒ | f (x) − f (a)| < ε).

The epsilon-delta method is thus what finally allowed mathematicians to ban-
ish the practice of glossing the definition of continuity as

f (x) is infinitesimally close to f (a) when x is infinitesimally close to a.

This talk of infinitesimals had been one of the primary targets of Berkeley’s
ridicule in The Analyst; but however much they tried to avoid it, mathem-
aticians had not until Weierstrass seen how to eliminate it completely. Now
they could, and did. For 80 years after Weierstrass it was a commonplace
taught to undergraduates that talk of infinitesimals was at best a non-rigorous
heuristic for proof-searching and a quaint throwback to an earlier and more
primitive era, at worst a dangerous invitation to serious logical error.
But then, in the 1960s, the subject now known as non-standard analysis grew

up, principally at the hands of Abraham Robinson. What he showed was
that there is a conception of the continuum — let us call it the non-standard
conception — according to which there are infinitesimal quantities lying in it;
and that this conception is just as consistent as the standard Weierstrassian
one.
The development of non-standard analysis has not in fact broken the

stranglehold of classical analysis to any significant extent, but that seems to
be a matter of taste and practical utility rather than of necessity. Moreover,
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the development of non-standard analysis has led to some revisions in pre-
Weierstrassian history. The most striking of these concerns a proof Cauchy
gave in his Cours d’Analyse (1821) that if a sequence of continuous functions
converges pointwise to a limit function f , then the limit function is also con-
tinuous. When it is represented in epsilon-delta form, Cauchy’s proof is ex-
posed as fallacious, since it then involves an illicit inversion of the order of two
of the quantifiers occurring in it. Indeed it is easy to come up with examples
showing that Cauchy’s result cannot be true. In order to make it correct,
we need to replace the reference to pointwise convergence with the stronger
notion of uniform convergence. The difference between the two lies purely in
the order of the quantifiers in their epsilon-delta definitions; and it is lack of
attention to just this that Cauchy stands accused of.
Thus the standard post-Weierstrassian view. But there is something very

suspect about it. The counterexamples one has to construct to show that
Cauchy’s result is fallacious are extremely simple. It is enough to note, for
instance, that as n tends to infinity,

xn tends to

{
0 if 0 � x < 1
1 if x = 1

and the limit function is obviously discontinuous at x = 1. It beggars belief
that a mathematician of Cauchy’s ability would not have noticed this.
A possible explanation for this puzzle has been provided by Lakatos (1978).

He seized on the striking fact that there is a way of interpreting Cauchy’s res-
ult as true about functions defined not on the standard but on the non-standard
continuum, and used this to argue that Cauchy was guilty of no logical fallacy
but was simply talking about a different subject fromWeierstrass. The sugges-
tion, then, is that the situation in analysis is analogous to that in the study of
aggregation which we described in part I. In both cases mathematicians were
working with an inchoate blend of properties of two distinct (but related) con-
cepts. The point to note here is the common role played in each narrative by
the process of axiomatization, which serves to clarify concepts by enunciating
their properties.
But even when the concept of the continuum that is in play has been cla-

rified sufficiently, a question still remains as to whether there is anything that
answers to it. According to Kant, our knowledge of the truths of analysis
is derived ultimately from our knowledge of the spatio-temporal structure of
experience. A Weierstrassian axiomatization of analysis does nothing to chal-
lenge this account unless it can be shown how it is possible to construct objects
satisfying the axioms without recourse to that same spatio-temporal structure.
The research programme that attempts to do this has dominated work in the
foundations of mathematics ever since Weierstrass.
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The first step in executing this programme is nowadays known as arithmet-
ization and consists in the construction of a complete ordered field within the
theory of sets, taking the natural numbers as given. This step was carried out
by Cantor (1872), Dedekind (1872), Heine (1872), Méray (1872), and others,
using several quite distinct methods.
But once again this postpones the Kantian problem rather than solving it.

We still need to ground the knowledge of the natural numbers that these con-
structions presuppose. This next step, which might be called the set-theorization
of arithmetic, is therefore to construct the natural numbers in pure set theory.
Once again this can be done in quite distinct ways. The first construction to
be carried out in full detail is contained in Dedekind’sWas sind und was sollen die
Zahlen? (1888), but Frege’s Die Grundlagen der Arithmetik (1884) contains a sketch
from which another workable treatment can be derived.
As is so often the case in foundational matters, however, the logical direc-

tion is the opposite of the direction of discovery, and we shall here follow the
former rather than the latter. Thus we begin this part of the book with Dede-
kind’s construction of the natural numbers and end with the real numbers. If
we chain these together with the Weierstrassian account of the calculus, we
obtain an embedding of real analysis in the theory of sets. We shall leave to
the end a discussion of the significance of this embedding.



Chapter 5

Arithmetic

We have to show that the axioms of ZU guarantee the existence of structures
with the familiar properties we expect the natural, rational and real numbers
to have. In this chapter we make a start on this project by considering the
natural numbers.

5.1 Closure

We focus first on the problem of identifying a structure which has all the right
algebraic properties for the natural numbers. (We defer consideration of their
order properties to the next chapter.) Dedekind’s original (1888) treatment of
this problem has scarcely been bettered since, and so we shall follow it quite
closely here. The key to Dedekind’s treatment is something that he called a
‘chain’ (Kette) but is nowadays more usually called a closure.

Definition. Suppose that r is a relation on a set A. A subset B of A is said
to be r -closed if r[B] ⊆ B.

As an example, consider the set of all adherents of a religion which bans mixed
marriages: this set is supposed to be closed under the relation of marriage since
anyone married to an adherent of the religion is also an adherent.
Consider now the problem of finding the smallest closed set containing a

given set. If our starting set is not closed, we might not get a closed set simply
by adding all the relatives of its members, since some of themmight have other
relatives not yet included. To get closure, we need to add in all their relatives,
all their relatives, and so on ad infinitum. But what does ‘and so on’ mean here?
We might be tempted to gloss it as ‘for any finite number of iterations’, but
that would, as Dedekind remarked in a letter to Keferstein, ‘contain the most
pernicious and obvious kind of vicious circle’ (van Heijenoort 1967, pp. 100–
01), since it is our intention to use this notion to define what we mean by ‘finite’.
Dedekind’s solution to this problem was to see that there is another, quite
different way of specifying what is meant by the closure of a set. Instead of
working from the inside out, adding more and more things until we get a
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closed set, we can operate in the other direction, taking the intersection of all
the closed sets which contain our starting set.

Definition. Suppose that r is a relation on a set A. The intersection of all
the r -closed subsets of A which contain B will be denoted Clr(B) and called
the r -closure of B.

What makes this definition work is that any intersection of r -closed sets is
r -closed. It follows from this that Clr(B), which is by definition contained
in every r -closed set containing B, is itself r -closed, and hence must be the
smallest r -closed set containing B, as we wanted. Evidently, then, B is r -closed
iff Clr(B) = B. This is all utterly trivial, but it is the key to the treatment that
follows.

(5.1.1) Proposition. Suppose that r is a relation on A and B ⊆ A.

(a) Clr(B) = B ∪ Clr(r[B]);
(b) Clr(r[B]) = r[Clr(B)].

Proof of (a). Clearly B ⊆ Clr(B). Moreover r[B] ⊆ Clr(B), and so
Clr (r[B]) ⊆ Clr(B). Hence B ∪ Clr(r[B]) ⊆ Clr(B). Now r[Clr(r[B])] ⊆
Clr (r[B]) and r[B] ⊆ Clr (r[B]), so that

r[B ∪ Clr(r[B])] = r[B] ∪ r[Clr (r[B])]
⊆ Clr(r[B])
⊆ B ∪ Clr (r[B]),

and therefore B ∪ Clr(r[B]) is r -closed. But B ⊆ B ∪ Clr (r[B]), and so
Clr (B) ⊆ B ∪ Clr (r[B]).
Proof of (b). Clr (B) is r -closed, hence so is r[Clr(B)]. But B ⊆ Clr(B), so
that r[B] ⊆ r[Clr(B)], and therefore Clr(r[B]) ⊆ r[Clr (B)]. Now r[B] ⊆
Clr (r[B]) and r[Clr(r[B])] ⊆ Clr (r[B]), and so

r[Clr(B)] = r[B ∪ Clr (r[B])] by (a)
= r[B] ∪ r[Clr(r[B])]
⊆ Clr(r[B]).

If x ∈ A, we shall sometimes write Clr(x) instead of the lengthier Clr({x}).

5.2 Definition of natural numbers

With Dedekind’s theory of chains at our disposal it is now a simple matter to
state the basic properties on which our development of the natural numbers
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will be based. What Dedekind took as fundamental was the function which
takes each natural number to its successor: the properties he required this
function to have are that no two numbers have the same successor (i.e. the
successor function is one-to-one), that zero is not the successor of any natural
number, and that every number is in the closure of zero with respect to the
successor function. We shall call a structure which has these properties a
‘Dedekind algebra’ in his honour.

Definition. A Dedekind algebra is a structure (A, f ) such that f is a one-
to-one function from A to itself and A = Cl f (a) for some a ∈ A � f [A].

It is obvious that if (A, f ) is a Dedekind algebra, then A is is infinite. By using
the technique of closures, we can easily show, conversely, that any infinite set
contains a Dedekind algebra.

(5.2.1) Theorem. There exists a (pure) Dedekind algebra.

Proof . Suppose that B is any (pure) infinite set. (The existence of such sets is
guaranteed by the axiom of infinity.) Then there is by hypothesis a one-to-one
function g from B into itself that is not onto. So B has an element a which is
not in the image of g. If we let A = Clg(a) and f = g|A, it is evident that
(A, f ) is a Dedekind algebra.

This theorem is needed so that we can justify the following definition.

Definition. We choose once for all some (pure) Dedekind algebra (of lowest
possible birthday) and denote it (ωωωω, s). The elements of ωωωω are called natural
numbers: the function s is called the successor function on ωωωω.

The parenthetical stipulation that the Dedekind algebra we choose should be
pure and of lowest possible birthday is of no great mathematical import, but
it does at least prevent Julius Caesar from being a natural number, an out-
come of notorious concern to Frege (1884). Whether a set is the carrier set
of a Dedekind algebra is solely a matter of cardinality, and the lowest level at
which a pure set of the appropriate size occurs is the first limit level. So the
parenthetical stipulation has the effect of fixing the level at which the set of nat-
ural numbers occurs in the hierarchy. Nonetheless, I should stress that these
stipulations are still very far from determining even the carrier set uniquely,
let alone the successor function: these choices are wholly conventional.
Mathematicians are inclined to avoid such vagueness by fixing on one and

ignoring any rivals. One popular choice is to make ωωωω the closure of Ø under
the operation a �→ a ∪ {a}. But defining the natural numbers in this way
makes many more things true about them than we want: it becomes the case
that Ø ∈ 2, for instance. This is of course another instance of the problem of
doing too much that we met in §4.6 when we defined the ordered pair. The
way out we took then was to give an explicit definition but make clear that
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we did not claim to be defining the notion of ordered pair of which we had a
prior grasp. We could evidently do the same here: use the standard explicit
definition just mentioned but make clear that what we have defined are not
really natural numbers (since of course the empty set is not a member of the
number two). For purely mathematical purposes that might do well enough
(which is presumably why mathematicians do it), but it would scarcely help us
in the project we are engaged in here. What allowed us to adopt Kuratowski’s
ersatz ordered pairs with a tolerably clear conscience was that we did not
pretend our aim in this book was to provide an account of the genuine article.
But when it comes to numbers, things stand differently. We are concerned here
with a foundational project: we aim to assess, and hence should try to present
the best version of, the proposal that set theory could serve as a foundation
for arithmetic, in the sense of explicitly supplying its content, or at any rate of
explaining our knowledge of it.
So what else can we do? One possibility would be to add a new primitive,

‘s’, to our language, define ωωωω to be its domain, and add the stipulation that
(ωωωω, s) is a Dedekind algebra to our system as an extra axiom. This procedure
would get round the problem of doing too much, but was famously stigmat-
ized by Russell for the opposite vice of doing too little and hence having ‘the
advantages of theft over honest toil’ (1919, p. 71). Certainly if we planned to
use the device of postulation as a means of avoiding the tedious business of
proving theorem 5.2.1, Russell’s jibe would be entirely fair. But what if we
agreed to adopt the method of postulation only in cases where a proof is avail-
able that the procedure is conservative? In that case there would no longer be
a sense of having got something for nothing, since we should still have to sup-
ply our proof of the theorem, slightly repackaged now in metalinguistic form
as a proof of the conservativeness of the postulation. The problem is rather
that we still owe an explanation of why a proof of conservativeness is enough.
We need to explain, that is to say, how the new primitive we introduce gains
a meaning if it is conservative (and, equally, how it fails to gain a meaning if
not).
The formal development that follows is neutral between these options, of

course. All we shall need in proofs is that (ωωωω, s) is a Dedekind algebra, and it
will not matter which device was used to achieve this.
By definition there is an element 0 ∈ ωωωω � s[ωωωω] such that ωωωω = Cls(0).

Moreover,

ωωωω = Cls(0)

= {0} ∪ Cls(s(0)) [proposition 5.1.1(a)]
= {0} ∪ s[Cls(0)] [proposition 5.1.1(b)]
= {0} ∪ s[ωωωω],

and so if 0′ ∈ ωωωω � s[ωωωω], then 0 = 0′. In other words, 0 is the unique s-minimal
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element of ωωωω.
Let us also temporarily define n + 1 = s(n). This is a special case of a

more general notation we shall be introducing in §5.4. Using it, the defining
properties of the set ωωωω of natural numbers take the following more familiar
form:

(1) m + 1 = n + 1 ⇒ m = n for all m, n ∈ ωωωω.

(2) 0 �= n + 1 for any n ∈ ωωωω.

(3) If 0 ∈ A ⊆ ωωωω and if (∀n)(n ∈ A ⇒ n + 1 ∈ A), then A = ωωωω.

It is a remarkable fact that all the arithmetical properties of the natural num-
bers can be derived from such a small number of assumptions. The last of
them is standardly known as the principle of mathematical induction. For conveni-
ence we shall restate it in a slightly different form.

(5.2.2) Simple induction scheme. If Φ(n) is a formula,

(Φ(0) and (∀n ∈ ωωωω)(Φ(n) ⇒ Φ(n + 1))) ⇒ (∀n ∈ ωωωω)Φ(n).

Proof . Let A = {n ∈ ωωωω :Φ(n)} and apply (3) above.
It is worth emphasizing that we are licensed by this scheme to substitute for Φ
any formula in the language of set theory, even one that ineliminably involves
reference to non-arithmetical entities such as real numbers or sets of higher
level. We shall discuss the effects of this licence at various points in what
follows.
The elementary arithmetic of the natural numbers has of course been

known for thousands of years — Euclid (c. 300 B.C.) describes elementary
number theory (divisibility, prime numbers, etc.) in some detail — but the
centrality of induction did not emerge until much more recently. Indeed in-
duction seems hardly to have been used explicitly as a method of proof until
the mid-17th century (Pascal 1665); what older texts contain instead are much
vaguer instructions to repeat an argument ‘as many times as required’ or il-
lustrations of general reduction methods in particular cases.

5.3 Recursion

A family whose indexing set is ωωωω (or, what is the same thing, a function whose
domain is ωωωω) is often called an infinite sequence (or sometimes just a sequence).
There is a standard method of defining a sequence by what is known as re-
cursion: this consists in defining the initial term x0 of the sequence and then
defining xn+1 in terms of xn . This method is very widely used in mathemat-
ics: often it is signposted by the use of temporal language. One might, for
instance, find a mathematician saying
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Start by letting x0 = a; then once xn has been defined, let xn+1 =
f (xn).

But what justifies this method of definition? It plainly has something to do with
the principle of mathematical induction, but it is not quite the same thing,
since induction is a method of proof, recursion a method of definition. The
justification for such definitions is supplied by the following theorem.

(5.3.1) Simple recursion principle (Dedekind 1888). If A is a set, f is
a function from A to itself, and a is a member of A, then there exists exactly
one sequence (xn) in A such that x0 = a and xn+1 = f (xn) for all n ∈ ωωωω.

Existence. We can define a function s × f on ωωωω × A by

(s× f )(n, x) = (s(n), f (x)).

Let g = Cls× f ((0, a)) ⊆ ωωωω × A and let

B = {n ∈ ωωωω : there is exactly one x ∈ A such that n g x}.
Then it is a straightforward exercise to show that 0 ∈ B and that B is s-closed.
Hence by induction B = ωωωω; i.e. g is a function from ωωωω to A. It follows at once
that it is the sequence we require.

Uniqueness. Suppose g, g′ are functions from ωωωω to A such that g(0) = g′(0),
g(n + 1) = f (g(n)) and g′(n + 1) = f (g′(n)) for all n ∈ ωωωω. If C = {n ∈
ωωωω : g(n) = g′(n)}, then C is s-closed and 0 ∈ C , so that C = ωωωω by induction.
Hence g = g′.

The sequence (xn) is said to be defined by recursion from the equations

x0 = a

xn+1 = f (xn).

(5.3.2) Corollary. Every Dedekind algebra is isomorphic to (ωωωω, s).

Proof . Suppose that (A, f ) is a Dedekind algebra. The same argument which
showed in the proof of theorem 5.3.1 that g = Cls× f ((0, a)) is a function
from ωωωω to A shows that its inverse is a function from A to ωωωω. Since g(s(n)) =
f (g(n)) for all n, it follows that g is an isomorphism between (ωωωω, s) and (A, f ).

Occasionally we may wish to define a sequence (xn) in such a way that the
definition of xn+1 in terms of xn depends on the value of n. The simple recur-
sion principle as we have stated it does not justify this, but an easy extension
of it does.
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(5.3.3) Simple recursion principle with a parameter. If A is a set, ( fn)
is a sequence of functions from A to A, and a is a member of A, then there
exists a unique sequence (xn) in A such that x0 = a and xn+1 = fn(xn) for all
n ∈ ωωωω.

Proof . If we define a function h from ωωωω × A to ωωωω × A by

h(n, x) = (n + 1, fn(x)),

then by simple recursion we can obtain a sequence (mn, xn) such that

(m0, x0) = (0, a)

(mn+1, xn+1) = h(mn, xn).

But this is equivalent to specifying that

mn = n

x0 = a

xn+1 = fn(xn).

The result follows.

As an example of definition by recursion, suppose that r is a relation on a set
A. The relation rn , called the nth iterate of r on A, is defined recursively by the
equations

r0 = idA, rn+1 = r ◦ rn.

Note that if we apply this notation to the successor function itself we can prove
by induction that

sn(0) = n for all n. (1)

For
s0(0) = idωωωω(0) = 0,

and if sn(0) = n, then

sn+1(0) = s(sn(0)) = s(n) = n + 1.

In words rather than symbols, this says that the number n is (as we would
expect) the result of applying the successor function n times to 0.
The recursion principle is one of Dedekind’s most impressive achievements,

principally because it was not obvious until he proved it that there was really
anything substantial to prove. For it is tempting to suppose that definition by
recursion can be justified by a much more straightforward inductive argument
as follows.
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We wish to show that a sequence (xn) can be defined in such a
way that

x0 = a

xn+1 = f (xn).

Now plainly x0 can be defined. And if xn can be defined, then so
can xn+1. Hence by induction xn can be defined for all n ∈ ωωωω.

It was Dedekind’s achievement to see that this argument is fallacious. The
fallacy is that it involves an application of induction to the formula ‘xn can
be defined’. But in advance of knowing that the whole sequence (xn) can be
defined (which is what we are trying to prove), we are not in a position to
know what it means to say that ‘xn can be defined’ for any particular n.
The error, although perhaps obvious enough when it is pointed out, is

subtle enough to have fooled some able mathematicians, even ones writing
after Dedekind. Landau made it in the first draft of his Grundlagen der Ana-
lysis and had to have his mistake pointed out to him by a colleague (see
Landau 1930, p. ix). And Peano seems to have been quite oblivious to the is-
sue: in 1889 he blithely defines addition andmultiplication recursively without
giving any justification, and even as late as 1921 he could mention such ex-
amples in the course of a discussion of the nature of definitions in mathematics
and yet remain silent about the problem of proving the existence of the func-
tions in question.

Exercises

1. Show that there is no sequence (An) of sets such that An+1 ∈ An for all n ∈ ωωωω.

2. Fill in the details in the proof of Dedekind’s simple recursion principle.

3. (a) If r and s are relations such that r ◦ s = s ◦ r , show that rn ◦ sm = sm ◦ rn for
all m, n ∈ ωωωω and that (r ◦ s)n = rn ◦ sn for all n ∈ ωωωω.
(b) If r is a relation, show that (rm)n = (rn)m for all m, n ∈ ωωωω.

4. Fill in the details in the proof of corollary 5.3.2.

5.4 Arithmetic

Now that we have Dedekind’s recursion principle, it is a straightforward mat-
ter to give a recursive definition of the familiar algebraic operation of addition
on ωωωω.

Definition. The addition function (m, n) �→ m+n from ωωωω×ωωωω to ωωωω is defined
by the recursion equations

m + 0 = m (2)

m + s(n) = s(m + n). (3)
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If we also define 1 = s(0), this definition gives us

s(n) = s(n + 0) = n + s(0) = n + 1

(thus coinciding, as promised, with the notation we introduced in §5.2), and
(3) attains the more familiar form

m + (n + 1) = (m + n) + 1. (4)

Note also that if r is a relation on a set A, then

rm+n = rn ◦ rm . (5)

For
rm+0 = rm = idA ◦rm = r0 ◦ rm ;

and if rm+n = rn ◦ rm , then

rm+(n+1) = r (m+n)+1 = r ◦ rm+n = r ◦ (rn ◦ rm)

= (r ◦ rn) ◦ rm = rn+1 ◦ rm,

whence the result. In the case where r is the successor function, this gives by
(1)

m + n = sm+n(0) = sn(sm(0)).

This last equation has the appearance at first sight of being usable as an ex-
plicit definition of addition, but of course it does not circumvent the appeal to
Dedekind’s recursion principle, as that was needed to justify the definition of
the iterate sn in the first place. (Incidentally, readers of the Tractatus will notice
a formal similarity between (5) and the explicit definition of addition proposed
there.)
All the familiar properties of addition of natural numbers follow from (2)

and (3). For example, if we define 2 = 1 + 1, 3 = 2 + 1 and 4 = 3 + 1, it is
reassuring to discover that

2 + 2 = 2 + (1 + 1) = (2 + 1) + 1 = 3 + 1 = 4.

General properties of addition are proved by induction. To prove the associ-
ative law

k + (m + n) = (k + m) + n,

for example, we use induction on n, noting first that

k + (m + 0) = k + m = (k + m) + 0 by (2),
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so that the result is true for 0. And if it is true for n, then

k + (m + (n + 1)) = k + ((m + n) + 1) by (3)

= (k + (m + n)) + 1 by (3)

= ((k + m) + n) + 1 by the induction hypothesis

= (k + m) + (n + 1) by (3),

so that it is also true for n + 1. It follows by induction that the result is true for
all n.

Definition. The multiplication function (m, n) �→ mn from ωωωω × ωωωω to ωωωω is
defined by the recursion equations

m0 = 0 (6)

m(n + 1) = mn + m. (7)

Note that if r is a relation on a set A,

rmn = (rm)n. (8)

For
rm0 = r0 = idA = (rm)0,

and if rmn = (rm)n , then

rm(n+1) = rmn+m = rm ◦ rmn = rm ◦ (rm)n = (rm)n+1,

whence the result. Once again, readers of the Tractatus will notice how this
could be used as a definition if the method of recursion were presupposed. In
the case where r is the successor function, (8) gives

mn = smn(0) = (sm)n(0).

Definition. The exponentiation function (m, n) �→ mn is defined by the
recursion equations

m0 = 1 (9)

mn+1 = mnm. (10)

Various other arithmetical functions can be defined by the same method. For
instance, we can define a function n �→ 2n by the equations

20 = 1

2n+1 = 22n .
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This function arises naturally in complexity theory: it provides a compact
notation for expressing very large numbers, since

2n = 22
2..
.2 }

n exponents

is enormous even for quite small values of n. Another example is the factorial
function n �→ n!, defined by the recursion equations

0! = 1

(n + 1)! = n!(n + 1).

This is noteworthy because it is our first example of a definition by recursion
involving a parameter.
Now that we have defined all the arithmetical operations, it would be en-

tirely a matter of routine to derive their elementary properties from the defin-
itions, and for that reason we shall omit the details. The proofs were first
carried out by Grassmann (1861).

Exercises

1. Prove the following results by induction on n:
(a) 1 + n = n + 1.
(b) m + n = n + m.

2. (a) If the function f from A to itself is one-to-one, prove that the nth iterate f n is
also one-to-one for all n ∈ ωωωω.
(b) Prove that k + n = k + m ⇒ n = m.

5.5 Peano arithmetic

In this chapter we have sketched how to embed arithmetic in the theory of
sets. One thing worth stressing about this development is how few assump-
tions we need to make in order to ground it. Another is that the assumptions
in question can be stated as a self-standing theory quite independent of the
theory of sets. In order to state this theory, we need a language which has
a unary function symbol S, but we shall also (for convenience — we could
eliminate it if we wanted) suppose that we have a primitive constant 0. The
axioms are then as follows:

(∀x)(∀y)(Sx = Sy ⇒ x = y)

(∀x)Sx �= 0

(∀X)((X (0) and (∀x)(X (x) ⇒ X (Sx))) ⇒ (∀x)X x).
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This theory is called second-order Peano arithmetic and denoted PA2. Expressed
in these terms our definition in §5.2 amounts to the stipulation that (ωωωω, s, 0)
should be a model of PA2, and corollary 5.3.2 is the statement that PA2 is
categorical.
If we intended an independent development of this theory, however, we

might be troubled by the fact that the third axiom, the induction axiom, is
second-order. If we were determined that our theory should be first-order, we
would be forced to replace it with its first-order surrogate,

(Φ(0) and (∀x)(Φ(x) ⇒ Φ(Sx))) ⇒ (∀x)Φ(x)

for any formula Φ. What results from substituting this first-order scheme for
the second-order induction axiom is known as the elementary theory of the successor
function. It is used as a standard example in textbooks on model theory, which
often include the proof that it is complete, i.e. that there is nothing to be said
in a first-order language about the successor function that does not follow
from these axioms. It follows immediately from this completeness result that
the elementary theory of the successor function is decidable. Textbooks also
contain the proof that the theory is not finitely axiomatizable.
But the particular axiom scheme we have given is by no means inevitable.

We could, for instance, have substituted for it the axioms

(∀x)(∃y)(x = 0 or x = Sy)

(∀x) SS . . . S︸ ︷︷ ︸
n terms

x �= x for every n � 1.

The fact that this substitution is possible should arouse the suspicion that the
elementary theory of the successor function is actually rather weak. And so it
proves. The trouble is that in the theory as now constituted we are asserting
only those instances of induction that can be expressed in a language contain-
ing 0 and S, and it turns out that hardly anything of mathematical interest can
be so expressed. In particular, the recursive definitions of addition given in
§5.4 cannot be reproduced in this first-order theory.
The solution is to add addition as a new primitive function and its recursion

equations as axioms.

(∀x) x + 0 = x

(∀x)(∀y) x + (y + S0) = (x + y) + S0.

This theory is known as Presburger arithmetic after the person who showed that
it is complete (Presburger 1930). It is still not finitely axiomatizable, but al-
though significantly stronger than the elementary theory of the successor func-
tion, it once again turns out to be too weak to capture arithmetical practice —
too weak, in fact, to define multiplication.
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So we need to add multiplication as a primitive function too, together with
its recursion equations.

(∀x) x0 = 0;
(∀x)(∀y) x(y + S0) = xy + x .

Now, finally, we are in business. The first-order theory that results from this
extension, which is called Peano arithmetic or PA, is distinctly non-trivial.
Nevertheless, it follows easily from the compactness theorem that PA is not

categorical, and hence that there are true second-order sentences (such as the
induction axiom itself) which it does not entail. Not only that, but there are
even true sentences in the first-order language of arithmetic itself which PA
does not entail (Gödel 1931). On the other hand, it is surprising, after our
cautionary experience with addition and multiplication, to discover that we
do not need to posit an endless succession of new primitives, one for expo-
nentiation, one for the factorial function, and one for every other primitive
recursive function: once we have addition and multiplication, all the other
primitive recursive functions are definable in PA (Gödel 1931). It is above all
this remarkable stability that makes PA seem to be something more than a
merely accidental fragment of the second-order theory PA2.
What gives Peano arithmetic this (relative) strength is the complexity gen-

erated by the interplay between addition and multiplication in the induction
scheme. As we have just noted, the elementary theory of addition is complete
and therefore weaker than PA. Skolem arithmetic, the elementary theory of mul-
tiplication on its own (i.e. without + or S), is also complete (Skolem 1931) and
even finitely axiomatizable (Cegielski 1981), so it is again significantly weaker
than PA.

PA itself, by contrast, suffices to derive a large amount of highly non-
trivial mathematics. Consider, for example, the part of arithmetic known
as number theory. This begins with the definition of divisibility: the formula
(∃r ∈ ωωωω)(n = mr) is written m | n and read ‘m divides n’. If m and n are nat-
ural numbers, then the least natural number they both divide is called their
least common multiple and denoted lcm(m, n); the greatest number which divides
both of them is called their greatest common divisor and denoted gcd(m, n). We
say that m and n are coprime if gcd(m, n) = 1. As an illustration of how results
in elementary number theory can be established, let us show now that for any
m, n ∈ ωωωω we have

mn = lcm(m, n) gcd(m, n). (11)

This is trivial if gcd(m, n) = 0, since thenm = n = 0. So suppose gcd(m, n) �=
0. Then certainly gcd(m, n)|n, and so

m = m
gcd(m, n)

gcd(m, n)
∣∣ mn
gcd(m, n)

.
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But equally

n
∣∣ mn
gcd(m, n)

,

whence
lcm(m, n)

∣∣ mn
gcd(m, n)

.

Now there exist r, s ∈ ωωωω such that lcm(m, n) = mr = ns. Hence m
s = n

r . But
m
s

∣∣ m and n
r

∣∣ n, so m
s

∣∣ gcd(m, n), whence

mn
gcd(m, n)

= ns
gcd(m, n)

m
s

∣∣ ns = lcm(m, n).

Equation (11) now follows.
The purpose of rehearsing this proof here is to make the point that the

reasoning involved is entirely first-order, and hence that equation (11) is not
merely true but provable in the first-order theory PA. It is important to realize,
though, that there are no general guarantees. Whenever we are confronted
with a proof of an arithmetical proposition, there will be a question whether
the properties the induction principle is applied to in the course of the proof
can be defined using first-order arithmetical formulae. If they cannot, the res-
ult may fail to be a theorem of PA even though it is provable set-theoretically.
Consider, for example, the sentence Con(PA) which formalizes the consistency
of PA. This is not provable in PA, but it must have a set-theoretic proof, since
we have proved in set theory that PA has a model.

Notes

The set-theoretic construction of the natural numbers we have given here is
due to Dedekind (1888). The following year Peano (1889) converted it into an
axiom system now known almost universally as Peano’s axioms. In chapter 1
we described, even if we did not entirely explain, the rise of first-order logic as
the supposed framework for rigorous mathematics. This made it natural for
PA, the first-order fragment of Peano’s axioms, to be the object of intensive
study. For the results of this study consult Kaye 1991. What is much more
recent is the suggestion advanced by Isaacson (1987; 1992) that the theoretical
stability of PA is not an accident but reflects a correspondingly stable notion of
arithmetical truth. The limitative results concerning subsystems of PA which
we have mentioned here are explained further in Smoryński 1991.
The derivation of the basic properties of the natural numbers from Peano’s

axioms is laid out in detail by Henkin, Smith, Varineau and Walsh (1962).
These properties are not the subject of active study nowadays, of course, but
it is striking how similar they are in form to substantial problems in num-
ber theory such as Goldbach’s conjecture or the twin-prime conjecture. The
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classical foundations of number theory are elegantly described by Hardy and
Wright (1938). In the present context, however, it is of particular interest to
focus on the branch of the subject known as analytic number theory, in which
non-arithmetical methods are used to prove arithmetical theorems. One of
the most famous instances is Dirichlet’s theorem that if r and s are coprime,
there are infinitely many prime numbers of the form rn + s. Dirichlet’s (1837)
proof of this uses elegant methods in complex function theory: for a modern
presentation see Serre 1973. It is at first sight very surprising that analytic
methods should be usable in this way, and it is natural to wonder whether
they are eliminable. In this case they are: an elementary proof of Dirichlet’s
theorem was discovered by Selberg (1949). Nathanson 2000 is a good source
of information on this issue.



Chapter 6

Counting

In this chapter we study those properties of numbers that depend not on the
algebraic operations but on the order in which they are arranged. We shall
start by setting up the terminology for talking about and classifying relations of
order. Beyond that our objective will be to complete the unfinished business of
the last chapter by defining an ordering on the natural numbers and showing
how this ordering enables us to use the natural numbers in counting finite sets.

6.1 Order relations

Definition. A relation � on a set A is called a weak partial ordering if it is
transitive, antisymmetric and reflexive on A.

Definition. A relation < on a set A is called a strict partial ordering if it is
transitive and irreflexive.

There is a close relationship between weak partial orderings and strict partial
orderings: if � is a weak partial ordering on A, then the relation on A defined
between x and y by the formula

x � y and x �= y

is a strict partial ordering on A; and if < is a strict partial ordering on A, then
the relation on A defined between x and y by the formula

x < y or x = y

is a weak partial ordering on A. Moreover, these two operations are inverses
of one another. What this amounts to is that it is a matter of indifference
whether it is the weak partial ordering or its associated strict partial ordering
that we specify. We shall therefore describe as a partially ordered set a structure
in which the relation is either a weak partial ordering or a strict partial ordering.
There is no confusing the two because a relation cannot be both a weak and
a strict partial ordering (except in the trivial case of the empty relation on the
empty set).
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It is the structure, i.e. the ordered pair, that is called a partially ordered set.
But mathematicians routinely talk of the carrier set A alone as if it were itself
the structure. This is not strictly correct, since the set plainly does not encode
any information about the identity of the partial ordering. It works only be-
cause in most of the cases one actually deals with it is obvious from the context
which relation on A is intended. As an example of this, if the structure (A,�)
is a partially ordered set and B ⊆ A, then in any reference to B as a partially
ordered set without further qualification it will invariably be (B,�B), i.e. B
with the partial ordering it inherits from A by restriction, that is meant. The
inverse of � is of course denoted �, and its associated strict partial ordering is
denoted >.
There is a rather large amount of terminology that needs to be introduced

at this point. So suppose that (A,�) is a partially ordered set and B ⊆ A.
Two elements a and b of A are said to be comparable if either a � b or b � a.
An element a ∈ A is called a lower bound [resp. a strict lower bound] for B if
for every x ∈ B we have a � x [resp. a < x]. A lower bound for B which
belongs to B is unique if it exists: it is then called the least element of B and
denoted min B. If an element b of B is <-minimal, i.e. if there does not exist
x ∈ B such that x < b, we say simply that it is minimal in B. A least element
of B must be minimal in B; the converse is not true in general. [Strict] lower
bounds and least and minimal elements with respect to the inverse partial
ordering are called respectively [strict] upper bounds and greatest and maximal
elements; the greatest element of B (if it exists) is denoted max B. B is said
to be bounded in A if it has both an upper and a lower bound in A. The least
and greatest elements of A are sometimes denoted ⊥ (‘bottom’) and � (‘top’)
respectively. The least upper bound [resp. greatest lower bound] of B (if it
exists) is denoted sup B [resp. inf B].
A subset of A is �-closed in A iff it is <-closed, and in that case we say that

it is final in A; we say that it is coinitial in A if its �-closure in A is A. Dually,
a subset of A is initial in A if it is �-closed or equivalently if it is >-closed; it is
cofinal in A if its �-closure is A.
A subset B of A is convex if whenever x � y � z and x, z ∈ B it follows that

y ∈ B: this is the case iff B is the intersection of an initial and a final subset of
A. We say that B is dense in A if whenever x < z in A there exists y ∈ B such
that x < y < z.
It is worth singling out the case of the partial ordering on a collection of sets

A defined by A ⊆ B; when we wish to regard A as a partially ordered set in
this way, we refer to it as ‘A partially ordered by inclusion’. One important
case of this is the power setP(A). Its least element with respect to inclusion is
Ø, and its greatest element is A. The least upper bound of a set B ⊆ P(A) is⋃B, and the greatest lower bound is⋂B provided that B �= Ø; the set

⋂
Ø

does not exist since everything would have to belong to it; the greatest lower
bound of Ø in P(A), on the other hand, is just P(A) itself.
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Another important case, with a vocabulary of its own, is that of the set
Po(A) of all the partial orderings on A. The least element of Po(A) is the
trivial partial ordering in which no element is less than any other: it is called
the total unordering on A, and its associated weak partial ordering is just the
diagonal relation on A. At the other extreme are the maximal elements of
Po(A), i.e. the partial orderings on A which cannot be extended while re-
maining partial orderings. These are called total orderings, or sometimes just
orderings, of A.

(6.1.1) Proposition. A partial ordering on a set A is total iff any two elements
of A are comparable.

Necessity. Suppose a, b ∈ A are not comparable with respect to <, i.e. a �� b
and b �� a. Define x <′ y iff either x < y or x � a and b � y. Now if
x <′ y <′ z then either (1) x < y � a and b � z, or (2) x � a and b � y < z,
or (3) x < y < z; but in each case x <′ z. So <′ is transitive. And it is
obviously irreflexive. So it is a partial ordering on A which properly extends
<, and hence < is not total.

Sufficiency. Obvious.

A collection A is called a chain if it is totally ordered by inclusion, i.e. if for all
A, B ∈ A we have either A ⊆ B or B ⊆ A.

Definition. Suppose that (A,�) and (B,�) are partially ordered sets. A
function f from A to B is said to be increasing if

x � y ⇒ f (x) � f (y) for all x, y ∈ A,

and strictly increasing if

x < y ⇒ f (x) < f (y) for all x, y ∈ A.

[Strictly] increasing functions from A to B with the inverse ordering are called
[strictly] decreasing.

Any one-to-one increasing function is strictly increasing, and any strictly in-
creasing function is obviously increasing, but a strictly increasing function
need not be one-to-one. (Consider a constant function defined on a totally
unordered set.) Fortunately, though, a function is an isomorphism between
the weak partially ordered sets (A,�) and (B,�) iff it is an isomorphism
between the associated strictly partially ordered sets (A,<) and (B,<), so we
can continue to be vague about that distinction when talking about isomorph-
isms between partially ordered sets as well.
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Exercises

1. (a) If a partially ordered set (A,�) has a least element, show that it is the unique
minimal element of A.
(b) Is it true, conversely, that if A has a unique minimal element, then it is neces-

sarily the least element of A?

2. Show that B is dense in the ordered set A iff a = sup{x ∈ B : x < a} for all a ∈ A.

3. If (A,�) is totally unordered and (B,�) is partially ordered, show that every func-
tion from A to B is strictly increasing. Provide an example of a strictly increasing
one-to-one correspondence which is not an isomorphism.

6.2 The ancestral

If we have a relation which is not itself one of order, it may nevertheless be
possible to extend it in such a way that the extended relation is an ordering.
We shall now investigate the conditions under which this can occur.

Definition. If r is a relation on A, the intersection of the transitive relations
on A containing r is called the strict ancestral of r and denoted r t; the inter-
section of the reflexive transitive relations on A containing r is called the weak
ancestral of r in A and denoted rT.

The terminology arises from the case in which r is the relation of parenthood
on the set of all humans, since then r t is literally the ancestral relation.
It is easy to see that any intersection of [reflexive] transitive relations is also

a [reflexive] transitive relation. It follows that the ancestral [resp. strict ances-
tral] of r is the smallest reflexive transitive relation [resp. transitive relation] on
A containing r . The strict ancestral is consequently called the transitive closure
by some authors, but I shall avoid this terminology here because it is widely
used by set theorists for a different (though related) concept.

(6.2.1) Proposition. Suppose that r is a relation on a set A.

(a) rT = r t ∪ idA.

(b) r ◦ rT = r t = rT ◦ r .

Proof of (a). Note first that r t ⊆ rT and that a relation on A is reflexive iff it
contains idA, so that idA ⊆ rT. Thus r ⊆ r t ∪ idA ⊆ rT. But r t ∪ idA is
transitive and reflexive, so r t ∪ idA = rT.

Proof of (b). Observe that r ⊆ r ◦ rT since rT is reflexive, and that r ◦ rT is
transitive, so that r t ⊆ r ◦ rT. Moreover, if x (r◦ rT) z, then there exists
y ∈ A such that x rT y and y r z: we then have either y r t z or y = z by part
(a), and in either case x r t z. In other words r ◦ rT ⊆ r t, whence r ◦ rT = r t.
A very similar argument shows that r t = rT ◦ r .
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(6.2.2) Proposition. Suppose that r is a relation on a set A.

(a) rT[B] = Clr(B) for all B ⊆ A.

(b) r t[B] = r[Clr(B)] for all B ⊆ A.

Proof of (a). Suppose first that x ∈ rT[B] and x r y. Then there exists a ∈ B
such that a rT x . Also x rT y, and so a rT y by transitivity, i.e. y ∈ rT[B].
This shows that rT[B] is r -closed, whence Clr (B) ⊆ rT[B] since evidently
B ⊆ rT[B] by the reflexivity of rT. Now observe that the relation on A
defined by the formula ‘y ∈ Clr(x)’ is reflexive and transitive and contains r :
consequently rT is contained in it. So if y∈ rT[B], then there exists x ∈ B
such that x rT y, hence y ∈ Clr(x) ⊆ Clr(B). Therefore rT[B] ⊆ Clr(B),
and so rT[B] = Clr(B).

r t[B] = (r ◦ rT)[B] [proposition 6.2.1(a)]Proof of (b).

= r[rT[B]]
= r[Clr(B)] by part (a).

(6.2.3) Corollary. Suppose that r is a relation on a set A and x, y ∈ A.

(a) x rT y ⇔ Clr(y) ⊆ Clr (x).

(b) x r t y ⇔ Clr(y) ⊆ r[Clr (x)].

x rT y ⇔ y ∈ rT[x]Proof of (a).

⇔ y ∈ Clr (x) [proposition 6.2.2(a)]

⇔ Clr(y) ⊆ Clr(x).

x r t y ⇔ y ∈ r t[x]Proof of (b).

⇔ y ∈ r[Clr(x)] [proposition 6.2.2(b)]

⇔ Clr(y) ⊆ r[Clr(x)] [proposition 5.1.1(b)].

(6.2.4) Proposition. Suppose that r is a relation on A.

(a) r t= ⋃
n∈ωωωω�{0} rn .

(b) rT= ⋃
n∈ωωωω rn .

Proof of (a). Let r ′ = ⋃
n∈ωωωω�{0} rn . It is easy to show by induction on n that

rn ⊆r t for all n ∈ ωωωω � {0}; consequently r ′ ⊆r t. And if x rn y and y rm z, then
x(rn ◦ rm)z and so x rn+m z, from which it follows that r ′ is transitive, so that
r t⊆ r ′. Thus r t= r ′ as required.

rT = r t ∪ idA [proposition 6.2.1(a)]Proof of (b).

= r ′ ∪ r0 by part (a)

=
⋃
n∈ωωωω

rn.
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(6.2.5) Corollary. r t is a strict partial ordering on A iff there do not exist
x ∈ A and n ∈ ωωωω � {0} such that x rn x .

Proof . This follows immediately from proposition 6.2.4(a).

Exercises

1. Check that the r -closed subsets of a structure (A, r) are the closed sets of a topology
on A, in other words that:

Ø and A are r -closed;

B,C r -closed⇒ B ∪ C r -closed;

Bi r -closed for all i ∈ I ⇒ ⋂
i∈I Bi r -closed.

2. (a) Show that the smallest reflexive relation on A containing r (sometimes called
the reflexive closure of r ) is r ∪ idA.
(b) Show that the smallest symmetric relation on A containing r (sometimes called

the symmetric closure of r ) is r ∪ r−1.

3. Show that a subset of A is r -closed iff it is rT-closed.

4. If r is a relation on A, show that r t = ⋂{s ⊆ A × A : r ∪ (r ◦ s) ⊆ s}.

6.3 The ordering of the natural numbers

(6.3.1) Lemma. st is a strict partial ordering on ωωωω, and sT is the associated
partial ordering.

Proof . The only part which is not obvious is that st is irreflexive. But

0 st 0 ⇒ 0 ∈ s[Cls(0)] = s[ωωωω] [proposition 6.2.2(b)]

⇒ contradiction,

and

s(n) st s(n) ⇒ s(n) ∈ s[Cls(s(n))] [proposition 6.2.2(b)]

⇒ n ∈ Cls(s(n)) = s[Cls(n)] [proposition 5.1.1(b)]

⇒ n st n [proposition 6.2.2(b)].

So it follows by induction that st is an irreflexive relation on ωωωω.

Thus st is a strict partial ordering on ωωωω containing s. In fact it is the only one
(see exercise 4 below). So if we want to have n < s(n) for all n ∈ ωωωω, then we
have no choice but to adopt the following definition.

Definition. We write < for st and � for sT.
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Whenever we refer to ωωωω as a partially ordered set without qualification, it will
be with respect to this partial ordering.

(6.3.2) Least element principle. Every non-empty subset of ωωωω has a least
element.

Proof . Suppose on the contrary that B is a subset of ωωωω which does not have a
least element. Now

ωωωω = Cls(0) = sT[0] [proposition 6.2.2(a)]

and so 0 is certainly a lower bound for B. And if n is a lower bound for B,
then n /∈ B (since otherwise n would be the least element of B, contrary to
hypothesis), so that

B ⊆ st[n] = sT[s(n)] [proposition 6.2.1(b)]

and hence s(n) is a lower bound for B. Consequently, by induction every
element of ωωωω is a lower bound for B. So if n ∈ B, then in particular s(n) is a
lower bound for B and so s(n) � n < s(n). Contradiction.

(6.3.3) Corollary. ωωωω is totally ordered.

Proof . If m, n ∈ ωωωω, then {m, n} has a least element [least element principle];
this least element is either m, in which case m � n, or n, in which case n �
m.

Definition. n = {m ∈ ωωωω :m < n}.
(6.3.4) Corollary. If A ⊆ ωωωω is such that n ⊆ A ⇒ n ∈ A for every n ∈ ωωωω,
then A = ωωωω.

Proof . Suppose A �= ωωωω. So ωωωω � A is non-empty and therefore [least element
principle] has a least element n. Hence n ⊆ A, and so by hypothesis n ∈ A.
Contradiction.

(6.3.5) General induction scheme. If Φ(n) is a formula such that

(∀n ∈ ωωωω)((∀m < n)Φ(m) ⇒ Φ(n)),

then (∀n ∈ ωωωω)Φ(n).

Proof . Let A = {n ∈ ωωωω :Φ(n)} and apply corollary 6.3.4.
A proof that utilizes this scheme is sometimes called a ‘proof by infinite des-
cent’.
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(6.3.6) General recursion principle with a parameter. If for each n ∈
ωωωω we have a function sn fromP(A) to A, then there exists exactly one function
g from ωωωω to A such that g(n) = sn(g[n]) for all n ∈ ωωωω.

Proof . Exercise 6.

The use of the general recursion principle in the course of a proof is often
signposted by temporal terminology such as:

Once g(r) has been defined for all r < n, let g(n) = sn(g[n]).

Definition. A family indexed by n for some natural number n is called a
finite sequence (or sometimes a string) of length n. The set

⋃
n∈ωωωω

nA of all
strings in A is denoted String(A).

Exercises

1. (a) Show that m < n ⇔ s(m) � n for all m, n ∈ ωωωω.
(b) Prove by induction on n that q < r ⇒ n + q < n + r for all n, q, r ∈ ωωωω.

2. Prove that if m � n, then there exists a unique element n − m ∈ ωωωω such that
n = m + (n − m). [Existence. Consider the least element of {r ∈ ωωωω :m + r � n}.]
3. Let n be a natural number.
(a) Prove that n + 1 is the unique successor of n.
(b) Show that if n �= 0, then n − 1 is the unique predecessor of n.

4. Show that< is the only strict partial ordering on ωωωω with the property that n < s(n)
for all n ∈ ωωωω.

5. Show that the proper initial subsets of ωωωω are precisely the sets n for n ∈ ωωωω.

6. Prove the general recursion principle.

7. If r is a relation on A, show that (r ∪ idA)n = ⋃n
m=0 rm for all n ∈ ωωωω.

6.4 Counting finite sets

We now take n = {0, 1, 2, . . . , n − 1} as a prototype and define what it is for
a set to have n members by reference to it.

Definition. We say that a set has n members if it is equinumerous with n.

Note that for this definition to be possible we needed to have available the
order structure of the natural numbers (so as to be able to pick out n), even
though no reference is made in the definition to any ordering of the set being
counted.

(6.4.1) Theorem. There is no natural number n such that n is infinite.
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Proof . 0 is obviously not infinite. Suppose if possible that n is not infinite but
n + 1 is. So n + 1 is equinumerous with a proper subset B of itself. There are
three cases to consider.

(1) n ∈ B. So B � {n} is a proper subset of n which is equinumerous with
it, contradicting the assumption that n is not infinite.

(2) B is a proper subset of n. So n is equinumerous with a proper subset of
itself, which once again is impossible since by hypothesis it is not infinite.

(3) B = n. So n is equinumerous with n + 1, which is impossible since the
latter is infinite and the former is not.

Thus in every case the assumption is contradictory. The result follows by
induction.

Definition. We say that a set is finite if it has n members for some n ∈ ωωωω.

Of course n itself is finite since it trivially has n members; in particular, Ø is
finite. Less trivially, if there is a function from A onto B and A is finite, then
B is finite. It follows from this that every subset of a finite set is finite.

(6.4.2) Corollary. No set is both finite and infinite.

Proof . This follows at once from the theorem.

We shall examine later (§9.4) whether it is possible for a set to be neither finite
nor infinite.

(6.4.3) Corollary. For each finite set there is exactly one natural number n
such that it has n members.

Proof . If not, then there are natural numbers m and n such that m < n but
m and n are equinumerous, in which case n is equinumerous with a proper
subset of itself and is therefore infinite, contrary to the theorem.

It is this corollary that gives us finally the technical resources to use the natural
numbers as unequivocal measures of the sizes of finite sets.

Definition. If A is finite, then the unique number n such that A has n mem-
bers is called the number of members of A.

We write F(A) for the set of all finite subsets of A and Fn(A) for the set of all
n-element subsets of A, so that F(A) = ⋃

n∈ωωωω Fn(A).

(6.4.4)Proposition. If there exist natural numbers n such that Fn+1(A) = Ø,
then A is finite, and the least such n is the number of elements in A.
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Proof . Suppose that n is the least natural number such that Fn+1(A) = Ø.
Then A has an n-element subset B (since n < n + 1). But if B were a proper
subset of A, there would be an element b in A � B, and B ∪ {b} would be a
subset of A with n+1 elements, contrary to hypothesis. It follows that A = B,
and hence A has n elements as required.

(6.4.5)Theorem. Every non-empty finite partially ordered set has a maximal
element.

Proof . Plainly every partially ordered set with 1 member has a maximal ele-
ment. So suppose now that every partially ordered set with n members has a
maximal element and let (A,�) be a partially ordered set with n + 1 mem-
bers. If a ∈ A, then A � {a} has n members and therefore by the induction
hypothesis has a maximal element b: if b � a, then a is a maximal element
of A, and if b �� a, then b is a maximal element of A. The result follows by
induction.

We have already characterized fully (up to isomorphism) the structure of (ωωωω, s)
[corollary 5.3.2]; we shall now do the same for the ordered set (ωωωω,�).

(6.4.6) Theorem. A partially ordered set is isomorphic to (ωωωω,�) iff it is non-
finite, totally ordered, and every proper initial subset of it is finite.

Necessity. We have already shown that (ωωωω,�) is a totally ordered set and that
it is not finite. Moreover, if B is a proper initial subset of ωωωω, then there exists
n ∈ ωωωω � B, so that B ⊆ n, and hence B is finite. The result follows.

Sufficiency. Suppose that (A,�) has the properties described in the theorem.
Let us first observe that if a subset B of A is non-empty, then it has a least
element: for if b ∈ B, then either {x ∈ B : x < b} is empty, in which case b
is the least element of B, or it is finite and non-empty, in which case it has a
least element [theorem 6.4.5] which is evidently also the least element of B.
Now by the general recursion principle we can define a function f from ωωωω
to A as follows: when f (m) has been defined for all m < n, let f (n) be the
least element of A � f [n] (which is non-empty since A is non-finite). Now f
is evidently strictly increasing; moreover, f [ωωωω] is an initial subset of A which
is not finite and must therefore be A itself. Since ωωωω is totally ordered, it follows
that f is an isomorphism between (ωωωω,�) and (A,�).

Exercises

1. Show that if (A,�) is a partially ordered set, then these three assertions are equi-
valent:

(i) (A,�) is isomorphic to (n,�) for some n ∈ ωωωω;

(ii) A is finite and � is a total ordering;
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(iii) Every non-empty subset of A has a greatest and a least element.

2. Show that A is finite iff there exists a function f on A such that the only f -closed
subsets of A are Ø and A itself.

3. Suppose that (A,�) is a totally ordered set. Show that any sequence (an)n∈ωωωω in
A has a monotonic subsequence. (We say that (anr )r∈ωωωω is a subsequence of (an) if (nr )
is a strictly increasing sequence in ωωωω.) [Let B = {n ∈ ωωωω : an < ar for all r > n} and
consider two cases according to whether or not B is finite.]

4. (a) If r is the relation on P(A) defined between X and Y by the formula ‘there
exists a ∈ A such that Y = X ∪ {a}’, show that F(A) = Clr (Ø).
(b) Show that X, Y ∈ F(A) ⇒ X ∪ Y ∈ F(A).
(c) Show that if A is finite then P(A) is finite.

6.5 Counting infinite sets

Definition. A set A is said to be countable if either A = Ø or there exists a
sequence whose range is A.

Every finite set is countable, whereas ωωωω is countable but not finite (since if it
were finite it would have a greatest element [theorem 6.4.5]). If there is a
function from A onto B and A is countable, then B is countable. It follows
that every subset of a countable set is countable.

Definition. A set A is said to be countably infinite if it is both countable and
infinite. A is said to be uncountably infinite if it is infinite but not countable.

The set of natural numbers is countably infinite; hence so is any set equinu-
merous with it. In fact any countably infinite set is equinumerous with ωωωω. For
if A is an infinite set enumerated by a sequence (xn)n∈ωωωω and we recursively
define yn to be the element xm of A � {yr : r < n} with m chosen as small as
possible, the sequence (yn)n∈ωωωω enumerates A without repetitions.

(6.5.1) Proposition. ωωωω × ωωωω is countably infinite.

Proof . It can be shown that the function (m, n) �→ 2n(2m + 1) − 1 is a one-
to-one correspondence between ωωωω × ωωωω and ωωωω. (The quickest way to see this is
to note that by dividing successively by 2 we can express any natural number
except 0 uniquely in the form of a power of 2 multiplied by an odd number.)

It follows by an easy induction, of course, that ωωωωn is countably infinite for all
n ∈ ωωωω.

(6.5.2) Proposition. F(ωωωω) is countably infinite.

Proof . The function A �→ ∑
n∈A 2

n is a one-to-one correspondence between
F(ωωωω) and ωωωω as required.
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(6.5.3) Proposition. String(ωωωω) is countably infinite.

Proof . Consider the function which maps any finite string (n1, n2, . . . , nk) of
natural numbers to the single natural number

pn1
1 pn2

2 . . . pnk+1
k − 1,

where p1, p2, . . . is a listing of the prime numbers in increasing order of size.
It is a standard fact of elementary number theory (often known as the fun-
damental theorem of arithmetic) that this is a one-to-one correspondence between
String(ωωωω) and ωωωω. (The ‘−1’ at the end of the expression is there so as to in-
clude 0; the ‘+1’ in the last exponent is there to deal with the problem of
non-uniqueness caused by trailing zeros in the input string.)

Of course we could also extend these results to show that F(A) and String(A)
are countable if A is, and that A × B is countable if A and B are.

(6.5.4) Proposition. P(ωωωω) is uncountably infinite.

Proof . It is easy to see thatP(ωωωω) is infinite. Suppose if possible that it is count-
able, so that there is a sequence (An)n∈ωωωω which enumerates all the subsets of
ωωωω. Let A = {n ∈ ωωωω : n /∈ An}. Then by hypothesis A = An for some n ∈ ωωωω.
But then

n ∈ A ⇔ n /∈ An ⇔ n ∈ A.

Contradiction.

6.6 Skolem’s paradox

We cautioned earlier about the dangers of reflexively applying results proved
in a theory such as ZU to that theory itself. One such danger is exemplified by
the following two theorems.

Completeness theorem. Every consistent first-order theory has a set-
theoretic model.

Löwenheim/Skolem theorem. Every structure is elementarily equival-
ent to a countable structure.

These two theorems of logic have been used to mount the following argument
against a realist understanding of set theory. Suppose that I am a realist. I
believe that the axioms of ZU are true and hence consistent. I therefore believe
that the set-theoretic formalization of the claim that they are consistent is true,
even though it is not provable from the axioms.1 Because of the two theorems

1It is at this point that the realist parts company with the formalist: formalists might perhaps
have a non-mathematical belief that ZU is consistent, not because it is true but on inductive
grounds, for instance; however, they would not take that as a reason to believe the set-theoretic
claim obtained by formalizing this belief.
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just quoted, therefore, I ought also to believe that ZU has a countable set-
theoretic model (and even a model whose domain is ωωωω). Every theorem of ZU
is true in this model: in particular, therefore, it is true in the model that P(ωωωω)
is uncountable. Nevertheless, to repeat, the model is countable. This is known
as Skolem’s paradox.
But it is a paradox only in the sense that it is initially surprising, not that

it is a contradiction, for its resolution is straightforward. What it means for a
set to be uncountable is expressed by a fairly complicated logical expression
involving ∈; what it means for a set to be uncountable in the model is obtained
by replacing ∈ with whatever relation is the interpretation of ‘∈’ in the model,
and then relativizing all the quantifiers to the domain of the model. The res-
ulting sentence will not express at all the same claim as that the set in question
is actually uncountable. So Skolem’s paradox, at least in the form we have
been considering here, is certainly very far from being a formal contradic-
tion. When taken at face value, indeed, it is hard even to find it especially
surprising.
But consider now what happens if we temporarily adopt a metalinguistic

perspective from which to study our own set-theoretic language, the language
we have been using in the bulk of this book so far, which is now regarded
as the object language. By running through the above argument once more,
we discover from this new perspective that set theory has a countable model.
This is disconcerting because it prompts the thought that this countable model
might be our model: the intended model could turn out — behind our backs —
to be countable.
Skolem’s paradox has therefore been used by various authors as a spring-

board to an argument that there are no uncountable sets. Thus Kaufmann
(1930, ch. 5), for example, used it to question the coherence of impredicatively
specified sets; and Wright (1985) has essayed a direct argument that we can-
not grasp the notion of an arbitrary subset of a given infinite set such as the
set of natural numbers.2 But we need to be careful. For the conclusion we
have reached in the metalanguage is that the object language theory ZU has
a countable model. If we try to re-express this in the object language, we get
not a contradictory thought but no thought at all. There is no formula in the
object language expressing what we mean when we say in the metalanguage
that a set is countable.
Nonetheless, we are not yet quite ready to conclude that the theorem is

without philosophical consequences. Putnam (1980), for instance, has used it
to mount a challenge on the ‘moderate realist position which seeks to preserve
the centrality of the classical notions of truth and reference without postulat-

2Even if Wright’s argument works, it is not clear that it should worry the platonist, at least in
the form in which Wright presents it, since it appeals to constructivist assumptions which the
platonist need feel under no pressure to accept (see Clark 1993b).
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ing nonnatural mental powers’. In general, if we treat the meanings of the
logical vocabulary as fixed, but the meanings of the non-logical vocabulary as
completely open, then even a complete set of axioms does not pin down our in-
tended meaning fully. However, if that is all we want to establish, we can do it
by means of a simple permutation argument (Putnam 1981), which shows that
if there is such a thing as an ‘ideal theory’, it cannot implicitly define its own
reference relation; and this permutation argument is applicable to a second-
order theory just as much as a first-order one. The Löwenheim/Skolem the-
orem does indeed show that in the case of a first-order theory this relativity
is somewhat more radical: if only the first-order logical vocabulary is treated
as fixed, we do not even pin down the cardinality of the domain of reference.
What is harder to see is why the second, more radical relativism should be
more troubling than the first.

Notes

The ancestral is defined and its elementary properties are proved in Frege’s
Begriffsschrift (1879), but it was Dedekind’s rediscovery of the notion in (1888)
which led to its popularization.
The use of natural numbers to measure the size of finite sets is evidently

central to any understanding of their applicability. It remains controversial
whether the ordinal use is primary (see Dummett 1991, p. 293). In Dede-
kind’s treatment the principle which justifies using numbers for counting was
derived as a theorem. Frege, by contrast, proposed to move in the opposite
direction, taking this theorem as his starting point and deriving the properties
of natural numbers from it. This project stalled when he unwisely used an
inconsistent theory to justify the procedure, but interest in it was renewed by
Wright (1983). Although most philosophers remain unconvinced, the detailed
working out of this programme (see Hale and Wright 2001) has contributed
significantly to our understanding of the logicist project.



Chapter 7

Lines

The task of this chapter is to characterize the ordering properties of the ra-
tional and real lines and to prove within ZU the existence of sets which satisfy
these characterizations. The question of how points on these lines can be ad-
ded or multiplied, and how they can be used to measure quantities, will be set
on one side to be dealt with in the following chapter.
We start with some terminology. A subset of an ordered set (A,�) is called

an open interval if it is of one of the following four forms:

{x ∈ A : a < x} for some a in A;

{x ∈ A : x < b} for some b in A;

{x ∈ A : a < x < b} for some a < b in A;

the whole of A.

Definition. A totally ordered set in which every open interval is non-empty
is called a line.

Otherwise stated, a line is an ordered set which is dense in itself and has no
greatest or least element. It follows [theorem 6.4.5] that a line cannot be finite.
The elements of a line are usually called points. We say that a subset B of a
line is open if it is a union of open intervals.
A subset B of a line is said to be closed if its complement is open. A limit point

of B is a point a such that every open interval containing it contains at least
one point of B other than a. The set of limit points of B is called the derived
set of B and denoted B ′. Evidently B is closed iff it contains all its limit points,
i.e. iff B ′ ⊆ B. We say that B is perfect if B ′ = B, i.e. if it is a closed set in
which every point is a limit point.

7.1 The rational line

(7.1.1) Theorem. There exists a (pure) countable line.
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Proof . LetQ = F(ωωωω)� {Ø} and define an ordering onQ by writing A < B iff
A �= B and the least element in one of A and B but not in both is in A. It is
easy to verify that Q with this ordering is a line. Moreover, F(ωωωω) is countable
[proposition 6.5.2], and hence Q is countable too.

Definition. Some (pure) countable line (of lowest possible birthday) is de-
noted (Q,�) and called the rational line.

The properties just mentioned are sufficient to characterize the rational line
up to isomorphism.

(7.1.2) Theorem (Cantor 1895). Every countable line is isomorphic to the
rational line.

Proof . Let (A,�) be a countable line and let (an) and (bn) be sequences whose
images are A and Q respectively. We construct a function f from A to Q
recursively: once f (ar ) has been defined for all r < m, let f (am) be the ele-
ment bn of least possible index such that it bears the same order relation to
f (a0), . . . , f (am−1) as am bears to a0, . . . , am−1. (Such an element always ex-
ists because the ordering on Q is dense and has no greatest or least element.)
Now it is clear that the resulting function f from A to Q is strictly increasing
(and therefore one-to-one); we will be finished if we can show that its image is
Q. So suppose not. There therefore exists an element bn ∈ Q � f [A] of least
possible index. If r < n, then br ∈ f [A], and so we can let mr be the least nat-
ural number such that f (amr ) = br . If m is the least natural number greater
thanm0, . . . , mn−1 such that am bears the same order relation to am0, . . . , amn−1
as bn bears to f (am0), . . . , f (amn−1), then it is clear that f (am) = bn . Contra-
diction.

The specification we have just given of the rational line is not a specification
of the set of rational numbers, since it omits any reference to their algebraic
(ordered field) structure. We shall postpone discussion of this algebraic struc-
ture to the next chapter, where we shall see explicit examples showing that it
is not determined uniquely by the ordering.

Exercise

Let (A,�) be a countable partially ordered set.

(a) Prove that there exists an increasing one-to-one function from (A,�) into
(Q,�).

(b) Deduce that the partial ordering of A can be extended to a total ordering.
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7.2 Completeness

Geometry was traditionally conceived of as the study of those constructions
which are possible using only a straightedge (to draw straight lines) and a
pair of compasses (to draw circles). Straight lines, as this sort of geometry
conceives of them, are ‘gapless’ in the sense that between any two points there
is another, so when thought of as ordered sets they are indeed lines according
to the definition of the last section. But there is another (and, as it turns out,
more constraining) sort of gaplessness that we might expect a geometrical line
to possess. One way of expressing it is by means of the idea that if a function
is thought of as describing a path that a particle might traverse, it cannot pass
through two points without passing through all the points between them. This
(or at any rate a plausible formalization of it) is known as the intermediate value
property.

Definition. Suppose that (A,�) and (B,�) are ordered sets. A function f
from A to B is said to have the intermediate value property if whenever b lies
between f (a1) and f (a2) in B there exists a between a1 and a2 in A such that
f (a) = b.

Now we plainly would not expect any function whatever to have the interme-
diate value property, but it has generally been thought plausible — ‘intuitively
obvious’ is how it is usually expressed — that every function of a real variable
which is continuous in the sense explained in the Introduction must have the
intermediate value property.

Definition. Suppose that (A,�) and (B,�) are ordered sets and f is a
function from A to B. We say that f (x) tends to b as x tends to a if for every
open interval J containing b there is an open interval I containing a such that
f [I ] ⊆ J . We say that f is continuous at a if f (x) tends to f (a) as x tends
to a. And we say that f is continuous if it is continuous at every element of A.

What we want to study, then, is the condition a line must satisfy if every func-
tion that is continuous in this sense is to have the intermediate value prop-
erty. The key property here turns out to be the one on which all rigorous
undergraduate calculus courses are based, namely the assumption that every
non-empty set of real numbers which has an upper bound has a least upper
bound.

(7.2.1) Lemma. If (A,�) is a partially ordered set, these two assertions are
equivalent:

(i) Every non-empty subset of A which has an upper bound in A has a
supremum;

(ii) Every non-empty subset of A which has a lower bound in A has an
infimum.
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Proof . Suppose that B is a non-empty subset of A and let

C = {x ∈ A : x is a lower bound for B}.
By hypothesis a = supC exists. We shall show that a = inf B. To do this,
note first that if x ∈ C and y ∈ B, then x � y: consequently y is an upper
bound for C and so a � y. In other words, a is a lower bound for B. And if x
is another lower bound for B, then x ∈ C and so x � a. Thus a is the greatest
lower bound for B, i.e. a = inf B. This proves that (i)⇒ (ii); the proof that (ii)
⇒ (i) is similar.

Definition. A line is said to be complete if it satisfies the equivalent condi-
tions of lemma 7.2.1 above.

(7.2.2) Theorem. Suppose that (A,�) and (B,�) are lines. Then (A,�)
is complete iff every continuous function from A to B has the intermediate
value property.

Necessity. Suppose that f is a continuous function from A to B and that b lies
between f (a1) and f (a2). Let C = {x ∈ A : f (x) < b} and let a = supC .
Now if f (a) < b, then by the continuity of f there exists c > a such that

f (x) < b whenever x lies between c and a. But then each such x is in C , and
therefore a is not an upper bound for C . Contradiction.
And if f (a) > b, then by the continuity of f there exists c < a such that

f (x) > b whenever x lies between c and a. But then no such x is in C , and
therefore a cannot be the supremum of C . Contradiction.
The only remaining possibility is that f (a) = b as required.

Sufficiency. Suppose that C is a subset of A that is bounded above but does not
have a supremum in A. If we let C ′ = {x ∈ A :(∃y ∈ C) x � y}, then C ′ does
not have a supremum in A either. Choose two elements b and b′ of B and
define a function f from A to B by letting

f (x) =
{

b′ if x ∈ C ′

b otherwise.

Then it is easy to show that f is continuous. Yet f cannot have the interme-
diate value property, since B is a line and so has elements between b and b′,
which are the only values taken by f . Contradiction.

Exercise

(a) Show that the intersection of a non-empty set of partial orderings is also a partial
ordering.
(b) Deduce that Po(A) is complete with respect to inclusion.
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7.3 The real line

If our aim is to construct a complete line, it would evidently be prudent to
check first that the rational line constructed in the last section is not already
complete.

(7.3.1) Proposition. Q is not complete.

Proof . Consider once more the explicit model Q of the rational line construc-
ted in the last section, and suppose for a contradiction that it is complete. In
this model consider the two sequences

{0}, {0, 2}, {0, 2, 4}, {0, 2, 4, 6}, . . .
{0, 1}, {0, 2, 3}, {0, 2, 4, 5}, {0, 2, 4, 6, 7}, . . .

It is easy to check that every element of the first sequence is greater than every
element of the second sequence. It follows that there is a member A ofQ such
that

{0} > {0, 2} > {0, 2, 4} > {0, 2, 4, 6} > . . . A > . . .

{0, 2, 4, 5} > {0, 2, 3} > {0, 1}.
Then A < {0}, and so 0 ∈ A. But {0, 1} < A, and so 1 /∈ A. Also A < {0, 2},
and so 2 ∈ A. Then A < {0, 2, 3}, and so 3 /∈ A. And so on. Thus we
get eventually that {0, 2, 4, 6, . . . } ⊆ A, and so A is infinite, contradicting the
definition of Q, which consists only of the non-empty finite subsets of ωωωω. It
follows that Q is not complete. But Q is isomorphic to Q [Cantor’s theorem
7.1.2], and so Q cannot be complete either.

(7.3.2) Corollary. Any complete line is uncountable.

Proof . Any countable line is isomorphic to Q [theorem 7.1.2] and hence not
complete.

If no countable line is complete, the next best thing is to try to achieve com-
pleteness by a minimal extension of such a line, i.e. by constructing a line
which, although not countable itself, nevertheless has a countable line as a
dense subset.

Definition. A complete line which has a countable dense subset is called a
continuum.

Mathematicians have often conceived of space and time as supplying us with
instances of continua in this sense. Whether they are justified in this is a matter
we shall return to later, but in any case what we have to do here is to construct
a continuum independently of such considerations, i.e. without recourse to
spatial or temporal intuition.
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(7.3.3) Theorem. There exists a continuum.

Proof . LetR be the set of all non-empty proper initial subsets ofQ which have
no greatest element. It is evidently totally ordered by inclusion and has no least
or greatest element. Moreover, if B is a chain in R, all the elements of which
are contained in some element of R, then it is easy to verify that⋃B ∈ R; it
follows that R is complete. Finally {{x : x < a} : a ∈ Q} is a countable subset
ofR, since Q is countable; and it is dense inR, since if A, B ∈ R and A ⊂ B,
then there exists x ∈ B � A and so A ⊂ {x : x < a} ⊂ B. We have therefore
shown that R is a complete line which has a countable dense subset, i.e. a
continuum.

Definition. We choose some (pure) continuum (of lowest possible birthday):
it is denoted (R,�) and called the real line.

Intermediate value theorem. Every continuous function from R to itself
has the intermediate value property.

Proof . Immediate [theorem 7.2.2].

(7.3.4) Proposition. R is not countable.

Proof . This follows at once from corollary 7.3.2.

We have already come across one example of an uncountable set, namely
P(ωωωω). The real line, though, was Cantor’s first example, and so his discovery
of it in 1873 may be said to mark the birth of the modern theory of cardinality.

Definition. Suppose that (A,�) and (B,�) are partially ordered sets. A
function f from A to B is said to be normal if for every set C which has a
supremum in A the set f [C] has a supremum in B and f (supC) = sup f [C];
f is said to be strictly normal if in addition it is one-to-one.

Every [strictly] normal function is in particular [strictly] increasing.

(7.3.5) Proposition. Suppose that B is a dense subset of a line (A,�). Then
every normal function f from B toR has exactly one normal extension f from
A to R.

Uniqueness. If a ∈ A, then in order that f should be normal, we must have

f (a) = sup
x∈B,x<a

f (x) = sup
x∈B,x<a

f (x),

whence the uniqueness of f .
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Existence. If we define
f (a) = sup

x∈B,x<a
f (x)

for all a ∈ A as this suggests, then for a ∈ B we have

f (a) = sup
x∈B,x<a

f (x) = f (a)

since f is normal. And if C is a subset of A with supremum c, then

sup f [C] = sup
a∈C

sup
y∈B,y<a

f (y) = sup
y∈B,y<c

f (y) = f (c).

This shows that f is normal.

We shall now show that the properties we have used to define (R,�)— that
it is complete and that it has a countable dense subset — are sufficient to
determine it up to isomorphism.

(7.3.6) Lemma. If (A,�) is a line, and B is a dense subset of A which is
complete with respect to the inherited ordering, then B = A.

Proof . Suppose that a ∈ A and let C = {x ∈ B : x < a}. C is bounded above
in B and hence has a least upper bound in B. Because B is dense in A, this
least upper bound must be a, from which it follows that a ∈ B.

(7.3.7) Theorem. Every continuum is isomorphic to the real line.

Proof . Suppose that (A,�) is a continuum and B is a countable dense subset
of A. Now R has by definition a countable dense subset, and there is therefore
an isomorphism f from B onto this subset [theorem 7.1.2]. This isomorphism
is certainly strictly normal and therefore has a normal extension f , which is
a strictly increasing function from A onto a subset f [A] of R [proposition
7.3.5]. This subset is dense in R, and it is complete because it is isomorphic to
A; hence it must be the whole of R [lemma 7.3.6].

We have shown, then, that our definition of a continuum characterizes
uniquely a certain sort of order structure. What is less clear, and receives
less attention in the literature than it deserves, is whether either space or time
supplies us with models of this structure. Neither part of the definition —
neither the completeness condition nor the existence of a countable dense
subset — is as obvious as is sometimes supposed. As we shall see in the next
chapter, matters may be somewhat different once we make the assumption
that the operations of addition and multiplication (or even just addition) can
be performed, but in the meantime let us consider what can be said without
that assumption.
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Dedekind (1872, §3) thought it likely that ‘everyone will at once grant the
truth’ of the completeness axiom, but he went on straightaway to grant that
space might not in fact satisfy it. In that case, he says,

there would be nothing to prevent us, in case we so desired, from filling up its gaps in
thought and thus making it continuous; this filling up would consist in a creation of
new points and would have to be carried out in accordance with the above principle.

He does not go into the question of whether it is possible to complete time in
the same manner. The Kantian resonance is evident: we can represent space
to ourselves as continuous whether or not it really is. Something similar is to
be found in Poincaré’s view that space is not revealed to us as a continuum
directly by the senses. It is necessary, he says, ‘that by an active operation of
the mind we agree to consider two states of consciousness as identical by dis-
regarding their differences’ (1913, ch. III, §3). Many other authors have simply
taken it as intuitively obvious that this is how space is. The weakness of this
is that the completeness principle makes a claim about arbitrary subsets of the
real line, and it is far from clear that our intuitions about these are reliable: see
§15.7 for a theorem about arbitrary subsets of the plane which it takes some
mathematical sophistication not to regard as an obvious falsehood.
If we are hesitant about arguing for completeness directly, an alternative

might be to argue that the intermediate value theorem — that every con-
tinuous function on the real line has the intermediate value property — is an
obvious truth. For we have seen that this theorem holds only if the real line is
complete. But our intuitive conception of a continuous function is perhaps of
one that can be drawn without lifting the pen from the paper, or something of
that sort; and it seems plausible that any such function will be at least piecewise
differentiable (which, after all, is why the example of a continuous, nowhere
differentiable function strikes many people as counter-intuitive when they first
come across it). So the definition of continuity already involves a consider-
able extension of our intuitive conception, and it is unclear why we should
regard the intermediate value theorem as intuitively correct when applied to
these non-intuitive functions. After all, to the untutored eye the intermediate
value property seems to have as good a title to be regarded as an explication
of the intuitive concept of continuity as does the definition that has actually
been adopted. And of course if ‘continuous’ had been defined by means of the
intermediate value property, we could not have used the intermediate value
theorem as a reason for believing that the real line of our intuition is complete.
The other part of our definition, the requirement that the real line should

have a countable dense subset, is even harder to motivate intuitively without
reference to addition. Indeed it is not even clear that we have any direct in-
tuitions that bear directly on the cardinality of the real line beyond the bare
fact that it is infinite. Hodges (1998, p. 3) has remarked (in the course of an
interesting discussion of amateur criticisms of the proof) that when we come
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to Cantor’s result, ‘all intuition fails us. Until Cantor first proved his theorem
. . . nothing like its conclusion was in anybody’s mind’s eye. And even now
we accept it because it is proved, not for any other reason.’ If this is right,
then the prospects for an intuitive argument to show that the continuum has
a countable dense subset without appealing to its metric properties seem slim.

Exercises

1. If (A,�) is a totally ordered set which has a countable dense subset, show that it
can be embedded in (R,�).

2. Give an example of a dense ordered set without a greatest or a least element which
is equinumerous with, but not isomorphic to, the real line. [Hint. Remove one point
from R.]

7.4 Souslin lines

(7.4.1) Proposition. Every pairwise disjoint set of open intervals in R is
countable.

Proof . Suppose that A is a set of pairwise disjoint open intervals and {qn : n ∈
ωωωω} is a countable dense subset of R. If A is empty, it is trivially countable. If
not, it contains at least one member A0. For each n ∈ ωωωω there is no more than
one A ∈ A such that qn ∈ A: if there is one, let it be f (n); if there is none, let
f (n) = A0. This evidently defines a function f from ωωωω onto A.
So (R,�) is a complete line in which every pairwise disjoint set of open in-
tervals is countable. Souslin (1920) speculated that this might constitute an
alternative characterization, so that any such line would be a continuum.

Definition. A Souslin line is a complete line with no countable dense subset
in which nonetheless every pairwise disjoint set of open intervals is countable.

Souslin’s hypothesis may thus be expressed as the claim that there are no
Souslin lines. As it turns out, though, this hypothesis is independent of the
formal system we have been using, and even independent of ZFC (Jech 1967;
Solovay and Tennenbaum 1971). It is in fact our first explicit example of a
genuinely mathematical statement independent of our theory: we shall see
several more examples in part IV.

(7.4.2) Lemma. Every non-empty convex subset of R is an open interval.

Proof . Let U be a non-empty convex open subset of R. There are four cases
to consider, depending on whether U is bounded above or below in R.

(1) U is bounded above but not below. If we let b = supU , it is easy to
show that U = {x ∈ R : x < b}.
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(2) U is bounded below but not above. In the same way we can let a =
infU and show that U = {x ∈ R : a < x}.

(3) U is bounded both above and below. Let a = infU and b = supU , so
that U = {x ∈ R : a < x < b}.

(4) U is not bounded above or below. So U = R.

Thus in each case U is an open interval.

(7.4.3) Lemma. Any open subset of a line is uniquely expressible as the union
of a collection of pairwise disjoint non-empty convex open sets.

Proof . Let U be an open subset of a line and define x ∼ y if there is an open
interval contained in U to which both x and y belong. It is easy to see that
this is an equivalence relation on U and that each of the equivalence classes is
a non-empty convex open set.

(7.4.4) Proposition. Every open subset of R is uniquely expressible as the
union of a countable collection of pairwise disjoint open intervals.

Proof . If U is an open subset of R, it is expressible as the union of a collection
of pairwise disjoint non-empty convex open sets [lemma 7.4.3]. These sets are
all open intervals, and hence the collection is countable [proposition 7.4.1].

7.5 The Baire line

Definition. A line obtainable from a continuum by removing a countable
dense subset is called an irrational line.

The work we have done already gives us an easy construction of an irrational
line, of course: the real line has a dense subset isomorphic to the rational
line; what is left if we remove it is evidently an irrational line. The direct
geometrical significance of an irrational line such as this is presumably much
less than that of the real line. So irrational lines would not be of any great
interest to us if it were not for a surprising connection with the theory of games
which arises out of a quite different construction of an irrational line. For this
we take the set ωωωωωωωω of all sequences of natural numbers, ordered by letting
x < y if x �= y and the least n such that x(n) �= y(n) is such that

x(n) < y(n) if n is even,

x(n) > y(n) if n is odd.

We shall call the resulting ordered set the Baire line. A subset of the Baire line
is closed iff it is the set of all the paths through some tree.
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(7.5.1) Theorem. The Baire line is an irrational line.

The proof of this theorem will not be given here: it can be found in various
places, e.g. Truss 1997, ch. 10.

(7.5.2) Corollary. Every irrational line is isomorphic to the Baire line.

Proof . The work we did in §7.3 shows immediately that any two irrational
lines are isomorphic.

The point of interest for us here is that the Baire line gives us a natural way
to encode and study the theory of games between two players. To see this,
consider a game for two players such as draughts or chess. Each play of
such a game consists of a sequence of moves by the players alternately: if
all the possible moves are labelled by natural numbers, a play can be rep-
resented as a sequence x of natural numbers, i.e. as a member of the Baire
line: the even members x(0), x(2), x(4), . . . of the sequence enumerate the
first player’s moves; and the odd members x(1), x(3), x(5), . . . enumerate
the second player’s moves. What constitutes winning varies depending on the
game that is being played, of course; but let us denote by A the set of plays
which are wins for the first player. We shall make no assumptions at all about
A at this stage, so every subset A of the Baire line ωωωωωωωω constitutes the first-person
wins of some game. The only simplifying assumption we make is that there
are no draws, so every play which does not belong to A is automatically a win
for the second player. The game in which winning is defined in this manner
is called the game on A.
A strategy for the first player is a function σ from

⋃
n∈ωωωω

2nωωωω toωωωω, i.e. a function
which for any string of 2n natural numbers as input generates a single natural
number as output. It should be thought of as telling the first player which
move to make at each stage of the play on the basis of the previous moves: a
play x conforms to the strategy σ just in case

x(2n) = σ(x(0), x(1), x(2), . . . , x(2n − 1)) for all n.

We write σ ∗ t for the play which results if the first player follows strategy σ
against a second player whose moves are enumerated by t ; and we say that
σ is a winning strategy if σ ∗ t is a win for the first player for every sequence
t . Similarly, a winning strategy for the second player is a function τ from⋃

n∈ωωωω
2n+1ωωωω to ωωωω such that every play x which conforms to it, in the sense that

x(2n + 1) = τ(x(0), x(1), . . . , x(2n)) for all n,

is a win for the second player; and we write s ∗τ for the game in which the first
player’s moves are enumerated by s and the second player follows the strategy
τ in response.
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Let us say that a game is determined if one or other player has a winning
strategy. The question that naturally presents itself is to settle which games
are determined. There are certainly special cases in which this problem can
be solved quite easily.

(7.5.3) Proposition. The game on any set which is countable or has a count-
able complement is determined.

Proof . Suppose that the sequence x0, x1, x2, . . . enumerates the plays which
constitute wins for the first player. The second player then has a strategy in
which the nth move is xn(2n+1)+1: this wins the game for the second player
because it diagonalizes the play out of the range which are wins for the first
player.

(7.5.4) Proposition (Gale and Stewart 1953). The game on any closed
or open subset of the Baire line is determined.

Proof . Suppose first that A is closed. As we noted above, A must then be
the set of all the infinite paths through some tree. So if the second player
does not have a winning strategy, then the first player has a winning strategy,
which amounts simply to not making a mistake (i.e. making a move which
goes outside the tree). If A is open, then its complement is closed, and so this
case reduces to the previous one with the roles of the two players reversed.

These results give us a large stock of determined games, but they are far from
exhausting what there is to be said about which games are determined. We
shall return to this issue in part IV, where it will lead us to consider issues
concerning further axioms taking us beyond the default theory.

Notes

The notion of a partially ordered set is ubiquitous in mathematics. However,
the theory of such structures typically delivers significant results only when the
general notion is restricted in various ways. The theory of lines, which results
from one such restriction, was studied extensively by Cantor, Hausdorff and
others.
The Baire line is so named because it was Baire (1909) who first recommen-

ded using it as a tool for descriptive set theory.



Chapter 8

Real numbers

We noted in the Introduction to this part of the book that Weierstrass based
his rigorous presentation of the calculus on the assumption that the real num-
bers form a complete ordered field — that is to say, a continuum on which
are defined operations of addition and multiplication satisfying the familiar
algebraic laws. Our primary goal in this chapter will be the construction of
such a set in our default theory ZU. We went some way towards this in the
last chapter when we showed how to construct a continuum. But an ordering
is not enough structure for the purpose of measurement: addition and mul-
tiplication cannot be defined in terms of order structure alone. To see why,
just consider a number line made out of elastic: stretching the elastic in a non-
uniform manner will distort the algebraic relations between the numbers but
leave their order relations intact. So if we are to carry out our programme we
must start afresh: our strategy will be to use the set ωωωω of natural numbers to
construct in turn sets Z (of integers), Q (of rational numbers) and R (of real
numbers) endowed with an algebraic structure as well as an ordering.

8.1 Equivalence relations

Our constructions of the first two of these sets will make use of a standard
technique of set construction known as the ‘method of equivalence classes’.

Definition. A relation on a set A is called an equivalence relation if it is
transitive, reflexive and symmetric.

The smallest equivalence relation on a set A is the diagonal relation defined
by equality x = y.

Definition. The equivalence classes of an equivalence relation s on A are
the sets s[a] = {x ∈ A : a s x}. The set {s[a] : a ∈ A} of all the equivalence
classes is called the quotient of A by s and written A/s.

Equivalence classes are, of course, not classes at all (at least not if we resist
the temptation to identify sets with classes), but the terminology is so standard
that it would be silly to deviate from it by calling them ‘equivalence sets’ as
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perhaps we strictly should. At any rate, what is important about them is that
if s is an equivalence relation on A then

(∀a, b ∈ A)(a s b ⇔ s[a] = s[b]).

Definition. A collection B of subsets of a set A is a partition of A if each
element of A belongs to exactly one element of B.
Another way of putting this is that a partition of a set A is a pairwise disjoint
collection whose union is A. The connection between partitions and equival-
ence relations is provided by the following theorem.

(8.1.1) Proposition. If A is a set, then the function s �→ A/s is a one-to-one
correspondence between the equivalence relations on A and the partitions of
A; its inverse function maps a partition B to the equivalence relation defined
on A by the formula (∃B ∈ B)(x, y ∈ B).

Proof . Exercise 3.

What this tells us is that in order to specify an equivalence relation, it is a mat-
ter of indifference whether we define the relation itself or the corresponding
partition of the domain into equivalence classes.

Exercises

1. Show that a reflexive relation s on A is an equivalence relation iff

(x s y and z s y and z s t) ⇒ x s t .

2. Show that the intersection of a family of equivalence relations on A is also an
equivalence relation on A but that the union of two equivalence relations on A need
not be.

3. Prove proposition 8.1.1.

4. If r is a relation on A and s =(r ∪ r−1)T, show that s is the smallest equivalence
relation on A containing r and that r/s is a partial ordering on A/s.

5. If f is a function from A to A and s is an equivalence relation on A, find a necessary
and sufficient condition on s for f /s to be a function from A/s to A/s.

8.2 Integral numbers

Our task in this section is to construct a set that mimics the integral numbers,
both positive and negative. The guiding idea is that every integer can be
written in the form m − n with m, n ∈ ωωωω. This representation is not unique, of
course, but since

m − n = m ′ − n′ ⇔ m + n′ = m ′ + n,
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we shall wish to treat (m, n) and (m ′, n′) as representing the same integer if
m + n′ = m ′ + n. So let us write this last relation as (m, n) ∼ (m ′, n′): it
is obviously an equivalence relation, so we can let Z = (ωωωω × ωωωω)/ ∼. The
definitions of addition, multiplication and the ordering relation can easily be
worked out by informal calculations. For instance, the calculation

(m − n) + (m ′ − n′) = (m + m ′) − (n + n′)

suggests that, writing [m, n] for the equivalence class of the ordered pair (m, n)
with respect to ∼, we should define

[m, n] + [m ′, n′] = [m + m ′, n + n′].

Similarly, we want

(m − n)(m ′ − n′) = (mm ′ + nn′) − (mn′ + nm ′),

and so we define

[m, n][m ′, n′] = [mm ′ + nn′, mn′ + nm ′].

And in order for it to be the case that

m − n � m ′ − n′ ⇔ m + n′ � n + m ′,

we need to define

[m, n] � [m ′, n′] ⇔ m + n′ � n + m ′.

Before going any further we ought first to check these definitions for con-
sistency, i.e. show that they are independent of the particular ordered pairs
chosen to represent the equivalence classes. But this is in each case easy.
Then we need to embed the natural numbers in this construction by associat-
ing each natural number n with the integer n − 0, i.e. by letting nZ = [n, 0].
Once all this is done, it is a straightforward matter to check that the standard
algebraic properties of the integers are satisfied by our constructions, and thus
to prove the following theorem.

(8.2.1) Theorem. The set Z has defined on it

(O) a relation �,

(A) an operation ( j, k) �→ j + k,

(M) an operation ( j, k) �→ jk,

(I) a function n �→ nZ from ωωωω to Z
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They have these properties:

(A1) (∀ j, k, l ∈ Z) j + (k + l) = ( j + k) + l;

(A2) (∀k ∈ Z) k + 0Z = k;

(A3) (∀k ∈ Z)(∃k ′ ∈ Z) k + k ′ = 0Z;

(A4) (∀ j, k ∈ Z) j + k = k + j ;

(M1) (∀ j, k, l ∈ Z) ( jk)l = ( jk)l;

(M2) (∀k ∈ Z) k1Z = k;

(M3) (∀ j, k ∈ Z) jk = k j ;

(M4) (∀ j, k ∈ Z)( jk = 0Z ⇒ j = 0Z or k = 0Z);

(AM) (∀ j, k, l ∈ Z) j(k + l) = jk + jl;

(O) � is a total ordering on Z;

(OA) (∀ j, k, l ∈ Z)( j � k ⇒ j + l � j + l);

(OM) (∀ j, k, l ∈ Z)( j � k and l � 0 ⇒ jl � kl);

(IA) (∀m, n ∈ ωωωω) (m + n)Z = mZ + nZ;

(IM) (∀m, n ∈ ωωωω) (mn)Z = mZnZ;

(IO) (∀m, n ∈ ωωωω) (m � n ⇔ mZ � nZ).

(8.2.2) Proposition. Z is countable.

Proof . We already know that ωωωω × ωωωω is countable [proposition 6.5.1]. As we
have defined it, Z is a quotient of this set and hence countable as well.

8.3 Rational numbers

Now we repeat the process, but this time we want to construct rational
numbers of the form j/k, so we use ordered pairs ( j, k) where j ∈ Z and
k ∈ Z� {0Z}. We want

j
k

= j ′

k ′ ⇔ jk ′ = j ′k,

so we define
( j, k) ∼ ( j ′, k ′) ⇔ jk ′ = j ′k
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to give us an equivalence relation ∼ on the set Z× (Z� {0Z}), and then let
Q = (Z× (Z� {0Z}))/ ∼.

Once more it is an easy matter to work out the right definitions. We want

j
k
+

j ′

k ′ = jk ′ + j ′k
kk ′ ,

so we define
[ j, k] + [ j ′, k ′] = [ jk ′ + j ′k, kk ′].

We want
j
k

j ′

k ′ = j j ′

kk ′ ,

so we define
[ j, k][ j ′, k ′] = [ j j ′, kk ′].

And we want
j
k

� j ′

k ′ ⇔ jk ′ � j ′k

in the case when k, k ′ � 0, so we write

[ j, k] � [ j ′, k ′] ⇔ jk ′ � j ′k

in this case. Once more we have to check that all our definitions are consistent,
but once more this is easy. Finally we wish to identify any integer k with the
rational number k/1, so we define

kQ = [k, 1].

Many of the purely algebraic properties of the rational numbers thus defined
are summarized by saying that they form an ordered field. The definition is as
follows.

Definition. An ordered field is a set F endowed with

(O) a relation �,

(A) an operation (x, y) �→ x + y,

(M) an operation (x, y) �→ xy,

(I) a function k �→ kF from Z to F .

They are required to have the following properties:

(A1) (∀x, y, z ∈ F) x + (y + z) = (x + y) + z;
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(A2) (∀y ∈ F) y + 0F = y;

(A3) (∀y ∈ F)(∃y′ ∈ F) y + y′ = 0F ;

(A4) (∀x, y ∈ F) x + y = y + x ;

(M1) (∀x, y, z ∈ F) (xy)z = x(yz);

(M2) (∀y ∈ F) y1F = y;

(M3) (∀x, y ∈ F) xy = yx ;

(M4) (∀x ∈ F � {0F })(∃x ′ ∈ F � {0F }) xx ′ = 1F ;

(AM) (∀x, y, z ∈ F) x(y + z) = xy + xz;

(O) � is a total ordering on F ;

(OA) (∀x, y, z ∈ F)(x � y ⇒ x + z � x + z);

(OM) (∀x, y, z ∈ F)(x � y and z � 0 ⇒ xz � yz);

(IA) (∀ j, k ∈ Z) ( j + k)F = jF + kF ;

(IM) (∀ j, k ∈ Z) ( jk)F = jF kF ;

(IO) (∀ j, k ∈ Z)( j � k ⇔ jF � kF).

We shall take for granted the development of the arithmetic of elements of
an ordered field from this definition. Thus, for instance, we shall take it for
granted that we can define the absolute value of an element x of an ordered field
F by letting

|x | =
{

x if x � 0
0 otherwise.

Note that any ordered field is a line, since if x < y, then x < 1
2 (x + y) < y.

The definition we have given translates easily into a list of axioms in a first-
order language containing as its non-logical symbols only addition, multiplic-
ation and the order relation. So the notion of an ordered field is finitely first-
order axiomatizable. The development of the properties of ordered fields we
are referring to is representable by means of derivations from these axioms in
first-order logic.

(8.3.1) Theorem. Q is an ordered field.

(8.3.2) Proposition. Q is countable.

Proof . Z is countable [proposition 8.2.2], hence Z × (Z � {0}) is countable,
hence Z× (Z� {0})/ ∼ is countable.
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(8.3.3) Corollary. The ordered set (Q,�) is isomorphic to (Q,�).

Proof . Q is a line since it is an ordered field; and we have just shown that it
is countable. The result now follows from Cantor’s characterization of the
rational line [theorem 7.1.2].

8.4 Real numbers

(8.4.1) Theorem. There exists a complete ordered field.

Proof . The real line R has a countable dense subset, which is isomorphic to
the ordered set Q. Now it is easy to check that the operation of addition on
Q is normal in each variable. So we can use proposition 7.3.5 to extend it
to an operation of addition on the completion R. It is then a straightforward
(if tedious) matter to check that all the properties of addition required by the
definition of an ordered field (associativity, commutativity, etc.) are satisfied
by the operation on R thus defined.
In much the same way it is easy to show that the operation of multiplication

by a positive rational number is normal, so we can extend it so as to define
multiplication by a positive real number. Then we can use this to define mul-
tiplication by a negative real number in the obvious way. Checking that the
operation thus defined satisfies the requirements of the definition is even more
tedious than in the case of addition.

We have thus carried out (or, to be more accurate, sketched) the construction
of a complete ordered field. The method of construction is not unique, of
course: there are other quite different ways of proving theorem 8.4.1 (for in-
stance, by using equivalence classes of Cauchy sequences of rational numbers).
However, although the condition of being a complete ordered field does not
determine a unique structure, all such structures are isomorphic (see corollary
8.7.6 below). So we are in a similar position to the one we found ourselves in
when we defined the set of natural numbers: we need to pick one structure of
a certain sort, but any we do pick has accidental properties we do not want.
We shall not repeat the comments we made there about this dilemma.

Definition. We choose some (pure) complete ordered field (of lowest pos-
sible birthday): we denote it R and call its members real numbers.

We noted in the Introduction that a rigorous development of the calculus of
functions of a real variable is available, based on the assumption that the real
numbers form a complete ordered field. If we simply appended that rigorous
development at this point, we would thus obtain a representation of a large
part of mathematics in ZU.
But what would that show? At the very least, it would give us another

relative consistency result: if ZU is consistent, so is the Weierstrassian theory
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of the continuum. But if the further step of reducing set theory to some sort
of logic were possible, we could say much more, for we should then have
achieved a species of logicism — a grounding of the calculus in logic. And
if the logic in question were knowable independent of intuition, this would
presumably constitute a final refutation of Kant’s view. But, as we saw in part
I, the project of reducing set theory to anything deserving the name of logic
is fraught with difficulty. And in any case it is far from clear that the logic in
question here could reasonably be regarded as analytic in Kant’s sense. So
the work presented here falls some way short of definitively refuting Kant.
Nonetheless, the grounding of analysis in set theory, even if it does not

refute Kant outright, does something to weaken his case. For it seems much
less persuasive in the case of set theory than it did in the theory of real numbers
to argue that the intuitions we need to ground our knowledge of it are spatio-
temporal in character. It is for this reason that the set-theoretic reduction of
mathematics has given rise to a tradition, starting perhaps with Dedekind and
then progressing through Gödel to Dummett, which conceives of reason as
capable of constructing intuitions from the structure not of spatio-temporal
experience but of thought itself.

8.5 The uncountability of the real numbers

From the work we have done we can deduce that R is uncountable, but our
route to this conclusion has been rather indirect. In view of the historical
and philosophical importance of the result, let us allow ourselves the luxury
of a second, more direct proof. We start by defining a set much favoured
by analysts as a tool in constructing counterexamples. Writing [a, b] for the
closed, bounded interval {x ∈ R : a � x � b} as usual, we let

K0 = [0, 1]

K1 = [0, 13 ] ∪ [ 23 , 1]
K2 = [0, 19 ] ∪ [ 29 , 13 ] ∪ [ 23 , 79 ] ∪ [ 89 , 1]

. . .

Then Cantor’s ternary set is
K =

⋂
n∈ωωωω

Kn.

Otherwise put, K is the closed set we get from the unit interval if we remove
its open middle third, remove the middle third of each of the two pieces re-
maining, remove the middle thirds of each of the four pieces remaining after
that, and so on.

0 1
9

2
9

7
9

8
9

1
3

2
3 1
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Yet another way of visualizing it is as the set of those real numbers of the
form

∑∞
n=1 sn/3n with sn = 0 or 2 for all n, i.e. numbers between 0 and 1 with

ternary expansions (representations to the base 3) in which the digit 1 does not
occur.
Suppose now that s is any sequence of real numbers. We define a sequence

(In(s)) of closed intervals of Cantor’s ternary set inductively as follows. We
start by letting I0(s) = [0, 1]. Then once In(s) = [an, bn] has been determ-
ined, we remove its middle third as above to leave the two closed intervals
[an, an + 1

3 (bn − an)] and [bn − 1
3 (bn − an), bn]; we then let In+1(s) be the left-

hand of these two remaining parts unless s(n) belongs to that part, in which
case we let it be the right-hand one. Now the sets

I0(s), I1(s), I2(s), . . . , In(s), . . .

form a nested sequence of closed intervals of lengths

1, 13 ,
1
9 , . . . ,

1
3n , . . . .

So their left-hand endpoints form a bounded, increasing sequence. It there-
fore has a least upper bound by the completeness property, which is less than
the right-hand endpoints of all the In(s) and hence belongs to

⋂
n∈ωωωω In(s). If

we call it f (s), we have thus defined a function f from ωωωωR into K . Now the
point of defining f in this manner is that it follows easily from the construction
that f (s) �= s(n) for all n. In other words, the function f generates, for each
sequence of real numbers s, a real number f (s) not in its range.

(8.5.1) Proposition. K is uncountable.

Proof . If K were countable, there would by definition be a sequence s such
that im[s] = K . But f (s) ∈ K � im[s]. Contradiction.

(8.5.2) Corollary. R is uncountable.

Proof . Cantor’s ternary set is a subset of R. Since the former is uncountable,
so is the latter.

The function f defined above is called a diagonal function, and the use of it to
prove the uncountability of R is an instance of a diagonal argument. This argu-
ment has been the focus of a great deal of criticism. One complaint that is
certainly unfair is that the proof is inexplicit: it does not exhibit any particular
real number that we cannot count, but then we would not expect it to; what
it does is to generate from any sequence of real numbers a number not in the
range of that sequence. A complaint that has more justice is that the proof is
problematic not for want of explicitness but because it is impredicative. This is
because the diagonalizing function f maps down the hierarchy, so that f (s)
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is a set of lower birthday than s. (Recall that s is a sequence of real numbers
and must therefore lie higher up the hierarchy than the members of the se-
quence.) This is the reason why the proof of uncountability is unacceptable to
the constructivist: the objection is that although we have defined f (s) expli-
citly, we have done so only in terms of s. In truth, the point might be better
put by saying that the definition of the real numbers is impredicative, since the
proof of uncountability does no more than exploit the definition. What it
should remind us of, at any rate, is that the failure of the countable line to
model the continuum arises only because we require all continuous functions
to have the intermediate value property, including ones that are not definable
in first-order terms.

8.6 Algebraic real numbers

The theory consisting of all the sentences in the first-order language of
ordered fields that are true of the real numbers has non-isomorphic mod-
els, which are known as real-closed fields. The theory so described is obvi-
ously complete, but it also turns out, much less obviously, to be axiomatizable
(Tarski 1948). Since the language of ordered fields is countable, model theory
(the Löwenheim/Skolem theorem) tells us that the theory must have a count-
able model, and indeed that there must be a model of it that is a subfield ofR.
The minimal such example is the set of algebraic real numbers.

Definition. A real number is said to be algebraic if it is a root of a polyno-
mial equation with rational coefficients; transcendental if not. The set of all
algebraic real numbers is denoted A.

We shall not here make the detour into algebra necessary to demonstrate that
A is indeed a real-closed field (or even that it is a field). However, we do
not need to use either this last fact or the model-theoretic considerations just
mentioned in order to show that the algebraic numbers are countable.

(8.6.1) Proposition. A is countable.

Proof . The set Q of rational numbers is countable [proposition 8.3.2]. So the
set String(Q) of strings of rational numbers is countable [proposition 6.5.3].
So the setQ[x] of polynomials in the indeterminate x with rational coefficients
is countable (since each of them can be represented by the string consisting of
its coefficients). So Q[x] × ωωωω is countable [proposition 6.5.1]. Now take any
ordered pair (p, r) in this last set: define f (p, r) to be the r th real root of the
equation p(x) = 0, if such a root exists; and 0 otherwise. Then f maps the
countable set Q[x] × ωωωω onto A (since a polynomial of degree n has at most n
real roots). Therefore A is countable too.



Algebraic real numbers 139

(8.6.2) Corollary. There exist transcendental real numbers.

Proof . A is countable; R is not.

Around the time that Cantor discovered this proof of their existence in (1874),
other mathematicians were finding explicit examples of transcendental num-
bers: Liouville had shown (1844) that

∑∞
n=1 1/kn! is transcendental for any

integer k > 1; then Hermite (1873) proved that e is transcendental, and
Lindemann (1882) proved that π is. Various other examples were discovered
subsequently: for instance, it was proved in 1930 that 2

√
2 is transcendental.

So Cantor was not at this point proving something new. Moreover, although
his proof is admittedly somewhat swifter than Liouville’s (and of course re-
veals connections that the other does not), it has seemed clear to various au-
thors (e.g. Kac and Ullam 1968; G. H. Moore 1982) that this brevity comes
at the price that it proves the existence of a transcendental number without
providing a means of finding an example. This is quite wrong, however: the
difference between these proofs and Cantor’s is not that they are any more
explicit; the method we have given for counting the algebraic numbers could
easily be made effective, and Cantor’s diagonal argument would then give us
an explicit construction of a transcendental real number.
The objection to Cantor’s method of obtaining a transcendental number

is not that it is not explicit, therefore, but only that it is not pretty. The de-
pendence of the roots of a polynomial on its coefficients, although of course
continuous, is computationally very unstable: Wilkinson (1959) notes, for in-
stance, that if we perturb just one of the coefficients of the polynomial

(x + 1)(x + 2)(x + 3) . . . (x + 20)

by 2−23 we obtain a polynomial with only 10 real roots whose other 10 roots
all have imaginary parts between 0.8 and 3. So although we could turn Can-
tor’s procedure into an algorithm to calculate a transcendental number in
decimal notation to any required degree of accuracy, some care is required
to ensure that it is not too demanding computationally (see Davenport, Siret
and Tournier 1993, §3.2.1). It turns out, in fact, that there is a reasonable
algorithm of complexity O(n2 log2 n log log n) (Gray 1994), but plainly if what
we want is a transcendental number expressed in decimal notation, Liouville’s
method is much simpler: putting k = 10 gives us, without doing any compu-
tational work, the explicit example

∞∑
n=1

1
10n!

= 0.110 001 000 . . .

(known as Liouville’s number). It is worth stressing, though, that the compu-
tational simplicity of a method is highly sensitive to the notation used: if we
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expressed Liouville’s number to a base other than 10, for instance, its apparent
simplicity would evaporate.
What distinguishes these different examples of transcendental numbers is

thus not a matter of explicitness. They may, however, differ in regard to how
natural they are, or how genuinely mathematical. These are distinct (though
related) criteria for assessing examples, the first fairly precise, the second less
so. An example is natural if it is independent of any arbitrary choice, such as a
choice of representational scheme or of coding. Both Liouville’s number and
Cantor’s transcendental numbers are on this criterion unnatural — indeed by
varying the enumeration of the algebraic numbers that is diagonalized, Can-
tor’s method can be made to produce any transcendental number whatever
(Gray 1994) — whereas e, π and 2

√
2 are natural, since no arbitrary choices

are involved in their definitions. An example counts as genuinely mathematical,
on the other hand, if, roughly, its interest to mathematicians extends beyond
the mere fact that it is an example. On this criterion e and π are plainly genu-
ine by any lights, but what to say about 2

√
2 is somewhat less clear, and it

takes a certain sort of number theorist to find Liouville’s number genuinely
mathematical.
What counts as genuine, in the sense in which we are now using the word, is

evidently to some extent a psychological matter and cannot be given a precise
definition. Indeed the scope of the term has no doubt varied as the interests of
mathematicians have varied. Note that genuinely mathematical examples are
very often natural, since the very arbitrariness of an unnatural example counts
against its mathematical interest, but the linkage is not exceptionless, since a
scheme of representation may itself become significant through long usage
and utility. Most laymen (though few professional mathematicians) treat the
decimal representation of numbers, for instance, as sufficiently central to their
conception of them for examples dependent on that scheme to seem genuinely
mathematical to them. (Hence, perhaps, the greater interest taken by laymen
in such questions as whether the various digits occur with equal frequencies in
the decimal expansion of π.)

8.7 Archimedean ordered fields

Suppose that F is an ordered field. The intersection of all the subfields of
F (i.e. the subsets that are ordered fields with respect to the operations they
inherit as subsets of F ) is itself an ordered field, called the prime subfield of
F and denoted F ′. It is not hard to show that F ′ is always isomorphic to
Q. Moreover, the prime subfield of Q is just Q itself, so we may think of
Q as being the minimum ordered field: every ordered field contains a copy of
it. At the other extreme, however, there are in the corresponding sense no
maximal ordered fields: ordered fields can be constructed of arbitrarily large
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cardinality. (This is a consequence of the fact that the notion of an ordered
field can be given a first-order axiomatization.) In order to obtain maximality
we need to add a further constraint known as Archimedes’ property.

Definition. An ordered field F is archimedean if its prime subfield is un-
bounded in F .

Trivially Q is archimedean, since its prime subfield is itself. Moreover, the
natural numbers are not bounded above in Q, so an ordered field F is
archimedean iff for each x ∈ F we have

x < 1F + 1F + · · · + 1F︸ ︷︷ ︸
n terms

for some natural number n. An element of F is said to be infinitely large if
its absolute value is greater than every element of the prime subfield, and
infinitesimal if its absolute value is smaller than every positive element of the
prime subfield. So saying that F is archimedean is equivalent to saying that
it contains no infinitely large elements, or (since x is infinitely large iff 1/x is
infinitesimal) that it contains no non-zero infinitesimals.
As an example consider the set Q(ε) of rational functions in the indeterm-

inate ε with rational coefficients, i.e. functions of the form

f (ε) = anε
n + an−1εn−1 + · · · + a0

bmεm + am−1εm−1 + · · · + b0
,

where all the coefficients a0, a1, . . . , an and b0, b1, . . . , bm are rational num-
bers. These functions can be added and multiplied in the usual way, and we
can order them by stipulating that the function is to count as positive if an

and bm have the same sign (both positive or both negative). It is easy to check
that with these definitions Q(ε) becomes an ordered field. However, for any
rational a we have a − ε > 0, i.e. a > ε, and so ε is an infinitesimal. Thus the
fieldQ(ε) is non-archimedean.

(8.7.1) Lemma. Any complete ordered field is archimedean.

Proof . Suppose that F is a complete ordered field but F ′ is bounded in F , and
let a = sup F ′. Now a −1 < a, and so a −1 is not an upper bound for F ′; i.e.
there exists r ∈ F ′ such that a −1 < r . But then a < r+1 ∈ F ′, contradicting
the definition of a.

It follows from lemma 8.7.1 that the prime subfieldR′ ofR is isomorphic toQ.
The isomorphism is easy to give explicitly: a rational number m/n corresponds
to the real number mRn−1

R . It is customary to identify R
′ with Q, i.e. to make

no distinction between a rational number and the corresponding real number.
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(8.7.2) Lemma. An ordered field F is archimedean if and only if its prime
subfield F ′ is dense in F .

Necessity. If F is archimedean and x < y in F , then there exists s ∈ F ′ such
that 1

y−x < s, i.e. ys−xs > 1. So there is an integer k such that xs < kF < ys,
i.e. x < kF s−1 < y.

Sufficiency. Trivial.

(8.7.3) Proposition. The ordered set (R,�) is isomorphic to (R,�).

Proof . The prime subfield of R is dense [lemma 8.7.2] and, since it is iso-
morphic to Q, it is also countable [proposition 8.3.2]. Moreover, as an
ordered set (R,�) is complete by definition. Hence it is a continuum and
it follows that it is isomorphic to (R,�).

Recall that R and R were both defined by arbitrary conventions: this propos-
ition shows that we could have chosen them to be the same set.

(8.7.4) Proposition. The ordered set (R�Q,�) is isomorphic to the Baire
line (ωωωωωωωω,�).

Proof . Immediate [corollary 7.5.2].

In fact, an isomorphism betweenR�Q and ωωωωωωωω can be defined explicitly. The
function which takes a sequence s in ωωωωωωωω to the continued fraction

1

1 + s(0) +
1

1 + s(1) +
1

1 + s(2) +
1
...

is strictly increasing and its range consists of the irrational numbers between
0 and 1. To obtain an isomorphism with the whole of R � Q, we have to
compose this with a strictly increasing rational function which maps the unit
interval {x : 0 < x < 1} onto the whole real line, for instance

x �→ 1− 2x
x(x − 1) .

The proof that this all works as advertised is in Truss 1997, ch. 10.
The isomorphism between the order structures of R�Q and ωωωωωωωω is very far

from unique, of course, but once we have chosen one, we can use it to encode
any two-person game by means of a set of irrational numbers. By this means
the study of such games is transformed into part of the theory of sets of real
numbers.



Archimedean ordered fields 143

(8.7.5) Theorem. An ordered field is archimedean if and only if it is iso-
morphic to a subfield of R.

Sufficiency. Clearly any subfield of an archimedean field is archimedean. R
is archimedean [lemma 8.7.1], hence so is any field isomorphic to one of its
subfields.

Necessity. Suppose that F is an archimedean ordered field. There is an iso-
morphism f between its prime subfield F ′ and the prime subfield of R (since
they are both isomorphic to Q). This isomorphism is evidently normal.
Moreover F ′ is dense in F since F is archimedean. So the isomorphism
extends to a normal function f from F into R [proposition 7.3.5]. It is easy
to check that f is an isomorphism of ordered fields.

One consequence of this theorem is that Archimedes’ principle cannot be
expressed in the first-order language of ordered fields (since there is an upper
bound to the cardinalities of its models). Another is that our construction in
theorem 8.4.1 would not have worked if the ordered field we started from
had not been archimedean: however we try to extend the operations from
a non-archimedean ordered field to its order-completion, we shall inevitably
find that some of the ordered field properties fail.

(8.7.6) Corollary. Any complete ordered field is isomorphic to R.

Proof . Let F be a complete ordered field. Then F is archimedean and there-
fore embeddable in R. The image of this embedding is complete and dense
in R and must therefore be equal to R.

Theorem 8.7.5 also provides us with a characterization of the ordered field
of real numbers by a sort of maximality property: the real numbers are (up
to isomorphism) the only ordered field in which every archimedean ordered
field can be embedded.
In fact the whole of this theory can be generalized to the case of an ordered

group, i.e. an ordered set on which only an addition function is defined satisfy-
ing (A1)–(A4), (O) and (OA) above. An ordered group is said to be archimedean
if for all x, y > 0 there exists n such that

x + x + · · · + x︸ ︷︷ ︸
n terms

> y.

The only ordered group in which every archimedean ordered group can be
embedded is (up to isomorphism) the additive group of the real numbers (see
Warner 1968, §43). The significance of this is that it permits us to sidestep the
concerns we had at the end of the last chapter about treating lines in space and
time as continua. We can instead focus on convincing ourselves that points in
space or time can be added together in such a way as to form an archimedean
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ordered group. If we succeed in convincing ourselves of this, the maximality
condition can then be presented as a natural completion of the conception:
a line in space, even if it is not itself complete, will be embeddable in the
complete group of real numbers, bearing out Dedekind’s idea of ‘filling up its
gaps in thought and thus making it continuous’.

8.8 Non-standard ordered fields

Suppose now that we expand our first-order language so as to include a con-
stant for every real number and a relation symbol for every relation on R
that is definable in set theory: call this the extended language. It is an easy
consequence of the compactness theorem for first-order logic that the set of
sentences of this language that are true about the real numbers has other non-
isomorphic set-theoretic models. These other models are called non-standard
ordered fields.
As A. Robinson (1961) was the first to observe, this gives us an elegant new

method of proof: to prove that a sentence Φ in the extended language is true
about R, move to the non-standard field R∗ and prove that Φ is true there;
it follows that Φ is true in R too. The method is non-constructive since its
basis is model-theoretic: once we have a non-standard proof of Φ, we can
be confident that a standard proof exists, but there is no general method of
conversion, and the standard proof may make use of much higher levels in the
set-theoretic hierarchy than the non-standard one (Henson and Keisler 1986).
Non-standard analysis therefore conforms to a pattern according to which

an ideal theory (non-standard analysis) is superimposed on a real theory (the
conventional theory of the Weierstrassian continuum). No requirement is im-
posed that the entities apparently referred to in the ideal theory (the infinites-
imals) should be regarded as real objects. Their reliability is guaranteed rather
by a proof of conservativeness. And their utility arises because they sometimes
allow us to eliminate higher-order (hence abstract and therefore perhaps con-
ceptually difficult) objects from proofs, with the result that the non-standard
proofs may be easier for us humans to find and understand than the standard
ones; or perhaps the proofs using infinitesimals are much shorter. (This is not
a realization of Hilbert’s programme because the proof of conservativeness is
not only non-finitary but non-constructive: indeed it even makes essential use
of the axiom of choice.)
A non-standard field must contain the real numbers as a proper subfield

and hence is non-archimedean, but the converse need not hold: the non-
archimedean field Q(ε), for instance, is not non-standard because there are
first-order properties expressible in the extended language which distinguish
it from R.
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Proponents of non-standard analysis have amassed various quotations in
support of the notion that it realizes the intentions of those earlier analysts
who made use of the method of infinitesimals. Cauchy, for instance, thought
that this method

can andmust be used as a means of discovery or of proof . . . but infinitesimal quantities
should never, in my opinion, be admitted in the final equations, where their presence
would be without purpose or utility. (1844, p. 13)

And Leibniz, the originator of the method, said (in a letter to Varignon of
1702) that

if someone refuses to admit infinite and infinitesimal lines in a rigorous metaphysical
sense and as real things, he can still use them with confidence as ideal concepts which
shorten his reasoning, similar to what we call imaginary roots in ordinary algebra
(for example

√−2). . . . Infinites and infinitesimals are grounded in such a way that
everything in geometry, and even in nature, takes place as if they were perfect realities.
(Leibniz 1996, pp. 252–4)

Whatever Leibniz’s own views on the matter, however, it is clear that a fur-
ther argument would be needed to convince us to place the real/ideal split at
just this point. The analogy Leibniz drew with imaginary numbers is relev-
ant: despite the terminology, modern mathematicians do not regard imagin-
ary numbers as any less real than real numbers. Each of the extensions of the
number system that we have discussed in this chapter could be presented as a
means of adjoining ideal elements in order to solve a new class of equations:
we move from the natural numbers to the integers so as to be able to solve
x + n = m; we move to the rational numbers to solve j x + k = 0; we move to
the real numbers to solve f (x) = 0 for any continuous f that changes sign;
and we extend to the complex numbers to be able to solve p(x) = 0 for an
arbitrary polynomial. None of these extensions seems to have much reason
prima facie to be regarded as more ideal than any other.
But note that some of these extensions have a very particular sort of stabil-

ity. Consider the first of them as an instance. We wish to be able to solve the
equations x + n = m for m, n ∈ ωωωω, but within ωωωω we can do this only in the
case when m � n, so we extend to Z and can then do it without restriction.
But of course by extending our number system to Z we generate a whole new
class of equations of the same form as before but now with m and n ranging
over the whole of Z. The stability we have just alluded to consists in the fact
that we do not have to carry out a further extension to meet this point: Z
already contains solutions to all these new equations as well as to the ones it
was created to solve.
As we shall see, however, the extension from the standard to the non-

standard real numbers does not possess the same sort of stability. The limited
stability it does possess arises from a trade-off it attempts to exploit between
first- and second-order formulations of analysis. The elementary theory of the
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real numbers, let us recall, is the theory of real-closed fields. The algebraic
real numbers constitute a model of this theory. Within this model we can
develop a coherent account of the calculus of polynomials, but the study of
the phenomenon of differentiability in general is not available. For that to
be possible we find ourselves adding a second-order principle (in our case the
completeness axiom, although other, more limited principles might perhaps
suffice). We now add to our language constants for all the objects of this
second-order-specified domain and then restrict to the first-order fragment in
order to apply the compactness theorem and obtain a non-standard model. It
is evidently crucial to the success of this construction that Archimedes’ prin-
ciple should be irreducibly second-order, since it is this that the restriction to
the first-order fragment exploits so as to obtain a non-archimedean extension
of the real numbers that is nonetheless elementarily equivalent to it (i.e. shares
all its first-order properties).
Now it is clearly quite implausible to ascribe to Cauchy or Leibniz even

an inchoate understanding of a first-order transfer principle since, as we have
already noted, the distinction between first- and second-order properties was
made available only by the development of logic in the late 19th century, and
even then it did not straightaway seem especially important. Even now very
few mathematicians who are not logicians have any firm grip on which of the
concepts they make use of are first- and which second-order.
But even when this point is granted and non-standard analysis is treated

as no more than an allusive rational reconstruction of what the exponents of
the method of infinitesimals intended, it is in danger of obscuring important
insights. In particular, it is plain that many mathematicians who made use of
infinitesimals did not regard them as mere ideal elements. This is by no means
surprising: the pattern in mathematics has always been that elements which
start out as mere posits become accepted and end up being treated as real.
But if we take that course in this case and treat infinitesimals as real, we lose
even the limited stability we obtained above and have no reason not to posit a
new level of objects which are infinitesimal relative to the non-standard field.
(To be more precise, we add to our language a constant standing for each
non-standard number, and then apply the compactness theorem to obtain
a proper extension which has all the same first-order properties as the non-
standard field.)
We have evidently embarked now on a process which we can iterate in

much the same manner as we iterated the construction of the set-theoretic
hierarchy. If we do this, we arrive at a conception of the continuum which is
very different from, and far richer than, the Weierstrassian one. But adopt-
ing this conception would have radical consequences too for the set-theoretic
reduction we have been contemplating in this part of the book. For the pro-
posal now under consideration is that we should conceive of the continuum
as indefinitely divisible in much the same way as the hierarchy is indefinitely
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extensible, and it seems inevitable that if this idea is thought through it will
eventually lead us to abandon the idea that the continuum is a set of points at
all.

Notes

The set-theoretic construction of a complete ordered field which we have
sketched here is essentially due to Dedekind (1872). Any reader who wants all
the details will find them laid out in numerous textbooks: Landau’s Grundla-
gen der Analysis (1930) is my own particular favourite for nostalgic reasons, but
Henkin et al. 1962 is also commendably clear and detailed. Another con-
struction with an equally long history uses the quotient of the set of Cauchy
sequences of rational numbers by the relation which makes two sequences
equivalent if the difference between their terms tends to zero.
The development of real analysis on some variant of the assumption that

the real numbers form a complete ordered field can be found in numerous
places: many generations of British university students learnt the material
from Hardy 1910; among more recent texts my own favourite is Stromberg
1981.
We have mentioned only in passing the theory of real-closed fields, fields

elementarily equivalent to the real numbers, the study of which goes back
to Artin and Schreier (1927). For an exposition consult van der Waerden
1949, ch. 11. Tarski’s proof that the theory is axiomatizable proceeds by the
method of quantifier elimination and in fact yields a decision procedure for all
sentences of the language. The fruitfulness of these ideas is well described by
van den Dries (1988).
The theory of real-closed fields is closely related to that of Euclidean con-

structions, i.e. to the question of which geometrical constructions are possible
if we restrict ourselves to the Euclidean tools of straightedge and compasses.
The extraordinary hold this study has had on the imaginations of mathem-
aticians focused for many centuries on three problems in particular — squar-
ing the circle, duplicating the cube, and trisecting the angle. The first of
these entered the language as a metaphor for any impossible task even be-
fore Lindemann’s (1882) proof that π is transcendental had shown it to be
insoluble.
The best introduction to non-standard analysis for those familiar with the

standard version remains that of its originator, A. Robinson (1974), but Hurd
and Loeb (1985) is also good. For a briefer account see Abian 1974. Tall
(1982) describes a simple axiomatization of non-standard analysis. Keisler
(1976) and Henle and Kleinberg (1980) give non-standard expositions of the
calculus ab initio which do not rely on familiarity with the standard treatments.
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Whether the standard Weierstrassian account correctly models the geomet-
rical continuum of intuition is a question that has been discussed by a number
of writers. There are some relevant remarks in Hobson 1921, vol. I, §§41–5 &
63.
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In this part of the book we have shown how the classical theories of numbers
and of functions of a real variable may be embedded in ZU. We can separate
out two parts to this process: first we identify the axioms of the theory; then
we construct a set-theoretic model of them. Any critique of the first part is
specific to the discipline in question and, although we have paused briefly to
discuss the issue in the case of the continuum, it is not strictly the concern of
the set theorist. What, then, of the second part? What does it establish?
It is at any rate uncontroversial that we have established a series of non-

negligible relative consistency results: if ZU is consistent, then so are Peano
arithmetic and the theory of complete ordered fields. And we should be care-
ful not to under-estimate now the genuine doubts some logicians in the 1920s
and 1930s harboured as to the consistency of theories such as these which we
do not now regard as being at all dubious.
On the other hand, even then no one thought set theory was more secure

than number theory, so the interest of these relative consistency results is not
that they increase our confidence in the weaker theories but rather that they
provide us with a way of calibrating their relative strength. Moreover, this
use of set theory to calibrate strength can be applied to individual theorems
and their proofs. As we have seen, an explicit example of this is Dirichlet’s
theorem, whose original proof, if transcribed into our system, would make
use of higher levels in the set-theoretic hierarchy than the elementary proof
discovered much later.
Notice, though, that there is an important issue of stability to be addressed

here. As we have mentioned several times already, the first stage of the model-
ling process, in which we specify the internal properties the set-theoretic model
is to have, falls far short of determining uniquely the outcome of the second.
Plainly any calibration of set-theoretic strength which turns out to be depend-
ent on parochial features of the chosen embedding is of no special significance.
What we want, therefore, is stability: perhaps it would be too much to expect a
measure of strength that is always completely independent of the embedding,
but we might at least hope for one that does not depend on it very much. Ex-
perience suggests, however, that even this is harder than it looks. The use our
embedding makes of the height of the hierarchy is, for the overwhelming ma-
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jority of mathematical applications, needlessly inefficient and could be much
reduced by clever use of coding. In such cases it is not always as obvious as
it should be what is the true measure of the abstractness of the mathematics
involved.
Another theme has recurred throughout the last century: the fact that the

theory of real numbers, and by extension most of the rest of mathematics, can
be interpreted in set theory has been taken to show that they can be thought of
in some significant sense as being part of set theory. The reasons that have led
people to think this can be grouped into two sorts, one (in my view) distinctly
more promising than the other.
The less promising argument takes as its ground a principle of ontological

economy (Occam’s razor): since the specification for the natural numbers
which we drew up in the first stage of the process listed enough of their prop-
erties to characterize them up to isomorphism, and since we have shown that
there is a set which has just these properties, it would multiply entities beyond
necessity to suppose that the natural numbers are anything other than the
members of the set-theoretic model. That this is a bad argument irrespect-
ive of the general merits of Occam’s razor was lucidly exposed by Benacerraf
(1965), who pointed out that the non-uniqueness of the set-theoretic model
fatally flaws the claim that its members are really the natural numbers: if no
one pure set has a privileged claim to that title, then none can have title at all.
I said, though, that there is a more promising argument. The historical

origins of this more promising argument lie in Frege’s failed logicism. Frege
attempted to embed arithmetic in a theory not of sets but of classes, and he
held that the properties of classes on which this embedding depended were
logical truths which we could see to be analytic in a suitably extended sense of
Kant’s term. Frege’s project, of course, was a failure, and hardly anyone now
claims that the whole of mathematics could be embedded in logic, especially
not on the rather narrow conception of logic lately in vogue. Nonetheless, the
possibility remains live that set theory, if not part of logic, might have a priv-
ileged epistemological status not shared by the theory of real numbers, say.
Set theory might — to put the point very loosely — be inherently more found-
ational than other branches of mathematics. If so, the embedding of the latter
in the former would give us the outline of an argument that our knowledge
of truths about number is in good standing just because our knowledge of set
theory is.
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Cardinals and Ordinals



This page intentionally left blank 



Introduction to Part III

We shall begin this part of the book with a theory of the size of infinite sets, a
theory developed almost in its entirety by Georg Cantor during the 1870s and
1880s. It is of course a precondition for the significance of this development
that one should accept the consistency of the notion of an infinite set, and this
acceptance was by no means universal in Cantor’s time: as we have already
noted, confusions between infinity and other sorts of limitlessness, which had
encouraged the belief that the notion of an infinite set is inconsistent, were
slow to disperse. But even when those concepts had been distinguished with
sufficient clarity, other conceptual resources were still needed. One key step
was the realization that the notion of equinumerosity provides us with a meas-
ure of size for infinite sets just as it does for finite ones, but more is required.
Suppose we say that A is more numerous than B if A contains B but is not equin-
umerous with it. If A and B are finite, then A is more numerous than B just in
case it properly contains B. For this reason we are inclined to apply a notion
of size according to which ‘is larger than’ means ‘is more numerous than’ or
‘properly contains’ indiscriminately. Gregory of Rimini, a 14th century Au-
gustinian monk, is sometimes credited with the realization that in dealing with
the infinite case we must distinguish the two notions carefully, since otherwise
we shall be perplexed by the fact that, for example, the set of natural numbers
properly contains the set of even numbers and yet is equinumerous with it.
The definition of equinumerosity gives rise to a coherent notion of size for in-
finite sets, therefore, but it is not yet clear that it is a fruitful one. For that to be
so, one further thing needs to be true: there have to be sets of different infinite
sizes. It is this that is quite unexpected, which is why Cantor’s discovery of the
existence of uncountable sets is pivotal.
Consider now the following problem. We are given a function f defined on

a partially ordered set with the property that f (x) � x for all x . For any a we
wish to find a � a such that a is a fixed point of f , i.e. f (a) = a. The problem
is simple enough to state, and in some cases at least it is simple to solve. The
work we did in §5.1, for instance, deals with the case where f (B) = B ∪ r[B]
for every subset B of the domain of some relation r , since if we let

A =
⋃
n∈ωωωω

f n(A),
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then A is r -closed; i.e.
f (A) = A. (1)

But the proof of the key identity (1) depended on special properties of the
function f in the case in question; it is not hard to come up with examples
where it fails. Suppose, for instance, that for any collection A of functions
from R to R we let f (A) be the set of functions which are pointwise limits of
functions in A. We saw earlier that the set C of continuous functions is not
closed under the formation of pointwise limits, which is to say that f (C) �= C.
It is a natural problem, first studied by Baire (1898), to determine the smallest
set of functions containing C that is closed under pointwise limits. If we mimic
the construction we have just used and let

f ω(A) =
⋃
n∈ωωωω

f n(A),

we might hope that the answer is f ω(C), but in fact it is not: the process of
forming pointwise limits leads to further functions not in this set.
What we have to do in order to solve our problem in this case, therefore, is

to generalize the procedure: we need to keep on iterating our application of f
until the process stabilizes. But how are we to express this idea? And how are
we to show that the process does stabilize eventually? What we need now are
symbols α to act in the exponent position of the notation f α(A) as indices of
the progress of the procedure even when it is iterated into the transfinite. The
symbols in question are called ordinal notations, and Cantor invented them to
deal with just such problems as this. But it quickly becomes clear that ordinals
can be used to index many other processes that occur in mathematics. For
example, we can use them to label the levels in the set-theoretic hierarchy, so
that Vα is the level indexed by the symbol α.



Chapter 9

Cardinals

In this chapter we shall study the concept of equinumerosity which we intro-
duced in §4.8 by means of the following definition.

Definition. Two sets are said to be equinumerous if there is a one-to-one
correspondence between them.

As we noted in the introduction, one of the biggest steps is merely to see that
this is a fruitful concept to study. This rather trite observation is well illustrated
by the case of Bolzano, who was perhaps the first to note the characterization
of the infinite which Dedekind took as his definition, and came tantalizingly
close to developing a theory of cardinals in his book Paradoxien des Unendlichen
(1851). He undoubtedly had an influence on Cantor, who mentioned the
book in glowing terms, but he failed to make much progress because he failed
to spot the key idea, which was left to Cantor to discover, that equinumerosity
can be used as the basis of a theory of size.

9.1 Definition of cardinals

In order to develop this theory of size, it will be helpful to associate with each
set an object called its cardinality, which we can look on as being (or at any rate
representing) its size. What we need is that the cardinalities of two sets should
be the same if and only if the sets are equinumerous. When the sets involved
are finite, the natural numbers can be used to achieve precisely this, as we
saw in §6.4. But what about the non-finite case? A naive conjecture might
be that all non-finite sets are equinumerous and that we therefore need only
one object (‘infinity’) to measure their size, but we have already seen that R is
uncountable, and another way of expressing this is to say that ωωωω and R are of
different cardinalities, so the theory we erect cannot be as straightforward as
the naive conjecture suggests.
From a formal point of view what we are looking for is a term ‘card(x)’ with

the following property (sometimes referred to in the literature, with dubious
historical justification, as Hume’s principle.

card(A) = card(B) iff A and B are equinumerous.
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There is, incidentally, an evident similarity between this and the abstraction
principle for classes that we shall consider in appendix B. And just as in the
case of classes, if all we do is to talk of cardinality as a way of expressing
relations of equinumerosity, what we do is innocent enough.
This is indeed a reasonable account of what we find in Cantor’s early work.

His first paper on equinumerosity (1874) does not mention the notion of car-
dinality at all, and when it does appear in his 1878 paper, it is only in com-
pound phrases, so that ‘A has the same cardinality as B’ is to be regarded
simply as another way of saying ‘A and B are equinumerous’. It seems not to
be until his 1883 book that he treats cardinals as distinct objects to be manip-
ulated in their own right.
If we wish to join Cantor in taking this step of regarding cardinals not

merely as an eliminable façon de parler but as objects in their own right, it is
at this point that a difference emerges with the case of classes, since there is
no purely logical bar to supposing that every cardinal is an object, as we can
show now by giving an explicit definition of sets that can serve as cardinals
within our theory. To do this, we use the cutting-down trick we introduced in
§4.4.

Definition. The set 〈X : X and A are equinumerous〉 is called the cardinal-
ity of A and denoted card(A). Anything that is the cardinality of some set is
called a cardinal number.

The point of this definition is solely that it delivers Hume’s principle as a
theorem.

(9.1.1) Proposition. card(A) = card(B) iff A and B are equinumerous.

Necessity. Every set A is equinumerous with itself and so card(A) �= Ø [pro-
position 4.4.1]. Consequently, if card(A) = card(B), there must exist a set X
which belongs to both card(A) and card(B), and hence is equinumerous with
both A and B: it follows that A and B must be equinumerous.

Sufficiency. If A and B are equinumerous, then the sets equinumerous with A
are precisely those equinumerous with B, and so card(A) = card(B).

We could, of course, have chosen other definitions that would have delivered
Hume’s principle. Which definition we have chosen will make a difference at
one point in the sequel (in the proof of proposition 9.2.5), where we need to
make use of the fact that the cardinal of a set, as we have defined it, occurs
no more than one level above the set in the hierarchy. Apart from this, how-
ever, all the properties of cardinals that we prove will be derived via Hume’s
principle and are therefore independent of the particular definition chosen.
It is worth emphasizing, though, that we are entitled to Hume’s principle

only because of the theoretical commitments we have already entered into: in
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particular, the justification we have given for it applies only if A and B are
sets, i.e. grounded collections. A different justification would be needed if we
wished to assert an analogue of proposition 9.1.1 for ungrounded collections
(see appendix A).

From now on we shall reserve the lower-case Fraktur letters a, b, c, etc. to
denote cardinal numbers.

9.2 The partial ordering

Definition. Suppose that a = card(A) and b = card(B). We write a � b if
there exists a one-to-one function from A to B, and we write a < b if a � b

and a �= b.

Note that this definition does not depend on the choice of the representative
sets A and B. For if card(A) = card(A′) and card(B) = card(B ′), then there
are one-to-one correspondences f between A and A′ and g between B and
B ′ [proposition 9.1.1]. So if i is a one-to-one function from A to B, then
g ◦ i ◦ f −1 is a one-to-one function from A′ to B ′; and if i ′ is a one-to-one
function from A′ to B ′, then g−1 ◦ i ′ ◦ f is a one-to-one function from A to B.

A
i−−−−→ B⏐⏐� f

⏐⏐�g

A′ i ′−−−−→ B ′

Having shown that the definition is correct, we next need to show that what it
defines is a partial ordering.

(9.2.1) Proposition. Suppose that a, b, c are cardinals.

(a) a � a;

(b) If a � b and b � c then a � c.

Proof . Trivial.

Proving antisymmetry takes a little more work, however.

(9.2.2) Lemma. If A ⊆ B ⊆ C and A is equinumerous with C , then B is
equinumerous with both A and C .

Proof . Suppose that f is a one-to-one correspondence from C to A. It is an
easy exercise to check that the function g from C to B given by

g(x) =
{

f (x) if x ∈ Cl f (C � B)

x if x ∈ C � Cl f (C � B)
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is a one-to-one correspondence too.

(9.2.3) Bernstein’s equinumerosity theorem. If there exist one-to-one
functions f from A to B and g from B to A, then there exists a one-to-one
correspondence between A and B.

Proof . g[ f [A]] ⊆ g[B] ⊆ A and g ◦ f is a one-to-one correspondence
between A and g[ f [A]]. So there exists a one-to-one correspondence h
between A and g[B] [lemma 9.2.2]. But g−1 is evidently a one-to-one cor-
respondence between g[B] and B. So g−1 ◦ h is a one-to-one correspondence
between A and B as required.

(9.2.4) Corollary. If a and b are cardinals such that a � b and b � a, then
a = b.

Proof . This is just a re-wording of Bernstein’s equinumerosity theorem.

Note that we have not claimed � is a total ordering, i.e. any two cardinals
are comparable: the reason for the omission is that this claim is not provable
from the axioms now at our disposal; in fact we will show in §15.4 that it is
equivalent to the axiom of choice.

(9.2.5) Proposition. IfΦ is any formula, the set B = {a :Φ(a)} exists iff there
is a cardinal c such that a � c whenever Φ(a).

Necessity. Suppose that B is a set and let c = card(V(B)). If a ∈ B, then for
any A ∈ a we have A ⊆ V(B), so that a = card(A) � card(V(B)) = c as
required.

Sufficiency. Suppose that a � c whenever Φ(a), and let C be any set such that
card(C) = c. Then

Φ(a) ⇒ a � c

⇒ a = card(X) for some X ∈ P(C)

⇒ a ⊆ V(P(C)),

and so B is a set.

(9.2.6) Theorem (Cantor 1892). If A is a set, there are one-to-one func-
tions from A into P(A), but there are no functions from A onto P(A).

Proof . The function from A to P(A) given by x �→ {x} is clearly one-to-
one. For each function f from A to P(A) let Bf = {x ∈ A : x /∈ f (x)}. If
Bf = f (y), then

y ∈ Bf ⇔ y /∈ f (y) ⇔ y /∈ Bf ,

which is absurd. So Bf is a subset of A that is not in the image of f . It follows
that there cannot be a function from A onto P(A).
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This proof of Cantor’s theorem is evidently similar in structure to the proof
that R is uncountable. In particular, it exhibits the same impredicativity: the
set Bf is defined in terms of the function f , even though f lies several levels
higher in the hierarchy than Bf .

(9.2.7)Corollary. For every cardinal a there is a cardinal a′ such that a < a′.

Proof . It follows from Cantor’s theorem that card(A) < card(P(A)) for any
set A.

We said above that � partially orders any set of cardinals, not that it partially
orders the set of cardinals. What is wrong with the latter way of speaking is
simply that the cardinals do not form a set.

(9.2.8) Proposition. The set of all cardinals does not exist.

Proof . If there were a set of all cardinals, it would have a largest element
[proposition 9.2.5], contradicting the corollary to Cantor’s theorem we have
just noted.

If we were still in the grip of the idea that every property is collectivizing, this
proposition would of course have just as much right as Russell’s to be treated
as a paradox, and it is of some historical significance in that role.

Exercises

1. Show that a � b ⇒ V(a) ⊆ V(b).

2. Write out the details of the proof of lemma 9.2.2.

9.3 Finite and infinite

We have already defined what it means for a set to be finite, infinite or count-
able. By a slight abuse of language we say that a cardinal a is finite [resp.
infinite, countable] if it is the cardinal of a finite [resp. infinite, countable]
set.1 In order to explain how these concepts fit into the theory of cardinals, we
need to introduce a notation for the cardinal of the set of natural numbers.

Definition. ℵ0 = card(ωωωω).

(9.3.1) Theorem. A set A is countable iff card(A) � ℵ0.
1The reason this is an abuse of language is that a is itself a set and hence we have already
defined what it means for it to be finite, etc. If there happen to be infinitely many individuals,
finite cardinals will in fact be infinite sets.
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Necessity. Suppose that A is countable. If A is empty, then trivially card(A) �
ℵ0. If it is not empty, then there is an onto function f from ωωωω to A. For each
x ∈ A the set of natural numbers mapped to x by f is therefore non-empty
and has a least element g(x). The function g from A to ωωωω thus defined is
evidently one-to-one. Hence card(A) � ℵ0.
Sufficiency. Suppose that card(A) � ℵ0. If A is empty, then it is certainly
countable. So suppose not, and choose an element a ∈ A. Now there is a
one-to-one function g from A into ωωωω. If n ∈ g[A], let f (n) be the unique
x ∈ A such that g(x) = n; and if n ∈ ωωωω � g[A], let f (n) = a. This evidently
defines a function f from ωωωω onto A, and so A is countable in this case too.

(9.3.2) Theorem. A set A is finite iff card(A) < ℵ0.
Necessity. Suppose that A is finite. So A has n elements for some n ∈ ωωωω. Now
n ⊆ ωωωω, so that obviously card(A) � ℵ0. But if card(A) = ℵ0, then ωωωω is finite
and therefore has a greatest element, which is absurd. So card(A) < ℵ0 as
required.

Sufficiency. Suppose that card(A) < ℵ0 but A is not finite. Note first that A
is non-empty and countable [theorem 9.3.1] and so there exists a sequence
x0, x1, x2, . . . which enumerates all the elements of A. It is clear that if we can
define a one-to-one function g from ωωωω to A we shall have the contradiction we
require, since then card(A) � ℵ0. We do this by recursion. If g(m) has been
defined for m < n, then A � g[n] is not empty since A is not finite, and so we
can let g(n) be the element xr of A � g[n] of least possible index r . It is clear
that the function g from ωωωω to A thus defined is one-to-one.

(9.3.3) Theorem. A set A is infinite iff card(A) � ℵ0.
Necessity. Suppose that A is infinite. So there is a one-to-one function f from
A to A such that there exists a ∈ A � f [A]. We shall show that the function
g from ωωωω to A defined by g(0) = a and g(n + 1) = f (g(n)) is one-to-one.
For if not, then there exist m, n ∈ ωωωω such that m < n but g(m) = g(n).
Moreover, we can choose m minimal subject to this property. Now n > 0 and
so n = n0 + 1 for some n0 ∈ ωωωω. There are two cases to consider, depending
on whether m = 0 or m > 0. If m = 0, then

a = g(0) = g(n) = g(n0 + 1) = f (g(n0)),

and so a ∈ f [A]. Contradiction. If m > 0, on the other hand, then m =
m0 + 1 for some m0 ∈ ωωωω. Hence

f (g(m0)) = g(m0 + 1) = g(m) = g(n) = g(n0 + 1) = f (g(n)),

and so g(m) = g(n) since g is one-to-one. Moreover, m0 < n0. This contra-
dicts the minimality of m.
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Sufficiency. Suppose that card(A) � ℵ0. So there is a one-to-one function g
from ωωωω to A. We can define a function f from A to itself by letting

f (x) =
{

g(g−1(x) + 1) if x ∈ g[ωωωω]
x otherwise.

This is clearly one-to-one, but it is not onto, since g(0) ∈ A � f [A].

(9.3.4) Corollary. These three assertions are equivalent:

(i) card(A) = ℵ0;
(ii) A is countably infinite;

(iii) A is countable and not finite.

Proof . Immediate.

(9.3.5) Corollary. A is uncountably infinite iff card(A) > ℵ0.
Proof . A is uncountably infinite iff card(A) �� ℵ0 and card(A) � ℵ0 [theor-
ems 9.3.1 and 9.3.3] iff card(A) > ℵ0.

Exercise

Let f be a function from A to itself.
(a) If A is finite, show that f is one-to-one iff it is onto.
(b) If there exists an element a ∈ f [A] such that A = Cl f (a), show that f is a one-

to-one correspondence between A and itself. [First use the simple recursion principle
to show that A is finite.]

9.4 The axiom of countable choice

We have already shown [corollary 6.4.2] that no set can be both finite and
infinite. But is every set one or the other? The axioms we have stated so far
are not sufficient to settle this question (Cohen 1966): what we need if we are
to derive an affirmative answer is the following extra set-theoretic assumption.

Axiom of countable choice. For every sequence (An) of non-empty sets there
exists a sequence (xn) such that xn ∈ An for all n ∈ ωωωω.

We call this an ‘axiom’ in deference to tradition, but we shall not treat it as
such: we shall not, that is to say, add it to our default theory. Instead we shall
state it explicitly as an assumption in any theorem that depends on it.

(9.4.1) Theorem. It follows from the axiom of countable choice that every
set is either finite or infinite.
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Proof . Suppose that A is a set which is not finite. Then for each n ∈ ωωωω there
are n-element subsets of A [proposition 6.4.4]. So by the axiom of countable
choice there is a sequence (An)n∈ωωωω such that An is an n-element subset of A for
each n ∈ ωωωω. Now the number of elements in A2n is 2n , whereas the number in⋃

r<n A2r is �
∑

r<n 2
r = 2n − 1 < 2n , and so it follows that the subset

Bn = A2n �
⋃
r<n

A2r

of A is non-empty for each n. Hence (by the axiom of countable choice again)
there is a function g from ωωωω to A such that g(n) ∈ Bn for each n. This func-
tion is one-to-one since the Bn are pairwise disjoint. Therefore A is infinite
[theorem 9.3.3].

Otherwise put, the axiom of countable choice implies that every cardinal is
comparable with ℵ0.
(9.4.2) Theorem. It follows from the axiom of countable choice that if (An)
is a sequence of countable sets, then

⋃
n∈ωωωω An is also a countable set.

Proof . Let us suppose for simplicity that each of the countable sets An is non-
empty. So for each n ∈ ωωωω the set of functions from ωωωω onto An is non-empty.
It follows from the axiom of countable choice that there is a sequence ( fn)
such that fn is a function from ωωωω onto An for each n. So (m, n) �→ fn(m)
is a function from ωωωω × ωωωω onto

⋃
n∈ωωωω An . If we compose this with a one-to-

one correspondence between ωωωω and ωωωω × ωωωω, we obtain a function from ωωωω onto⋃{An : n ∈ ωωωω} as required.
The axiom of countable choice is used quite frequently to prove results in
the theory of real numbers. For instance, it is one of the central notions of
the general theory of integration that a set of real numbers is null if it can be
covered by a sequence of intervals of arbitrarily small total length (where the
length l(I ) of a bounded interval I is defined in the obvious manner as the
difference in value between its endpoints). Let us try to prove that if (Cn) is
a sequence of null sets,

⋃
n∈ωωωω Cn is also null. To do this, take any ε > 0 and

cover each Cn by a sequence of intervals Inm such that
∑∞

m=0 l(Inm) < ε/2n+1.
(This is possible sinceCn is by hypothesis a null set.) Then the double sequence
(Inm) of intervals evidently covers

⋃
n∈ωωωω Cn , and its total length is

∞∑
n=0

∞∑
m=0

l(Inm) <

∞∑
n=0

ε

2n+1
= ε.

This shows that we can cover
⋃

n∈ωωωω Cn by intervals of arbitrarily small total
length, and hence that it is null. But embedded in the proof we have just
given is an appeal to the axiom of countable choice: for each n ∈ ωωωω we have



The axiom of countable choice 163

to choose a sequence (Inm)m∈ωωωω of intervals covering Cn from among the many
such sequences available, and yet we have not specified how the choice is to
be made.
The sort of case that occurs most frequently in analysis may be expressed

abstractly as follows. We have a theorem of the form

(∀n ∈ ωωωω)(∃x ∈ R)Φ(n, x),

and wish to obtain a sequence (xn) in R such that (∀n ∈ ωωωω)Φ(n, xn). This
is trivially licensed by the axiom of countable choice: the sets An =
{x ∈ R :Φ(n, x)} are non-empty by hypothesis, and so the axiom ensures the
existence of a sequence (xn) in R such that for each n we have xn ∈ An , i.e.
Φ(n, xn). But in textbooks on the calculus such uses of the axiom are rarely sig-
nalled explicitly. The one we have just described might be introduced simply
by saying,

For each natural number n let xn be a real number xn such that
Φ(n, xn).

Indeed this tendency to downplay uses of the axiom of countable choice mim-
ics the historical situation. For an explicit example of this consider the fol-
lowing argument, which may well have been the first use of the axiom in
mathematics when it was published by Heine (1872) — with an ascription to
Cantor.

(9.4.3) Proposition. The axiom of countable choice entails that any function
from R to R which is sequentially continuous at a point is also continuous at
it.

Proof . Suppose that f is not continuous at a. So there is an interval J con-
taining f (a) such that for every interval I containing a we have f [I ] � J .
In particular, therefore, for each n ∈ ωωωω we can (using the axiom of countable
choice) choose xn between a − 1

n and a + 1
n such that f (xn) /∈ J . Then we can

conclude that the sequence (xn) tends to a but ( f (xn)) does not converge to
f (a).

Heine expresses the conclusion of the proposition unconditionally, and in-
deed the text makes no special comment whatever on the step in the proof
which requires the axiom of countable choice for its justification. Between
this publication and the end of the century the axiom was used implicitly on
many occasions by Cantor, Dedekind, Borel, Baire and others. At first only
Peano and his colleagues in Turin seem to have commented explicitly on its
use: Peano (1890, p. 210) claimed that ‘one cannot apply an infinite number
of times an arbitrary law according to which a class a is made to correspond to
an individual of that class’; and Bettazzi (1896, p. 512) criticized Dedekind’s
proof that every set is either finite or infinite on the ground that
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one must choose an object (correspondence) arbitrarily in each of the infinite sets,
which does not seem rigorous; unless one wishes to accept as a postulate that such a
choice can be carried out — something, however, which seems ill-advised to me.

Sometimes, though, it is possible to avoid using the axiom of count-
able choice by giving an explicit rule for defining the elements of the se-
quence in question. For example, if we have a theorem of the form
(∀n ∈ ωωωω)(∃x ∈ Q)Φ(n, x), we can without using the axiom of countable
choice define a sequence (xn) in Q such that Φ(n, xn) for all n ∈ ωωωω. To do
this, we note thatQ is countable (unlike R) and so there exists a sequence (ar )
whose image is Q; if we let rn be the least element of the set {r ∈ ωωωω :Φ(n, ar )}
(which is non-empty by hypothesis) and let xn = arn for each n ∈ ωωωω, we obtain
a sequence (xn) with the property we require. A good example of this way of
avoiding countable choice is the global version of the result about continuity
which we proved a moment ago.

(9.4.4) Proposition. A function from R to R which is sequentially continu-
ous everywhere is also continuous everywhere.

Proof . If f is sequentially continuous, then in order to prove that f [I ] ⊆ J it
is enough to prove f [I ∩Q] ⊆ J . So we can avoid the appeal to the axiom
of countable choice in our earlier proof by choosing rational numbers at each
stage.

But it is not possible to avoid the axiom of countable choice in all cases, at
least if the default theory is like the one we are using in this book: the axiom
of countable choice cannot be proved in ZU (Fraenkel 1922a) or even in Z
(Cohen 1963). The extent to which classical analysis depends on ineliminable
uses of the axiom has been studied extensively and is now well understood:
it has been shown, for example, that in the absence of the axiom not only
may there be subsets of R which are neither finite nor infinite (Cohen 1966,
p. 138), but there is even a model in which the continuum is a countable union
of countable sets (Feferman and Levy 1963). It follows from this, moreover,
that we cannot hope to eliminate the appeal to the axiom of countable choice
from the proof we gave earlier that a countable union of null sets is null, since
otherwise the model just mentioned would be one in which the whole real line
is null, which is absurd.
A liberal constructivist might well think that the axiom of countable choice

has a certain plausibility, since it appears to be only medically, rather than
logically, impossible to make an infinite number of choices in a finite time
by the device of performing each choice in half the time it took to perform
the previous one (cf. Russell 1936, pp. 143–4). And, as we saw in part I, the
constructivist already has to appeal to such supertasks to explain the existence
of sets at infinite levels in the hierarchy: there seems to be no new reason to
baulk at them now.
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But to the platonist such thought experiments ought presumably to be com-
pletely beside the point: for him the issue concerns not what any being, how-
ever idealized, can do, but which sets exist. Moreover, nothing we have said
so far has encouraged the idea that he should regard the distinction between
countable and uncountable as an especially significant caesura. So it is at any
rate hard to see what reason he might have to believe the axiom of countable
choice that is not equally a reason to believe the unrestricted axiom of choice
that we shall study in chapter 15.

Exercises

1. Assuming the axiom of countable choice, prove that for every cardinal a > ℵ0
there exists exactly one b such that a = ℵ0 + b.

2. Prove without using the axiom of countable choice that R is not a countable union
of finite sets.

Notes

The theory of cardinals really originates with Cantor, although the formal de-
velopment we have given here deviates considerably from what is to be found
in his Beiträge (1895; 1897), mainly because Cantor did not doubt the axiom
of choice and therefore saw no reason to develop the theory in such a way as
to isolate the points at which he appealed to it. The history of Cantor’s devel-
opment of his theory of cardinality is well described by Dauben (1990). A. W.
Moore (1990) illuminates the earlier background. What is striking about this
development is how few precursors Cantor had: only Bolzano (1851) came
anywhere close to a coherent theory.
Cantor conjectured a special case of Bernstein’s equinumerosity theorem in

his 1883 book and the general result in an 1895 paper, but it was his pupil,
Felix Bernstein, who proved it — in 1897 when he was barely 19. A slightly
simplified version of Bernstein’s proof was then published by Borel in an ap-
pendix to his Leçons sur la théorie des fonctions (1898). The proof we have given
here, which uses Dedekind’s theory of chains to avoid mention of the natural
numbers, was found by Dedekind following a conversation with Bernstein2

in 1897 and communicated to Cantor by letter in 1899. However, Dede-
kind never published this proof, and it was rediscovered by Zermelo in 1906
(see Poincaré 1906; Peano 1906; Zermelo 1908b). In Britain and Germany
the result is usually called the ‘Schröder/Bernstein theorem’ because of an
attempted proof by Schröder (1898), the fallacy in which was not exposed in
print until Korselt (1911), although it had in fact been pointed out to Schröder

2A manuscript copy of a very similar proof, apparently dated 11 July 1887, was found among
Dedekind’s papers (Dedekind 1932, vol. IV, pp. 447–8).
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and acknowledged by him in 1902. According to another tradition, common
in France and Italy, the result is known as the ‘Cantor/Bernstein theorem’,
perhaps in recognition of Cantor’s statement of it in 1895 or possibly on ac-
count of an ambiguous footnote in Borel’s Leçons (1898, p. 105n.). In any event
it seems likely that Cantor never had a direct proof but could only deduce the
theorem from a formulation of the cardinal comparability principle (discussed
in §15.4), a result for which in turn he never obtained a convincing proof, as
a letter he wrote in 1903 (Cantor 1991, p. 434) confirms.



Chapter 10

Basic cardinal arithmetic

The business of this chapter will be to study the elementary consequences of
the following definitions.

Definition. If a = card(A) and b = card(B), we let

a + b = card(A � B)

ab = card(A × B)

ab = card(BA).

Strictly speaking, of course, we need to check that these definitions do not
depend on our choice of the representative sets A and B, i.e. that if A is equi-
numerous with A′ and B with B ′, then A�B, A×B and BA are equinumerous
with A′ � B ′, A′ × B ′ and B ′A′ respectively. However, the proofs of these facts
are all straightforward, and we therefore omit them.
The definitions are formally consistent, then, but this does not explain why

we have chosen them. A partial explanation will be supplied in the next
section, where we shall show that for finite cardinals they simply reproduce
the everyday operations of addition, multiplication and exponentiation with
which we are already familiar. But this is only a partial explanation: other
definitions are no doubt possible which coincide with these ones for finite car-
dinals but come apart from them in the infinite case. The fruitfulness of the
definitions we have given is thus not something that can be judged straight-
away but emerges only once the theory to which they give rise has been de-
veloped.

10.1 Finite cardinals

Definition. For each n ∈ ωωωω we let |n| = card(n).

With this notation we can say that a set A has n elements iff card(A) = |n|.
(10.1.1) Proposition. m � n ⇔ |m| � |n|.
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Proof . If m � n, thenm ⊆ n and so |m| � |n|. If, on the other hand, |m| � |n|
but m > n, then there exists a one-to-one function from m to n: this function
restricts to a one-to-one but not onto function from n to n. Hence n is both
finite and infinite, contradicting corollary 6.4.2.

(10.1.2) Corollary. |m| = |n| ⇒ m = n.

Proof . Immediate [proposition 10.1.1].

(10.1.3) Proposition. If m, n ∈ ωωωω, then

|m + n| = |m| + |n|
|mn| = |m||n|
|mn| = |m||n|.

Proof . It is possible to show that the functions

(r, i) �→ im + r from m � n to {r ∈ ωωωω : r < m + n}
(r, s) �→ rn + s from m × n to {r ∈ ωωωω : r < mn}
(nr )r∈n �→ ∑

r∈n nr mr from nm to {r ∈ ωωωω : r < mn}
are all one-to-one correspondences. The result follows.

This shows that the function from ωωωω onto the set of finite cardinals given by
n �→ |n| preserves both the ordering [proposition 10.1.1] and the arithmetical
structure [proposition 10.1.3] of the natural numbers. So it seems reasonable
to suppose — especially since our choice of sets to call natural numbers was
arbitrary in the first place — that little confusion will arise if we denote the
cardinal |n| by the symbol n and thus abandon the distinction between a nat-
ural number and the corresponding finite cardinal; we shall adopt this policy
from now on whenever it is convenient (which will be almost always).

Exercise

Show that a cardinal a is not finite iff a > n for all n ∈ ωωωω.

10.2 Cardinal arithmetic

Now that we are regarding the natural numbers as finite cardinals, it is nat-
ural to ask which of the familiar rules of the arithmetic of natural numbers
generalize to the infinite case. An answer to this question is provided by the
following proposition.

(10.2.1) Proposition. Suppose that a, b, c are cardinals.
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(a) a + (b + c) = (a + b) + c.

(b) a + b = b + a.

(c) a + 0 = a.

(d) a � b ⇔ (∃d)(a = b + d).

(e) If b � c, then a + b � a + c.

(f) (ab)c = a(bc).

(g) ab = ba.

(h) a0 = 0a, a1 = a, a2 = a + a.

(i) a(b + c) = ab + ac.

(j) b � c ⇒ ab � ac.

(k) (ab)c = abc.

(l) (ab)c = acbc.

(m) ab+c = abac.

(n) a0 = 1, a1 = a, a2 = aa.

(o) If a � b and c � d, then ac � bd.

Proof . The proofs are all straightforward. By way of illustration let us prove
part (k). It will be enough to show that if A, B, C are sets, then C(BA) is
equinumerous with C×BA: this is achieved by observing that if we take each
function f ∈ C(BA) to the function in C×BA given by (c, b) �→ f (c)(b), then
we obtain a one-to-one correspondence; its inverse takes each function g ∈
C×BA to the function in C(BA) given by c �→ (b �→ g(c, b)).

(10.2.2) Lemma. card(P(A)) = 2card(A).

Proof . We define the characteristic function cB of a subset B of A by

cB(x) =
{
1 if x ∈ B
0 otherwise.

It is evident that the function B �→ cB is a one-to-one correspondence between
P(A) and A{0, 1}; the inverse function is given by f �→ f −1[1]. Since the
cardinality of A{0, 1} is 2card(A) by definition, the result follows.

(10.2.3) Proposition. a < 2a.

Proof . By lemma 10.2.2 this is no more than a translation into the language
of cardinals of Cantor’s theorem 9.2.6.
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10.3 Infinite cardinals

What the results of the last section show is that many of the familiar properties
of the natural numbers generalize straightforwardly to the non-finite case. But
the following proposition shows straightaway that there are some respects in
which the arithmetic of infinite cardinals differs markedly from that of the
natural numbers.

(10.3.1) Proposition. a is infinite iff a = a + 1.

Necessity. Suppose that a = card(A). If A is infinite, it is equinumerous with a
proper subset A′, so that A � A′ �= Ø, i.e. card(A � A′) � 1; therefore

a = card(A) = card(A′) + card(A � A′) � a + 1 � a,

and hence a = a + 1.

Sufficiency. If a = a + 1, there are sets A, A′ and an element x not in A′ such
that a = card(A) = card(A′) and card(A) = card(A′ ∪ {x}). So A′ ∪ {x} is
equinumerous with its proper subset A′ and hence is infinite. But then A is
infinite too.

One immediate consequence of this is that we cannot define an operation of
subtraction for infinite cardinals, as we might otherwise be tempted to do, by
defining a − b to be the cardinal of A � B when card(A) = a, card(B) = b,
and B ⊆ A. What is wrong with this is that it fails the requirement for a good
definition of being independent of the choice of the representative sets A and
B. To see why, consider ℵ0 − ℵ0, i.e. the cardinal of A � B where A and
B are both countably infinite. If we let A = ωωωω and B = ωωωω, then of course
A � B = Ø and we get ℵ0 − ℵ0 = 0. But if B = ωωωω � {0}, then A � B = {0},
so that ℵ0 − ℵ0 = 1; whereas if B = ωωωω � {0, 1}, then A � B = {0, 1}, so
that ℵ0 − ℵ0 = 2; and so on. If B = {2n : n ∈ ωωωω}, on the other hand, then
A � B = {2n+1 : n ∈ ωωωω}, so that ℵ0−ℵ0 = ℵ0. In other words, ℵ0−ℵ0 could
be any number between 0 and ℵ0.
It does not follow from this that a − b is never definable by the means pro-

posed above: it is easy to show, for instance, that 2ℵ0−ℵ0 = 2ℵ0 . Nevertheless,
this example demonstrates vividly that we cannot expect the arithmetic of in-
finite cardinals to be just like that of finite ones. Another illustration of the
difference is supplied by the following proposition.

(10.3.2) Proposition. ℵ20 = ℵ0.
Proof . Immediate [proposition 6.5.1].

There are a great many cardinal identities which follow more or less straight-
forwardly from the properties we have listed. Here are three examples.
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(1) ℵ0 � 2ℵ0 � ℵ0ℵ0 = ℵ20 = ℵ0, and so 2ℵ0 = ℵ0.
(2) The identity ℵℵ0

0 = 2ℵ0 holds because

2ℵ0 � ℵℵ0
0 � (2ℵ0)ℵ0 = 2ℵ20 = 2ℵ0 .

(3) To show that ℵ02ℵ0 = 2ℵ0 , we have only to note that

2ℵ0 � ℵ02ℵ0 � (2ℵ0)2 = 22ℵ0 = 2ℵ0 .

(10.3.3) Proposition. a is infinite iff a + ℵ0 = a.

Proof . If a is infinite, then a � ℵ0 [theorem 9.3.3] and so there exists b such
that a = b + ℵ0 [proposition 10.2.1(d)], whence

a + ℵ0 = (b + ℵ0) + ℵ0
= b + (ℵ0 + ℵ0) [proposition 10.2.1(a)]
= b + 2ℵ0 [proposition 10.2.1(h)]
= b + ℵ0
= a.

And if conversely a + ℵ0 = a, then a � ℵ0 [proposition 10.2.1(d)] so that a is
infinite [theorem 9.3.3].

In chapter 15 we shall study the simplifying effect that assuming the axiom of
choice has on cardinal arithmetic. We have already come across one instance
in §9.4, where we showed that every cardinal is either finite or infinite, but only
on the assumption of the axiom of countable choice — a restricted version of
the axiom of choice. Quite often, though, results proved using the axiom of
choice have weaker variants that are provable without it but may in some
circumstances be as useful. For example, the identity ℵ02ℵ0 = 2ℵ0 , which we
proved earlier, is a particular case of the general identity ab = max(a, b), but
this is provable only if we assume the axiom of choice. Another example —
whose significance for the project of Principia Mathematica is nicely illuminated
by Boolos (1994) — is the following weakening of the result that every cardinal
is either finite or infinite.

(10.3.4) Proposition (Whitehead and Russell 1910–13). If a is any car-
dinal, either a is finite or 22

a
is infinite.

Proof . If card(A) = a and A is not finite, the sets Fn(A) are distinct, non-
empty subsets of P(A), i.e. n �→ Fn(A) is a one-to-one function from ωωωω into
P(P(A)), and so 22

a
is infinite.
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The results on cardinal arithmetic which we have established also make it
possible to calculate the cardinalities of a wide variety of sets. As an illustration
let us determine the cardinality of the set A of all equivalence relations on ωωωω.
The technique we shall use is, for reasons which will quickly become apparent,
often known as ‘squeezing’. Observe first that every equivalence relation on ωωωω
is a subset of ωωωω × ωωωω, and so

card(A) � card(P(ωωωω × ωωωω)) = 2ℵ20 = 2ℵ0 . (1)

Now consider the function f from P(ωωωω) to A which takes a set B ⊆ ωωωω to the
equivalence relation on ωωωω whose equivalence classes are B and the singletons
{n} for n ∈ ωωωω � B: this function is not one-to-one since it does not distinguish
between 1-element subsets of ωωωω; but the restriction f |P(ωωωω) � F1(ωωωω) is one-to-
one, and so

card(A) � card(P(ωωωω) � F1(ωωωω)).

Now card(F1(ωωωω)) = ℵ0, card(P(ωωωω)) = 2ℵ0 , and card(P(ωωωω) � F1(ωωωω)) � ℵ0.
So card(P(ωωωω) � F1(ωωωω)) = 2ℵ0 , and therefore

card(A) � 2ℵ0 (2)

It follows from (1) and (2) by Bernstein’s equinumerosity theorem 9.2.3 that
card(A) = 2ℵ0 .

Exercises

1. Prove proposition 10.3.1.

2. Suppose that a, b are cardinals.
(a) a � 2ℵ0 iff a + 2ℵ0 = a.
(b) If a � 2ℵ0 � b, then a + b = a.
(c) a = 2ℵ0 iff a � ℵ0 and a + ℵ0 = 2ℵ0 .
(d) If 2 � a � b = b2, then ab = 2b.

3. Show that the set B = {b : b2 = b} does not exist. [Hint. 2aℵ0 ∈ B for all a.]

4. Prove that if a is not finite, then 22
a � 2ℵ0 .

5. Find the cardinalities of the following sets:
(a) The set of subsets of ωωωω with more than one element;
(b) The set of infinite subsets of ωωωω;
(c) The set of permutations of ωωωω.

10.4 The power of the continuum

We have already shown (twice) that the continuum is uncountable. Now,
however, we can be more precise.
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(10.4.1) Proposition. card(R) = 2ℵ0 .

Proof . Note first that the function f from R to P(Q) given by f (a) = {x ∈
Q : x < a} is one-to-one sinceQ is dense in R, and so

card(R) � card(P(Q)) = 2card(Q) = 2ℵ0 .

Recall now from §8.5 that Cantor’s ternary set K is the subset of R consisting
of those numbers between 0 and 1 expressible by means of a ternary expan-
sion consisting only of 0s and 2s. So there is a one-to-one correspondence
between ωωωω{0, 2} and K , taking any sequence (sn) of 0s and 2s to the real num-
ber

∑
n∈ωωωω sn3−n−1, and hence

card(K ) = card(ωωωω{0, 2}) = 2ℵ0 .

Therefore card(R) � 2ℵ0 . It follows by Bernstein’s equinumerosity theorem
that card(R) = 2ℵ0 .

Because of proposition 10.4.1 the cardinal 2ℵ0 is often called the power of the
continuum (‘power’ here being an old synonym for ‘cardinality’): some authors
denote it c; others write �1.

(10.4.2) Corollary. card(Rn) = card(R) if n � 1.

Proof . card(Rn) = (2ℵ0)n = 2nℵ0 = 2ℵ0 = card(R).

This result so astonished Cantor when he first discovered it that he exclaimed
(in a letter to Dedekind of 1877), ‘Je le vois, mais je ne le crois pas.’
Various other collections may be shown to have the power of the con-

tinuum. As an example let us consider the collection of open subsets of R.
Each such set is expressible as a countable union of disjoint open intervals
[proposition 7.4.4] and hence may be coded by a pair of sequences of real
numbers representing the endpoints of these intervals. So the number of open
sets is no more than

card(ωωωωR× ωωωωR) = ((2ℵ0)ℵ0)2 = 22ℵ
2
0 = 2ℵ0 .

But there are plainly at least this many open subsets of the real line, and hence
by squeezing there are exactly this many.
It follows at once from this that the set of closed subsets of R also has the

power of the continuum, as does the set of perfect subsets. The setP(R) of all
subsets of R, by contrast, has the strictly larger cardinality 22

ℵ0 (= cc).
It is of some interest to extend proposition 10.4.1 to all the non-empty per-

fect sets. The idea of the proof is to generalize what we did before and show
that any perfect set has a subset isomorphic to Cantor’s ternary set.
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(10.4.3) Lemma. If P is a perfect subset of the real line and P is the set of
closed bounded subsets of P with infinitely many points of P in their interior,
there is a function which maps any member A of P to a pair consisting of two
disjoint members A0 and A1 of P whose lengths are less than half the length
of A.

Proof . Suppose that A ∈ P . There are infinitely many points of P in the
interior of A. If we let a0 and a1 be any two of these points and set ε =
1
3 |a1 − a0|, then the sets Ai = {x ∈ P : ai − ε � x � ai + ε} (i = 0, 1)
evidently have the required properties. However, nothing hinges on the exact
endpoints selected for the Ai ; we could easily arrange for the endpoints to be
rational if we wish. This has the advantage that we can stipulate in advance an
enumeration of the intervals with rational endpoints and require that A0 and
A1 should be chosen as early as possible in this enumeration, thus avoiding
appeal to any form of the axiom of choice in defining the function we want.

(10.4.4) Proposition. If B is any non-empty perfect subset of R, then
card(B) = 2ℵ0 .

Proof . The idea is to use the lemma to construct an isomorphic copy of Can-
tor’s ternary set. Start with any closed bounded subset A of P with infinitely
many points of P in its interior. If s is a finite string of 0s and 1s of length n,
let us write s�0 and s�1 for the strings of length n + 1 obtained by adding 0
and 1 respectively at the end of s. Then using the lemma we can recursively
associate a closed set As with every s in such a way that As�0 and As�1 are
both subsets of As of less than half the length. For every infinite sequence s in
ωωωω{0, 1} let f (s) be the unique element of P that belongs to

⋂
n∈ωωωω As|n. It is

clear that f is one-to-one, so its image is a subset of P with the power of the
continuum.

Notes

We are not finished with cardinal arithmetic yet: as we have already noted,
chapter 15 will indicate how it can be simplified by assuming further set-
theoretic axioms such as the axiom of choice or the generalized continuum
hypothesis. But even without the axiom of choice there is much more to be
said than there is space for here. Sierpinski 1965 remains the most compre-
hensive treatment, but Bachmann 1955 may also be consulted.



Chapter 11

Ordinals

The simple and general principles of induction are powerful tools for proving
things about the natural numbers: we intend now to investigate ways in which
they can be generalized to apply to a very much wider class of ordered sets
than the subsets of ωωωω. The basis of our study will be the observation that a
version of induction can be applied to any ordered set with a property we shall
call well-ordering. Our strategy will be to apply much the same techniques to
the study of isomorphism between well-ordered sets as we used in chapter 9 to
investigate equinumerosity between sets. Just as that work led to an arithmetic
of cardinals, what we shall do in this chapter will lead to an arithmetic of
ordinals.

11.1 Well-ordering

Definition. A relation r on a set A is said to be well-founded if every non-
empty subset of A has an r -minimal element.

This definition is designed to be just what is required to prove a generalization
of the general principle of induction.

(11.1.1) Proposition. If Φ is any formula and r is a well-founded relation on
a set A, then

(∀x ∈ A)((∀y r x)Φ(y) ⇒ Φ(x)) ⇒ (∀x ∈ A)Φ(x).

Proof . Let B = {x ∈ A :Φ(x)} and suppose, if possible, that B �= A. Then
A � B is a non-empty subset of A and hence by hypothesis has an r -minimal
element x . But then there is no y ∈ A � B such that y r x . So for all y ∈ A,
if y r x , then Φ(y). Hence by hypothesis Φ(x) and so x ∈ B. Contradiction.

(11.1.2) Proposition. r t is well-founded iff r is well-founded.

Necessity. This is obvious since any r t-minimal element of a set is also r -
minimal.
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Sufficiency. Suppose that r t is not well-founded. So there is a non-empty subset
B of A with no r t-minimal element, i.e. B ⊆ r t [B] = r[Clr(B)]. So

Clr(B) = B ∪ Clr(r[B])
= B ∪ [Clr (B)]

= r[Clr(B)].

It follows that r is not well-founded.

In this chapter we shall often use the notation

segA(a) = {x ∈ A : x < a}.
We may also write simply seg(a) if there seems to be no danger of misunder-
standing.

(11.1.3) Lemma. If (A,�) is a partially ordered set, then these three asser-
tions are equivalent:

(i) The strict partial ordering < is well-founded on A.

(ii) Every subset of A which has a strict upper bound in A has a least strict
upper bound in A.

(iii) If B ⊆ A and (∀a ∈ A)(segA(a) ⊆ B ⇒ a ∈ B), then B = A.

Proof . Exercise 1.

Definition. If (A,�) is a [partially] ordered set which satisfies the equivalent
conditions of lemma 11.1.3 above, then we say that � is a [partial] well-
ordering on A, that < is a strict [partial] well-ordering on A, and that (A,�)
is a [partially] well-ordered set.

A partially well-ordered set evidently cannot contain (the image of) a strictly
decreasing sequence. (See §14.1 for a discussion of the converse.) Any partially
ordered set in which every non-empty subset has a least (not just minimal)
element is totally (and hence well) ordered.
Obviously every subset of a [partially] well-ordered set is [partially] well-

ordered by the inherited ordering. In particular, the initial subset segA(a) is
[partially] well-ordered if A is.
Suppose that (A,�) is a well-ordered set. A has a least element ⊥ iff A is

non-empty. A need not have a greatest element: if a ∈ A, then either a is
the greatest element of A or there exist elements of A greater than a, in which
case the least of these is the unique successor of a, denoted a+. An element of
A � {⊥} need not be the successor of any other element of A: if it is not, it is
called a limit point of A; this is the case iff a = sup seg(a).
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The motivating example of a well-ordered set is (ωωωω,�): it has no limit
points and no greatest element. Every finite [partially] ordered set is [partially]
well-ordered [theorem 6.4.5]; indeed an ordered set is finite iff both it and its
opposite are well-ordered.

(11.1.4) Proposition. Every well-ordered subset of the real line is countable.

Proof . Suppose that A is a well-ordered subset of R and let (rn)n∈ωωωω be a se-
quence whose range is a dense subset of R. For each x in A let x+ be the least
element of A that is greater than x (or, if there are none, let it be any real
number greater than x ); and let g(x) be the element rn of least index such that
x < rn < x+. The function g from A to {rn : n ∈ ωωωω} thus defined is evidently
one-to-one, and so A is countable.

When we discussed the constructivist understanding of the process of set form-
ation, we noted the difficulty that this conception would apparently limit us
to finite sets. In order to liberate the constructivist from this limitation, we
examined the possibility of appealing to supertasks — processes carried out
repeatedly with increasing speed, so that an infinite number may be carried
out within a finite period of time. The proposition we have just proved shows,
however, that this method has a limit. This is because the tasks performed in
a supertask are well-ordered in time. As a result, if we assume that the order-
ing of time is correctly modelled as a continuum, we can conclude that any
supertask contains only countably many subtasks.

(11.1.5) Theorem. If (A,�) is a well-ordered set and f is a strictly increas-
ing function from A to itself, then x � f (x) for all x ∈ A.

Proof . Suppose not. So there exist elements x ∈ A such that x > f (x); let x0
be the least such x . Then

f (x0) � f ( f (x0)) < f (x0).

Contradiction.

(11.1.6) Corollary. If (A,�) is a well-ordered set and B ⊆ A, then these
three assertions are equivalent:

(i) B is a proper initial subset of A.

(ii) There exists an element a ∈ A such that B = segA(a).

(iii) B is an initial subset of A which is not isomorphic to A.

(i)⇒ (ii). If B is a proper initial subset of A, then A � B is non-empty and
therefore has a least element a; plainly B = segA(a).
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(ii)⇒ (iii). Suppose that B = segA(a). If there is an isomorphism f between
(A,�) and (B,�B), then f (a) � a [theorem 11.1.5] and so f (a) /∈ B, which
is absurd.

(iii)⇒ (i). Obvious.

(11.1.7) Corollary. Let (A,�) and (B,�) be well-ordered sets. If there is
an isomorphism from (A,�) to (B,�), then it is unique.

Proof . Suppose that f and g are isomorphisms between (A,�) and (B,�).
Then g ◦ f −1 is strictly increasing, so for all x ∈ A

f (x) � g( f −1( f (x))) = g(x) [theorem 11.1.5]

and similarly g(x) � f (x). Hence f = g.

(11.1.8) Theorem. If (A,�) and (B,�) are well-ordered sets, then either A
is isomorphic to an initial subset of B or B is isomorphic to an initial subset of
A (or both).

Proof . Let

f = {(x, y) ∈ A × B : segA(x) and segB(y) are isomorphic}.
Note first that if (x1, y1), (x2, y2) ∈ f , then x1 < x2 ⇔ y1 < y2 since if,
for example, x1 < x2 and y1 � y2, then segB(y1) is isomorphic to a proper
initial subset of itself, contrary to corollary 11.1.6. It follows from this that f
is strictly increasing and that dom[ f ] and im[ f ] are initial subsets of A and
B respectively. Suppose now, if possible, that dom[ f ] �= A and im[ f ] �= B.
Then let a be the least element of A � dom[ f ] and b be the least element of
B�im[ f ]. Evidently, dom[ f ] = segA(a) and im[ f ] = segB(b), and so f is an
isomorphism between segA(a) and segB(b). Hence b = f (a). Contradiction.
Thus f is the isomorphism we require.

Exercises

1. Prove lemma 11.1.3.

2. Suppose that (A,�) is a partially ordered set.
(a) Show that (A,�) is partially well-ordered iff seg(a) is partially well-ordered for

every a ∈ A.
(b) Show that A is finite iff P(A) is partially well-ordered by inclusion. [Sufficiency.

Consider {B ∈ P(A) : A � B is finite}.]
3. If (A,�) is a partially ordered set, show that these two assertions are equivalent:

(i) segA(a) is well-ordered for every a ∈ A;

(ii) (A,�) is partially well-ordered, and every directed subset of A is totally ordered
by the inherited ordering.
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(A,�) is said to be a tree if it satisfies these conditions.

4. If A is a tree, show that B is a maximal totally ordered subset of A iff it is a totally
ordered initial subset of A with no strict upper bound in A. B is said to be a branch of
A if it satisfies these conditions.

5. A totally ordered set (A,�) is said to be perfectly ordered if it satisfies:

(1) A has a least element;

(2) every element of A except the greatest (if there is one) has a unique successor;

(3) every element of A can be obtained by applying the successor operation a finite
number of times to either the least element of A or a limit point of A.

Show that every well-ordered set is perfectly ordered but that the converse does not
hold.

11.2 Ordinals

We have now to introduce the notion of the order-type of a structure. The
idea is that it should code whether structures are isomorphic. This is evidently
analogous to the problem we faced in §9.1 of defining the cardinal of a set so
as to encode only its size. So it is no surprise that the definition of order-types
we adopt here uses the Scott/Tarski trick in just the same way.

Definition. If (A, r) is a structure, then the set

〈(B, s) : (B, s) is isomorphic to (A, r)〉

is denoted ord(A, r) and called the order-type of (A, r).

(11.2.1) Proposition. If (A, r) and (B, s) are structures, then (A, r) is iso-
morphic to (B, s) iff ord(A, r) = ord(B, s).

Proof . Straightforward.

Definition. The order-type of a well-ordered set is called an ordinal.

From now on we shall generally use lower-case Greek letters α, β, γ, etc. for
ordinals.

Definition. Suppose that α = ord(A,�) and β = ord(B,�). We shall
write α � β to mean that there exists an isomorphism of (A,�) onto an
initial subset of (B,�).

It is an easy exercise to check that this definition does not depend on our
choice of the representatives (A,�) and (B,�).
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(11.2.2) Proposition.

(a) (α � β and β � γ) ⇒ α � γ;

(b) α � α;

(c) (α � β and β � α) ⇒ α = β;
(d) α � β or β � α.

Proof . Parts (a) and (b) are trivial; (c) follows from corollary 11.1.6, and (d)
from theorem 11.1.8.

(11.2.3) Proposition. If the partially ordered set (A,�) is the union of a
chain B of initial subsets each of which is well-ordered by the inherited partial
order, then A is also well-ordered and

ord(A,�) = sup
B∈B

ord(B,�B).

Proof . Suppose that A has a non-empty subset C with no minimal element
and choose an element x ∈ C . Now x ∈ B for some B ∈ B, so B ∩ C is non-
empty and therefore has a minimal element y since B is partially well-ordered.
SinceC has no minimal element, there exists z ∈ C such that z < y; moreover
z ∈ B since B is an initial subset of A. This contradicts the minimality of y in
B ∩ C . Hence (A,�) is partially well-ordered. The remainder of the proof is
left as an exercise.

Definition. αααα = {β : β < α}.
The set αααα certainly exists for any ordinal α because its members all belong to
P(V(α)).

(11.2.4) Theorem. If α is an ordinal, then (αααα,�) is a well-ordered set and
ord(αααα,�) = α.
Proof . Let (A,�) be any well-ordered set such that ord(A,�) = α, and for
each x ∈ A let f (x) = ord(segA(x),�). Then f is strictly increasing, since
if x < y, then seg(x) is an initial subset of, but not isomorphic to, seg(y)
[corollary 11.1.6] and so f (x) < f (y). Moreover, the image of f is the
whole of αααα, since if β < α, then there exists x ∈ A such that

β = ord(segA(x),�) = f (x) [corollary 11.1.6].

So (A,�) is isomorphic to (αααα,�). The result follows immediately.

(11.2.5) Corollary. Any non-empty set of ordinals has a least element.
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Proof . Let A be any non-empty set of ordinals and let α ∈ A. If α is the least
element of A, we are finished. If not, A∩αααα is non-empty and hence has a least
element [theorem 11.2.4], which must also be the least element of A.

(11.2.6) Burali-Forti’s paradox. {α :α is an ordinal} does not exist.
Proof . Suppose on the contrary that A = {α :α is an ordinal} exists. It is well-
ordered by the usual ordering [corollary 11.2.5]. So if α = ord(A,�), then
ord(αααα,�) = α [theorem 11.2.4], and therefore (αααα,�) is isomorphic to (A,�)
[proposition 11.2.1]. But αααα is a proper initial subset of A (since α ∈ A) and is
therefore not isomorphic to it [corollary 11.1.6]. Contradiction.

(11.2.7) Proposition. If Φ is any formula, then the set B = {β :Φ(β)} exists
iff there is an ordinal α such that Φ(β) ⇒ β < α.

Necessity. Suppose that B = {β :Φ(β)}. So there exists an ordinal α not in
V(B), since if all the ordinals belonged to V(B), they would form a set, con-
tradicting Burali-Forti’s paradox. Now V(B) ∈ V(α), so

Φ(β) ⇒ β ∈ B
⇒ V(β) ∈ V(B)

⇒ V(β) ∈ V(α)

⇒ β < α.

Sufficiency. If there is an ordinal α such that Φ(β) ⇒ β < α, then the ordinals
satisfying Φ all belong to the set αααα.

The least ordinal is denoted 0. There is evidently no greatest ordinal. For
any ordinal α we let α+ denote the least ordinal greater than α: it is called
the successor of α. A non-zero ordinal which is not the successor of any other
ordinal is called a limit ordinal.

(11.2.8) Lemma. If α �= 0, then these three assertions are equivalent:

(i) α is a limit ordinal;

(ii) (∀β)(β < α⇒ β+ < α);

(iii) α = supβ<α β.

(i)⇒ (ii). Suppose β < α. Then certainly β+ � α. But if β+ = α, then α is
not a limit. So β+ < α as required.

(ii)⇒ (iii). Let γ = supβ<α β. Then γ � α. But if γ < α, then γ+ < α by
hypothesis and so γ+ < γ, which is absurd. So γ = α.



182 Ordinals

(iii)⇒ (i). Suppose that supβ<α β = α but α is not a limit. So there exists an
ordinal γ such that α = γ+, and therefore

γ = sup
β<α

β = α = γ+,

which is absurd.

11.3 Transfinite induction and recursion

We now consider the generalizations to arbitrary ordinals of the simple and
general principles of induction and recursion which we proved in chapter 9.

(11.3.1) Proposition. If A ⊆ αααα and if ββββ ⊆ A ⇒ β ∈ A, then A = αααα.
Proof . Immediate [lemma 11.1.3 and theorem 11.2.4].

(11.3.2)General transfinite induction scheme. IfΦ(α) is a formula and
if (∀β)((∀γ < β)Φ(γ) ⇒ Φ(β)), then (∀α)Φ(α).

Proof . Let A = {β < α :Φ(β)}; then A = αααα [proposition 11.3.1] and so Φ(α)
holds.

(11.3.3) Proposition. Suppose that A is a subset ofααααwith the following three
properties:

(1) 0 ∈ A;

(2) β ∈ A ⇒ β+ ∈ A for every β < α;

(3) λλλλ ⊆ A ⇒ λ ∈ A for every limit ordinal λ < α.

Then A = αααα.
Proof . Suppose, if possible, that A ⊂ αααα. So αααα � A is non-empty, and there-
fore has a least element [theorem 11.2.4]. The first property shows that this
element is not zero, the second that it is not a successor, and the third that it
is not a limit ordinal. Contradiction.

(11.3.4) Simple transfinite induction scheme. Suppose that Φ(α) is a
formula such that:

(1) Φ(0);

(2) (∀β)(Φ(β) ⇒ Φ(β+));

(3) If λ is a limit ordinal, then (∀β < λ)Φ(β) ⇒ Φ(λ).

Then (∀α)Φ(α).
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Proof . This follows from proposition 11.3.3 in the same way as the general
principle of transfinite induction follows from proposition 11.3.1.

(11.3.5) General principle of transfinite recursion. If for each β < α
there is a function sβ from P(A) to A, then there exists exactly one function g
from αααα to A such that g(β) = sβ(g[ββββ]) for all β < α.

Uniqueness. This can be shown straightforwardly by using the general principle
of transfinite induction.

Existence. We shall prove the existence of g by simple transfinite induction on
α. This is trivial if α = 0. Then if there is a function g from ββββ to A with the
required property, we can extend g to β+ by letting g(β) = sβ(g[ββββ]). Finally,
suppose that λ is a non-zero limit ordinal and that for each β < λ there exists
a (necessarily unique) function gβ from ββββ to A such that gβ(γ) = sγ(gβ[γγγγ]) for
all γ < β. Any two of these functions gβ must agree on the intersection of their
domains. So if g = ⋃

β<λ gβ, then g is a function [proposition 4.8.1] and

dom[g] =
⋃
β<λ

dom[gβ] = {γ :(∃β < λ)(γ < β)} = λλλλ.

It is easy to see that g is the function we require. This completes the proof by
simple transfinite induction.

(11.3.6) Simple principle of transfinite recursion. If A is a set, f is a
function from A to itself, a is a member of A, and s is a function fromP(A) to
A, then for each ordinal α there exists a unique function g from αααα to A such
that

(1) g(0) = a;

(2) g(β+) = f (g(β)) if β+ < α;

(3) g(λ) = s(g[λλλλ]) for every limit ordinal λ < α.

Proof . The proof is very similar to that of the general principle of transfinite
recursion.

As an illustration of the use of ordinals we shall prove a result about sets of
real numbers that is central to descriptive set theory.

(11.3.7) Theorem (Cantor 1883; Bendixson 1883). Every uncountable
closed subset of R has a non-empty perfect subset.
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Proof . Let B be any closed subset of R and recursively define

B(0) = B;
B(α+1) = (B(α))′;

B(λ) =
⋂
α<λ

B(α) for λ a limit ordinal.

As B is closed, the B(α) form a decreasing transfinite sequence of closed subsets
of R. If α0 is the least ordinal α such that B(α+1) = B(α), then (B(α0))′ =
B(α0+1) = B(α0), and so B(α0) is perfect. Let us show next that the set

B0 =
⋃
β<α0

(B(β) � B(β+1))

is countable. We do this by mapping it into the countable set U of all the open
intervals with rational endpoints. For each β < α0 and each x in B(β) � B(β+1)

we can select a member U (x) of U which is disjoint from B(β+1) and whose
intersection with B(β) � B(β+1) consists only of x . Moreover, we can stipulate
(so as to avoid using the axiom of countable choice) that U (x) is chosen to
occur as early as possible in some previously specified enumeration of U . The
function x �→ U (x) thus defined from B0 to U is evidently one-to-one, and
hence B0 is countable. But B = B0 ∪ B(α0), and so if B is uncountable, B(α0)

is non-empty as required.

(11.3.8) Corollary. Every uncountable closed subset of R has the power of
the continuum.

Proof . We have already shown that a non-empty perfect set always has the
power of the continuum [proposition 10.4.4].

The reason Cantor was interested in proving this result was that in 1878 he
had made the conjecture which is now called the continuum hypothesis, namely
that every uncountable subset of R has the power of the continuum. He there-
fore regarded the result we have just proved as a promising special case on
the way to proving his conjecture. It is a very special case, though, as even
a naive counting argument shows: the set of closed subsets of R has cardinal
c = 2ℵ0 , whereas the set of all subsets has cardinal cc. We shall have more to
say about this in chapter 15; it will emerge, in particular, that the difficulties
in the way of extending the method of the Cantor/Bendixson theorem so as
to yield a proof of the continuum hypothesis are at least as great as the naive
argument suggests.

11.4 Cardinality

Definition. |α| = card(αααα).
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When we speak of the cardinality of an ordinal α, we shall mean not the cardinal
number of that particular set (which is, after all, an accidental by-product
of the definition of the ordinals that we are using) but the cardinal |α| just
defined. We say that α is finite or infinite, countable or uncountable, accord-
ing as |α| is. Evidently if ord(A,�) = α, then card(A) = |α|.
(11.4.1) Proposition. α � β⇒ |α| � |β|.
Proof . Obvious.

The converse fails in the infinite case, of course.

Definition. ω0 = ord(ωωωω,�).

So |ω0| = ℵ0, and therefore ω0 is the least infinite ordinal. If for each n ∈ ωωωω
we let n0 = ord(n,�), then the function from ωωωω to ωωωω0 given by n �→ n0 is an
isomorphism: from now on we shall identify the natural number n with the
finite ordinal n0 and write ω for ω0.
A family (xα)α<β indexed by ββββ for some ordinal β is called a transfinite sequence.

Since the ordinals < ω are (under the identification just introduced) simply
the natural numbers, the special case where β = ω is that of a sequence in the
sense of §5.3.

(11.4.2)Theorem (Hartogs 1915). There is no cardinal a such that |α| � a

for every ordinal α.

Proof . Suppose on the contrary that a is an upper bound for all cardinals of
the form |α|. Then it is easy to show that every ordinal is contained in the
fourth level after V(a). Hence {α :α is an ordinal} exists [axiom scheme of
separation], contradicting Burali-Forti’s paradox.

This theorem is a useful tool for proving the existence of larger ordinals.
It shows, for example, that not all ordinals are countable, since otherwise
|α| � ℵ0 for all α, contradicting the theorem. The least uncountable ordinal
is denoted ω1, and we let ℵ1 = |ω1|.
(11.4.3) Proposition. ℵ0 < ℵ1 < 22

ℵ0 .

Proof . Obviously ℵ0 � ℵ1; and indeed ℵ0 < ℵ1, since if ωωωω1 were countable,
ω1 would be a countable ordinal and we would have ω1 < ω1. If for each
ordinal α < ω1 we let f (α) be the set of all the well-orderings r on ωωωω such that
ord(ωωωω, r) = α, then f is a one-to-one function from ωωωω1 into P(P(ωωωω × ωωωω)). So

ℵ1 = |ω1| � card(P(P(ωωωω × ωωωω))) = 22
ℵ20 = 22

ℵ0
.
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We have thus arrived at another example of an uncountable set, since one
consequence of the proposition just proved is that the set ωωωω1 of countable
ordinals is uncountable. Cantor called ωωωω the ‘first number class’ and ωωωω1 � ωωωω
the ‘second number class’.
It is worth noting that the reasoning we have used to show that ωωωω1 is un-

countable is impredicative, just as the reasoning for the corresponding result
about real numbers was, although this time the impredicativity is hidden a
little deeper: the proof of the Burali-Forti paradox depends on considering
the ordinal of the set of all ordinals, which is evidently an impredicative spe-
cification, and our proof that ωωωω1 is uncountable inherits this impredicativity
via Hartogs’ theorem, since the proof of that result makes use of the Burali-
Forti paradox. This impredicativity is significant because it is what takes the
theory of ordinals beyond Cantor’s original idea of ‘ordinal notations’. For
any system of notations is countable and will therefore fail to exhaust ωωωω1.
The method of labelling objects with ordinals is a powerful tool for proving

results in set theory. In order to apply it, however, we need the objects we are
studying to have a well-ordered structure. It therefore becomes a matter of
interest to us whether there exists a well-ordering on a given set.

Definition. A set A is said to be well-orderable if there exists a well-ordering
on A.

A set is well-orderable iff there exists a transfinite sequence whose range it is.
If A and B are equinumerous, then evidently A is well-orderable iff B is. So
whether or not a set is well-orderable depends only on its cardinality. Since ωωωω
is well-orderable, it follows that every countable set is well-orderable too, but
the converse is false: the well-orderable set ωωωω1 of all the countable ordinals is,
as we have just seen, uncountable. We shall have more to say in §14.4 about
which other uncountable sets are well-orderable.

Exercise

Show that the birthday of α is no more than four levels after the birthday of |α|.

11.5 Rank

One of the most important applications of the system of ordinals is to measure
how high in the hierarchy a set is located. The measure we shall use is called
the rank of the set. To define this notion, we need to recall some facts from
§3.6. A large part of what we established there may be expressed in the vocab-
ulary we have introduced in this chapter by saying that the history of any level
V (the set of all the levels belonging to V ) is well-ordered: the lax ordering
is by inclusion, and the associated strict ordering is by membership. We can
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now exploit this by making use of the ordinal of this history as an index of its
position in the hierarchy.

Definition. The rank of a set A is the ordinal

ρ(A) = ord({V : V is a level and V ∈ V(A)},⊆).

In words: the rank of A is the ordinal of the history of its birthday. Now

ρ(A) � ρ(B) ⇔ V(A) ⊆ V(B)

and so
ρ(A) < ρ(B) ⇔ V(A) ∈ V(B).

From this we can deduce that the rank of a set is an adequate surrogate for its
birthday as a measure of its position in the hierarchy.

Definition. Vα = {x : x is an individual or x is a set and ρ(x) < α}.
(11.5.1) Proposition.

V0 = {x : x is an individual};
Vα+1 = Vα ∪ P(Vα);
Vλ =

⋃
α<λ

Vα if λ is a limit ordinal.

Proof . Transfinite induction.

(11.5.2) Proposition. If Vα exists, then it is a level, and

α = ρ(Vα) = ord({V : V is a level and V ∈ Vα},⊆).

Proof . Transfinite induction again.

No claim is being made at this stage that the level Vα exists, and indeed it
is consistent with ZU that there should be ordinals α — even as small as the
second limit ordinal — for which it does not. This issue will be central to our
discussion in chapter 13.
We saw earlier that the hierarchy of levels contains within it a core con-

sisting of the pure levels: these can be thought of as obtained by a somewhat
similar process to the Vα but starting from Ø.

Definition. Uα = {a ∈ Vα : a is pure}.
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(11.5.3) Proposition.

U0 = Ø;
Uα+1 = P(Uα);
Uλ =

⋃
α<λ

Uα if λ is a limit ordinal.

Proof . As for proposition 11.5.1.

It is easy to show that (in the notation of §5.4) card(Un) = 2n−1. Many authors
extend this into the transfinite with a notation devised by Peirce according to
which

�α = card(Uω+α)

for any ordinal α, so that for example �0 = ℵ0, �1 = 2ℵ0 , and �2 = 22
ℵ0 .

From this we can deduce that ρ(ωωωω) = ω and ρ(R) = ω+1 (but only, of course,
because we stipulated that ωωωω and R should be as low in the pure hierarchy as
possible).

(11.5.4) Proposition. If r is a relation on a set A, then r is well-founded iff
there exist an ordinal α and a function f from A into αααα such that

x r y ⇒ f (x) < f (y) (1)

for all x, y ∈ A.

Necessity. The proof is by generalized recursion, defining f (a) to be the least
strict upper bound of { f (x) : x r a}.
Sufficiency. Straightforward.

The least ordinal α for which a function f satisfying (1) exists is called the rank
of the well-founded relation r . This notion of rank enables us to state a partial
categoricity result for the second-order variant of our theory of sets.

Zermelo’s categoricity theorem. If T is a categorical theory, then the
grounded parts of any two models of Z2[T ] of the same rank are isomorphic.

This is, of course, just what the discussion of the two principles of plenitude in
part I encouraged us to expect. Once the individuals are given, the second-
order separation scheme determines fully what sets there are at each level in
the hierarchy — namely, all of them. The only other variable that needs to be
fixed if we are to determine what sets there are is the ordinal measure of the
height of the hierarchy that we have called its rank. For further reflections on
this matter, see the conclusion to part IV.
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Exercise

Complete the details of the proof of proposition 11.5.4.

Notes

Perhaps even more than for cardinals the theory of ordinals can be said to be
the discovery of one man: Dauben (1990) describes the genesis of Cantor’s
theory in detail. Tait (2000) describes how in Grundlagen Cantor went beyond
his earlier conception of ordinals as a system of notations to serve as indices
for recursive definitions.
The history of Burali-Forti’s paradox is somewhat convoluted. To explain

it, we shall (temporarily) adopt the name ‘quasi-ordinal’ for the order-type of
a perfectly ordered set (see exercise 5 of §11.1). With this terminology, what
Burali-Forti (1897b) proved was that the set of all quasi-ordinals is not totally
ordered in its natural partial order. He also asserted that every quasi-ordinal
is an ordinal, thereby contradicting Cantor’s (1897) theorem that the ordinals
are totally ordered. But there was a mistake here: Burali-Forti had misun-
derstood Cantor’s definition of a well-ordering, and it is in fact the converse
implication — every ordinal is a quasi-ordinal — which holds. So the con-
tradiction dissolves: there is nothing absurd about a non-totally ordered set
having a totally ordered subset. Burali-Forti corrected his error in his 1897a
and added the rather enigmatic remark that ‘the reader can check which pro-
positions in (1897b) are verified also by the well-ordered classes’. He seems
not to have taken his own advice, however: it was left to Russell (1903) to do
the checking and hence resurrect the paradox by noticing that Burali-Forti’s
argument shows without any essential change that the ordinals are not totally
ordered. This last result is genuinely paradoxical, and because of Russell’s
attribution it has become universally known as ‘Burali-Forti’s paradox’, al-
though Burali-Forti himself denied as late as 1906 (in a letter to Couturat)
that any contradiction was involved. (The letter as Couturat published it is
hopelessly confused: it would be charitable to Burali-Forti to suppose that
it has been mistranslated.) Cantor had in any event discovered the paradox
independently some time before 1899.
Transfinite induction as a means of proof and transfinite recursion as a

means of definition are now a commonplace in the toolkit of any pure math-
ematician: textbooks of classical analysis such as Hobson 1921 contain fre-
quent illustrations.
Of special interest to logicians has been the discovery that transfinite in-

duction can be used in harness with cut elimination in proof theory to demon-
strate the consistency of various formal systems. This idea goes back to Hilbert
(1925), who hoped to achieve this aim by finite induction on the natural num-
bers. Gödel (1931) showed that this was too ambitious, at least for the formal
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systems Hilbert was interested in, but interest in the project was revived when
Gentzen (1936) used transfinite induction as far as the countable ordinal ε0
(defined in §12.5 below) to show that PA is consistent. Subsequent work has
extended Gentzen’s result to various more or less predicative systems of ana-
lysis, but the obvious goal of achieving an informative consistency proof for
classical analysis, or even for a system of set theory such as Z, remains elusive.



Chapter 12

Ordinal arithmetic

In this chapter we shall define operations of addition, multiplication and ex-
ponentiation for ordinals. We shall take as our model the recursive definitions
of the corresponding operations for natural numbers (§5.4): the form the ex-
tended definitions should take at successor ordinals is clear; the form of the
additional clause defining the behaviour of the operations at limit ordinals is
also clear if we require that the operations must all be normal in their second
variable.

12.1 Normal functions

(12.1.1) Proposition. If (A,�) is well-ordered and (B,�) is partially
ordered, then a function f from A to B is normal [resp. strictly normal]
iff it satisfies:
If a ∈ A is a limit point of A, then f (a) = supx<a f (x);
f (a+) � f (a) [resp. f (a+) > f (a)] for all a in A apart from the greatest

(if any).

Necessity. Obvious.

Sufficiency. Let us prove first that f is increasing. For if it is not, then there
exists a ∈ A such that for some b < a we have f (b) �� f (a): choose the
element a as small as possible. There are two cases to consider:

(1) a is a limit point of A. In this case

f (a) = sup
x<a

f (x) �� f (a).

Contradiction.

(2) a = c+ for some c ∈ A. In this case for all x < a we have x � c and
hence f (x) � f (c) (by the minimality of a), so that c = b and hence
f (c) �� f (a). But f (a) = f (c+) � f (c). Contradiction.
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Therefore f is indeed increasing. [The proof that f is strictly increasing under
the stronger version of the second hypothesis is similar.]
Now let us show that f is normal. Suppose that C is a non-empty bounded

subset of A and let c = supC . Now if x ∈ C , then x � c and so f (x) � f (c);
hence f (c) is an upper bound for f [C]. Now consider two possibilities:

(1) c ∈ C . In this case f (c) ∈ f [C] and so f (c) is the supremum of f [C].

(2) c /∈ C . In this case c is a limit point of A. Now if x < c, then there exists
y ∈ C such that x � y, and so if z is an upper bound for f [C] in B,
then f (x) � f (y) � z. Hence f (c) = supx<c f (x) � z. It follows that
f (c) is the supremum of f [C] in this case too.

Thus f is [strictly] normal.

(12.1.2) Proposition. If (A,�) is a well-ordered set and f is a strictly nor-
mal function from A to itself, then for every a � f (⊥) there exists a greatest
element b ∈ A such that f (b) � a.

Proof . If a is the greatest element of A, then it is clearly the element we are
looking for. If not, then f (a+) > f (a) � a and so there exist elements c ∈ A
such that f (c) > a: choose the least such element c. Now c > ⊥ since
f (c) > f (⊥). And if c were a limit point of A, then we would have

f (c) = sup
x<c

f (x) � a < f (c),

which is absurd. So there exists b ∈ A such that c = b+. Clearly f (b) � a;
and if x > b then x � c, so that f (x) � f (c) > a. Thus b is the element we
want.

12.2 Ordinal addition

Consider first the case of ordinal addition. We want to define an operation
with the following properties:

α + 0 = α;
α + β+ = (α + β)+;
α + λ = sup

β<λ

(α + β) if λ is a limit ordinal.

When we gave the definition of addition for the natural numbers, we justified
it directly from Dedekind’s theorem on the validity of definition by recursion.
So we might hope to be able to justify addition of ordinals by appeal to the
corresponding theorem on the validity of definition by transfinite recursion.
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But unfortunately there is a difficulty with this. In the third clause of the
definition, dealing with the case of a limit ordinal λ, we need an independent
argument to show that the ordinals α + β for β < λ are bounded above, since
if they are not, then supβ<λ(α + β) will not exist.
As it turns out, the easiest way to meet this difficulty is to sidestep it. We do

not use transfinite recursion in the definition at all, but instead define ordinal
addition explicitly by synthetic means. Once we have done this, it will be
a straightforward matter to check that the operation we have defined does
indeed satisfy the recursion equations just given.

Definition. If (A,�) and (B,�) are ordered sets, then we define the
ordered sum A + B of A with B to be the disjoint union A � B = (A ×
{0}) ∪ (B × {1}) with the ordering defined so that (x, i) � (y, j) iff

i = 0 and j = 1

or i = j = 0 and x � y

or i = j = 1 and x � y.

This definition amounts to placing a copy of B after a copy of A. It is clear
that the ordered sum of two ordered sets is ordered. For it to be useful to us
here, however, it must also be well-ordered if its components are. Fortunately,
this is easily seen to be the case.

(12.2.1) Lemma. The ordered sum of two well-ordered sets is well-ordered.

Proof . Suppose that C is a non-empty subset of A � B. So

C = (D × {0}) ∪ (E × {1})
for some D ⊆ A and E ⊆ B. If D is non-empty, then it has a least element
a in A (since A is well-ordered), in which case (a, 0) is the least element of C ;
whereas if D is empty, E is non-empty and has a least element b in B (since
B is well-ordered), in which case (b, 1) is the least element of C .

This lemma provides the justification for the following definition.

Definition. If α = ord(A,�) and β = ord(B,�), then we define α + β to
be the ordinal of the ordered sum of (A,�) and (B,�).

So ω + 2, for example, is the ordinal of a well-ordered set consisting of a copy
of ωωωω followed by a copy of 2.

• • • . . . • •
0 1 2 0′ 1′

(12.2.2) Proposition. |α + β| = |α| + |β|.
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Proof . Trivial.

(12.2.3) Proposition. Ordinal addition is characterized by the following re-
cursion equations:

(a) α + 0 = α;
(b) α + β+ = (α + β)+;

(c) α + λ = sup
β<λ

(α + β) if λ is a limit ordinal.

Proof . Straightforward.

It is clear from proposition 12.2.3 that for finite ordinals (i.e. natural numbers)
this definition of addition coincides with the one given in §5.4.
Since α + 1 = α + 0+ = (α + 0)+ = α+, proposition 12.2.3(b) can be

rewritten, rather more familiarly, as

α + (β + 1) = (α + β) + 1.

(12.2.4) Corollary. For each α the function given by β �→ α + β is strictly
normal on any set of ordinals.

Proof . Immediate [propositions 12.1.1 and 12.2.3].

(12.2.5) Subtraction algorithm. If β � α, then there exists a unique or-
dinal ρ such that α = β + ρ.
Existence. There exists a greatest ordinal ρ such that β+ρ � α [corollary 12.2.4
and proposition 12.1.2]. But if β + ρ < α, then

β + (ρ + 1) = (β + ρ) + 1 � α,

contradicting our choice of ρ. Hence β + ρ = α as required.
Uniqueness. This follows from the fact that the function ρ �→ β+ρ is one-to-one
[corollary 12.2.4].

If β � α, the unique ordinal ρ such that α = β+ ρ is sometimes written α− β.
(12.2.6) Proposition. Suppose that α, β, γ are ordinals.

(a) β < γ⇒ α + β < α + γ.

(b) α + β = α + γ⇒ β = γ.
(c) α + sup

β∈B
β = sup

β∈B
(α + β) for every non-empty set of ordinals B.

(d) α + (β + γ) = (α + β) + γ.
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(e) α � β⇒ α + γ � β + γ.

(f) α � β⇔ (∃δ) β = α + δ.
(g) α < β⇔ (∃δ > 0) β = α + δ.

Proof of (a), (b) and (c). Immediate [corollary 12.2.4].

Proof of (d). We use transfinite induction on γ. The case γ = 0 is trivial. If
α + (β + γ) = (α + β) + γ, then

α + (β + (γ + 1)) = α + ((β + γ) + 1)

= (α + (β + γ)) + 1

= ((α + β) + γ) + 1

= (α + β) + (γ + 1).

And if λ is a limit ordinal such that α + (β + γ) = (α = β) + γ for all γ < λ,
then

α + (β + λ) = sup
γ<λ

(α + (β + γ))

= sup
γ<λ

((α + β) + γ)

= (α + β) + λ.

This completes the proof by transfinite induction.

Proof of (e). This is also proved by a straightforward transfinite induction on γ.

Proof of (f) and (g). Immediate [corollary 12.2.4 and subtraction algorithm].

Note that addition of ordinals (unlike addition of cardinals) is not commutative
since, for example,

1 + ω = sup
n<ω

(1 + n) = ω < ω + 1.

This non-commutativity runs quite deep: the analogues for right-addition of
α of parts (a), (b), (c) and (g) of proposition 12.2.6 are not generally valid.

Exercises

1. Show that α � ω iff α = 1 + α.

2. Is it true in general that α = (α− β) + β?
3. Find necessary and sufficient conditions on the ordinals α, β for α + β to be a limit
ordinal.

4. The function α �→ α + β is increasing for all β [proposition 12.2.6(e)]. Show,
however, that it is strictly increasing iff β is finite, and normal iff β = 0.
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12.3 Ordinal multiplication

We turn now to multiplication. Again the recursion equations we are aiming
for are obtained by extension from the finite case:

α0 = 0;
α(β + 1) = αβ + α;

αλ = sup
β<λ

αβ if λ is a limit ordinal.

But again we approach them indirectly by defining ordinal multiplication syn-
thetically.

Definition. If (A,�) and (B,�) are two ordered sets, we define their
ordered product to be the cartesian product A × B with the ordering defined
so that (x1, y1) � (x2, y2) iff either y1 < y2 or y1 = y2 and x1 � x2.

This ordering is frequently called the reverse lexicographic ordering since it cor-
responds to the order in which words appear in a Persian dictionary. Another
way of thinking of it is as what results if we take a copy of B and replace each
member of it with a copy of A in order.

(12.3.1) Lemma. The ordered product of two well-ordered sets is well-
ordered.

Proof . IfC is a non-empty subset of A×B, then from among those elements of
C whose B-coordinate is the least possible choose the one whose A-coordinate
is the least possible: this is evidently the least element of C .

Definition. If α = ord(A,�) and β = ord(B,�), αβ is defined to be the
ordinal of the ordered product of (A,�) with (B,�).

So ω2, for example, is the ordinal of a well-ordered set consisting of copies of
ωωωω corresponding to the members of 2, arranged in the same order as those
members.

• • • . . .
0 1 2
• • • . . .
0′ 1′ 2′

The meaning of the notation is therefore perhaps best represented by reading
αβ as ‘α, β times’, and so it might seem more natural to write it as βα: indeed
Cantor did just this in his first paper on the subject (1883). He was induced
to reverse the notation by the observation that the formal properties are thus
made much neater; for example, proposition 12.4.6(e) below would in Can-
tor’s original notation take on what he called the ‘repulsive’ (1887, p. 86) form

α(β+γ) = α(γ)α(β).
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(12.3.2) Proposition. |αβ| = |α||β|.
Proof . Trivial.

(12.3.3) Proposition. Ordinal multiplication is characterized by the follow-
ing recursion equations:

(a) α0 = 0;

(b) α(β + 1) = αβ + α;
(c) αλ = sup

β<λ

αβ if λ is a limit ordinal.

Proof . Straightforward.

It follows at once from proposition 12.3.3 that for finite ordinals (i.e. natural
numbers) this definition coincides with the one given in §5.4. As with addition,
however, commutativity fails in the infinite case: for instance,

2ω = sup
n<ω

2n = ω < ω + ω = ω2.

(12.3.4)Corollary. The function β �→ αβ is normal (strictly normal if α > 0)
on any set of ordinals.

Proof . Immediate [propositions 12.1.1 and 12.3.3].

(12.3.5) Division algorithm. If β �= 0, then there exist unique ordinals δ
and ρ < β such that α = βδ + ρ.
Existence. If we choose the greatest ordinal δ such that βδ � α [corollary 12.3.4
and proposition 12.1.2], then there exists ρ such that α = βδ + ρ [proposition
12.2.6(f)]. Hence

βδ + β = β(δ + 1) > α = βδ + ρ,
and so ρ < β by cancellation.

Uniqueness. Suppose that α = βδ + ρ as in the theorem, but that δ is not the
greatest ordinal such that βδ � α. Then

α � β(δ + 1) = βδ + β > βδ + ρ = α,
which is absurd. This proves the uniqueness of δ; the uniqueness of ρ follows
from the subtraction algorithm 12.2.5.

The division algorithm is particularly useful in the case when β = ω: any
ordinal can be written uniquely in the form ωδ + n with n < ω.

(12.3.6) Corollary. α is a limit ordinal iff α = ωβ for some β > 0.
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Necessity. α = ωβ + n for some β and n < ω [division algorithm]. If n �= 0,
then n = m + 1 for some m < ω and so

α = ωβ + (m + 1) = (ωβ + m) + 1,

so that α is a successor ordinal, contrary to assumption. Thus n = 0 and
therefore α = ωβ as required.

Sufficiency. Suppose that ωβ is not zero or a limit. So ωβ = γ + 1 for some γ.
Now γ = ωσ + n for some σ � α and n < ω. Then

ωβ = (ωσ + n) + 1 = ωσ + (n + 1).

By the uniqueness of the decomposition in the division algorithm, n + 1 = 0.
Contradiction.

(12.3.7) Proposition. Suppose that α, β, γ are ordinals.

(a) If α �= 0, then β < γ⇒ αβ < αγ.

(b) If α �= 0, then αβ = αγ⇒ β = γ.
(c) α sup

β∈B
β = sup

β∈B
(αβ) for any non-empty set of ordinals B.

(d) α(β + γ) = αβ + αγ.
(e) α(βγ) = (αβ)γ.

(f) α � β⇒ αγ � βγ.

Proof of (a), (b) and (c). Immediate [corollary 12.3.4].

Proof of (d). We shall prove this by simple transfinite induction on γ. The case
γ = 0 is trivial. If α(β + γ) = αβ + αγ , then

α(β + (γ + 1)) = α((β + γ) + 1)
= α(β + γ) + α
= (αβ + αγ) + α

= αβ + (αγ + α)

= αβ + α(γ + 1).
And if λ is a limit ordinal such that α(β + γ) = αβ + αγ for all γ < λ, then

α(β + λ) = sup
γ<λ

(α(γ + λ)) = sup
γ<λ

(αβ + αγ) = αβ + αλ.

This completes the proof by induction.
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Proof of (e) and (f). Simple transfinite induction on γ again.

Note that the analogues for multiplication on the right by α of parts (a) to (d)
of proposition 12.3.7 are not valid in general. For example,

(2 + 3)ω = 5ω = ω < ω2 = 2ω + 3ω.

And (ω + 1)n = ωn + 1, so that

(ω + 1)ω = sup
n<ω

((ω + 1)n) = sup
n<ω

(ωn + 1) = ωω < ωω + ω.

Exercises

1. Using the notation of the division algorithm 12.3.5, show that if δ < τ, then α < βτ.

2. Show that βω is a limit ordinal for all β �= 0 but that not all limit ordinals are of this
form.

3. Show that α + 1 + α = 1 + α2.

4. If α �= 0 and β is a limit ordinal, show that (α + 1)β = αβ.
5. The function given by α �→ αβ is increasing for all β; show that it is strictly increas-
ing iff β is a successor ordinal.

6. Show that if β �= 0 and 2 < n < ω, then β is a limit ordinal iff nβ = β.
7. Find necessary and sufficient conditions on the ordinals α, β for αβ to be a limit
ordinal.

12.4 Ordinal exponentiation

Definition. If (A,�) and (B,�) are ordered sets and B has a least element
⊥, then the ordered exponential of (A,�) to (B,�) is defined to be the set
(A)B of all the functions f from A to B such that f (x) = ⊥ for all but finitely
many x ∈ A, with the ordering defined so that f < g iff f �= g and f (x0) <
g(x0) where x0 is the greatest element of the finite set {x ∈ A : f (x) �= g(x)}.
The choice of this ordering is determined purely by our desire to obtain a
definition of ordinal exponentiation which obeys the appropriate recursive
conditions (proposition 12.4.3 below), and it is much harder to picture than
either the ordered sum or the ordered product of A and B.

(12.4.1) Lemma. If (A,�) and (B,�) are well-ordered, then the ordered
exponential ((A)B,�) of A with B is also well-ordered.

Proof . Suppose that F is a non-empty subset of B. So it has an element f .
Let a0, a1, . . . , an−1 be the elements a ∈ A such that f (a) �= ⊥, arranged so
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that a0 > a1 > · · · > an−1. Then recursively define elements b0, b1, . . . , bn−1
of B so that

br = min{g(ar) : g ∈ F and g(ap) = bp for p < r}.
Now let f0 be given by f0(ar ) = br for r < n and f0(x) = ⊥ for x ∈
A �{a0, a1, . . . , an−1}. It is easy to check that f0 is the least element of F .
Definition. If α = ord(A,�) and β = ord(B,�), then we let β(α) denote
the ordinal of the ordered exponential ((A)B,�).

(12.4.2) Proposition (Schönflies 1913). If α and β are both infinite, then

|β(α)| = max(|α|, |β|).
Proof . This follows from the definition and a result on well-orderable cardinals
which we shall prove later [proposition 15.3.3].1

(12.4.3) Proposition. Suppose that β is an ordinal.

(a) β(0) = 1.

(b) β(α+1) = β(α)β.
(c) β(λ) = sup

α<λ

β(α).

Proof . Straightforward.

Thus the definition coincides with the familiar one when the ordinals in ques-
tion are finite.
Notice in particular that

2(ω) = sup
n<ω
2n = ω.

One consequence of this is that

|2(ω)| = |ω| = ℵ0 < 2ℵ0 = |2||ω|.

So the exponentiation of ordinals does not mesh neatly with that of cardinals
in the way addition and multiplication do (cf. propositions 12.2.2 and 12.3.2).
This is the reason I have departed from the standard notation and written β(α)

for ordinal exponentiation, rather than the more usual βα: I wanted to high-
light how different ordinal exponentiation is from cardinal exponentiation.
Having made this point, however, I shall occasionally write βα when it is more

1The practice of using results which have not yet been proved is not generally to be recommen-
ded, but it is easy to check that on this occasion no logical circle is involved.
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convenient; no confusion with cardinal exponentiation should arise because
no ordinal is also a cardinal.
Notice, though, that the difference just mentioned between ordinal and car-

dinal exponentiation is inevitable so long as we insist on the (surely desirable)
requirement that α �→ 2(α) be a normal function. In fact, even if we dropped
this requirement, we still could not define ordinal exponentiation in a way
that matched it up with cardinal exponentiation. For if we could, we would
in particular have defined an ordinal 2ω such that |2ω| = |2||ω| = 2ℵ0 , and
hence we would have defined a well-ordering on P(ωωωω). But this is known
to be impossible to do in our theory, even if we include the axiom of choice
(Feferman 1965).

(12.4.4)Corollary. The function α �→ β(α) is normal if β > 0 (strictly normal
if β > 1).

Proof . Immediate [propositions 12.1.1 and 12.4.3].

(12.4.5) Logarithmic algorithm. If α > 0 and β > 1, then there exist
unique ordinals γ, δ, ρ such that α = β(γ)δ + ρ with 0 < δ < β and ρ < β(γ).

Existence. Choose the greatest ordinal γ such that β(γ) � α [corollary 12.4.4
and proposition 12.1.2] and then use the division algorithm 12.3.5 to obtain
ordinals δ and ρ such that ρ < β(γ) and β(γ)δ + ρ = α. If we had δ = 0, we
would have ρ = α � β(γ) > ρ, which is absurd. And if we had δ � β, we
would have

α < β(γ+1) = β(γ)β � β(γ)δ � β(γ)δ + ρ = α,
which is also absurd: hence 0 < δ < β as required.

Uniqueness. Suppose that α = β(γ)δ + ρ as in the proposition, but that γ is not
the greatest ordinal such that β(γ) � α. Then

α � β(γ+1) = β(γ)β � β(γ)(δ + 1) = β(γ)δ + β(γ) > β(γ)δ + ρ = α,
which is absurd. This proves the uniqueness of γ. The uniqueness of δ and ρ
now follows from the division algorithm 12.3.5.

(12.4.6) Proposition. Suppose that α, β and γ are ordinals.

(a) β < γ⇔ α(β) < α(γ) provided that α > 1.

(b) α(β) = α(γ) ⇒ β = γ provided that α > 1.

(c) α(sup B) = sup
β∈B
α(β) for any non-empty set of ordinals B.

(d) If α > 1, then β � α(β).

(e) α(β+γ) = α(β)α(γ).
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(f) (α(β))(γ) = α(βγ).

g) α � β⇒ α(γ) � β(γ).

Proof . (a), (b) and (c) follow from corollary 12.4.4; (d) follows from (a) and
theorem 11.1.5; (e), (f) and (g) may all be proved by simple transfinite induction
on γ.

Exercises

1. If γ < τ in the decomposition of 12.4.5, show that α < β(τ).

2. Show how to define well-orderings on the set ωωωω whose ordinals are ω + 2, ω2, ω2

and ω(ω).

3. Find conditions on the ordinals α, β which are necessary and sufficient to ensure
that α(β) is a limit ordinal.

4. Show that the function β �→ β(α) is strictly increasing iff α is a successor ordinal.

5. Find an example where (αβ)(ω) �= α(ω)β(ω).

12.5 Normal form

(12.5.1) Theorem. If α is any ordinal and β > 1, then there exist unique
finite sequences (δr)r<n and (αr )r<n of ordinals such that α0 > α1 > · · · >
αn−1, 0 < δr < β (r < n), and

α = β(α0)δ0 + β(α1)δ1 + · · · + β(αn−1)δn−1.

Existence. Apply the logarithmic algorithm 12.4.5 repeatedly: the process must
stop after a finite number of steps since otherwise we would obtain a strictly
decreasing sequence of ordinals, contradicting the fact that the ordinals are
well-ordered.

Uniqueness. This follows from the uniqueness of the logarithmic algorithm
12.4.5.

The expression for α given in theorem 12.5.1 is called the normal form of α to
the base β. Two particular cases are noteworthy: when β = 2, we obtain the
dyadic normal form

α = 2(α0) + 2(α1) + · · · + 2(αn−1);
and when β = ω, we obtain the Cantorian normal form

α = ω(α0)m0 + ω(α1)m1 + · · · + ω(αn−1)mn−1.
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For example,

(ω2 + 1)(ω + 1)3 = ((ω2 + 1)ω + ω2 + 1)3

= (ω(2) + ω2 + 1)3

= ω(2) + ω2 + 1 + ω(2) + ω2 + 1 + ω(2) + ω2 + 1

= ω(2) + ω(2) + ω(2) + ω2 + 1

= ω(2)3 + ω2 + 1,

which is in Cantorian normal form.
When we are considering the expression of ordinals in normal form to the

base β, one ordinal that is important is the least γ > β such that β(γ) = γ.
We call this the salient ordinal for β. The reason it is important is that it is the
first ordinal for which the normal form does not supply a reduction: if γ0 is the
salient ordinal for β, its normal form to the base β is just γ0 = β(γ0), whereas
for any α < γ0 we obtain

α = β(α0)δ0 + β(α1)δ1 + · · · + β(αn−1)δn−1,

where 0 < δr < β and αn−1 < αn−2 < · · · < α0 < α. Suppose now that
we express each of α0, . . . ,αn−1 in normal form to the base β; then express
all the exponents in these expressions in normal form; and so on. Since the
exponents are dropping at each step, in a finite number of steps we must
arrive at exponents which are all less than β. This expression is called the
complete normal form of α to the base β.
Two cases of this are worth highlighting. If the base being used is a finite

ordinal N > 1, it is easy to see that the salient ordinal is ω, so that a reduction
to complete normal form is possible only for finite ordinals (i.e. natural num-
bers). Thus, for example, we can calculate the complete normal form of 2350
to the base 3 by writing

2350 = 37 + 34. 2 + 1 = 33.2+1 + 33+1. 2 + 1;
and similarly the complete normal form of 8192 to the base 2 is

8192 = 213 = 22
3+22+1 = 22

2+1+22+1.

If the base is ω, on the other hand, the salient ordinal, i.e. the least solution of
the equation ω(α) = α, is

ε0 = ωωω
...

,

which is standardly denoted ε0. Every ordinal < ε0 can be put in complete
normal form to the base ω; i.e. it can be expressed in finite form using only fi-
nite numerals and ω together with the expressions for addition, multiplication
and exponentiation.
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The ordinal ε0 is also of considerable significance for understanding the
first-order theory PA (a fact we shall touch on in the next chapter). We can
get a sense of the size of this ordinal if we consider its place in the transfinite
sequence of ordinals

0, 1, 2, 3, . . . , ω, ω + 1, ω + 2, . . . , ω2, ω2 + 1, . . . , ω3, . . . ,

ω2, ω2 + 1, . . . , ω2 + ω, . . . , ω3, . . . , ωω, . . . , ωωω

, . . . , ε0, . . . , ω1, . . .

So from an ordinal perspective ε0 is evidently very big indeed, since so many
limiting processes are involved in getting to it. But notice, too, that |ε0| = ℵ0,
i.e. ε0 is countable, so from a cardinal perspective it is not very big at all.

Exercises

1. Find the Cantorian normal form of ω(ω + 1)(ω(2) + 1).

2. Find the Cantorian normal form of ω(n+1) − (1 + ω + ω(2) + · · · + ω(n)).

3. Find the Cantorian normal form of 2(ωα+n), where n < ω.

4. Show that α = ωα iff α = ω(ω)β for some β. [Consider the Cantorian normal form
of α.]

5. An ordinal α is said to be indecomposable if β + α = α for all β < α.
(a) Show that α is indecomposable iff α = β + γ⇒ (α = β or α = γ).
(b) Show that if β �= 0 then α is indecomposable iff βα is.
(c) If α is indecomposable and 0 < β < α, show that α = βγ for some indecompos-

able γ.
(d) Show that for any α �= 0 the least indecomposable ordinal > α is αω.
(e) Show that an ordinal is indecomposable iff it is 0 or of the form ω(β) for some β.

6. An ordinal α is said to be critical if βα = α whenever 0 < β < α.
(a) Show that α is critical iff βγ = α⇒ (β = α or γ = α).
(b) Show that if β > 1, then the least critical ordinal > β is β(ω).

(c) Deduce that the critical ordinals are 0, 1, 2 and those of the form ω(ω(β)).

Notes

We have already mentioned how Cantor’s conception of ordinals developed
beyond that of mere notations when he conceived of the second number class,
but it was when he defined arithmetical operations on them that it was possible
to regard them as numbers. The basic theory outlined here is clearly described
in Cantor’s Beiträge (1895; 1897). A programme of research between then
and the 1930s by Hessenberg and others showed that a surprising amount of
number theory generalizes to the transfinite case. For the details see Sierpinski
1965.
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That a pure mathematical theory such as we have developed in this part of
the book might generate any philosophical perplexities is the sort of suggestion
that reduces many mathematicians to a mixture of impatience and despair. A
field of applied mathematics can have its own distinctive philosophical prob-
lems, right enough, because there may be a substantial question about what
it amounts to for it to model reality or how we can know that it does. But
in the case of pure mathematics, once we are satisfied at a mathematical level
that the theorems are correct, how can our theory raise any issues that are
not merely instances of the quite general ones that philosophy seeks to address
concerning mathematics as a whole?
What this retort misses, however, is the extent to which a theory such as the

one we have developed here is indeed part of applied mathematics. We have
given precise definitions to words — cardinality, larger, smaller — with whose
ordinary meanings we are already familiar. In application to finite sets we take
the theory to formalize the practice of counting which we have practised since
childhood. And — the crucial step — in application to infinite sets we take
the theory to be a natural conceptual extension of the finite case.
One measure of the success of this extension is that the material we have

presented in this part of the book is nowadays a commonplace in the toolkit
of most pure mathematicians.1 Another measure of success is that hardly
any mathematician now thinks the existence of infinite sets might be logically
inconsistent, or even incoherent. If some are finitists (and very few are), it is
because they are unconvinced by the positive arguments for the existence of
infinite sets, not because they think there is a negative argument which shows
that there are none.
It is hard to overstate what a radical shift this is in the mathematicians’ way

of conceptualizing what they do. Even if they do not really believe that every
real number is obtainable from Ø by transfinite iterations of the power-set
operation (as their deference to ZF as a framework would, if taken at face

1If the theory of ordinals is less well known than that of cardinals, it is because of the existence of
a device for avoiding them in many of their mathematical applications, popularized especially
by Bourbaki: see §14.5.



206 Conclusion to Part III

value, entail), they certainly believe — most of the time, at least — that the
real numbers form a set. Two hundred years ago no one thought that.
Yet this reconceptualization, while it vastly extends the scope of mathemat-

ics and provides us with new tools even in relation to very old problems, does
not of itself lead to revisions in classical mathematics, which seems to have
a content that is neutral as between the differing interpretations. ‘Water is
wet’ has some content which I, who know that it is (mostly) H2O, can grasp
in common with those who lived before Lavoisier was born; and in much the
same way there is a mathematical content which can be transmitted to me
from an 18th century mathematics book even if I do not enter wholly into
18th century modes of thought when I read it.
The reason for belabouring this point here is that it indicates how differ-

ences in the interpretation of a piece of mathematics can arise when there is
no mathematical dispute about its correctness. And this problem of interpreta-
tion is one which anyone studying the theory of cardinals and ordinals must
face.2 We have proved that 2ℵ0 > ℵ0. But is this true in the same sense that
4 > 2? From a narrowly formal perspective, of course, we can give a pos-
itive answer to this question, since both are instances of Cantor’s theorem.
But that only answers the question to the extent that the formalism in which
the common proof of the two inequalities is formulated has a sense. What
we really wanted was to be taught how to think about infinite sets, and the
answer which the theory urges upon us is that we should think of them, as far
as possible, as being just like finite sets. But how far is that? Analogy is one
of the most important tools in mathematical thought, but the analogy we are
dealing with here is one that we can be sure will at some point fail us.

2The consideration of large cardinal axioms, to which we shall turn in the last part of the book,
only makes this question even more pressing.
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Introduction to Part IV

The last two parts of the book have been almost entirely positive in charac-
ter: we have shown how to develop within our default theory ZU not only
traditional mathematics — arithmetic, calculus and (by extension) geometry
— but also Cantor’s theories of infinite numbers. But now we must revert to
the more uncertain tone of the first part in order to introduce some possible
additions to the default theory which we left undiscussed then.
The mere existence of axioms not yet included in the default theory will not

surprise anyone who adheres to the iterative conception of set. The axioms
we stated in part I guarantee the existence of levels

V0,V1,V2, . . . ,Vω,Vω+1,Vω+2, . . .

but say nothing as to the existence or non-existence of a level Vω+ω. And yet
the second principle of plenitude, which we used in chapter 4 to justify the
lower levels, seems to entail the existence of Vω+ω as well. Our first task, then,
will be to study propositions (known as higher axioms of infinity) asserting the
existence of this or higher levels in the hierarchy.
Higher axioms of infinity are responsible for many of the perplexities that

the iterative conception throws up, since it seems to force on us not merely
one such axiom but an endlessly growing hierarchy of them. We want to
know how many levels there are in the hierarchy, but any answer we give can
immediately be seen to be defective since there could be (and hence, according
to the second principle of plenitude, are) further levels beyond that. Each
case we meet is an instance of the by now familiar phenomenon of indefinite
extensibility writ very large.
What these axioms exhibit, then, is that there is a sort of incompleteness im-

plicit in the iterative conception itself. However, we have already encountered
examples of incompleteness that do not seem to be of quite this sort. Souslin’s
hypothesis, that a complete line in which every pairwise disjoint collection of
open intervals is countable must be a continuum, is independent of the axioms
of first-order set theory. But if there is a counterexample to the hypothesis, it
has cardinality at most 2ℵ0 and so is isomorphic to a counterexample whose
domain is of rank ω+1. Souslin’s hypothesis is therefore decided by the second-
order theory Z2. This is in stark contrast to the higher axioms of infinity just
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mentioned, which represent incompletenesses in the first- and second-order
theories indifferently.
However, the incompleteness exemplified by Souslin’s hypothesis marks no

mere inattention on our part in formulating the axioms: it is an inevitable
consequence of the decision to restrict our attention to theories which are
capable of being fully formalized. The reason for this, of course, is Gödel’s
incompleteness theorems, which show that in the language of any fully formal
set theory there is a sentence (known as a Gödel sentence) which is true but not
provable, assuming that the axioms themselves are true. If what is in question
is a first-order theory U such as we considered in part I, the formalization
Con(U ) of the claim that U is consistent will be a Gödel sentence.
So, for realists at least, it is inevitable that a first-order theory will not ex-

haust the claims about sets that we are, on reflection, prepared to accept as
true. (The response of formalists to incompleteness will evidently be somewhat
different, unless they can give an account of a notion of truth independent of
what follows from the axioms.)
The central difference between first- and second-order theories of sets lies,

as we noted in part I, in the fact that the first-order axiom scheme of separ-
ation falls far short of expressing all the instances of the second-order axiom
that the platonist would be willing to accept. The first-order axiomatization
therefore does not characterize the operation which takes us from one level
in the hierarchy to the next. Or, since the next level after V is V ∪ P(V ), it
amounts to much the same to say that the axiomatization fails to capture the
operation that takes a set to its power set.
One of the simplest ways in which this failure manifests itself is in relation

to the question of the cardinality of the power set. If card(A) = a, then
card(P(A)) = 2a, and we know from Cantor’s theorem that 2a is bigger than
a. But how much bigger? More precisely, are there any cardinals lying in
between? The answer to this question turns out to be independent of our
default theory. Even the most basic case with a = ℵ0, which is known as the
continuum problem because 2ℵ0 is the cardinal of the continuum, is not settled
by any of the first-order theories we have been discussing, and hence is an
instance of the same sort of incompleteness as Souslin’s hypothesis.
But by far the most important of the set-theoretic propositions not decided

by the axioms of our default theory is the axiom of choice, which asserts the
existence at each level in the hierarchy of a supply of sets with certain conveni-
ent properties. The mathematical importance of this axiom lies principally in
the large number of important propositions that have been shown to be unde-
rivable without it, and the large number of elegant propositions in disparate
areas of pure mathematics that have been shown to be equivalent to it. It has
also been important philosophically, because it has been the historical focus
for one of the central debates between platonists and constructivists over the
nature of mathematical existence.
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Orders of infinity

The theory of levels that we developed in chapter 3 was wholly neutral as
to how many levels there are in the hierarchy, since it was based solely on
the axiom scheme of separation. Only in chapter 4 did we add assumptions
— the axioms of creation and infinity — which can be thought of as saying
that the hierarchy extends to a certain height. But there are evidently other
ways of extending the theory so as to assert that the hierarchy goes to other
heights. We shall call such assertions axioms of infinity. Typically they can be
put in the form of a claim that the level Vα exists for certain ordinals α: the
axiom of infinity we stated in §4.9 asserts that Vω exists and hence counts as
an axiom of infinity in this new sense. We shall not attempt to give a precise
characterization of what constitutes an axiom of infinity, and indeed we shall
see shortly that no formal characterization of the scope of the term is possible.
Notice, however, that on our intended meaning axioms of infinity can be
ordered according to strength in a natural way. Let us say that a formal theory
U ′ which extends the theory of levels is strictly stronger than another extension
U if we can prove in U ′ the existence of a level V such that (V,∈) is a model
of U . It is not hard to persuade oneself that there is no limit to the strength,
in this sense, of the axioms of infinity that can be devised. What will interest
us in this chapter is rather whether there is a limit to the strength of axioms of
infinity that are true and, if so, what it is.
But before we go into that question, we should consider how it relates to

the at first sight much less abstract questions of quotidian interest to math-
ematicians. The connection arises because of the fact, familiar from recursive
function theory, that if T is a formal theory, there is a sentence Con(T ) in
the language of arithmetic which can be read via some coding as expressing
the consistency of T , but which can also, like any arithmetical sentence, be
interpreted set-theoretically as saying something about the set ωωωω. And if U ′ is
strictly stronger than U , we can expect to be able to prove in U ′ that Con(U )
is true about ωωωω; but, by Gödel’s incompleteness theorem, we cannot prove this
in U .
It is hardly surprising, of course, that there is a set-theoretic claim provable

in U ′ but not in the weaker theory U : what is significant is that it is an ele-
mentary arithmetical one; i.e. it is obtained from a sentence in the first-order
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language of arithmetic simply by interpreting the quantifiers in that sentence
as ranging over ωωωω. In fact, we can say more: the Gödel sentence Con(U )
is Π1, i.e. expressible in the form (∀x) f (x) = 0 for some primitive recursive
function f . (Gödel himself sometimes described such sentences as being ‘of
Goldbach type’ because the celebrated problem of number theory known as
Goldbach’s conjecture is expressible in this form.)
The pattern, then, is that whenever we add a stronger axiom of infinity to

our set theory (i.e. stronger in the sense just enunciated), we also extend the
range ofΠ1 sentences of arithmetic that we can prove to be true in ωωωω. This is a
graphic illustration of the fact, already noted, that the set of natural numbers
is defined within our system by means of a first-order approximation to a
full second-order characterization. It is defined, that is to say, by requiring
that no subset of ωωωω should be a counterexample to the induction property;
but because of the limitations of the first-order language in which we have
presented the theory, this can only mean that no subset definable in the language
of the theory is a counterexample. If we strengthen the axiom of infinity, we
enlarge the range of sets that are definable, constraining further the definition
of ωωωω and hence increasing the range of arithmetical sentences that are true in
all interpretations.
There is nothing special about the natural numbers in this regard, however.

We focus on them as the simplest (and hence perhaps the most troubling) case,
but we can expect the phenomenon to occur for any other infinite structure
(the real line, for example) which we present by means of a categorical charac-
terization, since any such characterization is second-order, and its first-order
approximation will therefore have its interpretation constrained in the man-
ner just mentioned by any strengthening of the axiom of infinity.

13.1 Goodstein’s theorem

The work we did in chapter 5 gives us a proof in ZU that PA has a model. This
can be formalized to generate a proof in ZU that the Gödel sentence Con(PA)
is true in ωωωω, although not provable in PA. But what is Con(PA)? Gödel’s proof
is constructive, so if we want an answer to this question, all we have to do is
to choose an explicit numerical coding of the language of arithmetic and then
follow through the details to obtain the Gödel sentence explicitly. We know
that it will have the overall form (∀x) f (x) = 0, but beyond that there is no
reason to expect it to be intrinsically interesting.
Our proof in ZU that the Gödel sentence is true, i.e. that (∀n ∈ ωωωω) f (n) = 0,

depends on knowing the coding, since it is via the coding that the sentence can
be read as expressing something we have the means to prove in ZU, namely
that PA is consistent. Different codings will give different Gödel sentences,
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and if I presented you with the sentence without telling you the coding I had
used to obtain it, you would have no privileged route to finding a proof of it.
Indeed there is no reason to expect the sentence to be simple enough to be
remotely memorable, so it is unlikely that I could even persuade you to be
interested in finding the proof. In short, the Gödel sentence is neither natural
nor genuinely mathematical.
There is therefore, at least from a practical psychological perspective, some

interest in the question whether we can find an explicit example of an incom-
pleteness in PA that is not only natural (i.e. independent of any coding) but
also, if possible, genuinely mathematical. It turns out that the work on ordinal
arithmetic which we carried out in the last chapter puts us in a position to
produce such an example.
Recall our demonstration at the end of the last chapter that every natural

number r has an expression, called its complete normal form to the base n, in
which no number > n appears. If we replace n in this expression with n + 1,
evaluate the natural number so described, and then subtract one from the an-
swer, we obtain a natural number which we shall denote Fn(r). For example,

2350 = 37 + 34. 2 + 1 = 33.2+1 + 33+1. 2 + 1,

which is a complete normal form to the base 3, and so

F3(2350) = 44.2+1 + 44+1. 2.

Similarly,
8192 = 213 = 22

3+22+1 = 22
2+1+22+1,

which is a complete normal form to the base 2, and so

F2(8192) = 33
3+1+33+1 − 1.

In general the function Fn thus defined is primitive recursive. We now use
these functions Fn to obtain, for any natural number m as starting point, what
we shall call the Goodstein sequence of m.

Definition. The Goodstein sequence (g(m, n))n�1 starting from a natural
number m is defined recursively as follows:

g(m, 1) = m

g(m, n + 1) = Fn+1(g(m, n)).

The Goodstein sequence starting from m is thus

m, F2(m), F3(F2(m)), F4(F3(F2(m))), . . .
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Expressed less compactly but perhaps more comprehensibly: the first term of
the Goodstein sequence is m; and once the nth term has been calculated, the
(n + 1)th is obtained by expressing the nth in complete normal form to the
base n + 1, changing all the occurrences of n + 1 in this expression to n + 2,
and subtracting 1 from the result.
What we are interested in is the behaviour of Goodstein sequences for dif-

ferent starting points. The Goodstein sequence starting at 2 is trivial, termin-
ating at the 4th step.

g(2, 1) = 2;
g(2, 2) = 3− 1 = 2;
g(2, 3) = 1;
g(2, 4) = 0.

And the sequence starting at 3 terminates at the 6th step.

g(3, 1) = 3 = 2 + 1

g(3, 2) = 3

g(3, 3) = 4− 1 = 3

g(3, 4) = 2

g(3, 5) = 1

g(3, 6) = 0.

But the very next case is somewhat different. Although the sequence starting
at 4 does not increase very rapidly, after a while it does become quite large.

g(4, 1) = 4 = 22

g(4, 2) = 33 − 1 = 26 = 2. 32 + 2. 3 + 2

g(4, 3) = 2. 42 + 2. 4 + 1 = 41

g(4, 4) = 2. 52 + 2. 5 = 60

g(4, 5) = 2. 62 + 2. 5 = 83

g(4, 6) = 2. 72 + 7 + 4 = 109

g(4, 7) = 2. 82 + 8 + 3 = 139

. . .

g(4, 96) = 11, 327

. . .

And for only slightly larger starting points the numbers become more than
astronomical in astonishingly few steps. The sequence for 51, for instance,
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starts as follows.

g(51, 1) = 51 = 22
2+1 + 22

2
+ 2 + 1

g(51, 2) = 33
3+1 + 33

3
+ 3 ∼ 1013

g(51, 3) = 44
4+1 + 44

4
+ 3 ∼ 10155

g(51, 4) = 55
5+1 + 55

5
+ 2 ∼ 102185;

g(51, 5) = 66
6+1 + 66

6
+ 1 ∼ 1036,306

g(51, 6) = 77
7+1 + 77

7 ∼ 10695,975

g(51, 7) = 88
8+1 + 88

8 − 1 ∼ 1015,151,337

. . .

The question this raises is whether a Goodstein sequence with arbitrary
starting point eventually terminates at 0. As we have just seen, the sequence
starting at 3 terminates in 6 steps. But direct calculation is of no help whatever
in any larger case than this: whether the Goodstein sequence starting at 4
eventually terminates cannot be determined by actually calculating all the
terms, since even after 1030 terms, which is far more than we can feasibly
calculate, all that is apparent from the numbers alone is that the sequence is
continuing to increase.
Nevertheless, it does eventually terminate, and so does every other Good-

stein sequence. It is a very striking illustration of the power of the technique of
ordinal notations that we can use it to give a quick proof of this. The trick is to
form from any Goodstein sequence a parallel sequence of ordinals, which we
shall call the Goodstein ordinal sequence, obtained by changing all the occurrences
of n + 1 into ω rather than n + 2.
In order to express this formally, let us first write δn(r) for the ordinal ob-

tained by expressing natural number r in complete normal form to the base
n and then replacing each n in this expression with ω. It is easy to see that
δn(r) < ε0 and that

if r < s then δn(r) < δn(s). (1)

Moreover,
δn+1(Fn(r) + 1) = δn(r). (2)

The Goodstein ordinal sequence of a natural number m is then defined to be
the sequence of ordinals

γ(m, 1), γ(m, 2), γ(m, 3), . . .

where

γ(m, n) =
{
δn+1(g(m, n)) if g(m, n) �= 0
0 if g(m, n) = 0.
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Thus, for example, the Goodstein ordinal sequence of 3 looks like this:

γ(3, 1) = ω + 1;
γ(3, 2) = ω;
γ(3, 3) = 3;
γ(3, 4) = 2;
γ(3, 5) = 1;
γ(3, 6) = 0.

And the Goodstein ordinal sequence of 51 begins as follows:

γ(51, 1) = ωωω+1 + ωωω

+ ω + 1;
γ(51, 2) = ωωω+1 + ωωω

+ ω;
γ(51, 3) = ωωω+1 + ωωω

+ 3;
γ(51, 4) = ωωω+1 + ωωω

+ 2;
γ(51, 5) = ωωω+1 + ωωω

+ 1;
γ(51, 6) = ωωω+1 + ωωω ;

. . .

In these two instances we observe that the Goodstein ordinal sequences are
strictly decreasing from the very start. And in fact that is always the case.

(13.1.1) Lemma. If g(m, n − 1) �= 0, then γ(m, n) < γ(m, n − 1).
γ(m, n) = δn+1(g(m, n))Proof .

= δn+1(Fn(g(m, n − 1))) if g(m, n − 1) �= 0

< δn+1(Fn(g(m, n − 1)) + 1) by ((1))
= δn(g(m, n − 1)) by ((2))
= γ(m, n − 1).

From this lemma the result we want follows at once.

(13.1.2) Theorem (Goodstein 1944). (∀m ∈ ωωωω)(∃n ∈ ωωωω)(g(m, n) = 0).

Proof . Suppose on the contrary that there is a natural number m such that
g(m, n) �= 0 for all n ∈ ωωωω. Then

γ(m, 1), γ(m, 2), γ(m, 3), . . .

is an infinite strictly decreasing sequence of ordinals less than ε0, contradicting
the fact that the set of ordinals less than ε0 is well-ordered.

Another way of expressing this result is via the following definition.
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Definition. The Goodstein function G is defined by letting G(m) be the
least natural number n such that g(m, n) = 0.

Goodstein’s function is obviously partial recursive, which is to say that there
is in principle a mechanical method for calculating its value whenever it is
defined: one merely calculates the relevant Goodstein sequence until it ter-
minates, and then counts the number of steps. What is not obvious, and is
supplied by Goodstein’s theorem above, is the information that the function
G is everywhere defined, i.e. that it is total recursive. But it increases with
quite awesome rapidity:

G(1) = 2, G(2) = 4, G(3) = 6, G(4) ∼ 10121,210,694.

And it is this rapidity of growth that makes the function relevant to our pur-
poses here. An analysis of the form of proofs in PA can be used to show
that there is a limit to the rapidity of growth of any recursive function which
can be proved to be total in PA; moreover, the Goodstein function G ex-
ceeds this rate of growth. So although G is total recursive, the fact that it is is
not provable in PA (see Kirby and Paris 1982). In other words, the sentence
(∀x)(∃y)g(x, y) = 0 in the first-order language of arithmetic is an example of
an incompleteness in PA, a sentence which is true in ωωωω but not provable in PA.
It is undoubtedly natural, in contrast to the Gödel sentence, since it does not
depend on any arbitrary choice of coding. But further, it is plainly possible to
argue that it is genuinely mathematical: it does not seem implausible that one
might become interested in whether it is true independently of its role as an
instance of incompleteness.
It is worth noting, incidentally, that although the Goodstein sentence is not

provable in PA, any instance of it is. This is because an instance is Σ1, and any
true Σ1 sentence is provable in PA. (If the sentence (∃x) f (x) = 0 is true in ωωωω,
then there exists a natural number n such that f (n) = 0: the calculation which
shows this, followed by an application of existential generalization, constitutes
a proof in PA of the original sentence.)
In order to obtain a mathematical incompleteness in PA, we have had to

pay a price in logical complexity: the Gödel sentences mentioned earlier were
Π1, i.e. of the form (∀x) f (x) = 0, whereas the Goodstein sentence is Π2, of
the form (∀x)(∃y) f (x, y) = 0. The importance of this difference emerges
when we consider them in the light of Hilbert’s programme. Suppose that I
am committed to the truth of PA: in that case a proof in PA of an arithmetical
sentence certainly gives me a straightforward reason to believe that it is true.
But suppose now that I am given a set theory U extending PA and believe not
that it is true but only that it is formally consistent. Does a proof in U of the
arithmetical sentence give me any reason to believe it?
If the sentence Φ which we have proved in U is Π1, then it does. For if

Φ were false, its negation would be a Σ1 truth about ωωωω: it would therefore
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(as we noted earlier) be provable in PA and hence in U , contradicting the
consistency of U . (Even if we had two incompatible— i.e. mutually inconsistent
— but individually consistent extensionsU1 andU2 of PA, the Π1 arithmetical
consequences of both theories would all be true.)
If, on the other hand, the sentence proved in U is Σ1 (or a fortiori if it is Π2,

as in the case of Goodstein’s theorem), we cannot argue in this fashion. For
if Φ is any true Π1 sentence not provable in PA (e.g. a Gödel sentence), its
negation is a false Σ1 sentence which is consistent with PA and hence provable
in some consistent set theory extending PA.

13.2 The axiom of ordinals

For which ordinals α does the αth level Vα exist? The level Vω exists by the
axiom of infinity. Hence, by the axiom of creation, so do the levels Vω+1, Vω+2,
etc. But the axioms of ZU do not entail that there is a second limit level Vω+ω.
Ought we then to add another axiom to our system to ensure that this level
exists? Let us denote by ZfU and Zf the extensions of ZU and Z respectively
obtained by adding the following axiom.

Axiom of ordinals. For each ordinal α there is a corresponding level Vα.

The effect of this axiom is to strengthen the axiom of infinity by ensuring the
existence of many further levels Vα with α � ω + ω, one for each ordinal
α whose existence we could prove in ZU. However, the effect of the axiom
on the height of the hierarchy is very much amplified beyond this because
the ordinals are not an independent measure of calibration but an integral
part of the theory: the existence of the new levels just mentioned ensures
the existence of further ordinals α that were not previously available, and the
axiom of ordinals applied to them guarantees the existence of corresponding
levels Vα. And so on. The hierarchy described by the new theory is therefore
colossally higher than anything we could have countenanced before.
One fruit of the extra headroom which ZfU affords is that it permits an

elegant characterization of the structure of the membership relation on the
pure transitive sets. This characterization, which is known as Mostowski’s
collapsing lemma, is a very useful tool for studying the iterative hierarchy, and
for that reason set theorists will regard ZfU as a more attractive theory than
ZU. (Of course, the pure hierarchy described by Zf is from this point of view
more attractive still, because it does not have any non-set-theoretic objects to
complicate its properties.) We should not under-estimate the extent to which
axiom selection is influenced by set theorists themselves, who want an elegant
structure to study. We saw earlier how much of the initial motivation for
the axiom of foundation was of this sort, and similar considerations evidently
count in favour of systems such as Zf.
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Let us also note here another consequence of the axiom of ordinals (al-
though one that will be more important when we discuss the standard ax-
iomatizations of set theory in appendix A than in the current context): the
axiom of ordinals permits the theory of ordinals to be developed using a quite
different idea from the one we employed in chapter 11. Let us give the name
von Neumann ordinals to the sets α′ defined by transfinite recursion as follows:

0′ = Ø

(α + 1)′ = α ∪ {α′}
λ′ =

⋃
α<λ

α′ for any limit ordinal λ.

The idea we want to consider is that we could have used the von Neumann
ordinals instead of ordinals in the formal treatment. The key point is that if
the theory we are working in is ZU, this idea is stillborn because ρ(α′) = α: in
ZU we cannot prove the existence of a level Vω+ω and hence cannot prove the
existence of the corresponding von Neumann ordinal (ω+ω)′. So there are not
enough von Neumann ordinals to give us a workable theory. In ZfU, on the
other hand, things are different: we can prove that the von Neumann ordinal
α′ exists for every ordinal α, and hence can, if we wish, use von Neumann
ordinals as proxies for the ordinals.
There would obviously be no practical advantage to be gained from doing

this unless we could develop the theory of von Neumann ordinals independ-
ently by defining them directly without using recursion on the standard ordin-
als, but this can in fact be done quite easily. The autonomous definition of a
von Neumann ordinal is as follows.

Definition. A von Neumann ordinal is a transitive set A such that ∈A is a
transitive relation on A.

When we decouple von Neumann ordinals from the definition by recursion in
this manner, we discover that this autonomous theory of ordinals works very
smoothly, mainly because of the elegant fact that

α < β⇔ α′ ∈ β′.
We shall not go through the details, which may be found in almost any set
theory textbook: suffice it to say that this definition does correctly characterize
the sets that we want. In summary, then, we could if we wished develop the
theory of ordinals using the von Neumann definition, as long as we assumed
the axiom of ordinals.
What reason do we have, though, to believe our new axiom? If von Neu-

mann’s theory of ordinals were the only one available, that would give us a
sort of regressive reason to believe the axiom. And this is certainly of some
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historical importance, since the possibility of the alternative theory of ordinals
presented in part III was not discovered until the 1950s and did not really
become widely known until some time later. So in the 1920s the evident use-
fulness of ordinals in proving mathematical theorems might have seemed to
give the axiom of ordinals strong support.
In the context of ZU, however, this hardly provides much support for the

axiom once we see that another treatment, which does not require the ax-
iom, is available. There is a general moral here. Regressive arguments for
any set-theoretic axiom depend on a prior belief in the mathematical truth of
some consequences of the axiom, but the fact that they are consequences of
it depends in turn on an embedding of part of mathematics in set theory: a
different embedding may not require the same axiom, and so the regressive
justification is relative to the embedding. It is of interest, therefore, to enquire
into whether the axiom of ordinals has any mathematical consequences that
are less dependent on our choice of embedding.
We showed in part II that two of the structures of central interest to math-

ematicians, the natural numbers and the real numbers, can be modelled by
structures of low infinite rank in the hierarchy: to be precise, there is a set of
rank ω that will serve for the set of natural numbers, and one of rank ω + 1
that will do for the real numbers. Of course, we need not just these sets but
the familiar relations and functions defined on them, which will be of slightly
higher rank. Then, in order to do ordinary mathematics, we shall want to
define other functions which may be of slightly higher rank still.
Some parts of mathematics are often said to be more abstract than oth-

ers. Functional analysis, for instance, is more abstract than the calculus of
functions of one real variable. This use of the word ‘abstract’, which is quite
familiar to most mathematicians, seems to be represented quite well by the
ranks of the objects referred to in this set-theoretic modelling of the parts of
mathematics in question: functional analysis is more abstract than the calcu-
lus because the objects it deals with are modelled by sets of higher rank.
One of the trends we can trace in the development of mathematics, espe-

cially during the 20th century, is a move towards greater abstractness in the
sense just defined. Nevertheless, the overwhelming majority of 20th century
mathematics is straightforwardly representable by sets of fairly low infinite
ranks, certainly less than ω + 20. So although the Gödelian considerations
alluded to earlier tell us that there are sentences in the language of arith-
metic, such as Con(ZU), that are provable with the axiom of ordinals but
not without, there is once again a further question whether there are any ex-
amples that might count as genuinely mathematical in the sense in which we
have been using that term, i.e. as being of interest to mathematicians who are
not set theorists.
In fact there are. We proved in §7.5 that the game on every open, closed,

countable or co-countable subset of the Baire line is determined. It is very
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natural, having proved these results, to wonder what larger class of games
is determined. One obvious class to consider in this connection is the Borel
sets, i.e. the sets obtainable from the closed and open subsets of the line by
taking countable unions and complements as often as we wish, and this is
the case which turns out to supply us with an example of a mathematical
incompleteness in ZU: it can be proved in ZfU (Martin 1975), but not in ZU
(Friedman 1971), that the game on every Borel set is determined.
On its own, of course, this does not give us a regressive argument for the

truth of the axiom of ordinals: for that we would have to have an independent
reason to believe that the game on every Borel set is determined. What it does
supply, however, is an extrinsic reason for mathematicians to be interested in
the axiom, since it demonstrates that the axiom of ordinals has consequences
in the theory of games on Borel sets, which no doubt deserves to be regarded
as a genuine branch of mathematics, rather than merely within set theory it-
self. Moreover, the result is especially striking, since it seems to be the sort
of claim that one might formulate quite independently of any search for sen-
tences whose proofs make essential use of higher axioms of infinity.
On the other hand, a claim about Borel sets is not the ideal example to

impress mathematicians generally: the branch of mathematics which studies
the properties of such sets — descriptive set theory — is, as its name might
suggest, practised largely by set theorists themselves. Friedman has more re-
cently turned his attention to number theory and devised methods for gener-
ating various sentences whose proofs involve differing degrees of abstractness.
Although these are certainly natural, i.e. independent of coding, one might
question whether those that have been published so far are genuinely math-
ematical. There therefore remains room for scepticism about the relevance of
the axiom of ordinals to mathematical practice. The turning point, of course,
would be a genuine conjecture of number theory — one made by a number the-
orist — whose proof turned out to require higher-order methods, but to date
no such example has been found.

13.3 Reflection

If the relevance of the axiom of ordinals to the practice of mathematics is still
very limited, and if the regressive support it gains from the few applications
that have been discovered is negligible, the principal argument for it must be
intuitive. The most obvious such argument is that there is no good reason
why the hierarchy should not extend beyond Vω+ω, and so by some version of
the second principle of plenitude we conclude that it does so extend. In this
section I want to investigate whether this intuitive argument, or an extension
of it, can be made to justify an even stronger class of axioms of infinity known
collectively as the axiom scheme of reflection. They are intended to capture
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the idea that every property of the whole universe is reflected in some sub-
universe.

Axiom scheme of reflection. For each formula Φ with free variables
x1, x2, . . . , xn this is an axiom:

(∀x1, . . . , xn)(∃V )(Φ ⇒ Φ(V )).

This axiom is to be read, of course, according to the convention of §3.4, which
has fallen dormant but is hereby revived for the remainder of this section, that
the letters V , V ′, etc. range only over levels. So the axiom asserts the existence
of a level V such that Φ ⇒ Φ(V ); this level is said to reflect the formula Φ. The
system whose only axioms are the instances of the schemes of separation and
reflection is denoted ZFU; its pure variant is denoted ZF. We can illustrate
how the axiom scheme of reflection is employed in practice by proving the
axioms of infinity, creation and ordinals from it.

(13.3.1) Proposition (ZFU). There exists a level.

Proof . Reflection on any sentence whatever shows that there is at least one
level.

(13.3.2) Proposition (ZFU). For every level there is another level after it.

Proof . If V is any level, use reflection on the fact that (∃a)(a = V ) to obtain
(∃V ′)(∃a ∈ V ′)(a = V ), i.e. (∃V ′)(V ∈ V ′).

(13.3.3) Proposition (ZFU). There exists a limit level.

Proof . From proposition 13.3.2 we obtain

(∀a)(∃V )(a ∈ V ).

Reflection on this gives us a level V ′ such that

(∀a ∈ V ′)(∃V ∈ V ′)(a ∈ V ).

(13.3.4) Proposition (ZFU). For every ordinal α the level Vα exists.

Proof . By induction on α. The case α = 0 is already taken care of by pro-
position 13.3.1, and the case of a successor ordinal follows from proposition
13.3.2. So suppose now that λ is a limit ordinal and Vα exists for all α < λ. So
there exists a level V which reflects this, i.e. Vα ∈ V for all α < λ. It follows
that Vλ = ⋃

α<λVα exists as required.

In summary, then, we have shown that ZFU is at least as strong as ZfU. In
fact, it is stronger: the following theorem (or, to be strict, theorem scheme) is
provable in ZFU but not in ZfU.
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(13.3.5) Proposition (ZFU). If τ is a term, then

(∀a)((∀x ∈ a)(τ(x) is a set) ⇒ {τ(x) : x ∈ a} is a set).
Proof . Suppose that a is a set. Then by reflection on

(∀x ∈ a)(∃y)(y = τ(x))

we obtain a level V � V(a) such that

(∀x ∈ a)(∃y ∈ V )(y = τ(x)),

from which it follows that {τ(x) : x ∈ a} is a subset of V .

Indeed, ZFU is not merely stronger than ZfU, but much stronger: no consist-
ent extension of ZU by a finite number of axioms can give us a theory of the
strength of ZFU (Montague 1961). If reflection is so strong, then, why should
we believe it? As we have noted, regressive arguments for the axiom of or-
dinals are already very weak. When we get to reflection, they become weaker
still. The likelihood that we would need something stronger than the axiom of
ordinals in order to prove a result we already had other reasons for believing
true seem slim indeed. The best we could hope for in this direction might be
a weaker extrinsic argument, perhaps to the effect that the theory with full
reflection is more convenient or more elegant than the theory without it.
We have seen that the axiom of ordinals can easily be put in the form of a

particular instance of the reflection scheme, so there is some prospect that any
intuitive argument we have for the axiom of ordinals might apply more gen-
erally to all the other instances. The most prominent example of this strategy
is an argument of Gödel, who is reported by Wang (1974, p. 536) as observing
that it

does not have the same kind of immediate evidence (previous to any closer analysis of
the iterative concept of set) which the other axioms have. This is seen from the fact
that it was not included in Zermelo’s original system of axioms. [Gödel] suggests that,
heuristically, the best way of arriving at it from this standpoint is the following. From
the very idea of the iterative concept of set it follows that if an ordinal α has been
obtained, the operation of power set P iterated α times leads to a set Pα(Ø). But, for
the same reason, it would seem to follow that if, instead of P, one takes some larger
jump in the hierarchy of types, . . .Qα(Ø) likewise is a set. Now, to assume this for
any conceivable jump operation (even for those that are defined by reference to the
universe of all sets or by use of the choice operation) is equivalent to the axiom.

What is most interesting about this argument is that it attempts to justify an
axiom scheme by generalizing from an argument for a particular instance. In
other words, it does not conform to the pattern we met in part I, where axiom
schemes such as separation were seen as gaining their justification from our
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prior belief in the second-order axioms to which they were (poor) approxima-
tions.
But the form of the axiom scheme of reflection suggests that this difference is

inevitable, since the reflection of a formula by a level is an inherently syntactic
notion that is highly sensitive to the form of expression used. Indeed, even
the consistency of the reflection scheme (never mind its truth) is sensitive to
the forms of expression available in the language. The platonist presumably
believes that the universe of sets has some height or other, whether or not
we can express it. But if we could express in absolute terms what the height
is, and apply reflection to that expression, we would obtain a level within the
universe with the very same height, contrary to our intentions. In the context
of our formal theory, of course, this serves to remind us that the height of the
hierarchy is, in a certain sense, inexpressible from within. But it also suggests
that a careless generalization of the reflection scheme might turn out to be
inconsistent. And this danger has been confirmed: third-order reflection in its
apparently most natural formulation is inconsistent (Tait 1998).
It follows, therefore, that any argument for the reflection scheme will have to

be sensitive to distinctions of level concerning what can be expressed. Some-
thing of this may be traced in Cantor’s idea that the universe of sets in some
way represents the Absolute, and hence that it would be a sort of blasphemy
to suppose that a finite being can express it. This sort of thought has been
popular in theology: according to St Gregory, for instance, ‘no matter how
far our mind may have progressed in the contemplation of God, it does not
attain to what He is but only to what is beneath Him’. But work would evid-
ently be required to establish that the class of all sets is in the relevant sense a
representation of Him.
A non-theological argument for reflection has been offered by Fraenkel

et al., who suggest that

when we try to reconcile the image of the ever-growing universe with our desire to talk
about the truth or falsity of statements that refer to all sets we are led to assume that
some temporary universes are as close an ‘approximation’ to the ultimate unreached
universe as we wish. In other words, there is no property expressible in the language of set
theory which distinguishes the universe from some ‘temporary universes’. (1958, p. 118,
latter emphasis mine)

In other words, the fact that our attempts at justifying reflection have been
syntactic generalizations from particular instances is not accidental but is an
inevitable consequence of the nature of the reflection scheme. But in that case
it seems likely that any such justification will have a distinctly constructivist
spin. A direct argument in support of reflection based on a platonistic under-
standing of the iterative notion of set would indeed be ‘a coup’ (Aken 1986,
p. 1001), but for the reason just stated the prospects for such an argument are
poor.
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13.4 Replacement

Let us consider now an alternative strategy for justifying the reflection scheme
which stems from a technical result concerning the following scheme.

Axiom scheme of replacement. If τ(x) is any term, this is an axiom:

(∀x ∈ a)(τ(x) is a set) ⇒ {τ(x) : x ∈ a} is a set.
We have already shown in proposition 13.3.4 that every instance of this
scheme is a theorem of ZFU. But the technical result I want to consider is
the converse of this: if we let ZFUr be the theory whose axioms are those of
ZU together with the axiom scheme of replacement, then we can prove reflec-
tion in ZFUr .

(13.4.1) Theorem (ZFUr ). If Φ is any formula, then

(∃V )(Φ ⇒ Φ(V )).

Proof . Every first-order sentence is logically equivalent to a prenex sentence,
i.e. one of the form

Q1x1Q2x2 . . . Qn xnΨ(x1, . . . , xn),

where each Qr is either ∃ or ∀ and Ψ is quantifier-free. So we may assume
without loss of generality that Φ is already of this form. Write Ψr as an abbre-
viation for

Qr+1xr+1Qr+2xr+2 . . . Qn xnΨ(x1, . . . , xn),

so that Ψn is Ψ and Ψ0 is Φ itself. For 1 � r � n, if Qr is an existential
quantifier, let Vr(x1, . . . , xr−1) be the lowest level V such that

(∃xr)Ψr (x1, . . . , xr) ⇒ (∃xr ∈ V )Ψr(x1, . . . , xr);
and if Qr is a universal quantifier, let Vr(x1, . . . , xr−1) be the lowest V such
that

(∃xr)notΨr (x1, . . . , xr) ⇒ (∃xr ∈ V )notΨr(x1, . . . , xr ).

For any level V , let fr (V ) be the earliest level containing Vr(x1, . . . , xr−1) for
all x1, . . . , xr−1 ∈ V (which exists by replacement), and let

f (V ) = f1(V ) ∪ f2(V ) ∪ · · · ∪ fn(V ).

Now let

V 0 = V0
V p+1 = f (V p)

V ω =
⋃
p∈ωωωω

V p.
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Then V ω is a limit level. Suppose now that x1, . . . , xn ∈ V ω. Then
x1, . . . , xn ∈ V p for some p ∈ ωωωω, and so if 1 � r � n, then

Vr (x1, . . . , xr−1) ∈ V p+1 ∈ V ω.

It follows by the definition of the Vr that

(Qr xr)Ψr(x1, . . . , xr) ⇔ (Qr xr ∈ V ω)Ψr(x1, . . . , xr ).

Now Ψn has no quantifiers, so trivially

Ψn(x1, . . . , xn) ⇔ Ψ(V ω)
n (x1, . . . , xn).

Hence successively

Ψr(x1, . . . , xr ) ⇔ Ψ(V ω)
r (x1, . . . , xr)

for all x1, . . . , xr ∈ V ω. In the case where r = 0 we obtain

Φ ⇔ Φ(V ω),

whence the result.

This technical result thus offers us the prospect of a wholly different route to
an intuitive justification for ZFU: instead of trying to justify reflection directly,
we could concentrate on trying to justify replacement and then use the result
just mentioned to derive reflection as a theorem. In this connection it is worth
noting a feature of the proof of reflection that marks it out as unusual. The
reflection principle is, of course, strictly speaking not a single theorem but
a theorem scheme. This is not the first such scheme we have come across,
but in all our previous encounters with the genre the schematic formula has
occurred throughout the proof unanalysed: just as the scheme . . .Φ . . . we
are trying to prove consists of instances of a second-order formula . . . X . . . ,
so the proof of the scheme has consisted of instances of a second-order proof
involving the variable X . The proof we have just given of reflection, however,
does not fall into this pattern at all: the proof strategy for each instance of
the scheme depends on the logical complexity of the instance of Φ occurring
in it, and so it cannot be represented as an instance of a second-order proof.
We saw earlier that reflection is unusual because we cannot justify it just by
viewing it as a restriction of a single second-order axiom: the feature we have
just noted is powerful confirmation of this.
In this respect reflection differs from replacement, which can be viewed as a

special case of a single second-order axiom.

Axiom of replacement. (∀F)(∀a)(a is a set ⇒ {F(x) : x ∈ a} is a set.1
1This is second-order because the first quantifier is intended to range over all functions in the
logical sense.
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So if we can find an argument for this second-order principle, we can then
assert the first-order scheme as an approximation to it, on the same pattern
as our justification of separation in chapter 3. The platonist, in particular,
might regard this as a more plausible strategy, since it avoids the difficulty we
faced at the end of the last section: that a justification for reflection has to be
sensitive to the limits of what can be described, and hence seems inevitably to
have a constructivist slant.

13.5 Limitation of size

But even if our new strategy is more plausible for the platonist, it is still very
problematic. The argument that has most often been advanced to support
the second-order replacement principle, and hence derivatively the first-order
replacement scheme, is of a wholly different sort from the motivation for the
iterative conception which we discussed in chapter 3. This new sort of mo-
tivation is known as limitation of size. We group together under this heading
those principles which classify properties as collectivizing or not according to
how many objects there are with the property. The origins of such principles
are quite old: Cantor outlined a theory based on them during the 1890s, for
example, although he did not publish it and communicated it only in letters
(to Hilbert in 1897 and Dedekind in 1899). And Russell (independently, one
assumes) sketched another such theory, under the description ‘limitation of
size’, in his 1906a discussion of possible solutions to the paradoxes. The the-
ory Russell eventually settled on does not owe anything to limitation of size,
however, and little seems to have been made of the idea for some years there-
after; but from the late 1920s it gained popularity, perhaps because of the
advocacy of von Neumann. The result of this was that it entered the con-
sciousness of mathematicians, from which it has yet to be wholly dislodged. It
lives on, for example, in the practice of calling a mathematical entity (such as
a category) ‘small’ if it is a collection.
In discussing limitation of size it will be helpful to follow Boolos (1989) in

distinguishing two variants, weak and strong.

Weak limitation-of-size principle. If there are no more Fs than Gs and the
Gs form a collection, then the Fs form a collection.

Strong limitation-of-size principle. A property F fails to be collectivizing iff
there as as many Fs as there are objects.

What these two principles have in common is the idea that there is a limit to
the size of a collection. The strong principle evidently implies the weak but
not conversely, since the weak principle allows the possibility that the limit on
size might fall short of the size of the universe. When we come to examine the
details of the argument for limitation of size, there is, as one might expect, a
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substantial difference between the platonist and constructivist accounts. We
shall consider what the constructivist has to say first, as it seems rather more
straightforward.
The constructivist’s motivation for affirming the limitation-of-size principle,

weak or strong, is that there are limits on how many objects can form a collec-
tion — limits which result from constraints on our ability to comprehend the
objects to be collected. Let us follow Cantor in calling a cardinality absolutely
infinite if it is too large for that number of objects to be collected together. It
is easy to see how the very attempt to collect so many things together could
be presented as an instance of that recurrent theme of human folly — hubris
in the face of the incomprehensible. Such a view is very old — it is a com-
monplace among the Greeks — and Cantor espoused it with enthusiasm in
the argument he gave for the weak limitation-of-size principle. The differ-
ence was that ancient authors had identified the Absolute with the infinite,
whereas Cantor now proposed to split them apart so that on his account there
would be cardinalities which are infinite but not absolutely infinite (hence are
comprehensible by human thought).
Any theological argument for a mathematical principle will strike many

modern eyes as something close to a category mistake, and we are entitled
to wonder whether a different argument is available. What we need from
the constructivist is more detail on what is involved in comprehending some
objects as a collection. It cannot be merely a matter of understanding the
property they share, since we presumably understand the property of self-
identity even though the view requires us to deny that we can form a collection
containing everything which has this property. Perhaps, then, what is required
is that we should run through the objects in our thought. If so, it is easy to see
why pre-Cantorians identified the absolutely infinite with the simply infinite,
since it is by no means clear how a finite being — even an idealized one — is
expected to be able to run through an infinity of things. To make any sense of
this, we have to be willing to accept the coherence of the notion of a supertask.
Even supertasks have their limits, however: as we noted earlier (§11.1), if

a supertask is performed in time, and the structure of time is that of the real
line, then every supertask is countable. So this account would make all un-
countable cardinalities absolutely infinite. Some constructivists might be un-
troubled by this, of course, but it is certainly inadequate to the intentions of
Cantor himself, whose theory of uncountable cardinals was one of his greatest
achievements. The strong suspicion must be that Cantor’s talk of sets being
‘collected together in thought’ is not to be taken at its constructivist face value.
But if instead we adopt the platonist conception, the difficulty we face is

that it is very hard to see what argument remains for the weak limitation-of-
size principle. If it is quite independent of our thought whether some things
form a collection, why should it matter that there are a great many of them?
And even if we succeed in motivating the weak limitation-of-size principle,
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there remains the difficulty of saying how big the absolutely infinite cardinal-
ities are. The platonist is committed, on pain of contradiction, to saying that
there is no collection of everything, and hence that the number of everything
is absolutely infinite. Many from von Neumann on have claimed that this is
the only absolutely infinite cardinality, but it is not clear on what ground. If
all that interested us were paradox-barring, it might suffice to rule out just this
one case, but why should we think that this is the only case that has been ruled
out?
Let us turn now to the question of which of the axioms of ZFUr are justified

by limitation of size. The easiest cases are the two axiom schemes, separation
and replacement, which are obviously justified by weak limitation of size. But
these two schemes, so powerful in the context of the other axioms, do no work
at all on their own, as is easily seen by observing that they are both trivially
satisfied in a universe consisting only of the empty set. (The situation here
is thus analogous to the one faced by the iterative conception, which did not
justify the existence of any levels in the hierarchy until it was afforced by the
second principle of plenitude.) This problem is not solved if we move to the
strong version of the limitation-of-size principle. Consider, for instance, a
universe with a countable infinity of individuals, and let the only sets there are
be hereditarily finite — finite sets of individuals, finite sets of such sets, etc.
The total number of objects in such a universe would then still be countably
infinite, and the strong limitation-of-size principle would be satisfied, but there
would be no set of all individuals, and so even the temporary axiom of §4.2
would not be satisfied.
Rather similar considerations apply to the axiom of creation. For this to

follow from limitation of size, it would have to be the case that if a is small, i.e.
less than the total number of objects, then 2a is too. But why should we think
that? There can be found in the literature somewhat half-hearted attempts
to assert that 2a is ‘not much bigger’ than a, but even if that were so (which
is open to doubt), a further argument would be required to conclude that the
total number of things cannot be 2a.
The difficulty is well illustrated by the fate of recent neo-logicist attempts to

base a theory of sets on the so-called New V, a second-order axiom encapsu-
lating the strong limitation-of-size principle.

{x : Fx} = {x :Gx} ⇔ ((∀x)(Fx ⇔ Gx) or there are as many Fs as Gs).

It is not, as some commentators (e.g. Ketland 2002) have thought, ‘surprising’
that New V turns out to be incapable of generating a workable theory unless
we add a strong axiom as to how many sets there are, but merely an indication
of the weakness of limitation of size taken on its own. But it is very hard to
see how an axiom about the size of the universe is to be motivated. There are
no doubt arguments to be had about how many non-sets there are or must be
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— see, for example, the continuing debate about whether there could have
been nothing — but that is of no use to the limitation-of-size theorist since, as
we have just seen, it is quite consistent with limitation of size for there to be
infinitely many individuals without there being infinite sets. What we need, in
other words, is an argument as to the size of the set-theoretic part of the universe.
But that is simply to ask how many sets there are, which is just the question
that limitation of size cannot answer.
We have focused so far on what limitation of size has to say about sets, but

we need also to consider whether it provides any motivation for this focus:
does it, in other words, give us any reason to rule out ungrounded collections?
It seems clear that it does not. A non-well-founded set theory such as Aczel’s
(1988) allows there to be a collection a specified by the stipulation that a = {a}.
There is certainly no logical inconsistency in this: Aczel’s theory can be shown
to be consistent if ZF is. But if the requirements of bare consistency do not rule
a out, the limitation-of-size theorist is committed to its existence, for according
to the weak limitation-of-size principle, if any singleton at all exists, then a
does.

13.6 Back to dependency?

The conclusions we have reached, then, are that if we come to believe the
limitation-of-size account, there is little prospect that it will provide support
for the axiom of infinity, and none whatever for the axiom of foundation; and,
worse, that it is very hard to see what ground there might be for thinking that
the account is true. If we want an intuitive argument to support our theory
of sets, therefore, the dependency account seems to hold out a better prospect
of success. But the replacement axiom has been thought to be something of
an embarrassment for this approach, since it is unclear how the dependency
account is supposed to justify it. Limiting case platonism might justify it, after
a fashion, but we have rejected that as unsatisfactory. It has therefore been a
commonplace of recent philosophical discussions (e.g. Boolos 1989) to say that
neither the iterative conception nor limitation of size justifies the whole theory,
which comes to be seen as an incoherent amalgam of two distinct conceptions.
This conclusion need not worry us unduly here, of course, since the replace-

ment axiom — the one that is supposed to be problematic for the iterative
conception — is not part of our default theory. Nonetheless, I want to ar-
gue that the conclusion may in any case be too pessimistic: although we have
no need to do so here in order to defend our default theory, I think that we
may be able to justify replacement on a ground that it is open to the depend-
ency theorist to hold. To do this, we split the weak limitation-of-size principle
which we considered in the last section into two parts. The weak limitation-
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of-size principle is evidently equivalent to the conjunction of the following two
principles.

Generalized separation principle. If every F is a G and the Gs form a collec-
tion, then the Fs form a collection.

Size principle. If there are just as many Fs asGs, then the Fs form a collection
if and only if the Gs do.

The first of these principles generalizes the separation principle stated in §3.5
in that it applies to collections generally, rather than just to sets. Of course,
if the internal platonist argument for the well-foundedness of dependency
sketched in §3.3 is correct, this generalization is harmless, since all collections
are sets anyway. If it is not, then some further argument is required in order
to justify it. But in that circumstance more would in any case have to be said
about the metaphysical nature of ungrounded collections in order to justify
whatever other axioms were assumed about them: whether the generalized
separation principle is correct would presumably depend on that.
So let us leave that question on one side and focus instead on what I am

calling the size principle. I wish to suggest that this can be given a plausible
motivation based on the idea that what is essential to a collection is how many
members it has. To put the idea in context, let us consider a notion that is
nowadays a commonplace in mathematics. A property is group-theoretic if
two isomorphic groups cannot differ with respect to it; a property is topological
if two homeomorphic metric spaces cannot differ with respect to it; and so
on. Now the analogue of isomorphism or homeomorphism in the case of
collections is the notion of a one-to-one correspondence. By extension, then,
a property is collection-theoretic if a class has it if and only if all equinumerous
classes have it. If, as seems reasonable, we take the property a class may have
of there being a collection with just those members to be collection-theoretic,
we arrive straightforwardly at the size principle.
This argument does little more than spell out the simple thought that a

collection is barely composed of its members: no further structure is imposed
on them than they have already. So, the thought runs, what else could there
be to determine whether some objects form a collection than how many there
are of them? What else could even be relevant?

13.7 Higher still

Recent research in set theory has been dominated by the study of what are
known as large cardinal axioms. These are cardinal existence claims that are in-
dependent of ZFC but are nevertheless believed to be consistent with it. In
order to qualify for the title, however, it has usually been taken that they must
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also exhibit mathematical fruitfulness, for instance by generating new combin-
atorial results, as well as set-theoretic stability, by being fixed points of certain
thinning procedures studied by set theorists. Each large cardinal axiom is in
particular an axiom of infinity in the sense of this chapter, since the existence
of a large cardinal entails the existence of the levels in the hierarchy needed to
arrive at it. There is now a huge literature on large cardinals — for instance
(in increasing order of size) strongly inaccessible, strongly Mahlo, measurable,
Woodin, and supercompact cardinals — and on the corresponding axioms of
infinity.
The study of these axioms has brought to light further close connections

with the structure of sets of real numbers: we have noted already that the
proof of determinacy for Borel sets requires the axiom of ordinals; and this
result has turned out to have analogues at higher levels. The pattern is thus
that proofs of the determinacy of more and more complex subsets of the Baire
line appeal to larger and larger cardinals.
Perhaps the most striking result of this sort has its origins in a famous error

of Lebesgue (1905, pp. 191–2). He claimed that a continuous image of a Borel
set is in turn a Borel set, but his argument was, as he later acknowledged,
‘simple, short, but false’ (Lusin 1930, p. vii): he had mistakenly assumed that

f −1(
⋂
n∈ωωωω

An) =
⋂
n∈ωωωω

f −1(An),

which need not be true if f is not one-to-one. The error was noticed by
Souslin (1917), who gave an example to show that an analytic set, i.e. one that
is the continuous image of a Borel set, need not be Borel.2 This discovery led
naturally to the study of the projective sets, i.e. the sets obtainable from closed
sets if we are allowed to form continuous images as well as countable unions
and complements arbitrarily often. The projective sets form a much more in-
clusive class than the Borel sets, and the definition of a projective set may be
much more complex. In studying such sets the key idea is the realization by
Kuratowski and Tarski (1931) that methods for obtaining projective sets cor-
respond to logical operations. This has the consequence that whereas the ax-
iom of ordinals is sufficient to prove the determinacy of the game on any Borel
set, to generalize this result to an arbitrary projective set it is not enough to
assume even the existence of a measurable cardinal; the proof of this determ-
inacy claim that has been found makes the very much stronger assumption
that there exist infinitely many Woodin cardinals (Martin and Steel 1988).
And with a yet stronger axiom of infinity the result can be generalized still
further, to what are sometimes called the quasi-projective sets, an even more in-
clusive class consisting of sets which occur in a constructible hierarchy starting

2Ironically, Lebesgue had constructed just such a set for another purpose in his original paper.
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from the set of real numbers: if we assume that there are not only infinitely
many Woodin cardinals but also a measurable cardinal above them, we can
prove that the game on every quasi-projective set is determined.3

We shall have a little more to say about these results in §15.7. For the mo-
ment, however, we confine ourselves to comments on the motivation for large
cardinal axioms. Gödel’s theorems warn us, of course, that we cannot expect
a proof that any such axiom is consistent. Intuitive arguments for the plaus-
ibility of large cardinal axioms have been attempted, e.g. Reinhardt’s (1974)
argument for the existence of supercompact cardinals,4 but those that have
been given so far have a notably sketchy and provisional character. When
reading about large cardinals, it is hard to avoid a nagging feeling that their
size makes them literally incredible. Having swallowed the notion of a meas-
urable cardinal, for instance, we turn the page and read that a supercompact
cardinal is larger still — so much larger that the set of measurable cardinals
less than the least supercompact cardinal is itself of measurable cardinality.
It is notable that the formalist mode of speech, always popular amongmath-

ematicians, seems especially so when large cardinals are in question. Indeed
it is tempting to sympathize with Wittgenstein’s suggestion that it is a mistake
to regard infinite cardinals as big at all.

ℵ0 is not an enormous number. . . . The child who has learnt ℵ0 multiplications hasn’t
learnt anything huge. . . . “I bought something infinite and carried it home.” You
might say, “Good lord! How did you manage to carry it?” — A ruler with an infinite
radius of curvature. (1976, pp. 32, 142)

Part of what makes large cardinals so hard to accept is precisely the Cantorian
finitism which has sometimes been used to motivate them. This is the idea that
infinite sets are, as far as possible, just like finite sets. If we adopt this idea, we
are encouraged to regard the claim that a large cardinal is much bigger than,
say, ℵ0 as having the same sort of import as the claim that 1020 is much bigger
than 12. But if we do that, do we lose our grip on reality? Do we, as Boolos
has suggested,

suspect that, however it may have been at the beginning of the story, by the time
we have come thus far the wheels are spinning and we are no longer listening to a
description of anything that is the case? (2000, p. 268)

3This assertion is often abbreviated as ADL(R) in the literature.
4Maddy has declined to call arguments such as Reinhardt’s intuitive on the ground that ‘they
extend beyond anything that could plausibly be traced to an underlying perceptual, neurological
foundation’ (1990, p. 141). I shall not follow her in this because I do not expect an intuitive
argument for accepting an axiom to depend on a perceptual, neurological foundation any more
than any other argument does.
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13.8 Speed-up theorems

So far, our discussion of abstract (i.e. higher-order) methods has focused on
their utility in proving results not provable without them. But we should
not ignore another use they have in application to results which are provable
without them but which can be given much shorter, more elegant or more
perspicuous proofs by means of them.
Notice straightaway that although they are all desirable in their way, these

three criteria — brevity, elegance and perspicuity — are undoubtedly dis-
tinct: the shortest proof is often not the most perspicuous, nor sometimes the
most elegant. When it comes to studying the matter systematically, we have
to recognize that elegance and perspicuity are of course much less objective
than mere length and hence less amenable to formal study. In relation to
length, however, the phenomenon we are alluding to — that there is a trade-
off between the abstractness of a proof and its brevity — is a familiar fact of
mathematical experience: when learning mathematics we sometimes struggle
through a long but (at least in an informal sense) elementary proof of a result,
only to discover much later that it can be proved more quickly by applying an
abstract theory. So far this is just an informal observation, though: in making
it precise, we face the difficulty that the size of a proof is highly sensitive to
the form in which the theory is presented. If we measure the size of a proof
by the number of lines it contains, every axiomatizable first-order theory is
equivalent to one in which every theorem has a 3-line proof. This brevity is
only achieved, however, by sacrificing a feature of all the theories we actually
deal with, namely that they are axiomatized by means of a finite number of
axioms or schemes, and for such theories we have the following theorem: ifU ′

is strictly stronger than U , there exists a number N such that for any m there
is a sentence provable in no more than N lines in U ′ whose shortest proof in
U has more than m lines (Buss 1994).
On the other hand, the number of lines in a proof is not a good measure of

feasibility, since each line might be unfeasibly long. But even if we measure
the size of a proof by the number of characters it contains, small variations
of presentation may have an enormous effect on size. A dramatic example of
this is provided by Mathias (2002), who has shown that the term used to ex-
press the cardinal number 1, which in many formal systems has a few dozen
characters, in Bourbaki’s (1954) formal system has about 1012 characters; and
an apparently trivial emendation of the system in the 4th edition of the book,
by which the ordered pair is given the Kuratowski definition rather than be-
ing treated as a primitive, makes the term explode to about 1054 characters.5

Despite this, however, it turns out that the analogue of Buss’s theorem for this

5More precisely, Mathias claims that the term in question has 2,409,875,496,393,137,472,149,
767,527,877,436,912,979,508,338,752,092,897 characters, but I have not checked his arith-
metic myself.



Speed-up theorems 235

measure of size is available (Mostowski 1952): if U ′ is strictly stronger than U ,
there exists a number N such that for any m there is a sentence with a proof
shorter than N characters in U ′ whose shortest proof in U has more than m
characters.
Nonetheless, as with the incompleteness phenomenon discussed earlier,

what we are interested in here is not so much these wholly general results
as genuinely mathematical instances of them. After all, the speed-up results
of Buss and Mostowski would be of little relevance to mathematical practice if
the length of proof N for which arbitrary speed-up occurs were 10100, since it
would then be inconceivable that we could ever encounter the phenomenon
ourselves.
In fact, however, we can obtain genuinely mathematical examples of speed-

up by restriction from mathematical incompletenesses. Thus, although the
claim that every Goodstein sequence terminates cannot be proved in PA, the
instance of it for a particular starting point m can; but we should expect the
proof in PA that the Goodstein sequence starting at m terminates to be very
long indeed for some values ofm, whereas in ZU it is, of course, a trivial partic-
ular instance of Goodstein’s theorem, of which we gave in §13.1 an evidently
feasible proof.
Another, even simpler and more intuitive example of speed-up has been

given by Boolos (1987). Consider the first-order language containing a con-
stant 0, a one-place function symbol s, a two-place function symbol f , and a
one-place predicate symbol D. Let T be the theory whose axioms are

(1) (∀x) f (x, 0) = s(0)

(2) (∀y) f (0, sy) = s(s( f (0, y)))

(3) (∀x)(∀y) f (s(x), s(y)) = f (x, f (s(x), y))

(4) D(0)

(5) (∀x)(D(x) ⇒ D(s(x)).

Now D( f (ssss0, ssss0)) is a theorem of T . This can easily be shown in ZU
as follows. Take any set-theoretic model of T and write D, f , s and 0 for
the interpretations of D, f , s and 0 in the model. Let N = Cls(0). Then we
can prove by induction on y that (∀x ∈ N )(∀y ∈ N ) f (x, y) ∈ N . To do
this, note first that f (0, 0) = s(0) ∈ N ; and if y ∈ N and f (0, y) ∈ N , then
f (0, s(y)) = s(s( f (0, y))) ∈ N , so by induction on y f (0, y) ∈ N for all y ∈
N . Now suppose that f (x, y) ∈ N for all y ∈ N . Now f (s(x), 0) = s(0) ∈ N ;
and if y ∈ N and f (s(x), y) ∈ N , then f (s(x), s(y)) = f (x, f (s(x), y)) ∈ N
by hypothesis. So by induction on y, f (s(x), y) ∈ N . By induction on x ,
therefore, f (x, y) ∈ N for every x and y in N as required. But 0 ∈ D by
(4), and D is s-closed by (5). So N ⊆ D, from which it follows immediately



236 Orders of infinity

that f (4, 4) ∈ D. Thus the sentence D( f (ssss0, ssss0)) is true in every set-
theoretic model of T and hence by the completeness of first-order logic it is
provable in T as required.
Yet Boolos shows in his paper that in a fairly standard system of first-order

logic the shortest formal proof of this theorem has (using the notation defined
in §5.4) more than 265,536 symbols. We thus have a simple illustration of how
set theory makes arguments feasible which are out of reach if we are restricted
to using wholly elementary methods.
Now the example quoted above of a term in Bourbaki’s system with 1054

characters shows that we need to exercise a little care if we are to be sure
that the unabbreviated formal version of the set-theoretic proof just sketched
is feasible. Moreover, our examples earlier show that we must be cautious
lest this is merely a feature of the particular first-order formal system being
studied: there are examples showing, for instance, that adding the cut rule to
the logic effects considerable speed-ups on proofs. However, these examples
come nowhere near to the degree of speed-up involved in this case, so we may
be tolerably confident that it is not feasible to write down a proof of Boolos’
‘curious inference’ in any familiar first-order system.
Of course, Boolos devised his example specifically to provide an illustration

of speed-up. Examples of speed-up that we meet in practice may not be so
striking. Moreover, perspicuity is just as important as length: it is not much
help that a short proof exists if we cannot find it. Examples of these phe-
nomena occur at various levels in the hierarchy. We mentioned in chapter 5
that Dirichlet’s theorem in arithmetic was shown to have a proof in PA only a
century after an analytic one was discovered. Adjoining infinitesimals to the
theory of real numbers is capable of speeding up proofs. And the theorem
that the game on any Borel set is determined was first proved assuming the
existence of measurable cardinals; Martin’s later proof (1975) which requires
just the axiom of ordinals is significantly more complicated and depends on
an entirely new idea.

Notes

We have been concerned here with two related phenomena: there are results
provable in a strong set theoryU ′ whose proofs in a weaker theoryU are very
much longer; and there are results provable in U ′ which are not provable in
U at all. The general theorems showing that these phenomena are possible
are due to Gödel, but many natural examples of both, some of them arguably
mathematical, are now known. For some instances consult Friedman (1986;
1998). Many further examples obtained by Friedman still await publication
at the time of writing.
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The details of the theory of large cardinals are expounded by Kanamori
(1997). A beautifully clear analysis of set theorists’ reasons for accepting large
cardinal axioms has been given by Maddy (1988). She distinguishes between
intrinsic and extrinsic reasons, but, consistently with her decidedly natural-
istic leanings, her distinction does not coincide with the one between intuitive
and regressive arguments which I have emphasized here. Maddy’s extrinsic
reasons include not only the regressive arguments of the realist but reasons for
studying particular theories that can be given by formalists, such as simplicity,
elegance or the ability to generate hard and interesting problems.
There are treatments of von Neumann’s theory of ordinals andMostowski’s

collapsing lemma in very many set theory textbooks: Drake 1974 is especially
clear. The philosophical basis for various reflection principles is discussed by
Wang (1977). The best discussion of the history of limitation of size is Hallett
1984. The abstraction principle known as New V is discussed by Shapiro and
Weir (1999).



Chapter 14

The axiom of choice

In §9.4 we introduced a principle — the axiom of countable choice — which
differed from the axioms of our default theory because it asserted the exist-
ence of a set of a particular sort (actually, in this case, a sequence) without
supplying a condition that characterizes it uniquely. In this chapter we shall
investigate some generalizations of the axiom of countable choice that share
this feature, and enquire a little further into whether the lack of uniqueness in
such specifications should be regarded as troubling.

14.1 The axiom of countable dependent choice

Consider the following attempt to prove that a partially ordered set is partially
well-ordered iff it contains no strictly decreasing sequences. Certainly one dir-
ection of this equivalence is straightforward: the range of a strictly decreasing
sequence is a non-empty set with no minimal element. To prove the reverse
implication, suppose that A is not partially well-ordered, so that it has a non-
empty subset B without a minimal element. Now choose an element x0 in B
and define a sequence (xn) in B as follows: once xn has been chosen, let xn+1

be any element of B less than xn . (Such an element exists because B has no
minimal element.) The sequence (xn) is clearly strictly decreasing.
The difficulty with this argument is that it requires a countable infinity of

choices to be made in order to generate the sequence (xn). However, it cannot
be justified by appeal to the axiom of countable choice, because that axiom
licenses only independent choices. One way of putting the point might be by
appeal to a temporal metaphor: the choices involved are not simultaneous,
since xn+1 cannot be chosen until the value of xn is known. The necessity
for making choices in this way arises sufficiently often in mathematics for it
to be worthwhile to single out the set-theoretic principle which licenses the
procedure.

Axiom of countable dependent choice. If r is a relation on a set A such that
(∀x ∈ A)(∃y ∈ A)(x r y), then for any a ∈ A there exists a sequence (xn) in
A such that x0 = a and xn r xn+1 for all n ∈ ωωωω.
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(14.1.1) Proposition. The axiom of countable dependent choice implies the
axiom of countable choice.

Proof . Suppose that (An) is a sequence of disjoint non-empty sets. Choose an
element a ∈ A0 and define a relation r on

⋃
n∈ωωωω An by letting x r y iff there

exists n ∈ ωωωω such that x ∈ An and y ∈ An+1. Now clearly dom[r] = ⋃
n∈ωωωω An

and so by the axiom of countable dependent choice there exists a sequence
(xn) such that x0 ∈ A0 and xn r xn+1 for all n ∈ ωωωω. It follows easily by
induction that xn ∈ An for all n ∈ ωωωω. We have thus proved the special case
of the axiom of countable choice where the sets from which elements are to
be chosen are pairwise disjoint. It is now an easy exercise to show that the
general case follows.

(14.1.2) Theorem. These three assertions are equivalent:

(i) The axiom of countable dependent choice;

(ii) If r is a relation on a non-empty set B such that dom[r] = B, i.e.
(∀x ∈ B)(∃y ∈ B)(x r y), then there exists a sequence (yn) in B such
that yn r yn+1 for all n ∈ ωωωω (the value of y0 is not stipulated);

(iii) Every partially ordered set which does not contain the image of a strictly
decreasing sequence is partially well-ordered.

(i)⇒ (ii). Trivial.

(ii)⇒ (iii). Suppose that (A,�) is a partially ordered set which is not partially
well-ordered. So it has a non-empty subset B without a minimal element.
Now dom[>B] = B (since otherwise B would have a minimal element), and
hence by hypothesis there exists a sequence (yn) in B such that yn > yn+1 for
all n ∈ ωωωω.

(iii)⇒ (i). Suppose that r is a relation on a non-empty set A such that (∀x ∈
A)(∃y ∈ A)(x r y) and a ∈ A. Let A be the set of all strings s in String(A)
such that a = s(0) r s(1) r . . . r s(n − 1) (where n is the length of the string
s). The opposite of the inclusion relation does not partially well-order A, and
therefore by hypothesis there exists a strictly decreasing sequence (sn) in A.
Now {sn : n ∈ ωωωω} is a chain, and so if s = ⋃

n∈ωωωω sn , then s is a sequence in A
[proposition 4.8.1], s(0) = a, and s(n) r s(n + 1) for all n ∈ ωωωω.

The axiom of countable dependent choice was first stated explicitly by
Bernays in 1942, althoughmathematicians (especially analysts) had been using
it informally for many years before that. It is in fact stronger than countable
choice; i.e. it cannot be proved from it (Mostowski 1948), even if we assume
the axiom of purity (Jensen 1966). The stability of dependent choice as a
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mathematical principle has been emphasized by the discovery that it is equi-
valent to various mathematically interesting statements in other parts of math-
ematics — most notably, perhaps, the Baire category theorem (Blair 1977).
The formalist might, I suppose, treat results of this sort as reasons to be

interested in the axiom. For the realist, on the other hand, the equivalence
of dependent choice with propositions in diverse parts of mathematics says
nothing as to its truth unless there is independent reason to believe these other
propositions. However, the constructivist motivation we sketched for count-
able choice in §9.4 does seem to apply equally to countable dependent choice.
What it hinges on, after all, is just the coherence of the notion of a countably
infinite supertask, a succession of operations performed in a finite time by an
idealized being: it does not seem to place any greater load on that notion to
require that the operations to be performed should depend on one another.

Exercises

1. Do the ‘easy exercise’ mentioned in the proof of proposition 14.1.1.

2. Assuming the axiom of countable dependent choice, show that if (A,�) is an in-
finite partially ordered set, then A has either an infinite totally ordered subset or an
infinite totally unordered subset. [Suppose that all totally unordered subsets of A are
finite: show that every infinite subset B of A has a maximal totally unordered subset
and therefore has an element b which is comparable with infinitely many elements of
B.]

3. Show that the axiom of countable dependent choice is equivalent to the assertion
that if (A,�) is a partially ordered set and (Dn) is a sequence of cofinal subsets of A,
then there is an increasing sequence (xn) in A such that {xn : n ∈ ωωωω} intersects every
Dn .

14.2 Skolem’s paradox again

One instance in which dependent choices are needed arises in model theory.

Löwenheim/Skolem theorem (submodel form). The axiom of count-
able dependent choice entails that every structure has a countable elementar-
ily equivalent substructure.

For the proof of this result consult a model theory textbook such as Hodges
1993. It is stronger than the version of the Löwenheim/Skolem theoremmen-
tioned in §6.6, which claimed only that every structure is elementarily equival-
ent to a countable structure, not that it could be chosen to be a substructure of
the given structure. The stronger theorem certainly requires some version of
choice for its proof in general1 (as can be seen from the fact that it can be used

1However, McIntosh’s (1979, n. 3) assertion that the submodel form implies the axiom of choice
is incorrect.
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to give a quick proof that every set is finite or infinite). Some authors have
thought that this dependence on choice could be used to neutralize the sub-
model version as a philosophical weapon. Indeed the reason Skolem (1922)
gave for proving the weaker version of the theorem which we stated in §6.6,
when he had already proved the submodel version two years earlier, was that
he wanted to derive philosophical consequences from it without depending on
choice.
But in fact the issue about the use of choice here is a red herring, for in the

case which is used to generate Skolem’s paradox the theorem is applied to a
model of set theory itself, and in this case the use of dependent choice to prove
the theorem is eliminable. That is to say, the following theorem is provable in
ZU without any use of choice.

Theorem. Every [transitive] model of ZF has a countable [transitive] sub-
model.

It is this theorem that provides us with a more precise (and, some have
thought, more troubling) version of Skolem’s paradox. To see why, let us
once more shift our perspective to that of a metalanguage. Applying the
submodel version of the Löwenheim/Skolem theorem, we can deduce that
there is a countable transitive set M such that (M,∈) is a model of set the-
ory. Moreover, since M is countable and transitive, every member of M is
also countable. Yet all the theorems of ZF are true in M : in particular, M
has members, such as the set which acts in M as the power set of the natural
numbers, which are not countable-in-M . So countability is not equivalent to
countability-in-M . Set theorists express this by saying that countability is not
an absolute property.
What we saw when we first discussed Skolem’s paradox in §6.6 was that if

we keep the meaning of the logical vocabulary fixed but leave the domain of
interpretation and the extension of the membership relation unconstrained,
we cannot tie down the cardinality of the domain. What we can now do on
the basis of the stronger version of the theorem is to extend this even to the
case where the extension of the membership relation is kept fixed. What varies
between interpretations is now only the range of the quantifiers, but this degree
of variation is sufficient to change the extension of the predicate ‘countable’.
Thus set theory has (assuming always that it is consistent) a model M which

is uncountable from within and countable from without. It is easy to see how
we have allowed this to happen: the first-order scheme of separation is weak
because at each level in the construction of a model it forces us to include
{x ∈ V :Φ} only for formulae Φ in the (countable) language of the theory.
The second-order variant of the theory has no such weakness.
So for some models of first-order set theory there are perspectives from

which they are countable. This does not show that for every model of set
theory there is such a perspective. It certainly does not compel us to believe
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that every set is really countable. The point is obvious, but the literature on
Skolem’s paradox has repeatedly been marred by misunderstandings of it.

14.3 The axiom of choice

Definition. A choice function is a function f such that f (A) ∈ A for all
A ∈ dom[ f ]. The set of all choice functions f such that dom[ f ] ⊆ A � {Ø}
is denoted choice(A).

If dom[ f ] = A � {Ø}, we shall say that f is a choice function for A.
(14.3.1) Lemma. The maximal elements of choice(A) are the choice func-
tions for A.
Proof . If f is a choice function for A, then dom[ f ] = A � {Ø}, and so f
is evidently maximal in choice(A). If, on the other hand, f is a member of
choice(A) which is not a choice function for A, then dom[ f ] ⊂ A� {Ø} and
there exists A ∈ (A � {Ø}) � dom[ f ]: if a ∈ A, then f ∪ {(A, a)} is a choice
function which strictly contains f and so f is not maximal in choice(A).

(14.3.2) Proposition. Every finite set has a choice function (‘The principle
of finite choice’).

Proof . If A is a finite set, then choice(A) is finite and non-empty: it therefore
has a maximal element [theorem 6.4.5], which must be a choice function for
A [lemma 14.3.1].
In §9.4 we discussed the axiom of countable choice, which asserts that every
countable set has a choice function. What we shall consider now is an obvious
generalization of this principle.

Axiom of choice. For every set A of disjoint non-empty sets there is a set C
such that for each A ∈ A the set C ∩ A has exactly one member.

Many authors treat the axiom of choice as part of the default theory, but we
shall not do so here. It is customary to write ZFC for the theory obtained by
adding the axiom of choice to ZF, and to use corresponding notations for the
theories obtained by adding it to other set theories.

(14.3.3) Proposition. The axiom of choice is equivalent to the assertion that
every set has a choice function.

Necessity. Assume the axiom of choice and let B be any set of non-empty sets.
We want to define a choice function whose domain is B. To do this, let A =
{B × {B} : B ∈ B}. Then A is obviously pairwise disjoint, and every element
of it is non-empty. So by the axiom of choice there is a set C intersecting each
B × {B} in a unique ordered pair: call the first element of that ordered pair
f (B). Then the function f thus defined is evidently a choice function for B.
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Sufficiency. If A is a set of disjoint non-empty sets and f is a choice function
for A, the set { f (A) : A ∈ A} intersects each A ∈ A in just the one element
f (A).

The axiom of choice obviously implies the axiom of countable choice; let us
now show that, slightly less obviously, it implies the stronger axiom of count-
able dependent choice.

(14.3.4) Proposition. The axiom of choice implies the axiom of countable
dependent choice.

Proof . Suppose that a, A and r satisfy the hypotheses of the axiom of count-
able dependent choice. Then r[x] �= Ø for all x ∈ A. So by the axiom of
choice there exists a function f from A to itself such that for each x ∈ A we
have f (x) ∈ r[x], i.e. x r f (x). Now let x0 = a and once xn has been defined
let xn+1 = f (xn). Evidently xn r xn+1 for all n ∈ ωωωω.

The axiom of choice certainly does not introduce inconsistency into set theory,
even if we assume the axiom of purity (Gödel 1938); moreover, this relative
consistency result continues to hold whichever of the higher axioms of infinity
discussed in chapter 13 we add to the theory. On the other hand, the axiom
of choice cannot be proved in any of the theories we have considered so far —
even if we assume countable dependent choice (Mostowski 1948) and purity
(Feferman 1965). It is by far the most important of the choice axioms, not least
because it is the most stable in the sense of the last section: a very large number
of significant assertions in apparently unconnected parts of mathematics can
be shown to be equivalent to it.

Exercise

Show that the axiom of choice is equivalent to the assertion that if (Bi )i∈I is a family
of non-empty sets, then

∏
i∈I Bi is non-empty.

14.4 The well-ordering principle

(14.4.1) Proposition. Every countable set is well-orderable.

Proof . Trivial.

Once Cantor had discovered that R is uncountable, it was natural that he
should ask whether it is well-orderable: he soon claimed, in fact, not only that
R is well-orderable but that every set is. Cantor made this claim, which has
come to be known as the well-ordering principle, in 1883, describing it as ‘a law
of thought which appears to me to be fundamental, rich in consequences, and
particularly remarkable for its general validity’ (p. 550). By 1895, however,
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he had retreated from regarding the well-ordering principle as an axiom and
thought of it only as a conjecture requiring proof; indeed he attempted such
a proof in a letter to Hilbert of 1896, but what he says in the letter is very far
from convincing. Even so, in his 1900 lecture to the International Congress
of Mathematicians, Hilbert rather generously referred to the well-ordering
principle as a ‘theorem of Cantor’, but instead posed the problem of finding
a definite well-ordering on the real line. Soon Zermelo (1904) formulated the
axiom of choice (Auswahlaxiom) explicitly and showed how to deduce the well-
ordering principle from it.

(14.4.2) Lemma (Zermelo 1904). For every well-ordering on a set A there
exists a definite choice function for P(A), and conversely.

Necessity. Suppose that � is a well-ordering relation on A. For each B ∈
P(A) � {Ø} let f (B) be the least element of B with respect to �. It is clear
that this defines a choice function for P(A).

Sufficiency. If f is a choice function for P(A), then by the general principle of
transfinite recursion and Hartogs’ theorem 11.4.2 there exist a unique ordinal
α and function g from αααα to A such that g(β) = f (A � g[ββββ]) for all β < α
and g[αααα] = A; this function is one-to-one and therefore gives rise to a well-
ordering on A.

(14.4.3) Theorem. The axiom of choice is equivalent to the assertion that
every set is well-orderable.

Proof . Immediate from the lemma.

The more demanding problem posed by Hilbert of defining a well-ordering on
R is not soluble even if we assume the axiom of choice: there is no term σ in
the first-order language of set theory for which we can prove in ZFC that σ is
a well-ordering of R (Feferman 1965). Put more informally, this means that
the axiom of choice guarantees the existence of a well-ordering on R without
giving us the means to define one.
The axiom of choice was used a number of times by mathematicians in the

first few years of the 20th century — for details see the notes at the end of
the chapter — but it was certainly Zermelo’s use of it in his 1904 proof of the
well-ordering principle that pushed the axiom of choice to centre stage and
made it a matter of active controversy among mathematicians. This was even
more the case after König (1905) published a purported proof of a result con-
tradicting the axiom of choice: there then followed a flurry of discussion of Zer-
melo’s proof in Mathematische Annalen (Borel 1905; Bernstein 1905a; Jourdain
1905; Schönflies 1905), Bulletin de la Société Mathématique de France (Borel, Baire,
Hadamard and Lebesgue 1905), Proceedings of the London Mathematical Society
(Hobson 1905; Dixon 1905; Hardy 1906; Jourdain 1906; Russell 1906b), and
elsewhere.
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One motive driving some of the critics seems to have been that they already
believed the well-ordering principle to be false and therefore needed to find
fault with Zermelo’s proof somehow. Now his 1904 proof made use of
transfinite induction on the ordinals (as does the one we have just given), and
any use of ordinals was still tainted by Burali-Forti’s paradox, so some of the
objectors focused on this rather than on the use of the axiom of choice. Hob-
son (1905, p. 185), for instance, complained that ‘the non-recognition of the
existence of “inconsistent” aggregates, which existence, on the assumption of
Cantor’s theory cannot be denied, introduces an additional element of doubt
as regards this proof’. It was in order to answer this criticism that Zermelo
published another proof (1908a) which eliminated the previous use of ordin-
als by means of an extension of Dedekind’s Kettentheorie. This left the axiom
of choice as the only principle used in the new proof that the critics could
reasonably object to.
The well-ordering principle is often a useful way of applying the axiom of

choice: here is a more or less typical illustration.

(14.4.4) Proposition. Assuming the axiom of choice, every partial ordering
� on a set A can be extended to a total ordering.

Proof . The key to the proof is that by the well-ordering principle we can ex-
press A × A as the range of a transfinite sequence A × A = {(xα, yα) :α < β}.
We then define recursively a family (<α)α�β of partial orderings on A con-
taining < as follows. Start by letting <0 be <. Once <α has been defined,
let <α+ be if possible the smallest partial ordering containing both <α and the
ordered pair (xα, yα); if there is no such partial ordering, let<α+=<α. Finally,
if λ is a limit ordinal, let <λ= ⋃

α<λ<α. The final element of this transfinite
sequence of partial orderings contains < and is obviously a maximal element
of the set of all partial orderings on A, i.e. a total ordering on A.

14.5 Maximal principles

It gradually became apparent that Zermelo’s (1908a) elimination of ordin-
als from his proof of the well-ordering principle was a case of a much more
general method for applying the axiom of choice without invoking ordinals:
very many applications of the axiom of choice in mathematics use it to obtain
maximal elements of particular partially ordered sets. In this section we shall
isolate the properties which these uses of the axiom depend on. This material
is principally of mathematical interest and is not used in the remainder of the
book.

Definition. A partially ordered set (A,�) is said to be inductively ordered
(and � is said to be an inductive ordering on A) if every totally ordered subset
of A has a supremum in A.



246 The axiom of choice

Every inductively ordered set is non-empty and has a least element (since Ø
is totally ordered). For a set A to be inductively ordered by inclusion, it is
sufficient (but not necessary) that

⋃B ∈ A for every chain B ⊆ A.
(14.5.1) Lemma (Bourbaki 1949b). If (A,�) is inductively ordered, then
every function f from A to itself such that f (x) � x for all x ∈ A has a
definite fixed point.

Proof . Suppose that f is such a function and let α be the least ordinal such
that |α| �� card(A) [Hartogs’ theorem 11.4.2]. Then [simple principle of
transfinite recursion] there exists a unique function g from αααα to A such that

g(0) = ⊥;
g(β+) = f (g(β)) if β+ < α;
g(λ) = sup

β<λ

g(β) for every limit ordinal λ < α.

Evidently g is normal [proposition 12.1.1], but it is not strictly normal (since
if it were, it would in particular be one-to-one and we would have |α| �
card(A)). So there exists β < α such that g(β+) = g(β) [proposition 12.1.1].
If we choose the least such β (to be definite) and let b = g(β), then f (b) =
f (g(β)) = g(β+) = g(β) = b.

(14.5.2)Theorem. If (A,�) is a well-orderable inductively ordered set, then
(A,�) has a maximal element.

Proof . Suppose on the contrary that A has no maximal element with respect
to this ordering. Let � be some well-ordering on A. Now for each x ∈ A
there exist elements y ∈ A such that y > x : to be definite, let f (x) be the
least such y with respect to the well-ordering�. Then f (x) > x for all x ∈ A,
contradicting lemma 14.5.1.

Note, incidentally, that in the proof of theorem 14.5.2 f (x) is chosen to be
at a minimum with respect to �, not with respect to �; the well-ordering �
is being exploited here only to give us a way of defining f without using the
axiom of choice directly.
In practice almost all of the inductive orderings one comes across are cases

of the inclusion relation. In particular, the following more restrictive condition
occurs frequently (especially in algebra).

Definition. A set A is said to have finite character if any set A belongs to A
iff every finite subset of A belongs to A.
(14.5.3) Proposition. If A is a non-empty set of finite character, then it is
inductively ordered by inclusion.
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Proof . Let B be a chain in A and let B = ⋃B. Now certainly Ø is contained
in an element of A since A is non-empty. So consider a non-empty finite
subset {b0, . . . , bn−1} of B. For 0 � r � n − 1 there exists Br ∈ B such that
br ∈ Br . Now {B0, B1, . . . , Bn−1} is a finite non-empty chain and therefore
has a greatest element Br0 [theorem 6.4.5]. So {b0, b1, . . . , bn−1} ⊆ Br0 , i.e.
{b0, b1, . . . , bn−1} belongs to A. What we have now shown is that every finite
subset of B belongs to A. So B itself belongs to A and hence is the supremum
of B in A.

(14.5.4) Proposition. Every countable inductively ordered set has a max-
imal element.

Proof . Immediate [proposition 14.4.1 and theorem 14.5.2].

(14.5.5) Proposition. If B is a non-empty set of finite character such that⋃B is countable, and if A ∈ B, then B has a maximal element with respect
to inclusion containing A.

Proof . If
⋃B = Ø, then B = {Ø} and the result is trivial. If not, then there

exists a sequence (bn) whose range is
⋃B. Now let A0 = A. Once An has

been defined, let An+1 be the intersection of the elements of B containing
An ∪ {bn} if there are any; otherwise let An+1 = An . In this way we recursively
define an increasing sequence (An) in B whose range {An : n ∈ ωωωω} therefore
has a supremum B since B is inductively ordered by inclusion [proposition
14.5.3]. B is evidently a maximal element of B containing A.

(14.5.6) Theorem. The following are equivalent:

(i) The axiom of choice;

(ii) Every inductively ordered set has a maximal element (Zorn 1935);

(iii) If B is a set of finite character and A ∈ B, then B has a maximal element
with respect to inclusion containing A (Teichmüller 1939; Tukey 1940).

(i)⇒ (ii). Theorem 14.5.2.

(ii)⇒ (iii). Suppose that B is a set of finite character and A ∈ B. Then B
is inductively ordered by inclusion [proposition 14.5.3], hence so also is A =
{B ∈ B : A ⊆ B}, which therefore by hypothesis has a maximal element.
(iii)⇒ (i). Suppose that A is a set. Then it is easy to check that choice(A) is
of finite character and therefore by hypothesis has a maximal element f with
respect to inclusion, which must be a choice function for A [lemma 14.3.1].
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The two maximal principles stated in this theorem provide us with a very
powerful tool for deriving mathematical consequences of the axiom of choice
without using ordinals. In order to be able to compare the two methods in
use, let us consider again the claim that every partial ordering on a set can be
extended to a total ordering: we proved this in the last section by using the
well-ordering principle to label the members of the set with ordinals; let us
now prove it again by our new method.

Proposition. Assuming the axiom of choice, every partial ordering � on a
set A can be extended to a total ordering.

Proof . Let B be the set of all the relations r such that r t is a strict partial
ordering on A. This is a set of finite character [corollary 6.2.5], and so by the
Teichmüller/Tukey principle each element of it is contained in an element
which is maximal with respect to inclusion, hence is a strict total ordering.

The earliest statement of what is recognizably a maximal principle of this
kind is in Hausdorff 1909, p. 301, where it is asserted that if the union of every
well-ordered chain in A is an element of A, then A has a maximal element
with respect to inclusion. But it is one thing to prove a result and quite an-
other to appreciate its utility. Hausdorff’s widely read Mengenlehre (1914) does
not even mention this result, and although it does contain the closely related
result that every partially ordered set has a maximal totally ordered subset
(see exercise 6 below), which is often referred to as ‘Hausdorff’s maximality
principle’, neither he nor anyone else seems to have appreciated its useful-
ness then. Whitehead and Russell came rather close to stating the maximal
principle in their presentation of Zermelo’s theorem in Principia Mathematica
(1910–13, ∗258), but once again they failed to see its usefulness.
WhenKuratowski rediscovered the maximal principle in 1922, on the other

hand, it was quite explicitly as part of a reductionist programme stemming
from Zermelo’s (1908b) axiomatization of set theory. As we have already
noted, the form this axiomatization took was strongly influenced by Zer-
melo’s desire to provide a basis for his new proof of the well-ordering prin-
ciple: crudely speaking, he chose the weakest natural-seeming axioms which
would justify his proof. As a result the system was not strong enough to con-
tain ordinal arithmetic without an additional postulate on the existence of
transfinite numbers. But in the following years numerous important results
were proved from the axiom of choice by transfinite induction. For example,
Steinitz (1910) demonstrated by this means the existence and uniqueness up to
isomorphism of the algebraic closure of an arbitrary field. Then Kuratowski
turned Zermelo’s method for eliminating ordinals into a general procedure
and hence obtained the maximal principle: the result was a method by which
proofs which use transfinite induction could be transformed into proofs which
do not and which could therefore be formalized in Zermelo’s system.
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But just when Kuratowski was demonstrating how uses of ordinals could be
uniformly eliminated from proofs, the adoption of the axioms for set theory
strong enough to deliver von Neumann’s theory of ordinals was making this
manoeuvre formally unnecessary.2 So although after Kuratowski the max-
imal principle continued to be used occasionally, it did not achieve widespread
fame because the advantages he claimed for it were axiomatic and aesthetic
rather than practical: mathematicians have always been loath to give up con-
venient tools for the sake of logical purity. The second rediscovery of the max-
imal principle by Zorn (1935) was decisive in ensuring its lasting popularity as
a mathematical tool, partly no doubt because he gave convincing evidence of
its usefulness rather than merely its elegance, but also because he had recently
emigrated from Hamburg to New England: it was taken up by the active re-
search communities there, among whom it became known as ‘Zorn’s lemma’,
the name by which it is universally known today (see Campbell 1978).
The final step in popularizing this maximal principle was taken by Bour-

baki, who not only stated both the version for abstract partial order relations
(due to Bochner 1928) and the Teichmüller/Tukey principle (in 1939), but
— more importantly — went on to exploit these principles systematically in
the subsequent parts of the treatise. Bourbaki’s presentation is in this regard
the fulfilment of Kuratowski’s reductionist programme of eliminating ordin-
als: Bourbaki does not even trouble to define the notion of an ordinal in the
text of his work but relegates it to an exercise, and he avoids using ordin-
als in his proofs. However, Bourbaki’s reason for proceeding in this manner
cannot have been foundational in quite the way that Kuratowski’s had been,
since Bourbaki’s formal system is quite strong enough to define the ordinals
if required; instead the reason was presumably aesthetic, stemming from a
preference for what were seen as purely algebraic methods.

Exercises

1. Show that the set P(A, B) of functions f such that dom[ f ] ⊆ A and im[ f ] ⊆ B
is inductively ordered by inclusion.

2. If (A,�) is inductively ordered and a ∈ A, show that {x ∈ A : x � a} is also
inductively ordered.

3. Is F(ωωωω) inductively ordered by inclusion?

4. Let Well(A) be the set of all relations on A which are well-orderings. If r, r ′ ∈
Well(A), define r � r ′ iff r ⊆ r ′ and dom[r] is an initial subset of the well-ordered set
(dom[r ′], r ′). Show that (Well(A),�) is an inductively ordered set. Hence deduce
the well-ordering property directly from Zorn’s lemma.

5. Show by an example that a function of the kind referred to in lemma 14.5.1 need
not have a least fixed point.

2For the details see appendix A.
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6. Show that the axiom of choice is equivalent to the assertion that every partially
ordered set has a maximal totally ordered subset. [Necessity. Use the Teichmüller/
Tukey property. Sufficiency. Prove Zorn’s lemma.]

7. Assuming the axiom of choice, prove that every partially ordered set (A,�) has a
maximal totally unordered subset. [First method. Use the well-ordering principle. Second
method. Show that the set of all totally unordered subsets of A is of finite character and
then use the Teichmüller/Tukey property.]

8. Assuming the axiom of choice, prove that a relation is a partial ordering [resp.
partial well-ordering] on the set A iff it is the intersection of a set of total orderings
[resp. well-orderings] on A.

9. Assuming the axiom of choice, prove that every partially ordered set (A,�) has a
cofinal partially well-ordered subset. [LetA be the set of partially well-ordered subsets
of A. Apply Zorn’s lemma to A with the partial ordering ‘is an initial subset of’.]

14.6 Regressive arguments

We have seen how the axiom of choice emerged as a new mathematical tool
around the turn of the century, and how it soon became apparent that its con-
sequences were not restricted to set theory but cropped up in many disparate
areas of pure mathematics. However, we have not yet considered whether the
axiom is true. Certainly many mathematicians have doubted it. For instance,
Littlewood (1926, p. 25): ‘Reflection makes the intuition of its truth doubtful,
analysing it into prejudices derived from the finite case, and short of intuition
there seems no evidence in its favour.’ What is clear is that the sort of temporal
motivation which we gave for the axiom of countable dependent choice is not
available. A quasi-temporal argument can perhaps be given in favour of the
axiom of well-ordered choice, first proposed by Hardy (1906), which asserts
that the range of every transfinite sequence (Aα)α<β of non-empty sets has a
choice function, but even here the temporal analogy seems rather far-fetched
when β is uncountable. And in the general case, where we want to choose one
element from each of an arbitrary family of non-empty sets, whatever is left of
the temporal idea evaporates, as the sets are not presented in any particular
order, temporal or otherwise.
The arguments that are given by mathematicians for believing the axiom

of choice are often quite weak. One common argument generalizes from
the finite case on the basis that there is no reason to suppose that infinite
collections behave any differently. The difficulty with this is that we have been
given nothing except a wing and a prayer to support the view that they do not
behave differently. Another variant proceeds more cautiously by generalizing
first from the finite to the countable case in the constructive manner already
outlined, and then generalizing to the uncountable case by appeal to the idea
that an ideal being could achieve the choices required of him (or perhaps
Him). The main difficulty with this is that the most convincing argument for
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the extension from the finite to the countable case, namely that it depends
merely on performing the supertask of making an infinite number of choices
in a finite time, does not extend to the uncountable case. If we say, on the
other hand, that the choices involved are merely logical choices and do not
actually have to be made, hence do not occur in time at all, then it is very hard
to see what is left in the metaphor of ‘choice’ that is doing any work. In short,
this sort of argument for the axiom of choice appears to rest on a version of
the limiting case platonism which we were so suspicious of in §3.2.
Another line that has often been taken is to justify the axiom of choice

by appealing to qualities of the theory which results from assuming it. We
have had cause to mention already a few of the consequences of the axiom
of choice, but it has many more. A common pattern in many parts of math-
ematics is that a theorem provable for a restricted class of cases without the
axiom becomes provable without restriction if we assume it. Here are a few
examples:

(1) Every finite-dimensional vector space has a basis.
(AC) Every vector space has a basis.

(2) Every countable field has an algebraic closure.
(AC) Every field has an algebraic closure.

(3) Every separable Hilbert space contains a complete orthonormal se-
quence.
(AC) Every Hilbert space contains a complete orthonormal set.

(4) Every consistent set of sentences in a countable first-order language has
a model.
(AC) Every consistent set of sentences in a first-order language of arbit-
rary cardinality has a model.

If the criterion on which we judge mathematical theories is their elegance,
then, the axiom of choice may be counted a success. Many parts of pure
mathematics attain a more elegant form if we assume the axiom of choice than
if we do not. Another criterion on which the axiom of choice scores highly is
fruitfulness. There are many problems in diverse parts of mathematics which
can be solved only with its aid; and many authors have taken the fruitfulness
of an axiom as an argument for its truth.3

For the genuine formalist, of course, there is little more to be said: even
if the elegance and fruitfulness of the resulting theories are reason enough to
accept the axiom of choice — which for the formalist means ‘treat its con-
sequences as worthy of attention’ — this does not preclude the possibility that

3Curiously, though, one occasionally finds quite the opposite view expressed: ‘The more
problems a new axiom settles, the less reason we have for believing the axiom is true.’
(Shoenfield 1977, p. 344)
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other set-theoretic principles contradicting the axiom of choice might also be
worthy of study. The difficulty with assessing how attractive these competing
theories might be, however, is that very little work has been done on finding
out their properties: a few mathematicians have studied the consequences of
the axiom of determinacy, which contradicts the axiom of choice (see §15.7
below), but at the moment this is a rather isolated case. If the study of ax-
ioms contradicting the axiom of choice became more common, moreover, it
is not evident that this would simply lead to competing versions of the whole
of mathematics, one version assuming the axiom of choice and the other as-
suming the other principle. What seems more likely is that different sorts of
mathematicians might settle on different set-theoretic principles as appropri-
ate to their own disciplines.
It is still not clear, however, whether a split of this sort — different addi-

tional axioms for different parts of mathematics — could usefully be accom-
modated within a single theory of sets. Such an accommodation would be
possible only if the objects used as proxies in embedding the various theories
into the theory of sets were set-theoretically distinguishable in some principled
manner, but this does not at the moment seem at all plausible. Although
mathematicians do not seem to have articulated the point in quite this form, it
may be one of the reasons why some of them eschew the idea that any single
theory can act as a foundation for the whole of mathematics.
None of these considerations, however, is of much direct help to the realist

in deciding whether the axiom of choice is true, unless there is some gen-
eral reason to think that the truth is always pretty. On the contrary, there is
some reason to suspect that, in mathematics at least, the truth, while not per-
haps downright ugly, is at any rate not always optimally beautiful. So for the
consequences of the axiom of choice to give the realist a regressive reason to
believe that it is true, it is not enough that they should form an elegant theory:
there needs to be some reason to believe that they are true, independent of the
fact that they follow from it. In this respect, of course, the axiom is in just the
same position as any other candidate for extending the default theory, such as
the higher axioms of infinity of the last chapter.

14.7 The axiom of constructibility

There is one striking difference, though: in contrast to the axioms of infinity,
the consequences of the axiom of choice which might bear on the question
of its truth are never number-theoretic. To explain this point, we need to
examine in more detail the method by which Gödel proved that the axiom of
choice is consistent with set theory. At the opposite extreme to the maximal
conception of the formation of power sets, mentioned earlier, is the minimal
conception according to which the only sets created at each stage are those
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forced on us by the axioms of ZU. Fraenkel (1922b) suggested adding an axiom
of restriction (Axiom der Beschränktheit) to achieve this, but did not succeed in
formalizing the notion. The first satisfactory formulation of an axiom of this
broad sort is due to Gödel (1938), who defined in the language of set theory
a much more restrictive hierarchy consisting (roughly) of sets which can be
defined by means of a formula which refers only to sets which have already
been created.
In §3.5 we briefly canvassed the idea of a hierarchy formed by a wholly

predicative process. If Lα is a level in such a hierarchy, the following level
Lα+1 will consist only of sets of the form {x ∈ Lα :Φ(Lα)}, i.e. sets definable
by means of formulae whose quantifiers are restricted to range only over Lα.
Gödel showed that the definition of this notion of constructibility, which prima
facie quantifies metalinguistically over Φ, can in fact be formalized within the
theory of sets, and hence that the constructible hierarchy L consisting of the
subsets of the constructible levels Lα is a well-defined subclass of the universe
of sets V.4 The assertion that every set is constructible, i.e. that V = L, can
then, somewhat surprisingly, be expressed as a single sentence in the language
of set theory. We shall call it the axiom of constructibility.

Axiom of constructibility. Every set is constructible.

Gödel showed that not only the axiom of constructibility but all the axioms
of ZF hold when all the quantifiers in them are restricted to L. It follows at
once, of course, that if ZF is consistent, then so is ZF together with the axiom
of constructibility. This is significant because of the following result.

Theorem (Gödel 1938). The axiom of constructibility entails the axiom of
choice.

If we combine this with the relative consistency result just mentioned, we
reach the conclusion that if ZF is consistent, then it remains so when we add
the axiom of choice.
Now we noted earlier that predicative set theory on its own is rather weak: if

we replace the axiom scheme of separation with its predicative weakening, we
cannot, for instance, prove the existence of any uncountable sets. So Gödel’s
demonstration that all the axioms of set theory, including impredicative sep-
aration, hold in the constructible hierarchy is at first sight surprising. The
point to realize, however, is that what gives Gödel’s constructible hierarchy its
strength is its appeal to a prior theory of ordinals. What Gödel discovered was
that a predicative process of the formation of levels can generate impredicative
sets if the number of iterations of the process is given by an impredicatively
specified ordinal: each level Lα in the constructible hierarchy contains only
sets specifiable predicatively in terms of the lower levels, but this hierarchy is

4Here once again we use for convenience the language of classes. See appendix C.
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parasitic on the full, impredicative hierarchy in which it is embedded, since it
needs this to supply the ordinal α.
For Gödel’s proof to work, though, it is necessary to assume a moderately

strong axiom of infinity. This bears on the discussion in the last chapter of
the technical advantages of such axioms. We noted there that set theorists
themselves have a reason to assume the axiom of ordinals because it ensures
that every well-founded set-theoretic model of set theory itself is isomorphic
to a standard model, i.e. a model in which ‘∈’ is interpreted as membership
(Mostowski’s collapsing lemma). The axiom scheme of reflection supports the
study of models even more strongly because it gives the hierarchy room for
other operations to close out with fixed points. One example is provided by
Gödel’s proof of the consistency of the axiom of choice just described: Gödel
discovered the proof in 1935, but one reason for the delay in publication was
that he spent a long time trying to make it work in such a way that it would
apply to a theory like Zwhich does not assume anything as strong as reflection.
When we discussed the submodel form of the Löwenheim/Skolem the-

orem, we touched briefly on one consequence of reflection that is relevant
here: if ZF is consistent, there is a countable transitive class which is a stand-
ard model of it; and reflection shows that this class is a set. In fact, Gödel’s
constructible hierarchy allows us to describe one particular countable model
much more precisely. This is because whether a set is an inner model of ZF
is only a matter of whether it satisfies certain closure conditions, so that the
intersection of all the transitive standard models of ZF is itself a model, called
the minimal model. Now this minimal model can be shown to be equal to Lξ0 for
some countable ordinal ξ0. This provides us with a graphic illustration of the
relativity of cardinality that we discussed earlier: the von Neumann ordinals
which belong to Lξ0 are precisely those < ξ0, and yet, since Lξ0 is a model of
ZF, many of these von Neumann ordinals are, relative to Lξ0 , uncountable.
What makes this possible, of course, is just that the power-set operation has
been interpreted in the constructible hierarchy as thinly as possible within the
constraints of the first-order theory ZF. We might be tempted to think of Lξ0
as realizing a sort of contrary of the principle of plenitude — a principle of
paucity, if you will — in respect both of the thinness of each level and of the
total number of levels.
We have called the assumption that every set is constructible an ‘axiom’,

but is there any reason to think it is true? At first sight the principle of ontolo-
gical parsimony which encourages some authors to eliminate individuals and
un-well-founded classes makes it an attractive assumption, since it asserts that
every set occurs in a highly restrictive hierarchy in which only those sets essen-
tial to the theory are created. Gödel himself initially flirted with the thought
that it gives ‘a natural completion of the axioms of set theory, in so far as it de-
termines the vague notion of an arbitrary infinite set in a definite way’ (1938,
p. 557). However, the picture of the set-theoretic universe which this forces on
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us has seemed very implausible to many subsequent writers (including Gödel
himself in later life): it is difficult to find a reason for believing that the pre-
dicative creation process represented by the constructible hierarchy and the
impredicative process represented by the traditional hierarchy should both
result in the same sets being created, as the axiom of constructibility would
have us believe.
So the axiom of constructibility has little direct support. Does it then have

any regressive support? It certainly gives a neat theory which settles not just
the axiom of choice and the continuum hypothesis (see below) but various
otherwise problematic questions in the theory of sets of real numbers. How-
ever, this has been thought by most set theorists not to give regressive support
to the axiom, because it is felt to settle these questions in the ‘wrong’ way.
It would take us too far afield to examine here the intuitions they appeal to
in reaching this conclusion: I shall note only that it is not shared universally.
Friedman (2000, p. 437), for instance, regards the intuition that the axiom of
constructibility is false as dubious: ‘I don’t have it, and mathematicians in
general disclaim it.’ And Jensen (1995, p. 398) has even said, ‘I personally find
[constructibility] a very attractive axiom.’
In any case, the axiom of constructibility is of no help to us in deciding

whether we should believe the axiom of choice if we do not already believe the
axiom of purity, for if the set of individuals is formless — and hence not well-
orderable — no amount of care in limiting the construction of the hierarchy
can change that. But even if constructibility is not a plausible hypothesis,
the method of proving relative consistency results by forming inner models
of the theory such as L generates useful information about the strength of
the axioms that hold in it. The most striking result of this sort is that the
axiom of constructibility (and hence the axiom of choice) makes no difference
whatever in the sphere of first-order arithmetic (Ax and Kochen 1965). For
suppose we have a proof of a first-order arithmetical sentence which uses the
axiom of choice. This proof is not correct as it stands if the axiom of choice is
false. But the key fact to note is that if we relativize all the quantifiers in our
definition of the set of natural numbers to L, the set that is picked out does
not change. (In the set theorists’ jargon, ωωωω is absolute for L.) This is significant
because the axiom of choice is certainly true in L, whether or not it is true in
the whole set-theoretic universe V. So if we now relativize all the quantifiers
in our proof to L, what we obtain is a correct proof, not assuming the axiom
of choice, of a conclusion concerning the set of natural numbers of L. But
because ωωωω is absolute for L, the conclusion of the relativized proof is the same
as the conclusion of the original one. Thus, to repeat, any first-order number-
theoretic sentence provable with the axiom of choice is provable without it.
Similar remarks apply even more directly to elementary geometry, because

it can be given a complete first-order axiomatization (Tarski 1959) and so any
consistent extension of it will be trivially conservative. Therefore adding the
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axiom of constructibility (or a fortiori the axiom of choice) to set theory will
make no difference to what can be proved in elementary geometry either.
Indeed Putnam (1980) has extended the idea even further by observing that
for any given countable set S of real numbers there is a model of set theory
which satisfies the axiom of constructibility and contains the given set S as
well as a standard copy of the natural numbers. By applying this result to the
case in which the set S contains all the ‘operational constraints’ — correct
assignments of values to all magnitudes which sentient beings in this physical
universe can actually measure — Putnam draws the conclusion that the truth-
value of the axiom of constructibility (and a fortiori of the axiom of choice) cannot
be determined by these operational constraints.
These facts are important partly because they indicate that whether the ax-

iom of choice is true is a question to which many mathematicians, not just
number theorists, may safely remain indifferent. But they are important,
too, because they entail that the only propositions which the regressive the-
orist could use to test the axiom of choice belong to the parts of mathematics
whose application to the world might be thought to be already theory-laden.
We cannot, in other words, expect to find results which could provide simple
empirical tests of the axiom, such as ‘If the axiom of choice is true, the Forth
Bridge will not fall down.’ The consequences of the axiom of choice which
the regressive theorist has to work on belong to relatively abstract branches of
mathematics where our intuitions are already stretched taut.

14.8 Intuitive arguments

So if regressive arguments for the truth of the axiom are likely to remain in-
conclusive, we must fall back on intuitions bearing directly on the axiom itself.
An argument one finds quite frequently is that the axiom of choice can be de-
rived from the first principle of plenitude which we stated in §3.5. The idea in
outline is that if a level in the hierarchy really does contain all possible subsets
of the previous levels, it will in particular contain all the choice sets. ‘For the
fat (or “full”) hierarchy, the axiom of choice is quite evident.’ (Kreisel 1980,
p. 192) This sort of argument goes back to Ramsey (1926): he advanced a con-
ception of sets as wholly extensional entities not dependent for their existence
on there being any means of specifying their members, and claimed that on
this conception the axiom of choice is ‘an obvious tautology’.
The argument can be spelt out as follows. Consider the following second-

order logical principle:

(∀x)(∃y)Φ(x, y) ⇒ (∃F)(∀x)Φ(x, F(x)). (1)

Hintikka (1998, pp. 39–48) and others have argued that it is hard to see how
we could deny the truth of this principle for all formulae Φ except by read-
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ing the first-order existential quantifier classically and the second-order one
constructively; when both are read classically, the principle is quite unobjec-
tionable.
Let us suppose for the sake of argument, then, that (1) is a logical truth. In

that case we can deduce the axiom of choice from the second-order separation
principle. For suppose that A is a set of disjoint non-empty sets. Then

(∀A ∈ A)(∃x)(x ∈ A),

from which it follows — in classical, but not in intuitionistic, logic (see Tait
1994) — that

(∀A)(∃x)(A ∈ A ⇒ x ∈ A).

So by (1) there is a (logical) function F such that

(∀A ∈ A)(F(A) ∈ A).

The setC = {x ∈ ⋃A :(∃A ∈ A)(x = F(A))} exists by the second-order sep-
aration principle. And because the members ofA are disjoint, for each A ∈ A
the set C ∩ A has just one element F(A).
Now it is important to see that this does nothing to threaten the independ-

ence result quoted earlier to the effect that the axiom of choice is not prov-
able in ZU. Since the formalization of first-order logic is complete, that result
holds good whatever second-order logical principles we manage to persuade
ourselves of. What the argument just given does, rather, is to draw attention
to the fact that the axiomatizations of set theory from which the axiom of
choice has been shown to be independent are all first-order. Specifically, the
axiom of choice is not derivable from any instance of the first-order separation
scheme: the sign ‘F ’ in the argument for the axiom of choice stands for a
logical function, i.e. a second-order entity, not a set of ordered pairs. So the
explanation is simply that the instance of separation used to obtain the set C
is not expressible in the first-order language.
The effect of this is to narrow down the options for anyone wishing to reject

the axiom of choice. Short of denying the second-order principle (1), one is
forced to adopt some argument for first-order separation other than the one
we gave in §3.5 which justified it as an approximation to the second-order
axiom. This might well not bother the constructivists, who are unlikely to
have been impressed by that argument in the first place, but their arguments
fall well short of justifying the impredicative separation scheme, and so they
can be expected to have stopped reading long ago. The question of interest
here, therefore, is not whether the constructivists should believe the axiom of
choice but whether there is a moderate platonist argument that grounds all
the instances of the separation scheme expressible in the first-order language
(even the impredicative ones) but does not extend to the instances of separ-
ation involved in the axiom of choice. If there is not, we will have reached
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a substantial conclusion, because we will have shown that ZU is conceptually
unstable: the argument we used to justify will also be an argument for the
stronger system ZCU.
Before we leap to that conclusion, however, it is worth noting that there is

at any rate a significant logical difference between the axiom of choice and the
axioms of ZU. All of the latter can easily be transformed into a form in which
the existential claims they make are claims of unique existence. We could, that
is to say, have stated the axioms of ZU as follows.

Axiom of infinity. There exists a unique earliest limit level.

Axiom of creation. For each level there exists a unique next level.

Axiom scheme of separation. For every level V there exists a unique collec-
tion a such that a = {x ∈ V :Φ}.
Because of the well-foundedness of the hierarchy the same also applies to ZFU.

Axiom scheme of reflection. For all x1, . . . , xn there is a unique earliest level
V such that Φ ⇒ Φ(V ).

The axiom of choice, on the other hand, has no such equivalent.
One reason why this difference is worth taking seriously is that it is quite

stable under minor perturbations of the background logic. It is no doubt be-
cause of this that even mathematicians who believe that the axiom of choice is
true nevertheless regard proofs which do not use it as providing more inform-
ation than those that do. However, it is a large step from there to saying that
sets which are not fully specified in this manner not only encode less informa-
tion but do not even exist. For that we would require a further argument. And
it presumably could not simply be a general argument against non-unique ex-
istence claims, since the second-order principle (1), which we have agreed to
accept as uncontroversial for the moment, evidently makes just such a claim.
It seems that it would instead have to be a quite specific argument limited in
its applicability to collections, or if not to collections alone then at any rate to
the objects of mathematics.
Perhaps at this point the discussion might return to the perspective adopted

at the end of §3.3. I put forward there what I called an internal platonist ar-
gument for the well-foundedness of the hierarchy of sets that avoided outright
constructivism while accepting as a premise that mathematics is part of our
attempt to represent the world. It is hard to see how the conception of math-
ematics thus invited could support the axiom of choice. One rather vague way
of putting the point would be to say that the argument for the axiom of choice
depends crucially on the coherence of the notion of a wholly arbitrary subset,
but that even if this notion is coherent, it cannot participate in our attempt to
represent the world, and hence is not part of the mathematics we use to help
us do so.
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Perhaps what this debate about whether to accept the axiom of choice in-
dicates is that the disjunction between regularity and randomness is as fun-
damental to our conception of the world as that between discreteness and
continuity. Even the uncritical platonist ought not to deny the distinction, but
should claim only that in order for us to comprehend the world we represent,
we must see it as a limited whole — see it, that is to say, as part of a more in-
clusive whole containing things that we do not and cannot represent directly,
such as sets we cannot explicitly define. The internal platonist, on the other
hand, maintains that the attempt to sit astride this divide is illusory.

Notes

Cantor made frequent use of the axiom of choice in his work on cardinal
arithmetic. Indeed there is no evidence to suggest that Cantor ever doubted
the validity of the axiom for a moment: it was a principle which, in Zer-
melo’s words, he ‘unconsciously and instinctively used everywhere and ex-
pressly stated nowhere’ (Cantor 1932, p. 451). We noted in §9.4 how implicit
uses of the axiom of countable choice became common in the last quarter of
the 19th century. The unrestricted axiom of choice, by contrast, was hardly
used by anyone other than Cantor until after the appearance of his Beiträge
(1895; 1897). Felix Bernstein, a pupil of Cantor working in Germany, used a
consequence of the axiom of choice called the partition principle in his 1901
doctoral thesis on cardinal arithmetic (published in 1905b) and was immedi-
ately criticized for doing so by Levi (1902); the axiom of choice was also used
in Italy by Burali-Forti (1896), even though he elsewhere expressed antagon-
ism to the axiom of countable choice. The axiom of choice was also used
implicitly by the Cambridge mathematicians Whitehead (1902) and Hardy
(1904). Russell came rather close to an explicit statement of the axiom in
the work he contributed to Whitehead’s 1902 paper when he postulated that
every non-finite set is a disjoint union of countably infinite sets (which is equi-
valent to the axiom of choice). But it was only later that Russell came to see
that Whitehead had implicitly assumed the axiom of choice in his proof (in
the same paper) that any family of cardinal numbers has a product; it was
Russell’s (1906b) attempt to prove this assumption that led him to formulate
explicitly what he called the ‘multiplicative axiom’. Meanwhile in Germany
Zermelo (1904) had also stated the axiom of choice explicitly, deciding that he
needed it if he was to prove that every set is well-orderable.
At a purely descriptive level the best source for more on the history of the

emergence of the axiom of choice is G. H. Moore (1982). The idea that a
plenitudinous conception of the hierarchy makes it a triviality is essentially
due to Ramsey (1926), although the manner in which I have developed that
idea here owes more to later writers.



260 The axiom of choice

The role which the axiom of choice plays in mathematics is now rather well
understood. We have done no more here than touch on the large number
of statements in diverse parts of mathematics that are equivalent to it. This
information is exhaustively catalogued by Rubin and Rubin (1985). Many
branches of abstract mathematics are very much streamlined by the assump-
tion of the axiom of choice. A good example is general topology, which be-
comes decidedly disconcerting in its absence (see Good and Tree 1995).
The axiom of constructibility and the large topic of inner models, of which

the constructible hierarchy is only the most famous example, are discussed in
many textbooks, e.g. Devlin 1984 and Kunen 1980. The reasons for the tend-
ency of mathematicians to reject this axiom are discussed by Maddy (1993);
a dissenting voice is Jensen (1995). The technique of forcing by which Co-
hen (1963) proved the independence of the axiom of choice from ZF has been
much refined subsequently. Kunen 1980 is once again a good introduction.



Chapter 15

Further cardinal arithmetic

The axiom of choice leads to a considerable simplification of the arithmetic of
cardinals, but even so it leaves some questions in this domain unsettled. Our
aim in this chapter is to focus on these issues.

15.1 Alephs

Let us (by a minor abuse of language) say that a cardinal a = card(A) is well-
orderable if A is well-orderable; this definition is independent of the choice of
representative set A because whether a set is well-orderable depends only on
its cardinality. The well-orderable cardinals are thus precisely those of the
form |α| for some ordinal α.
(15.1.1) Proposition. Every set of well-orderable cardinals has a least ele-
ment.

Proof . This follows at once from the corresponding fact for ordinals since the
function given by α �→ |α| is increasing.
In particular, any two well-orderable cardinals are comparable. Therefore
every well-orderable cardinal is either finite or infinite (and of course every
finite cardinal is well-orderable).

Definition. An infinite well-orderable cardinal is called an aleph.

(15.1.2) Proposition. The alephs do not form a set.

Proof . By Hartogs’ theorem 11.4.2 there is no cardinal which is an upper
bound for the alephs: it follows that they do not form a set [proposition 9.2.5].

The smallest alephs are ℵ0 and ℵ1. We now generalize this and write ℵα
to denote the αth aleph. ℵ is the Hebrew letter ‘aleph’, which explains the
terminology introduced a moment ago. The least element of the set {β : |β| =
ℵα} is denoted ωα: again this conforms with our previous usage since the least
infinite ordinal is ω0 and the least uncountable ordinal is ω1. By analogy with
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the terminology for cardinals, one might call ordinals of the form ωα omegas,
but in practice no one does.
If we assumed the axiom of ordinals, we could prove that ℵα exists for every

ordinal α. In ZU, however, the only alephs whose existence we can be sure of
are the ℵn for all n ∈ ωωωω.

Definition. If a is a cardinal, then we let a+ denote the least well-orderable
cardinal b such that b �� a.

The fact that a+ exists follows at once from Hartogs’ theorem. If a is finite,
then of course a+ = a + 1. If a is not finite, then a+ is an aleph; in particular,
ℵ+α = ℵα+1.

15.2 The arithmetic of alephs

The arithmetic of alephs is much simpler than the arithmetic of other infinite
cardinals: it turns out, in fact, that addition and multiplication collapse into
triviality, leaving only exponentiation as a way of obtaining different cardinals.
The clue to this came when we saw earlier that 2ℵ0 = ℵ0 and ℵ20 = ℵ0. What
we shall show now is that both these results generalize to all the alephs, leading
at once to the aforementioned triviality of addition and multiplication.

(15.2.1) Proposition. If a is an aleph, then 2a = a.

Proof . We shall prove by transfinite induction that 2|α| = |α| for every infinite
ordinal α. This is certainly true for α = ω since 2ℵ0 = ℵ0. If it is true for α,
then

|2(α + 1)| = |2α + 2| = 2|α| + 2
= |α| + 2 = |α| + 1 = |α + 1|,

and so it is true for α + 1. Finally, if λ is a limit ordinal and the hypothesis is
true for ω � α < λ, then λ = ωβ for some β < λ [corollary 12.3.6], so that

|2λ| = |2ωβ| = 2ℵ0|β| = ℵ0|β| = |ωβ| = |λ|,
and hence it is true for λ. This completes the proof.

(15.2.2) Corollary. If a, b are alephs, then a + b = max(a, b).

Proof . Either a � b or b � a [proposition 15.1.1]; suppose for the sake of
argument that a � b. Then b � a+ b � b+ b = 2b = b [proposition 15.2.1],
and so a + b = b = max(a, b).

(15.2.3) Proposition. If a is an aleph, then a2 = a.
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Proof . It will be sufficient to prove that card(αααα × αααα) = |α| for every infinite
ordinal α. Suppose for a contradiction that this is false and that α is the least
ordinal for which it fails. Note that if σ is an ordinal, then

σ < α⇔ |σ| < |α|. (1)

Note also that |α| > ℵ0 [proposition 10.3.2].
Define an ordering onαααα×αααα by writing (β, γ) � (δ, ε) iff either β+γ < δ+ε

or β + γ = δ + ε and β < δ. It is easy to check that this is a well-ordering on
αααα× αααα.
Now for each ordinal σ < α let A(σ) = {(β, γ) : β + γ < σ}. It is clear that

A(σ) ⊆ σ× σ and that A(σ) is an initial subset of αααα× αααα. So
card(A(σ)) � card(σ× σ)

= |σ|
< |α| by (1),

and therefore ord(A(σ)) < α.
If (β, γ) ∈ αααα× αααα, then |β|, |γ| < |α| by (1), so that

|β + γ| = |β| + |γ| [proposition 12.2.2]
< |α| [corollary 15.2.2].

Therefore β + γ < α, so that (β, γ) ∈ A(σ) for some σ < α. In other words
αααα× αααα = ⋃

σ<α A(σ). So

ord(αααα× αααα,�) = sup
σ<α

ord(A(σ),�) [proposition 11.2.3]

= α.
Hence card(αααα× αααα) = |α|, which is what we wanted.
(15.2.4) Corollary. If a and b are alephs, then ab = max(a, b).

Proof . Suppose for the sake of argument that a � b. Then

b � ab � bb = b2 = b [proposition 15.2.3],

so that ab = b = max(a, b).

15.3 Counting well-orderable sets

(15.3.1) Theorem. If A is an infinite well-orderable set, then

card(F(A)) = card(A).
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Proof . Suppose not. So there exists an infinite ordinal α such that card(F(αααα))
�= |α|: choose α as small as possible. Note that α is the least element of
{β : |β| = |α|} and hence

β < α⇔ |β| < |α|. (2)

Now if X ∈ F(αααα), then we can let X = {γ0, γ1, . . . , γn−1} with α > γ0 > γ1 >
· · · > γn−1 and define

f (X) = 2(γ0) + 2(γ1) + · · · + 2(γn−1)

(unless X = Ø, in which case let f (X) = 0). Now if 0 � r � n − 1, then
either γr is finite, in which case

|2(γr )| < |ω| � |α|,
or γr is infinite, in which case

|2(γr )| = card(F(γγγγr))

= |γr | by the induction hypothesis
< |α| since γr < α.

So

| f (X)| = |2(γ0)| + |2(γ1)| + · · · + |2(γn)| [proposition 12.2.2]
< |α| [corollary 15.2.2],

and therefore f (X) < α by (2). In other words, f is a function from F(αααα)
to αααα. Since this function is a one-to-one correspondence [theorem 12.5.1], it
follows that card(F(αααα)) = |α|. Contradiction.
(15.3.2) Proposition. If A is an infinite well-orderable set, then

card(String(A)) = card(A).

Proof . Each element of String(A) is a function from n to A, hence a finite
subset of ωωωω × A. So String(A) ⊆ F(ωωωω × A). Now ωωωω and A are both well-
orderable, hence so is ωωωω × A [lemma 12.3.1]. Therefore

card(String(A)) � card(F(ωωωω × A))

= card(ωωωω × A) [theorem 15.3.1]

= ℵ0 card(A)

= card(A) [corollary 15.2.4].

The result follows, since the opposite inequality

card(A) � card(String(A))

is obvious.
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(15.3.3) Proposition. If (A,�) and (B,�) are infinite well-ordered sets,
then

card((A)B) = max(card(A), card(B)). 1

Proof . If f ∈ (A)B, let {x0, . . . , xn−1} be {x ∈ A : f (x) �= ⊥} arranged in order,
and let

g( f ) = ({x0, . . . , xn−1}, ( f (xr ))r∈n).

The function g from (A)B to F(A) × String(B) thus defined is evidently one-
to-one. Hence

card((A)B) � card(F(A) × String(B))

= card(F(A)) card(String(B))

= card(A) card(B) [theorem 15.3.1 and proposition 15.3.2]

= max(card(A), card(B)) [corollary 15.2.4].

The converse inequality is obvious, whence the result.

Exercises

1. If b is an aleph, show that a = 2b iff a � b and a + b = 2b.

2. If a = card(A) and b = card(B), let us write a �∗ b if either A = Ø or there exists
a function from B onto A. Establish the following results.

(a) a � b ⇒ a �∗ b.

(b) The converse holds if b is well-orderable.

(c) a �∗ b ⇒ 2a � 2b.

(d) ℵα+1 �∗ 2ℵα .
(e) ℵα+1 < 22

ℵα .

3. (a) Given a well-orderable cardinal b �= 0, find an infinite a such that ab = a.

(b) Can we choose a � b?

4. If A is an infinite well-orderable set of cardinal a, show that each of the following
sets has cardinal 2a:

(a) the set of infinite subsets of A;

(b) the set of subsets of A equinumerous with A;

(c) the set of equivalence relations on A;

(d) the set of well-ordering relations on A.

1This is the result whose proof we have owed since we used it in establishing proposition 12.4.2.
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15.4 Cardinal arithmetic and the axiom of choice

(15.4.1) Proposition. These three assertions are equivalent:

(i) The axiom of choice.

(ii) Every cardinal that is not finite is an aleph.

(iii) Every infinite cardinal is an aleph.

(i)⇒(ii). Assume the axiom of choice and let a be any non-finite cardinal.
Then a is infinite. Moreover, every set, and therefore every cardinal, is well-
orderable. So a is an aleph.

(ii)⇒(iii). Trivial.

(iii)⇒(i). Let a be any cardinal. If it is finite, it is trivially well-orderable, so
suppose that it is not finite. Then a + a+ � a+ � ℵ0, so a + a+ is infinite and
hence by hypothesis an aleph. But a � a+a+, and so a is well-orderable. Thus
every cardinal is well-orderable, and the axiom of choice follows [theorem
14.4.3].

So if the axiom of choice is true, the simplifying results we proved in §15.2
about the arithmetic of alephs apply to all infinite cardinals: addition and
multiplication of infinite cardinals become completely trivial, exponentiation
is the only arithmetical operation that generates anything new, and the partial
ordering of cardinals becomes a total ordering. In fact we can go further: these
simplifications of cardinal arithmetic are equivalent to the axiom of choice.

(15.4.2) Proposition (Hartogs 1915). The axiom of choice is equivalent
to the assertion that any two cardinals are comparable.

Necessity. If the axiom of choice holds, then every set is well-orderable, so every
cardinal that is not finite is an aleph, and it follows from proposition 15.1.1
that any two cardinals, and hence in particular any two infinite cardinals, are
comparable.

Sufficiency. If a is an infinite cardinal, then a+ �� a, so a < a+ by hypothesis:
as a+ is an aleph, it follows that a is one too. The axiom of choice follows
[proposition 15.4.1].

(15.4.3) Lemma. If a + a+ = aa+, then a is an aleph.

Proof . Let A and B be sets such that card(A) = a and card(B) = a+.
By hypothesis there exist disjoint sets A′ and B ′ equinumerous with A
and B respectively such that A × B = A′ ∪ B ′. Suppose first that
(∃x ∈ A)(∀y ∈ B)((x, y) ∈ A′). Then there is a one-to-one function
from B to A′ given by y �→ (a, y). So a+ � a. Contradiction. So
(∀x ∈ A)(∃y ∈ B)((x, y) ∈ B ′). Now choose a well-ordering of B and for
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each x ∈ A let f (x) be the least y ∈ B such that (x, y) ∈ B ′. Then
x �→ (x, f (x)) is a one-to-one function from A into B ′ and therefore a � a+.
Consequently a is well-orderable since a+ is.

(15.4.4) Proposition (Tarski 1924). The axiom of choice is equivalent to
the assertion that a + b = ab for any infinite cardinals a and b.

Necessity. If we assume the axiom of choice, then any infinite cardinals a and
b must be alephs, so that

a + b = max(a, b) [corollary 15.2.2]

= ab [corollary 15.2.4].

Sufficiency. If a is any infinite cardinal, then a + a+ = aa+ by hypothesis,
whence a is an aleph [lemma 15.4.3]. The axiom of choice follows [pro-
position 15.4.1].

(15.4.5) Theorem (König 1905). If (Ai)i∈I and (Bi)i∈I are families of sets
such that card(Ai) < card(Bi) for all i ∈ I and

⋃
i∈I Bi is well-orderable,

then card(
⋃

i∈I Ai) �= card(
∏

i∈I Bi).

Proof . Suppose on the contrary that f is a function from
⋃

i∈I Ai onto∏
i∈I Bi . Choose first some well-ordering of

⋃
i∈I Bi . For each i ∈ I the

set Bi � { f (a)i : a ∈ Ai } is non-empty, since otherwise a �→ f (a)i would be
a function from Ai onto Bi , contrary to hypothesis; so we can let bi be the
member of Bi � { f (a)i : a ∈ Ai } which is least with respect to the chosen
well-ordering of

⋃
i∈I Bi . In this way we define a family (bi)i∈I , and because

f is onto, (bi)i∈I = f (a) where a ∈ Aj for some j ∈ I . But then bj = f (a)j .
Contradiction.

Note, incidentally, that by putting Ai = {i} and Bi = {0, 1} for all i ∈ I we
retrieve Cantor’s theorem

card(I ) �= card(I {0, 1}) = card(P(I ))

as a special case (since 1 < 2).

(15.4.6)Corollary. The axiom of choice holds iff for any families (Ai)i∈I and
(Bi)i∈I such that card(Ai) < card(Bi) for all i ∈ I we have card(

⋃
i∈I Ai) <

card(
∏

i∈I Bi).

Necessity. Suppose that card(Ai) < card(Bi) for all i ∈ I . It is easy to use
the axiom of choice to show that card(

⋃
i∈I Ai) � card(

∏
i∈I Bi). But the

axiom of choice also entails that
⋃

i∈I Bi is well-orderable, and so it follows by
König’s theorem that card(

⋃
i∈I Ai) < card(

∏
i∈I Bi).

Sufficiency. If Bi �= Ø for all i ∈ I , then (putting Ai = Ø for all i ∈ I ) we obtain∏
i∈I Bi �= Ø (since 0 < 1). This is equivalent to the axiom of choice.
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15.5 The continuum hypothesis

In §11.3 we briefly mentioned the hypothesis, first conjectured by Cantor, that
every uncountable set of reals has the power of the continuum.

Continuum hypothesis. There is no cardinal b such that ℵ0 < b < 2ℵ0 .

If we assume the axiom of choice, then ℵ0 < ℵ1 � 2ℵ0 , and the continuum
hypothesis is therefore equivalent to the equation 2ℵ0 = ℵ1: indeed it is of-
ten stated in this form. If we do not assume the axiom of choice, however,
the version we have stated above is strictly weaker (Solovay 1970), and the
equation 2ℵ0 = ℵ1 is then equivalent to the conjunction of the continuum
hypothesis and the claim that 2ℵ0 is an aleph (i.e. that the real numbers are
well-orderable).
Cantor devoted a great deal of time to investigating whether or not the

continuum hypothesis is true and on several occasions believed briefly that he
had proved it. Indeed he first stated it (in 1878, p. 258) not as a conjecture but
as something he claimed to have proved (‘by a process of induction which we
do not describe further at this point’). One approach Cantor used in trying
to tackle the problem was to study the properties of perfect sets (closed sub-
sets of the real line without isolated points). We showed in §10.4 that every
non-empty perfect set has the power of the continuum. It follows that the
continuum hypothesis is entailed by the following stronger claim.

Perfect set hypothesis. Every uncountable subset of the real line has a non-
empty perfect subset.

The Cantor/Bendixson theorem, first proved in the 1880s, establishes this
hypothesis for closed subsets of R, but it is far from easy to extend this result
to other more inclusive classes (not least because the property is not preserved
by complementation). Eventually, though, new methods enabled Alexandroff
(1916) to prove it for Borel sets, and Souslin (see Lusin 1917) for analytic sets.
But the more ambitious project of establishing the continuum hypothesis via
the perfect set hypothesis was stymied, at least for those such as Cantor who
accepted the axiom of choice, by Bernstein’s (1908) discovery that the perfect
set hypothesis contradicts the axiom of choice.

(15.5.1) Proposition. If 2ℵ0 is an aleph, there is a subset of the real line with
the power of the continuum which neither contains nor is disjoint from any
non-empty perfect set.

Proof . Suppose that 2ℵ0 =ℵβ. We noted earlier that the number of perfect sets
is 2ℵ0 ; so it follows that there is a transfinite sequence (Pα)α<ωβ enumerating all
the non-empty perfect sets. Let us now try to choose two transfinite sequences
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(aα) and (bα) recursively so that

aα ∈ Pα � ({aγ : γ < α} ∪ {bγ : γ < α})
bα ∈ Pα � ({aγ : γ � α} ∪ {bγ : γ < α}).

At each stage the choice of aα is indeed possible, since

card({aγ : γ < α} ∪ {bγ : γ < α}) = 2|α| = |α| < |ωβ| = 2ℵ0 = card(Pα),

and so Pα � ({aγ : γ < α} ∪ {bγ : γ < α}) �= Ø; similarly for bα. Moreover,
this does not require the axiom of choice, since we are supposing that 2ℵ0 is
an aleph, and hence that the real line is well-orderable. The ranges of the two
transfinite sequences {aα :α < ωβ} and {bα :α < ωβ} are evidently disjoint sets
with the power of the continuum and every non-empty perfect set intersects
both of them.

(15.5.2) Corollary. The axiom of choice and the perfect set hypothesis can-
not both be true.

Proof . If the axiom of choice is true, then 2ℵ0 is an aleph and hence by propos-
ition 15.5.1 there is an uncountable set of real numbers with no non-empty
perfect subset, contradicting the perfect set hypothesis.

So the axiom of choice refutes the perfect set hypothesis. The much stronger
axiom of constructibility refutes even the special case of the perfect set hypo-
thesis for projective sets (Gödel 1938). But the continuum hypothesis itself is
sufficiently weaker than the perfect set hypothesis to escape this stricture: it is
entailed by the axiom of constructibility, but it is standardly used nowadays
as an example of a proposition that is independent of the ordinary axioms of set
theory: even if we assume the whole of ZFC, we can prove neither the con-
tinuum hypothesis (Cohen 1963) nor its negation (Gödel 1938), provided only
that ZFC itself is consistent.
So is there anything we can prove about the size of 2ℵ0 without assuming

further axioms? It turns out that there is.

Definition. A cardinal a is said to be of countable cofinality if there is
a sequence (An)n∈ωωωω of sets such that card(An) < a for all n ∈ ωωωω but
card(

⋃
n∈ωωωω An) = a.

(15.5.3) Theorem. 2ℵ0 is not an aleph of countable cofinality.

Proof . Suppose on the contrary that there is a well-orderable set B such that
B = ⋃

n∈ωωωω An with card(An) < 2ℵ0 = card(B). In that case

card(ωωωω B) = (2ℵ0)ℵ0 = 2ℵ0 = card(
⋃
n∈ωωωω

An),

contradicting König’s theorem.
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(15.5.4) Corollary. 2ℵ0 �= ℵω.

Proof . The cardinal ℵω is of countable cofinality, since ωωωωω = ⋃
n∈ωωωω ωωωωn .

But this is the only restriction: any value for 2ℵ0 in the hierarchy of alephs
which is not of countable cofinality is consistent with ZFC (Solovay 1964). It is
thus consistent (although, one somehow feels, rather unlikely) that 2ℵ0 = ℵ4049,
for instance, or 2ℵ0 = ℵω2+61.
Many mathematicians conclude on the basis of these independence results

not only that the continuum hypothesis is undecided but that it is undecidable.
Let us pause now to consider whether this is the right conclusion to draw.

Exercise

(Sierpinski 1924) Show that 2ℵ0 = ℵ1 iff ℵℵ0
2 > ℵℵ0

1 .

15.6 Is the continuum hypothesis decidable?

Note first that the continuum hypothesis is obviously equivalent to the state-
ment

(∀A ⊆ P(ωωωω))(A ∼ ωωωω or A ∼ P(ωωωω)),

where ∼ expresses equinumerosity, and that this statement, even when it is
expressed fully without abbreviations, quantifies only over the first few infinite
levels of the hierarchy of sets. (The exact number of levels involved depends
on just how the ordered pair is defined, but by careful use of coding we could
if it mattered reduce the quantification to the third infinite level.) This is
significant because it shows that the continuum hypothesis — in stark con-
trast, for instance, to the higher axioms of infinity considered in chapter 13
— is decided by second-order set theory Z2. This contrast, although relatively
trivial in itself, is certainly not always appreciated by mathematicians. It is
well known to set theorists, of course, and is a theme of Scott’s foreword to
Bell (1977). ‘There are any number of contradictory set theories, all extend-
ing the Zermelo-Fraenkel axioms,’ he observes (p. xiv), ‘but the models are all
just models of the first-order axioms, and first-order logic is weak.’ The point
has also been made repeatedly by Kreisel, but usually in works unlikely to be
read by mainstream mathematicians (e.g. Kreisel 1967a); it is rare for books
aimed at a general mathematical audience to give the point any prominence.
Two consequences of this second-order decidability result should be noted.

The first is that the uncritical platonist who accepts the argument given in
the last chapter that the axiom of choice follows from the second-order lo-
gical principle must correspondingly accept that the truth or falsity of the
continuum hypothesis might be settled by second-order logic. It is, indeed,
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easy enough to formulate a sentence in the language of pure second-order lo-
gic which is a logical truth iff the continuum hypothesis is true, and another
sentence (not, of course, the negation of the first) which is a logical truth iff
the continuum hypothesis is false (see Shapiro 1985, p. 741). The difficulty is
evidently that in contrast to the case of the axiom of choice we do not seem
to have any intuitions about whether these second-order principles that could
settle the continuum hypothesis are themselves true or false. So this obser-
vation does not seem especially likely to be a route to an argument that will
actually settle the continuum hypothesis one way or the other. And even if
we did find such an argument (for example, a mathematical argument from
some new set-theoretic principle), although we could then work back from
that to knowledge of the corresponding second-order logical truth, this would
not automatically make the continuum hypothesis itself logical, since it would
follow from the second-order logical truth in question only via the axioms of
second-order set theory.
All of this, of course, applies only to the sort of platonist who accepts the

second-order separation principle. But I also want to mention another con-
sequence of the second-order decidability of the continuum hypothesis, this
time one that does not seem to depend so directly on accepting second-order
separation. The point I want to mention is that there is a difference in char-
acter between the continuum hypothesis and other sentences undecided by
ZFC, such as the various large cardinal axioms. This is admittedly somewhat
vaguer than the preceding point, and it is correspondingly more obscure how
much it depends on the platonist commitment to the second-order system, but
at the very least it shows that the analogy that has often been casually drawn
(e.g. Errera 1952, A. Robinson 1968) between the position of the continuum
hypothesis in set theory and that of the parallel postulate in geometry is much
too hasty: the undecidability of the parallel postulate has nothing to do with
the weakness of first-order systems.
Kreisel (1971) has urged that a much better analogy would be with the

proven insolubility in elementary geometry of the classical problems of squar-
ing the circle and trisecting the angle: what is shown is not that an angle
cannot be trisected but only that it cannot be done with a straightedge and
compasses. But even if this analogy is apposite, it is not clear that it helps us to
solve the continuum problem, since it does not give us much of a clue where
to look for the new methods that we need.
One superficially appealing strategy would be to bring higher infinities to

our aid. We saw in chapter 13 how one property (determinacy) can be proved
successively for closed sets, Borel sets and projective sets, but only by invoking
higher and higher infinities at each stage. By analogy one might conjecture,
as Gödel did (1947), that the continuum hypothesis, which we have proved
for closed sets already, could be extended to more inclusive categories of set
in something like the same manner.
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However plausible this conjecture may have seemed when Gödel made it,
subsequent work in set theory has shown that it is very unlikely to be true.
What Gödel had presumably not expected was that the method of forcing
devised by Cohen (1963) to prove the independence of the continuum hy-
pothesis from ZF would turn out to be even more robust than Gödel’s inner
model construction when confronted with large cardinal axioms (Levy and
Solovay 1967). Broadly stated, every large cardinal axiom so far proposed is
known not to settle the continuum hypothesis.
This marks another way of differentiating between independence claims.

We have already noted that the independence of the continuum hypothesis
is different from that of the parallel postulate in geometry, because it is dis-
tinctively a first-order result; what we can now see is that it is also different
from the sort we considered in chapter 13, such as the independence of the
Gödel sentence of a theory or the independence of Borel determinacy from
ZU, since these claims can be decided by ascent to a higher level in the hier-
archy, whereas the continuum hypothesis cannot.
With this distinction in mind let us call a sentence strongly undecidable if it

is independent of set theory even if any axiom of infinity, however strong, is
adjoined to it. We should recognize at once, of course, that this is not a form-
alizable notion, since Gödel’s theorem shows that no formal characterization
is possible of what should count as an axiom of infinity. The best we could
hope for would be, as Gödel (1965, p. 85) suggested, ‘a characterization of
the following sort: An axiom of infinity is a proposition which has a certain
(decidable) formal structure and which in addition is true.’ In any such char-
acterization truth would of course remain as the inherently non-formal notion
involved. It must be said, however, that neither Gödel nor anyone else has
yet offered a plausible candidate for a formal characterization of the required
sort.
In lectures he gave in 1939 or 1940, shortly after proving the consistency

of the continuum hypothesis, Gödel speculated that it might be strongly un-
decidable whether every real number is constructible (see Gödel 1986–2003,
vol. III, pp. 175 and 185). Later, though, he seems to have had a change of
heart and not only suggested that the continuum hypothesis might be decided
by a suitably strong axiom of infinity but even briefly speculated in 1946 that
there might be no strongly undecidable propositions in set theory.

It is not impossible that . . . some completeness theorem would hold which would say
that every proposition expressible in set theory is decidable from the present axioms
plus some true assertion about the largeness of the universe of sets. (Gödel 1965, p. 85)

But even if the continuum hypothesis is strongly undecidable in the sense
just outlined, it does not automatically follow that it is absolutely undecidable
— undecidable, that is to say, by any true principles about sets, whether or
not they count as axioms of infinity. We are surely not entitled to make this
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stronger claim until the reason for the robustness of the continuum hypothesis
is well understood. And in any case large cardinal axioms are not the only way
of extending ZF. Indeed Gödel himself, only a year after he had speculated
that there might be no strongly undecidable statements, pointed out another
way in which a proposition could be decided. Not only do there probably
exist new axioms of infinity based on unknown principles, he said, but also

there may exist, besides the ordinary axioms [and] the axioms of infinity . . . other
(hitherto unknown) axioms of set theory which a more profound understanding of the
concepts underlying logic and mathematics would enable us to recognize as implied
by these concepts. (Gödel 1947, pp. 520–1)

In line with Gödel’s suggestion, various authors have offered arguments
which aim to settle the continuum hypothesis on the basis of more or less intu-
itively appealing principles. Hilbert, who in 1900 regarded settling it as one of
the most important challenges in mathematics, sketched in 1925 a purported
proof of the continuum hypothesis based on a classification of the elements
of Baire space into orders of recursive definability; but he never completed
the details, and Zermelo is reported as saying that ‘no one understood what
he meant’ (P. Levy 1964, p. 89). Gödel himself quite late in his life believed
he had a proof that 2ℵ0 = ℵ2 on the basis of several new set-theoretic ax-
ioms, but he withdrew the paper before publication (see Gödel 1986–2003,
vol. III, pp. 405–25). More recently, various other set-theoretic principles
have been shown to entail that 2ℵ0 = ℵ2: e.g. the principle known as ‘Mar-
tin’s maximum’ (Foreman, Magidor and Shelah 1988) or an axiom proposed
by Woodin (2001b).
What should we make of these new axioms? Formalists, of course, will as

usual regard universes in which the new axioms hold and those in which they
fail as equally valid (although whether they are equally interesting will depend
on how the mathematics develops). But there does not seem to be any reason
for them to regard the continuum hypothesis as special in this regard. For the
realist, on the other hand, there is always the possibility that intuitive prin-
ciples will settle the continuum hypothesis one way or the other. One state-
ment which entails it is the axiom of constructibility, which may be thought
of as a minimizing principle whose approximate effect is to make each level of
the hierarchy as thin as is permitted by the other axioms. As we suggested in
the last chapter, part of the reason why few realist mathematicians are willing
to regard the axiom of constructibility as true is that it seems to contravene
the first principle of plenitude which guides the formation of the hierarchy.
The reason for repeating this point here is that if it is right, it is natural to

wonder whether a converse argument can be mounted to the effect that the
first principle of plenitude requires 2ℵ0 to be as large as possible. This idea has
been urged by Cohen.
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A point of view which the author feels may eventually come to be accepted is that CH
is obviously false. The main reason one accepts the Axiom of Infinity is probably that
we feel it absurd to think that the process of adding only one set at a time can exhaust
the entire universe. Similarly with the higher axioms of infinity. Now ℵ1 is the set
of countable ordinals and this is merely a special and the simplest way of generating
a higher cardinal. The set P(ωωωω) is, in contrast, generated by a totally new and more
powerful principle, namely the Power Set Axiom. It is unreasonable to expect that any
description of a larger cardinal which attempts to build up that cardinal from ideas
deriving from the Replacement Axiom can ever reach P(ωωωω). Thus P(ωωωω) is greater
than ℵn , ℵω, ℵωω , etc. This point of view regards P(ωωωω) as an incredibly rich set given
to us by one bold new axiom, which can never be approached by any piecemeal
process of construction. (1966, p. 151, modified)

This is a radical argument, and it is hard to make sense of it in conventional
terms. For it is certainly provable in ZFC that 2ℵ0 = ℵα for some α. One pos-
sibility, of course, would be simply to deny that P(ωωωω) is a set, but that is not
Cohen’s intention: his proposal is not that an ordinal α such that 2ℵ0 = ℵα
does not exist, but only that it cannot be described in any other terms already
available to us in the first-order theory. Cohen (1973) followed up his sug-
gestion by proposing one axiom which attempts to give expression to the idea
thatP(ωωωω) is large, and Takeuti (1971) has suggested others. Scott, meanwhile,
went further, speculating (in Bell 1977, p. xiv) that ‘we would be pushed in the
end to say that all sets are countable (and that the continuum is not even a set!)
when at last all cardinals are absolutely destroyed’.
But it is by no means clear why the maximal conception of the power-

set operation should deliver the sort of conclusion these authors want. If we
enrich the power set at each level, we enlarge not only P(ωωωω) but also the set
of non-isomorphic well-orderings of ωωωω and hence (in one sense) the size of ℵ1.
While the property of being an ordinal is invariant or absolute, the property (of ordinals)
of being [uncountable] is not. The point is often overlooked in the (popular) ‘debate’ on
the continuum hypothesis, where the orderliness of the ordinals (in Vκ or Lκ) is contras-
ted with the mess of P(ωωωω) (in Vκ): a similar mess is involved in the collection of maps
(in Vκ) of ωωωω onto initial segments of the ordinals. It does not seem at all surprising that
we have not (yet) decided whether the two ‘messes’ match. (Kreisel 1980, p. 198)

But the matter is even harder to resolve for the regressivist, because it is
difficult to come by consequences of the continuum hypothesis to use as data.
Indeed, one reason for the tendency of mathematicians to regard the con-
tinuum hypothesis as absolutely undecidable may well be that it receives so
little regressive support from its consequences. For we saw in the last chapter
that the axiom of constructibility does not enable us to prove any new theor-
ems in first-order arithmetic; and since the continuum hypothesis is entailed
by the axiom of constructibility, the same will be true of it. But by a more elab-
orate argument we can show still more: even in second-order arithmetic there
is nothing provable using the continuum hypothesis that is not already prov-
able using only the axiom of choice (Platek 1969). It follows that anyone who
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wishes to justify the continuum hypothesis on the basis of its consequences
must claim independent knowledge, i.e. knowledge acquired by some other
route, of truths of at least the third order. But, as we noted at the beginning
of this section, the continuum hypothesis is itself of the third order; so at any
rate the regressive approach does not seem to effect any logical simplification
of the problem.
Feferman’s view is that the continuum hypothesis is ‘inherently vague’

(2000, p. 405). This, or something like it, is a common view among math-
ematicians. Not all of those who hold it, though, are clear about its con-
sequences. For whether a sentence is vague or not is presumably a function
of its meaning. So we cannot corral the undecided sentences and leave the
others untainted: if we admit the continuum hypothesis as vague, we shall be
hard pressed to resist the conclusion that all other sentences involving quan-
tification at the third infinite level of the hierarchy are more or less vague as
well. The concern has been well expressed by Steel.

There may be something in the idea that the language of third order arithmetic is
vague, but the suggestion that it is inherently so is a gratuitous counsel of despair. If
the language of third order arithmetic permits vague or ambiguous sentences, then it
is important to trim or sharpen it so as to eliminate these. . . . In his argument that
the concept of an arbitrary set of reals is inherently vague, Feferman likens it to the
‘concept’ of a feasible number. This analogy is far-fetched at best. The concept of an
arbitrary set of reals is the foundation for a great deal of mathematics, and has never
led into contradiction. The first two things of a general nature one is inclined to say
about feasible numbers will contradict each other. (2000, p. 432)

15.7 The axiom of determinacy

The continuum hypothesis may be thought of as making a general claim about
arbitrary sets of real numbers — that they are all countable or have the power
of the continuum. As we have seen, Cantor succeeded in showing, assuming
the axiom of choice, that every closed set has this property, and he hoped
to extend this to all sets in due course. In this project we now know that
he was doomed to failure. There is a striking contrast, though, between the
property Cantor was investigating and several others which arise naturally in
the study of the real line. Consider, for instance, the property of measurability
central to the theory of integration: every closed set is measurable, and if we
assume the axiom of countable choice, we can prove that every Borel set is
measurable. But the axiom of choice entails the existence of non-measurable
sets. The existence of such sets may be thought unwelcome on naive grounds
of simplicity, but in fact matters are somewhat worse.

Theorem (Banach and Tarski 1924). The axiom of choice implies that
there is a decomposition of the surface of the unit sphere into a finite number



276 Further cardinal arithmetic

of pieces which can by rigid motions of three-dimensional Euclidean space be
reassembled to form the surfaces of two spheres of unit radius.2

Now of course it is trivially the case that the decomposition described in the
theorem is impossible if we require the pieces into which the sphere is decom-
posed all to be measurable, since rigid motions preserve area, and the surface
area of each of the spheres in question is 4π. So what the theorem claims must
be a decomposition into non-measurable pieces.
The Banach/Tarski theorem has sometimes been used in an attempt to re-

fute the axiom of choice: the conclusion of the theorem is intuitively false, it is
said, and therefore the axiom of choice cannot be true. In order to use it in
this way, though, we would need to have an intuitive argument not depending
on the concept of area for disbelieving in the possibility of the decomposition
mentioned in the theorem, and it is by no means clear that such an argu-
ment exists. The point is one we came across when we were considering
real analysis in chapter 8. We have already seen that in testing the axiom
of choice geometrical intuitions derived from elementary geometry — the geo-
metry of straightedge and compasses — are irrelevant. So the geometrical
intuitions involved here cannot be elementary in this sense, but must depend
on our general grasp of properties of transcendental functions. But experi-
ence already suggests that our intuitions concerning such functions need to be
educated before much reliance can be placed on them.
This is a common phenomenon in mathematics. The ancient Greeks ap-

parently regarded their discovery of the existence of irrational numbers as
paradoxical (whether or not one of them drowned because of it, as myth
claims); if no trained mathematician would have this reaction today, that is
precisely because by studying the phenomenon we have reached an under-
standing of the reasons for it, and hence, far from seeming paradoxical, it
comes to be just what we intuitively expect. In much the same way, those
who have received the appropriate education seem generally disinclined to
regard the conclusion of the Banach/Tarski theorem as false. (What is harder
to judge, of course, is whether they are influenced in this view by also having
been educated to believe the axiom of choice.)
The impression that the Banach/Tarski theorem does not show the axiom

of choice to be false is further strengthened if it is compared to the following
result.

Theorem (Mazurkiewicz and Sierpinski 1914). There is a non-empty
subset E of the Euclidean plane which has two disjoint subsets each of which
can be split into finitely many parts which can be rearranged isometrically to
form a partition of E .

2R. M. Robinson (1947) has shown that the number of pieces in the decomposition can be made
as small as four.
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This theorem is certainly surprising, but this time we cannot blame the axiom
of choice since the proof does not require it: the sets involved in the decom-
position are measurable.3 It may indeed be that this is not quite as surprising as
the previous result, but it surely weakens one’s confidence that the conclusion
of the Banach/Tarski theorem is intuitively false.
Nonetheless, the Banach/Tarski theorem has led some mathematicians to

speculate on the idea of abandoning the axiom of choice and putting in its
place an axiom which ensures that every set is measurable and hence rules
out the decompositions of the sphere which they find paradoxical. The prime
candidate for such an axiom is one that was first proposed by Mycielski and
Steinhaus (1962).

Axiom of determinacy. The game on every subset of the Baire line is determ-
ined.

The axiom of determinacy entails that every set of real numbers is measur-
able (Mycielski and Swierczkowski 1964). This is welcome news to anyone
who finds the Banach/Tarski decomposition paradoxical, since it shows that
determinacy rules this result out. It follows, of course, that determinacy must
be incompatible with the axiom of choice, but in fact this is something we can
easily prove directly.

(15.7.1) Proposition. The axiom of determinacy entails that 2ℵ0 is not an
aleph.

Proof . Suppose that 2ℵ0 = ℵβ. The set of first player strategies has cardinal
2ℵ0 and hence can be enumerated as the range of a transfinite sequence
{σα :α < ωβ}. In the same way we can let {τα :α < ωβ} enumerate the
strategies available to the second player. Suppose now that α < ωβ. The
function t �→ σα ∗ t is one-to-one, and so the set {σα ∗ t : t ∈ ωωωωωωωω} of all the
possible games in which the first player follows the strategy σα has the same
cardinal as ωωωωωωωω, i.e. 2ℵ0 ; similarly the set {s∗τα : s ∈ ωωωωωωωω} has cardinal 2ℵ0 as well.
It is therefore possible recursively to choose aα, bα ∈ ωωωωωωωω so that bα = σα ∗ t for
some t but bα /∈ {aγ : γ < α}, and aα = s ∗ τα for some s but aα /∈ {bγ : γ < α}.
It is simple to check that A = {aα :α < ωβ} and B = {bα :α < ωβ} are disjoint
and neither player has a winning strategy for the game on A.

In particular, therefore, the axiom of determinacy is incompatible with the ax-
iom of choice and also entails that 2ℵ0 �= ℵ1. Rather more elaborate methods
can be used to strengthen proposition 15.7.1 to the following.

Theorem (Davis 1964). The axiom of determinacy entails the perfect set
hypothesis.

3It is easy to deduce that the area of the set E mentioned in the theorem must be zero.
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As an immediate corollary it follows that the axiom of determinacy entails
the continuum hypothesis (which, as we noted earlier, does not contradict
2ℵ0 �= ℵ1 in the absence of choice).
The principal reason for the interest set theorists have taken in the axiom

of determinacy is the connection between determinacy and large cardinal ax-
ioms. We saw in chapter 13 how successively stronger axioms had to be added
to ZF to prove the determinacy of all Borel sets and then of all projective sets.
Mimicking Gödel’s failed programme for settling the continuum hypothesis,
we might even wonder whether a still stronger axiom of infinity would prove
the axiom of determinacy. Indeed, the axiom of determinacy is already in a
sense an axiom of infinity, as it was shown by Solovay in 1967 to entail that
ℵ1 and ℵ2 are measurable cardinals; and it is possible to convert the proof in
ZfU of any proposition of a sufficiently simple syntactic form into a proof in
ZU plus Borel determinacy.4

An axiom that entailed determinacy would have to contradict the axiom
of choice, of course, and few suitable candidates are known. One that might
have been a candidate was stated by Reinhardt in his 1967 doctoral thesis (see
Reinhardt 1974). His proposal was, in effect, that we add to set theory an
operator j which permutes the members of the hierarchy while leaving their
first-order properties unchanged, i.e.

(∀x1, . . . , xn)Φ(x1, . . . , xn) ⇔ Φ( j x1, . . . , j xn)

for every formula Φ. Kunen (1971) showed that if we assume the axiom of
choice, then the only such operator is the identity, i.e. j x = x for all x ,
and hence that Reinhardt’s axiom asserting the existence of a non-trivial per-
mutation is inconsistent with ZFC. Since then, Reinhardt’s axiom has been
regarded by set theorists as an upper limit to their invention of large cardinal
axioms when working under the constraint of the axiom of choice. What re-
mains unknown, however, is whether this limit applies in the absence of the
axiom of choice — whether, for instance, Reinhardt’s axiom is inconsistent
even with ZF.
In the absence of much work on the consequences of Reinhardt’s proposal,

it is hard to speculate, but it does seem to throw up the intriguing possibility
that the axiom of choice might act in some way as a barrier to the free con-
struction of the hierarchy. In other words, the axiom of choice, which was
billed as an expression of the platonist’s desire to maximize the number of sets
at each level, might conflict with the desire to maximize the number of levels.
Something of this sort is already known to hold for the much stronger axiom
of constructibility, which has been shown by Scott (1961) to contradict the
existence of a measurable cardinal.

4Bizarrely, though, the axiom of determinacy also entails that ℵn is notmeasurable for any n > 2.
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Of course, in the unlikely event that considerations of this sort led math-
ematicians to give up the axiom of choice, that would still not in itself settle
matters in favour of determinacy. Since the axiom of determinacy entails the
existence of large cardinals, no proof of its consistency relative to ZF is pos-
sible. It is natural, then, to look for an intuitive argument that the axiom
of determinacy is true. But proponents of the axiom have generally stopped
short of offering this. When they first proposed the axiom, for example, My-
cielski and Steinhaus (1962) were equivocal. They did offer what they called
an ‘intuitive justification’ for it.

Suppose that both players I and II are infinitely clever and that they know perfectly
well what [the game] is, then owing to the complete information during every play,
the result of the play cannot depend on chance. [The axiom of determinacy] expresses
exactly this. (p. 1)

However, they went on to deny that they wished to

depreciate classical mathematics with its fundamental ‘absolute’ intuitions on the uni-
versum of sets (to which belongs the axiom of choice), [but] only to propose another
theory which seems very interesting.

The axiom of determinacy, they said,

can be considered as a restriction of the classical notion of a set leading to a smaller
universum, say of determined sets, which reflect some physical intuitions which are
not fulfilled by the classical sets (e.g. paradoxical decompositions of the sphere are
eliminated). (p. 2)

The idea that determinacy should simply be adopted as an axiom instead
of choice has not found much favour among mathematicians since then.
Moschovakis (1980, p. 379), for instance, called the axiom of determinacy
‘blatantly false’. Recently set theorists have been more inclined to consider
as an axiom candidate the weaker projective determinacy, an axiom asserting that
every projective set is determined. This weaker claim has the advantage that it
is known to be consistent with the axiom of choice unless the axiom of determ-
inacy is itself inconsistent. Moreover, as we have already noted in §13.7, it is
provable from a large cardinal axiom asserting the existence of infinitely many
Woodin cardinals. On the other hand, projective determinacy does not refute
the Banach/Tarski theorem, nor does it settle the continuum hypothesis (Levy
and Solovay 1967).
However, the general notion of a projective set of real numbers is so re-

mote from geometrical intuition that it is hard to see what direct intuitive
reason might be given for believing a proposition about them such as project-
ive determinacy. So any argument for accepting it as an axiom (as opposed to
treating it as a theorem in set theory with a suitable large cardinal axiom) is
likely to be wholly regressive. Martin (1977, p. 814) regards it as ‘an hypothesis
with a status similar to that of a theoretical hypothesis in physics’. Because of
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its ‘pleasing consequences’, he suggests, ‘it is not unreasonable to suspect that
it may be true’ (Martin 1976, p. 90). This view is echoed by Woodin (1994,
p. 34).

There is little a priori evidence that [projective determinacy] is a plausible axiom,
or even that it is a consistent axiom. However, the theory that follows from the as-
sumption of [projective determinacy] is so rich that, a posteriori, the axiom is both
consistent and true. The lesson here is an important one. Axioms need not be a priori
true.

And more recently he has re-affirmed his view that there is ‘compelling evid-
ence that [projective determinacy] is the “right axiom” for the projective sets’
(2001a, p. 571). Perhaps the position has been summarized best byMoschova-
kis (1980, pp. 610–11).

At the present state of knowledge only few set theorists accept [projective determinacy]
as highly plausible and none is quite ready to believe it beyond a reasonable doubt;
and it is certainly possible that someone will refute [it] in ZFC. On the other hand,
it is also possible that the web of implication involving determinacy hypotheses and
relating them to large cardinals will grow steadily until it presents such a natural and
compelling picture that more will succumb to its beauty.

15.8 The generalized continuum hypothesis

Once mathematicians became interested in the continuum hypothesis, it was
natural that they would also wish to study the following natural generalization
of it.

Definition. The generalized continuum hypothesis is the proposition that
for no infinite cardinal a is there a cardinal b such that a < b < 2a.

(15.8.1) Lemma. 2a+ � 22
a2

.

Proof . Let A be a set such that card(A) = a, and let β be the least ordinal such
that |β| = a+. It is easy to check that the function f fromP(ββββ) toP(P(A×A))
given by f (X) = {r ⊆ A × A : ord(dom[r], r) ∈ X} is one-to-one. So

2a+ = card(P(ββββ)) � card(P(P(A × A))) = 22
a2

.

(15.8.2) Theorem (Sierpinski 1924). The generalized continuum hypo-
thesis entails the axiom of choice.

Proof . Suppose not. So the generalized continuum hypothesis holds, but there
is a non-finite cardinal a which is not an aleph. Let b = 2a+ℵ0 . We intend to
show first that b+ = (2b)+. For suppose not. Then b+ < (2b)+ and so
b+ � 2b. Now b � b + b+ � bb+ + b+ = (b + 1)b+ = bb+ � (2b)2 =
22b = 2b. But if b + b+ = b, then b+ � b, which is absurd. Hence b + b+ =
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2b by the generalized continuum hypothesis and therefore b + b+ = bb+.
Consequently b is an aleph [lemma 15.4.3]. But a < b and so a is an aleph.
Contradiction. So b+ = (2b)+. Similar arguments show that (2b)+ = (22

b
)+

and that (22
b
)+ = (22

2b

)+. It follows that b+ = (22
2b

)+ �� 22
2b

.
But 2b = 2a+ℵ0+1 = 2a+ℵ0 = b, so that b2 � (2b)2 = 22b = 2b, and

therefore

b+ < 2b+ [Cantor’s theorem]

� 22
b2

[lemma 15.8.1]

� 22
2b

.

Contradiction.

(15.8.3) Corollary. These four assertions are equivalent:

(i) the generalized continuum hypothesis;

(ii) a+ = 2a for every infinite cardinal a;

(iii) the axiom of choice holds and a+ = 2a for every aleph a;

(iv) V0 is well-orderable and a+ = 2a for every aleph a.

(ii)⇒ (i). There is no cardinal between a and a+. So if a+ = 2a, there is no
cardinal between a and 2a.

(i)⇒ (iv). Assume the generalized continuum hypothesis. We have shown
above [theorem 15.8.2] that this implies the axiom of choice. So if a is an
aleph, then a < a+ � 2a and so a+ = 2a by the generalized continuum
hypothesis.

(iv)⇒ (iii). The method is to show by transfinite induction that there is a well-
ordering on every level V . To do this, we let σ be the least ordinal such that
|σ| � card(V ) [Hartogs’ theorem 11.4.2], so that

γ < σ⇔ |γ| � card(V ).

By hypothesis there exists a well-ordering ≺ on P(σ). We now define re-
cursively a well-ordering < on V as follows. First define a < b whenever
ρ(a) < ρ(b). Suppose now that the well-ordering has been defined for all
members of V of rank < β. Let γ = ord(Vβ,<) and let gβ be the unique
isomorphism of (Vβ,<) onto γγγγ. Now Vβ ⊂ V , so that |γ| � card(V ) and
therefore γ < σ. So for any a and b of rank β we can define a < b iff
gβ[a] ≺ gβ[b].

(iii)⇒ (ii). It follows from the axiom of choice that every infinite cardinal is
an aleph.
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If V0 is well-orderable, therefore, the generalized continuum hypothesis is
equivalent to the claim that 2a = a+ for every aleph a. This equivalence
holds in particular in Z, since in that theory the set of individuals is empty and
therefore trivially well-orderable. In Zf, where the aleph ℵα exists for every α,
the generalized continuum hypothesis thus takes the form

ℵα+1 = 2ℵα for every ordinal α;
this is how it was expressed when first conjectured by Hausdorff (1908, p. 494),
and how it has most often been expressed in the literature of the subject since.
In the notation due to Peirce that we introduced in §11.5 we can write it even
more compactly as �α = ℵα.
The generalized continuum hypothesis is consistent with ZF (Gödel 1938),

and this result is stable under the addition of many large cardinal axioms.
The generalized continuum hypothesis is redundant in the elementary parts
of mathematics (arithmetic in particular). It is also known to be independent
of ZFC even if we assume the continuum hypothesis as well.
From a logical point of view, however, the most significant point of differ-

ence with the continuum hypothesis is that the generalized continuum hypo-
thesis is not obviously decided by the second-order set theories Z2, ZF2, etc.
This is because we are not able to rule out the possibility that the behaviour
of the operations concerned might be different at different levels in the hier-
archy.
Very little is known about the relationship between the generalized con-

tinuum hypothesis and large cardinal axioms. The one striking exception is
a theorem of Solovay (1974): the existence of a strongly compact cardinal
entails that there is no upper bound to the cardinals a such that 2a = a+.
As one might expect, the generalized continuum hypothesis leaves its trace

on ordinary mathematics rather more faintly than the continuum hypothesis,
but generally in the more abstract parts of the same branches. Its character is
overwhelmingly that of a simplifying assumption: it simplifies cardinal arith-
metic in the same sort of way as, but more radically than, the axiom of choice.
For that reason it is not uncommon for mathematicians to use the general-
ized continuum hypothesis as an assumption in proving theorems even when
it is not strictly needed (sometimes, indeed, when any competent set theorist
would be able to see immediately that it is not needed).
This is emphatically not the speed-up phenomenon we encountered in

§13.8: a proof that avoids the generalized continuum hypothesis is typically
not vastly longer than the one that does not. It seems rather to be a case of
psychological speed-up: the proof using the generalized continuum hypothesis
is easier to find, especially if one is not expert in the niceties of cardinal arith-
metic. In any case, a proof assuming the generalized continuum hypothesis
is better than no proof at all: it entails relative consistency and hence demon-
strates the futility of searching for a counterexample in ZFC; but also, because
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the generalized continuum hypothesis holds in the constructible hierarchy, it
entails that the result holds if the quantifiers are restricted to constructible
sets, and may therefore be seen as proving a sort of restricted case of the fully
general result aimed for. This is not dissimilar to the perfectly ordinary math-
ematical practice, when attempting to prove a general theorem, of proving a
restricted case first.

Exercise

Show that the generalized continuum hypothesis holds iff for any non-finite cardinals
a and b either a � b or 2b � a.

Notes

The axiom of choice and the generalized continuum hypothesis simplify car-
dinal arithmetic substantially, but it nevertheless remains a rich subject, well
expounded by Bachmann (1955).
The early history of the continuum hypothesis is recounted by G. H. Moore

(1989). The technical position is summarized by Martin (1976). Sierpinski
(1934) lists a great many equivalent formulations. The status of the continuum
hypothesis has been much discussed. Gödel 1947 is a good introduction.
Woodin (2001a) gives arguments against believing it, while Feferman (2000)
argues that the question does not have a determinate answer.
For more on the merits of assuming projective determinacy as an axiom,

see Jensen 1995 and Maddy 1988.
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In the first part of this book we presented a theory of sets ZU; in the second
we showed how to embed mathematics in this theory; and in the third we
developed the theory of cardinals and ordinals within it. This work certainly
made a strong case for the practical virtues of ZU as a theory: it is elegant and
simple; and its axioms can be justified on the basis of the conception of sets as
subject, through their intrinsic nature, to a primitive relation of dependence.
In this last part of the book, however, the neat picture has begun to frag-

ment. The unitary account we were building up has split into several com-
peting strands as we have come across different ways, some of them mutually
inconsistent, of extending the system. The best-known point of bifurcation,
of course, concerns the truth-value of the continuum hypothesis, and it is as
good a case as any to focus on here. We have already cautioned against taking
too seriously the popular analogy between Cohen’s (1963) proof that the con-
tinuum hypothesis is independent of ZFC and the proof discovered a century
earlier of the independence of the parallel postulate in geometry. But even if
that point is disputed, there is in both cases reason to be cautious about the
significance of purely formal results: the independence of the parallel postu-
late does not in itself show that non-Euclidean geometry describes a way that
space could be; nor does Cohen’s result show on its own that there are two
competing theories of sets.
But saying that is of itself no help whatever in working out how we might be

able to settle whether the continuum hypothesis is true. Naturally enough, at-
tempts to make progress with this question have generally focused on the two
principles of plenitude which we formulated in part I. The thought, in broad
terms, is this. We are aware that first-order separation is a pale approximation
to the full intended import of the first principle; and infinity and creation are
inadequate to express the second. So there is plenty of scope for further ax-
ioms which simply express somewhat more of the originally intended meaning
of one or other of the two principles.
As we have presented them, the two principles of plenitude are distinct,

and it has sometimes been assumed that they are independent of each other.
Many accounts of the matter nonetheless seem implicitly to give some sort of
primacy to the first principle. The constructivist account, for instance, con-
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ceives of each stage in the hierarchy as being constructed after the preceding
one, so the question of the richness of each level is prior (even in a temporal
sense) to the question of how many levels there are in total. The most popular
sort of platonist explanation, on the other hand, has been the one which is a
limiting case of the constructivist account, and it seems to have been tacitly
assumed that the priority just mentioned of the first principle over the second
is preserved in the progress to this limit.
On the dependency account which we have favoured here, on the other

hand, it is surely dubious whether the first principle is prior (even conceptu-
ally) to the second. The only reason to think that it is would be if we had
distinguished between the sorts of possibility invoked in the two principles.
For instance, if the first principle is represented as saying that for any level V
the set {x ∈ V : X x} exists for any property X , one way we might try to express
this is by saying that all subsets of V exist that are logically possible. When we
come to express the second principle, on the other hand, we might do so by
saying that all the levels exist that are possible, where the type of possibility
invoked might now be narrower (e.g. metaphysical or conceptual possibility).
There is a difficulty at this point, of course, which we raised when we first

stated this principle of plenitude. To say that there are as many levels as
possible seems contradictory, because however many there are, there could
have been more: just take the union of all of them. If we simply deny that
there is such a union, we are left struggling to explain why not.
There is no denying that this is a real difficulty for the platonist. For the

platonist, unlike the constructivist, conceives of the universe of sets as static.
There are just the sets there are: they do not depend on my, or anyone else’s,
construction of them, and hence are not subject to any of the ordinary modal-
ities of logical possibility or conceivability. And yet it seems to be of the essence
of the conception that the second principle of plenitude urges on us to keep
on trying to destabilize this static picture.
Now the standard platonist view invites us to see a striking asymmetry here.

For there is, it is claimed, no similar instability in the first principle of plenit-
ude. This asymmetry emerges very clearly in the second-order formulation,
where it shows itself as a precise technical result, Zermelo’s categoricity the-
orem. This tells us that once it is determined what the individuals are, the only
variation between models of second-order set theory is their rank, i.e. how
many levels there are. No variation is possible in the constitution of each level
because we are forced by the second-order quantifier to include {x ∈ V : X x}
for all properties X , and the range of this last quantifier is a matter for logic to
settle, not set theory.
But even if this is right, and the second principle is somehow consequent

upon the first, it does not follow automatically that its meaning is affected by
the first. The standard conception, at any rate of platonists, has been that in
this sense the two principles are independent. In other words, a difference in
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the richness of low levels in the hierarchy should make no difference to how
many levels in the hierarchy there can be.
But notice how the technical results here concerning first-order set theory

point in quite the opposite direction. The continuum hypothesis is third-
order, i.e. it makes a claim about the first three infinite levels of the hierarchy.
So at first sight its truth or falsity is answerable only to the first principle,
which governs how rich each level is relative to the previous one, not to the
second principle, which governs the total number of levels. Gödel discovered
that there are sentences of the same logical shape as the continuum hypothesis
which are settled by appealing to new axioms justified by the second principle.
Now this does not yet establish any interaction between the two principles: it
can be explained simply by a feature of the system we have already accep-
ted, namely that the impredicativity of the axiom scheme of separation has
the consequence that any new axiom of infinity increases the power of the
scheme.
If the effect that strong axioms of infinity have on the low levels of the hier-

archy does not quite prove that the second principle affects the first, it does
nonetheless seem suggestive. The uncritical platonist can stamp his foot, of
course, and insist that the range of the second-order quantifier is determin-
ate: if so, there is probably nothing that can be done to dissuade him. But
it is striking how little anyone can think of to say about how to determine
this range more fully. We mentioned earlier that there is a sentence of pure
second-order logic which is a logical truth iff the continuum hypothesis is true.
But no one has suggested even the outline of a research programme to find
out, by reflection within the domain of pure logic alone, whether this sentence
is true. What this suggests (to me, at least) is that we ought to consider whether
the second-order concept all might be indefinitely extensible in the same way
that the concept set is. This thought is already familiar to constructivists: it has
been advanced by Dummett (1978), for instance. But although some retreat
from a wholly external platonism is no doubt necessary if this view is to seem
at all attractive, I do not think it needs to be a retreat all the way to construct-
ivism. A platonist with modestly internalist leanings might well feel cautious
about the idea that logic can comprehend the notion of a wholly random prop-
erty. Logicians are inclined to think of this on the model of a mathematical
function, so that in general a property F is a sort of function taking an object
as its argument. But what should it return as its value? Ramsey (1926) pro-
posed an understanding of the second-order variables as ranging over what
he called propositional functions in extension, which were functions from ob-
jects to propositions. But, as Sullivan (1995) has pointed out, that is not what
we want, for if F is such a function and a is an object, ‘Fa’ will be a term
referring to a proposition, whereas what we need if we are to use it in logic is
a sentence.
Sullivan ends his article by declining to generalize beyond Ramsey’s pro-



Conclusion to Part IV 287

posal and the Wittgensteinian framework within which it was intended to op-
erate. But that seems wrong. It is no doubt true that the Wittgensteinian ar-
gument expounded by Sullivan does not constitute a wholly general refutation
of any attempt to understand the range of second-order quantifiers extension-
ally. However, it takes only a modest internalism to see our failure to settle
the continuum problem solely by some sort of second-order logical contem-
plation as a symptom of the fact that we have no extensional understanding of
the range of second-order quantifiers as circumscribed from without. It would
follow that our only understanding of this range is from within, as exhausted
by more and more general sorts of predication.
If this is correct, the asymmetry which the external platonist sees between

the two principles of plenitude disappears. The first principle is on this view
every bit as problematic as the second, since it exhibits indefinite extensibility
in just the same way. Moreover, the (rather weak) reasons we canvassed earlier
for thinking of the first principle as conceptually prior to the second have
disappeared.
The possibility which we are now free to countenance is that on an internal

platonist view the symptoms of impredicativity which we have come across
repeatedly, according to which higher axioms of infinity force the enrichment
of low infinite levels of the hierarchy, might be not parochial features of the
first-order formulation, but symptoms of the real state of things.
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Appendix A

Traditional axiomatizations

In chapter 13 I suggested that the regressive support for strengthening ZU by
adding reflection or replacement is rather weak because almost all of current
mathematics can be represented within ZU (and even without much use of the
artifice of coding). But the theories that were current in the 1920s, when the
proposal to adopt a theory equivalent to ZFU was first mooted, were signi-
ficantly weaker than ZU, and so the regressive support for the strengthening
was somewhat greater. To explain this point, we shall have to trace how these
axiomatizations developed.

A.1 Zermelo’s axioms

The centrepiece of Zermelo’s original axiomatization was the axiom of choice,
which we have discussed in chapter 14. If we put it to one side, his remaining
axioms were approximately as follows.

Axiom of extensionality. If a, b are sets, (∀x)(x ∈ a ⇔ x ∈ b) ⇒ a = b.

Axiom of individuals. There is a set of all individuals.

Axiom of separation. For any definite property X and any set a, {x ∈ a : X x}
is a set.

Axiom of power sets. If a is a set, P(a) is a set.

Axiom of union. If a is a set,
⋃

a is a set.

Axiom of pairs. If a, b are sets, {a, b} is a set.
Axiom of infinity′′. There is a setU such that Ø ∈ U and (∀a ∈ U )({a} ∈ U ).

The overwhelming majority of axiomatizations to be found in subsequent
textbooks have been recognizably variants or extensions of this one.
Critics of these axioms at first focused their attention principally on separ-

ation: they objected to Zermelo’s appeal to (what he took to be) the primitive
notion of a ‘definite’ property on the ground of vagueness. The first workable
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proposal to correct the perceived deficiency was made by Weyl. Only some
time later was it realized that Weyl’s formulation amounted to the same thing
as restricting separation to those properties expressible by a formula in the
first-order language. The axiom of separation was therefore replaced by the
following axiom scheme.

Axiom scheme of separation. If Φ(x) is a formula, then the following is an
axiom:

If a is a set, {x ∈ a :Φ(x)} is a set.
I shall, at the risk of some historical inexactitude, call the system with this
adjustment ‘Zermelo’s theory’: it is formal (or at any rate straightforwardly
formalizable). Not only that but it is also weaker than ZU, in the sense that
every axiom of Zermelo’s theory can be read as a theorem of ZU.

A.2 Cardinals and ordinals

The converse is false, however: there are proofs in ZU that cannot be val-
idly replicated in Zermelo’s theory. One instance of this which was especially
important for the historical development arises because Zermelo’s theory is
still, in the terminology I have been using in this book, a theory of collections
rather than of sets: there is no axiom which rules out non-grounded collec-
tions. As a consequence we cannot in this theory use the Scott/Tarski method
to define cardinals and ordinals. And in fact no other device will do instead: if
in order to obtain a theory of cardinals we add Hume’s principle as an axiom,
what we get is (provided that we let the new operator ‘card’ occur in instances
of the axiom of separation) a non-conservative extension of Zermelo’s theory
(Levy 1969). In fact, the salience of Zermelo’s theory was in any case tempor-
ary. Soon the interest of set theorists focused on the grounded collections, and
they were then led to add the following restrictive assumption.

Axiom of foundation. a �= Ø ⇒ (∃x ∈ a)(x is an individual or x ∩ a = Ø).

Yet even with this axiom our theory still is not strong enough to support the
efficient exploitation of its hierarchical structure. The definition of the car-
dinal of a set applied foundation to the class of all sets equinumerous with the
given set, and this is not licensed by the axiom of foundation in the first-order
form we have stated (Jensen and Schröder 1969; Boffa 1969).
So what should we do? For Zermelo himself at the time of 1908b no further

axiom was needed: his purpose was to give a system of axioms that would
ground his new proof (1908a) of the well-ordering principle from the axiom
of choice. The key feature of this proof was that, unlike his earlier proof
(1904) of the same result, it does not make use of ordinals. So in this case at



Cardinals and ordinals 293

least Zermelo had shown that ordinals could be regarded as ideal elements
whose use in his proof was eliminable. For a time, indeed, there was con-
siderable interest in the general project of eliminating uses of ordinals from
proofs: Lindelöf showed in 1905 that Cantor’s use of ordinals in proving the
Cantor/Bendixson theorem was eliminable, and in 1922 Kuratowski gave a
general method for eliminating them from a large class of mathematical con-
texts.
But mathematicians have never been inclined to give up fruitful techniques

solely for reasons of foundational hygiene. The theory of ordinals is a con-
venient tool for the pure mathematician to have, so have it he will. What,
then, can be done to give regressive support to this intransigence? One pos-
sibility would be to find an axiom that will allow the Scott/Tarski definitions
of cardinals and ordinals to go through.

Axiom of transitive containment. For each set there is a transitive set contain-
ing it.

Call the resulting theory ZU′′
0. On the obvious interpretation it becomes a sub-

theory of ZU, since all its axioms are recognizable as things we have already
proved in ZU. However, it is in fact significantly weaker than ZU, but to see
why, we need to look more closely at the form of Zermelo’s axiom of infinity.
Zermelo chose this form because it is equivalent to the claim that the set

ω′′ = {Ø, {Ø}, {{Ø}}, {{{Ø}}}, . . . }
exists, and this is the set he intended to use as his surrogate for the natural
numbers. If we were still working in the context of the theory of levels de-
veloped in chapter 3, the difference would be unimportant: Zermelo’s axiom
of infinity would imply the version of the axiom of infinity given in chapter 4.
But this is because there we took the notion of a level as fundamental (although
by using Scott’s other trick we were able to avoid taking it as a primitive),
whereas in Zermelo’s theory the basic notion is that of a set. The consequence
is that in a theory of the sort we set up in chapter 3, asserting the existence of
one set guarantees the existence of a whole level, so that Zermelo’s axiom of
infinity would in that context have had the same effect as the axiom of infinity
we actually stated there, namely to guarantee the existence of the whole level
Vω. But in the context of Zermelo’s system his axiom does only what it says
and not much more: it guarantees the existence of some sets of rank ω, such
as Zermelo’s set of natural numbers ω′′ itself, but not of others such as the set

ω′ = {Ø, {Ø}, {Ø, {Ø}}, {Ø, {Ø}, {Ø, {Ø, {Ø}}}}, . . . }
which von Neumann used as his set of natural numbers (Mathias 2001;
Drabbe 1969). One consequence of this is that if we had wanted even a slightly
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different theory of natural numbers we would have had to use a different ax-
iom of infinity. If we had used the von Neumann definition, for example, we
would have had to replace Zermelo’s axiom of infinity with one ensuring that
ω′ exists, such as the following.

Axiom of infinity′. There is a set U such that Ø ∈ U and (∀a ∈ U )(a ∪ {a} ∈
U ).

Call the theory that results if we make this substitution ZU′
0. As we have just

seen, it is not equivalent to ZU′′
0, but the significance of this fact depends to

some extent on one’s viewpoint. Someone whose belief in set theory is intuitive
will deduce from this inequivalence that anyone who expresses a commitment
to only one of the two theories is plainly telling us only part of what they
believe, since there could hardly be any ground for the existence of ω′ that
is not an equally good reason to believe in ω′′. From an intuitive perspective
it would therefore be odd to regard either ZU′

0 or ZU′′
0 as the whole of an

axiomatization of set theory.
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But consider now someone whose reason for believing the axioms is re-
gressive. The body of knowledge which the regressive argument appeals to
as its basis is presumably mathematical knowledge (some fragment of current
mathematical practice) rather than set-theoretic knowledge. So the regressive
argument can gain its grip only once we have shown how to embed math-
ematics (or at any rate the relevant fragment of it) in set theory. What the
inequivalence of ZU′

0 and ZU′′
0 does is merely to remind us that the regressive

justification is relative to the embedding: if we had chosen a different embed-
ding, we would have been justified in believing a slightly different set theory.
Indeed the regressive justifier might even regard the inequivalence with ap-
proval, since it hints at a salutary parsimony in our choice of theory.
This cuts both ways, though: just because of its parsimony the theory is very

inconvenient. Even if most mathematical reasoning can be embedded in ZU′
0,

it will quite often take some knowledge of set theory to see how to do it. The
restrictions ZU′

0 places on reasoning will seem to most mathematicians (who,
after all, are not, and do not want to become, set theorists) to be arbitrary and
unmotivated. And if we intend to use the Scott/Tarski definitions of cardinals
and ordinals, we now have no reason to want ω′ in our universe rather than
ω′′, and we might as well just assert the existence of some infinite set. The
resulting theory will be adequate for embedding all the mathematics that can
be represented in ZU, so there will be no regressive argument for preferring
ZU to it.
In any case the historical development did not follow the course just out-

lined. We have already seen in part I that the iterative conception of set took
some time to emerge, so that when the axiom of foundation was first mooted,
it was regarded more as a convenient tool for metamathematical reasoning
than as an evident truth. But even from this metamathematical perspective
the iterative hierarchy was not well understood by most set theorists. In par-
ticular, the definitions of cardinals and ordinals that we have used in this book
were not known until the 1950s. So the possibility of adding the axiom of
transitive containment and using these definitions was not recognized.
Instead attention focused on adding axioms which allowed the von Neu-

mann treatment of the ordinals to work. For this we would have to add some
such axiom as the following.

Axiom of ordinals′. Every well-ordered set is isomorphic to a von Neumann
ordinal.

Adding this axiom allows us to develop the theory of ordinals satisfactorily.
But now what about the theory of cardinals? If we also assume the axiom
of choice, we can use as a surrogate for the cardinal of a set the least von
Neumann ordinal equinumerous with it (see chapter 14), but one of the points
of interest, especially in the 1920s and 1930s, was to study cardinal arithmetic
without the axiom of choice, and if that is our aim, we are still adrift. It seems
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that there is nothing for it but to add a new primitive operator ‘card’ and yet
another axiom.

Axiom of cardinals. For all sets A and B, card(A) = card(B) iff A and B are
equinumerous.

A.3 Replacement

At this point we could be forgiven for thinking that things have got out of
hand: our commitment to the regressive method will have to be quite un-
flinching if we are to find this jumble of axioms wholly acceptable. It is there-
fore easy to see the immediate appeal, on grounds of simplicity if on no others,
of an axiom scheme which unifies this job lot of extra axioms into one form.
So consider now what happens if, instead of transitive containment and the
axiom of ordinals′, we add the following.

Axiom scheme of replacement. If τ(x) is any term, this is an axiom:

(∀x ∈ a)(τ(x) is a set) ⇒ {τ(x) : x ∈ a} is a set.

We shall write ZFU′, for the system obtained from ZU′
0 by deleting the axiom

of transitive containment and adding this axiom scheme; and we shall write
ZF′ for its pure variant. (The ‘F’ stands for Fraenkel, who was one of the
devisors of replacement in the early 1920s.) Our choice of notation suggests
that there is a connection between ZFU′ and ZFU, and indeed there is: ZFU′

is equivalent to ZFU as a theory of sets. In one direction we have already
established this, of course: all the axioms of ZFU′ have already been shown
to be theorems of ZFU. To establish the converse, we would have to work in
ZFU′ and prove the axioms of ZFU. There is a certain amount of machinery
we would have to develop again, mimicking the treatment already given in
ZFU. But once we had done this, it would be possible to prove inductively in
ZFU′ that the Vα are all levels and the axioms of creation and infinity follow
at once from this.
The definition of what we have here been calling the von Neumann ordinals

had already been identified by Zermelo in some unpublished work about 1915
(see Hallett 1984, pp. 270–80) and again by Mirimanoff (1917), but von Neu-
mann was the first to see how the axiom scheme of replacement could be used
to legitimate it. Fraenkel, who had stated the axiom scheme of replacement in
1922 before von Neumann, later recorded his surprise that there turned out
to be this link between it and the theory of ordinals (Fraenkel 1967, p. 169).
What these mathematicians were discovering, and what made replacement

so appealing, was in essence that it entails all the other axioms we have been
considering as additions to Zermelo’s theory with foundation, in particular
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the axiom of transitive containment and the axiom of ordinals′. The underly-
ing reason for this, at least when viewed from the perspective of the iterative
hierarchy, is that replacement acts as a hybrid: it asserts the existence of sets,
such as von Neumann ordinals, of very high ranks, and hence has the effect
of a higher axiom of infinity; but whenever a set exists it also entails the exist-
ence of its birthday. ZFU′ is thus the first of the traditional theories we have
described in this Appendix that is strong enough to contain the whole of the
theory of levels that we developed in part I.
The hybrid nature of replacement may be part of the explanation for the

curious mixture of regressive enthusiasm and intuitive suspicion that it has
engendered. Once we have seen how to treat cardinals and ordinals by the
Scott/Tarski method, the regressive arguments in favour of replacement are
overwhelmingly arguments for its ability to generate a hierarchy of levels
rather than for its use as an axiom of infinity. Boolos (1971, p. 229) observes
that the advantageous consequences of replacement ‘include a satisfactory
. . . theory of infinite numbers, and a highly desirable result that justifies in-
ductive definitions on well-founded relations’; but, as we have shown in this
book, both of these are available in ZU, and hence they do not give any re-
gressive support to replacement when viewed as a higher axiom of infinity.
Indeed it is striking, given how powerful an extension of the theory replace-

ment represents, how thin the justifications for its introduction were. Skolem
(1922) gives as his reason that ‘Zermelo’s axiom system is not sufficient to
provide a complete foundation for the usual theory of sets’, because the set
{ω, P(ω),P(P(ω)), . . . } cannot be proved to exist in that system; yet this is a
good argument only if we have independent reason to think that this set does
exist according to ‘the usual theory’, and Skolem gives no such reason. Von
Neumann’s (1925) justification for accepting replacement is only that

in view of the confusion surrounding the notion ‘not too big’ as it is ordinarily used,
on the one hand, and the extraordinary power of this axiom on the other, I believe
that I was not too crassly arbitrary in introducing it, especially since it enlarges rather
than restricts the domain of set theory and nevertheless can hardly become a source
of antinomies. (In van Heijenoort 1967, p. 402)

But if the regressive argument for the axiom is not as strong as some have sup-
posed, it is nevertheless given noticeably more weight here than in justifying
the other axioms, even by authors otherwise inclined towards offering more
intuitive justifications. Boolos (1971, p. 229), for instance, says explicitly that
‘the reason for adopting the axioms of replacement is quite simple: they have
many desirable consequences and (apparently) no undesirable ones.’
An emphasis on the regressive method of justification at the expense of the

intuitive is often a sign of logical nervousness: Russell adopted the regressive
method (1973b) only because he had been forced to include in his system an
axiom (reducibility) which he saw no direct reason to believe was true. And
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when Frege (1893–1903, vol. II, p. 253) was told that his Basic Law V was
contradictory, he admitted, in effect, that his reasons for assuming it had been
largely regressive.
In the case of replacement there is, it is true, no widespread concern that

it might be, like Basic Law V, inconsistent, but it is not at all uncommon to
find expressed, if not by mathematicians themselves then by mathematically
trained philosophers, the view that, insofar as it can be regarded as an axiom
of infinity, it does indeed, as von Neumann (1925, p. 227) said, ‘go a bit too
far’. Putnam (2000, p. 24), for instance, admits, ‘Quite frankly, I see no intu-
itive basis at all for . . . the axiom of replacement. Better put, I do not see that
a notion of set on which that axiom is clearly true has ever been explained.’ And
Boolos (2000) expresses at some length his discomfort with the ontological
commitments of the theory that results if we assume it.

Notes

Mathias 2001 is a good account of the failure of systems such as ZU′
0 and

ZU′′
0 to deliver a theory that can cope satisfyingly with transfinite recursions.

Uzquiano (1999) shows that this is not wholly due to the weakness of first-
order separation: the second-order versions of these theories do not deliver
the hierarchy either.
Cantor’s published works contain several assertions which are true only if

the universe is rather large: for example, he claimed in (1883) that there is an
aleph for every ordinal, although the assumptions which he made explicitly
there do not imply this. It was only in work he chose not to publish that he
stated (informally) a property approximating to the replacement principle. It
re-appeared (again stated informally) in Mirimanoff 1917, Lennes 1922, and
Fraenkel 1922b, and was given a precise first-order formulation by Skolem
(1922); the name ‘axiom of replacement’ (Ersetzungsaxiom) under which it is
nowadays known is due to Fraenkel.
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Classes

An aggregate is something whose nature it is to be made up from other things.
In §2.1 we distinguished two quite different conceptions of how this can hap-
pen, which we have called fusions and collections. But there does not seem
to be much temptation to think of either fusions or collections as logical. This
is not because we conceive of them as objects and logic is supposed not to
be ontologically committed, but rather because the relation of constitution
which is of their essence seems to be metaphysical rather than logical. But
both these notions — fusions and collections — have been connected to (and
at times confused with) other notions that do perhaps have title to be regarded
as logical.
Consider fusions first. One reason they have often been thought to be on-

tologically innocent, and hence nominalistically acceptable, is that singular
reference to a fusion is equivalent to plural reference to its parts. To say of my
books that they are heavy is just to say of their fusion that it is. So the notion
of a fusion is connected to the logical idea of plural quantification.
And in a rather similar manner the notion of a collection is connected to the

logical idea of the extension of a property. This idea is standardly explained by
means of tired examples such as the properties of having a heart and having
a kidney. I am no physiologist, but I trust those logic textbooks which assure
me that although they are different properties, they apply to just the same ob-
jects: apart from pathological cases such as people in the course of transplant
surgery, any being with a heart also has a kidney and vice versa. Logicians
express this by saying that the two predicates have different intensions but the
same extension.
The correspondence between singular reference to a fusion and plural ref-

erence to its parts is not exact, however. We should therefore be cautious
about too swiftly reducing one to the other. And we already know that there
cannot be a wholly general correspondence between extensions of proper-
ties and collections because all properties have extensions but, as we saw in
chapter 2, not all are collectivizing.
The fundamental property that makes extensions extensional is that prop-

erties have the same extensions just in case they have the same instances. If
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we use [x : X x] as a term to denote the extension of the property X , we can
express extensionality by means of the second-order principle

(∀x)(X x ⇔ Y x) ⇔ [x : X x] = [x :Y x].

We shall call this principle Basic Law V after Frege, who famously included it
in the formal system of Grundgesetze.1 It is an instance of a general method of
introducing terms which is often known as abstraction, and for that reason it is
sometimes referred to as an abstraction principle.
At this point we must tread carefully. For we need to be mindful of the

reason for the lasting notoriety of Frege’s principle. If we define

x ε y ⇔ (∃X)(X x and y = [z : Xz]),

then

x ε [z : Fz] ⇔ (∃X)(X x and [z : Fz] = [z : Xz])

⇔ (∃X)(X x and (∀z)(Fz ⇔ Xz))

⇔ Fx,

so that if we let a = [x : x /ε x], then

(∀x)(x ε a ⇔ x /ε x)

and therefore a ε a ⇔ a /ε a, which is a contradiction.
What we have shown, therefore, is that the conjunction of the following

three assumptions is contradictory:

(1) second-order logic;

(2) Basic Law V;

(3) the assumption that there is a single domain of objects over which all
quantifiers range.

But we should not leap too hastily to judgement as to which of the three is
guilty. The aim of this appendix is to explore how much of the content of the
contradictory conjunction we should preserve.

B.1 Virtual classes

So let us begin again. To be definite, let us start with a prior theory U : the
case which will interest us most is that in which U is a theory of sets such as

1To be strictly accurate, what Frege called Basic Law V was a somewhat more general principle,
but the difference between the two is irrelevant to our current concerns.
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ZU, but it will clarify the issues if for the moment we assume only that it is
a conventionally formalized first-order system in a countable language. We
introduce for each predicate Φ in the language of U a new term [x :Φ(x)],
which we think of as denoting what we shall call a class. We want classes
to be extensional entities obtained by a logical process of abstraction just as
extensions were, so to express this idea we adjoin to U the following scheme.

Abstraction scheme. If Φ and Ψ are formulae, then

(∀x)(Φ(x) ⇔ Ψ(x)) ⇔ [x :Φ(x)] = [x :Ψ(x)].

But mindful of our bad experience with Basic Law V we shall not assume as
we did with extensions that classes are among the objects of which U already
spoke. In order for the notation to be usable, though, we need a way of
expressing the ‘is’ of predication as a relation between an object and an exten-
sion. This is conventionally done by means of the same sign ‘∈’ that we have
been using to express membership, but here we shall keep the two notions
apart by using ‘ε’ for predication. We saw that in the second-order system
this is definable, but in a first-order context that is no longer possible. So we
shall for the moment treat ‘y ε [x :Φ(x)]’ merely as an abbreviation for Φ(y).
General statements about classes can thus be represented at best schematic-
ally. We can if we wish use a single letter to stand for the class term [x :Φ(x)]
here, but if we do so, it is important to remember that what such a letter stands
for — the class term — is an incomplete symbol and not a name.
The point of using class terms in this way is really no more than notational

convenience. A good example of this is that we might choose to adapt our
notation for relativizing a sentence to a set and allow for relativizing to a class.
Thus if A is a class term, we might write (∀x ε A)Φ(x) for (∀x)(x ε A ⇒ Φ(x))
and (∃x ε A)Φ(x) for (∃x)(x ε A and Φ(x)); we could then write Φ(A) for the
result of relativizing all the quantifiers in Φ to A in this manner. The intro-
duction of class terms thus permits us to mimic the notation Φ(a) introduced
in §2.6 for the case where a is a collection.
It is trivial to observe that extending our theory U by introducing class

terms is conservative over U : that is to say, any sentence not mentioning classes
that has a proof in the extended theory also has a proof in U . This is because
all occurrences of class terms are trivially eliminable (see Quine 1969).
This much is wholly unsurprising. What is a little more unexpected, at least

to anyone familiar with the inconsistency of Basic Law V which we demon-
strated in the last section, is the following. I said that we did not require classes
to be among the objects of the prior theory. In fact, if all that concerned us
were logical consistency, there would be no need for us to be so permissive.
The extension of U does not introduce an inconsistency even if we do require
the class terms we have introduced to take their values in the domain of the



302 Classes

prior theory U . Indeed it is even a conservative extension provided that U
already entails the existence of infinitely many objects (Bell 1994).
This oddity is straightforwardly explained by the theory of cardinality we

shall develop in part III. If the number of objects is a, the number of exten-
sionally distinct properties is 2a. Since a < 2a, there are not enough objects to
go round and we obtain the familiar inconsistency. But if, as we are supposing
here, U is a conventional first-order theory, there are only countably many
formulae. So as long as our model is infinite, there is no difficulty about asso-
ciating an object in its domain with each formula of the language so as to make
all the instances of the scheme true. In other words, if Frege had restricted
himself to a first-order language, his treatment of extensions of concepts as
objects belonging to the domain over which the quantifiers range would not
have been contradictory.

B.2 Classes as new entities

Suppose now that, emboldened by the harmlessness of speaking as if there
were classes, we start using names as if referring to them. If we do this, we
can no longer treat ‘ε’ as contextually defined, since we shall want to use it
alongside class names, where its meaning cannot be unpacked contextually.
We must therefore add ‘ε’ as a new logical primitive and add the following
axiom scheme.

Epsilon scheme. If Φ is any formula,

x ε [y :Φ(y)] ⇔ Φ(x).

Letters used to substitute for class terms are no longer metalinguistic as they
were in the first proposal, but are an addition to the object language itself. We
shall for the remainder of this chapter reserve upper-case bold type letters A,
B, C, etc. for class names to keep them distinct from names of the entities
referred to in the prior theoryU . And we do need to keep them distinct: if we
do not, and treat classes as invariably falling within the scope of the quantifiers
of our prior theory U , then because ε is no longer defined contextually, the
resulting theory fails to be conservative in the most spectacular way possible—
by being inconsistent. The reason, of course, is that Russell’s paradox applies
to classes as much as to collections. If A = [x : x /ε x], then by the epsilon
scheme

x ε A ⇔ x /ε x,

from which, if we do not place any restrictions on substitution, we obtain

A ε A ⇔ A /ε A.
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Now we should not be alarmed by this conclusion, but for a different reason
from before. Russell’s paradox for collections was unsurprising because it
merely gave us an explicit example of a non-collectivizing property when we
had no prior reason to expect that all properties should be collectivizing. Here,
on the other hand, we do expect all properties to be class-forming, since classes
are obtained from properties by a general logical process of abstraction; but
precisely because they are obtained in this manner, they are to be conceived
of as new entities not falling within the range of the quantifiers of our prior
theory U , and Russell’s argument merely demonstrates this explicitly.
Russell’s paradox for classes is to be read, therefore, as demonstrating that

if we treat classes as objects, they do not invariably fall within the range of
the quantifiers of the prior theory. As long as we observe this restriction, the
theory which introduces classes in this manner is still trivially conservative
over the prior theory U just as the virtual theory discussed in the last section
was: if we have a proposition in the language of U whose proof makes use
of class names, it is a straightforward, mechanical matter to eliminate them
and hence convert it into a proof in U of the same proposition. Moreover,
the new proof obtained by this mechanical procedure will not be of signific-
antly greater length than the old one. For this reason one might expect the
application of the extended theory to be wholly uncontroversial. This is not
so, however. What makes this step problematic is that it places a constraint
on the quantifiers of our prior theory, which now do not range unrestrictedly
over all the objects there are, but only over those that are not classes. But
in that case it appears that wholly unrestricted quantification over everything is
not possible within any formalism, since we can always extend our language
as just described, whereupon the paradox will lead us to realize that the quan-
tifiers of our prior theory did not in fact range over everything. We need to
pause, therefore, to consider whether this should trouble us.

B.3 Classes and quantification

The view we are considering — that our quantifiers are not genuinely unres-
tricted but range only over the membership of some class V— seems to have
originated with Russell, who persistently identified the ranges of objects which
belong to classes with those over which quantification makes sense. ‘When I
say that a collection has no total, I mean that statements about all its members
are nonsense.’ (Russell 1908, p. 225 n.) But the view has also attracted wide-
spread support since then. Indeed, according to Dummett, ‘the one thing we
may confidently say that no modern logician believes in’ is wholly unrestricted
quantification.

The one lesson of the set-theoretic paradoxes which seems quite certain is that we
cannot interpret individual variables in Frege’s way, as ranging simultaneously over
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the totality of all objects which could meaningfully be referred to or quantified over.
This is why modern explanations of the semantics of first-order predicate calculus
always require that a domain be specified for the individual variables: we cannot, as
Frege supposed, rely on a once-for-all explanation that individual variables are always
to be thought of as ranging over the totality of all objects. (1973, p. 567)

It seems unlikely that there was ever, as Dummett claims, a time when no
logician believed in wholly unrestricted quantification. Moreover, Dummett’s
own understanding of the limitations on unrestricted quantification is not fully
captured by the above quotation, as we shall see later when we turn to a dis-
cussion of his views. Nonetheless, there remains, irrespective of what Dum-
mett himself thinks, the question whether it is right to maintain a rigid link
between the legitimacy of quantification over some objects and the existence
of a class to which they all belong.
In one direction, indeed, the entailment between the two notions seems

clear: it is hard to see what objection there could be to quantifying over all the
members of some class, and harder still to find an example of a logician who
has suggested one. For if a class is, as we have said, a logical entity obtained
by abstraction, it is surely incoherent to suppose that it could be so obtainable
even though quantification over its members was impossible.
But what the argument in the opposite direction is supposed to be is more

problematic. One that crops up persistently in the modern literature is based
on the observation that the standard semantics for first-order logic may be
couched in class-theoretic terms. A quantified sentence is said to be valid
if it is true in every interpretation of the language; and an interpretation is
understood as being a structure consisting of a class D (called the domain of the
interpretation), a member of the domain for each constant of the language,
a subclass of D for each unary predicate symbol, a relation on D for each
binary predicate symbol, etc. (cf. §4.10). So, the argument goes, if we can
interpret a quantified sentence meaningfully, we must be understanding the
quantifiers occurring in it as ranging over the members of some domain D of
interpretation, i.e. some class.
It should be clear, I hope, how unpersuasive this is. The standard se-

mantics which the argument invokes is available only from the perspective
of a metalanguage, and when we adopt this perspective, we are using words
such as ‘class’ in whatever sense our grasp of that language gives to them.
In the course of our discussion of classes, by contrast, we are speakers of the
object language. That language has a word ‘class’ too, but it is a different
word (because a word in a different language). While we are speaking this ob-
ject language, we do not invoke a metalanguage semantics in order to explain
what we mean: we simply speak the language.
Or, to put it another way, if it is legitimate to conceive of our variables

as ranging over absolutely everything, then that is not a conception which
simultaneously allows for a metalinguistic perspective. What the move to the
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metalanguage involves is indeed the conception of the world as a limited whole
— as, if you wish to speak this way, a class— but that is not yet to say that if we
carry on flat-footedly speaking the object language there is anything inconsistent
about denying that limitation.
But this way of resolving the tension created by the argument from model-

theoretic semantics immediately prompts a second, rather subtler account
which argues that we cannot quantify over everything because it is in some
way indeterminate what ‘everything’ amounts to. It is important, of course,
to be clear what sort of indeterminacy is in question here. It is no doubt true
that I have no clear conception of what, according to my representation of
the world, there is; and, further, that no such clear conception is to be had
because my representation just is insufficiently precise to determine it. But
it is not immediately clear what this sort of indeterminacy has to do with the
set-theoretic paradoxes, for it seems to be an essentially representational inde-
terminacy, whereas if the set-theoretic paradoxes demonstrate an indeterm-
inacy at all, it is (at least according to the platonist) an indeterminacy in what
there is and not merely in what we represent there to be. But if it is this last sort
of indeterminacy that is in question, we need to say more if we are to explain
why the platonist should regard it as a threat to the coherence of unrestricted
quantification at all. After all, Russell’s paradox does not seem to hint at any
inherent vagueness as to which objects are classes.
Perhaps, though, the most convincing sort of argument against unrestricted

quantification is one that starts from the natural first thought that universal
quantification is analogous to conjunction, and existential quantification to
disjunction. Thus if there are only finitely many objects a1, . . . , an in the
domain of quantification,

(∀x)Φ(x) ⇔ Φ(a1) and Φ(a2) and . . . and Φ(an),

(∃x)Φ(x) ⇔ Φ(a1) or Φ(a2) or . . . or Φ(an).

And in the case where the domain of quantification is infinite, perhaps we can
imagine there to be corresponding equivalences which only the constraints
of our finite language prevent us from expressing. But it would be a mistake
to treat these equivalences as expressing the whole meaning of the quantifiers,
even in the finite case, because they omit to express the vital information that
a1, . . . , an really are all the objects in the domain. Yet to conceive of them
as exhausting the domain is, the thought goes, to conceive of the domain as
circumscribed, as being a limited portion of a larger range of objects. And
this is just what is required for there to be a class with just a1, . . . , an as its
members.
This third sort of argument arises naturally from consideration of Wittgen-

stein’s Tractatus (1922), in which it is closely linked with the second sort of
argument already considered. For if a1, . . . , an are all the objects there are,
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then according to the Tractatus I would be capable of representing this to be
the case only if I could adopt an essentially different (transcendental) perspect-
ive from which to see the world (the old world I represented from my former
perspective) as a limited whole (and even then, one supposes, only imper-
fectly); but if I remain resolutely within the bounds of the original perspective,
I cannot express (and hence cannot fully comprehend) these limits.

B.4 Classes quantified

If we treat classes as genuine objects and learn to live, however reluctantly,
with the consequent realization that our prior quantifiers did not really range
over everything, that need not prevent us from introducing a new kind of quan-
tifier to range over the new objects. Let us proceed cautiously, however, and
investigate first the case where we ban these new variables from occurring in
the instances of the two schemes governing the behaviour of classes. (We shall
discuss later whether this restriction is well-motivated.)
One interesting feature of this way of extending our theory is that because

we are now permitted to quantify over class variables, any axiom scheme in
U can be replaced by a single axiom in the new theory U . The reason this
is of interest is that if the original language has only a finite number of non-
logical primitives, the extension will be finitely axiomatizable. (This is not
quite trivial.) So the theory of classes we are considering provides us with a
general method of moving from a first-order theory U axiomatized by finitely
many schemes to a finitely axiomatized conservative extension U .
This undoubtedly represents a significant extension of the theory we had

before, for although our new theory U with class quantifiers is still conser-
vative over U , the proof that it is is no longer trivial as it was in the case we
discussed in §B.2. What the proof of conservativeness involves now is an expli-
cit (finitistic) recipe for converting a proof in U of a sentence of the class-free
language into a proof of the same sentence in U . But there is some work in-
volved in doing this: we have first to rewrite the proof in cut-free form so that
it has an especially simple structure amenable to proof-theoretic analysis. But
it is a routine fact of proof theory that such rewritings, although mechanical,
may involve a marked (often exponential) increase in length, and so the new
proof will not in general be merely a trivial rewriting as in the earlier case.
Quantifying over classes, although conservative, is thus a significant step to
take because it has the potential to alter the lengths of proofs substantially.
But in a way the very fact that it is a significant step may provide a clue to

the reason for taking it. Our new proof may, as we have noted, be markedly
different from the old one: in particular, it may be much shorter. If so, our
introduction of quantification over classes will have an instrumental justifica-
tion: we have here, in fact, an example of a successful application of Hilbert’s
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programme. For it was Hilbert (1925) who conceived the general project of
instrumentally justifying our use of an extension of an already accepted theory
U by proving finitistically that it is conservative. The case which most inter-
ested Hilbert was one in which the reason for accepting U is itself finitistic,
whereas of course here we are envisaging that U may be a theory of sets such
as Z or ZU which goes well beyond what the finitist would accept, but the
shape of the justification for the extension is the same.
According to Quine’s (1948) dictum that to be is to be the value of a vari-

able, by adopting the quantified theory of classes we express a commitment to
an ontology of classes. But Hilbert’s programme suggests an alternative view,
according to which the objects of the new theory may be regarded as no more
than convenient fictions whose use is justified by the conservativeness proof:
it is useful to argue as if such entities exist because doing so sometimes per-
mits shorter proofs, but in every such case we know that if required we could
in principle purge the proofs of all mention of the ideal elements so as to be
left with only unobjectionable reference to the real objects to which our prior
theory already committed us.

B.5 Impredicative classes

So far we have banned class quantifiers from occurring in the formulae in our
two class schemes, the abstraction scheme and the epsilon scheme. Suppose
now that we relax this restriction. We shall say that the classes which result
from this relaxation are weakly impredicative. The new theory U1 is still conser-
vative over U . To see this, suppose that Φ is a sentence in the language of
U which is not provable in U . Then by the completeness of first-order logic
U has a set-theoretic model in which Φ is false. Now interpret the class vari-
ables as ranging over the subsets of the domain D of this model, and interpret
any class term [x :Ψ(x)] as referring to the set of those members of D which
belong to the interpretation of Ψ in this model. With these definitions the
structure becomes a model of U1 in which Φ is still false, so Φ is not provable
in U1.
Notice that this argument is radically different from the proof of conservat-

iveness of the predicative extension considered in §B.4. That earlier proof was
finitistic — it explicitly converted proofs in the enlarged system into class-free
proofs in U — whereas now our demonstration is model-theoretic. This has
important consequences.
First, the demonstration itself makes use of impredicative set-theoretic

methods in the metatheory. It can thus no longer be thought of as an in-
stance of Hilbert’s programme as he originally conceived it, since we cannot
use it to convince an agnostic of the reliability of such methods.
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Second, given a proof of Φ inU1, our demonstration that there is a proof of
Φ inU has been wholly non-constructive and, as is typical of non-constructive
demonstrations, gives us no clue how to obtain a proof in U or (even approx-
imately) how long to expect it to be. Indeed, model-theoretic demonstrations
of this kind give us only the bare fact of existence: if there is a proof in U1,
there is a proof inU . They do not entitle us to expect any relationship between
the proof inU1 and the proof inU : in addition to differing markedly in length,
they might also use quite different proof ideas.

B.6 Impredicativity

If we rejected the platonistic attempt to link the legitimacy of quantification
with the existence of a collection to act as the domain of quantification, that
would not yet be to refute the constructivist’s more modest variant of this
claim. For the constructivist may claim, as Dummett has famously done, that
a domain is required not in order that quantification over the domain should
be comprehensible but only in order that it should be guaranteed to deliver a
determinate truth-value for each such sentence. So sentences quantifying over
everything will be possible provided that we are willing to give up the law of
excluded middle in application to them.
Nowwe saw in §2.5 that Dummett bases his argument for this conclusion on

the notion of indefinite extensibility. I suggested then that in a wholly general
setting it is difficult to see what the argument is. But the current context gives
us more resources with which to gain a grip on the idea. The key point is
encapsulated in Dummett’s remark that

the criterion for asserting something of all objects falling under a concept is an essential
feature of that concept, but is not automatically given with the criterion for a given
object’s falling under it. (1994b, p. 338)

There is, that is to say, something further to our grasp of the universal gener-
alization which goes beyond our grasp of each of its instances.
The clue to understanding this remark lies, I think, in our earlier attempts

to find a platonistic argument to connect quantification with collectivization.
The constructivist will suggest that those attempts were on the whole unsuc-
cessful because they relied on a distinction (which the platonist of course ac-
cepts) between what there is and what I represent there to be. Let us see what
happens if we collapse that distinction and identify one with the other.
Our best argument ended, let us recall, by observing that if we treat a uni-

versally quantified proposition as a (possibly finite) conjunction, we leave out
the information that the objects we refer to in the conjunction really are all
the objects there are. But suppose now that what there is is itself an indefinitely
extensible concept. By hypothesis, then, there is a process which, when ap-
plied to all the objects there are, yields another object which is not among all
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the objects there are. Contradiction. The only way out is therefore to deny
that we are capable of a determinate conception of what there is independent
of any particular representation. Denying this leads us to see, in other words,
that whenever we employ classical quantification, we inevitably quantify only
over some limited totality which cannot exhaust everything there is (or indeed
everything falling under any indefinitely extensible concept).
What makes this conclusion seem intolerable to the platonist, as we have

seen, is that we seem so clearly capable of quantifying over a range that is
wider than the membership of any particular limited domain. Indeed the act
of seeing that a domain is limited seems explicable only by appeal to such a
quantification. The Dummettian constructivist, however, has a way of resolv-
ing this tension by explaining unrestricted quantification schematically. We
may represent this by saying that the unrestricted generalization (∀x)Φ(x)
expresses our willingness to assert any instance Φ(σ) obtained by instantiat-
ing the variable x with a term σ.
Notice, though, that this cannot be intended merely as expressing a formal

rule. For if we were to read the scheme as representing only instantiations by
the terms of a fixed formal language, we would have failed to capture fully
the open-endedness of the conception to which the notion of an indefinitely
extensible concept is supposed to lead us. A commitment to the universal
generalization is intended to commit us to Φ(σ) for any σ that we may come
in the future to recognize as a term, even if the formal rules of our language do
not yet provide for it.
But it is important, the constructivist maintains, to observe that quantified

sentences express something very different when understood in this manner
from when they are understood classically, for now they ‘can be interpreted
only as expressing claims, not as making statements’ (Dummett 1994a, p. 249).
These two ways of interpreting assertoric utterances are, according to Dum-
mett, fundamentally different. ‘With a statement is associated a condition for
its truth: if the condition is satisfied, the assertion is correct; if not, the state-
ment is false and its assertion incorrect.’ A claim, on the other hand, ‘is to the
effect that a certain intellectual or linguistic feat can be performed’.

The difference between the two types of assertoric utterance is that the condition for
the truth of a statement is independent of the speaker’s or anyone else’s abilities or
epistemic condition, except, of course, where the statement was about him, whereas
the condition for a claim to be justified always turns on what the speaker of someone
he can call on to act for him is able to do. (Dummett 1994a, pp. 246–7)

The contrast Dummett is making here goes back to Ramsey, who referred
to the claims expressed by genuinely unrestricted quantification as ‘variable
hypotheticals’.

What have they in common with conjunctions, and in what do they differ from them?
Roughly we can say that when we look at them subjectively they differ altogether, but
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when we look at them objectively, i.e. at the conditions of their truth and falsity, they
appear to be the same. (x). φx differs from a conjunction because

(a) It cannot be written out as one.

(b) Its constitution as a conjunction is never used; we never use it in class-thinking
except in its application to a finite class, i.e. we use only the applicative rule.

(c) (This is the same as (b) in another way.) It always goes beyond what we know or
want. . . . It expresses an inference we are at any time prepared to make, not a
belief of the primary sort.

A belief of the primary sort is a map of neighbouring space by which we steer. It
remains such a map however much we complicate it or fill in details. But if we pro-
fessedly extend it to infinity, it is no longer a map; we cannot take it in or steer by it.
Our journey is over before we need its remoter parts. (Ramsey 1931, pp. 237–8)

Dummett claims that although the distinction between statements and
claims allows us to resolve our difficulty concerning unrestricted quantifica-
tion, it does so only at a price: we have to give up the notion that classical
logic applies to claims. But the difficulty we face now, as Ramsey recognized,
is to explain what our grasp of the variable hypothetical comes to if it is not a
proposition.

When we ask what would make it true, we inevitably answer that it is true if and only if
every x has φ; i.e. when we regard it as a proposition capable of the two cases truth and
falsity, we are forced to make it a conjunction, and to have a theory of conjunctions
which we cannot express for lack of symbolic power.
(But what we can’t say we can’t say, and we can’t whistle it either.)
If then it is not a conjunction, it is not a proposition at all; and then the question arises
in what way can it be right or wrong. (Ramsey 1931, p. 238)

This is surely the crux of the matter. Dummett seems to portray the aban-
donment of the classical law of the excluded middle as both a consequence of
adopting the constructivist position and a solution to the problem that led to
it. Even if he is right about the former, it is hard to see why he should be right
about the latter. Dummett (1994a, p. 246) assures us that ‘the evaluation of a
claim as justifiable is as objective a matter as the evaluation of a statement as
true’, but why?

B.7 Using classes to enrich the original theory

Taking as our starting point a theory U , we have been considering a series
of extensions of U which take ever more seriously the claims to existence of
classes obtained by abstracting from the properties formulable in the language
ofU . What we have not done so far, however, is to let the conception of classes
thus obtained infect the original theory.
But consider now the case in which U is axiomatized by schemes. In other

words, among the axioms of U are all the sentences of some form . . .Φ . . .
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for Φ any formula in the language of U . As we remarked earlier, a common
motivation for laying down a theory of this form is that we already believe the
second-order sentence

(∀X) . . . X . . . (1)

and adopt the first-order scheme as the best approximation to this that is ex-
pressible in our first-order language. But if this is our motivation for assenting
to the scheme, then when we extend the language we should automatically
extend this assent to cover all the instances in the extended language.
What this amounts to in the current case is that we should allow a second

sort of impredicativity into our theory. Not only do we permit class terms
[x :Φ(x)] to be formed in which the formula Φ itself quantifies over classes,
but we also assent to all instances of the scheme . . .Φ . . . in which Φ is a
formula of the extended language and thus may involve quantification over
classes. Let us call the strongly impredicative theory thus obtained Ũ . In one
sense this is a very natural step to take. We have already at the previous stage,
when we adopted the weakly impredicative theory, accepted the coherence of
quantification over all classes. So ifΦ is any formula of the extended language,
we must presumably accept the existence of a property possessed by all and
only the objects x such that Φ(x). And if our acceptance of the scheme in U
was based on an acceptance of the second-order principle (1), it follows that
we should assent to all the axioms of Ũ without demur.
Notice, though, where this has got us. The considerations just outlined have

led us from a prior acceptance ofU to the adoption of Ũ . But— and this is the
crucial point — Ũ will not typically be conservative over U . (More precisely,
it will not be conservative unless U is so impoverished that it does not permit
the arithmetization of its syntax.) What is remarkable about this is that the
process which led us to advance from U to the strictly stronger theory Ũ
involved no more than taking seriously the ontological commitments involved
in recognizing the existence of classes, i.e. extensional entities abstracted from
properties.
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Sets and classes

The versions of set theory to be found in the literature are, despite some fam-
ily resemblances, enormously varied. But the picture becomes much clearer
when one realizes that most of the variations can be classified quite succinctly.
One dimension of variation we have already met concerns whether the theory
permits there to be any individuals; a second concerns how many levels there
are in the hierarchy; and a third concerns how rich our conception is, once a
level is given, of the level that follows it. In this appendix we discuss a fourth
sort of variation.
There is no set of all sets: that, we know, is a consequence of Russell’s

paradox (at any rate if we assume separation). But Russell’s paradox does
not prevent there being something else — a class of all sets — which is an
extensional entity behaving in some respects as sets do. Theories of sets may
thus be categorized according to whether they countenance such entities.

C.1 Adding classes to set theory

In the previous appendix we discussed the notion of a class in isolation from
that of a set: everything we said was therefore at a very general level, and we
made rather few assumptions about the nature of the prior theoryU on which
talk of classes was being superimposed. Let us now give up that neutrality and
restrict our attention to the case which interests us in this book, namely that in
whichU is a theory of sets such as ZU or one of its extensions. If we apply any
of the procedures we described in appendix B to such a theory, we obtain an
extension in which we can talk of both sets and classes. Many authors —most
notably von Neumann (1925), Bernays (1937) and Gödel (1938)— have opted
for the proposal considered in §B.4 which gives rise to a finitely axiomatizable
conservative extension ZF of ZF: various books refer to versions of this theory
as VB, or sometimes NBG.
But we may also consider the stronger, impredicative extension mentioned

in §B.7. For the axioms of our original set theory, on which the theory of
classes is being overlaid, include a scheme, the axiom scheme of separation
(and ZF, the most popular version of set theory, includes another, the axiom
scheme of replacement). We can consider extending our theory still further
by adding to the axioms those instances of the schemes obtained by substitut-
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ing for Φ formulae of the extended language. Few mathematicians have been
inclined to adopt this kind of impredicativity. The principal exceptions are
Morse (1965) and Kelley (1955), and the theory Z̃F which we get from ZF if
we extend it in this manner is known asMK. InMK, that is to say, we assert the
axiom schemes of ZF not only, as before, when Φ is a sentence in the language
of set theory, but also when it is allowed to contain class variables.
The significance of taking this step is that now, as we noted in §B.7, the

extension process is not conservative: there are sentences in the language of
sets provable inMK but not in ZF. (This is hardly surprising since to getMK we
have added new set-existence axioms to our theory.) But if our motivation for
including separation among our axioms in the first place was the one suggested
in §3.5 — namely that it represents the best approximation expressible in our
limited formal language to the second-order separation principle — then it
is hard to see what reason we would have to resist extending separation in
this manner, since the new version is evidently a closer approximation to the
second-order principle than the old.
Thus we have shown how it is possible to extend set theory to allow for

proper classes, either conservatively (von Neumann/Bernays/Gödel) or non-
conservatively (Morse/Kelley). But should we bother? For most mathematical
purposes it matters not at all whether we afforce our theory of sets with the
language of classes, virtual or otherwise. The one obvious exception to this
is category theory. In principle, the simplest facts about categories can be
expressed in set theory without classes, but the methods for doing this are
syntactically elaborate and non-intuitive. And we do not have to progress
far into the subject to come across statements for which these methods of
translation fail.
The authors of Bourbaki wrestled with this problem for some time before

eventually abandoning the attempt to add a chapter on category theory to
their Théorie des Ensembles. Simply adding classes is not the whole answer,
however. Even in MK we would have to resort to coding tricks to repres-
ent functors between categories. So the easiest way to represent categories in
set theory is by means of an intermediate universe of sets capable of belonging
to sets higher in the hierarchy. One reason for the formulation of set theory
in my 1990 was to facilitate this representation. This suggests that the issues
raised by the set-theoretic representation lie in a different plane from the dis-
tinction between logical and mathematical concepts of aggregations that we
are concerned with here.

C.2 The difference between sets and classes

There is evidently a natural way of associating with every set a the class a =
[x : x ε a], and we then have

x ∈ a ⇔ x ε a.
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We know that we cannot simply identify sets and classes in all cases: the class
V = [x : x = x], for instance, does not correspond to any set. But many math-
ematicians have been inclined to identify sets with the classes they correspond
to, leaving the other classes as a special case, called proper classes.
If we do this, an obvious simplification of the theory results. Indeed, if we

had planned to do this all along, there would have been no need for us to
have introduced the first kind of variable, ranging only over sets: we could
make do with only the second sort, ranging over classes. And there would be
no need to distinguish between the two species of membership ∈ and ε. Sets
would simply be classes belonging to V, and quantification over sets would be
represented by restricted quantifiers ‘∀x ∈ V’ and ‘∃x ∈ V’ ranging over just
such classes.
The question that remains to be addressed is whether we are right to make

the identification of sets with classes which is required if the non-conservative
Morse/Kelley extension is even to be possible. The idea of making some
sort of distinction between sets and classes goes back to Cantor, who wrote
letters to Dedekind and Hilbert in the late 1890s distinguishing what he called
‘consistent’ and ‘inconsistent’ classes. The first published system which adopts
a distinction between sets and classes (von Neumann 1925) treats sets as a
particular kind of class. But there is nothing in either Cantor or von Neumann
to suggest that they conceived of the distinction, as we are doing here, as a
categorical distinction between metaphysical and logical objects. And without
that distinction the question we are addressing now— whether to identify sets
with the classes they correspond to — cannot even arise.
There is, incidentally, a scattering of later writers who draw a distinction

between a ‘logical’ and a ‘combinatorial’ notion of aggregation, but those who
get that far generally do so only in order to make it plain that their remarks
are directed only at one notion or the other. Moreover, it is not clear that
the distinction as these writers conceive of it is quite the same as the one we
want here. Writers who make such a distinction often seem to be interested
mainly in the idea of arbitrariness: on the logical conception, a class is derived
from a property, and hence all its elements share the property, whereas on
the combinatorial conception, any elements whatever form a class, whether
or not there is a property characterizing them. But this distinction makes
little sense if taken on its own independent of any context of representation.
For if there are some objects, however disparate, forming an aggregate in
the combinatorial sense, then there is a property that characterizes just those
things, namely the property of belonging to that aggregate.
The obvious retort is to say that what is meant is a property expressible in

language. But the difficulty is to say which language. For any fixed formal
language we can, by diagonalization, obtain a property not expressible in that
language which, once recognized, we are forced to treat as legitimate. Or,
to put it in Dummettian terms once more, the notion of property that we are
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appealing to here is indefinitely extensible (cf. Dummett 1978). For this reason
it seems wrong to regard the distinction between sets and classes as simply one
of arbitrariness, but that still does not answer our question about whether it is
right to identify a set with the associated class.
A short answer is that if we cannot identify every class with a set, we should

not identify any. Slightly less briefly, if we treat sets as a kind of class, we
have to give up the explanation of the hierarchy of sets based on the notion
of dependency, since that was derived from a conception of the metaphysical
nature of sets, whereas classes, being logical, do not — we may suppose —
have substantial metaphysical properties independent of the properties of the
entities from which they are abstracted. So if we regard the classes a and b
as derived from the sets a and b, we may, if we wish, think of a and b as
inheriting from a and b whatever dependency relations hold between them.
But if we simply identify a with a and b with b, this collapses, and we are left
without a route to the account of dependency which we used in chapter 3 to
explain the paradoxes.
We can see the symptoms of this collapse if we reflect on the form of a

theory which assimilates sets to classes from the outset. In such a theory we
are told that among classes there are some (sets) that belong to other classes
and some (proper classes) that do not. But why the difference? Why is there in
such a theory no room for such a class as {V}, for instance? The identification
of sets as a kind of class has deprived us of the resources to respond.

C.3 The metalinguistic perspective

We mentioned in §4.10 the central idea of model theory that a (generalized)
structure can be regarded as an interpretation of a formal language: the quan-
tifiers of the language are interpreted as ranging over the members of the do-
main, a unary predicate symbol is interpreted by means of a subset of the
domain, a binary predicate symbol by means of a relation on it, etc.
Now model theory is a branch of mathematics; and, like other branches of

mathematics, it can be formalized in set theory. If this is done, the various
claims it makes are transformed into statements in the theory of sets. There
is a familiar distinction drawn at the beginning of logic between syntax and
semantics. If we confine ourselves to pure model theory, the part which is con-
cerned solely with semantic concepts, the process of formalization is relatively
unproblematic. But we must be careful when we embark on the formalization
of syntax as well, for at that point formal languages themselves become the
objects of study. The reason this is dangerous is that set theory, the frame-
work within which our study is being conducted, is itself a formal theory, and
so the theorems of logic are (apparently) applicable to it. The danger lies in
the fact that in order to study our language we de-interpret it — treat it as
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consisting of strings of symbols without meaning. What we must not do is
to confuse these strings of signs with the symbols they become when we read
them as part of our own language.
The paradox of the set of all sets provides a ready example of the difficulty.

Set-theoretic semantics provides a means of interpreting the sentences of a
formal theory in such a way that all the quantifiers in them are relativized
to some set, the domain of the interpretation. In the intended interpretation of
set theory itself, the quantifiers range over all sets, so set-theoretic semantics
would require the domain of the intended interpretation to be the set of all
sets. But there is no set of all sets. Contradiction.
But this is simply the set-theoretic version of an argument we considered

for classes in §B.3 and rests on a similarly bad pun. When we use set-theoretic
semantics to talk about our language, there is an inevitable shift of perspect-
ive and our words change meaning. Our set-theoretic language becomes an
object language, while the semantics is now conducted in the metalanguage.
In the metalanguage we do indeed interpret all the quantifiers in our object
language as ranging over all sets (in the object language sense), but there is
nothing contradictory about the idea that there should be a set (in the metalan-
guage sense) which has them all as members.
So one way of understanding classes is as the ‘sets’ of the metalanguage. On

this way of talking, the models of our object language set theory will be sets
only from the metalinguistic perspective: from the object language perspective
they are classes, not sets.
We may also if we wish talk in the object language about set-theoretic mod-

els of ‘set theory’. But if we do, we must remember that the ‘set theory’ of
which they are models is not the same as the theory within which our talk is
formulated but a formal simulacrum of it which we have synthesized.

Notes

The account of the distinction between sets and classes in this appendix is
greatly indebted to Parsons (1974). Other authors who have tried to draw a
principled distinction between sets and classes include Mayberry (2000, §3.5),
Maddy (1983) and Simmons (2000).
The problems of representing category theory inside set theory, which we

gestured towards in §C.1, have been much discussed: see Feferman (1977),
McLarty (1992, ch. 12, §1), and Borceux (1994, ch. 1, §1). The solution of
assuming the existence of an intermediate universe, which I adopted in my
earlier book (1990), is discussed by Mac Lane (1969). For another possible
solution see Muller 2001.
Pudlak (1998, §7) summarizes what is known about the relative lengths of

proofs in ZF and VB.
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Math. Ann., 60: 194–5

Borel, E., Baire, R., Hadamard, J. and Lebesgue, H. (1905), ‘Cinq lettres sur la
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——— (1956), Théorie des ensembles, ch. III, Actualités scientifiques et industrielles,
1243, Paris: Hermann

Brandl, J. L. and Sullivan, P., eds (1998), New Essays on the Philosophy of Michael
Dummett, Amsterdam: Rodopi

Burali-Forti, C. (1896), ‘Sopra un teorema del sig. G. Cantor’, Atti Accad. Sci.
Torino, Cl. Sci. Fis. Mat. Nat., 32: 229–37

——— (1897a), ‘Sulle classi ben ordinate’, Rend. Circ. Mat. Palermo, 11: 260

——— (1897b), ‘Una questione sui numeri transfiniti’, Rend. Circ. Mat. Palermo,
11: 154–64
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Notes in Logic, 6, Berlin: Springer, pp. 64–80
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——— (1931), ‘Über einige Satzfunktionen in der Arithmetik’, Skrifter utgitt av Det
Norske Videnskaps-Akademi i Oslo, I. Mathematisk-naturvidenskapelig klasse, 7: 1–28
(repr. in Skolem 1970, pp. 287–306)

——— (1970), Selected Works in Logic, Oslo: Skandinavian University Books
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Poincaré, H., 9, 69, 124
Potter, M., vi, 10, 33, 39, 77, 313, 316
Presburger, M., 99
Priest, G., 27
Pudlak, P., 316
Putnam, H., 115, 116, 256, 298

Quine, W. V., 20, 26, 35, 301, 307



Index of names 345

Ramsey, F. P., 256, 259, 286, 310
Rang, B., 44
Reinhardt, W., 233, 278
Restall, G., 27
Rieger, A., 54
Robinson, A., 144, 147, 271
Robinson, R. M., 276
Rosser, B., 35
Rubin, H., 260
Rubin, J., 260
Russell, B., 29, 36, 53, 63, 71, 74, 91, 164,

171, 189, 227, 248, 259, 297, 303

Schilpp, P. A., 44
Schönflies, A., 200
Schreier, O., 147
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