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Preface 

Dear Reader, 

Please hold on! I know many people typically do not read the Preface of a book. But I strongly recommend that you read this particular 
Preface.   
 

It is not the main objective of this book to present you with the theorems and proofs on 푑푎푡푎 푠푡푟푢푐푡푢푟푒푠 and 푎푙푔표푟푖푡ℎ푚푠. I have followed 
a pattern of improving the problem solutions with different complexities (for each problem, you will find multiple solutions with different, 
and reduced, complexities). Basically, it’s an enumeration of possible solutions. With this approach, even if you get a new question, it will 
show you a way to think about the possible solutions. You will find this book useful for interview preparation, competitive exams preparation, 
and campus interview preparations.  
 

As a 푗표푏 푠푒푒푘푒푟, if you read the complete book, I am sure you will be able to challenge the interviewers. If you read it as an 푖푛푠푡푟푢푐푡표푟, it 
will help you to deliver lectures with an approach that is easy to follow, and as a result your students will appreciate the fact that they have 
opted for Computer Science / Information Technology as their degree. 
 

This book is also useful for 퐸푛푔푖푛푒푒푟푖푛푔 푑푒푔푟푒푒 푠푡푢푑푒푛푡푠 and 푀푎푠푡푒푟푠 푑푒푔푟푒푒 푠푡푢푑푒푛푡푠 during their academic preparations. In all the 
chapters you will see that there is more emphasis on problems and their analysis rather than on theory. In each chapter, you will first read 
about the basic required theory, which is then followed by a section on problem sets. In total, there are approximately 700 algorithmic 
problems, all with solutions. 
 

If you read the book as a 푠푡푢푑푒푛푡 preparing for competitive exams for Computer Science / Information Technology, the content covers 푎푙푙 
the 푟푒푞푢푖푟푒푑 topics in full detail. While writing this book, my main focus was to help students who are preparing for these exams.  
 

In all the chapters you will see more emphasis on problems and analysis rather than on theory. In each chapter, you will first see the basic 
required theory followed by various problems.  
 

For many problems, 푚푢푙푡푖푝푙푒 solutions are provided with different levels of complexity. We start with the 푏푟푢푡푒 푓표푟푐푒 solution and slowly 
move toward the 푏푒푠푡 푠표푙푢푡푖표푛 possible for that problem. For each problem, we endeavor to understand how much time the algorithm takes 
and how much memory the algorithm uses. 
 

It is recommended that the reader does at least one complete reading of this book to gain a full understanding of all the topics that are 
covered. Then, in subsequent readings you can skip directly to any chapter to refer to a specific topic. Even though many readings have been 
done for the purpose of correcting errors, there could still be some minor typos in the book. If any are found, they will be updated 
at  푤푤푤. 퐶푎푟푒푒푟푀표푛푘. 푐표푚. You can monitor this site for any corrections and also for new problems and solutions. Also, please provide 
your valuable suggestions at: 퐼푛푓표@퐶푎푟푒푒푟푀표푛푘. 푐표푚. 
  

I wish you all the best and I am confident that you will find this book useful. 
 

                                                                                                                            -푁푎푟푎푠푖푚ℎ푎 퐾푎푟푢푚푎푛푐ℎ푖 
     M-Tech, 퐼퐼푇 퐵표푚푏푎푦 

      Founder, 퐶푎푟푒푒푟푀표푛푘. 푐표푚 
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Data Structure Operations Cheat Sheet 
 

Data Structure 
Name 

Average Case Time Complexity Worst Case Time Complexity 
Space 

Complexity 
Accessing 

푛 element 
Search Insertion Deletion 

Accessing 
푛 element 

Search Insertion Deletion Worst Case 

Arrays O(1) O(푛) O(푛) O(푛) O(1) O(푛) O(푛) O(푛) O(푛) 
Stacks O(푛) O(푛) O(1) O(1) O(푛) O(푛) O(1) O(1) O(푛) 

Queues O(푛) O(푛) O(1) O(1) O(푛) O(푛) O(1) O(1) O(푛) 

Binary Trees O(푛) O(푛) O(푛) O(푛) O(푛) O(푛) O(푛) O(푛) O(푛) 

Binary Search 
Trees 

O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푛) O(푛) O(푛) O(푛) O(푛) 

Balanced 
Binary Search 

Trees 
O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) O(푙표푔푛) 

Hash Tables N/A O(1) O(1) O(1) N/A O(푛) O(푛) O(푛) O(푛) 

 
Note: For best case operations, the time complexities are O(1). 
 

 

Sorting Algorithms Cheat Sheet 
 

Sorting 
Algorithm 

Name 

Time Complexity 
Space 

Complexity Is 
Stable? 

Sorting Class 
Type 

Remarks 
Best 
Case 

Average 
Case 

Worst 
Case 

Worst Case 

Bubble Sort O(푛) O(푛 ) O(푛 ) O(1) Yes Comparison Not a preferred sorting algorithm. 

Insertion Sort O(푛) O(푛 ) O(푛 ) O(1) Yes Comparison 
In the best case (already sorted), every 
insert requires constant time 

Selection Sort O(푛 ) O(푛 ) O(푛 ) O(1) Yes Comparison 
Even a perfectly sorted array requires 
scanning the entire array 

Merge Sort O(푛푙표푔푛) O(푛푙표푔푛) O(푛푙표푔푛) O(푛) Yes Comparison 
On arrays, it requires O(푛) space; and on 
linked lists, it requires constant space 

Heap Sort O(푛푙표푔푛) O(푛푙표푔푛) O(푛푙표푔푛) O(1) No Comparison 
By using input array as storage for the 
heap, it is possible to achieve constant 
space 

Quick Sort O(푛푙표푔푛) O(푛푙표푔푛) O(푛 ) O(푙표푔푛) No Comparison 
Randomly picking a pivot value can help 
avoid worst case scenarios such as a 
perfectly sorted array. 

Tree Sort O(푛푙표푔푛) O(푛푙표푔푛) O(푛 ) O(푛) Yes Comparison 
Performing inorder traversal on the 
balanced binary search tree. 

Counting Sort O(푛 + 푘) O(푛 + 푘) O(푛 + 푘) O(푘) Yes Linear 
Where 푘 is the range of the non-negative 
key values. 

Bucket Sort O(푛 + 푘) O(푛 + 푘) O(푛 ) O(푛) Yes Linear 
Bucket sort is stable, if the underlying 
sorting algorithm is stable. 

Radix Sort O(푑푛) O(푑푛) O(푑푛) O(푑 + 푛) Yes Linear 
Radix sort is stable, if the underlying 
sorting algorithm is stable. 
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INTRODUCTION 
 

Chapter 

1 
 

 
 
 
 
 

 
The objective of this chapter is to explain the importance of the analysis of algorithms, their notations, relationships and solving as many 
problems as possible. Let us first focus on understanding the basic elements of algorithms, the importance of algorithm analysis, and then 
slowly move toward the other topics as mentioned above. After completing this chapter, you should be able to find the complexity of any 
given algorithm (especially recursive functions).  

1.1 Variables 
 

Before getting in to the definition of variables, let us relate them to an old mathematical equation. Many of us would have solved many 
mathematical equations since childhood. As an example, consider the equation below: 
 

푥 + 2푦 − 2 = 1 
 

We don’t have to worry about the use of this equation. The important thing that we need to understand is that the equation has names (푥 and 
푦), which hold values (data). That means the 푛푎푚푒푠 (푥 and 푦) are placeholders for representing data. Similarly, in computer science 
programming we need something for holding data, and 푣푎푟푖푎푏푙푒푠 is the way to do that.  

1.2 Data Types 
 

In the above-mentioned equation, the variables 푥 and 푦 can take any values such as integral numbers (10, 20), real numbers (0.23, 5.5), or 
just 0 and 1. To solve the equation, we need to relate them to the kind of values they can take, and 푑푎푡푎 푡푦푝푒 is the name used in computer 
science programming for this purpose. A 푑푎푡푎 푡푦푝푒 in a programming language is a set of data with predefined values. Examples of data 
types are: integer, floating point, unit number, character, string, etc.  
 

Computer memory is all filled with zeros and ones. If we have a problem and we want to code it, it’s very difficult to provide the solution in 
terms of zeros and ones. To help users, programming languages and compilers provide us with data types. For example, 푖푛푡푒푔푒푟 takes 2 
bytes (actual value depends on compiler), 푓푙표푎푡 takes 4 bytes, etc. This says that in memory we are combining 2 bytes (16 bits) and calling it 
an 푖푛푡푒푔푒푟. Similarly, combining 4 bytes (32 bits) and calling it a 푓푙표푎푡. A data type reduces the coding effort. At the top level, there are two 
types of data types: 
 

 System-defined data types (also called 푃푟푖푚푖푡푖푣푒 data types) 
 User-defined data types. 

System-defined data types (Primitive data types) 
 

Data types that are defined by system are called 푝푟푖푚푖푡푖푣푒 data types. The primitive data types provided by many programming languages 
are: int, float, char, double, bool, etc. The number of bits allocated for each primitive data type depends on the programming languages, the 
compiler and the operating system. For the same primitive data type, different languages may use different sizes. Depending on the size of the 
data types, the total available values (domain) will also change. For example, “푖푛푡” may take 2 bytes or 4 bytes. If it takes 2 bytes (16 bits), 
then the total possible values are minus 32,768 to plus 32,767 (-2  푡표 2 -1). If it takes 4 bytes (32 bits), then the possible values are between 
−2,147,483,648 and +2,147,483,647 (-2  푡표 2 -1). The same is the case with other data types. 

User-defined data types 
 

If the system-defined data types are not enough, then most programming languages allow the users to define their own data types, called 
푢푠푒푟 − 푑푒푓푖푛푒푑 푑푎푡푎 푡푦푝푒푠. Good examples of user defined data types are: structures in 퐶/퐶 + + and classes in 퐽푎푣푎. For example, in 
the snippet below, we are combining many system-defined data types and calling the user defined data type by the name “푛푒푤푇푦푝푒”. This 
gives more flexibility and comfort in dealing with computer memory. 
 

         public class newType { 
 public int data1; 
 public int data 2; 
 private float data3; 
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 … 
 private char data; 
 //Operations 
         } 

1.3 Data Structure 
 

Based on the discussion above, once we have data in variables, we need some mechanism for manipulating that data to solve problems. 
퐷푎푡푎 푠푡푟푢푐푡푢푟푒 is a particular way of storing and organizing data in a computer so that it can be used efficiently. A 푑푎푡푎 푠푡푟푢푐푡푢푟푒 is a 
special format for organizing and storing data. General data structure types include arrays, files, linked lists, stacks, queues, trees, graphs and 
so on.  
 

Depending on the organization of the elements, data structures are classified into two types: 
 

1) 퐿푖푛푒푎푟 푑푎푡푎 푠푡푟푢푐푡푢푟푒푠: Elements are accessed in a sequential order but it is not compulsory to store all elements sequentially 
(say, Linked Lists).   퐸푥푎푚푝푙푒푠: Linked Lists, Stacks and Queues. 

2) 푁표푛 − 푙푖푛푒푎푟 푑푎푡푎 푠푡푟푢푐푡푢푟푒푠: Elements of this data structure are stored/accessed in a non-linear order. 퐸푥푎푚푝푙푒푠: Trees and 
graphs. 

1.4 Abstract Data Types (ADTs) 
 

Before defining abstract data types, let us consider the different view of system-defined data types. We all know that, by default, all primitive 
data types (int, float, etc.) support basic operations such as addition and subtraction. The system provides the implementations for the primitive 
data types. For user-defined data types we also need to define operations. The implementation for these operations can be done when we 
want to actually use them. That means, in general, user defined data types are defined along with their operations.  
 

To simplify the process of solving problems, we combine the data structures with their operations and we call this 퐴푏푠푡푟푎푐푡 퐷푎푡푎 푇푦푝푒푠 
(ADTs). An ADT consists of 푡푤표 parts: 
 

1. Declaration of data 
2. Declaration of operations                      

 

Commonly used ADTs include: Linked Lists, Stacks, Queues, Priority Queues, Binary Trees, Dictionaries, Disjoint Sets (Union and Find), 
Hash Tables, Graphs, and many others. For example, stack uses a LIFO (Last-In-First-Out) mechanism while storing the data in data 
structures. The last element inserted into the stack is the first element that gets deleted. Common operations are: creating the stack, push an 
element onto the stack, pop an element from the stack, finding the current top of the stack, finding the number of elements in the stack, etc.  
 

While defining the ADTs do not worry about the implementation details. They come into the picture only when we want to use them. 
Different kinds of ADTs are suited to different kinds of applications, and some are highly specialized to specific tasks. By the end of this 
book, we will go through many of them and you will be in a position to relate the data structures to the kind of problems they solve. 

1.5 What is an Algorithm? 
 

Let us consider the problem of preparing an 표푚푒푙푒푡푡푒. To prepare an omelette, we follow the steps given below: 
 

1) Get the frying pan. 
2) Get the oil.  

a. Do we have oil? 
i. If yes, put it in the pan. 
ii. If no, do we want to buy oil? 

1. If yes, then go out and buy. 
2. If no, we can terminate.  

3) Turn on the stove, etc... 
 

What we are doing is, for a given problem (preparing an omelette), we are providing a step-by-step procedure for solving it. The formal 
definition of an algorithm can be stated as: 
 

An algorithm is the step-by-step unambiguous instructions to solve a given problem. 
 

In the traditional study of algorithms, there are two main criteria for judging the merits of algorithms: correctness (does the algorithm give 
solution to the problem in a finite number of steps?) and efficiency (how much resources (in terms of memory and time) does it take to 
execute the). 
 

Note: We do not have to prove each step of the algorithm.  

1.6 Why the Analysis of Algorithms? 
 

To go from city “퐴” to city “퐵”, there can be many ways of accomplishing this: by flight, by bus, by train and also by bicycle. Depending on 
the availability and convenience, we choose the one that suits us. Similarly, in computer science, multiple algorithms are available for solving 
the same problem (for example, a sorting problem has many algorithms, like insertion sort, selection sort, quick sort and many more). 
Algorithm analysis helps us to determine which algorithm is most efficient in terms of time and space consumed.  
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1.7 Goal of the Analysis of Algorithms 
 

The analysis of an algorithm can help us understand it better and can suggest informed improvements. The main and important role of 
analysis of algorithm is to predict the performance of different algorithms in order to guide design decisions. The goal of the 
푎푛푎푙푦푠푖푠 표푓 푎푙푔표푟푖푡ℎ푚푠 is to compare algorithms (or solutions) mainly in terms of running time but also in terms of other factors (e.g., 
memory, developer effort, etc.). 
 

In theoretical analysis of algorithms, it is common to estimate their complexity in the asymptotic sense, i.e., to estimate the complexity function 
for arbitrarily large input. The term "analysis of algorithms" was coined by Donald Knuth. 
 

Algorithm analysis is an important part of computational complexity theory, which provides theoretical estimation for the required resources 
of an algorithm to solve a specific computational problem. Most algorithms are designed to work with inputs of arbitrary length. Analysis of 
algorithms is the determination of the amount of time and space resources required to execute it. 
 

Usually, the efficiency or running time of an algorithm is stated as a function relating the input length to the number of steps, known as time 
complexity, or volume of memory, known as space complexity.  

1.8 What is Running Time Analysis? 
 

It is the process of determining how processing time increases as the size of the problem (input size) increases. Input size is the number of 
elements in the input, and depending on the problem type, the input may be of different types. The following are the common types of inputs. 
 

 Size of an array 
 Polynomial degree  
 Number of elements in a matrix 
 Number of bits in the  binary representation of the input 
 Vertices and edges in a graph. 

 

1.9 How to Compare Algorithms 
 

To compare algorithms, let us define a few 표푏푗푒푐푡푖푣푒 푚푒푎푠푢푟푒푠: 
 

Execution times?  푁표푡 푎 푔표표푑 푚푒푎푠푢푟푒 as execution times are specific to a particular computer.  
 

Number of statements executed? 푁표푡 푎 푔표표푑 푚푒푎푠푢푟푒, since the number of statements varies with the programming language as well as the 
style of the individual programmer.  
 

Ideal solution? Let us assume that we express the running time of a given algorithm as a function of the input size 푛 (i.e., 푓(푛)) and compare 
these different functions corresponding to running times. This kind of comparison is independent of machine time, programming style, etc. 

1.10 What is Rate of Growth? 
 

The rate at which the running time increases as a function of input is called 푟푎푡푒 표푓 푔푟표푤푡ℎ. Let us assume that you go to a shop to buy a 
car and a bicycle. If your friend sees you there and asks what you are buying, then in general you say 푏푢푦푖푛푔 푎 푐푎푟. This is because the cost 
of the car is high compared to the cost of the bicycle (approximating the cost of the bicycle to the cost of the car). 
 

푇표푡푎푙 퐶표푠푡 =  푐표푠푡_표푓_푐푎푟 +  푐표푠푡_표푓_푏푖푐푦푐푙푒 
푇표푡푎푙 퐶표푠푡 ≈  푐표푠푡_표푓_푐푎푟 (푎푝푝푟표푥푖푚푎푡푖표푛) 

 

For the above-mentioned example, we can represent the cost of the car and the cost of the bicycle in terms of function, and for a given function 
ignore the low order terms that are relatively insignificant (for large value of input size, 푛). As an example, in the case below, 푛 , 2푛 , 100푛 
and 500 are the individual costs of some function and approximate to 푛  since 푛  is the highest rate of growth. 
 

푛  +  2푛  +  100푛 +  500 ≈  푛  

1.11 Commonly Used Rates of Growth 
 

Below is the list of growth rates you will come across in the following chapters. 
 

Time Complexity Name Description 

1 Constant Whatever is the input size 푛, these functions take a constant amount of time. 

푙표푔푛 Logarithmic These are slower growing than even linear functions. 

푛 Linear These functions grow linearly with the input size 푛. 
푛푙표푔푛 Linear Logarithmic Faster growing than linear but slower than quadratic. 

푛  Quadratic These functions grow faster than the linear logarithmic functions.  

푛  Cubic Faster growing than quadratic but slower than exponential. 

2  Exponential Faster than all of the functions mentioned here except the factorial functions. 

푛! Factorial Fastest growing than all these functions mentioned here. 
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The diagram below shows the relationship between different rates of growth. 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1.12 Types of Analysis 
 

To analyze the given algorithm, we need to know with which inputs the algorithm takes less time (performing well) and with which inputs the 
algorithm takes a long time. We have already seen that an algorithm can be represented in the form of an expression. That means we represent 
the algorithm with multiple expressions: one for the case where it takes less time and another for the case where it takes more time.  
 

In general, the first case is called the 푏푒푠푡 푐푎푠푒 and the second case is called the 푤표푟푠푡 푐푎푠푒 for the algorithm. To analyze an algorithm we 
need some kind of syntax, and that forms the base for asymptotic analysis/notation. There are three types of analysis: 
 

 Worst case 
o Defines the input for which the algorithm takes a long time (slowest time to complete). 
o Input is the one for which the algorithm runs the slowest.  

 Best case 
o Defines the input for which the algorithm takes the least time (fastest time to complete). 
o Input is the one for which the algorithm runs the fastest. 

 Average case 
o Provides a prediction about the running time of the algorithm. 
o Run the algorithm many times, using many different inputs that come from some distribution that generates these 

inputs, compute the total running time (by adding the individual times), and divide by the number of trials. 
o Assumes that the input is random. 

 

퐿표푤푒푟 퐵표푢푛푑 <=  퐴푣푒푟푎푔푒 푇푖푚푒 <=  푈푝푝푒푟 퐵표푢푛푑 
 

For a given algorithm, we can represent the best, worst and average cases in the form of expressions. As an example, let 푓(푛) be the function 
which represents the given algorithm.  
 

푓(푛) =  푛  +  500, for worst case   
푓(푛) =  푛  +  100푛 +  500, for best case   

 

Similarly for the average case. The expression defines the inputs with which the algorithm takes the average running time (or memory). 
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1.13 Asymptotic Notation 
 

Having the expressions for the best, average and worst cases, for all three cases we need to identify the upper and lower bounds. To represent 
these upper and lower bounds, we need some kind of syntax, and that is the subject of the following discussion. Let us assume that the given 
algorithm is represented in the form of function 푓(푛).  

1.14 Big-O Notation 
 

This notation gives the 푡푖푔ℎ푡 upper bound of the given function. Generally, it is represented as 푓(푛)  = O(푔(푛)). That means, at larger 
values of 푛, the upper bound of 푓(푛) is 푔(푛). For example, if 푓(푛) = 푛  +  100푛  +  10푛 +  50 is the given algorithm, then 푛  is 푔(푛). 
That means 푔(푛) gives the maximum rate of growth for 푓(푛) at larger values of  푛. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Let us see the O−notation with a little more detail. O−notation defined as O(푔(푛))  =  {푓(푛): there exist positive constants 푐 and 푛  such 
that 0 ≤  푓(푛) ≤  푐푔(푛) for all 푛 ≥  푛 }. 푔(푛) is an asymptotic tight upper bound for 푓(푛). Our objective is to give the smallest rate of 
growth 푔(푛) which is greater than or equal to the given algorithms’ rate of growth 푓(푛).  
 

Generally, we discard lower values of  푛. That means the rate of growth at lower values of 푛 is not important. In the figure, 푛  is the point 
from which we need to consider the rate of growth for a given algorithm. Below 푛 , the rate of growth could be different. 푛  is called threshold 
for the given function. 

Big-O Visualization 
 

O(푔(푛)) is the set of functions with smaller or the same order of growth as 푔(푛). For example; O(푛 ) includes O(1), O(푛), O(푛푙표푔푛), etc. 
 
 
 
 
 
 

 
 
 

 

 

Note: Analyze the algorithms at larger values of 푛 only. What this means is, below 푛  we do not care about the rate of growth.  

Big-O Examples 
 

Example-1 Find upper bound for 푓(푛)  =  3푛 +  8 
 

Solution: 3푛 +  8 ≤ 4푛, for all 푛 ≥  8 
∴ 3푛 +  8 = O(푛) with c = 4 and 푛 = 8 
 

Example-2 Find upper bound for 푓(푛)  =  푛  +  1 
 

Solution: 푛  +  1 ≤ 2푛 , for all 푛 ≥  1 
∴ 푛  +  1 = O(푛 ) with 푐 =  2 and 푛 = 1  
 

Example-3 Find upper bound for  푓(푛) = 푛  +  100푛  +  50 
 

Solution:  푛  +  100푛 + 50 ≤ 2푛 , for all 푛 ≥  11 
∴ 푛  +  100푛 + 50 = O(푛  ) with 푐 =  2 and 푛 = 11 

 

Example-4 Find upper bound for  푓(푛) = 2푛  −  2푛  
 

Solution: 2푛  −  2푛 ≤ 2푛 , for all 푛 ≥  1 
∴ 2푛  −  2푛  = O(푛  ) with 푐 =  2 and 푛 = 1 

 

Example-5 Find upper bound for 푓(푛) = 푛 
 

Solution: 푛 ≤ 푛, for all 푛 ≥  1 

 
O(1): 100,1000, 200,1,20, 푒푡푐. 

 

 
O(푛):3푛 + 100, 100푛, 2푛 − 1, 3, 푒푡푐. 

 O(푛푙표푔푛): 5푛푙표푔푛, 3푛 − 100, 2푛 −
1, 100, 100푛, 푒푡푐. 

 

 
O(푛 ):푛 , 5푛 − 10, 100, 푛 −

2푛 + 1, 5, 푒푡푐.  

푐푔(푛) 
푓(푛) 

푛  Input size, 푛 

Rate of growth 
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∴ 푛 = O(푛) with 푐 =  1 and 푛 = 1 
 

Example-6 Find upper bound for 푓(푛) = 410 
 

Solution: 410 ≤ 410, for all 푛 ≥  1  
∴ 410 = O(1 ) with 푐 =  1 and 푛 = 1 

No Uniqueness? 
 

There is no unique set of values for 푛  and 푐 in proving the asymptotic bounds. Let us consider, 100푛 +  5 = O(푛). For this function there 
are multiple 푛  and 푐 values possible. 

 

Solution1: 100푛 + 5 ≤ 100푛 + 푛 = 101푛 ≤ 101푛, for all 푛 ≥  5,  푛  =  5 and 푐 = 101 is a solution. 
 

Solution2: 100푛 +  5 ≤ 100푛 + 5푛 = 105푛 ≤ 105푛, for all 푛 ≥ 1, 푛 = 1 and 푐 = 105 is also a solution. 

1.15 Omega-Ω Notation [Lower Bounding Function] 
 

Similar to the O discussion, this notation gives the tighter lower bound of the given algorithm and we represent it as 푓(푛)  =  (푔(푛)). That 
means, at larger values of 푛, the tighter lower bound of 푓(푛) is 푔(푛). For example, if 푓(푛) = 100푛  +  10푛 +  50, 푔(푛) is  (푛 ).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Ω notation can be defined as Ω(푔(푛))  =  {푓(푛): there exist positive constants c and 푛  such that 0 ≤  푐푔(푛)   ≤   푓(푛) for all  푛 ≥
 푛 }. 푔(푛) is an asymptotic tight lower bound for 푓(푛).  Our objective is to give the largest rate of growth 푔(푛) which is less than or equal to 
the given algorithm’s rate of growth 푓(푛). 

Ω Examples 
 

Example-1 Find lower bound for 푓(푛) = 5푛 . 
 

Solution:   푐,  푛  Such that: 0  푐푛  5푛   푐푛  5푛   푐 =  5 and  푛  = 1  

∴ 5푛 =  (푛 ) with 푐 =  5 and  푛  = 1 
 

Example-2  Prove 푓(푛) = 100푛 +  5 ≠  (푛 ). 
 

Solution:  c,  푛  Such that: 0  푐푛   100푛 +  5  
    100푛 +  5  100푛 +  5푛 ( 푛  1) =  105푛  

     푐푛   105푛  푛(푐푛 –  105)  0  

    Since 푛 is positive  푐푛 –  105  0  푛  105/푐  
                Contradiction: 푛 cannot be smaller than a constant  
 

Example-3    2푛 =  (푛),   푛 =  (푛 ), 푙표푔푛 =  (푙표푔푛).  

1.16 Theta- Notation 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Input size, 푛 푛  

푓(푛) 
푐푔(푛)) 

Rate of growth 

푓(푛) 

Rate of growth c 푔(푛) 

c 푔(푛) 

Input size, 푛 푛  
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This notation decides whether the upper and lower bounds of a given function (algorithm) are the same. The average running time of an 
algorithm is always between the lower bound and the upper bound. If the upper bound (O) and lower bound () give the same result, then 
the  notation will also have the same rate of growth. As an example, let us assume that 푓(푛) = 10푛 + 푛 is the expression. Then, its tight 
upper bound 푔(푛) is O(푛). The rate of growth in the best case is 푔(푛) = O(푛).  
 

In this case, the rates of growth in the best case and worst case are the same. As a result, the average case will also be the same. For a given 
function (algorithm), if the rates of growth (bounds) for O and  are not the same, then the rate of growth for the  case may not be the same. 
In this case, we need to consider all possible time complexities and take the average of those (for example, for a quick sort average case, refer 
to the 푆표푟푡푖푛푔 chapter). 
 

Now consider the definition of  notation. It is defined as (푔(푛))  =  {푓(푛): there exist positive constants 푐 , 푐  and 푛  such that 0 ≤
 푐 푔(푛)   ≤   푓(푛)  ≤  푐 푔(푛) for all  푛 ≥  푛 }. 푔(푛) is an asymptotic tight bound for 푓(푛).  (푔(푛)) is the set of functions with the same 
order of growth as 푔(푛). 

 Examples 
 

Example 1 Find  bound for 푓(푛) = −  

Solution:  ≤ − ≤ 푛 , for all, 푛 ≥  2 

∴ − = (푛 ) with  푐  =  1/5, 푐 = 1 and  푛  = 2 
 

Example 2 Prove 푛 ≠  (푛 )  
 

Solution: c  푛2  ≤  푛 ≤  c 푛2 only holds for: 푛 ≤  1/c1 
 ∴ 푛 ≠ (푛 ) 
 

Example 3 Prove 6푛  ≠  (푛 ) 
 

Solution: 푐  푛 ≤ 6푛  ≤ c  푛  only holds for: 푛 ≤  c2 /6 
∴ 6푛  ≠  (푛 ) 

 

Example 4 Prove 푛 ≠ (푙표푔푛) 
 

Solution: c 푙표푔푛 ≤  푛 ≤  c 푙표푔 푛    c  ≥   푛
log 푛 , 푛 ≥  푛0 – Impossible 

 

Important Notes 
 

For analysis (best case, worst case and average), we try to give the upper bound (O) and lower bound () and average running time (). From 
the above examples, it should also be clear that, for a given function (algorithm), getting the upper bound (O) and lower bound () and 
average running time () may not always be possible. For example, if we are discussing the best case of an algorithm, we try to give the upper 
bound (O) and lower bound () and average running time ().  
 

In the remaining chapters, we generally focus on the upper bound (O) because knowing the lower bound () of an algorithm is of no practical 
importance, and we use the  notation if the upper bound (O) and lower bound () are the same. 

1.17 Why is it called Asymptotic Analysis? 
 

From the discussion above (for all three notations: worst case, best case, and average case), we can easily understand that, in every case for a 
given function 푓(푛) we are trying to find another function 푔(푛) which approximates 푓(푛) at higher values of 푛. That means 푔(푛) is also a 
curve which approximates 푓(푛) at higher values of 푛.  
 

In mathematics we call such a curve an 푎푠푦푚푝푡표푡푖푐 푐푢푟푣푒. In other terms, 푔(푛) is the asymptotic curve for 푓(푛). For this reason, we call 
algorithm analysis 푎푠푦푚푝푡표푡푖푐 푎푛푎푙푦푠푖푠. 

1.18 Guidelines for Asymptotic Analysis 
 

There are some general rules to help us determine the running time of an algorithm.  
 

1) Loops:  The running time of a loop is, at most, the running time of the statements inside the loop (including tests) multiplied by the 
number of iterations. 
 

     // executes 푛 times 
     for (i=1; i<=n; i++) 
          m = m + 2; // constant time, c 

Total time = a constant  푐 ×  푛 =  푐 푛 = O(푛).  
2) Nested loops:  Analyze from the inside out. Total running time is the product of the sizes of all the loops. 

 

     //outer loop executed n times 
     for (i=1; i<=n; i++) { 
      // inner loop executed n times 
      for (j=1; j<=n; j++)  
       k = k+1; //constant time 
     } 
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Total time =  푐 ×  푛 ×  푛 =  푐푛  = O(푛 ). 
 

3) Consecutive statements: Add the time complexities of each statement. 
 

     x = x +1; //constant time 
     // executed n times 
     for (i=1; i<=n; i++)  
 m = m + 2; //constant time 
     //outer loop executed n times 
     for (i=1; i<=n; i++) { 
 //inner loop executed n times 
 for (j=1; j<=n; j++)  
  k = k+1; //constant time 
     } 

Total time =  푐  + 푐 푛 + 푐 푛  = O(푛 ).  
 

4) If-then-else statements: Worst-case running time: the test, plus 푒푖푡ℎ푒푟 the 푡ℎ푒푛 part or the 푒푙푠푒 part (whichever is the larger).  
     //test: constant 
     if(length( ) == 0 ) { 
 return false; //then part: constant 
     } 
     else {  // else part: (constant + constant) * n 
    for (int n = 0; n < length( ); n++) { 
  // another if : constant + constant (no else part) 
  if(!list[n].equals(otherList.list[n])) 
   //constant  

                               return false; 
    } 
     } 

Total time =  푐  + (푐  + 푐 ) ∗  푛 = O(푛). 
 

5) Logarithmic complexity: An algorithm is O(푙표푔푛) if it takes a constant time to cut the problem size by a fraction (usually by ½). As 
an example let us consider the following program: 

 

     for (i=1; i<=n;)   
 i = i*2; 
 

If we observe carefully, the value of 푖 is doubling every time. Initially 푖 = 1, in next step 푖 = 2, and in subsequent steps 푖 =  4, 8 and 
so on. Let us assume that the loop is executing some 푘 times. At  푘  step 2 = 푛, and at (푘 + 1)  step we come out of the 푙표표푝. 
Taking logarithm on both sides, gives 

 

푙표푔 2 = 푙표푔푛 
푘푙표푔2 = 푙표푔푛 

 푘 = 푙표푔푛  //if we assume base-2 
Total time = O(푙표푔푛).     

Note: Similarly, for the case below, the worst case rate of growth is O(푙표푔푛). The same discussion holds good for the decreasing sequence as 
well. 
 

     for (i=n; i>=1;)   
 i = i/2; 
 

Another example: binary search (finding a word in a dictionary of 푛 pages) 
 

 Look at the center point in the dictionary 
 Is the word towards the left or right of center? 
 Repeat the process with the left or right part of the dictionary until the word is found. 

1.20 Simplifying properties of asymptotic notations 
 

 Transitivity: 푓(푛) = (푔(푛))  and 푔(푛) = (ℎ(푛))  푓(푛) = (ℎ(푛)). Valid for O and  as well.  
 Reflexivity: 푓(푛) = (푓(푛)). Valid for O and . 
 Symmetry: 푓(푛) = (푔(푛)) if and only if 푔(푛) =  (푓(푛)). 
 Transpose symmetry: 푓(푛) = O(푔(푛)) if and only if 푔(푛) = (푓(푛)). 
 If 푓(푛) is in O(푘푔(푛)) for any constant 푘 >  0, then 푓(푛) is in O(푔(푛)).  
 If 푓 (푛) is in O(푔 (푛)) and 푓 (푛) is in O(푔 (푛)), then (푓  + 푓 )( 푛) is in O(max(푔 (푛), 푔 (푛))).  
 If 푓 (푛) is in O(푔 (푛)) and 푓 (푛) is in O(푔 (푛)) then 푓 (푛) 푓 (푛) is in O(푔 (푛) 푔 (푛)). 

1.21 Commonly used Logarithms and Summations 
 

Logarithms 
 

             푙표푔 푥 =  푦 푙표푔 푥                             푙표푔푛 =  푙표푔     
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             푙표푔 푥푦 =  푙표푔푥 +  푙표푔푦                       푙표푔 푛 =  (푙표푔푛)푘   
             푙표푔 푙표푔푛 =  푙표푔(푙표푔푛)                    푙표푔

푥
푦 =  푙표푔푥 –  푙표푔푦 

             푎 =  푥                           푙표푔푏 =    
 

Arithmetic series 
 

              푘 = 1 + 2 + ⋯ + 푛 =
푛(푛 + 1)

2  
 
 

Geometric series 

푥 = 1 + 푥 + 푥 … + 푥 =
푥 − 1

푥 − 1 (푥 ≠  1) 

 

Harmonic series 

1
푘 = 1 +

1
2 + … + 

1
푛 ≈ 푙표푔푛 

 

Other important formulae 
   

푙표푔 푘 ≈ 푛푙표푔푛 

푘 =  1 +  2 + ⋯ + 푛  ≈  
1

푝 + 1 푛  

1.22 Master Theorem for Divide and Conquer Recurrences 
 

All divide and conquer algorithms (also discussed in detail in the 퐷푖푣푖푑푒  푎푛푑 퐶표푛푞푢푒푟 chapter) divide the problem into sub-problems, each of which 
is part of the original problem, and then perform some additional work to compute the final answer. As an example, a merge sort algorithm [for 
details, refer to 푆표푟푡푖푛푔 chapter] operates on two sub-problems, each of which is half the size of the original, and then performs O(푛) additional 
work for merging. This gives the running time equation: 
 

T(푛) =  2푇 + O(푛) 
 

The following theorem can be used to determine the running time of divide and conquer algorithms. For a given program (algorithm), first 
we try to find the recurrence relation for the problem. If the recurrence is of the below form then we can directly give the answer without fully 
solving it. If the recurrence is of the form T(푛) = 푎푇( ) + (푛 푙표푔 푛), where 푎 ≥ 1, 푏 >  1, 푘 ≥ 0 and 푝 is a real number, then: 

1) If 푎 >  푏 , then 푇(푛) = Θ 푛  

2) If 푎 =  푏  

a. If 푝 > −1, then 푇(푛) = Θ 푛 푙표푔 푛  

b. If 푝 =  −1, then 푇(푛) = Θ 푛 푙표푔푙표푔푛  

c. If 푝 < −1, then 푇(푛) = Θ 푛  

3) If 푎 <  푏  
a. If 푝 ≥ 0, then 푇(푛) = Θ(푛 푙표푔 푛) 
b. If 푝 < 0, then 푇(푛) = O(푛 ) 

1.23 Divide and Conquer Master Theorem: Problems & Solutions 
 

For each of the following recurrences, give an expression for the runtime 푇(푛) if the recurrence can be solved with the Master Theorem. 
Otherwise, indicate that the Master Theorem does not apply. 
 

Problem-1 푇(푛) = 3푇 (푛/2) + 푛  
Solution:   푇(푛) = 3푇 (푛/2) + 푛  =>  푇 (푛) =Θ(푛 ) (Master Theorem Case 3.a) 
 

Problem-2 푇(푛) = 4푇 (푛/2) + 푛  
Solution:   푇(푛)  =  4푇 (푛/2) + 푛  =>  푇 (푛)  = Θ(푛 푙표푔푛) (Master Theorem Case 2.a) 
 

Problem-3 푇(푛) = 푇(푛/2) +  푛  
Solution:   푇(푛)  =  푇(푛/2) + 푛  => Θ(푛 ) (Master Theorem Case 3.a) 
 

Problem-4 푇(푛)  =  2 푇(푛/2) +  푛  
Solution:   푇(푛)  =  2 푇(푛/2) +  푛  => Does not apply (푎 is not constant) 
 

Problem-5 푇(푛)  =  16푇(푛/4) +  푛 
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Solution:   푇(푛)  =  16푇 (푛/4) +  푛 =>  푇(푛)  = Θ(푛 ) (Master Theorem Case 1) 
 

Problem-6 푇(푛)  =  2푇(푛/2) +  푛푙표푔푛 
Solution:   푇(푛)  =  2푇(푛/2) +  푛푙표푔푛 =>  푇(푛)  = Θ(푛푙표푔 푛) (Master Theorem Case 2.a) 
 

Problem-7 푇(푛)  =  2푇(푛/2) +  푛/푙표푔푛 
Solution:   푇(푛)  =  2푇(푛/2) +  푛/푙표푔푛 => 푇(푛)  = Θ(푛푙표푔푙표푔푛) (Master Theorem Case 2.b) 
 

Problem-8 푇(푛)  =  2푇 (푛/4) + 푛 .  
Solution:   푇(푛)  =  2푇(푛/4) +  푛 . =>  푇 (푛)  = Θ(푛 . ) (Master Theorem Case 3.b) 
 

Problem-9 푇(푛)  =  0.5푇(푛/2) +  1/푛 
Solution:   푇(푛)  =  0.5푇(푛/2) +  1/푛 => Does not apply (푎 <  1) 
 

Problem-10 푇 (푛)  =  6푇(푛/3) +  푛  푙표푔푛 
Solution:   푇(푛)  =  6푇(푛/3) +  푛 푙표푔푛 =>  푇(푛)  = Θ(푛 푙표푔푛) (Master Theorem Case 3.a) 
 

Problem-11 푇(푛)  =  64푇(푛/8) −  푛 푙표푔푛 
Solution:   푇(푛)  =  64푇(푛/8) −  푛 푙표푔푛 => Does not apply (function is not positive) 
 

Problem-12 푇 (푛)  =  7푇(푛/3) + 푛  
Solution:   푇(푛)  =  7푇(푛/3) +  푛  =>  푇(푛)  = Θ(푛 ) (Master Theorem Case 3.as) 
 

Problem-13   푇(푛)  =  4푇(푛/2) +  푙표푔푛 
Solution:   푇(푛)  =  4푇(푛/2) +  푙표푔푛 =>  푇(푛)  = Θ(푛 ) (Master Theorem Case 1) 
 

Problem-14  푇(푛)  =  16푇 (푛/4) +  푛! 
Solution:  푇(푛)  =  16푇 (푛/4) +  푛!  =>  푇(푛)  = Θ(푛!) (Master Theorem Case 3.a) 
 

Problem-15   푇(푛)  =  √2푇(푛/2) +  푙표푔푛 
Solution:   푇(푛)  =  √2푇(푛/2) +  푙표푔푛 =>  푇(푛)  = Θ(√푛) (Master Theorem Case 1) 
 

Problem-16   푇(푛)  =  3푇 (푛/2) +  푛 
Solution:   푇(푛)  =  3푇(푛/2) +  푛 => 푇(푛)  =  (푛 ) (Master Theorem Case 1) 
 

Problem-17   푇(푛)  =  3푇(푛/3) + √푛 
Solution:   푇(푛)  =  3푇(푛/3) +  √푛  =>  푇(푛)  = Θ(푛) (Master Theorem Case 1) 
 

Problem-18   푇(푛)  =  4푇(푛/2) +  푐푛 
Solution:   푇(푛)  =  4푇(푛/2) +  푐푛 =>  푇(푛)  =  (푛 ) (Master Theorem Case 1) 
 

Problem-19   푇(푛)  =  3푇(푛/4) +  푛푙표푔푛 
Solution:   푇(푛)  =  3푇(푛/4) +  푛푙표푔푛 =>  푇(푛)  = Θ(푛푙표푔푛) (Master Theorem Case 3.a) 
 

Problem-20   푇 (푛)  =  3푇(푛/3) +  푛/2 
Solution:   푇(푛)  =  3푇(푛/3) +  푛/2 =>  푇 (푛)  = Θ(푛푙표푔푛) (Master Theorem Case 2.a) 

1.24 Master Theorem for Subtract and Conquer Recurrences 
 

Let 푇(푛) be a function defined on positive 푛, and having the property 

푇(푛) = 푐,                                       if 푛 ≤ 1
푎푇(푛 − 푏) + 푓(푛), if 푛 > 1 

 

for some constants 푐, 푎 >  0, 푏 >  0, 푘 ≥  0, and function 푓(푛). If 푓(푛) is in O(푛 ), then 
 

                                                                 푇(푛) =
O(푛 ),                if a < 1
O(푛 ),            if a = 1

O 푛 푎 ,          if a > 1
 

1.25 Variant of Subtraction and Conquer Master Theorem 
 

The solution to the equation 푇(푛)  =  푇(훼 푛) +  푇((1 −  훼)푛) +  훽푛, where 0 <  훼 <  1 and 훽 > 0 are constants, is O(푛푙표푔푛). 

1.26 Method of Guessing and Confirming 
 

Now, let us discuss a method which can be used to solve any recurrence. The basic idea behind this method is:  
  

푔푢푒푠푠 the answer; and then 푝푟표푣푒 it correct by induction. 
 

In other words, it addresses the question: What if the given recurrence doesn’t seem to match with any of these (master theorem) methods? 
If we guess a solution and then try to verify our guess inductively, usually either the proof will succeed (in which case we are done), or the 
proof will fail (in which case the failure will help us refine our guess). 
 

As an example, consider the recurrence T(푛) = √푛 T(√푛) + 푛. This doesn’t fit into the form required by the Master Theorems. Carefully 
observing the recurrence gives us the impression that it is similar to the divide and conquer method (dividing the problem into √푛 subproblems 
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each with size √푛). As we can see, the size of the subproblems at the first level of recursion is 푛. So, let us guess that T(푛) = O(푛푙표푔푛), and 
then try to prove that our guess is correct. 
 

Let’s start by trying to prove an 푢푝푝푒푟 bound T(푛) ≤ 푐푛푙표푔푛:  
  

T(푛) =  √푛 T(√푛) + 푛 
 ≤ √푛. 푐√푛 푙표푔√푛 + 푛 
 = 푛. 푐 푙표푔√푛 + 푛 
 = 푛.c. . 푙표푔푛+ 푛 
 ≤ 푐푛푙표푔푛 

 

The last inequality assumes only that 1 ≤ c. . 푙표푔푛. This is correct if 푛 is sufficiently large and for any constant 푐, no matter how small. From 

the above proof, we can see that our guess is correct for the upper bound. Now, let us prove the 푙표푤푒푟 bound for this recurrence. 
 

T(푛) =  √푛 T(√푛) + 푛 
 ≥ √푛. 푘 √푛 푙표푔√푛 + 푛 
 = 푛. 푘 푙표푔√푛 + 푛 
 = 푛.푘. . 푙표푔푛+ 푛 
 ≥ 푘푛푙표푔푛 

 

The last inequality assumes only that 1 ≥ 푘. . 푙표푔푛. This is incorrect if 푛 is sufficiently large and for any constant 푘. From the above proof, 
we can see that our guess is incorrect for the lower bound. 
 

From the above discussion, we understood that Θ(푛푙표푔푛) is too big. How about Θ(푛)? The lower bound is easy to prove directly:  
 

T(푛) =  √푛 T(√푛) + 푛 ≥ 푛  
 

Now, let us prove the upper bound for this Θ(푛). 
 

T(푛) =  √푛 T(√푛) + 푛 
 ≤ √푛.푐. √푛 + 푛 
 = 푛. 푐+ 푛 
 = 푛 (푐 + 1) 
 ≰ 푐푛 

 

From the above induction, we understood that Θ(푛) is too small and Θ(푛푙표푔푛) is too big. So, we need something bigger than 푛 and smaller 
than 푛푙표푔푛. How about 푛 푙표푔푛? 
 

Proving the upper bound for 푛 푙표푔푛: 
T(푛) =  √푛 T(√푛) + 푛 
 

≤ √푛.푐. √푛 푙표푔√푛 + 푛 

 = 푛. 푐.
√

 푙표푔√푛+ 푛 

 ≤ 푐푛푙표푔√푛 
Proving the lower bound for 푛 푙표푔푛: 

T(푛) =  √푛 T(√푛) + 푛 
 

≥ √푛.푘. √푛 푙표푔√푛 + 푛 

 = 푛. 푘.
√

 푙표푔√푛+ 푛 

 ≱ 푘푛푙표푔√푛 
 

The last step doesn’t work. So, Θ(푛 푙표푔푛) doesn’t work. What else is between 푛 and 푛푙표푔푛? How about 푛푙표푔푙표푔푛? 
 

Proving upper bound for 푛푙표푔푙표푔푛: 
 

T(푛) =  √푛 T(√푛) + 푛 
 ≤ √푛.푐. √푛푙표푔푙표푔√푛 + 푛 
 = 푛. 푐. 푙표푔푙표푔푛-푐. 푛 + 푛 
 ≤ 푐푛푙표푔푙표푔푛, if 푐 ≥ 1 

 

Proving lower bound for 푛푙표푔푙표푔푛: 
T(푛) =  √푛 T(√푛) + 푛 
 ≥ √푛.푘. √푛푙표푔푙표푔√푛 + 푛 
 = 푛. 푘. 푙표푔푙표푔푛-푘. 푛 + 푛 
 ≥ 푘푛푙표푔푙표푔푛, if 푘 ≤ 1 

 

From the above proofs, we can see that T(푛) ≤ 푐푛푙표푔푙표푔푛, if 푐 ≥ 1 and T(푛) ≥ 푘푛푙표푔푙표푔푛, if 푘 ≤ 1. Technically, we’re still missing the 
base cases in both proofs, but we can be fairly confident at this point that T(푛) = Θ(푛푙표푔푙표푔푛). 
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1.27 Amortized Analysis 
 

Amortized analysis refers to determining the time-averaged running time for a sequence of operations. It is different from average case analysis, 
because amortized analysis does not make any assumption about the distribution of the data values, whereas average case analysis assumes 
the data are not "bad" (e.g., some sorting algorithms do well on 푎푣푒푟푎푔푒 over all input orderings but very badly on certain input orderings). 
That is, amortized analysis is a worst-case analysis, but for a sequence of operations rather than for individual operations.   
 

The motivation for amortized analysis is to better understand the running time of certain techniques, where standard worst case analysis 
provides an overly pessimistic bound. Amortized analysis generally applies to a method that consists of a sequence of operations, where the 
vast majority of the operations are cheap, but some of the operations are expensive. If we can show that the expensive operations are 
particularly rare we can 푐ℎ푎푛푔푒 푡ℎ푒푚 to the cheap operations, and only bound the cheap operations.  
 

The general approach is to assign an artificial cost to each operation in the sequence, such that the total of the artificial costs for the sequence 
of operations bounds the total of the real costs for the sequence. This artificial cost is called the amortized cost of an operation. To analyze 
the running time, the amortized cost thus is a correct way of understanding the overall running time — but note that particular operations can 
still take longer so it is not a way of bounding the running time of any individual operation in the sequence. 
 

When one event in a sequence affects the cost of later events: 
 

 One particular task may be expensive. 
 But it may leave data structure in a state that the next few operations become easier. 

 

Example: Let us consider an array of elements from which we want to find the 푘  smallest element. We can solve this problem using sorting. 
After sorting the given array, we just need to return the 푘  element from it. The cost of performing the sort (assuming comparison based 
sorting algorithm) is O(푛푙표푔푛). If we perform 푛 such selections then the average cost of each selection is O(푛푙표푔푛/푛) = O(푙표푔푛). This 
clearly indicates that sorting once is reducing the complexity of subsequent operations. 

1.28 Algorithms Analysis: Problems & Solutions 
 

Note: From the following problems, try to understand the cases which have different complexities (O(푛), O(푙표푔푛), O(푙표푔푙표푔푛) etc.). 
 

Problem-21 Find the complexity of the below recurrence: 

푇(푛) = 3푇(푛 − 1), 푖푓 푛 > 0,
1,              표푡ℎ푒푟푤푖푠푒  

Solution:  Let us try solving this function with substitution. 
푇(푛) = 3푇(푛 − 1) 
푇(푛) = 3 3푇(푛 − 2) = 3 푇(푛 − 2) 
푇(푛) = 3 (3푇(푛 − 3)) 
. 
. 
푇(푛) = 3 푇(푛 − 푛) = 3 푇(0) = 3  

This clearly shows that the complexity of this function is O(3 ). 
 

Note: We can use the 푆푢푏푡푟푎푐푡푖표푛 푎푛푑 퐶표푛푞푢푒푟 master theorem for this problem. 
 

Problem-22 Find the complexity of the below recurrence: 

푇(푛) = 2푇(푛 − 1) − 1, 푖푓 푛 > 0,
1,                      표푡ℎ푒푟푤푖푠푒 

Solution: Let us try solving this function with substitution. 
푇(푛) = 2푇(푛 − 1) − 1 
푇(푛) = 2(2푇(푛 − 2) − 1) − 1 = 2 푇(푛 − 2) − 2 − 1 
푇(푛) = 2 (2푇(푛 − 3) − 2 − 1) − 1 = 2 푇(푛 − 4) − 2 − 2 − 2  
푇(푛) = 2 푇(푛 − 푛) − 2 − 2 − 2 … . 2 − 2 − 2  
푇(푛) = 2 − 2 − 2 − 2 … . 2 − 2 − 2  
푇(푛) = 2 − (2 − 1) [푛표푡푒: 2 + 2 + ⋯ + 2 = 2 ] 
푇(푛) = 1 

∴Complexity is O(1). Note that while the recurrence relation looks exponential, the solution to the recurrence relation here gives a different 
result. 
 

Problem-23  What is the running time of the following function?  
public void Function(int n) { 

int i=1, s=1; 
while( s <= n) { 

i++; 
s= s+i; 
System.out.println(“*"); 

} 
} 

Solution:  Consider the comments in the below function: 
 

     public void function (int n) { 
          int i=1, s=1; 
          // s is increasing not at rate 1 but i 
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          while( s <= n) { 
               i++; 
               s= s+i; 
               System.out.println(“*"); 
          } 
     } 
We can define the ‘푠’ terms according to the relation 푠 = 푠  + 푖. The value of ‘푖’ increases by 1 for each iteration. The value contained in 
‘푠’ at the 푖  iteration is the sum of the first  ‘푖’ positive integers. If 푘 is the total number of iterations taken by the program, then the 푤ℎ푖푙푒 
loop terminates if: 
 

                                                                  1 +  2 + . . . + 푘 =  ( ) > 푛 ⟹  푘 = O(√푛). 
  

Problem-24 Find the complexity of the function given below. 
public void function(int n) { 
 int i, count =0; 
 for(i=1; i*i<=n; i++) 
  count++; 
} 

Solution:  
     void function(int n) { 
 int i, count =0; 
 for(i=1; i*i<=n; i++) 
  count++; 
     } 
In the above-mentioned function the loop will end, if 푖 > 푛 ⟹ 푇(푛) =O(√푛). The reasoning is same as that of Problem-23. 
 

Problem-25  What is the complexity of the program given below? 
public void function(int n) { 
 int i, j, k , count =0; 
 for(i=n/2; i<=n; i++) 
  for(j=1; j + n/2<=n; j++) 
   for(k=1; k<=n; k= k * 2) 
    count++; 
} 

Solution: Consider the comments in the following function. 
     public void function(int n) { 
 int i, j, k , count =0; 

//Outer loop execute n/2 times 
 for(i=n/2; i<=n; i++) 
  //Middle loop executes n/2 times 
  for(j=1; j + n/2<=n; j++) 
   //Inner loop execute logn times 
   for(k=1; k<=n; k= k * 2) 
    count++; 
     } 
The complexity of the above function is O(푛 푙표푔푛).  
 

Problem-26 What is the complexity of the program given below? 
public void function(int n) { 
 int i, j, k , count =0; 
 for(i=n/2; i<=n; i++) 
  for(j=1; j<=n; j= 2 * j) 
   for(k=1; k<=n; k= k * 2) 
    count++; 
} 

Solution: Consider the comments in the following function. 
 

     public void function(int n) { 
 int i, j, k , count =0; 

//Outer loop execute n/2 times 
 for(i=n/2; i<=n; i++) 
  //Middle loop executes logn times 
  for(j=1; j<=n; j= 2 * j) 
   //Inner loop execute logn times 
   for(k=1; k<=n; k= k*2) 
    count++; 
     } 
 

The complexity of the above function is O(푛푙표푔 푛).  
 

Problem-27 Find the complexity of the program given below. 
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public  void function( int n ) { 
 if(n == 1) return; 
 for(int i = 1 ; i <= n ; i + + ) { 
  for(int j= 1 ; j <= n ; j + + ) { 
   System.out.println(“*" ); 
   break; 
  } 
 } 
} 

Solution:  Consider the comments in the following function. 
     public  void function( int n ) { 
            //constant time 
 if( n == 1 ) return; 

//Outer loop execute 푛 times 
 for(int i = 1 ; i <= n ; i + + ) { 
  // Inner loop executes only time due to 푏푟푒푎푘  statement. 
  for(int j= 1 ; j <= n ; j + + )  { 
   System.out.println(“*" ); 
   break; 
  } 
 } 
     } 
The complexity of the above function is O(푛). Even though the inner loop is bounded by 푛, due to the break statement it is executing only 
once. 
 

Problem-28 Write a recursive function for the running time 푇(푛) of the function given below. Prove using the iterative method that 
푇(푛) = (푛 ). 

public  void function( int n ) { 
if( n == 1 ) return; 
for(int i = 1 ; i <= n ; i + + ) 

for(int j = 1 ; j <= n ; j + + ) 
System.out.println(“*" ) ; 

function( n-3 ); 
} 

Solution:  Consider the comments in the function below: 
     public void function (int n) { 
          //constant time 
          if( n == 1 ) return; 
          //Outer loop execute 푛 times 
          for(int i = 1 ; i <= n ; i + + ) 
   //Inner loop executes n times 
               for(int j = 1 ; j <= n ; j + + ) 
      //constant time 
                  System.out.println(“*" ) ; 
          function( n-3 ); 
     } 
The recurrence for this code is clearly T(푛) = 푇(푛 −  3) + 푐푛  for some constant 푐 >  0 since each call prints out 푛  asterisks and calls 
itself recursively on n - 3. Using the iterative method we get: 푇(푛)  =  푇(푛 −  3) +  푐푛 . Using the 푆푢푏푡푟푎푐푡푖표푛 푎푛푑 퐶표푛푞푢푒푟 master 
theorem, we get: 푇(푛) =Θ(푛 ). 
 

Problem-29 Determine  bounds for the recurrence relation: 푇(푛) = 2푇 + 푛푙표푔푛. 
 

Solution:  Using Divide and Conquer master theorem, we get: O(푛푙표푔 푛). 
 

Problem-30  Determine  bounds for the recurrence: 푇(푛) =  푇 +  푇 +  푇 +  푛. 
 

Solution:  Substituting in the recurrence equation, we get: 
                                 푇(푛) ≤  푐1 ∗ +  푐2 ∗ +  푐3 ∗ +  푐푛 ≤  푘 ∗  푛  , where 푘 is a constant. 
 

Problem-31 Determine  bounds for the recurrence relation: 푇(푛)  =  푇(푛/2)  +  7. 
 

Solution: Using Master Theorem we get: (푙표푔푛).  
 

Problem-32 Prove that the running time of the code below is Ω(푙표푔푛). 
public void Read(int n) { 

int k = 1; 
while( k < n )  

k = 3k; 
} 

Solution: The 푤ℎ푖푙푒 loop will terminate once the value of  ‘푘’ is greater than or equal to the value of ‘푛’. In each iteration the value of ‘푘’ is 
multiplied by 3. If 푖 is the number of iterations, then ‘푘’ has the value of 3  after 푖 iterations. The loop is terminated upon reaching 푖 iterations 
when 3 ≥ n ↔ 푖 ≥ log 푛, which shows that 푖 =  Ω (푙표푔푛). 
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Problem-33 Solve the following recurrence. 

 푇(푛)  =
1,                                      푖푓 푛 = 1
푇(푛 − 1) + 푛(푛 − 1), 푖푓 푛 ≥ 2 

Solution: By iteration: 
푇(푛) = 푇(푛 − 2) + (푛 − 1)(푛 − 2) + 푛(푛 − 1) 
          … 

푇(푛) = 푇(1) + 푖(푖 − 1) 

푇(푛) = 푇(1) + 푖 − 푖 

푇(푛) = 1 +
푛((푛 + 1)(2푛 + 1)

6 −
푛(푛 + 1)

2  

푇(푛) =(푛 )  
Note: We can use the 푆푢푏푡푟푎푐푡푖표푛 푎푛푑 퐶표푛푞푢푒푟 master theorem for this problem. 
 

Problem-34 Consider the following program: 
Fib[n] 
if(n==0) then return 0 
else if(n==1) then return 1  
else return Fib[n-1]+Fib[n-2] 

 

Solution: The recurrence relation for the running time of this program is  
 

푇(푛)  =  푇(푛 −  1) +  푇(푛 −  2)  +  푐. 
 

Note T(n) has two recurrence calls indicating a binary tree. Each step recursively calls the program for 푛 reduced by 1 and 2, so the depth of 
the recurrence tree is O(푛). The number of leaves at depth 푛 is 2  since this is a full binary tree, and each leaf takes at least O(1) computations 
for the constant factor. Running time is clearly exponential in 푛. 
 

Problem-35 Running time of following program? 
public  void function(n) { 

for(int i = 1 ; i <= n ; i + + ) 
for(int j = 1 ; j <= n ; j+ = i ) 

System.out.println(“*”) ; 
} 

Solution: Consider the comments in the function below: 
 

     public void function (n) { 
          //this loop executes n times 
          for(int i = 1 ; i <= n ; i + + ) 
               //this loop executes j times with j increase by the rate of i 
               for(int j = 1 ; j <= n ; j+ = i ) 
                    System.out.println(“*”) ; 
     } 
In the above program, the inner loop executes n/i times for each value of 푖. Its running time is  푛 × (∑ n/in

i=1 ) = O(푛푙표푔푛 ). 
 

Problem-36 What is the complexity of  ∑ 푙표푔 푖 ? 
 

Solution: Using the logarithmic property, 푙표푔푥푦 = 푙표푔푥 + 푙표푔푦, we can see that this problem is equivalent to 

                           푙표푔푖 = 푙표푔 1 + 푙표푔 2 + ⋯ + 푙표푔 푛 = 푙표푔 (1 × 2 × … × 푛) = 푙표푔 (푛!)   ≤ 푙표푔 (푛  ) ≤ 푛푙표푔푛 

This shows that the time complexity = O(푛푙표푔푛). 
Problem-37  What is the running time of the following recursive function (specified as a function of the input value 푛)? First write the 

recurrence formula and then find its complexity. 
public void function(int n) { 

if(n <= 1) return ; 
for (int i=1 ; i <= 3; i++ )  

 f( ); 
} 

Solution: Consider the comments in the function below: 
 

     public void function (int n) { 
          //constant time 
          if(n <= 1) return; 
          //this loop executes with recursive loop of  value 
          for (int i=1 ; i <= 3; i++ )  
                f( ); 
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     } 
We can assume that for asymptotical analysis 푘 =  푘  for every integer 푘 ≥ 1. The recurrence for this code is 푇(푛) =  3푇( ) + Θ(1). 
Using master theorem, we get 푇(푛)  = Θ(푛). 
 

Problem-38 What is the running time of the following recursive function (specified as a function of the input value 푛)? First write a 
recurrence formula, and show its solution using induction. 

public void function(int n) { 
if(n <= 1) return; 
for (int i=1 ; i <= 3 ; i++ )  

function (n − 1). 
} 

Solution: Consider the comments in the below function: 
     public void function (int n) { 
          //constant time 
          if(n <= 1) return; 
          //this loop executes 3 times with recursive call of n-1 value 
          for (int i=1 ; i <= 3 ; i++ )  
               function (n − 1). 
     } 
The 푖푓 statement requires constant time (O(1)). With the 푓표푟 loop, we neglect the loop overhead and only count three times that the function 
is called recursively. This implies a time complexity recurrence: 
                                                              푇(푛)  =  푐, 푖푓 푛 ≤  1; 
                                                                          =  푐 +  3푇(푛 −  1), 푖푓 푛 >  1. 
Using the 푆푢푏푡푟푎푐푡푖표푛 푎푛푑 퐶표푛푞푢푒푟 master theorem, we get 푇(푛)  = Θ(3 ). 
 

Problem-39 Write a recursion formula for the running time 푇(푛) of the function 푓, whose code is given below. What is the running 
time of 푓푢푛푐푡푖표푛, as a function of 푛? 

public void function (int n) { 
if(n <= 1)  return; 
for(int i = 1; i < n; i + +)  

System.out.println(“*”); 
function ( 0.8n ) ; 

} 
Solution: Consider the comments in the below function: 
     public  void function (int n) { 
          //constant time 
          if(n <= 1)  return; 
          // this loop executes 푛 times with constant time loop  
          for(int i = 1; i < n; i + +)  
               System.out.println(“*”); 
          //recursive call with 0.8n 
          function ( 0.8n ) ; 
     } 

The recurrence for this piece of code is 푇(푛) =  푇(. 8푛) + O(푛) = T 4
5n + O(푛) = 푇(푛) + O(푛). Applying master theorem, we get 

푇(푛) = O(푛). 
 

Problem-40  Find the complexity of the recurrence:  푇(푛) = 2푇(√푛) + 푙표푔푛 
 

Solution: The given recurrence is not in the master theorem format. Let us try to convert this to the master theorem format by assuming 푛 =
2 . Applying the logarithm on both sides gives, 푙표푔푛 = 푚푙표푔2 ⟹ 푚 = 푙표푔푛. Now, the given function becomes:  

                              푇(푛) = 푇(2 ) = 2푇 √2 + 푚 = 2푇 2 + 푚. 

To make it simple we assume 푆(푚) = 푇(2 ) ⟹ 푆( ) = 푇(2 ) ⟹ 푆(푚) = 2푆 + 푚. Applying the master theorem would result  

푆(푚) =O(푚푙표푔푚). If we substitute 푚 =  푙표푔푛 back, 푇(푛) =  푆(푙표푔푛) =O((푙표푔푛) 푙표푔푙표푔푛).  
 

Problem-41  Find the complexity of the recurrence: 푇(푛) = 푇(√푛) + 1 
 

Solution: Applying the logic of Problem-40 gives 푆(푚) = 푆 + 1. Applying the master theorem would result in 푆(푚) =O(푙표푔푚). 

Substituting 푚 =  푙표푔푛, gives 푇(푛) =  푆(푙표푔푛) =O(푙표푔푙표푔푛).  
 

Problem-42 Find the complexity of the recurrence: 푇(푛) = 2푇(√푛) + 1 
 

Solution: Applying the logic of Problem-40 gives: 푆(푚) = 2푆 + 1. Using the master theorem results 푆(푚) =O 푚 =O(푚). 

Substituting 푚 =  푙표푔푛 gives 푇(푛) = O(푙표푔푛).  
 

Problem-43 Find the complexity of the function given below. 
public int function (int n) { 

if(n <= 2) return 1; 
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else 
return (Function (floor(sqrt(n))) + 1); 

} 
Solution: Consider the comments in the below function: 
     public int function (int n) { 
          if(n <= 2) return 1;  //constant time 
          else 
   // executes √푛 + 1 times 
               return (Function (floor(sqrt(n))) + 1); 
     } 
For the above function, recurrence function can be given as: 푇(푛) = 푇(√푛) + 1. This is same as that of Problem-41. 
 

Problem-44 Analyze the running time of the following recursive psuedocode as a function of 푛.  
       public void function(int n) { 

 if( n < 2 ) return; 
 else counter = 0; 
 for i = 1 to 8 do 
  function ( ); 
 for i =1 to 푛  do 
  counter = counter + 1; 
} 

Solution: Consider the comments in below psuedocode and call running time of function(n) as 푇(푛).  
     public void function(int n) { 
 if( n < 2 ) return;     //constant time 
 else  counter = 0; 
 // this loop executes 8 times with n value half in every call 
 for i = 1 to 8 do 
  function ( ); 

  // this loop executes 푛  times with constant time loop 
 for i =1 to 푛  do 
  counter = counter + 1; 
     } 
푇(푛) can be defined as follows: 

푇(푛)  =  1 푖푓 푛 <  2, 
= 8푇(

푛
2) + 푛3  +  1 표푡ℎ푒푟푤푖푠푒. 

Using the master theorem gives: 푇(푛)   =Θ(푛 푙표푔푛) = Θ(푛 푙표푔푛). 
 

Problem-45 Find the complexity of the pseudocode given below: 
temp  = 1 
repeat 

for i = 1 to n 
temp =  temp + 1; 

n  = ; 
until n <= 1 

 

Solution:  Consider the comments in the pseudocode given below: 
     temp  = 1         // constant time 
     repeat 
          // this loops executes n times 
          for i = 1 to n 
               temp =  temp + 1; 
          //recursive call with  value 

          n  = ; 
     until n <= 1 
The recurrence for this function is 푇(푛) =  푇(푛/2) +  푛. Using master theorem we get: 푇(푛)  = O(푛). 
 

Problem-46  Running time of the following program? 
      publicvoid  function(int n) { 

for(int i = 1 ; i <= n ; i + + ) 
for(int j = 1 ; j <= n ; j * = 2 ) 

System.out.println(“*”); 
       } 

Solution:  Consider the comments in the function given below: 
     public void function(int n) { 
 // this loops executes n times 
 for(int i = 1 ; i <= n ; i + + ) 



 

Data Structures and Algorithms Made Easy in Java Introduction                      

 

1.28 Algorithms Analysis: Problems & Solutions    32 

 
 

  // this loops executes logn times from our logarithms  
  //guideline 
  for(int j = 1 ; j <= n ; j * = 2 ) 
   System.out.println(“*”); 
     } 
Complexity of above program is O(푛푙표푔푛). 
 

Problem-47 Running time of the following program? 
public void function(int n) { 

for(int i = 1 ; i <= n/3 ; i + + ) 
for(int j = 1 ; j <= n ; j += 4 ) 

System.out.println(“ ∗ ”); 
} 

Solution: Consider the comments in the function given below: 
     public void function(int n) { 
 // this loops executes n/3 times 
 for(int i = 1 ; i <= n/3 ; i + + ) 
  // this loops executes n/4 times  
  for(int j = 1 ; j <= n ; j += 4) 
   System.out.println(“ ∗ ”); 
     } 
The time complexity of this program is: O(푛 ). 
 

Problem-48 Find the complexity of the below function: 
public void function(int n) { 
 if(n <=  1) return; 
 if(n > 1) { 
  System.out.println(“ ∗ ”); 
  function(  ); 

  function(  ); 
} 

} 
Solution: Consider the comments in the function given below: 
     public void function(int n) { 
 if(n <= 1) return;                               //constant time 
 if(n > 1) { 
  System.out.println(“ ∗ ”);           //constant time 
  //recursion with n/2 value 
  function( n/2 ); 
  //recursion with n/2 value 
  function( n/2 ); 
 } 
     } 

The recurrence for this function is:  푇(푛) = 2푇 + 1. Using master theorem, we get 푇(푛) = O(푛).  
 

Problem-49 Find the complexity of the below function: 
public void function(int n) { 
 int i=1; 
 while (i < n) { 
  int j=n; 
  while(j > 0)  
   j = j/2; 
  i=2*i; 
 } // i 
} 

 

Solution: 
     public void function(int n) { 
 int i=1; 
 while (i < n) { 
  int j=n; 
  while(j > 0)  
   j = j/2;   //logn code 
  i=2*i; //logn times 
 } // i 
     } 
 

Time Complexity: O(푙표푔푛 ∗ 푙표푔푛) =O(푙표푔 푛). 
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Problem-50 ∑ O(푛), where O(푛) stands for order 푛 is:                                                                    
(a) O(푛)             (b) O(푛 )              (c) O(푛 )              (d)  O(3푛 )              (e) O(1.5푛 ) 

 

Solution: (b). ∑ O(푛) = O(푛) ∑ 1 =O(푛 ). 
 

Problem-51 Which of the following three claims are correct                                                                   
I   (푛 +  푘)  = (푛 ), where 푘 and 푚 are constants        II 2  = O(2 )       III  2   = O(2 ) 
(a) I and II                 (b) I and III                 (c) II and III                    (d) I, II and III 

 

Solution: (a).    (I)  (푛 +  푘)  = 푛   + c1*푛  + ... 푘  = (푛 ) and (II)  2  = 2*2  = O(2 ) 
 

Problem-52 Consider the following functions:                                                                                            
  f(푛)   = 2               g(푛)   = 푛!                    h(푛)   = 푛  
Which of the following statements about the asymptotic behavior of f(푛), g(푛), and h(푛) is true? 
 (A) f(푛) = O(g(푛)); g(푛) = O(h(푛))                  (B) f(푛) =  (g(푛)); g(푛) = O(h(푛)) 
 (C) g(푛) = O(f(푛)); h(푛) = O(f(푛))                   (D) h(푛) = O(f(푛)); g(푛) =  (f(푛)) 

 

Solution: (D). According to the rate of growth: h(푛) < f(푛) < g(푛) (g(푛) is asymptotically greater than f(푛), and f(푛) is asymptotically greater than 
h(푛)). We can easily see the above order by taking logarithms of the given 3 functions:    푙표푔푛푙표푔푛 < 푛 < 푙표푔(푛!). Note that, 푙표푔(푛!) = 
O(푛푙표푔푛). 
 

Problem-53 Consider the following segment of C-code:                                                              
int j=1, n; 
while (j <=n) 

j = j*2; 
The number of comparisons made in the execution of the loop for any 푛 >  0 is: 
(A) ceil(푙표푔 )+ 1                 (B) 푛                  (C) ceil(푙표푔 )                  (D) floor(푙표푔 ) + 1 

 

Solution: (a). Let us assume that the loop executes 푘 times. After 푘  step the value of 푗 is 2 . Taking logarithms on both sides gives 푘 = 푙표푔 . 
Since we are doing one more comparison for exiting from the loop, the answer is ceil(푙표푔 )+ 1.  
 

Problem-54 Consider the following C code segment. Let T(푛) denote the number of times the for loop is executed by the program 
on input 푛. Which of the following is TRUE?                                                                                

public int IsPrime(int n){ 
  for(int i=2;i<=sqrt(n);i++) 
   if(n%i == 0) 
     {printf(“Not Prime\n”); return 0;} 
  return 1; 
} 

 (A) T(푛) = O(√푛) and T(푛) = (√푛)                    (B) T(푛) = O(√푛) and T(푛) = (1) 
 (C) T(푛) = O(푛) and T(푛) = (√푛)                      (D) None of the above 

 

Solution: (B). Big O notation describes the tight upper bound and Big Omega notation describes the tight lower bound for an algorithm. The 
푓표푟 loop in the question is run maximum √푛 times and minimum 1 time. Therefore, T(푛) = O(√푛) and T(푛) = (1). 
 

Problem-55 In the following C function, let 푛 ≥  푚. How many recursive calls are made by this function?                                                                                  
public int gcd(n,m){ 

if (n%m ==0) return m; 
n = n%m; 
return gcd(m,n); 

} 
(A) (푙표푔 )                                 (B) (푛)                                  (C) (푙표푔 푙표푔 )                                 (D) (푛) 

 

Solution: No option is correct. Big O notation describes the tight upper bound and Big Omega notation describes the tight lower bound for 
an algorithm. For 푚 = 2 and for all 푛 = 2 , the running time is O(1) which contradicts every option. 
 

Problem-56 Suppose 푇(푛)  =  2푇(푛/2) +  푛, T(0)=T(1)=1. Which one of the following is FALSE?       
(A) 푇(푛) = O(푛 )                     (B) 푇(푛) = (푛푙표푔푛)                (C) 푇(푛) = (푛 )                 (D) 푇(푛) = O(푛푙표푔푛) 

 

Solution: (C). Big O notation describes the tight upper bound and Big Omega notation describes the tight lower bound for an algorithm. 
Based on master theorem, we get 푇(푛) = (푛푙표푔푛). This indicates that tight lower bound and tight upper bound are the same. That means, 
O(푛푙표푔푛) and (푛푙표푔푛) are correct for given recurrence. So option (C) is wrong. 
 

Problem-57 Find the complexity of the below function: 
 

public void function(int n) { 
    for (int i = 0; i<n; i++) 
        for(int j=i; j<i*i; j++) 
     if (j %i == 0){ 
        for (int k = 0; k < j; k++) 
           printf(" * "); 
     } 
 } 
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Solution: 
 

     public void function(int n) {  
         for (int i = 0; i<n; i++)                      // Executes n times 
             for(int j=i; j<i*i; j++)                     // Executes n*n times 
          if (j %i == 0){ 
             for (int k = 0; k < j; k++)    // Executes j times = (n*n) times 
                printf(" * "); 
          } 
      } 
 

Time Complexity: O(푛5). 
 

Problem-58 To calculate 9 , give algorithm and discuss its complexity. 
 

Solution: Start with 1 and multiply by 9 until reaching 9 .  
 

Time Complexity: There are 푛 − 1 multiplications and each takes constant time giving a (푛) algorithm. 
 

Problem-59 For Problem-58, can we improve the time complexity? 
 

Solution: Refer to the 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. 
 

Problem-60 Find the complexity of the below function: 
 

public void function(int n) { 
    int sum = 0; 
    for (int i = 0; i<n; i++) 
        if (i>j) 
            sum = sum +1; 
        else { 
     for (int k = 0; k < n; k++) 
          sum = sum -1; 
  } 
    } 
} 

 

Solution: Consider the worst-case. 
 

     public void function(int n) { 
         int sum = 0; 
        for (int i = 0; i<n; i++)                           // Executes 푛 times 
             if (i>j) 
                 sum = sum +1;                            // Executes 푛 times 
             else { 
       for (int k = 0; k < n; k++)       // Executes 푛 times 
           sum = sum -1; 
 } 
         } 
     } 

 

Time Complexity: O(푛 ). 
 

Problem-61 Solve the following recurrence relation using the recursion tree method: T(푛)=T( ) +T( )+ 푛 . 
Solution: How much work do we do in each level of the recursion tree?  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In level 0, we take 푛  time. At level 1, the two subproblems take time: 
 

1
2 푛 +

2
3 푛 =

1
4 +

4
9 푛 =

25
36 푛  

 

T( ) T( ) 
푛
2  

T( ) T( ) 푛  

T( ) T( ) 
2푛
3

 

T( ) T( ) 푛
2  T( ) T( ) 2푛

3
 T( ) T( ) 푛

2
 T( ) T( ) 2푛

3
 

T(푛) 
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At level 2 the four subproblems are of size ,  , , and  respectively. These two subproblems take time:  
 

1
4 푛 +

1
3 푛 +

1
3 푛 +

4
9 푛 =

625
1296 푛 =

25
36 푛  

 

Similarly the amount of work at level 푘 is at most 푛 .  

Let 훼 =  , the total runtime is then: 

T(푛) ≤ 훼 푛  

 = 
1

1−∝ 푛  

 = 
1

1 − 25
36

푛  

 = 
1

11
36

푛  

 = 
36
11 푛  

 = O(푛 ) 
 

That is, the first level provides a constant fraction of the total runtime. 
 

Problem-62 Find the time complexity of recurrence T(n) = T( ) + T( ) + T( ) + 푛. 
 

Solution: Let us solve this problem by method of guessing. The total size on each level of the recurrance tree is less than 푛, so we guess that 
푓(푛)  =  푛 will dominate. Assume for all 푖 <  푛 that 푐 푛 ≤ T(푖) ≤ 푐 푛. Then, 
 

푐  + 푐  + 푐  + 푘푛 ≤ T(푛)  ≤ 푐  + 푐  + 푐  + 푘푛 

푐 푛(  +  +  + ) ≤ T(푛)  ≤ 푐 푛(  +  +   + ) 

푐 푛(  + ) ≤ T(푛)  ≤ 푐 푛(  + ) 
 

If 푐  ≥ 8k and 푐  ≤ 8k, then 푐 푛 = T(푛) = 푐 푛. So, T(푛) = Θ(푛). In general, if you have multiple recursive calls, the sum of the arguments to 
those calls is less than n (in this case  +  +  < 푛), and 푓(푛) is reasonably large, a good guess is T(푛) = Θ(f(푛)). 
 

Problem-63 Rank the following functions by order of growth: (푛 + 1)!, n!, 4 , 푛 × 3 , 3 + 푛 + 20푛, ( ) , 4푛 , 4 , 푛 + 200, 

20푛 + 500,  2 , 푛 / , 1. 
 

Solution: 
Function Rate of Growth  

(푛 + 1)! O(푛!) 
푛! O(푛!) 
4  O(4 ) 

푛 × 3  O(푛3 ) 
3 + 푛 + 20푛 O(3 ) 

(
3
2)  O(( ) ) 

4푛  O(푛 ) 
4  O(푛 ) 

푛 + 200 O(푛 ) 
20푛 + 500 O(푛) 

2  O(푛) 
푛 /  O(푛 / ) 

1 O(1) 
 

Problem-64 Can we say 3 . = O(3 )? 
 

Solution: Yes: because 3 . <  3 . 
 

Problem-65 Can we say 2 = O(2 )? 
 

Solution: No: because 2 = (2 ) = 8  not less than 2 . 
  

Decreasing rate of growths 
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RECURSION AND 
BACKTRACKING 

 

Chapter 

2 
 

 
 
 
 

2.1 Introduction 
 

In this chapter, we will look at one of the important topics, “푟푒푐푢푟푠푖표푛”, which will be used in almost every chapter, and also its relative 
“푏푎푐푘푡푟푎푐푘푖푛푔”.  

2.2 What is Recursion? 
 

Any function which calls itself is called 푟푒푐푢푟푠푖푣푒. A recursive method solves a problem by calling a copy of itself to work on a smaller 
problem. This is called the recursion step. The recursion step can result in many more such recursive calls. It is important to ensure that the 
recursion terminates. Each time the function calls itself with a slightly simpler version of the original problem. The sequence of smaller 
problems must eventually converge on the base case. 

2.3 Why Recursion? 
 

Recursion is a useful technique borrowed from mathematics. Recursive code is generally shorter and easier to write than iterative code. 
Generally, loops are turned into recursive functions when they are compiled or interpreted. Recursion is most useful for tasks that can be 
defined in terms of similar subtasks. For example, sort, search, and traversal problems often have simple recursive solutions.  

2.4 Format of a Recursive Function  
 

A recursive function performs a task in part by calling itself to perform the subtasks. At some point, the function 
encounters a subtask that it can perform without calling itself. This case, where the function does not recur, is called the 푏푎푠푒 푐푎푠푒. The 
former, where the function calls itself to perform a subtask, is referred to as the 푟푒푐푢푟푠푖푣푒 푐푎푠푒.  We can write all recursive functions using 
the format: 
 

      if(test for the base case) 
 return some base case value 
      else if(test for another base case) 
 return some other base case value 
      // the recursive case 
      else return (some work and then a recursive call) 
 

As an example consider the factorial function: 푛! is the product of all integers between 푛 and 1. The definition of recursive factorial looks 
like: 

푛!  =  1,   if 푛 =  0 
푛!  =  푛 ∗  (푛 − 1)!  if 푛 >  0 

 

This definition can easily be converted to recursive implementation. Here the problem is determining the value of 푛!, and the subproblem is 
determining the value of (푛 − 푙)!. In the recursive case, when 푛 is greater than 1, the function calls itself to determine the value of (푛 − 푙)! and 
multiplies that with 푛. In the base case, when 푛 is 0 or 1, the function simply returns 1. This looks like the following:  
 

class Factorial { 
  // recursive definition of method factorial 
  public long factorial(long number) { 
    if (number <= 1) // test for base case 
      return 1; // base cases: 0! = 1 and 1! = 1 
    else 
      // recursion step 
      return number * factorial(number - 1); 
  } 
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  public static void main(String args[]) { 
   Factorial obj = new Factorial();  
    for (int counter = 0; counter <= 10; counter++) 
      System.out.printf("%d! = %d\n", counter, obj.factorial(counter)); 
 
  }   
} 

2.5 Recursion and Memory (Visualization) 
 

Each recursive call makes a new copy of that method (actually only the variables) in memory. Once a method ends (that is, returns some 
data), the copy of that returning method is removed from memory. The recursive solutions look simple but visualization and tracing takes 
time. For better understanding, let us consider the following example.  
 

    public int Print(int n) { 
        if( n == 0)   // this is the terminating base case 
            return 0; 
        else {  
            System.out.println(n); 
            return Print(n-1);  // recursive call to itself again 
        } 
    } 

 

For this example, if we call the print function with n=4, visually our memory assignments may look like: 
 

 
 
 
 
 
 
 
 
 
 
Now, let us consider our factorial function. The visualization of factorial function with n = 4 will look like: 
 

 
 
 
 
 
 
 
 
 
 

2.6 Recursion versus Iteration 
 

While discussing recursion, the basic question that comes to mind is: which way is better? – iteration or recursion? The answer to this question 
depends on what we are trying to do. A recursive approach mirrors the problem that we are trying to solve. A recursive approach makes it 
simpler to solve a problem that may not have the most obvious of answers. But, recursion adds overhead for each recursive call (needs space 
on the stack frame). 

Recursion 
 

 Terminates when a base case is reached. 
 Each recursive call requires extra space on the stack frame (memory). 
 If we get infinite recursion, the program may run out of memory and result in stack overflow. 
 Solutions to some problems are easier to formulate recursively. 

Iteration 
 

 Terminates when a condition is proven to be false. 
 Each iteration does not require any extra space. 
 An infinite loop could loop forever since there is no extra memory being created. 
 Iterative solutions to a problem may not always be as obvious as a recursive solution. 

Print (4) 

Print (3) 

Print (2) 

Print (1) 

Print (0) 

Returns 0 

Returns 0 

Returns 0 

Returns 0 

Returns 0 to main function 

4! 

4* 3! 

3*2! 

2*1! 

1 

Returns 1 

2*1=2 is returned 

3*2=6 is returned 

4*6=24 is returned 

Returns 24 to main function 
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2.7 Notes on Recursion 
 

 Recursive algorithms have two types of cases, recursive cases and base cases. 
 Every recursive function case must terminate at a base case.  
 Generally, iterative solutions are more efficient than recursive solutions [due to the overhead of function calls]. 
 A recursive algorithm can be implemented without recursive function calls using a stack, but it’s usually more trouble than its worth. 

That means any problem that can be solved recursively can also be solved iteratively. 
 For some problems, there are no obvious iterative algorithms.  
 Some problems are best suited for recursive solutions while others are not. 

2.8 Example Algorithms of Recursion 
 

• Fibonacci Series, Factorial Finding 
• Merge Sort, Quick Sort 

• Binary Search 

• Tree Traversals and many Tree Problems: InOrder, PreOrder PostOrder 

• Graph Traversals: DFS [Depth First Search] and BFS [Breadth First Search] 

• Dynamic Programming Examples 

• Divide and Conquer Algorithms 

• Towers of Hanoi 

• Backtracking Algorithms [we will discuss in next section] 

2.9 Recursion: Problems & Solutions 
 

In this chapter we cover a few problems with recursion and we will discuss the rest in other chapters. By the time you complete reading the 
entire book, you will encounter many recursion problems. 
 

Problem-1 Discuss Towers of Hanoi puzzle. 
 

Solution: The Towers of Hanoi is a mathematical puzzle. It consists of three rods (or pegs or towers) and a number of disks of different sizes 
which can slide onto any rod. The puzzle starts with the disks on one rod in ascending order of size, the smallest at the top, thus making a 
conical shape. The objective of the puzzle is to move the entire stack to another rod, satisfying the following rules: 
 

 Only one disk may be moved at a time. 
 Each move consists of taking the upper disk from one of the rods and sliding it onto another rod, on top of the other disks that may 

already be present on that rod. 
 No disk may be placed on top of a smaller disk. 

 

Algorithm 
 Move the top 푛 − 1 disks from 푆표푢푟푐푒 to 퐴푢푥푖푙푖푎푟푦 tower, 
 Move the 푛  disk from 푆표푢푟푐푒 to 퐷푒푠푡푖푛푎푡푖표푛 tower, 
 Move the 푛 − 1disks from 퐴푢푥푖푙푖푎푟푦 tower to 퐷푒푠푡푖푛푎푡푖표푛 tower. 
 Transferring the top 푛 − 1 disks from 푆표푢푟푐푒 to 퐴푢푥푖푙푖푎푟푦 tower can again be thought of as a fresh problem and can be solved 

in the same manner. Once we solve 푇표푤푒푟푠 표푓 퐻푎푛표푖 with three disks, we can solve it with any number of disks with the above 
algorithm. 

 

      public void TowersOfHanoi(int n, char frompeg, char topeg, char auxpeg) {  
 /* If only 1 disk, make the move and return */ 
 if(n==1) {  
     System.out.println("Move disk 1 from peg “ + frompeg + “ to peg " + topeg); 
         return; 
 } 
 

 /* Move top n-1 disks from A to B, using C as auxiliary */ 
 TowersOfHanoi(n-1,frompeg,auxpeg,topeg); 
 

 /* Move remaining disks from A to C */ 
                System.out.println("Move disk from peg” + frompeg + “ to peg " + topeg); 
 

 /* Move n-1 disks from B to C using A as auxiliary */ 
 TowersOfHanoi(n-1,auxpeg,topeg,frompeg); 
      } 
 

Problem-2 Given an array, check whether the array is in sorted order with recursion. 
 

Solution:  
 

      public int isArrayInSortedOrder(int[] A, int index){ 



 

Data Structures and Algorithms Made Easy in Java Recursion and Backtracking                      

 

2.10 What is Backtracking?    39 

 
 

 if(A.length() == 1 || index == 1)  
                    return 1; 
 return (A[index -1] < A[index -2])?0: isArrayInSortedOrder(A, index -1); 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛) for recursive stack space. 

2.10 What is Backtracking? 
 

Backtracking is an improvement of the brute force approach. It systematically searches for a solution to a problem among all available options. 
In backtracking, we start with one possible option out of many available options and try to solve the problem if we are able to solve the 
problem with the selected move then we will print the solution else we will backtrack and select some other option and try to solve it. If none 
if the options work out we will claim that there is no solution for the problem.  
 

Backtracking is a form of recursion. The usual scenario is that you are faced with a number of options, and you must choose one of these. 
After you make your choice you will get a new set of options; just what set of options you get depends on what choice you made. This 
procedure is repeated over and over until you reach a final state. If you made a good sequence of choices, your final state is a goal state; if you 
didn't, it isn't.  

 

Backtracking can be thought of as a selective tree/graph traversal method. The tree is a way of representing some initial starting position (the 
root node) and a final goal state (one of the leaves). Backtracking allows us to deal with situations in which a raw brute-force approach would 
explode into an impossible number of options to consider. Backtracking is a sort of refined brute force. At each node, we eliminate choices 
that are obviously not possible and proceed to recursively check only those that have potential.  

 

What’s interesting about backtracking is that we back up only as far as needed to reach a previous decision point with an as-yet-unexplored 
alternative. In general, that will be at the most recent decision point. Eventually, more and more of these decision points will have been fully 
explored, and we will have to backtrack further and further. If we backtrack all the way to our initial state and have explored all alternatives 
from there, we can conclude the particular problem is unsolvable. In such a case, we will have done all the work of the exhaustive recursion 
and known that there is no viable solution possible. 
 

 Sometimes the best algorithm for a problem is to try all possibilities. 
 This is always slow, but there are standard tools that can be used to help. 
 Tools: algorithms for generating basic objects, such as binary strings [2  possibilities for 푛-bit string], permutations 

[푛!], combinations [푛!/푟! (푛 − 푟)!], general strings [k − ary strings of length 푛 has 푘  possibilities], etc... 
 Backtracking speeds the exhaustive search by pruning. 

2.11 Example Algorithms of Backtracking 
 

 Binary Strings: generating all binary strings 
 Generating k-ary Strings 
 The Knapsack Problem 
 N-Queens Problem 
 Generalized Strings 
 Hamiltonian Cycles [refer to 퐺푟푎푝ℎ푠 chapter] 
 Graph Coloring Problem 

2.12 Backtracking: Problems & Solutions 
 

Problem-3 Generate all the strings of 푛 bits. Assume 퐴[0. . 푛 − 1] is an array of size 푛. 
 

Solution:    
 

import java.util.*; 
public class BinaryStrings { 
    int[] A; 
    public BinaryStrings(int n) { 
        A = new int[n]; 
    } 
 

    public void binary(int n) { 
        if (n <= 0) { 
            System.out.println(Arrays.toString(A)); 
        } else { 
            A[n - 1] = 0; 
            binary(n - 1); 
            A[n - 1] = 1; 
            binary(n - 1); 
        } 
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    } 
 

    public static void main(String[] args) throws java.lang.Exception { 
        int n = 4; 
        BinaryStrings i = new BinaryStrings(n); 
        i.binary(n); 
    } 
} 

 

Let 푇(푛) be the running time of 푏푖푛푎푟푦(푛). Assume function 푆푦푠푡푒푚. 표푢푡. 푝푟푖푛푡푙푛 takes time O(1).  

푇(푛) = 푐,                              if 푛 < 0
2푇(푛 − 1) + 푑, otherwise 

Using Subtraction and Conquer Master theorem, we get 푇(푛) =O(2 ). This means the algorithm for generating bit-strings is optimal. 
 

Problem-4 Generate all the strings of length 푛 drawn from 0. . . 푘 −  1. 
 

Solution:  Let us assume we keep current k-ary string in an array 퐴[0. . 푛 − 1]. Call function 푘-푠푡푟푖푛푔(n, k): 
 

import java.util.*; 
 class K_aryStrings { 
    int[] A; 
    public BinaryStrings(int n) { 
        A = new int[n]; 
    } 
    public void base_K_strings(int n, int k) { 
        //process all k-ary strings of length m 
        if(n <= 0)  
            System.out.println(Arrays.toString(A));  //Assume array A is a class variable 
        else {  
            for (int j = 0 ; j < k ; j++) { 
                A[n-1] = j;  
                base_K_strings(n - 1, k); 
            } 
        } 
    } 
 

    public static void main(String[] args) throws java.lang.Exception { 
        int n = 4; 
        K_aryStrings obj = new K_aryStrings (n); 
        obj.base_K_strings(n, 3); 
    } 
} 

 

Let 푇(푛) be the running time of 푘 − 푠푡푟푖푛푔(푛). Then, 
 

푇(푛) = 푐,                              푖푓 푛 < 0
푘푇(푛 − 1) + 푑, 표푡ℎ푒푟푤푖푠푒 

 

Using Subtraction and Conquer Master theorem, we get: 푇(푛) =O(푘 ). 
 

Note: For more problems, refer to 푆푡푟푖푛푔 퐴푙푔표푟푖푡ℎ푚푠 chapter. 
 

Problem-5 Solve the recurrence T(푛) = 2T(푛 −  1) + 2 . 
 

Solution: At each level of the recurrence tree, the number of problems is double from the previous level, while the amount of work being 
done in each problem is half from the previous level. Formally, the 푖  level has 2  problems, each requiring 2  work. Thus the 푖  level 
requires exactly 2  work. The depth of this tree is 푛, because at the 푖  level, the originating call will be T(푛 −  푖). Thus the total complexity 
for T(푛) is T(푛2 ).   
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3.1 What is a Linked List? 
 

One disadvantage of using arrays to store data is that arrays are static structures and therefore cannot be easily extended or reduced to fit the 
data set. Arrays are also expensive to maintain new insertions and deletions. In this chapter we consider another data structure called Linked 
Lists that addresses some of the limitations of arrays. A linked list is a data structure used for storing collections of data. A linked list has the 
following properties. A linked list is a linear dynamic data structure. The number of nodes in a list is not fixed and can grow and shrink on 
demand. Each node of a linked list is made up of two items - the data and a reference to the next node. The last node has a reference to null. 
The entry point into a linked list is called the head of the list. It should be noted that head is not a separate node, but the reference to the first 
node. If the list is empty then the head is a null reference. 
 

 Successive elements are connected by pointers. 
 The last element points to NULL. 
 Can grow or shrink in size during execution of a program. 
 Can be made just as long as required (until systems memory exhausts). 
 Does not waste memory space (but takes some extra memory for pointers). It allocates memory as list grows. 

 
 

 
 

3.2 Linked Lists ADT 
 

The following operations make linked lists an ADT: 
 

Main Linked Lists Operations 
 

 Insert: inserts an element into the list 
 Delete: removes and returns the specified position element from the list 

 

Auxiliary Linked Lists Operations 
 

 Delete List: removes all elements of the list (disposes the list) 
 Count: returns the number of elements in the list 
 Find 푛  node from the end of the list  

3.3 Why Linked Lists? 
 

There are many other data structures that do the same thing as linked lists. Before discussing linked lists it is important to understand the 
difference between linked lists and arrays. Both linked lists and arrays are used to store collections of data, and since both are used for the 
same purpose, we need to differentiate their usage. That means in which cases 푎푟푟푎푦푠 are suitable and in which cases 푙푖푛푘푒푑 푙푖푠푡푠 are 
suitable. 

3.4 Arrays Overview 
 

One memory block is allocated for the entire array to hold the elements of the array. The array elements can be accessed in constant time by 
using the index of the particular element as the subscript. 
 
 
 

Why Constant Time for Accessing Array Elements? 
 

To access an array element, the address of an element is computed as an offset from the base address of the array and one multiplication is 
needed to compute what is supposed to be added to the base address to get the memory address of the element. First the size of an element 
of that data type is calculated and then it is multiplied with the index of the element to get the value to be added to the base address. This 

    4    15     7    40 NULL 

head 

      3             2             1             2           2           3 

0 1 2 3 4 5 Index 
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process takes one multiplication and one addition. Since these two operations take constant time, we can say the array access can be performed 
in constant time. 

Advantages of Arrays 
 

 Simple and easy to use 
 Faster access to the elements (constant access) 

Disadvantages of Arrays 
 

 Preallocates all needed memory up front and wastes memory space for indices in the array that are empty. 
 Fixed size: The size of the array is static (specify the array size before using it). 
 One block allocation: To allocate the array itself at the beginning, sometimes it may not be possible to get the memory for the 

complete array (if the array size is big). 
 Complex position-based insertion: To insert an element at a given position, we may need to shift the existing elements. This will 

create a position for us to insert the new element at the desired position. If the position at which we want to add an element is at 
the beginning, then the shifting operation is more expensive. 

Dynamic Arrays 
 

Dynamic array (also called 푔푟표푤푎푏푙푒 푎푟푟푎푦, 푟푒푠푖푧푎푏푙푒 푎푟푟푎푦, 푑푦푛푎푚푖푐 푡푎푏푙푒, or 푎푟푟푎푦 푙푖푠푡) is a random access, variable-size list data 
structure that allows elements to be added or removed.  
 

One simple way of implementing dynamic arrays is to initially start with some fixed size array. As soon as that array becomes full, create the 
new array double the size of the original array. Similarly, reduce the array size to half if the elements in the array are less than half the size. 
 

Note: We will see the implementation for 푑푦푛푎푚푖푐 푎푟푟푎푦푠 in the 푆푡푎푐푘푠, 푄푢푒푢푒푠 and 퐻푎푠ℎ푖푛푔 chapters. 

Advantages of Linked Lists 
 

Linked lists have both advantages and disadvantages. The advantage of linked lists is that they can be 푒푥푝푎푛푑푒푑 in constant time. To create 
an array, we must allocate memory for a certain number of elements. To add more elements to the array when full, we must create a new 
array and copy the old array into the new array. This can take a lot of time.  
 

We can prevent this by allocating lots of space initially but then we might allocate more than we need and waste memory. With a linked list, 
we can start with space for just one allocated element and 푎푑푑 on new elements easily without the need to do any copying and reallocating. 

Issues with Linked Lists (Disadvantages) 
 

There are a number of issues with linked lists. The main disadvantage of linked lists is 푎푐푐푒푠푠 푡푖푚푒 to individual elements. Array is random-
access, which means it takes O(1) to access any element in the array. Linked lists take O(푛) for access to an element in the list in the worst 
case. Another advantage of arrays in access time is 푠푝푎푐푖푎푙 푙표푐푎푙푖푡푦 in memory. Arrays are defined as contiguous blocks of memory, and so 
any array element will be physically near its neighbors. This greatly benefits from modern CPU caching methods. 
 

Although the dynamic allocation of storage is a great advantage, the 표푣푒푟ℎ푒푎푑 with storing and retrieving data can make a big difference. 
Sometimes linked lists are ℎ푎푟푑 to 푚푎푛푖푝푢푙푎푡푒. If the last item is deleted, the last but one must then have its pointer changed to hold a 
NULL reference. This requires that the list is traversed to find the last but one link, and its pointer set to a NULL reference. Finally, linked 
lists waste memory in terms of extra reference points. 

3.5 Comparison of Linked Lists with Arrays & Dynamic Arrays  
 

As with most choices in computer programming and design, no method is well suited to all circumstances. A linked list data structure might 
work well in one case, but cause problems in another. This is a list of some of the common tradeoffs involving linked list structures. In general, 
if you have a dynamic collection, where elements are frequently being added and deleted, and the location of new elements added to the list 
is significant, then benefits of a linked list increase. 
 

Parameter Linked list Array Dynamic array 
Indexing O(푛) O(1) O(1) 
Insertion/deletion at 
beginning O(1) O(푛), if array is not full (for shifting the elements) O(푛) 

Insertion at ending O(푛) O(1), if array is not full 
O(1), if array is not full 
O(푛), if array is full 

Deletion at ending O(푛) O(1) O(푛) 
Insertion in middle O(푛) O(푛), if array is not full (for shifting the elements) O(푛) 
Deletion in middle O(푛) O(푛), if array is not full (for shifting the elements) O(푛) 
Wasted space O(푛) (for pointers) 0 O(푛) 

3.6 Singly Linked Lists  
 

The linked list consists of a series of structures called nodes. We can think of each node as a record. The first part of the record is a field that 
stores the data, and the second part of the record is a field that stores a pointer to a node. So, each node contains two fields: a 푑푎푡푎 field and 
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a 푛푒푥푡 field which is a pointer used to link one node to the next node. Generally "linked list" means a singly linked list. This list consists of a 
number of nodes in which each node has a 푛푒푥푡 pointer to the following element. The link of the last node in the list is NULL, which 
indicates the end of the list. Each node is allocated in the heap with a call to 푛푒푤(), so the node memory continues to exist until it is explicitly 
deallocated with a call to 푑푒푙푒푡푒(). The node called a ℎ푒푎푑 is the first node in the list. The last node's next pointer points to NULL value.  
 

 
 
 
 
 

Following is a type declaration for a linked list:  
 

public class ListNode { 
    private int data; 
    private ListNode next; 
    public ListNode(int data){ 
        this.data = data; 
    } 
    public void setData(int data){ 
        this.data = data; 
    } 
    public int getData(){ 
        return data; 
    } 
    public void setNext(ListNode next){ 
        this.next = next;   
    } 
    public ListNode getNext(){ 
        return this.next; 
    } 
} 

 

Basic Operations on a List 
 

 Traversing the list 
 Inserting an item in the list 
 Deleting an item from the list 

 

Traversing the Linked List 
 

Let us assume that the ℎ푒푎푑 points to the first node of the list. To traverse the list we do the following. 
 

 Follow the pointers. 
 Display the contents of the nodes (or count) as they are traversed. 
 Stop when the next pointer points to NULL. 

 

 
 
 
 

The ListLength() function takes a linked list as input and counts the number of nodes in the list. The function given below can be used for 
printing the list data with extra print function. 
 

    public int length(ListNode headNode) { 
 int length = 0; 
 ListNode currentNode = headNode; 
 while(currentNode != null){ 
  length++; 
  currentNode = currentNode.next; 
 } 
 return length; 
    } 
 

Time Complexity: O(푛), for scanning the list of size 푛. Space Complexity: O(1), for creating a temporary variable. 

Singly Linked List Insertion 
 

Insertion into a singly-linked list has three cases: 
 

 Inserting a new node before the head (at the beginning) 
 Inserting a new node after the tail (at the end of the list) 
 Inserting a new node at the middle of the list (random location) 

 

Note:  To insert an element in the linked list at some position 푝, assume that after inserting the element the position of this new node is 푝. 
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Head 
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head 
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Inserting a Node in Singly Linked List at the Beginning 
 

In this case, a new node is inserted before the current head node. 푂푛푙푦 표푛푒 푛푒푥푡 푝표푖푛푡푒푟 needs to be modified (new node’s next pointer) 
and it can be done in two steps: 
 

 Update the next pointer of new node, to point to the current head.  
 
 

 
 
 

 Update head pointer to point to the new node. 
 
 

 
 

Inserting a Node in Singly Linked List at the Ending 
 

In this case, we need to modify 푡푤표 푛푒푥푡 푝표푖푛푡푒푟푠 (last nodes next pointer and new nodes next pointer).  
 

 New nodes next pointer points to NULL. 
 
 

 
 
 

 

 Last nodes next pointer points to the new node. 
 

 
 
 

 
 

Inserting a Node in Singly Linked List at the Middle 
 

Let us assume that we are given a position where we want to insert the new node. In this case also, we need to modify two next pointers. 
 

 If we want to add an element at position 3 then we stop at position 2. That means we traverse 2 nodes and insert the new node. 
For simplicity let us assume that the second node is called 푝표푠푖푡푖표푛 node. The new node points to the next node of the position 
where we want to add this node.  
 
 

 
 
 
 
 
 
 

 Position node’s next pointer now points to the new node. 
 
 
 
 
 
 
 
 
Note: We can implement the three variations of the 푖푛푠푒푟푡 operation separately. 
 

Time Complexity: O(푛). since, in the worst case, we may need to insert the node at the end of the list. Space Complexity: O(1). 

Singly Linked List Deletion 
 

Similar to insertion, here we also have three cases. 
 

 Deleting the first node 
 Deleting the last node 
 Deleting an intermediate node. 

new node 
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Deleting the First Node in Singly Linked List 
 

First node (current head node) is removed from the list. It can be done in two steps: 
 

 Create a temporary node which will point to the same node as that of head.  
 
 
 
 
 

 Now, move the head nodes pointer to the next node and dispose of the temporary node. 
 
 
 
 
 

Deleting the Last node in Singly Linked List 
 

In this case, the last node is removed from the list. This operation is a bit trickier than removing the first node, because the algorithm should 
find a node, which is previous to the tail. It can be done in three steps:   

 Traverse the list and while traversing maintain the previous node address also. By the time we reach the end of the list, we will have 
two pointers, one pointing to the 푡푎푖푙 node and the other pointing to the node 푏푒푓표푟푒 the tail node.  

 
 
 
 
 
 

 Update previous node’s next pointer with NULL.  
 
 

 
 
 
 
 

 Dispose of the tail node. 
 
 
 
 
 
 

Deleting an Intermediate Node in Singly Linked List 
 

In this case, the node to be removed is 푎푙푤푎푦푠 푙표푐푎푡푒푑 푏푒푡푤푒푒푛 two nodes. Head and tail links are not updated in this case. Such a removal 
In this case, the node to be removed is 푎푙푤푎푦푠 푙표푐푎푡푒푑 푏푒푡푤푒푒푛 two nodes. Head and tail links are not updated in this case. Such a removal 
can be done in two steps: 
 

 Similar to the previous case, maintain the previous node while traversing the list. Once we find the node to be deleted, change the 
previous node’s next pointer to the next pointer of the node to be deleted. 

 
 
 
 
 
 

 Dispose of the current node to be deleted. 
 
 
 
 
 
 

Time Complexity: O(푛). In the worst case, we may need to delete the node at the end of the list. Space Complexity: O(1).  

Deleting Singly Linked List 
 

This works by storing the current node in some temporary variable and freeing the current node. After freeing the current node, go to the 
next node with a temporary variable and repeat this process for all nodes. 
 

Time Complexity: O(푛), for scanning the complete list of size 푛. Space Complexity: O(1), for temporary variable. 
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Implementation 
 

public class LinkedList { 
    // This class has a default constructor:  
    public LinkedList() { 
        length = 0; 
    } 
    ListNode head; 
 

    // Length of the linked list 
    private int length = 0; 
 

    // Return the first node/head in the list  
    public synchronized ListNode getHead() {  
        return head;  
    } 
 

    // Insert a node at the beginning of the list  
    public synchronized void insertAtBegin(ListNode node) { 
        node.next = head; 
        head = node; 
        length ++; 
    } 
 

    // Insert a node at the end of the list  
    public synchronized void insertAtEnd(ListNode node) { 
        if (head == null)  
            head = node; 
        else { 
            ListNode p, q; 
            for(p = head; (q = p.next) != null; p = q); 
                p.next = node; 
        } 
        length ++; 
    } 
 

    // Add a new value to the list at a given position. All values at that position to the end move over to make room. 
    public void insert(int data, int position) { 
        // fix the position 
        if (position < 0) { 
            position = 0; 
        } 
        if (position > length) { 
            position = length; 
        } 
        // if the list is empty, make it be the only element 
        if (head == null) { 
            head = new ListNode(data); 
        } 
        // if adding at the front of the list... 
        else if (position == 0) { 
            ListNode temp = new ListNode(data); 
            temp.next = head; 
            head = temp; 
        } 
        // else find the correct position and insert 
        else { 
            ListNode temp = head; 
            for (int i=1; i<position; i+=1) { 
                temp = temp.next; 
            } 
            ListNode newNode = new ListNode(data); 
            newNode.next = temp.next; 
            temp.next = newNode; 
        } 
        // the list is now one value longer 
        length += 1; 
    }  
 

    // Remove and return the node at the head of the list  
    public synchronized ListNode removeFromBegin() { 
        ListNode node = head; 
        if (node != null) { 
            head = node.next; 
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            node.next = null; 
        } 
        return node; 
    } 
 

    // Remove and return the node at the end of the list  
    public synchronized ListNode removeFromEnd() { 
        if (head == null)  
            return null; 
        ListNode p = head, q = null, next = head.next; 
        if (next == null) { 
            head = null; 
            return p; 
        } 
        while((next = p.next) != null) {  
            q = p;  
            p = next; 
        } 
        q.next = null; 
        return p; 
    } 
 

    // Remove a node matching the specified node from the list.   
    // Use equals() instead of == to test for a matched node. 
    public synchronized void removeMatched(ListNode node) { 
        if (head == null)  
            return; 
        if (node.equals(head)) {  
            head = head.next;  
            return; 
        } 
        ListNode p = head, q = null; 
 

        while((q = p.next) != null) { 
            if (node.equals(q)) { 
                p.next = q.next; 
                return; 
            } 
            p = q; 
        } 
    } 
 

    // Remove the value at a given position. 
    // If the position is less than 0, remove the value at position 0. 
    // If the position is greater than 0, remove the value at the last position. 
    public void remove(int position) { 
        // fix position 
        if (position < 0) { 
            position = 0; 
        } 
 

        if (position >= length) { 
            position = length-1; 
        } 
 

        // if nothing in the list, do nothing 
        if (head == null) 
            return; 
 

        // if removing the head element... 
        if (position == 0) { 
            head = head.next; 
        } 
 

        // else advance to the correct position and remove 
        else { 
            ListNode temp = head; 
 

            for (int i=1; i<position; i+=1) { 
                temp = temp.next; 
            } 
            temp.next = temp.next.next; 
        } 
        // reduce the length of the list 
        length -= 1; 
    } 
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    // Return a string representation of this collection, in the form ["str1","str2",...]. 
    public String toString() { 
        String result = "["; 
        if (head == null) { 
            return result+"]"; 
        } 
        result = result + head.data; 
        ListNode temp = head.next;; 
 

        while (temp != null) { 
            result = result + "," + temp.data; 
            temp = temp.next; 
        } 
        return result + "]"; 
    } 
    // Return the current length of the list. 
    public int length() { 
        return length; 
    } 
 

    // Find the position of the first value that is equal to a given value. 
    // The equals method is used to determine equality. 
    public int getPosition(int data) { 
        // go looking for the data 
        ListNode temp = head; 
        int pos = 0; 
 

        while (temp != null) { 
            if (temp.data == data) { 
                // return the position if found 
                return pos; 
            } 
            pos += 1; 
            temp = temp.next; 
        } 
        // else return some large value 
        return Integer.MIN_VALUE; 
    } 
 

    // Remove everything from the list. 
    public void clearList(){ 
        head = null; 
        length = 0; 
    } 
} 

3.7 Doubly Linked Lists  
 

The 푎푑푣푎푛푡푎푔푒 of a doubly linked list (also called 푡푤표 − 푤푎푦 푙푖푛푘푒푑 푙푖푠푡) is that given a node in the list, we can navigate in both directions. 
A node in a singly linked list cannot be removed unless we have the pointer to its predecessor. But in a doubly linked list, we can delete a 
node even if we don’t have the previous node’s address (since each node has a left pointer pointing to the previous node and can move 
backward).  
 

The primary 푑푖푠푎푑푣푎푛푡푎푔푒푠 of doubly linked lists are: 
 

 Each node requires an extra pointer, requiring more space. 
 The insertion or deletion of a node takes a bit longer (more pointer operations).  

 

Similar to a singly linked list, let us implement the operations of a doubly linked list. If you understand the singly linked list operations, then 
doubly linked list operations are obvious. Following is a type declaration for a doubly linked list:  
 

public class DLLNode { 
    private int data; 
    private DLLNode prev; 
    private DLLNode next; 
 

    public DLLNode(int data) { 
        this.data = data; 
        prev = null; 
        next = null; 
    } 
 

    public DLLNode(int data, DLLNode prev, DLLNode next) { 
        this.data = data; 
        this.prev = prev; 
        this.next = next; 
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    }  
 

    public int getData() { 
        return data; 
    } 
 

    public void setData(int data) { 
        this.data = data; 
    } 
 

    public DLLNode getPrev() { 
        return prev; 
    }  
 

    public DLLNode getNext() { 
        return next; 
    }  
 

    public void setPrev(DLLNode where) { 
        prev = where; 
    }  
 

    public void setNext(DLLNode where) { 
        next = where; 
    }  
} 

Doubly Linked List Insertion 
 

Insertion into a doubly-linked list has three cases (same as a singly linked list). 
 

 Inserting a new node before the head. 
 Inserting a new node after the tail (at the end of the list).  
 Inserting a new node at the middle of the list. 

Inserting a Node in Doubly Linked List at the Beginning 
 

In this case, the new node is inserted before the head node. Previous and next pointers need to be updated and it can be done with the 
following steps: 
 

 Create a new node and initialize both previous and next pointers to NULL. 
 

 
 
 
 
 

 

 Update the right pointer of the new node to point to the current head node (dotted link in below figure). 
 

 
 
 
 

 

 

 Update head node’s left pointer to point to the new node and make new node as head. 
 
 
 
 
 
 
 
 
 
 
 

Inserting a Node in Doubly Linked List at the Ending 
 

In this case, traverse the list till the end and insert the new node.  
 

 Create a new node and initialize both previous and next pointers to NULL. 
 

 
 
 
 

 

 Set new node left pointer to the end of the list. 
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 Update right pointer of last node to point to new node. 
 

 
 

 
 

Inserting a Node in Doubly Linked List at the Given Position  
 

As discussed in singly linked lists, traverse the list to the position node and insert the new node. 
 

 푁푒푤 푛표푑푒 right pointer points to the next node of the 푝표푠푖푡푖표푛 푛표푑푒 where we want to insert the new node. Also, 푛푒푤 푛표푑푒 left 
pointer points to the 푝표푠푖푡푖표푛 node. 

 

 
 
 
 
 
 
 
 
 

 Position node right pointer points to the new node and the left of position nodes’ 푛푒푥푡 푛표푑푒 points to new node. 
 
 
 
 
 
 
 
 
 

 

 
 

Now, let us write the code for all of these three cases. We must update the first element pointer in the calling function, not just in the called 
function. For this reason we need to send a double pointer. The following code inserts a node in the doubly linked list. 
 

Time Complexity: O(푛). In the worst case, we may need to insert the node at the end of the list. Space Complexity: O(1). 

Doubly Linked List Deletion 
 

Similar to singly linked list deletion, here we have three cases: 
 

 Deleting the first node 
 Deleting the last node 
 Deleting an intermediate node 

Deleting the First Node in Doubly Linked List 
 

In this case, the first node (current head node) is removed from the list. It can be done in two steps: 
 

 Create a temporary node which will point to the same node as that of head.  
 
 
 
 
 
 

 

 Now, move the head nodes pointer to the next node and change the heads previous pointer to NULL. Then, dispose of the 
temporary node. 

 
 
 

 
 
 
 

 

Deleting the Last Node in Doubly Linked List 
 

This operation is a bit trickier than removing the first node, because the algorithm should find a node, which is previous to the tail first. This 
can be done in three steps:  
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 Traverse the list, and while traversing maintain the previous node address. By the time we reach the end of the list, we will have two 
pointers, one pointing to the tail and the other pointing to the node before the tail.  

 
 
 
 
 
 
 
 

 Update the next pointer of previous node to the tail node with NULL.  
 
 
 
 
 
 
 

 Dispose the tail node. 
 
 
 
 
 
 
 
 
 
 

Deleting an Intermediate Node in Doubly Linked List 
 

In this case, the node to be removed is 푎푙푤푎푦푠 푙표푐푎푡푒푑 푏푒푡푤푒푒푛 two nodes, and the head and tail links are not updated. The removal can 
be done in two steps: 
 

 Similar to the previous case, maintain the previous node while also traversing the list. Upon locating the node to be deleted, change 
the 푝푟푒푣푖표푢푠 푛표푑푒’푠 next pointer to the 푛푒푥푡 푛표푑푒 of the 푛표푑푒 푡표 푏푒 푑푒푙푒푡푒푑. Also, change the 푝푟푒푣푖표푢푠 pointer of the 
푛푒푥푡 푛표푑푒 to the 푛표푑푒 푡표 푏푒 푑푒푙푒푡푒푑 to point to the 푝푟푒푣푖표푢푠 node of the 푛표푑푒 푡표 푏푒 푑푒푙푒푡푒푑. 
 

 
 
 
 
 
 

 Dispose of the current node to be deleted. 
 
 
 
 
 
 
 

Time Complexity: O(푛), for scanning the complete list of size 푛.  Space Complexity: O(1), for creating one temporary variable. 

Implementation 
 

public class DoublyLinkedList{ 
    // properties 
    private DLLNode head; 
    private DLLNode tail; 
    private int length; 
    // Create a new empty list. 
    public DoublyLinkedList() { 
        head = new DLLNode(Integer.MIN_VALUE,null,null); 
        tail = new DLLNode(Integer.MIN_VALUE, head, null); 
        head.next = tail; 
        length = 0; 
    }  
 

    // Get the value at a given position. 
    public int get(int position) { 
        return Integer.MIN_VALUE; 
    } 
 

    // Find the position of the head value that is equal to a given value. 
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    // The equals method us used to determine equality. 
    public int getPosition(int data) { 
        DLLNode temp = head;        
        int pos = 0; 
        while (temp != null) {            // go looking for the data 
            if (temp.data == data) { 
                // return the position if found 
                return pos; 
            } 
            pos += 1; 
            temp = temp.next; 
        } 
        // else return some large value 
        return Integer.MIN_VALUE; 
    }  
 

    // Return the current length of the DLL. 
    public int length() { 
        return length; 
    } 
 

    // Add a new value to the front of the list. 
    public void insert(int newValue) { 
        DLLNode newNode = new DLLNode(newValue, null, head.next); 
        newNode.next.prev = newNode; 
        head = newNode; 
        length += 1; 
    }  
 

    // Add a new value to the list at a given position. 
    // All values at that position to the end move over to make room. 
    public void insert(int data, int position) { 
        // fix the position 
        if (position < 0) { 
            position = 0; 
        } 
        if (position > length) { 
            position = length; 
        } 
 

        // if the list is empty, make it be the only element 
        if (head == null) { 
            head = new DLLNode(data); 
            tail = head; 
        } 
        // if adding at the front of the list... 
        else if (position == 0) { 
            DLLNode temp = new DLLNode(data); 
            temp.next = head; 
            head = temp; 
        } 
        // else find the correct position and insert 
        else { 
            DLLNode temp = head; 
            for (int i=1; i<position; i+=1) { 
              temp = temp.next; 
            } 
 

            DLLNode newNode = new DLLNode(data); 
            newNode.next = temp.next; 
            newNode.prev = temp; 
            newNode.next.prev = newNode; 
            temp.next = newNode; 
        } 
        // the list is now one value longer 
        length += 1; 
    }  
 

    // Add a new value to the rear of the list. 
    public void insertTail(int newValue) { 
        DLLNode newNode = new DLLNode(newValue,tail.prev,tail); 
        newNode.prev.next = newNode; 
        tail.prev = newNode; 
        length += 1; 
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    } 
 

    // Remove the value at a given position. 
    // If the position is less than 0, remove the value at position 0. 
    // If the position is greater than 0, remove the value at the last position. 
    public void remove(int position) { 
        if (position < 0) { // fix position 
            position = 0; 
        } 
 

        if (position >= length) { 
            position = length-1; 
        } 
        // if nothing in the list, do nothing 
        if (head == null) 
            return; 
        // if removing the head element... 
        if (position == 0) { 
            head = head.next; 
            if (head == null) 
                tail = null; 
        } else { // else advance to the correct position and remove 
            DLLNode temp = head; 
            for (int i=1; i<position; i+=1) { 
                temp = temp.next; 
            } 
            temp.next.prev = temp.prev; 
            temp.prev.next = temp.next; 
        } 
        // reduce the length of the list 
        length -= 1; 
    } 
 

    // Remove a node matching the specified node from the list.  Use equals() instead of == to test for a matched node. 
    public synchronized void removeMatched(DLLNode node) { 
        if (head == null) return; 
        if (node.equals(head)) {  
            head = head.next;  
            if (head == null) 
                tail = null; 
            return; 
        } 
 

        DLLNode p = head; 
        while(p != null) { 
            if (node.equals(p)) { 
                p.prev.next = p.next; 
                p.next.prev = p.prev; 
                return; 
            } 
        } 
    } 
 

    // Remove the head value from the list. If the list is empty, do nothing. 
    public int removeHead() { 
        if (length == 0) 
            return Integer.MIN_VALUE; 
        DLLNode save = head.next; 
        head.next = save.next; 
        save.next.prev = head; 
        length -= 1; 
        return save.data; 
    }  
 

    // Remove the tail value from the list. If the list is empty, do nothing. 
    public int removeTail() { 
        if (length == 0) 
            return Integer.MIN_VALUE; 
        DLLNode save = tail.prev; 
        tail.prev = save.prev; 
        save.prev.next = tail; 
        length -= 1; 
        return save.data; 
    }  
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    // Return a string representation of this collection, in the form: ["str1","str2",...]. 
    public String toString() { 
        String result = "[]"; 
        if (length == 0) 
            return result; 
        result = "[" + head.next.data; 
        DLLNode temp = head.next.next; 
        while (temp != tail) { 
            result += "," + temp.data; 
            temp =  temp.next; 
        } 
        return result + "]"; 
    }  
    public void clearList(){   // Remove everything from the DLL 
        head = null; 
        tail = null; 
        length = 0; 
    } 
} 

3.8 Circular Linked Lists  
 

In singly linked lists and doubly linked lists, the end of lists are indicated with NULL value. But circular linked lists do not have ends. While 
traversing the circular linked lists we should be careful; otherwise we will be traversing the list infinitely. In circular linked lists, each node has 
a successor. Note that unlike singly linked lists, there is no node with NULL pointer in a circularly linked list. In some situations, circular 
linked lists are useful.  
 
 

 
 
 
 
For example, when several processes are using the same computer resource (CPU) for the same amount of time, we have to assure that no 
process accesses the resource before all other processes do (round robin algorithm). In a circular linked list, we access the elements using the 
ℎ푒푎푑 node (similar to ℎ푒푎푑 node in singly linked list and doubly linked lists). For readability let us assume that the class name of circular 
linked list is CLLNode. 
 

Counting nodes in a Circular Linked List 
 

The circular list is accessible through the node marked ℎ푒푎푑 (also called 푡푎푖푙). To count the nodes, the list has to be traversed from the node 
marked ℎ푒푎푑, with the help of a dummy node 푐푢푟푟푒푛푡, and stop the counting when 푐푢푟푟푒푛푡 reaches the starting node ℎ푒푎푑. If the list is 
empty, ℎ푒푎푑 will be NULL, and in that case set 푐표푢푛푡 =  0. Otherwise, set the current pointer to the first node, and keep on counting till 
the current pointer reaches the starting node. 
 
 
 
 
 
 

    public int CircularListLength(CLLNode tail){ 
        int length = 0; 
        CLLNode currentNode = tail.next; 
        while(currentNode != tail){ 
            length++; 
            currentNode = currentNode.next; 
        } 
        return length; 
    } 
 

Time Complexity: O(푛), for scanning the complete list of size 푛. Space Complexity: O(1), for creating one temporary variable. 

Printing the contents of a circular list 
 

We assume here that the list is being accessed by its ℎ푒푎푑 node. Since all the nodes are arranged in a circular fashion, the 푡푎푖푙 node of the 
list will be the node previous to the ℎ푒푎푑 node. Let us assume we want to print the contents of the nodes starting with the ℎ푒푎푑 node. Print 
its contents, move to the next node and continue printing till we reach the ℎ푒푎푑 node again.  
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        public void PrintCircularListData(CLLNode tail){ 
 CLLNode CLLNode = tail.next;  
 while(CLLNode != tail){ 
     System.out.print(CLLNode.data+"->"); 
     CLLNode = CLLNode.next; 
 } 
 System.out.println("(" + CLLNode.data + ")headNode"); 
        } 
  

Time Complexity: O(푛), for scanning the complete list of size 푛. Space Complexity: O(1), for a temporary variable. 

Inserting a Node at the End of a Circular Linked List 
 

Let us add a node containing 푑푎푡푎, at the end of a list (circular list) headed by ℎ푒푎푑. The new node will be placed just after the tail node 
(which is the last node of the list), which means it will have to be inserted in between the tail node and the first node. 
 

 Create a new node and initially keep its next pointer pointing to itself. 
 

 
 
 
 
 
 

 Update the next pointer of the new node with the head node and also traverse the list to the tail. That means, in a circular list we 
should stop at the node whose next node is head. 

 
 
 
 
 
 
 

 Update the next pointer of the tail node to point to the new node and we get the list as shown below. 
 
 
 
 
 

 

Time Complexity: O(푛), for scanning the complete list of size 푛. Space Complexity: O(1). 

Inserting a Node at the front of a Circular Linked List 
 

The only difference between inserting a node at the beginning and at the end is that, after inserting the new node, we just need to update the 
pointer. The steps for doing this are given below: 
 

 Create a new node and initially keep its next pointer pointing to itself.  
 
 
 
 
 
 

 Update the next pointer of the new node with the head node and also traverse the list until the tail node (node with data 40).  
 
 
 
 

 
 
 

 Update the tail node in the list to point to the new node. 
 
 
 
 
 
 
 

 Make the new node as the head. 

tail node 
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Time Complexity: O(푛), for scanning the complete list of size 푛. Space Complexity: O(1), for a temporary variable. 

Deleting the last node in a Circular List 
 

The list has to be traversed to reach the last but one node. This has to be named as the tail node, and its next field has to point to the first 
node. Consider the following list.  To delete the last node 40, the list has to be traversed till you reach 7. The next field of 7 has to be changed 
to point to 60, and this node must be renamed 푝푇푎푖푙. 
 

 Traverse the list and find the tail node and its previous node. 
 
 
 
 
 
 
 

 Update the next pointer of tail node’s previous node to point to head. 
 

 

 
 
 
 
 
 

 Dispose of the tail node. 
 
 
 
 
 
 
Time Complexity: O(푛), for scanning the complete list of size 푛. Space Complexity: O(1), for a temporary variable. 

Deleting the First Node in a Circular List 
 

The first node can be deleted by simply replacing the next field of the tail node with the next field of the first node.  
 

 Find the tail node of the linked list by traversing the list. Tail node is the previous node to the head node which we want to delete. 
 
 
 
 
 
 
 

 Create a temporary node which will point to the head. Also, update the tail nodes next pointer to point to next node of head (as 
shown below).  

 
 
 
 
 
 
 
 

 Now, move the head pointer to next node and dispose the temporary node (as shown below).  
 
 
 
 
 
 
 

Time Complexity: O(푛), for scanning complete list of size 푛. Space Complexity: O(1), for a temporary variable. 
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Applications of Circular List 
 

Circular linked lists are used in managing the computing resources of a computer. We can use circular lists for implementing stacks and 
queues.  

Implementation 
 

    public class CircularLinkedList{ 
 protected CLLNode tail; 
 protected int length; 
 // Constructs a new circular list 
 public CircularLinkedList(){ 
  tail = null; 
  length = 0; 
 } 
 // Adds data to beginning of list. 
 public void add(int data){ 
  addToHead(data); 
 } 
 // Adds element to head of list 
 public void addToHead(int data){ 
  CLLNode temp = new CLLNode(data); 
  if (tail == null) { // first data added 
      tail = temp; 
      tail.next = tail; 
  } else { // element exists in list 
      temp.next = tail.next; 
      tail.next = temp; 
  } 
  length++; 
 } 
 // Adds element to tail of list 
 public void addToTail(int data){ 
  // new entry: 
  addToHead(data); 
  tail = tail.next; 
 } 
 // Returns data at head of list 
 public int peek(){ 
  return tail.next.data; 
 } 
 // Returns data at tail of list 
 public int tailPeek(){ 
  return tail.data; 
 } 
 // Returns and removes data from head of list 
 public int removeFromHead(){ 
  CLLNode temp = tail.next; // ie. the head of the list 
  if (tail == tail.next) { 
   tail = null; 
  } else { 
   tail.next = temp.next; 
   temp.next = null; // helps clean things up; temp is free 
  } 
  length--; 
  return temp.data; 
 } 
 // Returns and removes data from tail of list 
 public int removeFromTail(){ 
  if (isEmpty()){ 
   return Integer.MIN_VALUE; 
  } 
  CLLNode finger = tail; 
  while (finger.next != tail) { 
   finger = finger.next; 
  } 
  // finger now points to second-to-last data 
  CLLNode temp = tail; 
  if (finger == tail) { 
   tail = null; 
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  } else { 
   finger.next = tail.next; 
   tail = finger; 
  } 
  length--; 
  return temp.data; 
 } 
 // Returns true if list contains data, else false 
 public boolean contains(int data){ 
  if (tail == null)  
                               return false; 
  CLLNode finger; 
  finger = tail.next; 
  while (finger != tail && (!(finger.data == data))){ 
        finger = finger.next; 
  } 
  return finger.data == data; 
 } 
 // Removes and returns element equal to data, or null 
 public int remove(int data){ 
  if (tail == null) return Integer.MIN_VALUE; 
  CLLNode finger = tail.next; 
  CLLNode previous = tail; 
  int compares; 
  for (compares = 0; compares < length && (!(finger.data == data)); compares++) { 
   previous = finger; 
   finger = finger.next; 
  } 
  if (finger.data == data) { 
   // an example of the pigeon-hole principle 
   if (tail == tail.next) {  
    tail = null; } 
   else { 
    if (finger == tail)  
     tail = previous; 
    previous.next = previous.next.next; 
   } 
   // finger data free 
   finger.next = null;  // to keep things disconnected 
   length--;             // fewer elements 
   return finger.data; 
  } 
  else return Integer.MIN_VALUE; 
 } 
     // Return the length of the CLL. 
 public int length() { 
  return length; 
 } 
 // Returns true if no elements in list 
 public boolean isEmpty(){ 
  return tail == null; 
 } 
 // Remove everything from the CLL. 
 public void clear(){ 
  length = 0; 
  tail = null; 
 } 
 // Return a string representation of this collection, in the form: ["str1","str2",...].     
 public String toString(){ 
  String result = "["; 
  if (tail == null) { 
   return result+"]"; 
  } 
  result = result + tail.data; 
  CLLNode temp = tail.next; 
  while (temp != tail) { 
   result = result + "," + temp.data; 
   temp = temp.next; 
  } 
  return result + "]"; 
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 } 
    } 

3.9 A Memory-efficient Doubly Linked List 
 

In conventional implementation, we need to keep a forward pointer to the next item on the list and a backward pointer to the previous item.  
That means, elements in doubly linked list implementations consist of data, a pointer to the next node and a pointer to the previous node in 
the list as shown below. 
 

Conventional Doubly Linked List Node Definition 
 

     public class DLLNode { 
      private int data; 
 private DLLNode next; 
 private DLLNode previous; 
 ……… 
     } 
 

Recently a journal (Sinha) presented an alternative implementation of the doubly linked list ADT, with insertion, traversal and deletion 
operations. This implementation is based on pointer difference. Each node uses only one pointer field to traverse the list back and forth. 
 

New Node Definition 
 

     public class ListNode { 
 private int data; 
 private ListNode ptrdiff; 
 ……… 
     } 
 

The 푝푡푟푑푖푓푓 pointer field contains the difference between the pointer to the next node and the pointer to the previous node. The pointer 
difference is calculated by using exclusive-or (⊕) operation.  
 

푝푡푟푑푖푓푓 =  푝표푖푛푡푒푟 푡표 푝푟푒푣푖표푢푠 푛표푑푒 ⊕  푝표푖푛푡푒푟 푡표 푛푒푥푡 푛표푑푒. 
 

The 푝푡푟푑푖푓푓 of the start node (head node) is the ⊕ of NULL and 푛푒푥푡 node (next node to head). Similarly, the 푝푡푟푑푖푓푓 of end node is the 
⊕ of 푝푟푒푣푖표푢푠 node (previous to end node) and NULL. As an example, consider the following linked list. 
 

 
 
 
 
 
In the example above,  
 

 The next pointer of A is: NULL ⊕ B 
 The next pointer of B is: A ⊕ C 
 The next pointer of C is: B ⊕ D 
 The next pointer of D is: C ⊕ NULL 

 

Why does it work?  
 

To find the answer to this question let us consider the properties of ⊕: 
 

X ⊕ X = 0 
X ⊕ 0 = X 
X ⊕ Y = Y ⊕ X (symmetric) 
(X ⊕ Y) ⊕ Z = X ⊕ (Y ⊕ Z) (transitive) 

 

For the example above, let us assume that we are at C node and want to move to B. We know that C’s 푝푡푟푑푖푓푓 is defined as B ⊕ D. If we 
want to move to B, performing ⊕ on C’s  푝푡푟푑푖푓푓 with D would give B. This is due to the fact that, 

(B ⊕ D) ⊕ D = B (since, D ⊕ D=0) 
 

Similarly, if we want to move to D, then we have to apply ⊕ to C’s  푝푡푟푑푖푓푓 with B to give D. 
 

(B ⊕ D) ⊕ B = D (since, B ⊕ B=0) 
 

From the above discussion we can see that just by using a single pointer, we can move back and forth. A memory-efficient implementation of 
a doubly linked list is possible with minimal compromising of timing efficiency. 

3.10 Unrolled Linked Lists 
 

One of the biggest advantages of linked lists over arrays is that inserting an element at any location takes only O(1) time. However, it takes 
O(푛) to search for an element in a linked list. There is a simple variation of the singly linked list called 푢푛푟표푙푙푒푑 푙푖푛푘푒푑 푙푖푠푡푠.  
 

Pointer differences 

    A     B     C     D NULL 

Head 
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70 3 45 2 10 1 30 6 91 19 4 17 

91 19 4 17 10 1 30 6 70 3 45 2 

6 70 3 45 10 1 22 30 2 19 4 17 

6 70 3 45 10 1 22 30 2 19 4 17 

70 3 45 19 4 17 

An unrolled linked list stores multiple elements in each node (let us call it a block for our convenience). In each block, a circular linked list 
is used to connect all nodes. 
  
 
 
 
 
 
 
 
 

Assume that there will be no more than 푛 elements in the unrolled linked list at any time. To simplify this problem, all blocks, except the last 
one, should contain exactly √푛  elements. Thus, there will be no more than √푛  blocks at any time.  
 

Searching for an element in Unrolled Linked Lists 
 

In unrolled linked lists, we can find the 푘  element in O(√푛): 

1. Traverse the 푙푖푠푡 표푓 푏푙표푐푘푠 to the one that contains the 푘  node, i.e., the 
√

th block. It takes O(√푛) since we may find it by 

going through no more than √푛 blocks. 
2. Find the (푘 mod √푛 )th node in the circular linked list of this block. It also takes O(√푛) since there are no more than √푛  nodes 

in a single block. 
 

 
 
 
 
 
 
 
 
 

Inserting an element in Unrolled Linked Lists 
 

 
 
 
 
  
 
 
 

 
 
 
 
 
 
 
 
When inserting a node, we have to re-arrange the nodes in the unrolled linked list to maintain the properties previously mentioned, that each 
block contains √푛  nodes. Suppose that we insert a node 푥 after the 푖  node, and 푥 should be placed in the 푗  block. Nodes in the 푗  
block and in the blocks after the 푗  block have to be shifted toward the tail of the list so that each of them still have √푛  nodes. In addition, 
a new block needs to be added to the tail if the last block of the list is out of space, i.e., it has more than √푛  nodes. 
 

Performing Shift Operation 
 

Note that each 푠ℎ푖푓푡 operation, which includes removing a node from the tail of the circular linked list in a block and inserting a node to the 
head of the circular linked list in the block after, takes only O(1). The total time complexity of an insertion operation for unrolled linked lists 
is therefore O(√푛); there are at most O(√푛) blocks and therefore at most O(√푛) shift operations.  
 

1. A temporary pointer is needed to store the tail of 퐴. 
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2. In block 퐴, move the next pointer of the head node to point to the second-to-last node, so that the tail node of 퐴 can be removed. 
 
 
 
 
 

 
3. Let the next pointer of the node, which will be shifted (the tail node of 퐴), point to the tail node of 퐵. 
 
 
 
 
 
 
 
 

4. Let the next pointer of the head node of 퐵 point to the node temp points to. 
 

 
 
 
 
 
 
 
 

5. Finally, set the head pointer of 퐵 to point to the node 푡푒푚푝 points to. Now the node 푡푒푚푝 points to becomes the new head node of 퐵. 
 
 
 
 
 
 
6. 푡푒푚푝 pointer can be thrown away. We have completed the shift operation to move the original tail node of 퐴 to become the new head 

node of 퐵. 
 
 
 
 
 
 

Performance 
 

With unrolled linked lists, there are a couple of advantages, one in speed and one in space.  
 

First, if the number of elements in each block is appropriately sized (e.g., at most the size of one cache line), we get noticeably better cache 
performance from the improved memory locality.  
 

Second, since we have O(푛/푚) links, where 푛 is the number of elements in the unrolled linked list and 푚 is the number of elements we can 
store in any block, we can also save an appreciable amount of space, which is particularly noticeable if each element is small.  
 

Comparing Doubly Linked Lists and Unrolled Linked Lists 
 

To compare the overhead for an unrolled list, elements in doubly linked list implementations consist of data, a pointer to the next node, and 
a pointer to the previous node in the list, as shown below. 
 

Assuming we have 4 byte pointers, each node is going to take 8 bytes. But the allocation overhead for the node could be anywhere between 
8 and 16 bytes. Let’s go with the best case and assume it will be 8 bytes. So, if we want to store 1K items in this list, we are going to have 16KB 
of overhead. 
 

Now, let’s think about an unrolled linked list node (let us call it 퐿푖푛푘푒푑퐵푙표푐푘). It will look something like this: 
 

Therefore, allocating a single node (12 bytes + 8 bytes of overhead) with an array of 100 elements (400 bytes + 8 bytes of overhead) will now 
cost 428 bytes, or 4.28 bytes per element. Thinking about our 1K items from above, it would take about 4.2KB of overhead, which is close 
to 4x better than our original list. Even if the list becomes severely fragmented and the item arrays are only 1/2 full on average, this is still an 
improvement. Also, note that we can tune the array size to whatever gets us the best overhead for our application. 
 

Implementation 
 

public class UnrolledLinkedList<E> extends AbstractList<E> implements List<E>, Serializable { 
    //The maximum number of elements that can be stored in a single node. 
    private int nodeCapacity; 

A B 

A B 

temp 

temp 

A B 

temp 

A 

temp 

B 

A B 



 

Data Structures and Algorithms Made Easy in Java Linked Lists                      

 

3.10 Unrolled Linked Lists    62 

 
 

    //The current size of this list. 
    private int size = 0; 
    //The first node of this list. 
    private ListNode firstNode; 
    //The last node of this list. 
    private ListNode lastNode; 
    //Constructs an empty list with the specified capacity 
    public UnrolledLinkedList(int nodeCapacity) throws IllegalArgumentException { 
        if (nodeCapacity < 8) { 
            throw new IllegalArgumentException("nodeCapacity < 8"); 
        } 
        this.nodeCapacity = nodeCapacity; 
        firstNode = new ListNode(); 
        lastNode = firstNode; 
    } 
    public UnrolledLinkedList() { 
        this(16); 
    } 
    public int size() { 
        return size; 
    } 
    public boolean isEmpty() { 
        return (size == 0); 
    } 
    //Returns true if this list contains the specified element. 
    public boolean contains(Object o) { 
        return (indexOf(o) != -1); 
    } 
    public Iterator<E> iterator() { 
        return new ULLIterator(firstNode, 0, 0); 
    } 
    //Appends the specified element to the end of this list. 
    public boolean add(E e) { 
        insertIntoNode(lastNode, lastNode.numElements, e); 
        return true; 
    } 
    //Removes the first occurrence of the specified element from this list, 
    public boolean remove(Object o) { 
        int index = 0; 
        ListNode node = firstNode; 
        if (o == null) { 
            while (node != null) { 
                for (int ptr = 0; ptr < node.numElements; ptr++) { 
                    if (node.elements[ptr] == null) { 
                        removeFromNode(node, ptr); 
                        return true; 
                    } 
                } 
                index += node.numElements; 
                node = node.next; 
            } 
        } else { 
            while (node != null) { 
                for (int ptr = 0; ptr < node.numElements; ptr++) { 
                    if (o.equals(node.elements[ptr])) { 
                        removeFromNode(node, ptr); 
                        return true; 
                    } 
                } 
                index += node.numElements; 
                node = node.next; 
            } 
        } 
        return false; 
    } 
    //Removes all of the elements from this list. 
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    public void clear() { 
        ListNode node = firstNode.next; 
        while (node != null) { 
            ListNode next = node.next; 
            node.next = null; 
            node.previous = null; 
            node.elements = null; 
            node = next; 
        } 
        lastNode = firstNode; 
        for (int ptr = 0; ptr < firstNode.numElements; ptr++) { 
            firstNode.elements[ptr] = null; 
        } 
        firstNode.numElements = 0; 
        firstNode.next = null; 
        size = 0; 
    } 
    //Returns the element at the specified position in this list. 
    public E get(int index) throws IndexOutOfBoundsException { 
        if (index < 0 || index >= size) { 
            throw new IndexOutOfBoundsException(); 
        } 
        ListNode node; 
        int p = 0; 
        if (size - index > index) { 
            node = firstNode; 
            while (p <= index - node.numElements) { 
                p += node.numElements; 
                node = node.next; 
            } 
        } else { 
            node = lastNode; 
            p = size; 
            while ((p -= node.numElements) > index) { 
                node = node.previous; 
            } 
        } 
        return (E) node.elements[index - p]; 
    } 
    //Replaces the element at the specified position in this list with the specified element. 
    public E set(int index, E element) { 
        if (index < 0 || index >= size) { 
            throw new IndexOutOfBoundsException(); 
        } 
        E el = null; 
        ListNode node; 
        int p = 0; 
        if (size - index > index) { 
            node = firstNode; 
            while (p <= index - node.numElements) { 
                p += node.numElements; 
                node = node.next; 
            } 
        } else { 
            node = lastNode; 
            p = size; 
            while ((p -= node.numElements) > index) { 
                node = node.previous; 
            } 
        } 
        el = (E) node.elements[index - p]; 
        node.elements[index - p] = element; 
        return el; 
 
    } 
    //Inserts the specified element at the specified position in this list.  
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    //Shifts the element currently at that position (if any) and any 
    //subsequent elements to the right (adds one to their indices). 
    public void add(int index, E element) throws IndexOutOfBoundsException { 
        if (index < 0 || index > size) { 
            throw new IndexOutOfBoundsException(); 
        } 
        ListNode node; 
        int p = 0; 
        if (size - index > index) { 
            node = firstNode; 
            while (p <= index - node.numElements) { 
                p += node.numElements; 
                node = node.next; 
            } 
        } else { 
            node = lastNode; 
            p = size; 
            while ((p -= node.numElements) > index) { 
                node = node.previous; 
            } 
        } 
        insertIntoNode(node, index - p, element); 
    } 
    //Removes the element at the specified position in this list.   
    //Shifts any subsequent elements to the left (subtracts one from their indices). 
    public E remove(int index) throws IndexOutOfBoundsException { 
        if (index < 0 || index >= size) { 
            throw new IndexOutOfBoundsException(); 
        } 
        E element = null; 
        ListNode node; 
        int p = 0; 
        if (size - index > index) { 
            node = firstNode; 
            while (p <= index - node.numElements) { 
                p += node.numElements; 
                node = node.next; 
            } 
        } else { 
            node = lastNode; 
            p = size; 
            while ((p -= node.numElements) > index) { 
                node = node.previous; 
            } 
        } 
        element = (E) node.elements[index - p]; 
        removeFromNode(node, index - p); 
        return element; 
    } 
    private static final long serialVersionUID = -674052309103045211L; 
    private class ListNode { 
        ListNode next; 
        ListNode previous; 
        int numElements = 0; 
        Object[] elements; 
        ListNode() { 
            elements = new Object[nodeCapacity]; 
        } 
    } 
    private class ULLIterator implements ListIterator<E> { 
        ListNode currentNode; 
        int ptr; 
        int index; 
        private int expectedModCount = modCount; 
        ULLIterator(ListNode node, int ptr, int index) { 
            this.currentNode = node; 
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            this.ptr = ptr; 
            this.index = index; 
        } 
        public boolean hasNext() { 
            return (index < size - 1) 
        } 
        public E next() { 
            ptr++; 
            if (ptr >= currentNode.numElements) { 
                if (currentNode.next != null) { 
                    currentNode = currentNode.next; 
                    ptr = 0; 
                } else { 
                    throw new NoSuchElementException(); 
                } 
            } 
            index++; 
            checkForModification(); 
            return (E) currentNode.elements[ptr]; 
        } 
        public boolean hasPrevious() { 
            return (index > 0); 
        } 
        public E previous() { 
            ptr--; 
            if (ptr < 0) { 
                if (currentNode.previous != null) { 
                    currentNode = currentNode.previous; 
                    ptr = currentNode.numElements - 1; 
                } else { 
                    throw new NoSuchElementException(); 
                } 
            } 
            index--; 
            checkForModification(); 
            return (E) currentNode.elements[ptr]; 
        } 
        public int nextIndex() { 
            return (index + 1); 
        } 
        public int previousIndex() { 
            return (index - 1); 
        } 
        public void remove() { 
            checkForModification(); 
            removeFromNode(currentNode, ptr); 
        } 
        public void set(E e) { 
            checkForModification(); 
            currentNode.elements[ptr] = e; 
        } 
        public void add(E e) { 
            checkForModification(); 
            insertIntoNode(currentNode, ptr + 1, e); 
        } 
        private void checkForModification() { 
            if (modCount != expectedModCount) { 
                throw new ConcurrentModificationException(); 
            } 
        } 
    } 
    private void insertIntoNode(ListNode node, int ptr, E element) { 
        // if the node is full 
        if (node.numElements == nodeCapacity) { 
            // create a new node 
            ListNode newNode = new ListNode(); 
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            // move half of the elements to the new node 
            int elementsToMove = nodeCapacity / 2; 
            int startIndex = nodeCapacity - elementsToMove; 
            for (int i = 0; i < elementsToMove; i++) { 
                newNode.elements[i] = node.elements[startIndex + i]; 
                node.elements[startIndex + i] = null; 
            } 
            node.numElements -= elementsToMove; 
            newNode.numElements = elementsToMove; 
            // insert the new node into the list 
            newNode.next = node.next; 
            newNode.previous = node; 
            if (node.next != null) { 
                node.next.previous = newNode; 
            } 
            node.next = newNode; 
            if (node == lastNode) { 
                lastNode = newNode; 
            } 
            // check whether the element should be inserted into 
            // the original node or into the new node 
            if (ptr > node.numElements) { 
                node = newNode; 
                ptr -= node.numElements; 
            } 
        } 
        for (int i = node.numElements; i > ptr; i--) { 
            node.elements[i] = node.elements[i - 1]; 
        } 
        node.elements[ptr] = element; 
        node.numElements++; 
        size++; 
        modCount++; 
    } 
    private void removeFromNode(ListNode node, int ptr) { 
        node.numElements--; 
        for (int i = ptr; i < node.numElements; i++) { 
            node.elements[i] = node.elements[i + 1]; 
        } 
        node.elements[node.numElements] = null; 
        if (node.next != null && node.next.numElements + node.numElements <= nodeCapacity) { 
            mergeWithNextNode(node); 
        } else if (node.previous != null && node.previous.numElements + node.numElements <= nodeCapacity) { 
            mergeWithNextNode(node.previous); 
        } 
        size--; 
        modCount++; 
    } 
    //This method does merge the specified node with the next node. 
    private void mergeWithNextNode(ListNode node) { 
        ListNode next = node.next; 
        for (int i = 0; i < next.numElements; i++) { 
            node.elements[node.numElements + i] = next.elements[i]; 
            next.elements[i] = null; 
        } 
        node.numElements += next.numElements; 
        if (next.next != null) { 
            next.next.previous = node; 
        } 
        node.next = next.next.next; 
        if (next == lastNode) { 
            lastNode = node; 
        } 
    } 
} 
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3.11 Skip Lists 
 

Binary trees can be used for representing abstract data types such as dictionaries and ordered lists. They work well when the elements are 
inserted in a random order. Some sequences of operations, such as inserting the elements in order, produce degenerate data structures that 
give very poor performance. If it were possible to randomly permute the list of items to be inserted, trees would work well with high probability 
for any input sequence. In most cases queries must be answered on-line, so randomly permuting the input is impractical. Balanced tree 
algorithms re-arrange the tree as operations are performed to maintain certain balance conditions and assure good performance.  
 

Skip list is a data structure that can be used as an alternative to balanced binary trees (refer to 푇푟푒푒푠 chapter). As compared to a binary tree, 
skip lists allow quick search, insertion and deletion of elements. This is achieved by using probabilistic balancing rather than strictly enforce 
balancing. It is basically a linked list with additional pointers such that intermediate nodes can be skipped. It uses a random number generator 
to make some decisions.  
 

In an ordinary sorted linked list, search, insert, and delete are in O(푛) because the list must be scanned node-by-node from the head to find 
the relevant node. If somehow we could scan down the list in bigger steps (skip down, as it were), we would reduce the cost of scanning. This 
is the fundamental idea behind Skip Lists. 
 

Skip Lists with One Level 
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Skip Lists with Two Levels 
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Skip Lists with Three Levels 
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This section gives algorithms to search for, insert and delete elements in a dictionary or symbol table. The Search operation returns the 
contents of the value associated with the desired key or failure if the key is not present. The Insert operation associates a specified key with a 
new value (inserting the key if it had not already been present). The Delete operation deletes the specified key. It is easy to support additional 
operations such as “find the minimum key” or “find the next key”.  
 

Each element is represented by a node, the level of which is chosen randomly when the node is inserted without regard for the number of 
elements in the data structure. A level i node has i forward pointers, indexed 1 through i. We do not need to store the level of a node in the 
node. Levels are capped at some appropriate constant MaxLevel. The level of a list is the maximum level currently in the list (or 1 if the list 
is empty). The header of a list has forward pointers at levels one through MaxLevel. The forward pointers of the header at levels higher than 
the current maximum level of the list point to NULL. 

Initialization 
 

An element NIL is allocated and given a key greater than any legal key. All levels of all skip lists are terminated with NIL. A new list is 
initialized so that the the level of the list is equal to 1 and all forward pointers of the list’s header point to NIL.  

Search for an element  
 

We search for an element by traversing forward pointers that do not overshoot the node containing the element being searched for. When 
no more progress can be made at the current level of forward pointers, the search moves down to the next level. When we can make no more 
progress at level 1, we must be immediately in front of the node that contains the desired element (if it is in the list). 

Insertion and Deletion Algorithms 
 

To insert or delete a node, we simply search and splice. A vector update is maintained so that when the search is complete (and we are ready 
to perform the splice), update[i] contains a pointer to the rightmost node of level i or higher that is to the left of the location of the 
insertion/deletion. If an insertion generates a node with a level greater than the previous maximum level of the list, we update the maximum 
level of the list and initialize the appropriate portions of the update vector. After each deletion, we check if we have deleted the maximum 
element of the list and if so, decrease the maximum level of the list. 
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Choosing a Random Level 
 

Initially, we discussed a probability distribution where half of the nodes that have level i pointers also have level i+1 pointers. To get away 
from magic constants, we say that a fraction p of the nodes with level i pointers also have level i+1 pointers. (for our original discussion, p = 
1/2). Levels are generated randomly by an algorithm. Levels are generated without reference to the number of elements in the list 

Performance 
 

In a simple linked list that consists of 푛 elements, to perform a search 푛 comparisons are required in the worst case. If a second pointer 
pointing two nodes ahead is added to every node, the number of comparisons goes down to 푛/2 + 1 in the worst case.  
 

Adding one more pointer to every fourth node and making them point to the fourth node ahead reduces the number of comparisons to ⌈푛/4⌉ 
+ 2. If this strategy is continued so that every node with 푖 pointers points to 2 ∗ 푖 − 1 nodes ahead, O(푙표푔푛) performance is obtained and the 
number of pointers has only doubled (푛 + 푛/2 + 푛/4 + 푛/8 + 푛/16 + ....  = 2푛). 
 

The find, insert, and remove operations on ordinary binary search trees are efficient, O(푙표푔푛), when the input data is random; but less 
efficient, O(푛), when the input data is ordered. Skip List performance for these same operations and for any data set is about as good as that 
of randomly-built binary search trees - namely O(푙표푔푛). 

Comparing Skip Lists and Unrolled Linked Lists 
 

In simple terms, Skip Lists are sorted linked lists with two differences: 
 

 The nodes in an ordinary list have one next reference. The nodes in a Skip List have many 푛푒푥푡 references (also called 푓표푟푤푎푟푑 
references).  

 The number of 푓표푟푤푎푟푑 references for a given node is determined probabilistically. 
 

We speak of a Skip List node having levels, one level per forward reference. The number of levels in a node is called the 푠푖푧푒 of the node. 
In an ordinary sorted list, insert, remove, and find operations require sequential traversal of the list. This results in O(푛) performance per 
operation. Skip Lists allow intermediate nodes in the list to be skipped during a traversal - resulting in an expected performance of O(푙표푔푛) 
per operation. 
 

Implementation 
 

     import java.util.Random; 
     public class SkipList<T extends Comparable<T>, U>{ 
 private class Node{ 
  public T key; 
  public U value; 
  public long level; 
  public Node next; 
  public Node down;    

  public Node(T key, U value, long level, Node next, Node down){ 
   this.key = key; 
   this.value = value; 
   this.level = level; 
   this.next = next; 
   this.down = down; 
  } 
 }   

 private Node head; 
 private Random _random; 
 private long size; 
 private double _p; 
 

 private long level(){ 
  long level = 0; 
  while (level <= size && _random.nextDouble() < _p) { 
   level++; 
  }   
  return level; 
 } 
 

 public SkipList(){ 
  head = new Node(null, null, 0, null, null); 
  _random = new Random(); 
  size = 0; 
  _p = 0.5; 
 } 
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 public void add(T key, U value){ 
  long level = level(); 
  if (level > head.level) { 
   head = new Node(null, null, level, null, head); 
  }   
  Node cur = head; 
  Node last = null;   
  while (cur != null) { 
   if (cur.next == null || cur.next.key.compareTo(key) > 0) { 
    if (level >= cur.level) { 
     Node n = new Node(key, value, cur.level, cur.next, null); 
     if (last != null) { 
      last.down = n; 
     }      
     cur.next = n; 
     last = n; 
    }     
    cur = cur.down; 
    continue; 
   } else if (cur.next.key.equals(key)) { 
    cur.next.value = value; 
    return; 
   }    
   cur = cur.next; 
  }   
  size++; 
 }   

 public boolean containsKey(T key){ 
  return get(key) != null; 
 }   

 public U remove(T key){ 
  U value = null;   
  Node cur = head; 
  while (cur != null) { 
   if (cur.next == null || cur.next.key.compareTo(key) >= 0) { 
    if (cur.next != null && cur.next.key.equals(key)) { 
     value = cur.next.value; 
     cur.next = cur.next.next; 
    } 
    cur = cur.down; 
    continue; 
   }   
   cur = cur.next; 
  }   
  size--; 
  return value; 
 }   

 public U get(T key){ 
  Node cur = head; 
  while (cur != null) { 
   if (cur.next == null || cur.next.key.compareTo(key) > 0) { 
    cur = cur.down; 
    continue; 
   } else if (cur.next.key.equals(key)) { 
    return cur.next.value; 
   }    
   cur = cur.next; 
  }   
  return null; 
 } 
     } 
     public class SkipListsTest{  
 public static void main(String [] args){ 
  SkipList s = new SkipList(); 
  s.add(1,100); 



 

Data Structures and Algorithms Made Easy in Java Linked Lists                      

 

3.11 Linked Lists: Problems & Solutions    70 

 
 

  System.out.println(s.get(1)); 
 } 
     } 

3.11 Linked Lists: Problems & Solutions 
 

Problem-1 Implement Stack using Linked List 
 

Solution:  Refer to 푆푡푎푐푘푠 chapter. 
 

Problem-2 Find  푛  node from the end of a Linked List. 
 

Solution: Brute-Force Method: Start with the first node and count the number of nodes present after that node. If the number of nodes is 
<  푛 − 1 then return saying “fewer number of nodes in the list”. If the number of nodes is >  푛 − 1 then go to next node. Continue this until 
the numbers of nodes after current node are 푛 − 1. 
 

Time Complexity: O(푛 ), for scanning the remaining list (from current node) for each node. Space Complexity: O(1).  
 

Problem-3 Can we improve the complexity of Problem-2? 
 

Solution: Yes, using hash table. As an example consider the following list. 
 
 
 

 
 

In this approach, create a hash table whose entries are < 푝표푠푖푡푖표푛 표푓 푛표푑푒, 푛표푑푒 푎푑푑푟푒푠푠 >. That means, key is the position of the node 
in the list and value is the address of that node. 

Position in List Address of Node 
1 Address of 5 node 
2 Address of 1 node 
3 Address of 17 node 
4 Address of 4 node 

 

By the time we traverse the complete list (for creating the hash table), we can find the list length. Let us say the list length is 푀. To find  푛  
from the end of linked list, we can convert this to 푀- 푛 + 1  from the beginning. Since we already know the length of the list, it is just a matter 
of returning 푀- 푛 + 1  key value from the hash table. 
 

Time Complexity: Time for creating the hash table. Therefore, 푇(푚) = O(푚). Space Complexity: O(푚), for hash table of size 푚. 
 

Problem-4 Can we use the Problem-3 approach for solving Problem-2 without creating the hash table? 
 

Solution: Yes. If we observe the Problem-3 solution, what we are actually doing is finding the size of the linked list. That means we are using 
the hash table to find the size of the linked list. We can find the length of the linked list just by starting at the head node and traversing the 
list. So, we can find the length of the list without creating the hash table. After finding the length, compute 푀 − 푛 + 1 and with one more scan 
we can get the 푀 −  푛 + 1  node from the beginning.  This solution needs two scans: one for finding the length of the list and the other for 
finding 푀 −  푛 + 1  node from the beginning. 
 

Time Complexity: Time for finding the length + Time for finding the 푀- 푛 + 1  node from the beginning. Therefore, 푇(푛 = O(푛) + 
O(푛) ≈ O(푛).  
Space Complexity: O(1).  Hence, no need to create the hash table. 
 

Problem-5 Can we solve Problem-2 in one scan? 
 

Solution: Yes. Efficient Approach: Use two pointers 푝푁푡ℎ푁표푑푒 and 푝푇푒푚푝. Initially, both point to head node of the list. 푝푁푡ℎ푁표푑푒 starts 
moving only after 푝푇푒푚푝 has made 푛 moves. From there both move forward until 푝푇푒푚푝 reaches the end of the list. As a result 푝푁푡ℎ푁표푑푒 
points to 푛  node from the end of the linked list.  
 

Note: At any point of time both move one node at a time. 
 

      public ListNode  NthNodeFromEnd(ListNode head , int NthNode) { 
              ListNode pTemp = head, pNthNode = null; 
              for(int count =1; count< NthNode;count++) { 
                  if(pTemp != null) 
                      pTemp = pTemp.next; 
              } 
              while(pTemp!= null){ 
                  if(pNthNode == null) 
                        pNthNode = head; 
                  else 
                        pNthNode = pNthNode.next;       

                  pTemp = pTemp.next;     
              } 
              if(pNthNode !=  null) 
                      return pNthNode; 

    5     1     17     4 NULL 

Head 
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              return null; 
      } 

 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-6 Can we solve Problem-5 with recursion? 
 

Solution: We can use a global variable to track the post recursive call and when it is same as Nth’, return the node. 
 

      public ListNode NthNodeFromEnd(ListNode head, int Nth) { 
          if(head != null) { 
              NthNodeFromEnd(head.next, Nth); 
              counter++; 
              if(Nth ==counter) { 
                  return head; 
              } 
          } 
          return null; 
      } 
 

Time Complexity: O(푛) for pre recursive calls and O(푛) for post recursive calls, which is = O(2푛) =O(푛). 
Space Complexity: O(푛) for recursive stack. 
 

Problem-7 Check whether the given linked list is either NULL-terminated or ends in a cycle (cyclic) 
 

Solution: Brute-Force Approach. As an example, consider the following linked list which has a loop in it. The difference between this list and 
the regular list is that, in this list, there are two nodes whose next pointers are the same. In regular singly linked lists (without a loop) each 
node’s next pointer is unique.  
 

That means the repetition of next pointers indicates the existence of a loop. 
 
 
 
 
 
 
 
 
One simple and brute force way of solving this is, start with the first node and see whether there is any node whose next pointer is the current 
node’s address. If there is a node with the same address then that indicates that some other node is pointing to the current node and we can 
say a loop exists.  
 

Continue this process for all the nodes of the linked list.  
 

Does this method work? As per the algorithm, we are checking for the next pointer addresses, but how do we find the end of the linked list 
(otherwise we will end up in an infinite loop)?  

 

Note: If we start with a node in a loop, this method may work depending on the size of the loop. 
 

Problem-8 Can we use the hashing technique for solving Problem-7? 
 

Solution: Yes. Using Hash Tables we can solve this problem. 
 

Algorithm: 
 

 Traverse the linked list nodes one by one.  
 Check if the address of the node is available in the hash table or not. 
 If it is already available in the hash table, that indicates that we are visiting the node that was already visited. This is possible only if 

the given linked list has a loop in it.  
 If the address of the node is not available in the hash table, insert that node’s address into the hash table. 
 Continue this process until we reach the end of the linked list 표푟 we find the loop. 

 

Time Complexity: O(푛) for scanning the linked list. Note that we are doing a scan of only the input. Space Complexity: O(푛) for hash table. 
 

Problem-9 Can we solve the Problem-6 using the sorting technique? 
 

Solution: No. Consider the following algorithm which is based on sorting. Then we see why this algorithm fails. 
 

Algorithm: 
 Traverse the linked list nodes one by one and take all the next pointer values into an array.  
 Sort the array that has the next node pointers. 
 If there is a loop in the linked list, definitely two next node pointers will be pointing to the same node. 
 After sorting if there is a loop in the list, the nodes whose next pointers are the same will end up adjacent in the sorted list. 
 If any such pair exists in the sorted list then we say the linked list has a loop in it. 

 

Time Complexity: O(푛푙표푔푛) for sorting the next pointers array. Space Complexity: O(푛) for the next pointers array. 
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Problem with the above algorithm: The above algorithm works only if we can find the length of the list. But if the list has a loop then we may 
end up in an infinite loop. Due to this reason the algorithm fails.  
 

Problem-10 Can we solve Problem-6 in O(푛)? 
 

Solution: Yes. Efficient Approach (Memoryless Approach): This problem was solved by 퐹푙표푦푑. The solution is named the Floyd cycle finding 
algorithm. It uses 푡푤표 pointers moving at different speeds to walk the linked list. Once they enter the loop they are expected to meet, which 
denotes that there is a loop.  

 

This works because the only way a faster moving pointer would point to the same location as a slower moving pointer is if somehow the entire 
list or a part of it is circular. Think of a tortoise and a hare running on a track. The faster running hare will catch up with the tortoise if they 
are running in a loop. As an example, consider the following example and trace out the Floyd algorithm. From the diagrams below we can 
see that after the final step they are meeting at some point in the loop which may not be the starting point of the loop.  
 

Note:  푠푙표푤푃푡푟 (푡표푟푡표푖푠푒) moves one pointer at a time and 푓푎푠푡푃푡푟 (ℎ푎푟푒) moves two pointers at a time. 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 

 
 

 
 
 
 
 

 
 

 
 
 

 
 
 

 
 

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

    private static boolean findIfLoopExistsUsingFloyds(ListNode head){ 
        ListNode fastPtr = head; 
        ListNode slowPtr = head; 
        while (fastPtr != null && fastPtr.next != null) { 
            fastPtr = fastPtr.next.next; 
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            slowPtr = slowPtr.next; 
            if (slowPtr == fastPtr) 
                return true; 
 

        } 
        return false; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-11 We are given a pointer to the first element of a linked list 퐿. There are two possibilities for 퐿: it either ends (snake) or its 
last element points back to one of the earlier elements in the list (snail). Give an algorithm that tests whether a given list 퐿 is a snake or a 
snail. 

 

Solution:  It is the same as Problem-6. 
 

Problem-12 Check whether the given linked list is NULL-terminated or not. If there is a cycle find the start node of the loop. 
 

Solution: The solution is an extension to the solution in Problem-10. After finding the loop in the linked list, we initialize the 푠푙표푤푃푡푟 to the 
head of the linked list. From that point onwards both 푠푙표푤푃푡푟 and 푓푎푠푡푃푡푟 move only one node at a time. The point at which they meet is 
the start of the loop. Generally we use this method for removing the loops. 
 

    private static ListNode findBeginofLoop(ListNode head){ 
        ListNode fastPtr = head; 
        ListNode slowPtr = head; 
        boolean loopExists = false; 
        while (fastPtr != null && fastPtr.next != null) { 
            fastPtr = fastPtr.next.next; 
            slowPtr = slowPtr.next; 
            if (slowPtr == fastPtr) { 
                loopExists = true; 
                break; 
            } 
        } 
        if (loopExists) { 
            slowPtr = head; 
            while (slowPtr != fastPtr) { 
                slowPtr = slowPtr.next; 
                fastPtr = fastPtr.next; 
            } 
            return fastPtr; 
        } else 
            return null; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-13 From the previous discussion and problems we understand that the meeting of tortoise and hare concludes the existence 
of the loop, but how does moving the tortoise to the beginning of the linked list while keeping the hare at the meeting place, followed by 
moving both one step at a time, make them meet at the starting point of the cycle? 

 

Solution: This problem is at the heart of number theory. In the Floyd cycle finding algorithm, notice that the tortoise and the hare will meet 
when they are 푛 ×  퐿, where 퐿 is the loop length.  Furthermore, the tortoise is at the midpoint between the hare and the beginning of the 
sequence because of the way they move.  Therefore the tortoise is 푛 ×  퐿 away from the beginning of the sequence as well. 

 

If we move both one step at a time, from the position of the tortoise and from the start of the sequence, we know that they will meet as soon 
as both are in the loop, since they are 푛 ×  퐿, a multiple of the loop length, apart. One of them is already in the loop, so we just move the 
other one in single step until it enters the loop, keeping the other 푛 ×  퐿 away from it at all times. 
 

Problem-14 In the Floyd cycle finding algorithm, does it work if we use steps 2 and 3 instead of 1 and 2? 
 

Solution: Yes, but the complexity might be high. Trace out an example. 
 

Problem-15 Check whether the given linked list is NULL-terminated. If there is a cycle, find the length of the loop. 
 

Solution: This solution is also an extension of the basic cycle detection problem. After finding the loop in the linked list, keep the 푠푙표푤푃푡푟 
as it is. The 푓푎푠푡푃푡푟 keeps on moving until it again comes back to 푠푙표푤푃푡푟. While moving 푓푎푠푡푃푡푟, use a counter variable which increments 
at the rate of 1.  
 

    private static int findLengthOfTheLoop(ListNode head){ 
        ListNode fastPtr = head; 
        ListNode slowPtr = head; 
        boolean loopExists = false; 
        while (fastPtr != null && fastPtr.next != null) { 
            fastPtr = fastPtr.next.next; 
            slowPtr = slowPtr.next; 
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            if (slowPtr == fastPtr) { 
                loopExists = true; 
                break; 
            } 
        } 
        int length = 0; 
        if (loopExists) { 
            do { 
                slowPtr = slowPtr.next; 
                length++; 
            } while (slowPtr != fastPtr); 
        } 
        return length; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-16 Insert a node in a sorted linked list 
 

Solution: Traverse the list and find a position for the element and insert it.  
 

        public ListNode InsertInSortedList(ListNode head, ListNode newNode) { 
                ListNode current = head; 
                if(head == null) return newNode; 
                // traverse the list until you find item bigger the new node value 
                while (current != null && current.data <  newNode.data){ 
                        temp = current; 
                        current = current.next; 
                } 
                //  insert the new node before the big item 
                newNode.next = current; 
                temp.next = newNode; 
                return head; 
        }  
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-17  Reverse a singly linked list. 
 

Solution:  
 

Iterative version: 
 

    public static ListNode reverseListIterative(ListNode head){ 
        //initially Current is head 
        ListNode current = head; 
        //initially previous is null 
        ListNode prev = null; 
        while (current != null) { 
            //Save the next node 
            ListNode next = current.next; 
            //Make current node points to the previous 
            current.next = prev; 
            //update previous 
            prev = current; 
            //update current 
            current = next; 
        } 
        return prev; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
     

Recursive version: 
 

    public static void reverseLinkedListRecursive(ListNode current, ListNode[] head){ 
        if (current == null) { 
            return; 
        } 
        ListNode next = current.next; 
        if (next == null) { 
            head[0] = current; 
            return; 
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        } 
        reverseLinkedListRecursive(next, head); 
        //Make next node points to current node 
        next.next = current; 
        //Remove existing link 
        current.next = null; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛) for recursive stack. 
 

Problem-18 Suppose there are two singly linked lists both of which intersect at some point and become a single linked list. The head 
or start pointers of both the lists are known, but the intersecting node is not known. Also, the number of nodes in each of the lists before 
they intersect is unknown and may be different in each list. 퐿푖푠푡1 may have 푛 nodes before it reaches the intersection point, and 퐿푖푠푡2 
might have 푚 nodes before it reaches the intersection point where 푚 and 푛 may be 푚 =  푛, 푚 <  푛 or 푚 >  푛. Give an algorithm for 
finding the merging point. 

 

 
 

 
 
 
 
 
 
 
 
 

 

Solution: Brute-Force Approach: One easy solution is to compare every node pointer in the first list with every other node pointer in the 
second list by which the matching node pointers will lead us to the intersecting node. But, the time complexity in this case will be O(푚푛) 
which will be high.   
 

Time Complexity: O(푚푛). Space Complexity: O(1). 
 

Problem-19 Can we solve Problem-18 using the sorting technique? 
 

Solution: No. Consider the following algorithm which is based on sorting and see why this algorithm fails. 
 

Algorithm: 
 Take first list node pointers and keep them in some array and sort them.  
 Take second list node pointers and keep them in some array and sort them.  
 After sorting, use two indexes: one for the first sorted array and the other for the second sorted array.  
 Start comparing values at the indexes and increment the index according to whichever has the lower value (increment only if the 

values are not equal).  
 At any point, if we are able to find two indexes whose values are the same, then that indicates that those two nodes are pointing to 

the same node and we return that node. 
 

Time Complexity: Time for sorting lists + Time for scanning (for comparing) 
                          = O(푚푙표푔푚) +O(푛푙표푔푛) +O(푚 + 푛) We need to consider the one that gives the maximum value.  

 

Space Complexity: O(1). 
 

Any problem with the above algorithm? Yes. In the algorithm, we are storing all the node pointers of both the lists and sorting. But we are 
forgetting the fact that there can be many repeated elements. This is because after the merging point, all node pointers are the same for both 
the lists. The algorithm works fine only in one case and it is when both lists have the ending node at their merge point. 
 

Problem-20 Can we solve Problem-18 using hash tables? 
 

Solution: Yes. 
  

Algorithm: 
 Select a list which has less number of nodes (If we do not know the lengths beforehand then select one list randomly). 
 Now, traverse the other list and for each node pointer of this list check whether the same node pointer exists in the hash table. 
 If there is a merge point for the given lists then we will definitely encounter the node pointer in the hash table. 

 

Time Complexity: Time for creating the hash table + Time for scanning the second list = O(푚) + O(푛) (or O(푛)  + O(푚), depending on 
which list we select for creating the hash table. But in both cases the time complexity is the same.  
Space Complexity: O(푛) or O(푚).  
 

Problem-21 Can we use stacks for solving Problem-18? 
 

Algorithm: 
 Create two stacks: one for the first list and one for the second list. 
 Traverse the first list and push all the node addresses onto the first stack. 
 Traverse the second list and push all the node addresses onto the second stack. 
 Now both stacks contain the node address of the corresponding lists. 
 Now compare the top node address of both stacks. 

  

   

 ?  

NULL 
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 If they are the same, take the top elements from both the stacks and keep them in some temporary variable (since both node 
addresses are node, it is enough if we use one temporary variable). 

 Continue this process until the top node addresses of the stacks are not the same. 
 This point is the one where the lists merge into a single list. 
 Return the value of the temporary variable. 

 

Time Complexity: O(푚 + 푛), for scanning both the lists. Space Complexity: O(푚 + 푛), for creating two stacks for both the lists. 
 

Problem-22 Is there any other way of solving Problem-18? 
 

Solution: Yes. Using “finding the first repeating number” approach in an array (for algorithm refer to 푆푒푎푟푐ℎ푖푛푔 chapter). 
 

Algorithm: 
 

 Create an array 퐴 and keep all the next pointers of both the lists in the array. 
 In the array find the first repeating element [Refer to 푆푒푎푟푐ℎ푖푛푔 chapter for algorithm]. 
 The first repeating number indicates the merging point of both the lists. 

 

Time Complexity: O(푚 + 푛). Space Complexity: O(푚 + 푛). 
 

Problem-23 Can we still think of finding an alternative solution for Problem-18? 
 

Solution: Yes. By combining sorting and search techniques we can reduce the complexity. 
 

Algorithm: 
 

 Create an array 퐴 and keep all the next pointers of the first list in the array. 
 Sort these array elements. 
 Then, for each of the second list elements, search in the sorted array (let us assume that we are using binary search which gives 

O(푙표푔푛)).  
 Since we are scanning the second list one by one, the first repeating element that appears in the array is nothing but the merging 

point. 
 

Time Complexity: Time for sorting  + Time for searching = O(푀푎푥(푚푙표푔푚, 푛푙표푔푛)). Space Complexity: O(푀푎푥(푚, 푛)). 
 

Problem-24 Can we improve the complexity for the Problem-18? 
 

Solution: Yes.  
 

Efficient Approach: 
 Find lengths (L1 and L2) of both lists -- O(푛) + O(푚)  = O(푚푎푥(푚, 푛)). 
 Take the difference 푑 of the lengths -- O(1). 
 Make 푑 steps in longer list -- O(푑). 
 Step in both lists in parallel until links to next node match -- O(푚푖푛(푚, 푛)). 
 Total time complexity = O(푚푎푥(푚, 푛)). 
 Space Complexity = O(1). 

 

      public static ListNode findIntersectingNode(ListNode list1, ListNode list2) { 
 int L1=0, L2=0, diff=0; 
 ListNode head1 = list1, head2 = list2; 
 while(head1 !=  null) { 
                  L1++; 
                  head1 = head1.next; 
            }  
 while(head2 !=  null) {  
                  L2++;  
                  head2 = head2.next; 

} 
 if(L1 < L2) { 
  head1 = list2; 
  head2 = list1; 
  diff = L2 - L1; 
 } else{ 
       head1 = list1;    
                  head2 = list2;   
                  diff = L1 – L2; 
             } 
 for(int i = 0; i < diff; i++) 
       head1 = head1.next; 
 while(head1 !=  null && head2 != null) { 
  if(head1 == head2) 
        return head1.data; 
  head1= head1.next; 
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  head2= head2.next; 
 } 
 return null; 
      } 
 

Problem-25 How will you find the middle of the linked list? 
 

Solution: Brute-Force Approach: For each of the node count how many nodes are there in the list and see whether it is the middle.  
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-26 Can we improve the complexity of Problem-25? 
 

Solution: Yes. 
Algorithm: 

 Traverse the list and find the length of the list. 
 After finding the length, again scan the list and locate 푛/2 node from the beginning. 

 

Time Complexity: Time for finding the length of the list + Time for locating middle node = O(푛) + O(푛)  ≈ O(푛).  
Space Complexity: O(1). 
 

Problem-27 Can we use the hash table for solving Problem-25? 
 

Solution: Yes. The reasoning is the same as that of Problem-3. 
 

Time Complexity: Time for creating the hash table. Therefore, 푇(푛) = O(푛). Space Complexity: O(푛). Since, we need to create a hash table 
of size 푛. 
 

Problem-28 Can we solve Problem-25 just in one scan? 
 

Solution: Efficient Approach: Use two pointers. Move one pointer at twice the speed of the second. When the first pointer reaches the end 
of the list, the second pointer will be pointing to the middle node.  

 

Note: If the list has an even number of nodes, the middle node will be of ⌊푛/2⌋. 
 

     public static ListNode findMiddle(ListNode head) { 
 ListNode ptr1x, ptr2x; 
 ptr1x = ptr2x = head;  
 int i=0; 
 // keep looping until we reach the tail (next will be NULL for the last node) 
 while(ptr1x.next != null) {      
  if(i == 0) { 
        ptr1x = ptr1x.next; //increment only the 1st pointer 
        i=1; 
  } 
  else if( i == 1) { 
        ptr1x = ptr1x.next; //increment both pointers 
        ptr2x = ptr2x.next; 
        i = 0; 
  } 
 } 
 return ptr2x;        //now return the ptr2 which points to the middle node 
     } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-29 How will you display a linked list from the end? 
 

Solution: Traverse recursively till the end of the linked list. While coming back, start printing the elements. 
 

      //This Function will print the linked list from end 
      public static void printListFromEnd(ListNode head) { 
 if(head == null)     
                     return; 
          printListFromEnd(head.next); 
          System.out.println(head.data); 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛)→ for Stack. 
       

Problem-30 Check whether the given Linked List length is even or odd? 
 

Solution: Use a 2푥 pointer. Take a pointer that moves at 2푥 [two nodes at a time]. At the end, if the length is even, then the pointer will be 
NULL; otherwise it will point to the last node. 
 

      public int isLinkedListLengthEven(ListNode listHead) { 
            while(listHead != null && listHead.next != null) 
                      listHead = listHead.next.next; 
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            if(listHead == null) return 0; 
            return 1; 
      } 
 

Time Complexity: O(⌊푛/2⌋) ≈O(푛). Space Complexity: O(1). 
 

Problem-31 If the head of a linked list is pointing to 푘푡ℎ element, then how will you get the elements before 푘푡ℎ element? 
 

Solution:  Use Memory Efficient Linked Lists [XOR Linked Lists]. 
 

Problem-32 Given two sorted Linked Lists, we need to merge them into the third list in sorted order.  
 

Solution:  
 

    public ListNode mergeTwoLists(ListNode head1, ListNode head2) { 
        if(head1 == null) 
            return head2; 
        if(head2 == null) 
            return head1; 
        ListNode head = new ListNode(0); 
        if(head1.data <= head2.data){ 
            head = head1; 
            head.next = mergeTwoLists(head1.next, head2); 
        }else{ 
            head = head2; 
            head.next = mergeTwoLists(head2.next, head1); 
        } 
        return head; 
    } 
 

Time Complexity – O(푛). 
 

Problem-33 Can we solve Problem-32 without recursion? 
 

Solution: 
 

    public ListNode mergeTwoLists(ListNode head1, ListNode head2) { 
        ListNode head = new ListNode(0); 
        ListNode curr = head; 
        while(head1 != null && head2 != null){ 
            if(head1.data <= head2.data){ 
                curr.next = head1; 
                head1 = head1.next; 
            }else{ 
                curr.next = head2; 
                head2 = head2.next; 
            } 
        } 
        if(head1 != null) 
            curr.next = head1; 
        else if(head2 != null) 
            curr.next = head2; 
        return head.next; 
    } 
 

Time Complexity – O(푛). 
 

Problem-34 Reverse the linked list in pairs. If you have a linked list that holds 1→2→3→4→푋, then after the function has been called 
the linked list would hold 2→1→4→3→푋. 

 

Solution:   
       //Recursive Version 
      public static ListNode ReversePairRecursive(ListNode head) { 
 ListNode temp; 
 if(head ==NULL || head.next ==NULL) 
  return;   //base case for empty or 1 element list 
 else {  
                         //Reverse first pair 
  temp = head.next; 
  head.next = temp.next; 
  temp.next = head; 
  head = temp; 
 

  //Call the method recursively for the rest of the list 
  head.next.next = ReversePairRecursive(head.next.next); 
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  return head; 
 } 
      } 
 

      /*Iterative version*/ 
      public static ListNode  ReversePairIterative(ListNode  head) { 
            ListNode  temp1 = null; 
            ListNode  temp2 = null; 
            while (head != null && head.next != null) { 
                  if (temp1 != null) { 
                        temp1.next.next = head.next; 
                  }   

                  temp1 = head.next; 
                  head.next = head.next.next; 
                  temp1.next = head; 
                  if (temp2 == null) 
                        temp2 = temp1; 
                  head = head.next; 
            } 
            return temp2; 
      }  
 

Time Complexity – O(푛). Space Complexity - O(1). 
  

Problem-35 Given a binary tree convert it to doubly linked list. 
 

Solution:  Refer 푇푟푒푒푠 chapter. 
 

Problem-36 How do we sort the Linked Lists? 
 

Solution:  Refer 푆표푟푡푖푛푔 chapter. 
 

Problem-37 If we want to concatenate two linked lists, which of the following gives O(1) complexity? 
1) Singly linked lists             
2) Doubly linked lists                 
3) Circular doubly linked lists 

 

Solution: Circular Doubly Linked Lists. This is because for singly and doubly linked lists, we need to traverse the first list till the end and 
append the second list. But in the case of circular doubly linked lists we don’t have to traverse the lists. 
 

Problem-38 Split a Circular Linked List into two equal parts. If the number of nodes in the list are odd then make first list one node 
extra than second list. 

 

Solution: 
Algorithm 

 Store the mid and last pointers of the circular linked list using Floyd cycle finding algorithm. 
 Make the second half circular. 
 Make the first half circular. 
 Set head pointers of the two linked lists. 

 

As an example, consider the following circular list. 
 
 

 
 
 

 

After the split, the above list will look like: 
 

 
 
 
 
 
 
 

      public static void SplitList(ListNode head, ListNode head1, ListNode head2) { 
 ListNode slowPtr = head, fastPtr = head; 
 if(head == nlu) return; 
 /* If there are odd nodes in the circular list then fastPtr.next becomes  
                 head and for even nodes fastPtr.next.next becomes head */ 
     while(fastPtr.next != head && fastPtr.next.next != head)  { 
  fastPtr = fastPtr.next.next; 
  slowPtr = slowPtr.next; 
 }  

    4    15     7    40 

Head 

Head2 

    4    15     7    40 

Head1 
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 /* If there are even elements in list then move fastPtr */ 
 if(fastPtr.next.next == head) 
  fastPtr = fastPtr.next;      
 /* Set the head pointer of first half */ 
 head1 = head;    
 /* Set the head pointer of second half */ 
 if(head.next != head) 
  head2 = slowPtr.next; 
 /* Make second half circular */ 
 fastPtr.next = slowPtr.next; 
 /* Make first half circular */ 
 slowPtr.next = head; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
  

Problem-39 How will you check if the linked list is palindrome or not? 
 

Solution:  
Algorithm 

1. Get the middle of the linked list.  
2. Reverse the second half of the linked list.  
3. Compare the first half and second half.  
4. Construct the original linked list by reversing the second half again and attaching it back to the first half. 

 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-40 Exchange the adjacent elements in a link list. 
 

Solution: 
 

    public ListNode exchangeAdjacentNodes (ListNode head) { 
        ListNode temp = new ListNode(0); 
        temp.next = head; 
        ListNode prev = temp, curr = head; 
        while(curr != null && curr.next != null){ 
            ListNode tmp = curr.next.next; 
            curr.next.next = prev.next; 
            prev.next = curr.next; 
            curr.next = tmp; 
            prev = curr; 
            curr = prev.next; 
        } 
        return temp.next; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-41 For a given 퐾 value (퐾 > 0) reverse blocks of 퐾 nodes in a list. 
 

Example: Input: 1 2 3 4 5 6 7 8 9 10,  Output for different 퐾 values: 
 For 퐾 = 2: 2 1 4 3 6 5 8 7 10 9,  For 퐾 = 3: 3 2 1 6 5 4 9 8 7 10, For 퐾 = 4: 4 3 2 1 8 7 6 5 9 10 
Solution: 
Algorithm: This is an extension of swapping nodes in a linked list.  

1) Check if remaining list has 퐾 nodes. 
a. If yes get the pointer of 퐾 + 1  node. 
b. Else return. 

2) Reverse first 퐾 nodes. 
3) Set next of last node (after reversal) to 퐾 + 1  node. 
4) Move to 퐾 + 1  node. 
5) Go to step 1. 
6) 퐾 − 1  node of first 퐾 nodes becomes the new head if available. Otherwise, we can return the head. 

 

    public static ListNode reverseKNodesRecursive(ListNode head, int k){ 
        ListNode current = head; 
        ListNode next = null; 
        ListNode prev = null; 
        int count = k; 
        //Reverse K nodes 
        while (current != null && count > 0) { 
            next = current.next; 
            current.next = prev; 
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            prev = current; 
            current = next; 
            count--; 
        } 
        //Now next points to K+1 th node, returns the pointer to the head node 
        if (next != null) { 
            head.next = reverseKNodesRecursive(next, k); 
        } 
        //return head node 
        return prev; 
    } 
 

    public static ListNode reverseKNodes(ListNode head, int k){ 
        //Start with head 
        ListNode current = head; 
        //last node after reverse 
        ListNode prevTail = null; 
        //first node before reverse 
        ListNode prevCurrent = head; 
        while (current != null) { 
            //loop for reversing K nodes 
            int count = k; 
            ListNode tail = null; 
            while (current != null && count > 0) { 
                ListNode next = current.next; 
                current.next = tail; 
                tail = current; 
                current = next; 
                count--; 
            } 
            //reversed K Nodes 
            if (prevTail != null) { 
                //Link this set and previous set 
                prevTail.next = tail; 
            } else { 
                //We just reversed first set of K nodes, update head point to the Kth Node 
                head = tail; 
            } 
            //save the last node after reverse since we need to connect to the next set. 
            prevTail = prevCurrent; 
            //Save the current node, which will become the last node after reverse 
            prevCurrent = current; 
        } 
        return head; 
    } 
 

Problem-42 Can we solve Problem-39 with recursion? 
 

Solution:  
 

    public static ListNode reverseKNodes(ListNode head, int k){ 
        //Start with head 
        ListNode current = head; 
        //last node after reverse 
        ListNode prevTail = null; 
        //first node before reverse 
        ListNode prevCurrent = head; 
        while (current != null) { 
            //loop for reversing K nodes 
            int count = k; 
            ListNode tail = null; 
            while (current != null && count > 0) { 
                ListNode next = current.next; 
                current.next = tail; 
                tail = current; 
                current = next; 
                count--; 
            } 
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            //reversed K Nodes 
            if (prevTail != null) { 
                //Link this set and previous set 
                prevTail.next = tail; 
            } else { 
                //We just reversed first set of K nodes, update head point to the Kth Node 
                head = tail; 
            } 
            //save the last node after reverse since we need to connect to the next set. 
            prevTail = prevCurrent; 
            //Save the current node, which will become the last node after reverse 
            prevCurrent = current; 
        } 
        return head; 
    } 
 

Problem-43 Is it possible to get  O(1) access time for Linked Lists? 
 

Solution: Yes. Create a linked list and at the same time keep it in a hash table. For 푛 elements we have to keep all the elements in a hash table 
which gives a preprocessing time of O(푛). To read any element we require only constant time O(1) and to read 푛 elements we require 푛 ∗  1 
unit of time =  푛 units. Hence by using amortized analysis we can say that element access can be performed within O(1) time.  
 

Time Complexity – O(1) [Amortized]. Space Complexity - O(푛) for Hash. 
 

Problem-44 JosephusCircle:  푁 people have decided to elect a leader by arranging themselves in a circle and eliminating every 
푀  person around the circle, closing ranks as each person drops out. Find which person will be the last one remaining (with rank 1).  

 

Solution: Assume the input is a circular linked list with 푁 nodes and each node has a number (range 1 to 푁) associated with it. The head 
node has number 1 as data.  
 

      public ListNode  GetJosephusPosition(int N, int M) { 
 ListNode p, q; 
 // Create circular linked list containing all the players: 
 p.data = 1; 

q = p; 
 for (int i = 2; i <= N; ++i) { 
  p = p.next; 
  p.data = i; 
 }   
 p.next = q;  // Close the circular linked list by having the last node point to the first. 
 // Eliminate every M-th player as long as more than one player remains: 
 for (int count = N; count > 1; --count) { 
  for (int i = 0; i < M - 1; ++i) 
   p = p.next; 
  p.next = p.next.next;  // Remove the eiminated player from the list. 
 } 
 System.out.println("Last player left standing (Josephus Position) is " + p.data);  
      } 
 

Problem-45 Given a linked list consists of data, a next pointer and also a random pointer which points to a random node of the list. 
Give an algorithm for cloning the list. 

 
 

 
 
 
 
 
 
 
 

Solution: To clone a linked list with random pointers, the idea is to maintain a hash table for storing the mappings from a original linked list 
node to its clone. For each node in the original linked list, we create a new node with same data and set its next pointers. While doing so, we 
also create a mapping from the original node to the duplicate node in the hash table. Finally, we traverse the original linked list again and 
update random pointers of the duplicate nodes using the hash table. 
 

Algorithm: 
 Scan the original list and for each node 푋, create a new node 푌 with data of 푋, then store the pair (푋, 푌) in hash table using 푋 as a 

key. Note that during this scan set 푌 → 푛푒푥푡  with 푋 → 푛푒푥푡 and 푌 → 푟푎푛푑표푚 to 푁푈퐿퐿 and we will fix it in the next scan. Now 
for each node 푋 in the original list we have a copy 푌 stored in our hash table. 

 To update the random pointers, read random pointer of node 푋 from original linked list and get the corresponding random node 
in cloned list from hash table created in previous step. Assign random pointer of node 푋 from cloned list to corresponding node 
we got. 

 

    public RandomListNode copyRandomList(RandomListNode head) { 
        RandomListNode X = head, Y; 
        Map<RandomListNode, RandomListNode> map = new HashMap<RandomListNode, RandomListNode>(); 

10   
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16   
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        while(X != null) { 
            Y = new RandomListNode(X.label); 
            Y.next = null; 
            Y.random = null; 
            map.put(X, Y); 
            X = X.next; 
        } 
        X = head; 
        while(X != null){ 
            Y = map.get(X); 
            Y.next = map.get(X.next); 
            Y.random = map.get(X.random); 
            X = X.next; 
        } 
        return map.get(head); 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-46 In a linked list with 푛 nodes, the time taken to insert an element after an element pointed by some pointer is  
 

      (A) O(1)              (B)  O(푙표푔푛)              (C) O(푛)              (D) O(푛1표푔푛)  
 

Solution: A. 
 

Problem-47 Find modular node: Given a singly linked list, write a function to find the last element from the beginning whose 푛%푘 =
= 0, where 푛 is the number of elements in the list and 푘 is an integer constant. For example, if 푛 = 19 and 푘 = 3 then we should return 
18 node. 

 

Solution: For this problem the value of 푛 is not known in advance. 
 

      public ListNode modularNodes(ListNode head, int k){ 
           ListNode modularNode; 
           int i=0; 
           if(k<=0) 
                return null;        

           for (;head!= null; head = head.next){ 
                if(i%k == 0){ 
                     modularNode = head; 
                } 
                i++; 
           } 
           return modularNode; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-48 Find modular node from the end: Given a singly linked list, write a function to find the first element from the end whose 
푛%푘 == 0, where 푛 is the number of elements in the list and 푘 is an integer constant. For example, if 푛 = 19 and 푘 = 3 then we should 
return 16 node. 

 

Solution: For this problem the value of 푛 is not known in advance and it is the same as finding the 푘 element from the end of the the linked 
list. 
 

      public ListNode modularNodes(ListNode *head, int k){ 
           ListNode modularNode=null; 
           int i=0; 
           if(k<=0) return null; 
           for (i=0; i < k; i++){ 
                if(head!=null) 
                     head = head.next; 
                else  
                     return null; 
           } 
           while(head!= null) 
                modularNode = modularNode.next; 
                head = head.next; 
           } 
 

           return modularNode; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
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Problem-49 Find fractional node: Given a singly linked list, write a function to find the 푡ℎ element, where 푛 is the number of 
elements in the list. 

 

Solution: For this problem the value of 푛 is not known in advance. 
 

      public ListNode fractionalNodes(ListNode head, int k){ 
           ListNode fractionalNode; 
           int i=0; 
           if(k<=0) 
                return null; 
 

           for (;head!= null; head = head.next){ 
                if(i%k == 0){ 
                     if(fractionalNode!=null) 
                          fractionalNode = head; 
                     else fractionalNode = fractionalNode.next; 
                } 
                i++; 
           } 
           return fractionalNode; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-50 Median in an infinite series of integers 
 

Solution: Median is the middle number in a sorted list of numbers (if we have an odd number of elements). If we have an even number of 
elements, the median is the average of two middle numbers in a sorted list of numbers. 
 

We can solve this problem with linked lists (with both sorted and unsorted linked lists). 
 

퐹푖푟푠푡, let us try with an 푢푛푠표푟푡푒푑 linked list. In an unsorted linked list, we can insert the element either at the head or at the tail. The 
disadvantage with this approach is that finding the median takes O(푛). Also, the insertion operation takes O(1). 
 

Now, let us try with a 푠표푟푡푒푑 linked list. We can find the median in O(1) time if we keep track of the middle elements. Insertion to a particular 
location is also O(1) in any linked list. But, finding the right location to insert is not O(푙표푔푛) as in a sorted array, it is instead O(푛) because 
we can’t perform binary search in a linked list even if it is sorted.  
 

So, using a sorted linked list isn’t worth the effort as insertion is O(푛) and finding median is O(1), the same as the sorted array. In the sorted 
array the insertion is linear due to shifting, but here it’s linear because we can’t do a binary search in a linked list.  
 

Note: For an efficient algorithm refer to the 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 푎푛푑 퐻푒푎푝푠 chapter. 
 

Problem-51 Consider the following Java program code, whose runtime F is a function of the input size 푛. 
 

      java.util.ArrayList<Integer> list = new java.util.ArrayList<Integer>(); 
      for( int i = 0 ; i < n; i ++) 
            list.add (0 , i ) ; 
 

Which of the following is correct? 
 

A) F(푛)=(푛)   B) F(푛)=(푛 )   C) F(푛)=( 푛 )   D) F(푛)=( 푛 )   F) F(푛)=(푛푙표푔푛)    
 

Solution: B. The operation list.add(0,i) on ArrayList has linear time complexity, with respect to the current size of the data structure. 
Therefore, overall we have quadratic time complexity. 
 

Problem-52 Consider the following Java program code, whose runtime F is a function of the input size 푛. 
 

      java.util.ArrayList<Integer> list = new java.util.ArrayList<Integer>(); 
      for(int i = 0 ; i < n; i ++) 
            list.add ( i , i ) ; 
      for(int j = 0 ; j < n; j++) 
            list.remove(n-j -1 ); 

 

Which of the following is correct? 
 

A) F(푛)=(푛)   B) F(푛)=(푛 )   C) F(푛)=( 푛 )   D) F(푛)=( 푛 )   F) F(푛)=(푛푙표푔푛)    
 

Solution: A. Both loop bodies have constant time complexity because they operate the end of the 
ArrayList. 
 

Problem-53 Consider the following Java program code, whose runtime F is a function of the input size 푛. 
 

           java.util.LinkedList<Integer> k = new java.util.LinkedList<Integer>(); 
           for(int i = 0 ; i < n; i ++) 
               for(int j = 0 ; j < n; j++) 
                      k.add(k.size()/2,j); 

 

Which of the following is correct? 
 

Solution: D. The LinkedList grows to quadratic size during the execution of the program fragment. Thus the body of the inner loop has 
quadratic complexity. The inner loop itself is executed 푛  times. 
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Problem-54 Given a singly linked list L: 퐿 -> 퐿 -> 퐿 …-> 퐿 -> 퐿 , reorder it to: 퐿 -> 퐿 -> 퐿 -> 퐿 …… 
 

Solution: We divide the list in two parts for instance 1->2->3->4->5 will become 1->2->3 and 4->5, we have to reverse the second list and give 
a list that alternates both. The split is done with a slow and fast pointer. First solution (using a stack for reversing the list): 
 

      public class ReorderLists { 
          public void reorderList(ListNode head) { 
               if(head == null) 
                  return; 
              ListNode slowPointer = head; 
              ListNode fastPointer = head.next; 
              while(fastPointer!=null && fastPointer.next !=null){ 
                  fastPointer = fastPointer.next.next; 
                  slowPointer = slowPointer.next; 
              } 
              ListNode head2 = slowPointer.next; 
              slowPointer.next = null; 
              LinkedList<ListNode> queue = new LinkedList<ListNode>(); 
              while(head2!=null){ 
                  ListNode temp = head2; 
                  head2 = head2.next; 
                  temp.next =null; 
                  queue.push(temp); 
              } 
              while(!queue.isEmpty()){ 
                  ListNode temp = queue.pop(); 
                  temp.next = head.next; 
                  head.next = temp; 
                  head = temp.next; 
              } 
          } 
      } 
 

Alternative Approach: 
 

      public class ReorderLists { 
          public void reorderList(ListNode head) { 
              if(head == null) 
                  return; 
              ListNode slowPointer = head; 
              ListNode fastPointer = head.next; 
              while(fastPointer!=null && fastPointer.next !=null){ 
                  fastPointer = fastPointer.next.next; 
                  slowPointer = slowPointer.next; 
             } 
              ListNode head2 = slowPointer.next; 
              slowPointer.next = null; 
              head2= reverseList(head2); 
              alternate (head, head2); 
          }      

          private ListNode reverseList(ListNode head){ 
             if (head == null) 
                  return null; 
              ListNode reversedList = head; 
              ListNode pointer = head.next; 
              reversedList.next=null; 
              while (pointer !=null){ 
                  ListNode temp = pointer; 
                  pointer = pointer.next; 
                  temp.next = reversedList; 
                  reversedList = temp; 
              } 
              return reversedList; 
          } 
     

          private void alternate (ListNode head1, ListNode head2){ 
              ListNode pointer = head1; 
              head1 = head1.next; 
              boolean nextList1 = false; 
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              while(head1 != null || head2 != null){ 
                  if((head2 != null && !nextList1) || (head1==null)){ 
                      pointer.next = head2; 
                      head2 = head2.next; 
                      nextList1 = true; 
                      pointer = pointer.next; 
                  } 
                  else { 
                      pointer.next = head1; 
                      head1 = head1.next; 
                      nextList1 = false; 
                      pointer = pointer.next; 
                  } 
              } 
          } 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-55 Which sorting algorithm is easily adaptable to singly linked lists?  
 

Solution: Simple Insertion sort is easily adaptable to singly linked lists. To insert an element, the linked list is traversed until the proper 
position is found, or until the end of the list is reached. It is inserted into the list by merely adjusting the pointers without shifting any elements, 
unlike in the array. This reduces the time required for insertion but not the time required for searching for the proper position. 
 

Problem-56 How do you implement insertion sort for linked lists? 
 

Solution: 
 

public static ListNode insertionSortList(ListNode head) { 
    if (head == null || head.next == null) 
        return head; 
    ListNode newHead = new ListNode(head.data); 
    ListNode pointer = head.next; 
    // loop through each element in the list 
    while (pointer != null) { 
        // insert this element to the new list 
        ListNode innerPointer = newHead; 
        ListNode next = pointer.next; 
        if (pointer.data <= newHead.data) { 
            ListNode oldHead = newHead; 
            newHead = pointer; 
            newHead.next = oldHead; 
        } else { 
            while (innerPointer.next != null) { 
                if (pointer.data > innerPointer.data && pointer.data <= innerPointer.next.data) { 
                    ListNode oldNext = innerPointer.next; 
                    innerPointer.next = pointer; 
                    pointer.next = oldNext; 
                } 
                innerPointer = innerPointer.next; 
            } 
            if (innerPointer.next == null && pointer.data > innerPointer.data) { 
                innerPointer.next = pointer; 
                pointer.next = null; 
            } 
        } 
        // finally 
        pointer = next; 
    } 
    return newHead; 
} 

 

Note: For details on insertion sort refer Sorting chapter. 
 

Problem-57 Given a list, rotate the list to the right by k places, where k is non-negative. For example:  Given 1->2->3->4->5->NULL 
and k = 2,  return 4->5->1->2->3->NULL. 

 

Solution: 
 

    public ListNode rotateRight(ListNode head, int n) { 
        if(head == null || head.next == null) 
            return head; 
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        ListNode rotateStart = head, rotateEnd = head; 
        while(n-- > 0){ 
            rotateEnd = rotateEnd.next; 
            if(rotateEnd == null){ 
                rotateEnd = head; 
            } 
        } 
        if(rotateStart == rotateEnd) 
            return head; 
        while(rotateEnd.next != null){ 
            rotateStart = rotateStart.next; 
            rotateEnd = rotateEnd.next; 
        } 
        ListNode temp = rotateStart.next; 
        rotateEnd.next = head; 
        rotateStart.next = null; 
        return temp; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-58 You are given two linked lists representing two non-negative numbers. The digits are stored in reverse order and each of 
their nodes contain a single digit. Add the two numbers and return it as a linked list. For example with input: (3 -> 4 -> 3) + (5 -> 6 -> 4); 
the output should be 8 -> 0 -> 8. 

 

Solution: 
 

    public ListNode addTwoNumbers(ListNode list1, ListNode list2) { 
        if(list1 == null) 
            return list2; 
        if(list2 == null) 
            return list1; 
        ListNode head = new ListNode(0); 
        ListNode cur = head; 
        int advance = 0; 
        while(list1 != null && list2 != null){ 
            int sum = list1.data + list2.data + advance; 
            advance = sum / 10; 
            sum = sum % 10; 
            cur.next = new ListNode(sum); 
            cur = cur.next; 
            list1 = list1.next; 
            list2 = list2.next; 
        } 
        if(list1 != null){ 
            if(advance != 0) 
                cur.next = addTwoNumbers(list1, new ListNode(advance)); 
            else 
                cur.next = list1; 
        }else if(list2 != null){ 
            if(advance != 0) 
                cur.next = addTwoNumbers(list2, new ListNode(advance)); 
            else 
                cur.next = list2; 
        }else if(advance != 0){ 
            cur.next = new ListNode(advance); 
        } 
        return head.next; 
    } 
 

Problem-59 Given a linked list and a value K, partition it such that all nodes less than K come before nodes greater than or equal to 
K. You should preserve the original relative order of the nodes in each of the two partitions. For example, given 1->4->3->2->5->2 and K 
= 3, return 1->2->2->4->3->5. 

 

Solution: 
 

    public ListNode partition(ListNode head, int K) { 
        ListNode root = new ListNode(0); 
        ListNode pivot = new ListNode(K); 
        ListNode rootNext = root, pivotNext = pivot; 
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        ListNode currentNode = head; 
        while(currentNode != null){ 
            ListNode next = currentNode.next; 
            if(currentNode.data >= K){ 
                pivotNext.next = currentNode; 
                pivotNext = currentNode; 
                pivotNext.next = null; 
            }else{ 
                rootNext.next = currentNode; 
                rootNext = currentNode; 
            } 
            currentNode = next; 
        } 
        rootNext.next = pivot.next; 
        return root.next; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-60 Merge k sorted linked lists and return it as one sorted list. 
 

Solution: Refer Priority Queues chapter. 
 

Problem-61 Given a unordered linked list, how do you remove duplicates in it? 
 

Solution: 
 

public static void removeDuplicates2(ListNode head) { 
    ListNode curr = head; 
    if(curr == null || curr.next == null) { 
        return; // 0 or 1 nodes in the list so no duplicates 
    } 
    ListNode curr2; 
    ListNode prev; 
    while(curr != null) { 
        curr2 = curr.next; 
        prev = curr; 
        while(curr2 != null) { 
            // check and see if curr and curr2 values are the same, if they are then delete curr2 
            if(curr.data==curr2.data) { 
                prev.next = curr2.next; 
            } 
            prev = curr2; 
            curr2 = curr2.next; 
        } 
        curr = curr.next; 
    } 
} 

 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-62 Can reduce the time complexity of Problem-61? 
 

Solution: We can simply use hash table and check whether an element already exist. 
 

// using a temporary buffer O(n) 
public static void removeDuplicates(ListNode head) { 
    Map<Integer, Boolean> mapper = new HashMap<Integer, Boolean>(); 
    ListNode curr = head; 
    ListNode next; 
    while (curr.next != null) { 
        next = curr.next; 
        if(mapper.get(next.data) != null) { 
            // already seen it, so delete 
            curr.next = next.next; 
        } else { 
            mapper.put(next.data, true); 
            curr = curr.next; 
        } 
    } 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛) for hash table. 
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Problem-63 Given a linked list with even and odd numbers, create an algorithm for making changes to the list in such a way that all 
even numbers appear at the beginning. 

 

Solution: To solve this problem, we can use the splitting logic. While traversing the list, split the linked list into two: one contains all even 
nodes and the other contains all odd nodes. Now, to get the final list, we can simply append the odd node linked list after the even node 
linked list. 
 

To split the linked list, traverse the original linked list and move all odd nodes to a separate linked list of all odd nodes. At the end of the 
loop, the original list will have all the even nodes and the odd node list will have all the odd nodes. To keep the ordering of all nodes the 
same, we must insert all the odd nodes at the end of the odd node list.  
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-64 Given two sorted linked lists, given an algorithm for the printing common elements of them. 
 

Solution: The solution is based on merge sort logic. Assume the given two linked lists are: list1 and list2. Since the elements are in sorted 
order, we run a loop till we reach the end of either of the list. We compare the values of list1 and list2. If the values are equal, we add it to 
the common list. We move list1 / list2/ both nodes ahead to the next pointer if the values pointed by list1 was less / more / equal to the value 
pointed by list2. 
 

Time complexity O(푚 +  푛), where 푚 is the lengh of list1 and 푛 is the length of list2. Space Complexity: O(1). 
 

public static ListNode commonElement(ListNode list1, ListNode list2) { 
    ListNode temp =  new ListNode(0); 
    ListNode head = temp; 
    while (list1 != null && list2 != null) { 
        if (list1.data == list2.data) { 
            head.next = new ListNode(list1.data); // Copy common element. 
            list1 = list1.next; 
            list2 = list2.next; 
            head = head.next; 
        } else if (list1.data > list2.data) { 
            list2 = list2.next;  
        } else { // list1.data < list2.data 
            list1 = list1.next;  
        } 
    } 
    return temp.next;  
} 

 

Problem-65 Sort the linked list elements in O(푛), where 푛 is the number of elements in the linked list. 
 

Solution: Refer 푆표푟푡푖푛푔 chapter. 
 

Problem-66 Partition list: Given a linked list and a value X, partition it such that all nodes less than X come before nodes greater than 
or equal to X. Notice that, you should preserve the original relative order of the nodes in each of the two partitions.  

 
 
 
 
 

For example, the above linked list with X = 4 should return the following linked list. 
 
 
 
 
 

Solution: The problem wants us to rearrange the linked list elements, such that the elements lesser than value X, come before the elements 
greater or equal to X. This essentially means in this rearranged list, there would be a point in the linked list before which all the elements 
would be smaller than X and after which all the elements would be greater or equal to X. Let's call this point as the 푝푖푣표푡. 
 

Careful observation tells us that if we break the rearranged list at the 푝푖푣표푡, we will get two smaller linked lists, one with lesser elements and 
the other with elements greater or equal to X. In the solution, our main aim is to create these two linked lists and join them. 
 

We can take two pointers lesser and greater to keep track of the two linked lists as described above. These two pointers could be used two 
create two separate lists and then these lists could be combined to form the desired rearranged list. We will traverse the original linked list as 
usual, and depending upon a node's value, we will append it into one of the partitions. 
 

Algorithm: 
 

1. Initialize two pointers lesser and greater with None.  
2. Iterate the original linked list, using the head pointer. If the node's value pointed by head is lesser than X, the node should be part 

of the lesser list. So, we move it to lesser list. Else, the node should be part of greater list. So, we move it to greater list. 
3. Once we are done with all the nodes in the original linked list, we would have two list lesser and greater. The original list nodes are 

either part of lesser list or greater list, depending on its value. 
4. Now, these two lists lesser and greater can be combined to form the reformed list. 

 

 2  3  3  5  4  6 

Head 

 2  5  4  3  6  3 

Head 
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Since we traverse the original linked list from left to right, at no point would the order of nodes change relatively in the two lists. Another 
important thing to note here is that we show the original linked list intact in the above diagrams. However, in the implementation, we remove 
the nodes from the original linked list and attach them in the lesser or greater list. We don't utilize any additional space. We simply move the 
nodes from the original list around. 
 

class Solution { 
    static class ListNode{   
        int data;   
        ListNode next; 
        ListNode(int data){ 
            this.data =  data; 
            this.next = null; 
        } 
    }  
 

    public ListNode partition(ListNode head, int X) { 
        // lesser and greater are the two pointers used to create the two list 
        // lesser_head and greater_head are used to save the heads of the two lists. 
        // All of these are initialized with the dummy nodes created. 
        ListNode lesser_head = new ListNode(0); 
        ListNode lesser = lesser_head; 
        ListNode greater_head = new ListNode(0); 
        ListNode greater = greater_head; 
 

        while (head != null) { 
            // If the original list node is lesser than the given X, 
            // assign it to the lesser list. 
            if (head.data < X) { 
                lesser.next = head; 
                lesser = lesser.next; 
            } else { 
                // If the original list node is greater or equal to the given X, 
                // assign it to the greater list. 
                greater.next = head; 
                greater = greater.next; 
            } 
 

            // move ahead in the original list 
            head = head.next; 
        } 
 

        // Last node of "greater" list would also be ending node of the reformed list 
        greater.next = null; 
 

        // Once all the nodes are correctly assigned to the two lists, 
        // combine them to form a single list which would be returned. 
        lesser.next = greater_head.next; 
 

        return lesser_head.next; 
    } 
} 

 

Time complexity: O(푛), where 푛 is the number of nodes in the original linked list and we iterate the original list. 
Space complexity: O(1), we have not utilized any extra space, the point to note is that we are reforming the original list, by moving the original 
nodes, we have not used any extra space as such.  
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STACKS 
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4.1 What is a Stack? 
 

A stack is a simple data structure used for storing data (similar to Linked Lists). In a stack, the order in which the data arrives is important. A 
pile of plates in a cafeteria is a good example of a stack. The plates are added to the stack as they are cleaned and they are placed on the top. 
When a plate, is required it is taken from the top of the stack. The first plate placed on the stack is the last one to be used.  
 

Definition: A 푠푡푎푐푘 is an ordered list in which insertion and deletion are done at one end, called 푡표푝. The last element inserted is the first 
one to be deleted. Hence, it is called the Last in First out (LIFO) or First in Last out (FILO) list. 
 

Special names are given to the two changes that can be made to a stack. When an element is inserted in a stack, the concept is called 푝푢푠ℎ, 
and when an element is removed from the stack, the concept is called 푝표푝. Trying to pop out an empty stack is called 푢푛푑푒푟푓푙표푤 and trying 
to push an element in a full stack is called 표푣푒푟푓푙표푤. Generally, we treat them as exceptions. As an example, consider the snapshots of the 
stack. 
 
 
 
  
 
    
                                                        
 
               
  
 
                                                                                     

4.2 How Stacks are used 
 

Consider a working day in the office. Let us assume a developer is working on a long-term project. The manager then gives the developer a 
new task which is more important. The developer puts the long-term project aside and begins work on the new task. The phone rings, and 
this is the highest priority as it must be answered immediately. The developer pushes the present task into the pending tray and answers the 
phone.  
 

When the call is complete the task that was abandoned to answer the phone is retrieved from the pending tray and work progresses. To take 
another call, it may have to be handled in the same manner, but eventually the new task will be finished, and the developer can draw the long-
term project from the pending tray and continue with that. 

4.3 Stack ADT 
 

The following operations make a stack an ADT. For simplicity, assume the data is an integer type. 
 

Main stack operations 
 

 void push (int data): Inserts 푑푎푡푎 onto stack. 
 int pop(): Removes and returns the last inserted element from the stack. 
 

Auxiliary stack operations 
 

 int top(): Returns the last inserted element without removing it. 
 int size(): Returns the number of elements stored in the stack. 
 int isEmpty(): Indicates whether any elements are stored in the stack or not. 
 int isFull(): Indicates whether the stack is full or not. 

top
top top
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Exceptions  
 

Attempting the execution of an operation may sometimes cause an error condition, called an exception. Exceptions are said to be “thrown” 
by an operation that cannot be executed. In the Stack ADT, operations pop and top cannot be performed if the stack is empty. Attempting 
the execution of pop (top) on an empty stack throws an exception. Trying to push an element in a full stack throws an exception. 

4.4 Applications 
 

Following are some of the applications in which stacks play an important role. 
 

Direct applications 
 

 Balancing of symbols 
 Infix-to-postfix conversion 
 Evaluation of postfix expression 
 Implementing function calls (including recursion) 
 Finding of spans (finding spans in stock markets, refer to 푃푟표푏푙푒푚푠 section) 
 Page-visited history in a Web browser [Back Buttons] 
 Undo sequence in a text editor 
 Matching Tags in HTML and XML 

 

Indirect applications 
 

 Auxiliary data structure for other algorithms (Example: Tree traversal algorithms) 
 Component of other data structures (Example: Simulating queues, refer 푄푢푒푢푒푠 chapter) 

4.5 Implementation 
 

There are many ways of implementing stack ADT; below are the commonly used methods. 
 

 Simple array based implementation 
 Dynamic array based implementation 
 Linked lists implementation 

Simple Array Implementation 
 

This implementation of stack ADT uses an array. In the array, we add elements from left to right and use a variable to keep track of the index 
of the top element.  
 
 
 
 
 

The array storing the stack elements may become full. A push operation will then throw a 푓푢푙푙 푠푡푎푐푘 푒푥푐푒푝푡푖표푛. Similarly, if we try deleting 
an element from an empty stack it will throw 푠푡푎푐푘 푒푚푝푡푦 푒푥푐푒푝푡푖표푛.  
 

      public class FixedSizeArrayStack{ 
 // Length of the array used to implement the stack. 
 protected int capacity; 
 // Default array capacity. 
 public static final int CAPACITY = 10; 
 

 // Array used to implement the stack. 
 protected int[] stackRep; 
 

 // Index of the top element of the stack in the array. 
 protected int top = -1; 
 

 // Initializes the stack to use an array of default length. 
 public FixedSizeArrayStack() { 
  this(CAPACITY); // default capacity 
 } 
 

 // Initializes the stack to use an array of given length. 
 public FixedSizeArrayStack(int cap) { 
  capacity = cap; 
  stackRep = new int[capacity]; // compiler may give warning, but this is ok 
 } 
 

 // Returns the number of elements in the stack. This method runs in O(1) time. 
 public int size() { 
  return (top + 1); 

 S 

top 

…….. 
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 } 
 

 // Testes whether the stack is empty. This method runs in O(1) time. 
 public boolean isEmpty() { 
  return (top < 0); 
 } 
 

 // Inserts an element at the top of the stack. This method runs in O(1) time. 
 public void push(int data) throws Exception { 
  if (size() == capacity) 
   throw new Exception("Stack is full."); 
  stackRep[++top] = data; 
 } 
 

 // Inspects the element at the top of the stack. This method runs in O(1) time. 
 public int top() throws Exception { 
  if (isEmpty()) 
   throw new Exception("Stack is empty."); 
  return stackRep[top]; 
 } 
 

 // Removes the top element from the stack. This method runs in O(1) time. 
 public int pop() throws Exception { 
  int data; 
  if (isEmpty()) 
      throw new Exception("Stack is empty."); 
  data = stackRep[top]; 
  stackRep[top--] = Integer.MIN_VALUE;  
  return data; 
 } 
 

 // Returns a string representation of the stack as a list of elements, with 
 // the top element at the end: [ ... , prev, top ]. This method runs in O(n) 
 // time, where n is the size of the stack. 
 public String toString() { 
  String s; 
  s = "["; 
  if (size() > 0) 
   s += stackRep[0]; 
  if (size() > 1) 
   for (int i = 1; i <= size() - 1; i++) { 
    s += ", " + stackRep[i]; 
   } 
  return s + "]"; 
 } 
      } 

Performance & Limitations 
Performance 
 

Let 푛 be the number of elements in the stack. The complexities of stack operations with this representation can be given as: 
 
 

Space complexity (for 푛 push operations) O(푛) 
Time complexity of push() O(1) 
Time complexity of pop() O(1) 
Time complexity of size() O(1) 
Time complexity of isEmpty() O(1) 
Time complexity of isFull() O(1) 
Time complexity of deleteStack() O(1) 

Limitations 
 

The maximum size of the stack must first be defined and it cannot be changed. Trying to push a new element into a full stack causes an 
implementation-specific exception. 

Dynamic Array Implementation 
 

First, let’s consider how we implemented a simple array based stack. We took one index variable 푡표푝 which points to the index of the most 
recently inserted element in the stack. To insert (or push) an element, we increment 푡표푝 index and then place the new element at that index.  
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Similarly, to delete (or pop) an element we take the element at 푡표푝 index and then decrement the 푡표푝 index. We represent an empty queue 
with 푡표푝 value equal to −1. The issue that still needs to be resolved is what we do when all the slots in the fixed size array stack are occupied?  
 

First try: What if we increment the size of the array by 1 every time the stack is full? 
 

 push(): increase size of S[] by 1 
 pop(): decrease size of S[] by 1 

 

Issues with this approach? 
 

This way of incrementing the array size is too expensive. Let us see the reason for this. For example, at 푛 =  1, to push an element create a 
new array of size 2 and copy all the old array elements to the new array, and at the end add the new element. At 푛 =  2, to push an element 
create a new array of size 3 and copy all the old array elements to the new array, and at the end add the new element.  
 

Similarly, at 푛 =  푛 − 1, if we want to push an element create a new array of size 푛 and copy all the old array elements to the new array and 
at the end add the new element. After 푛 push operations the total time 푇(푛) (number of copy operations) is proportional to 1 +  2 + … +
 푛  O(푛 ). 

 

Alternative Approach: Repeated Doubling 
 

Let us improve the complexity by using the array 푑표푢푏푙푖푛푔 technique. If the array is full, create a new array of twice the size, and copy the 
items. With this approach, pushing 푛 items takes time proportional to 푛 (not 푛 ).  

 

For simplicity, let us assume that initially we started with 푛 =  1 and moved up to 푛 =  32. That means, we do the doubling at 1, 2, 4, 8, 16. 
The other way of analyzing the same approach is: at 푛 =  1, if we want to add (push) an element, double the current size of the array and 
copy all the elements of the old array to the new array.  
 

At 푛 =  1, we do 1 copy operation, at 푛 =  2, we do 2 copy operations, and at n = 4, we do 4 copy operations and so on. By the time we 
reach 푛 =  32, the total number of copy operations is 1 +  2 +  4 +  8 + 16 =  31 which is approximately equal to 2푛 value (32). If we 
observe carefully, we are doing the doubling operation 푙표푔푛 times. Now, let us generalize the discussion. For 푛 push operations we double 
the array size 푙표푔푛 times. That means, we will have 푙표푔푛 terms in the expression below. The total time 푇(푛) of a series of 푛 push operations 
is proportional to 
 

1 +  2 +  4 + 8 … +
푛
4 +

푛
2 +  푛 =  푛 + 

푛
2  + 

푛
4 +

푛
8 … + 4 + 2 +  1                 

                                                               =  푛 1 + 
1
2 + 

1
4 +

1
8 … +

4
푛 +

2
푛 + 

1
푛  

                                                               =  푛(2 )   2푛 = O(푛) 
 

푇(푛) is O(푛) and the amortized time of a push operation is O(1) . 
 

      public class DynamicArrayStack{ 
 // Length of the array used to implement the stack. 
 protected int capacity; 
 

 // Default array capacity. 
 public static final int CAPACITY = 16; // power of 2 
 public static int MINCAPACITY=1<<15;   // power of 2 
 // Array used to implement the stack. 
 protected int[] stackRep; 
 // Index of the top element of the stack in the array. 
 protected int top = -1; 
 // Initializes the stack to use an array of default length. 
 public DynamicArrayStack() { 
  this(CAPACITY);   // default capacity 
 } 
 // Initializes the stack to use an array of given length. 
 public DynamicArrayStack(int cap) { 
  capacity = cap; 
  stackRep = new int[capacity];  // compiler may give warning, but this is ok 
 } 
 // Returns the number of elements in the stack. This method runs in O(1) time. 
 public int size() { 
  return (top + 1); 
 } 
 // Testes whether the stack is empty. This method runs in O(1) time. 
 public boolean isEmpty() { 
  return (top < 0); 
 } 
 // Inserts an element at the top of the stack. This method runs in O(1) time. 
 public void push(int data) throws Exception { 
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  if (size() == capacity) 
       expand(); 
  stackRep[++top] = data; 
 } 
 private void expand() { 
  int length = size(); 
  int[] newstack=new int[length<<1]; 
  System.arraycopy(stackRep,0,newstack,0,length); 
  stackRep=newstack; 
                         this.capacity = this.capacity<<1; 
 } 
 // dynamic array operation: shrinks to 1/2 if more than than 3/4 empty 
 private void shrink() { 
  int length = top + 1; 
  if(length<=MINCAPACITY || top<<2 >= length)  
       return; 
  length=length + (top<<1); // still means shrink to at 1/2 or less of the heap 
  if(top<MINCAPACITY) length = MINCAPACITY; 
  int[] newstack=new int[length]; 
  System.arraycopy(stackRep,0,newstack,0,top+1); 
  stackRep=newstack; 
                         this.capacity = length; 
 } 
 // Inspects the element at the top of the stack. This method runs in O(1) time. 
 public int top() throws Exception { 
  if (isEmpty()) 
       throw new Exception("Stack is empty."); 
  return stackRep[top]; 
 } 
 // Removes the top element from the stack. This method runs in O(1) time. 
 public int pop() throws Exception { 
  int data; 
  if (isEmpty()) 
   throw new Exception("Stack is empty."); 
  data = stackRep[top]; 
  stackRep[top--] = Integer.MIN_VALUE; // dereference S[top] for garbage collection. 
                         shrink(); 
  return data; 
 } 
 // Returns a string representation of the stack as a list of elements, with 
 // the top element at the end: [ ... , prev, top ]. This method runs in O(n) 
 // time, where n is the size of the stack. 
 public String toString() { 
  String s; 
  s = "["; 
  if (size() > 0) 
   s += stackRep[0]; 
  if (size() > 1) 
   for (int i = 1; i <= size() - 1; i++) { 
    s += ", " + stackRep[i]; 
   } 
  return s + "]"; 
 } 
      } 
 

Performance: Let 푛 be the number of elements in the stack. The complexities for operations with this representation can be given as: 
 

Space Complexity (for 푛 push operations) O(푛) 
Time Complexity of create Stack: DynArrayStack () O(1) 
Time Complexity of push() O(1) (Average) 
Time Complexity of pop() O(1) 
Time Complexity of top() O(1) 
Time Complexity of isEmpty() O(1) 
Time Complexity of isStackFull () O(1) 
Time Complexity of deleteStack() O(1) 

 

Note: Too many doublings may cause memory overflow exception. 
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Linked List Implementation 
 

The other way of implementing stacks is by using Linked lists. Push operation is implemented by inserting element at the beginning of the 
list. Pop operation is implemented by deleting the node from the beginning (the header/top node). 
 
 
 
 
 
 

      public class LinkedStack<T>{ 
 private int length;    // indicates the size of the linked list 
 private ListNode top;  
 //  Constructor: Creates an empty stack. 
 public LinkedStack()  { 
  length = 0; 
  top = null; 
 } 
 //  Adds the specified data to the top of this stack. 
 public void push (int data)  { 
  ListNode temp = new ListNode (data); 
  temp.next = top; 
  top = temp; 
  length++; 
 } 
 //  Removes the data at the top of this stack and returns a 
 //  reference to it. Throws an EmptyStackException if the stack 
 //  is empty. 
 public int pop() throws EmptyStackException{ 
  if (isEmpty()) 
   throw new EmptyStackException(); 
  int result = top.data; 
  top = top.next; 
  length--; 
  return result; 
 }     
 // Returns a reference to the data at the top of this stack. 
 // The data is not removed from the stack.  Throws an 
 // EmptyStackException if the stack is empty.   
 public int peek() throws EmptyStackException{ 
  if (isEmpty()) 
   throw new EmptyStackException();  
 

  return top.data; 
 } 
 // Returns true if this stack is empty and false otherwise.  
 public boolean isEmpty(){ 
  return (length == 0); 
 } 
 // Returns the number of elements in the stack. 
 public int size(){ 
  return length; 
 } 
 // Returns a string representation of this stack.    
 public String toString(){ 
  String result = ""; 
  ListNode current = top; 
  while (current != null){ 
   result = result + current.toString() + "\n"; 
   current = current.next; 
  } 
  return result; 
 } 
      } 

Performance 
 

Let 푛 be the number of elements in the stack. The complexities for operations with this representation can be given as: 
 

    4    15     7    40 None 

top 
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Space complexity (for 푛 push operations) O(푛) 
Time complexity of createStack() O(1) 
Time complexity of push() O(1) (Average) 
Time complexity of pop() O(1) 
Time complexity of top() O(1) 
Time complexity of isEmpty() O(1) 
Time complexity of deleteStack() O(푛) 

4.6 Comparison of Implementations 
Comparing Incremental Strategy and Doubling Strategy 
 

We compare the incremental strategy and doubling strategy by analyzing the total time 푇(푛) needed to perform a series of 푛 push operations. 
We start with an empty stack represented by an array of size 1. We call 푎푚표푟푡푖푧푒푑 time of a push operation is the average time taken by a 

push over the series of operations, that is,
( ). 

 

Incremental Strategy 
 

The amortized time (average time per operation) of a push operation is O(푛) [O(푛 )/푛 ]. 
 

Doubling Strategy 
  

In this method, the amortized time of a push operation is O(1) [O(푛)/푛]. 
 

Note: For analysis, refer to the 퐼푚푝푙푒푚푒푛푡푎푡푖표푛 section. 

Comparing Array Implementation and Linked List Implementation 
 

Array Implementation 
 

 Operations take constant time. 
 Expensive doubling operation every once in a while. 
 Any sequence of 푛 operations (starting from empty stack) – "푎푚표푟푡푖푧푒푑" bound takes time proportional to 푛. 

 

Linked List Implementation 
 

 Grows and shrinks gracefully. 
 Every operation takes constant time O(1). 
 Every operation uses extra space and time to deal with references. 

4.8 Stacks: Problems & Solutions 
 

Problem-1 Discuss how stacks can be used for checking balancing of symbols/parentheses. 
 

Solution: Stacks can be used to check whether the given expression has balanced symbols. This algorithm is very useful in compilers. Each 
time the parser reads one character at a time. If the character is an opening delimiter such as (, {, or [- then it is written to the stack. When a 
closing delimiter is encountered like ), }, or ]- the stack is popped.  
 

The opening and closing delimiters are then compared. If they match, the parsing of the string continues. If they do not match, the parser 
indicates that there is an error on the line. A linear-time O(푛) algorithm based on stack can be given as: 
 

Algorithm: 
a) Create a stack. 
b) while (end of input is not reached) { 

1) If the character read is not a symbol to be balanced, ignore it. 
2) If the character is an opening symbol like (, [, {, push it onto the stack 
3) If it is a closing symbol like ),],}, then if the stack is empty report an error. Otherwise pop the stack. 
4) If the symbol popped is not the corresponding opening symbol, report an error. 

} 
c) At end of input, if the stack is not empty report an error 

  

Examples: 
Example Valid? Description 
(A+B)+(C-D) Yes The expression has a balanced symbol 
((A+B)+(C-D) No One closing brace is missing 
((A+B)+[C-D]) Yes Opening and immediate closing braces correspond 
((A+B)+[C-D]} No The last closing brace does not correspond with the first opening parenthesis 

 

For tracing the algorithm let us assume that the input is: () (() [()]) 
 

Input Symbol, A[i]  Operation Stack Output 

( Push ( (  
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) Pop (  
Test if ( and A[i] match?     YES 

  

( Push ( (  

( Push ( ((  

) Pop ( 
Test if ( and A[i] match?      YES 

(  

[ Push [    ([  

( Push ( ([(  

) 
Pop ( 
Test if( and A[i] match?      YES ([  

] 
Pop [ 
Test if [ and A[i] match?      YES (  

) Pop ( 
Test if( and A[i]  match?      YES 

  

 Test if stack is Empty?         YES  TRUE 
 

Time Complexity: O(푛). Since we are scanning the input only once. Space Complexity: O(푛) [for stack]. 
 

    public boolean isValidSymbolPattern(String s) { 
        Stack<Character> stk = new Stack<Character>(); 
        if(s == null || s.length() == 0) 
            return true; 
        for(int i = 0; i < s.length(); i++){ 
            if(s.charAt(i) == ')'){ 
                if(!stk.isEmpty() && stk.peek() == '(') 
                    stk.pop(); 
                else 
                    return false; 
            }else if(s.charAt(i) == ']'){ 
                if(!stk.isEmpty() && stk.peek() == '[') 
                    stk.pop(); 
                else 
                    return false; 
            }else if(s.charAt(i) == '}'){ 
                if(!stk.isEmpty() && stk.peek() == '{') 
                    stk.pop(); 
                else 
                    return false; 
            }else{ 
                stk.push(s.charAt(i)); 
            } 
        } 
        if(stk.isEmpty()) 
            return true; 
        else 
            return false; 
    } 
 

Problem-2 Discuss infix to postfix conversion algorithm using stack. 
 

Solution: Before discussing the algorithm, first let us see the definitions of infix, prefix and postfix expressions. 
 

Infix: An infix expression is a single letter, or an operator, proceeded by one infix string and followed by another Infix string.   

  A 
 A+B 
(A+B)+ (C-D) 

 

Prefix:  A prefix expression is a single letter, or an operator, followed by two prefix strings. Every prefix string longer than a single variable 
contains an operator, first operand and second operand. 
 

 A 
 +AB 
 ++AB-CD 
 

Postfix: A postfix expression (also called Reverse Polish Notation) is a single letter or an operator, preceded by two postfix strings. Every 
postfix string longer than a single variable contains first and second operands followed by an operator. 
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 A 
 AB+ 
 AB+CD-+ 
 

Prefix and postfix notions are methods of writing mathematical expressions without parenthesis. Time to evaluate a postfix and prefix 
expression is O(푛), where 푛 is the number of elements in the array. 
 

Infix Prefix Postfix 
A+B +AB AB+ 

A+B-C -+ABC AB+C- 

(A+B)*C-D -*+ABCD AB+C*D- 
 

Now, let us focus on the algorithm. In infix expressions, the operator precedence is implicit unless we use parentheses. Therefore, for the 
infix to postfix conversion algorithm we have to define the operator precedence (or priority) inside the algorithm. The table shows the 
precedence and their associativity (order of evaluation) among operators. 
 
 

Token Operator Precedence Associativity 
( ) 
[ ] 
→ . 

function call 
array element 
struct or union member 

17 left-to-right 

-- ++ increment, decrement 16 left-to-right 
-- ++ 
! 
- 
- + 
& * 
sizeof 

decrement, increment 

logical not 
one’s complement 
unary minus or plus 
address or indirection 
size (in bytes) 

15 right-to-left 

(type) type cast 14 right-to-left 
* / % multiplicative 13 Left-to-right 

+ - binary add or subtract 12 left-to-right 
<< >> shift 11 left-to-right 
> >= 
< <= 

relational 
 

10 left-to-right 

== != equality 9 left-to-right 

& bitwise and 8 left-to-right 

^ bitwise exclusive or 7 left-to-right 
| bitwise or 6 left-to-right 
&& logical and 5 left-to-right 

|| logical or 4 left-to-right 

?: conditional 3 right-to-left 
=  += -= /= *= %= 
<<= >>= 
&= ^=  

assignment 2 right-to-left 

, comma 1 left-to-right 
 

Important Properties 
 

 Let us consider the infix expression 2 + 3 * 4 and its postfix equivalent 2 3 4 * +. Notice that between infix and postfix the order of 
the numbers (or operands) is unchanged. It is 2 3 4 in both cases. But the order of the operators * and + is affected in the two 
expressions. 

 Only one stack is enough to convert an infix expression to postfix expression. The stack that we use in the algorithm will be used to 
change the order of operators from infix to postfix. The stack we use will only contain operators and the open parentheses symbol 
‘(‘.  
Postfix expressions do not contain parentheses. We shall not output the parentheses in the postfix output. 
 

Algorithm: 
a) Create a stack 
b) for each character t in the input stream{ 

if(t is an operand) 
output t 

else if(t is a right parenthesis){ 
Pop and output tokens until a left parenthesis is popped (but not output) 

} 
else // t is an operator or left parenthesis{ 

pop and output tokens until one of lower priority than t is encountered or a left  parenthesis is encountered or the 
stack is empty 
Push t 

} 
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} 
c) pop and output tokens until the stack is empty 
 

For better understanding let us trace out an example: A * B- (C + D) + E 
 

Input Character Operation on Stack Stack Postfix Expression 
A  Empty A 
* Push * A 
B  * AB 
- Check and Push - AB* 
( Push -( AB* 
C  -( AB*C 
+ Check and Push -(+ AB*C 
D   AB*CD 
) Pop and append to postfix till ‘(’ - AB*CD+ 
+ Check and Push + AB*CD+-  
E  + AB*CD+-E  

End of input Pop till empty  AB*CD+-E+  
 

Problem-3 For a given array with 푛 symbols how many stack permutations are possible? 
 

Solution: The number of stack permutations with 푛 symbols is represented by 퐶푎푡푎푙푎푛 푛푢푚푏푒푟 and we will discuss this in 
퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter. 
 

Problem-4 Discuss postfix evaluation using stacks? 
 

Solution:    
 

Algorithm: 
1  Scan the Postfix string from left to right. 
2  Initialize an empty stack. 
3  Repeat steps 4 and 5 till all the characters are scanned. 
4  If the scanned character is an operand, push it onto the stack.  
5  If the scanned character is an operator, and if the operator is a unary operator, then pop an element from the stack. If the operator 

is a binary operator, then pop two elements from the stack. After popping the elements, apply the operator to those popped 
elements. Let the result of this operation be retVal onto the stack.  

6  After all characters are scanned, we will have only one element in the stack. 
7  Return top of the stack as result. 

 

Example: Let us see how the above-mentioned algorithm works using an example. Assume that the postfix string is 123*+5-.  
 

Initially the stack is empty. Now, the first three characters scanned are 1, 2 and 3, which are operands. They will be pushed into the stack in 
that order.  
 

 

 

 
 

The next character scanned is "*", which is an operator. Thus, we pop the top two elements from the stack and perform the "*" operation with 
the two operands. The second operand will be the first element that is popped. 
  
 
 
 
 
 

 
 
 
 
 

 

The value of the expression (2*3) that has been evaluated (6) is pushed into the stack. 

 

 

 
 
 

 

Expression 

Stack 

3 

2 

1 

2*3=6 

Expression 

Stack 

 

 

1 

 

Expression 

Stack 

 

6 

1 
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The next character scanned is "+", which is an operator. Thus, we pop the top two elements from the stack and perform the "+" operation with 
the two operands. The second operand will be the first element that is popped. 
 
  
 
 
 

 

 

The value of the expression (1+6) that has been evaluated (7) is pushed into the stack. 

  

 

 

 
 
 

The next character scanned is "5", which is added to the stack. 
 
 

 

 

 
 
 

The next character scanned is "-", which is an operator. Thus, we pop the top two elements from the stack and perform the "-" operation with 
the two operands. The second operand will be the first element that is popped.  

 

 

 

 
 
The value of the expression(7-5) that has been evaluated(23) is pushed into the stack. 
  

 

 

 

 
 

 

Now, since all the characters are scanned, the remaining element in the stack (there will be only one element in the stack) will be returned. 
End result: 
 

 Postfix String : 123*+5- 
 Result : 2 

 

    public int expressionEvaluation(String[] tokens) { 
        Stack<Integer> s = new Stack<Integer>(); 
        for(String token : tokens){ 
            if(token.equals("+")){ 
                int op1 = s.pop(); 
                int op2 = s.pop(); 
                int res = op1+op2; 
                s.push(res); 
            }else if(token.equals("-")){ 
                int op1 = s.pop(); 
                int op2 = s.pop(); 

1 + 6 = 7 
 

Expression 

Stack 

 

 

 

 

Expression 

Stack 

 

 

7 

 

Expression 

Stack 

 

5 

7 

7 - 5 = 2 
 

Expression 

Stack 

 

 

 

 

Expression 

Stack 

 

 

2 
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                int res = op2-op1; 
                s.push(res); 
            }else if(token.equals("*")){ 
                int op1 = s.pop(); 
                int op2 = s.pop(); 
                int res = op1 * op2; 
                s.push(res); 
            }else if(token.equals("/")){ 
                int op1 = s.pop(); 
                int op2 = s.pop(); 
                int res = op2 / op1; 
                s.push(res); 
            }else{ 
                s.push(Integer.parseInt(token)); 
            } 
        } 
        return s.pop(); 
    } 
 

Problem-5 Can we evaluate the infix expression with stacks in one pass? 
 

Solution: Using 2 stacks we can evaluate an infix expression in 1 pass without converting to postfix. 
 

Algorithm: 
1) Create an empty operator stack 
2) Create an empty operand stack 
3) For each token in the input string 

a. Get the next token in the infix string 
b. If next token is an operand, place it on the operand stack 
c. If next token is an operator 

i. Evaluate the operator (next op) 
4) While operator stack is not empty, pop operator and operands (left and right), evaluate left operator right and push result onto 

operand stack 
5) Pop result from operator stack 

 

Problem-6 How to design a stack such that getMinimum( ) should be O(1)? 
 

Solution: Take an auxiliary stack that maintains the minimum of all values in the stack. Also, assume that each element of the stack is less 
than its below elements. For simplicity let us call the auxiliary stack 푚푖푛 푠푡푎푐푘.  
 

When we 푝표푝 the main stack, 푝표푝 the min stack too. When we push the main stack, push either the new element or the current minimum, 
whichever is lower. At any point, if we want to get the minimum, then we just need to return the top element from the min stack. Let us take 
an example and trace it out. Initially let us assume that we have pushed 2, 6, 4, 1 and 5. Based on the above-mentioned algorithm the 
푚푖푛 푠푡푎푐푘 will look like: 
  

Main stack Min stack 
5  → top 1 → top 
1 1 
4 2 
6 2 
2 2 

 

After popping twice we get: 
 

Main stack Min stack 
4  -→ top 2 → top 
6 2 
2 2 

 

Based on the discussion above, now let us code the push, pop and getMinimum() operations.. 
 

     public class AdvancedStack implements Stack{ 
 private Stack elementStack = new LLStack(); 
 private Stack minStack = new LLStack(); 
 public void push(int data){ 
  elementStack.push(data);   
  if(minStack.isEmpty() || (Integer)minStack.top() >= (Integer)data){ 
    minStack.push(data); 
  }else{ 
   minStack.push(minStack.top()); 
  }   
 } 
 public int pop(){ 
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  if(elementStack.isEmpty()) return null; 
  minStack.pop(); 
  return elementStack.pop();   
 } 
 public int getMinimum(){ 
  return minStack.top(); 
 } 
 public int top(){ 
  return elementStack.top(); 
 } 
 public boolean isEmpty(){ 
  return elementStack.isEmpty(); 
 } 
     } 
 

Time complexity: O(1). Space complexity: O(푛) [for Min stack]. This algorithm has much better space usage if we rarely get a "new minimum 
or equal". 
 

Problem-7 For Problem-6 is it possible to improve the space complexity? 
 

Solution: 퐘퐞퐬. The main problem of the previous approach is, for each push operation we are pushing the element on to min stack also 
(either the new element or existing minimum element). That means, we are pushing the duplicate minimum elements on to the stack. 
 

Now, let us change the algorithm to improve the space complexity. We still have the min stack, but we only pop from it when the value we 
pop from the main stack is equal to the one on the min stack. We only 푝푢푠ℎ to the min stack when the value being pushed onto the main 
stack is less than 표푟 푒푞푢푎푙 to the current min value. In this modified algorithm also, if we want to get the minimum then we just need to return 
the top element from the min stack. For example, taking the original version and pushing 1 again, we'd get: 
 

Main stack Min stack 
1 → top  
5 
1 
4 1 → top 
6 1 
2 2 

 

Popping from the above pops from both stacks because 1 ==  1, leaving: 
 

Main stack Min stack 
5  → top  
1 
4 
6 1 → top 
2 2 

 

Popping again 표푛푙푦 pops from the main stack, because 5 >  1: 
 

Main stack Min stack 
1  → top  
4 
6 1 → top 
2 2 

 

Popping again pops both stacks because 1 == 1: 
 

Main stack Min stack 
4 → top  
6 
2 2 → top 

 

Note: The difference is only in push & pop operations. 
 

     public class AdvancedStack  implements Stack{ 
 private Stack elementStack = new LLStack(); 
 private Stack minStack = new LLStack(); 
 public void Push(int data){ 
  elementStack.push(data);   
  if(minStack.isEmpty() || (Integer)minStack.top() >= (Integer)data){ 
    minStack.push(data); 
  }   
 } 
 public int Pop(){ 
  if(elementStack.isEmpty())  
   return null; 
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  Integer minTop = (Integer) minStack.top(); 
  Integer elementTop = (Integer) elementStack.top(); 
  if(minTop.intValue() == elementTop.intValue())  
   minStack.pop(); 
  return elementStack.pop();   
 } 
 public int GetMinimum(){ 
  return minStack.top(); 
 } 
 public int Top(){ 
  return elementStack.top(); 
 } 
 public boolean isEmpty(){ 
  return elementStack.isEmpty(); 
 } 
     } 
 

Time complexity: O(1). Space complexity: O(푛) [for Min stack]. But this algorithm has much better space usage if we rarely get a "new 
minimum or equal". 
 

Problem-8 Given an array of characters formed with a’s and b’s. The string is marked with special character X which represents the 
middle of the list (for example: ababa…ababXbabab…..baaa). Check whether the string is palindrome. 

 

Solution: This is one of the simplest algorithms. What we do is, start two indexes, one at the beginning of the string and the other at the end 
of the string. Each time compare whether the values at both the indexes are the same or not. If the values are not the same then we say that 
the given string is not a palindrome. If the values are the same then increment the left index and decrement the right index. Continue this 
process until both the indexes meet at the middle (at X) or if the string is not palindrome. 
 

     public int isPalindrome(String inputStr) { 
 int i=0, j = inputStr.length; 
 while(i < j && A[i] == A[j]) { 
  i++; 
  j--; 
 } 
 if(i < j ) { 
  System.out.println("Not a Palindrome"); 
  return 0; 

} 
 else { 
  System.out.println(“Palindrome"); 
  return 1; 

} 
     } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-9 For Problem-8, if the input is in singly linked list then how do we check whether the list elements form a palindrome 
(That means, moving backward is not possible). 

 

Solution:  Refer to 퐿푖푛푘푒푑 퐿푖푠푡푠 chapter. 
 

Problem-10 Can we solve Problem-8 using stacks? 
 

Solution: Yes. 
 

Algorithm 
 Traverse the list till we encounter X as input element. 
 During the traversal push all the elements (until X) on to the stack. 
 For the second half of the list, compare each element’s content with top of the stack. If they are the same then pop the stack and 

go to the next element in the input list. 
 If they are not the same then the given string is not a palindrome. 
 Continue this process until the stack is empty or the string is not a palindrome. 

 

     public boolean isPalindrome(String inputStr){ 
 char inputChar[] = inputStr.toCharArray(); 
 Stack s = new LLStack(); 
 int i=0; 
 while(inputChar[i] != 'X'){    
  s.push(inputChar[i]); 
  i++; 
 } 
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 i++; 
 while(i<inputChar.length){    
  if(s.isEmpty()) return false;    
  if(inputChar[i] != ((Character)s.pop()).charValue()) return false; 
  i++; 
 } 
 return true; 
     } 
 

Time Complexity: O(푛). Space Complexity: O(푛/2) ≈ O(푛). 
 

Problem-11 Given a stack, how to reverse the contents of the stack using only stack operations (push and pop)? 
 

Solution:  
Algorithm 

 First pop all the elements of the stack till it becomes empty.  
 For each upward step in recursion, insert the element at the bottom of the stack.  

 

     public class StackReversal { 
 public static void reverseStack(Stack stack){ 
  if(stack.isEmpty()) return; 
  int temp = stack.pop();  
  reverseStack(stack);  
  insertAtBottom(stack, temp);  
 }  
 private static void insertAtBottom(Stack stack , int data){  
  if(stack.isEmpty()){ 
   stack.push(data); 
   return; 
  } 
  int temp = stack.pop(); 
  insertAtBottom(stack, data);  
  stack.push(temp);   
 } 
     } 
 

Time Complexity: O(푛 ). Space Complexity: O(푛),  for recursive stack. 
 

Problem-12 Show how to implement one queue efficiently using two stacks. Analyze the running time of the queue operations. 
 

Solution:   Refer 푄푢푒푢푒푠 chapter. 
 

Problem-13 Show how to implement one stack efficiently using two queues. Analyze the running time of the stack operations. 
 

Solution:  Refer 푄푢푒푢푒푠 chapter. 
 

Problem-14 How do we implement 푡푤표 stacks using only one array? Our stack routines should not indicate an exception unless every 
slot in the array is used? 

 

Solution:  
 
 
 
 
Algorithm: 

 Start two indexes one at the left end and the other at the right end. 
 The left index simulates the first stack and the right index simulates the second stack. 
 If we want to push an element into the first stack then put the element at the left index. 
 Similarly, if we want to push an element into the second stack then put the element at the right index. 
 The first stack grows towards the right, and the second stack grows towards the left. 

 

Time Complexity of push and pop for both stacks is O(1). Space Complexity is O(1). 
 

     public class ArrayWithTwoStacks{ 
 private int[] dataArray; 
 private int size, topOne,  topTwo; 
 public ArrayWithTwoStacks(int size){ 
  if(size<2) throw new IllegalStateException("size < 2 is no persmissible"); 
  dataArray = new int[size]; 
  this.size = size; 
  topOne = -1; 
  topTwo = size; 

Stack-1      Stack-2 
Top1  Top2 
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 } 
 public void push(int stackId, int data){ 
  if(topTwo == topOne+1) throw new StackOverflowException("Array is full"); 
  if(stackId == 1){ 
   dataArray[++topOne] = data;    
  }else if(stackId == 2){ 
   dataArray[--topTwo] = data; 
  }else return; 
 }  
 public int pop(int stackId){ 
  if(stackId == 1){ 
   if(topOne == -1) throw new EmptyStackException("First Stack is Empty"); 
   int toPop = dataArray[topOne];     
   dataArray[topOne--] = null; 
   return toPop; 
  }else if(stackId == 2){ 
   if(topTwo == this.size) throw new EmptyStackException("Second Stack is Empty"); 
   int toPop = dataArray[topTwo];     
   dataArray[topTwo++] = null; 
   return toPop;    
  }else return null; 
 } 
 public int top(int stackId){ 
  if(stackId == 1){ 
   if(topOne == -1) throw new EmptyStackException("First Stack is Empty"); 
    return dataArray[topOne]; 
   }else if(stackId == 2){ 
    if(topTwo == this.size)  
                                                                      throw new EmptyStackException("Second Stack is Empty"); 
    return dataArray[topTwo]; 
   }else return null; 
 } 
 public boolean isEmpty(int stackId){ 
  if(stackId == 1){ 
   return topOne == -1; 
  }else if(stackId == 2){ 
   return topTwo == this.size; 
  }else return true; 
 } 
     } 
 

Problem-15 3 stacks in one array: How to implement 3 stacks in one array? 
 

Solution: For this problem, there could be other ways of solving it. Given below is one possibility and it works as long as there is an empty 
space in the array. 
 
 
 
 
 
 

To implement 3 stacks we keep the following information.  
 The index of the first stack (Top1): this indicates the size of the first stack.  
 The index of the second stack (Top2): this indicates the size of the second stack.  
 Starting index of the third stack (base address of third stack). 
 Top index of the third stack. 

 

Now, let us define the push and pop operations for this implementation. 
 

Pushing: 
 For pushing on to the first stack, we need to see if adding a new element causes it to bump into the third stack. If so, try to shift the 

third stack upwards. Insert the new element at (start1 + Top1). 
 For pushing to the second stack, we need to see if adding a new element causes it to bump into the third stack. If so, try to shift the 

third stack downward. Insert the new element at (start2 – Top2). 
 When pushing to the third stack, see if it bumps into the second stack. If so, try to shift the third stack downward and try pushing 

again. Insert the new element at (start3 + Top3). 
 

Time Complexity: O(푛). Since, we may need to adjust the third stack. Space Complexity: O(1). 
 

Popping: For popping, we don’t need to shift, just decrement the size of the appropriate stack. 
Time Complexity: O(1). Space Complexity: O(1). 
 

Stack-1 Stack-3 
    Stack-2 

Top1 Top3 Top2 
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One Possible Implementation 
 

     public class ArrayWithThreeStacks { 
 private int[] dataArray; 
 private int size, topOne, topTwo, baseThree, topThree; 
 public ArrayWithThreeStacks(int size){ 
  if(size<3) throw new IllegalStateException("Size < 3 is no persmissible"); 
  dataArray = new int[size]; 
  this.size = size; 
  topOne = -1; 
  topTwo = size; 
  baseThree = size/2; 
  topThree = baseThree; 
 } 
 public void push(int stackId, int data){   
  if(stackId == 1){ 
   if(topOne+1 == baseThree){ 
    if(stack3IsRightShiftable()){ 
     shiftStack3ToRight(); 
     dataArray[++topOne] = data;  
    }else throw new StackOverflowException("Stack1 has reached max limit");  
   }else dataArray[++topOne] = data; 
  }else if(stackId == 2){ 
   if(topTwo-1 == topThree){ 
    if(stack3IsLeftShiftable()){ 
     shiftStack3ToLeft(); 
     dataArray[--topTwo] = data;  
    }else throw new StackOverflowException("Stack2 has reached max limit");  
   }else dataArray[--topTwo] = data; 
  }else if(stackId == 3){ 
   if(topTwo-1 == topThree){ 
    if(stack3IsLeftShiftable()){ 
     shiftStack3ToLeft(); 
     dataArray[++topThree] = data;  
    }else throw new StackOverflowException("Stack3 has reached max limit");  
   }else dataArray[++topThree] = data; 
  }else return; 
 }   
 public int pop(int stackId){ 
  if(stackId == 1){ 
   if(topOne == -1) throw new EmptyStackException("First Stack is Empty"); 
   int toPop = dataArray[topOne];     
   dataArray[topOne--] = null; 
   return toPop; 
  }else if(stackId == 2){ 
   if(topTwo == this.size) throw new EmptyStackException("Second Stack is Empty"); 
   int toPop = dataArray[topTwo];     
   dataArray[topTwo++] = null; 
   return toPop;  
  }else if(stackId == 3){ 
   if(topThree == this.size && dataArray[topThree] == null)  
    throw new EmptyStackException("Third Stack is Empty"); 
   int toPop = dataArray[topThree];     
   if(topThree > baseThree) dataArray[topThree--] = null; 
   if(topThree == baseThree) dataArray[topThree] = null; 
   return toPop;  
  }else return null; 
 } 
 public int top(int stackId){ 
  if(stackId == 1){ 
   if(topOne == -1) throw new EmptyStackException("First Stack is Empty"); 
    return dataArray[topOne]; 
   }else if(stackId == 2){ 
    if(topTwo == this.size)  
                                                                           throw new EmptyStackException("Second Stack is Empty"); 
    return dataArray[topTwo]; 
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   }else if(stackId == 3){ 
    if(topThree == baseThree && dataArray[baseThree] == null)  
     throw new EmptyStackException("Third Stack is Empty"); 
    return dataArray[topThree]; 
   }else return null; 
 } 
 public boolean isEmpty(int stackId){ 
  if(stackId == 1){ 
    return topOne == -1; 
  }else if(stackId == 2){ 
   return topTwo == this.size; 
  }else if(stackId == 3){ 
   return (topThree == baseThree) && (dataArray[baseThree] == null); 
  }else return true; 
 } 
 private void shiftStack3ToLeft() { 
  for(int i=baseThree-1; i<=topThree-1;i++){ 
   dataArray[i] = dataArray[i+1]; 
  } 
  dataArray[topThree--] = null; 
  baseThree--;   
 } 
 private boolean stack3IsLeftShiftable() { 
  if(topOne+1 < baseThree){ 
   return true; 
  } 
  return false; 
 } 
 private void shiftStack3ToRight() { 
  for(int i=topThree+1; i>=baseThree+1;i--){ 
   dataArray[i] = dataArray[i-1]; 
  } 
  dataArray[baseThree++] = null; 
  topThree++;   
 } 
 private boolean stack3IsRightShiftable() { 
  if(topThree+1 < topTwo){ 
   return true; 
  } 
  return false; 
 } 
     } 
 

Problem-16 For Problem-15, is there any other way of implementing the middle stack? 
 

Solution: Yes. When either the left stack (which grows to the right) or the right stack (which grows to the left) bumps into the middle stack, 
we need to shift the entire middle stack to make room. The same happens if a push on the middle stack causes it to bump into the right stack.  
 

To solve the above-mentioned problem (number of shifts) what we can do is: alternating pushes can be added at alternating sides of the middle 
list (For example, even elements are pushed to the left, odd elements are pushed to the right). This would keep the middle stack balanced in 
the center of the array but it would still need to be shifted when it bumps into the left or right stack, whether by growing on its own or by the 
growth of a neighboring stack. 
 

We can optimize the initial locations of the three stacks if they grow/shrink at different rates and if they have different average sizes. For 
example, suppose one stack doesn't change much. If we put it at the left, then the middle stack will eventually get pushed against it and leave 
a gap between the middle and right stacks, which grow toward each other. If they collide, then it's likely we've run out of space in the array. 
There is no change in the time complexity but the average number of shifts will get reduced. 
 

Problem-17 Multiple (푚) stacks in one array: Similar to Problem-15, what if we want to implement 푚 stacks in one array? 
 

Solution: Let us assume that array indexes are from 1 to n. Similar to the discussion in Problem-15, to implement 푚 stacks in one array, we 
divide the array into 푚 parts (as shown below). The size of each part is . 

 

 

 Top[m+1] 

푛
푚

 1 
2푛
푚

 n 

A 

Base[1] 
Top[1] 

Base[2] 
Top[2] 

Base[3] 

Top[3] 
Base[m+1] 
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From the above representation we can see that, first stack is starting at index 1 (starting index is stored in Base[1]), second stack is starting at 

index  (starting index is stored in Base[2]), third stack is starting at index  (starting index is stored in Base[3]), and so on. Similar to 퐵푎푠푒 
array, let us assume that 푇표푝 array stores the top indexes for each of the stack. Consider the following terminology for the discussion.  
 

 Top[i], for 1 ≤  푖 ≤  푚 will point to the topmost element of the stack 푖. 
 If Base[i] == Top[i], then we can say the stack 푖 is empty. 
 If Top[i] == Base[i+1], then we can say the stack i is full. 

Initially Base[i] = Top[i] = (푖 − 1), for 1 ≤  푖 ≤  푚. 

 The 푖 stack grows from Base[i]+1 to Base[i+1]. 
 

Pushing on to 풊풕풉 stack: 
 

1) For pushing on to the 푖  stack, we check whether the top of 푖  stack is pointing to Base[i+1] (this case defines that 푖  stack is full). 
That means, we need to see if adding a new element causes it to bump into the 푖 + 1  stack. If so, try to shift the stacks from 
푖 + 1  stack to 푚  stack toward the right. Insert the new element at (Base[i] + Top[i]). 

2) If right shifting is not possible then try shifting the stacks from 1 to 푖 − 1  stack toward the left.  
3) If both of them are not possible then we can say that all stacks are full. 

 

     public void Push(int StackID, int data){ 
 if(Top[i] == Base[i+1]) 
  Print 푖  Stack is full and does the necessary action (shifting); 
 Top[i] = Top[i]+1; 
 A[Top[i]] = data; 
     } 
 

Time Complexity: O(푛). Since we may need to adjust the stacks. Space Complexity: O(1). 
 

Popping from 퐢퐭퐡 stack: For popping, we don’t need to shift, just decrement the size of the appropriate stack. The only case we need to check 
is stack empty case. 
 

     public int Pop(int StackID) { 
 if(Top[i] == Base[i]) 
  Print 푖  Stack is empty; 
 return  A[Top[i]--]; 
     } 
 

Time Complexity: O(1). Space Complexity: O(1). 
 

Problem-18 Consider an empty stack of integers. Let the numbers 1, 2, 3, 4, 5, 6 be pushed on to this stack in the order they appear 
from left to right. Let 푆 indicate a push and 푋 indicate a pop operation. Can they be permuted in to the order 325641(output) and order 
154623? (If a permutation is possible give the order string of operations. 
 

Solution: SSSXXSSXSXXX outputs 325641. 154623 cannot be output as 2 is pushed much before 3 so can appear only after 3 is output. 
 

Problem-19 Suppose there are two singly linked lists which intersect at some point and become a single linked list. The head or start 
pointers of both the lists are known, but the intersecting node is not known. Also, the number of nodes in each of the lists before they 
intersect are unknown and both lists may have a different number. 퐿푖푠푡1 may have 푛 nodes before it reaches the intersection point and 
퐿푖푠푡2 may have 푚 nodes before it reaches the intersection point where 푚 and 푛 may be 푚 =  푛, 푚 <  푛 or 푚 >  푛. Can we find the 
merging point using stacks? 

 
 

 
 

 
      
 
 
 
 

Solution:  Yes. For algorithm refer to 퐿푖푛푘푒푑 퐿푖푠푡푠 chapter. 
 

Problem-20 Earlier in this chapter, we discussed that for dynamic array implementation of stacks, the ‘repeated doubling’ approach 
is used. For the same problem, what is the complexity if we create a new array whose size is 푛 + 퐾 instead of doubling? 

 

Solution: Let us assume that the initial stack size is 0. For simplicity let us assume that 퐾 = 10. For inserting the element we create a new 
array whose size is 0 +  10 =  10. Similarly, after 10 elements we again create a new array whose size is 10 +  10 =  20 and this process 
continues at values: 30, 40 … That means, for a given 푛 value, we are creating the new arrays at: , , , … The total number of copy 
operations is:  

                                                          = + + + ⋯ 1 = + + + ⋯ = 푙표푔푛 ≈ O(푛푙표푔푛) 
 

If we are performing 푛 push operations, the cost per operation is O(푙표푔푛).  

  

   

   ?  

None 
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Problem-21 Given a string containing 푛 푆′푠 and 푛 푋′푠 where 푆 indicates a push operation and 푋 indicates a pop operation, and with 
the stack initially empty, formulate a rule to check whether a given string 푆 of operations is admissible or not? 

 

Solution: Given a string of length 2푛, we wish to check whether the given string of operations is permissible or not with respect to its functioning 
on a stack. The only restricted operation is pop whose prior requirement is that the stack should not be empty. So while traversing the string 
from left to right, prior to any pop the stack shouldn't be empty, which means the number of 푆′푠 is always greater than or equal to that of 푋′푠. 
Hence the condition is at any stage of processing of the string, the number of push operations (푆) should be greater than the number of pop 
operations (푋). 
 

Problem-22 Finding of Spans: Given an array 퐴 the span 푆[푖] of 퐴[푖] is the maximum number of consecutive elements 퐴[푗] 
immediately preceding 퐴[푖] and such that 퐴[푗]  퐴[푗 + 1]?  
Another way of asking: Given an array 퐴 of integers, find the maximum of 푗 − 푖 subjected to the constraint of 퐴[푖] < 퐴[푗]. 

 

Solution: This is a very common problem in stock markets to find the peaks. Spans are used in financial analysis (E.g., stock at 52-week high). 
The span of a stock price on a certain day, 푖, is the maximum number of consecutive days (up to the current day) the price of the stock has 
been less than or equal to its price on 푖.  
 

As an example, let us consider the table and the corresponding spans diagram. In the figure the arrows indicate the length of the spans. 
 

Day: Index i Input Array A[i] S[i]: Span of A[i] 
0 6 1 
1 3 1 
2 4 2 
3 5 3 
4 2 1 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, let us concentrate on the algorithm for finding the spans. One simple way is, each day, check how many contiguous days have a stock 
price that is less than the current price.   
 

     public int[] FindingSpans(int[] inputArray){ 
 int[] spans = new int[inputArray.length]; 
 for(int i=0;i<inputArray.length;i++){ 
  int span = 1; 
  int j=i-1; 
  while(j>=0 && inputArray[j]<=inputArray[j+1]){ 
   span++; 
   j--; 
  } 
  spans[i] = span; 
 }   
 return spans; 
     } 
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-23 Can we improve the complexity of Problem-22? 
 

Solution: From the example above, we can see that span 푆[푖] on day 푖 can be easily calculated if we know the closest day preceding 푖, such 
that the price is greater on that day than the price on day 푖. Let us call such a day as 푃. If such a day exists then the span is now defined as 
푆[푖]  =  푖 −  푃.  
 

      public int[] FindingSpans(int[] inputArray){   
 int[] spans = new int[inputArray.length]; 
 Stack stack = new LLStack(); 

8 

6 

4 

2 

0 1 2 3 4 
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 int p = 0; 
 for(int i=0;i<inputArray.length;i++){  
  while (!stack.isEmpty() && inputArray[i] > inputArray[(Integer) stack.top()])  
   stack.pop();          
  if( stack.isEmpty())      
   p = -1;        
  else p = (Integer) stack.top();  
  spans[i] = i - p; 
  stack.push(i); 
 } 
 return spans;  
     } 
 

Time Complexity: Each index of the array is pushed into the stack exactly once and also popped from the stack at most once. The statements 
in the while loop are executed at most 푛 times. Even though the algorithm has nested loops, the complexity is O(푛) as the inner loop is 
executing only 푛 times during the course of the algorithm (trace out an example and see how many times the inner loop becomes successful). 
Space Complexity: O(푛) [for stack]. 
 

Problem-24 Largest rectangle under histogram: A histogram is a polygon composed of a sequence of rectangles aligned at a common 
base line. For simplicity, assume that the rectangles have equal widths but may have different heights. For example, the figure on the left 
shows a histogram that consists of rectangles with the heights 3, 2 , 5, 6, 1, 4, 4, measured in units where 1 is the width of the rectangles. 
Here our problem is: given an array with heights of rectangles (assuming width is 1), we need to find the largest rectangle possible. For the 
given example, the largest rectangle is the shared part. 
 
 
 
 
 
 
 

Solution: The first insight is to identify which rectangles to be considered for the solution: those which cover a contiguous range of the input 
histogram and whose height equals the minimum bar height in the range (rectangle height cannot exceed the minimum height in the range 
and there’s no point in considering a height less than the minimum height because we can just increase the height to the minimum height in 
the range and get a better solution). This greatly constrains the set of rectangles we need to consider. Formally, we need to consider only those 
rectangles with 푤푖푑푡ℎ =  푗 − 푖 + 1 (0 = 푖 = 푗 < 푛) and ℎ푒푖푔ℎ푡 =  푚푖푛(퐴[푖. . 푗]). This will require O(푛 ). 
 

Problem-25 For Error! Reference source not found., can we improve the time complexity? 
 

Solution: Linear search using a stack of incomplete subproblems: There are many ways of solving this problem. 퐽푢푑푔푒 has given a nice 
algorithm for this problem which is based on stack. We process the elements in left-to-right order and maintain a stack of information about 
started but yet unfinished sub histograms. If the stack is empty, open a new subproblem by pushing the element onto the stack. Otherwise 
compare it to the element on top of the stack. If the new one is greater we again push it. If the new one is equal we skip it. In all these cases, 
we continue with the next new element. 
 

If the new one is less, we finish the topmost subproblem by updating the maximum area with respect to the element at the top of the stack. 
Then, we discard the element at the top, and repeat the procedure keeping the current new element. This way, all subproblems are finished 
when the stack becomes empty, or its top element is less than or equal to the new element, leading to the actions described above. If all 
elements have been processed, and the stack is not yet empty, we finish the remaining subproblems by updating the maximum area with 
respect to the elements at the top. 
 

public class MaxRectangleAreaInHistrogram { 
    public int MaxRectangleArea(int[] A) { 
        Stack<Integer> s = new Stack<Integer>(); 
        if(A == null || A.length == 0) 
            return 0; 
        // Initialize max area 
        int maxArea = 0; 
        int i = 0; 
        // run through all bars of given histogram 
        while(i < A.length) { 
            // If current bar is higher than the bar of the stack peek, push it to stack.  
            if(s.empty() || A[s.peek()] <= A[i]) 
                s.push(i++); 
            else { 
                // if current bar is lower than the stack peek,  
                // calculate area of rectangle with stack top as the smallest bar. 
                // 'i' is 'right index' for the top and element before top in stack is 'left index' 
                int top = s.pop(); 
                // calculate the area with A[top] stack as smallest bar and update maxArea if needed 
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                maxArea = Math.max(maxArea, A[top] * (s.empty() ? i : i - s.peek() - 1)); 
            } 
        } 
        // Now pop the remaining bars from stack and calculate area with every popped bar as the smallest bar. 
        while(!s.isEmpty()) { 
            int top = s.pop(); 
            maxArea = Math.max(maxArea, A[top] * (s.empty() ? i : i - s.peek() - 1)); 
        } 
        return maxArea; 
    } 
}  
 

At the first impression, this solution seems to be having O(푛 ) complexity. But if we look carefully, every element is pushed and popped at 
most once, and in every step of the function at least one element is pushed or popped. Since the amount of work for the decisions and the 
update is constant, the complexity of the algorithm is O(푛) by amortized analysis.  
Space Complexity: O(푛) [for stack]. 
 

Problem-26 Give an algorithm for sorting a stack in ascending order.  We should not make any assumptions about how the stack is 
implemented. 

 

Solution: 
 

    public static Stack<Integer> sort(Stack<Integer> stk) { 
        Stack<Integer> rstk = new Stack<Integer>(); 
        while(!stk.isEmpty()){ 
            int tmp = stk.pop(); 
            while(!rstk.isEmpty() && rstk.peek() > tmp){ 
                stk.push(rstk.pop()); 
            } 
            rstk.push(tmp); 
        } 
        return rstk; 
    } 
 

Time Complexity: O(푛 ). Space Complexity: O(푛), for stack. 
 

Problem-27 Given a stack of integers, how do you check whether each successive pair of numbers in the stack is consecutive or not. 
The pairs can be increasing or decreasing, and if the stack has an odd number of elements, the element at the top is left out of a pair. For 
example, if the stack of elements are [4, 5, -2, -3, 11, 10, 5, 6, 20], then the output should be true because each of the pairs (4, 5), (-2, -3), 
(11, 10), and (5, 6) consists of consecutive numbers. 

 

Solution: Refer to 푄푢푒푢푒푠 chapter. 
 

Problem-28 Recursively remove all adjacent duplicates: Given an array of numbers, recursively remove adjacent duplicate numbers. 
The output array should not have any adjacent duplicates. 
  

퐼푛푝푢푡:  1,5,6, 8,8,8,0,1,1,0,6,5 
푂푢푡푝푢푡: 1 

퐼푛푝푢푡: 1,9,6, 8,8,8,0,1,1,0,6,5} 
푂푢푡푝푢푡: 1, 9, 5 

 

Solution: This solution runs with the concept of in-place stack. When element on stack doesn't match to the current number, we add it to 
stack. When it matches to stack top, we skip numbers until the element match the top of stack and remove the element from stack. 
 

      public class RemoveAdjacentDuplicates { 
            public int removeAdjacentDuplicates(int []A){ 
                  int stkptr=-1; 
                  int i=0; 
                  while (i<A.length){ 
                        if (stkptr == -1 || A[stkptr]!=A[i]){ 
                   stkptr++; 
                              A[stkptr]=A[i]; 
                              i++; 
                        }else { 
                              while(i < A.length&& A[stkptr]==A[i]) 
                                    i++; 
                              stkptr--; 
                        } 
                  } 
                  return stkptr;     
            } 
      } 
      public class TestRemoveAdjacentDuplicates { 
            public static void main(String[] args) { 



 

Data Structures and Algorithms Made Easy in Java Stacks                      

 

4.8 Stacks: Problems & Solutions    113 

 
 

                  RemoveAdjacentDuplicates obj = new RemoveAdjacentDuplicates(); 
                  int[] A = {1,5,6, 8,8,8,0,1,1,0,6,5}; 
             int index = obj.removeAdjacentDuplicates(A); 
             for (int i = 0; i <= index; i++) { 
                   System.out.print(" " + A[i]); 
                  } 
            } 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1) as the stack simulation is done in place. 
 

Problem-29 If the stack gets too high, it might overbalance.  There-fore, in real life, we would likely start a new stack when the previous 
stack exceeds some threshold.  Implement a data structure that mimics this and composed of several stacks, and should create a new stack 
once the previous one exceeds capacity.   push() and pop() of this class should behave identically to a regular stack. 

 

Solution: Follow the comments in code below. 
 

 class StackForStackSets { 
     private int top = -1;    
     private int[] arr; 
     // Maximum size of stack 
     private int capacity; 
     StackForStackSets(int capacity){ 
  this.capacity = capacity; 
  arr = new int[capacity]; 
     } 
     public void push(int v){ 
  arr[++top] = v; 
     } 
     public int pop(){    
  return arr[top--]; 
     } 
     // if the stack is at capacity 
     public Boolean isAtCapacity(){ 
  return capacity == top + 1; 
     } 
     //return the size of the stack 
     public int size(){ 
  return top+1; 
     } 
     public String toString(){ 
  String s = ""; 
  int index = top; 
  while(index >= 0){ 
      s += "[" + arr[index--] + "]"+ " --> "; 
  } 
  return s; 
     } 
 } 
 public class StackSets{ 
     // Number of elements for each stack 
     private int threshold; 
     private ArrayList<StackForStackSets> listOfStacks = new  ArrayList<StackForStackSets>();       

     StackSets(int threshold) { 
  this.threshold = threshold;         
     } 
     //get the last stack 
     public StackForStackSets getLastStack(){ 
  int size = listOfStacks.size(); 
  if(size <= 0)  
   return null; 
  else return listOfStacks.get(size - 1); 
     } 
     //get the nth stack 
     public StackForStackSets getNthStack(int n){ 
  System.out.println(n); 
  int size = listOfStacks.size(); 
  if(size <= 0)  
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   return null; 
  else return listOfStacks.get(n - 1); 
     } 
     //push value 
     public void push(int value){ 
  StackForStackSets lastStack = this.getLastStack(); 
  if(lastStack == null){ 
      lastStack = new StackForStackSets(threshold); 
      lastStack.push(value); 
      listOfStacks.add(lastStack); 
  }else { 
      if( !lastStack.isAtCapacity()) 
   lastStack.push(value); 
      else { 
   StackForStackSets newLastStack = new StackForStackSets(threshold); 
   newLastStack.push(value); 
   listOfStacks.add(newLastStack); 
      } 
  }     
     } 
     // the pop  
     public int pop(){ 
  StackForStackSets lastStack = this.getLastStack(); 
  int v = lastStack.pop(); 
  if(lastStack.size() == 0) listOfStacks.remove(listOfStacks.size() -  1); 
  return v; 
     } 
     //pop from the nth stack 
     public int pop(int nth){ 
  StackForStackSets nthStack = this.getNthStack(nth); 
   int v = nthStack.pop(); 
   if(nthStack.size() == 0) listOfStacks.remove(listOfStacks.size() -  1); 
   return v;    
     } 
     public String toString(){ 
  String s = ""; 
  for(int i = 0; i < listOfStacks.size(); i++){ 
   StackForStackSets stack = listOfStacks.get(i); 
      s = "Stack "+ i + ": " + stack.toString() +  s; 
  } 
  return s; 
     } 
     public static void main(String[] args){ 
  StackSets stacks = new StackSets(3); 
  stacks.push(10); stacks.push(9); stacks.push(8); 
  stacks.push(7); stacks.push(6); stacks.push(5); 
  stacks.push(4); stacks.push(3); stacks.push(2); 
  System.out.println("Popping " + stacks.pop(2)); 
  System.out.println("Popping from stack 1" + stacks.pop(1)); 
  System.out.println("Popping " + stacks.pop(3)); 
  System.out.println("Popping " + stacks.pop(2)); 
  System.out.println("the stack is: " + stacks); 
     } 
 }   
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5.1 What is a Queue?  
 

A queue is a data structure used for storing data (similar to Linked Lists and Stacks). In queue, the order in which data arrives is important. 
In general, a queue is a line of people or things waiting to be served in sequential order starting at the beginning of the line or sequence. 
 

Definition: A 푞푢푒푢푒 is an ordered list in which insertions are done at one end (푟푒푎푟) and deletions are done at other end (푓푟표푛푡). The 
first element to be inserted is the first one to be deleted. Hence, it is called First in First out (FIFO) or Last in Last out (LILO) list. 

 

Similar to 푆푡푎푐푘푠, special names are given to the two changes that can be made to a queue. When an element is inserted in a queue, the 
concept is called 퐸푛푄푢푒푢푒, and when an element is removed from the queue, the concept is called 퐷푒푄푢푒푢푒.  
 

퐷푒푄푢푒푢푒푖푛푔 an empty queue is called 푢푛푑푒푟푓푙표푤 and 퐸푛푄푢푒푢푖푛푔 an element in a full queue is called 표푣푒푟푓푙표푤. Generally, we treat 
them as exceptions. As an example, consider the snapshot of the queue. 
 

 
 
 
 
 

 

5.2 How are Queues Used? 
 

The concept of a queue can be explained by observing a line at a reservation counter. When we enter the line we stand at the end of the line 
and the person who is at the front of the line is the one who will be served next. He will exit the queue and be served.  
 

As this happens, the next person will come at the head of the line, will exit the queue and will be served. As each person at the head of the 
line keeps exiting the queue, we move towards the head of the line. Finally we will reach the head of the line and we will exit the queue and 
be served. This behavior is very useful in cases where there is a need to maintain the order of arrival. 

5.3 Queue ADT  
 

The following operations make a queue an ADT. Insertions and deletions in the queue must follow the FIFO scheme. For simplicity we 
assume the elements are integers. 
 

Main Queue Operations  
 

 void enQueue(int data): Inserts an element at the end of the queue (at rear) 
 int deQueue(): Removes and returns the element from the front of the queue 

 

Auxiliary Queue Operations 
 

 int front(): Returns the element at the front without removing it 
 int rear(): Returns the element at the rear without removing it 
 int size(): Returns the number of elements stored in the queue 
 int isEmpty (): Indicates whether no elements are stored in the queue or not 

5.4 Exceptions 
 

Similar to other ADTs, executing 퐷푒푄푢푒푢푒 on an empty queue throws an “퐸푚푝푡푦 푄푢푒푢푒 퐸푥푐푒푝푡푖표푛” and executing 퐸푛푄푢푒푢푒 on a full 
queue throws “퐹푢푙푙 푄푢푒푢푒 퐸푥푐푒푝푡푖표푛”. 

5.5 Applications  
 

Following are some of the applications that use queues. 

front   rear 

New elements ready to 
enter Queue (EnQueue) 

Elements ready to be 
served (DeQueue) 
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Direct Applications 
 

 Operating systems schedule jobs (with equal priority) in the order of arrival (e.g., a print queue). 
 Simulation of real-world queues such as lines at a ticket counter or any other first-come first-served scenario requires a queue. 
 Multiprogramming. 
 Asynchronous data transfer (file IO, pipes, sockets). 
 Waiting times of customers at call center. 
 Determining number of cashiers to have at a supermarket. 

 

Indirect Applications 
 

 Auxiliary data structure for algorithms 
 Component of other data structures 

5.6 Implementation 
 

There are many ways (similar to Stacks) of implementing queue operations and some of the commonly used methods are listed below. 
 

 Simple circular array based implementation 
 Dynamic circular array based implementation 
 Linked list implementation 

Why Circular Arrays? 
 

First, let us see whether we can use simple arrays for implementing queues as we have done for stacks. We know that, in queues, the insertions 
are performed at one end and deletions are performed at the other end. After performing some insertions and deletions the process becomes 
easy to understand.  
 

In the example shown below, it can be seen clearly that the initial slots of the array are getting wasted. So, simple array implementation for 
queue is not efficient. To solve this problem we assume the arrays as circular arrays. That means, we treat the last element and the first array 
elements as contiguous. With this representation, if there are any free slots at the beginning, the rear pointer can easily go to its next free slot. 
 
 

 
 
 
 
 
 
 
 
 

Note: The simple circular array and dynamic circular array implementations are very similar to stack array implementations. Refer to 푆푡푎푐푘푠 
chapter for analysis of these implementations. 

Simple Circular Array Implementation 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Note: Initially, both front and rear points to 0 which indicates that the queue is empty.  
 

import java.util.*; 
import java.lang.*; 
import java.io.*; 
public class Queue{  
    // Array used to implement the queue. 
    private int[] A; 
    private int size, front, rear; 
 

    // Length of the array used to implement the queue. 
    private static final int CAPACITY = 16; //Default Queue size 
 

    // Initializes the queue to use an array of default length. 
    public Queue (){ 
        A = new int [CAPACITY]; 
        size  = 0; front = 0; rear  = 0; 

  rear 

  front 

Fixed size array 

front   rear 

New elements ready to 
enter Queue (EnQueue) 
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    } 
 

    // Initializes the queue to use an array of given length. 
    public Queue (int cap){ 
        A = new int [ cap]; 
        size  = 0; front = 0; rear  = 0; 
    } 
 

    // Inserts an element at the rear of the queue. This method runs in O(1) time. 
    public void enQueue (int data)throws NullPointerException, IllegalStateException{   
        if (size == CAPACITY) 
            throw new IllegalStateException ("Queue is full: Overflow"); 
        else { 
            size++; 
            A[rear] = data; 
            rear = (rear+1) % CAPACITY; 
        } 
    } 
 

    // Removes the front element from the queue. This method runs in O(1) time. 
    public int deQueue () throws IllegalStateException{ 
        // Effects:   If queue is empty, throw IllegalStateException, 
        // else remove and return oldest element of this 
        if (size == 0) 
            throw new IllegalStateException ("Queue is empty: Underflow"); 
        else { 
            size--; 
            int data = A [ (front % CAPACITY) ]; 
            A [front] = Integer.MIN_VALUE; 
            front = (front+1) % CAPACITY; 
            return data; 
        } 
    } 
 

    // Checks whether the queue is empty. This method runs in O(1) time. 
    public boolean isEmpty(){  
        return (size == 0);  
    } 
 

    // Checks whether the queue is full. This method runs in O(1) time. 
    public boolean isFull(){  
        return (size == CAPACITY);  
    } 
 

    // Returns the number of elements in the queue. This method runs in O(1) time. 
    public int size() { 
        return size; 
    } 
 

    // Returns a string representation of the queue as a list of elements, with 
    // the front element at the end: [ ... , prev, rear ]. This method runs in O(n) 
    // time, where n is the size of the queue.  
    public String toString(){ 
        String result = "["; 
        for (int i = 0; i < size; i++){ 
            result += Integer.toString(A[ (front + i) % CAPACITY ]); 
            if (i < size -1) { 
                result += ", "; 
            } 
        } 
        result += "]"; 
        return result; 
    } 
} 
 

class QueueWithSimpleArray{ 
    public static void main (String[] args) throws java.lang.Exception{ 
        Queue Q = new Queue(); 
        Q.enQueue(4); 
        System.out.println("Queue Elements: "+ Q.toString());; 
        System.out.println("DeQueue operation done ! removed: "+ Q.deQueue());; 
        Q.enQueue(56); 
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        Q.enQueue(2); 
        Q.enQueue(67); 
        System.out.println("Queue Elements: "+ Q.toString());; 
        System.out.println("DeQueue operation done ! removed: "+ Q.deQueue());; 
        System.out.println("DeQueue operation done ! removed: "+ Q.deQueue());; 
        Q.enQueue(24); 
        System.out.println("Queue Elements: "+ Q.toString());; 
        System.out.println("DeQueue operation done ! removed: "+ Q.deQueue());; 
        Q.enQueue(98); 
        Q.enQueue(45); 
        Q.enQueue(23); 
        Q.enQueue(435); 
        System.out.println("Queue Elements: "+ Q.toString());; 
    } 
} 

Performance and Limitations 
 

Performance: Let 푛 be the number of elements in the queue: 
 

Space Complexity (for 푛 enQueue operations) O(푛) 
Time Complexity of enQueue() O(1) 
Time Complexity of deQueue() O(1) 
Time Complexity of isEmpty() O(1) 
Time Complexity of isFull () O(1) 
Time Complexity of size() O(1) 

Limitations 
 

The maximum size of the queue must be defined as prior and cannot be changed. Trying to 퐸푛푄푢푒푢푒 a new element into a full queue causes 
an implementation-specific exception. 

Dynamic Circular Array Implementation 
 

public class Queue{  
    // Array used to implement the queue. 
    private int[] A; 
    private int size, front, rear; 
 

    // Length of the array used to implement the queue. 
    private static int CAPACITY = 16;  //Default Queue size 
 

    public static int MINCAPACITY=1<<15;   // power of 2 
 

    // Initializes the queue to use an array of default length. 
    public Queue (){ 
        A = new int [CAPACITY]; 
        size  = 0; front = 0; rear  = 0; 
    } 
 

    // Initializes the queue to use an array of given length. 
    public Queue (int cap){ 
        A = new int [ cap]; 
        size  = 0; front = 0; rear  = 0; 
    } 
 

    // Inserts an element at the rear of the queue. This method runs in O(1) time. 
    public void enQueue (int data)throws NullPointerException, IllegalStateException{   
        if (size == CAPACITY) 
            expand(); 
        size++; 
        A[rear] = data; 
        rear = (rear+1) % CAPACITY; 
    } 
 

    // Removes the front element from the queue. This method runs in O(1) time. 
    public int deQueue () throws IllegalStateException{ 
        // Effects:   If queue is empty, throw IllegalStateException, 
        // else remove and return oldest element of this 
        if (size == 0) 
            throw new IllegalStateException ("Queue is empty: Underflow"); 
        else { 
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            size--; 
            int data = A [ (front % CAPACITY) ]; 
            A [front] = Integer.MIN_VALUE; 
            front = (front+1) % CAPACITY; 
            return data; 
        } 
    } 
 

    // Checks whether the queue is empty. This method runs in O(1) time. 
    public boolean isEmpty(){  
        return (size == 0);  
    } 
 

    // Checks whether the queue is full. This method runs in O(1) time. 
    public boolean isFull(){  
        return (size == CAPACITY);  
    } 
 

    // Returns the number of elements in the queue. This method runs in O(1) time. 
    public int size() { 
        return size; 
    } 
 

    // Increases the queue size by double 
    private void expand(){ 
        int length = size(); 
        int[] newQueue = new int[length<<1];  // or 2* length 
 

        //copy items 
        for(int i = front; i <= rear; i ++) 
            newQueue[i-front] = A[i%CAPACITY]; 
 

        A = newQueue; 
        front = 0; 
        rear = size-1; 
        CAPACITY *= 2; 
    } 
 

    // dynamic array operation: shrinks to 1/2 if more than than 3/4 empty 
    private void shrink() { 
        int length = size; 
        if(length <= MINCAPACITY || length <<2 >= length)  
            return; 
 

        if(length<MINCAPACITY) length = MINCAPACITY; 
        int[] newQueue=new int[length]; 
        System.arraycopy(A,0,newQueue,0,length+1); 
        A=newQueue; 
    } 
 

    // Returns a string representation of the queue as a list of elements, with 
    // the front element at the end: [ ... , prev, rear ]. This method runs in O(n) 
    // time, where n is the size of the queue.  
    public String toString(){ 
        String result = "["; 
        for (int i = 0; i < size; i++){ 
            result += Integer.toString(A[ (front + i) % CAPACITY ]); 
            if (i < size -1) { 
                result += ", "; 
            } 
        } 
        result += "]"; 
        return result; 
    } 
} 

Performance 
 

Let 푛 be the number of elements in the queue. 
 

Space Complexity (for 푛 enQueue operations) O(푛) 
Time Complexity of enQueue() O(1) (Average) 
Time Complexity of deQueue() O(1) 
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Time Complexity of size() O(1) 
Time Complexity of isEmpty() O(1) 
Time Complexity of isFull() O(1) 

Linked List Implementation 
 

Another way of implementing queues is by using Linked lists. 퐸푛푄푢푒푢푒 operation is implemented by inserting an element at the end of the 
list. 퐷푒푄푢푒푢푒 operation is implemented by deleting an element from the beginning of the list. 
 
 
 
 
  

public class Queue{ 
    private int length; 
    private ListNode front, rear; 
 

    //  Creates an empty queue. 
    public Queue(){ 
        length = 0; 
        front = rear = null; 
    } 
 

    //  Adds the specified data to the rear of the queue. 
    public void enQueue (int data){ 
        ListNode node = new ListNode(data); 
        if (isEmpty()) 
            front = node; 
        else 
            rear.next = node; 
        rear = node; 
        length++; 
    } 
 

    //  Removes the data at the front of the queue and returns a 
    //  reference to it. Throws an Exception if the 
    //  queue is empty. 
    public int deQueue() throws Exception{ 
        if (isEmpty()) 
            throw new Exception ("queue"); 
        int result = front.data; 
        front = front.next; 
        length--; 
        if (isEmpty()) 
            rear = null; 
        return result; 
    } 
 

    //  Returns a reference to the data at the front of the queue. 
    //  The data is not removed from the queue.  Throws an 
    //  Exception if the queue is empty.   
    public int first() throws Exception{ 
        if (isEmpty()) 
            throw new Exception();  
 

        return front.data; 
    } 
 

    //  Returns true if this queue is empty and false otherwise.  
    public boolean isEmpty(){ 
        return (length == 0); 
    } 
 

    //  Returns the number of elements in this queue. 
    public int size(){ 
        return length; 
    } 
 

    //  Returns a string representation of this queue.  
    public String toString(){ 
        String result = ""; 
        ListNode current = front; 

    4    15     7    40  

front rear 
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        while (current != null){ 
            result = result + current.toString() + "\n"; 
            current = current.next; 
        } 
        return result; 
    } 
} 

Performance 
 

Let  푛 be the number of elements in the queue, then 
 

Space Complexity (for 푛 enQueue operations) O(푛) 
Time Complexity of enQueue() O(1) (Average) 
Time Complexity of deQueue() O(1) 
Time Complexity of isEmpty() O(1) 
Time Complexity of deleteQueue() O(1) 

Comparison of Implementations  
 

Note: Comparison is very similar to stack implementations and 푆푡푎푐푘푠 chapter. 

5.7 Queues: Problems & Solutions 
 

Problem-1 Give an algorithm for reversing a queue 푄. To access the queue, you are only allowed to use the methods of queue ADT. 
 

Solution: 
 

      public class QueueReversal { 
 public static Queue reverseQueue(Queue queue){ 
  Stack stack = new LLStack(); 
  while(!queue.isEmpty()){    
   stack.push(queue.deQueue()); 
  } 
  while(!stack.isEmpty()){ 
   queue.enQueue(stack.pop()); 
  } 
  return queue; 
 } 
      } 
 

Time Complexity: O(푛). 
 

Problem-2 How can you implement a queue using two stacks? 
 

Solution: Let S1 and S2 be the two stacks to be used in the implementation of queue. All we have to do is to define the enQueue and deQueue 
operations for the queue.             

EnQueue Algorithm: 
 Just push on to stack S1 

 

Time Complexity: O(1). 
 

DeQueue Algorithm: 
 If stack S2 is not empty then pop from S2 and return that element. 
 If stack is empty, then transfer all elements from S1 to S2 and pop the top element from S2 and return that popped element [we 

can optimize the code a little by transferring only 푛 − 1 elements from S1 to S2 and pop the 푛  element from S1 and return that 
popped element]. 

 If stack S1 is also empty then throw error. 
 

Time Complexity: From the algorithm, if the stack S2 is not empty then the complexity is O(1). If the stack S2 is empty, then we need to 
transfer the elements from S1 to S2. But if we carefully observe, the number of transferred elements and the number of popped elements 
from S2 are equal. Due to this the average complexity of pop operation in this case is O(1). The amortized complexity of pop operation is 
O(1). 
 

      public class QueuewithTwoStacks<T> { 
          private Stack<T> S1 = new Stack<T>(); 
          private Stack<T> S2 = new Stack<T>(); 
          public void enqueue(T data){ 
              S1.push(data); 
          } 
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          public T dequeue(){ 
              if(S2.empty()) 
                  while(!S1.isEmpty()){ 
                      S2.push(S1.pop()); 
                  } 
              return S2.pop(); 
          } 
      } 
 

Problem-3 Show how you can efficiently implement one stack using two queues. Analyze the running time of the stack operations. 
 

Solution: Yes, it is possible to implement the Stack ADT using 2 implementations of the Queue ADT. One of the queues will be used to 
store the elements and the other to hold them temporarily during the 푝표푝 and 푡표푝 methods. The 푝푢푠ℎ method would 푒푛푞푢푒푢푒 the given 
element onto the storage queue. The 푡표푝 method would transfer all but the last element from the storage queue onto the temporary queue, 
save the front element of the storage queue to be returned, transfer the last element to the temporary queue, then transfer all elements back 
to the storage queue. The 푝표푝 method would do the same as top, except instead of transferring the last element onto the temporary queue 
after saving it for return, that last element would be discarded. Let Q1 and Q2 be the two queues to be used in the implementation of stack. 
All we have to do is to define the push and pop operations for the stack.  
 

In the algorithms below, we make sure that one queue is always empty. 
 

Push Operation Algorithm: Insert the element in whichever queue is not empty. 
 Check whether queue Q1 is empty or not. If Q1 is empty then Enqueue the element into Q2. 
 Otherwise enQueue the element into Q1.            

Time Complexity: O(1). 
 

Pop Operation Algorithm: Transfer 푛 − 1 elements to the other queue and delete last from queue for performing pop operation. 
 If queue Q1 is not empty then transfer 푛 − 1 elements from Q1 to Q2 and then, deQueue the last element of Q1 and return it. 
 If queue Q2 is not empty then transfer 푛 − 1 elements from Q2 to Q1 and then, deQueue the last element of Q2 and return it. 

 

Time Complexity: Running time of pop operation is O(푛) as each time pop is called, we are transferring all the elements from one queue to 
the other.  
 

     public class StackwithTwoQueues<T> { 
 private Queue<T> Q1 = new LinkedList<T>(); 
 private Queue<T> Q2 = new LinkedList<T>(); 
 public void push(T data){ 
  if(Q1.isEmpty()) 
   Q2.offer(data); 
  else Q1.offer(data); 
 } 
 public T pop(){ 
  int i=0, size; 
  if(Q2.isEmpty()) { 
   size = Q1.size(); 
   while(i < size-1) { 
    Q2.offer(Q1.poll()); 
    i++; 
   } 
   return Q1.poll(); 
  } 
  else {  
   size = Q2.size(); 
   while(i < size-1) { 
    Q1.offer(Q2.poll()); 
    i++; 
   } 
   return Q2.poll(); 
  } 
 } 
     } 
 

Problem-4 Maximum sum in sliding window: Given array A[] with sliding window of size 푤 which is moving from the very left of the 
array to the very right. Assume that we can only see the 푤 numbers in the window. Each time the sliding window moves rightwards by one 
position. For example: The array is [1 3 -1 -3 5 3 6 7], and 푤 is 3.  

Window position Max 
[1  3  -1] -3  5  3  6  7 3 

1 [3  -1  -3] 5  3  6  7 3 

1  3 [-1  -3  5] 3  6  7 5 
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1  3  -1 [-3  5  3] 6  7 5 

1  3  -1  -3 [5  3  6] 7 6 
1  3  -1  -3  5 [3  6  7] 7 

 

Input: A long array A[], and a window width 푤. Output: An array B[], B[i] is the maximum value from A[i] to A[i+w-1]. Requirement: 
Find a good optimal way to get B[i] 

 

Solution: This problem can be solved with doubly ended queue (which supports insertion and deletion at both ends). Refer 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 
chapter for algorithms. 
 

Problem-5 Given a queue Q containing 푛 elements, transfer these items on to a stack S (initially empty) so that front element of Q 
appears at the top of the stack and the order of all other items is preserved. Using enqueue and dequeue operations for the queue, and 
push and pop operations for the stack, outline an efficient O(푛) algorithm to accomplish the above task, using only a constant amount 
of additional storage. 

 

Solution: Assume the elements of queue Q are 푎 , 푎 … 푎 . Dequeuing all elements and pushing them onto the stack will result in a stack 
with 푎  at the top and 푎  at the bottom. This is done in O(푛) time as dequeue and each push require constant time per operation. The queue 
is now empty. By popping all elements and pushing them on the queue we will get 푎  at the top of the stack. This is done again in O(푛) time.  
 

As in big-oh arithmetic we can ignore constant factors. The process is carried out in O(푛) time. The amount of additional storage needed 
here has to be big enough to temporarily hold one item. 
 

Problem-6 A queue is set up in a circular array A[0..n - 1] with front and rear defined as usual. Assume that 푛 −  1 locations in the 
array are available for storing the elements (with the other element being used to detect full/empty condition). Give a formula for the 
number of elements in the queue in terms of 푟푒푎푟, 푓푟표푛푡, and 푛. 

  

Solution: Consider the following figure to get a clear idea of the queue. 
 
  
 
 
 
 
 
 
 
 
 
 

 Rear of the queue is somewhere clockwise from the front. 
 To enqueue an element, we move 푟푒푎푟 one position clockwise and write the element in that position. 
 To dequeue, we simply move 푓푟표푛푡 one position clockwise. 
 Queue migrates in a clockwise direction as we enqueue and dequeue. 
 Emptiness and fullness to be checked carefully. 
 Analyze the possible situations (make some drawings to see where 푓푟표푛푡 and 푟푒푎푟 are when the queue is empty, and partially and 

totally filled). We will get this: 
 

                                       푁푢푚푏푒푟 푂푓 퐸푙푒푚푒푛푡푠 = 
푟푒푎푟 − 푓푟표푛푡 + 1        if rear =  front
푟푒푎푟 − 푓푟표푛푡 + 푛                 otherwise 

 

Problem-7 What is the most appropriate data structure to print elements of queue in reverse order? 
 

Solution: Stack. 
 

Problem-8 Given a stack of integers, how do you check whether each successive pair of numbers in the stack is consecutive or not. 
The pairs can be increasing or decreasing, and if the stack has an odd number of elements, the element at the top is left out of a pair. For 
example, if the stack of elements are [4, 5, -2, -3, 11, 10, 5, 6, 20], then the output should be true because each of the pairs (4, 5), (-2, -3), 
(11, 10), and (5, 6) consists of consecutive numbers.  

 

Solution:  
 

      public static boolean checkStackPairwiseOrder(Stack<Integer> s) { 
           Queue<Integer> q = new LinkedList<Integer>(); 
           boolean pairwiseOrdered = true; 
           while (!s.isEmpty()) 
                q.add(s.pop()); 
           while (!q.isEmpty()) 
                s.push(q.remove()); 
           while (!s.isEmpty()) { 
                int n = s.pop(); 
                q.add(n); 
                if (!s.isEmpty()) { 

  rear 

  front 

Fixed size array 
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                     int m = s.pop(); 
                     q.add(m); 
                     if (Math.abs(n - m) != 1) { 
                          pairwiseOrdered = false; 
                     } 
                } 
           } 
           while (!q.isEmpty()) 
               s.push(q.remove()); 
           return pairwiseOrdered; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-9 Given a queue of integers, rearrange the elements by interleaving the first half of the list with the second half of the list. 
For example, suppose a queue stores the following sequence of values: [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Consider the two halves 
of this list: first half: [11, 12, 13, 14, 15] second half: [16, 17, 18, 19, 20]. These are combined in an alternating fashion to form a sequence 
of interleave pairs: the first values from each half (11 and 16), then the second values from each half (12 and 17), then the third values 
from each half (13 and 18), and so on. In each pair, the value from the first half appears before the value from the second half. Thus, 
after the call, the queue stores the following values: [11, 16, 12, 17, 13, 18, 14, 19, 15, 20]. 

 

Solution: 
 

      public void interLeavingQueue(Queue <Integer> q) { 
           if (q.size() % 2 != 0) 
                throw new IllegalArgumentException(); 
           Stack<Integer> s = new ArrayStack<Integer>(); 
           int halfSize = q.size() / 2; 
           for (int i = 0; i &lt; halfSize; i++) 
                s.push(q.dequeue()); 
           while (!s.isEmpty()) 
                q.enqueue(s.pop()); 
                 for (int i = 0; i &lt; halfSize; i++) 
                q.enqueue(q.dequeue()); 
           for (int i = 0; i &lt; halfSize; i++) 
                s.push(q.dequeue()); 
           while (!s.isEmpty()) { 
                q.enqueue(s.pop()); 
                q.enqueue(q.dequeue()); 
           } 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-10 Given an integer 푘 and a queue of integers, how do you reverse the order of the first 푘 elements of the queue, leaving the 
other elements in the same relative order? For example, if 푘=4 and queue has the elements [10, 20, 30, 40, 50, 60, 70, 80, 90]; the output 
should be [40, 30, 20, 10, 50, 60, 70, 80, 90]. 

 

Solution:  
 

      public static void reverseQueueFirstKElements(int k, Queue<Integer> q) { 
           if (q == null || k > q.size()) { 
                throw new IllegalArgumentException(); 
           }  
           else if (k > 0) { 
                 Stack<Integer> s = new Stack<Integer>();  
                 for (int i = 0; i < k; i++) { 
                     s.push(q.remove()); 
                } 
                while (!s.isEmpty()) {  
                     q.add(s.pop()); 
                } 
                for (int i = 0; i < q.size() - k; i++) { // wrap around rest of elements  
                     q.add(q.remove()); 
                } 
           } 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛).  
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TREES 
 

Chapter 

6 
 

 
 
 

6.1 What is a Tree? 
 

A 푡푟푒푒 is a data structure similar to a linked list but instead of each node pointing simply to the next node in a linear fashion, each node points 
to a number of nodes. Tree is an example of a non-linear data structure. A 푡푟푒푒 structure is a way of representing the hierarchical nature of 
a structure in a graphical form.  
 

In trees ADT (Abstract Data Type), the order of the elements is not important. If we need ordering information, linear data structures like 
linked lists, stacks, queues, etc. can be used.  

6.2 Glossary 
 
 
 
 
 
 
 
 
 
 
 

 
 

 The 푟표표푡 of a tree is the node with no parents. There can be at most one root node in a tree (node 퐴 in the above example). 
 An 푒푑푔푒 refers to the link from parent to child (all links in the figure). 
 A node with no children is called 푙푒푎푓 node (퐸, 퐽, 퐾, 퐻 and 퐼). 
 Children of same parent are called 푠푖푏푙푖푛푔푠 (퐵, 퐶, 퐷 are siblings of 퐴, and 퐸, 퐹 are the siblings of 퐵). 
 A node 푝 is an 푎푛푐푒푠푡표푟 of node 푞 if there exists a path from 푟표표푡 to 푞 and 푝 appears on the path. The node 푞 is called a 푑푒푠푐푒푛푑푎푛푡 

of 푝. For example, 퐴, 퐶 and 퐺 are the ancestors of 퐾. 
 The set of all nodes at a given depth is called the 푙푒푣푒푙 of the tree (퐵, 퐶 and 퐷 are the same level). The root node is at level zero. 
 
 
 
 
 
 
 
 
 

 The 푑푒푝푡ℎ of a node is the length of the path from the root to the node (depth of 퐺 is 2, 퐴 − 퐶 − 퐺). 
 The ℎ푒푖푔ℎ푡 of a node is the length of the path from that node to the deepest node. The height of a tree is the length of the path from 

the root to the deepest node in the tree. A (rooted) tree with only one node (the root) has a height of zero. In the previous example, the 
height of 퐵 is 2 (퐵 − 퐹 − 퐽). 

 퐻푒푖푔ℎ푡 표푓 푡ℎ푒 푡푟푒푒 is the maximum height among all the nodes in the tree and 푑푒푝푡ℎ 표푓 푡ℎ푒 푡푟푒푒 is the maximum depth among all 
the nodes in the tree. For a given tree,  depth and height returns the same value. But for individual nodes we may get different results. 

 The size of a node is the number of descendants it has including itself (the size of the subtree 퐶 is 3).  
 If every node in a tree has only one child (except leaf nodes) then we call such trees 푠푘푒푤 푡푟푒푒푠. If every node has only left child then 

we call them 푙푒푓푡 푠푘푒푤 푡푟푒푒푠.  Similarly, if every node has only right child then we call them 푟푖푔ℎ푡 푠푘푒푤 푡푟푒푒푠. 
 

 

root 

 

 

 

1 

2 3 

6 7 

Level-0 

Level-2 

Level-1 

root 
 

   

     

  

A

B C D

E F G H I 

J K 



 

Data Structures and Algorithms Made Easy in Java Trees                      

 

6.3 Binary Trees    126 

 
 

 
 
 
 
 
 
 
 
 
 

6.3 Binary Trees 
 

A tree is called 푏푖푛푎푟푦 푡푟푒푒 if each node has zero child, one child or two children. Empty tree is also a valid binary tree. We can visualize a 
binary tree as consisting of a root and two disjoint binary trees, called the left and right subtrees of the root. 
 

Generic Binary Tree       
                                        
 
 
 
 
 
 

                                       Example 
 

6.4 Types of Binary Trees 
 

Strict Binary Tree: A binary tree is called 푠푡푟푖푐푡 푏푖푛푎푟푦 푡푟푒푒 if each node has exactly two children or no children. 
 
 
 
 
 
 
 
 
 

 

Full Binary Tree: A binary tree is called 푓푢푙푙 푏푖푛푎푟푦 푡푟푒푒 if each node has exactly two children and all leaf nodes are at the same level.  
 

 
 
 
 
 
 

 

Complete Binary Tree: Before defining the 푐표푚푝푙푒푡푒 푏푖푛푎푟푦 푡푟푒푒, let us assume that the height of the binary tree is ℎ. In complete binary 
trees, if we give numbering for the nodes by starting at the root (let us say the root node has 1) then we get a complete sequence from 1 to the 
number of nodes in the tree. While traversing we should give numbering for NULL pointers also. A binary tree is called 
푐표푚푝푙푒푡푒 푏푖푛푎푟푦 푡푟푒푒 if all leaf nodes are at height ℎ or ℎ − 1 and also without any missing number in the sequence. 
 

 
 
 
 
 
 

 
 
 

6.5 Properties of Binary Trees 
 

For the following properties, let us assume that the height of the tree is ℎ. Also, assume that root node is at height zero. 
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From the diagram we can infer the following properties: 
 

 The number of nodes 푛 in a full binary tree is 2 − 1. Since, there are ℎ levels we need to add all nodes at each level [2 +
 2 + 2 + ⋯ +  2 =  2 − 1]. 

 The number of nodes 푛 in a complete binary tree is between 2  (minimum) and 2 − 1 (maximum). For more information on 
this, refer to 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter. 

 The number of leaf nodes in a full binary tree is  2 . 
 The number of None links (wasted pointers) in a complete binary tree of 푛 nodes is 푛 + 1. 

Structure of Binary Trees 
 

Now let us define structure of the binary tree. For simplicity, assume that the data of the nodes are integers. One way to represent a node 
(which contains data) is to have two links which point to left and right children along with data fields as shown below: 
 
 
 
 

     public class BinaryTreeNode {  
 public int data;  
 public BinaryTreeNode left, right; 
 public BinaryTreeNode(int data){ 
  this.data = data; 
  left = null; 
  right = null; 
 } 
 

 public int getData() { 
  return data; 
 } 
 

 public void setData(int data) { 
  this.data = data; 
 } 
 

 public BinaryTreeNode getLeft() { 
  return left; 
 } 
 

 public void setLeft(BinaryTreeNode left) { 
  this.left = left; 
 } 
 

 public BinaryTreeNode getRight() { 
  return right; 
 } 
 

 public void setRight(BinaryTreeNode right) { 
  this.right = right; 
 } 
     } 
 

Note: In trees, the default flow is from parent to children and it is not mandatory to show directed branches. For our discussion, we assume 
both the representations shown below are the same. 
 
 
 
 

Operations on Binary Trees 
 

Basic Operations 
 

 Inserting an element into a tree 
 Deleting an element from a tree 
 Searching for an element 
 Traversing the tree  
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Auxiliary Operations 
 

 Finding the size of the tree 
 Finding the height of the tree 
 Finding the level which has maximum sum 
 Finding the least common ancestor (LCA) for a given pair of nodes, and many more. 

Applications of Binary Trees 
 

Following are the some of the applications where 푏푖푛푎푟푦 푡푟푒푒푠 play an important role: 
 

 Expression trees are used in compilers. 
 Huffman coding trees that are used in data compression algorithms. 
 Binary Search Tree (BST), which supports search, insertion and deletion on a collection of items in O(푙표푔푛) (average). 
 Priority Queue (PQ), which supports search and deletion of minimum (or maximum) on a collection of items in logarithmic time 

(in worst case). 

6.4 Binary Tree Traversals 
 

In order to process trees, we need a mechanism for traversing them, and that forms the subject of this section. The process of visiting all nodes 
of a tree is called 푡푟푒푒 푡푟푎푣푒푟푠푎푙.  Each node is processed only once but it may be visited more than once. As we have already seen in linear 
data structures (like linked lists, stacks, queues, etc.), the elements are visited in sequential order. But, in tree structures there are many 
different ways.  
 

Tree traversal is like searching the tree, except that in traversal the goal is to move through the tree in a particular order.  In addition, all nodes 
are processed in the 푡푟푎푣푒푟푠푎푙 푏푢푡 푠푒푎푟푐ℎ푖푛푔 stops when the required node is found. 

Traversal Possibilities 
 

Starting at the root of a binary tree, there are three main steps that can be performed and the order in which they are performed defines the 
traversal type. These steps are: performing an action on the current node (referred to as "visiting" the node and denoted with “퐷”), traversing 
to the left child node (denoted with “퐿”), and traversing to the right child node (denoted with “푅”). This process can be easily described 
through recursion. Based on the above definition there are 6 possibilities:  
 

1. 퐿퐷푅: Process left subtree, process the current node data and then process right subtree  
2. 퐿푅퐷: Process left subtree, process right subtree and then process the current node data 
3. 퐷퐿푅: Process the current node data, process left subtree and then process right subtree  
4. 퐷푅퐿: Process the current node data, process right subtree and then process left subtree  
5. 푅퐷퐿: Process right subtree, process the current node data and then process left subtree 
6. 푅퐿퐷: Process right subtree, process left subtree and then process the current node data 

Classifying the Traversals 
 

The sequence in which these entities (nodes) are processed defines a particular traversal method. The classification is based on the order in 
which current node is processed. That means, if we are classifying based on current node (퐷) and if 퐷 comes in the middle then it does not 
matter whether 퐿 is on left side of 퐷 or 푅 is on left side of 퐷.  
 

Similarly, it does not matter whether 퐿 is on right side of 퐷 or 푅 is on right side of 퐷. Due to this, the total 6 possibilities are reduced to 3 and 
these are: 
 

 Preorder (퐷퐿푅) Traversal 
 Inorder (퐿퐷푅) Traversal 
 Postorder (퐿푅퐷) Traversal 

 

There is another traversal method which does not depend on the above orders and it is: 
 

 Level Order Traversal: This method is inspired from Breadth First Traversal (BFS of Graph algorithms). 
 

Let us use the diagram below for the remaining discussion. 
 
 
 
 
 
 
 

PreOrder Traversal 
 

In preorder traversal, each node is processed before (pre) either of its subtrees. This is the simplest traversal to understand.  However, even 
though each node is processed before the subtrees, it still requires that some information must be maintained while moving down the tree.  
In the example above, 1 is processed first, then the left subtree, and this is followed by the right subtree.  
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Therefore, processing must return to the right subtree after finishing the processing of the left subtree. To move to the right subtree after 
processing the left subtree, we must maintain the root information. The obvious ADT for such information is a stack. Because of its LIFO 
structure, it is possible to get the information about the right subtrees back in the reverse order.  
 

Preorder traversal is defined as follows: 
 

 Visit the root.  
 Traverse the left subtree in Preorder. 
 Traverse the right subtree in Preorder. 

 

The nodes of tree would be visited in the order: 1  2  4  5  3  6  7   
 

public void PreOrder(BinaryTreeNode root){ 
    if(root != null) { 
        System.out.println(root.data); 
        PreOrder(root.left); 
        PreOrder(root.right); 
    } 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 

Iterative Preorder Traversal 
 

In the recursive version, a stack is required as we need to remember the current node so that after completing the left subtree we can go to 
the right subtree. To simulate the same, first we process the current node and before going to the left subtree, we store the current node on 
stack. After completing the left subtree processing, 푝표푝 the element and go to its right subtree. Continue this process until stack is nonempty. 
 

    public ArrayList<Integer> preorderTraversal(BinaryTreeNode root) { 
        ArrayList<Integer> res = new ArrayList<Integer>(); 
        if(root == null) 
            return res; 
        Stack<BinaryTreeNode> s = new Stack<BinaryTreeNode>(); 
        s.push(root); 
        while(!s.isEmpty()){ 
         BinaryTreeNode tmp = s.pop(); 
            res.add(tmp.data); 
            // pay more attention to this sequence.  
            if(tmp.right != null) 
                s.push(tmp.right); 
            if(tmp.left != null) 
                s.push(tmp.left);   
        } 
        return res; 
    } 
 

Time Complexity: O(푛).  Space Complexity: O(푛). 

InOrder Traversal 
 

In Inorder Traversal the root is visited between the subtrees. Inorder traversal is defined as follows: 
 

 Traverse the left subtree in Inorder. 
 Visit the root.  
 Traverse the right subtree in Inorder. 

 

The nodes of tree would be visited in the order: 4  2  5  1  6  3  7 
 

    public void InOrder(BinaryTreeNode root){ 
        if(root != null) { 
            InOrder(root.left); 
            System.out.println(root.data); 
            InOrder(root.right); 
        } 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 

Non-Recursive Inorder Traversal 
 

The Non-recursive version of Inorder traversal is similar to Preorder. The only change is, instead of processing the node before going to left 
subtree, process it after popping (which is indicated after completion of left subtree processing).  
 

    public ArrayList<Integer> inorderTraversal(BinaryTreeNode root) { 
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        ArrayList<Integer> res = new ArrayList<Integer>(); 
        Stack<BinaryTreeNode> s = new Stack<BinaryTreeNode>(); 
        BinaryTreeNode currentNode = root; 
        boolean done = false; 
        while(!done){ 
            if(currentNode != null){ 
                s.push(currentNode); 
                currentNode = currentNode.left; 
            }else{ 
                if(s.isEmpty()) 
                    done = true; 
                else{ 
                    currentNode = s.pop(); 
                    res.add(currentNode.data); 
                    currentNode = currentNode.right; 
                } 
            } 
        } 
        return res; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 

PostOrder Traversal 
 

In postorder traversal, the root is visited after both subtrees. Postorder traversal is defined as follows: 
 

 Traverse the left subtree in Postorder. 
 Traverse the right subtree in Postorder.  
 Visit the root.  

 

The nodes of the tree would be visited in the order: 4  5  2  6  7  3  1  
 

    public void PostOrder(BinaryTreeNode root){ 
        if(root != null) { 
 PostOrder(root.left); 
 PostOrder(root.right); 
 System.out.println(root.data); 
        } 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 

Non-Recursive Postorder Traversal 
 

In preorder and inorder traversals, after popping the stack element we do not need to visit the same vertex again. But in postorder traversal, 
each node is visited twice. That means, after processing the left subtree we will visit the current node and after processing the right subtree we 
will visit the same current node. But we should be processing the node during the second visit. Here the problem is how to differentiate 
whether we are returning from the left subtree or the right subtree. 
 

We use a 푝푟푒푣푖표푢푠 variable to keep track of the earlier traversed node. Let’s assume 푐푢푟푟푒푛푡 is the current node that is on top of the stack. 
When 푝푟푒푣푖표푢푠 is 푐푢푟푟푒푛푡′푠 parent, we are traversing down the tree. In this case, we try to traverse to 푐푢푟푟푒푛푡′푠 left child if available (i.e., 
push left child to the stack). If it is not available, we look at 푐푢푟푟푒푛푡′푠 right child. If both left and right child do not exist (ie, 푐푢푟푟푒푛푡 is a leaf 
node), we print 푐푢푟푟푒푛푡′푠 value and pop it off the stack. 
 

If prev is 푐푢푟푟푒푛푡′푠 left child, we are traversing up the tree from the left. We look at 푐푢푟푟푒푛푡′푠 right child. If it is available, then traverse 
down the right child (i.e., push right child to the stack); otherwise print 푐푢푟푟푒푛푡′푠 value and pop it off the stack. If 푝푟푒푣푖표푢푠 is 푐푢푟푟푒푛푡′푠 
right child, we are traversing up the tree from the right. In this case, we print 푐푢푟푟푒푛푡′푠 value and pop it off the stack. 
 

public ArrayList<Integer> postorderTraversal(BinaryTreeNode root) { 
    ArrayList<Integer> res = new ArrayList<Integer>(); 
    if(root == null) 
        return res; 
    Stack<BinaryTreeNode> s = new Stack<BinaryTreeNode>(); 
    s.push(root); 
    BinaryTreeNode prev = null; 
    while(!s.isEmpty()){ 
        BinaryTreeNode curr = s.peek(); 
        if(prev == null || prev.left == curr || prev.right == curr){ 
        // traverse from top to bottom, and if curr has left child or right child,  
        // push into the stack; otherwise, pop out.  
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        if(curr.left != null) 
            s.push(curr.left); 
        else if(curr.right != null) 
            s.push(curr.right); 
        }else if(curr.left == prev){ 
            if(curr.right != null) 
                s.push(curr.right); 
        }else{ 
            res.add(curr.data); 
            s.pop(); 
        } 
        prev = curr; 
    } 
    return res; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛).  

Level Order Traversal 
 

Level order traversal is defined as follows: 
 

 Visit the root.  
 While traversing level l, keep all the elements at level l+1 in queue. 
 Go to the next level and visit all the nodes at that level. 
 Repeat this until all levels are completed. 

 

The nodes of the tree are visited in the order: 1  2  3  4  5  6  7  
 

public ArrayList<ArrayList<Integer>> levelOrder(BinaryTreeNode root) { 
    ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>(); 
    if (root == null) 
        return res; 
    // Initialization 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    q.offer(null); 
    ArrayList<Integer> curr = new ArrayList<Integer>(); 
    while (!q.isEmpty()) { 
        BinaryTreeNode tmp = q.poll(); 
        if (tmp != null) { 
            curr.add(tmp.data); 
        if (tmp.left != null) 
            q.offer(tmp.left); 
        if (tmp.right != null) 
            q.offer(tmp.right); 
        } else { 
            ArrayList<Integer> c_curr = new ArrayList<Integer>(curr); 
            res.add(c_curr); 
            curr.clear(); // Java will clear the reference, so have to new an new ArrayList.  
            // completion of a level; 
            if (!q.isEmpty()) 
                q.offer(null); 
        } 
    } 
    return res; 
} 

 

Time Complexity: O(푛).  
Space Complexity: O(푛). Since, in the worst case, all the nodes on the entire last level could be in the queue simultaneously. 

Binary Trees: Problems & Solutions 
 

Problem-1 Give an algorithm for finding maximum element in binary tree. 
 

Solution: One simple way of solving this problem is: find the maximum element in left subtree, find the maximum element in right sub tree, 
compare them with root data and select the one which is giving the maximum value. This approach can be easily implemented with recursion. 
 

    public int maxInBinaryTree(BinaryTreeNode root){ 
 int maxValue = Integer.MIN_VALUE; 
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 if (root != null){ 
  int leftMax = maxInBinaryTree(root.left); 
  int rightMax = maxInBinaryTree(root.right);     

  if (leftMax > rightMax) 
   maxValue = leftMax; 
  else 
   maxValue = rightMax; 
 

  if (root.data > maxValue) 
   maxValue = root.data; 
  } 
 return maxValue; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-2 Give an algorithm for finding maximum element in binary tree without recursion. 
 

Solution:  Using level order traversal: just observe the element’s data while deleting. 
 

public int maxInBinaryTreeLevelOrder(BinaryTreeNode root){ 
    if(root == null) 
        return Integer.MIN_VALUE; 
    int max = Integer.MIN_VALUE; 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        if (tmp.data > max){ 
            max = tmp.data; 
        } 
        if(tmp != null){ 
            if(tmp.left != null) 
                q.offer(tmp.left); 
            if(tmp.right != null) 
                q.offer(tmp.right); 
        } 
    } 
    return max; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-3 Give an algorithm for searching an element in binary tree. 
 

Solution: Given a binary tree, return true if a node with data is found in the tree. Recurse down the tree, choose the left or right branch by 
comparing data with each nodes data. 
 

    // Checks whether the root argument contains within itself the data argument. 
    public static boolean findInBT(BinaryTreeNode root, int  data) { 
 if (root == null) 
     return false; 
 if (root.data == data) 
     return true; 
 return findInBT(root.left, data)  || findInBT(root.right, data); 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-4 Give an algorithm for searching an element in binary tree without recursion. 
 

Solution: We can use level order traversal for solving this problem. The only change required in level order traversal is, instead of printing 
the data, we just need to check whether the root data is equal to the element we want to search. 
 

    // Tests whether the root argument contains within itself the data argument. 
    public boolean findInBT(BinaryTreeNode root, int data){ 
 if(root == null) 
     return false; 
 Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
 q.offer(root); 
 while(!q.isEmpty()){ 
  BinaryTreeNode tmp = q.poll(); 
  if (tmp.data == data){ 
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   return true; 
  } 
     if(tmp != null){ 
  if(tmp.left != null) 
      q.offer(tmp.left); 
  if(tmp.right != null) 
      q.offer(tmp.right); 
     } 
 } 
 return false; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-5 Give an algorithm for inserting an element into binary tree. 
 

Solution: Since the given tree is a binary tree, we can insert the element wherever we want. To insert an element, we can use the level order 
traversal and insert the element wherever we find the node whose left or right child is NULL.  
 

public BinaryTreeNode insertInBinaryTreeLevelOrder(BinaryTreeNode root, int data){ 
    if(root == null) 
        return null; 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        if(tmp != null){ 
            if(tmp.left != null) 
                q.offer(tmp.left); 
            else{ 
                tmp.left = new BinaryTreeNode(data); 
                return root; 
            } 
            if(tmp.right != null) 
                q.offer(tmp.right); 
            else{ 
                tmp.right = new BinaryTreeNode(data); 
                return root; 
            } 
        } 
    } 
    return root; 
} 

 

Recursive Approach 
 

public void insert(BinaryTreeNode root, int data) { 
    if (root == null) { 
        root = new BinaryTreeNode(data); 
    } else { 
        insertHelper(root, data); 
    } 
} 
private void insertHelper(BinaryTreeNode root, int data) { 
    if (root.data >= data) { // It is not compulsory to put this check. 
        if (root.left == null) { 
            root.left = new BinaryTreeNode(data); 
        } else { 
            insertHelper(root.right, data); 
        } 
    } else { 
        if (root.right == null) { 
            root.right = new BinaryTreeNode(data); 
        } else { 
            insertHelper(root.right, data); 
        } 
    } 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
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Problem-6 Give an algorithm for finding the size of binary tree. 
 

Solution: Calculate the size of left and right subtrees recursively, add 1 (current node) and return to its parent. 
 

// Returns the total number of nodes in this binary tree (include the root in the count). 
public int size(BinaryTreeNode root) { 
    int leftCount = root.left == null ? 0 : size(root.left); 
    int rightCount = root.right == null ? 0 : size(root.right); 
    return 1 + leftCount + rightCount; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-7 Can we solve Problem-6 without recursion? 
 

Solution: Yes, using level order traversal. 
 

// Returns the total number of nodes in this binary tree (include the root in the count). 
public int size(BinaryTreeNode root) { 
    int count = 0; 
    if(root == null) 
        return 0; 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        count++; 
        if(tmp.left != null) 
            q.offer(tmp.left); 
        if(tmp.right != null) 
            q.offer(tmp.right); 
    } 
    return count; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-8 Give an algorithm for deleting the tree. 
 

Solution: To delete a tree, we must traverse all the nodes of the tree and delete them one by one. So which traversal should we use: Inorder, 
Preorder, Postorder or Level order Traversal?  
 

Before deleting the parent node we should delete its children nodes first. We can use postorder traversal as it does the work without storing 
anything. We can delete tree with other traversals also with extra space complexity. For the following, tree nodes are deleted in order – 
4, 5, 2, 3, 1. 
 
 

 

 
 
    public void deleteBinaryTree(BinaryTreeNode root) { 
        root = null;    //In Java, it will be taken care by garbage collector 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-9 Give an algorithm for printing the level order data in reverse order. For example, the output for the below tree should 
be: 4 5 6 7 2 3 1 

 
 
 
 
 
 
 
Solution: 
 

public static void levelOrderTraversalInReverse(BinaryTreeNode root) { 
    if(root == null)  
        return; 
    Stack<BinaryTreeNode> s = new Stack<BinaryTreeNode>(); 

 

root 
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    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        if(tmp.left != null) 
            q.offer(tmp.left); 
        if(tmp.right != null) 
            q.offer(tmp.right); 
        s.push(tmp); 
    } 
    while(!s.isEmpty()) 
        System.out.println(s.pop().data+ " "); 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-10 Give an algorithm for finding the height (or depth) of the binary tree. 
 

Solution: Recursively calculate height of left and right subtrees of a node and assign height to the node as max of the heights of two children 
plus 1. This is similar to 푃푟푒푂푟푑푒푟 tree traversal (and 퐷퐹푆 of Graph algorithms). 
 

    // Returns the depth of this binary tree. The depth of a binary tree is the 
    // length of the longest path from this node to a leaf. The depth of a 
    // binary tree with no descendants (that is, just a leaf) is zero. 
    public int maxDepthRecursive(BinaryTreeNode root) { 
        if(root == null)  
              return 0; 
        // Compute the depth of each subtree 
        int leftDepth = maxDepthRecursive(root.left); 
        int rightDepth = maxDepthRecursive(root.right); 
        return (leftDepth > rightDepth) ? leftDepth + 1 : rightDepth + 1; 
    }   
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-11 Can we solve Problem-10 with stack? 
 

Solution: We can use stack to simulate recursion. 
 

    // Returns the depth of this binary tree. The depth of a binary tree is the 
    // length of the longest path from this node to a leaf. The depth of a 
    // binary tree with no descendants (that is, just a leaf) is zero. 
    public int maxDepthIterative(BinaryTreeNode root){ 
        if(root == null)  
                return 0; 
        Stack<BinaryTreeNode> s = new Stack<BinaryTreeNode>(); 
        s.push(root); 
        int maxDepth = 0; 
        BinaryTreeNode prev = null; 
        while(!s.isEmpty()){ 
         BinaryTreeNode curr = s.peek(); 
            if(prev == null || prev.left == curr || prev.right == curr){ 
                if(curr.left != null) s.push(curr.left); 
                else if(curr.right != null) s.push(curr.right); 
            }else if(curr.left == prev){ 
                if(curr.right != null) s.push(curr.right); 
            }else 
                s.pop(); 
            prev = curr; 
            if(s.size() > maxDepth) 
                maxDepth = s.size(); 
        } 
        return maxDepth; 
    } 
 

Problem-12 Can we solve Problem-10 without recursion? 
 

Solution: Yes. Using level order traversal. This is similar to 퐵퐹푆 of Graph algorithms. End of level is identified with NULL. 
 

    // Returns the depth of this binary tree. The depth of a binary tree is the 
    // length of the longest path from this node to a leaf. The depth of a 
    // binary tree with no descendants (that is, just a leaf) is zero. 



 

Data Structures and Algorithms Made Easy in Java Trees                      

 

6.4 Binary Tree Traversals    136 

 
 

    public int minDepth(BinaryTreeNode root) { 
        if(root == null) return 0; 
        Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
        q.offer(root); 
        q.offer(null); 
        int count = 1; 
        while(!q.isEmpty()){ 
            BinaryTreeNode currentNode = q.poll(); 
            if(currentNode != null){ 
                if(currentNode.left == null && currentNode.right == null){ 
                    return count; 
                } 
                if(currentNode.left != null){ 
                    q.offer(currentNode.left); 
                } 
                if(currentNode.right != null){ 
                    q.offer(currentNode.right); 
                }    
            }else{ 
                if(!q.isEmpty()){ 
                    count++; 
                    q.offer(null); 
                } 
            } 
        } 
        return count; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-13 Give an algorithm for finding the minimum depth of the binary tree. 
 

Solution: 
 

    public int minDepth(BinaryTreeNode root) { 
        if(root == null) return 0; 
        Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
        q.offer(root); 
        q.offer(null); 
        int count = 1; 
        while(!q.isEmpty()){ 
            BinaryTreeNode currentNode = q.poll(); 
            if(currentNode != null){ 
                if(currentNode.left == null && currentNode.right == null){ 
                    return count; 
                } 
                if(currentNode.left != null){ 
                    q.offer(currentNode.left); 
                } 
                if(currentNode.right != null){ 
                    q.offer(currentNode.right); 
                }    
            }else{ 
                if(!q.isEmpty()){ 
                    count++; 
                    q.offer(null); 
                } 
            } 
        } 
        return count; 
    } 
 

Problem-14 Give an algorithm for finding the deepest node of the binary tree. 
 

Solution: The last node processed from queue in level order is the deepest node in binary tree. 
 

    public BinaryTreeNode deepestNodeinBinaryTree(BinaryTreeNode root) { 
        BinaryTreeNode tmp = null; 
        if(root == null) 
                return null; 
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        Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
        q.offer(root); 
        while(!q.isEmpty()){ 
         tmp = q.poll(); 
            if(tmp.left != null) 
                q.offer(tmp.left); 
            if(tmp.right != null) 
                q.offer(tmp.right); 
        } 
        return tmp; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-15 Give an algorithm for deleting an element (assuming data is given) from binary tree. 
 

Solution: The deletion of a node in binary tree can be implemented as 
 Starting at root, find the node which we want to delete. 
 Find the deepest node in the tree. 
 Replace the deepest node’s data with node to be deleted. 
 Then delete the deepest node. 

 

Problem-16 Give an algorithm for finding the number of leaves in the binary tree without using recursion. 
 

Solution: The set of  nodes whose both left and right children are NULL are called leaf nodes. 
 

public int numberOfLeavesInBTusingLevelOrder(BinaryTreeNode root) { 
    int count = 0; 
    if(root == null) 
        return 0; 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        if(tmp.left== null && tmp.right== null) 
            count++; 
        if(tmp.left != null) 
            q.offer(tmp.left); 
        if(tmp.right != null) 
            q.offer(tmp.right); 
    } 
    return count; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-17 Give an algorithm for finding the number of full nodes in the binary tree without using recursion. 
 

Solution: The set of all nodes with both left and right children are called full nodes. 
 

public int numberOfFullNodesInBTusingLevelOrder(BinaryTreeNode root) { 
    int count = 0; 
    if(root == null) 
        return 0; 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        if(tmp.left != null && tmp.right != null) 
            count++; 
        if(tmp.left != null) 
            q.offer(tmp.left); 
        if(tmp.right != null) 
            q.offer(tmp.right); 
    } 
    return count; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-18 Give an algorithm for finding the number of half nodes (nodes with only one child) in the binary tree without using 
recursion. 
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Solution: The set of all nodes with either left or right child (but not both) are called half nodes. 
 

public int numberOfHalfNodesInBTusingLevelOrder(BinaryTreeNode root) { 
    int count = 0; 
    if(root == null) 
        return 0; 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        if((tmp.left == null && tmp.right != null) || (tmp.left != null && tmp.right != null)) 
            count++;   
        if(tmp.left != null) 
            q.offer(tmp.left); 
        if(tmp.right != null) 
            q.offer(tmp.right); 
    } 
    return count; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-19 Given two binary trees, return true if they are structurally identical. 
 

Solution:  
Algorithm: 

 If both trees are NULL then return true. 
 If both trees are not NULL, then recursively check left and right subtree structures. 
 

//Return true if they are structurally identical. 
public boolean checkStructurullySameTrees(BinaryTreeNode  root1, BinaryTreeNode  root2) { 
    if(root1 == null && root2 == null)   
        return true; 
    if(root1 == null || root2 == null)  
        return false; 
    return (checkStructurullySameTrees(root1.left, root2.right) && checkStructurullySameTrees(root1.right, root2.left)); 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛), for recursive stack. 
 

Problem-20 Give an algorithm for finding the diameter of the binary tree. The diameter of a tree (sometimes called the 푤푖푑푡ℎ) is the 
number of nodes on the longest path between two leaves in the tree. 

 

Solution: To find the diameter of a tree, first calculate the diameter of left subtree and right subtrees recursively. Among these two values, we 
need to send maximum value along with current level (+1). 
 

    public int diameterOfTree(BinaryTreeNode root){ 
 int left, right; 
 if(root == null)  
         return 0; 
 left = diameterOfTree(root.left); 
 right = diameterOfTree(root.right); 
 if(left + right > diameter) 
         diameter = left + right; 
 return Math.max(left, right)+1; 
    } 
    // Alternative Coding 
    public int diameter(BinaryTreeNode root){ 
 if(root==null) return 0; 
 

 //the path goes through the root 
 int len1 = height(root.left) + height(root.right) +3; 
 

 //the path does not pass the root 
 int len2 = Math.max(diameter(root.left), diameter(root.right)); 
 

 return Math.max(len1, len2); 
    } 
    public int height(BinaryTreeNode root) { 
 if(root == null)  
  return 0; 
 /* compute the depth of each subtree */ 
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 int leftDepth = height(root.left); 
 int rightDepth = height(root.right); 
 return (leftDepth > rightDepth) ? leftDepth + 1 : rightDepth + 1; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-21 Give an algorithm for finding the width of the binary tree. The diameter of a tree is the maximum number of nodes at 
any level (or depth) in the tree. 

 

Solution: 
 

//The width of a binary tree is the maximum number of elements on one level of the tree. 
public int width(BinaryTreeNode root){ 
    int max = 0; 
    int height = maxDepthRecursive(root); 
    for(int k = 0; k <= height; k++){ 
        int tmp = width(root, k); 
        if(tmp > max) max = tmp; 
    } 
    return max; 
} 
// Returns the number of node on a given level 
public int width(BinaryTreeNode root, int depth){ 
    if(root==null)  
        return 0; 
    else 
        if(depth == 0)  
            return 1; 
        else 
        return width(root.left, depth-1) + width(root.right, depth-1); 
} 

 

Problem-22 Give an algorithm for finding the level that has the maximum sum in the binary tree. 
 

Solution: The logic is very much similar to finding the number of levels. The only change is, we need to keep track of the sums as well. 
 

public int findLevelwithMaxSum(BinaryTreeNode root) { 
    int maxSum = 0, currentSum = 0; 
    if (root == null) 
        return 0; 
    // Initialization 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    q.offer(null); 
    while (!q.isEmpty()) { 
        BinaryTreeNode tmp = q.poll(); 
        if (tmp != null) { 
            if (tmp.left != null) 
                q.offer(tmp.left); 
            if (tmp.right != null) 
                q.offer(tmp.right); 
        } else { 
            if (currentSum > maxSum){ 
                maxSum =  currentSum; 
            } 
            currentSum = 0; 
            // completion of a level; 
            if (!q.isEmpty()) 
                q.offer(null); 
        } 
    } 
    return maxSum; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-23 Given a binary tree, print out all its root-to-leaf paths.  
 

Solution: Refer to comments in functions. 
 

public void printPaths(BinaryTreeNode  root) { 
    int[] path = new int[256]; 
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    printPaths(root, path, 0); 
} 
private void printPaths(BinaryTreeNode  root, int[] path, int pathLen) { 
    if (root == null)  
        return; 
    // append this node to the path array 
    path[pathLen] = root.data; 
    pathLen++; 
    // it's a leaf, so print the path that led to here 
    if (root.left == null && root.right == null) { 
        printArray(path, pathLen); 
    } 
    else { // otherwise try both subtrees 
        printPaths(root.left, path, pathLen); 
        printPaths(root.right, path, pathLen); 
    } 
} 
private void printArray(int[] ints, int len) { 
    for (int i=0; i<len; i++) { 
        System.out.print(ints[i] + " "); 
    } 
    System.out.println(); 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛), for recursive stack. 
 

Problem-24 Give an algorithm for checking the existence of path with given sum. That means, given a sum, check whether there exists 
a path from root to any of the nodes.  

 

Solution: For this problem, the strategy is: subtract the node value from the sum before calling its children recursively, and check to see if the 
sum is 0 when we run out of tree. 
 

    public boolean hasPathSum(TreeNode root, int sum) { 
        if(root == null) 
            return false; 
        if(root.left == null && root.right == null && root.data == sum) 
            return true; 
        else 
            return hasPathSum(root.left, sum - root.data) || hasPathSum(root.right, sum - root.data); 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-25 Give an algorithm for finding the sum of all elements in binary tree. 
 

Solution: Recursively, call left subtree sum, right subtree sum and add their values to current nodes data. 
 

public int addBT(BinaryTreeNode  root) { 
    if(root == null)  
        return 0; 
    else  
        return(root.data + addBT(root.left) +  addBT(root.right)); 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-26 Can we solve Problem-25 without recursion? 
 

Solution: We can use level order traversal with simple change. Every time after deleting an element from queue, add the node’s data value to 
푠푢푚 variable. 
 

public int addBT(BinaryTreeNode  root) { 
    int sum = 0; 
    if(root == null) 
        return 0; 
    Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
    q.offer(root); 
    while(!q.isEmpty()){ 
        BinaryTreeNode tmp = q.poll(); 
        sum += tmp.data; 
        if(tmp.left != null) 
          q.offer(tmp.left); 
        if(tmp.right != null) 
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          q.offer(tmp.right); 
    } 
    return sum; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-27 Give an algorithm for converting a tree to its mirror. Mirror of a tree is another tree with left and right children of all non-
leaf nodes interchanged. The trees below are mirrors to each other. 

 
 
 
 
 
 
 
 

Solution: 
 

public BinaryTreeNode mirrorOfBinaryTree(BinaryTreeNode root) { 
    BinaryTreeNode  temp; 
    if(root != null) { 
        mirrorOfBinaryTree (root.left); 
        mirrorOfBinaryTree (root.right); 
        /* swap the pointers in this node */ 
        temp  = root.left; 
        root.left = root.right; 
        root.right = temp; 
    } 
    return root; 
} 

 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-28 Given two trees, give an algorithm for checking whether they are mirrors of each other. 
 

Solution: 
 

    public boolean areMirrors(BinaryTreeNode  root1, BinaryTreeNode  root2) { 
     if(root1 == null && root2 == null)   
                    return true; 
     if(root1 == null || root2 == null)  
                    return false; 
     if(root1.data != root2.data)  
                    return false; 
     else return (areMirrors(root1.left, root2.right) && areMirrors(root1.right, root2.left)); 
     } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-29 Give an algorithm for constructing binary tree from given Inorder and Preorder traversals. 
 

Solution: Let us consider the traversals below:  
Inorder sequence:   D B E A F C 
Preorder sequence: A B D E C F 

 

In a Preorder sequence, leftmost element denotes the root of the tree. So we know ‘퐴’ is the root for given sequences. By searching ‘퐴’ in 
Inorder sequence we can find out all elements on the left side of ‘퐴’, which come under the left subtree, and elements on the right side of ‘퐴’, 
which come under the right subtree. So we get the structure as seen below. 
 
 
 
 
 
 
We recursively follow the above steps and get the following tree. 
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Algorithm: BuildTree() 
 

1  Select an element from Preorder. Increment a Preorder index variable (preIndex in below code) to pick next element in next 
recursive call. 

2  Create a new tree node (newNode) with the data as selected element. 
3  Find the selected element’s index in Inorder. Let the index be inIndex. 
4  Call BuildBinaryTree for elements before inIndex and make the built tree as left subtree of newNode. 
5  Call BuildBinaryTree for elements after inIndex and make the built tree as right subtree of newNode. 
6  return newNode. 

 

    public BinaryTreeNode buildBinaryTree(int[] preorder, int[] inorder) { 
        if(preorder.length == 0 || inorder.length != preorder.length) 
            return null; 
        return buildBT(preorder, 0, preorder.length - 1, inorder, 0, inorder.length - 1); 
    } 
    public BinaryTreeNode buildBT(int[] preOrder, int preStart, int preEnd, int[] inOrder, int inStart, int inEnd){ 
        if(preStart > preEnd || inStart > inEnd) 
            return null; 
        int data = preOrder[preStart]; 
        BinaryTreeNode cur = new BinaryTreeNode(data); 
        int offset = inStart; 
        for(; offset < inEnd; offset++){ 
            if(inOrder[offset] == data) 
                break; 
        } 
        cur.left = buildBT(preOrder, preStart + 1, preStart + offset - inStart, inOrder, inStart, offset - 1); 
        cur.right = buildBT(preOrder, preStart + offset - inStart + 1, preEnd, inOrder, offset + 1, inEnd); 
        return cur; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-30 Give an algorithm for constructing binary tree from given Inorder and Postorder traversals. 
 

Solution: 
 

    public BinaryTreeNode buildBinaryTree(int[] inorder, int[] postorder) { 
        if(postorder.length == 0 || postorder.length != inorder.length) 
            return null; 
        return buildBT(postorder, 0, postorder.length - 1, inorder, 0, inorder.length - 1); 
    }      

    public BinaryTreeNode buildBT(int[] postOrder, int postStart, int postEnd, int[] inOrder, int inStart, int inEnd){ 
        if(postStart > postEnd || inStart > inEnd) 
            return null; 
        int val = postOrder[postEnd]; 
        int offset = inStart; 
        BinaryTreeNode cur = new BinaryTreeNode(val); 
        // search for the inorder index 
        for(; offset < inEnd; offset++){ 
            if(inOrder[offset] == val) 
                break; 
        } 
        cur.left = buildBT(postOrder, postStart, postStart + offset - inStart - 1, inOrder, inStart, offset - 1); 
        cur.right = buildBT(postOrder, postStart + offset - inStart, postEnd - 1, inOrder, offset + 1, inEnd); 
        return cur; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-31 If we are given two traversal sequences, can we construct the binary tree uniquely? 
 

Solution: It depends on what traversals are given. If one of the traversal methods is 퐼푛표푟푑푒푟 then the tree can be constructed uniquely, 
otherwise not. 
 
 
 
 
 
Therefore, the following combinations can uniquely identify a tree: 

 Inorder and Preorder 
 Inorder and Postorder 

 

 

 

 A 

B

A 

B
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 Inorder and Level-order 
 

The following combinations do not uniquely identify a tree. 
 Postorder and Preorder 
 Preorder and Level-order 
 Postorder and Level-order 

 

For example, Preorder, Level-order and Postorder traversals are the same for the above trees: 
Preorder Traversal      = AB 
Postorder Traversal     = BA 
Level-order Traversal  = AB 

So, even if three of them (PreOrder, Level-Order and PostOrder) are given, the tree cannot be constructed uniquely. 
 

Problem-32  Give an algorithm for printing all the ancestors of a node in a Binary tree. For the tree below, for 7 the ancestors are 
1 3 7. 

 
 
 
 
 
 
 

 

Solution: Apart from the Depth First Search of this tree, we can use the following recursive way to print the ancestors. 
 

    public static boolean printAllAncestors(BinaryTreeNode root, BinaryTreeNode node){ 
 if(root == null)  
  return false; 
 if(root.left == node || root.right == node ||  
  printAllAncestors(root.left, node) || printAllAncestors(root.right, node)) { 
  System.out.println(root.data); 
  return true; 
 } 
 return false; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛) for recursion. 
 

Problem-33 Give an algorithm for finding LCA (Least Common Ancestor) of two nodes in a Binary Tree. 
 

Solution: 
 

    public BinaryTreeNode LCA(BinaryTreeNode root, BinaryTreeNode a, BinaryTreeNode b) { 
 BinaryTreeNode left, right; 
 if (root == null) 
     return root; 
 if (root == a || root == b) 
     return root; 
 left = LCA(root.left, a, b); 
 right = LCA(root.right, a, b); 
 if (left != null && right != null) 
     return root;  // nodes are each on a separate branch 
 else 
     return (left != null ? left : right); 
 // either one node is on one branch, 
 // or none was found in any of the branches   
    }  
 

Time Complexity: O(푛). Space Complexity: O(푛) for recursion. 
 

Problem-34 Zigzag Tree Traversal: Give an algorithm to traverse a binary tree in Zigzag order. For example, the output for the tree 
below should be: 1 3 2 4 5 6 7 

 
 

 
 
 
 

 
 

Solution: This problem can be solved easily using two stacks. Assume the two stacks are: 푐푢푟푟푒푛푡퐿푒푣푒푙 and 푛푒푥푡퐿푒푣푒푙. We would also need 
a variable to keep track of the current level order (whether it is left to right or right to left). 
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We pop from 푐푢푟푟푒푛푡퐿푒푣푒푙 stack and print the node’s value. Whenever the current level order is from left to right, push the node’s left 
child, then its right child, to stack 푛푒푥푡퐿푒푣푒푙. Since a stack is a Last In First Out (퐿퐼퐹푂) structure, the next time that nodes are popped off 
nextLevel, it will be in the reverse order.  
 

On the other hand, when the current level order is from right to left, we would push the node’s right child first, then its left child. Finally, don't 
forget to swap those two stacks at the end of each level (푖. 푒., when 푐푢푟푟푒푛푡퐿푒푣푒푙 is empty). 
 

    public ArrayList<ArrayList<Integer>> zigzagLevelOrder(BinaryTreeNode root) { 
        ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>(); 
        if(root == null) 
            return res; 
        Queue<BinaryTreeNode> q = new LinkedList<BinaryTreeNode>(); 
        q.offer(root); 
        q.offer(null); 
        boolean leftToRight = true; 
        ArrayList<Integer> curr = new ArrayList<Integer>(); 
        while(!q.isEmpty()){ 
         BinaryTreeNode tmp = q.poll(); 
            if(tmp != null){ 
                curr.add(tmp.data); 
                if(tmp.left != null) 
                    q.offer(tmp.left); 
                if(tmp.right != null) 
                    q.offer(tmp.right); 
            }else{ 
                if(leftToRight){ 
                    ArrayList<Integer> c_curr = new ArrayList<Integer>(curr); 
                 res.add(c_curr); 
                    curr.clear(); 
                }else{ 
                    Stack<Integer> s = new Stack<Integer>(); 
                    s.addAll(curr); 
                    ArrayList<Integer> c_curr = new ArrayList<Integer>(); 
                    while(!s.isEmpty()){ 
                        c_curr.add(s.pop()); 
                    } 
                    res.add(c_curr); 
                    curr.clear(); 
                } 
                if(!q.isEmpty()){ 
                    q.offer(null); 
                    leftToRight = !leftToRight; 
                } 
            } 
        } 
        return res; 
    }  
 

Time Complexity: O(푛). Space Complexity: Space for two stacks = O(푛) + O(푛)  = O(푛). 
 

Problem-35 Give an algorithm for finding the vertical sum of a binary tree. For example,  
 
 
 

  
 
 
 

 

The tree has 5 vertical lines 
Vertical-1: nodes-4 => vertical sum is 4 
Vertical-2: nodes-2 => vertical sum is 2 
Vertical-3: nodes-1,5,6 => vertical sum is 1 + 5 + 6 =  12 
Vertical-4: nodes-3 => vertical sum is 3 
Vertical-5: nodes-7 => vertical sum is 7 
We need to output: 4  2  12  3  7 

 

Solution: We can do an inorder traversal and hash the column. We call VerticalSumInBinaryTree(root, 0) which means the root is at column 
0. While doing the traversal, hash the column and increase its value by 푟표표푡. 푔푒푡퐷푎푡푎().  
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    public static void vSum(HashMap <Integer, Integer> hash,BinaryTreeNode root, int c){ 
 if(root.left!=null) 
  vSum(hash, root.left, c-1); 
 if(root.right!=null) 
  vSum(hash,root.right, c+1); 
 int data=0; 
 if(hash.containsKey(c)) 
  data=hash.get(c); 
 hash.put(c, root.data+data); 
    } 
    public static void verticalSum(BinaryTreeNode root){ 
 HashMap <Integer, Integer> hash = new HashMap<Integer, Integer>(); 
 vSum(hash, root, 0); 
 System.out.println(); 
 

 for(int k:hash.keySet()){ 
  System.out.println("key(pos): "+k+ " sum: "+ hash.get(k)+" ");      
 } 
    } 
 

Problem-36 How many different binary trees are possible with 푛 nodes? 
 

Solution: For example, consider a tree with 3 nodes (푛 = 3). It will have the maximum combination of 5 different (i.e., 2 − 3 = 5) trees. 
 

 
 
 
 
 
 

In general, if there are 푛 nodes, there exist 2 − 푛 different trees.  
 

Programatically we can count by using the code beow. 
 

    public int numOfBSTs(int n) { 
        int[] count = new int[n + 1]; 
        count[0] = 1; 
        count[1] = 1; 
        for(int i = 2; i <= n; i++){ 
            for(int j = 0; j < i; j++){ 
                count[i] += count[j] * count[i - j - 1]; 
            } 
        } 
        return count[n]; 
    } 
 

Time Complexity: O(푛 ). Space Complexity: O(푛). 
 

Problem-37 For Problem-36, how do we generate all different BSTs with n nodes? 
 

Solution:  
 

    public ArrayList<BinarySearchTreeNode> generateTrees(int n) { 
        if(n == 0)  
             return generateTrees(1, 0); 
        return generateTrees(1, n); 
    } 
    public ArrayList<BinarySearchTreeNode> generateTrees(int start, int end) { 
        ArrayList<BinarySearchTreeNode> subTrees = new ArrayList<BinarySearchTreeNode>(); 
        if(start > end){ 
            subTrees.add(null); 
            return subTrees; 
        }           
        for(int i = start; i <= end; i++){ 
            for(BinarySearchTreeNode left : generateTrees(start, i - 1)){ 
                for(BinarySearchTreeNode right : generateTrees(i + 1, end)){ 
                 BinarySearchTreeNode aTree = new BinarySearchTreeNode(i); 
                    aTree.left = left; 
                    aTree.right = right; 
                    subTrees.add(aTree); 
                } 
            } 
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        } 
        return subTrees; 
    } 
 

Problem-38 Given a tree with a special property where leaves are represented with ‘L’ and internal node with ‘I’. Also, assume that 
each node has either 0 or 2 children. Given preorder traversal of this tree, construct the tree.  Example: Given preorder string => ILILL 

 

 
 
 
 
 
 
 
 
 

Solution: First, we should see how preorder traversal is arranged. Pre-order traversal means first put root node, then pre-order traversal of left 
subtree and then pre-order traversal of right subtree. In a normal scenario, it’s not possible to detect where left subtree ends and right subtree 
starts using only pre-order traversal. Since every node has either 2 children or no child, we can surely say that if a node exists then its sibling 
also exists. So every time when we are computing a subtree, we need to compute its sibling subtree as well. 
 

Secondly, whenever we get ‘L’ in the input string, that is a leaf and we can stop for a particular subtree at that point. After this ‘L’ node (left 
child of its parent ‘L’), its sibling starts. If ‘L’ node is right child of its parent, then we need to go up in the hierarchy to find the next subtree 
to compute.  
 

Keeping the above invariant in mind, we can easily determine when a subtree ends and the next one starts. It means that we can give any start 
node to our method and it can easily complete the subtree it generates going outside of its nodes. We just need to take care of passing the 
correct start nodes to different sub-trees. 
 

    public BinaryTreeNode BuildTreeFromPreOrder(char[] A, int i) { 
 if(A == null)   //Boundary Condition 
  return null; 
 if(A.length == i)   //Boundary Condition 
  return null; 
 BinaryTreeNode newNode = new BinaryTreeNode(); 
 newNode.data = A[i]; 
 newNode.left = null;  
 newNode.right = null; 
 if(A[i] == 'L')    //On reaching leaf node, return 
  return newNode; 
 i = i + 1;    //Populate left sub tree 
 newNode.left = BuildTreeFromPreOrder(A, i); 
 i = i + 1;    //Populate right sub tree 
 newNode.right = BuildTreeFromPreOrder(A, i); 
 return newNode; 
    } 
 

Time Complexity: O(푛). 
 

Problem-39 Given a binary tree with three pointers (left, right and nextSibling), give an algorithm for filling the 푛푒푥푡푆푖푏푙푖푛푔 pointers 
assuming they are NULL initially. 

 

Solution: We can use simple queue. 
 

    public class SiblingBinaryTreeNode { 
 public int data;  
 public SiblingBinaryTreeNode left; 
 public SiblingBinaryTreeNode right; 
 public SiblingBinaryTreeNode nextSibling; 
 public SiblingBinaryTreeNode(int data){ 
  this.data = data; 
  left = null; 
  right = null; 
  nextSibling = null; 
 } 
 public SiblingBinaryTreeNode(int data, SiblingBinaryTreeNode left, SiblingBinaryTreeNode right,  

           SiblingBinaryTreeNode nextSibling){ 
  this.data = data; 
  this.left = left; 
  this.right = right; 
  this.nextSibling = nextSibling; 
 } 
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 public int getData() { 
  return data; 
 } 
 public void setData(int data) { 
  this.data = data; 
 } 
 public SiblingBinaryTreeNode getLeft() { 
  return left; 
 } 
 public void setLeft(SiblingBinaryTreeNode left) { 
  this.left = left; 
 } 
 public SiblingBinaryTreeNode getRight() { 
  return right; 
 } 
 public void setRight(SiblingBinaryTreeNode right) { 
  this.right = right; 
 } 
 public SiblingBinaryTreeNode getNextSibling() { 
  return nextSibling; 
 } 
 public void setNextSibling(SiblingBinaryTreeNode nextSibling) { 
  this.nextSibling = nextSibling; 
 } 
 // Sets the data in this BinaryTreeNode node. 
 public void setValue(int data) { 
  this.data = data; 
 } 
 // Tests whether this node is a leaf node. 
 public boolean isLeaf() { 
  return left == null && right == null; 
 } 
    } 
    public static void fillNextSiblings(SiblingBinaryTreeNode root) { 
 SiblingBinaryTreeNode tmp = null; 
 if (root == null) 
  return; 
 // Initialization 
 Queue<SiblingBinaryTreeNode> q = new LinkedList<SiblingBinaryTreeNode>(); 
 q.offer(root); 
 q.offer(null); 
 while (!q.isEmpty()) { 
  tmp = q.poll(); 
  if (tmp != null) { 
   tmp.setNextSibling(q.peek()); 
   if (tmp.left != null) 
    q.offer(tmp.left); 
   if (tmp.right != null) 
    q.offer(tmp.right); 
  } else { 
   // completion of a level; 
   if (!q.isEmpty()) 
    q.offer(null); 
  } 
 } 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-40 Is there any other way of solving Problem-39? 
 

Solution: The trick is to re-use the populated 푛푒푥푡푆푖푏푙푖푛푔 pointers. As mentioned earlier, we just need one more step for it to work. Before 
we pass the 푙푒푓푡 and 푟푖푔ℎ푡 to the recursion function itself, we connect the right child’s 푛푒푥푡푆푖푏푙푖푛푔 to the current node’s nextSibling left 
child. In order for this to work, the current node 푛푒푥푡푆푖푏푙푖푛푔 pointer must be populated, which is true in this case. 

 

public static void fillNextSiblings(SiblingBinaryTreeNode root) { 
    if (root == null)  
        return; 
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    if (root.left != null) 
        root.left.setNextSibling(root.right); 
    if (root.right != null) 
        if(root.getNextSibling() != null) 
            root.right.setNextSibling(root.getNextSibling().left); 
        else  
            root.right.setNextSibling(null); 
    fillNextSiblings(root.left); 
    fillNextSiblings(root.right); 
} 

 

Time Complexity: O(푛). 
 

Problem-41 Given a binary tree, find its minimum depth. The minimum depth of a binary tree is the number of nodes along the 
shortest path from the root node down to the nearest leaf node. For example, minimum depth of the following binary tree is 3. 

 

 
 
 
 
 
 
 
 
 
 

Solution: The algorithm is similar to the algorithm of finding depth (or height) of a binary tree, except here we are finding minimum depth. 
One simplest approach to solve this problem would be by using recursion. But the question is when do we stop it? We stop the recursive calls 
when it is a leaf node or 푛푢푙푙. 
 

Algorithm: 
 

      Let 푟표표푡 be the pointer to the root node of a subtree.  
 

 If the 푟표표푡 is equal to 푛푢푙푙, then the minimum depth of the binary tree would be 0. 
 If the 푟표표푡 is a leaf node, then the minimum depth of the binary tree would be 1. 
 If the 푟표표푡 is not a leaf node and if left subtree of the 푟표표푡 is 푛푢푙푙, then find the minimum depth in the right subtree. Otherwise, 

find the minimum depth in the left subtree. 
 If the 푟표표푡 is not a leaf node and both left subtree and right subtree of the 푟표표푡 are not 푛푢푙푙, then recursively find the minimum 

depth of left and right subtree. Let it be 푙푒푓푡푆푢푏푡푟푒푒푀푖푛퐷푒푝푡ℎ and 푟푖푔ℎ푡푆푢푏푡푟푒푒푀푖푛퐷푒푝푡ℎ respectively.  
 To get the minimum height of the binary tree rooted at root, we will take minimum of 푙푒푓푡푆푢푏푡푟푒푒푀푖푛퐷푒푝푡ℎ and 

푟푖푔ℎ푡푆푢푏푡푟푒푒푀푖푛퐷푒푝푡ℎ and 1 for the 푟표표푡 node. 
 

    public int minDepth(BinaryTreeNode root) { 
        // If root (tree) is empty, minimum depth would be 0 
        if (root == null)   return 0; 
 

        // If left subtree is null, find minimum depth in right subtree  
        if (root.left == null) 
            return minDepth(root.right) + 1; 
 

        // If right subtree is null, find minimum depth in left subtree 
        if (root.right == null) 
            return minDepth(root.left) + 1; 
 

        // Get the minimum depths of left and right subtrees and add 1 for current level. 
        return Math.min(minDepth(root.left), minDepth(root.right)) + 1; 
    } 
   

Time complexity: O(푛), as we are doing pre order traversal of tree only once. Space complexity: O(푛), for recursive stack space. 
 

Solution with level order traversal:  The above recursive approach may end up with complete traversal of the binary tree even when the 
minimum depth leaf is close to the root node. A better approach is to use level order traversal. In this algorithm, we will traverse the binary 
tree by keeping track of the levels of the node and closest leaf node found till now.  
 

Algorithm: 
 

       Let 푟표표푡 be the pointer to the root node of a subtree at level L. 
 

 If root is equal to 푛푢푙푙, then the minimum depth of the binary tree would be 0. 
 If root is a leaf node, then check if its level(L) is less than the level of closest leaf node found till now. If yes, then update closest leaf 

node to current node and return. 
 Recursively traverse left and right subtree of node at level L + 1. 

 

    public int minDepth(BinaryTreeNode root) { 
        if (root == null)   return 0; 
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        Queue<BinaryTreeNode> q = new LinkedList<>(); 
        q.add(root); 
 

        BinaryTreeNode rightMost = root; 
        int depth = 1; 
 

        while (!q.isEmpty()) { 
            BinaryTreeNode btNode = q.poll(); 
            if (btNode.left == null && btNode.right == null)  break; 
 

            if (btNode.left != null)      
                q.add(btNode.left); 
 

            if (btNode.right != null)     
                q.add(btNode.right); 
 

            if (btNode == rightMost) { 
                depth++; 
                rightMost = (btNode.right != null) ? btNode.right : btNode.left; 
            } 
        } 
        return depth; 
    } 
 

Time complexity: O(푛), as we are doing lever order traversal of the tree only once. Space complexity: O(푛), for queue. 
 

Symmetric question: Maximum depth of a binary tree: Given a binary tree, find its maximum depth. The maximum depth of a binary tree is 
the number of nodes along the shortest path from the root node down to the farthest leaf node. For example, maximum depth of following 
binary tree is 4. Careful observation tells us that it is exactly same as finding the depth (or height) of the tree. 
 
 
 
 
 
 
 
 
 

 

6.5 Generic Trees (N-ary Trees) 
 
 

 
 
 
 
 
 
 
In the previous section we discussed binary trees where each node can have a maximum of two children and these are represented easily with 
two pointers. But suppose if we have a tree with many children at every node and also if we do not know how many children a node can have, 
how do we represent them?  
 

For example, consider the tree shown above. 
 

How do we represent the tree? 
 

In the above tree, there are nodes with 6 children, with 3 children, with 2 children, with 1 child, and with zero children (leaves). To present 
this tree we have to consider the worst case (6 children) and allocate that many child pointers for each node. Based on this, the node 
representation can be given as: 
 

    public class TreeNode { 
 public int data; 

public TreeNode firstChild; 
public TreeNode secondChild; 
public TreeNode thirdChild; 
public TreeNode fourthChild; 
public TreeNode fifthChild; 
public TreeNode sixthChild; 
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….. 
    } 
 

Since we are not using all the pointers in all the cases, there is a lot of memory wastage. Another problem is that we do not know the number 
of children for each node in advance. In order to solve this problem we need a representation that minimizes the wastage and also accepts 
nodes with any number of children. 

Representation of Generic Trees 
 

Since our objective is to reach all nodes of the tree, a possible solution to this is as follows: 
 

 At each node link children of same parent (siblings) from left to right. 
 Remove the links from parent to all children except the first child. 

 

What these above statements say is if we have a link between children then we do not need extra links from parent to all children. This is 
because we can traverse all the elements by starting at the first child of the parent. So if we have a link between parent and first child and also 
links between all children of same parent then it solves our problem. 
 
 
 
 
 
 
 
 
 
 
 
 
 

This representation is sometimes called first child/next sibling representation. First child/next sibling representation of the generic tree is 
shown above. The actual representation for this tree is: 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Based on this discussion, the tree node declaration for general tree can be given as: 
 

    public class TreeNode { 
 public int data; 

public TreeNode firstChild; 
public TreeNode nextSibling; 

 public int getData() { 
  return data; 
 } 
 public void setData(int data) { 
  this.data = data; 
 } 
 public BinaryTreeNode getFirstChild() { 
  return firstChild; 
 } 
 public void setFirstChild(BinaryTreeNode firstChild) { 
  this.firstChild = firstChild; 
 } 
 public BinaryTreeNode getNextSibling () { 
  return nextSibling; 
 } 
 public void setNextSibling(BinaryTreeNode nextSibling) { 
  this.nextSibling = nextSibling; 
 } 
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    } 
 

Note: Since we are able to convert any generic tree to binary representation, in practice we use binary trees. We can treat all generic trees with 
a first child/next sibling representation as binary trees. 

Generic Trees: Problems & Solutions 
 

Problem-42 Given a tree, give an algorithm for finding the sum of all the elements of the tree. 
 

Solution: The solution is similar to what we have done for simple binary trees. That means, traverse the complete list and keep on adding the 
values. We can either use level order traversal or simple recursion. 
 

    public int FindSum(BinaryTreeNode root) { 
 if(root == null)  
                      return 0; 
 return root.data + FindSum(root.getFirstChild()) + FindSum(root.getNextSibling()); 
    } 
 

Time Complexity: O(푛). Space Complexity: O(1) (if we do not consider stack space), otherwise O(푛). 
 

Note: All problems which we have discussed for binary trees are applicable for generic trees also. Instead of left and right pointers we just 
need to use firstChild and nextSibling. 
 

Problem-43 For a 4-ary tree (each node can contain maximum of 4 children), what is the maximum possible height with 100 nodes? 
Assume height of a single node is 0. 

 

Solution: In 4-ary tree each node can contain 0 to 4 children, and to get maximum height, we need to keep only one child for each parent. 
With 100 nodes, the maximum possible height we can get is 99. If we have a restriction that at least one node has 4 children, then we keep 
one node with 4 children and the remaining nodes with 1 child. In this case, the maximum possible height is 96. Similarly, with 푛 nodes the 
maximum possible height is 푛 − 4. 
 

Problem-44 For a 4-ary tree (each node can contain maximum of 4 children), what is the minimum possible height with 푛 nodes? 
 

Solution: Similar to the above discussion, if we want to get minimum height, then we need to fill all nodes with maximum children (in this 
case 4). Now let’s see the following table, which indicates the maximum number of nodes for a given height. 
  

Height, h Maximum Nodes at height, ℎ =  4  Total Nodes height ℎ = 
 

  

0 1 1  
1 4  1+4 
2 4 × 4 1+ 4 × 4 
3 4 × 4 × 4 1+ 4 × 4 + 4 × 4 × 4 

 

For a given height ℎ the maximum possible nodes are: 
 

ퟑ
. To get minimum height, take logarithm on both sides: 

푛 =  
 ⟹ 4 = 3푛 + 1 ⟹ (ℎ + 1)푙표푔4 = log(3푛 + 1) 

⟹ ℎ + 1 = log (3푛 + 1) ⟹ ℎ = log (3푛 + 1) − 1 
 

Problem-45 Given a parent array 푃, where 푃[푖] indicates the parent of 푖  node in the tree (assume parent of root node is indicated 
with −1). Give an algorithm for finding the height or depth of the tree.  

 

Solution: From the problem definition, the given array represents the parent array. That means, we need to consider the tree for that array 
and find the depth of the tree. 
 

For example: if the P is  
 
 
 

Its corresponding tree is: 
 
 
 
 
 
 
 
 
 
 
 
 
 

The depth of this given tree is 4. If we carefully observe, we just need to start at every node and keep going to its parent until we reach −1 
and also keep track of the maximum depth among all nodes. 
 

       public int FindDepthInGenericTree(int[] P) { 
 int maxDepth =-1, currentDepth =-1, j; 

-1 0     6 1 6 0 0    2    7 
0 1 3 2 4 5 6 7 8 
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 for(int i = 0; i < P.length; i++)  { 
        currentDepth = 0; j = i; 
        while(P[j] != -1) { 
         currentDepth++; j = P[j]; 

       } 
       if(currentDepth > maxDepth) 
              maxDepth = currentDepth; 
} 
return maxDepth; 

       } 
 

Time Complexity: O(푛 ). For skew trees we will be calculating the same values again and again. Space Complexity: O(1). 
 

Note: We can optimize the code by storing the previous calculated nodes’ depth in some hash table or other array. This reduces the time 
complexity but uses extra space. 
 

Problem-46 Given a node in the generic tree, find the number of siblings for that node. 
 

Solution: For a given node in the tree, we just need to traverse all its next siblings. 
 

       public int SiblingsCount(TreeNode current) { 
 int count = 0; 
 while(current) { 
        count++; 
        current = current.getNextSibling(); 
 } 
 reutrn count; 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-47 Given two trees how do we check whether the trees are isomorphic to each other or not? 
 

Solution: Two binary trees 푟표표푡1 and 푟표표푡2 are isomorphic if they have the same structure. The values of the nodes does not affect whether 
two trees are isomorphic or not. In the diagram below, the tree in the middle is not isomorphic to the other trees, but the tree on the right is 
isomorphic to the tree on the left.  
 
 
 
 
 
 
 
 
 
 
 

       public int IsIsomorphic(TreeNode  root1, TreeNode root2) { 
 if(root1 == null && root2 == null)  
                       return 1;   
 if((root1 == null && root2 != null) || (root1 != null && root2 == null)) 
        return 0; 
 return (IsIsomorphic(root1.left, root2.left)  && IsIsomorphic(root1.right, root2.right)); 
       } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-48 Given two trees how do we check whether they are quasi-isomorphic to each other or not? 
 

Solution: Two trees 푟표표푡1 and 푟표표푡2 are quasi-isomorphic if 푟표표푡1 can be transformed into 푟표표푡2 by swapping the left and right children 
of some of the nodes of 푟표표푡1. Data in the nodes are not important in determining quasi-isomorphism; only the shape is important. The 
trees below are quasi-isomorphic because if the children of the nodes on the left are swapped, the tree on the right is obtained.  
 
 
 
 
 
 
 
 
 
 
 

       public int QuasiIsomorphic(TreeNode  root1, TreeNode  root2) { 
 if(root1 == null && root2 == null)  
                     return true;  
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 if((root1 == null && root2 != null) || (root1 != null && root2 == null)) 
                     return false; 

return (QuasiIsomorphic(root1.left, root2.left) &&  
       QuasiIsomorphic(root1.right, root2.right) ||  
       QuasiIsomorphic(root1.right, root2.left) &&  
       QuasiIsomorphic(root1.left, root2.right)); 

       } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-49 Given a node in the generic tree, give an algorithm for counting the number of children for that node. 
 

Solution: For a given node in the tree, we just need to point to its first child and keep traversing all its nextsiblings. 
 

       public int ChildCount(TreeNode current) { 
 int count = 0; 
 current = current.getFirstChild();  
 while(current != null)  { 
  count++; 
  current = current.getNextSibling(); 
 } 
 reutrn count; 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-50 A full 푘 −ary tree is a tree where each node has either 0 or 푘 children. Given an array which contains the preorder 
traversal of full 푘 −ary tree, give an algorithm for constructing the full 푘 −ary tree.  

 

Solution: In 푘 −ary tree, for a node at 푖  position its children will be at 푘 ∗ 푖 +  1 to 푘 ∗ 푖 + 푘. For example, the example below is for full 3-
ary tree. 
 
 
 
 
 
 
 
 
As we have seen, in preorder traversal first left subtree is processed then followed by root node and right subtree. Because of this, to construct 
a full 푘-ary, we just need to keep on creating the nodes without bothering about the previous constructed nodes. We can use this trick to build 
the tree recursively by using one global index. The declaration for 푘-ary tree can be given as: 
 

public class K-aryTreeNode { 
    public int data; 
    public K-aryTreeNode[] child; 
    public K-aryTreeNode(int k){ 
        child = new K-aryTreeNode[k]; 
    } 
    public void setData(int dataInput){ 
        data = dataInput; 
    } 
    public int getChild(){ 
        return data; 
    } 
    public void setChild(int i, K-aryTreeNode childNode){ 
        child[i]= childNode; 
    } 
    public K-aryTreeNode getChild(int i){ 
        return child[i]; 
    } 
    //… 
} 
int Ind = 0; 
public K-aryTreeNode BuildK-aryTree(int A[], int n, int k) { 
    if(n <= 0)  
        return null; 
    K-aryTreeNode newNode = new K-aryTreeNode(k); 
    if(newNode == null) { 
        System.out.println(“Memory Error”); 
        return; 
    } 
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    newNode.data = A[Ind]; 
    for(int i = 0; i<k; i++) { 
    if(k * Ind + i <n) { 
        Ind++; 
        newNode.setChild(BuildK-aryTree(A, n, k,Ind )); 
    } 
    else   
        newNode.setChild(null); 
    } 
    return newNode; 
} 

 

Time Complexity: O(푛), where 푛 is the size of the pre-order array. This is because we are moving sequentially and not visiting the already 
constructed nodes. 

6.6 Threaded (Stack or Queue less) Binary Tree Traversals 
 

In earlier sections we have seen that, 푝푟푒표푟푑푒푟, 푖푛표푟푑푒푟, 푎푛푑 푝표푠푡표푟푑푒푟 binary tree traversals used stacks and 푙푒푣푒푙 표푟푑푒푟 traversal used 
queues as an auxiliary data structure. . In this section we will discuss new traversal algorithms which do not need both stacks and queues. Such 
traversal algorithms are called 푡ℎ푟푒푎푑푒푑 푏푖푛푎푟푦 푡푟푒푒 푡푟푎푣푒푟푠푎푙푠 or 푠푡푎푐푘/푞푢푒푢푒 푙푒푠푠 푡푟푎푣푒푟푠푎푙푠.  

Issues with Regular Binary Tree Traversals 
 

 The storage space required for the stack and queue is large. 
 The majority of pointers in any binary tree are NULL. For example, a binary tree with 푛 nodes has 푛 +  1 NULL pointers and 

these were wasted. 
 

 
It is difficult to find successor node (preorder, inorder and postorder successors) for a given node. 

Motivation for Threaded Binary Trees 
 

To solve these problems, one idea is to store some useful information in NULL pointers. If we observe the previous traversals carefully, 
stack/queue is required because we have to record the current position in order to move to the right subtree after processing the left subtree. 
If we store the useful information in NULL pointers, then we don’t have to store such information in stack/queue.  
 

The binary trees which store such information in NULL pointers are called 푡ℎ푟푒푎푑푒푑 푏푖푛푎푟푦 푡푟푒푒푠. From the above discussion, let us 
assume that we want to store some useful information in NULL pointers. The next question is what to store?  
 

The common convention is to put predecessor/successor information. That means, if we are dealing with preorder traversals, then for a given 
node, NULL left pointer will contain preorder predecessor information and NULL right pointer will contain preorder successor information. 
These special pointers are called 푡ℎ푟푒푎푑푠.  
 

Classifying Threaded Binary Trees 
 

The classification is based on whether we are storing useful information in both NULL pointers or only in one of them. 
 If we store predecessor information in NULL left pointers only then we call such binary trees as 푙푒푓푡 푡ℎ푟푒푎푑푒푑  푏푖푛푎푟푦 푡푟푒푒푠. 
 If we store successor information in NULL right pointers only then we call such binary trees as 푟푖푔ℎ푡 푡ℎ푟푒푎푑푒푑  푏푖푛푎푟푦 푡푟푒푒푠. 
 If we store predecessor information in NULL left pointers and store successor information in NULL right pointers, then we call such 

binary trees as 푓푢푙푙푦 푡ℎ푟푒푎푑푒푑 푏푖푛푎푟푦 푡푟푒푒푠 or simply 푡ℎ푟푒푎푑푒푑  푏푖푛푎푟푦 푡푟푒푒푠.  
 

Note: For the remaining discussion we consider only (푓푢푙푙푦) 푡ℎ푟푒푎푑푒푑 푏푖푛푎푟푦 푡푟푒푒푠. 

Types of Threaded Binary Trees 
 

Based on above discussion we get three representations for threaded binary trees. 
 

 푃푟푒표푟푑푒푟  푇ℎ푟푒푎푑푒푑 퐵푖푛푎푟푦 푇푟푒푒푠: NULL left pointer will contain PreOrder predecessor information and NULL right pointer will 
contain PreOrder successor information. 

 퐼푛표푟푑푒푟 푇ℎ푟푒푎푑푒푑  퐵푖푛푎푟푦 푇푟푒푒푠: NULL left pointer will contain InOrder predecessor information and NULL right pointer will contain 
InOrder successor information. 

 1 

10 13 

19 32 20  2 

11 



 

Data Structures and Algorithms Made Easy in Java Trees                      

 

6.6 Threaded (Stack or Queue less) Binary Tree Traversals    155 

 
 

 푃표푠푡표푟푑푒푟  푇ℎ푟푒푎푑푒푑  퐵푖푛푎푟푦  푇푟푒푒푠: NULL left pointer will contain PostOrder predecessor information and NULL right pointer will 
contain PostOrder successor information. 

 

Note: As the representations are similar, for the remaining discussion, we will use InOrder threaded binary trees.  

Threaded Binary Tree structure 
 

Any program examining the tree must be able to differentiate between a regular 푙푒푓푡/푟푖푔ℎ푡 pointer and a 푡ℎ푟푒푎푑. To do this, we use two 
additional fields in each node, giving us, for threaded trees, nodes of the following form: 
 
 
 
 

       public class ThreadedBinaryTreeNode { 
 public ThreadedBinaryTreeNode left; 
 public int LTag;  
 public int data; 
 public int RTag; 
 public ThreadedBinaryTreeNode right; 
 ….. 
       } 

 

Difference between Binary Tree and Threaded Binary Tree Structures 
 

 Regular Binary Trees Threaded Binary Trees 
if LTag == 0 NULL left points to the in-order predecessor 
if LTag == 1 left points to the left child left points to left child 
if RTag == 0 NULL right points to the in-order successor 
if RTag == 1 right points to the right child right points to the right child 

 

Note: Similarly, we can define for preorder/postorder differences as well. 
 

As an example, let us try representing a tree in inorder threaded binary tree form. The tree below shows what an inorder threaded binary tree 
will look like. The dotted arrows indicate the threads. If we observe, the left pointer of left most node (2) and right pointer of right most node 
(31) are hanging. 
 
 
 
 
 
 
 
 
 
 
What should leftmost and rightmost pointers point to? 
 

In the representation of a threaded binary tree, it is convenient to use a special node 퐷푢푚푚푦 which is always present even for an empty tree. 
Note that right tag of Dummy node is 1 and its right child points to itself. 
 
 
 
 
 

With this convention the above tree can be represented as: 
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Finding Inorder Successor in Inorder Threaded Binary Tree 
 

To find inorder successor of a given node without using a stack, assume that the node for which we want to find the inorder successor is 푃.  
 

Strategy: If 푃 has a no right subtree, then return the right child of 푃. If 푃 has right subtree, then return the left of the nearest node whose left 
subtree contains 푃. 
 

       public ThreadedBinaryTreeNode InorderSuccessor(ThreadedBinaryTreeNode P) { 
 ThreadedBinaryTreeNode Position; 
 if(P→RTag == 0)  
                     return P.right; 
 else {  
                         Position = P.right; 

 while(Position.getLTag() == 1) 
  Position = Position.left; 
 return Position; 
} 

       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Inorder Traversal in Inorder Threaded Binary Tree 
 

We can start with 푑푢푚푚푦 node and call InorderSuccessor() to visit each node until we reach 푑푢푚푚푦 node. 
 

       public void InorderTraversal(ThreadedBinaryTreeNode root) { 
 ThreadedBinaryTreeNode P = InorderSuccessor(root); 
 while(P != root) { 
  P = InorderSuccessor(P); 
  System.out.println(P.data); 

} 
       } 
 

Alternative way of coding: 
 

       public void InorderTraversal(ThreadedBinaryTreeNode root) { 
 ThreadedBinaryTreeNode P = root; 

while(1) { 
  P = InorderSuccessor(P); 
  if(P == root)  
                              return; 
  System.out.println(P.data); 

} 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Finding PreOrder Successor in InOrder Threaded Binary Tree 
 

Strategy: If 푃 has a left subtree, then return the left child of 푃. If 푃 has no left subtree, then return the right child of the nearest node whose 
right subtree contains 푃. 
 

       public ThreadedBinaryTreeNode* PreorderSuccessor(ThreadedBinaryTreeNode P) { 
 ThreadedBinaryTreeNode Position; 

if(P.getLTag() == 1)  return P.left; 
 else {  
                         Position = P; 

 while(Position.getRTag() == 0) 
  Position = Position.right; 
 return Position.right; 
} 

       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

PreOrder Traversal of InOrder Threaded Binary Tree 
 

As in inorder traversal, start with 푑푢푚푚푦 node and call PreorderSuccessor() to visit each node until we get 푑푢푚푚푦 node again. 
 

       public void PreorderTraversal(ThreadedBinaryTreeNode root) { 
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        ThreadedBinaryTreeNode P; 
P = PreorderSuccessor(root); 

 while(P != root) { 
  P = PreorderSuccessor(P); 

  System.out.println(P.data); 
} 

       } 
 

Alternative way of coding: 
 

       public void PreorderTraversal(ThreadedBinaryTreeNode root) { 
            ThreadedBinaryTreeNode P = root; 

while(1) { 
  P = PreorderSuccessor(P); 
  if(P == root)  
                              return; 
  System.out.println(P.data); 

} 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Note: From the above discussion, it should be clear that inorder and preorder successor finding is easy with threaded binary trees. But finding 
postorder successor is very difficult if we do not use stack. 
 

Insertion of Nodes in InOrder Threaded Binary Trees 
 

For simplicity, let us assume that there are two nodes 푃 and 푄 and we want to attach 푄 to right of 푃. For this we will have two cases. 
 Node 푃 does not have right child: In this case we just need to attach 푄 to 푃 and change its left and right pointers. 

 
 
 
 
 
 
 
 

 
 

 
 Node 푃 has right child (say, 푅): In this case we need to traverse 푅’푠 left subtree and find the left most node and then update the left 

and right pointer of that node (as shown below).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

       public void InsertRightInInorderTBT(ThreadedBinaryTreeNode P,  ThreadedBinaryTreeNode Q) { 
 ThreadedBinaryTreeNode Temp; 

Q.right = P.right; 
 Q.setRTag(P.getRTag()); 
 Q.left = P; 
 Q.setLTag(0); 
 P.right = Q; 
 P.setRTag( 1); 
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if(Q.getRTag() == 1) { //Case-2 
 Temp = Q.right; 
 while(Temp.getLTag()) 
  Temp = Temp.left; 
 Temp.left = Q; 
} 

       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 

Threaded Binary Trees: Problems & Solutions 
 

Problem-51 For a given binary tree (not threaded) how do we find the preorder successor? 
 

Solution: For solving this problem, we need to use an auxiliary stack 푆. On the first call, the parameter node is a pointer to the head of the 
tree, and thereafter its value is NULL. Since we are simply asking for the successor of the node we got the last time we called the function. It 
is necessary that the contents of the stack 푆 and the pointer 푃 to the last node “visited” are preserved from one call of the function to the next; 
they are defined as static variables. 
 

       // pre-order successor for an unthreaded binary tree 
       public BinaryTreeNode PreorderSuccssor(BinaryTreeNode node) {  
              static BinaryTreeNode P; 
              LLStack S = new LLStack(); 
              if(node != null)  
                    P = node; 
              if(P.left != null) {  

       S.push(P); 
       P = P.left; 

              } 
              else {     
                     while(P.right == null) 
                            P = S.pop(); 
                     P = P.right; 
              } 
              return P; 
       } 
 

Problem-52 For a given binary tree (not threaded)  how do we find the inorder successor? 
 

Solution: Similar to the above discussion, we can find the inorder successor of a node as: 
 

       // In-order successor for an unthreaded binary tree 
       public BinaryTreeNode InorderSuccssor(BinaryTreeNode node) {  
              static BinaryTreeNode P; 
              LLStack S = new LLStack(); 
              if(node != null)  
                    P = node; 
              if(P.right == null) 

       P = S.pop(); 
              else {  
                     P = P.right; 
                     while(P.left != null) 
                            S.push(P); 
                     P = P.left; 
              } 
              return P; 
       } 

6.7 Expression Trees 
 

A tree representing an expression is called an 푒푥푝푟푒푠푠푖표푛 푡푟푒푒. In expression trees, leaf nodes are operands and non-leaf nodes are operators. 
That means, an expression tree is a binary tree where internal nodes are operators and leaves are operands. An expression tree consists of 
binary expression. But for a u-nary operator, one subtree will be empty. The figure below shows a simple expression tree for (A + B * C) / D. 
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Algorithm for Building Expression Tree from Postfix Expression 
 

       public BinaryTreeNode BuildExprTree(char postfixExpr[], int size) { 
 LLStack S = new LLStack(); 
 for(int i = 0; i< size; i++) { 
  if(postfixExpr[i] is an operand) { 
   BinaryTreeNode newNode = new BinaryTreeNode(); 
   if(newNode == null) {  
    System.out.println(“Memory Error”);  
    return null; 
   } 
   newNode.data = postfixExpr[i]; 
   newNode.left = null;  
   newNode.right = null; 
   S.push(newNode); 
  } 
  else {  
                                     BinaryTreeNode T2 = S.pop(), T1 = S.pop(); 
   BinaryTreeNode newNode = new BinaryTreeNode(); 
   if(newNode == null) {  
    System.out.println(“Memory Error”);  
    return null; 
   } 
   newNode.data = postfixExpr[i]; 
   //Make T2 as right child and T1 as left child for new node 
   newNode.left = T1; newNode.right = T2; 
   S.push(newNode); 
  } 
 } 
 return S; 
       } 

Example 
 

Example: Assume that one symbol is read at a time. If the symbol is an operand, we create a tree node and push a pointer to it onto a stack. 
If the symbol is an operator, pop pointers to two trees T1 and T2 from the stack (T1 is popped first) and form a new tree whose root is the 
operator and whose left and right children point to T2 and T1 respectively. A pointer to this new tree is then pushed onto the stack.  
 

As an example, assume the input is A B C * + D /. The first three symbols are operands, so create tree nodes and push pointers to them onto 
a stack as shown below.  
 
 

 

 
 
 

Next, an operator '*' is read, so two pointers to trees are popped, a new tree is formed and a pointer to it is pushed onto the stack.  

 

 

 

 

Next, an operator '+' is read, so two pointers to trees are popped, a new tree is formed and a pointer to it is pushed onto the stack.  

 

/ 

+ D 

A * 

C B 

A 

B 

C 

A 

B C 

* 



 

Data Structures and Algorithms Made Easy in Java Trees                      

 

6.10 XOR Trees    160 

 
 

 

 

 

 

 

Next, an operand ‘D’ is read, a one-node tree is created and a pointer to the corresponding tree is pushed onto the stack.  

 

 

 

 

 

 
 

Finally, the last symbol (‘/’) is read, two trees are merged and a pointer to the final tree is left on the stack.  

 

 

 

 

 
 

 
 

6.10 XOR Trees 
 

This concept is similar to 푚푒푚표푟푦 푒푓푓푖푐푖푒푛푡 푑표푢푏푙푦 푙푖푛푘푒푑 푙푖푠푡푠 of 퐿푖푛푘푒푑 퐿푖푠푡푠 chapter. Also, like threaded binary trees this 
representation does not need stacks or queues for traversing the trees. This representation is used for traversing back (to parent) and forth (to 
children) using ⊕ operation. To represent the same in XOR trees,  for each node below are the rules used for representation: 
 

 Each nodes left will have the ⊕ of its parent and its left children.  
 Each nodes right will have the ⊕ of its parent and its right children.  
 The root nodes parent is NULL and also leaf nodes children are NULL nodes. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Based on the above rules and discussion, the tree can be represented as: 
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B C 

* 
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B C 
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A⊕D A⊕E  B A⊕F A⊕NULL C 
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The major objective of this presentation is the ability to move to parent as well to children. Now, let us see how to use this representation for 
traversing the tree. For example, if we are at node B and want to move to its parent node A, then we just need to perform ⊕ on its left content 
with its left child address (we can use right child also for going to parent node).  
 

Similarly, if we want to move to its child (say, left child D) then we have to perform ⊕ on its left content with its parent node address. One 
important point that we need to understand about this representation is: When we are at node B, how do we know the address of its children 
D? Since the traversal starts at node root node, we can apply ⊕ on root’s left content with NULL. As a result we get its left child, B.  When 
we are at B, we can apply ⊕ on its left content with A address. 

6.9 Binary Search Trees (BSTs) 
Why Binary Search Trees? 
 

In previous sections we have discussed different tree representations and in all of them we did not impose any restriction on the nodes data. 
As a result, to search for an element we need to check both in left subtree and in right subtree. Due to this, the worst case complexity of search 
operation is O(푛). 
 

In this section, we will discuss another variant of binary trees: Binary Search Trees (BSTs). As the name suggests, the main use of this 
representation is for 푠푒푎푟푐ℎ푖푛푔. In this representation we impose restriction on the kind of data a node can contain. As a result, it reduces 
the worst case average search operation to O(푙표푔푛).  

Binary Search Tree Property 
 

In binary search trees, all the left subtree elements should be less than root data and all the right subtree elements should be greater than root 
data. This is called binary search tree property. Note that, this property should be satisfied at every node in the tree. 
 

 The left subtree of a node contains only nodes with keys less than the nodes key. 
 The right subtree of a node contains only nodes with keys greater than the nodes key. 
 Both the left and right subtrees must also be binary search trees. 

 
 
 
 
 
 
 
Example: The left tree is a binary search tree and the right tree is not a binary search tree (at node 6 it’s not satisfying the binary search tree 
property). 
 
 
 
 
 
 

Binary Search Tree Declaration 
 

There is no difference between regular binary tree declaration and binary search tree declaration. The difference is only in data but not in 
structure. But for our convenience we change the structure name as: 
 

       public class BinarySearchTreeNode {  
 private int data;  
 private BinarySearchTreeNode left; 
 private BinarySearchTreeNode right; 
 public int getData() { 
  return data; 
 } 
 public void setData(int data) { 
  this.data = data; 
 } 
 public BinarySearchTreeNode getLeft() { 
  return left; 
 } 
 public void setLeft(BinarySearchTreeNode left) { 
  this.left = left; 
 } 
 public BinarySearchTreeNode getRight() { 
  return right; 
 } 
 public void setRight(BinarySearchTreeNode right) { 

root 

 <root→data  <root→data 
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  this.right = right; 
 } 
       } 

Operations on Binary Search Trees 
 

Main operations 
 

Following are the main operations that are supported by binary search trees: 
 Find/ Find Minimum / Find Maximum in binary search trees 
 Inserting an element in binary search trees 
 Deleting an element from binary search trees 

 

Auxiliary operations 
 

 Checking whether the given tree is a binary search tree or not 
 Finding 푘 -smallest element in tree 
 Sorting the elements of binary search tree and many more 

Notes on Binary Search Trees 
 

 Since root data is always between left subtree data and right subtree data, performing inorder traversal on binary search tree produces 
a sorted list. 

 While solving problems on binary search trees, first we process left subtree, then root data, and finally we process right subtree. 
This means, depending on the problem, only the intermediate step (processing root data) changes and we do not touch the first 
and third steps. 

 If we are searching for an element and if the left subtree root data is less than the element we want to search, then skip it. The same 
is the case with the right subtree.. Because of this, binary search trees take less time for searching an element than regular binary 
trees. In other words, the binary search trees consider either left or right subtrees for searching an element but not both. 

 The basic operations that can be performed on binary search tree (BST) are insertion of element, deletion of element, and searching 
for an element. While performing these operations on BST the height of the tree gets changed each time. Hence there exists 
variations in time complexities of best case, average case, and worst case.  

 The basic operations on a binary search tree take time proportional to the height of the tree. For a complete binary tree with node 
n, such operations runs in O(lgn) worst-case time. If the tree is a linear chain of n nodes (skew-tree), however, the same operations 
takes O(n) worst-case time. 

Finding an Element in Binary Search Trees 
 

Find operation is straightforward in a BST. Start with the root and keep moving left or right using the BST property. If the data we are 
searching is same as nodes data then we return current node. If the data we are searching is less than nodes data then search left subtree of 
current node; otherwise search right subtree of current node. If the data is not present, we end up in a 푛푢푙푙 link. 
 

       public BinarySearchTreeNode Find(BinarySearchTreeNode root, int data) { 
 if( root == null)  
                        return null; 
 if( data < root.data ) 
  return Find(root.left, data); 
 else if( data > root.data ) 
  return( Find(root.right, data ); 
 return root; 
       } 
 

Time Complexity: O(푛), in worst case (when the given binary search tree is a skew tree). Space Complexity: O(푛), for recursive stack. 
 

푁표푛 푟푒푐푢푟푠푖푣푒 version of the above algorithm can be given as: 
 

       public BinarySearchTreeNode Find(BinarySearchTreeNode root, int data ) { 
 if( root == null)   
                    return null; 
 while(root != null) { 

 if(data == root.data) 
  return root; 
 else if(data > root.data) 
  root = root.right; 
 else root = root.left; 
} 

 return null; 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
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Finding Minimum Element in Binary Search Trees 
 

In BSTs, the minimum element is the left-most node, which does not have left child. In the BST below, the minimum element is ퟒ. 
 

 
 
 
 
 
 
 
 
 
 
 

       public BinarySearchTreeNode FindMin(BinarySearchTreeNode root) { 
 if(root == null)  
                      return null; 
 else 
      if( root.left == null )  
                       return root; 
      else return FindMin(root.left ); 
       } 
 

Time Complexity: O(푛), in worst case (when BST is a 푙푒푓푡 푠푘푒푤 tree). Space Complexity: O(푛), for recursive stack. 
 

푁표푛 푟푒푐푢푟푠푖푣푒 version of the above algorithm can be given as: 
 

       public BinarySearchTreeNode FindMin(BinarySearchTreeNode  root ) { 
 if( root == null)  
                  return null; 
 while( root.left != null) root = root.left; 
 return root; 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 

Finding Maximum Element in Binary Search Trees 
 

In BSTs, the maximum element is the right-most node, which does not have right child. In the BST below, the maximum element is ퟏퟔ. 
 
 
 
 
 
 
 
 
 
 
 

       public BinarySearchTreeNode FindMax(BinarySearchTreeNode root) { 
 if(root == null)  
                     return null; 
 else 
                     if( root.right == null)  
                         return root; 
    else  return FindMax( root.right); 
       } 
 

Time Complexity: O(푛), in worst case (when BST is a 푟푖푔ℎ푡 푠푘푒푤 tree). Space Complexity: O(푛), for recursive stack. 
 

푁표푛 푟푒푐푢푟푠푖푣푒 version of the above algorithm can be given as: 
 

       public BinarySearchTreeNode FindMax(BinarySearchTreeNode  root ) { 
 if( root == null)  
                     return null; 
 while( root.right != null) 
      root = root.right; 
 return root; 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
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Where is Inorder Predecessor and Successor? 
 

Where is the inorder predecessor and successor of node 푋 in a binary search tree assuming all keys are distinct? 
 

If 푋 has two children then its inorder predecessor is the maximum value in its left subtree and its inorder successor the minimum value in its 
right subtree. 
 
 
 
 
 
 
 
 
 
 

If it does not have a left child, then a nodes inorder predecessor is its first left ancestor.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Inserting an Element from Binary Search Tree 
 

To insert 푑푎푡푎 into binary search tree, first we need to find the location for that element. We can find the location of insertion by following 
the same mechanism as that of 푓푖푛푑 operation. While finding the location, if the 푑푎푡푎 is already there then we can simply neglect and come 
out. Otherwise, insert 푑푎푡푎 at the last location on the path traversed.  
 

As an example let us consider the following tree. The dotted node indicates the element (5) to be inserted. To insert 5, traverse the tree using 
푓푖푛푑 function. At node with key 4, we need to go right, but there is no subtree, so 5 is not in the tree, and this is the correct location for 
insertion. 
 

 

 
 
 
 

public BinarySearchTreeNode Insert(BinarySearchTreeNode root, int data) { 
    if( root == null) {   
        root = new BinarySearchTreeNode(); 
        if( root == null) { 
            System.out.println(“Memory Error”); return; 
        } 
        else {      
            root.data = data; 
            root.left = null; root.right = null; 
        } 
    } 
    else {  
        if( data < root.data ) 
            root.left = Insert(root.left, data); 
        else if( data > root.data ) 
            root.right = Insert(root.right, data); 
    } 
    return root;  
} 
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Note: In the above code, after inserting an element in subtrees, the tree is returned to its parent. As a result, the complete tree will get updated. 
 

Time Complexity: O(푛). Space Complexity: O(푛), for recursive stack. For iterative version, space complexity is O(1). 

Deleting an Element from Binary Search Tree 
 

The delete operation is more complicated than other operations. This is because the element to be deleted may not be the leaf node. In this 
operation also, first we need to find the location of the element which we want to delete. Once we have found the node to be deleted, consider 
the following cases: 
 

 If the element to be deleted is a leaf node: return NULL to its parent. That means make the corresponding child pointer NULL. 
In the tree below to delete 5, set NULL to its parent node 2. 

 
 
 
 
 
 
 
 

 If the element to be deleted has one child: In this case we just need to send the current node’s child to its parent. In the tree below, 
to delete 4, 4 left subtree is set to its parent node 2. 

 
 
 
 
 
 
 
 
 
 

 

 If the element to be deleted has both children: The general strategy is to replace the key of this node with the largest element of the 
left subtree and recursively delete that node (which is now empty). The largest node in the left subtree cannot have a right child, so 
the second 푑푒푙푒푡푒 is an easy one. As an example, let us consider the following tree. In the tree below, to delete 8, it is the right 
child of the root. The key value is 8. It is replaced with the largest key in its left subtree (7), and then that node is deleted as before 
(second case).  

 
 
 
 
 
 
 
 
 

 
 

Note: We can replace with minimum element in right subtree also. 
 

       public BinarySearchTreeNode Delete(BinarySearchTreeNode root, int data) { 
 BinarySearchTreeNode temp; 
 if( root == null)  
                 System.out.println("Element not there in tree"); 
 else if(data < root.data)   
     root.left = Delete(root.left,data); 
 else if(data > root→ data)   
     root.right = Delete(root.right, data); 
 else { //Found element  
  if( root.left != null && root.right !=null )  { 
         /* Replace with largest in left subtree */ 
   temp = FindMax( root.left ); 
   root.data = temp.data; 
   root.left = Delete(root.left, root.data); 
  } 
  else {     /* One child */ 
   temp = root; 
   if( root.left == null )   
    root = root.right; 
   if( root.right == null)  
    root = root.left; 
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  } 
 } 
 return root; 
       } 
 

Time Complexity: O(푛).  Space Complexity: O(푛) for recursive stack. For iterative version, space complexity is O(1). 

Binary Search Trees: Problems & Solutions 
 

Note: For ordering related problems with binary search trees and balanced binary search trees, Inorder traversal has advantages over others 
as it gives the sorted order. 
 

Problem-53 Give an algorithm for finding the shortest path between two nodes in a BST. 
 

Solution: It’s nothing but finding the LCA of two nodes in BST. 
 

Problem-54 Give an algorithm for counting the number of BSTs possible with 푛 nodes. 
 

Solution: This is a DP problem. Refer to 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter for the algorithm.  
 

Problem-55 Given pointers to two nodes in a binary search tree, find the lowest common ancestor (퐿퐶퐴). Assume that both values 
already exist in the tree. 

 

Solution: The main idea of the solution is: while traversing BST from root to bottom, the first node we encounter with value between 훼 and 
훽, i.e., 훼 <  푛표푑푒 → 푑푎푡푎 <  훽, is the Least Common Ancestor(LCA) of 훼 and 훽 (where 훼 <  훽). So just traverse the BST in pre-order, 
and if we find a node with value in between 훼 and 훽, then that node is the LCA. If its value is greater than both 훼 and 훽, then the LCA lies 
on the left side of the node, and if its value is smaller than both α and β, then the LCA lies on the right side. 
 
 
 
 
 
 
 
 
 
 
 
 

       public BinarySearchTreeNode LCA(BinarySearchTreeNode root, BinarySearchTreeNode a, BinarySearchTreeNode b) { 
 if (root == null) 
  return root; 
 if (root == a || root == b) 
  return root; 
 if (Math.max(a.data, b.data) < root.data)   // a.data < root.data && b.data < root.data 
  return LCA(root.left, a, b); 
 else if (Math.min(a.data, b.data) > root.data)  // a.data > root.data && b.data > root.data 
  return LCA(root.right, a, b); 
 else 
  return root; 
       }  
 

Time Complexity: O(푛). Space Complexity: O(푛), for skew trees. 
 

Problem-56 Give an algorithm to check whether the given binary tree is a BST or not. 
 

Solution: Consider the following simple program. For each node, check if the node on its left is smaller and check if the node on its right is 
greater.  
 

       public boolean IsBST(BinaryTreeNode root) { 
 if(root == null) return true;  
 /* false if left is > than root */ 
 if(root.left != null && root.left.data > root.data) 
  return false;  
 /* false if right is < than root */ 
 if(root.right != null && root.right.data < root.data) 
  return false;  
 /* false if, recursively, the left or right is not a BST */ 
 if(!IsBST(root.left) || !IsBST(root.right)) 
  return false;  
 /* passing all that, it's a BST */ 
 return true; 

α 

  LCA  

β   

4 

2 8 

7 

5 1 

6 



 

Data Structures and Algorithms Made Easy in Java Trees                      

 

6.9 Binary Search Trees (BSTs)    167 

 
 

       } 
 

This approach is wrong as this will return true for binary tree below. Checking only at current node is not enough. 
 

 

 

 
 

Problem-57 Can we think of getting the correct algorithm? 
 

Solution: For each node, check if max value in left subtree is smaller than the current node data and min value in right subtree greater than 
the node data. 
 

       /* Returns true if a binary tree is a binary search tree */ 
       public boolean IsBST(BinaryTreeNode root) { 
 if(root == null)  
                     return true;  
 /* false if the max of the left is > than us */ 
 if(root.left != null && FindMax(root.left) > root.data) 
  return false;  
 /* false if the min of the right is <= than us */ 
 if(root.right != null && FindMin(root.right) < root.data) 
  return false;  
 /* false if, recursively, the left or right is not a BST */ 
 if(!IsBST(root.left) || !IsBST(root.right)) 
  return false;  
 /* passing all that, it's a BST */ 
 return true; 
       } 
 

It is assumed that we have helper functions 퐹푖푛푑푀푖푛() and 퐹푖푛푑푀푎푥() that return the min or max integer value from a non-empty tree. 
Time Complexity: O(푛 ). Space Complexity: O(푛). 
 

Problem-58 Can we improve the complexity of Problem-57? 
 

Solution: Yes. A better solution is to look at each node only once. The trick is to write a utility helper function IsBSTUtil(BinaryTreeNode* 
root, int min, int max) that traverses down the tree keeping track of the narrowing min and max allowed values as it goes, looking at each node 
only once. The initial values for min and max should be INT_MIN and INT_MAX — they narrow from there.  
 

       Initial call: isBST(root, Integer.MIN_VALUE, Integer.MAX_VALUE); 
       public boolean isBST(BinarySearchTreeNode root, int min, int max) { 
              if (root == null) 
                     return true; 
              return (root.data > min && root.data < max &&  isBST(root.left, min, root.data) && isBST(root.right, root.data, max)); 
       }  
 

Time Complexity: O(푛). Space Complexity: O(푛), for stack space. 
 

Problem-59 Can we further improve the complexity of Problem-57? 
 

Solution: Yes, by using inorder traversal. The idea behind this solution is that inorder traversal of BST produces sorted lists. While traversing 
the BST in inorder, at each node check the condition that its key value should be greater than the key value of its previous visited node. Also, 
we need to initialize the prev with possible minimum integer value (say, Integer.MIN_VALUE).  
 

       public class CheckValidBSTRecursiveSingleVariable { 
 private int prev = Integer.MIN_VALUE; 
 public boolean checkValidBST(BinarySearchTreeNode root) { 
          return isBST(root); 
 } 
 public boolean isBST(BinarySearchTreeNode root) { 
          if (root == null) 
  return true; 
             if(!isBST(root.left))  
                                return false; 
             if(root.data < prev)  
     return false; 
             prev = root.data; 
          return isBST(root.right); 
 } 
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       } 
 

Time Complexity: O(푛). Space Complexity: O(푛), for stack space. 
 

Problem-60 Give an algorithm for converting BST to circular DLL with space complexity O(1). 
  

Solution: Convert left and right subtrees to DLLs and maintain end of those lists. Then, adjust the pointers. 
 

       public BinarySearchTreeNode BST2DLL(BinarySearchTreeNode root, BinarySearchTreeNode Ltail) { 
 BinarySearchTreeNode left, ltail, right, rtail; 
 if(root == null) { 
          ltail = null; 
          return null; 
 } 
 left = BST2DLL(root.left, ltail); 
 right = BST2DLL(root.right, rtail); 
 root.left = ltail; 
 root.right = right; 
 if(right == null)  
                    ltail = root; 
 else {  
                    right.left = root; 
                    ltail = rtail; 
 } 
 if(left == null)  
                    return root; 
 else {  
                    ltail.right = root; 
                    return left; 
 } 
       } 
 

Time Complexity: O(푛). 
 

Problem-61 Given a sorted doubly linked list, give an algorithm for converting it into balanced binary search tree. 
 

Solution: Find the list length and construct the tree bottom-up. 
 

    public BinarySearchTreeNode sortedListToBST(ListNode head) { 
       int len = 0; 
       ListNode currentNode = head; 
       while(currentNode != null){ 
           len++; 
           currentNode = currentNode.next; 
       } 
       return construct(head, 0, len - 1); 
    }      

    public BinarySearchTreeNode construct(ListNode head, int start, int end){ 
        if(start > end) 
            return null; 
        int mid = start + (end - start) / 2; 
        // build left first, since it is the bottom up approach.  
        BinarySearchTreeNode left = construct(head, start, mid - 1); 
        BinarySearchTreeNode root = new BinarySearchTreeNode(head.data); 
        root.left = left; 
        if(head.next != null){ 
            head.data = head.next.data; 
            head.next = head.next.next; 
        } 
        root.right = construct(head, mid + 1, end); 
        return root; 
    }  
 

Time Complexity: 2푇(푛/2) + O(푛) [for finding the middle node] = O(푛푙표푔푛). 
 

Problem-62 Given a sorted array, give an algorithm for converting the array to BST. 
 

Solution: If we have to choose an array element to be the root of a balanced BST, which element should we pick? The root of a balanced 
BST should be the middle element from the sorted array. We would pick the middle element from the sorted array in each iteration. We 
then create a node in the tree initialized with this element. After the element is chosen, what is left? Could you identify the sub-problems 
within the problem? 
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There are two arrays left — the one on its left and the one on its right. These two arrays are the sub-problems of the original problem, since 
both of them are sorted. Furthermore, they are subtrees of the current node’s left and right child. 
 

The code below creates a balanced BST from the sorted array in O(푛) time (푛 is the number of elements in the array). Compare how similar 
the code is to a binary search algorithm. Both are using the divide and conquer methodology. 
 

     public BinaryTreeNode  BuildBST(int A[], int left, int right) { 
      BinaryTreeNode  newNode; 
 if(left > right)  
                  return null; 
 newNode = new BinaryTreeNode(); 
 if(newNode == null) { 
                     System.out.println(“Memory Error”); return; 

} 
 

 if(left == right) { 
  newNode.data = A[left]; 
  newNode.left = null; 
                         newNode.right = null; 
 } 
 else {  
                         int mid = left + (right-left)/ 2; 
  newNode.data = A[mid];  
  newNode.left = BuildBST(A, left, mid - 1); 
  newNode.right = BuildBST(A, mid + 1, right); 
 } 
 return newNode; 
     } 
 

Time Complexity: O(푛). Space Complexity: O(푛), for stack space. 
 

Problem-63 Given a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST. 
 

Solution: A naive way is to apply the Problem-61 solution directly. In each recursive call, we would have to traverse half of the list’s length to 
find the middle element. The run time complexity is clearly O(푛푙표푔푛), where 푛 is the total number of elements in the list. This is because 
each level of recursive call requires a total of 푛/2 traversal steps in the list, and there are a total of 푙표푔푛 number of levels (ie, the height of the 
balanced tree). 
 

Problem-64 For Problem-63, can we improve the complexity? 
 

Solution: Hint: How about inserting nodes following the list order? If we can achieve this, we no longer need to find the middle element as 
we are able to traverse the list while inserting nodes to the tree. 
 

Best Solution: As usual, the best solution requires us to think from another perspective. In other words, we no longer create nodes in the tree 
using the top-down approach. Create nodes bottom-up, and assign them to their parents. The bottom-up approach enables us to access the 
list in its order while creating nodes [42].  
 

Isn’t the bottom-up approach precise? Any time we are stuck with the top-down approach, we can give bottom-up a try. Although the bottom-
up approach is not the most natural way we think, it is helpful in some cases. However, we should prefer top-down instead of bottom-up in 
general, since the latter is more difficult to verify. 
 

Below is the code for converting a singly linked list to a balanced BST. Please note that the algorithm requires the list length to be passed in 
as the function parameters. The list length can be found in O(푛) time by traversing the entire list once. The recursive calls traverse the list 
and create tree nodes by the list order, which also takes O(푛) time. Therefore, the overall run time complexity is still O(푛). 
 

     public BinaryTreeNode SortedListToBST(ListNode list, int start, int end) { 
 if(start > end)  
                      return null; 
 // same as (start+end)/2, avoids overflow 
 int mid = start + (end - start) / 2; 
 BinaryTreeNode leftChild = SortedListToBST(list, start, mid-1); 
 BinaryTreeNode  parent = new BinaryTreeNode(); 
 if(parent == null)  
                    System.out.println(“Memory Error”); return; 
 parent.data = list.data; 
 parent.left = leftChild; 
 list = list.next; 
 parent.right = SortedListToBST(list, mid+1, end); 
 return parent; 
     } 
     public BinaryTreeNode  SortedListToBST(ListNode head, int n) { 

return SortedListToBST(head, 0, n-1); 
     } 
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Problem-65 Give an algorithm for finding the 푘  smallest element in BST. 
 

Solution: The idea behind this solution is that, inorder traversal of BST produces sorted lists. While traversing the BST in inorder, keep track 
of the number of elements visited. 
 

     public BinarySearchTreeNode kthSmallestInBST(BinarySearchTreeNode root, int k, int count) { 
 if(root == null)  
                    return null; 
 BinarySearchTreeNode left = kthSmallestInBST(root.left, k, count);   
 if( left != null)  
                    return left; 
 if(++count == k)  
                    return root; 
 return kthSmallestInBST(root.right, k, count); 
     } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-66 Floor and ceiling: If a given key is less than the key at the root of a BST then the floor of the key (the largest key in the 
BST less than or equal to the key) must be in the left subtree. If the key is greater than the key at the root, then the floor of the key could 
be in the right subtree, but only if there is a key smaller than or equal to the key in the right subtree; if not (or if the key is equal to the the 
key at the root) then the key at the root is the floor of the key. Finding the ceiling is similar, with interchanging right and left. For example, 
if the sorted with input array is {1, 2, 8, 10, 10, 12, 19}, then 
For 푥 =  0:    floor doesn't exist in array,  ceil  = 1,          For 푥 =  1:    floor  = 1,  ceil  = 1 
For 푥 =  5:    floor  = 2,  ceil  = 8,                                    For 푥 =  20:   floor  = 19,  ceil doesn't exist in array 

 

Solution: The idea behind this solution is that, inorder traversal of BST produces sorted lists. While traversing the BST in inorder, keep track 
of the values being visited. If the roots data is greater than the given value then return the previous value which we have maintained during 
traversal. If the roots data is equal to the given data then return root data. 
 

      public BinaryTreeNode FloorInBST(BinaryTreeNode root, int data) { 
 BinaryTreeNode prev=null; 
 return FloorInBSTUtil(root, prev, data); 
      }  
   public BinaryTreeNode FloorInBSTUtil(BinaryTreeNode root, BinaryTreeNode prev, int data)  { 
      if(root == null) return null; 
      if(!FloorInBSTUtil(root.left, prev, data))  
          return 0; 
      if(root.data == data) return root; 
      if(root.data > data) return prev; 
         prev = root; 
      return FloorInBSTUtil(root.right, prev, data); 
   } 
  

Time Complexity: O(푛). Space Complexity: O(푛), for stack space. 
 

For ceiling, we just need to call the right subtree first, followed by left subtree. 
 

   public BinaryTreeNode CeilingInBST(BinaryTreeNode root, int data) { 
 BinaryTreeNode prev=null; 
 return CeilingInBSTUtil(root, prev, data); 
   }  
   public BinaryTreeNode CeilingInBSTUtil(BinaryTreeNode root, BinaryTreeNode prev, int data) { 
 if(root == null) return null; 
 if(!CeilingInBSTUtil(root.right, prev, data)) return 0; 
 if(root.data == data)  
          return root; 
 if(root.data < data)  
          return prev; 
 prev = root; 
 return CeilingInBSTUtil(root.left, prev, data); 
   } 
 

Time Complexity: O(푛). Space Complexity: O(푛), for stack space. 
 

Problem-67 Give an algorithm for finding the union and intersection of BSTs. Assume parent pointers are available (say threaded 
binary trees). Also, assume the lengths of two BSTs are 푚 and 푛 respectively. 

 

Solution: If parent pointers are available then the problem is same as merging of two sorted lists. This is because if we call inorder successor 
each time we get the next highest element. It’s just a matter of which InorderSuccessor to call. 
 

Time Complexity: O(푚 + 푛). Space complexity: O(1). 
 

Problem-68 For Problem-67, what if parent pointers are not available? 
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Solution: If parent pointers are not available, the BSTs can be converted to linked lists and then merged. 
1  Convert both the BSTs into sorted doubly linked lists in O(푛 + 푚) time. This produces 2 sorted lists. 
2  Merge the two double linked lists into one and also maintain the count of total elements in O(푛 + 푚) time. 
3  Convert the sorted doubly linked list into height balanced tree in O(푛 + 푚) time. 

 

Problem-69 For Problem-67, is there any alternative way of solving the problem? 
 

Solution: Yes, by using inorder traversal.  
 Perform inorder traversal on one of the BSTs. 
 While performing the traversal store them in table (hash table). 
 After completion of the traversal of first 퐵푆푇, start traversal of second 퐵푆푇 and compare them with hash table contents. 

 

Time Complexity: O(푚 + 푛). Space Complexity: O(푀푎푥(푚, 푛)). 
 

Problem-70 Given a 퐵푆푇 and two numbers 퐾1 and 퐾2, give an algorithm for printing all the elements of 퐵푆푇 in the range 퐾1 and 
퐾2. 

 

Solution:  
      public void RangePrinter(BinarySearchTreeNode root, int  K1, int K2) { 
         if(root == null)  
                 return; 
         if(root.data >= K1) 
                  RangePrinter(root.left, K1, K2); 
            if(root.data >= K1 && root.data <= K2) 
                  System.out.println( root.data); 
            if(root.data <= K2) 
                  RangePrinter(root.right, K1, K2); 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛), for stack space. 
 

Problem-71 For Problem-70, is there any alternative way of solving the problem? 
 

Solution:  We can use level order traversal: while adding the elements to queue check for the range. 
 

      public void  RangeSeachLevelOrder(BinarySearchTreeNode root, int  K1, int K2) { 
 BinarySearchTreeNode temp; 
 LLQueue Q = new LLQueue(); 
 if(root == null)    
                   return null; 
 Q.enQueue( root); 
 while(!Q.isEmpty()) { 
  temp=Q.deQueue(); 
  if(temp.data >= K1 && temp.data <= K2)  
   System.out.println(temp.data); 
  if(temp.left && temp.data >= K1)  
   Q.enQueue( temp.left); 
  if(temp.right && temp.data <= K2)  
   Q.enQueue( temp.right); 
 } 
 Q.deleteQueue(); 
 return null; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛), for queue. 
 

Problem-72 For Problem-70, can we still think of an alternative way to solve the problem? 
 

Solution: First locate 퐾1 with normal binary search and after that use InOrder successor until we encounter 퐾2. For algorithm, refer to 
푃푟표푏푙푒푚푠 section of threaded binary trees. 
 

Problem-73 Given root of a Binary Search tree, trim the tree, so that all elements returned in the new tree are between the inputs 퐴 
and 퐵. 

 

Solution: It’s just another way of asking Problem-70. 
 

Problem-74 Given two BSTs, check whether the elements of them are the same or not. For example: two BSTs with data 10 5 20 
15 30 and 10 20 15 30 5 should return true and the dataset with 10 5 20 15 30 and 10 15 30 20 5 should return false.   
Note: BSTs data can be in any order. 
 

Solution: One simple way is performing an inorder traversal on first tree and storing its data in hash table. As a second step, perform inorder 
traversal on second tree and check whether that data is already there in hash table or not (if it  exists in hash table then mark it with -1 or some 
unique value).  
 

During the traversal of second tree if we find any mismatch return false. After traversal of second tree check whether it has all -1s in the hash 
table or not (this ensures extra data available in second tree). 
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Time Complexity: O(푚푎푥(푚, 푛)), where 푚 and 푛 are the number of elements in first and second BST. Space Complexity: O(푚푎푥(푚, 푛)). 
This depends on the size of the first tree. 
 

Problem-75 For Problem-74, can we reduce the time complexity? 
 

Solution: Instead of performing the traversals one after the other, we can perform 푖푛 − 표푟푑푒푟 traversal of both the trees in parallel. Since the 
푖푛 − 표푟푑푒푟 traversal gives the sorted list, we can check whether both the trees are generating the same sequence or not. 
 

Time Complexity: O(푚푎푥(푚, 푛)). Space Complexity: O(1). This depends on the size of the first tree. 
 

Problem-76 Given a BST of size 푛, in which each node r has an additional field 푟 → 푠푖푧푒, the number of the keys in the sub-tree 
rooted at 푟 (including the root node 푟). Give an O(ℎ) algorithm 퐺푟푒푎푡푒푟푡ℎ푎푛퐶표푛푠푡푎푛푡(푟, 푘) to find the number of keys that are strictly 
greater than 푘 (ℎ is the height of the binary search tree). 

 

Solution:  
    int GreaterthanConstant (struct BinarySearchTreeNode r, int k){ 
        keysCount = 0; 
 

        while (r != null ){ 
            if (k < r.data){ 
                keysCount = keysCount + r.right.size + 1; 
                r = r.left; 
            } 
            else if (k > r.data) 
                r = r.right; 
            else{ // k = r.key 
                keysCount = keysCount + r.right.size; 
                break; 
            } 
        } 
        return keysCount; 
    } 
 

The suggested algorithm works well if the key is a unique value for each node. Otherwise when reaching 푘=푟.푑푎푡푎, we should start a process 
of moving to the right until reaching a node 푦 with a key that is bigger then 푘, and then we should return 푘푒푦푠퐶표푢푛푡 + 푦.푠푖푧푒. Time 
Complexity: O(ℎ) where ℎ=O(푛) in the worst case and O(푙표푔푛) in the average case. 

6.10 Balanced Binary Search Trees 
 

In earlier sections we have seen different trees whose worst case complexity is O(푛), where 푛 is the number of nodes in the tree. This happens 
when the trees are skew trees. In this section we will try to reduce this worst case complexity to O(푙표푔푛) by imposing restrictions on the 
heights.  
 

In general, the height balanced trees are represented with 퐻퐵(푘), where 푘 is the difference between left subtree height and right subtree 
height. Sometimes 푘 is called balance factor. 

Full Balanced Binary Search Trees 
 

In 퐻퐵(푘), if 푘 =  0 (if balance factor is zero), then we call such binary search trees as 푓푢푙푙 balanced binary search trees. That means, in 
퐻퐵(0) binary search tree, the difference between left subtree height and right subtree height should be at most zero. This ensures that the 
tree is a full binary tree. For example,  
 

 
 
 
 
 
 
 
 

Note: For constructing 퐻퐵(0) tree refer to 푃푟표푏푙푒푚푠 section. 

6.11 AVL (Adelson-Velskii and Landis) Trees 
 

In 퐻퐵(푘), if 푘 =  1 (if balance factor is one), such a binary search tree is called an 퐴푉퐿 푡푟푒푒. That means an AVL tree is a binary search 
tree with a 푏푎푙푎푛푐푒 condition: the difference between left subtree height and right subtree height is at most 1.  

Properties of AVL Trees 
 

A binary tree is said to be an AVL tree, if: 
 

 It is a binary search tree, and 
 For any node 푋, the height of left subtree of 푋 and height of right subtree of 푋 differ by at most 1. 

 

As an example, among the above binary search trees, the left one is not an AVL tree, whereas the right binary search tree is an AVL tree. 
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Minimum/Maximum Number of Nodes in AVL Tree 
 

For simplicity let us assume that the height of an AVL tree is ℎ and 푁(ℎ) indicates the number of nodes in AVL tree with height ℎ. To get 
the minimum number of nodes with height ℎ, we should fill the tree with the minimum number of nodes possible. That means if we fill the 
left subtree with height ℎ − 1 then we should fill the right subtree with height ℎ − 2. As a result, the minimum number of nodes with height 
ℎ is: 
 

푁(ℎ) = 푁(ℎ − 1) + 푁(ℎ − 2) + 1 
 

In the above equation: 
 푁(ℎ − 1) indicates the minimum number of nodes with height ℎ − 1. 
 푁(ℎ − 2) indicates the minimum number of nodes with height ℎ − 2. 
 In the above expression, “1” indicates the current node.  

 

We can give 푁(ℎ − 1) either for left subtree or right subtree. Solving the above recurrence gives:  
 

                                                              푁(ℎ) =O(1.618 ) ⟹ ℎ = 1.44푙표푔푛 ≈O(푙표푔푛) 
Where 푛 is the number of nodes in AVL tree. Also, the above derivation says that the maximum height in AVL trees is O(푙표푔푛).  
 

Similarly, to get maximum number of nodes, we need to fill both left and right subtrees with height ℎ − 1. As a result, we get 푁(ℎ) =
푁(ℎ − 1) + 푁(ℎ − 1) + 1 = 2푁(ℎ − 1) + 1. The above expression defines the case of full binary tree. Solving the recurrence we get: 
 

                                                                             푁(ℎ) =O(2 ) ⟹ ℎ = 푙표푔푛 ≈O(푙표푔푛) 
 

∴ In both the cases, AVL tree property is ensuring that the height of an AVL tree with 푛 nodes is O(푙표푔푛). 
 

 

 
 
 

AVL Tree Declaration 
 

Since AVL tree is a BST, the declaration of AVL is similar to that of BST. But just to simplify the operations, we also include the height as 
part of the declaration.  
 

        public class AVLTreeNode {  
 private int data, height;  
 private AVLTreeNode left, right; 
 public int getData() {  return data; } 
 public void setData(int data) { 
      this.data = data; 
 } 
 public int getHeight() { 
      return height; 
 } 
 public void setHeight(int height) { 
      this.height = height; 
 } 
 public AVLTreeNode getLeft() { 
      return left; 
 } 
 public void setLeft(AVLTreeNode left) { 
      this.left = left; 
 } 
 public AVLTreeNode getRight() { 
      return right; 
 } 
 public void setRight(AVLTreeNode right) { 
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      this.right = right; 
 } 
        }  

Finding the Height of an AVL tree 
 

        public int Height(AVLTreeNode root ) { 
 if( root == null)   
                       return -1; 
 else   
                       return root.getHeight(); 
        } 
 

Time Complexity: O(1). 

Rotations 
 

When the tree structure changes (e.g., with insertion or deletion), we need to modify the tree to restore the AVL tree property. This can be 
done using single rotations or double rotations. Since an insertion/deletion involves adding/deleting a single node, this can only 
increase/decrease the height of a subtree by 1. So, if the AVL tree property is violated at a node 푋, it means that the heights of left(푋) and 
right(푋) differ by exactly 2. This is because, if we balance the AVL tree every time, then at any point, the difference in heights of left(푋) and 
right(푋) differ by exactly 2. Rotations is the technique used for restoring the AVL tree property. This means, we need to apply the rotations 
for the node 푋. 
 

Observation: One important observation is that, after an insertion, only nodes that are on the path from the insertion point to the root might 
have their balances altered, because only those nodes have their subtrees altered.  To restore the AVL tree property, we start at the insertion 
point and keep going to the root of the tree.  
 

While moving to the root, we need to consider the first node that is not satisfying the AVL property. From that node onwards, every node on 
the path to the root will have the issue. Also, if we fix the issue for that first node, then all other nodes on the path to the root will automatically 
satisfy the AVL tree property. That means we always need to care for the first node that is not satisfying the AVL property on the path from 
the insertion point to the root and fix it. 

Types of Violations 
 

Let us assume the node that must be rebalanced is 푋. Since any node has at most two children, and a height imbalance requires that 푋’푠 two 
subtree heights differ by two, we can easily observe that a violation might occur in four cases: 
 
 

1. An insertion into the left subtree of the left child of 푋. 
2. An insertion into the right subtree of the left child of 푋. 
3. An insertion into the left subtree of the right child of 푋. 
4. An insertion into the right subtree of the right child of 푋. 

 

Cases 1 and 4 are symmetric and easily solved with single rotations. Similarly, cases 2 and 3 are also symmetric and can be solved with double 
rotations (needs two single rotations). 

Single Rotations 
 

Left Left Rotation (LL Rotation) [Case-1]: In the case below, node 푋 is not satisfying the AVL tree property. As discussed earlier, the rotation 
does not have to be done at the root of a tree. In general, we start at the node inserted and travel up the tree, updating the balance information 
at every node on the path. 
 

        
 

 

 

 
 
 

For example, in the figure above, after the insertion of 7  in the original AVL tree on the left, node 9 becomes unbalanced. So, we do a single 
left-left rotation at 9. As a result we get the tree on the right. 
 

      public AVLTreeNode SingleRotateLeft(AVLTreeNode X ) { 
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 AVLTreeNode W = X.left; 
 X.left = W.right;  

W.right = X; 
 X.setHeight(Math.max( Height(X→left), Height(X.right) ) + 1); 
 W.setHeight(Math.max( Height(W→left), X→height ) + 1); 
 return W;   /* New root */ 
      } 
 

Time Complexity: O(1). Space Complexity: O(1). 
 

Right Right Rotation (RR Rotation) [Case-4]: In this case, node 푋 is not satisfying the AVL tree property. 
 

 

 

For example, in the above figure, after the insertion of 29  in the original AVL tree on the left, node 15 becomes unbalanced. So, we do a 
single right-right rotation at 15. As a result we get the tree on the right. 
 

 
 
 

 

 
 

      public AVLTreeNode SingleRotateRight(AVLTreeNode W ) { 
 AVLTreeNode X  = W.right; 
 W.right = X.left;   
                 X.left = W; 
 W.setHeight(Math.max( Height(W.right), Height(W.left) ) + 1); 
 X.setHeight(Math.max( Height(X.right), W→height) + 1); 
 return X;  
      } 
 

Time Complexity: O(1).  Space Complexity: O(1). 

Double Rotations 
 

Left Right Rotation (LR Rotation) [Case-2]: For case-2 and case-3 single rotation does not fix the problem. We need to perform two rotations. 
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As an example, let us consider the following tree: The insertion of 7 is creating the case-2 scenario and the right side tree is the one after the 
double rotation. 
 

      public AVLTreeNode DoubleRotatewithLeft( AVLTreeNode Z ) { 
 Z.left =  SingleRotateRight(Z.left); 
 return SingleRotateLeft(Z); 
      } 
 

Right Left Rotation (RL Rotation) [Case-3]: Similar to case-2, we need to perform two rotations to fix this scenario. 
 

 
 
 
 
 
 

 

 

 

 
 
 

As an example, let us consider the following tree: The insertion of 6 is creating the case-3 scenario and the right side tree is the one after the 
double rotation. 
 

 
 
 
 
 
 
 
 

Insertion into an AVL tree 
 

Insertion into an AVL tree is similar to a BST insertion. After inserting the element, we just need to check whether there is any height 
imbalance. If there is an imbalance, call the appropriate rotation functions. 
 

      public AVLTreeNode Insert( AVLTreeNode root, AVLTreeNode parent, int data) { 
 if( root == null) {    
      root = new AVLTreeNode(); 
      root.data = data;  
                     root.setHeight(0); 
      root.left = null; 
                     root.right = null; 
 } 
 else  if( data < root.data ) { 
      root.left = Insert( root.left, root, data ); 
      if( ( Height( root.left ) - Height( root.right ) ) == 2 ) { 
  if( data < root.left.data ) 
       root = SingleRotateLeft( root ); 
  else 
       root = DoubleRotateLeft( root ); 
      } 
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 }  
 else  if( data > root.data ) { 
      root.right = Insert( root.right, root, data ); 
      if( ( Height( root.right ) - Height( root.left ) ) == 2 ) { 
  if( data < root.right.data ) 
       root = SingleRotateRight( root ); 
  else 
       root = DoubleRotateRight( root ); 
      } 
 } 
 /* Else data is in the tree already. We'll do nothing */ 
 root.setHeight(Math.max( Height(root.left), Height(root.right) ) + 1); 
 return root; 
      } 
 

Time Complexity: O(푙표푔푛). Space Complexity: O(푙표푔푛). 

AVL Trees: Problems & Solutions 
 

Problem-77 Given a height ℎ, give an algorithm for generating the 퐻퐵(0). 
 

Solution: As we have discussed, 퐻퐵(0) is nothing but generating full binary tree. In full binary tree the number of nodes with height ℎ is: 
2 − 1 (let us assume that the height of a tree with one node is 0). As a result the nodes can be numbered as: 1 to 2 − 1. 
 

      public BinarySearchTreeNode BuildHB0(int h) { 
 BinarySearchTreeNode temp; 
 if(h == 0)  
            return null; 
 temp = newBinarySearchTreeNode(); 
 temp.left = BuildHB0 (h-1); 
 temp.data = count++; //assume count is a global variable 
 temp.right = BuildHB0 (h-1); 
 return temp; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푙표푔푛), where 푙표푔푛 indicates the maximum stack size which is equal to height of the tree. 
 

Problem-78 Is there any alternative way of solving Problem-77? 
 

Solution: Yes, we can solve it following Mergesort logic. That means, instead of working with height, we can take the range. With this approach 
we do not need any global counter to be maintained. 
 

      public BinarySearchTreeNode BuildHB0(int l, int r) { 
       BinarySearchTreeNode temp; 

 int mid = 푙 + ; 
 if( l > r)  
                return null; 

temp = (BinarySearchTreeNode ) malloc (sizeof(BinarySearchTreeNode)); 
temp.data = mid; 

 temp.left = BuildHB0(l, mid-1); 
 temp.right = BuildHB0(mid+1, r); 
 return temp; 
      } 
 

The initial call to 퐵푢푖푙푑퐻퐵0 function could be: 퐵푢푖푙푑퐻퐵0(1, 1 ≪ ℎ). 1 ≪ ℎ does the shift operation for calculating the 2 − 1. Time 
Complexity: O(푛). Space Complexity: O(푙표푔푛). Where 푙표푔푛 indicates maximum stack size which is equal to the height of the tree. 
 

Problem-79 Construct minimal AVL trees of height 0, 1, 2, 3, 4, and 5. What is the number of nodes in a minimal AVL tree of height 
6?  

 

Solution Let 푁(ℎ) be the number of nodes in a minimal AVL tree with height ℎ. 
 

푁(0)  =  1  

푁(1)  =  2 
 

푁(ℎ)  =  1 +  푁(ℎ − 1)  +  푁(ℎ − 2) 

h-1 h-2
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푁(2)  =  1 +  푁(1) +  푁(0) 
            =  1 +  2 +  1 =  4 

 

푁(3)  =  1 +  푁(2) +  푁(1) 
            =  1 +  4 +  2 =  7 

 

푁(4)  =  1 +  푁(3) +  푁(2) 
            =  1 +  7 +  4 =  12 

 
푁(5)  =  1 +  푁(4) +  푁(3) 
            =  1 +  12 +  7 =  20 

                      … 
 

Problem-73 For Problem-77, how many different shapes can there be of a minimal AVL tree of height ℎ? 
 

Solution: Let 푁푆(ℎ) be the number of different shapes of a minimal AVL tree of height ℎ. 
 

 

         푁푆(0)  =  1  

         푁푆(1)  =  2 
     

         푁푆(2)  =  2 ∗  푁푆(1) ∗  푁푆(0) 
                       =  2 ∗  2 ∗  1 =  4 
 

     

         푁푆(3)  =  2 ∗  푁푆(2) ∗  푁푆(1) 
                       =  2 ∗  4 ∗  1 =  8 

     
 … 

  푁푆(ℎ)  =  2 ∗  푁푆(ℎ − 1)  ∗  푁푆(ℎ − 2) 

h-1 h-2
       

h-1h-2
 

Problem-80 Given a binary search tree, check whether it is an AVL tree or not? 
 

Solution: Let us assume that 퐼푠퐴푉퐿 is the function which checks whether the given binary search tree is an AVL tree or not. 퐼푠퐴푉퐿 returns 
−1 if the tree is not an AVL tree. During the checks each node sends its height to its parent. 
 

    public boolean isAVL(BinarySearchTreeNoderoot) { 
        if(root == null) 
            return true; 
        return isAVL(root.left) && isAVL(root.right) && Math.abs(getHeight(root.left) - getHeight(root.right)) <= 1; 
    } 
    public int getHeight(BinarySearchTreeNoderoot){ 
        int leftHeight, rightHeight; 
        if(root == null) 
            return 0; 
        else{ 
            leftHeight = getHeight(root.left); 
            rightHeight = getHeight(root.right); 
            if(leftHeight > rightHeight) 
                return leftHeight + 1; 
            else 
                return rightHeight + 1; 
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        } 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-81 Given a height ℎ, give an algorithm for generating an AVL tree with minimum number of nodes. 
 

Solution: To get minimum number of nodes, fill one level with ℎ − 1 and the other with ℎ − 2. 
 

      public AVLTreeNode GenerateAVLTree(int h) { 
 AVLTreeNode temp; 
 if(h == 0)  
                        return null; 
 temp = new AVLTreeNode(); 
 temp.left = GenerateAVLTree(h-1); 
 temp.data = count++; //assume count is a global variable 
 temp.right = GenerateAVLTree(h-2); 
 temp.setHeight(temp.left.getHeight()+1); // or temp→height = h; 
 return temp; 
      } 
 

Problem-82 Given an AVL tree with 푛 integer items and two integers 푎 and 푏, where 푎 and 푏 can be any integers with 푎 <=  푏. 
Implement an algorithm to count the number of nodes in the range [푎, 푏]. 

 

Solution:  
 
 
 
 
 
 
 

The idea is to make use of the recursive property of binary search trees. There are three cases to consider: whether the current node is in the 
range [푎, 푏], on the left side of the range [푎, 푏], or on the right side of the range [푎, 푏]. Only subtrees that possibly contain the nodes will be 
processed under each of the three cases. 
 

      public int RangeCount(AVLNode root, int a, int b) { 
 if(root == null)  
                      return 0; 
 else if(root.data > b) 
  return RangeCount(root.left, a, b); 
 else if(root.data < a) 
  return RangeCount(root.right, a, b); 
 else if(root.data >= a && root.data <= b) 
                        return RangeCount(root.left, a, b) + RangeCount(root.right, a, b) + 1;  
      } 
 

The complexity is similar to 푖푛 − 표푟푑푒푟 traversal of the tree but skipping left or right sub-trees when they do not contain any answers. So in 
the worst case, if the range covers all the nodes in the tree, we need to traverse all the 푛 nodes to get the answer. The worst time complexity 
is therefore O(푛).  
 

If the range is small, which only covers a few elements in a small subtree at the bottom of the tree, the time complexity will be O(ℎ) = 
O(푙표푔푛), where ℎ is the height of the tree. This is because only a single path is traversed to reach the small subtree at the bottom and many 
higher level subtrees have been pruned along the way.  
 

Note: Refer to similar problem in BST. 
 

Problem-83 Median in an infinite series of integers 
 

Solution: Median is the middle number in a sorted list of numbers (if we have odd number of elements). If we have even number of elements, 
median is the average of two middle numbers in a sorted list of numbers. 
 

For solving this problem we can use a binary search tree with additional information at each node, and the number of children on the left and 
right subtrees. We also keep the number of total nodes in the tree. Using this additional information we can find the median in O(푙표푔푛) time, 
taking the appropriate branch in the tree based on the number of children on the left and right of the current node. But, the insertion 
complexity is O(푛) because a standard binary search tree can degenerate into a linked list if we happen to receive the numbers in sorted order. 
So, let’s use a balanced binary search tree to avoid worst case behavior of standard binary search trees. For this problem, the balance factor is 
the number of nodes in the left subtree minus the number of nodes in the right subtree. And only the nodes with a balance factor of +1 or 0 
are considered to be balanced. So, the number of nodes on the left subtree is either equal to or 1 more than the number of nodes on the right 
subtree, but not less.  
 

If we ensure this balance factor on every node in the tree, then the root of the tree is the median, if the number of elements is odd. In the 
number of elements is even, the median is the average of the root and its inorder successor, which is the leftmost descendent of its right 
subtree.  
 

a   b 7 

4 

2 6 

5 3 1 
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So, the complexity of insertion maintaining a balanced condition is O(푙표푔푛) and finding a median operation is O(1) assuming we calculate 
the inorder successor of the root at every insertion if the number of nodes is even.  
 

Insertion and balancing is very similar to AVL trees. Instead of updating the heights, we update the number of nodes information. Balanced 
binary search trees seem to be the most optimal solution, insertion is O(푙표푔푛) and find median is O(1).  
  

Note: For an efficient algorithm refer to the 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 푎푛푑 퐻푒푎푝푠 chapter. 
 

Problem-84 Given a binary tree, how do you remove all the half nodes (which have only one child)? Note that we should not touch 
leaves. 
 

Solution: By using post-order traversal we can solve this problem efficiently. We first process the left children, then the right children, and 
finally the node itself. So we form the new tree bottom up, starting from the leaves towards the root. By the time we process the current node, 
both its left and right subtrees have already been processed.  

 

     public BinaryTreeNode removeHalfNodes(BinaryTreeNode root){ 
         if (root == null) 
             return null;       

         root.left = removeHalfNodes(root.left); 
         root.right = removeHalfNodes(root.right);       

         if (root.left == null && root.right == null) 
             return root; 
 

         if (root.left == null) 
             return root.right; 
 

         if (root.right == null) 
             return root.left; 
 

         return root; 
     } 

 

Time Complexity: O(푛). 
 

Problem-85 Given a binary tree, how do you remove its leaves?   

Solution: By using post-order traversal we can solve this problem (other traversals would also work).  
 

     public BinaryTreeNode removeLeaves(BinaryTreeNode root) { 
          if (root != null) { 
              if (root.left == null && root.right == null) { 
                    root = null; 
               } else { 
                    root.left = removeLeaves(root.left); 
                    root.right = removeLeaves(root.right); 
               } 
          } 
          return root; 
     } 
 

Time Complexity: O(푛). 
 

Problem-86 Given a BST and two integers (minimum and maximum integers) as parameters, how do you remove (prune) elements 
elements that are not within that range?  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Solution: Observation: Since we need to check each and every element in the tree, and the subtree changes should be reflected in the parent, 
we can think about using post order traversal. So we process the nodes starting from the leaves towards the root. As a result, while processing 
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the node itself, both its left and right subtrees are valid pruned BSTs. At each node we will return a pointer based on its value, which will then 
be assigned to its parent’s left or right child pointer, depending on whether the current node is the left or right child of the parent. If the 
current node’s value is between 퐴 and 퐵 (퐴 <= 푛표푑푒’푠 푑푎푡푎 <= 퐵) then  no action needs to be taken, so we return the reference to the 
node itself.  
 

If the current node’s value is less than 퐴, then we return the reference to its right subtree and discard the left subtree. Because if a node’s 
value is less than 퐴, then its left children are definitely less than A since this is a binary search tree. But its right children may or may not be 
less than A; we can’t be sure, so we return the reference to it. Since we’re performing bottom-up post-order traversal, its right subtree is already 
a trimmed valid binary search tree (possibly NULL), and its left subtree is definitely NULL because those nodes were surely less than A and 
they were eliminated during the post-order traversal.  
 

A similar situation occurs when the node’s value is greater than 퐵, so we now return the reference to its left subtree. Because if a node’s value 
is greater than 퐵, then its right children are definitely greater than 퐵. But its left children may or may not be greater than 퐵; So we discard the 
right subtree and return the reference to the already valid left subtree. 
 

        public BinarySearchTreeNode PruneBST(BinarySearchTreeNode root, int  A, int B){ 
             if(root == null)   
                  return null; 
 

             root.left= PruneBST(root->getLeft(),A,B); 
             root.right= PruneBST(root->getRight(),A,B); 
 

             if(A<=root.data && root.data<=B) 
                  return root; 
             if(root.data<A) 
                  return root.right; 
             if(root.data>B) 
                  return root.left; 
        } 
 

Time Complexity: O(푛) in worst case and in average case it is O(푙표푔푛). 
 

Note: If the given BST is an AVL tree then O(푛) is the average time complexity. 
 

Problem-87 Given a binary tree, how do you connect all the adjacent nodes at the same level? Assume that given binary tree has next 
pointer along with left and right pointers. 

  

Solution: One simple approach is to use level-order traversal and keep updating the next pointers. While traversing, we will link the nodes on 
the next level. If the node has left and right node, we will link left to right. If node has next node, then link rightmost child of current node to 
leftmost child of next node. 
 

        public void linkLevelNodes(BinaryTreeNode root){ 
             Queue Q = CreateQueue(); 
             BinaryTreeNode prev;     // Pointer to the revious node of the current level 
             BinaryTreeNode temp; 
            int currentLevelNodeCount;           
            int nextLevelNodeCount;     
         

            if(root == null) 
                return;          

            EnQueue(Q, root); 
            currentLevelNodeCount = 1; 
            nextLevelNodeCount = 0; 
            prev = NULL;          

            while (!IsEmptyQueue(Q)) { 
                temp = DeQueue(Q); 
         

                if (temp.left != null){ 
                    EnQueue(Q, temp.left); 
                    nextLevelNodeCount++; 
                } 
                if (temp.right != null){ 
                    EnQueue(Q, temp.right); 
                    nextLevelNodeCount++; 
                }          

                // Link the previous node of the current level to this node 
                if (prev) 
                    prev.next = temp;          

                //Set the previous node to the current  
                prev = temp; 
 

                currentLevelNodeCount--; 
                if (currentLevelNodeCount == 0) {   // if this is the last node of the current level 
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                    currentLevelNodeCount = nextLevelNodeCount; 
                    nextLevelNodeCount = 0; 
                    prev = NULL; 
                } 
            } 
        } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-88 Can we improve space complexity for Problem-87? 
 

Solution: We can process the tree level by level, but without a queue. The logical part is that when we process the nodes of the next level, we 
make sure that the current level has already been linked.   

    public void linkLevelNodes(BinaryTreeNode root) { 
        if(root==null) 
            return; 
        BinaryTreeNode rightMostNode = null; 
        BinaryTreeNode nextHead = null; 
        BinaryTreeNode temp = root; 
        //connect next level of current root node level 
        while(temp!=null){ 
            if(temp.left!=null) 
                if(rightMostNode==null){ 
                    rightMostNode=temp.left; 
                    nextHead=temp.left; 
                } 
                else{ 
                    rightMostNode.next = temp.left; 
                    rightMostNode = rightMostNode.next; 
                } 
            if(temp.right!=null) 
                if(rightMostNode==null){ 
                    rightMostNode=temp.right; 
                    nextHead=temp.right; 
                } 
                else{ 
                    rightMostNode.next = temp.right; 
                    rightMostNode = rightMostNode.next; 
                } 
            temp=temp.next; 
        } 
        connect(nextHead); 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푑푒푝푡ℎ 표푓 푡푟푒푒) for stack space. 
 

Problem-89 Assume that a set 푆 of 푛 numbers are stored in some form of balanced binary search tree; i.e. the depth of the tree is 
O(푙표푔푛). In addition to the key value and the pointers to children, assume that every node contains the number of nodes in its subtree. 
Specify a reason(s) why a balanced binary tree can be a better option than a complete binary tree for storing the set S. 

 

Solution: Implementation of a balanced binary tree requires less RAM space as we do not need to keep complete tree in RAM (since they 
use pointers).  
 

Problem-90 For the Problem-89, specify a reason (s) why a complete binary tree can be a better option than a balanced binary tree 
for storing the set S. 

 

Solution: A complete binary tree is more space efficient as we do not need any extra flags. A balanced binary tree usually takes more space 
since we need to store some flags. For example, in a Red-Black tree we need to store a bit for the color. Also, a complete binary tree can be 
stored in a RAM as an array without using pointers. 
 

Problem-91 Let T be a proper binary tree with root r. Consider the following algorithm. 
 

    Algorithm TreeTraversal(r): 
 if r is a leaf then return 1 
 else { 
  a = TreeTraversal(left child of r) 
  b = TreeTraversal(right child of r) 
  return a + b 
 } 

What does the algorithm do? 
A. It always returns the value 1.    B. It computes the number of nodes in the tree. 
C. It computes the depth of the nodes.   D. It computes the height of the tree. 
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E. It computes the number of leaves in the tree. 
 

Solution: E. 

6.12 Other Variations on Trees 
 

In this section, let us enumerate the other possible representations of trees. In the earlier sections, we have looked at AVL trees, which is a 
binary search tree (BST) with balancing property. Now, let us look at a few more balanced binary search trees: Red-black Trees and Splay 
Trees. 

6.12.1 Red-Black Trees 
 

In Red-black trees each node is associated with an extra attribute: the color, which is either red or black. To get logarithmic complexity we 
impose the following restrictions.  
 

Definition: A Red-black tree is a binary search tree that satisfies the following properties: 
 Root Property: the root is black 
 External Property: every leaf is black 
 Internal Property: the children of a red node are black 
 Depth Property: all the leaves have the same black 

 

Similar to AVL trees, if the Red-black tree becomes imbalanced, then we perform rotations to reinforce the balancing property. With Red-
black trees, we can perform the following operations in O(푙표푔푛) in worst case, where 푛 is the number of nodes in the trees. 

 Insertion 
 Deletion 
 Find predecessor 
 Find successor 
 Find minimum  
 Find maximum 

6.12.2 Splay Trees 
 

Splay-trees are BSTs with a self-adjusting property. Another interesting property of splay-trees is: starting with an empty tree, any sequence of 
퐾 operations with maximum of 푛 nodes takes O(퐾푙표푔푛) time complexity in worst case. 
 

Splay trees are easier to program and also ensure faster access to recently accessed items. Similar to 퐴푉퐿 and Red-Black trees, at any point 
that the splay tree becomes imbalanced, we can perform rotations to reinforce the balancing property. 
 

Splay-trees cannot guarantee the O(푙표푔푛) complexity in worst case. But it gives amortized O(푙표푔푛) complexity. Even though individual 
operations can be expensive, any sequence of operations gets the complexity of logarithmic behavior. One operation may take more time (a 
single operation may take O(푛) time) but the subsequent operations may not take worst case complexity and on the average 푝푒푟 표푝푒푟푎푡푖표푛 
complexity is O(푙표푔푛). 

6.14.3 B-Trees 
 

B-Tree is like other self-balancing trees such as AVL and Red-black tree such that it maintains its balance of nodes while operations are 
performed against it. B-Tree has the following properties: 
 

 Minimum degree "푡" where, except root node, all other nodes must have no less than 푡 − 1 keys 
 Each node with 푛 keys has 푛 + 1 children 
 Keys in each node are lined up where 푘  < 푘  < .. 푘  
 Each node cannot have more than 2t-1 keys, thus 2t children 
 Root node at least must contain one key. There is no root node if the tree is empty. 
 Tree grows in depth only when root node is split. 

  

Unlike a binary-tree, each node of a b-tree may have a variable number of keys and children. The keys are stored in non-decreasing order. 
Each key has an associated child that is the root of a subtree containing all nodes with keys less than or equal to the key but greater than the 
preceding key. A node also has an additional rightmost child that is the root for a subtree containing all keys greater than any keys in the node. 
 

A b-tree has a minimum number of allowable children for each node known as the 푚푖푛푖푚푖푧푎푡푖표푛 푓푎푐푡표푟. If 푡 is this 푚푖푛푖푚푖푧푎푡푖표푛 푓푎푐푡표푟, 
every node must have at least 푡 −  1 keys. Under certain circumstances, the root node is allowed to violate this property by having fewer than 
푡 −  1 keys. Every node may have at most 2푡 −  1 keys or, equivalently, 2푡 children. 
 

Since each node tends to have a large branching factor (a large number of children), it is typically necessary to traverse relatively few nodes 
before locating the desired key. If access to each node requires a disk access, then a B-tree will minimize the number of disk accesses required. 
The minimization factor is usually chosen so that the total size of each node corresponds to a multiple of the block size of the underlying 
storage device. This choice simplifies and optimizes disk access. Consequently, a B-tree is an ideal data structure for situations where all data 
cannot reside in primary storage and accesses to secondary storage are comparatively expensive (or time consuming). 
 

To 푠푒푎푟푐ℎ the tree, it is similar to binary tree except that the key is compared multiple times in a given node because the node contains more 
than 1 key. If the key is found in the node, the search terminates. Otherwise, it moves down where at child pointed by ci where key 푘 < 푘 . 
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Key 푖푛푠푒푟푡푖표푛푠 of a B-tree happens from the bottom fashion. This means that it walk down the tree from root to the target child node first. 
If the child is not full, the key is simply inserted. If it is full, the child node is split in the middle, the median key moves up to the parent, then 
the new key is inserted. When inserting and walking down the tree, if the root node is found to be full, it's split first and we have a new root 
node. Then the normal insertion operation is performed. 
 

Key 푑푒푙푒푡푖표푛 is more complicated as it needs to maintain the number of keys in each node to meet the constraint. If a key is found in leaf 
node and deleting it still keeps the number of keys in the nodes not too low, it's simply done right away. If it's done to the inner node, the 
predecessor of the key in the corresponding child node is moved to replace the key in the inner node. If moving the predecessor will cause 
the child node to violate the node count constraint, the  sibling child nodes are combined and the key in the inner node is deleted. 

6.12.4 Augmented Trees 
 

In earlier sections, we have seen various problems like finding the 퐾 −  smallest – element in the tree and other similar ones. Of all the 
problems the worst complexity is O(푛), where 푛 is the number of nodes in the tree. To perform such operations in O(푙표푔푛), augmented 
trees are useful. In these trees, extra information is added to each node and that extra data depends on the problem we are trying to solve.  
 

For example, to find the 퐾 element in a binary search tree, let us see how augmented trees solve the problem. Let us assume that we are 
using Red-Black trees as balanced BST (or any balanced BST) and augmenting the size information in the nodes data. For a given node 푋 in 
Red-Black tree with a field 푠푖푧푒(푋) equal to the number of nodes in the subtree and can be calculated as: 
 

푠푖푧푒(푋)  =  푠푖푧푒(푋 → 푙푒푓푡)  +  푠푖푧푒(푋 → 푟푖푔ℎ푡))  +  1 
 

Kth – smallest – operation can be defined as: 
 

       public BinarySearcTreeNode KthSmallest (BinarySearcTreeNode X, int K) { 
              int r = size(X.left) + 1; 
              if(K == r)  
                     return X; 
              if(K < r)   
                     return KthSmallest (X.left, K); 
              if(K > r)  
                     return KthSmallest (X.right, K-r); 
       } 
 

Time Complexity: O(푙표푔푛). Space Complexity: O(푙표푔푛). 
 

Example: With the extra size information, the augmented tree will look like: 
 

 
 
 
 
 
 
 
 
 
 

6.12.5 Scapegoat Trees 
 

Scapegoat tree is a self-balancing binary search tree, discovered by Arne Andersson. It provides worst-case O(푙표푔푛) search time, and O(푙표푔푛) 
amortized (average) insertion and deletion time.   

AVL tree rebalance whenever the heights of two sibling subtrees differ by more than one, scapegoat tree rebalance whenever the size of a 
child exceeds a certain ratio of its parent's, a ratio known as a. After inserting the element, we traverse back up the tree. If we find an imbalance 
where a child's size exceeds the parent's size times alpha, we must rebuild the subtree at the parent, the 푠푐푎푝푒푔표푎푡. 
 

There might be more than possible scapegoat, but we only have to pick one. The most optimal scapegoat is actually determined by height 
balance. When removing, we see if the total size of the tree is less than alpha of the largest size since the last rebuilding of the tree. If so, we 
rebuild the entire tree. The alpha for a scapegoat tree can be any number between 0.5 and 1.0. The value 0.5 will force perfect balance, while 
1.0 will cause rebalancing to never occur, effectively turning it into a BST. 

6.12.6 Interval Trees 
 

We often face questions that involve queries made in an array based on range. For example, for a given array of integers, what is the maximum 
number in the range 훼 to 훽, where 훼 and 훽 are of course within array limits. To iterate over those entries with intervals containing a particular 
value, we can use a simple array. But if we need more efficient access, we need a more sophisticated data structure.  
 

An array-based storage scheme and a brute-force search through the entire array is acceptable only if a single search is to be performed, or if 
the number of elements is small. For example, if you know all the array values of interest in advance, you need to make only one pass through 
the array. However, if you can interactively specify different search operations at different times, the brute-force search becomes impractical 
because every element in the array must be examined during each search operation.  
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If you sort the array in ascending order of the array values, you can terminate the sequential search when you reach the object whose low value 
is greater than the element we are searching. Unfortunately, this technique becomes increasingly ineffective as the low value increases, because 
fewer search operations are eliminated.That means, what if we have to answer a large number of queries like this? – is brute force still a good 
option? 
 

Another example is when we need to return a sum in a given range. We can brute force this too, but the problem for a large number of 
queries still remains. So, what can we do? With a bit of thinking we can come up with an approach like maintaining a separate array of 푛 
elements, where 푛 is the size of the original array, where each index stores the sum of all elements from 0 to that index. So essentially we have 
with a bit of preprocessing brought down the query time from a worst case O(푛) to O(1). Now this is great as far as static arrays are concerned, 
but, what if we are required to perform updates on the array too?  
 

The first approach gives us an O(푛) query time, but an O(1) update time. The second approach, on the other hand, gives us O(1) query time, 
but an O(푛) update time. So, which one do we choose? 
 

Interval trees are also binary search trees and they store interval information in the node structure. That means, we maintain a set of 푛 intervals 
[푖 , 푖 ] such that one of the intervals containing a query point 푄 (if any) can be found efficiently. Interval trees are used for performing range 
queries efficiently. 
 

A segment tree is a heap-like data structure that can be used for making update/query operations upon array intervals in logarithmical time. 
We define the segment tree for the interval [푖, 푗] in the following recursive manner: 
 

 The root (first node in the array) node will hold the information for the interval [푖, 푗] 

 If 푖 < 푗 the left and right children will hold the information for the intervals [푖, ] and [ +1, 푗] 
 

Segment trees (also called 푠푒푔푡푟푒푒푠 and 푖푛푡푒푟푣푎푙 푡푟푒푒푠) is a cool data structure, primarily used for range queries. It is a height balanced 
binary tree with a static structure. The nodes of a segment tree correspond to various intervals, and can be augmented with appropriate 
information pertaining to those intervals. It is somewhat less powerful than a balanced binary tree because of its static structure, but due to the 
recursive nature of operations on the segtree, it is incredibly easy to think about and code.  
 

We can use segment trees to solve range minimum/maximum query problems. The time complexity is T(푛푙표푔푛) where O(푛) is the time 
required to build the tree and each query takes O(푙표푔푛) time. 
 

Example: Given a set of intervals: 푆 = {[2-5], [6-7], [6-10], [8-9], [12-15], [15-23], [25-30]}. A query with 푄 =  9 returns [6, 10] or [8, 9] (assume 
these are the intervals which contain 9 among all the intervals). A query with 푄 =  23 returns [15, 23]. 
 
 
 
 
 
 
 
 

Construction of Interval Trees 
 

Let us assume that we are given a set 푆 of 푛 intervals (also called segments). These 푛 intervals will have 2푛 endpoints. Now, let us see how to 
construct the interval tree. 
 

Algorithm 
 

Recursively build the tree on interval set 푆 as follows: 
 Sort the 2푛 endpoints 
 Let X  be the median point 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Time complexity for building interval trees: O(푛푙표푔푛). Since we are choosing the median, Interval Trees will be approximately balanced. 
This ensures that we split the set of end points in half each time. The depth of the tree is O(푙표푔푛). To simplify the search process, generally 
푋  is stored with each node. 

Query Line 

Intervals 

Store intervals that cross X  
in node 푛 

Intervals that are completely to the left 
of X  in  푛→left 

Intervals that are completely to the right 
of  X  in 푛→right 
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6.13 Supplementary Questions 
 

Problem-92 A binary tree is univalued if every node in the tree has the same value. Given an algorithm to check whether the given 
binary tree is univalued or not. 

 
 
 
 
 
 
 
 

Solution: A tree is univalued if both its children are univalued, plus the root node has the same value as the child nodes. We can write our 
function recursively. 푖푠퐿푒푓푡푈푛푖푣푎푙푇푟푒푒 will represent that the left subtree is correct: ie., that it is univalued, and the root value is equal to the 
left child's value. 푖푠푅푖푔ℎ푡푈푛푖푣푎푙푇푟푒푒 will represent the same thing for the right subtree. We need both of these properties to be true. 
 

    class Solution { 
        public boolean isUnivalTree(BinaryTreeNode root) { 
            boolean isLeftUnivalTree = (root.left == null || 
                    (root.val == root.left.val && isUnivalTree(root.left))); 
            boolean isRightUnivalTree = (root.right == null || 
                    (root.val == root.right.val && isUnivalTree(root.right))); 
            return isLeftUnivalTree && isRightUnivalTree; 
        } 
    } 
 

Time complexity: O(푛), where 푛 is the number of nodes in the given tree. Space complexity: O(ℎ), where ℎ is the height of the given tree. 
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PRIORITY QUEUES 
AND HEAPS 

 

Chapter 

7 
 

 
 
 
 
 

7.1 What is a Priority Queue? 
 

In some situations we may need to find the minimum/maximum element among a collection of elements. We can do this with the help of 
Priority Queue ADT. A priority queue ADT is a data structure that supports the operations 퐼푛푠푒푟푡 and 퐷푒푙푒푡푒푀푖푛 (which returns and 
removes the minimum element) or 퐷푒푙푒푡푒푀푎푥 (which returns and removes the maximum element).  
 

These operations are equivalent to 퐸푛푄푢푒푢푒 and 퐷푒푄푢푒푢푒 operations of a queue. The difference is that, in priority queues, the order in 
which the elements enter the queue may not be the same in which they were processed. An example application of a priority queue is job 
scheduling, which is prioritized instead of serving in first come first serve. 
 
 
 
 
 

A priority queue is called an 푎푠푐푒푛푑푖푛푔 − 푝푟푖표푟푖푡푦 queue, if the item with the smallest key has the highest priority (that means, delete the 
smallest element always). Similarly, a priority queue is said to be a 푑푒푠푐푒푛푑푖푛푔 − 푝푟푖표푟푖푡푦 queue if the item with the largest key has the 
highest priority (delete the maximum element always). Since these two types are symmetric we will be concentrating on one of them: ascending-
priority queue. 

7.2 Priority Queue ADT 
 

The following operations make priority queues an ADT. 

Main Priority Queues Operations 
 

A priority queue is a container of elements, each having an associated key. 
 

 insert (key, data): Inserts data with 푘푒푦 to the priority queue. Elements are ordered based on key. 
 deleteMin/deleteMax: Remove and return the element with the smallest/largest key. 
 GetMinimum/getMaximum: Return the element with the smallest/largest key without deleting it. 

Auxiliary Priority Queues Operations 
 

 푘 − Smallest/푘 − Largest: Returns the 푘 −Smallest/푘 −Largest key in priority queue. 
 Size: Returns number of elements in priority queue. 
 Heap Sort: Sorts the elements in the priority queue based on priority (key). 

7.3 Priority Queue Applications 
 

Priority queues have many applications – a  few of them are listed below: 
 

 Data compression: Huffman Coding algorithm 
 Shortest path algorithms: Dijkstra's algorithm 
 Minimum spanning tree algorithms: Prim's algorithm 
 Event-driven simulation: customers in a line 
 Selection problem: Finding 푘 - smallest element 

7.4 Priority Queue Implementations 
 

Before discussing the actual implementation, let us enumerate the possible options. 

Priority Queue 
Insert DeleteMax 
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Unordered Array Implementation 
 

Elements are inserted into the array without bothering about the order. Deletions (deleteMax) are performed by searching the key and then 
deleting.   
 

Insertions complexity: O(1). deleteMin complexity: O(푛).  

Unordered List Implementation 
 

It is very similar to array implementation, but instead of using arrays, linked lists are used. 
 

Insertions complexity: O(1). deleteMin complexity: O(푛). 

Ordered Array Implementation 
 

Elements are inserted into the array in sorted order based on key field. Deletions are performed at only one end. 
 

Insertions complexity: O(푛). deleteMin complexity: O(1). 

Ordered List Implementation 
 

Elements are inserted into the list in sorted order based on key field. Deletions are performed at only one end, hence preserving the status of 
the priority queue. All other functionalities associated with a linked list ADT are performed without modification. 
 

Insertions complexity: O(푛). deleteMin complexity: O(1). 

Binary Search Trees Implementation 
 

Both insertions and deletions take O(푙표푔푛) on average if insertions are random (refer to 푇푟푒푒푠 chapter). 

Balanced Binary Search Trees Implementation 
 

Both insertions and deletion take O(푙표푔푛) in the worst case (refer to 푇푟푒푒푠 chapter). 

Binary Heap Implementation 
 

In subsequent sections we will discuss this in full detail. For now, assume that binary heap implementation gives O(푙표푔푛) complexity for 
search, insertions and deletions and O(1) for finding the maximum or minimum element. 

Comparing Implementations 
 

Implementation Insertion Deletion (deleteMax) Find Min 

Unordered array 1 푛 푛 

Unordered list 1 푛 푛 

Ordered array 푛 1 1 

Ordered list 푛 1 1 

Binary Search Trees 푙표푔푛 (average) 푙표푔푛 (average) 푙표푔푛 (average) 

Balanced Binary Search Trees 푙표푔푛 푙표푔푛 푙표푔푛 

Binary Heaps 푙표푔푛 푙표푔푛 1 

7.5 Heaps and Binary Heaps 
What is a Heap? 
 

A heap is a tree with some special properties. The basic requirement of a heap is that the value of a node must be ≥ (or ≤) than the values 
of its children. This is called ℎ푒푎푝 푝푟표푝푒푟푡푦. A heap also has the additional property that all leaves should be at ℎ or ℎ −  1 levels (where 
ℎ is the height of the tree) for some ℎ >  0 (푐표푚푝푙푒푡푒 푏푖푛푎푟푦 푡푟푒푒푠). That means heap should form a 푐표푚푝푙푒푡푒 푏푖푛푎푟푦 푡푟푒푒 (as shown 
below). 
 
 
 
 
 
 
 
 

In the examples below, the left tree is a heap (each element is greater than its children) and the right tree is not a heap (since 11 is greater 
than 2). 
 

 

 

  

 2 3 

4 6 5 
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Types of Heaps? 
 

Based on the property of a heap we can classify heaps into two types: 
 

 Min heap: The value of a node must be less than or equal to the values of its children 
 
 
 
 
 
 
 
 

 Max heap: The value of a node must be greater than or equal to the values of its children 
 
 
 
 
 
 
 
 

7.6 Binary Heaps  
 

In binary heap each node may have up to two children. In practice, binary heaps are enough and we concentrate on binary min heaps and 
binary max heaps for the remaining discussion. 
 

Representing Heaps: Before looking at heap operations, let us see how heaps can be represented. One possibility is using arrays. Since heaps 
are forming complete binary trees, there will not be any wastage of locations. For the discussion below let us assume that elements are stored 
in arrays, which starts at index 0. The previous max heap can be represented as: 
 
 
 
 

Note: For the remaining discussion let us assume that we are doing manipulations in max heap. 

Declaration of Heap 
 

      public class  Heap { 
 public int[] array; 
 public int count;            // Number of elements in Heap 
 public int capacity;        // Size of the heap 
 public int heap_type;       // Min Heap or Max Heap 
 public Heap(int capacity, int heap_type)                    { //Refer Below sections } 

public Parent(int capacity, int heap_type)    { //Refer Below sections } 
public int LeftChild(int i)       {//Refer Below sections } 
public int RightChild(int i)       {//Refer Below sections } 
public int GetMaximum(int i)       {//Refer Below sections } 
……… 

      } 
 

Note: Assume all the below functions are part of class. 
 

Creating Heap 
 

      public Heap(int capacity, int heap_type) { 
 this.heap_type = heap_type; 
 this.count = 0; 
 this.capacity = capacity; 
 this.array = new int[capacity]; 
      } 
 

Time Complexity: O(1). 
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Parent of a Node 
 

For a node at 푖  location, its parent is at  location. In the previous example, the element 6 is at second location and its parent is at 

0  location. 
 

      public int Parent (int i) { 
 if(i <= 0 || i >= this.count)  
  return -1; 
 return i-1/2; 
      } 
 

Time Complexity: O(1). 

Children of a Node 
 

Similar to the above discussion, for a node at 푖  location, its children are at 2 ∗ 푖 + 1  and 2 ∗ 푖 + 2 locations. For example, in the above tree 
the element 6 is at second location and its children 2 and 5 are at 5 (2 ∗ 푖 + 1 =  2 ∗ 2 + 1) and 6 (2 ∗ 푖 + 2 = 2 ∗ 2 + 2) locations. 
 

      public int LeftChild(int i) { 
             int left = 2 * i + 1;   
  if(left >= this.count)  
                   return -1; 
              return left; 
      } 
      Time Complexity: O(1). 

public int RightChild(int i) { 
 int right = 2 * i + 2;   
  if(right >= this.count)  
                  return -1; 
              return right; 
} 
Time Complexity: O(1). 

Getting the Maximum Element 
 

Since the maximum element in max heap is always at root, it will be stored at this.array[0]. 
 

      public int GetMaximum() { 
if(this.count == 0)  
      return -1; 

 return this.array[0]; 
      } 
 

Time Complexity: O(1). 

Heapifying an Element 
 

After inserting an element into heap, it may not satisfy the heap property. In that case we need to adjust the locations of the heap to make it 
heap again. This process is called ℎ푒푎푝푖푓푦푖푛푔. In max-heap, to heapify an element, we have to find the maximum of its children and swap 
it with the current element and continue this process until the heap property is satisfied at every node.   
 
 
 
 
 
 
 
 
 

Observation: One important property of heap is that, if an element is not satisfying the heap property, then all the elements from that element 
to the root will have the same problem. In the example below, element 1 is not satisfying the heap property and its parent 31 is also having 
the issue. Similarly, if we heapify an element, then all the elements from that element to the root will also satisfy the heap property 
automatically. Let us go through an example. In the above heap, the element 1 is not satisfying the heap property. Let us try heapifying this 
element. 
 

To heapify 1, find the maximum of its children and swap with that. 
 
 
 
 
 
 
 
 
 

    

 1 21 

9 12 1810

    3 8 72 

    

 10 21 

9 12 18 1 

    3 8 7 2 
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We need to continue this process until the element satisfies the heap properties. Now, swap 1 with 8.  
 
 
 
 
 
 
 
 
 
 

Now the tree is satisfying the heap property. In the above heapifying process, since we are moving from top to bottom, this process is sometimes 
called 푝푒푟푐표푙푎푡푒 푑표푤푛. Similarly, if we start heapifying from any other node to root, we can that process 푝푒푟푐표푙푎푡푒 푢푝 as move from bottom 
to top.  
 

     //Heapifying the element at location 푖. 
     public void PercolateDown(int i) { 
 int l, r, max, temp; 
 l = LeftChild(i);   

r = RightChild(i);  
 if(l != -1 && this.array[l] > this.array[i]) 
       max = l; 
 else  max = i; 
 if(r != -1&& this.array[r] > this.array[max])  
       max = r; 
 if(max != i) {  //Swap this.array[i] and  this.array[max]; 
       temp = this.array[i]; this.array[i] = this.array[max];  
       this.array[max] = temp; 
       PercolateDown(max); 
 } 
     } 
 

Time Complexity: O(푙표푔푛). Heap is a complete binary tree and in the worst case we start at the root and come down to the leaf. This is equal 
to the height of the complete binary tree.  
Space Complexity: O(1). 

Deleting an Element 
 

To delete an element from heap, we just need to delete the element from the root. This is the only operation (maximum element) supported 
by standard heap. After deleting the root element, copy the last element of the heap (tree) and delete that last element.  
 

After replacing the last element, the tree may not satisfy the heap property. To make it heap again, call the 푃푒푟푐표푙푎푡푒퐷표푤푛 function. 
 

 Copy the first element into some variable 
 Copy the last element into first element location 
 푃푒푟푐표푙푎푡푒퐷표푤푛 the first element 

 

     int DeleteMax() { 
             if(this.count == 0)  

return -1; 
             int data = this.array[0];  
             this.array[0] = this.array[this.count-1];  
 this.count--; //reducing the heap size 
 PercolateDown(0); 
 return data; 
     } 
 

Note: Deleting an element uses 푃푒푟푐표푙푎푡푒퐷표푤푛, and inserting an element uses 푃푒푟푐표푙푎푡푒푈푝. 
 

Time Complexity: same as Heapify function and it is O(푙표푔푛). 

Inserting an Element 
 

Insertion of an element is similar to the heapify and deletion process. 
 

 Increase the heap size 
 Keep the new element at the end of the heap (tree) 
 Heapify the element from bottom to top (root) 

 

Before going through code, let us look at an example. We have inserted the element 19 at the end of the heap and this is not satisfying the 
heap property. 
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In order to heapify this element (19), we need to compare it with its parent and adjust them. Swapping 19 and 14 gives: 
 
 
 
 
 
 
 
 
Again, swap 19 and16: 
 
 
 
 
 
 
 
 
 
 

Now the tree is satisfying the heap property. Since we are following the bottom-up approach we sometimes call this process 푝푒푟푐표푙푎푡푒 푢푝. 
 

     public int Insert(int data) { 
                int i; 
 if(this.count == this.capacity) 
          ResizeHeap(); 
 this.count++;   //increasing the heap size to hold this new item 
                i = this.count-1; 
 while(i >=0 && data > this.array[(i-1)/2]) { 

         this.array[i] = this.array[(i-1)/2]; 
         i = i-1/2; 
} 
this.array[i] = data; 

     } 
     public void ResizeHeap() { 
 int[] array_old = new int[this.capacity]; 
 System.arraycopy(this.array, 0, array_old, this.count-1); 
 this.array = new int[this.capacity * 2]; 
 if(this.array == null) { 
          System.out.println("Memory Error"); 
          return; 
 } 
 for (int i = 0; i < this.capacity; i ++)  
          this.array[i] = array_old[i]; 
 this.capacity *= 2; 
 array_old = null; 
     } 
 

Time Complexity: O(푙표푔푛). The explanation is the same as that of the 퐻푒푎푝푖푓푦 function. 
 

Destroying Heap 
 

     public void DestroyHeap() { 
 this.count = 0; 
 this.array = null; 
     } 

Heapifying the Array 
 

One simple approach for building the heap is, take 푛 input items and place them into an empty heap. This can be done with 푛 successive 
inserts and takes O(푛푙표푔푛) in the worst case. This is due to the fact that each insert operation takes O(푙표푔푛). 
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To finish our discussion of binary heaps, we will look at a method to build an entire heap from a list of keys. The first method you might 
think of may be like the following. Given a list of keys, you could easily build a heap by inserting each key one at a time. Since you are starting 
with a list of one item, the list is sorted and you could use binary search to find the right position to insert the next key at a cost of approximately 
O(푙표푔푛) operations. However, remember that inserting an item in the middle of the list may require O(푛) operations to shift the rest of the 
list over to make room for the new key. Therefore, to insert 푛 keys into the heap would require a total of O(푛푙표푔푛) operations. However, if 
we start with an entire list then we can build the whole heap in O(푛) operations. 
 

Observation: Leaf nodes always satisfy the heap property and do not need to care for them. The leaf elements are always at the end and to 
heapify the given array it should be enough if we heapify the non-leaf nodes. Now let us concentrate on finding the first non-leaf node. The 
last element of the heap is at location ℎ → 푐표푢푛푡 − 1, and  to find the first non-leaf node it is enough to find the parent of the last element.  
 

     public void BuildHeap(Heap h, int[] A, int n) { 
 if(h == null) return; 
 while (n > this.capacity)  
          h.ResizeHeap(); 
 for (int i = 0; i < n; i ++)  
          h.array[i] = A[i]; 
 this.count = n; 
 for (int i = (n-1)/2; i >=0; i --)  
          h.PercolateDown(i); 
     } 
 
 
 
 
 
 
 
 
 
 
 

Time Complexity: The linear time bound of building heap can be shown by computing the sum of the heights of all the nodes. For a complete 
binary tree of height ℎ containing 푛 = 2 –  1 nodes, the sum of the heights of the nodes is 푛 –  ℎ –  1 = 푛 − 푙표푔푛 − 1 (for proof refer to 
푃푟표푏푙푒푚푠 푆푒푐푡푖표푛). That means, building the heap operation can be done in linear time (O(푛)) by applying a 푃푒푟푐표푙푎푡푒퐷표푤푛 function to 
the nodes in reverse level order. 

Heapsort 
 

One main application of heap ADT is sorting (heap sort). The heap sort algorithm inserts all elements (from an unsorted array) into a heap, 
then removes them from the root of a heap until the heap is empty. Note that heap sort can be done in place with the array to be sorted. 
Instead of deleting an element, exchange the first element (maximum) with the last element and reduce the heap size (array size). Then, we 
heapify the first element. Continue this process until the number of remaining elements is one. 
  

     public void Heapsort(int[] A, in n) { 
 Heap h = new Heap(n, 0); 
 int old_size, i, temp; 
 BuildHeap(h, A, n);  
 old_size = h.count; 
 for(i = n-1; i > 0; i--) { //h.array[0] is the largest element 
       temp = h.array[0]; h.array[0] = h.array[h.count-1]; 
       h.count--; 
       h.PercolateDown(0);  
 } 
 h.count = old_size; 
     } 
 

Time complexity: As we remove the elements from the heap, the values become sorted (since maximum elements are always 푟표표푡 only). 
Since the time complexity of both the insertion algorithm and deletion algorithm is O(푙표푔푛) (where 푛 is the number of items in the heap), 
the time complexity of the heap sort algorithm is O(푛푙표푔푛). 

7.7 Priority Queues [Heaps]: Problems & Solutions 
 

Problem-1 Is there a min-heap with seven distinct elements so that the preorder traversal of it gives the elements in sorted order? 
 

Solution: Yes. For the tree below, preorder traversal produces ascending order. 
 
 

   

 5 14

2 21 1810 

   3 8 7 11 12 (푠푖푧푒 − 1)/2 is the location of first non-leaf node 
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Problem-2 Is there a max-heap with seven distinct elements so that the preorder traversal of it gives the elements in sorted order? 
 

Solution: Yes. For the tree below, preorder traversal produces descending order. 
 

 
 
 
 
 
 

 

Problem-3 Is there a min-heap/max-heap with seven distinct elements so that the inorder traversal of it gives the elements in sorted 
order? 

 

Solution: No. Since a heap must be either a min-heap or a max-heap, the root will hold the smallest element or the largest. An inorder traversal 
will visit the root of the tree as its second step, which is not the appropriate place if the tree’s root contains the smallest or largest element. 
 

Problem-4 Is there a min-heap/max-heap with seven distinct elements so that, the postorder traversal of it gives the elements in sorted 
order? 

 

Solution: Yes, if the tree is a max-heap and we want descending order (below left), or if the tree is a min-heap and we want ascending order 
(below right). 
 
 
 
 
 
 
 
 

 

Problem-5 What are the minimum and maximum number of elements in a heap of height ℎ? 
 

Solution: Since heap is a complete binary tree (all levels contain full nodes except possibly the lowest level), it has at most 2 − 1 elements 
(if it is complete). This is because, to get maximum nodes, we need to fill all the ℎ levels completely and the maximum number of nodes is 
nothing but the sum of all nodes at all ℎ levels. To get minimum nodes, we should fill the ℎ − 1 levels fully and the last level with only one 
element. As a result, the minimum number of nodes is nothing but the sum of all nodes from ℎ − 1 levels plus 1 (for the last level) and we 
get 2 − 1 + 1 = 2  elements (if the lowest level has just 1 element and all the other levels are complete). 
 

Problem-6 Show that the height of a heap with 푛 elements is 푙표푔푛? 
 

Solution: A heap is a complete binary tree. All the levels, except the lowest, are completely full. A heap has at least 2  elements and at most 
elements 2 ≤ 푛 ≤ 2 − 1. This implies, ℎ ≤ 푙표푔푛 ≤ ℎ + 1. Since ℎ is an integer, ℎ = 푙표푔푛. 
 

Problem-7 Given a min-heap, give an algorithm for finding the maximum element. 
 

Solution: For a given min heap, the maximum element will always be at leaf only. Now, the next question is how to find the leaf nodes in the 
tree. If we carefully observe, the next node of the last element’s parent is the first leaf node. Since the last element is always at the 

ℎ → 푐표푢푛푡 − 1  location, the next node of its parent (parent at location 
→

) can be calculated as:  
ℎ → 푐표푢푛푡 − 1

2 + 1 ≈
ℎ → 푐표푢푛푡 + 1

2  

Now, the only step remaining is scanning the leaf nodes and finding the maximum among them. 
 

     public int FindMaxInMinHeap(Heap h) { 
 int Max = -1; 
 for(int i = (h.count+1)/2; i < h.count; i++) 
  if(h→array[i] > Max) 
   Max = h.array[i]; 
     } 
 
 
 
 
 
 
 
 
Time Complexity: O( )  ≈ O(푛). 
 

Problem-8 Give an algorithm for deleting an arbitrary element from min heap. 
 

  

 

  

 2 5 

3 6 7 4 
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5 2 1 4 

  

 

  

 3 6 

1 4 5 2   

 

  

 5 2

6 4 3 7 

   

 5 14

2 21 18 10 

   3 28 3711 42 
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Solution: To delete an element, first we need to search for an element. Let us assume that we are using level order traversal for finding the 
element. After finding the element we need to follow the DeleteMin process. 
 

   Time Complexity = Time for finding the element + Time for deleting an element 
        = O(푛)  + O(푙표푔푛) ≈O(푛).  //Time for searching is dominated. 
 

Problem-9 Give an algorithm for deleting the 푖  indexed element in a given min-heap. 
 

Solution: 
 

     public int Delete(Heap h, int i) { 
          int key; 
          if(n < i) { 

System.out.println(“Wrong position”);  
return; 

          } 
          key = h.array[i]; 
          h.array[i]= h.array[h.count-1]; 
          h.count--; 
          h.PercolateDown(i); 
          return key; 
     } 
 

Time Complexity = O(푙표푔푛). 
 

Problem-10 Prove that, for a complete binary tree of height ℎ the sum of the height of all nodes is O(푛 − ℎ). 
 

Solution: A complete binary tree has 2  nodes on level 푖. Also, a node on level 푖 has depth 푖 and height ℎ −  푖. Let us assume that 푆 denotes 
the sum of the heights of all these nodes and 푆 can be calculated as: 
 

                  푆 = 2 (ℎ − 푖) 

                  푆 = ℎ + 2(ℎ − 1) + 4(ℎ − 2) + ⋯ + 2 (1) 
 

Multiplying with 2 on both sides gives: 2푆 = 2ℎ + 4(ℎ − 1) + 8(ℎ − 2) + ⋯ + 2 (1) 
      

Now, subtract 푆 from 2푆:  2푆 − 푆 = −ℎ + 2 + 4 + ⋯ + 2 ⟹  푆 = (2 − 1) − (ℎ − 1) 
 

But, we already know that the total number of nodes 푛 in a complete binary tree with height ℎ is 푛 = 2 − 1. This gives us: ℎ = log(푛 + 1).  
 

Finally, replacing 2 − 1 with 푛, gives: 푆 = 푛 − (ℎ − 1) =O(푛 − 푙표푔푛) = O(푛 − ℎ). 
 

Problem-11 Give an algorithm to find all elements less than some value of 푘 in a binary heap. 
 

Solution: Start from the root of the heap. If the value of the root is smaller than 푘 then print its value and call recursively once for its left child 
and once for its right child. If the value of a node is greater or equal than 푘 then the function stops without printing that value.  
 

The complexity of this algorithm is O(푛), where 푛 is the total number of nodes in the heap. This bound takes place in the worst case, where 
the value of every node in the heap will be smaller than 푘, so the function has to call each node of the heap. 
 

Problem-12 Give an algorithm for merging two binary max-heaps. Let us assume that the size of the first heap is 푚 + 푛 and the size 
of the second heap is 푛.  

 

Solution: One simple way of solving this problem is: 
 

 Assume that the elements of the first array (with size 푚 + 푛) are at the beginning. That means, first 푚 cells are filled and remaining 
푛 cells are empty. 

 Without changing the first heap, just append the second heap and heapify the array. 
 Since the total number of elements in the new array is 푚 + 푛, each heapify operation takes O(푙표푔(푚 + 푛)). 

 

The complexity of this algorithm is : O((푚 + 푛)푙표푔(푚 + 푛)). 
 

Problem-13 Can we improve the complexity of Problem-12? 
 

Solution: Instead of heapifying all the elements of the 푚 + 푛 array, we can use the technique of “building heap with an array of elements 
(heapifying array)”. We can start with non-leaf nodes and heapify them. The algorithm can be given as: 
 

 Assume that the elements of the first array (with size 푚 + 푛) are at the beginning. That means, the first 푚 cells are filled and the 
remaining 푛 cells are empty. 

 Without changing the first heap, just append the second heap. 
 Now, find the first non-leaf node and start heapifying from that element.   

 

In the theory section, we have already seen that building a heap with 푛 elements takes O(푛) complexity. The complexity of merging with this 
technique is: O(푚 + 푛).  
 

Problem-14 Is there an efficient algorithm for merging 2 max-heaps (stored as an array)? Assume both arrays have 푛 elements. 
 

Solution: The alternative solution for this problem depends on what type of heap it is. If it's a standard heap where every node has up to two 
children and which gets filled up so that the leaves are on a maximum of two different rows, we cannot get better than O(푛) for the merge. 
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There is an O(푙표푔푚 × 푙표푔푛) algorithm for merging two binary heaps with sizes 푚 and 푛. For 푚 = 푛, this algorithm takes O(푙표푔 푛) time 
complexity. We will be skipping it due to its difficulty and scope. 
 

For better merging performance, we can use another variant of binary heap like a 퐹푖푏표푛푎푐푐푖-퐻푒푎푝 which can merge in O(1) on average 
(amortized). 
 

Problem-15 Give an algorithm for finding the 푘  smallest element in min-heap. 
 

Solution: One simple solution to this problem is: perform deletion 푘 times from min-heap. 
 

     public int FindKthLargestEle(Heap h, int k) { 
 //Just delete first k-1 elements and return the k-th element. 
          for(int i=0;i<k-1;i++) 

     h.DeleteMin(); 
          return h.DeleteMin(); 
     } 
 

Time Complexity: O(푘푙표푔푛). Since we are performing deletion operation k times and each deletion takes O(푙표푔푛). 
 

Problem-16 For Problem-15, can we improve the time complexity? 
 

Solution: Assume that the original min-heap is called 퐻푂푟푖푔 and the auxiliary min-heap is named 퐻퐴푢푥. Initially, the element at the top of 
퐻푂푟푖푔, the minimum one, is inserted into 퐻퐴푢푥. Here we don’t do the operation of DeleteMin with 퐻푂푟푖푔.  
 

     Heap HOrig, HAux; 
     public int FindKthLargestEle( int k ) { 
 int heapElement;//Assuming heap data is of integers 
 int count=1; 
 HAux.Insert(HOrig.DeleteMin()); 
 while( true ) { 
  //return the minimum element and delete it from the HA heap 
  heapElement = HAux.DeleteMin(); 
  if(++count == k ) { 
            return heapElement; 
  } 
  else { //insert the left and right children in HO into the HA 
            HAux.Insert(heapElement.LeftChild()); 
                                   HAux.Insert(heapElement.RightChild()); 
  } 
 } 
     } 
 

Every while-loop iteration gives the 푘  smallest element and we need 푘 loops to get the 푘  smallest elements. Because the size of the auxiliary 
heap is always less than 푘, every while-loop iteration the size of the auxiliary heap increases by one, and the original heap 퐻푂푟푖푔 has no 
operation during the finding, the running time is O(푘푙표푔푘). 
 

Note: The above algorithm is useful if the 푘 value is too small compared to 푛. If the 푘 value is approximately equal to 푛, then we can simply 
sort the array (let’s say, using 푐표푢푡푖푛푔 sort or any other linear sorting algorithm) and return 푘  smallest element from the sorted array. This 
gives O(푛) solution. 
 

Problem-17 Find 푘 max elements from max heap. 
 

Solution: One simple solution to this problem is: build max-heap and perform deletion 푘 times. 
                                                    푇(푛)  = DeleteMin from heap 푘 times = (푘푙표푔푛). 

 

Problem-18 For Problem-17, is there any alternative solution? 
 

Solution: We can use the Problem-16 solution. At the end, the auxiliary heap contains the k-largest elements. Without deleting the elements 
we should keep on adding elements to 퐻퐴푢푥. 
 

Problem-19 How do we implement stack using heap? 
 

Solution: To implement a stack using a priority queue PQ (using min heap), let us assume that we are using one extra integer variable 푐. Also, 
assume that 푐 is initialized equal to any known value (e.g., 0). The implementation of the stack ADT is given below. Here 푐 is used as the 
priority while inserting/deleting the elements from PQ. 
 

     public void Push(int element) {  
PQ.Insert(c, element);  
c--;  

     } 
     public  int Pop() {  

return PQ.DeleteMin(); 
     } 
     public int Top() {  

return PQ.Min();  
     } 
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     public int Size() {  
return PQ.Size();  

     } 
     public int isEmpty() {  

return PQ.isEmpty();  
     } 
 

Note: We could also increment 푐 back when popping.  
 

Observation: We could use the negative of the current system time instead of 푐 (to avoid overflow). The implementation based on this can 
be given as:  
 

     public void Push(int element) {  
PQ.insert(-gettime(),element);  

     } 
 

Problem-20 How do we implement Queue using heap? 
 

Solution: To implement a queue using a priority queue PQ (using min heap), as similar to stacks simulation, let us assume that we are using 
one extra integer variable, 푐.  Also, assume that 푐 is initialized equal to any known value (e.g., 0). The implementation of the queue ADT is 
given below. Here the 푐 is used as the priority while inserting/deleting the elements from PQ.  
 

     public void EnQueue(int element) {  
PQ.Insert(c, element);  
c++;  

      } 
     public int Pop() {  

return PQ.DeleteMin(); 
      } 
     public int Front() {  

return PQ.Min();  
      } 
      public int Size() {  

return PQ.Size();  
      } 
      public int isEmpty() {  

return PQ.isEmpty();  
      } 
 

Note: We could also decrement 푐 when popping.  
 

Observation: We could use just the current system time instead of 푐 (to avoid overflow). The implementation based on this can be given as:  
 

     public void EnQueue(int element) {  
PQ.insert(gettime(),element);  

     } 
 

Note: The only change is that we need to take a positive 푐 value instead of negative. 
 

Problem-21 Given a big file containing billions of numbers, how can you find the 10 maximum numbers from that file? 
 

Solution: Always remember that when you need to find max 푛 elements, the best data structure to use is priority queues.  
 

One solution for this problem is to divide the data in sets of 1000 elements (let’s say 1000) and make a heap of them, and then take 10 
elements from each heap one by one. Finally heap sort all the sets of 10 elements and take the top 10 among those. But the problem in this 
approach is where to store 10 elements from each heap. That may require a large amount of memory as we have billions of numbers. 
 

Reusing the top 10 elements (from the earlier heap) in subsequent elements can solve this problem. That means take the first block of 1000 
elements and subsequent blocks of 990 elements each. Initially, Heapsort the first set of 1000 numbers, take max 10 elements, and mix 
them with 990 elements of the 2  set. Again, Heapsort these 1000 numbers (10 from the first set and 990 from the 2  set), take 10 max 
elements, and mix them with 990 elements of the 3  set. Repeat till the last set of 990 (or less) elements and take max 10 elements from 
the final heap. These 10 elements will be your answer. 
 

Time Complexity: O(푛)  =  푛/1000 ×(complexity of Heapsort 1000 elements) Since complexity of heap sorting 1000 elements will be a 
constant so the O(푛) = 푛 i.e. linear complexity. 
 

Problem-22 Merge 풌 sorted lists with total of 풏 elements: We are given 푘 sorted lists with total 푛 inputs in all the lists. Give an 
algorithm to merge them into one single sorted list. 

 

Solution: Since there are 푘 equal size lists with a total of 푛 elements, the size of each list is 
퐧
퐤
. One simple way of solving this problem is: 

 

 Take the first list and merge it with the second list. Since the size of each list is 
퐧
퐤
, this step produces a sorted list with size 

ퟐ퐧
퐤

. This 

is similar to merge sort logic. The time complexity of this step is: 
ퟐ퐧
퐤

. This is because we need to scan all the elements of both the 
lists. 
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 Then, merge the second list output with the third list. As a result, this step produces a sorted list with size 
ퟑ퐧
퐤

. The time complexity 

of this step is: 
ퟑ퐧
퐤

. This is because we need to scan all the elements of both lists (one with size 
ퟐ퐧
퐤

 and the other with size 
퐧
퐤
). 

 Continue this process until all the lists are merged to one list. 
 

Total time complexity: = ퟐ퐧
퐤

+ ퟑ퐧
퐤

+ ퟒ퐧
퐤

+ ⋯ . 퐤퐧
퐤

= ∑ 퐢퐧
퐤

= 퐧
퐤

퐧
퐢 ퟐ ∑ 퐢 ≈ 퐧 퐤ퟐ

퐤
퐧
퐢 ퟐ ≈O(푛푘).  

Space Complexity: O(1). 
 

Problem-23 For the Problem-22, can we improve the time complexity? 
 

Solution:  
 

1  Divide the lists into pairs and merge them. That means, first take two lists at a time and merge them so that the total elements parsed 
for all lists is O(푛). This operation gives 푘/2 lists. 

2  Repeat step-1 until the number of lists becomes one. 
 

Time complexity: Step-1 executes 푙표푔푘 times and each operation parses all 푛 elements in all the lists for making 푘/2 lists. For example, if we 
have 8 lists, then the first pass would make 4 lists by parsing all 푛 elements. The second pass would make 2 lists by again parsing 푛 elements 
and the third pass would give 1 list by again parsing 푛 elements. As a result the total time complexity is O(푛푙표푔푛).  
Space Complexity: O(푛). 
 

Problem-24 For Problem-23, can we improve the space complexity? 
 

Solution: Let us use heaps for reducing the space complexity. 
 

1. Build the max-heap with all the first elements from each list in O(푘).  
2. In each step, extract the maximum element of the heap and add it at the end of the output.  
3. Add the next element from the list of the one extracted. That means we need to select the next element of the list which contains 

the extracted element of the previous step. 
4. Repeat step-2 and step-3 until all the elements are completed from all the lists. 

 

Time Complexity = O(푛푙표푔푘 ). At a time we have 푘 elements max-heap and for all 푛 elements we have to read just the heap in 푙표푔푘 time, 
so total time = O(푛푙표푔푘).  
Space Complexity:  O(푘) [for Max-heap]. 
 

Problem-25 Given 2 arrays 퐴 and 퐵 each with 푛 elements. Give an algorithm for finding largest 푛 pairs (퐴[푖], 퐵[푗]).  
 

Solution:  
 

Algorithm: 
 Heapify 퐴 and 퐵. This step takes O(2푛) ≈O(푛). 
 Then keep on deleting the elements from both the heaps. Each step takes O(2푙표푔푛) ≈O(푙표푔푛). 

 

Total Time complexity: O(푛푙표푔푛). 
 

Problem-26 Min-Max heap: Give an algorithm that supports min and max in O(1) time, insert, delete min, and delete max in 
O(푙표푔푛) time. That means, design a data structure which supports the following operations: 

 

 

Solution: This problem can be solved using two heaps. Let us say two heaps are: Minimum-Heap Hmin and Maximum-Heap Hmax. Also, assume 
that elements in both the arrays have mutual pointers. That means, an element in Hmin will have a pointer to the same element in Hmax and an 
element in Hmax will have a pointer to the same element in Hmin. 
 

Init Build Hmin in O(푛) and Hmax in O(푛) 
Insert(x) Insert x to Hmin in O(푙표푔푛). Insert x to Hmax in O(푙표푔푛).  Update the pointers in O(1) 
FindMin() Return root(Hmin) in O(1) 
FindMax Return root(Hmax) in O(1) 

DeleteMin Delete the minimum from Hmin in O(푙표푔푛). Delete the same element from Hmax by using the mutual pointer in 
O(푙표푔푛) 

DeleteMax Delete the maximum from Hmax in O(푙표푔푛). Delete the same element from Hmin by using the mutual pointer in 
O(푙표푔푛) 

 

Problem-27 Dynamic median finding. Design a heap data structure that supports finding the median. 
 

Solution: In a set of 푛 elements, median is the middle element, such that the number of elements lesser than the median is equal to the 
number of elements larger than the median. If 푛 is odd, we can find the median by sorting the set and taking the middle element. If 푛 is even, 
the median is usually defined as the average of the two middle elements. This algorithm works even when some of the elements in the list are 
equal. For example, the median of the multiset {1, 1, 2, 3, 5} is 2, and the median of the multiset {1, 1, 2, 3, 5, 8} is 2.5. 
 

Operation Complexity 
Init O(푛) 
Insert O(푙표푔푛) 
FindMin O(1) 
FindMax O(1) 
DeleteMin O(푙표푔푛) 
DeleteMax O(푙표푔푛) 
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“푀푒푑푖푎푛 ℎ푒푎푝푠” are the variant of heaps that give access to the median element. A median heap can be implemented using two heaps, each 
containing half the elements. One is a max-heap, containing the smallest elements; the other is a min-heap, containing the largest elements. 
The size of the max-heap may be equal to the size of the min-heap, if the total number of elements is even. In this case, the median is the 
average of the maximum element of the max-heap and the minimum element of the min-heap. If there is an odd number of elements, the 
max-heap will contain one more element than the min-heap. The median in this case is simply the maximum element of the max-heap. 
 

Problem-28 Maximum sum in sliding window: Given array A[] with sliding window of size 푤 which is moving from the very left of the 
array to the very right. Assume that we can only see the 푤 numbers in the window. Each time the sliding window moves rightwards by one 
position. For example: The array is [1 3 -1 -3 5 3 6 7], and 푤 is 3.  

Window position                 Max 
[1  3  -1] -3  5  3  6  7        3 
 1 [3  -1  -3] 5  3  6  7        3 
 1  3 [-1  -3  5] 3  6  7        5 
 1  3  -1 [-3  5  3] 6  7      5 
 1  3  -1  -3 [5  3  6] 7        6 
 1  3  -1  -3  5 [3  6  7]       7 

 

Input: A long array A[], and a window width 푤. Output: An array B[], B[i] is the maximum value of from A[i] to A[i+w-1] 
Requirement: Find a good optimal way to get B[i] 

 

Solution: Brute force solution is, every time the window is moved we can search for a total of 푤 elements in the window.  
 

Time complexity: O(푛푤). 
 

Problem-29 For Problem-28, can we reduce the complexity? 
 

Solution: Yes, we can use heap data structure. This reduces the time complexity to O(푛푙표푔푤). Insert operation takes O(푙표푔푤) time, where 
푤 is the size of the heap. However, getting the maximum value is cheap; it merely takes constant time as the maximum value is always kept in 
the root (head) of the heap. As the window slides to the right, some elements in the heap might not be valid anymore (range is outside of the 
current window). How should we remove them? We would need to be somewhat careful here. Since we only remove elements that are out 
of the window’s range, we would need to keep track of the elements’ indices too. 
 

Problem-30 For Problem-28, can we further reduce the complexity? 
 

Solution: Yes, The double-ended queue is the perfect data structure for this problem. It supports insertion/deletion from the front and back. 
The trick is to find a way such that the largest element in the window would always appear in the front of the queue. How would you maintain 
this requirement as you push and pop elements in and out of the queue? 
 

Besides, you will notice that there are some redundant elements in the queue that we shouldn’t even consider. For example, if the current 
queue has the elements: [10 5 3], and a new element in the window has the element 11. Now, we could have emptied the queue without 
considering elements 10, 5, and 3, and insert only element 11 into the queue. 
 

Typically, most people try to maintain the queue size the same as the window’s size. Try to break away from this thought and think out of the 
box. Removing redundant elements and storing only elements that need to be considered in the queue is the key to achieving the efficient 
O(푛) solution below. This is because each element in the list is being inserted and removed at most once. Therefore, the total number of 
insert + delete operations is 2푛. 
 

      public void MaxSlidingWindow(int[] A, int w, int[] B) { 
 DoubleEndQueue Q = new DoubleEndQueue(); 
 for (int i = 0; i < w; i++) { 
  while (!Q.isEmpty() && A[i] >= A[Q.QBack()]) 
   Q.PopBack(); 
  Q.PushBack(i); 
 } 
 for (int i = w; i < A.length; i++) { 
  B[i-w] = A[Q.QFront()]; 
  while (!Q.isEmpty() && A[i] >= A[Q.QBack()]) 
   Q.PopBack(); 
  while (!Q.isEmpty() && Q.QFront() <= i-w) 
   Q.PopFront(); 
  Q.PushBack(i); 
 } 
 B[n-w] = A[Q.QFront()]; 
      } 
 

Problem-31 A priority queue is a list of items in which each item has associated with it a priority. Items are withdrawn from a priority 
queue in order of their priorities starting with the highest priority item first. If the maximum priority item is required, then a heap is 
constructed such than priority of every node is greater than the priority of its children.  
 

Design such a heap where the item with the middle priority is withdrawn first. If there are n items in the heap, then the number of items 
with the priority smaller than the middle priority is  if 푛 is odd, else ∓ 1.  

 

Explain how the withdraw and insert operations work, calculate their complexity, and how the data structure is constructed. 
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Solution: We can use one min heap and one max heap such that root of the min heap is larger than the root of the max heap. The size of the 
min heap should be equal or one less than the size of the max heap. So the middle element is always the root of the max heap.  
 

For the insert operation, if the new item is less than the root of max heap, then insert it into the max heap; else insert it into the min heap. 
After the withdraw or insert operation, if the size of heaps are not as specified above than transfer the root element of the max heap to min 
heap or vice-versa. With this implementation, insert and withdraw operation will be in O(푙표푔푛) time. 
 

Problem-32 Given two heaps, how do you merge (union) them? 
 

Solution: Binary heap supports various operations quickly: Find-min, insert, decrease-key. If we have two min-heaps, H1 and H2, there is no 
efficient way to combine them into a single min-heap. 
 

For solving this problem efficiently, we can use mergeable heaps. Mergeable heaps support efficient union operation. It is a data structure that 
supports the following operations: 
 

 Create-Heap(): creates an empty heap 
 Insert(H,X,K) : insert an item x with key K into a heap H 
 Find-Min(H) : return item with min key 
 Delete-Min(H) : return and remove 
 Union(H1, H2) : merge heaps H1 and H2 

 

Examples of mergeable heaps are: 
 

 Binomial Heaps 
 Fibonacci Heaps 

 

Both heaps also support:  
 

 Decrease-Key(H,X,K): assign item Y with a smaller key K 
 Delete(H,X) : remove item X 

 

Binomial Heaps: Unlike binary heap which consists of a single tree, a 푏푖푛표푚푖푎푙 heap consists of a small set of component trees and no need 
to rebuild everything when union is performed. Each component tree is in a special format, called a 푏푖푛표푚푖푎푙 푡푟푒푒. 
 

A binomial tree of order 푘, denoted by 퐵  is defined recursively as follows: 
 

 퐵  is a tree with a single node 
 For 푘 ≥ 1, 퐵  is formed by joining two 퐵 , such that the root of one tree becomes the leftmost child of the root of the other. 

 

Example: 
 
 
 

 
 
 
 
 
 
 

Fibonacci Heaps: Fibonacci heap is another example of mergeable heap. It has no good worst-case guarantee for any operation (except 
Insert/Create-Heap). Fibonacci Heaps have excellent amortized cost to perform each operation. Like 푏푖푛표푚푖푎푙 heap, 푓푖푏표푛푎푐푐푖 heap 
consists of a set of min-heap ordered component trees. However, unlike binomial heap, it has 
  

 No limit on number of trees (up to O(푛)), and 
 No limit on height of a tree (up to O(푛)) 

 

Also, 퐹푖푛푑-푀푖푛, 퐷푒푙푒푡푒-푀푖푛, 푈푛푖표푛, 퐷푒푐푟푒푎푠푒-퐾푒푦, 퐷푒푙푒푡푒 all have worst-case O(푛) running time. However, in the amortized sense, each 
operation performs very quickly. 
 

Operation Binary Heap Binomial Heap Fibonacci Heap 
Create-Heap (1) (1) (1) 
Find-Min (1) (푙표푔푛) (1) 
Delete-Min (푙표푔푛) (푙표푔푛) (푙표푔푛) 
Insert (푙표푔푛) (푙표푔푛) (1) 
Delete (푙표푔푛) (푙표푔푛) (푙표푔푛) 
Decrease-Key (푙표푔푛) (푙표푔푛) (1) 
Union (푛) (푙표푔푛) (1) 

 

Problem-33 Median in an infinite series of integers 
 

Solution: Median is the middle number in a sorted list of numbers (if we have odd number of elements). If we have even number of elements, 
median is the average of two middle numbers in a sorted list of numbers. 
 

We can solve this problem efficiently by using 2 heaps: One MaxHeap and one MinHeap.  
 

1. MaxHeap contains the smallest half of the received integers  

퐵  

퐵  

퐵  퐵  
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2. MinHeap contains the largest half of the received integers 
 

The integers in MaxHeap are always less than or equal to the integers in MinHeap. Also, the number of elements in MaxHeap is either equal 
to or 1 more than the number of elements in the MinHeap. In the stream if we get 2푛 elements (at any point of time), MaxHeap and MinHeap 
will both contain equal number of elements (in this case, 푛 elements in each heap). Otherwise, if we have received 2푛 + 1 elements, MaxHeap 
will contain 푛 + 1 and MinHeap 푛.  
 

Let us find the Median: If we have 2푛 + 1 elements (odd), the Median of received elements will be the largest element in the MaxHeap 
(nothing but the root of MaxHeap). Otherwise, the Median of received elements will be the average of largest element in the MaxHeap 
(nothing but the root of MaxHeap) and smallest element in the MinHeap (nothing but the root of MinHeap). This can be calculated in O(1). 
 

Inserting an element into heap can be done in O(푙표푔푛). Note that, any heap containing 푛 + 1 elements might need one delete operation (and 
insertion to other heap) as well. 
 

Example:  
Insert 1: Insert to MaxHeap. 
MaxHeap: {1}, MinHeap:{} 
Insert 9: Insert to MinHeap. Since 9 is greater than 1 and MinHeap maintains the maximum elements. 
MaxHeap: {1}, MinHeap:{9} 
Insert 2: Insert MinHeap. Since 2 is less than all elements of MinHeap. 
MaxHeap: {1,2}, MinHeap:{9} 
Insert 0: Since MaxHeap already has more than half; we have to drop the max element from MaxHeap and insert it to MinHeap. 
So, we have to remove 2 and insert into MinHeap. With that it becomes: 
MaxHeap: {1}, MinHeap:{2,9} 
Now, insert 0 to MaxHeap. 

 

Total Time Complexity: O(푙표푔푛). 
 

Problem-34 Merge k sorted linked lists and return it as one sorted list. 
 

Solution: 
 

    public ListNode mergeKLists(ArrayList<ListNode> lists) { 
        if (lists == null || lists.isEmpty())  
            return null; 
 

        PriorityQueue<ListNode> heap = new PriorityQueue<ListNode>(lists.size(), new Comparator<ListNode>(){ 
            public int compare(ListNode o1, ListNode o2) { 
                return o1.data > o2.data ? 1 : (o1.data < o2.data ? -1 : 0); 
            } 
        }); 
 

        for (ListNode node : lists) { 
            if (node != null) { 
                heap.add(node); 
            } 
        } 
 

        ListNode head = null, cur = null; 
        while (!heap.isEmpty()) { 
            if (head == null) { 
                head = heap.poll(); 
                cur = head; 
            } else { 
                cur.next = heap.poll(); 
                cur = cur.next; 
            } 
            if (cur.next != null) { 
                heap.add(cur.next); 
            } 
        } 
        return head; 
    } 
 

Problem-35 Suppose the elements 7, 2, 10 and 4 are inserted, in that order, into the valid 3-ary max heap found in the above question, 
Which one of the following is the sequence of items in the array representing the resultant heap?                                                                        
(A) 10, 7, 9, 8, 3, 1, 5, 2, 6, 4   (B) 10, 9, 8, 7, 6, 5, 4, 3, 2, 1  
(C) 10, 9, 4, 5, 7, 6, 8, 2, 1, 3   (D) 10, 8, 6, 9, 7, 2, 3, 4, 1, 5 

 

Solution: The 3-ary max heap with elements 9, 5, 6, 8, 3, 1 is: 
 
 
 
 
 
 
 

 

  

 

 5 8 

3 

6 

1 
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After Insertion of 7: 
 
 
 
 
 
 

After Insertion of 2: 
 
 
 
 
 
 
 
 

After Insertion of 10:  
              
 
 
 
 
 

 After Insertion of 4: 
              
                
 
 
 
 
 

Problem-36 A complete binary min-heap is made by including each integer in [1,1023] exactly once. The depth of a node in the heap 
is the length of the path from the root of the heap to that node. Thus, the root is at depth 0. The maximum depth at which integer 9 can 
appear is___.  

 

Solution: As shown in the figure below, for a given number 푖, we can fix the element 푖 at 푖  level and arrange the numbers 1 to 푖 − 1 to the 
levels above. Since the root is at depth 푧푒푟표, the maximum depth of the 푖  element in a min-heap is 푖 − 1. Hence, the maximum depth at 
which integer 9 can appear is 8. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Problem-37 A 푑-ary heap is like a binary heap, but instead of 2 children, nodes have 푑 children. How would you represent a 푑-ary 
heap with 푛 elements in an array? What are the expressions for determining the parent of a given element, 푃푎푟푒푛푡(푖), and a 푗  child of 
a given element, 퐶ℎ푖푙푑(푖, 푗), where 1 ≤ j ≤ d? 

 

Solution: The following expressions determine the parent and 푗  child of element 푖 (where 1 ≤ j ≤ d): 
푃푎푟푒푛푡(푖) = 푖 + 푑 − 2

푑  

퐶ℎ푖푙푑(푖, 푗) = (푖 − 1). 푑 + 푗 + 1 
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DISJOINT SETS 
ADT 

 

Chapter 

8 
 

 
 
 

8.1 Introduction 
 

In this chapter, we will represent an important mathematics concept: 푠푒푡푠. This means how to represent a group of elements which do not 
need any order. The disjoint sets ADT is the one used for this purpose. It is used for solving the equivalence problem. It is very simple to 
implement. A simple array can be used for the implementation and each function takes only a few lines of code. Disjoint sets ADT acts as an 
auxiliary data structure for many other algorithms (for example, 퐾푟푢푠푘푎푙’푠 algorithm in graph theory). Before starting our discussion on 
disjoint sets ADT, let us look at some basic properties of sets.  

8.2 Equivalence Relations and Equivalence Classes 
 

For the discussion below let us assume that 푆 is a set containing the elements and a relation 푅 is defined on it. That means for every pair of 
elements in 푎, 푏  푆, 푎 푅 푏 is either true or false. If 푎 푅 푏 is true, then we say 푎 is related to 푏, otherwise 푎 is not related to 푏. A relation  푅 
is called an 푒푞푢푖푣푎푙푒푛푐푒 푟푒푙푎푡푖표푛 if it satisfies the following properties: 

 

 푅푒푓푙푒푥푖푣푒: For every element 푎  푆, 푎 푅 푎 is true. 
 푆푦푚푚푒푡푟푖푐: For any two elements 푎, 푏 ∈ 푆, if 푎 푅 푏 is true then 푏 푅 푎 is true. 
 푇푟푎푛푠푖푡푖푣푒: For any three elements a, b, c ∈ S, if a R b and 푏 푅 푐 are true then 푎 푅 푐 is true. 

 

As an example, relations ≤ (less than or equal to) and ≥ (greater than or equal to) on a set of integers are not equivalence relations. They are 
reflexive (since 푎 ≤  푎) and transitive (푎 ≤  푏 and 푏 ≤  푐 implies 푎 ≤  푐) but not symmetric (푎 ≤  푏 does not imply 푏 ≤  푎). Similarly, 
푟푎푖푙 푐표푛푛푒푐푡푖푣푖푡푦 is an equivalence relation. This relation is reflexive because any location is connected to itself. If there is connectivity from 
city 푎 to city 푏, then city 푏 also has connectivity to city 푎, so the relation is symmetric. Finally, if city 푎 is connected to city 푏 and city 푏 is 
connected to city 푐, then city 푎 is also connected to city 푐.  

 

The 푒푞푢푖푣푎푙푒푛푐푒 푐푙푎푠푠 of an element 푎 ∈ 푆 is a subset of 푆 that contains all the elements that are related to 푎. Equivalence classes create a 
푝푎푟푡푖푡푖표푛 of 푆. Every member of 푆 appears in exactly one equivalence class. To decide if 푎 푅 푏, we just need to check whether 푎 and 푏 are 
in the same equivalence class (group) or not.  

 

In the above example, two cities will be in same equivalence class if they have rail connectivity. If they do not have connectivity then they will 
be part of different equivalence classes. Since the intersection of any two equivalence classes is empty (휙), the equivalence classes are 
sometimes called 푑푖푠푗표푖푛푡 푠푒푡푠. In the subsequent sections, we will try to see the operations that can be performed on equivalence classes. 
The possible operations are: 

 

 Creating an equivalence class (making a set) 
 Finding the equivalence class name (Find) 
 Combining the equivalence classes (Union) 

8.3 Disjoint Sets ADT 
 

To manipulate the set elements we need basic operations defined on sets. In this chapter, we concentrate on the following set operations:  
 

 MAKESET(푋): Creates a new set containing a single element 푋. 
 UNION(푋, 푌): Creates a new set containing the elements 푋 and 푌 in their union and deletes the sets containing the elements 푋 

and 푌. 
 FIND(푋): Returns the name of the set containing the element 푋.  

8.4 Applications 
 

Disjoint sets ADT have many applications and a few of them are: 
 

 To represent network connectivity 
 Image processing 
 To find least common ancestor 
 To define equivalence of finite state automata 
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 Kruskal's minimum spanning tree algorithm (graph theory) 
 In game algorithms 

8.5 Tradeoffs in Implementing Disjoint Sets ADT  
 

Let us see the possibilities for implementing disjoint set operations. Initially, assume the input elements are a collection of 푛 sets, each with 
one element. That means, initial representation assumes all relations (except reflexive relations) are false. Each set has a different element, so 
that 푆  ∩ 푆 = ф. This makes the sets 푑푖푠푗표푖푛푡. 

 

To add the relation 푎 푅 푏 (UNION), we first need to check whether 푎 and 푏 are already related or not. This can be verified by performing 
FINDs on both 푎 and 푏 and checking whether they are in the same equivalence class (set) or not.  

 

If they are not, then we apply UNION. This operation merges the two equivalence classes containing 푎 and 푏 into a new equivalence class by 
creating a new set 푆  = 푆  ∪ 푆  and deletes 푆  and 푆 . Basically there are two ways to implement the above FIND/UNION operations: 

 

 Fast FIND implementation (also called Quick FIND) 
 Fast UNION operation implementation (also called Quick UNION) 

8.6 Fast FIND Implementation (Quick FIND) 
 

In this method, we use an array. As an example, in the representation below the array contains the set name for each element. For simplicity, 
let us assume that all the elements are numbered sequentially from 0 to 푛 − 1. In the example below, element 0 has the set name 3, element 
1 has the set name 5, and so on. With this representation FIND takes only O(1) since for any element we can find the set name by accessing 
its array location in constant time. 

 

In this representation, to perform UNION(푎, 푏) [assuming that 푎 is in set 푖 푎nd 푏 is in set 푗] we need to scan the complete array and change 
all 푖’푠 to 푗. This takes O(푛). A sequence of 푛 −  1 unions take O(푛 ) time in the worst case. If there are O(푛 ) FIND operations, this 
performance is fine, as the average time complexity is O(1) for each UNION or FIND operation. If there are fewer FINDs, this complexity 
is not acceptable. 

8.7 Fast UNION Implementation (Quick UNION) 
 

In this and subsequent sections, we will discuss the faster 푈푁퐼푂푁 implementations and its variants. There are different ways of implementing 
this approach and the following is a list of a few of them. 

 

 Fast UNION implementations (Slow FIND) 
 Fast UNION implementations (Quick FIND) 
 Fast UNION implementations with path compression 

8.8 Fast UNION Implementation (Slow FIND) 
 

As we have discussed, FIND operation returns the same answer (set name) if and only if they are in the same set. In representing disjoint sets, 
our main objective is to give a different set name for each group. In general we do not care about the name of the set. One possibility for 
implementing the set is 푡푟푒푒 as each element has only one 푟표표푡 and we can use it as the set name.  

 

How are these represented? One possibility is using an array: for each element keep the 푟표표푡 as its set name. But with this representation, 
we will have the same problem as that of FIND array implementation. To solve this problem, instead of storing the 푟표표푡 we can keep the 
parent of the element. Therefore, using an array which stores the parent of each element solves our problem.  
 

To differentiate the root node, let us assume its parent is the same as that of the element in the array. Based on this representation, MAKESET, 
FIND, UNION operations can be defined as: 

 

  (푋): Creates a new set containing a single element 푋 and in the array update the parent of 푋 as 푋. That means root (set name) of 
푋 is 푋. 

 
 
 UNION(푋, 푌): Replaces the two sets containing 푋 and 푌 by their union and in the array updates the parent of 푋 as 푌. 
 
 
 
 
 
 
 
 
 
 
 

 X

Set Name 

0 1 푛-2 푛-1   ………. 
         3                   5                             ……….                          2                          3 

X
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 FIND(X): Returns the name of the set containing the element 푋. We keep on searching for 푋’푠 set name until we come to the root 
of the tree. 

 

 
 
 
 
 

For the elements 0 to 푛 − 1 the initial representation is: 
 

 
 
 
 

To perform a UNION on two sets, we merge the two trees by making the root of one tree point to the root of the other.  
 

Initial Configuration for the elements 0 to 6 
 

 

 
 

After UNION(5,6) 
 
 
 
 
 
 
 
 

After UNION(1,2) 
 
 
 
 
 
 
 

After UNION(0,2) 
 
 
 
 
 
 
 
 
 

One important thing to observe here is, UNION operation is changing the root’s parent only, but not for all the elements in the sets. Due to 
this, the time complexity of UNION operation is O(1). A FIND(푋) on element 푋 is performed by returning the root of the tree containing 
푋.  
 

The time to perform this operation is proportional to the depth of the node representing 푋. Using this method, it is possible to create a tree 
of depth 푛 –  1 (Skew Trees). The worst-case running time of a FIND is O(푛) and 푚 consecutive FIND operations take O(푚푛) time in the 
worst case. 
 

     public class  DisjointSet { 
 public int[] S; 
 public int size;         // Number of elements in set 
 public MAKESET(int size)   { //Refer Below sections } 

public int FIND(int X)    { //Refer Below sections } 
public int UNION(int root1, int root2)   {//Refer Below sections } 
……… 

     } 

MAKESET 
 

     public void MAKESET(int size){ 

X 

  

 

 3 

2 

1 4 

X 

Parent Array 
………. 

0 1 푛-2 푛-1 
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 S = new int[size]; 
 for(int i = size-1; i >=0; i-- ) 
         S[i] = i; 
     } 

FIND 
 

     public int FIND(int X){ 
 if(! (X >= 0 && X < size)) 
         return; 
 if( S[X] == X )  
         return X; 
 else 
         return FIND(S, S[X]); 
     } 

UNION  
 

     public void UNION(int root1, int root2){ 
 if(FIND(root1) == FIND(root2))  
         return; 
 if(! ((root1 >= 0 && root1 < size) && (root2 >= 0 && root2 < size))) 
         return; 
 S[root1] = root2; 
     } 

8.7 Fast UNION Implementations (Quick FIND) 
 

The main problem with the previous approach is that, in the worst case we are getting the skew trees and as a result the FIND operation is 
taking O(푛) time complexity. There are two ways to improve it: 
 

 UNION by Size (also called UNION by Weight): Make the smaller tree a subtree of the larger tree 
 UNION by Height (also called UNION by Rank): Make the tree with less height a subtree of the tree with more height 

UNION by Size 
 

In the earlier representation, for each element 푖 we have stored 푖 (in the parent array) for the root element and for other elements we have 
stored the parent of 푖. But in this approach we store negative of the size of the tree (that means, if the size of the tree is 3 then store −3 in the 
parent array for the root element). For the previous example (after UNION(0,2)), the new representation will look like: 
 
 
 
 
 
 
 

Assume that the size of one element set is 1 and store −1. Other than this there is no change.  
 

MAKESET 
 

     public void MAKESET(int size) { 
 for(int i = size-1; i >= 0; i-- ) 
      S[i] = -1; 
     } 

FIND 
 

     public int FIND(int X) { 
 if(!(X >= 0 && X < size)) return; 
 if( S[X] == -1 )  
        return X; 
 else return FIND(S, S[X]); 
     } 
 

UNION by Size 
 

     public void UNIONBySize(int root1, int root2) { 

Parent Array 
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if((FIND(root1) == FIND(root2)) && FIND(root1) != -1) 
                    return; 

if( S[root2] < S[root1] ) {   
  S[root1] = root2;      
  S[root2] += S[root1];  
 } 
 else { 
  S[root2] = root1; 
  S[root1] += S[root2]; 
 } 
     } 
 

Note: There is no change in FIND operation implementation. 

UNION by Height (UNION by Rank) 
 

As in UNION by size, in this method we store negative of height of the tree (that means, if the height of the tree is 3 then we store −3 in the 
parent array for the root element). We assume the height of a tree with one element set is 1. For the previous example (after UNION(0,2)), 
the new representation will look like: 
 
 
 
 
 
 
 

     public void UNIONByHeight(int root1, int root2) { 
if((FIND(root1) == FIND(root2)) && FIND(root1) != -1) 

  return; 
 if( S[root2] < S[root1] )   
  S[root1] = root2;      
 else {  
                       if( S[root2] == S[root1] )  
   S[root1]--; 
  S[root2] = root1; 
 } 
     } 
 

Note: For FIND operation there is no change in the implementation. 

Comparing UNION by Size and UNION by Height 
 

With UNION by size, the depth of any node is never more than 푙표푔푛. This is because a node is initially at depth 0. When its depth increases 
as a result of a UNION, it is placed in a tree that is at least twice as large as before. That means its depth can be increased at most 푙표푔푛 times. 
This means that the running time for a FIND operation is O(푙표푔푛), and a sequence of 푚 operations takes O(푚 푙표푔푛).  
 

Similarly with UNION by height, if we take the UNION of two trees of the same height, the height of the UNION is one larger than the 
common height, and otherwise equal to the max of the two heights. This will keep the height of tree of 푛 nodes from growing past O(푙표푔푛). 
A sequence of 푚 UNIONs and FINDs can then still cost O(푚 푙표푔푛).  

8.8 Path Compression 
 

FIND operation traverses a list of nodes on the way to the root. We can make later FIND operations efficient by making each of these vertices 
point directly to the root. This process is called 푝푎푡ℎ 푐표푚푝푟푒푠푠푖표푛. For example, in the FIND(푋) operation, we travel from 푋 to the root of 
the tree. The effect of path compression is that every node on the path from 푋 to the root has its parent changed to the root. 
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With path compression the only change to the FIND function is that 푆[푋] is made equal to the value returned by FIND. That means, after 
the root of the set is found recursively, 푋 is made to point directly to it. This happen recursively to every node on the path to the root.  
 
 

      public int FIND(int X) { 
 if(! (X >= 0 && X < size)) 
        return; 
 if( S[X] <= 0 ) return X; 
 else  return( S[X] = FIND(S[X])); 
      } 
 

Note: Path compression is compatible with UNION by size but not with UNION by height as there is no efficient way to change the height 
of the tree. 

8.9 Summary 
 

Performing 푚 union-find operations on a set of 푛 objects. 
 

Algorithm Worst-case time 
Quick-find 푚푛 
Quick-union 푚푛 
Quick-Union by Size/Height 푛 +  푚 푙표푔푛 
Path compression 푛 +  푚 푙표푔푛 
Quick-Union by Size/Height + Path Compression (푚 +  푛) 푙표푔푛 

8.10 Disjoint Sets: Problems & Solutions 
 

Problem-1 Consider a list of cities 푐 , 푐 ,…,푐 . Assume that we have a relation 푅 such that, for any 푖, 푗, 푅(푐 , 푐 ) is 1 if cities 푐  and 
푐  are in the same state, and 0 otherwise. If 푅 is stored as a table, how much space does it require? 

 

Solution:  푅 must have an entry for every pair of cities. There are Θ(푛 ) of these. 
 

Problem-2 For Problem-1, using a Disjoint sets ADT, give an algorithm that puts each city in a set such that 푐  and 푐  are in the same 
set if and only if they are in the same state. 

 

Solution: 
 

       for (i = 1; i<= n; i++) { 
 MAKESET(c ); 
 for (j = 1; j <= i-1; j++) { 
  if(R(c , c )) { 
   UNION(c , c ); 
   break; 
  } 
 } 
       } 
 

Problem-3 For Problem-1, when the cities are stored in the Disjoint sets ADT, if we are given two cities 푐  and 푐 , how do we check 
if they are in the same state? 

 

Solution: Cities 푐  and 푐  are in the same state if and only if FIND(푐 ) = FIND(푐 ). 
 

Problem-4 For Problem-1, if we use linked-lists with UNION by size to implement the union-find ADT, how much space do we use 
to store the cities? 

 

Solution: There is one node per city, so the space is Θ(푛). 
 

Problem-5 For Problem-1, if we use trees with UNION by rank, what is the worst-case running time of the algorithm from Problem-
2? 

 

Solution: Whenever we do a UNION in the algorithm from Problem-2, the second argument is a tree of size 1. Therefore, all trees have 
height 1, so each union takes time O(1). The worst-case running time is then Θ(푛 ). 
 

Problem-6 If we use trees without union-by-rank, what is the worst-case running time of the algorithm from Problem-2? Are there 
more worst-case scenarios than Problem-5? 

 

Solution: Because of the special case of the unions, union-by-rank does not make a difference for our algorithm. Hence, everything is the 
same as in Problem-5. 
 

Problem-7 With the quick-union algorithm we know that a sequence of 푛 operations (푢푛푖표푛푠 and 푓푖푛푑푠) can take slightly more 
than linear time in the worst case. Explain why if all the 푓푖푛푑푠 are done before all the 푢푛푖표푛푠, a sequence of 푛 operations is guaranteed 
to take O(푛) time. 
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Solution: If the 푓푖푛푑 operations are performed first, then the 푓푖푛푑 operations take O(1) time each because every item is the root of its own 
tree. No item has a parent, so finding the set an item is in takes a fixed number of operations. Union operations always take O(1) time. Hence, 
a sequence of 푛 operations with all the 푓푖푛푑푠 before the 푢푛푖표푛푠 takes O(푛) time. 
 

Problem-8 With reference to Problem-7, explain why if all the unions are done before all the finds, a sequence of 푛 operations is 
guaranteed to take O(푛) time. 

 

Solution: This problem requires amortized analysis. 퐹푖푛푑 operations can be expensive, but this expensive 푓푖푛푑 operation is balanced out by 
lots of cheap 푢푛푖표푛 operations.  
 

The accounting is as follows. 푈푛푖표푛 operations always take O(1) time, so let’s say they have an actual cost of ₹1. Assign each 푢푛푖표푛 operation 
an amortized cost of ₹2, so every 푢푛푖표푛 operation puts ₹1 in the account. Each 푢푛푖표푛 operation creates a new child. (Some node that was 
not a child of any other node before is a child now.) When all the union operations are done, there is $1 in the account for every child, or in 
other words, for every node with a depth of one or greater. Let’s say that a 푓푖푛푑(푢) operation costs ₹1 if 푢 is a root. For any other node, the 
푓푖푛푑 operation costs an additional ₹1 for each parent pointer the 푓푖푛푑 operation traverses. So the actual cost is ₹(1 + 푑), where 푑 is the depth 
of 푢. Assign each 푓푖푛푑 operation an amortized cost of ₹2. This covers the case where 푢 is a root or a child of a root. For each additional 
parent pointer traversed, ₹1 is withdrawn from the account to pay for it.  
 

Fortunately, path compression changes the parent pointers of all the nodes we pay ₹1 to traverse, so these nodes become children of the root. 
All of the traversed nodes whose depths are 2 or greater move up, so their depths are now 1. We will never have to pay to traverse these 
nodes again. Say that a node is a grandchild if its depth is 2 or greater.  
 

Every time 푓푖푛푑(푢) visits a grandchild, ₹1 is withdrawn from the account, but the grandchild is no longer a grandchild. So the maximum 
number of dollars that can ever be withdrawn from the account is the number of grandchildren. But we initially put $1 in the bank for every 
child, and every grandchild is a child, so the bank balance will never drop below zero. Therefore, the amortization works out. 푈푛푖표푛 and 
푓푖푛푑 operations both have amortized costs of ₹2, so any sequence of 푛 operations where all the unions are done first takes O(푛) time. 
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9.1 Introduction 
 

In the real world, many problems are represented in terms of objects and connections between them. For example, in an airline route map, 
we might be interested in questions like: “What’s the fastest way to go from Hyderabad to New York?” 표푟 “What is the cheapest way to go 
from Hyderabad to New York?” To answer these questions we need information about connections (airline routes) between objects (towns). 
Graphs are data structures used for solving these kinds of problems. 
 

As part of this chapter, you will learn several ways to traverse graphs and how you can do useful things while traversing the graph in some 
order. We will also talk about shortest paths algorithms. We will finish with minimum spanning trees, which are used to plan road, telephone 
and computer networks and also find applications in clustering and approximate algorithms. 

9.2 Glossary 
 

Graph: A graph G is simply a way of encoding pairwise relationships among a set of objects: it consists of a collection V of nodes and a 
collection E of edges, each of which “joins” two of the nodes. We thus represent an edge e in E as a two-element subset of V: e = {u, v} for 
some u, v in V, where we call u and v the ends of e. 
 

Edges in a graph indicate a symmetric relationship between their ends. Often we want to encode asymmetric relationships, and for this, we 
use the closely related notion of a directed graph. A directed graph G’ consists of a set of nodes V and a set of directed edges E’. Each e’ in 
E’ is an ordered pair (u, v); in other words, the roles of u and v are not interchangeable, and we call u the tail of the edge and v the head. We 
will also say that edge e’ leaves node u and enters node v. 
 

When we want to emphasize that the graph we are considering is 푛표푡 푑푖푟푒푐푡푒푑, we will call it an 푢푛푑푖푟푒푐푡푒푑 푔푟푎푝ℎ; by default, however, 
the term “graph” will mean an undirected graph. It is also worth mentioning two warnings in our use of graph terminology. First, although an 
edge e in an undirected graph should properly be written as a set of nodes {u, u}, one will more often see it written in the notation used for 
ordered pairs: e = (u, v). Second, a node in a graph is also frequently called a vertex; in this context, the two words have exactly the same 
meaning. 
 

 푉푒푟푡푖푐푒푠 and 푒푑푔푒푠 are positions and store elements 
 Definitions that we use: 

o 퐷푖푟푒푐푡푒푑 푒푑푔푒: 
 Ordered pair of vertices (푢, 푣) 
 First vertex 푢 is the origin 
 Second vertex 푣 is the destination 
 Example: one-way road traffic 

 
 

 

o 푈푛푑푖푟푒푐푡푒푑 푒푑푔푒: 
 Unordered pair of vertices (푢, 푣) 
 Example: railway lines 

 
 

o 퐷푖푟푒푐푡푒푑 푔푟푎푝ℎ: 
 All the edges are directed 
 Example: route network 

 
 
 
 
 
 
 

푢 푣 

푢 푣 

A B 

C D 
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o 푈푛푑푖푟푒푐푡푒푑 푔푟푎푝ℎ: 
 All the edges are undirected 
 Example: flight network 

 
 
 
 
 
 

 When an edge connects two vertices, the vertices are said to be adjacent to each other and the edge is incident on both vertices.  
 A graph with no cycles is called a 푡푟푒푒. A tree is an acyclic connected graph.  

 

 
 
 

 A self loop is an edge that connects a vertex to itself.  
 
 
 

 Two edges are parallel if they connect the same pair of vertices.  
 
 
 

 The 푑egree of a vertex is the number of edges incident on it.  
 A 푠푢푏푔푟푎푝ℎ is a subset of a graph’s edges (with associated vertices) that form a graph.  

 

One of the fundamental operations in a graph is that of traversing a sequence of nodes connected by edges. We define a path in an undirected 
graph G = (V, E) to be a sequence P of nodes 푣 , 푣 , …, 푣 , 푣  with the property that each consecutive pair 푣 , 푣  is ioined by an edge 
in G. P is often called a path from 푣  to 푣 , or a 푣 -푣  path. 
 

A path is called 푠푖푚푝푙푒 if all its vertices are distinct from one another. A cycle is a path 푣 , 푣 , …, 푣 , 푣  in which 푘 >  2, the first 푘 —  1 
nodes are all distinct, and 푣  = 푣 . In other words, the sequence of nodes “cycles back” to where it began. All of these definitions carry over 
naturally to directed graphs, with the following change: in a directed path or cycle, each pair of consecutive nodes has the property that (푣 , 
푣 ) is an edge. In other words, the sequence of nodes in the path or cycle must respect the directionality of edges. 
 

 A 푝푎푡ℎ in a graph is a sequence of adjacent vertices. S푖푚푝푙푒 푝푎푡ℎ is a path with no repeated vertices. In the graph below, the 
dotted lines represent a path from 퐺 to 퐸. 

 
 
 
 
 
 

 A 푐푦푐푙푒 is a path where the first and last vertices are the same. A 푠푖푚푝푙푒 푐푦푐푙푒 is a cycle with no repeated vertices or edges (except 
the first and last vertices).  

 
 
 
 
 
 
We say that an undirected graph is connected if, for every pair of nodes u and v, there is a path from u to v. Choosing how to define connectivity 
of a directed graph is a bit more subtle, since it’s possible for u to have a path to v while v has no path to u. We say that a directed graph is 
strongly connected if, for every two nodes u and v, there is a path from u to v and a path from v to u. 
 

 We say that one vertex is 푐표푛푛푒푐푡푒푑 to another if there is a path that contains both of them.  
 A graph is 푐표푛푛푒푐푡푒푑 if there is a path from 푒푣푒푟푦 vertex to every other vertex.  
 If a graph is not connected then it consists of a set of 푐표푛푛푒푐푡푒푑 푐표푚푝표푛푒푛푡푠.  
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 A 푑푖푟푒푐푡푒푑 푎푐푦푐푙푖푐 푔푟푎푝ℎ [DAG] is a directed graph with no cycles.  

 

 
 
 

 In 푤푒푖푔ℎ푡푒푑 푔푟푎푝ℎ푠 integers (푤푒푖푔ℎ푡푠) are assigned to each edge to represent (distances or costs). 
 

 

 

 
 
 
 
 
 

 In addition to simply knowing about the existence of a path between some pair of nodes u and v, we may also want to know whether 
there is a short path. Thus we define the distance between two nodes u and v to be the minimum number of edges in a u-v path. 

 A 푓표푟푒푠푡 is a disjoint set of trees.  
 A 푠푝푎푛푛푖푛푔 푡푟푒푒 of a connected graph is a subgraph that contains all of that graph’s vertices and is a single tree. A spanning forest 

of a graph is the union of spanning trees of its connected components.  
 A 푏푖푝푎푟푡푖푡푒 푔푟푎푝ℎ is a graph whose vertices can be divided into two sets such that all edges connect a vertex in one set with a 

vertex in the other set.  
 
 

 

 
 Graphs with all edges present are called 푐표푚푝푙푒푡푒 graphs. 

 

 

 
 

 Graphs with relatively few edges (generally if it edges < |푉| log |푉|) are called 푠푝푎푟푠푒 푔푟푎푝ℎ푠. 
 Graphs with relatively few of the possible edges missing are called 푑푒푛푠푒 graphs. 
 Directed weighted graphs are sometimes called 푛푒푡푤표푟푘. 
 We will denote the number of vertices in a given graph by |푉|, and the number of edges by |퐸|. Note that 퐸 can range anywhere 

from 0 to | |(| |  )
 (in undirected graph). This is because each node can connect to every other node. 

9.3 Applications of Graphs 
 

 Representing relationships between components in electronic circuits 
 Transportation networks: Highway network, Flight network 
 Computer networks: Local area network, Internet, Web 
 Databases: For representing ER (Entity Relationship) diagrams in databases, for representing dependency of tables in databases 

9.4 Graph Representation 
 

As in other ADTs, to manipulate graphs we need to represent them in some useful form. There are several ways to represent graphs, each 
with its advantages and disadvantages. Some situations, or algorithms that we want to run with graphs as input, call for one representation, and 
others call for a different representation. Here, we'll see three ways to represent graphs. 
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Adjacency Matrix 
Graph Declaration for Adjacency Matrix 
 

First, let us look at the components of the graph data structure. To represent graphs, we need the number of vertices, the number of edges 
and also their interconnections.  
 

In this method, we use a matrix with size 푉 × 푉. The values of matrix are boolean. Let us assume the matrix is 푎푑푗푀푎푡푟푖푥. The value 
푎푑푗푀푎푡푟푖푥[u, v] is set to 1 if there is an edge from vertex u to vertex v and 0 otherwise.  
 

For an undirected graph, the adjacency matrix is symmetric: the row i, column j entry is 1 if and only if the row j, column i entry is 1. For a 
directed graph, the adjacency matrix need not be symmetric. In the matrix, each edge is represented by two bits for undirected graphs. That 
means, an edge from u to v is represented by 1 value in both 푎푑푗푀푎푡푟푖푥[u, v] and 푎푑푗푀푎푡푟푖푥[u, v]. To save time, we can process only half 
of this symmetric matrix. Also, we can assume that there is an “edge” from each vertex to itself. So, 푎푑푗푀푎푡푟푖푥[u, u] is set to 1 for all vertices.  
 

If the graph is a directed graph then we need to mark only one entry in the adjacency matrix. As an example, consider the directed graph 
below.  
 
 
 
 
 
 

The adjacency matrix for this graph can be given as: 
 
 
 
 
 
 

Now, let us concentrate on the implementation. To read a graph, one way is to first read the vertex names and then read pairs of vertex names 
(edges). The code below represents an undirected graph. 
 

import java.util.Iterator; 
import java.util.Random; 
import java.util.NoSuchElementException; 
 

public class Graph { 
    private static final String NEWLINE = System.getProperty("line.separator"); 
 

    private final int V; 
    private int E; 
    private boolean[][] adjMatrix; 
 

    // empty graph with V vertices 
    public Graph(int V) { 
        if (V < 0) throw new IllegalArgumentException("Too few vertices"); 
        this.V = V; 
        this.E = 0; 
        this.adjMatrix = new boolean[V][V]; 
    } 
 

    // random graph with V vertices and E edges 
    public Graph(int V, int E) { 
        this(V); 
        if (E > (long) V*(V-1)/2 + V) throw new IllegalArgumentException("Too many edges"); 
        if (E < 0)                    throw new IllegalArgumentException("Too few edges"); 
        Random random = new Random(); 
 

        // can be inefficient 
        while (this.E != E) { 
            int u = random.nextInt(V); 
            int v = random.nextInt(V); 
            addEdge(u, v); 
        } 
    } 
 

    // number of vertices and edges 
    public int V() { return V; } 
    public int E() { return E; } 
 

    // add undirected edge u-v 
    public void addEdge(int u, int v) { 
        if (!adjMatrix[u][v]) E++; 
        adjMatrix[u][v] = true; 

 A B C D 
A 0 1 0 1 
B 0 0 1 0 
C 1 0 0 1 
D 0 0 0 0 

A B 

C D 
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        adjMatrix[v][u] = true; 
    } 
 

    // does the graph contain the edge u-v? 
    public boolean contains(int u, int v) { 
        return adjMatrix[u][v]; 
    } 
 

    // return list of neighbors of u 
    public Iterable<Integer> adjMatrix(int u) { 
        return new AdjIterator(u); 
    } 
 

    // support iteration over graph vertices 
    private class AdjIterator implements Iterator<Integer>, Iterable<Integer> { 
        private int u; 
        private int v = 0; 
 

        AdjIterator(int u) { 
            this.u = u; 
        } 
 

        public Iterator<Integer> iterator() { 
            return this; 
        } 
 

        public boolean hasNext() { 
            while (v < V) { 
                if (adjMatrix[u][v]) return true; 
                v++; 
            } 
            return false; 
        } 
 

        public Integer next() { 
            if (!hasNext()) { 
                throw new NoSuchElementException(); 
            } 
            return v++; 
        } 
 

        public void remove()  { 
            throw new UnsupportedOperationException(); 
        } 
    } 
 

    // string representation of Graph - takes quadratic time 
    public String toString() { 
        StringBuilder s = new StringBuilder(); 
        s.append("Undirected graph" + NEWLINE); 
        s.append("Vertices:"+ V + " and edges:" + E + NEWLINE); 
        for (int u = 0; u < V; u++) { 
            s.append(u + ": "); 
            for (int v = 0; v < V; v++) { 
                s.append(String.format("%7s", adjMatrix[v][u]) + " "); 
            } 
            s.append(NEWLINE); 
        } 
        return s.toString(); 
    } 
    public static void main(String[] args) {    //test code 
        int V = 5; 
        int E = 7; 
        Graph G = new Graph(V, E); 
        System.out.println(G.toString()); 
    } 
} 

Performance 
 

The adjacency matrix representation is good if the graphs are dense. The matrix requires O(V ) bits of storage and O(V ) time for 
initialization. If the number of edges is proportional to V , then there is no problem because V  steps are required to read the edges. If the 
graph is sparse, the initialization of the matrix dominates the running time of the algorithm as it takes takes O(V ).  
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The downsides of adjacency matrices are that enumerating the outgoing edges from a vertex takes O(푛) time even if there aren't very many, 
and the O(V ) space cost is high for sparse graphs, those with much fewer than V  edges. 
 

The adjacency matrix representation takes O( V ) amount of space while it is computed. When graph has maximum number of edges or 
minimum number of edges, in both cases the required space will be same. 

Adjacency List 
Graph Declaration for Adjacency List 
 

 
 

 
 
 
 
 
 
 
 
 
In this representation all the vertices connected to a vertex 푣 are listed on an adjacency list for that vertex 푣. This can be easily implemented 
with linked lists. That means, for each vertex 푣 we use a linked list and list nodes represents the connections between 푣 and other vertices to 
which 푣 has an edge. The total number of linked lists is equal to the number of vertices in the graph. Considering the same example as that 
of adjacency matrix, the adjacency list representation can be given as ashown above. Since vertex A has an edge for B and D, we have added 
them in the adjacency list for A. Same is the case with other vertices as well. 
 

import java.io.*; 
import java.util.*; 
// Linked list implementation 
class LinkedList<Integer> implements Iterable<Integer> { 
    private ListNode<Integer> head;     // beginning of linked list 
    private int n;                                 // number of elements in linked list 
 

    // helper linked list class 
    private static class ListNode<Integer> { 
        private Integer data; 
        private ListNode<Integer> next; 
    } 
 

    public LinkedList() { 
        head = null; 
        n = 0; 
    } 
 

    public boolean isEmpty() { 
        return head == null; 
    } 
 

    public int size() { 
        return n; 
    } 
 

    public void add(Integer data) { 
        ListNode<Integer> oldfirst = head; 
        head = new ListNode<Integer>(); 
        head.data = data; 
        head.next = oldfirst; 
        n++; 
    } 
 

    public Iterator<Integer> iterator()  { 
        return new ListIterator(head); 
    } 
 

    // an iterator, doesn't implement remove() since it's optional 
    private class ListIterator implements Iterator<Integer> { 
        private ListNode<Integer> current; 
 

        public ListIterator(ListNode<Integer> head) { 
            current = head; 
        } 
 

        public boolean hasNext()  { return current != null;                     } 
        public void remove()      { throw new UnsupportedOperationException();  } 
 

        public Integer next() { 
            if (!hasNext()) throw new NoSuchElementException(); 
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            Integer data = current.data; 
            current = current.next; 
            return data; 
        } 
    } 
} 
// Graph representation 
public class Graph { 
    private static final String NEWLINE = System.getProperty("line.separator"); 
 

    private final int V; 
    private int E; 
    private LinkedList<Integer>[] adjList; 
 

    // Initializes an empty graph with V vertices and 0 edges. 
    public Graph(int V) { 
        if (V < 0) throw new IllegalArgumentException("Number of vertices must be nonnegative"); 
        this.V = V; 
        this.E = 0; 
        adjList = (LinkedList<Integer>[]) new LinkedList[V]; 
        for (int u = 0; u < V; u++) { 
            adjList[u] = new LinkedList<Integer>(); 
        } 
    } 
 

    // random graph with V vertices and E edges 
    public Graph(int V, int E) { 
        this(V); 
        if (E > (long) V*(V-1)/2 + V) throw new IllegalArgumentException("Too many edges"); 
        if (E < 0)                    throw new IllegalArgumentException("Too few edges"); 
        Random random = new Random(); 
 

        // can be inefficient 
        while (this.E != E) { 
            int u = random.nextInt(V); 
            int v = random.nextInt(V); 
            addEdge(u, v); 
        } 
    } 
 

    // Initializes a new graph. 
    public Graph(Graph G) { 
        this(G.V()); 
        this.E = G.E(); 
        for (int u = 0; u < G.V(); u++) { 
            // reverse so that adjacency list is in same order as original 
            Stack<Integer> reverse = new Stack<Integer>(); 
            for (int v : G.adjList[u]) { 
                reverse.push(v); 
            } 
            for (int v : reverse) { 
                adjList[u].add(v); 
            } 
        } 
    } 
 

    // Returns the number of vertices in this graph. 
    public int V() { 
        return V; 
    } 
 

    // Returns the number of edges in this graph. 
    public int E() { 
        return E; 
    } 
 

    // throw an IllegalArgumentException unless {@code 0 <= u < V} 
    private void validateVertex(int u) { 
        if (u < 0 || u >= V) 
            throw new IllegalArgumentException("vertex " + u + " is not between 0 and " + (V-1)); 
    } 
 

    public void addEdge(int u, int v) { 
        validateVertex(u); 
        validateVertex(v); 
        E++; 
        adjList[u].add(v); 
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        adjList[v].add(u); 
    } 
 

    // Returns the vertices adjacent to vertex {@code u}. 
    public Iterable<Integer> adjList(int u) { 
        validateVertex(u); 
        return adjList[u]; 
    } 
 

    public int degree(int u) { 
        validateVertex(u); 
        return adjList[u].size(); 
    } 
 

    // Returns a string representation of this graph. 
    public String toString() { 
        StringBuilder s = new StringBuilder(); 
        s.append("Undirected graph" + NEWLINE); 
        s.append(V + " vertices, " + E + " edges " + NEWLINE); 
        for (int u = 0; u < V; u++) { 
            s.append(u + ": "); 
            for (int v : adjList[u]) { 
                s.append(v + " "); 
            } 
            s.append(NEWLINE); 
        } 
        return s.toString(); 
    } 
 

    // test code 
    public static void main(String[] args) { 
        Graph G = new Graph(5, 7); 
        System.out.println(G.toString()); 
    } 
} 

 

For this representation, the order of edges in the input is 푖푚푝표푟푡푎푛푡. This is because they determine the order of the vertices on the adjacency 
lists. The same graph can be represented in many different ways in an adjacency list. The order in which edges appear on the adjacency list 
affects the order in which edges are processed by algorithms.  

Disadvantages of Adjacency Lists 
 

Using adjacency list representation we cannot perform some operations efficiently. As an example, consider the case of deleting a node. . In 
adjacency list representation, it is not enough if we simply delete a node from the list representation. if we delete a node from the adjacency 
list then that is enough. For each node on the adjacency list of that node specifies another vertex. We need to search other nodes linked list 
also for deleting it. This problem can be solved by linking the two list nodes that correspond to a particular edge and making the adjacency 
lists doubly linked. But all these extra links are risky to process. 

Adjacency Set 
 

It is very much similar to adjacency list but instead of using Linked lists, Disjoint Sets [Union-Find] are used. For more details refer to the 
퐷푖푠푗표푖푛푡 푆푒푡푠 퐴퐷푇 chapter. 

Comparison of Graph Representations 
 

Directed and undirected graphs are represented with the same structures. For directed graphs, everything is the same, except that each edge 
is represented just once. An edge from 푥 to 푦 is represented by a 1 value in 퐴푑푗[푥][푦] in the adjacency matrix, or by adding 푦 on 푥’푠 adjacency 
list. For weighted graphs, everything is the same, except fill the adjacency matrix with weights instead of boolean values. 
 

Representation Space Checking edge between 푣 and 푤? Iterate over edges incident to 푣? 
List of edges E 퐸 퐸 
Adj Matrix 푉  1 푉 
Adj List 퐸 + 푉 퐷푒푔푟푒푒(푣) 퐷푒푔푟푒푒(푣) 
Adj Set 퐸 + 푉 푙표푔(퐷푒푔푟푒푒(푣)) 퐷푒푔푟푒푒(푣) 

9.5 Graph Traversals 
 

To solve problems on graphs, we need a mechanism for traversing the graphs. Graph traversal algorithms are also called 푔푟푎푝ℎ 푠푒푎푟푐ℎ 
algorithms. Like trees traversal algorithms (Inorder, Preorder, Postorder and Level-Order traversals), graph search algorithms can be thought 
of as starting at some source vertex in a graph and "searching" the graph by going through the edges and marking the vertices. Now, we will 
discuss two such algorithms for traversing the graphs. 
 

 Depth First Search [DFS] 
 Breadth First Search [BFS] 
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A graph can contain cycles, which may bring you to the same node again while traversing the graph. To avoid processing of same node again, 
use a boolean array which marks the node after it is processed. While visiting the nodes in the layer of a graph, store them in a manner such 
that you can traverse the corresponding child nodes in a similar order.  

Depth First Search [DFS] 
 

Depth-first search (DFS) is a method for exploring a tree or graph. In a DFS, you go as deep as possible down one path before backing up 
and trying a different one. DFS algorithm works in a manner similar to preorder traversal of the trees. Like preorder traversal, internally 
this algorithm also uses stack. Let us consider the following example. Suppose a person is trapped inside a maze. To come out from that 
maze, the person visits each path and each intersection (in the worst case). Let us say the person uses two colors of paint to mark the 
intersections already passed. When discovering a new intersection, it is marked grey, and he continues to go deeper.  
 

After reaching a “dead end” the person knows that there is no more unexplored path from the grey intersection, which now is completed, 
and he marks it with black. This “dead end” is either an intersection which has already been marked grey or black, or simply a path that does 
not lead to an intersection. 
 

The intersections of the maze are the vertices and the paths between the intersections are the edges of the graph. The process of returning 
from the “dead end” is called 푏푎푐푘푡푟푎푐푘푖푛푔. We are trying to go away from the starting vertex into the graph as deep as possible, until we 
have to backtrack to the preceding grey vertex. In DFS algorithm, we encounter the following types of edges. 
 

푇푟푒푒 푒푑푔푒: encounter new vertex 
퐵푎푐푘 푒푑푔푒: from descendent to ancestor 
퐹표푟푤푎푟푑 푒푑푔푒: from ancestor to descendent 
퐶푟표푠푠 푒푑푔푒: between a tree or subtrees 

 

For most algorithms boolean classification, unvisited/visited is enough (for three color implementation refer to problems section). That means, 
for some problems we need to use three colors, but for our discussion two colors are enough. 
 
 
 
 
 

Initially all vertices are marked unvisited (false). The DFS algorithm starts at a vertex 푢 in the graph. By starting at vertex 푢 it considers the 
edges from 푢 to other vertices. If the edge leads to an already visited vertex, then backtrack to current vertex 푢. If an edge leads to an unvisited 
vertex, then go to that vertex and start processing from that vertex. That means the new vertex becomes the current vertex. Follow this process 
until we reach the dead-end. At this point start 푏푎푐푘푡푟푎푐푘푖푛푔. The process terminates when backtracking leads back to the start vertex.  
 

As an example, consider the following graph. We can see that sometimes an edge leads to an already discovered vertex. These edges are 
called 푏푎푐푘 푒푑푔푒푠, and the other edges are called 푡푟푒푒 푒푑푔푒푠 because deleting the back edges from the graph generates a tree.  
 

The final generated tree is called the DFS tree and the order in which the vertices are processed is called 퐷퐹푆 푛푢푚푏푒푟푠 of the vertices. In 
the graph below, the gray color indicates that the vertex is visited (there is no other significance). We need to see when the visited table is 
being updated. 
 

In the following example, DFS algorithm traverses from A to B to C to D first, then to E, F, and G and lastly to H. It employs the following 
rules. 
 

1. Visit the adjacent unvisited vertex. Mark it as visited. Display it (processing). Push it onto a stack. 
2. If no adjacent vertex is found, pop up a vertex from the stack. (It will pop up all the vertices from the stack, which do not have 

adjacent vertices.) 
3. Repeat step 1 and step 2 until the stack is empty. 

 

Mark A as visited and put it onto the stack. Explore any unvisited adjacent node from A. We have only one adjacent node B and we can pick 
that. For this example, we shall take the node in an alphabetical order. Then, mark B as visited and put it onto the stack.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Explore any unvisited adjacent node from B. Both C and H are adjacent to B but we are concerned for unvisited nodes only. Visit C and 
mark it as visited and put onto the stack. Here, we have B, D, and E nodes, which are adjacent to C and nodes D and E are unvisited. Let us 
choose one of them; say, D. 

Vertex is unvisited 

Vertex is visited 

  false 

true 

E 
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Here D does not have any unvisited adjacent node. So, we pop D from the stack. We check the stack top for return to the previous node and 
check if it has any unvisited nodes. Here, we find C to be on the top of the stack. Here, we have B, D, and E nodes which are adjacent to C 
and node E is unvisited. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here, we find E to be on the top of the stack. Here, we have C, F, G, and H nodes which are adjacent to E and nodes F, G, and H are 
unvisited. Let us choose one of them; say, F. Here node F does not have any unvisited adjacent node. So, we pop F from the stack. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Here, we find E to be on the top of the stack. Here, we have C, F, G, and H nodes which are adjacent to E and nodes G, and H are unvisited. 
Let us choose one of them; say, G. Here node G does not have any unvisited adjacent node. So, we pop G from the stack. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here, we find E to be on the top of the stack. Here, we have C, F, G, and H nodes which are adjacent to E and node H is unvisited. Let us 
choose that remaining node H. Here node H does not have any unvisited adjacent node. So, we pop H from the stack. 
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Now, we find E to be on the top of the stack with no unvisited nodes adjacent to it. So, we pop E from the stack. Then, node C becomes the 
top of the stack. For node C too, there were no adjacent unvisited nodes. Hence, pop node C from the stack. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Similarly, we find B to be on the top of the stack with no unvisited nodes adjacent to it. So, we pop B from the stack. Then, node A becomes 
the top of the stack. For node A too, there were no adjacent unvisited nodes. Hence, pop node A from the stack. With this, the stack is empty. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the above diagrams, it can be seen that the DFS traversal creates a tree (without back edges) and we call such tree a 퐷퐹푆 푡푟푒푒.  In DFS, 
if we start from a start node it will mark all the nodes connected to the start node as visited. Therefore, if we choose any node in a connected 
component and run DFS on that node it will mark the whole connected component as visited. The above algorithm works even if the given 
graph has connected components.  
 

We can see that sometimes an edge leads to an already discovered vertex. These edges are called 푏푎푐푘 푒푑푔푒푠, and the other edges are called 
푡푟푒푒 푒푑푔푒푠 because deleting the back edges from the graph generates a tree.  
 

The final generated tree is called the DFS tree and the order in which the vertices are processed is called 퐷퐹푆 푛푢푚푏푒푟푠 of the vertices. In 
the graph below, the gray color indicates that the vertex is visited (there is no other significance). We need to see when the visited table is 
updated. 

Advantages 
 

 Depth-first search on a binary tree generally requires less memory than breadth-first. 
 Depth-first search can be easily implemented with recursion. 

Disadvantages 
 

 A DFS doesn't necessarily find the shortest path to a node, while breadth-first search does. 

Applications of DFS 
 

 Topological sorting 

E 

Backtrack from H. Edge 
(B,H) is a back edge 

A 

B 

C 

D 

H 

E 

F 

G 

Recursive call of DFS, 
vertex H is visited 

Visited Table 
1 1 1 1 1 1 1 1 

A 

B 

C 

D 

H 

F 

G 

Visited Table 
1 1 1 1 1 1 1 1 

 
H 
E 
C 
B 
A 

Stack 

 
E 
C 
B 
A 

Stack 

E 

Backtrack from C 

A 

B 

C 

D 

H 

E 

F 

G 

Backtrack from E 

Visited Table 
1 1 1 1 1 1 1 1 

 

A 

B 

C 

D 

H 

F 

G 

Visited Table 
1 1 1 1 1 1 1 1 

 
 
 

C 
B 
A 

Stack 

 
 
 

B 
A 

Stack 

E 

Vertex A is completed. 

A 

B 

C 

D 

H 

E 

F 

G 

Backtrack from B 

Visited Table 

1 1 1 1 1 1 1 1 
 

A 

B 

C 

D 

H 

F 

G 

Visited Table 

1 1 1 1 1 1 1 1 
 

 
 
 
 

A 
Stack 



 

Data Structures and Algorithms Made Easy in Java Graph Algorithms                      

 

9.5 Graph Traversals    221 

 
 

 Finding connected components 
 Finding articulation points (cut vertices) of the graph 
 Finding strongly connected components 
 Solving puzzles such as mazes 

 

For algorithms refer to 푃푟표푏푙푒푚푠 푆푒푐푡푖표푛. 

Implementation 
 
 

The algorithm based on this mechanism is given below:  
 

import java.util.*; 
public class Graph { 
    private static final String NEWLINE = System.getProperty("line.separator"); 
    private final int V; 
    private int E; 
    private boolean[][] adjMatrix; 
    boolean[] visited; 
 

    // empty graph with V vertices 
    public Graph(int V) { 
        if (V < 0) throw new IllegalArgumentException("Too few vertices"); 
        this.V = V; 
        this.E = 0; 
        this.adjMatrix = new boolean[V][V]; 
        visited = new boolean[V]; 
    } 
 

    // random graph with V vertices and E edges 
    public Graph(int V, int E) { 
        this(V); 
        if (E > (long) V*(V-1)/2 + V) throw new IllegalArgumentException("Too many edges"); 
        if (E < 0)                    throw new IllegalArgumentException("Too few edges"); 
        Random random = new Random(); 
 

        // can be inefficient 
        while (this.E != E) { 
            int u = random.nextInt(V); 
            int v = random.nextInt(V); 
            addEdge(u, v); 
        } 
        visited = new boolean[V]; 
    } 
 

    // Refer this missing code from adjacenet matrix representation section 
 

    public void DFS(){ 
        // Visit nodes using a Stack to store "to visit" nodes 
        Stack<Integer> s = new Stack<Integer>();  // Create a stack 
        clearVisited();       // Set all visited[i] = 0 
        s.push(0);            // Start the "to visit" at node 0 
 

        /* =========================================== 
        Loop as long as there are "active" node 
        =========================================== */ 
        while( !s.isEmpty() ){ 
            int nextNode;                // Next node to visit 
            int i; 
 

            nextNode = s.pop(); 
 

            if ( ! visited[nextNode] ){ 
                visited[nextNode] = true;    // Mark node as visited 
                System.out.println("nextNode = " + nextNode ); 
 
                for ( i = 0; i < V; i++ ) 
                //for ( i = V-1; i >= 0 ; i-- ) 
                    if ( (adjMatrix[nextNode][i] == true) && !visited[i] ) 
                        s.push(i); 
            } 
        } 
    }      

    public static void main(String[] args) {    //test code 
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        int V = 5; 
        int E = 7; 
        Graph G = new Graph(V, E); 
        System.out.println(G.toString()); 
        G.DFS(); 
    } 
} 

Breadth First Search [BFS] 
 

Breadth-first search (BFS) is a method for exploring a tree or graph. In a BFS, you first explore all the nodes one step away, then all the nodes 
two steps away, etc. Breadth-first search is like throwing a stone in the center of a pond. The nodes you explore "ripple out" from the starting 
point.  
 

The BFS algorithm works similar to 푙푒푣푒푙 − 표푟푑푒푟 traversal of the trees. Like 푙푒푣푒푙 − 표푟푑푒푟 traversal, BFS also uses queues. In fact, 푙푒푣푒푙 −
표푟푑푒푟 traversal got inspired from BFS. BFS works level by level. Initially, BFS starts at a given vertex, which is at level 0. In the first stage it 
visits all vertices at level 1 (that means, vertices whose distance is 1 from the start vertex of the graph). In the second stage, it visits all vertices 
at the second level. These new vertices are the ones which are adjacent to level 1 vertices. BFS continues this process until all the levels of the 
graph are completed.  
 

To make this process easy, use a queue to store the node and mark it as 'visited' once all its neighbors (vertices that are directly connected to 
it) are marked or added to the queue. The queue follows the First In First Out (FIFO) queuing method, and therefore, the neighbor's of the 
node will be visited in the order in which they were inserted in the node i.e. the node that was inserted first will be visited first, and so on. 
Generally 푞푢푒푢푒 data structure is used for storing the vertices of a level. 
 

BFS employs the following rules: 
 

1. Visit the adjacent unvisited vertex. Mark it as visited. Display it. Insert it in a queue. 
2. If no adjacent vertex is found, remove the first vertex from the queue. 
3. Repeat step 1 and step 2 until the queue is empty. 

 

As similar to DFS, assume that initially all vertices are marked 푢푛푣푖푠푖푡푒푑 (푓푎푙푠푒). Vertices that have been processed and removed from the 
queue are marked 푣푖푠푖푡푒푑 (푡푟푢푒). We use a queue to represent the visited set as it will keep the vertices in the order of when they were first 
visited. As an example, let us consider the same graph as that of the DFS example.  
 

We start from node A (starting node), and add it to the queue. The only element in queue is A. Dequeue the element A and mark it as visited. 
We then see an unvisited adjacent node B from A. So, enqueue the element B to the queue. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Next, dequeue the element B and mark it as visited. We then see an unvisited adjacent nodes C and H from node B, and enqueue them. 
Then dequeue the element C, mark it as visited, and enqueue its unvisited adjacent nodes D and E to the queue. Next, dequeue the element 
H, and mark it as visited. Observe that, node H does not have any unvisited adjacent nodes. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Next, dequeue the element D, and mark it as visited. We see no unvisited adjacent nodes from node D. Then dequeue the element E, mark 
it as visited, and enqueue its unvisited adjacent nodes F and G to the queue. Next, dequeue the element F, and mark it as visited. Observe 
that, node G does not have any unvisited adjacent nodes. At this point, queue has only one element G. Dequeue the element and mark it 
visited. Notice that, node G too does not have any unvisited adjacent nodes. 
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Time complexity of BFS is  O(푉 + 퐸), if we use adjacency lists for representing the graphs, and O(푉 ) for adjacency matrix representation. 

Advantages 
 

 A BFS will find the shortest path between the starting point and any other reachable node. A depth-first search will not necessarily 
find the shortest path. 

Disadvantages 
 

 A BFS on a binary tree generally requires more memory than a DFS. 

Applications of BFS 
 

 Finding all connected components in a graph 
 Finding all nodes within one connected component 
 Finding the shortest path between two nodes  
 Testing a graph for bipartiteness 

Implementation 
 

The implementation for the above discussion can be given as: 
 

import java.util.*; 
public class Graph { 
    private static final String NEWLINE = System.getProperty("line.separator"); 
    private final int V; 
    private int E; 
    private boolean[][] adjMatrix; 
    boolean[] visited; 
 

    // empty graph with V vertices 
    public Graph(int V) { 
        if (V < 0) throw new IllegalArgumentException("Too few vertices"); 
        this.V = V; 
        this.E = 0; 
        this.adjMatrix = new boolean[V][V]; 
        visited = new boolean[V]; 
    } 
 

    // random graph with V vertices and E edges 
    public Graph(int V, int E) { 
        this(V); 
        if (E > (long) V*(V-1)/2 + V) throw new IllegalArgumentException("Too many edges"); 
        if (E < 0)                    throw new IllegalArgumentException("Too few edges"); 
        Random random = new Random(); 
 

        // can be inefficient 
        while (this.E != E) { 
            int u = random.nextInt(V); 
            int v = random.nextInt(V); 
            addEdge(u, v); 
        } 
        visited = new boolean[V]; 
    } 
 

    // Refer this missing code from adjacenet matrix representation section 
 

        public void BFS(){ 
        // BFS uses Queue data structure 
        Queue<Integer> q = new LinkedList<Integer>(); 
        clearVisited(); 
        q.add(0);            // Start the "to visit" at node 0 
 

H 

A 

H B 

C 

D 

E 

F 

G G 

A 

B 

C 

D 

E 

F 

Queue: F, G Queue: Empty 

All vertices completed and 
Queue is empty. 

D and E are completed. F and G are 
marked with gray color (next level). 

Visited Table 
1 1 1 1 1 0 0 1 

Visited Table 
1 1 1 1 1 1 1 1 



 

Data Structures and Algorithms Made Easy in Java Graph Algorithms                      

 

9.6 Topological Sort    224 

 
 

        /* =========================================== 
        Loop as long as there are "active" node 
        =========================================== */ 
        while( !q.isEmpty() ) { 
            int nextNode;                // Next node to visit 
            int i; 
            nextNode = q.remove(); 
            if ( ! visited[nextNode] ) { 
                visited[nextNode] = true;    // Mark node as visited 
                System.out.println("nextNode = " + nextNode ); 
 

                for ( i = 0; i < V; i++ ) 
                // for ( i = V-1; i >=0 ; i-- ) 
                    if ( adjMatrix[nextNode][i] == true  && ! visited[i] ) 
                    q.add(i); 
            } 
        } 
    }      

    public static void main(String[] args) {    //test code 
        int V = 5; 
        int E = 7; 
        Graph G = new Graph(V, E); 
        System.out.println(G.toString()); 
        G.BFS(); 
    } 

} 

Comparing DFS and BFS 
 

Comparing BFS and DFS, the big advantage of DFS is that it has much lower memory requirements than BFS because it's not required to 
store all of the child pointers at each level. Depending on the data and what we are looking for, either DFS or BFS can be advantageous. For 
example, in a family tree if we are looking for someone who's still alive and if we assume that person would be at the bottom of the tree, then 
DFS is a better choice. BFS would take a very long time to reach that last level.  
 

The DFS algorithm finds the goal faster. Now, if we were looking for a family member who died a very long time ago, then that person would 
be closer to the top of the tree. In this case, BFS finds faster than DFS. So, the advantages of either vary depending on the data and what we 
are looking for. DFS is related to preorder traversal of a tree. Like 푝푟푒표푟푑푒푟 traversal, DFS visits each node before its children. The BFS 
algorithm works similar to 푙푒푣푒푙 − 표푟푑푒푟 traversal of the trees.  
 

If someone asks whether DFS is better or BFS is better, the answer depends on the type of the problem that we are trying to solve. BFS visits 
each level one at a time, and if we know the solution we are searching for is at a low depth, then BFS is good. DFS is a better choice if the 
solution is at maximum depth. The below table shows the differences between DFS and BFS in terms of their applications. 
 

Applications  DFS BFS 
Spanning forest, connected components, paths, cycles Yes Yes 
Shortest paths  Yes 
Minimal use of memory space Yes  

9.6 Topological Sort 
 

푇표푝표푙표푔푖푐푎푙 푠표푟푡 is an ordering of vertices in a directed acyclic graph [DAG] in which each node comes before all nodes to which it has 
outgoing edges. As an example, consider the course prerequisite structure at universities. A directed 푒푑푔푒 (푣, 푤) indicates that course 푣 must 
be completed before course 푤. Topological ordering for this example is the sequence which does not violate the prerequisite requirement. 
Every DAG may have one or more topological orderings. Topological sort is not possible if the graph has a cycle, since for two vertices 푣 and 
푤 on the cycle, 푣 precedes 푤 and 푤 precedes 푣. 
 

Topological sort has an interesting property. All pairs of consecutive vertices in the sorted order are connected by edges; then these edges 
form a directed Hamiltonian path [refer to 푃푟표푏푙푒푚푠 푆푒푐푡푖표푛] in the DAG. If a Hamiltonian path exists, the topological sort order is unique. 
If a topological sort does not form a Hamiltonian path, DAG can have two or more topological orderings. In the graph below: 7, 5, 3, 11, 8, 
2, 9, 10 and 3, 5, 7, 8, 11, 2, 9, 10 are both topological orderings.  
 

 

 

 
 

  

 8 

9 10 2

  5 3  7 
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Initially, 푖푛푑푒푔푟푒푒 is computed for all vertices, starting with the vertices which are having indegree 0. That means consider the vertices which 
do not have any prerequisite. To keep track of vertices with indegree zero we can use a queue.  
 

All vertices of indegree 0 are placed on queue. While the queue is not empty, a vertex 푣 is removed, and all edges adjacent to 푣 have their 
indegrees decremented. A vertex is put on the queue as soon as its indegree falls to 0. The topological ordering is the order in which the 
vertices DeQueue.  
 

The time complexity of this algorithm is O(|퐸|  + |푉|) if adjacency lists are used. 
 

// Refer previous sections for Graph implementation 
class TopologicalSort { 
    private Queue<Integer> order;     // vertices in topological order 
    private int[] ranks;              // ranks[v] = order where vertex v appears in order 
 

    public TopologicalSort(Graph G) { 
        // indegrees of remaining vertices 
        int[] indegree = new int[G.V()]; 
        for (int v = 0; v < G.V(); v++) { 
            indegree[v] = G.indegree(v); 
        } 
 

        // initialize 
        ranks = new int[G.V()]; 
        order = new Queue<Integer>(); 
        int count = 0; 
 

        // initialize queue to contain all vertices with indegree = 0 
        Queue<Integer> queue = new Queue<Integer>(); 
        for (int v = 0; v < G.V(); v++) 
            if (indegree[v] == 0) queue.enqueue(v); 
 

        while (!queue.isEmpty()) { 
            int v = queue.dequeue(); 
            order.enqueue(v); 
            ranks[v] = count++; 
            for (int w : G.adjList(v)) { 
                indegree[w]--; 
                if (indegree[w] == 0) queue.enqueue(w); 
            } 
        } 
 

        // there is a directed cycle in subgraph of vertices with indegree >= 1. 
        if (count != G.V()) { 
            order = null; 
        } 
    } 
 

    // Returns a topological order if the digraph has a topologial order 
    public Iterable<Integer> order() { 
        return order; 
    } 
 

    // Does the digraph have a topological order? 
    public boolean hasOrder() { 
        return order != null; 
    } 
 

    // throw an IllegalArgumentException unless {@code 0 <= v < V} 
    private void validateVertex(int v) { 
        int V = ranks.length; 
        if (v < 0 || v >= V) 
            throw new IllegalArgumentException("vertex " + v + " is not between 0 and " + (V-1)); 
    } 
 

    public static void main(String[] args) {   // test code 
        // create random DAG with V vertices and E edges 
        int V = 5; 
        int E = 7; 
        Graph G = new Graph(V, E); 
        System.out.println(G.toString()); 
 

        // find a directed cycle 
        TopologicalSort topological1 = new TopologicalSort(G); 
        if (!topological1.hasOrder()) { 
            System.out.println("Not a DAG"); 
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        } 
        // or give topologial sort 
        else { 
            System.out.print("Topological order: "); 
            for (int v : topological1.order()) { 
                System.out.print(v + " "); 
            } 
            System.out.println(); 
        } 
    } 
} 

 

Total running time of topological sort is O(푉 +  퐸).  
 

Note: The Topological sorting problem can be solved with DFS. Refer to the 푃푟표푏푙푒푚푠 푆푒푐푡푖표푛 for the algorithm. 

Applications of Topological Sorting 
 

 Representing course prerequisites 
 In detecting deadlocks 
 Pipeline of computing jobs 
 Checking for symbolic link loop 
 Evaluating formulae in spreadsheet 

9.7 Shortest Path Algorithms 
 

Let us consider the other important problem of a graph. Given a graph 퐺 =  (푉, 퐸) and a distinguished vertex s, we need to find the shortest 
path from 푠 to every other vertex in 퐺. There are variations in the shortest path algorithms which depend on the type of the input graph and 
are given below. 
 

Variations of Shortest Path Algorithms 
 

Shortest path in unweighted graph 
Shortest path in weighted graph 
Shortest path in weighted graph with negative edges 

 

Applications of Shortest Path Algorithms 
 

 Finding fastest way to go from one place to another 
 Finding cheapest way to fly/send data from one city to another 

Shortest Path in Unweighted Graph 
 

Let 푠 be the input vertex from which we want to find the shortest path to all other vertices. Unweighted graph is a special case of the weighted 
shortest-path problem, with all edges a weight of 1. The algorithm is similar to BFS and we need to use the following data structures: 

 

 A distance table with three columns (each row corresponds to a vertex): 
o Distance from source vertex. 
o Path - contains the name of the vertex through which we get the shortest distance. 

 A queue is used to implement breadth-first search. It contains vertices whose distance from the source node has been computed 
and their adjacent vertices are to be examined. 

 

As an example, consider the following graph and its adjacency list representation. 
 
 
 
 
 
 
 
 
 
 

The adjacency list for this graph is: 
 

푨: 퐵 → 퐷 
푩: 퐷 → 퐸 
푪: 퐴 → 퐹 
푫: 퐹 → 퐺 
푬: 퐺 
푭: − 
푮: 퐹 

 

 

 D 
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Let 푠 = 퐶. The distance from 퐶 to 퐶 is 0. Initially, distances to all other nodes are not computed, and we initialize the second column in the 
distance table for all vertices (except 퐶) with -1 as below. 
  

Vertex Distance[v] Previous vertex which gave Distance[v]  
퐴 -1 - 
퐵 -1 - 
퐶 0 - 
퐷 -1 - 
퐸 -1 - 
퐹 -1 - 
퐺 -1 - 

Algorithm 
 

      public void UnweightedShortestPath(Graph G, int s) { 
 LLQueue Q = new LLQueue(); 
 int v, w; 
 Q.enQueue( s); 
                for (int i = 0; i< G.vertexCount;i++) 
  Distance[i]=-1; 
 Distance[s]= 0; 
 while (!Q.isEmpty()) { 
  v = Q.deQueue(); 
 

  for each w adjacent to v 
   if(Distance[w] == -1)  { 
    Distance[w] = Distance[v] + 1; 
    Path[w] = v; 
    Q.enQueue(w); 
   } 
 } 
 Q.deleteQueue(); 
      } 
 

Running time: O(|퐸| + |푉|), if adjacency lists are used. In for loop, we are checking the outgoing edges for a given vertex and the sum of all 
examined edges in the while loop is equal to the number of edges which gives O(|퐸|).  
 

If we use matrix representation the complexity is O(|푉| ), because we need to read an entire row in the matrix of length |푉| in order to find 
the adjacent vertices for a given vertex. 

Shortest path in Weighted Graph [Dijkstra’s] 
 

A famous solution for the shortest path problem was developed by 퐷푖푗푘푠푡푟푎. 퐷푖푗푘푠푡푟푎’푠 algorithm is a generalization of the BFS algorithm. 
The regular BFS algorithm cannot solve the shortest path problem as it cannot guarantee that the vertex at the front of the queue is the vertex 
closest to source 푠.  
 

Before going to code let us understand how the algorithm works. As in unweighted shortest path algorithm, here too we use the distance table. 
The algorithm works by keeping the shortest distance of vertex 푣 from the source in the 퐷푖푠푡푎푛푐푒 table. The value 퐷푖푠푡푎푛푐푒[푣] holds the 
distance from s to v. The shortest distance of the source to itself is zero. The 퐷푖푠푡푎푛푐푒 table for all other vertices is set to −1 to indicate that 
those vertices are not already processed. 
 

Vertex Distance[v] Previous vertex which gave Distance[v]  
퐴 -1 - 
퐵 -1 - 
퐶 0 - 
퐷 -1 - 
퐸 -1 - 
퐹 -1 - 
퐺 -1 - 

 

After the algorithm finishes, the 퐷푖푠푡푎푛푐푒 table will have the shortest distance from source 푠 to each other vertex 푣. To simplify the 
understanding of 퐷푖푗푘푠푡푟푎’푠 algorithm, let us assume that the given vertices are maintained in two sets. Initially the first set contains only the 
source element and the second set contains all the remaining elements. After the 푘  iteration, the first set contains 푘 vertices which are closest 
to the source. These 푘 vertices are the ones for which we have already computed the shortest distances from source. 
 

Notes on Dijkstra’s Algorithm 
 

 It uses greedy method: Always pick the next closest vertex to the source. 
 It uses priority queue to store unvisited vertices by distance from 푠. 
 It does not work with negative weights. 

 

Each vertex examined at most once 

Each vertex enQueue’d at most once 
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Difference between Unweighted Shortest Path and Dijkstra’s Algorithm 
 

1) To represent weights in the adjacency list, each vertex contains the weights of the edges (in addition to their identifier). 
2) Instead of ordinary queue we use priority queue [distances are the priorities] and the vertex with the smallest distance is selected 

for processing. 
3) The distance to a vertex is calculated by the sum of the weights of the edges on the path from the source to that vertex. 
4) We update the distances in case the newly computed distance is smaller than the old distance which we have already computed. 

 

import java.util.*; 
public class Graph{ 
    private static int infinite = 9999999; 
    int[][]  LinkCost; 
    int      V; 
    boolean[] Reached; 
 

    // Construct a graph of N nodes 
    Graph(int[][] adjMatrix){ 
        int i, j; 
        V = adjMatrix.length; 
 

        LinkCost = new int[V][V]; 
        Reached  = new boolean[V]; 
        for ( i=0; i < V; i++){ 
            for ( j=0; j < V; j++){ 
                LinkCost[i][j] = adjMatrix[i][j]; 
                if ( LinkCost[i][j] == 0 ) 
                    LinkCost[i][j] = infinite; 
            } 
        } 
 

        for ( i=0; i < V; i++){ 
            for ( j=0; j < V; j++) 
                if ( LinkCost[i][j] < infinite ) 
                    System.out.print( " " + LinkCost[i][j] + " " ); 
                else 
                    System.out.print(" * " ); 
 

            System.out.println(); 
        } 
    } 
 

    public void Dijkstra(int s /* src */){ 
        int i, j, m, n, k; 
        int[] D = new int[V];                       // Current distance 
        int[] predNode = new int[V]; 
        predNode[s] = s; 
 

        for ( i = 0; i < V; i++ ) 
            Reached[i] = false; 
        Reached[s] = true;           // ReachSet = {s} 
 

        for ( i = 0; i < V; i++ ){ 
            D[i] = LinkCost[s][i]; 
            if ( LinkCost[s][i] < infinite ) 
              predNode[i] = s; 
        } 
 

        printReachSet( Reached, D ); 
 

        for ( k = 0; k < V-1; k++ ){ 
            // Find the first unreached node m 
            for ( m = 0; m < V; m++ ) 
                if ( ! Reached[m] ) 
                    break; 
 

            // Find: m in {N - ReachSet} that has smallest value for D(S,m) 
            for ( n = m+1; n < V; n++ ){ 
                if ( Reached[n] == false && D[n] < D[m] ) 
                    m = n; 
            } 
 

            // Add m to ReachSet 
            Reached[m] = true; 
 

            // Find possible "short cut" through m 
            for ( n = 0; n < V; n++ ){ 
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                if ( Reached[n] == false ){ 
                    if ( D[m] + LinkCost[m][n] < D[n] ){ 
                        D[n] = D[m] + LinkCost[m][n]; 
                        predNode[n] = m;          // Record the shortest path link 
                    } 
                } 
            } 
            printReachSet( Reached, D ); 
        } 
 

        printShortPaths( predNode ); 
    } 
 

    void printShortPaths( int[] a ){ 
        for ( int i = 0; i < V; i++ ) 
            System.out.println( (char)('A'+a[i]) + " --> " +  (char)('A'+i) ); 
    } 
 

    void printReachSet(boolean[] Reached, int[] D){ 
        System.out.print("ReachSet = "); 
        for (int i = 0; i < Reached.length; i++ ) 
        if ( Reached[i] ) 
            System.out.print( (char) ('A'+i) + " "); 
        System.out.println(); 
 

        for (int i = 0; i < Reached.length; i++ ){ 
            if ( Reached[i] ) 
                continue; 
 

            if ( D[i] < infinite ) 
                System.out.print( "D[" + (char) ('A'+i) + "] = " + D[i] + " "); 
            else 
                System.out.print( "D[" + (char) ('A'+i) + "] = * "); 
        } 
        System.out.println(); 
    } 
 

    public static void main(String[] args) {    //test code 
        int[][] conn = {  {  0,  5, 19,  0,  0 },  // 0 
                          {  5,  0,  3, 11,  0 },  // 1 
                          { 19,  3,  0,  2,  0 },  // 2 
                          {  0, 21,  2,  0,  3 },  // 3 
                          {  0,  0,  19,  3,  0 }   // 4 
                       }; 
 

        Graph G = new Graph(conn); 
        G.Dijkstra(1); 
    } 
} 

 

The above algorithm can be better understood through an example, which will explain each step that is taken and how 퐷푖푠푡푎푛푐푒 is calculated. 
The weighted graph below has 5 vertices from 퐴 − 퐸.  
 

The value between the two vertices is known as the edge cost between two vertices. For example, the edge cost between 퐴 and 퐶 is 1. Dijkstra’s 
algorithm can be used to find the shortest path from source 퐴 to the remaining vertices in the graph. 
 
 
 
 
 
 
 
 

Initially the 퐷푖푠푡푎푛푐푒 table is: 
 

Vertex Distance[v] Previous vertex which gave Distance[v]  
퐴 0 - 
퐵 -1 - 
퐶 -1 - 
퐷 -1 - 
퐸 -1 - 

 

After the first step, from vertex 퐴, we can reach 퐵 and 퐶. So, in the 퐷푖푠푡푎푛푐푒 table we update the reachability of 퐵 and 퐶 with their costs and 
the same is shown below. 
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푆ℎ표푟푡푒푠푡 푝푎푡ℎ 푓푟표푚 퐵, 퐶 푓푟표푚 퐴 
 
 

Now, let us select the minimum distance among all. The minimum distance vertex is 퐶. That means, we have to reach other vertices from 
these two vertices (퐴 and 퐶). For example, 퐵 can be reached from 퐴 and also from 퐶. In this case we have to select the one which gives the 
lowest cost. Since reaching 퐵 through 퐶 is giving the minimum cost (1 + 2), we update the 퐷푖푠푡푎푛푐푒 table for vertex 퐵 with cost 3 and the 
vertex from which we got this cost as 퐶. 
 

 
 
 
 
 
 
 

 

푆ℎ표푟푡푒푠푡 푝푎푡ℎ 푡표 퐵, 퐷 푢푠푖푛푔 퐶 푎푠 푖푛푡푒푟푚푒푑푖푎푡푒 푣푒푟푡푒푥 
 

The only vertex remaining is  퐸. To reach 퐸, we have to see all the paths through which we can reach 퐸 and select the one which gives the 
minimum cost. We can see that if we use 퐵 as the intermediate vertex through 퐶 we get the minimum cost. 
 
 
 
 
 
 
 
 

The final minimum cost tree which Dijkstra’s algorithm generates is: 
 
 

 
 
 
 
 
 

Performance 
 

In Dijkstra’s algorithm, the efficiency depends on the number of deleteMins (푉 deleteMins) and updates for priority queues (퐸 updates) that 
are used. If a 푠푡푎푛푑푎푟푑 푏푖푛푎푟푦 ℎ푒푎푝 is used then the complexity is O(퐸푙표푔푉). The term 퐸푙표푔푉 comes from 퐸 updates (each update takes 
푙표푔푉) for the standard heap. If the set used is an array then the complexity is O(퐸 +  푉 ).  

Notes on Dijkstra’s Algorithm 
 

 It uses greedy method: Always pick the next closest vertex to the source. 
 It uses priority queue to store unvisited vertices by distance from 푠. 
 It does not work with negative weights. 

Difference between Unweighted Shortest Path and Dijkstra’s Algorithm 
 

1) To represent weights in the adjacency list, each vertex contains the weights of the edges (in addition to their identifier). 
2) Instead of ordinary queue we use priority queue [distances are the priorities] and the vertex with the smallest distance is selected for 

processing. 
3) The distance to a vertex is calculated by the sum of the weights of the edges on the path from the source to that vertex. 
4) We update the distances in case the newly computed distance is smaller than the old distance which we have already computed. 

Disadvantages of Dijkstra’s Algorithm 
 

 As discussed above, the major disadvantage of the algorithm is that it does a blind search, thereby wasting time and necessary 
resources. 

 Another disadvantage is that it cannot handle negative edges. This leads to acyclic graphs and most often cannot obtain the right 
shortest path. 

Relatives of Dijkstra’s Algorithm  
 

 The 퐵푒푙푙푚푎푛– 퐹표푟푑 algorithm computes single-source shortest paths in a weighted digraph. It uses the same concept as that of 
퐷푖푗푘푠푡푟푎’푠 algorithm but can handle negative edges as well. It has more running time than 퐷푖푗푘푠푡푟푎’푠 algorithm.  

퐴 0 - 
퐵 4 A 
퐶 1 A 
퐷 -1 - 
퐸 -1 - 

퐴 0 - 
퐵 3 C 
퐶 1 A 
퐷 5 C 
퐸 -1 - 

퐴 0 - 
퐵 3 C 
퐶 1 A 
퐷 5 C 
퐸 7 B 
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 Prim’s algorithm finds a minimum spanning tree for a connected weighted graph. It implies that a subset of edges that form a tree 
where the total weight of all the edges in the tree is minimized. 

Bellman-Ford Algorithm 
 

The Bellman-Ford algorithm is a graph search algorithm that finds the shortest path between a given source vertex and all other vertices in 
the graph. This algorithm can be used on both weighted and unweighted graphs. Like Dijkstra's shortest path algorithm, the Bellman-Ford 
algorithm is guaranteed to find the shortest path in a graph. If the graph has negative edge costs, then 퐷푖푗푘푠푡푟푎′푠 algorithm does not work. 
Though it is slower than Dijkstra's algorithm, Bellman-Ford is capable of handling graphs that contain negative edge weights, so it is more 
versatile. It is worth noting that if there exists a negative cycle in the graph, then there is no shortest path. Going around the negative cycle an 
infinite number of times would continue to decrease the cost of the path (even though the path length is increasing). Because of this, Bellman-
Ford can also detect negative cycles which is a useful feature. 
 

The Bellman-Ford algorithm operates on an input graph, G, with |V| vertices and |E| edges. A single source vertex, s, must be provided as 
well, as the Bellman-Ford algorithm is a single-source shortest path algorithm. No destination vertex needs to be supplied, however, because 
Bellman-Ford calculates the shortest distance to all vertices in the graph from the source vertex.  
 

The Bellman-Ford algorithm, like Dijkstra's algorithm, uses the principle of relaxation to find increasingly accurate path length. Bellman-
Ford, though, tackles two main issues with this process: 
 

1. If there are negative weight cycles, the search for a shortest path will go on forever. 
2. Choosing a bad ordering for relaxations leads to exponential relaxations. 

 

The detection of negative cycles is important, but the main contribution of this algorithm is in its ordering of relaxations. Relaxation is the 
most important step in Bellman-Ford. It is what increases the accuracy of the distance to any given vertex. Relaxation works by continuously 
shortening the calculated distance between vertices comparing that distance with other known distances. 
 

Bellman Ford algorithm works by overestimating the length of the path from the starting vertex to all other vertices. Then it iteratively relaxes 
those estimates by finding new paths that are shorter than the previously overestimated paths. Take the baseball example. Let's say I think the 
distance to the baseball stadium is 30 miles. However, I know that the distance to the corner right before the stadium is 15 miles, and I know 
that from the corner to the stadium, the distance is 1 mile. Clearly, the distance from me to the stadium is at most 16 miles. So, I can update 
my belief to reflect that. That is one cycle of relaxation, and it's done over and over until the shortest paths are found. 
 

The problem with 퐷푖푗푘푠푡푟푎′푠 algorithm is that once a vertex 푢 is declared known, it is possible that from some other, unknown vertex 푣 
there is a path back to 푢 that is very negative. In such case, taking a path from 푠 to 푣 back to 푢 is better than going from 푠 to 푢 without using 
푣. A combination of Dijkstra's algorithm and unweighted algorithms will solve the problem. Initialize the queue with 푠. Then, at each stage, 
we 퐷푒푄푢푒푢푒 a vertex 푣. We find all vertices w adjacent to 푣 such that, 
 

푑푖푠푡푎푛푐푒 푡표 푣 +  푤푒푖푔ℎ푡(푣, 푤) <  old distance to w 
 

We update w old distance and path, and place 푤 on a queue if it is not already there. A bit can be set for each vertex to indicate presence 
in the queue. We repeat the process until the queue is empty.   
 

      public void BellmanFordAlgorithm(Graph G, int s) { 
 LLQueue Q = new LLQueue(); 
 int v, w; 
 Q.enQueue( s); 
                 // assume the Distance table is filled with INT_MAX 
 Distance[s] = 0; 
                while ((!Q.isEmpty()) { 
                          v = Q.deQueue(); 
                          for all adjacent vertices w of v { 
                                       Compute new distance d= Distance[v] + weight[v][w]; 
                                        
                                       if(old distance to w > new distance d ) { 
                                                    Distance[v] = (distance to v) + weight[v][w]); 
                                                    Path[w] = v; 
                                                    if(w is there in queue) 
                                                                 Q.enQueue( w); 
                                       }  
                          } 
             } 
      } 
 

This algorithm works if there are no negative-cost cycles. Each vertex can DeQueue at most |V| times, so the running time is  O(|퐸| . |푉|) if 
adjacency lists are used.  

Overview of Shortest Path Algorithms 
 

Shortest path in unweighted graph [푀표푑푖푓푖푒푑 퐵퐹푆] O(|퐸|  + |푉|) 
Shortest path in weighted graph [퐷푖푗푘푠푡푟푎’푠] O (|퐸| 푙표푔 |푉|) 
Shortest path in weighted graph with negative edges [퐵푒푙푙푚푎푛 − 퐹표푟푑] O (|퐸|. |푉|) 
Shortest path in weighted acyclic graph O(|퐸|  + |푉|) 
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9.8 Minimal Spanning Tree 
 

The 푆푝푎푛푛푖푛푔 푡푟푒푒 of a graph is a subgraph that contains all the vertices and is also a tree. A graph may have many spanning trees. As an 
example, consider a graph with 4 vertices as shown below. Let us assume that the corners of the graph are vertices. 
 
 

                           Vertices         Edges 
 
 
 

For this simple graph, we can have multiple spanning trees as shown below. 
 

 
 
 

What is a Minimum Spanning Tree? 
 

The cost of the spanning tree is the sum of the weights of all the edges in the tree. There can be many spanning trees. Minimum spanning 
tree is the spanning tree where the cost is minimum among all the spanning trees. There also can be many minimum spanning trees. 
 

Minimum spanning tree has direct application in the design of networks. It is used in algorithms approximating the travelling salesman 
problem, multi-terminal minimum cut problem and minimum-cost weighted perfect matching. 
 

We assume that the given graphs are weighted graphs. If the graphs are unweighted graphs then we can still use the weighted graph algorithms 
by treating all weights as equal. A 푚푖푛푖푚푢푚 푠푝푎푛푛푖푛푔 푡푟푒푒 of an undirected graph 퐺 is a tree formed from graph edges that connect all the 
vertices of 퐺 with minimum total cost (weights). A minimum spanning tree exists only if the graph is connected. There are two famous 
algorithms for this problem:  
 

 푃푟푖푚′푠 Algorithm 
 퐾푟푢푠푘푎푙′푠 Algorithm 

Prim's Algorithm 
 

Prim’s algorithm uses 푔푟푒푒푑푦 approach to find the minimum spanning tree. Prim's algorithm shares a similarity with the shortest path first 
algorithms. In Prim’s algorithm we grow the spanning tree from a starting position. Prim's algorithm is almost same as Dijkstra's algorithm. 
Like in Dijkstra's algorithm, in Prim's algorithm also we keep values 푑푖푠푡푎푛푐푒 and 푝푎푡ℎ푠 in distance table. The only exception is that since 
the definition of 푑푖푠푡푎푛푐푒 is different and as a result the updating statement also changes little. The update statement is simpler than before.  
 

In Prim’s algorithm, we will start with an arbitrary node (it doesn’t matter which one) and mark it. In each iteration we will mark a new vertex 
that is adjacent to the one that we have already marked. As a greedy algorithm, Prim’s algorithm will select the cheapest edge and mark the 
vertex.  
 

public void Prims(Graph G, int s) { 
    Heap PQ = new Heap(); 
    int v, w; 
    PQ.enQueue(s); 
    // assume the Distance table is filled with -1 
    Distance[s] = 0; 
    while ((!PQ.isEmpty()) { 
        v = PQ.DeleteMin(); 
        for all adjacent vertices w of v { 
            Compute new distance d= Distance[v] + weight[v][w]; 
            if(Distance[w] == -1) { 
                Distance[w] = weight[v][w]; 
                Insert w in the priority queue with priority d 
                Path[w] = v; 
            } 
            if(Distance[w]  > new distance d) { 
                Distance[w] = weight[v][w]; 
                Update priority of vertex w to be d; 
                Path[w] = v; 
            } 
        } 
    } 
} 

 

The entire implementation of this algorithm is identical to that of Dijkstra's algorithm. The running time is O(|푉| ) without heaps [good for 
dense graphs], and O(퐸푙표푔푉) using binary heaps [good for sparse graphs]. 

Kruskal’s Algorithm 
 

Kruskal's algorithm is a minimum spanning tree algorithm that uses the 푔푟푒푒푑푦 approach. This algorithm treats the graph as a forest and 
every node it has as an individual tree. A tree connects to another only and only if, it has the least cost among all available options and does 
not violate MST properties. Kruskal’s Algorithm builds the spanning tree by adding edges one by one into a growing spanning tree. 
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The algorithm starts with V different trees (V is the vertices in the graph). While constructing the minimum spanning tree, every time Kruskal’s 
algorithm selects an edge that has minimum weight and then adds that edge if it doesn’t create a cycle. So, initially, there are |V| single-node 
trees in the forest. Adding an edge merges two trees into one. When the algorithm is completed, there will be only one tree, and that is the 
minimum spanning tree.  

Algorithm 
 

 Sort the graph edges with respect to their weights. 
 Start adding edges to the minimum snapping tree from the edge with the smallest weight until the edge of the largest weight. 
 Only add edges which doesn't form a cycle, edges which connect only disconnected components. 

 

The greedy Choice is to put the smallest weight edge that does not because a cycle in the MST constructed so far. 
 

There are two ways of implementing Kruskal’s algorithm: 
 

 By using disjoint sets: Using UNION and FIND operations 
 By using priority queues: Maintains weights in priority queue 

 

So now the question is how to check if  vertices are connected or not ? 
 

This could be done using DFS which starts from the first vertex, then check if the second vertex is visited or not. But DFS will make time 
complexity large as it has an order of O(E+V) where V is the number of vertices, E is the number of edges. Disjoint sets are sets whose 
intersection is the empty set so it means that they don't have any element in common. 
 

The appropriate data structure is the UNION/FIND algorithm [for implementing forests]. Two vertices belong to the same set if and only if 
they are connected in the current spanning forest. Each vertex is initially in its own set. If 푢 and 푣 are in the same set, the edge is rejected 
because it forms a cycle. Otherwise, the edge is accepted, and a UNION is performed on the two sets containing 푢 and 푣.  
 

As an example, consider the following graph (the edges show the weights). 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Now let us perform Kruskal’s algorithm on this graph. We always select the edge which has minimum weight.  
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From the above graph, the edges which have 
minimum weight (cost) are: AD and BE. 
From these two we can select one of them and 
let us assume that we select AD (dotted line). 
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BE now has the lowest cost and we select it 
(dotted lines indicate selected edges). 
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      public void Kruskal(Graph G) { 
             //Refer to 퐷푖푠푗표푖푛푡푆푒푡푠  Chapter 
             S = ф;   // At the end S will contains the edges of minimum spanning trees 
             for (int v = 0; v< G→V; v++) 
                  MakeSet (v); 
             Sort edges of E by increasing weights w; 
             for each edge (u, v) in E { //from sorted list 

             if(FIND (u) != FIND (v)) { 
                       S = S  ∪  {(u, v)}; 

                                       UNION (u, v); 
                          } 
             }  
             return S; 
      }        

Note: For implementation of UNION and FIND operations, refer to the 퐷푖푠푗표푖푛푡 푆푒푡푠 퐴퐷푇 chapter.  
The worst-case running time of this algorithm is O(퐸푙표푔퐸), which is dominated by the heap operations. That means, since we are constructing 
the heap with E edges, we need O(퐸푙표푔퐸) time to do that.  
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DF is the next edge that has the lowest cost 
(6). 
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Next, AC and CE have the low cost of 7 and 
we select AC. 
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Then we select CE as its cost is 7 and it does 
not form a cycle. 
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The next lowest cost edges are CB and EF. 
But if we select CB, then it forms a cycle. So, 
we discard it. This is also the case with EF. So, 
we should not select those two. And the next 
low cost is 9 (DC and EG). Selecting DC 
forms a cycle so we discard it. Adding EG will 
not form a cycle and therefore with this edge 
we complete all vertices of the graph. 
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9.9 Graph Algorithms: Problems & Solutions 
 

Problem-1 In an undirected simple graph with 푛 vertices, what is the maximum number of edges? Self loops are not allowed. 
 

Solution: Since every node can connect to all other nodes, the first node can connect to 푛 − 1 nodes. The second node can connect to 푛 − 2 

nodes [since one edge is already there from the first node]. The total number of edges is: 1 +  2 +  3 + ⋯ + 푛 − 1 = ( )
 edges.  

 

Problem-2 How many different adjacency matrices does a graph with 푛 vertices and 퐸 edges have? 
 

Solution: It's equal to the number of permutations of 푛 elements. i.e., 푛!. 
 

Problem-3 How many different adjacency lists does a graph with 푛 vertices have? 
 

Solution: It's equal to the number of permutations of edges. i.e., 퐸!. 
 

Problem-4 Which undirected graph representation is most appropriate for determining whether or not a vertex is isolated (is not 
connected to any other vertex)? 

 

Solution: Adjacency List. If we use the adjacency matrix, then we need to check the complete row to determine whether that vertex has edges 
or not. By using the adjacency list, it is very easy to check, and it can be done just by checking whether that vertex has NULL for next pointer 
or not [NULL indicates that the vertex is not connected to any other vertex]. 
 

Problem-5 For checking whether there is a path from source 푠 to target 푡, which one is best among disjoint sets and DFS? 
 

Solution: The table below shows the comparison between disjoint sets and DFS. The entries in the table represent the case for any pair of 
nodes (for 푠 and 푡). 
 

Method Processing Time Query Time Space 
Union-Find 푉 +   퐸 푙표푔푉 푙표푔푉 푉 

DFS 퐸 +  푉 1 퐸 +  푉 
 

Problem-6 What is the maximum number of edges a directed graph with 푛 vertices can have and still not contain a directed cycle? 
 

Solution: The number is V (V −  1)/2. Any directed graph can have at most 푛  edges. However, since the graph has no cycles it cannot 
contain a self loop, and for any pair 푥, 푦 of vertices, at most one edge from (푥, 푦) and (푦, 푥) can be included. Therefore the number of edges 
can be at most (V −  V)/2 as desired. It is possible to achieve V(V −  1)/2 edges. Label 푛 nodes 1, 2. . . 푛 and add an edge (x, y) if and only 
if 푥 <  푦. This graph has the appropriate number of edges and cannot contain a cycle (any path visits an increasing sequence of nodes). 
 

Problem-7 How many simple directed graphs with no parallel edges and self loops are possible in terms of 푉? 
  

Solution: (V) × (V − 1). Since, each vertex can connect to V − 1 vertices without self loops. 
 

Problem-8 Earlier in this chapter, we discussed minimum spanning tree algorithms. Now, give an algorithm for finding the maximum-
weight spanning tree in a graph? 

 

Solution:  
 
 
 
 
 
 
 
 
 

Using the given graph, construct a new graph with the same nodes and edges. But instead of using the same weights, take the negative of their 
weights. That means, weight of an edge = negative of weight of the corresponding edge in the given graph. Now, we can use existing 푚푖푛푖푚푢푚 
푠푝푎푛푛푖푛푔 푡푟푒푒 algorithms on this new graph. As a result, we will get the maximum-weight spanning tree in the original one. 
 

Problem-9 Differences between DFS and BFS? 
 

Solution: 
DFS BFS 

Backtracking is possible from a dead end  
 

Backtracking is not possible  
 Vertices from which exploration is 

incomplete are processed in a LIFO order 
The vertices to be explored are organized as a FIFO queue  

Search is done in one particular direction The vertices at the same level are maintained in parallel  
 

Problem-10 Give an algorithm for checking whether a given graph 퐺 has simple path from source 푠 to destination 푑. Assume the 
graph 퐺 is represented using adjacent matrix. 

 

Solution: For each vertex call 퐷퐹푆 and check whether the current vertex is the same as the destination vertex or not. If they are the same, 
then return 1. Otherwise, call the 퐷퐹푆 on its unvisited neighbors. One important thing to note here is that, we are calling the DFS algorithm 
on vertices which are not yet visited.  

 

      public void HasSimplePath(Graph G, int s, int d) { 

Given graph 
 

Transformed graph with negative edge weights 

-1 
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 Viisited[s] = 1; 
 if(s == d) return 1; 
 for(int t = 0; t < G.vertexCount; t++) { 
       if(G.adjMatrix[s][t] && !Viisited[t]) 
  if(DFS(G, t, d))  return 1; 
            } 
            return 0; 
      } 
 

Time Complexity: O(퐸). In the above algorithm, for each node, since we are not calling 퐷퐹푆 on all of its neighbors (discarding through 푖푓 
condition), Space Complexity: O(푉). 

 

Problem-11 Count simple paths for a given graph 퐺 has simple path from source s to destination d? Assume the graph is represented 
using the adjacent matrix. 

 

Solution: Similar to the discussion in Problem-9, start at one node and call DFS on that node. As a result of this call, it visits all the nodes that 
it can reach in the given graph. That means it visits all the nodes of the connected component of that node. If there are any nodes that have 
not been visited, then again start at one of those nodes and call DFS.  
 

Before the first DFS in each connected component, increment the connected components 푐표푢푛푡. Continue this process until all of the graph 
nodes are visited. As a result, at the end we will get the total number of connected components. The implementation based on this logic is 
given below. 
 

      public void CountSimplePaths(Graph G, int s, int d) { 
 Viisited[s] = 1; 
 if(s == d) { 

      count++; 
      Visited[s] = 0;  
      return; 

            } 
for(int t = 0; t < G.vertexCount; t++) { 

       if(G.adjMatrix[s][t] && !Viisited[t]){ 
  DFS(G, t, d); 
  Visited[t] = 0; 

      } 
            } 
      } 
 

Problem-12 All pairs shortest path problem: Find the shortest graph distances between every pair of vertices in a given graph. Let us 
assume that the given graph does not have negative edges.  
 

Solution: This can be solved by using the 퐹푙표푦푑 − 푊푎푟푠ℎ푎푙푙 푎푙푔표푟푖푡ℎ푚. This algorithm also works in the case of a weighted graph where 
the edges have negative weights. This algorithm is an example of Dynamic Programming – refer to the 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter. 
 

Problem-13 In Problem-12, how do we solve the all pairs shortest path problem if the graph has edges with negative weights? 
 

Solution:  This can be solved by using 퐹푙표푦푑 − 푊푎푟푠ℎ푎푙푙 푎푙푔표푟푖푡ℎ푚. This algorithm also works in the case of a weighted graph where the 
edges have negative weights. This algorithm is an example of Dynamic Programming and refer 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter. 
 

Problem-14 DFS Application: 퐶푢푡 푉푒푟푡푒푥 or 퐴푟푡푖푐푢푙푎푡푖표푛 푃표푖푛푡푠. 
 

Solution: In an undirected graph, a 푐푢푡 푣푒푟푡푒푥 (or articulation point) is a vertex, and if we remove it, then the graph splits into two 
disconnected components. As an example, consider the following figure. Removal of the “퐷” vertex divides the graph into two connected 
components ({퐸, 퐹} and {퐴, 퐵, 퐶, 퐺}). Similarly, removal of the "퐶" vertex divides the graph into ({퐺} and {퐴, 퐵, 퐷, 퐸, 퐹}). For this graph, 퐴 
and 퐶 are the cut vertices.  
 

Note: A connected, undirected graph is called 푏푖 − 푐표푛푛푒푐푡푒푑 if the graph is still connected after removing any vertex. 
 
 
 
 
 
 
 

퐷퐹푆 provides a linear-time algorithm (O(푛)) to find all cut vertices in a connected graph. Starting at any vertex, call a 퐷퐹푆 and number the 
nodes as they are visited. For each vertex 푣, we call this DFS number 푑푓푠푛푢푚(v). The tree generated with DFS traversal is called 퐷퐹푆 
푠푝푎푛푛푖푛푔 푡푟푒푒. Then, for every vertex 푣 in the 퐷퐹푆 spanning tree, we compute the lowest-numbered vertex, which we call 푙표푤(푣), that is 
reachable from 푣 by taking zero or more tree edges and then possibly one back edge (in that order).  
 

Based on the above discussion, we need the following information for this algorithm: the 푑푓푠푛푢푚 of each vertex in the 퐷퐹푆 tree (once it gets 
visited), and for each vertex 푣, the lowest depth of neighbors of all descendants of 푣 in the 퐷퐹푆 tree, called the 푙표푤.  
 

The 푑푓푠푛푢푚 can be computed during DFS. The low of 푣 can be computed after visiting all descendants of 푣 (i.e., just before 푣 gets popped 
off the 퐷퐹푆 stack) as the minimum of the 푑푓푠푛푢푚 of all neighbors of 푣 (other than the parent of 푣 in the 퐷퐹푆 tree) and the 푙표푤 of all 
children of 푣 in the 퐷퐹푆 tree. 
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The root vertex is a cut vertex if and only if it has at least two children. A non-root vertex u is a cut vertex if and only if there is a son 푣 of 푢 
such that 푙표푤(푣)  ≥  푑푓푠푛푢푚(푢). This property can be tested once the 퐷퐹푆 is returned from every child of 푢 (that means, just before u gets 
popped off the DFS stack), and if true, 푢 separates the graph into different bi-connected components. This can be represented by computing 
one bi-connected component out of every such 푣 (a component which contains 푣 will contain the sub-tree of 푣, plus 푢), and then erasing the 
sub-tree of 푣 from the tree. For the given graph, the 퐷퐹푆 tree with 푑푓푠푛푢푚/푙표푤 can be given as shown in the figure below. The 
implementation for the above discussion is: 
 

      int adjMatrix [256] [256] ;  
      int dfsnum [256], num = 0, low [256];  
      public void CutVertices( int u ) { 
 low[u] = dfsnum[u] = num++; 
 for (int v = 0 ; v < 256; ++v ) { 
  if(adjMatrix[u][v] && dfsnum[v] == -1) { 
   CutVertices( v ) ; 
   if(low[v] > dfsnum[u]) 
    System.out.println(“Cut Vetex:” + u); 
   low[u] = min ( low[u] , low[v] ) ; 
  }  
  else // (u,v) is a back edge 
   low[u ] = min(low[u] , dfsnum[v]) ; 
 } 
      } 
 

Problem-15 Let 퐺 be a connected graph of order 푛. What is the maximum number of cut-vertices that 퐺 can contain? 
 

Solution: 푛 −  2.  As an example, consider the following graph. In the graph below, except for the vertices 1 and 푛, all the remaining vertices 
are cut vertices. This is because removing 1 and 푛 vertices does not split the graph into two. This is a case where we can get the maximum 
number of cut vertices. 
 
 
 

Problem-16 DFS Application: 퐶푢푡 퐵푟푖푑푔푒푠 or 퐶푢푡 퐸푑푔푒푠 
 

Solution:  Definition: Let 퐺 be a connected graph. An edge 푢푣 in 퐺 is called a 푏푟푖푑푔푒 of 퐺 if 퐺 –  푢푣 is disconnected.  
 

As an example, consider the following graph. 
 
 
 
 
 
 

In the above graph, if we remove the edge 푢푣 then the graph splits into two components. For this graph, 푢푣 is a bridge. The discussion we 
had for cut vertices holds good for bridges also. The only change is, instead of printing the vertex, we give the edge. The main observation is 
that an edge (푢, 푣) cannot be a bridge if it is part of a cycle. If (푢, 푣) is not part of a cycle, then it is a bridge.  
 

We can detect cycles in 퐷퐹푆 by the presence of back edges. (푢, 푣) is a bridge if and only if none of v or 푣’푠 children has a back edge to 푢 or 
any of 푢’푠 ancestors. To detect whether any of 푣’푠 children has a back edge to 푢’푠 parent, we can use a similar idea as above to see what is 
the smallest 푑푓푠푛푢푚 reachable from the subtree rooted at 푣. 
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      int dfsnum[256], num = 0, low [256];  
      public void Bridges( Graph G, int u ) { 
 low[u] = dfsnum[u] = num++; 
 for (int v = 0 ; G.vertexCount; ++v ) { 
  if(G.adjMatrix[u][v] && dfsnum[v] == -1) { 
   cutVertices( v ) ; 
   if(low[v] > dfsnum[u]) 
    print (u,v)  as a bridge 
   low[u] = min ( low[u] , low[v] ) ; 
  }  
  else // (u,v) is a back edge 
   low[u ] = min(low[u] , dfsnum[v]) ; 
 } 
      } 
 

Problem-17 DFS Application: Discuss 퐸푢푙푒푟 Circuits 
 

Solution:  Before discussing this problem let us see the terminology: 
 

 퐸푢푙푒푟푖푎푛 푡표푢푟 – a path that contains all edges without repetition. 
 퐸푢푙푒푟푖푎푛 푐푖푟푐푢푖푡 – a path that contains all edges without repetition and starts and ends in the same vertex. 
 퐸푢푙푒푟푖푎푛 푔푟푎푝ℎ – a graph that contains an Eulerian circuit. 
 퐸푣푒푛 푣푒푟푡푒푥: a vertex that has an even number of incident edges. 
 푂푑푑 푣푒푟푡푒푥: a vertex that has an odd number of incident edges. 

 

퐸푢푙푒푟 circuit: For a given graph we have to reconstruct the circuits using a pen, drawing each line exactly once. We should not lift the pen 
from the paper while drawing. That means, we must find a path in the graph that visits every edge exactly once and this problem is called an 
퐸푢푙푒푟 푝푎푡ℎ (also called 퐸푢푙푒푟 푡표푢푟) or 퐸푢푙푒푟 푐푖푟푐푢푖푡 푝푟표푏푙푒푚. This puzzle has a simple solution based on DFS.  
 

An 퐸푢푙푒푟 circuit exists if and only if the graph is connected and the number of neighbors of each vertex is even. Start with any node, select 
any untraversed outgoing edge, and follow it. Repeat until there are no more remaining unselected outgoing edges. For example, consider the 
following graph: A legal Euler Circuit of this graph is 0 1 3 4 1 2 3 5 4 2 0. 
 

 
 
 
 
 
 
 
 

If we start at vertex 0, we can select the edge to vertex 1, then select the edge to vertex 2, then select the edge to vertex 0. There are now no 
remaining unchosen edges from vertex 0: 
 
 
 
 
 
 
 
 

We now have a circuit 0,1,2,0 that does not traverse every edge. So, we pick some other vertex that is on that circuit, say vertex 1. We then 
do another depth first search of the remaining edges. Say we choose the edge to node 3, then 4, then 1. Again we are stuck. There are no 
more unchosen edges from node 1. We now splice this path 1,3,4,1 into the old path 0,1,2,0 to get: 0,1,3,4,1,2,0. The unchosen edges now 
look like this: 
 
 
 
 
 
 
 
 

We can pick yet another vertex to start another DFS. If we pick vertex 2, and splice the path 2,3,5,4,2, then we get the final circuit 
0,1,3,4,1,2,3,5,4,2,0. 
 

A similar problem is to find a simple cycle in an undirected graph that visits every vertex. This is known as the 퐻푎푚푖푙푡표푛푖푎푛 푐푦푐푙푒 푝푟표푏푙푒푚. 
Although it seems almost identical to the 퐸푢푙푒푟 circuit problem, no efficient algorithm for it is known.  
 

Notes: 
 A connected undirected graph is 퐸푢푙푒푟푖푎푛 if and only if every graph vertex has an even degree, or exactly two vertices with an odd 

degree. 
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 A directed graph is 퐸푢푙푒푟푖푎푛 if it is strongly connected and every vertex has an equal 푖푛 and 표푢푡 degree. 
 

Application: A postman has to visit a set of streets in order to deliver mails and packages. He needs to find a path that starts and ends at the 
post-office, and that passes through each street (edge) exactly once. This way the postman will deliver mails and packages to all the necessary 
streets, and at the same time will spend minimum time/effort on the road.  
 

Problem-18 DFS Application: Finding Strongly Connected Components. 
 

Solution: This is another application of DFS. In a directed graph, two vertices 푢 and 푣 are strongly connected if and only if there exists a path 
from 푢 to 푣 and there exists a path from 푣 to 푢. The strong connectedness is an equivalence relation.  
 

 A vertex is strongly connected with itself 
 If  a vertex 푢 is strongly connected to a vertex 푣, then 푣 is strongly connected to 푢 
 If a vertex 푢 is strongly connected to a vertex 푣, and 푣 is strongly connected to a vertex 푥, then 푢 is strongly connected to 푥 

 

What this says is, for a given directed graph we can divide it into strongly connected components. This problem can be solved by performing 
two depth-first searches. With two DFS searches we can test whether a given directed graph is strongly connected or not. We can also produce 
the subsets of vertices that are strongly connected.  
 

Algorithm 
 Perform DFS on given graph 퐺. 
 Number vertices of given graph 퐺 according to a post-order traversal of depth-first spanning forest. 
 Construct graph 퐺  by reversing all edges in 퐺. 
 Perform DFS on 퐺 : Always start a new DFS (initial call to Visit) at the highest-numbered vertex. 
 Each tree in the resulting depth-first spanning forest corresponds to a strongly-connected component. 

 

Why this algorithm works? 
 

Let us consider two vertices, 푣 and 푤. If they are in the same strongly connected component, then there are paths from 푣 to w and from 푤 
to 푣 in the original graph 퐺, and hence also in 퐺 . If two vertices 푣 and 푤 are not in the same depth-first spanning tree of 퐺 , clearly they 
cannot be in the same strongly connected component. As an example, consider the graph shown below on the left. Let us assume this graph 
is 퐺. 
 
 
 
 
 
 
 
 

 
 
 

Now, as per the algorithm, performing 퐷퐹푆 on this G graph gives the following diagram. The dotted line from 퐶 to 퐴 indicates a back edge. 
Now, performing post order traversal on this tree gives: 퐷, 퐶, 퐵 and 퐴.  
 

Vertex Post Order Number 
A 4 
B 3 
C 2 
D 1 

 

Now reverse the given graph 퐺 and call it 퐺  and at the same time assign postorder numbers to the vertices. The reversed graph 퐺  will look 
like:  
 
 
 
 
 
 
 
 

The last step is performing DFS on this reversed graph 퐺 . While doing 퐷퐹푆, we need to consider the vertex which has the largest DFS 
number. So, first we start at 퐴 and with 퐷퐹푆 we go to 퐶 and then 퐵. At B, we cannot move further. This says that {퐴, 퐵, 퐶} is a strongly 
connected component. Now the only remaining element is 퐷 and we end our second 퐷퐹푆 at 퐷. So the connected components are: {퐴, 퐵, 퐶} 
and {퐷}. 
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The implementation based on this discussion can be shown as: 
 

//Graph represented in adj matrix. 
      int adjMatrix [256][256], table[256]; 
      vector <int> st ;  
      int counter = 0 ;  
      //This table contains the DFS Search number 
      int dfsnum [256], num = 0, low[256] ;  
      public void StronglyConnectedComponents( int u ) { 
 low[u] = dfsnum[ u ] = num++; 
 Push(st, u) ; 
 for( int v = 0 ; v < 256; ++v ) { 
  if(graph[u][v] && table[v] == -1) { 
   if( dfsnum[v] == -1)  

                              StronglyConnectedComponents(v) ;  
                                    low[u] = min(low[u] , low[v]) ; 
  } 
 } 
 if(low[u] == dfsnum[u]) { 
  while( table[u] != counter) { 
   table[st.back()] = counter; 
   Push(st) ; 
  } 
  ++ counter; 
 } 
      } 
 

Problem-19 Count the number of connected components of Graph 퐺 which is represented in adjacent matrix. 
 

Solution: This problem can be solved with one extra counter in 퐷퐹푆. 
 

      //Visited[] is a global array. 
      int Visited[G→V]; 
      public void DFS(Graph G, int u) { 
            Visited[u] = 1; 
            for( int v = 0; v < G.vertexCount; v++ ) { 
                  /* For example, if the adjacency matrix is used for representing the                        
                     graph, then the condition to be used for finding unvisited adjacent            
                     vertex of u  is: if( !Visited[v] && G→Adj[u][v] ) */ 
 

                        for each unvisited adjacent node v of u {   
                  DFS(v);  

                        } 
            } 
      } 
      public void DFSTraversal(Graph G) { 
 int count = 0; 
 for (int i = 0; i< G.vertexCount;i++) 
  Visited[i]=0; 
 //This loop is required if the graph has more than one component 
 for (int i = 0; i< G.vertexCount;i++) 
  if(!Visited[i]) { 
   DFS(G, i); 
   count++; 
                         }   

 return count; 
      }  
 

Time Complexity: Same as that of DFS and it depends on implementation. With adjacency matrix the complexity is O(|퐸| + |푉|) and with 
adjacency matrix the complexity is O(|푉| ).  
 

Problem-20 Can we solve the Problem-19, using BFS? 
 

Solution: Yes. This problem can be solved with one extra counter in BFS. 
 

      public void BFS(Graph G, int u) { 
 int v, 
                LLQueue Q = new LLQueue(); 
                Q.enQueue( u); 
                while(!Q.isEmpty()) { 
                      u = Q.deQueue(); 
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                      Process u; //For example, print 
                  Visited[s]=1; 
                  /* For example, if the adjacency matrix is used for representing the                        
                  graph, then the condition be used for finding unvisited adjacent            
                     vertex of u  is: if( !Visited[v] && G→Adj[u][v] ) */ 
                  for each unvisited adjacent node v of u { 
  Q.enQueue( v); 

} 
            } 
      } 
      public void BFSTraversal(Graph G) { 
 for (int i = 0; i< G.vertexCount;i++) 
  Visited[i]=0; 
 //This loop is required if the graph has more than one component 
 for (int i = 0; i< G.vertexCount; i++) 
  if(!Visited[i]) 
   BFS(G, i); 
      } 
 

Time Complexity: Same as that of 퐵퐹푆 and it depends on implementation. With adjacency matrix the complexity is O(|퐸| + |푉|) and with 
adjacency matrix the complexity is O(|푉| ).  
 

Problem-21 Let us assume that 퐺(푉, 퐸) is an undirected graph. Give an algorithm for finding a spanning tree which takes O(|퐸|) 
time complexity (not necessarily a minimum spanning tree). 

 

Solution:  The test for a cycle can be done in constant time, by marking vertices that have been added to the set 푆. An edge will introduce a 
cycle, if both its vertices have already been marked. 
 

Algorithm: 
S = {}; //Assume S is a set 
for each edge e ∈  E { 

if(adding e to S doesn’t form a cycle) { 
add e to S; 
mark e; 

} 
} 
 

Problem-22 Is there any other way of solving Problem-20? 
 

Solution: Yes. We can run 퐵퐹푆 and find the 퐵퐹푆 tree for the graph (level order tree of the graph). Then start at the root element and keep 
moving to the next levels and at the same time we have to consider the nodes in the next level only once. That means, if we have a node with 
multiple input edges then we should consider only one of them; otherwise they will form a cycle. 
 

Problem-23 Detecting a cycle in undirected graph 
 

Solution: An undirected graph is acyclic if and only if a 퐷퐹푆 yields no back edges, edges (푢, 푣) where 푣 has already been discovered and is an 
ancestor of 푢. 
 

 Execute 퐷퐹푆 on the graph. 
 If there is a back edge - the graph has a cycle. 

 

If the graph does not contain a cycle, then |퐸|  <  |푉| and 퐷퐹푆 cost O(|푉|). If the graph contains a cycle, then a back edge is discovered 
after 2|푉| steps at most. 
 

Problem-24 Detecting a cycle in DAG 
 

Solution:  
 
 
 
 
 
 

Cycle detection on a graph is different than on a tree. This is because in a graph, a node can have multiple parents. In a tree, the algorithm 
for detecting a cycle is to do a depth first search, marking nodes as they are encountered. If a previously marked node is seen again, then a 
cycle exists. This won’t work on a graph.  Let us consider the graph shown in the figure below. If we use a tree cycle detection algorithm, then 
it will report the wrong result. That means that this graph has a cycle in it. But the given graph does not have a cycle in it. This is because node 
3 will be seen twice in a 퐷퐹푆 starting at node 1. 
 

The cycle detection algorithm for trees can easily be modified to work for graphs. The key is that in a 퐷퐹푆 of an acyclic graph, a node whose 
descendants have all been visited can be seen again without implying a cycle. But, if a node is seen for the second time before all its descendants 
have been visited, then there must be a cycle.  
 

Can you see why this is? Suppose there is a cycle containing node A. This means that A must be reachable from one of its descendants. So 
when the 퐷퐹푆 is visiting that descendant, it will see 퐴 again, before it has finished visiting all of 퐴’푠 descendants. So there is a cycle.  
 

1 

3 2 
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In order to detect cycles, we can modify the depth first search.  
 

      public int DetectCycle(Graph G) { 
 for (int i = 0; i< G.vertexCount; i++) { 
       Visited[s]=0; 

      Predecessor[i] = 0; 
} 
for (int i = 0; i < G.vertexCount;i++) { 
 if(!Visited[i] && HasCycle(G, i)) 
  return 1; 
} 
return false;; 

      } 
      public int HasCycle(Graph G, int u) { 
 Visited[u]=1; 
 for (int i = 0; i< G.vertexCount; i++) { 
  if(G→Adj[s][i]) { 

             if(Predecessor[i] != u && Visited[i]) 
  return 1; 
       else { 
                        Predecessor[i] = u; 
                        return  HasCycle(G, i); 
            }  
} 

 return 0; 
      } 
 

Time Complexity: O(푉 +  퐸). 
 

Problem-25 Given a directed acyclic graph, give an algorithm for finding its depth. 
 

Solution: If it is an undirected graph, we can use the simple unweighted shortest path algorithm (check 푆ℎ표푟푡푒푠푡 푃푎푡ℎ 퐴푙푔표푟푖푡ℎ푚푠 section). 
We just need to return the highest number among all distances. For directed acyclic graph, we can solve by following the similar approach 
which we used for finding the depth in trees. In trees, we have solved this problem using level order traversal (with one extra special symbol 
to indicate the end of the level). 
 

      //Assuming the given  graph is a DAG 
      public int DepthInDAG( Graph G ) { 
 LLQueue Q = new LLQueue(); 
 int counter = 0; 
 int v, w; 
 for (v = 0; v< G.vertexCount; v++) 
  if( indegree[v] ==   0 ) 
   Q.enQueue(v); 

Q.enQueue( ‘$’ ); 
 while( !Q.isEmpty()) { 
  v = Q.deQueue(); 
  if(v == ‘$’) { 
   counter++; 
   if(!Q.isEmpty()) 

   Q.enQueue( ‘$’ ); 
                         } 
  for each w adjacent to v 
   if( --indegree[w] ==  0 ) 
    Q.enQueue(w );  
 } 
 Q.deleteQueue();  
 return counter; 
      } 
 

Total running time is O(푉 +  퐸) .  
 

Problem-26 How many topological sorts of the following dag are there? 
 

 
 
 
 

 

Solution: If we observe the above graph there are three stages with 2 vertices. In the early discussion of this chapter, we saw that topological 
sort picks the elements with zero indegree at any point of time. At each of the two vertices stages, we can first process either the top vertex or 
the bottom vertex. As a result, at each of these stages we have two possibilities. So the total number of possibilities is the multiplication of 
possibilities at each stage and that is, 2 × 2 × 2 = 8. 
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Problem-27 Unique topological ordering: Design an algorithm to determine whether a directed graph has a unique topological 
ordering.  

 

Solution: A directed graph has a unique topological ordering if and only if there is a directed edge between each pair of consecutive vertices 
in the topological order. This can also be defined as: a directed graph has a unique topological ordering if and only if it has a Hamiltonian 
path. If the digraph has multiple topological orderings, then a second topological order can be obtained by swapping a pair of consecutive 
vertices. 
 

Problem-28 Let us consider the prerequisites for courses at 퐼퐼푇 퐵표푚푏푎푦. Suppose that all prerequisites are mandatory, every course 
is offered every semester, and there is no limit to the number of courses we can take in one semester.  We would like to know the 
minimum number of semesters required to complete the major.  Describe the data structure we would use to represent this problem, 
and outline a linear time algorithm for solving it. 

 

Solution: Use a directed acyclic graph (DAG).  The vertices represent courses and the edges represent the prerequisite relation between 
courses at 퐼퐼푇 퐵표푚푏푎푦. It is a DAG, because the prerequisite relation has no cycles.   
 

The number of semesters required to complete the major is one more than the longest path in the dag.  This can be calculated on the DFS 
tree recursively in linear time.  The longest path out of a vertex 푥 is 0 if 푥 has outdegree 0, otherwise it is 1 + 푚푎푥 
{푙표푛푔푒푠푡 푝푎푡ℎ 표푢푡 표푓 푦 | (푥, 푦) 푖푠 푎푛 푒푑푔푒 표푓 퐺}.   
 

Problem-29 At one of the universities (say, 퐼퐼푇 퐵표푚푏푎푦), there is a list of courses along with their prerequisites. That means, two lists 
are given: 
퐴 - Courses list 
퐵 – Prerequisites: B contains couples (푥, 푦) where 푥, 푦 ∈  퐴 indicating that course 푥 can't be taken before course 푦. Let us consider a 
student who wants to take only one course in a semester. Design a schedule for this student. 

 

Example: A = {C-Lang, Data Structures, OS, CO, Algorithms, Design Patterns, Programming }. B = { (C-Lang, CO), (OS, CO), (Data 
Structures, Algorithms), (Design Patterns, Programming) }. 푂푛푒 푝표푠푠푖푏푙푒 푠푐ℎ푒푑푢푙푒 푐표푢푙푑 푏푒: 

Semester 1: Data Structures 
Semester 2: Algorithms 
Semester 3: C-Lang 
Semester 4: OS 
Semester 5: CO 
Semester 6: Design Patterns 
Semester 7: Programming 

 

Solution: The solution to this problem is exactly the same as that of topological sort. Assume that the courses names are integers in the range 
[1. . 푛], 푛 is known (푛 is not constant). The relations between the courses will be represented by a directed graph 퐺 =  (푉, 퐸), where 푉 are 
the set of courses and if course 푖 is prerequisite of course 푗, 퐸 will contain the edge (푖, 푗). Let us assume that the graph will be represented as 
an Adjacency list.  
 

First, let's observe another algorithm to topologically sort a DAG in O(|푉| + |퐸|). 
 

 Find in-degree of all the vertices - O(|푉| + |퐸|) 
 Repeat: 

Find a vertex v with in-degree=0 - O(|푉|) 
Output v and remove it from G, along with its edges - O(|푉|) 
Reduce the in-degree of each node u such as (푣, 푢) was an edge in G and keep a list of vertices with in-degree=0 - O(푑푒푔푟푒푒(푣)) 
Repeat the process until all the vertices are removed 
 

The time complexity of this algorithm is also the same as that of the topological sort and it is O(|푉|  + |퐸|).  
 

Problem-30 In Problem-29, a student wants to take all the courses in 퐴, in the minimal number of semesters. That means the student 
is ready to take any number of courses in a semester. Design a schedule for this scenario.  푂푛푒 푝표푠푠푖푏푙푒 푠푐ℎ푒푑푢푙푒 푖푠:  
푆푒푚푒푠푡푒푟 1: C-Lang, OS, Design Patterns 
푆푒푚푒푠푡푒푟 2: Data Structures, CO, Programming 
푆푒푚푒푠푡푒푟 3: Algorithms 
 

Solution: A variation of the above topological sort algorithm with a slight change: In each semester, instead of taking one subject, take all the 
subjects with zero indegree. That means, execute the algorithm on all the nodes with degree 0 (instead of dealing with one source in each 
stage, all the sources will be dealt and printed). 
 

Time Complexity: O(|푉|  + |퐸|). 
 

Problem-31 LCA of a DAG: Given a DAG and two vertices 푣 and 푤, find the 푙표푤푒푠푡 푐표푚푚표푛 푎푛푐푒푠푡표푟 of 푣 and 푤. The LCA of 
푣 and 푤 is an ancestor of 푣 and 푤 that has no descendants which are also ancestors of 푣 and 푤.  

 

Hint: Define the height of a vertex 푣 in a DAG to be the length of the longest path from 푟표표푡 to 푣. Among the vertices that are ancestors of 
both 푣 and 푤, the one with the greatest height is an LCA of 푣 and 푤.  
 

Problem-32 Shortest ancestral path: Given a DAG and two vertices 푣 and 푤, find the 푠ℎ표푟푡푒푠푡 푎푛푐푒푠푡푟푎푙 푝푎푡ℎ between 푣 and 푤. 
An ancestral path between 푣 and 푤 is a common ancestor 푥 along with a shortest path from 푣 to 푥 and a shortest path from 푤 to 푥. The 
shortest ancestral path is the ancestral path whose total length is minimized.  

 

Hint: Run BFS two times. First run from 푣 and second time from 푤. Find a DAG where the shortest ancestral path goes to a common 
ancestor 푥 that is not an LCA.  
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Problem-33 Let us assume that we have two graphs 퐺  and 퐺 . How do we check whether they are isomorphic or not? 
 

Solution: There are many ways of representing the same graph. As an example, consider the following simple graph. It can be seen that all 
the representations below have the same number of vertices and the same number of edges. 
 
 
 
 

Definition: Graphs G  = {V , E } and G  = {V , E } are isomorphic if 
1) There is a one-to-one correspondence from V  to V  and 
2) There is a one-to-one correspondence from E  to E  that map each edge of G  to G . 

 

Now, for the given graphs how do we check whether they are isomorphic or not? 
 

In general, it is not a simple task to prove that two graphs are isomorphic. For that reason we must consider some properties of isomorphic 
graphs. That means those properties must be satisfied if the graphs are isomorphic. If the given graph does not satisfy these properties then 
we say they are not isomorphic graphs.  
 

푃푟표푝푒푟푡푦: Two graphs are isomorphic if and only if for some ordering of their vertices their adjacency matrices are equal. 
 

Based on the above property we decide whether the given graphs are isomorphic or not. I order to check the property, we need to do some 
matrix transformation operations. 
 

Problem-34 How many simple undirected non-isomorphic graphs are there with 푛 vertices? 
 

Solution: We will try to answer this question in two steps. First, we count all labeled graphs. Assume all the representations below are labeled 
with {1, 2, 3} as vertices. The set of all such graphs for 푛 =  3 are: 
 
 
 
 
 
 
 

There are only two choices for each edge: it either exists or it does not. Therefore, since the maximum number of edges is n
2  (and since 

the maximum number of edges in an undirected graph with 푛 vertices is ( ) = n = ), the total number of undirected labeled graphs 

is 2 .  
 

Problem-35 For a given graph G with 푛 vertices how many spanning trees can we construct? 
 

Solution:  There is a simple formula for this problem and it is named after Arthur Cayley. For a given graph with 푛 labeled vertices the formula 
for finding number of trees on is 푛 . Below, the number of trees with different 푛 values is shown. 
 

n value Formula value:  푛  Number of Trees 

   

   

 

Problem-36 For a given graph G with 푛 vertices how many spanning trees can we construct? 
 

Solution:  The solution to this problem is same as that of Problem-35. It is just other way of asking the same problem. Because, the number 
of edges in both regular tree and spanning tree are same. 
 

Problem-37 Hamiltonian path in DAGs: Given a DAG, design a linear time algorithm to determine whether there is a path that visits 
each vertex exactly once.  

 

Solution: The 퐻푎푚푖푙푡표푛푖푎푛 path problem is an NP-Complete problem (for more details ref 퐶표푚푝푙푒푥푖푡푦 퐶푙푎푠푠푒푠 chapter). To solve this 
problem, we will try to give the approximation algorithm (which solves the problem, but it may not always produce the optimal solution). Let 
us consider the topological sort algorithm for solving this problem. Topological sort has an interesting property: that if all pairs of consecutive 
vertices in the sorted order are connected by edges, then these edges form a directed 퐻푎푚푖푙푡표푛푖푎푛 path in the DAG. If a 퐻푎푚푖푙푡표푛푖푎푛 
path exists, the topological sort order is unique. Also, if a topological sort does not form a 퐻푎푚푖푙푡표푛푖푎푛 path, the DAG will have two or 
more topological orderings. 
 

퐴푝푝푟표푥푖푚푎푡푖표푛 퐴푙푔표푟푖푡ℎ푚: Compute a topological sort and check if there is an edge between each consecutive pair of vertices in the 
topological order. 
 

In an unweighted graph, find a path from 퐬 to 퐭 that visits each vertex exactly once. The basic solution based on backtracking is, we start at 푠 
and try all of its neighbors recursively, making sure we never visit the same vertex twice. The algorithm based on this implementation can be 
given as: 
 

      boolean seenTable[32]; 

1 2 2 1 

1 

3 2 

3 

2 1 

2 

1 3 

3 3 
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      public void HamiltonianPath( Graph G, int u ) { 
 if( u == t )  
  /* Check that we have seen all vertices. */  
 else { 
  for( int v = 0; v < n; v++ )  
                                 if( !seenTable[v] && G.adjMatrix [u][v] ) { 
   seenTable[v] = true; 
   HamiltonianPath( v ); 
   seenTable[v] = false; 
  } 
 } 
      } 
 

Note that if we have a partial path from s to u using vertices s = v  , v  , . . . , v = u, then we don't care about the order in which we visited these 
vertices so as to figure out which vertex to visit next. All that we need to know is the set of vertices we have seen (the seenTable[] array) and 
which vertex we are at right now (u). There are 2  possible sets of vertices and n choices for  u. In other words, there are 2  possible 
푠푒푒푛푇푎푏푙푒[ ] arrays and n different parameters to HamiltonianPath(). What HamiltonianPath() does during any particular recursive call is 
completely determined by the 푠푒푒푛푇푎푏푙푒[ ] array and the parameter u.  
 

Problem-38 The 퐻푎푚푖푙푡표푛푖푎푛 푐푦푐푙푒 problem: Is it possible to traverse each of the vertices of a graph exactly once, starting and 
ending at the same vertex? 

 

Solution: Since the 퐻푎푚푖푙푡표푛푖푎푛 path problem is an NP-Complete problem, the 퐻푎푚푖푙푡표푛푖푎푛 cycle problem is an NP-Complete problem. 
A 퐻푎푚푖푙푡표푛푖푎푛 cycle is a cycle that traverses every vertex of a graph exactly once. There are no known conditions in which are both necessary 
and sufficient, but there are a few sufficient conditions. 
 

 For a graph to have a 퐻푎푚푖푙푡표푛푖푎푛 cycle the degree of each vertex must be two or more. 
 The Petersen graph does not have a 퐻푎푚푖푙푡표푛푖푎푛 cycle and the graph is given below. 

 
 

 
 
 
 

 In general, the more edges a graph has, the more likely it is to have a 퐻푎푚푖푙푡표푛푖푎푛 cycle. 
 Let G be a simple graph with n ≥ 3 vertices. If every vertex has degree at least , then G has a 퐻푎푚푖푙푡표푛푖푎푛 cycle. 

 The best known algorithm for finding a 퐻푎푚푖푙푡표푛푖푎푛 cycle has an exponential worst-case complexity. 
 

Note: For the approximation algorithm of 퐻푎푚푖푙푡표푛푖푎푛 path, refer to the 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter.  
 

Problem-39 What is the difference between 퐷푖푗푘푠푡푟푎’푠 and 푃푟푖푚′푠 algorithm? 
 

Solution: 퐷푖푗푘푠푡푟푎′푠 algorithm is almost identical to that of 푃푟푖푚′푠. The algorithm begins at a specific vertex and extends outward within the 
graph until all vertices have been reached. The only distinction is that 푃푟푖푚′푠 algorithm stores a minimum cost edge whereas 퐷푖푗푘푠푡푟푎′푠 
algorithm stores the total cost from a source vertex to the current vertex. More simply, 퐷푖푗푘푠푡푟푎′푠 algorithm stores a summation of minimum 
cost edges whereas 푃푟푖푚′푠 algorithm stores at most one minimum cost edge. 
 

Problem-40 Reversing Graph: Give an algorithm that returns the reverse of the directed graph (each edge from 푣 to 푤 is replaced by 
an edge from 푤 to 푣). 

 

Solution: In graph theory, the reverse (also called 푡푟푎푛푠푝표푠푒) of a directed graph 퐺 is another directed graph on the same set of vertices with 
all the edges reversed. That means, if 퐺 contains an edge (푢, 푣) then the reverse of 퐺 contains an edge (푣, 푢) and vice versa.  
 

Algorithm: 
      Graph ReverseTheDirectedGraph(Graph G) { 
 Create new graph with name ReversedGraph and let us assume that this will contain the reversed graph. 
 //The reversed graph also will contain same number of vertices and edges. 
 for each vertex of given graph G { 
  for each vertex w adjacent to v { 
   Add the w to v edge in ReversedGraph; 
   //That means we just need to reverse  
   //the bits in adjacency matrix. 
  } 
 } 
 return ReversedGraph; 
      } 
 

Problem-41 Travelling Sales Person Problem: Find the shortest path in a graph that visits each vertex at least once, starting and ending 
at the same vertex? 

 

Solution: The Traveling Salesman Problem (푇푆푃) is related to finding a Hamiltonian cycle. Given a weighted graph 퐺, we want to find the 
shortest cycle (may be non-simple) that visits all the vertices. 
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Approximation algorithm: This algorithm does not solve the problem but gives a solution which is within a factor of 2 of optimal (in the worst-
case). 
 

1) Find a Minimal Spanning Tree (MST). 
2) Do a DFS of the MST. 
 

For details, refer to the chapter on 퐶표푚푝푙푒푥푖푡푦 퐶푙푎푠푠푒푠. 
 

Problem-42 Discuss Bipartite matchings? 
 

Solution: In Bipartite graphs, we divide the graphs in to two disjoint sets, and each edge connects a vertex from one set to a vertex in another 
subset (as shown in figure). 
 

Definition: A simple graph 퐺 =  (푉, 퐸) is called a 푏푖푝푎푟푡푖푡푒 푔푟푎푝ℎ if its vertices can be divided into two disjoint sets 푉 = 푉 ∪ 푉 , such that 
every edge has the form 푒 = (푎, 푏) where 푎 ∈  푉  and 푏 ∈  푉 . One important condition is that no vertices both in 푉  or both in  푉  are 
connected. 

 

 

Properties of Bipartite Graphs 
 

 A graph is called bipartite if and only if the given graph does not have an odd length cycle. 
 A 푐표푚푝푙푒푡푒 푏푖푝푎푟푡푖푡푒 푔푟푎푝ℎ 퐾 .  is a bipartite graph that has each vertex from one set adjacent to each vertex from another set. 

 

 

 
 
 

 A subset of edges 푀 ϲ 퐸 is a 푚푎푡푐ℎ푖푛푔 if no two edges have a common vertex. As an example, matching sets of edges are 
represented with dotted lines. A matching 푀 is called 푚푎푥푖푚푢푚 if it has the largest number of possible edges. In the graphs, the 
dotted edges represent the alternative matching for the given graph. 

 
 
 
 
 
 

• A matching 푀 is 푝푒푟푓푒푐푡 if it matches all vertices. We must have 푉 = 푉  in order to have perfect matching. 
• An 푎푙푡푒푟푛푎푡푖푛푔 푝푎푡ℎ is a path whose edges alternate between matched and unmatched edges. If we find an alternating path, then 

we can improve the matching. This is because an alternating path consists of matched and unmatched edges. The number of 
unmatched edges exceeds the number of matched edges by one. Therefore, an alternating path always increases the matching by 
one. 

 

The next question is, how do we find a perfect matching? Based on the above theory and definition, we can find the perfect matching with 
the following approximation algorithm. 
 

Matching Algorithm (Hungarian algorithm) 
 

1) Start at unmatched vertex. 
2) Find an alternating path. 
3) If it exists, change matching edges to no matching edges and conversely. If it does not exist, choose another unmatched vertex. 
4) If the number of edges equals 푉/2 stop, otherwise proceed to step 1 and repeat as long all vertices have been examined without 

finding any alternating paths. 
 

Time Complexity of the Matching Algorithm 
 

The number of iterations is in O(푉).  
The complexity of finding an alternating path using BFS is O(퐸). 
Therefore, the total time complexity is O(푉 ×  퐸). 

 

Problem-43 Marriage and Personnel Problem? 
 

Marriage Problem: There are 푋 men and 푌 women who desire to get married. Participants indicate who among the opposite sex could be a 
potential spouse for them. Every woman can be married to at most one man, and every man to at most one woman. How can we marry 
everybody to someone they like? 

 

Personnel Problem: You are the boss of a company. The company has 푀 workers and 푁 jobs. Each worker is qualified to do some jobs, but 
not others. How will you assign jobs to each worker? 
 

Solution:  These two cases are just another way of asking about bipartite graphs, and the solution is the same as that of Problem-42. 
 

Problem-44 How many edges will be there in complete bipartite graph 퐾 , ? 
 

Solution: 푚 × 푛. This is because each vertex in first set can connect all vertices in second set. 

퐾 ,  퐾 ,  

1 

2 

3 

4 

3 

2 

1 

4 
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Problem-45 A graph is called regular graph if it has no loops and multiple edges where each vertex has the same number of neighbors; 
i.e. every vertex has the same degree. Now, if 퐾 ,  is a regular graph what is the relation between 푚 and 푛? 

 

Solution: Since each vertex should have the same degree, the relation should be 푚 = 푛. 
 

Problem-46 What is the maximum number of edges in the maximum matching of a bipartite graph with 푛 vertices? 
 

Solution: From the definition of 푚푎푡푐ℎ푖푛푔, we should not have edges with common vertices. So in a bipartite graph, each vertex can connect 
to only one vertex. Since we divide the total vertices into two sets, we can get the maximum number of edges if we divide them in half. Finally 
the answer is  푛

2
.  

 

Problem-47 Discuss Planar Graphs 
푃푙푎푛푎푟 푔푟푎푝ℎ: Is it possible to draw the edges of a graph in such a way that edges do not cross? 

 

Solution: A graph G is said to be planar if it can be drawn in the plane in such a way that no two edges meet each other except at a vertex to 
which they are incident. Any such drawing is called a plane drawing of G. As an example consider the below graph: 
 
 
 
 
 
 

This graph we can easily convert to planar graph as below (without any cross edges). 
 

 
 
 
 
 
How do we decide whether a given graph is planar or not? 
 

The solution to this problem is not simple, but researchers have found some interesting properties that we can use to decide whether the 
given graph is a planar graph or not. 
 

Properties of Planar Graphs 
 

• If a graph 퐺 is a connected planar simple graph with 푉 vertices, where 푉 =  3 and 퐸 edges, then 퐸 =  3푉 −  6. 

• 퐾  is non-planar. [퐾  stands for complete graph with 5 vertices]. 

• If a graph 퐺 is a connected planar simple graph with 푉 vertices and 퐸 edges, and no triangles, then 퐸 =  2푉 −  4. 

• 퐊ퟑ,ퟑ is non-planar. [퐾 ,  stands for bipartite graph with 3 vertices on one side and the other 3 vertices on the other side. 퐾 ,   
contains 6 vertices]. 

• If a graph 퐺 is a connected planar simple graph, then 퐺 contains at least one vertex of 5 degrees or less. 

• A graph is planar if and only if it does not contain a subgraph that has 퐾  and 퐾 ,  as a contraction. 

• If a graph 퐺 contains a nonplanar graph as a subgraph, then 퐺 is non-planar. 

• If a graph 퐺 is a planar graph, then every subgraph of 퐺 is planar. 

• For any connected planar graph 퐺 =  (푉, 퐸), the following formula should hold: 푉 +  퐹 −  퐸 =  2, where 퐹 stands for the 
number of faces. 

• For any planar graph 퐺 =  (푉, 퐸) with 퐾 components, the following formula holds:  푉 +  퐹 –  퐸 = 1 + 퐾. 
 

In order to test the planarity of a given graph, we use these properties and decide whether it is a planar graph or not. Note that all the above 
properties are only the necessary conditions but not sufficient.  
 

Problem-48 How many faces do 퐾 ,  have? 
 

Solution: From the above discussion, we know that 푉 + 퐹 − 퐸 = 2, and from an earlier problem we know that 퐸 = 푚 × 푛 = 2 × 3 = 6 
and 푉 = 푚 + 푛 = 5. ∴  5 + 퐹 − 6 = 2 ⟹ 퐹 = 3. 
 

Problem-49 Discuss Graph Coloring 
 

Solution: A 푘 −coloring of a graph 퐺 is an assignment of one color to each vertex of 퐺 such that no more than k colors are used and no two 
adjacent vertices receive the same color. A graph is called 푘 −colorable if and only if it has a 푘 −coloring. 
 

Applications of Graph Coloring: The graph coloring problem has many applications such as scheduling, register allocation in compilers, 
frequency assignment in mobile radios, etc. 
 

Clique: A 푐푙푖푞푢푒 in a graph 퐺 is the maximum complete subgraph and is denoted by 휔(퐺). 
 

Chromatic number: The chromatic number of a graph 퐺 is the smallest number k such that 퐺 is 푘 −colorable, and it is denoted by 훸 (퐺).  
 

The lower bound for 훸 (퐺) is 휔(퐺), and that means 휔(퐺)  ≤   훸 (퐺). 
 

Properties of Chromatic number: Let G be a graph with n vertices and G  is its complement. Then, 
  훸 (퐺)  ≤  ∆ (퐺)  +  1, where ∆ (G) is the maximum degree of G. 

A B 

C D 

A B 

C D 
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  훸 (퐺) 휔(퐺 )  ≥   푛 
  훸 (퐺) +  휔(퐺 )  ≤  푛 +  1 
  훸 (퐺) +  (퐺 )  ≤  푛 +  1 

 

K-colorability problem: Given a graph 퐺 =  (푉, 퐸) and a positive integer 푘 ≤  푉. Check whether 퐺 is 푘 −colorable? 
 

This problem is NP-complete and will be discussed in detail in the chapter on 퐶표푚푝푙푒푥푖푡푦 퐶푙푎푠푠푒푠. 
 

Graph coloring algorithm: As discussed earlier, this problem is 푁푃-Complete. So we do not have a polynomial time algorithm to determine 
훸(퐺). Let us consider the following approximation (no efficient) algorithm. 
 

 Consider a graph G with two non-adjacent vertices 푎 and 푏. The connection G  is obtained by joining the two non-adjacent vertices 
푎 and 푏 with an edge. The contraction G  is obtained by shrinking {푎, 푏} into a single vertex 푐(푎, 푏) and by joining it to each 
neighbor in G of vertex 푎 and of vertex 푏 (and eliminating multiple edges). 

 A coloring of 퐺 in which 푎 and 푏 have the same color yields a coloring of 퐺 . A coloring of 퐺 in which 푎 and 푏 have different colors 
yields a coloring of 퐺 . 

 Repeat the operations of connection and contraction in each graph generated, until the resulting graphs are all cliques. If the smallest 
resulting clique is a 퐾 −clique, then (퐺) = K. 

 

Important notes on Graph Coloring 
 

 Any simple planar graph 퐺 can be colored with 6 colors. 
 Every simple planar graph can be colored with less than or equal to 5 colors. 

 

Problem-50 What is the 푓표푢푟 푐표푙표푟푖푛푔 problem? 
 

Solution: A graph can be constructed from any map. The regions of the map are represented by the vertices of the graph, and two vertices 
are joined by an edge if the regions corresponding to the vertices are adjacent. The resulting graph is planar. That means it can be drawn in 
the plane without any edges crossing.  
 

The 퐹표푢푟 퐶표푙표푟 푃푟표푏푙푒푚 is whether the vertices of a planar graph can be colored with at most four colors so that no two adjacent vertices 
use the same color. 
 

History: The 퐹표푢푟 퐶표푙표푟 푃푟표푏푙푒푚 was first given by 퐹푟푎푛푐푖푠 퐺푢푡ℎ푟푖푒. He was a student at 푈푛푖푣푒푟푠푖푡푦 퐶표푙푙푒푔푒 퐿표푛푑표푛 where he studied 
under 퐴푢푔푢푠푡푠 퐷푒 푀표푟푔푎푛. After graduating from London he studied law, but some years later his brother Frederick Guthrie had become 
a student of 퐷푒 푀표푟푔푎푛. One day Francis asked his brother to discuss this problem with 퐷푒 푀표푟푔푎푛. 
 

Problem-51 When an adjacency-matrix representation is used, most graph algorithms require time O(푉 ). Show that determining 
whether a directed graph, represented in an adjacency-matrix that contains a sink can be done in time O(푉). A sink is a vertex with in-
degree |푉| − 1 and out-degree 0 (Only one can exist in a graph). 

 

Solution: A vertex i is a sink if and only if 푀[푖, 푗]  =  0 for all j and 푀[푗, 푖]  =  1 for all 푗 ≠ 푖. For any pair of vertices 푖 and 푗: 
푀[푖, 푗]  =  1  vertex i can't be a sink 
푀[푖, 푗]  =  0  vertex j can't be a sink 

Algorithm: 
 Start at 푖 = 1, 푗 = 1 
 If 푀[푖, 푗]  =  0  푖 wins, 푗 + + 
 If 푀[푖, 푗]  =  1  푗 wins, 푖 + + 
 Proceed with this process until 푗 = 푛 or 푖 = 푛 + 1 
 If 푖 == 푛 + 1 , the graph does not contain a sink 
 Otherwise, check row i  –  it should be all zeros; and check column 푖 – it should be all but 푀[푖, 푖] ones; – if so, 푖 is a sink. 

 

Time Complexity: O(푉), because at most 2|푉|  cells in the matrix are examined. 
 

Problem-52 What is the worst – case memory usage of DFS? 
 

Solution: It occurs when the O(|V|), which happens if the graph is actually a list. So the algorithm is memory efficient on graphs with small 
diameter. 
 
 

 
Problem-53 Does DFS find the shortest path from start node to some node w ? 
 

Solution: No. In DFS it is not compulsory to select the smallest weight edge. 
 

Problem-54 True or False: Dijkstra’s algorithm does not compute the “all pairs” shortest paths in a directed graph with positive edge 
weights because, running the algorithm a single time, starting from some single vertex 푥, it will compute only the min distance from 푥 to 푦 
for all nodes 푦 in the graph. 

 

Solution: True. 
 

Problem-55 True or False: Prim’s and Kruskal’s algorithms may compute different minimum spanning trees when run on the same 
graph. 

 

Solution: True.  

1 2 3 4 푛 
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10.1 What is Sorting? 
 

푆표푟푡푖푛푔 is an algorithm that arranges the elements of a list in a certain order [either 푎푠푐푒푛푑푖푛푔 or 푑푒푠푐푒푛푑푖푛푔]. The output is a permutation 
or reordering of the input. 

10.2 Why is Sorting Necessary? 
 

Sorting is one of the important categories of algorithms in computer science and a lot of research has gone into this category. Sorting can 
significantly reduce the complexity of a problem, and is often used for database algorithms and searches. 

10.3 Classification of Sorting Algorithms  
 

Sorting algorithms are generally categorized based on the following parameters. 

By Number of Comparisons 
 

In this method, sorting algorithms are classified based on the number of comparisons. For comparison based sorting algorithms, best case 
behavior is O(푛푙표푔푛) and worst case behavior is O(푛 ).  Comparison-based sorting algorithms evaluate the elements of the list by key 
comparison operation and need at least O(푛푙표푔푛) comparisons for most inputs.  
 

Later in this chapter we will discuss a few 푛표푛 − 푐표푚푝푎푟푖푠표푛 (푙푖푛푒푎푟) sorting algorithms like Counting sort, Bucket sort, Radix sort, etc. 
Linear Sorting algorithms impose few restrictions on the inputs to improve the complexity. 

By Number of Swaps 
 

In this method, sorting algorithms are categorized by the number of 푠푤푎푝푠 (also called 푖푛푣푒푟푠푖표푛푠).  

By Memory Usage 
 

Some sorting algorithms are "푖푛 푝푙푎푐푒" and they need O(1) or O(푙표푔푛) memory to create auxiliary locations for sorting the data temporarily.  

By Recursion 
 

Sorting algorithms are either recursive [quick sort] or non-recursive [selection sort, and insertion sort], and there are some algorithms which 
use both (merge sort). 

By Stability 
 

Sorting algorithm is 푠푡푎푏푙푒 if for all indices 푖 and 푗 such that the key 퐴[푖] equals key 퐴[푗], if record 푅[푖] precedes record 푅[푗] in the original 
file, record 푅[푖] precedes record 푅[푗] in the sorted list. Few sorting algorithms maintain the relative order of elements with equal keys 
(equivalent elements retain their relative positions even after sorting). 

By Adaptability 
 

With a few sorting algorithms, the complexity changes based on pre-sortedness [quick sort]: pre-sortedness of the input affects the running 
time. Algorithms that take this into account are known to be adaptive. 

10.4 Other Classifications 
 

Another method of classifying sorting algorithms is: 
 

 Internal Sort  
 External Sort 
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Internal Sort 
 

Sort algorithms that use main memory exclusively during the sort are called 푖푛푡푒푟푛푎푙 sorting algorithms. This kind of algorithm assumes 
high-speed random access to all memory. 

External Sort 
 

Sorting algorithms that use external memory, such as tape or disk, during the sort come under this category. 

10.5 Bubble Sort 
 

Bubble sort is the simplest sorting algorithm. Bubble sort, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly 
steps through the list to be sorted, compares each pair of adjacent items and swaps them if they are in the wrong order. 
 

In the bubble sorting, two adjacent elements of a list are first checked and then swapped. In case the adjacent elements are in the incorrect 
order then the process keeps on repeating until a fully sorted list is obtained. Each pass that goes through the list will place the next largest 
element value in its proper place. So, in effect, every item bubbles up with an intent of reaching the location wherein it rightfully belongs. The 
only significant advantage that bubble sort has over other implementations is that it can detect whether the input list is already sorted or not.  
 

Following table shows the first pass of a bubble sort. The shaded items are being compared to see if they are out of order. If there are 푛 items 
in the list, then there are 푛−1 pairs of items that need to be compared on the first pass. It is important to note that once the largest value in 
the list is part of a pair, it will continually be moved along until the pass is complete. 
 

First pass 
Remarks 

 
10 4 43 5 57 91 45 9 7 Swap 
4 10 43 5 57 91 45 9 7 No swap 
4 10 43 5 57 91 45 9 7 Swap 
4 10 5 43 57 91 45 9 7 No swap 
4 10 5 43 57 91 45 9 7 No swap 
4 10 5 43 57 91 45 9 7 Swap 
4 10 5 43 57 45 91 9 7 Swap 
4 10 5 43 57 45 9 91 7 Swap 
4 10 5 43 57 45 9 7 91 At the end of first pass, 91 is in correct place 

 

At the start of the first pass, the largest value is now in place. There are 푛−1 items left to sort, meaning that there will be 푛−2 pairs. Since each 
pass places the next largest value in place, the total number of passes necessary will be 푛−1. After completing the 푛−1 passes, the smallest 
item must be in the correct position with no further processing required.  
 

      public void BubbleSort(int[] A) { 
 for (int pass = A.length - 1; pass >= 0; pass--)  {   
  for (int i = 0; i <= pass - 1 ; i++)  { 
   if(A[i] > A[i+1]) { 
    // swap elements 
    int temp = A[i];  
    A[i] = A[i+1];  
    A[i+1] = temp; 
   } 
  } 
 } 
      } 
 

Algorithm takes O(푛 ) (even in best case). In the above code, all the comparisons are made even if the array is already sorted at some point. 
It increases the execution time. 
 

The code can be optimized by introducing an extra variable 푠푤푎푝푝푒푑. After every pass, if there is no swapping taking place then, there is no 
need for performing further loops. Variable 푠푤푎푝푝푒푑 is false if there is no swapping. Thus, we can prevent further iterations. No more swaps 
indicate the completion of sorting. If the list is already sorted, we can use this flag to skip the remaining passes. 
 

      public void BubbleSortImproved(int[] A) { 
 int pass, i, temp, swapped = 1; 
 for (pass = A.length - 1; pass >= 0 && swapped; pass--) {   
  swapped = 0; 
  for (i = 0; i <= pass - 1 ; i++) { 
   if(A[i] > A[i+1]) { 
    // swap elements 
    temp = A[i];  
    A[i] = A[i+1];  
    A[i+1] =  temp; 
    swapped = 1; 
   } 
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  } 
 } 
      } 
 

This modified version improves the best case of bubble sort to O(푛). 
 

Performance 
Worst case complexity : O(푛 )  
Best case complexity (Improved version) : O(푛)  
Average case complexity (Basic version) : O(푛 )  
Worst case space complexity : O(1) auxiliary 

10.6 Selection Sort 
 

The selection sort improves on the bubble sort by making only one exchange for every pass through the list. In order to do this, a selection 
In selection sort, the smallest element is exchanged with the first element of the unsorted list of elements (the exchanged element takes the 
place where smallest element is initially placed). Then the second smallest element is exchanged with the second element of the unsorted list 
of elements and so on until all the elements are sorted. 
 

The selection sort improves on the bubble sort by making only one exchange for every pass through the list. In order to do this, a selection 
sort looks for the smallest (or largest) value as it makes a pass and, after completing the pass, places it in the proper location. As with a bubble 
sort, after the first pass, the largest item is in the correct place. After the second pass, the next largest is in place. This process continues and 
requires 푛 − 1 passes to sort 푛 items, since the final item must be in place after the (푛 − 1)  pass. 
 

Selection sort is an in-place sorting algorithm. Selection sort works well for small files. It is used for sorting the files with very large values and 
small keys. This is because selection is made based on keys and swaps are made only when required. 
 

Following table shows the entire sorting process. On each pass, the largest remaining item is selected and then placed in its proper location. 
The first pass places 91, the second pass places 57, the third places 45, and so on. 
 

 Remarks: Select largest in each pass 
10 4 43 5 57 91 45 9 7 Swap 91 and 7 
10 4 43 5 57 7 45 9 91 Swap 57 and 9 
10 4 43 5 9 7 45 57 91 45 is the next largest, skip 
10 4 43 5 9 7 45 57 91 Swap 43 and 7 
10 4 7 5 9 43 45 57 91 Swap 10 amd 9 
9 4 7 5 10 43 45 57 91 Swap 9 amd 5 
5 4 7 9 10 43 45 57 91 7 is the next largest, skip 
5 4 7 9 10 43 45 57 91 Swap 5 amd 4 
4 5 7 9 10 43 45 57 91 List is ordered 

 

Alternatively, on each pass, we can select the smallest remaining item and then place in its proper location. 
 

 Remarks: Select smallest in each pass 
10 4 43 5 57 91 45 9 7 Swap 10 and 4 
4 10 43 5 57 7 45 9 91 Swap 10 and 5 
4 5 43 10 57 7 45 9 91 Swap 43 and 7 
4 5 7 10 57 43 45 9 91 Swap 10 and 9 
4 5 7 9 57 43 45 10 91 Swap 57 amd 10 
4 5 7 9 10 43 45 57 91 43 is the next smallest, skip 
5 4 7 9 10 43 45 57 91 45 is the next smallest, skip 
5 4 7 9 10 43 45 57 91 57 is the next smallest, skip 
4 5 7 9 10 43 45 57 91 List is ordered 

Advantages 
 

 Easy to implement 
 In-place sort (requires no additional storage space) 

 

Disadvantages 
 

 Doesn't scale well: O(푛 ) 

Algorithm 
 

1. Find the minimum value in the list 
2. Swap it with the value in the current position 
3. Repeat this process for all the elements until the entire array is sorted 

 

This algorithm is called 푠푒푙푒푐푡푖표푛 푠표푟푡 since it repeatedly 푠푒푙푒푐푡푠 the smallest element.  
 

      public void Selection(int[] A) {  
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 int i, j, min, temp; 
 for (i = 0; i < A.length - 1; i++) {  
  min = i; 
  for (j = i+1; j < A.length; j++) { 
   if(A [j] < A [min])  
    min = j; 
  } 
  // swap elements 
  temp = A[min];  
  A[min] = A[i];  
  A[i] = temp; 
 }  
      } 

Performance 
 

Worst case complexity O(푛 ) 
Best case complexity (Improved version) O(푛 ) 
Average case complexity (Basic version) O(푛 ) 
Worst case space complexity O(1) auxiliary 

10.7 Insertion Sort 
 

Insertion sort algorithm picks elements one by one and places it to the right position where it belongs in the sorted list of elements.  Insertion 
sort is a simple and efficient comparison sort. In this algorithm, each iteration removes an element from the input list and inserts it into the 
sorted sublist. The choice of the element being removed from the input list is random and this process is repeated until all input elements 
have gone through. 
 

It always maintains a sorted sublist in the lower positions of the list. Each new item is then “inserted” back into the previous sublist such that 
the sorted sublist is one item larger. 
 

We begin by assuming that a list with one item (position 0) is already sorted. On each pass, one for each item 1 through 푛 − 1, the current 
item is checked against those in the already sorted sublist. As we look back into the already sorted sublist, we shift those items that are greater 
to the right. When we reach a smaller item or the end of the sublist, the current item can be inserted. 
 

Advantages 
 

 Easy to implement 
 Efficient for small data 
 Adaptive: If the input list is presorted [may not be completely] then insertions sort takes O(푛 +  푑), where 푑 is the number of 

inversions 
 Practically more efficient than selection and bubble sorts, even though all of them have O(푛 ) worst case complexity 
 Stable: Maintains relative order of input data if the keys are same 
 In-place: It requires only a constant amount O(1) of additional memory space 
 Online: Insertion sort can sort the list as it receives it 

 

Algorithm 
 

Every repetition of insertion sort removes an element from the input list, and inserts it into the correct position in the already-sorted list until 
no input elements remain. Sorting is typically done in-place. The resulting array after 푘 iterations has the property where the first 푘 +  1 
entries are sorted.  
 

           
 
 

 
 

 
          
 
 

Each element greater than 푥 is copied to the right as it is compared against 푥. 
 

      public void InsertionSort(int[] A) {  
 int i, j, v; 
 for (i = 1; i <= A.length - 1; i++) {  
  v = A[i];  
  j = i; 
 

  while (A[j-1] > v && j >= 1) {  
   A[j] = A[j-1];  
   j--;  

Sorted partial result Unordered elements 
푥 > 푥 ≤  푥 … 

Sorted partial result Unordered elements 
> 푥 푥 ≤  푥 … 

becomes 
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  }   
  A[j] = v;  
 }  
      } 

Example 
 

Following table shows the sixth pass in detail. At this point in the algorithm, a sorted sublist of six elements consisting of 4, 5, 10, 43, 57 and 
91 exists. We want to insert 45 back into the already sorted items. The first comparison against 91 causes 91 to be shifted to the right. 57 is 
also shifted. When the item 43 is encountered, the shifting process stops and 45 is placed in the open position. Now we have a sorted sublist 
of seven elements. 
 

 Remarks: Sixth pass 
0 1 2 3 4 5 6 7 8 Hold the current element A[6] in a variable 
4 5 10 43 57 91 45 9 7 Need to insert 45 into the sorted list, copy 91 to A[6] as 91> 45 
4 5 10 43 57 91 91 9 7 copy 57 to A[5] as 57> 45 
4 5 10 43 57 57 91 9 7 45 is the next largest, skip 
4 5 10 43 45 57 91 9 7 45>43, so we can insert 45 at A[4], and sublist is sorted 

 

Analysis 
 

The implementation of insertionSort shows that there are again 푛 − 1 passes to sort 푛 items. The iteration starts at position 1 and moves 
through position 푛 − 1, as these are the items that need to be inserted back into the sorted sublists. Notice that this is not a complete swap as 
was performed in the previous algorithms. The maximum number of comparisons for an insertion sort is the sum of the first 푛 − 1 integers. 
Again, this is O(푛 ). However, in the best case, only one comparison needs to be done on each pass. This would be the case for an already 
sorted list. 
 

One note about shifting versus exchanging is also important. In general, a shift operation requires approximately a third of the processing 
work of an exchange since only one assignment is performed. In benchmark studies, insertion sort will show very good performance. 
 

Worst case analysis 
 

Worst case occurs when for every 푖 the inner loop has to move all elements 퐴[1], . . . , 퐴[푖 − 1] (which happens when 퐴[푖]  = key is smaller 
than all of them), that takes  (푖 − 1) time.  
 

                   푇(푛) = (1) + (2) + Θ(2) +  … … +  (푛 − 1) 
                             = (1 +  2 +  3 +  … . . + 푛 − 1) =   ( )  ≈  (n ) 
 

Average case analysis 
 

For the average case, the inner loop will insert 퐴[푖] in the middle of 퐴[1], . . . , 퐴[푖 − 1]. This takes   time. 

                                                                              푇(푛) = (푖/2) ≈  (푛2) 

푛

푖=1

 

Performance 
 

If every element is greater than or equal to every element to its left, the running time of insertion sort is (푛). This situation occurs if the array 
starts out already sorted, and so an already-sorted array is the best case for insertion sort. 
 

Worst case complexity O(푛 ) 
Best case complexity (Improved version) O(푛) 
Average case complexity (Basic version) O(푛 ) 
Worst case space complexity O(푛 ) total, O(1) auxiliary 

 

Comparisons to Other Sorting Algorithms 
 

Insertion sort is one of the elementary sorting algorithms with O(푛 ) worst-case time. Insertion sort is used when the data is nearly sorted 
(due to its adaptiveness) or when the input size is small (due to its low overhead). For these reasons and due to its stability, insertion sort is 
used as the recursive base case (when the problem size is small) for higher overhead divide-and-conquer sorting algorithms, such as merge 
sort or quick sort. 
 

Notes: 
 Bubble sort takes  comparisons and  swaps (inversions) in both average case and in worst case. 

 Selection sort takes  comparisons and 푛 swaps. 

 Insertion sort takes  comparisons and  swaps in average case and in the worst case they are double. 

 Insertion sort is almost linear for partially sorted input. 
 Selection sort is best suits for elements with bigger values and small keys. 
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10.8 Shell Sort 
 

푆ℎ푒푙푙 푠표푟푡 (also called 푑푖푚푖푛푖푠ℎ푖푛푔 푖푛푐푟푒푚푒푛푡 푠표푟푡) was invented by 퐷표푛푎푙푑 푆ℎ푒푙푙. This sorting algorithm is a generalization of insertion 
sort. Insertion sort works efficiently on input that is already almost sorted. Shell sort is also known as 푛-gap insertion sort. Instead of comparing 
only the adjacent pair, shell sort makes several passes and uses various gaps between adjacent elements (ending with the gap of 1 or classical 
insertion sort). 
 

In insertion sort, comparisons are made between the adjacent elements. At most 1 inversion is eliminated for each comparison done with 
insertion sort. The variation used in shell sort is to avoid comparing adjacent elements until the last step of the algorithm. So, the last step of 
shell sort is effectively the insertion sort algorithm. It improves insertion sort by allowing the comparison and exchange of elements that are 
far away. This is the first algorithm which got less than quadratic complexity among comparison sort algorithms. 
 

Shellsort is actually a simple extension for insertion sort. The primary difference is its capability of exchanging elements that are far apart, 
making it considerably faster for elements to get to where they should be. For example, if the smallest element happens to be at the end of an 
array, with insertion sort it will require the full array of steps to put this element at the beginning of the array. However, with shell sort, this 
element can jump more than one step a time and reach the proper destination in fewer exchanges.  
 

The basic idea in shellsort is to exchange every hth element in the array. Now this can be confusing so we'll talk more about this. h determines 
how far apart element exchange can happen, say for example take h as 13, the first element (index-0) is exchanged with the 14  element 
(index-13) if necessary (of course). The second element with the 15  element, and so on. Now if we take h as 1, it is exactly the same as a 
regular insertion sort.  
 

Shellsort works by starting with big enough (but not larger than the array size) ℎ so as to allow eligible element exchanges that are far apart. 
Once a sort is complete with a particular ℎ, the array can be said as h-sorted. The next step is to reduce h by a certain sequence, and again 
perform another complete ℎ-sort. Once ℎ is 1 and ℎ-sorted, the array is completely sorted. Notice that the last sequence for ℎ is 1 so the last 
sort is always an insertion sort, except by this time the array is already well-formed and easier to sort. 
 

Shell sort uses a sequence ℎ1, ℎ2, … , ℎ푡 called the 푖푛푐푟푒푚푒푛푡 푠푒푞푢푒푛푐푒. Any increment sequence is fine as long as ℎ1 = 1, and some 
choices are better than others. Shell sort makes multiple passes through the input list and sorts a number of equally sized sets using the 
insertion sort. Shell sort improves the efficiency of insertion sort by 푞푢푖푐푘푙푦 shifting values to their destination. 
 

      public void ShellSort(int[] A) {  
 int i, j, h, v; 
 for (h = 1; h = A.length/9; h = 3*h+1);   

 for ( ; h > 0; h = h/3) { 
  for (i = h+1; i = A.length; i += 1) {  
   v = A[i];  
   j = i; 
   while (j > h && A[j-h] > v) {  
    A[j] = A[j-h];  
    j -= h;  
   } 
   A[j] = v;  
  } 
 }   
      } 
 

Note that when ℎ ==  1, the algorithm makes a pass over the entire list, comparing adjacent elements, but doing very few element exchanges. 
For ℎ ==  1, shell sort works just like insertion sort, except the number of inversions that have to be eliminated is greatly reduced by the 
previous steps of the algorithm with ℎ >  1. 
 

Analysis 
 

Shell sort is efficient for medium size lists. For bigger lists, the algorithm is not the best choice. It is the fastest of all O(푛 ) sorting algorithms. 
The disadvantage of Shell sort is that it is a complex algorithm and not nearly as efficient as the merge, heap, and quick sorts. Shell sort is 
significantly slower than the merge, heap, and quick sorts, but is a relatively simple algorithm, which makes it a good choice for sorting lists of 
less than 5000 items unless speed is important. It is also a good choice for repetitive sorting of smaller lists.  
 

The best case in Shell sort is when the array is already sorted in the right order. The number of comparisons is less. The running time of 
Shell sort depends on the choice of increment sequence.  
 

Performance 
 

Worst case complexity depends on gap sequence. Best known:  O(푛푙표푔 푛) 
Best case complexity O(푛) 
Average case complexity depends on gap sequence  
Worst case space complexity O(푛) 

10.9 Merge Sort 
 

Merge sort is an example of the divide and conquer strategy. Merge sort first divides the array into equal halves and then combines them in a 
sorted manner. It is a recursive algorithm that continually splits an array in half. If the array is empty or has one element, it is sorted by 
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definition (the base case). If the array has more than one element, we split the array and recursively invoke a merge sort on both halves. Once 
the two halves are sorted, the fundamental operation, called a merge, is performed. Merging is the process of taking two smaller sorted arrays 
and combining them together into a single, sorted, new array. 

Algorithm 
 

Because we're using divide-and-conquer to sort, we need to decide what our subproblems are going to look like. The full problem is to sort 
an entire array. Let's say that a subproblem is to sort a subarray. In particular, we'll think of a subproblem as sorting the subarray starting at 
index 푙푒푓푡 and going through index 푟푖푔ℎ푡. It will be convenient to have a notation for a subarray, so let's say that 퐴[푙푒푓푡. . 푟푖푔ℎ푡] denotes 
this subarray of array 퐴. In terms of our notation, for an array of 푛 elements, we can say that the original problem is to sort A[0..n-1]. 
 

Algorithm Merge-sort(A): 
 

 퐷푖푣푖푑푒 by finding the number 푚푖푑 of the position midway between 푙푒푓푡 and 푟푖푔ℎ푡. Do this step the same way we found the 
midpoint in binary search: 

 

푚푖푑 = 푙표푤 + ( )  표푟 . 
 

 퐶표푛푞푢푒푟 by recursively sorting the subarrays in each of the two subproblems created by the divide step. That is, recursively sort 
the subarray 퐴[푙푒푓푡. . 푚푖푑] and recursively sort the subarray 퐴[푚푖푑 + 1. . 푟푖푔ℎ푡]. 

 퐶표푚푏푖푛푒 by merging the two sorted subarrays back into the single sorted subarray 퐴[푙푒푓푡. . 푟푖푔ℎ푡]. 
 

We need a base case. The base case is a subarray containing fewer than two elements, that is, when 푙푒푓푡 ≥ 푟푖푔ℎ푡, since a subarray with no 
elements or just one element is already sorted. So we'll divide-conquer-combine only when 푙푒푓푡 <  푟푖푔ℎ푡. 

Example 
 

To understand merge sort, let us walk through an example: 
 

54 26 93 17 77 31 44 55 
 

We know that merge sort first divides the whole array iteratively into equal halves unless the atomic values are achieved. We see here that an 
array of 8 items is divided into two arrays of size 4. 
 

54 26 93 17 
 

77 31 44 55 
 

 

This does not change the sequence of appearance of items in the original. Now we divide these two arrays into halves. 
 

54 26 
 

93 17 
 

77 31 
 

44 55 
 

 

We further divide these arrays and we achieve atomic value which can no more be divided. 
 

54 
 

26 
 

93 
 

17 
 

77 
 

31 
 

44 
 

55 
 

 

Now, we combine them in exactly the same manner as they were broken down. 
 

We first compare the element for each array and then combine them into another array in a sorted manner. We see that 54 and 26 and in 
the target array of 2 values we put 26 first, followed by 54.  
 

Similarly, we compare 93 and 17 and in the target array of 2 values we put 17 first, followed by 93. On the similar lines, we change the order 
of 77 and 31 whereas 44 and 55 are placed sequentially. 
 

26 54 
 

17 93 
 

31 77 
 

44 55 
 

 

In the next iteration of the combining phase, we compare lists of two data values, and merge them into an array of found data values placing 
all in a sorted order. 
 

17 26 54 93 
 

31 44 55 77 
 

 

After the final merging, the array should look like this: 
 

17 26 31 44 54 55 77 93 
 

The overall flow of above discussion can be depicted as: 
 

54 26 93 17 77 31 44 55 
 

54 26 93 17 
 

77 31 44 55 
 

 
54 26 

 

93 17 
 

77 31 
 

44 55 
 

 
54 

 

26 
 

93 
 

17 
 

77 
 

31 
 

44 
 

55 
 

 
26 54 

 

17 93 
 

31 77 
 

44 55 
 

 
17 26 54 93 

 

31 44 55 77 
 

 
17 26 31 44 54 55 77 93 
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Implementation 
 

      public void Mergesort(int[] A, int[] temp, int left, int right) { 
 int mid; 
 if(right > left) { 
  mid = (right + left) / 2; 
  Mergesort(A, temp, left, mid); 
  Mergesort(A, temp, mid+1, right); 
  Merge(A, temp, left, mid+1, right); 
 } 
      } 
      public void Merge(int[] A, int[] temp, int left, int mid, int right) { 
 int i, left_end, size, temp_pos; 
 left_end = mid - 1; 
 temp_pos = left; 
 size = right - left + 1; 
 while ((left <= left_end) && (mid <= right)) { 
  if(A[left] <= A[mid]) { 
   temp[temp_pos] = A[left]; 
   temp_pos = temp_pos + 1; 
   left = left +1; 
  } 
  else { 
   temp[temp_pos] = A[mid]; 
   temp_pos = temp_pos + 1; 
   mid = mid + 1; 
  } 
 } 
 while (left <= left_end) { 
  temp[temp_pos] = A[left]; 
  left = left + 1; 
  temp_pos = temp_pos + 1; 
 } 
 while (mid <= right) { 
  temp[temp_pos] = A[mid]; 
  mid = mid + 1; 
  temp_pos = temp_pos + 1; 
 } 
 for (i = 0; i <= size; i++) { 
  A[right] = temp[right]; 
  right = right - 1; 
 } 
      } 

Analysis 
 

In merge-sort the input array is divided into two parts and these are solved recursively. After solving the subarrays, they are merged by scanning 
the resultant subarrays. In merge sort, the comparisons occur during the merging step, when two sorted arrays are combined to output a single 
sorted array. During the merging step, the first available element of each array is compared and the lower value is appended to the output 
array. When either array runs out of values, the remaining elements of the opposing array are appended to the output array. 
 

How do determine the complexity of merge-sort? We start by thinking about the three parts of divide-and-conquer and how to account for 
their running times. We assume that we're sorting a total of 푛 elements in the entire array. 
 

The divide step takes constant time, regardless of the subarray size. After all, the divide step just computes the midpoint 푚푖푑 of the indices 
푙푒푓푡 and 푟푖푔ℎ푡. Recall that in big- notation, we indicate constant time by (1). 
 

The conquer step, where we recursively sort two subarrays of approximately  elements each, takes some amount of time, but we'll account 

for that time when we consider the subproblems. The combine step merges a total of 푛 elements, taking (푛) time. 
 

If we think about the divide and combine steps together, the (1) running time for the divide step is a low-order term when compared with 
the (푛) running time of the combine step. So let's think of the divide and combine steps together as taking (푛) time. To make things more 
concrete, let's say that the divide and combine steps together take 푐푛 time for some constant 푐. 
 

Let us assume 푇(푛) is the complexity of merge-sort with 푛 elements. The recurrence for the merge-sort can be defined as: 
 

푇(푛)  =  2푇(
푛
2) +  (푛) 

Using Master theorem, we get, 푇(푛) = ( 푛푙표푔푛). 
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For merge-sort there is no running time difference between best, average and worse cases as the division of input arrays happen irrespective of the 
order of the elements. Above merge sort algorithm uses an auxiliary space of O(푛) for left and right subarrays together. Merge-sort is a recursive 
algorithm and each recursive step puts another frame on the run time stack. Sorting 32 items will take one more recursive step than 16 items, and it 
is in fact the size of the stack that is referred to when the space requirement is said to be O(푙표푔푛). 
 

Worst case complexity (푛푙표푔푛) 
Best case complexity (푛푙표푔푛) 
Average case complexity (푛푙표푔푛) 
Space complexity (푙표푔푛) for runtime stack space and O(푛) for the auxiliary space 

10.10 Heap Sort 
 

Heapsort is a comparison-based sorting algorithm and is part of the selection sort family. Although somewhat slower in practice on most 
machines than a good implementation of Quick sort, it has the advantage of a more favorable worst-case Θ(푛푙표푔푛) runtime. Heapsort is an 
in-place algorithm but is not a stable sort. 
 

Performance 
Worst case performance (푛푙표푔푛) 
Best case performance (푛푙표푔푛) 
Average case performance (푛푙표푔푛) 
Worst case space complexity (푛) total, (1) auxiliary space 

 

For other details on Heapsort refer to the 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter. 
 

10.11 Quick Sort 
 

Quick sort is the famous algorithm among comparison-based sorting algorithms. Like merge sort, quick sort uses divide-and-conquer 
technique, and so it's a recursive algorithm. The way that quick sort uses divide-and-conquer is a little different from how merge sort does. 
The quick sort uses divide and conquer technique to gain the same advantages as the merge sort, while not using additional storage. As a 
trade-off, however, it is possible that the list may not be divided into half. When this happens, we will see that the performance is diminished. 
 

It sorts in place and no additional storage is required as well. The slight disadvantage of quick sort is that its worst-case performance is similar 
to the average performances of the bubble, insertion or selection sorts (i.e., O(푛 )).  

Divide and conquer strategy 
 

A quick sort first selects an element from the given list, which is called the 푝푖푣표푡 value. Although there are many different ways to choose the 
pivot value, we will simply use the 푓푖푟푠푡 item in the list. The role of the pivot value is to assist with splitting the list into two sublists. The actual 
position where the pivot value belongs in the final sorted list, commonly called the 푝푎푟푡푖푡푖표푛 point, will be used to divide the list for 
subsequent calls to the quick sort. 
 

All elements in the first sublist are arranged to be smaller than the 푝푖푣표푡, while all elements in the second sublist are arranged to be larger 
than the 푝푖푣표푡. The same partitioning and arranging process is performed repeatedly on the resulting sublists until the whole list of items are 
sorted. 
 

Let us assume that array 퐴 is the list of elements to be sorted, and has the lower and upper bounds 푙표푤 and ℎ푖푔ℎ respectively. With this 
information, we can define the divide and conquer strategy as follows: 
 

퐷푖푣푖푑푒: The list 퐴[푙표푤 … ℎ푖푔ℎ] is partitioned into two non-empty sublists 퐴[푙표푤 … 푞] and 퐴[푞 + 1 …  ℎ푖푔ℎ], such that each element of 
퐴[푙표푤 …  푞] is less than or equal to each element of 퐴[푞 + 1 …  ℎ푖푔ℎ]. The index 푞 is computed as part of partitioning procedure with the 
first element as 푝푖푣표푡. 
 

퐶표푛푞푢푒푟: The two sublists 퐴[푙표푤 … 푞] and 퐴[푞 + 1 … ℎ푖푔ℎ] are sorted by recursive calls to quick sort.  

Algorithm 
 

The recursive algorithm consists of four steps:  
 
 

1) If there are one or no elements in the list to be sorted, return.  
2) Pick an element in the list to serve as the 푝푖푣표푡 point. Usually the first element in the list is used as a 푝푖푣표푡.  
3) Split the list into two parts - one with elements larger than the 푝푖푣표푡 and the other with elements smaller than the 푝푖푣표푡.  
4) Recursively repeat the algorithm for both halves of the original list.  

 

In the above algorithm, the important step is partitioning the list into two sublists. The basic steps to partition a list are: 
 

1. Select the first element as a 푝푖푣표푡 in the list. 
2. Start a pointer (the 푙푒푓푡 pointer) at the second item in the list. 
3. Start a pointer (the 푟푖푔ℎ푡 pointer) at the last item in the list. 
4. While the value at the 푙푒푓푡 pointer in the list is lesser than the 푝푖푣표푡 value, move the 푙푒푓푡 pointer to the right (add 1). Continue this process 

until the value at the 푙푒푓푡 pointer is greater than or equal to the 푝푖푣표푡 value. 
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5. While the value at the 푟푖푔ℎ푡 pointer in the list is greater than the 푝푖푣표푡 value, move the 푟푖푔ℎ푡 pointer to the left (subtract 1). Continue this 
process until the value at the 푟푖푔ℎ푡 pointer is lesser than or equal to the 푝푖푣표푡 value. 

6. If the 푙푒푓푡 pointer value is greater than or equal to the 푟푖푔ℎ푡 pointer value, then swap the values at these locations in the list. 
7. If the 푙푒푓푡 pointer and 푟푖푔ℎ푡 pointer don’t meet, go to step 1. 

Example 
 

Following example shows that 50 will serve as our first pivot value. The partition process will happen next. It will find the 푝푎푟푡푖푡푖표푛 point 
and at the same time move other items to the appropriate side of the list, either lesser than or greater than the 푝푖푣표푡 value. 
 
 
 
 

Partitioning begins by locating two position markers—let’s call them 푙푒푓푡 and 푟푖푔ℎ푡—at the beginning and end of the remaining items in the 
list (positions 1 and 8 in figure). The goal of the partition process is to move items that are on the wrong side with respect to the pivot value 
while converging on the split point also. The figure given below shows this process as we locate the position of 50. 
 
 
 
 

25 < 50, move 푙푒푓푡 pointer to right: 
 
 
 
 

92 > 50, stop from moving 푙푒푓푡 pointer: 
  
 
 
19 < 50, stop from moving 푟푖푔ℎ푡 pointer: 
 
 
 
 

Swap 19 and 92: 
 

 
 
 

Now, continue moving left and right pointers. 19 < 50, move 푙푒푓푡 pointer to right: 
 
 
 

 
 

16 < 50, move 푙푒푓푡 pointer to right: 
 
 
 
 

76 > 50, stop from moving 푙푒푓푡 pointer: 
 
 
 
 

92 > 50, move 푟푖푔ℎ푡 pointer to left: 
 
 
 

54 > 50, move 푟푖푔ℎ푡 pointer to left: 
 
 
 
 

43 < 50, stop from moving 푟푖푔ℎ푡 pointer: 
 
 

 
 

Swap 76 and 43: 
 
 
 
 

43 < 50, move 푙푒푓푡 pointer to right: 
 
 
 
 

50 25 92 16 76 30 43  54 19 
 

pivot 

50 25 92 16 76 30 43  54 19 
 

pivot left right 

50 25 92 16 76 30 43  54 19 
 

pivot left right 

50 25 92 16 76 30 43  54 19 
 

pivot left right 

50 25 92 16 76 30 43  54 19 
 

pivot left right 

50 25 19 16 76 30 43  54 92 
 

pivot left right 

50 25 19 16 76 30 43  54 92 
 

pivot left right 

50 25 19 16 76 30 43  54 92 
 

pivot left right 

50 25 19 16 76 30 43  54 92 
 

pivot left right 

50 25 19 16 76 30 43  54 92 
 

pivot left right 

50 25 19 16 76 30 43  54 92 
 

pivot left right 

50 25 19 16 76 30 43  54 92 
 

pivot left right 

50 25 19 16 43 30 76  54 92 
 

pivot left right 

50 25 19 16 43 30 76  54 92 
 

pivot left right 
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30 < 50, move 푙푒푓푡 pointer to right: 
 
 
 
 
 

76 > 50, stop from moving 푙푒푓푡 pointer: 
 
 
 
 
 

76 > 50, move 푟푖푔ℎ푡 pointer to left: 
 
 
 
 

At the point where right becomes less than left, we stop. The position of right is now the 푝푎푟푡푖푡푖표푛 point. The 푝푖푣표푡 value can be exchanged 
with the contents of the 푝푎푟푡푖푡푖표푛 point. In addition, all the items to the left of the split point are less than the pivot value, and all the items 
to the right of the split point are greater than the pivot value. Now, we can exchange these two elements 50 and 30. Element 50 is now in 
correct position. 
 
 
 
 

The list can now be divided at the partition point and the quick sort can be invoked recursively on the two halves. 
 

 
 
 
 

Repeat the process for the two sublists. 

Implementation 
 

 public static void quickSort(int[] A, int low, int high) { 
  int pivot; 
  // Termination condition! 
  if (high > low) { 
   pivot = Partition(A, low, high); 
   quickSort(A, low, pivot - 1); 
   quickSort(A, pivot + 1, high); 
  } 
 }   

 private static int Partition(int[] A, int low, int high) { 
  int left, right, pivot_item = A[low]; 
  left = low; 
  right = high; 
  while (left < right) { 
   // Move left while item < pivot 
   while (A[left] <= pivot_item) 
    left++; 
   // Move right while item > pivot 
   while (A[right] > pivot_item) 
    right--; 
   if (left < right) 
    swap(A, left, right); 
  } 
  // right is final position for the pivot 
  A[low] = A[right]; 
  A[right] = pivot_item; 
  return right; 
 }   

 private static void swap(int[] A, int left, int right) { 
  int temp = 0; 
  temp = A[left]; 
  A[left] = A[right]; 
  A[right] = temp; 
 } 

50 25 19 16 43 30 76  54 92 
 

pivot 

left 

right 

50 25 19 16 43 30 76  54 92 
 

pivot 

left 

right 

50 25 19 16 43 30 76  54 92 
 

pivot left right 

30 25 19 16 43 50 76  54 92 
 

pivot left right 

30 25 19 16 43 50 76  54 92 
 

Quick sort on left part Quick sort on right part 
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Analysis 
 

Let us assume that T(n) be the complexity of Quick sort and also assume that all elements are distinct. Recurrence for 푇(푛) depends on two 
subproblem sizes which depend on partition element. If pivot is 푖  smallest element then exactly (푖 −  1) items will be in left part and (n −
 푖) in right part. Let us call it as 푖 −split. Since each element has equal probability of selecting it as pivot the probability of selecting 푖  element 

is . 
 

Best Case: Each partition splits array in halves and gives   

T(n) =  2T(n/2) + (n)  = (nlogn), [using 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 master theorem] 
 

Worst Case: Each partition gives unbalanced splits and we get  
 

           푇(푛)  =  푇(푛 −  1) + Θ(푛)  = (푛 )[푢푠푖푛푔 푆푢푏푡푟푎푐푡푖표푛 푎푛푑 퐶표푛푞푢푒푟 푚푎푠푡푒푟 푡ℎ푒표푟푒푚] 
 

The worst-case occurs when the list is already sorted and last element chosen as pivot. 
 

Average Case: In the average case of Quick sort, we do not know where the split happens. For this reason, we take all possible values of split 
locations, add all their complexities and divide with 푛 to get the average case complexity. 

           푇(푛)  =
1
푛

(푟푢푛푡푖푚푒 푤푖푡ℎ 푖 − 푠푝푙푖푡) + 푛 + 1 

                       =
1
푛

푇(푖 − 1) + 푇(푛 − 푖) + 푛 + 1 

       //since we are dealing with best case we can assume 푇(푛 − 푖) and 푇(푖 − 1) are equal 

                       =
2
푛

푇(푖 − 1) + 푛 + 1 

                       =
2
푛

푇(푖) + 푛 + 1 

 

Multiply both sides by 푛.  

           푛T(푛) = 2 푇(푖) + 푛 + 푛 

Same formula for 푛 −  1. 

           (푛 − 1)푇(푛 − 1)  = 2 푇(푖) + (푛 − 1) + (푛 − 1) 

Subtract the 푛 − 1 formula from 푛. 

           푛푇(푛) − (푛 − 1)푇(푛 − 1) = 2 푇(푖) + 푛 + 푛 − (2 푇(푖) + (푛 − 1) + (푛 − 1)) 

           푛푇(푛) − (푛 − 1)푇(푛 − 1) = 2푇(푛 − 1) + 2푛 
           푛푇(푛)  = (푛 + 1)푇(푛 − 1) + 2푛 
 

Divide with 푛(푛 + 1).           

 
푇(푛)
푛 + 1

 
= 푇(푛 − 1)

푛
+

2
푛 + 1

 

 = 푇(푛 − 2)
푛 − 1

+
2
푛

+
2

푛 + 1
 

 .  
 .  
 = O(1) + 2 ∑  
 = O(1) +O(2푙표푔푛) 

           
푇(푛)
푛 + 1

 
= O(푙표푔푛) 

            푇(푛) = O (푛 + 1) 푙표푔푛 =  푂(푛푙표푔푛) 
Time Complexity, 푇(푛)  = O(푛푙표푔푛). 
 

Performance 
Worst case complexity  O(푛 ) 
Best case complexity O(푛푙표푔푛) 
Average case complexity  O(푛푙표푔푛) 
Worst case space complexity O(1) 

Randomized Quick sort 
 

In average-case behavior of Quick sort, we assume that all permutations of the input numbers are equally likely. However, we cannot always 
expect it to hold. We can add randomization to an algorithm in order to reduce the probability of getting worst case in Quick sort. There are 
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two ways of adding randomization in Quick sort: either by randomly placing the input data in the array or by randomly choosing an element 
in the input data for pivot. The second choice is easier to analyze and implement. The change will only be done at the 푝푎푟푡푖푡푖표푛 algorithm. 
 

In normal Quick sort, 푝푖푣표푡 element was always the leftmost element in the list to be sorted. Instead of always using 퐴[푙표푤] as 푝푖푣표푡, we will 
use a randomly chosen element from the subarray 퐴[푙표푤. . ℎ푖푔ℎ] in the randomized version of Quick sort. It is done by exchanging element 
퐴[푙표푤] with an element chosen at random from 퐴[푙표푤. . ℎ푖푔ℎ]. This ensures that the 푝푖푣표푡 element is equally likely to be any of the ℎ푖푔ℎ −
 푙표푤 +  1 elements in the subarray.  

 

Since the pivot element is randomly chosen, we can expect the split of the input array to be reasonably well balanced on average. This can 
help in preventing the worst-case behavior of quick sort which occurs in unbalanced partitioning. Even though the randomized version 
improves the worst case complexity, its worst case complexity is still  O(푛 ). One way to improve 푅푎푛푑표푚푖푧푒푑 − 푄푢푖푐푘 푠표푟푡 is to choose 
the pivot for partitioning more carefully than by picking a random element from the array. One common approach is to choose the pivot as 
the median of a set of 3 elements randomly selected from the array. 

10.12 Tree Sort 
 

Tree sort uses a binary search tree. It involves scanning each element of the input and placing it into its proper position in a binary search 
tree. This has two phases: 
 

 First phase is creating a binary search tree using the given array elements.  
 Second phase is traversing the given binary search tree in inorder, thus resulting in a sorted array. 

Performance 
 

The average number of comparisons for this method is O(푛푙표푔푛). But in worst case, the number of comparisons is reduced by O(푛 ), a 
case which arises when the sort tree is skew tree. 

10.13 Comparison of Sorting Algorithms 
 

Name Average Case Worst Case Auxiliary Memory Is Stable? Other Notes 
Bubble O(푛 ) O(푛 ) 1 yes Small code 

Selection O(푛 ) O(푛 ) 1 no Stability depends on the implementation.  

Insertion O(푛 ) O(푛 ) 1 yes Average case is also O(푛 + 푑), where d is the number of 
inversions. 

Shell - O(푛푙표푔 푛) 1 no  
Merge sort O(푛푙표푔푛) O(푛푙표푔푛) depends yes  
Heap sort O(푛푙표푔푛) O(푛푙표푔푛) 1 no  

Quick sort O(푛푙표푔푛) O(푛 ) O(푙표푔푛) depends 
Can be implemented as a stable sort depending on how the pivot 
is handled.  

Tree sort O(푛푙표푔푛) O(푛 ) O(푛) depends Can be implemented as a stable sort. 
 

Note: 푛 denotes the number of elements in the input. 

10.14 Linear Sorting Algorithms 
 

In earlier sections, we have seen many examples of comparison-based sorting algorithms. Among them, the best comparison-based sorting 
has the complexity O(푛푙표푔푛). In this section, we will discuss other types of algorithms: Linear Sorting Algorithms. To improve the time 
complexity of sorting these algorithms, we make some assumptions about the input. A few examples of Linear Sorting Algorithms are: 
 

 Counting Sort 
 Bucket Sort 
 Radix Sort 

10.15 Counting Sort 
 

Counting sort is not a comparison sort algorithm and gives O(푛) complexity for sorting. To achieve O(푛) complexity, 푐표푢푛푡푖푛푔 sort assumes 
that each of the elements is an integer in the range 1 to 퐾, for some integer 퐾. When 퐾 = O(푛), the 푐표푢푛푡푖푛푔 sort runs in O(푛) time. The 
basic idea of Counting sort is to determine, for each input element 푋, the number of elements less than 푋. This information can be used to 
place it directly into its correct position. For example, if 10 elements are less than 푋, then 푋 belongs to position 11 in the output. 

 

In the code below, 퐴[0 . . 푛 − 1] is the input array with length 푛. In Counting sort we need two more arrays: let us assume array 퐵[0 . . 푛 − 1] 
contains the sorted output and the array 퐶[0 . . 퐾 − 1] provides temporary storage.   

public class CountingSorter{ 
    public static int[] CountingSort (int[] A, int K) { 
        int i, j, n = A.length;  
        int[] C = new int[K+1]; 
        int[] B = new int[n+1]; 
        // Complexity: O(K)  
        for (i =0 ; i <= K; i++)  
            C[i] = 0;  
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        // Complexity: O(n)  
        for (j = 0 ; j < n; j++)  
            C[A[j]] = C[A[j]] + 1; 
        // C[i] now contains the number of elements equal to i  
             

        // Complexity: O(K)  
        for (i =1 ; i <= K; i++)  
            C[i] = C[i] + C[i-1]; 
        // C[i] now contains the number of elements ≤ i  
             

        // Complexity: O(n)  
        for (j = n-1; j>=0; j--) {  
            B[C[A[j]]] = A[j];  
            C[A[j]] = C[A[j]] - 1;  
        } 
        return B; 
    } 
    public static void main(String[] args) { 
      System.out.println("Counting sort in Java"); 
      int[] A = { 6, 4, 3, 2, 1, 4, 3, 6, 6, 2, 4, 3, 4 }; 
      int K = 6; 
      int[] B = new int[A.length + 1]; 
      // sorting array using Counting Sort Algorithm 
      B = CountingSort(A, K); 
             

      System.out.println("Sorted array"); 
      System.out.println(Arrays.toString(B)); 
    } 
} 

 

Total Complexity: O(퐾) + O(푛)  + O(퐾) + O(푛)  = O(푛) if  퐾 = O(푛). Space Complexity: O(푛)  if  퐾 = O(푛). 
 

Note: Counting works well if 퐾 =O(푛). Otherwise, the complexity will be more. 

10.16 Bucket sort (Bin Sort) 
 

Like 퐶표푢푛푡푖푛푔 sort, 퐵푢푐푘푒푡 sort also imposes restrictions on the input to improve the performance. In other words, Bucket sort works well 
if the input is drawn from fixed set. 퐵푢푐푘푒푡 sort is the generalization of 퐶표푢푛푡푖푛푔 Sort. For example, assume that all the input elements from 
{0, 1, . . . , 퐾 − 1}, i.e., the set of integers in the interval [0, 퐾 − 1]. That means, 퐾 is the number of distant elements in the input. 퐵푢푐푘푒푡 
sort uses 퐾 counters. The 푖  counter keeps track of the number of occurrences of the 푖  element. Bucket sort with two buckets is effectively 
a version of Quick sort with two buckets.  
 

For bucket sort, the hash function that is used to partition the elements need to be very good and must produce ordered hash: if i < k then    
hash(i) < hash(k). Second, the elements to be sorted must be uniformly distributed. 
 

The aforementioned aside, bucket sort is actually very good considering that counting sort is reasonably speaking its upper bound. And 
counting sort is very fast. The particular distinction for bucket sort is that it uses a hash function to partition the keys of the input array, so that 
multiple keys may hash to the same bucket. Hence each bucket must effectively be a growable list; similar to radix sort. 
 

In the below code Insertionsort is used to sort each bucket. This is to inculcate that the bucket sort algorithm does not specify which sorting 
technique to use on the buckets. A programmer may choose to continuously use bucket sort on each bucket until the collection is sorted (in 
the manner of the radix sort program below). Whichever sorting method is used on the , bucket sort still tends toward O(푛).  
 

      // assume BUCKETS 10 
      public void BucketSort(int[] A) { 
 int i, j, k; 
 int buckets[BUCKETS]; 
 for(j =0; j < BUCKETS; j++) 
  buckets[j] = 0; 
 for(i =0; i < A.length; i++) 
  ++ buckets[A[i]]; 
 for(i =0, j=0; j < BUCKETS; j++) 
  for(k = buckets[j];k > 0; --k) 
   A[i++] = j; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛).  

10.17 Radix Sort 
 

Similar to 퐶표푢푛푡푖푛푔 sort and 퐵푢푐푘푒푡 sort, this sorting algorithm also assumes some kind of information about the input elements. Suppose 
that the input values to be sorted are from base 푑. That means all numbers are 푑-digit numbers.  
 

In Radix sort, first sort the elements based on the last digit [the least significant digit]. These results are again sorted by second digit [the next 
to least significant digit]. Continue this process for all digits until we reach the most significant digits. Use some stable sort to sort them by last 
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digit. Then stable sort them by the second least significant digit, then by the third, etc. If we use Counting sort as the stable sort, the total time 
is O(푛푑) ≈O(푛). 
 

Algorithm: 
 

1) Take the least significant digit of each element. 
2) Sort the list of elements based on that digit, but keep the order of elements with the same digit (this is the definition of a stable sort). 
3) Repeat the sort with each more significant digit. 
 

The speed of Radix sort depends on the inner basic operations. If the operations are not efficient enough, Radix sort can be slower than other 
algorithms such as Quick sort and Merge sort. These operations include the insert and delete functions of the sub-lists and the process of 
isolating the digit we want. If the numbers are not of equal length then a test is needed to check for additional digits that need sorting. This 
can be one of the slowest parts of Radix sort and also one of the hardest to make efficient. 
 

Since Radix sort depends on the digits or letters, it is less flexible than other sorts. For every different type of data, Radix sort needs to be 
rewritten, and if the sorting order changes, the sort needs to be rewritten again. In short, Radix sort takes more time to write, and it is very 
difficult to write a general purpose Radix sort that can handle all kinds of data. 
 

For many programs that need a fast sort, Radix sort is a good choice. Still, there are faster sorts, which is one reason why Radix sort is not 
used as much as some other sorts. 
 

Time Complexity: O(푛푑) ≈O(푛), if 푑 is small. 

10.18 Topological Sort 
 

Refer to 퐺푟푎푝ℎ 퐴푙푔표푟푖푡ℎ푚푠 Chapter. 

10.19 External Sorting 
 

External sorting is a generic term for a class of sorting algorithms that can handle massive amounts of data. These external sorting algorithms 
are useful when the files are too big and cannot fit into main memory. As with internal sorting algorithms, there are a number of algorithms 
for external sorting. One such algorithm is External Mergesort. In practice, these external sorting algorithms are being supplemented by 
internal sorts.  
 

Simple External Mergesort 
 

A number of records from each tape are read into main memory, sorted using an internal sort, and then output to the tape. For the sake of 
clarity, let us assume that 900 megabytes of data needs to be sorted using only 100 megabytes of RAM. 
 

1) Read 100MB of the data into main memory and sort by some conventional method (let us say Quick sort). 
2) Write the sorted data to disk. 
3) Repeat steps 1 and 2 until all of the data is sorted in chunks of 100MB. Now we need to merge them into one single sorted output 

file. 
4) Read the first 10MB of each sorted chunk (call them input buffers) in main memory (90MB total) and allocate the remaining 10MB 

for output buffer.  
5) Perform a 9-way Mergesort and store the result in the output buffer. If the output buffer is full, write it to the final sorted file. If any 

of the 9 input buffers gets empty, fill it with the next 10MB of its associated 100MB sorted chunk; or if there is no more data in the 
sorted chunk, mark it as exhausted and do not use it for merging. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

The above algorithm can be generalized by assuming that the amount of data to be sorted exceeds the available memory by a factor of 퐾. 
Then, 퐾 chunks of data need to be sorted and a 퐾 -way merge has to be completed. 
 

If 푋 is the amount of main memory available, there will be 퐾 input buffers and 1 output buffer of size 푋/(퐾 + 1) each. Depending on various 
factors (how fast is the hard drive?) better performance can be achieved if the output buffer is made larger (for example, twice as large as one 
input buffer). 

Internal Sort Merge 

K-Way Mergesort 
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Complexity of the 2-way External Merge sort: In each pass we read + write each page in file. Let us assume that there are 푛 pages in file. That 
means we need  푙표푔푛+ 1 number of passes. The total cost is  2푛(푙표푔푛+ 1). 

10.20 Sorting: Problems & Solutions 
 

Problem-1 Given an array 퐴[0 … 푛 − 1] of 푛 numbers containing the repetition of some number. Give an algorithm for checking 
whether there are repeated elements or not. Assume that we are not allowed to use additional space (i.e., we can use a few temporary 
variables, O(1) storage).  

 

Solution: Since we are not allowed to use extra space, one simple way is to scan the elements one-by-one and for each element check whether 
that element appears in the remaining elements. If we find a match we return true. 
 

     public  int CheckDuplicatesInArray(in A[], int n) { 
 for (int i  =  0; i < n; i++) 
       for (int j   = i + 1; j < n; j++) 
  if(A[i]==A[j]) 
   reutrn true; 
 return false; 
      } 
 

Each iteration of the inner, 푗-indexed loop uses O(1) space, and for a fixed value of 푖, the 푗 loop executes 푛 − 푖 times. The outer loop executes 
푛 − 1 times, so the entire function uses time proportional to 

푛 − 푖 = 푛(푛 − 1) − 푖 = 푛(푛 − 1) −
푛(푛 − 1)

2 =
푛(푛 − 1)

2 = O(푛 ) 

 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-2 Can we improve the time complexity of Problem-1?  
 

Solution: Yes, using sorting technique.  
 

      public int CheckDuplicatesInArray(int[] A) { 
 //for heap sort algorithm refer 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter 
 Heapsort( A);  
 for (int i  =  0; i < A.length -1; i++) 
  if(A[i]==A[i+1]) 
   reutrn true; 
 return false; 
      } 
 

Heapsort function takes O(푛푙표푔푛) time, and requires O(1) space. The scan clearly takes 푛 −  1 iterations, each iteration using O(1) time. 
The overall time is O(푛푙표푔푛 +  푛)  = O(푛푙표푔푛).  
 

Time Complexity: O(푛푙표푔푛). Space Complexity: O(1). 
 

Note: For variations of this problem, refer to 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-3 Given an array 퐴[0 … 푛 − 1], where each element of the array represents a vote in the election. Assume that each vote is 
given as an integer representing the ID of the chosen candidate. Give an algorithm for determining who wins the election.  
 

Solution: This problem is nothing but finding the element which repeated the maximum number of times. The solution is similar to the 
Problem-1 solution: keep track of counter. 
 

      public int CheckWhoWinsTheElection(int A) { 
 int i, j, counter = A[0], maxCounter = 0, candidate, n = A.length; 
 for (i  =  0; i < n; i++) { 
  candidate = A[i]; 
  counter = 0; 
  for (j   = i + 1; j < n; j++) { 
   if(A[i]==A[j]) 
    counter++; 
  } 
  if(counter > maxCounter) { 
   maxCounter = counter; 
   candidate = A[i]; 
 

  } 
 } 
 return candidate; 
      } 
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Note: For variations of this problem, refer 푆푒푎푟푐ℎ푖푛푔 chapter.  
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Problem-4 Can we improve the time complexity of Problem-3? Assume we don’t have any extra space.  
 

Solution: Yes. The approach is to sort the votes based on candidate ID, then scan the sorted array and count up which candidate so far has 
the most votes. We only have to remember the winner, so we don’t need a clever data structure. We can use Heapsort as it is an in-place 
sorting algorithm. 
 

      public int CheckWhoWinsTheElection(int A) { 
 int i, j, currentCounter = 1, maxCounter = 1, n = A.length; 
 int currentCandidate, maxCandidate; 
 currentCandidate = maxCandidate= A[0]; 
 Heapsort( A, n );   //for heap sort algorithm refer 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 Chapter 
 for (int i  =  0; i < n; i++) { 
  if( A[i] == currentCandidate) 
   currentCounter ++; 
  else { currentCandidate = A[i]; 
   currentCounter = 1; 
  } 
  if(currentCounter > maxCounter) 
   maxCounter = currentCounter; 
  else { maxCandidate = currentCandidate; 
   maxCounter = currentCounter; 
  } 
 } 
 return candidate; 
      } 
 

Since Heapsort time complexity is O(푛푙표푔푛) and in-place, so it only uses an additional O(1) of storage in addition to the input array. The 
scan of the sorted array does a constant-time conditional 푛 − 1 times, thus using O(푛) time. The overall time bound is O(푛푙표푔푛). 
 

Problem-5 Can we further improve the time complexity of Problem-3?  
 

Solution: In the given problem, number of candidates is less but the number of votes is significantly large. For this problem we can use 
counting sort. 
 

Time Complexity: O(푛), 푛 is the number of votes (elements) in array.  
Space Complexity: O(푘), 푘 is the number of candidates participated in election. 
 

Problem-6 Given an array 퐴 of 푛 elements, each of which is an integer in the range [1, 푛 ]. How do we sort the array in O(푛) time? 
 

Solution:  If we subtract each number by 1 then we get the range [0, 푛  –  1]. If we consider all number as 2 −digit base 푛. Each digit ranges 
from 0 to 푛  - 1. Sort this using radix sort. This uses only two calls to counting sort. Finally, add 1 to all the numbers. Since there are 2 calls, 
the complexity is O(2푛) ≈O(푛). 
 

Problem-7 For the Problem-6, what if the range is [1. . . 푛³]? 
 

Solution: If we subtract each number by 1 then we get the range [0, 푛  –  1]. Considering all numbers as 3-digit base 푛: each digit ranges from 
0 to 푛  - 1. Sort this using radix sort. This uses only three calls to counting sort. Finally, add 1 to all the numbers. Since there are 3 calls, the 
complexity is O(3푛) ≈ O(푛). 
 

Problem-8 Given an array with 푛 integers, each of value less than 푛 , can it be sorted in linear time? 
 

Solution:  Yes. Reasoning is the same as in of Problem-6  and Problem-7. 
 

Problem-9 Let 퐴 and 퐵 be two arrays of 푛 elements each. Given a number 퐾, give an O(푛푙표푔푛) time algorithm for determining 
whether there exists a ∈ A and b ∈ B such that 푎 + 푏 = 퐾. 

 

Solution: Since we need O(푛 푙표푔푛), it gives us a pointer that we need sorting. So, we will do that. 
 

      public int Find( int[] A, int[] B, int n, K ) { 
 int i, c; 
 Heapsort( A, A.length );  // O(푛푙표푔푛) 
 for (i =0; i < A.length; i++) {  // O(푛) 
  c = k-B[i];    // O(1) 
  if(BinarySearch(A, c)) // O(푙표푔푛) 
   return 1; 
 } 
 return 0; 
      } 
 

Note: For variations of this problem, refer 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-10 Let 퐴, 퐵 and 퐶 are three arrays of 푛 elements, each. Given a number 퐾, give an O(푛푙표푔푛) time algorithm for determining 
whether there exists 푎 ∈ 퐴, 푏 ∈ 퐵 and 푐 ∈ 퐶 such that 푎 + 푏 + 푐 =  퐾. 
 

Solution: Refer 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-11 Given an array of 푛 elements, can we output in sorted order the 퐾 elements following the median in sorted order in 
time O(푛 + 퐾푙표푔퐾). 
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Solution: Yes. Find the median and partition the median. With this we can find all the elements greater than it. Now find the 퐾  largest 
element in this set and partition it; and get all the elements less than it. Output the sorted list of the final set of elements. Clearly, this operation 
takes O(푛 + 퐾푙표푔퐾) time. 
 

Problem-12 Consider the sorting algorithms: Bubble Sort, Insertion Sort, Selection Sort, Merge Sort, Heap Sort, and Quick Sort. 
Which of these are stable?  
 

Solution: Let us assume that 퐴 is the array to be sorted. Also, let us say 푅 and 푆 have the same key and 푅 appears earlier in the array than 푆. 
That means, 푅 is at 퐴[푖] and 푆 is at 퐴[푗], with 푖 <  푗. To show any stable algorithm, in the sorted output 푅 must precede 푆. 
 

Bubble sort: Yes. Elements change order only when a smaller record follows a larger. Since 푆 is not smaller than 푅 it cannot precede it. 
 

Selection sort: No. It divides the array into sorted and unsorted portions and iteratively finds the minimum values in the unsorted portion. 
After finding a minimum 푥, if the algorithm moves 푥 into the sorted portion of the array by means of a swap, then the element swapped could 
be 푅 which then could be moved behind 푆. This would invert the positions of 푅 and 푆, so in general it is not stable. If swapping is avoided, it 
could be made stable but the cost in time would probably be very significant. 
 

Insertion sort: Yes. As presented, when 푆 is to be inserted into sorted subarray 퐴[1. . 푗 −  1], only records larger than 푆 are shifted. Thus 푅 
would not be shifted during 푆’푠 insertion and hence would always precede it. 
 

Merge sort: Yes, In the case of records with equal keys, the record in the left subarray gets preference. Those are the records that came first 
in the unsorted array. As a result, they will precede later records with the same key. 
 

Heap sort: No. Suppose 푖 =  1 and 푅 and 푆 happen to be the two records with the largest keys in the input. Then 푅 will remain in location 
1 after the array is heapified, and will be placed in location 푛 in the first iteration of Heapsort. Thus 푆 will precede 푅 in the output. 
 

Quick sort: No. The partitioning step can swap the location of records many times, and thus two records with equal keys could swap position 
in the final output. 

 

Problem-13 Consider the same sorting algorithms as that of Problem-12. Which of them are in-place? 
 

Solution:  
 

Bubble sort: Yes, because only two integers are required. 
 

Insertion sort: Yes, since we need to store two integers and a record. 
 

Selection sort: Yes. This algorithm would likely need space for two integers and one record. 
 

Merge sort: No. Arrays need to perform the merge. (If the data is in the form of a linked list, the sorting can be done in-place, but this is a 
nontrivial modification.) 
 

Heap sort: Yes, since the heap and partially-sorted array occupy opposite ends of the input array. 
 

Quicksort: No, since it is recursive and stores O(푙표푔푛) activation records on the stack. Modifying it to be non-recursive is feasible but 
nontrivial. 

 

Problem-14 Among, Quick sort, Insertion sort, Selection sort, Heap sort algorithms, which one needs the minimum number of swaps? 
 

Solution: Selected sort, it needs 푛 swaps only (refer theory section). 
 

Problem-15 What is the minimum number of comparisons required to determine if an integer appears more than 푛/2 times in a 
sorted array of 푛 integers? 

 

Solution:  Refer 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-16 Sort an array of  0’s, 1’s and 2’s: Given an array A[] consisting 0’푠, 1’푠 and 2’푠, give an algorithm for sorting 퐴[]. The 
algorithm should put all 0’푠 first, then all 1’푠 and all 2’푠 in last. 
Example:    Input = {0,1,1,0,1,2,1,2,0,0,0,1}, Output = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2} 

 

Solution: Use Counting Sort. Since there are only three elements and the maximum value is 2, we need a temporary array with 3 elements. 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Note: For variations of this problem, refer 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-17 Is there any other way of solving Problem-18? 
 

Solution: Using Quick dort. Since we know that there are only 3 elements, 0, 1 and 2 in the array, we can select 1 as a pivot element for 
Quick sort. Quick sort finds the correct place for 1 by moving all 0’s to the left of 1 and all 2’s to the right of 1. For doing this it uses only one 
scan.  
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Note: For efficient algorithm, refer 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-18 How do we find the number which appeared the maximum number of times in an array? 
 

Solution: One simple approach is to sort the given array and scan the sorted array. While scanning, keep track of the elements that occur the 
maximum number of times. 
 

Algorithm: 
 

      QuickSort(A); 
 int i, j, count=1, Number=A[0], j=1; 
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 for(i=1;i < A.length;i++) { 
  if(arr[j]==A) { 
   count++; 
   Number=A[j]; 
  } 
  j=i; 
 } 
 System.out.println("Number:“ + Number + “ , count: “ + count); 
 

Time Complexity   = Time for Sorting + Time for Scan =  O(푛푙표푔푛) +O(푛)  = O(푛푙표푔푛). Space Complexity: O(1). 
 

Note: For variations of this problem, refer 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-19 Is there any other way of solving Problem-18? 
 

Solution: Using Binary Tree. Create a binary tree with an extra field 푐표푢푛푡 which indicates the number of times an element appeared in the 
input. Let us say we have created a Binary Search Tree [BST]. Now, do the In-Order traversal of the tree. The In-Order traversal of BST 
produces the sorted list. While doing the In-Order traversal keep track of the maximum element. 
 

Time Complexity: O(푛) +O(푛) ≈O(푛). The first parameter is for constructing the BST and the second parameter is for Inorder Traversal. 
Space Complexity: O(2푛) ≈O(푛), since every node in BST needs two extra pointers. 

 

Problem-20 Is there yet other way of solving the Problem-18? 
 

Solution: Using Hash Table. For each element of the given array we use a counter, and for each occurrence of the element we increment the 
corresponding counter. At the end we can just return the element which has the maximum counter. 
 

Time Complexity: O(푛). Space Complexity: O(푛). For constructing the hash table we need O(푛). 
 

Note: For the efficient algorithm, refer to the 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-21 Given a 2 GB file with one string per line, which sorting algorithm would we use to sort the file and why? 
 

Solution:  When we have a size limit of 2GB, it means that we cannot bring all the data into the main memory.  
 

Algorithm: How much memory do we have available?  Let’s assume we have 푋 MB of memory available. Divide the file into 퐾 chunks, where 
푋 ∗  퐾 ~2 퐺퐵.  
 

 Bring each chunk into memory and sort the lines as usual (any O(푛푙표푔푛) algorithm). 
 Save the lines back to the file.  
 Now bring the next chunk into memory and sort. 
 Once we’re done, merge them one by one; in the case of one set finishing, bring more data from the particular chunk. 

 

The above algorithm is also known as external sort. Step 3 −  4 is known as K-way merge. The idea behind going for an external sort is the 
size of data. Since the data is huge and we can’t bring it to the memory, we need to go for a disk-based sorting algorithm. 
 

Problem-22 Nearly sorted: Given an array of 푛 elements, each which is at most 퐾 positions from its target position, devise an algorithm 
that sorts in O(푛푙표푔퐾) time.  

 

Solution: Divide the elements into 푛/퐾 groups of size 퐾, and sort each piece in O(퐾푙표푔퐾) time, let’s say using Mergesort. This preserves 
the property that no element is more than 퐾 elements out of position. Now, merge each block of 퐾 elements with the block to its left.  
 

Problem-23 Is there any other way of solving Problem-22? 
 

Solution: Insert the first 퐾 elements into a binary heap. Insert the next element from the array into the heap, and delete the minimum element 
from the heap. Repeat.  
 

Problem-24 Merging K sorted lists: Given 퐾 sorted lists with a total of 푛 elements, give an O(푛푙표푔퐾) algorithm to produce a sorted 
list of all 푛 elements. 
 

Solution: Simple Algorithm for merging 퐾 sorted lists: Consider groups each having  elements. Take the first list and merge it with the 
second list using a linear-time algorithm for merging two sorted lists, such as the merging algorithm used in merge sort. Then, merge the 
resulting list of  elements with the third list, and then merge the resulting list of   elements with the fourth list. Repeat this until we end up 

with a single sorted list of all 푛 elements. 
 

Time Complexity: In each iteration we are merging 퐾 elements. 

             푇(푛) =
2푛
퐾 +

3푛
퐾 +

4푛
퐾 + ⋯

퐾푛
퐾

(푛) =
푛
퐾 푖 

             푇(푛) = 푛 ( ) ≈ O(푛퐾) 
 

Problem-25 Can we improve the time complexity of Problem-24? 
 

Solution: One method is to repeatedly pair up the lists and then merge each pair. This method can also be seen as a tail component of the 
execution merge sort, where the analysis is clear. This is called the Tournament Method. The maximum depth of the Tournament Method 
is 푙표푔퐾 and in each iteration we are scanning all the 푛 elements. 
 

Time Complexity: O(nlogK). 
 

Problem-26 Is there any other way of solving Problem-24? 
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Solution: The other method is to use a 푚푖푛 priority queue for the minimum elements of each of the 퐾 lists. At each step, we output the 
extracted minimum of the priority queue, determine from which of the 퐾 lists it came, and insert the next element from that list into the 
priority queue. Since we are using priority queue, that maximum depth of priority queue is 푙표푔퐾. 
 

Time Complexity: O(푛logK). 
 

Problem-27 Which sorting method is better for Linked Lists? 
 

Solution: Merge Sort is a better choice. At first appearance, merge sort may not be a good selection since the middle node is required to 
subdivide the given list into two sub-lists of equal length. We can easily solve this problem by moving the nodes alternatively to two lists (refer 
to 퐿푖푛푘푒푑 퐿푖푠푡푠 chapter). Then, sorting these two lists recursively and merging the results into a single list will sort the given one. 
 

     public ListNode LinkedListMergeSort(ListNode first) { 
 ListNode list1HEAD = null; 
 ListNode list1TAIL = null; 
 ListNode list2HEAD = null; 
 ListNode list2TAIL = null; 
 if(first==null || first.next==null) 
  return first; 
 while (first != null) { 
  Append(first, list1HEAD, list1TAIL); 
  if(first != null) 
   Append(first, list2HEAD, list2TAIL); 
 } 
 list1HEAD = LinkedListMergeSort(list1HEAD); 
 list2HEAD = LinkedListMergeSort(list2HEAD); 
 return Merge(list1HEAD, list2HEAD); 
     } 
 

Note: Append() appends the first argument to the tail of a singly linked list whose head and tail are defined by the second and third arguments. 
 

All external sorting algorithms can be used for sorting linked lists since each involved file can be considered as a linked list that can only be 
accessed sequentially. We can sort a doubly linked list using its next fields as if it was a singly linked one and reconstruct the prev fields after 
sorting with an additional scan. 
 

Problem-28 Can we implement Linked Lists Sorting with Quick sort? 
  

Solution: The original Quick Sort cannot be used for sorting Singly Linked Lists. This is because we cannot move backward in Singly Linked 
Lists. But we can modify the original Quick Sort and make it work for Singly Linked Lists. 
 

Let us consider the following modified Quick Sort implementation. The first node of the input list is considered a 푝푖푣표푡 and is moved to 
푒푞푢푎푙. The value of each node is compared with the 푝푖푣표푡 and moved 푡표 푙푒푠푠 (respectively, 푒푞푢푎푙 or 푙푎푟푔푒푟) if the nodes value is smaller 
than (respectively, 푒푞푢푎푙 to or 푙푎푟푔푒푟 than) the 푝푖푣표푡. Then, 푙푒푠푠 and 푙푎푟푔푒푟 are sorted recursively. Finally, joining 푙푒푠푠, 푒푞푢푎푙 and 푙푎푟푔푒푟 
into a single list yields a sorted one.  
 

퐴푝푝푒푛푑() appends the first argument to the tail of a singly linked list whose head and tail are defined by the second and third arguments. On 
return, the first argument will be modified so that it points to the next node of the list. 퐽표푖푛() appends the list whose head and tail are defined 
by the third and fourth arguments to the list whose head and tail are defined by the first and second arguments. For simplicity, the first and 
fourth arguments become the head and tail of the resulting list.  
 

      public void Qsort(ListNode first, ListNode last){ 
 ListNode lesHEAD=null, lesTAIL=null; 
 ListNode equHEAD=null, equTAIL=null; 
 ListNode larHEAD=null, larTAIL=null; 
 ListNode current = first; 
 int pivot, info; 
 if(current == null) 
  return; 
 pivot = current.data; 
 Append(current, equHEAD, equTAIL); 
 while (current != null) { 
  info = current.data; 
  if(info < pivot) 
   Append(current, lesHEAD, lesTAIL) 
  else if(info > pivot) 
   Append(current, larHEAD, larTAIL) 
  else Append(current, equHEAD, equTAIL); 
 } 
 Quicksort(lesHEAD, lesTAIL); 
 Quicksort(larHEAD, larTAIL); 
 Join(lesHEAD, lesTAIL,equHEAD, equTAIL); 
 Join(lesHEAD, equTAIL,larHEAD, larTAIL); 
 first = lesHEAD; 
 last = larTAIL; 
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      } 
 

Problem-29 Given an array of  100, 000 pixel color values, each of which is an integer in the range [0,255]. Which sorting algorithm 
is preferable for sorting them? 

 

Solution: Counting Sort. There are only 256 key values, so the auxiliary array would only be of size 256, and there would be only two passes 
through the data, which would be very efficient in both time and space. 
 

Problem-30 Similar to Problem-29, if we have a telephone directory with 10 million entries, which sorting algorithm is best? 
 

Solution: Bucket Sort. In Bucket Sort the buckets are defined by the last 7 digits. This requires an auxiliary array of size 10 million and has 
the advantage of requiring only one pass through the data on disk. Each bucket contains all telephone numbers with the same last 7 digits but 
with different area codes. The buckets can then be sorted by area code with selection or insertion sort; there are only a handful of area codes. 
 

Problem-31 Give an algorithm for merging 퐾-sorted lists. 
 

Solution: Refer to 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter. 
 

Problem-32 Given a big file containing billions of numbers. Find maximum 10 numbers from those file.  
 

Solution: Refer to 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter. 
 

Problem-33 There are two sorted arrays 퐴 and 퐵. First one is of size 푚 + 푛 containing only 푚 elements. Another one is of size 푛 and 
contains 푛 elements. Merge these two arrays into the first array of size 푚 + 푛 such that the output is sorted. 

 

Solution: The trick for this problem is to start filling the destination array from the back with the largest elements. We will end up with a 
merged and sorted destination array. 
 

    public void merge(int[] A, int[] B) { 
        int m = A.length, n = B.length; 
        while( n > 0){ 
            // the original A has all merged into the new A, and merge the left B 
            if(m <= 0 || A[m - 1] < B[n - 1]) 
                A[n + m - 1] = B[--n]; 
            else 
                A[n + m - 1] = A[--m]; 
        } 
    } 
 

Time Complexity: O(푚 + 푛). Space Complexity: O(1). 
 

Problem-34 Nuts and Bolts Problem: Given a set of 푛 nuts of different sizes and 푛 bolts such that there is a one-to-one correspondence 
between the nuts and the bolts, find for each nut its corresponding bolt. Assume that we can only compare nuts to bolts: we cannot 
compare nuts to nuts and bolts to bolts. 
Alternative way of framing the question: We are given a box which contains bolts and nuts. Assume there are 푛 nuts and 푛 bolts and that 
each nut matches exactly one bolt (and vice versa). By trying to match a bolt and a nut we can see which one is bigger, but we cannot 
compare two bolts or two nuts directly. Design an efficient algorithm for matching the nuts and bolts.  

 

Solution: Brute Force Approach: Start with the first bolt and compare it with each nut until we find a match. In the worst case, we require 푛 
comparisons. Repeat this for successive bolts on all remaining gives O(푛 ) complexity.  
 

Problem-35 For Problem-34, can we improve the complexity? 
 

Solution: In Problem-34, we got O(푛 ) complexity in the worst case (if bolts are in ascending order and nuts are in descending order). Its 
analysis is the same as that of Quick Sort. The improvement is also along the same lines.    
 

To reduce the worst case complexity, instead of selecting the first bolt every time, we can select a random bolt and match it with nuts. This 
randomized selection reduces the probability of getting the worst case, but still the worst case is O(푛 ). 
 

Problem-36 For Problem-34, can we further improve the complexity? 
 

Solution: We can use a divide-and-conquer technique for solving this problem and the solution is very similar to randomized Quick Sort. For 
simplicity let us assume that bolts and nuts are represented in two arrays 퐵 and 푁.The algorithm first performs a partition operation as follows: 
pick a random bolt 퐵[푖]. Using this bolt, rearrange the array of nuts into three groups of elements: 
 

 First the nuts smaller than 퐵[푖] 
 Then the nut that matches 퐵[푖], and  
 Finally, the nuts larger than 퐵[푖].  

 

Next, using the nut that matches 퐵[푖], perform a similar partition on the array of bolts. This pair of partitioning operations can easily be 
implemented in O(푛) time, and it leaves the bolts and nuts nicely partitioned so that the “푝푖푣표푡" bolt and nut are aligned with each other and 
all other bolts and nuts are on the correct side of these pivots – smaller nuts and bolts precede the pivots, and larger nuts and bolts follow the 
pivots. Our algorithm then completes by recursively applying itself to the subarray to the left and right of the pivot position to match these 
remaining bolts and nuts. We can assume by induction on 푛 that these recursive calls will properly match the remaining bolts. 
 

To analyze the running time of our algorithm, we can use the same analysis as that of randomized Quick Sort. Therefore, applying the analysis 
from Quick Sort, the time complexity of our algorithm is O(푛푙표푔푛). 
 



 

Data Structures and Algorithms Made Easy in Java Sorting                      

 

10.20 Sorting: Problems & Solutions    270 

 
 

Alternative Analysis: We can solve this problem by making a small change to Quick Sort. Let us assume that we pick the last element as the 
pivot, say it is a nut. Compare the nut with only bolts as we walk down the array. This will partition the array for the bolts. Every bolt less than 
the partition nut will be on the left. And every bolt greater than the partition nut will be on the right.  
 

While traversing down the list, find the matching bolt for the partition nut. Now we do the partition again using the matching bolt. As a result, 
all the nuts less than the matching bolt will be on the left side and all the nuts greater than the matching bolt will be on the right side. Recursively 
call on the left and right arrays.  
 

The time complexity is O(2nlogn) ≈O(nlogn). 
 

Problem-37 Given a binary tree, can we print its elements in sorted order in O(푛) time by performing an In-order tree traversal? 
 

Solution: Yes, if the tree is a Binary Search Tree [BST]. For more details refer to the 푇푟푒푒푠 chapter. 
 

Problem-38 Given a sorted array, remove the duplicates in place such that each element appear only once and return the new length. 
Do not allocate extra space for another array, you must do this in place with constant memory. 

 

Solution: 
 

    public int removeDuplicates(int[] A) { 
        int len = A.length; 
        int i = 0; 
        if(len <= 1)  
            return len; 
        for(int j = 1; j < len; j++){ 
            if(A[j] != A[i]) 
                A[++i] = A[j]; 
        } 
        return i + 1; 
    } 
 

Time Complexity: O(푛).  Space Complexity: O(1). 
 

Problem-39 Given an array of elements convert it into an array such that A < B > C < D > E < F and so on. 
 

Solution: Sort the array, then swap every adjacent element to get final result. 
 

    public class ConvertArraytoSawToothWave { 
        public void converttoSawToothWave(int A[]){ 
            for(int i=1; i < A.length; i+=2){ 
                if(i+1 < A.length){ 
                    swap(A, i, i+1); 
                } 
            } 
        } 
        private void swap(int A[],int low,int high){ 
            int temp = A[low]; A[low] = A[high]; A[high] = temp; 
        } 
        public static void main(String args[]){ 
            ConvertArraytoSawToothWave convertedArray = new ConvertArraytoSawToothWave(); 
            int A[] = {0,-6,9,13,10,-1,8,12,54,14,-5}; 
            Arrays.sort(A); 
            convertedArray.converttoSawToothWave(A); 
            for(int i=0; i < A.length; i++){ 
                System.out.print(A[i] + " "); 
            } 
        } 
    } 
 

The time complexity is O(푛푙표푔푛 + 푛) ≈ O(푛푙표푔푛), for sorting and a scan. 
 

Problem-40 Sort the linked list elements in O(푛), where 푛 is the number of elements in the linked list. 
 

Solution: As stated many times, the lower bound on comparison based sorting for general data is going to be O(푛푙표푔푛). So, for general data 
on a linked list, the best possible sort that will work on any data that can compare two objects is going to be O(푛푙표푔푛). However, if you have 
a more limited domain of things to work in, you can improve the time it takes (at least proportional to n). For instance, if you are working 
with integers no larger than some value, you could use Counting Sort or Radix Sort, as these use the specific objects you're sorting to reduce 
the complexity with proportion to 푛. Be careful, though, these add some other things to the complexity that you may not consider (for instance, 
Counting Sort and Radix sort both add in factors that are based on the size of the numbers you're sorting, O(푛 + 푘) where 푘 is the size of 
largest number for Counting Sort, for instance). 
 

Also, if you happen to have objects that have a perfect hash (or at least a hash that maps all values differently), you could try using a counting 
or radix sort on their hash functions. It is the application of counting sort.  
 

Algorithm: 
1) In the given linked list, find the maximum element (푘). This would take O(푛) time. 
2) Create a hash map of the size 푘. This would need O(푘) space. 
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3) Scan through the linked list elements, set 1 to the corresponding index in the array. Suppose element in the linked is 19, then  H[4] 
= 1. This would take O(푛) time. 

4) Now the array is sorted as similar to counting sort. 
5) Read the elements from the array and add it back to the list with a time complexity of O(푘). 

 

Problem-41 Can we do Problem-40 with O(n) time? 
 

Solution: Make sure all even positioned elements are greater than their adjacent odd elements, and we don’t need to worry about odd 
positioned elements. Traverse all even positioned elements of input array, and do the following: 

 If the current element is smaller than the previous odd element, swap previous and current. 
 If the current element is smaller than the next odd element, swap next and current.  

 

    public class ConvertArraytoSawToothWaveLinearTime { 
        public void convertArraytoSawToothWaveLinearTime(int A[]){ 
            for (int i = 0; i < A.length; i+=2){ 
                if (i>0 && A[i-1] > A[i] ) 
                    swap(A, i, i-1); 
                if (i<A.length-1 && A[i] < A[i+1] ) 
                    swap(A, i, i+1); 
            } 
        } 
        private void swap(int A[],int low,int high){ 
            int temp = A[low]; A[low] = A[high]; A[high] = temp; 
        }    

        public static void main(String args[]){ 
            ConvertArraytoSawToothWaveLinearTime convertedArray = new ConvertArraytoSawToothWaveLinearTime(); 
            int A[] = {0,-6,9,13,10,-1,8,12,54,14,-5}; 
            for(int i=0; i < A.length; i++){ 
                System.out.print(A[i] + " "); 
            } 
            System.out.println(); 
            convertedArray.convertArraytoSawToothWaveLinearTime(A); 
            for(int i=0; i < A.length; i++){ 
                System.out.print(A[i] + " "); 
            } 
        } 
    } 
 

The time complexity is O(n). 
 

Problem-42 Merge sort uses                                                                                                 
(a) Divide and conquer strategy    (b) Backtracking approach    (c) Heuristic search    (d) Greedy approach 

 

Solution: (a). Refer theory section. 
 

Problem-43 Which of the following algorithm design techniques is used in the quicksort algorithm?           
 

(a) Dynamic programming      (b) Backtracking        (c) Divide and conquer        (d) Greedy method 
 

Solution: (c). Refer theory section. 
 

Problem-44 For merging two sorted lists of sizes m and n into a sorted list of size m+n, we required comparisons of                                                                                                                        
(a) O(푚)            (b) O(푛)             (c) O(푚 +  푛)             (d) O(푙표푔푚 + 푙표푔푛) 

 

Solution: (c). We can use merge sort logic. Refer theory section. 
 

Problem-45 Quick-sort is run on two inputs shown below to sort in ascending order                
(i) 1,2,3 ….n                                               (ii) n, n – 1, n – 2, …. 2, 1 

Let C1 and C2 be the number of comparisons made for the inputs (i) and (ii) respectively. Then, 
(a) C1 < C2             (b) C1 > C2              (c) C1 = C2              (d) we cannot say anything for arbitrary 푛. 

 

Solution: (b). Since the given problems needs the output in ascending order, Quicksort on already sorted order gives the worst case (O(푛 )). 
So, (i) generates worst case and (ii) needs fewer comparisons. 
 

Problem-46 Give the correct matching for the following pairs:                                                   
         (A) O(푙표푔푛)                           (P)  Selection 

(B) O(푛)                                 (Q) Insertion sort 
(C) O(푛푙표푔푛)                         (R) Binary search 
(D) O(푛  )                              (S)  Merge sort 

(a) A – R B – P C – Q D - S                             (b) A – R B – P C – S D - Q  
(c) A – P B – R C – S D - Q                             (d) A – P B – S C – R D - Q  

 

Solution: (b). Refer theory section. 
 

Problem-47 Let s be a sorted array of n integers. Let t(n) denote the time taken for the most efficient algorithm to determine if there 
are two elements with sum less than 1000 in s. which of the following statements is true?  

a) 푡(푛) is O(1)        b) 푛 <  푡(푛)  < 푛푙표푔          c) 푛푙표푔  <  푡(푛)  <           d) 푡(푛)  =               
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Solution: (a). Since the given array is already sorted it is enough if we check the first two elements of the array. 
 

Problem-48 The usual (푛 ) implementation of Insertion Sort to sort an array uses linear search to identify the position where an element is to be 
inserted into the already sorted part of the array. If, instead, we use binary search to identify the position, the worst case running time will      

 (a) remain (푛 )                 (b) become (푛(푙표푔 푛) )                   (c) become (푛푙표푔푛)                  (d) become (푛)  
 

Solution: (a). If we use binary search then there will be 푙표푔 !comparisons in the worst case, which is (푛푙표푔푛). But the algorithm as a whole 
will still have a running time of (푛 ) on average because of the series of swaps required for each insertion. 
 

Problem-49 In quick sort, for sorting n elements, the 푛/4  smallest element is selected as pivot using an O(푛) time algorithm. What 
is the worst case time complexity of the quick sort?         

(A) (푛)                            (B) (푛퐿표푔푛)                              (C) (푛 )                            (D) (푛 푙표푔푛) 
 

Solution: The recursion expression becomes: T(n) = T(n/4) + T(3n/4) + cn. Solving the recursion using 푣푎푟푖푎푛푡 of master theorem, we get 
(푛퐿표푔푛). 
 

Problem-50 Consider the Quicksort algorithm. Suppose there is a procedure for finding a pivot element which splits the list into two 
sub-lists each of which contains at least one-fifth of the elements. Let T(푛) be the number of comparisons required to sort n elements. 
Then                                                      

A) T (n) ≤ 2T (n /5) + n   B) T (n) ≤ T (n /5) + T (4n /5) + n    C) T (n) ≤ 2T (4n /5) + n   D) T (n) ≤ 2T (n /2) + n 
 

Solution: (C). For the case where n/5 elements are in one subset, T(n/5) comparisons are needed for the first subset with 푛/5 elements, 
T(4n/5) is for the rest 4n/5 elements, and 푛 is for finding the pivot. If there are more than 푛/5 elements in one set then other set will have 
less than 4n/5 elements and time complexity will be less than T(n/5) + T(4n/5) + n. 
 

Problem-51 Which of the following sorting algorithms has the lowest worst-case complexity?      
(A) Merge sort      (B) Bubble sort       (C) Quick sort       (D) Selection sort 

 

Solution: (A). Refer theory section. 
 

Problem-52 Which one of the following in place sorting algorithms needs the minimum number of swaps? 
(A) Quick sort            (B) Insertion sort           (C) Selection sort           (D) Heap sort                  

 

Solution: (C). Refer theory section. 
 

Problem-53 You have an array of n elements. Suppose you implement quicksort by always choosing the central element of the array 
as the pivot. Then the tightest upper bound for the worst case performance is 
 (A) O(푛 )                (B) O(푛푙표푔푛)                (C) (푛푙표푔푛)                 (D) O(푛 )                                     

 

Solution: (A). When we choose the first element as the pivot, the worst case of quick sort comes if the input is sorted- either in ascending or 
descending order. 
 

Problem-54 Let P be a QuickSort Program to sort numbers in ascending order using the first element as pivot. Let t1 and t2 be the 
number of comparisons made by P for the inputs {1, 2, 3, 4, 5} and {4, 1, 5, 3, 2} respectively. Which one of the following holds?                                                                             
 

(A) t1 = 5                 (B) t1 < t2                 (C) t1 > t2                 (D) t1 = t2 
 

Solution: (C). Quick Sort‘s worst case occurs when first (or last) element is chosen as pivot with sorted arrays. 
 

Problem-55 The minimum number of comparisons required to find the minimum and the maximum of 100 numbers is __                                                                                                                             
 

Solution: 147 (Formula for the minimum number of comparisons required is 3n/2 – 3 with n numbers). 
 

Problem-56 The number of elements that can be sorted in T(푙표푔푛) time using heap sort is                
(A) (1)           (B) (sqrt(logn))           (C) (log n/(log log n))             (D) (logn) 

 

Solution: (D). Sorting an array with k elements takes time (k log k) as k grows. We want to choose k such that (k log k) = (logn). Choosing 
k = (logn) doesn't necessarily work, since (k log k) = (logn loglogn) ≠ (logn). On the other hand, if you choose k = T(log n / log log n), 
then the runtime of the sort will be 

= ((logn / loglogn) log (logn / loglogn)) 
= ((logn / loglogn) (loglogn - logloglogn)) 
= (logn  - logn logloglogn / loglogn) 
= (logn (1 - logloglogn / loglogn)) 

 

Notice that 1 - logloglogn / loglogn tends toward 1 as n goes to infinity, so the above expression actually is (log n), as required. Therefore, if 
you try to sort an array of size (logn / loglogn) using heap sort, as a function of n, the runtime is (logn). 
 

Problem-57 Which one of the following is the tightest upper bound that represents the number of swaps required to sort 푛 numbers 
using selection sort?                                                                           
(A) O(푙표푔푛)          (B) O(푛)          (C) O(푛푙표푔푛)           (D) O(푛 ) 

 

Solution: (B). Selection sort requires only O(푛) swaps. 
 

Problem-58 Which one of the following is the recurrence equation for the worst case time complexity of the Quicksort algorithm for 
sorting n(≥ 2) numbers? In the recurrence equations given in the options below, c is a constant.                                                                                                                                     

(A)T(n) = 2T (n/2) + cn      (B) T(n) = T(n – 1) + T(0) + cn     (C) T(n) = 2T (n – 2) + cn    (D) T(n) = T(n/2) + cn 
 

Solution: (B). When the pivot is the smallest (or largest) element at partitioning on a block of size 푛 the result yields one empty sub-block, 
one element (pivot) in the correct place and sub block of size 푛 − 1. 
 

Problem-59 True or False. In randomized quicksort, each key is involved in the same number of comparisons. 
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Solution: False. 
 

Problem-60 True or False: If Quicksort is written so that the partition algorithm always uses the median value of the segment as the 
pivot, then the worst-case performance is O(푛푙표푔푛). 

 

Soution: True. 
 

Problem-61 Squares of a sorted array: Given an array of numbers A sorted in ascending order, return an array of the squares of each 
number, also in sorted ascending order. For array = [-6, -4, 1, 2, 3, 5], the output should be [1, 4, 9, 16, 25, 36]. 

 

Solution: Intuitive approach: One simplest approach to solve this problem is to create an array of the squares of each element, and sort them. 
 

    class Solution { 
        public int[] sortedSquaredArray(int[] A) { 
            int n = A.length; 
            int[] result = new int[n]; 
            for (int i = 0; i < n; ++i) 
                result[i] = A[i] * A[i]; 
 

            Arrays.sort(result); 
            return result; 
        } 
    } 
 

Time complexity: O(푛푙표푔푛), for sorting the array. Space complexity: O(푛), for the result array. 
 

Elegant approach: Since the given array A is sorted, it might have some negative elements. The squares of these negative numbers would be 
in decreasing order. Similarly, the squares of positive numbers would be in increasing order. For example, with [-4, -3, -1, 3, 4, 5], we have 
the negative part [-4, -3, -1] with squares [16, 9, 1], and the positive part [3, 4, 5] with squares [9, 16, 25]. Our strategy is to iterate over the 
negative part in reverse, and the positive part in the forward direction. 
 

We can use two pointers to read the positive and negative parts of the array - one pointer i in the positive direction, and another j in the 
negative direction. 
 

Now that we are reading two increasing arrays (the squares of the elements), we can merge these arrays together using a two-pointer technique. 
 

    class Solution { 
        public int[] sortedSquaredArray(int[] A) { 
            int n = A.length; 
            int j = 0; 
            // Find the last index of the negative numbers 
            while (j < n && A[j] < 0) 
                j++; 
            // i points to the last index of negative numbers 
            int i = j-1; 
 

            int[] result = new int[n]; 
            int t = 0; 
            // j points to the first index of the positive numbers 
            while (i >= 0 && j < n) { 
                if (A[i] * A[i] < A[j] * A[j]) { 
                    result[t++] = A[i] * A[i]; 
                    i--; 
                } else { 
                    result[t++] = A[j] * A[j]; 
                    j++; 
                } 
            } 
            // add the remaining negative numbers squares to result 
            while (i >= 0) { 
                result[t++] = A[i] * A[i]; 
                i--; 
            } 
 

            // add the remaining positive numbers squares to result 
            while (j < n) { 
                result[t++] = A[j] * A[j]; 
                j++; 
            } 
 

            return result; 
        } 
    } 
 

Time complexity: O(푛). Space complexity: O(푛), for the result array. 
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11.1 What is Searching? 
 

In computer science, 푠푒푎푟푐ℎ푖푛푔 is the process of finding an item with specified properties from a collection of items. The items may be 
stored as records in a database, simple data elements in arrays, text in files, nodes in trees, vertices and edges in graphs, or they may be 
elements of other search spaces. 

11.2 Why do we need Searching? 
 

푆푒푎푟푐ℎ푖푛푔 is one of the core computer science algorithms. We know that today’s computers store a lot of information. To retrieve this 
information proficiently we need very efficient searching algorithms. 

 

There are certain ways of organizing the data that improves the searching process. That means, if we keep the data in proper order, it is easy 
to search the required element. Sorting is one of the techniques for making the elements ordered. In this chapter we will see different searching 
algorithms. 

11.3 Types of Searching 
 

Following are the types of searches which we will be discussing in this book. 
 

 Unordered Linear Search 
 Sorted/Ordered Linear Search 
 Binary Search 
 Interpolation Search 
 Symbol Tables and Hashing 
 String Searching Algorithms: Tries, Ternary Search and Suffix Trees 

11.4 Unordered Linear Search 
 

Let us assume we are given an array where the order of the elements is not known. That means the elements of the array are not sorted. In 
this case, to search for an element we have to scan the complete array and see if the element is there in the given list or not.  
 

      public int UnorderedLinearSearch (int[] A, int data) { 
 for (int i  = 0; i < A.length; i++) { 
  if(A[i] == data) 
   return i; 
 } 
 return -1; 
      } 
 

Time complexity: O(푛), in the worst case we need to scan the complete array. Space complexity: O(1). 

11.5 Sorted/Ordered Linear Search 
 

If the elements of the array are already sorted then in many cases we don’t have to scan the complete array to see if the element is there in 
the given array or not. In the algorithm below, it can be seen that, at any point if the value at 퐴[푖] is greater than 푑푎푡푎 to be searched then we 
just return −1 without searching the remaining array. 
 

      public int OrderedLinearSearch(int[] A, int data) { 
 for (int i  = 0; i < A.length; i++) { 
  if(A[i] == data)   return i; 
  else if(A[i] > data) 
         return -1; 
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 } 
 return -1; 
      } 
 

Time complexity of this algorithm is O(푛). This is because in the worst case we need to scan the complete array. But in the average case it 
reduces the complexity even though the growth rate is same. Space complexity: O(1). 
 

Note: For the above algorithm we can make further improvement by incrementing the index at faster rate (say, 2). This will reduce the number 
of comparisons for searching in the sorted list. 

11.6 Binary Search 
 

Let us consider the problem of searching a word in a dictionary. Typically, we directly go to some approximate page [say, middle page] and 
start searching from that point. If the 푛푎푚푒 that we are searching is the same then the search is complete. If the page is before the selected 
pages then apply the same process for the first half; otherwise apply the same process to the second half. Binary search also works in the same 
way. The algorithm applying such a strategy is referred to as 푏푖푛푎푟푦 푠푒푎푟푐ℎ algorithm. 
 
 
 
 
 
  

      //Iterative Binary Search Algorithm 
      public int BinarySearchIterative[int[] A, int data) { 
 int low =  0, high = A.length-1; 
 while (low <= high) { 
 mid  = low + (high-low)/2; //To avoid overflow 
  if(A[mid] == data) 
         return mid; 
  else if(A[mid] < data) 
         low =  mid + 1; 
  else high =  mid - 1; 
 } 
 return -1; 
      } 
      //Recursive Binary Search Algorithm 
      public int BinarySearchRecursive[int[] A, int low, int high, int data) { 
 int mid  = low + (high-low)/2; //To avoid overflow 
                if (low>high)  
                         return -1; 
 if(A[mid] == data)   
                         return mid; 
 else if(A[mid] < data) 
          return BinarySearchRecursive (A, mid + 1, high, data); 
 else   return BinarySearchRecursive (A, low, mid - 1 , data); 

return -1; 
      } 
 

Recurrence for binary search is 푇(푛) = 푇( ) +Θ(1). This is because we are always considering only half of the input list and throwing out 
the other half. Using 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 master theorem, we get, 푇(푛) =O(푙표푔푛). 
 

Time Complexity: O(푙표푔푛). Space Complexity: O(1) [for iterative algorithm]. 

11.7 Interpolation Search 
 

Undoubtedly binary search is a great algorithm for searching with average running time complexity of 푙표푔푛. It always chooses the middle of 
the remaining search space, discarding one half or the other, again depending on the comparison between the key value found at the estimated 
(middle) position and the key value sought. The remaining search space is reduced to the part before or after the estimated position. 
 

In the mathematics, interpolation is a process of constructing new data points within the range of a discrete set of known data points. 
In computer science, one often has a number of data points which represent the values of a function for a limited number of values of the 
independent variable. It is often required to interpolate (i.e. estimate) the value of that function for an intermediate value of the independent 
variable.  
 

For example, suppose we have a table like this, which gives some values of an unknown function f. Interpolation provides a means of estimating 
the function at intermediate points, such as x = 5.5.  
 

푥 푓(푥) 
1 10 
2 20 

푙표푤 ℎ푖푔ℎ 

푚푖푑 = 푙표푤 + ( )  표푟   

푑푎푡푎 to be searched 
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3 30 
4 40 
5 50 
6 60 
7 70 

 

There are many different interpolation methods, and one of the simplest methods is linear interpolation. Consider the above example of 
estimating 푓(5.5). Since 5.5 is midway between 5 and 6, it is reasonable to take 푓(5.5) midway between 푓(5) = 50 and 푓(6) = 60, which yields 
55 ((50+60)/2). Linear interpolation takes two data points, say (푥 , 푦 ) and (푥 , 푦 ), and the interpolant is given by: 

푦 = 푦 + (푦 − 푦 )
푥 − 푥
푥 − 푥  푎푡 푝표푖푛푡 (푥, 푦) 

With above inputs, what will happen if we don’t use the constant ½, but another more accurate constant “K”, that can lead us closer to the 
searched item. 
 
 
 
 
 
 
 
 

This algorithm tries to follow the way we search a name in a phone book, or a word in the dictionary. We, humans, know in advance that in 
case the name we’re searching starts with a “m”, like “monk” for instance, we should start searching near the middle of the phone book. Thus 
if we’re searching the word “career” in the dictionary, you know that it should be placed somewhere at the beginning. This is because we know 
the order of the letters, we know the interval (a-z), and somehow we intuitively know that the words are dispersed equally. These facts are 
enough to realize that the binary search can be a bad choice. Indeed the binary search algorithm divides the list in two equal sub-lists, which 
is useless if we know in advance that the searched item is somewhere in the beginning or the end of the list. Yes, we can use also jump search 
if the item is at the beginning, but not if it is at the end, in that case this algorithm is not so effective. 
 

The interpolation search algorithm tries to improve the binary search. The question is how to find this value? Well, we know bounds of the 
interval and looking closer to the image above we can define the following formula. 
 

퐾 =
푑푎푡푎 − 푙표푤
ℎ푖푔ℎ − 푙표푤 

 

This constant 퐾 is used to narrow down the search space. For binary search, this constant 퐾 is (푙표푤 +  ℎ푖푔ℎ)/2.  
 

Now we can be sure that we’re closer to the searched value. On average the interpolation search makes about 푙표푔(푙표푔푛) comparisons (if the 
elements are uniformly distributed), where 푛 is the number of elements to be searched. In the worst case (for instance where the numerical 
values of the keys increase exponentially) it can make up to O(푛) comparisons. In interpolation-sequential search, interpolation is used to find 
an item near the one being searched for, then linear search is used to find the exact item. For this algorithm to give best results, the dataset 
should be ordered and uniformly distributed. 
 

    public static int interpolationSearch(int[] A, int data){ 
        int low = 0, high = A.length - 1, mid; 
        while (A[low] <= data && A[high] >= data){ 
            if (A[high] - A[low] == 0) 
                return (low + high)/2; 
             mid = low + ((data - A[low]) * (high - low)) / (A[high] - A[low]);     /** out of range is possible  here **/ 
             if (A[mid] < data) 
                 low = mid + 1; 
             else if (A[mid] > data) 
                 high = mid - 1; 
             else 
                 return mid; 
        } 
        if (A[low] == data) 
            return low;                    /** not found **/ 
        else 
            return -1;  
    } 

11.8 Comparing Basic Searching Algorithms 
 

Implementation Search-Worst Case Search-Avg. Case 

Unordered Array 푛 푛
2 

Ordered Array (Binary Search) 푙표푔푛 푙표푔푛 

푑푎푡푎 to be searched 푙표푤 ℎ푖푔ℎ 

퐾 =   
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Unordered List 푛 푛
2 

Ordered List 푛 푛
2 

Binary Search Trees (for skew trees) 푛 푙표푔푛 
Interpolation search 푛 푙표푔(푙표푔푛) 

 

Note: For discussion on binary search trees refer to 푇푟푒푒푠 chapter. 

11.9 Symbol Tables and Hashing 
 

Refer to 푆푦푚푏표푙 푇푎푏푙푒푠 and 퐻푎푠ℎ푖푛푔 chapters. 

11.10 String Searching Algorithms 
 

Refer to 푆푡푟푖푛푔 퐴푙푔표푟푖푡ℎ푚푠 chapter. 

11.11 Searching: Problems & Solutions 
 

Problem-1 Given an array of 푛 numbers, give an algorithm for checking whether there are any duplicate elements in the array or 
not? 

 

Solution: This is one of the simplest problems. One obvious answer to this is exhaustively searching for duplicates in the array. That means, 
for each input element check whether there is any element with the same value. This we can solve just by using two simple 푓표푟 loops. The 
code for this solution can be given as: 
 

      public void CheckDuplicatesBruteForce(int[] A) { 
            for(int i = 0; i < A.length; i++) { 
                  for(int j = i+1; j < A.length; j++) { 
                        if(A[i] == A[j]){ 
                              System.out.println(“Duplicates exist:” + A[i]); 
                              return; 
                        } 
                  } 
            } 
            System.out.println(“No duplicates in given array.”); 
      } 
 

Time Complexity: O(푛 ), for two nested 푓표푟 loops. Space Complexity: O(1).  
 

Problem-2 Can we improve the complexity of Problem-1’푠 solution? 
 

Solution: Yes. Sort the given array. After sorting, all the elements with equal values will be adjacent. Now, do another scan on this sorted array 
and see if there are elements with the same value and adjacent. 
 

      public void CheckDuplicatesSorting(int[] A) { 
            Sort(A);   //sort the array 
 for(int i = 0; i < A.length-1; i++) { 
                  if(A[i] == A[i+1]) { 
                        System.out.println(“Duplicates exist: ” + A[i]); 
                        return; 
                  } 
            } 
            System.out.println(“No duplicates in given array.”); 
      } 
 

Time Complexity: O(푛푙표푔푛), for sorting. Space Complexity: O(1).  
 

Problem-3 Is there any other way of solving Problem-1? 
 

Solution: Yes, using hash table. Hash tables are a simple and effective method used to implement dictionaries. 퐴푣푒푟푎푔푒 time to search for 
an element is O(1), while worst-case time is O(푛). Refer to 퐻푎푠ℎ푖푛푔 chapter for more details on hashing algorithms. As an example, consider 
the array, 퐴 =  {3, 2, 1, 2, 2, 3}.  
 

Scan the input array and insert the elements into the hash. For each inserted element, keep the 푐표푢푛푡푒푟 as 1 (assume initially all entires are 
filled with zeros). This indicates that the corresponding element has occurred already. For the given array, the hash table will look like (after 
inserting the first three elements 3, 2 and 1): 

1  1 
2  1 
3  1 
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Now if we try inserting 2, since the counter value of 2 is already 1, we can say the element has appeared twice.  
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-4 Can we further improve the complexity of Problem-1 solution? 
 

Solution: Let us assume that the array elements are positive numbers and also all the elements are in the range 0 to 푛 − 1. For each element 
퐴[푖], go to the array element whose index is 퐴[푖]. That means select 퐴[퐴[푖]] and mark - 퐴[퐴[푖]] (negate the value at 퐴[퐴[푖]]). Continue this 
process until we encounter the element whose value is already negated. If one such element exists then we say duplicate elements exist in the 
given array. As an example, consider the array, 퐴 =  {3, 2, 1, 2, 2, 3}.  
 

Initially,  
3 2 1 2 2 3 
0 1 2 3 4 5 

At step-1, negate A[abs(A[0])],  
3 2 1 -2 2 3 
0 1 2 3 4 5 

 

At step-2, negate A[abs(A[1])], 
3 2 -1 -2 2 3 
0 1 2 3 4 5 

 

At step-3, negate A[abs(A[2])], 
3 -2 -1 -2 2 3 
0 1 2 3 4 5 

 

At step-4, negate A[abs(A[3])], 
3 -2 -1 -2 2 3 
0 1 2 3 4 5 

 

At step-4, observe that 퐴[푎푏푠(퐴[3])] is already negative. That means we have encountered the same value twice. 
  

      public void CheckDuplicates(int A) { 
 for(int i = 0; i < A.length; i++) { 
       if(A[Math.abs(A[i])] < 0) { 
  System.out.println(“Duplicates exist: ” + A[i]); 
  return; 

      } 
      else  A[A[i]] = - A[A[i]]; 

            } 
            System.out.println(“No duplicates in given array.”); 
      } 
 

Time Complexity: O(푛). Since, only one scan is required. Space Complexity: O(1).  
 

Notes:   
 This solution does not work if the given array is read only.  
 This solution will work only if all the array elements are positive.  
 If the elements range is not in 0 to 푛 − 1 then it may give exceptions. 
 

Problem-5 Given an array of 푛 numbers. Give an algorithm for finding the element which appears maximum number of times in 
the array? 

 

Brute Force Solution: One simple solution to this is, for each input element check whether there is any element with the same value, and for 
each such occurrence, increment the counter. Each time, check the current counter with the 푚푎푥 counter and update it if this value is greater 
than 푚푎푥 counter. This we can solve just by using two simple 푓표푟 loops.  
 

      public int MaxRepititionsBruteForce(int[] A) { 
int counter =0, max=0; 

 for(int i = 0; i < A.length; i++) { 
       counter=0; 
       for(int j = 0; j < A.length; j++) { 
             if(A[i] == A[j]) 
        counter++; 
                  } 
                  if(counter > max) max = counter; 
            } 
            return max; 
      } 
 

Time Complexity: O(푛 ), for two nested 푓표푟 loops. Space Complexity: O(1).  
 

Problem-6 Can we improve the complexity of Problem-5 solution? 
 



 

Data Structures and Algorithms Made Easy in Java Searching                      

 

11.11 Searching: Problems & Solutions    279 

 
 

Solution: Yes. Sort the given array. After sorting, all the elements with equal values come adjacent. Now, just do another scan on this sorted 
array and see which element is appearing the maximum number of times. 
 

Time Complexity: O(푛푙표푔푛). (for sorting). Space Complexity: O(1).  
 

Problem-7 Is there any other way of solving Problem-5? 
 

Solution: Yes, using hash table. For each element of the input, keep track of how many times that element appeared in the input. That means 
the counter value represents the number of occurrences for that element. 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-8 For Problem-5, can we improve the time complexity? Assume that the elements range is 1 to 푛. That means all the 
elements are within this range only. 

 

Solution: Yes. We can solve this problem in two scans. We 푐푎푛푛표푡 use the negation technique of Problem-3 for this problem because of the 
number of repetitions. In the first scan, instead of negating, add the value 푛. That means for each occurrence of an element add the array size 
to that element. In the second scan, check the element value by dividing it by 푛 and return the element which gives the maximum value. The 
code based on this method is given below. 
 

      public void MaxRepititions(int[] A){ 
int i =  0, max = 0, maxIndex, n = A.length; 
for(i = 0; i < n; i++)  
       A[A[i]%n] +=n; 

 for(i = 0; i < n; i++) { 
       if(A[i]/n > max) { 
  max = A[i]/n; 
                        maxIndex =i; 

      } 
            } 
            return maxIndex; 
      } 
 

Notes:  
 This solution does not work if the given array is read only.  
 This solution will work only if the array elements are positive.  
 If the elements range is not in 1 to 푛 then it may give exceptions. 

 

Time Complexity: O(푛). Since no nested 푓표푟 loops are required. Space Complexity: O(1). 
 

Problem-9 Given an array of 푛 numbers, give an algorithm for finding the first element in the array which is repeated. For example, 
in the array 퐴 = {3, 2, 1, 2, 2, 3}, the first repeated number is 3 (not 2). That means, we need to return the first element among the 
repeated elements. 

 

Solution: We can use the brute force solution that we used for Problem-1. For each element, since it checks whether there is a duplicate for 
that element or not, whichever element duplicates first will be returned. 
 

Problem-10 For Problem-9, can we use the sorting technique? 
 

Solution: No. For proving the failed case, let us consider the following array. For example, 퐴 = {3, 2, 1, 2, 2, 3}. After sorting we get 퐴 =
{1, 2, 2, 2, 3, 3}. In this sorted array the first repeated element is 2 but the actual answer is 3. 
 

Problem-11 For Problem-9, can we use the hashing technique? 
 

Solution: Yes. But the simple hashing technique which we used for Problem-3 will not work. For example, if we consider the input array as 
A = {3, 2, 1, 2, 3}, then the first repeated element is 3, but using our simple hashing technique we get the answer as 2. This is because 2 is 
coming twice before 3. Now let us change the hashing table behavior so that we get the first repeated element. Let us say, instead of storing 1 
value, initially we store the position of the element in the array. As a result the hash table will look like (after inserting 3, 2 and 1): 
 

1  3 
2  2 
3  1 

 

Now, if we see 2 again, we just negate the current value of 2 in the hash table. That means, we make its counter value as −2. The negative 
value in the hash table indicates that we have seen the same element two times. Similarly, for 3 (the next element in the input) also, we negate 
the current value of the hash table and finally the hash table will look like: 
 

1  3 
2  -2 
3  -1 

 

After processing the complete input array, scan the hash table and return the highest negative indexed value from it (i.e., −1 in our case). The 
highest negative value indicates that we have seen that element first (among repeated elements) and also repeating. 
 

What if the element is repeated more than twice? In this case, just skip the element if the corresponding value 푖 is already negative. 
 

Problem-12 For Problem-9, can we use the technique that we used for Problem-3 (negation technique)? 
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Solution: No. As an example of contradiction, for the array 퐴 = {3, 2, 1, 2, 2, 3} the first repeated element is 3. But with negation technique 
the result is 2. 
 

Problem-13 Find the Missing Number: We are given a list of 푛 − 1 integers and these integers are in the range of 1 to 푛. There are 
no duplicates in the list. One of the integers is missing in the list. Given an algorithm to find the missing integer. Example: Input:    
[1, 2, 4, 6, 3, 7, 8] Output:    5 
 

Alternative problem statement: There is an array of numbers. A second array is formed by shuffling the elements of the first array and 
deleting a random element. Given these two arrays, find which element is missing in the second array 

 

Brute Force Solution: One naive way to solve this problem is for each number 푖 in the range 1 to 푛, check whether number 푖 is in the given 
array or not.  
 

      public int FindMissingNumber(int[] A){ 
 int i, j, found=0, n = A.length; 

      for (i = 1; i < =n; i ++) { 
            found = 0; 
            for (j = 0; j < n; j ++) { 
                  if(A[j]==i) 
        found = 1; 
            } 
            if(!found)  
                  return i; 

} 
return -1; 

      } 
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-14 For Problem-13, can we use the sorting technique? 
 

Solution: Yes. More efficient solution is to sort the first array, so while checking whether an element in the range 1 to 푛 appears in the given 
array, we can do binary search. 
 

Time Complexity: O(푛푙표푔푛), for sorting. Space Complexity: O(1). 
 

Problem-15 For Error! Reference source not found., can we use the hashing technique? 
 

Solution: Yes. Scan the input array and insert elements into the hash. For inserted elements, keep 푐표푢푛푡푒푟 as 1 (assume initially all entires 
are filled with zeros). This indicates that the corresponding element has occurred already. Now, for each element in the range 1 to 푛 check 
the hash table and return the element which has counter value zero. That is, once hit an element with zero count that’s the missing element.  
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-16 For Error! Reference source not found., can we improve the complexity? 
 

Solution: Yes. We can use summation formula. 
 

1) Get the sum of numbers, 푠푢푚 =  푛 × (푛 + 1)/2. 
2) Subtract all the numbers from 푠푢푚 and you will get the missing number. 

 

Time Complexity: O(푛), for scanning the complete array. 
 

Problem-17 In Error! Reference source not found., if the sum of the numbers goes beyond the maximum allowed integer, then there 
can be integer overflow and we may not get the correct answer. Can we solve this problem? 

 

Solution: 
1) 푋푂푅 all the array elements, let the result of 푋푂푅 be 푋. 
2) 푋푂푅 all numbers from 1 to 푛, let 푋푂푅 be Y. 
3) 푋푂푅 of 푋 and 푌 gives the missing number. 

 

      public int FindMissingNumber(int[] A){ 
 int i, X, Y, n = A.length; 

      for (i = 0; i < n; i ++)  
      X ^= A[i];  

      for (i = 1; i <= n; i ++)  
      Y ^= i; 

      //In fact, one variable is enough.  
      return X ^ Y; 

      } 
 

Let’s analyze why this approach works. What happens when we XOR two numbers? We should think bitwise, instead of decimal. XORing a 
4-bit number with 1101 would flip the first, second, and fourth bits of the number. XORing the result again with 1101 would flip those bits 
back to their original value. So, if we XOR a number two times with some number nothing will change. We can also XOR with multiple 
numbers and the order would not matter. For example, say we XOR the number number1 with number2, then XOR the result with number3, 
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then XOR their result with number2, and then with number3. The final result would be the original number number1. Because every XOR 
operation flips some bits and when we XOR with the same number again, we flip those bits back. So the order of XOR operations is not 
important. If we XOR a number with some number an odd number of times, there will be no effect. 
 

Above we XOR all the numbers in the given range 1 to 푛 and given array A. All numbers in given array A are from the range 1 to 푛, but there 
is an extra number in range 1 to 푛. So the effect of each XOR from array A is being reset by the corresponding same number in the range 1 
to 푛 (remember that the order of XOR is not important). But we can’t reset the XOR of the extra number in the range 1 to 푛, because it 
doesn’t appear in array A. So the result is as if we XOR 0 with that extra number, which is the number itself. Since XOR of a number with 0 
is the number. Therefore, in the end we get the missing number in array A. The space complexity of this solution is constant O(1) since we 
only use one extra variable. Time complexity is O(푛) because we perform a single pass from the array A and the range 1 to 푛. 
 

Time Complexity: O(푛), for scanning the complete array. Space Complexity: O(1). 
 

Problem-18 Find the Number Occurring an Odd Number of Times: Given an array of positive integers, all numbers occur an even 
number of times except one number which occurs an odd number of times. Find the number in O(푛) time & constant space.  Example:   
I/P =  [1, 2, 3, 2, 3, 1, 3]  O/P =  3 

 

Solution: Do a bitwise 푋푂푅 of all the elements. We get the number which has odd occurrences. This is because, 퐴 푋푂푅 퐴 =  0. 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-19 Find the two repeating elements in a given array: Given an array with 푠푖푧푒, all elements of the array are in range 1 to 푛 
and also all elements occur only once except two numbers which occur twice. Find those two repeating numbers. For example: if the 
array is 4, 2, 4, 5, 2, 3, 1 with 푠푖푧푒 =  7 and 푛 = 5. This input has 푛 +  2 =  7 elements with all elements occurring once except 2 and 
4 which occur twice. So the output should be 4  2. 

 

Solution: One simple way is to scan the complete array for each element of the input elements. That means use two loops. In the outer loop, 
select elements one by one and count the number of occurrences of the selected element in the inner loop. For the code below, assume that 
푃푟푖푛푡푅푒푝푒푎푡푒푑퐸푙푒푚푒푛푡푠 is called with 푛 + 2 to indicate the size.  
 

      public void PrintRepeatedElements(int[] A){ 
 for(int i = 0; i < A.length; i++) 
  for(int j = i+1; j < A.length; j++) 
   if(A[i] == A[j]) 
    System.out.println( A[i]); 
      }      
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-20 For Problem-19, can we improve the time complexity? 
 

Solution: Sort the array using any comparison sorting algorithm and see if there are any elements which contiguous with same value. 
 

Time Complexity: O(푛푙표푔푛). Space Complexity: O(1). 
 

Problem-21 For Problem-19, can we improve the time complexity? 
 

Solution: Use Count Array. This solution is like using a hash table. For simplicity we can use array for storing the counts. Traverse the array 
once and keep track of the count of all elements in the array using a temp array 푐표푢푛푡[] of size 푛. When we see an element whose count is 
already set, print it as duplicate. For the code below assume that 푃푟푖푛푡푅푒푝푒푎푡푒푑퐸푙푒푚푒푛푡푠 is called with 푛 + 2 to indicate the size.  
 

     public void PrintRepeatedElements(int[] A){ 
 int *count = (int *)calloc(sizeof(int), (A.length - 2)); 
 for(int i = 0; i < A.length; i++) { 
  count[A[i]]++; 
  if(count[A[i]] == 2) 
   System.out.println( A[i]); 
 } 
     }      
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-22 Consider Problem-19. Let us assume that the numbers are in the range 1 to 푛. Is there any other way of solving the 
problem? 

 

Solution: Yes, by using XOR Operation. Let the repeating numbers be 푋 and 푌, if we 푋푂푅 all the elements in the array and also all integers 
from 1 to 푛, then the result will be 푋 푋푂푅 푌. The 1’s in binary representation of 푋 푋푂푅 푌 correspond to the different bits between 푋 and 푌. 
If the 푘  bit of 푋 푋푂푅 푌 is 1, we can 푋푂푅 all the elements in the array and also all integers from 1 to  푛 whose 푘   bits are 1. The result 
will be one of 푋 and 푌. 
 

     public void PrintRepeatedElements (int[] A){ 
 int XOR = A[0], size = A.length;  
 int i, right_most_set_bit_no, X= 0, Y = 0; 
 for(i = 0; i < size; i++)                  // Compute XOR of all elements in A[] 
  XOR ^= A[i]; 
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for(i = 1; i <= n; i++)                   // Compute XOR of all elements {1, 2 ..n}  
  XOR ^= i;    
  right_most_set_bit_no = XOR & ~( XOR -1);    // Get the rightmost set bit in right_most_set_bit_no 
   // Now divide elements in two sets by comparing rightmost set 
 for(i = 0; i < size; i++) { 
  if(A[i] & right_most_set_bit_no) 
   X = X^ A[i];        // XOR of first set in A[]  
  else  Y = Y ^ A[i];       // XOR of second set inA[]  
 } 
 for(i = 1; i <= n; i++) { 
  if(i & right_most_set_bit_no) 
   X = X ^ i;           // XOR of first set in A[] and {1, 2, ...n } 
  else Y = Y ^ i;            // XOR of second set in A[] and {1, 2, ...n } 
 } 
 System.out.println(“Values X: ”+ X “ and Y:” + Y); 
     } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-23 Consider the Problem-19. Let us assume that the numbers are in the range 1 to 푛. Is there yet other way of solving the 
problem? 

 

Solution: We can solve this by creating two simple mathematical equations. Let us assume that two numbers we are going to find are 푋 and 
푌. We know the sum of 푛 numbers is 푛(푛 + 1)/2 and the product is 푛!. Make two equations using these sum and product formulae, and get 
values of two unknowns using the two equations. Let the summation of all numbers in array be 푆 and product be 푃 and the numbers which 
are being repeated are 푋 and 푌. 
 

푋 +  푌 = 푆 −
푛(푛 + 1)

2    
푋푌 = 푃/푛! 

 

Using the above two equations, we can find out 푋 and 푌. There can be an addition and multiplication overflow problem with this approach. 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-24 Similar to Problem-19, let us assume that the numbers are in the range 1 to 푛. Also, 푛 − 1 elements are repeated thrice 
and the remaining element repeated twice. Find the element which repeated twice. 

 

Solution: If we 푋푂푅 all the elements in the array and all integers from 1 to 푛, then all the elements which are repeated thrice will become 
zero. This is because, since the element is repeating thrice and 푋푂푅 another time from range makes that element appear four times. As a 
result, the output of  a 푋푂푅 푎 푋푂푅 푎 푋푂푅 푎 =  0. It is the same case with all elements that are repeated three times. 
 

With the same logic, for the element which repeated twice, if we 푋푂푅 the input elements and also the range, then the total number of 
appearances for that element is 3. As a result, the output of 푎 푋푂푅 푎 푋푂푅 푎 =  푎. Finally, we get the element which repeated twice. 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-25 Given an array of integers, every element appears twice except for one. Find that single element. 
 

Solution: Do a bitwise 푋푂푅 of all the elements. We get the number which has occurrence. 
 

 public int singleMissingNumber(int[] A){ 
     int missingNum= A[0]; 
     for(int i = 1; i < A.length; i++){ 
  missingNum^= A[i]; 
     } 
     return missingNum; 
 } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-26 Let us assume that the numbers are in the range 1 to 푛. Also, 푛 − 1 elements are repeating thrice and remaining element 
repeated twice. Find the element which is repeating twice. 

 

Solution: If we 푋푂푅 all the elements in the array and all integers from 1 to 푛, then all the elements which are thrice will become zero. This is 
because, since the element is repeating thrice and XOR with another time from range makes that element appearing four times. As a result, 
output of  a 푋푂푅 푎 푋푂푅 푎 푋푂푅 푎 =  0. Same is case with all elements which repeated three times. 
 

With the same logic, for the element which repeated twice, if we 푋푂푅 the input elements and also the range, then the total number of 
appearances for that element are 3. As a result, output of 푎 푋푂푅 푎 푋푂푅 푎 =  푎. Finally, we get the element which repeated twice. 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-27 Given an array of 푛 elements. Find two elements in the array such that their sum is equal to given element 퐾? 
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Brute Force Solution: One simple solution to this is, for each input element, check whether there is any element whose sum is 퐾. This we 
can solve just by using two simple for loops. The code for this solution can be given as: 
 

     public void twoSumK(int[] A, int K){ 
 for (int i = 0; i < A.length; i++) { 
  for(int j = i; j < A.length; j++) { 
   if(A[i]+A[j] == K) { 
    System.out.println(“Items Found, i: ” + i + “ j:” + j); 
    return; 
   } 
  } 
 } 
 System.out.println(“Items not found: No such elements”); 
     } 
 

Time Complexity: O(푛 ). This is because of two nested 푓표푟 loops. Space Complexity: O(1).  
 

Problem-28 For Problem-27, can we improve the time complexity?  
 

Solution:  Yes. Let us assume that we have sorted the given array. This operation takes O(푛 푙표푔푛). On the sorted array, maintain indices 
푙표퐼푛푑푒푥 =  0 and hiIndex = 푛 − 1 and compute 퐴[푙표퐼푛푑푒푥]  +  퐴[ℎ푖퐼푛푑푒푥]. If the sum equals 퐾, then we are done with the solution. If 
the sum is less than 퐾, decrement ℎ푖퐼푛푑푒푥, if the sum is greater than 퐾, increment 푙표퐼푛푑푒푥.  
 

     public void twoSumK(int[] A, int K){ 
 int i, j, temp; 
 Sort(A); 
 for(i =  0, j = A.length -1; i < j) { 
  temp  = A[i] + A[j];  
  if(temp  == K) { 
   System.out.println(“Items Found, i: ” + i + “ j:” + j); 
   return; 
                          } 
  else if(temp  < K) 
   i =  i + 1; 
  else  j =  j - 1; 
 } 
 return; 
     } 
 

Time Complexity: O(푛푙표푔푛). If the given array is already sorted then the complexity is O(푛). Space Complexity: O(1). 
 

Problem-29 Does the solution of Problem-27 work even if the array is not sorted? 
 

Solution: Yes. Since we are checking all possibilities, the algorithm ensures that we get the pair of numbers if they exist.  
 

Problem-30 Is there any other way of solving Problem-27? 
 

Solution: Yes, using hash table. Since our objective is to find two indexes of the array whose sum is 퐾. Let us say those indexes are 푋 and 푌. 
That means, 퐴[푋]  +  퐴[푌]  =  퐾. What we need is, for each element of the input array 퐴[푋], check whether 퐾 −  퐴[푋] also exists in the 
input array. Now, let us simplify that searching with hash table. 
 

Algorithm: 
 For each element of the input array, insert into the hash table. Let us say the current element is 퐴[푋]. 
 Before proceeding to the next element we check whether 퐾 –  퐴[푋] also exists in hash table or not. 
 Existence of such number indicates that we are able to find the indexes. 
 Otherwise proceed to the next input element. 

 

    public int[] twoSumK(int[] A, int K) { 
        if(A.length < 2) return null; 
        int[] res = new int[2]; 
        // HashMap<value, index>; 
        HashMap<Integer, Integer> map = new HashMap<Integer, Integer>(); 
        for(int i = 0; i < A.length; i++){ 
            if(map.containsKey(A[i])){ 
                res[0] = map.get(A[i]) + 1; 
                res[1] = i + 1;            
            }else{ 
                map.put(K - A[i], i); 
            } 
        } 
        return res; 
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    } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-31 Given an array A of 푛 elements. Find three elements, 푖, 푗 and 푘 in the array such that 퐴[푖] + 퐴[푗] = 퐴[푘] ? 
 

Solution:  
Algorithm: 

 Sort the given array in-place. 
 For each array index 푖 compute 퐴[푖]  and store in array. 
 Search for 2 numbers in array from 0 to 푖 − 1 which adds to 퐴[푖] similar to Problem-27. This will give us the result in O(푛) time. 

If we find such sum return true otherwise continue. 
 

    Sort(A); // Sort the input array 
    for (int i=0; i < A.length; i++) 
 A[i] = A[i]*A[i]; 
    for (i=A.length; i > 0; i--) { 
 res = false; 
 if(res) { 
  //Problem-11/12 Solution 
 } 
    } 
 

Time Complexity: Time for sorting + 푛 × (Time for finding the sum) = O(푛푙표푔푛) + 푛 ×O(푛)= 푛 . Space Complexity: O(1). 
 

Problem-32 Find two elements whose sum is closest to zero: Given an array with both positive and negative numbers, find the two 
elements such that their sum is closest to zero. For the below array, algorithm should give −80 and 85. Example: 1  60 − 10  70 −
80  85 

 

Brute Force Solution: For each element, find the 푠푢푚 with every other element in the array and compare sums. Finally, return the minimum 
sum. 
 

    public void TwoElementsWithMinSum(int[] A){ 
 int i, j, min_sum, sum, min_i, min_j, inv_count = 0, n = A.length; 
 if(n < 2) { 
  System.out.println("Invalid Input"); 
  return; 
 }     
 /* Initialization of values */ 
 min_i = 0; 
 min_j = 1; 
 min_sum = A[0] + A[1]; 
  for(i= 0; i < n - 1; i ++)  { 
  for(j = i + 1; j < n; j++)  { 
   sum = A[i] + A[j]; 
   if(Math.abs(min_sum) > Math.abs(sum)) { 
    min_sum = sum; 
    min_i = i; 
    min_j = j; 
   } 
  } 
 }   
 System.out.println(" The two elements are “ + arr[min_i] + “ and " + arr[min_j]); 
    } 
 

Time complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-33 Can we improve the time complexity of Problem-32? 
 

Solution Use Sorting. 
Algorithm:  

1. Sort all the elements of the given input array. 
2. Maintain two indexes, one at the beginning (푖 = 0) and the other at the ending (푗 = 푛 − 1). Also, maintain two variables to keep 

track of the smallest positive sum closest to zero and the smallest negative sum closest to zero. 
3. While 푖 <  푗:  

a. If the current pair sum is > zero and < postiveClosest then update the postiveClosest. Decrement 푗. 
b. If the current pair sum is < zero and > negativeClosest then update the negativeClosest. Increment 푖. 
c. Else, print the pair. 

 

    public void TwoElementsWithMinSum(int[] A) { 
 int i = 0, j = n-1, temp, postiveClosest = INT_MAX, negativeClosest = INT_MIN,  n = A.length; 
 Sort(A, n); 
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 while(i < j) { 
  temp  = A[i] + A[j];  
  if(temp  > 0) { 
   if (temp < postiveClosest) 
    postiveClosest = temp; 
   j--; 
  } 
  else if (temp  < 0) { 
   if (temp > negativeClosest) 
    negativeClosest = temp; 
   i++; 
  } 
  else printf("Closest Sum: %d ", A[i] + A[j]); 
 } 
 return (Math.abs(negativeClosest)> postiveClosest: postiveClosest: negativeClosest); 
    } 
 

Time Complexity: O(푛푙표푔푛), for sorting. Space Complexity: O(1). 
 

Problem-34 Given an array of 푛 elements. Find three elements in the array such that their sum is equal to given element 퐾? 
 

Brute Force Solution: The default solution to this is, for each pair of input elements check whether there is any element whose sum is 퐾. This 
we can solve just by using three simple for loops. The code for this solution can be given as: 
 

    public void BruteForceSearch[int A[], int n, int data){ 
 for (int i = 0; i < n; i++) { 
  for(int j = i+1; j < n; j++) { 
   for(int k = j+1; k < n; k++)  { 
    if(A[i] + A[j] + A[k]== data) { 
     System.out.println(“Items Found, i:” + i + “ j:” + j + “ k:” + k); 
     return; 
    } 
   } 
  } 
 } 
 System.out.println(“Items not found: No such elements”); 
    } 
 

Time Complexity: O(푛 ), for three nested 푓표푟 loops.Space Complexity: O(1).  
 

Problem-35 Does the solution of Problem-34 work even if the array is not sorted? 
 

Solution: Yes. Since we are checking all possibilities, the algorithm ensures that we can find three numbers whose sum is 퐾 if they exist.  
 

Problem-36 Can we use sorting technique for solving Problem-34? 
 

Solution: Yes.  
 

      public void Search[int[] A, int data){ 
 Sort(A); 
            int n = A.length; 
 for(int k = 0; k < n; k++) { 
  for(int i =  k + 1, j = n-1; i < j;  ) { 
   if(A[k] + A[i] + A[j]  == data) { 
    System.out.println(“Items Found, i:” + i + “ j:” + j + “ k:” + k); 
    return; 

                         } 
   else if(A[k] + A[i] + A[j]  < data) 
    i =  i + 1; 
   else  j =  j - 1; 
  } 
 } 
 return; 
      } 
 

Time Complexity: Time for sorting + Time for searching in sorted list = O(푛푙표푔푛) + O(푛 )  ≈ O(푛 ). This is because of two nested 푓표푟 
loops. Space Complexity: O(1).  
 

Problem-37 Can we use hashing technique for solving Problem-34? 
 

Solution: Yes. Since our objective is to find three indexes of the array whose sum is 퐾. Let us say those indexes are 푋, 푌 and 푍. That means, 
퐴[푋]  +  퐴[푌]  +  퐴[푍]  =  퐾.  
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Let us assume that we have kept all possible sums along with their pairs in hash table. That means the key to hash table is 퐾 −  퐴[푋] and 
values for 퐾 −  퐴[푋] are all possible pairs of input whose sum is 퐾 −  퐴[푋]. 
 

Algorithm: 
 Before starting the search, insert all possible sums with pairs of elements into the hash table. 
 For each element of the input array, insert into the hash table. Let us say the current element is 퐴[푋]. 
 Check whether there exists a hash entry in the table with key: 퐾 −  퐴[푋].  
 If such element exists then scan the element pairs of 퐾 −  퐴[푋] and return all possible pairs by including 퐴[푋] also. 
 If no such element exists (with 퐾 −  퐴[푋] as key) then go to next element. 

 

Time Complexity: The time for storing all possible pairs in Hash table + searching = O(푛 ) + O(푛 ) ≈ O(푛 ). Space Complexity: O(푛). 
 

Problem-38 Given an array of 푛 integers, the 3 − 푠푢푚 푝푟표푏푙푒푚 is to find three integers whose sum is closest to 푧푒푟표.  
 

Solution: This is the same as that of Problem-34 with 퐾 value is zero. 
 

Problem-39 Let A be an array of 푛 distinct integers. Suppose A has the following property: there exists an index 1 ≤  푘 ≤  푛 such 
that 퐴[1], . . . , 퐴[푘] is an increasing sequence and 퐴[푘 + 1], . . . , 퐴[푛] is a decreasing sequence. Design and analyze an efficient algorithm 
for finding 푘. 
Similar question: Let us assume that the given array is sorted but starts with negative numbers and ends with positive numbers [such 
functions are called monotonically increasing functions]. In this array find the starting index of the positive numbers. Assume that we 
know the length of the input array. Design a O(푙표푔푛) algorithm.  

 

Solution:  Let us use a variant of the binary search. 
 

      public int Search (int[] A, int first, int last){ 
            int mid, first = 0, last = A.length-1; 
            while(first <= last) { 
       // if the current array has size 1 
       if(first == last) 
  return A[first]; 
       // if the current array has size 2 
       else if(first == last-1) 
  return max(A[first], A[last]);  
       // if the current array has size 3 or more 
       else { 
  mid = first + (last-first)/2; 
  if(A[mid-1] < A[mid] && A[mid] > A[mid+1]) 
   return A[mid];  
  else if(A[mid-1] < A[mid] && A[mid] < A[mid+1]) 
   first = mid+1;  
  else if(A[mid-1] > A[mid] && A[mid] > A[mid+1]) 
   last = mid-1;  
  else return INT_MIN ;  
       } // end of else 
            } // end of while 
      } 
 

The recursion equation is 푇(푛)  =  2푇(푛/2) +  푐.  Using master theorem, we get O(푙표푔푛). 
 

Problem-40 If we don't know 푛, how do we solve the Problem-39? 
 

Solution: Repeatedly compute 퐴[1], 퐴[2], 퐴[4], 퐴[8], 퐴[16] and so on, until we find a value of 푛 such that 퐴[푛]  >  0.  
 

Time Complexity: O(푙표푔푛), since we are moving at the rate of 2. Refer to 퐼푛푡푟표푑푢푐푡푖표푛 푡표 퐴푛푎푙푦푠푖푠 표푓 퐴푙푔표푟푖푡ℎ푚푠  chapter for details 
on this. 
 

Problem-41 Given an input array of size unknown with all 1′푠 in the beginning and 0′푠 in the end. Find the index in the array from 
where 0′푠 start. Consider there are millions of 1′푠 and 0′푠 in the array. E.g. array contents 1111111. . . . . . .1100000. . . . . . . . .0000000. 

 

Solution: This problem is almost similar to Problem-40. Check the bits at the rate of 2 where 푘 = 0, 1, 2 …. Since we are moving at the rate 
of 2, the complexity is O(푙표푔푛). 
 

Problem-42 Given a sorted array of 푛 integers that has been rotated an unknown number of times, give a O(푙표푔푛) algorithm that 
finds an element in the array. 
Example: Find 5 in array (15 16 19 20 25 1 3 4 5 7 10 14)    Output: 8 (the index of 5 in the array) 

 

Solution: Let us assume that the given array is 퐴[]and use the solution of Problem-39 with an extension. The function below 퐹푖푛푑푃푖푣표푡 
returns the 푘 value (let us assume that this function returns the index instead of the  value). Find the pivot point, divide the array into two sub-
arrays and call binary search. 
 

The main idea for finding the pivot point is – for a sorted (in increasing order) and pivoted array, the pivot element is the only element for 
which the next element to it is smaller than it. Using the above criteria and the binary search methodology we can get pivot element in O(푙표푔푛) 
time. 
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Algorithm: 
1) Find out pivot point and divide the array in two sub-arrays.  
2) Now call binary search for one of the two sub-arrays. 

a. if element is greater than first element then search in left subarray 
b. else search in right subarray 

3) If element is found in selected sub-array then return index 푒푙푠푒 return −1. 
 

      public int FindPivot(int[] A, int start, int finish) { 
 if(finish - start == 0) 
  return start; 
 else if(start == finish - 1) { 
  if(A[start] >= A[finish]) 
   return start; 
  else return finish; 
 } 
 else { mid = start + (finish-start)/2; 
  if(A[start] >= A[mid]) 
   return FindPivot(A, start, mid); 
  else return FindPivot(A, mid, finish); 
 } 
      } 
      int Search(int A[], int n, int x) { 
 int pivot = FindPivot(A, 0, n-1); 
            if(A[pivot] == x) return pivot; 
            if(A[pivot] <= x) 
       return BinarySearch(A, 0, pivot-1, x); 
            else return BinarySearch(A, pivot+1, n-1, x); 
      }  
      int BinarySearch(int A[], int low, int high, int x) { 
 if(high >= low)  { 
  int mid = low + (high - low)/2; 
  if(x == A[mid]) 
   return mid; 
  if(x > A[mid]) 
   return BinarySearch(A, (mid + 1), high, x); 
  else return BinarySearch(A, low, (mid -1), x); 
 } 
 /*Return -1 if element is not found*/ 
 return -1; 
      } 
 

Time complexity:O(푙표푔푛). 
 

Problem-43 For Problem-42, can we solve in one scan?  
 

Solution: Yes. 
 

    public int search(int[] A, int left, int right, int data) { 
 if(left > right) return -1; 
 int mid = left + (right - left) / 2; 
 if(data == A[mid]) return mid; 
 else if(A[left] <= A[mid]) {  // start half is in sorted order. 
  if(data >= A[left] && data < A[mid]) 
   return search (A, left, mid - 1, data); 
  else  return search (A, mid + 1, right, data); 
 }  
 else {  // A[mid] <= A[right], right half is in sorted order. 
  if(data > A[mid] && data <= A[right]) 
   return search (A, mid + 1, right, data); 
  else return search (A, left, mid - 1, data); 
 } 
    } 
 

Time complexity: O(푙표푔푛). Space complexity: O(푙표푔푛) for recursive stack. 
 

Problem-44 Can we solve Problem-43 without recursion? 
 

Solution: 
 

    public boolean search(int[] A, int data) { 
        int left = 0; 
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        int right = A.length - 1; 
        while(left <= right){ 
            // Avoid overflow 
            int mid = left + (right - left) / 2; 
            if(A[mid] == data) 
                return true;              

            // the bottom half is sorted; 
            if(A[left] < A[mid]){ 
                if(A[left] <= data && data < A[mid]) 
                    right = mid - 1; 
                else 
                    left = mid + 1; 
            }              

            // the upper half is sorted; 
            else if(A[left] > A[mid]){ 
                if(A[mid] < data && data <= A[right]) 
                    left = mid + 1; 
                else 
                    right = mid - 1; 
            }else{ 
                // skip duplicate one, A[start] == A[mid]; 
                left++; 
            } 
        } 
        return false; 
    } 
 

Problem-45 Bitonic search: An array is 푏푖푡표푛푖푐 if it is comprised of an increasing sequence of integers followed immediately by a 
decreasing sequence of integers. Given a bitonic array A of n distinct integers, describe how to determine whether a given integer is in 
the array in O(푙표푔푛) steps.  

 

Solution: The solution is the same as that for Problem-39. 
 

Problem-46 Yet, other way of framing Problem-39. 
Let 퐴[] be an array that starts out increasing, reaches a maximum, and then decreases. Design an O(푙표푔푛) algorithm to find the index 
of the maximum value.  
 

Problem-47 Give an O(푛푙표푔푛) algorithm for computing the median of a sequence of 푛 integers.  
 

Solution: Sort and return element at .  
 

Problem-48 Given two sorted lists of size 푚 and 푛, find median of all elements in O(푙표푔 (푚 + 푛)) time.  
 

Solution: Refer to 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. 
 

Problem-49 Given a sorted array 퐴 of 푛 elements, possibly with duplicates, find the index of the first occurrence of a number in 
O(푙표푔푛) time.  

 

Solution: To find the first occurrence of a number we need to check for the following condition. Return the position if any one of the following 
is true: 
  

                        mid == low && A[mid] == data  ||  A[mid] == data && A[mid-1] < data 
 

      public int BinarySearchFirstOccurrence(int[] A, int low, int high, int data) { 
 if(high >= low) { 
  int mid = low + (high-low) / 2; 
  if((mid == low && A[mid] == data) || (A[mid] == data && A[mid - 1] < data)) 
   return mid; 
  // Give preference to left half of the array 
  else if(A[mid] >= data) 
   return BinarySearchFirstOccurrence (A, low, mid - 1, data); 
  else return BinarySearchFirstOccurrence (A, mid + 1, high, data); 
 } 
 return -1; 
      } 
 

Time Complexity: O(푙표푔푛). 
 

Problem-50 Given a sorted array 퐴 of 푛 elements, possibly with duplicates. Find the index of the last occurrence of a number in 
O(푙표푔푛) time.  

 

Solution: To find the last occurrence of a number we need to check for the following condition. Return the position if any one of the following 
is true: 
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 mid == high && A[mid] == data  ||  A[mid] == data && A[mid+1] > data 
 

      public int BinarySearchLastOccurrence(int[] A, int low, int high, int data) { 
 if(high >= low) { 
  int mid = low + (high-low) / 2; 
  if((mid == high && A[mid] == data) || (A[mid] == data && A[mid + 1] > data)) 
   return mid; 
  // Give preference to right half of the array 
  else if(A[mid] <= data) 
   return BinarySearchLastOccurrence (A, mid + 1, high, data); 
  else return BinarySearchLastOccurrence (A, low, mod - 1, data); 
 } 
 return -1; 
      } 
 

Time Complexity: O(푙표푔푛). 
 

Problem-51 Given a sorted array of 푛 elements, possibly with duplicates. Find the number of occurrences of a number.  
 

Brute Force Solution: Do a linear search of the array and increment count as and when we find the element  data in the array. 
 

    public int LinearSearchCount(int[] A, int data) { 
 int count = 0; 
 for (int i = 0; i < A.length; i++)  { 
  if(A[i] == data) 
   count++; 
 } 
 return count; 
    } 
 

Time Complexity: O(푛). 
 

Problem-52 Can we improve the time complexity of Problem-51? 
 

Solution: Yes. We can solve this by using one binary search call followed by another small scan.  
 

Solution: Yes. We can solve this by using one binary search call followed by another small scan.  
 

Algorithm: 
 Do a binary search for the 푑푎푡푎 in the array. Let us assume its position is 퐾. 
 Now traverse towards the left from K and count the number of occurrences of 푑푎푡푎. Let this count be 푙푒푓푡퐶표푢푛푡. 
 Similarly, traverse towards right and count the number of occurrences of 푑푎푡푎. Let this count be 푟푖푔ℎ푡퐶표푢푛푡. 
 Total number of occurrences =  푙푒푓푡퐶표푢푛푡 +  1 +  푟푖푔ℎ푡퐶표푢푛푡 

 

Time Complexity – O(푙표푔푛 +  푆) where 푆 is the number of occurrences of 푑푎푡푎. 
 

Problem-53 Is there any alternative way of solving Problem-51? 
 

Solution:  
 

Algorithm: 
 Find first occurrence of 푑푎푡푎 and call its index as 푓푖푟푠푡O푐푐푢푟푟푒푛푐푒 (for algorithm refer to Problem-49) 
 Find last occurrence of 푑푎푡푎 and call its index as 푙푎푠푡푂푐푐푢푟푟푒푛푐푒 (for algorithm refer to Problem-50) 
 Return 푙푎푠푡푂푐푐푢푟푟푒푛푐푒 – 푓푖푟푠푡푂푐푐푢푟푟푒푛푐푒 + 1 

 

Time Complexity = O(푙표푔푛 + 푙표푔푛)  =O(푙표푔푛). 
 

Problem-54 What is the next number in the sequence 1, 11, 21 and why? 
 

Solution: Read the given number loudly. This is just a fun problem. 
One One 
Two Ones 
One two, one one 1211 

So answer is, the next number is the representation of previous number by reading it loudly.  
 

    public String generateNextNumFromReading(int n) { 
        StringBuilder str = new StringBuilder("1"); 
        while(n-- > 1){ 
            StringBuilder temp = new StringBuilder(); 
            int count = 1; 
            for(int i = 1; i < str.length(); i++){ 
                if(str.charAt(i) == str.charAt(i - 1)) 
                    count++; 
                else{ 
                    // appending.. 



 

Data Structures and Algorithms Made Easy in Java Searching                      

 

11.11 Searching: Problems & Solutions    290 

 
 

                    temp.append(count); 
                    temp.append(str.charAt(i - 1)); 
                    count = 1; 
                } 
            } 
            temp.append(count); 
            temp.append(str.charAt(str.length() - 1)); 
            str = temp; 
        } 
        return str.toString(); 
    } 
 

Problem-55 Finding second smallest number efficiently. 
 

Solution: We can construct a heap of the given elements using up just less than 푛 comparisons (Refer to the 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter for 
the algorithm). Then we find the second smallest using 푙표푔푛 comparisons for the GetMax() operation. Overall, we get  푛 +  푙표푔푛 +
 푐표푛푠푡푎푛푡.  
 

Problem-56 Is there any other solution for Problem-55? 
 

Solution: Alternatively, split the 푛 numbers into groups of 2, perform 푛/2 comparisons successively to find the largest, using a tournament-
like method. The first round will yield the maximum in 푛 −  1 comparisons. The second round will be performed on the winners of the first 
round and the ones that the maximum popped. This will yield 푙표푔푛 − 1 comparison for a total of  푛 +  푙표푔푛 −  2. The above solution is 
called the 푡표푢푟푛푎푚푒푛푡 푝푟표푏푙푒푚. 
 

Problem-57 An element is a majority if it appears more than 푛/2 times. Give an algorithm takes an array of 푛 element as argument 
and identifies a majority (if it exists). 

 

Solution: The basic solution is to have two loops and keep track of the maximum count for all different elements. If the maximum count 
becomes greater than 푛/2, then break the loops and return the element having maximum count. If maximum count doesn’t become more 
than 푛/2, then the majority element doesn’t exist.  
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-58 Can we improve Problem-57 time complexity to O(푛푙표푔푛)? 
 

Solution:  Using binary search we can achieve this. Node of the Binary Search Tree (used in this approach) will be as follows.  
 

      public class TreeNode { 
 public int element; 
 public int count; 
 public TreeNode left; 

public TreeNode right; 
…… 

      } 
 

Insert elements in BST one by one and if an element is already present then increment the count of the node. At any stage, if the count of a 
node becomes more than 푛/2, then return. This method works well for the cases where 푛/2 + 1 occurrences of the majority element are 
present at the start of the array, for example {1, 1, 1, 1, 1, 2, 3, and 4}. 
 

Time Complexity: If a binary search tree is used then worst time complexity will be O(푛 ). If a balanced-binary-search tree is used then 
O(푛푙표푔푛). Space Complexity: O(푛). 
 

Problem-59 Is there any other of achieving O(푛푙표푔푛) complexity for Problem-57? 
 

Solution: Sort the input array and scan the sorted array to find the majority element. 
 

Time Complexity: O(푛푙표푔푛). Space Complexity: O(1). 
 

Problem-60 Can we improve the complexity for Problem-57? 
 

Solution: If an element occurs more than 푛/2 times in 퐴 then it must be the median of 퐴. But, the reverse is not true, so once the median is 
found, we must check to see how many times it occurs in 퐴. We can use linear selection which takes O(푛) time (for algorithm, refer to 
푆푒푙푒푐푡푖표푛 퐴푙푔표푟푖푡ℎ푚푠 chapter). 
 

      public int CheckMajority(int[] A) { 
                  1. Use linear selection to find the median 푚 of 퐴. 
                  2. Do one more pass through 퐴 and count the number of occurrences of 푚. 
                            a. If 푚 occurs more than 푛/2 times then return true; 
                            b. Otherwise return false.  
      } 
 

Problem-61 Is there any other way of solving Problem-57?  
 

Solution: We can find the majority element using linear time and constant space using Boyer–Moore majority vote algorithm. Since only one 
element is repeating, we can use a simple scan of the input array by keeping track of the count for the elements. If the count is 0, then we can 
assume that the element visited for the first time otherwise that the resultant element. 
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The algorithm can be expressed in pseudocode as the following steps. The algorithm processes each element of the sequence, one at a time. 
While processing an element: 
 

 If the counter is 0, we set the current candidate to element and we set the counter to 1. 
 If the counter is not 0, we increment or decrement the counter according to whether element is the current candidate. 

 

At the end of this process, if the sequence has a majority, it will be the element stored by the algorithm. If there is no majority element, the 
algorithm will not detect that fact, and will still output one of the elements. We can modify the algorithm to verify that the element found is 
really is a majority element or not. 
 

      public int MajorityNum(int[] A) { 
              int count = 0, element = -1, n = A.length; 
              for(int i = 0; i < n; i++) { 
  // If the counter is 0 then set the current candidate to majority num and set the counter to 1. 
  if(count == 0) { 
   element = A[i]; 
   count = 1; 
  } 
  else if(element == A[i]) { 
   // Increment counter If the counter is not 0 and element is same as current candidate. 
   count++; 
  } 
  else { // Decrement counter if counter is not 0 and element is different from current candidate. 
   count--; 
  } 
              } 
              return element; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-62 Given an array of 2푛 elements of which 푛 elements are same and the remaining 푛 elements are all different. Find the 
majority element.  

 

Solution: The repeated elements will occupy half the array. No matter what arrangement it is, only one of the below will be true: 
 

 All duplicate elements will be at a relative distance of 2 from each other. Ex: 퐧, 1, 퐧, 100, 퐧, 54, 퐧 ... 
 At least two duplicate elements will be next to each other. 

Ex:  푛, 푛, 1, 100, 푛, 54, 푛, . . . . 
                                    푛, 1, 푛, 푛, 푛, 54, 100 . . . 
                                   1, 100, 54, 푛, 푛, 푛, 푛. . . . 
 

In worst case, we will need two passes over the array: 
 

 First Pass: compare 퐴[푖] and 퐴[푖 + 1] 
 Second Pass: compare 퐴[푖] and 퐴[푖 + 2] 

 

Something will match and that's your element. This will cost O(푛) in time and O(1) in space. 
 

Problem-63 Given an array with 2푛 + 1 integer elements, 푛 elements appear twice in arbitrary places in the array and a single integer 
appears only once somewhere inside. Find the lonely integer with O(푛) operations and O(1) extra memory. 

 

Solution: Except for one element, all elements are repeated. We know that 퐴 푋O푅 퐴 = 0. Based on this if we 푋푂푅 all the input elements 
then we get the remaining element. 
 

      public int Solution(int[] A) { 
  int i, res; 
  for (i = res = 0; i < A.length; i++)  
                  res = res ^ A[i]; 
                   return res; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-64 Throwing eggs from an n-story building: Suppose we have an 푛 story building and a number of eggs. Also assume that an 
egg breaks if it is thrown from floor 퐹 or higher, and will not break otherwise. Devise a strategy to determine floor 퐹, while 
breaking O(푙표푔푛) eggs.  

 

Solution: Refer to 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. 
 

Problem-65 Local minimum of an array: Given an array 퐴 of 푛 distinct integers, design an O(푙표푔푛) algorithm to find a 
푙표푐푎푙 푚푖푛푖푚푢푚: an index 푖 such that 퐴[푖 − 1]  <  퐴[푖]  <  퐴[푖 + 1].  

 

Solution: Check the middle value 퐴[푛/2], and two neighbors 퐴[푛/2 −  1] and 퐴[푛/2 +  1]. If 퐴[푛/2] is local minimum, stop; otherwise 
search in half with smaller neighbor.  
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Problem-66 Give an 푛 × 푛 array of elements such that each row is in ascending order and each column is in ascending order, devise 
an O(푛) algorithm to determine if a given element 푥 is in the array. You may assume all elements in the 푛 × 푛 array are distinct.  

 

Solution: Let us assume that the given matrix is 퐴[푛][푛]. Start with the last row, first column [or first row, last column]. If the element we are 
searching for is greater than the element at 퐴[1][푛], then the first column can be eliminated. If the search element is less than the element at 
퐴[1][푛], then the last row can be completely eliminated. Once the first column or the last row is eliminated, start the process again with the 
left-bottom end of the remaining array. In this algorithm, there would be maximum 푛 elements that the search element would be compared 
with. 
 

    public boolean searchMatrix(int[][] A, int target) { 
        int length = A.length; 
        int width = A[0].length; 
        int start = 0;  
        int end = width * length - 1; 
        while(start <= end){ 
            int mid = (start + end) / 2; 
            int x = mid / width; 
            int y = mid % width; 
            if(A[x][y] == target) 
                return true; 
            else if(A[x][y] > target) 
                end = mid - 1; 
            else  
                start = mid + 1; 
        } 
        return false; 
    } 
 

Time Complexity: O(푛). This is because we will traverse at most 2푛 points. Space Complexity: O(1). 
 

Problem-67 Given an 푛 × 푛 array a of  푛  numbers, give an O(푛) algorithm to find a pair of indices 푖 and 푗 such that 퐴[푖][푗] < 퐴[푖 +
1][푗], 퐴[푖][푗] < 퐴[푖][푗 + 1], 퐴[푖][푗] < 퐴[푖 − 1][푗], and 퐴[푖][푗] < 퐴[푖][푗 − 1].  

 

Solution: This problem is same as Problem-66. 
 

Problem-68 Given 푛 × 푛 matrix, and in each row all 1’s are followed by 0’푠. Find the row with the maximum number of 0’푠. 
 

Solution: Start with first row, last column. If the element is 0 then move to the previous column in the same row and at the same time increase 
the counter to indicate the maximum number of 0’푠. If the element is 1 then move to the next row in the the same column. Repeat this 
process until your reach last row, first column. 
 

Time Complexity: O(2푛) ≈O(푛) (similar to Problem-66). 
 

Problem-69 Given an input array of size unknown, with all numbers in the beginning and special symbols in the end. Find the index 
in the array from where the special symbols start.  

 

Solution: Refer to 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. 
 

Problem-70 Separate even and odd numbers: Given an array 퐴[ ], write a function that segregates even and odd numbers. The 
functions should put all even numbers first, and then odd numbers. 
Example: Input = {12, 34, 45, 9, 8, 90, 3}  Output = {12, 34, 90, 8, 9, 45, 3} 
 

Note: In the output, the order of numbers can be changed, i.e., in the above example 34 can come before 12, and 3 can come before 
9. 

 

Solution: The problem is very similar to 푆푒푝푎푟푎푡푒 0’푠 푎푛푑 1’푠 (Problem-71) in an array, and both problems are variations of the famous 
퐷푢푡푐ℎ 푛푎푡푖표푛푎푙 푓푙푎푔 푝푟표푏푙푒푚. 
 

Algorithm:  Logic is similar to Quick sort. 
1) Initialize two index variables left and right:  푙푒푓푡 =  0, 푟푖푔ℎ푡 =  푛 − 1 
2) Keep incrementing left index until we see an odd number. 
3) Keep decrementing right index until we see an even number. 
4) If 푙푒푓푡 <  푟푖푔ℎ푡 then swap 퐴[푙푒푓푡] and 퐴[푟푖푔ℎ푡] 

 

     public static int[] dutchNationalFlag(int[] A) { 
        int mid = -1;     //tracks 1 
        int left = 0;       //tracks 0 
        int right = A.length;   //tracks 2 
        while(left < right){ 
            if(A[left] == 0){ 
                 mid++; 
                int temp = A[left]; 
                A[left] = A[mid]; 
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                A[mid] = temp; 
                // left move forward as well.  
                left++; 
            }else if(A[left] == 2){ 
                right--; 
                int temp = A[left]; 
                A[left] = A[right]; 
                A[right] = temp; 
            }else 
                left++; 
        } 
        return A; 
     }     

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-71 The following is another way of structuring Problem-70, but with a slight difference.   
Separate 0’s and 1’s in an array: We are given an array of 0’s and 1’s in random order. Separate 0’s on the left side and 1’s on the right 
side of the array. Traverse the array only once. 

 Input array   = [0, 1, 0, 1, 0, 0, 1, 1, 1, 0] 
 Output array = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] 
 

Solution: Counting 0’s or 1’s: 
1. Count the number of 0’푠. Let count be 퐶. 
2. Once we have count, put 퐶 0’s at the beginning and 1’푠 at the remaining 푛 –  퐶 positions in array. 

Time Complexity: O(푛). This solution scans the array two times.  
 

Problem-72 Can we solve Problem-71 in one scan? 
 

Solution: Yes. Use two indexes to traverse: Maintain two indexes. Initialize the first index left as 0 and the second index right as 푛 − 1. Do 
the following while 푙푒푓푡 <  푟푖푔ℎ푡: 
 

1) Keep the incrementing index left while there are 0s in it 
2) Keep the decrementing index right while there are 1s in it 
3) If left < right then exchange 퐴[푙푒푓푡] and 퐴[푟푖푔ℎ푡] 

  

     // Function to put all 0s on left and all 1s on right 
     public void Separate0and1(int[] A) { 
 // Initialize left and right indexes 
 int left = 0, right = A.length-1;      
  while(left < right) { 
  // Increment left index while we see 0 at left  
  while(A[left] == 0 && left < right) 
   left++; 
   // Decrement right index while we see 1 at right  
  while(A[right] == 1 && left < right) 
   right–; 
   // If left is smaller than right then there is a 1 at left  
  // and a 0 at right.  Swap A[left] and A[right] 
  if(left < right) { 
   A[left] = 0; 
   A[right] = 1; 
   left++; 
   right–; 
  } 
 } 
     } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-73 Sort an array of  0’s, 1’s and 2’s [or R’s, G’s and B’s]: Given an array A[] consisting of 0’푠, 1’푠 and 2’푠, give an algorithm 
for sorting 퐴[].The algorithm should put all 0’푠 first, then all 1’푠 and finally all 2’푠 at the end. Example  Input = {0,1,1,0,1,2,1,2,0,0,0,1}, 
Output = {0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2} 

 

Solution: Same as Problem-69 and below is an alternative way of coding the same. 
 

     public void Sorting012sDutchFlagProblem(int[] A){ 
 int low=0,mid=0,high= A.length -1; 
 while(mid <=high){ 
  switch(A[mid]){ 
   case 0:  
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    swap(A[low],A[mid]); 
    low++;mid++; 
    break; 
   case 1: 
    mid++; 
    break; 
   case 2: 
    swap(A[mid],A[high]); 
    high--; 
    break;  
  } 
 } 
     }  
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-74 Maximum difference between two elements: Given an array 퐴[] of integers, find out the difference between any two 
elements such that larger element appears after the smaller number in 퐴[].  
Examples: If array is [2, 3, 10, 6, 4, 8, 1] then returned value should be 8 (Diff between 10 and 2). If array is [ 7, 9, 5, 6, 3, 2 ] then 
returned value should be 2 (Difference between 7 and 9) 

 

Solution: Refer to 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. 
 

Problem-75 Given an array of 101 elements. Out of 101 elements, 25 elements are repeated twice, 12 elements are repeated 4 times, 
and one element is repeated 3 times. Find the element which repeated 3 times in O(1). 

 

Solution: Before solving this problem, let us consider the following 푋푂푅 operation property: 푎 푋푂푅 푎 = 0. That means, if we apply the 푋푂푅 
on the same elements then the result is 0.  
 

Algorithm: 
 푋푂푅 all the elements of the given array and assume the result is  퐴.  
 After this operation, 2 occurrences of the number which appeared 3 times becomes 0 and one occurrence remains the same. 
 The 12 elements that are appearing 4 times become 0. 
 The 25 elements that are appearing 2 times become 0. 
 So just 푋푂푅’푖푛푔 all the elements gives the result. 

 

Time Complexity: O(푛), because we are doing only one scan. Space Complexity: O(1). 
 

Problem-76 Given a number  푛, give an algorithm for finding the number of trailing zeros in 푛! . 
 

Solution: 
 

     public int NumberOfTrailingZerosInNumber(int n) { 
 int i, count = 0; 
 if(n < 0)  
  return -1; 
 for (i = 5; n / i > 0; i *= 5) 
  count += n / i; 
 return count; 
     } 
 

Time Complexity: O(푙표푔푛).  
 

Problem-77 Given an array of 2푛 integers in the following format 푎1 푎2 푎3 . . . 푎푛 푏1 푏2 푏3 . . . 푏푛. Shuffle the array to 
푎1 푏1 푎2 푏2 푎3 푏3 . . . 푎푛 푏푛 without any extra memory. 

 

Solution: A brute force solution involves two nested loops to rotate the elements in the second half of the array to the left. The first loop runs 
푛 times to cover all elements in the second half of the array. The second loop rotates the elements to the left. Note that the start index in the 
second loop depends on which element we are rotating and the end index depends on how many positions we need to move to the left. 
 

     void ShuffleArray() { 
 int n = 4, A[] = {1,3,5,7,2,4,6,8}; 
 for (int i = 0, q =1, k = n; i < n; i++, k++, q++) { 
  for (int j = k; j > i + q; j--) { 
   int tmp = A[j-1]; 
   A[j-1] = A[j]; 
   A[j] = tmp; 
  } 
 } 
 for (int i = 0; i  < 2*n; i++)  
  System.out.println(A[i]); 
     } 
 

Time Complexity: O(푛 ). 
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Problem-78 Can we improve Problem-77 solution? 
 

Solution: Refer to the 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. A better solution of time complexity O(푛푙표푔푛) can be achieved using the 
퐷푖푣푖푑푒 푎푛푑 퐶표푛푐푢푟 technique. Let us look at an example 
 

1. Start with the array: 푎1 푎2 푎3 푎4 푏1 푏2 푏3 푏4 
2. Split the array into two halves: 푎1 푎2 푎3 푎4 ∶  푏1 푏2 푏3 푏4 
3. Exchange elements around the center: exchange 푎3 푎4 with 푏1 푏2 and you get: 푎1 푎2 푏1 푏2 푎3 푎4 푏3 푏4 
4. Split 푎1 푎2 푏1 푏2 into 푎1 푎2 ∶  푏1 푏2.  Then split 푎3 푎4 푏3 푏4 into 푎3 푎4 ∶  푏3 푏4 
5. Exchange elements around the center for each subarray you get: 푎1 푏1 푎2 푏2 and 푎3 푏3 푎4 푏4 

 

Note that this solution only handles the case when 푛 =  2  where 푖 =  0, 1, 2, 3, etc. In our example 푛 =  2  =  4 which makes it easy to 
recursively split the array into two halves. The basic idea behind swapping elements around the center before calling the recursive function is 
to produce smaller size problems. A solution with linear time complexity may be achieved if the elements are of a specific nature. For example, 
if you can calculate the new position of the element using the value of the element itself. This is nothing but a hashing technique. 
 

Problem-79 Given an array A[], find the maximum j – i such that A[j] > A[i]. For example, Input: {34, 8, 10, 3, 2, 80, 30, 33, 1} and 
Output: 6  (j = 7, i = 1). 

 

Solution: Brute Force Approach: Run two loops. In the outer loop, pick elements one by one from the left. In the inner loop, compare the 
picked element with the elements starting from the right side. Stop the inner loop when you see an element greater than the picked element 
and keep updating the maximum 푗 − 푖 so far. 
 

     public int maxIndexDiff(int[] A){ 
         int maxDiff = -1; 
         int i, j;   

         for (i = 0; i < A.length; ++i){ 
             for (j = n-1; j > i; --j){ 
                 if(A[j] > A[i] && maxDiff < (j - i)) 
                     maxDiff = j - i; 
             } 
         } 
         return maxDiff; 
     } 
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-80 Can we improve the complexity of Problem-79? 
 

Solution: To solve this problem, we need to get two optimum indexes of A[]: left index 푖 and right index 푗. For an element A[i], we do not 
need to consider A[i] for the left index if there is an element smaller than A[i] on the left side of A[i]. Similarly, if there is a greater element 
on the right side of A[j] then we do not need to consider this j for the right index.  
 

So we construct two auxiliary Arrays LeftMins[] and RightMaxs[] such that LeftMins[i] holds the smallest element on the left side of A[i] 
including A[i], and RightMaxs[j] holds the greatest element on the right side of A[j] including A[j]. After constructing these two auxiliary arrays, 
we traverse both these arrays from left to right.  
 

While traversing LeftMins[] and RightMaxs[], if we see that LeftMins[i] is greater than RightMaxs[j], then we must move ahead in LeftMins[] 
(or do i++) because all elements on the left of LeftMins[i] are greater than or equal to LeftMins[i]. Otherwise we must move ahead in 
RightMaxs[j] to look for a greater 푗 –  푖 value. 
 

     public int maxIndexDiff(int[] A){ 
         int maxDiff, n= A.length; 
         int i, j; 
         int *LeftMins = (int *)malloc(sizeof(int)*n); 
         int *RightMaxs = (int *)malloc(sizeof(int)*n); 
         LeftMins[0] = A[0]; 
         for (i = 1; i < n; ++i) 
             LeftMins[i] = min(A[i], LeftMins[i-1]);   

         RightMaxs[n-1] = A[n-1]; 
         for (j = n-2; j >= 0; --j) 
             RightMaxs[j] = max(A[j], RightMaxs[j+1]); 
 

         i = 0, j = 0, maxDiff = -1; 
         while (j < n && i < n){ 
             if (LeftMins[i] < RightMaxs[j]){ 
                 maxDiff = max(maxDiff, j-i); 
                 j = j + 1; 
             } 
             else 
                 i = i+1; 
         } 
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          return maxDiff; 
     } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-81 Given an array of elements, how do you check whether the list is pairwise sorted or not? A list is considered pairwise 
sorted if each successive pair of numbers is in sorted (non-decreasing) order. 

  

Solution:  
 

     public boolean isPairwiseSorted(int[] A) { 
        if (A.length == 0 || A.length == 1) 
           return true; 
        for (int i = 0; i < A.length - 1; i += 2){ 
           if (A[i] > A[i+1]) 
              return false; 
        } 
     } 

 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-82 Which is faster and by how much, a linear search of only 1000 elements on a 5-GHz computer or a binary search of 1 
million elements on a 1-GHz computer. Assume that the execution of each instruction on the 5-GHz computer is five times faster than 
on the 1-GHz computer and that each iteration of the linear search algorithm is twice as fast as each iteration of the binary search 
algorithm. 

 

Solution: A binary search of 1 million elements would require 푙표푔 , ,  or about 20 iterations at most (i.e., worst case). A linear search of 

1000 elements would require 500 iterations on the average (i.e., going halfway through the array). Therefore, binary search would be =

25 faster (in terms of iterations) than linear search. However, since linear search iterations are twice as fast, binary search would be  or about 
12 times faster than linear search overall, on the same machine. Since we run them on different machines, where an instruction on the 5-GhZ 

machine is 5 times faster than an instruction on a 1-GHz machine, binary search would be  or about 2 times faster than linear search! The 
key idea is that software improvements can make an algorithm run much faster without having to use more powerful software. 
 

Problem-83 Given an array of integers, give an algorithm that returns the 푝푖푣표푡 index of this array. 푃푖푣표푡 index is the index where 
the sum of the numbers to the left of the index is equal to the sum of the numbers to the right of the index. If no such index exists, we 
should return -1. If there are multiple pivot indexes, you should return the left-most pivot index. 

 

Example 1: Input:  A = [1, 8, 4, 7, 6, 7], Output: 3 
Explanation: The sum of the numbers to the left of index 3 (A[3] = 7) is equal to the sum of numbers to the right of index 3. Also, 3 is the 
first index where this occurs. 

 

Example 2: Input: A = [2, 3, 4], Output: -1 
Explanation: There is no index that satisfies the conditions in the problem statement. 

 

Solution: We need to quickly compute the sum of values to the left and the right of every index. Let's say we knew 푡표푡푎푙푆푢푚 as the sum of 
the numbers, and we are at index 푖. If we knew the sum of numbers leftsum that are to the left of index 푖, then the other sum to the right of 
the index would just be 푡표푡푎푙푆푢푚 −  퐴[푖]  −  푙푒푓푡푠푢푚. 
 

As such, we only need to know about 푙푒푓푡푠푢푚 to check whether an index is a pivot index in constant time. Let's do that: as we iterate through 
candidate indexes i, we will maintain the correct value of leftsum. 
 

    public int pivotIndex(int[] A) { 
        int totalSum = 0, leftsum = 0; 
        for (int x: A) totalSum += x; 
        for (int i = 0; i < A.length; ++i) { 
            if (leftsum == totalSum - leftsum - A[i]) return i; 
            leftsum += A[i]; 
        } 
        return -1; 
    } 
 

Time Complexity: O(푛), where 푛 is the length of array A. Space Complexity: O(1), the space used by 푙푒푓푡푠푢푚 and 푡표푡푎푙푆푢푚. 
 

Problem-84 Given two strings s and t which consist of only lowercase letters. String t is generated by random shuffling string s and then 
add one more letter at a random position. Find the letter that was added in t. 
 

Example Input:  s = "abcd"   t = "abcde"           Output: e 
Explanation: 'e' is the letter that was added. 

 

Solution: Refer Other Programming Questions section in Hacks on Bitwise Programming chapter.    
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12.1 What are Selection Algorithms? 
 

푆푒푙푒푐푡푖표푛 푎푙푔표푟푖푡ℎ푚 is an algorithm for finding the 푘  smallest/largest number in a list (also called as 푘  order statistic). This includes 
finding the minimum, maximum, and median elements. For findingthe  푘  order statistic, there are multiple solutions which provide different 
complexities, and in this chapter we will enumerate those possibilities.  

12.2 Selection by Sorting 
 

A selection problem can be converted to a sorting problem. In this method, we first sort the input elements and then get the desired element. 
It is efficient if we want to perform many selections.  

 

For example, let us say we want to get the minimum element. After sorting the input elements we can simply return the first element (assuming 
the array is sorted in ascending order). Now, if we want to find the second smallest element, we can simply return the second element from 
the sorted list.  
 

That means, for the second smallest element we are not performing the sorting again. The same is also the case with subsequent queries. Even 
if we want to get 푘  smallest element, just one scan of the sorted list is enough to find the element (or we can return the 푘 -indexed value if 
the elements are in the array). 

 

From the above discussion what we can say is, with the initial sorting we can answer any query in one scan, O(푛). In general, this method 
requires O(푛푙표푔푛) time (for 푠표푟푡푖푛푔), where 푛 is the length of the input list. Suppose we are performing 푛 queries, then the average cost 

per operation is just  ≈O(푙표푔푛). This kind of analysis is called 푎푚표푟푡푖푧푒푑 analysis.   

12.3 Partition-based Selection Algorithm 
 

For the algorithm check Problem-6. This algorithm is similar to Quick sort. 

12.4 Linear Selection Algorithm - Median of Medians Algorithm 
 

Worst-case performance  O(푛) 
Best-case performance  O(푛) 
Worst-case space complexity  O(1) auxiliary 

 

Refer to Problem-11. 

12.5 Finding the K Smallest Elements in Sorted Order 
 

For the algorithm check Problem-6. This algorithm is similar to Quick sort. 

12.6 Selection Algorithms: Problems & Solutions 
 

Problem-1 Find the largest element in an array 퐴 of size 푛. 
 

Solution:  Scan the complete array and return the largest element. 
 

     public void FindLargestInArray(int n, int[] A) { 
 int large = A[0]; 
 for (int i = 1; i <= n-1; i++) 
       if(A[i] > large) 
   large = A[i]; 
 System.out.println(“Largest: ” + large); 
     } 
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Time Complexity - O(푛). Space Complexity - O(1). 
 

Note: Any deterministic algorithm that can find the largest of 푛 keys by comparison of keys takes at least 푛 − ퟏ comparisons. 
 

Problem-2 Find the smallest and largest elements in an array 퐴 of size 푛. 
 

Solution: 
     public void FindSmallestAndLargestInArray (int[] A, int n) { 
 int small = A[0]; 
 int large =A[0]; 
 for(int i = 1; i <= n-1; i++) 
  if(A[i] < small) 
   small = A[i]; 
  else if(A[i] > large) 
   large = A[i]; 

System.out.println(“Smallest: “ + small + “ Largest: ” + large); 
     } 
 

Time Complexity - O(푛). Space Complexity - O(1). The worst-case number of comparisons is 2(푛 − 1). 
 

Problem-3 Can we improve the previous algorithms? 
 

Solution:  Yes. We can do this by comparing in pairs. 
 

     public void FindWithPairComparison (int A[], int n) {// n is assumed to be even. Compare in pairs. 
 int large = small = -1; 
 for (int i = 0; i <= n - 1; i = i + 2) {      // Increment i by 2. 
  if(A[i] < A[i + 1]) { 
   if(A[i] < small) 
    small = A[i]; 
   if(A[i + 1] > large) 
    large = A[i + 1]; 
  } 
  else {  
                                     if(A[i + 1] < small) 
    small = A[i + 1]; 
   if(A[i] > large) 
    large = A[i]; 
  } 
 } 

System.out.println(“Smallest: “ + small + “ Largest: ” + large); 
     } 
 

Time Complexity - O(푛). Space Complexity - O(1). 

Number of comparisons: 
− 2, 푖푓 푛 푖푠 푒푣푒푛

−  푖푓 푛 푖푠 표푑푑
 

Summary: 
Straightforward comparison – 2(푛 −  1) comparisons 
Compare for min only if comparison for max fails 
Best case: increasing order – 푛 −  1 comparisons 
Worst case: decreasing order – 2(푛 −  1) comparisons 
Average case: 3푛/2 −  1 comparisons 

 

Note: For divide and conquer techniques refer to the 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. 
 

Problem-4 Give an algorithm for finding the second largest element in the given input list of elements. 
 

Solution: Brute Force Method 
 

Algorithm: 
 

 Find the largest element: needs 푛 −  1 comparisons 
 Delete (discard) the largest element 
 Again find the largest element: needs 푛 −  2 comparisons 

 

Total number of comparisons: 푛 − 1 + 푛 − 2 =  2푛 − 3  
 

Problem-5 Can we reduce the number of comparisons in Problem-4 solution? 
 

Solution: The Tournament method: For simplicity, assume that the numbers are distinct and that 푛 is a power of 2. We pair the keys and 
compare the pairs in rounds until only one round remains. If the input has eight keys, there are four comparisons in the first round, two in 
the second, and one in the last. The winner of the last round is the largest key. The figure below shows the method.  
 

The tournament method directly applies only when 푛 is a power of 2. When this is not the case, we can add enough items to the end of the 
array to make the array size a power of 2. If the tree is complete then the maximum height of the tree is 푙표푔푛. If we construct the complete 
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binary tree, we need 푛 − 1 comparisons to find the largest. The second largest key has to be among the ones that were lost in a comparison 
with the largest one. That means, the second largest element should be one of the opponents of the largest element. The number of keys that 
are lost to the largest key is the height of the tree, i.e. 푙표푔푛 [if the tree is a complete binary tree]. Then using the selection algorithm to find 
the largest among them, take 푙표푔푛 − 1 comparisons. Thus the total number of comparisons to find the largest and second largest keys is 푛 +
 푙표푔푛 − 2. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Problem-6 Find the 푘-smallest elements in an array 푆 of 푛 elements using the partitioning method. 
 

Solution: Brute Force Approach: Scan through the numbers 푘 times to have the desired element. This method is the one used in bubble sort 
(and selection sort), every time we find out the smallest element in the whole sequence by comparing every element. In this method, the 
sequence has to be traversed 푘 times. So the complexity is O(푛 ×  푘). 
 

Problem-7 Can we use the sorting technique for solving Problem-6? 
 

Solution:  Yes. Sort and take the first 푘 elements. 
 

1. Sort the numbers. 
2. Pick the first 푘 elements. 

 

The time complexity calculation is trivial. Sorting of 푛 numbers is of O(푛푙표푔푛) and picking 푘 elements is of O(푘).  
The total complexity is O(푛푙표푔푛 +  푘)  = O(푛푙표푔푛). 
 

Problem-8 Can we use the 푡푟푒푒 푠표푟푡푖푛푔 technique for solving Problem-6? 
 

Solution:  Yes.  
 

1. Insert all the elements in a binary search tree. 
2. Do an InOrder traversal and print 푘 elements which will be the smallest ones. So, we have the 푘 smallest elements. 

 

The cost of creation of a binary search tree with 푛 elements is O(푛푙표푔푛) and the traversal up to 푘 elements is O(푘). Hence the complexity 
is O(푛푙표푔푛 + 푘)  = O(푛푙표푔푛). 
 

Disadvantage: If the numbers are sorted in descending order, we will be getting a tree which will be skewed towards the left. In that case, the 

construction of the tree will be 0 +  1 +  2 + . . . + (푛 −  1)  = 
( )

 which is O(푛 ). To escape from this, we can keep the tree balanced, 
so that the cost of constructing the tree will be only 푛푙표푔푛. 
 

Problem-9 Can we improve the 푡푟푒푒 푠표푟푡푖푛푔 technique for solving Problem-6? 
 

Solution:  Yes. Use a smaller tree to give the same result. 
 

1. Take the first 푘 elements of the sequence to create a balanced tree of 푘 nodes (this will cost 푘푙표푔푘). 
2. Take the remaining numbers one by one, and 

a. If the number is larger than the largest element of the tree, return. 
b. If the number is smaller than the largest element of the tree, remove the largest element of the tree and add the new 

element. This step is to make sure that a smaller element replaces a larger element from the tree. And of course the cost 
of this operation is 푙표푔푘 since the tree is a balanced tree of 푘 elements.  

 

Once Step 2 is over, the balanced tree with 푘 elements will have the smallest 푘 elements. The only remaining task is to print out the largest 
element of the tree.  
 

Time Complexity: 
1. For the first 푘 elements, we make the tree. Hence the cost is 푘푙표푔푘. 
2. For the rest 푛 −  푘 elements, the complexity is O(푙표푔푘).  

 

Step 2 has a complexity of (푛 −  푘) 푙표푔푘. The total cost is 푘푙표푔푘 + (푛 −  푘) 푙표푔푘 = 푛푙표푔푘 which is O(푛푙표푔푘). This bound is actually 
better than the ones provided earlier. 
 

Problem-10 Can we use the partitioning technique for solving Problem-6? 
 

Solution:  Yes. 
 

Algorithm 
1. Choose a pivot from the array. 
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2. Partition the array so that: 퐴[푙표푤. . . 푝푖푣표푡푝표푖푛푡 − 1] <= 푝푖푣표푡푝표푖푛푡 <=  퐴[푝푖푣표푡푝표푖푛푡 + 1. . ℎ푖푔ℎ]. 
3. if  푘 <  푝푖푣표푡푝표푖푛푡 then it must be on the left of the pivot, so do the same method recursively on the left part. 
4. if  푘 =  푝푖푣표푡푝표푖푛푡 then it must be the pivot and print all the elements from 푙표푤 to 푝푖푣표푡푝표푖푛푡. 
5. if  푘 >  푝푖푣표푡푝표푖푛푡 then it must be on the right of pivot, so do the same method recursively on the right part. 

 

The top-level call would be kthSmallest = Selection(1, n, k). 
 

        public static int partition(int[] A, int start, int end) { 
            int pivot = A[start]; 
            int pivotPosition = start++; 
            while (start <= end) { 
                // scan for values less than the pivot 
                while ((start <= end) && (A[start] < pivot)) { 
                    start++; 
                }   

                // scan for values greater than the pivot 
                while ((end >= start) && (A[end] >= pivot)) { 
                    end--; 
                } 
                 if (start > end) { 
                    // swap the end uncoformed  
                    // element with the pivot 
                   swap(A, pivotPosition, end);  
                } 
                else { 
                    // swap unconformed elements: 
                    // start that was not lesser than the pivot  
                    // and end that was not larger than the pivot 
                    swap(A, start, end); 
                } 
            } 
            return end; 
        } 
        private static int orderStatistic(int[] A, int k, int start, int end) { 
            int pivotPosition = partition(A, start, end); 
            if ( pivotPosition == k - 1) { 
                return A[k - 1]; 
            } 
            if (k - 1 < pivotPosition ) { 
                return orderStatistic(A, k, start, pivotPosition - 1); 
            } 
            else { 
                return orderStatistic(A, k, pivotPosition + 1, end); 
            } 
        } 
        // iterative version 
        private static int orderStatistic(int[] A, int k, int start, int end) { 
             int pivotPosition = partition(A, start, end); 
            while (pivotPosition != k - 1) { 
                if (k - 1 < pivotPosition) { 
                    end = pivotPosition - 1; 
                } 
                else { 
                    start = pivotPosition + 1; 
                } 
         
                pivotPosition = partition(A, start, end); 
            } 
            return A[k - 1]; 
        } 
        public static int kthSmallest(int[] A, int k) { 
            return orderStatistic(A, k, 0, A.length - 1); 
        } 
 

Time Complexity: O(푛 ) in worst case as similar to Quicksort. Although the worst case is the same as that of Quicksort, this performs much 
better on the average [O(푛푙표푔푘) − Average case].  
 

Problem-11 Can we find 푘 −largest element using Problem-6 solution? 
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Solution: Computing the 푘  largest element is the same task, with the only difference that we have to translate the 푘 value, since the largest 
elements are located at the end of the array. So we'll have to translate 푘 using this formula: 푘 =  퐴. 푙푒푛푔푡ℎ −  푘 +  1. 
 

        public static int kthLargest(int[] A, int k) { 
            return orderStatistic(A, A.length - k + 1, 0, A.length - 1); 
        } 
 

Problem-12 Find the 푘 -smallest element in an array 푆 of 푛 elements in best possible way. 
 

Solution: This problem is similar to Problem-6 and all the solutions discussed for Problem-6 are valid for this problem. The only difference 
is that instead of printing all the 푘 elements, we print only the 푘 element. We can improve the solution by using the 푚푒푑푖푎푛 표푓 푚푒푑푖푎푛푠 
algorithm. Median is a special case of the selection algorithm. The algorithm Selection(A, 푘) to find the 푘  smallest element from set 퐴 of  
푛 elements is as follows: 
 

Algorithm: 푆푒푙푒푐푡푖표푛(A, k) 

1. Partition 퐴 into 푐푒푖푙 ( )
 groups, with each group having five items (the last group may have fewer items). 

2. Sort each group separately (e.g., insertion sort). 
3. Find the median of each of the  groups and store them in some array (let us  say 퐴 ). 
4. Use 푆푒푙푒푐푡푖표푛 recursively to find the median of 퐴  (median of medians). Let us asay the median of medians is 푚. 

푚 = 푆푒푙푒푐푡푖표푛(퐴 ,
( )

); 

5. Let 푞 =  # elements of 퐴 smaller than 푚; 
6. If(푘 ==  푞 +  1)  

return 푚; 
/* Partition with pivot */ 

7. Else partition 퐴 into 푋 and 푌 
 푋 = {items smaller than 푚} 
 푌 = {items larger than 푚} 

 
/* Next,form a subproblem */ 

8. If(푘 < 푞 +  1) 
return Selection(X, k); 

9. Else 
return Selection(Y, k – (q+1)); 

 

Before developing recurrence, let us consider the representation of the input below. In the figure, each circle is an element and each column 
is grouped with 5 elements. The black circles indicate the median in each group of 5 elements. As discussed, sort each column using constant 
time insertion sort. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 

Medians

Median of medians
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In the figure above the gray circled item is the median of medians (let us call this 푚). It can be seen that at least 1/2 of 5 element group 
medians  푚. Also, these 1/2 of 5 element groups contribute 3 elements that are ≤  푚 except 2 groups [last group which may contain fewer 
than 5 elements, and other group which contains 푚]. Similarly, at least 1/2 of 5 element groups contribute 3 elements that are ≥  푚 as shown 

above. 1/2  of  5 element groups contribute 3 elements, except 2 groups gives: 3(  -2) ≈ − 6. The remaining are 푛 − ( − 6) ≈ +

6. Since + 6 is greater than − 6 we need to consider + 6 for worst. 
 

Components in recurrence: 
 

 In our selection algorithm, we choose 푚, which is the median of medians, to be a pivot, and partition A into two sets 푋 and 푌. We need 
to select the set which gives maximum size (to get the worst case). 

 The time in function 푆푒푙푒푐푡푖표푛 when called from procedure 푝푎푟푡푖푡푖표푛. The number of keys in the input to this call to 푆푒푙푒푐푡푖표푛 is . 

 The number of comparisons required to partition the array. This number is 푙푒푛푔푡ℎ(푆), let us say 푛.   

We have established the following recurrence:  푇(푛)  = 푇 + Θ(푛) +  푀푎푥{푇(푋), 푇(푌)} 
 

From the above discussion we have seen that, if we select median of medians m as pivot, the partition sizes are: − 6 and + 6. If we 
select the maximum of these, then we get: 
 

                                              푇(푛)    =    푇  +  Θ(푛) + 푇 + 6  

                                                           ≈    푇    + Θ(푛) +   푇   +  O(1) 
                                                           ≤     푐  +   푐   +  Θ(푛)  + O(1) 

Finally, 푇(푛)  = Θ(푛) 
 

Problem-13 In Problem-11, we divided the input array into groups of 5 elements. The constant 5 play an important part in the analysis. 
Can we divide in groups of  3 which work in linear time? 
 

Solution: In this case the modification causes the routine to take more than linear time. In the worst case, at least half of the   medians 
found in the grouping step are greater than the median of medians 푚, but two of those groups contribute less than two elements larger than 
푚. So as an upper bound, the number of elements larger than the pivotpoint is at least:  
 

2(  −2)  ≥  − 4 
  

Likewise this is a lower bound. Thus up to 푛 − ( − 4) = + 4 elements are fed into the recursive call to 푆푒푙푒푐푡. The recursive step that 

finds the median of medians runs on a problem of size  , and consequently the time recurrence is: 

푇(푛) = 푇(풏
ퟑ
)+푇(2푛/3 + 4) +Θ(푛). 

 

Assuming that 푇(푛) is monotonically increasing, we may conclude that 푇(  +  4)  ≥  푇( ) ≥  2푇( ), and we can say the upper bound for 

this as 푇(푛)  ≥  3푇( ) + Θ(푛), which is O(푛푙표푔푛). Therefore, we cannot select 3 as the group sizee. 
 

Problem-14 Like in Problem-13, can we use groups of size 7? 
 

Solution: Following a similar reasoning, we once more modify the routine, now using groups of  7 instead of 5. In the worst case, at least half 
the   medians found in the grouping step are greater than the median of medians 푚, but two of those groups contribute less than four 
elements larger than 푚. So as an upper bound, the number of elements larger than the pivotpoint is at least: 
  

4( 1/2  푛/7 -2)  ≥  − 8. 
 

Likewise this is a lower bound. Thus up to 푛 − ( − 8) =  + 8 elements are fed into the recursive call to Select. The recursive step that 

finds the median of medians runs on a problem of size  , and consequently the time recurrence is 

     Items>= Gray 

After sorting rearrange the 
medians so that all medians will 
be in ascending order Median of medians
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                                              푇(푛) = 푇(  ) + 푇(  +  8 )  + O(푛) 
                                              푇(푛) ≤ 푐 풏

ퟕ
  + 푐(  +  8) + O(푛) 

                                                         ≤ 푐
푛
7 +  푐

5푛
7  +  8푐 +  푎푛, 푎 푖푠 푎 푐표푛푠푡푎푛푡 

                                                          = 푐푛 −  푐
푛
7 +  푎푛 +  9푐 

                                                          = (푎 +  푐) 푛 −  (푐
푛
7  −  9푐). 

This is bounded above by (푎 +  푐) 푛 provided that 푐  −  9푐  ≥  0. Therefore, we can select 7 as the group size. 
 

Problem-15 Given two arrays each containing 푛 sorted elements, give an O(푙표푔푛)-time algorithm to find the median of all 2푛 
elements. 

 

Solution: The simple solution to this problem is to merge the two lists and then take the average of the middle two elements (note the union 
always contains an even number of values). But, the merge would be Θ(푛), so that doesn't satisfy the problem statement. To get 푙표푔푛 
complexity, let 푚푒푑푖푎푛퐴 and 푚푒푑푖푎푛퐵 be the medians of the respective lists (which can be easily found since both lists are sorted). If 
푚푒푑푖푎푛퐴 ==  푚푒푑푖푎푛퐵, then that is the overall median of the union and we are done. Otherwise, the median of the union must be between 
푚푒푑푖푎푛퐴 and 푚푒푑푖푎푛퐵. Suppose that 푚푒푑푖푎푛퐴 <  푚푒푑푖푎푛퐵 (the opposite case is entirely similar). Then we need to find the median of 
the union of the following two sets: 
 

{푥 푖푛 퐴 | 푥 >=  푚푒푑푖푎푛퐴} {푥 푖푛 퐵 | 푥 <=  푚푒푑푖푎푛퐵} 
 

So, we can do this recursively by resetting the 푏표푢푛푑푎푟푖푒푠 of the two arrays. The algorithm tracks both arrays (which are sorted) using two 
indices. These indices are used to access and compare the median of both arrays to find where the overall median lies. 
 

public class MedianInTwoSortedArrays { 
    public double findMedianSortedArrays(int A[], int B[]) { 
        int lengthA = A.length; 
        int lengthB = B.length; 
        if ((lengthA + lengthB) % 2 == 0) { 
            double r1 = (double) findMedianSortedArrays(A, 0, lengthA, B, 0, lengthB, (lengthA + lengthB) / 2); 
            double r2 = (double) findMedianSortedArrays(A, 0, lengthA, B, 0, lengthB, (lengthA + lengthB) / 2 + 1); 
            return (r1 + r2) / 2; 
        } else 
            return findMedianSortedArrays(A, 0, lengthA, B, 0, lengthB, (lengthA + lengthB + 1) / 2); 
    } 
     public int findMedianSortedArrays(int A[], int startA, int endA, int B[], int startB, int endB, int k) { 
        int n = endA - startA; 
        int m = endB - startB;   

        if (n <= 0) 
            return B[startB + k - 1]; 
        if (m <= 0) 
            return A[startA + k - 1]; 
        if (k == 1) 
            return A[startA] < B[startB] ? A[startA] : B[startB];   

        int midA = (startA + endA) / 2; 
        int midB = (startB + endB) / 2; 
         if (A[midA] <= B[midB]) { 
            if (n / 2 + m / 2 + 1 >= k) 
                return findMedianSortedArrays(A, startA, endA, B, startB, midB, k); 
            else 
                return findMedianSortedArrays(A, midA + 1, endA, B, startB, endB, k - n / 2 - 1); 
        } else { 
            if (n / 2 + m / 2 + 1 >= k) 
                return findMedianSortedArrays(A, startA, midA, B, startB, endB, k); 
            else 
                return findMedianSortedArrays(A, startA, endA, B, midB + 1, endB, k - m / 2 - 1); 
        } 
    } 
} 
 

Time Complexity: O(푙표푔푛), since we are reducing the problem size by half every time. 
 

Problem-16 Let 퐴 and 퐵 be two sorted arrays of 푛 elements each. We can easily find the 푘  smallest element in 퐴 in O(1) time by 
just outputting 퐴[푘]. Similarly, we can easily find the 푘  smallest element in 퐵. Give an O(푙표푔푘) time algorithm to find the 푘  smallest 
element overall { 푖. 푒., the 푘  smallest in the union of 퐴 and 퐵.  

 

Solution: It’s just another way of asking Problem-15. 
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Problem-17 Find the 풌 smallest elements in sorted order: Given a set of 푛 elements from a totally-ordered domain, find the 푘 smallest 
elements, and list them in sorted order. Analyze the worst-case running time of the best implementation of the approach.  

 

Solution: Sort the numbers, and list the 푘 smallest. 
푇(푛) =  Time complexity of sort + listing 푘 smallest elements =  Θ(푛 푙표푔푛)  + Θ(푛) =  Θ(푛 푙표푔푛)  

 

Problem-18 For Problem-17, if we follow the approach below then what is the complexity? 
 

Solution: Using the priority queue data structure from heap sort, construct a min-heap over the set, and perform extract-min 푘 times. Refer 
to the 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 (퐻푒푎푝푠) chapter for more details. 
 

Problem-19 For Problem-17, if we follow the approach below then what is the complexity? 
Find the 푘 -smallest element of the set, partition around this pivot element, and sort the 푘 smallest elements. 

 

Solution: 
 

  푇(푛)     =   푇푖푚푒 푐표푚푝푙푒푥푖푡푦 표푓 푘푡ℎ − 푠푚푎푙푙푒푠푡 +  퐹푖푛푑푖푛푔 푝푖푣표푡 +  푆표푟푡푖푛푔 푝푟푒푓푖푥 
                =  Θ(푛) + Θ(푛)  + Θ(푘푙표푔푘)  =  Θ(푛 + 푘푙표푔푘) 
Since, 푘 ≤  푛, this approach is better than Problem-17 and Problem-18. 
 

Problem-20 Find 푘 nearest neighbors to the median of 푛 distinct numbers in O(푛) time. 
 

Solution: Let us assume that the array elements are sorted. Now find the median of 푛 numbers and call its index as 푋 (since array is sorted, 
median will be at  location). All we need to do is select 푘 elements with the smallest absolute differences from the median, moving from 
푋 − 1 to  0,  and 푋 + 1 to 푛 − 1 when the median is at index 푚.  
 

Time Complexity: Each step takes Θ(푛). So the total time complexity of the algorithm is Θ(푛). 
 

Problem-21 Is there any other way of solving Problem-20? 
 

Solution: Assume for simplicity that n is odd and k is even. If set A is in sorted order, the median is in position 푛/2 and the 푘 numbers in A 
that are closest to the median are in positions (푛 −  푘)/2 through (푛 +  푘)/2.  
 

We first use linear time selection to find the (푛 −  푘)/2, 푛/2, and (푛 +  푘)/2 elements and then pass through set A to find the numbers 
less than the (푛 + 푘)/2 element, greater than the (푛 − 푘)/2 element, and not equal to the 푛/2 element.  The algorithm takes O(푛) time as 
we use linear time selection exactly three times and traverse the 푛 numbers in 퐴 once. 
 

Problem-22 Given (푥, 푦) coordinates of 푛 houses, where should you build a road parallel to 푥-axis to minimize the construction cost 
of building driveways? 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 

Solution: The road costs nothing to build. It is the driveways that cost money. The driveway cost is proportional to its distance from the road. 
Obviously, they will be perpendicular. The solution is to put the street at the median of the 푦 coordinates. 
 

Problem-23 Given a big file containing billions of numbers, find the maximum 10 numbers from that file.  
 

Solution: Refer to the 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter. 
 

Problem-24 Suppose there is a milk company. The company collects milk every day from all its agents. The agents are located at 
different places. To collect the milk, what is the best place to start so that the least amount of total distance is travelled? 

 

Solution: Starting at the median reduces the total distance travelled because it is the place which is at the center of all the places. 



 

Data Structures and Algorithms Made Easy in Java Symbol Tables                      

 

13.1 Introduction    305 

 
 

SYMBOL TABLES 
 

Chapter 

13 
 

 
 

13.1 Introduction 
 

Since childhood, we all have used a dictionary, and many of us have a word processor (say, Microsoft Word) which comes with a spell checker. 
The spell checker is also a dictionary but limited in scope. There are many real time examples for dictionaries and a few of them are: 
 

 Spell checker 
 The data dictionary found in database management applications 
 Symbol tables generated by loaders, assemblers, and compilers 
 Routing tables in networking components (DNS lookup) 

 

In computer science, we generally use the term ‘symbol table’ rather than ‘dictionary’ when referring to the abstract data type (ADT).   

13.2 What are Symbol Tables? 
 

We can define the 푠푦푚푏표푙 푡푎푏푙푒 as a data structure that associates a 푣푎푙푢푒 with a 푘푒푦. It supports the following operations: 
 

 Search whether a particular name is in the table 
 Get the attributes of that name 
 Modify the attributes of that name 
 Insert a new name and its attributes 
 Delete a name and its attributes 

 

There are only three basic operations on symbol tables: searching, inserting, and deleting.   
 

Example: DNS lookup. Let us assume that the key in this case is the URL and the value is an IP address. 
 

 Insert URL with specified IP address 
 Given URL, find corresponding IP address 

 

 

Key[Website] Value [IP Address] 
www.CareerMonks.com 128.112.136.11 

www.AuthorsInn.com 128.112.128.15 

www.AuthInn.com 130.132.143.21 

www.Logillu.com 128.103.060.55 
www.CareerMonk.com 209.052.165.60 

13.3 Symbol Table Implementations 
 

Before implementing symbol tables, let us enumerate the possible implementations. Symbol tables can be implemented in many ways and 
some of them are listed below. 

Unordered Array Implementation 
 

With this method, just maintaining an array is enough. It needs O(푛) time for searching, insertion and deletion in the worst case. 

Ordered [Sorted] Array Implementation 
 

In this we maintain a sorted array of keys and values.  
 

 Store in sorted order by key 
 keys[i] = 푖  largest key 
 values[i] = value associated with 푖  largest key 

 

Since the elements are sorted and stored in arrays, we can use a simple binary search for finding an element. It takes O(푙표푔푛) time for 
searching and O(푛) time for insertion and deletion in the worst case. 

http://www.CareerMonks.com
http://www.AuthorsInn.com
http://www.AuthInn.com
http://www.Logillu.com
http://www.CareerMonk.com
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Unordered Linked List Implementation 
 

Just maintaining a linked list with two data values is enough for this method. It needs O(푛) time for searching, insertion and deletion in the 
worst case. 

Ordered Linked List Implementation 
 

In this method, while inserting the keys, maintain the order of keys in the linked list. Even if the list is sorted, in the worst case it needs 
O(푛) time for searching, insertion and deletion. 

Binary Search Trees Implementation 
 

Refer to 푇푟푒푒푠 chapter. The advantages of this method are: it does not need much code and it has a fast search [O(푙표푔푛) on average]. 

Balanced Binary Search Trees Implementation 
 

Refer to 푇푟푒푒푠 chapter. It is an extension of binary search trees implementation and takes O(푙표푔푛) in worst case for search, insert and delete 
operations.  

Ternary Search Implementation 
 

Refer to 푆푡푟푖푛푔 퐴푙푔표푟푖푡ℎ푚푠 chapter. This is one of the important methods used for implementing dictionaries. 

Hashing Implementation 
 

This method is important. For a complete discussion, refer to the 퐻푎푠ℎ푖푛푔 chapter. 

13.4 Comparison Table of Symbols for Implementations 
 

Let us consider the following comparison table for all the implementations.  
 

Implementation Search Insert Delete 

Unordered Array 푛 푛 푛 
Ordered Array (can be implemented with array binary search) 푙표푔푛 푛 푛 
Unordered List 푛 푛 푛 
Ordered List 푛 푛 푛 
Binary Search Trees (O(푙표푔푛) on average) 푙표푔푛 푙표푔푛 푙표푔푛 
Balanced Binary Search Trees (O(푙표푔푛) in worst case) 푙표푔푛 푙표푔푛 푙표푔푛 
Ternary Search (only change is in logarithms base)  푙표푔푛 푙표푔푛 푙표푔푛 
Hashing (O(1) on average) 1 1 1 

 

Notes: 
 

 In the above table, 푛 푖s the input size.  
 Table indicates the possible implementations discussed in this book. But, there could be other implementations. 
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14.1 What is Hashing? 
 

In this chapter we introduce so-called 푎푠푠표푐푖푎푡푖푣푒 푎푟푟푎푦푠, that is, data structures that are similar to arrays but are not indexed by integers, 
but other forms of data such as strings. One popular data structures for the implementation of associative arrays are hash tables. To analyze 
the asymptotic efficiency of hash tables we have to explore a new point of view, that of average case complexity. Hashing is a technique used 
for storing and retrieving information as quickly as possible. It is used to perform optimal searches and is useful in implementing symbol 
tables.  

14.2 Why Hashing? 
 

In the 푇푟푒푒푠 chapter we saw that balanced binary search trees support operations such as 푖푛푠푒푟푡, 푑푒푙푒푡푒 and 푠푒푎푟푐ℎ in O(푙표푔푛) time. In 
applications, if we need these operations in O(1), then hashing provides a way. Remember that worst case complexity of hashing is still O(푛), 
but it gives O(1) on the average. 

14.3 Hash Table ADT 
 

The hash table structure is an unordered collection of associations between a key and a data value. The keys in a hash table are all unique so 
that there is a one-to-one relationship between a key and a value. The operations are given below. 
 

 HashTable: Creates a new hash table 
 Get: Searches the hash table with key and return the value if it finds the element with the given key 
 Put: Inserts a new key-value pair into hash table 
 Delete: Deletes a key-value pair from hash table 
 DeleteHashTable: Deletes the hash table 

14.4 Understanding Hashing 
 

In simple terms we can treat 푎푟푟푎푦 as a hash table. For understanding the use of hash tables, let us consider the following example: Give an 
algorithm for printing the first repeated character if there are duplicated elements in it. Let us think about the possible solutions.  
 

The simple and brute force way of solving is: given a string, for each character check whether that character is repeated or not. The time 
complexity of this approach is O(푛 ) with O(1) space complexity. 
 

Now, let us find a better solution for this problem. Since our objective is to find the first repeated character, what if we remember the previous 
characters in some array? 
 

We know that the number of possible characters is 256 (for simplicity assume 퐴푆퐶퐼퐼 characters only). Create an array of size 256 and 
initialize it with all zeros. For each of the input characters go to the corresponding position and increment its count. Since we are using arrays, 
it takes constant time for reaching any location. While scanning the input, if we get a character whose counter is already 1 then we can say that 
the character is the one which is repeating for the first time.  
 

     public char FirstRepeatedChar ( char [] str ) { 
 int count[256]; //additional array 
 for(int i=0; i<256; ++i) 
  count[i] = 0; 
 for(int i=0; i< str.length; ++i) { 
  if(count[str[i]]==1) { 
       System.out.println(str[i]); 
       break; 
  } 
  else  count[str[i]]++; 
 } 
 if(i==len) 
      System.out.println("No Repeated Characters"); 
 return 0; 
     } 
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Why not Arrays? 
 

Arrays can be seen as a mapping, associating with every integer in a given interval some data item. It is finitary, because its domain, and 
therefore also its range, is finite. There are many situations when we want to index elements differently than just by integers. Common 
examples are strings (for dictionaries, phone books, menus, data base records), or structs (for dates, or names together with other identifying 
information). 
 

In many applications requiring associative arrays, we are storing complex data values and want to access them by a key which is derived from 
the data. A typical example of keys are strings, which are appropriate for many scenarios. For example, the key might be a student id and the 
data entry might be a collection of grades, perhaps another associative array where the key is the name of assignment or exam and the data is 
a score. We make the assumption that keys are unique in the sense that in an associative array there is at most one data item associated with 
a given key. In some applications we may need to complicate the structure of keys to achieve this uniqueness. This is consistent with ordinary 
arrays, which have a unique value for every valid index. 
 

In the previous problem, we have used an array of size 256 because we know the number of different possible characters [256] in advance. 
Now, let us consider a slight variant of the same problem. Suppose the given array has numbers instead of characters, then how do we solve 
the problem? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In this case the set of possible values is infinity (or at least very big). Creating a huge array and storing the counters is not possible. That means 
there are a set of universal keys and limited locations in the main memory. To solve this problem we need to somehow map all these possible 
keys to the possible memory locations.  
 

From the above discussion and diagram it can be seen that we need a mapping of possible keys to one of the available locations. As a result, 
using simple arrays is not the correct choice for solving the problems where the possible keys are very big. The process of mapping the keys 
to available main memory locations is called ℎ푎푠ℎ푖푛푔. 
 

Note: For now, do not worry about how the keys are mapped to locations. That depends on the function used for conversions. One such 
simple function is 푘푒푦 % 푡푎푏푙푒 푠푖푧푒. 

14.5 Components of Hashing 
 

Hashing has four key components: 
 

1) Hash Table 
2) Hash Functions 
3) Collisions 
4) Collision Resolution Techniques 

14.6 Hash Table 
 

Hash table is a generalization of array. With an array, we store the element whose key is 푘 at a position 푘 of the array. That means, given a 
key 푘, we find the element whose key is 푘 by just looking in the 푘  position of the array. This is called 푑푖푟푒푐푡 푎푑푑푟푒푠푠푖푛푔. 
 

Direct addressing is applicable when we can afford to allocate an array with one position for every possible key. But if we do not have enough 
space to allocate a location for each possible key, then we need a mechanism to handle this case. Another way of defining the scenario is: if 
we have less locations and more possible keys, then simple array implementation is not enough.  
 

In these cases one option is to use hash tables. Hash table or hash map is a data structure that stores the keys and their associated values, and 
hash table uses a hash function to map keys to their associated values. The general convention is that we use a hash table when the number 
of keys actually stored is small relative to the number of possible keys. 
 

A hash table is a collection of items which are stored in such a way as to make it easy to find them later. Each position of the hash table, often 
called a 푠푙표푡 (or a 푏푢푐푘푒푡), can hold an item and is named by an integer value starting at 0. For example, we will have a slot named 0, a slot 
named 1, a slot named 2, and so on. Initially, the hash table contains no items so every slot is empty.  
 
 

Universe of possible keys 

Used keys 
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14.7 Hash Function 
 

The first idea behind hash tables is to exploit the efficiency of arrays. So: to map a key to an entry, we first map a key to an integer and then 
use the integer to index an array A. The first map is called a ℎ푎푠ℎ 푓푢푛푐푡푖표푛. The hash function is used to transform the key into the slot 
index (or bucket index). Ideally, the hash function should map each possible key to a unique slot index, but it is difficult to achieve in practice. 
 

Given a collection of elements, a hash function that maps each item into a unique slot is referred to as a 푝푒푟푓푒푐푡 ℎ푎푠ℎ 푓푢푛푐푡푖표푛. If we know 
the elements and the collection will never change, then it is possible to construct a perfect hash function. Unfortunately, given an arbitrary 
collection of elements, there is no systematic way to construct a perfect hash function. Luckily, we do not need the hash function to be perfect 
to still gain performance efficiency. 
 

One way to always have a perfect hash function is to increase the size of the hash table so that each possible value in the element range can 
be accommodated. This guarantees that each element will have a unique slot. Although this is practical for small numbers of elements, it is 
not feasible when the number of possible elements is large. For example, if the elements were nine-digit Social Security numbers, this method 
would require almost one billion slots. If we only want to store data for a class of 25 students, we will be wasting an enormous amount of 
memory. Our goal is to create a hash function that minimizes the number of collisions, is easy to compute, and evenly distributes the elements 
in the hash table. There are a number of common ways to extend the simple remainder method. We will consider a few of them here. 
 

The 푓표푙푑푖푛푔 푚푒푡ℎ표푑 for constructing hash functions begins by dividing the elements into equal-size pieces (the last piece may not be of 
equal size). These pieces are then added together to give the resulting hash value. For example, if our element was the phone number 436-
555-4601, we would take the digits and divide them into groups of 2 (43,65,55,46,01). After the addition, 43+65+55+46+01, we get 210. If we 
assume our hash table has 11 slots, then we need to perform the extra step of dividing by 11 and keeping the remainder. In this case 210 % 
11 is 1, so the phone number 436-555-4601 hashes to slot 1. Some folding methods go one step further and reverse every other piece before 
the addition. For the above example, we get 43+56+55+64+01=219 which gives 219 % 11=10. 

How to Choose Hash Function? 
 

The basic problems associated with the creation of hash tables are: 
 

 An efficient hash function should be designed so that it distributes the index values of inserted objects uniformly across the table. 
 An efficient collision resolution algorithm should be designed so that it computes an alternative index for a key whose hash index 

corresponds to a location previously inserted in the hash table. 

 We must choose a hash function which can be calculated quickly, returns values within the range of locations in our table, and 
minimizes collisions. 

Characteristics of Good Hash Functions 
 

A good hash function should have the following characteristics: 
 

 Minimize collisions 
 Be easy and quick to compute 
 Distribute key values evenly in the hash table 
 Use all the information provided in the key 
 Have a high load factor for a given set of keys 

14.8 Load Factor 
 

The load factor of a non-empty hash table is the number of items stored in the table divided by the size of the table. This is the decision 
parameter used when we want to rehash 표푟 expand the existing hash table entries. This also helps us in determining the efficiency of the 
hashing function. That means, it tells whether the hash function is distributing the keys uniformly or not. 
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퐿표푎푑 푓푎푐푡표푟 =
푁푢푚푏푒푟 표푓 푒푙푒푚푒푛푡푠 푖푛 ℎ푎푠ℎ 푡푎푏푙푒

퐻푎푠ℎ 푡푎푏푙푒 푠푖푧푒  

14.9 Collisions 
 

Hash functions are used to map each key to a different address space, but practically it is not possible to create such a hash function and the 
problem is called 푐표푙푙푖푠푖표푛. Collision is the condition where two keys are hashed to the same slot.  

14.10 Collision Resolution Techniques 
 

Fortunately, there are effective techniques for resolving the conflict created by collisions. The process of finding an alternate location for a key 
in the case of a collision is called 푐표푙푙푖푠푖표푛 푟푒푠표푙푢푡푖표푛. Even though hash tables have collision problems, they are more efficient in many 
cases compared to all other data structures, like search trees. There are a number of collision resolution techniques, and the most popular 
are direct chaining and open addressing.  
 

 Direct Chaining (or Closed Addressing): An array of linked list application 
o Separate chaining 

 Open Addressing: Array-based implementation 
o Linear probing (linear search) 
o Quadratic probing (nonlinear search) 
o Double hashing (use multiple hash functions) 

 

Of course, the ideal solution would be to avoid collisions altogether. We might try to achieve this goal by choosing a suitable hash function. 

14.11 Separate Chaining 
 

A first idea to explore is to implement the associative array as a linked list, called a chain or a linked list. Separate chaining is one of the most 
commonly used collision resolution techniques. It is usually implemented using linked lists. Collision resolution by chaining combines linked 
representation with hash table. When two or more elements hash to the same location, these elements are constituted into a singly-linked list 
called a 푐ℎ푎푖푛. In chaining, we put all the elements that hash to the same slot in a linked list. If we have a key k and look for it in the linked 
list, we just traverse it, compute the intrisic key for each data entry, and compare it with k. If they are equal, we have found our entry, if not 
we continue the search. If we reach the end of the chain and do not find an entry with key k, then no entry with the given key exists.  
 

In separate chaining, each slot of the hash table is a linked list. To store an element in the hash table you must insert it into a specific linked 
list. If there is any collision (i.e. two different elements have same hash value) then store both the elements in the same linked list. 
 

As an example, consider the following simple hash function: 
 

ℎ(푘푒푦) = 푘푒푦 % 푡푎푏푙푒 푠푖푧푒 
 

In a hash table with size 7, keys 27 and 130 would get 6 and 4 as hash indices respectively. 
 

Slot  
0  
1  
2  
3  
4  (130, “John”) 
5  
6  (27, “Ram”) 

 

If we insert a new element (18, “Saleem”), that would also go to the fourth index as 18%7 is 4. 
 

Slot   
0   
1   
2   
3   
4  (130, “John”)  (18, “Saleem”) 
5   
6  (27, “Ram”)  

 

The cost of a lookup is that of scanning the entries of the selected linked list for the required key. If the distribution of the keys is sufficiently 
uniform, then the average cost of a lookup depends only on the average number of keys per linked list. For this reason, chained hash tables 
remain effective even when the number of table entries (푛) is much higher than the number of slots. 
 

For separate chaining, the worst-case scenario is when all the entries are inserted into the same linked list. The lookup procedure may have 
to scan all its entries, so the worst-case cost is proportional to the number (푛) of entries in the table.  
 

The worst-case behavior of hashing with chaining is terrible: all 푛 keys hash to the same slot, creating a list of length 푛. The worst-case time 
for searching is thus )( 푛) plus the time to compute the hash function--no better than if we used one linked list for all the elements. Clearly, 
hash tables are not used for their worst-case performance. 
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14.12 Open Addressing 
 

In open addressing all keys are stored in the hash table itself. This approach is also known as 푐푙표푠푒푑 ℎ푎푠ℎ푖푛푔. This procedure is based on 
probing. A collision is resolved by probing. 
 

Linear Probing 
 

The interval between probes is fixed at 1. In linear probing, we search the hash table sequentially. starting from the original hash location. If 
a location is occupied, we check the next location. We wrap around from the last table location to the first table location if necessary. The 
function for rehashing is the following: 
 

푟푒ℎ푎푠ℎ(푘푒푦) = (푛 + 1)% 푡푎푏푙푒푠푖푧푒 
 

One of the problems with linear probing is that table items tend to cluster together in the hash table. This means that the table contains groups 
of consecutively occupied locations that are called 푐푙푢푠푡푒푟푖푛푔.  
 

Clusters can get close to one another, and merge into a larger cluster. Thus, the one part of the table might be quite dense, even though 
another part has relatively few items. Clustering causes long probe searches and therefore decreases the overall efficiency. 
 

The next location to be probed is determined by the step-size, where other step-sizes (more than one) are possible. The step-size should be 
relatively prime to the table size, i.e. their greatest common divisor should be equal to 1. If we choose the table size to be a prime number, 
then any step-size is relatively prime to the table size. Clustering cannot be avoided by larger step-sizes. 
 

Quadratic Probing  
 

The interval between probes increases proportionally to the hash value (the interval thus increasing linearly, and the indices are described by 
a quadratic function). The problem of clustering can be eliminated if we use the quadratic probing method. Quadratic probing is also referred 
to as 푚푖푑 − 푠푞푢푎푟푒 method. 
 

In quadratic probing, we start from the original hash location 푖. If a location is occupied, we check the locations 푖 + 1  , 푖 + 2 , 푖 + 3 , 푖 +
4 ... We wrap around from the last table location to the first table location if necessary. The function for rehashing is the following: 
 

푟푒ℎ푎푠ℎ(푘푒푦) = (푛 + 푘 )% 푡푎푏푙푒푠푖푧푒 
 

퐸푥푎푚푝푙푒: Let us assume that the table size is 11 (0. .10) 
 

Hash Function: h(key)  =  key mod 11  
 

퐼푛푠푒푟푡 푘푒푦푠: 
1 푚표푑 11 =   9 
19 푚표푑 11 =  8 
2 푚표푑 11 =  2 
13 푚표푑 11 =  2 →  2 + 1 = 3 
25 푚표푑 11 =  3 →  3 + 1 = 4 
24 푚표푑 11 =  2 → 2 + 1 , 2 + 2 = 6 
21 푚표푑 11 =  10 
9 푚표푑 11 =  9 →  9 + 1 , 9 + 2  푚표푑 11, 9 + 3  푚표푑 11 = 7 
 
 

Even though clustering is avoided by quadratic probing, still there are chances of clustering. Clustering is caused by 
multiple search keys mapped to the same hash key. Thus, the probing sequence for such search keys is prolonged by repeated conflicts along 
the probing sequence. Both linear and quadratic probing use a probing sequence that is independent of the search key. 
 

Double Hashing 
 

The interval between probes is computed by another hash function. Double hashing reduces clustering in a better way. The increments for 
the probing sequence are computed by using a second hash function. The second hash function ℎ2 should be:  
 

ℎ2(푘푒푦)  ≠ 0 and ℎ2 ≠  ℎ1 
 

We first probe the location ℎ1(푘푒푦). If the location is occupied, we probe the location ℎ1(푘푒푦) + ℎ2(푘푒푦), ℎ1(푘푒푦) + 2 ∗ ℎ2(푘푒푦), ... 
 

                                                                                     퐸푥푎푚푝푙푒: 
Table size is 11 (0. .10) 
Hash Function: assume  ℎ1(푘푒푦) =  푘푒푦 푚표푑 11 and   
                                              ℎ2(푘푒푦)  =  7 – (푘푒푦 푚표푑 7) 
 

퐼푛푠푒푟푡 푘푒푦푠:  
 

58 푚표푑 11 =  3 
14 푚표푑 11 =  3 →  3 + 7 = 10 
91 푚표푑 11 =  3 →  3 + 7, 3 + 2 ∗ 7 푚표푑 11 = 6 
25 푚표푑 11 =  3 →  3 + 3, 3 + 2 ∗ 3 = 9 

 

0  
1  
2 2 
3 13 
4 25 
5 5 
6 24 
7 9 
8 19 
9 31 
10 21 

 

0  
1  
2  
3 58 
4 25 
5  
6 91 
7  
8  
9 25 
10 14 
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14.13 Comparison of Collision Resolution Techniques 
Comparisons: Linear Probing vs. Double Hashing 
 

The choice between linear probing and double hashing depends on the cost of computing the hash function and on the load factor [number 
of elements per slot] of the table. Both use few probes but double hashing take more time because it hashes to compare two hash functions 
for long keys. 

Comparisons: Open Addressing vs. Separate Chaining 
 

It is somewhat complicated because we have to account for the memory usage. Separate chaining uses extra memory for links. Open 
addressing needs extra memory implicitly within the table to terminate the probe sequence. Open-addressed hash tables cannot be used if the 
data does not have unique keys. An alternative is to use separate chained hash tables.  

Comparisons: Open Addressing methods 
 

Linear Probing  Quadratic Probing Double hashing 
Fastest among three Easiest to implement and deploy Makes more efficient use of memory 

Uses few probes Uses extra memory for links and it does not probe 
all locations in the table Uses few probes but takes more time 

A problem occurs known as 
primary clustering A problem occurs known as secondary clustering More complicated to implement 

Interval between probes is fixed - 
often at 1. 

Interval between probes increases proportional to 
the hash value 

Interval between probes is computed by 
another hash function 

14.14 How Hashing Gets O(1) Complexity 
 

We stated earlier that in the best case hashing would provide a O(1), constant time search technique. However, due to collisions, the number 
of comparisons is typically not so simple. Even though a complete analysis of hashing is beyond the scope of this text, we can state some well-
known results that approximate the number of comparisons necessary to search for an item. From the previous discussion, one doubts how 
hashing gets O(1) if multiple elements map to the same location. 
 

The answer to this problem is simple. By using the load factor we make sure that each block (for example, linked list in separate chaining 
approach) on the average stores the maximum number of elements less than the 푙표푎푑 푓푎푐푡표푟. Also, in practice this load factor is a constant 
(generally, 10 or 20). As a result, searching in 20 elements or 10 elements becomes constant. 
 

If the average number of elements in a block is greater than the load factor, we rehash the elements with a bigger hash table size. One thing 
we should remember is that we consider average occupancy (total number of elements in the hash table divided by table size) when deciding 
the rehash.  
 

The access time of the table depends on the load factor which in turn depends on the hash function. This is because hash function distributes 
the elements to the hash table. For this reason, we say hash table gives O(1) complexity on average. Also, we generally use hash tables in cases 
where searches are more than insertion and deletion operations. 

14.15 Hashing Techniques 
 

There are two types of hashing techniques: static hashing and dynamic hashing 
 

Static Hashing  
 

If the data is fixed then static hashing is useful. In static hashing, the set of keys is kept fixed and given in advance, and the number of primary 
pages in the directory are kept fixed. 
 

Dynamic Hashing    

If the data is not fixed, static hashing can give bad performance, in which case dynamic hashing is the alternative, in which case the set of keys 
can change dynamically. 

14.16 Problems for which Hash Tables are not suitable 
 

 Problems for which data ordering is required 
 Problems having multidimensional data 
 Prefix searching, especially if the keys are long and of variable-lengths 
 Problems that have dynamic data 
 Problems in which the data does not have unique keys. 

14.17 Bloom Filters 
 

A Bloom filter is a probabilistic data structure which was designed to check whether an element is present in a set with memory and time 
efficiency. It tells us that the element either definitely is 푛표푡 in the set or may be in the set. The base data structure of a Bloom filter is a 퐵푖푡 
푉푒푐푡표푟. The algorithm was invented in 1970 by Burton Bloom and it relies on the use of a number of different hash functions. 
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How it works? 
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Now that the bits in the bit vector have been set 
for 퐸푙푒푚푒푛푡1 and 퐸푙푒푚푒푛푡2; we can query 
the bloom filter to tell us if something has been 
seen before.  
 
The element is hashed but instead of setting the 
bits, this time a check is done and if the bits that 
would have been set are already set the bloom 
filter will return true that the element has been 
seen before. 

 

A Bloom filter starts off with a bit array initialized to zero. To store a data value, we simply apply 푘 different hash functions and treat the 
resulting 푘 values as indices in the array, and we set each of the 푘 array elements to 1. We repeat this for every element that we encounter. 
 

Now suppose an element turns up and we want to know if we have seen it before. What we do is apply the 푘 hash functions and look up the 
indicated array elements. If any of them are 0 we can be 100% sure that we have never encountered the element before - if we had, the bit 
would have been set to 1. However, even if all of them are one, we still can't conclude that we have seen the element before because all of the 
bits could have been set by the 푘 hash functions applied to multiple other elements. All we can conclude is that it is likely that we have 
encountered the element before. 
 

Note that it is not possible to remove an element from a Bloom filter. The reason is simply that we can't unset a bit that appears to belong to 
an element because it might also be set by another element. 
 

If the bit array is mostly empty, i.e., set to zero, and the 푘 hash functions are independent of one another, then the probability of a false 
positive (i.e., concluding that we have seen a data item when we actually haven't) is low. For example, if there are only 푘 bits set, we can 
conclude that the probability of a false positive is very close to zero as the only possibility of error is that we entered a data item that produced 
the same 푘 hash values - which is unlikely as long as the ‘has’ functions are independent. 
 

As the bit array fills up, the probability of a false positive slowly increases. Of course when the bit array is full, every element queried is 
identified as having been seen before. So clearly we can trade space for accuracy as well as for time. 
 

One-time removal of an element from a Bloom filter can be simulated by having a second Bloom filter that contains elements that have been 
removed. However, false positives in the second filter become false negatives in the composite filter, which may be undesirable. In this 
approach, re-adding a previously removed item is not possible, as one would have to remove it from the 푟푒푚표푣푒푑 filter. 

Selecting hash functions 
 

The requirement of designing 푘 different independent hash functions can be prohibitive for large 푘. For a good hash function with a wide 
output, there should be little if any correlation between different bit-fields of such a hash, so this type of hash can be used to generate multiple 
푑푖푓푓푒푟푒푛푡 hash functions by slicing its output into multiple bit fields. Alternatively, one can pass 푘 different initial values (such as 0, 1, ..., 푘 
- 1) to a hash function that takes an initial value – or add (or append) these values to the key. For larger 푚 and/or 푘, independence among 
the hash functions can be relaxed with negligible increase in the false positive rate.  

Selecting size of bit vector 
 

A Bloom filter with 1% error and an optimal value of k, in contrast, requires only about 9.6 bits per element — regardless of the size of the 
elements. This advantage comes partly from its compactness, inherited from arrays, and partly from its probabilistic nature. The 1% false-
positive rate can be reduced by a factor of ten by adding only about 4.8 bits per element. 

Space advantages 
 

While risking false positives, Bloom filters have a strong space advantage over other data structures for representing sets, such as self-balancing 
binary search trees, tries, hash tables, or simple arrays or linked lists of the entries. Most of these require storing at least the data items 
themselves, which can require anywhere from a small number of bits, for small integers, to an arbitrary number of bits, such as for strings 

Element1 

HashFunction1 

HashFunction2 
 

Element2 

HashFunction1 

HashFunction2 
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(tries are an exception, since they can share storage between elements with equal prefixes). Linked structures incur an additional linear space 
overhead for pointers. 
 

However, if the number of potential values is small and many of them can be in the set, the Bloom filter is easily surpassed by the deterministic 
bit array, which requires only one bit for each potential element. 

Time advantages 
 

Bloom filters also have the unusual property that the time needed either to add items or to check whether an item is in the set is a fixed 
constant, O(푘), completely independent of the number of items already in the set. No other constant-space set data structure has this property, 
but the average access time of sparse hash tables can make them faster in practice than some Bloom filters. In a hardware implementation, 
however, the Bloom filter shines because its k lookups are independent and can be parallelized. 
 

Implementation 
 

Refer to 푃푟표푏푙푒푚푠 푆푒푐푡푖표푛. 

14.18 Hashing: Problems & Solutions 
 

Problem-1 Implement a separate chaining collision resolution technique. Also, discuss time complexities of each function. 
 

Solution: To create a hashtable of given size, say 푛, we allocate an array of 푛/퐿  (whose value is usually between 5 and 20) pointers to list, 
initialized to NULL. To perform 푆푒푎푟푐ℎ/퐼푛푠푒푟푡/퐷푒푙푒푡푒 operations, we first compute the index of the table from the given key by using 
ℎ푎푠ℎ푓푢푛푐푡푖표푛 and then do the corresponding operation in the linear list maintained at that location. To get uniform distribution of keys 
over a hashtable, maintain table size as the prime number.  
 

     public class ListNode { 
 private int key; 
 private int data; 
 private ListNode next; 
 public int getKey() { 
  return key; 
 } 
 public void setKey(int key) { 
  this.key = key; 
 } 
 public int getData() { 
  return data; 
 } 
 public void setData(int data) { 
  this.data = data; 
 } 
 public ListNode getNext() { 
  return next; 
 } 
 public void setNext(ListNode next) { 
  this.next = next; 
 }  
     } 
     public class HashTableNode { 
 private int blockCount; 
 private ListNode startNode; 
 public int getBlockCount() { 
  return blockCount; 
 } 
 public void setBlockCount(int blockCount) { 
  this.blockCount = blockCount; 
 } 
 public ListNode getStartNode() { 
  return startNode; 
 } 
 public void setStartNode(ListNode startNode) { 
  this.startNode = startNode; 
 }  
     } 
     public class HashTable { 
 private int tSize; 
 private int count; 
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 private HashTableNode[] table; 
 public int getTSize() { 
  return tSize; 
 } 
 public void setTSize(int size) { 
  tSize = size; 
  table = new HashTableNode[size]; 
 } 
 public int getCount() { 
  return count; 
 } 
 public void setCount(int count) { 
  this.count = count; 
 } 
 public HashTableNode[] getTable() { 
  return table; 
 } 
 public void setTable(HashTableNode[] table) { 
  this.table = table; 
 }  
     } 
     public class HashTableOperations { 
 public final static int LOADFACTOR = 20; 
 public static HashTable createHashTable(int size){ 
  HashTable h = new HashTable(); 
  //count is set to zero by default; 
  h.setTSize(size/LOADFACTOR); 
  for(int i=0;i<h.getTSize();i++){ 
   h.getTable()[i].setStartNode(null); 
  } 
  return h; 
 } 
 public static int hashSearch(HashTable h, int data){ 
  ListNode temp; 
  temp = h.getTable()[Hash(data, h.getTSize())].getStartNode();     
 while(temp) { 
   if(temp.data == data)   
    return 1; 
   temp = temp.next; 
  } 
  return 0; 
 
 } 
 public static void hashInsert(HashTable h, int data){ 
  int index; 
  ListNode temp, newNode; 
  if(hashSearch(h, data)) 
   return 0; 
  index = Hash(data, h.getTSize()); //Assume Hash is a built-in function 
  temp = h.getTable()[index].next; 
  newNode = new ListNode(); 
  if(newNode == null) { 
   System.out.println("Memory Error”); 
   return;  
  } 
  newNode.setKey(index); 
  newNode.data = data; 
  newNode.next = h.getTable()[index].next; 
  h.getTable()[index] .next = newNode; 
  h.getTable()[index].setBlockCount(h.getTable()[index].getBlockCount() + 1); 
  h.setCount(h.getCount() + 1); 
  if(h.getCount() / h.getTSize()  > LOAD_FACTOR)    
   Rehash(h); 
  return; 
 } 
 public static boolean hashDelete(HashTable h, int data){ 
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          ListNode temp, prev; 
          int index = Hash(data, h.getTSize()); 
  for(temp = h.getTable()[index].next, prev = null; temp;  
                              prev = temp, temp = temp.next) { 
   if(temp.data == data) { 
    if(prev != null)    
     prev.next = temp.next; 
    temp = null; 
    h.getTable()[index].setBlockCount(h.getTable()[index].getBlockCount() - 1); 
    h.setCount(h.getCount() - 1);              
    return 1; 
   } 
  } 
  return 0; 
 } 
 public static void rehash(HashTable h){ 
  int oldsize, i, index; 
  ListNode p, temp, temp2; 
  HashTableNode oldTable; 
  oldsize = h.getTSize(); 
  oldTable = h.getTable(); 
  h.setTSize(h.getTSize() * 2); 
  h = new HashTable(); 
  if(!h.getTable()) {  
   System.out.println( “Memory Error”); 
   return;  
  } 
  for(i = 0; i < oldsize; i++) { 
   for(temp = oldTable[i].next; temp; temp = temp.next) { 
    index = Hash(temp.data, h.getTSize()); 
    temp2 = temp;  
    temp = temp.next; 
    temp2.next = h.getTable()[i].next; 
    h.getTable()[index] .next = temp2; 
   } 
  } 
 
 } 
     } 
 

CreatHashTable – O(푛). HashSearch – O(1) average. HashInsert – O(1) average. HashDelete – O(1) average. 
 

Problem-2 Given an array of characters, give an algorithm for removing the duplicates.  
 

Solution: Start with the first character and check whether it appears in the remaining part of the string using a simple linear search. If it repeats, 
bring the last character to that position and decrement the size of the string by one. Continue this process for each distinct character of the 
given string. 
 

     public void RemoveDuplicates(char[] s, int n) { 
 for(int i = 0; i < n; i++) { 
  for(int j = i+1; j < n; ) { 
   if(s[i] == s[j])   
    s[j] = s[--n]; 
   else  j++; 
  } 
 } 
 s[i] = ‘\0’; 
     } 
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-3 Can we find any other idea to solve this problem in better time than O(푛 )? Observe that the order of characters in 
solutions do not matter.  

 

Solution: Use sorting to bring the repeated characters together. Finally scan through the array to remove duplicates in consecutive positions. 
 

     //With Char[] as input 
     public static void removeDuplicates(char[] str, int len) { 
 if (str == null)  return; 
 if (len < 2)     return; 
 int tail = 1; 
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 for (int i = 1; i < len; ++i) { 
  for (int j = 0; j < tail; ++j) { 
   if (str[i] == str[j]) break; 
  } 
  if (j == tail) { 
   str[tail] = str[i]; 
   ++tail; 
  } 
 } 
 str[tail] = 0; 
     } 
     //With String as input 
     public static String removeDuplicates(String s) { 
 StringBuilder noDupes = new StringBuilder(); 
 for (int i = 0; i < s.length(); i++) { 
  String si = s.substring(i, i + 1); 
  if (noDupes.indexOf(si) == -1) { 
   noDupes.append(si); 
  } 
 } 
 return noDupes.toString(); 
     } 
     //Sporting Approach 
     public static String removeDuplicates(String s) { 
 char[] chars = s.toCharArray(); 
 Arrays.sort(chars); 
 String sorted = new String(chars); 
 System.out.println(sorted); 
     } 
 

Time Complexity: Θ(푛푙표푔푛). Space Complexity: O(1). 
 

Problem-4 Can we solve this problem in single pass over given array? 
 

Solution: We can use hash table to check whether a character is repeating in the given string or not. If the current character is not available in 
hash table, then insert it into hash table and keep that character in the given string also. If the current character exists in the hash table then 
skip that character. 
 

     public void RemoveDuplicates(char[] s) { 
 int src, dst; 
 HastTable h = new HashTable(); 
 current = last = 0; 
 for(; s[current]; current++) { 
  if( !HashSearch(h, s[current]))  { 
   s[last++] = s[current]; 
   HashInsert(h, s[current]); 
  } 
 } 
 s[last] = ‘\0’; 
     } 
 

Time Complexity: Θ(푛) on average. Space Complexity: O(푛).  
 

Problem-5 Given two arrays of unordered numbers, check whether both arrays have the same set of numbers?  
 

Solution: Let us assume that two given arrays are A and B. A simple solution to the given problem is: for each element of A, check whether 
that element is in B or not. A problem arises with this approach if there are duplicates. For example consider the following inputs: 
 

퐴 = {2,5,6,8,10,2,2} 
퐵 = {2,5,5,8,10,5,6} 

 

The above algorithm gives the wrong result because for each element of A there is an element in B also. But if we look at the number of 
occurrences, they are not the same. This problem we can solve by moving the elements which are already compared to the end of the list. 
That means, if we find an element in B, then we move that element to the end of B, and in the next searching we will not find those elements. 
But the disadvantage of this is it needs extra swaps. Time Complexity of this approach is O(푛 ), since for each element of A we have to scan 
B. 
 

Problem-6 Can we improve the time complexity of Problem-5? 
  

Solution: Yes. To improve the time complexity, let us assume that we have sorted both the lists. Since the sizes of both arrays are n, we need 
O(푛 log 푛) time for sorting them. After sorting, we just need to scan both the arrays with two pointers and see whether they point to the same 
element every time, and keep moving the pointers until we reach the end of the arrays. 
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Time Complexity of this approach is O(푛 log 푛). This is because we need O(푛 log 푛) for sorting the arrays. After sorting, we need O(푛) 
time for scanning but it is less compared to O(푛 log 푛). 
 

Problem-7 Can we further improve the time complexity of Problem-5? 
 

Solution: Yes, by using a hash table. For this, consider the following algorithm. 
 

Algorithm: 
 

 Construct the hash table with array 퐴 elements as keys.  
 While inserting the elements, keep track of the number frequency for each number. That means, if there are duplicates, then 

increment the counter of that corresponding key. 
 After constructing the hash table for 퐴’푠 elements, now scan the array 퐵. 
 For each occurrence of 퐵’푠 elements reduce the corresponding counter values. 
 At the end, check whether all counters are zero or not. 
 If all counters are zero, then both arrays are the same otherwise the arrays are different. 

 

Time Complexity: O(푛) for scanning the arrays. Space Complexity: O(푛) for hash table. 
 

Problem-8 Given a list of number pairs; if 푝푎푖푟(푖, 푗) exists, and 푝푎푖푟 (푗, 푖) exists, report all such pairs. For example, in 
{1,3}, {2,6}, {3,5}, {7,4}, {5,3}, {8,7} , we see that {3,5} and {5,3} are present. Report this pair when you encounter {5,3}. We call such 

pairs ‘symmetric pairs’. So, give an efficient algorithm for finding all such pairs.  
 

Solution: By using hashing, we can solve this problem in just one scan. Consider the following algorithm. 
 

Algorithm:  
 Read the pairs of elements one by one and insert them into the hash table. For each pair, consider the first element as key and the 

second element as value. 
 While inserting the elements, check if the hashing of the second element of the current pair is the same as the first number of the 

current pair. 
 If they are the same, then that indicates a symmetric pair exits and output that pair. 
 Otherwise, insert that element into that. That means, use the first number of the current pair as key and the second number as 

value and insert them into the hash table. 
 By the time we complete the scanning of all pairs, we have output all the symmetric pairs. 

 

Time Complexity: O(푛) for scanning the arrays. Note that we are doing a scan only of the input. Space Complexity: O(푛) for hash table. 
 

Problem-9 Given a singly linked list, check whether it has a loop in it or not.  
 

Solution: Using Hash Tables 
 

Algorithm: 
 Traverse the linked list nodes one by one.  
 Check if the node’s address is there in the hash table or not. 
 If it is already there in the hash table, that indicates we are visiting a node which was already visited. This is possible only if the given 

linked list has a loop in it.  
 If the address of the node is not there in the hash table. then insert that node’s address into the hash table. 
 Continue this process until we reach the end of the linked list or we find the loop. 

 

Time Complexity: O(푛) for scanning the linked list. Note that we are doing a scan only of the input. Space Complexity: O(푛) for hash table. 
 

Note: for an efficient solution, refer to the 퐿푖푛푘푒푑 퐿푖푠푡푠 chapter. 
 

Problem-10 Given an array of 101 elements. Out of them 50 elements are distinct, 24 elements are repeated 2 times, and one 
element is repeated 3 times. Find the element that is repeated 3 times in O(1). 

 

Solution:  Using Hash Tables 
 

Algorithm: 
 

 Scan the input array one by one.  
 Check if the element is already there in the hash table or not. 
 If it is already there in the hash table, increment its counter value [this indicates the number of occurrences of the element]. 
 If the element is not there in the hash table, insert that node into the hash table with counter value 1. 
 Continue this process until reaching the end of the array. 

 

Time Complexity: O(푛), because we are doing two scans. Space Complexity: O(푛), for hash table. 
 

Note: For an efficient solution refer to the 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-11 Given 푚 sets of integers that have 푛 elements in them, provide an algorithm to find an element which appeared in the 
maximum number of sets? 

 

Solution:  Using Hash Tables 
 

Algorithm: 
 Scan the input sets one by one.  
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 For each element keep track of the counter. The counter indicates the frequency of occurrences in all the sets. 
 After completing the scan of all the sets, select the one which has the maximum counter value. 
 

Time Complexity: O(푚푛), because we need to scan all the sets.  
Space Complexity: O(푚푛), for hash table. Because, in the worst case all the elements may be different. 
 

Problem-12 Given two sets 퐴 and 퐵, and a number 퐾, Give an algorithm for finding whether there exists a pair of elements, one from 
퐴 and one from 퐵, that add up to 퐾.  

 

Solution: For simplicity, let us assume that the size of 퐴 is 푚 and the size of 퐵 is 푛. 
 

Algorithm: 
 Select the set which has minimum elements. 
 For the selected set create a hash table. We can use both key and value as the same. 
 Now scan the second array and check whether (퐾-푠푒푙푒푐푡푒푑 푒푙푒푚푒푛푡) exists in the hash table or not. 
 If it exists then return the pair of elements. 
 Otherwise continue until we reach the end of the set. 

 

Time Complexity: O(푀푎푥(푚, 푛)), because we are doing two scans. Space Complexity: O(푀푖푛(푚, 푛)), for hash table. We can select the 
small set for creating the hash table. 
 

Problem-13 Give an algorithm to remove the specified characters from a given string which are given in another string? 
 

Solution: For simplicity, let us assume that the maximum number of different characters is 256. First we create an auxiliary array initialized 
to 0. Scan the characters to be removed, and for each of those characters we set the value to 1, which indicates that we need to remove that 
character.  
 

After initialization, scan the input string, and for each of the characters, we check whether that character needs to be deleted or not. If the flag 
is set then we simply skip to the next character, otherwise we keep the character in the input string. Continue this process until we reach the 
end of the input string. All these operations we can do in-place as given below. 
 

     public void RemoveChars(char[] str, char[] removeTheseChars) { 
 int srcInd, destInd; 
 int auxi[256]; //additional array 
 for(srcInd =0; srcInd<256; srcIndex++) 
       auxi[srcInd]=0; 
 //set true for all characters to be removed 
 srcIndex=0; 
 while(removeTheseChars[srcInd]) { 
  auxi[removeTheseChars[srcInd]]=1; 
  srcInd++; 
 } 
 //copy chars unless it must be removed 
 srcInd=destInd=0; 
 while(str[srcInd++]) { 
  if(!auxi[str[srcInd]]) 
   str[destInd++]=str[srcInd]; 
 } 
     } 
 

Time Complexity: Time for scanning the characters to be removed + Time for scanning the input array= O(푛) +O(푚) ≈O(푛). Where 푚 
is the length of the characters to be removed and 푛 is the length of the input string.  
 

Space Complexity: O(푚), length of the characters to be removed. But since we are assuming the maximum number of different characters is 
256, we can treat this as a constant. But we should keep in mind that when we are dealing with multi-byte characters, the total number of 
different characters is much more than 256. 
 

Problem-14 Give an algorithm for finding the first non-repeated character in a string. For example, the first non-repeated character in 
the string “푎푏푧푑푑푎푏” is ‘푧’. 
 

Solution: The solution to this problem is trivial. For each character in the given string, we can scan the remaining string if that character 
appears in it. If it does not appears then we are done with the solution and we return that character. If the character appears in the remaining 
string, then go to the next character. 
 

     public char FirstNonRepeatedChar( char[] str , int len) { 
 int i, j, repeated = 0; 
 for(i = 0; i < len; i++ )  { 
  repeated = 0; 
  for( j = 0; j < len; j++ )  { 
   if( i != j && str[i] == str[j] ) { 
    repeated = 1; 
    break; 
   } 
  }          
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  if( repeated == 0 ) {  // Found the first non-repeated character 
   return str[i]; 
  } 
 } 
 return ''; 
     } 
 

Time Complexity: O(푛 ), for two for loops. Space Complexity: O(1). 
 

Problem-15 Can we improve the time complexity of 0? 
 

Solution: Yes. By using hash tables we can reduce the time complexity. Create a hash table by reading all the characters in the input string and 
keeping count of the number of times each character appears. After creating the hash table, we can read the hash table entries to see which 
element has a count equal to 1. This approach takes O(푛) space but reduces the time complexity also to O(푛). 
 

     public char FirstNonRepeatedCharUsinghash( char[] str, int len ) { 
 int i, count[256]; //additional array 

for(i=0;i<len;++i) 
  count[i] = 0; 
 for(i=0;i<len;++i) 
  count[str[i]]++; 
 for(i=0; i<len; ++i) { 
  if(count[str[i]]==1) { 
   System.out.println(str[i]); 
   break; 
  } 
 } 
 if(i==len) System.out.println("No Non-repeated Characters"); 
 return 0; 
     } 
 

Time Complexity:  We have O(푛) to create the hash table and another O(푛)  to read the entries of hash table. So the total time is O(푛)  +
 O(푛) = O(2푛)   ≈ O(푛). Space Complexity: O(푛) for keeping the count values. 
 

Problem-16 Given a string, give an algorithm for finding the first repeating letter in a string? 
 

Solution: The solution to this problem is somewhat similar to 0 and Problem-15. The only difference is, instead of scanning the hash table 
twice we can give the answer in just one scan. This is because while inserting into the hash table we can see whether that element already exists 
or not. If it already exists then we just need to return that character.  
 

     public char FirstRepeatedCharUsinghash(char[] str, int len) { 
 int i, count[256]; //additional array 

for(i=0;i<len;++i) 
  count[i] = 0; 
 for(i=0; i<len; ++i) { 
  if(count[str[i]]==1) { 
   System.out.println(“%s”,str[i]); 
   break; 
  } 
                         else count[str[i]]++; 
 } 
 if(i==len) System.out.println("No Repeated Characters"); 
 return 0; 
     } 
 

Time Complexity: We have O(푛) for scanning and creating the hash table. Note that we need only one scan for this problem. So the total 
time is O(푛). Space Complexity: O(푛) for keeping the count values. 
 

Problem-17 Given an array of 푛 numbers, create an algorithm which displays all pairs whose sum is 푆. 
 

Solution: This problem is similar to Problem-12. But instead of using two sets we use only one set. 
 

Algorithm: 
 Scan the elements of the input array one by one and create a hash table. Both key and value can be the same. 
 After creating the hash table, again scan the input array and check whether (푆 − 푠푒푙푒푐푡푒푑 푒푙푒푚푒푛푡) exits in the hash table 표푟 not. 
 If it exits then return the pair of elements. 
 Otherwise continue and read all the elements of the array. 

 

Time Complexity: We have O(푛) to create the hash table and another O(푛) to read the entries of the hash table. So the total time is O(푛) + 
O(푛) = O(2푛) ≈O(푛). Space Complexity: O(푛) for keeping the count values. 
 

Problem-18 Is there any other way of solving Problem-17? 
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Solution: Yes.  The alternative solution to this problem involves sorting. First sort the input array. After sorting, use two pointers, one at the 
starting and another at the ending. Each time add the values of both the indexes and see if their sum is equal to 푆. If they are equal then print 
that pair. Otherwise increase the left pointer if the sum is less than S and decrease the right pointer if the sum is greater than 푆. 
 

Time Complexity: Time for sorting + Time for scanning = O(푛푙표푔푛) + O(푛) ≈ O(푛푙표푔푛).  Space Complexity: O(1). 
 

Problem-19 We have a file with millions of lines of data. Only two lines are identical; the rest are unique. Each line is so long that it 
may not even fit in the memory. What is the most efficient solution for finding the identical lines? 

 

Solution: Since a complete line may not fit into the main memory, read the line partially and compute the hash from that partial line. Then 
read the next part of the line and compute the hash. This time use the previous hash also while computing the new hash value. Continue this 
process until we find the hash for the complete line. Do this for each line and store all the hash values in a file [or maintain a hash table of 
these hashes]. If at any point you get same hash value, read the corresponding lines part by part and compare. 
 

Note: Refer to 푆푒푎푟푐ℎ푖푛푔 chapter for related problems. 
 

Problem-20 If ℎ is the hashing function and is used to hash 푛 keys into a table of size 푠, where 푛 <= 푠, the expected number of 
collisions involving a particular key 푋 is :  

     (A) less than 1.          (B) less than 푛.          (C) less than 푠.          (D) less than .  
 

Solution: A. 
 

Problem-21 Given a hash table with size=11 entries and the following hash function ℎ  and step function ℎ : 
 

ℎ (푘푒푦) = 푘푒푦 % size  
ℎ (푘푒푦) = {key % (size-1)} + 1 

 

Insert the keys {22, 1, 13, 11, 24, 33, 18, 42, 31} in the given order (from left to right) to the hash table using each of the following 
hash methods: 

o Chaining with ℎ  [ℎ(푘푒푦) = ℎ (푘푒푦)] 
o Linear-Probing with h1 --> ℎ(푘푒푦,i) = (ℎ (푘푒푦)+i) % size] 
o Double-Hashing with ℎ  as the hash function and ℎ  as the step function [ℎ(푘푒푦, 푖)  = (ℎ (푘푒푦) + iℎ (푘푒푦)) % size]. 

 

Solution: 

 Chaining   Linear Probing Double Hashing 

0 33  → 11→ 22  22 22 

1 1 1 1 

2 24  → 13 13 13 

3  11  

4  24 11 

5  33 18 

6   31 

7 18 18 24 

8   33 

9 31→ 42 42 42 

10  31  
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15.1 Introduction 
 

To understand the importance of string algorithms let us consider the case of entering the URL (Uniform Resource Locator) in any browser 
(say, Internet Explorer, Firefox, or Google Chrome). You will observe that after typing the prefix of the URL, a list of all possible URLs is 
displayed. That means, the browsers are doing some internal processing and giving us the list of matching URLs. This technique is sometimes 
called 푎푢푡표 − 푐표푚푝푙푒푡푖표푛. 

 

Similarly, consider the case of entering the directory name in the command line interface (in both 푊푖푛푑표푤푠 and 푈푁퐼푋). After typing the 
prefix of the directory name, if we press the 푡푎푏 button, we get a list of all matched directory names available. This is another example of auto 
completion.  

 

In order to support these kinds of operations, we need a data structure which stores the string data efficiently. In this chapter, we will look at 
the data structures that are useful for implementing string algorithms. 

 

We start our discussion with the basic problem of strings: given a string, how do we search a substring (pattern)? This is called a 
푠푡푟푖푛푔 푚푎푡푐ℎ푖푛푔 problem. After discussing various string matching algorithms, we will look at different data structures for storing strings. 

15.2 String Matching Algorithms 
 

In this section, we concentrate on checking whether a pattern 푃 is a substring of another string 푇 (푇 stands for text) or not. Since we are trying 
to check a fixed string 푃, sometimes these algorithms are called 푒푥푎푐푡 푠푡푟푖푛푔 푚푎푡푐ℎ푖푛푔 algorithms. To simplify our discussion, let us assume 
that the length of given text 푇 is 푛 and the length of the pattern 푃 which we are trying to match has the length 푚. That means, 푇 has the 
characters from 0 to 푛 − 1 (푇[0 … 푛 − 1]) and 푃 has the characters from 0 to 푚 − 1 (푃[0 … 푚 − 1]). This algorithm is implemented in 퐶 +
+ as 푠푡푟푠푡푟(). 

 

In the subsequent sections, we start with the brute force method and gradually move towards better algorithms.  
 

 Brute Force Method 
 Rabin-Karp String Matching Algorithm 
 String Matching with Finite Automata 
 KMP Algorithm 
 Boyer-Moore Algorithm 
 Suffix Trees 

15.3 Brute Force Method 
 

In this method, for each possible position in the text 푇 we check whether the pattern 푃 matches or not. Since the length of 푇 is 푛, we have 
푛 − 푚 + 1 possible choices for comparisons. This is because we do not need to check the last 푚 − 1 locations of  푇 as the pattern length is 
푚. The following algorithm searches for the first occurrence of a pattern string 푃 in a text string 푇. 
 

Algorithm: 
 

      public int BruteForceStringMatch (int T[], int n,  int P[], int m) { 
 for (int i  = 0; i <=n - m; i++) { 
  int j  = 0; 
  while (j < m && P[j] == T[i + j]) 
   j  = j + 1; 
  if(j == m ) return i; 

} 
 return -1; 
      } 
 

Time Complexity: O((푛 − 푚 + 1) × 푚) ≈O(푛 × 푚).  Space Complexity: O(1). 
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15.4 Rabin-Karp String Matching Algorithm 
 

In this method, we will use the hashing technique and instead of checking for each possible position in 푇, we check only if the hashing of 푃 
and the hashing of 푚 characters of 푇 give the same result. 

 

Initially, apply the hash function to the first 푚 characters of 푇 and check whether this result and 푃’s hashing result is the same or not. If they 
are not the same, then go to the next character of 푇 and again apply the hash function to 푚 characters (by starting at the second character). If 
they are the same then we compare those 푚 characters of 푇 with 푃. 

Selecting Hash Function 
 

At each step, since we are finding the hash of 푚 characters of 푇, we need an efficient hash function. If the hash function takes O(푚) complexity 
in every step, then the total complexity is O(푛 × 푚). This is worse than the brute force method because first we are applying the hash function 
and also comparing.  

 

Our objective is to select a hash function which takes O(1) complexity for finding the hash of 푚 characters of 푇 every time. Only then can 
we reduce the total complexity of the algorithm. If the hash function is not good (worst case), the complexity of the Rabin-Karp algorithm is 
O(푛 − 푚 + 1) × 푚) ≈O(푛 × 푚). If we select a good hash function, the complexity of the Rabin-Karp algorithm complexity is O(푚 + 푛). 
Now let us see how to select a hash function which can compute the hash of 푚 characters of 푇 at each step in O(1). 

 

For simplicity, let's assume that the characters used in string 푇 are only integers. That means, all characters in 푇 ∈ {0, 1, 2, . . . , 9 }. Since all of 
them are integers, we can view a string of 푚 consecutive characters as decimal numbers. For example, string ′61815′ corresponds to the 
number 61815. With the above assumption, the pattern 푃 is also a decimal value, and let us assume that the decimal value of 푃 is 푝. For the 
given text 푇[0. . 푛 − 1], let 푡(푖) denote the decimal value of length−푚 substring 푇[푖. . 푖 + 푚 − 1] for 푖 =  0,1, . . . , 푛 − 푚 − 1. So, 푡(푖) ==
 푝 if and only if 푇[푖. . 푖 + 푚 − 1] == 푃[0. . 푚 − 1]. 

 

We can compute 푝 in O(푚) time using Horner's Rule as: 
 

푝 =  푃[푚 − 1]  +  10(푃[푚 − 2] +  10(푃[푚 − 3] + . . . + 10 (푃[1]  +  10 푃[0]). . . )) 
 

The code for the above assumption is: 
 

      value = 0; 
      for (int i = 0; i <= m-1; i++) { 

value = value * 10; 
value = value + P[i]; 

      } 
 

We can compute all 푡(푖), for 푖 =  0,1, . . . , 푛 − 푚 − 1 values in a total of O(푛) time. The value of 푡(0) can be similarly computed from 
푇[0. . 푚 − 1] in O(푚) time. To compute the remaining values 푡(0), 푡(1), . . . , 푡 (푛 − 푚 − 1), understand that 푡(푖 + 1) can be computed 
from 푡(푖) in constant time. 

 

푡(푖 + 1)  =  10 ∗ (푡(푖)  −  10  ∗  푇[푖])  +  푇[푖 +  푚 −  1] 
 

For example, if  푇 =  “123456” and 푚 =  3 
 

                              푡(0)  =  123 
                              푡(1)  =  10 ∗ (123 −  100 ∗ 1)  +  4 =  234 

 

Step by Step explanation 
 

First : remove the first digit : 123 −  100 ∗ 1 =  23 
Second: Multiply by 10 to shift it : 23 ∗  10 =  230 
Third: Add last digit : 230 +  4 =  234 

 

The algorithm runs by comparing, 푡(푖) with 푝. When 푡(푖) ==  푝, then we have found the substring 푃 in 푇, starting from position 푖. 

15.5 String Matching with Finite Automata 
 

In this method we use the finite automata which is the concept of the Theory of Computation (ToC). Before looking at the algorithm, first let 
us look at the definition of finite automata. 

Finite Automata 
 

A finite automaton F is a 5-tuple (푄, 푞 , 퐴, ∑, 훿), where 
 푄 is a finite set of states 
 q  ∈  푄 is the start state 
 퐴 ⊆   푄 is a set of accepting states 
 ∑ is a finite input alphabet 
 훿 is the transition function that gives the next state for a given current state and input 

How does Finite Automata Work?    
 

 The finite automaton 퐹 begins in state 푞  
 Reads characters from ∑ one at a time 
 If 퐹 is in state 푞 and reads input character 푎,  퐹 moves to state 훿(푞, 푎) 
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 At the end, if its state is in 퐴,  then we say, 퐹 accepted the input string read so far 
 If the input string is not accepted it is called the rejected string 

 

Example: Let us assume that 푄 =  {0,1}, 푞  =  0, 퐴 = {1}, =  {푎, 푏}. 훿(푞, 푎) as shown in the transition table/diagram. This accepts strings 
that end in an odd number of 푎’푠; e.g., 푎푏푏푎푎푎 is accepted, 푎푎 is rejected. 
 

Input 
State a b 

0 1 0 
1 0 0 

Transition 
Function/Table 

 

 

Important Notes for Constructing the Finite Automata 
 

For building the automata, first we start with the initial state. The FA will be in state 푘 if 푘 characters of the pattern have been matched. If the 
next text character is equal to the pattern character 푐, we have matched 푘 + 1 characters and the FA enters state 푘 + 1. If the next text 
character is not equal to the pattern character, then the FA go to a state 0, 1, 2, . . . , 표푟 푘, depending on how many initial pattern characters 
match the text characters ending with 푐. 

Matching Algorithm 
 

Now, let us concentrate on the matching algorithm. 
 

 For a given pattern 푃[0. . 푚 − 1], first we need to build a finite automaton  퐹  
o The state set is 푄 = {0, 1, 2, … , 푚} 
o The start state is 0 
o The only accepting state is 푚 
o Time to build 퐹 can be large if  is large 

 Scan the text string 푇[0. . 푛 − 1] to find all occurrences of the pattern 푃[0. . 푚 − 1] 
 String matching is efficient: Θ(푛)  

o Each character is examined exactly once 
o Constant time for each character 
o But the time to compute 훿 (transition function) is O(푚||). This is because 훿 has O(푚||) entries. If we assume || is 

constant then the complexity becomes O(푚). 
 

Algorithm 
 

//Input: Pattern string P[0..m-1], δ and F ,   Goal: All valid shifts displayed 
public FiniteAutomataStringMatcher(int P[], int m, F, δ) { 
    q = 0; 
    for (i = 0; i < m; i++) 
    q = δ(q,T[i]); 
    if(q == m)  
        System.out.println(“Pattern occurs with shift:” + (i-m)); 
} 

Time Complexity: O(푚). 

15.6 KMP Algorithm 
 

As before, let us assume that  푇 is the string to be searched and 푃 is the pattern to be matched. This algorithm was presented by Knuth, Morris 
and Pratt. It takes O(푛) time complexity for searching a pattern. To get O(푛) time complexity, it avoids the comparisons with elements of 푇 
that were previously involved in comparison with some element of the pattern 푃.  
 

The algorithm uses a table and in general we call it 푝푟푒푓푖푥 푓푢푛푐푡푖표푛 or 푝푟푒푓푖푥 푡푎푏푙푒 or 푓푎푖푙 푓푢푛푐푡푖표푛 F.  First we will see how to fill this 
table and later how to search for a pattern using this table. The prefix function F for a pattern stores the knowledge about how the pattern 
matches against shifts of itself. This information can be used to avoid useless shifts of the pattern 푃. It means that this table can be used for 
avoiding backtracking on the string  푇. 
 

Prefix Table 
 

int F[];  //assume F is a global array 
public void Prefix-Table(int P[], int m) { 
    int i=1,j=0, F[0]=0;  
    while(i<m) {  
        if(P[i]==P[j]) { 
            F[i]=j+1; 
            i++; 
            j++; 
        } 
        else if(j>0)  

   0 

a 

b 

b 

a 
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            j=F[j-1]; 
        else {  
            F[i]=0; 
            i++; 
        } 
    } 
} 

 

As an example, assume that 푃 = 푎 푏 푎 푏 푎 푐 푎. For this pattern, let us follow the step-by-step instructions for filling the prefix table F. Initially: 
푚 =  푙푒푛푔푡ℎ[푃] =  7, 퐹[0] =  0 and 퐹[1]  =  0. 

 

Step 1: 푖 =  1, 푗 = 0, F[1]  = 0  0 1 2 3 4 5 6 
P a b a b a c a 
F 0 0      

 

Step 2: 푖 =  2, 푗 = 0, F[2]  = 1  0 1 2 3 4 5 6 
P a b a b a c a 
F 0 0 1     

 

Step 3: 푖 =  3, 푗 = 1, F[3]  = 2  0 1 2 3 4 5 6 
P a b a b a c a 
F 0 0 1 2    

 

Step 4: 푖 =  4, 푗 = 2, F[4]  = 3  0 1 2 3 4 5 6 
P a b a b a c a 
F 0 0 1 2 3   

 

Step 5: 푖 =  5, 푗 = 3, F[5]  = 1  0 1 2 3 4 5 6 
P a b a b a c a 
F 0 0 1 2 3 0  

 

Step 6: 푖 =  6, 푗 = 1, F[6]  = 1  0 1 2 3 4 5 6 
P a b a b a c a 
F 0 0 1 2 3 0 1 

 

At this step the filling of the prefix table is complet. 

Matching Algorithm 
 

The KMP algorithm takes pattern 푃, string  푇 and prefix function 퐹 as input, and finds a match of 푃 in 푇.  
 

      public int KMP(char T[], int n, int P[], int m) { 
 int i=0,j=0; 

Prefix-Table(P,m); 
 while(i<n) { 
  if(T[i]==P[j]) { 
   if(j==m-1) 
    return i-j;  
   else { i++; 
    j++; 
   } 
  } 
  else if(j>0) 
   j=F[j-1]; 
                         else i++; 
 } 
 return -1;  
      } 
 

Time Complexity: O(푚 + 푛), where 푚 is the length of the pattern and 푛 is the length of the text to be searched. Space Complexity: O(푚). 
 

Now, to understand the process let us go through an example. Assume that 푇 = 푏 푎 푐 푏 푎 푏 푎 푏 푎 푏 푎 푐 푎 푐 푎 & 푃 = 푎 푏 푎 푏 푎 푐 푎. Since we 
have already filled the prefix table, let us use it and go to the matching algorithm. Initially: 푛 = 푠푖푧푒 표푓 푇 =  15;  푚 =  푠푖푧푒 표푓 푃 =  7. 
 

Step 1: 푖 = 0, 푗 =  0, comparing 푃[0] with 푇[0].  푃[0] does not match with 푇[0].  푃 will be shifted one position to the right. 
 

푇 b a c b a b a b a b a c a c a 
푃 a b a b a c a         

 

Step 2: 푖 = 1, 푗 =  0, comparing 푃[0] with 푇[1].  푃[0] matches with 푇[1]. Since there is a match, 푃 is not shifted. 
 

푇 b a c b a b a b a b a c a c a 
푃  a b a b a c a        

 

Step 3: 푖 = 2, 푗 =  1, comparing 푃[1] with 푇[2].  푃[1] does not match with 푇[2].  Backtracking on 푃, comparing 푃[0] and 푇[2]. 
 



 

Data Structures and Algorithms Made Easy in Java String Algorithms                      

 

15.7 Boyer-Moore Algorithm    326 

 
 

푇 b a c b a b a b a b a c a c a 
푃  a b  a b a c a        

 

Step 4: 푖 = 3, 푗 =  0, comparing 푃[0] with 푇[3].  푃[0] does not match with 푇[3]. 
 

푇 b a c b a b a b a b a c a c a 
푃    a b a b a c a      

 

Step 5: 푖 = 4, 푗 =  0, comparing 푃[0] with 푇[4].  푃[0] matches with 푇[4]. 
  

푇 b a c b a b a b a b a c a c a 
푃     a b a b a c a     

 

Step 6: 푖 = 5, 푗 =  1, comparing 푃[1] with 푇[5]. 푃[1] matches with T[5]. 
 

  
푇 b a c b a b a b a b a c a c a 
푃     a b a b a c a     

 

Step 7: 푖 = 6, 푗 =  2, comparing 푃[2] with 푇[6].  푃[2] matches with 푇[6]. 
 

  
푇 b a c b a b a b a b a c a c a 
푃     a b a b a c a     

 

Step 8: 푖 = 7, 푗 =  3, comparing 푃[3] with 푇[7].  푃[3] matches with 푇[7]. 
 

 

 
 
 

Step 9: 푖 = 8, 푗 =  4, comparing 푃[4] with 푇[8].  푃[4] matches with 푇[8]. 
   

푇 b a c b a b a b a b a c a c a 
푃     a b a b a c a     

 

Step 10: 푖 = 9, 푗 =  5, comparing 푃[5] with 푇[9].  푃[5] does not match with 푇[9]. Backtracking on 푃, comparing 푃[4] with 푇[9] because 
after mismatch 푗 =  퐹[4]  =  3. 
  

푇 b a c b a b a b a b a c a c a 
푃     a b a b a c a     

 

Comparing 푃[3] with 푇[9]. 
 

푇 b a c b a b a b a b a c a c a 
푃       a b a b a c a   

 

Step 11: 푖 = 10, 푗 =  4, comparing 푃[4] with 푇[10].  푃[4] matches with 푇[10].  
  

푇 b a c b a b a b a b a c a c a 
푃       a b a b a c a   

 

Step 12: 푖 = 11, 푗 =  5, comparing 푃[5] with 푇[11].  푃[5] matches with 푇[11].  
 

푇 b a c b a b a b a b a c a c a 
푃       a b a b a c a   

 

Step 13: 푖 = 12, 푗 =  6, comparing 푃[6] with 푇[12].  푃[6] matches with 푇[12].  
  

푇 b a c b a b a b a b a c a c a 
푃       a b a b a c a   

 

Pattern 푃 has been found to completely occur in string 푇. The total number of shifts that took place for the match to be found are: 푖 –  푚 =
 13 –  7 =  6 shifts. 
 

Notes: 
 

 KMP performs the comparisons from left to right 
 KMP algorithm needs a preprocessing (prefix function) which takes O(푚) space and time complexity 
 Searching takes O(푛 + 푚) time complexity (does not depend on alphabet size) 

15.7 Boyer-Moore Algorithm 
 

Like the KMP algorithm, this also does some pre-processing and we call it 푙푎푠푡 푓푢푛푐푡푖표푛. The algorithm scans the characters of the pattern 
from right to left beginning with the rightmost character. During the testing of a possible placement of pattern 푃 in 푇, a mismatch is handled 
as follows: Let us assume that the current character being matched is 푇[푖]  =  푐 and the corresponding pattern character is 푃[푗]. If 푐 is not 
contained anywhere in 푃, then shift the pattern 푃 completely past 푇[푖]. Otherwise, shift P until an occurrence of character 푐 in 푃 gets aligned 
with 푇[푖]. This technique avoids needless comparisons by shifting the pattern relative to the text. 
 

푇 b a c b a b a b a b a c a c a 
푃     a b a b a c a     
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The 푙푎푠푡 function takes O(푚 + |∑|) time and the actual search takes O(푛푚) time. Therefore the worst case running time of the Boyer-
Moore algorithm is O(푛푚 + |∑|). This indicates that the worst-case running time is quadratic, in the case of 푛 ==  푚, the same as the brute 
force algorithm.  
 

 The Boyer-Moore algorithm is very fast on the large alphabet (relative to the length of the pattern). 
 For the small alphabet, Boer-Moore is not preferable. 
 For binary strings, the KMP algorithm is recommended. 
 For the very shortest patterns, the brute force algorithm is better. 

15.8 Data Structures for Storing Strings 
 

If we have a set of strings (for example, all the words in the dictionary) and a word which we want to search in that set,  in order to perform 
the search operation faster, we need an efficient way of storing the strings. To store sets of strings we can use any of the following data structures. 
 

 Hashing Tables 
 Binary Search Trees 
 Tries 
 Ternary Search Trees 

15.9 Hash Tables for Strings 
 

As seen in the 퐻푎푠ℎ푖푛푔 chapter, we can use hash tables for storing the integers or strings. In this case, the keys are nothing but the strings. 
The problem with hash table implementation is that we lose the ordering information – after applying the hash function, we do not know 
where it will map to. As a result, some queries take more time. For example, to find all the words starting with the letter “퐾”, with hash table 
representation we need to scan the complete hash table. This is because the hash function takes the complete key, performs hash on it, and 
we do not know the location of each word. 

15.10 Binary Search Trees for Strings 
 

In this representation, every node is used for sorting the strings alphabetically. This is possible because the strings have a natural ordering: 퐴 
comes before 퐵, which comes before 퐶, and so on. This is because words can be ordered and we can use a Binary Search Tree (BST) to 
store and retrieve them. For example, let us assume that we want to store the following strings using BSTs:  
 

푡ℎ푖푠 푖푠 푎 푐푎푟푒푒푟 푚표푛푘 푠푡푟푖푛푔 
 

For the given string there are many ways of representing them in BST. One such possibility is shown in the tree below. 
 
 
 
 
 
 
 
 
 

Issues with Binary Search Tree Representation 
 

This method is good in terms of storage efficiency. But the disadvantage of this representation is that, at every node, the search operation 
performs the complete match of the given key with the node data, and as a result the time complexity of the search operation increases. So, 
from this we can say that BST representation of strings is good in terms of storage but not in terms of time. 

15.11 Tries 
 

Now, let us see the alternative representation that reduces the time complexity of the search operation. The name 푡푟푖푒 is taken from the word 
re”trie”. 

What is a Trie? 
 

 

 
 
 
 
 
 
 
 

career 

a 

is 

monk this 

string 

None None None 

None 

None None

None None

 

‘a’ 1    …  … 
 

 
‘a’ 1    …  … 

 

None
 

‘s’ 1    … 
 

 
‘1’ 1    … 

 

 
‘s’ 1    … 

 

None None 

None 

None

26-Pointers for each possible character 
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A 푡푟푖푒 is a tree and each node in it contains the number of pointers equal to the number of characters of the alphabet. For example, if we 
assume that all the strings are formed with English alphabet characters “푎” to “푧” then each node of the trie contains 26 pointers. Suppose we 
want to store the strings “푎”, “푎푙푙”, “푎푙푠”, and “푎푠””: 푡푟푖푒 for these strings will look like: 
 
 
 

Why Tries? 
 

The tries can insert and find strings in O(퐿) time (where 퐿 represents the length of a single word). This is much faster than hash table and 
binary search tree representations.  

Trie Node Declaration 
 

The basic element - TrieNode of a TRIE data structure looks like this: 
  

public class TrieNode { 
                    char data; 
                    boolean is_End_Of_String; 
                    Collection<TrieNode> child;  
             } 
 

Node structure of the TRIE ADT had data (char), is_End_Of_String (boolean) and a collection of child nodes (Collection of TrieNode). It 
also has one more method called subNode(char). This method takes a character as argument and will return the child node of that character 
type if that is present. 
 

public class TrieNode { 
    char data; 
    boolean is_End_Of_String; 
    Collection<TrieNode> child; 
    public TrieNode(char c){ 
        child = new LinkedList<TrieNode>(); 
        is_End_Of_String = false; 
        data = c; 
    } 
    public TrieNode subNode(char c){ 
        if(child!=null){ 
            for(TrieNode eachChild:child){ 
            if(eachChild.data == c) return eachChild; 
            } 
        } 
        return null; 
    } 
} 

 

Trie Declaration 
 

Now that we have defined our TrieNode, let’s go ahead and look at the other operations of TRIE. Fortunately, the TRIE data structure is 
simple to implement since it has two major methods: insert() and search(). Let’s look at the elementary implementation of both these methods. 
 

public class Trie{ 
    private TrieNode  root; 
    public Trie(){ 
        root = new TrieNode(' '); 
    } 
    public void InsertInTrie(String s){ 
        //Refer Next Section 
    } 
    public boolean SearchInTrie(String s){  
        //Refer Next Section 
    } 
} 

Inserting a String in Trie 
 

To insert a string, we just need to start at the root node and follow the corresponding path (path from root indicates the prefix of the give 
string). Once we reach the NULL pointer, we just need to create a skew of tail nodes for the remaining characters of the given string. Any 
insertion would ideally be following the below algorithm. 
 

1) If the input string length is zero, then set the marker for the root node to be true. 
2) If the input string length is greater than zero, repeat steps 3 and 4 for each character 
3) If the character is present in the child node of the current node, set the current node point to the child node. 
4) If the character is not present in the child node, then insert a new node and set the current node to that newly inserted node. 
5) Set the marker flag to true when the end character is reached. 
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Time Complexity: O(퐿), where 퐿 is the length of the string to be inserted. 
 

Note: For real dictionary implementation we may need few more checks such as checking whether the given string is already there in dictionary 
or not. 

Searching a String in Trie 
 

The same is the case with the search operation: we just need to start at the root and follow the pointers. The time complexity of the search 
operation is equal to the length of the given string that want to search. The search alogirthm involves the following steps: 
 

1) For each character in the string, see if there is a child node with that character as the content. 
2) If that character does not exist, return false 
3) If that character exist, repeat step 1. 
4) Do the above steps until the end of string is reached.  
5) When end of string is reached and if the marker of the current Node is set to true, return true, else return false. 

 

Time Complexity: O(퐿), where 퐿 is the length of the string to be searched. 

Issues with Tries Representation 
 

The main disadvantage of tries is that they need lot of memory for storing the strings. As we have seen above, for each node we have too many 
node pointers. In many cases, the occupancy of each node is less. The final conclusion regarding tries data structure is that they are faster but 
require huge memory for storing the strings. 
 

Note: There are some improved tries representations called 푡푟푖푒 푐표푚푝푟푒푠푠푖표푛 푡푒푐ℎ푛푖푞푢푒푠. But, even with those techniques we can only 
reduce the memory at leaves but not at the internal nodes.  

15.12 Ternary Search Trees 
 

This representation was initially provided by Jon Bentley and Sedgewick. A ternary search tree takes the advantages of binary search trees and 
tries. That means it combines the memory efficiency of BSTs and the time efficiency of tries. 

Ternary Search Trees Declaration 
 

      public class TSTNode {  
        char data;  
 boolean is_End_Of_String; 

TSTNode left; 
TSTNode eq; 
TSTNode right;  

      }  
 

The Ternary Search Tree (TST) uses three pointers: 
 

 The 푙푒푓푡 pointer points to the TST containing all the strings which are alphabetically less than 푑푎푡푎.  
 The 푟푖푔ℎ푡 pointer points to the TST containing all the strings which are alphabetically greater than 푑푎푡푎. 
 The 푒푞 pointer points to the TST containing all the strings which are alphabetically equal to 푑푎푡푎. That means, if we want to search 

for a string, and if the current character of the input string and the 푑푎푡푎 of current node in TST are the same, then we need to 
proceed to the next character in the input string and search it in the subtree which is pointed by 푒푞. 

Inserting strings in Ternary Search Tree 
 

For simplicity let us assume that we want to store the following words in TST (also assume the same order):  푏표푎푡푠, 푏표푎푡, 푏푎푡 and 푏푎푡푠. 
Initially, let us start with the 푏표푎푡푠 string. 
 

 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 

 

‘b’ 0    
 

 
‘o’ 0    

 

None None 

None None 
 

‘a’ 0    
 

 
‘t’ 0    

 

 
‘s’ 1    

 

None None 

None None 
None 

None None 
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Now if we want to insert the string 푏표푎푡, then the TST becomes [the only change is setting the 푖푠퐸푛푑푂푓푆푡푟푖푛푔 flag of “푡” node to 1]: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Now, let us insert the next string: 푏푎푡 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Now, let us insert the final word: 푏푎푡푠.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Based on these examples, we can write the insertion algorithm as below. We will combine the insertion operation of BST and tries. 
 

      //initial value of position is zero 
      public TSTNode  InsertInTST(TSTNode  root, String word, int position) { 
 if(root == null) {  
                         if(word.length() <= position) return root; 
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  root = new TSTNode();  
  root.data = word.charAt(position);  
  root.left = null; 
   root.eq = null; 

 root.right = null;  
 if(position == word.length()-1){ 
  root.setMarker(true); 
              return root; 
 }else return root.setEq(root, word, position+1); 

 } 
 if(word.charAt(position) < root.data)  
  root.left =  InsertInTST(root.left, word, position);  
 else if(word.charAt(position) == root.data) {  
  if(word.length <= position)  
   root.setEq(InsertInTST (root.eq, word, position + 1));  
  else root.setMarker(true); 
 }  
 else  root.right =  InsertInTST(root.right, word, position);  
 return root;  
      } 
 

Time Complexity: O(퐿), where 퐿 is the length of the string to be inserted. 

Searching in Ternary Search Tree 
 

If after inserting the words we want to search for them, then we have to follow the same rules as that of binary search. The only difference is, 
in case of match we should check for the remaining characters (in 푒푞 subtree) instead of return. Also, like BSTs we will see both recursive 
and non-recursive versions of the search method. 
 

      boolean SearchInTSTRecursive(TSTNode  root, String word, int position) { 
 if(root == null)  
  return false;  
 if(word.charAt(position) < root.data)  
  return SearchInTSTRecursive(root.left, word, position);  
 else if(word.charAt(position) > root.data)  
  return SearchInTSTRecursive(root.right, word, position);  
 else {  if(root.getMarker() && word.length == position) 
   return true;  
  return SearchInTSTRecursive(root.eq, word, position + 1);  
 }  
      } 
      boolean SearchInTSTNon-Recursive(TSTNode  root, String word, int position) {    
 while (root) {  
  if(word.charAt(position) < root.data)  
   root = root.left;  
  else if(word.charAt(position)  == root.data) {  
   if(root.getMarker() && word.length == position)  
    return true;  
   position ++; 
   root = root.eq;  
  }  
  else  root = root.right;  
 }  
 return false;  
      } 
 

Time Complexity: O(퐿), where 퐿 is the length of the string to be searched. 

Displaying All Words of Ternary Search Tree 
 

If we want to print all the strings of TST we can use the following algorithm. If we want to print them in sorted order, we need to follow the 
inorder traversal of TST. 
 

      String word; 
      int i = 0; 
      void DisplayAllWords(TSTNode  root) {     
 if(root == null)  return;  
 DisplayAllWords(root.left);  
 word.setCharAt(i, root.data); 
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 if(root.getMarker()) { 
  System.out.println(word); 
 } 
 i++; 
 DisplayAllWords(root.eq);  
 i--; 
 DisplayAllWords(root.right);  
      } 
 

Finding the Length of the Largest Word in TST 
 

This is similar to finding the height of the BST and can be found as: 
 

      public int MaxLengthOfLargestWordInTST(TSTNode  root) { 
 if(root == null)   
                         return 0; 
 return Math.max(MaxLengthWordInTST(root.left),MaxLengthWordInTST(root.eq)+1, MaxLengthWordInTST(root.right))); 
      } 

15.13 Comparing BSTs, Tries and TSTs 
 

 Hash table and BST implementation stores complete the string at each node. As a result they take more time for searching. But 
they are memory efficient. 

 TSTs can grow and shrink dynamically but hash tables resize only based on load factor. 
 TSTs allow partial search whereas BSTs and hash tables do not support it. 
 TSTs can display the words in sorted order, but in hash tables we cannot get the sorted order. 
 Tries perform search operations very fast but they take huge memory for storing the string. 
 TSTs combine the advantages of BSTs and Tries. That means they combine the memory efficiency of BSTs and the time efficiency 

of tries. 

15.14 Suffix Trees 
 

Suffix trees are an important data structure for strings. With suffix trees we can answer the queries very fast. But this requires some 
preprocessing and construction of a suffix tree. Even though the construction of a suffix tree is complicated, it solves many other string-related 
problems in linear time.  
 

Note: Suffix trees use a tree (suffix tree) for one string, whereas Hash tables, BSTs, Tries and TSTs store a set of strings. That means, a suffix 
tree answers the queries related to one string. 
 

Let us see the terminology we use for this representation. 
 

Prefix and Suffix 
 

Given a string 푇 = 푇 푇 … 푇 , the 푝푟푒푓푖푥 of 푇 is a string 푇 … 푇  where 푖 can take values from 1 to 푛. For example, if  푇 = 푏푎푛푎푛푎, then the 
prefixes of 푇 are: 푏, 푏푎, 푏푎푛, 푏푎푛푎, 푏푎푛푎푛, 푏푎푛푎푛푎. Similarly, given a string 푇 = 푇 푇 … 푇 , the 푠푢푓푓푖푥 of T is a string 푇 … 푇  where 푖 
can take values from 푛 to 1. For example, if  푇 = 푏푎푛푎푛푎, then the suffixes of 푇 are: 푎, 푛푎, 푎푛푎, 푛푎푛푎,  푎푛푎푛푎, 푏푎푛푎푛푎.  
 

Observation 
 

From the above example, we can easily see that for a given text 푇 and pattern 푃, the exact string matching problem can also be defined as: 
 

 Find a suffix of 푇 such that 푃 is a prefix of this suffix    표푟  
 Find a prefix of  푇 such that 푃 is a suffix of this prefix.   

 

Example: Let the text to be searched be 푇 = 푎푐푐푏푘푘푏푎푐 and the pattern be 푃 = 푘푘푏.  For this example, 푃 is a prefix of the suffix 푘푘푏푎푐 
and also a suffix of the prefix 푎푐푐푏푘푘푏. 
 

What is a Suffix Tree? 
 

In simple terms, the suffix tree for text 푇 is a Trie-like data structure that represents the suffixes of 푇.  The definition of suffix trees can be 
given as: A suffix tree for a 푛 character string 푇[1 … 푛] is a rooted tree with the following properties. 
 

 A suffix tree will contain 푛 leaves which are numbered from 1 to 푛 
 Each internal node (except root) should have at least 2 children 
 Each edge in a tree is labeled by a nonempty substring of  푇 
 No two edges of a node (children edges) begin with the same character 
 The paths from the root to the leaves represent all the suffixes of  푇 

 

The Construction of Suffix Trees 
 

Algorithm 
 

1. Let 푆 be the set of all suffixes of 푇. Append $ to each of the suffixes. 
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2. Sort the suffixes in S based on their first character. 
3. For each group S  (푐 ∈  ∑): 

(i) If S  group has only one element, then create a leaf node. 
(ii) Otherwise, find the longest common prefix of the suffixes in S  group, create an internal node, and recursively 

continue with Step 2, S being the set of remaining suffixes from S  after splitting off the longest common prefix. 
 

For better understanding, let us go through an example. Let the given text be 푇 = 푡푎푡푎푡. For this string, give a number to each of the suffixes. 
 

Index Suffix 
1 $ 
2 푡$ 
3 푎푡$ 
4 푡푎푡$ 
5 푎푡푎푡$ 
6 푡푎푡푎푡$ 

 

Now, sort the suffixes based on their initial characters.  
 

Index Suffix 
1 $ 
 3 푎푡$ 
5 푎푡푎푡$ 
2 푡$ 
4 푡푎푡$ 
6 푡푎푡푎푡$ 

 

In the three groups, the first group has only one element. So, as per the algorithm, create a leaf node for it, as shown below. 
 
 
 
 
 

 
Now, for 푆  and 푆  (as they have more than one element), let us find the longest prefix in the group, and the result is shown below. 
 
 

Group Indexes for this group Longest Prefix of Group Suffixes 
푆  3, 5 푎푡 
푆  2, 4, 6 푡 

 

For 푆  and 푆 , create internal nodes, and the edge contains the longest common prefix of those groups. 
 
 
 
 
 
 
 
 

 

Now we have to remove the longest common prefix from the 푆  and 푆  group elements. 
 

Group Indexes for this group Longest Prefix of Group Suffixes Resultant Suffixes 
푆  3, 5 푎푡 $, 푎푡$ 
푆  2, 4, 6 푡 $, 푎푡$, 푎푡푎푡$ 

 

Out next step is solving 푆  and 푆  recursively. First let us take 푆 . In this group, if we sort them based on their first character, it is easy to see 
that the first group contains only one element $, and the second group also contains only one element, 푎푡$. Since both groups have only one 
element, we can directly create leaf nodes for them. 
 
 
 
 
 
 
 
 
 

 

At this step, both 푆 and 푆  elements are done and the only remaining group is 푆 . As similar to earlier steps, in the 푆  group, if we sort them 
based on their first character, it is easy to see that there is only one element in the first group and it is $.  For 푆  remaining elements, remove 
the longest common prefix. 
 

Group Indexes for this group Longest Prefix of Group Suffixes Resultant Suffixes 
푆  4, 6 푎푡 $, 푎푡$ 

 

In the 푆  second group, there are two elements: $ and 푎푡$. We can directly add the leaf nodes for the first group element $. Let us add  푆  
subtree as shown below. 
 

Group 푆  based on a 

Group 푆  based on a 

Group 푆  based on t 

$ 

$ 

$ 
푎푡$ 
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$ 

$ 
푎푡$ 

푎푡푎푡$ 
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Now, 푆  contains two elements. If we sort them based on their first character, it is easy to see that there are only two elements and among 
them one is $ and other is 푎푡$. We can directly add the leaf nodes for them. Let us add 푆  subtree as shown below.  
 

 
 
 
 
 
 
 
 
 
 

 
 

Since there are no more elements, this is the completion of the construction of the suffix tree for string 푇 = 푡푎푡푎푡. The time-complexity of 
the construction of a suffix tree using the above algorithm is O(푛 ) where 푛 is the length of the input string because there are 푛 distinct 
suffixes.  The longest has length 푛, the second longest has length  푛 − 1, and so on.   
 

Note: 
 There are O(푛) algorithms for constructing suffix trees.   
 To improve the complexity, we can use indices instead of string for branches. 

 

Applications of Suffix Trees 
 

All the problems below (but not limited to these) on strings can be solved with suffix trees very efficiently (for algorithms refer to 푃푟표푏푙푒푚푠 
section). 

 Exact String Matching: Given a text 푇 and a pattern 푃, how do we check whether 푃 appears in 푇 or not? 
 Longest Repeated Substring: Given a text 푇 how do we find the substring of 푇 that is the maximum repeated substring? 
 Longest Palindrome: Given a text 푇 how do we find the substring of 푇 that is the longest palindrome of 푇? 
 Longest Common Substring: Given two strings, how do we find the longest common substring? 
 Longest Common Prefix: Given two strings 푋[푖 … 푛] and 푌[푗 … 푚], how do we find the longest common prefix? 
 How do we search for a regular expression in given text 푇? 
 Given a text 푇 and a pattern 푃, how do we find the first occurrence of 푃 in 푇? 

15.15 String Algorithms: Problems & Solutions 
  

Problem-1 Given a paragraph of words, give an algorithm for finding the word which appears the maximum number of times. If the 
paragraph is scrolled down (some words disappear from the first frame, some words still appear, and some are new words), give the 
maximum occurring word. Thus, it should be dynamic. 

 

Solution: For this problem we can use a combination of priority queues and tries. We start by creating a trie in which we insert a word as it 
appears, and at every leaf of trie. Its node contains that word along with a pointer that points to the node in the heap [priority queue] which 
we also create. This heap contains nodes whose structure contains a 푐표푢푛푡푒푟. This is its frequency and also a pointer to that leaf of trie, which 
contains that word so that there is no need to store the word twice.  
 

Whenever a new word comes up, we find it in trie. If it is already there, we increase the frequency of that node in the heap corresponding to 
that word, and we call it heapify.  This is done so that at any point of time we can get the word of maximum frequency. While scrolling, when 
a word goes out of scope, we decrement the counter in heap. If the new frequency is still greater than zero, heapify the heap to incorporate 
the modification. If the new frequency is zero, delete the node from heap and delete it from trie. 
 

Problem-2 Given two strings, how can we find the longest common substring? 
 

Solution: Let us assume that the given two strings are 푇  and 푇 . The longest common substring of two strings, 푇  and 푇 , can be found by 
building a generalized suffix tree for 푇  and 푇 . That means we need to build a single suffix tree for both the strings. Each node is marked to 
indicate if it represents a suffix of 푇  or 푇  or both. This indicates that we need to use different marker symbols for both the strings (for 
example, we can use $ for the first string and # for the second symbol). After constructing the common suffix tree, the deepest node marked 
for both 푇  and 푇  represents the longest common substring. 
 

Another way of doing this is: We can build a suffix tree for the string 푇 $푇 #. This is equivalent to building a common suffix tree for both the 
strings. 
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Time Complexity: O(푚 + 푛), where 푚 and 푛 are the lengths of input strings 푇  and 푇 . 
 

Problem-3 Longest Palindrome: Given a text 푇 how do we find the substring of 푇 which is the longest palindrome of 푇? 
 

Solution: The longest palindrome of 푇[1. . 푛] can be found in O(푛) time. The algorithm is: first build a suffix tree for 푇$푟푒푣푒푟푠푒(푇)# or 
build a generalized suffix tree for 푇 and 푟푒푣푒푟푠푒(푇). After building the suffix tree, find the deepest node marked with both $ and #. Basically 
it means find the longest common substring. 
 

Problem-4 Given a string (word), give an algorithm for finding the next word in the dictionary.  
 

Solution: Let us assume that we are using Trie for storing the dictionary words. To find the next word in Tries we can follow a simple approach 
as shown below. Starting from the rightmost character, increment the characters one by one. Once we reach 푍, move to the next character on 
the left side.  
 

Whenever we increment, check if the word with the incremented character exists in the dictionary or not. If it exists, then return the word, 
otherwise increment again. If we use 푇푆푇, then we can find the inorder successor for the current word. 
 

Problem-5 Give an algorithm for reversing a string. 
 

Solution: 
  

      //If the 푠푡푟 is 푒푑푖푡푎푏푙푒  
      class ReverseString { 
            public String ReversingString(String str) { 
       char temp, start = 0, end = str.length(); 
       for (start = 0; start < end; start++, end--) { 
        temp = str.charAt(start);  

      str.setCharAt(start, str.charAt(end));  
      str.setCharAt(end, temp); 

       } 
       return str; 
            } 
      } 
 

Time Complexity: O(푛), where 푛 is the length of the given string. Space Complexity: O(푛). 
 

Problem-6 If the string is not editable, how do we create a string that is the reverse of given string? 
 

Solution: If the string is not editable, then we need to create an array and return the pointer of that. 
 

      //If 푠푡푟 is a 푐표푛푠푡 string (not editable) 
      public class ReverseString { 
 public static String reverseIt(String str) { 
  int i, len = str.length(); 
  StringBuffer dest = new StringBuffer(len); 
  for (i = (len - 1); i >= 0; i--) 
   dest.append(str.charAt(i)); 
  return dest.toString(); 
 } 
      } 
 

Time Complexity: O ≈O(푛), where 푛 is the length of the given string.Space Complexity: O(푛). 
 

Problem-7 Can we reverse the string without using any temporary variable? 
 

Solution: Yes, we can use XOR logic for swapping the variables. 
 

      public String ReversingString(String str) { 
 int end= str.length()-1; 
 int start = 0; 
 while( start<end ) { 
  str.setCharAt(start,  str.charAt(start)^ str.charAt(end)); 
  str.setCharAt(end,   str.charAt(end) ^  str.charAt(start)); 
  str.setCharAt(start,  str.charAt(start) ^ str.charAt(end)); 
  ++start; 
  --end; 
 } 
 return str; 
      } 
 

Time Complexity: O ≈O(푛), where 푛 is the length of the given string.Space Complexity: O(푛). 
 

Problem-8 Give an algorithm for reversing words in a sentence. 
Example: Input: “This is a Career Monk String”, Output: “String Monk Career a is This” 

 

Solution: Start from the beginning and keep on reversing the words. The below implementation assumes that ‘ ‘ (space) is the delimiter for 
words in given sentence. 
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      public class ReverseWordsinaSentence { 
          public String reverseWords(String s) { 
                  if (s == null || s.length() == 0) 
                   return ""; 
             int curr = 0, start = 0; 
             s = reverse(s); 
       StringBuilder sb = new StringBuilder(); 
       while (curr < s.length()) { 
                   // start = curr; 
  if (s.charAt(curr) != ' ') { 
   // word 
   curr++; 
  } else { 
   if (start != curr) { 
    sb.append(reverse(s.substring(start, curr)) + " "); 
    start = curr; 
   } else { 
    // space; 
    curr++; 
    start++; 
   } 
  } 
       } 
       if (start != curr) { 
  sb.append(reverse(s.substring(start, curr)) + " "); 
       } 
       return sb.length() != 0 ? sb.toString().substring(0, sb.length() - 1) : ""; 
            } 
            public String reverse(String s) { 
                  if (s == null || s.length() == 0) 
             return ""; 
                  int length = s.length(), last = length - 1; 
                  char[] chars = s.toCharArray(); 
       for (int i = 0; i < length / 2; i++) { 
             char c = chars[i]; 
             chars[i] = chars[last - i]; 
             chars[last - i] = c; 
       } 
       return new String(chars); 
            } 
      }  
 

Time Complexity: O(2푛) ≈O(푛), where 푛 is the length of the string. Space Complexity: O(1). 
 

Problem-9 Permutations of a string [anagrams]: Give an algorithm for printing all possible permutations of the characters in a string. 
Unlike combinations, two permutations are considered distinct if they contain the same characters but in a different order. For simplicity 
assume that each occurrence of a repeated character is a distinct character. That is, if the input is “aaa”, the output should be six repetitions 
of “aaa”. The permutations may be output in any order. 

 

Solution: The solution is reached by generating n! strings, each of length n, where n is the length of the input string. 
 

      public class Permutations { 
 public  static void permutationsInOrder(String s) {  
  permutationsInOrder("", s);  
 } 
 private static void permutationsInOrder(String prefix, String s) { 
  int len = s.length(); 
  if (len == 0)  
   System.out.println(prefix); 
  else {  
                                                for (int i = 0; i < len; i++) 
            permutationsInOrder(prefix + s.charAt(i), s.substring(0, i) + s.substring(i+1, len)); 
  } 
 } 
 public static void permutationsNotInOrder(String s) { 
  int len = s.length(); 
  char[] a = new char[len]; 
  for (int i = 0; i < len; i++) 
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   a[i] = s.charAt(i); 
  permutationsNotInOrder(a, len); 
 } 
 private static void permutationsNotInOrder(char[] a, int n) { 
  if (n == 1) { 
   System.out.println(a); 
   return; 
  } 
  for (int i = 0; i < n; i++) { 
   swap(a, i, n-1); 
   permutationsNotInOrder(a, n-1); 
   swap(a, i, n-1); 
  } 
 }   
 // swap the characters at indices i and j 
 private static void swap(char[] a, int i, int j) { 
  char c; 
  c = a[i]; a[i] = a[j]; a[j] = c; 
 } 
      } 
 

Problem-10 Combinations of a String: Unlike permutations, two combinations are considered to be the same if they contain the same 
characters, but may be in a different order. Give an algorithm that prints all possible combinations of the characters in a string. For example, 
"푎푐" and "푎푏" are different combinations from the input string "푎푏푐", but "푎푏" is the same as "푏푎".  

 

Solution: The solution is achieved by generating 푛!/푟! (푛 − 푟)! strings, each of length between 1 and 푛 where 푛 is the length of the given 
input string. 
 

Algorithm: 
For each of the input characters 

a. Put the current character in output string and print it. 
b. If there are any remaining characters, generate combinations with those remaining characters.  

 

      public class Combinations { 
 // print all subsets of the characters in str 
 public static void CombinationsOne(String str) {  
  CombinationsOne("", str);  
 } 
 // print all subsets of the remaining elements, with given prefix  
 private static void CombinationsOne(String prefix, String str) { 
  if (str.length() > 0) { 
   System.out.println(prefix + str.charAt(0)); 
   CombinationsOne(prefix + str.charAt(0), str.substring(1)); 
   CombinationsOne(prefix,  str.substring(1)); 
  } 
 }   
 // alternate implementation 
 public static void CombinationsTwo(String str) {  
  comb2("", s);  
 } 
 private static void CombinationsTwo(String prefix, String str) { 
  System.out.println(prefix); 
  for (int i = 0; i < str.length(); i++) 
   CombinationsTwo(prefix + str.charAt(i), str.substring(i + 1)); 
 }   
      } 
 

Problem-11 Given a string "ABCCBCBA", give an algorithm for recursively removing the adjacent characters if they are the same. For 
example, ABCCBCBA --> ABBCBA-->ACBA 

 

Solution: First we need to check if we have a character pair; if yes, then cancel it. Now check for next character and previous element. Keep 
canceling the characters until we either reach the start of the array, reach the end of the array, or don’t find a pair. 
 

      public void RremoveAdjacentPairs(char[] str, int len)  {   
 int j = 0;   
 for (int i=1; i <= len; i++) {   
  while ((str[i] == str[j]) && (j >= 0)){   //Cancel pairs 
   i++;   
   j--;   
  }   
  str[++j] = str[i];   
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 }   
 return;   
      }  
 

Problem-12 Given a set of characters 퐶퐻퐴푅푆 and a input string 퐼푁푃푈푇, find the minimum window in 푠푡푟 which will contain all the 
characters in 퐶퐻퐴푅푆 in complexity O(푛). For example, 퐼푁푃푈푇 = 퐴퐵퐵퐴퐶퐵퐴퐴 and 퐶퐻퐴푅푆 = 퐴퐴퐵 has the minimum window 퐵퐴퐴. 

 

Solution: This algorithm is based on the sliding window approach. In this approach, we start from the beginning of the array and move to the 
right. As soon as we have a window which has all the required elements, try sliding the window as far right as possible with all the required 
elements. If the current window length is less than the minimum length found until now, update the minimum length. For example, if the 
input array is 퐴퐵퐵퐴퐶퐵퐴퐴 and the minimum window should cover characters 퐴퐴퐵, then the sliding window will move like this:  
 

A B B A C B A A 

 
 

A B B A C B A A 

 
 

A B B A C B A A 

 
 

Algorithm: The input is the given array and chars is the array of characters that need to be found. 
1  Make an integer array shouldfind[] of len 256. The 푖  element of this array will have the count of how many times we need to 

find the element of ASCII value 푖. 
2  Make another array hasfound of 256 elements, which will have the count of the required elements found until now. 
3  Count <=  0 
4  While input[i] 

a. If input[i] element is not to be found→ continue 
b. If input[i] element is required => increase count by 1. 
c. If count is length of chars[] array, slide the window as much right as possible. 
d. If current window length is less than min length found until now, update min length. 

 

    public String minWindow(String input, String chars) { 
        int inputLen = input.length(); 
        int charsLen = chars.length(); 
         

        // initialize needToFind array 
        int[] needToFind = new int[256]; 
        for(int i = 0; i < charsLen; i++) { 
            needToFind[chars.charAt(i)]++; 
        }          

        int[] hasFound = new int[256]; 
        int minWinLen = Integer.MAX_VALUE; 
        int minWinBegin = 0; 
        int minWinEnd = 0; 
        int count = 0; 
        for(int begin = 0, end = 0; end < inputLen; end++) { 
            // skip characters not in chars  
            if(needToFind[input.charAt(end)] == 0) 
                continue; 
            hasFound[input.charAt(end)]++; 
            if(hasFound[input.charAt(end)] <= needToFind[input.charAt(end)]) 
                count++; 
            // if window constraint is satisfied 
            if(count == charsLen) { 
                // advance begin index as far as possible, stop when advancing breaks window constraint. 
                while(needToFind[input.charAt(begin)] == 0 || hasFound[input.charAt(begin)] > needToFind[input.charAt(begin)]) { 
                    if(hasFound[input.charAt(begin)] > needToFind[input.charAt(begin)]) 
                        hasFound[input.charAt(begin)]--; 
                    begin++; 
                } 
                // update minWindow if a minimum length is satisfied 
                int windowLen = end - begin + 1; 
                if(windowLen < minWinLen) { 
                    minWinBegin = begin; 
                    minWinEnd = end; 
                    minWinLen = windowLen; 
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                } 
            } 
        } 
        return (count == charsLen) ? input.substring(minWinBegin, minWinEnd + 1) : ""; 
    } 
 

Complexity: If we walk through the code, 푖 and 푗 can traverse at most 푛 steps (where 푛 is the input size) in the worst case, adding to a total of 
2푛 times. Therefore, time complexity is O(푛).  
 

Problem-13 We are given a 2D array of characters and a character pattern. Give an algorithm to find if the pattern is present in the 
2D array. The pattern can be in any order (all 8 neighbors to be considered) but we can’t use the same character twice while matching. 
Return 1 if match is found, 0 if not. For example:  Find “MICROSOFT” in the below matrix. 

A C P R C 
X S O P C 
V O V N I 
W G F M N 
Q A T I T 

 

Solution: Manually finding the solution of this problem is relatively intuitive; we just need to describe an algorithm for it. Ironically, describing 
the algorithm is not the easy part.  
 

How do we do it manually? First we match the first element, and when it is matched we match the second element in the 8 neighbors of the 
first match. We do this process recursively, and when the last character of the input pattern matches, return true.  
 

During the above process, take care not to use any cell in the 2D array twice. For this purpose, you mark every visited cell with some sign. If 
your pattern matching fails at some point, start matching from the beginning (of the pattern) in the remaining cells. When returning, you 
unmark the visited cells. 
 

Let’s convert the above intuitive method into an algorithm. Since we are doing similar checks for pattern matching every time, a recursive 
solution is what we need. In a recursive solution, we need to check if the substring passed is matched in the given matrix or not. The condition 
is not to use the already used cell, and to find the already used cell, we need to add another 2D array to the function (or we can use an unused 
bit in the input array itself.) Also, we need the current position of the input matrix from where we need to start. Since we need to pass a lot 
more information than is actually given, we should be having a wrapper function to initialize the extra information to be passed.  
 

Algorithm: 
If we are past the last character in pattern 
    Return true 
If we got an used cell again 
    Return false if we got past the 2D matrix   
    Return false 
If searching for first element and cell doesn’t match 
    FindMatch with next cell in row-first order (or column first order) 
otherwise if character matches 
    mark this cell as used 
    res = FindMatch with next position of pattern in 8 neighbors 
    mark this cell as unused 
    Return res 
Otherwise 
    Return false 

 

// Assume MAX 100 
bool FindMatch_wrapper(char[][] mat, char[] pat, int patLen, int nrow, int ncol) { 
 if(strlen(pat) > nrow*ncol) 
  return false; 
 int used[MAX][MAX] = {{0,},}; 
 return FindMatch(mat, pat, patLen, used, 0, 0, nrow, ncol, 0); 
} 
//level: index till which pattern is matched. x, y: current position in 2D array 
boolean FindMatch(char[][] mat, char[] pat, int patLen, int used[MAX][MAX], int x, int y, int nrow, int ncol, int level) { 
    if(level == patLen) //pattern matched 
        return true; 
    if(nrow == x || ncol == y) 
        return false; 
    if(used[x][y]) 
        return false;     
    if(mat[x][y] != pat[level] && level == 0) { 
        if(x < (nrow - 1)) 
            return FindMatch(mat, pat, patLen,used, x+1, y, nrow, ncol, level); //next element in same row 
        else if(y < (ncol - 1)) 
            return FindMatch(mat, pat, patLen,used, 0, y+1, nrow, ncol, level); //first element from same column 
        else return false; 
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    }     
    else if(mat[x][y] == pat[level]) { 
        boolean res; 
        used[x][y] = 1;       //marking this cell as used 
        //finding subpattern in 8 neighbours      
        res = (x > 0  ? FindMatch(mat, pat, used, x-1, y, nrow, ncol, level+1) :   false) || 
              (res = x < (nrow - 1)  ? FindMatch(mat, pat, used, x+1, y, nrow, ncol, level+1) :   false) || 
              (res = y > 0 ? FindMatch(mat, pat, used, x, y-1, nrow, ncol, level+1) :   false) || 
              (res = y < (ncol - 1)  ? FindMatch(mat, pat, used, x, y+1, nrow, ncol, level+1) :   false) || 
              (res = x < (nrow - 1) && (y < ncol -1) ? FindMatch(mat, pat, used, x+1, y+1, nrow, ncol, level+1): false) || 
              (res = x < (nrow - 1) && y > 0  ? FindMatch(mat, pat, used, x+1, y-1, nrow, ncol, level+1) : false) || 
              (res = x > 0 && y < (ncol - 1) ? FindMatch(mat, pat, used, x-1, y+1, nrow, ncol, level+1) : false) || 
              (res = x > 0 && y > 0 ? FindMatch(mat, pat, used, x-1, y-1, nrow, ncol, level+1) : false); 
        used[x][y] = 0;         //marking this cell as unused 
        return res; 
    } 
    else return false; 
} 

 

Problem-14 Given a matrix with size 푛 ×  푛 containing random integers. Give an algorithm which checks whether rows match with a 
column(s) or not. For example, if 푖  row matches with 푗  column, and 푖  row contains the elements - [2,6,5,8,9]. Then 푗  column 
would also contain the elements - [2,6,5,8,9]. 

 

Solution: We can build a trie for the data in the columns (rows would also work). Then we can compare the rows with the trie. This would 
allow us to exit as soon as the beginning of a row does not match any column (backtracking). Also this would let us check a row against all 
columns in one pass. 
 

If we do not want to waste memory for empty pointers then we can further improve the solution by constructing a suffix tree. 
 

Problem-15 Given a 2D board containing 'X' and 'O', capture all regions surrounded by 'X'. A region is captured by flipping all 'O's 
into 'X's in that surrounded region. 

Sample Input: 
X X X X 
X O O X 
X X O X 
X O X X 

Output: 
X X X X 
X X X X 
X X X X 
X O X X 

Solution: We use backtracking to identify the elements not surrounded by 'X' and we mark those with a temporal symbol ('$'). The elements 
not surrounded by 'X' means that exists a path of elements 'O' to a border. So we start the backtracking algorithm with the boarders. The last 
thing is replacing the temporal element by 'O' and the rest elements to 'X'. 
 

public class CaptureRegions { 
    final static char TEMPORARY_MARKED ='$'; 
    final static char TO_CAPTURE = 'O'; 
    final static char CAPTURED ='X';      

    public void solve(char[][] board) { 
        if(board.length ==0 ) 
              return; 
        int numberRows = board.length; 
        int numberCols = board[0].length; 
        for(int col=0; col<numberCols; col++){ 
            mark(board,0,col); 
            mark(board,numberRows-1,col); 
        } 
        for(int row=0; row<numberRows; row++){ 
            mark(board,row,0); 
            mark(board,row,numberCols-1); 
        }       

        for(int row=0; row<numberRows; row++){ 
            for(int col=0; col<numberCols; col++){ 
                board[row][col]= board[row][col]==TEMPORARY_MARKED ? TO_CAPTURE : CAPTURED; 
            } 
        } 
    }      

    public void mark(char[][] board, int row, int col){ 
        int position = row*board[0].length + col; 
        ArrayDeque<Integer> stack = new ArrayDeque<Integer>(); 
        stack.push(position); 
        while(!stack.isEmpty()){ 
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            position = stack.pop(); 
            row = position / board[0].length; 
            col = position % board[0].length; 
            if( board[row][col] != TO_CAPTURE) 
                continue; 
            board[row][col] = TEMPORARY_MARKED; 
            if (row>0) 
                stack.push((row-1)*board[0].length + col); 
            if (col>0) 
                stack.push(row*board[0].length + col-1); 
            if (row<board.length-1 ) 
                stack.push((row+1)*board[0].length + col); 
            if (col<board[0].length-1 ) 
                stack.push(row*board[0].length + col+1); 
        } 
    } 
} 
 

Problem-16 Implement wildcard pattern matching with support for '?' and '*'.  Character '?' matches any single character and character 
'*' matches any sequence of characters (including the empty sequence).  

 bool wildCardMatch(String s, String p) 
  
 Sample input and output: 

wildCardMatch("aa","a") --> false 
wildCardMatch("aa","aa") --> true 
wildCardMatch("aaa","aa") --> false 
wildCardMatch("aa", "*") --> true 
wildCardMatch("aa", "a*") --> true 
wildCardMatch("ab", "?*") --> true 
wildCardMatch("aab", "c*a*b") --> false 

 

Solution: If we suppose that only single character wildcard is allowed, then task of matching a string against such pattern is quite simple. In 
that case, string matches the pattern if both string and the pattern have the same length and every character in the string is either equal to the 
corresponding character in the pattern, or the corresponding character in the pattern is the wildcard. 
 

    public boolean wildCardMatch(String text, String pattern) { 
        int lenText = text.length(); 
        int lenPattern = pattern.length(); 
        if(lenText == 0 && lenPattern == 0)  
            return true; 
        int i = 0, j = 0; 
        // save the last matched index 
        int startText = -1, startPattern = -1; 
        while (i < lenText) { 
            if (j < lenPattern && (text.charAt(i) == pattern.charAt(j) || pattern.charAt(j) == '?')) { 
                i++; 
                j++; 
            } else if (j < lenPattern && pattern.charAt(j) == '*') { 
                while(j < lenPattern && pattern.charAt(j) == '*')  
                    j++; 
                if(j == lenPattern) 
                    return true; 
                startPattern = j; 
                startText = i; 
            } else if ((j >= lenPattern || text.charAt(i) != pattern.charAt(j)) && startPattern > -1) { 
                startText++; 
                j = startPattern; 
                i = startText; 
            } else { 
                return false; 
            } 
        } 
        while (j < lenPattern) { 
            if (pattern.charAt(j) != '*') 
                return false; 
            j++; 
        } 
        return true; 
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    } 
 

If the pattern character is a question mark the match is always considered valid. If the pattern character is an asterisk the procedure loops, 
increasing the string pointer, until the string terminates (mismatch) or until a match is found during recursion. If the pattern character is an 
ordinary character just return false in case of mismatch. 
 

Problem-17 Given two integers 푛 and 푘, return all possible combinations of 푘 numbers out of 1 ... 푛. For example, if 푛 = 4 and 푘 = 
2, a solution is: [ [2,4], [3,4], [2,3], [1,2], [1,3], [1,4],]. 

 

Solution: Refer Problem-10 for detailed explanation. It is very much similar but we use numbers instead of characters from given string. 
 

    public ArrayList<ArrayList<Integer>> numberCombinations(int n, int k) { 
        if(n < k) 
            return null; 
        ArrayList<ArrayList<Integer>> res = new ArrayList<ArrayList<Integer>>(); 
        if(k == 1){ 
            for(int i = 1; i <= n; i++){ 
                ArrayList<Integer> arr = new ArrayList<Integer>(); 
                arr.add(i); 
                res.add(arr); 
            } 
            return res; 
        } 
        for(int i = n; i>= k; i--){ 
            for(ArrayList<Integer> arr : numberCombinations(i - 1, k - 1)){ 
                arr.add(i); 
                res.add(arr); 
            } 
        } 
        return res; 
    }  
 

Problem-18 Implement a simple trie data structure. 
 

Solution: Refer Tries section for details. 
 

    public class Trie { 
        private static final int ALPHABETS = 26; 
        private Trie[] links; 
        private boolean isEndOfString; 
 

        public static void main(String[] args) { 
 Trie t = new Trie(); 
 t.addString("car"); t.addString("care"); t.addString("caree");  
 t.addString("career"); t.addString("careerm"); t.addString("careermonk"); 
 System.out.println("Is careermo included? " + t.isEndOfString("careermo")); 
 System.out.println("Is career included? " + t.isEndOfString("career")); 
        } 
 

        public Trie() { 
                links = new Trie[ALPHABETS]; 
                isEndOfString = false; 
        } 
 

        public void addString(String s) { 
                Trie t = this; 
                int k; 
                int limit = s.length(); 
                for (k = 0; k < limit; k++) { 
                        int index = s.charAt(k) - 'a'; 
                        if (t.links[index] == null) 
                                t.links[index] = new Trie(); 
                        t = t.links[index]; 
                } 
                t.isEndOfString = true; 
        } 
 

        void print(String s, Trie t) { 
                if (t != null) { 
                        if (t.isEndOfString) 
                                System.out.println(s); 
                        int k; 
                        for (k = 0; k < ALPHABETS; k++) 
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                                if (t.links[k] != null) 
                                        print(s + (char) (k + 'a'), t.links[k]); 
                } 
        } 
 

        public boolean isEndOfString(String s) { 
                Trie t = this; 
                int k; 
                int limit = s.length(); 
                for (k = 0; k < limit; k++) { 
                        int index = s.charAt(k) - 'a'; 
                        if (t.links[index] == null) 
                                return false; 
                        t = t.links[index]; 
                } 
                return t.isEndOfString; 
        } 
 

        public boolean isEndOfString() { 
                return isEndOfString; 
        } 
 

        Trie childAt(char ch) { 
                return links[ch - 'a']; 
        } 
    } 
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Chapter 

16 
 

 
 

16.1 Introduction 
 

In the previous chapters, we have seen many algorithms for solving different kinds of problems. Before solving a new problem, the general 
tendency is to look for the similarity of the current problem to other problems for which we have solutions. This helps us in getting the 
solution easily.  
 

In this chapter, we will see different ways of classifying the algorithms and in subsequent chapters we will focus on a few of them (Greedy, 
Divide and Conquer, Dynamic Programming). 

16.2 Classification 
 

There are many ways of classifying algorithms and a few of them are shown below: 
 

 Implementation Method 
 Design Method 
 Other Classifications 

16.3 Classification by Implementation Method 
 

Recursion or Iteration 
 

A 푟푒푐푢푟푠푖푣푒 algorithm is one that calls itself repeatedly until a base condition is satisfied. It is a common method used in functional 
programming languages like 퐶, 퐶 + +, etc.  
 

퐼푡푒푟푎푡푖푣푒 algorithms use constructs like loops and sometimes other data structures like stacks and queues to solve the problems.  
 

Some problems are suited for recursive and others are suited for iterative. For example, the 푇표푤푒푟푠 표푓 퐻푎푛표푖 problem can be easily 
understood in recursive implementation. Every recursive version has an iterative version, and vice versa. 

Procedural or Declarative (Non-Procedural) 
 

In 푑푒푐푙푎푟푎푡푖푣푒 programming languages, we say what we want without having to say how to do it. With 푝푟표푐푒푑푢푟푎푙 programming, we have 
to specify the exact steps to get the result. For example, SQL is more declarative than procedural, because the queries don't specify the steps 
to produce the result. Examples of procedural languages include: C, PHP, and PERL.   
 

Serial or Parallel or Distributed 
 

In general, while discussing the algorithms we assume that computers execute one instruction at a time. These are called 푠푒푟푖푎푙 algorithms.  
 

푃푎푟푎푙푙푒푙 algorithms take advantage of computer architectures to process several instructions at a time. They divide the problem into 
subproblems and serve them to several processors or threads. Iterative algorithms are generally parallelizable.  
 

If the parallel algorithms are distributed on to different machines then we call such algorithms 푑푖푠푡푟푖푏푢푡푒푑 algorithms. 
 

Deterministic or Non-Deterministic 
 

퐷푒푡푒푟푚푖푛푖푠푡푖푐 algorithms solve the problem with a predefined process, whereas 푛표푛 − 푑푒푡푒푟푚푖푛푖푠푡푖푐 algorithms guess the best solution 
at each step through the use of heuristics.  
 

Exact or Approximate 
 

As we have seen, for many problems we are not able to find the optimal solutions. That means, the algorithms for which we are able to find 
the optimal solutions are called 푒푥푎푐푡 algorithms. In computer science, if we do not have the optimal solution, we give approximation 
algorithms.  
 

Approximation algorithms are generally associated with NP-hard problems (refer to the 퐶표푚푝푙푒푥푖푡푦 퐶푙푎푠푠푒푠 chapter for more details). 
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16.4 Classification by Design Method 
 

Another way of classifying algorithms is by their design method.  
 

Greedy Method 
 

퐺푟푒푒푑푦 algorithms work in stages. In each stage, a decision is made that is good at that point, without bothering about the future consequences. 
Generally, this means that some 푙표푐푎푙 푏푒푠푡 is chosen. It assumes that the local best selection also makes for the 푔푙표푏푎푙 optimal solution. 
 

Divide and Conquer 
 

The D & C strategy solves a problem by: 
1) Divide: Breaking the problem into sub problems that are themselves smaller instances of the same type of problem. 
2) Recursion: Recursively solving these sub problems. 
3) Conquer: Appropriately combining their answers. 

 

Examples: merge sort and binary search algorithms. 
 

Dynamic Programming 
 

Dynamic programming (DP) and memoization work together. The difference between DP and divide and conquer is that in the case of the 
latter  there is no dependency among the sub problems, whereas in DP there will be an overlap of sub-problems. By using memoization 
[maintaining a table for already solved sub problems], DP reduces the exponential complexity to polynomial complexity (O(푛 ), O(푛 ), etc.) 
for many problems.  
 

The difference between dynamic programming and recursion is in the memoization of recursive calls. When sub problems are independent 
and if there is no repetition, memoization does not help, hence dynamic programming is not a solution for all problems. By using memoization 
[maintaining a table of sub problems already solved], dynamic programming reduces the complexity from exponential to polynomial. 
 

Linear Programming 
 

Linear programming is not a programming language like C++, Java, or Visual Basic. Linear programming can be defined as: 
 

A method to allocate scarce resources to competing activities in an optimal manner when the problem can be expressed using a linear 
objective function and linear inequality constraints. 

 

A linear program consists of a set of variables, a linear objective function indicating the contribution of each variable to the desired outcome, 
and a set of linear constraints describing the limits on the values of the variables. The 푠표푙푢푡푖표푛 to a linear program is a set of values for the 
problem variables that results in the best -- 푙푎푟푔푒푠푡 표푟 푠푚푎푙푙푒푠푡 -- value of the objective function and yet is consistent with all the constraints. 
Formulation is the process of translating a real-world problem into a linear program. Once a problem has been formulated as a linear program, 
a computer program can be used to solve the problem. In this regard, solving a linear program is relatively easy. The hardest part about 
applying linear programming is formulating the problem and interpreting the solution. In linear programming, there are inequalities in terms 
of inputs and 푚푎푥푖푚푖푧푖푛푔 (or 푚푖푛푖푚푖푧푖푛푔) some linear function of the inputs. Many problems (example: maximum flow for directed 
graphs) can be discussed using linear programming. 
 

Reduction [Transform and Conquer] 
 

In this method we solve a difficult problem by transforming it into a known problem for which we have asymptotically optimal algorithms. In 
this method, the goal is to find a reducing algorithm whose complexity is not dominated by the resulting reduced algorithms. For example, 
the selection algorithm for finding the median in a list involves first sorting the list and then finding out the middle element in the sorted list. 
These techniques are also called 푡푟푎푛푠푓표푟푚 푎푛푑 푐표푛푞푢푒푟. 

16.5 Other Classifications 
 

Classification by Research Area 
 

In computer science each field has its own problems and needs efficient algorithms. Examples: search algorithms, sorting algorithms, merge 
algorithms, numerical algorithms, graph algorithms, string algorithms, geometric algorithms, combinatorial algorithms, machine learning, 
cryptography, parallel algorithms, data compression algorithms, parsing techniques, and more.  

Classification by Complexity 
 

In this classification, algorithms are classified by the time they take to find a solution based on their input size. Some algorithms take linear 
time complexity (O(푛)) and others take exponential time, and some never halt.  Note that some problems may have multiple algorithms with 
different complexities. 
 

Randomized Algorithms  
 

A few algorithms make choices randomly. For some problems, the fastest solutions must involve randomness. Example: Quick Sort. 
 

Branch and Bound Enumeration and Backtracking 
 

These were used in Artificial Intelligence and we do not need to explore these fully. For the Backtracking method refer to the 
푅푒푐푢푠푖표푛 푎푛푑 퐵푎푐푘푡푟푎푐푘푖푛푔 chapter. 
 

Note: In the next few chapters we discuss the Greedy, Divide and Conquer, and Dynamic Programming] design methods. These methods 
are emphasized because they are used more often than other methods to solve problems.  
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17.1 Introduction 
 

Let us start our discussion with simple theory that will give us an understanding of the Greedy technique. In the game of 퐶ℎ푒푠푠, every time 
we make a decision about a move, we have to also think about the future consequences. Whereas, in the game of  푇푒푛푛푖푠 (or 푉표푙푙푒푦푏푎푙푙), 
our action is based on the immediate situation.   
 

This means that in some cases making a decision that looks right at that moment gives the best solution (퐺푟푒푒푑푦), but in other cases it doesn’t. 
The Greedy technique is best suited for looking at the immediate situation. 

17.2 Greedy Strategy 
 

Greedy algorithms work in stages. In each stage, a decision is made that is good at that point, without bothering about the future. This means 
that some 푙표푐푎푙 푏푒푠푡 is chosen. It assumes that a local good selection makes for a global optimal solution. 

17.3 Elements of Greedy Algorithms 
 

The two basic properties of optimal Greedy algorithms are: 
 

1) Greedy choice property 
2) Optimal substructure 

 

Greedy choice property 
 

This property says that the globally optimal solution can be obtained by making a locally optimal solution (Greedy). The choice made by a 
Greedy algorithm may depend on earlier choices but not on the future. It iteratively makes one Greedy choice after another and reduces the 
given problem to a smaller one.  
 

Optimal substructure 
 

A problem exhibits optimal substructure if an optimal solution to the problem contains optimal solutions to the subproblems. That means 
we can solve subproblems and build up the solutions to solve larger problems.  

17.4 Does Greedy Always Work? 
 

Making locally optimal choices does not always work. Hence, Greedy algorithms will not always give the best solutions. We will see particular 
examples in the 푃푟표푏푙푒푚푠 section and in the 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter.  

17.5 Advantages and Disadvantages of Greedy Method 
 

The main advantage of the Greedy method is that it is straightforward, easy to understand and easy to code. In Greedy algorithms, once we 
make a decision, we do not have to spend time re-examining the already computed values. Its main disadvantage is that for many problems 
there is no greedy algorithm. That means, in many cases there is no guarantee that making locally optimal improvements in a locally optimal 
solution gives the optimal global solution. 

17.6 Greedy Applications 
 

 Sorting: Selection sort, Topological sort 
 Priority Queues: Heap sort 
 Huffman coding compression algorithm 
 Prim’s and Kruskal’s algorithms 
 Shortest path in Weighted Graph [Dijkstra’s] 
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 Coin change problem 
 Fractional Knapsack problem 
 Disjoint sets-UNION by size and UNION by height (or rank) 
 Job scheduling algorithm 
 Greedy techniques can be used as an approximation algorithm for complex problems 

17.7 Understanding Greedy Technique 
 

For better understanding let us go through an example. 

Huffman Coding Algorithm 
Definition 
 

Given a set of 푛 characters from the alphabet A [each character c ∈  A] and their associated frequency 푓푟푒푞(c), find a binary code for each 
character c ∈  A, such that ∑ freq(c)|binarycode(c)|  ∈  is minimum, where | binarycode(c)| represents the length of binary code of 
character c. That means the sum of the lengths of all character codes should be minimum [the sum of each character’s frequency multiplied 
by the number of bits in the representation]. 
 

The basic idea behind the Huffman coding algorithm is to use fewer bits for more frequently occurring characters. The Huffman coding 
algorithm compresses the storage of data using variable length codes. We know that each character takes 8 bits for representation. But in 
general, we do not use all of them. Also, we use some characters more frequently than others. When reading a file, the system generally reads 
8 bits at a time to read a single character. But this coding scheme is inefficient. The reason for this is that some characters are more frequently 
used than other characters.  
 

Let's say that the character ′푒′ is used 10 times more frequently than the character ′푞′. It would then be advantageous for us to instead use a 
7 bit code for e and a 9 bit code for 푞 because that could reduce our overall message length. 
 

On average, using Huffman coding on standard files can reduce them anywhere from 10% to 30% depending on the character frequencies. 
The idea behind the character coding is to give longer binary codes for less frequent characters and groups of characters. Also, the character 
coding is constructed in such a way that no two character codes are prefixes of each other.  

An Example 
 

Let's assume that after scanning a file we find the following character frequencies: 
 

Character Frequency 
푎 12 
푏 2 
푐 7 
푑 13 
푒 14 
푓 85 

 

Given this, create a binary tree for each character that also stores the frequency with which it occurs (as shown below). 
 
 

 
 
 

The algorithm works as follows: In the list, find the two binary trees that store minimum frequencies at their nodes.  
 

Connect these two nodes at a newly created common node that will store no character but will store the sum of the frequencies of all the 
nodes connected below it. So our picture looks like this: 
 
 
 
 
 
 

Repeat this process until only one tree is left: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

b-2 c-7 a-12 d-13 e-14 f-85 

b-2 c-7 a-12 d-13 e-14 f-85 

9 

b-2 c-7 

a-12 d-13 e-14 

f-85 

9 

21 27 



 

Data Structures and Algorithms Made Easy in Java Greedy Algorithms                      

 

17.7 Understanding Greedy Technique    348 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Once the tree is built, each leaf node corresponds to a letter with a code. To determine the code for a particular node, traverse from the root 
to the leaf node. For each move to the left, append a 0 to the code, and for each move to the right, append a 1. As a result, for the above 
generated tree, we get the following codes: 
 
 

Letter Code 
a 001 
b 0000 
c 0001 
d 010 
e 011 
f 1 

Calculating Bits Saved 
 

Now, let us see how many bits that Huffman coding algorithm is saving. All we need to do for this calculation is see how many bits are originally 
used to store the data and subtract from that the number of bits that are used to store the data using the Huffman code. In the above example, 
since we have six characters, let's assume each character is stored with a three bit code. Since there are 133 such characters (multiply total 
frequencies by 3), the total number of bits used is 3 ∗  133 =  399. Using the Huffman coding frequencies we can calculate the new total 
number of bits used: 

Letter Code Frequency Total Bits 
a 001 12 36 
b 0000 2 8 
c 0001 7 28 
d 010 13 39 
e 011 14 42 
f 1 85 85 

Total                 238 
 

Thus, we saved 399 −  238 =  161 bits, or nearly 40% of the storage space. 
 

      HuffmanCodingAlgorithm(int[] A) { 
            //Initialize a priority queue, PQ, to contain the 푛 elements in A; 
            Heap PQ = new Heap(); 

b-2 c-7 

a-12 d-13 e-14 

f-85 

9 

21 27 

48 

b-2 c-7 

a-12 d-13 e-14 

f-85 

9 

21 27 

48 

133 
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            BinaryTreeNode temp; 
            for (i =  1; i<A.length; i++) { 
                  temp   = new BinaryTreeNode(); 
                  temp.left = PQ .deleteMin(); 
                  temp.right = PQ.deleteMin(); 
                  temp.data = temp.left.data  +  temp.right.data; 
                  PQ.insert(temp); 
            } 
            return PQ; 
      } 
 

Time Complexity: O(푛푙표푔푛), since there will be one build_heap, 2푛 −  2 delete_mins, and 푛 −  2 inserts, on a priority queue that never 
has more than 푛 elements. Refer to the 푃푟푖표푟푖푡푦 푄푢푒푢푒푠 chapter for details. 

17.8 Greedy Algorithms: Problems & Solutions 
 

Problem-1 Given an array 퐹 with size 푛. Assume the array content 퐹[푖] indicates the length of the 푖  file and we want to merge all 
these files into one single file. Check whether the following algorithm gives the best solution for this problem or not? 
 

Algorithm: Merge the files contiguously. That means select the first two files and merge them. Then select the output of the previous 
merge and merge with the third file, and keep going… 
 

Note: Given two files 퐴 and 퐵 with sizes 푚 and 푛, the complexity of merging is O(푚 + 푛). 
 

Solution: This algorithm will not produce the optimal solution. For a counter example, let us consider the following file sizes array. 
 

퐹 = {10,5,100,50,20,15} 
 

As per the above algorithm, we need to merge the first two files (10 and 5 size files), and as a result we get the following list of files. In the list 
below, 15 indicates the cost of merging two files with sizes 10 and 5. 
 

{15,100,50,20,15} 
 

Similarly, merging 15 with the next file 100 produces:  {115,50,20,15}. For the subsequent steps the list becomes  
                                                                 

 {165,20,15}, {185,15} 
 

Finally,                   {200} 
 

The total cost of merging = Cost of all merging operations = 15 + 115 + 165 + 185 + 200 = 680. 
 

To see whether the above result is optimal or not, consider the order: {5, 10, 15, 20, 50,100}. For this example, following the same approach, 
the total cost of merging = 15 + 30 + 50 + 100 + 200 = 395. So, the given algorithm is not giving the best (optimal) solution. 
 

Problem-2 Similar to Problem-1, does the following algorithm give the optimal  solution? 
 

Algorithm: Merge the files in pairs. That means after the first step, the algorithm produces the 푛/2 intermediate files. For the next step, 
we need to consider these intermediate files and merge them in pairs and keep going. 
 

Note: Sometimes this algorithm is called 2-way merging. Instead of two files at a time, if we merge 퐾 files at a time then we call it 퐾-way 
merging.  

 

Solution: This algorithm will not produce the optimal solution and consider the previous example for a counter example. As per the above 
algorithm, we need to merge the first pair of files (10 and 5 size files), the second pair of files (100 and 50) and the third pair of files (20 and 
15). As a result we get the following list of files.   

{15, 150, 35} 
 

Similarly, merge the output in pairs and this step produces [below, the third element does not have a pair element, so keep it the same]: 
 

{165,35} 
Finally,                                                                                                           {200} 
 

The total cost of merging = Cost of all merging operations = 15 + 150 + 35 + 165 + 200 = 565. This is much more than 395 (of the 
previous problem). So, the given algorithm is  not giving the best (optimal) solution. 
 

Problem-3 In Problem-1, what is the best way to merge 푎푙푙 푡ℎ푒 푓푖푙푒푠 into a single file? 
 

Solution: Using the Greedy algorithm we can reduce the total time for merging the given files. Let us consider the following algorithm. 
 

Algorithm: 
1. Store file sizes in a priority queue. The key of elements are file lengths. 
2. Repeat the following until there is only one file: 

a. Extract two smallest elements 푋 and 푌. 
b. Merge 푋 and 푌 and insert this new file in the priority queue. 

 

Variant of same algorithm: 
 

1. Sort the file sizes in ascending order. 
2. Repeat the following until there is only one file: 
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a. Take the first two elements (smallest) 푋 and 푌. 
b. Merge 푋 and 푌 and insert this new file in the sorted list. 

 

To check the above algorithm, let us trace it with the previous example. The given array is:         

퐹 = {10,5,100,50,20,15} 
 

As per the above algorithm, after sorting the list it becomes: {5, 10, 15, 20, 50,100}. We need to merge the two smallest files (5 and 10 size 
files) and as a result we get the following list of files. In the list below, 15 indicates the cost of merging two files with sizes 10 and 5.        

{15,15,20,50,100} 
 

Similarly, merging the two smallest elements (15 and 15) produces: {20,30,50,100}. For the subsequent steps the list becomes                                         
                                                                                               {50,50,100} //merging 20 and 30 

                               {100,100}   //merging 20 and 30 
 

Finally,                                                       {200} 
 

The total cost of merging = Cost of all merging operations = 15 + 30 + 50 + 100 + 200 = 395. So, this algorithm is producing the optimal 
solution for this merging problem. 
 

Time Complexity: O(푛푙표푔푛) time using heaps to find best merging pattern plus the optimal cost of merging the files. 
       

Problem-4 Interval Scheduling Algorithm: Given a set of 푛 intervals S = {(start ,  end )|1 ≤  i ≤  n}. Let us assume that we want 
to find a maximum subset 푆′ of 푆 such that no pair of intervals in 푆′ overlaps. Check whether the following algorithm works or not.        

Algorithm:  while (푆 is not empty) { 
Select the interval 퐼 that overlaps the least number of other intervals. 
Add 퐼 to final solution set 푆′. 
Remove all intervals from 푆 that overlap with 퐼. 

                    } 
 

Solution: This algorithm does not solve the problem of finding a maximum subset of non-overlapping intervals. Consider the following 
intervals. The optimal solution is {푀, 푂, 푁, 퐾}. However, the interval that overlaps with the fewest others is 퐶, and the given algorithm will 
select 퐶 first. 
 

 
  
 

                 
 

 
  

Problem-5 In Problem-4, if we select the interval that starts earliest (also not overlapping with already chosen intervals), does it give 
the optimal solution? 

 

Solution:  No. It will not give the optimal solution. Let us consider the example below. It can be seen that the optimal solution is 4 whereas 
the given algorithm gives 1. 
 
 
 
 
 
                 

Problem-6 In Problem-4, if we select the shortest interval (but it is not overlapping the already chosen intervals), does it give the 
optimal solution? 

 

Solution: This also will not give the optimal solution. Let us consider the example below. It can be seen that the optimal solution is 2 whereas 
the algorithm gives 1.       

                            Optimal Solution 
 

                                                                                                                                           
                                                                                                                                             Current Algorithm gives 

 
 

Problem-7 For Problem-4, what is the optimal solution? 
 

Solution: Now, let us concentrate on the optimal greedy solution. 
 

Algorithm:  
            Sort intervals according to the right-most ends [end times];  

for every consecutive interval { 
– If the left-most end is after the right-most end of the last selected interval then we select this interval 
– Otherwise we skip it and go to the next interval 

      } 
 

M O N K 

C 

 Optimal Solution 

        Given Algorithm gives 
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Time complexity = Time for sorting + Time for scanning = O(푛푙표푔푛 + 푛)  = O(푛푙표푔푛).  
 

Problem-8  Consider the following problem. 
Input: S =  {(start , end )|1 ≤  i ≤  n} of intervals. The interval (start , end ) we can treat as a request for a room for a class with 
time start  to time end . 
Output: Find an assignment of classes to rooms that uses the fewest number of rooms.  
Consider the following iterative algorithm. Assign as many classes as possible to the first room, then assign as many classes as possible to 
the second room, then assign as many classes as possible to the third room, etc. Does this algorithm give the best solution? 

 

Note:  In fact, this problem is similar to the interval scheduling algorithm. The only difference is the application. 
 

Solution: This algorithm does not solve the interval-coloring problem. Consider the following intervals:  
 

            A 
   

                      B       C     D 
 

     E       F      G 
 

 
 

Maximizing the number of classes in the first room results in having {퐵, 퐶, 퐹, 퐺} in one room, and classes 퐴, 퐷, and 퐸 each in their own 
rooms, for a total of 4. The optimal solution is to put 퐴 in one room, { 퐵, 퐶, 퐷 } in another, and {퐸, 퐹, 퐺} in another, for a total of 3 rooms. 
 

Problem-9 For Problem-8, consider the following algorithm. Process the classes in increasing order of start times. Assume that we 
are processing class 퐶. If there is a room 푅 such that 푅 has been assigned to an earlier class, and 퐶 can be assigned to 푅 without 
overlapping previously assigned classes, then assign 퐶 to 푅. Otherwise, put 퐶 in a new room. Does this algorithm solve the problem? 

 

Solution: This algorithm solves the interval-coloring problem. Note that if the greedy algorithm creates a new room for the current class 푐 , 
then because it examines classes in order of start times, 푐  start point must intersect with the last class in all of the current rooms. Thus when 
greedy creates the last room, 푛, it is because the start time of the current class intersects with 푛 −  1 other classes. But we know that for any 
single point in any class it can only intersect with at most s other class, so it must then be that 푛 ≤  푆. As 푠 is a lower bound on the total 
number needed, and greedy is feasible, it is thus also optimal. 
 

Note: For optimal solution refer to Problem-7 and for code refer to Problem-10. 
 

Problem-10 Suppose we are given two arrays 푆푡푎푟푡[1 . . 푛] and 퐹푖푛푖푠ℎ[1 . . 푛] listing the start and finish times of each class. Our task 
is to choose the largest possible subset 푋 ∈  {1, 2, . . . , 푛} so that for any pair 푖, 푗 ∈  푋, either 푆푡푎푟푡 [푖]  >  퐹푖푛푖푠ℎ[푗] or 푆푡푎푟푡 [푗]  >
 퐹푖푛푖푠ℎ [푖] 

 

Solution: Our aim is to finish the first class as early as possible, because that leaves us with the most remaining classes. We scan through the 
classes in order of finish time, and whenever we encounter a class that doesn’t conflict with the latest class so far, then we take that class. 
 

      public int[] LargestTasks(int[] Start, int Finish []) { 
 sort Finish[]; 

rearrange Start[] to match; 
 count = 1; 
 X[count]  = 1; 
 for (int i  = 2;  i<Start.length;  i++) { 
  if(Start[i] > Finish[X[count]])  { 
   count  = count + 1; 
   X[count] =  I; 
  } 
 } 
 return X[1 .. count]; 
      } 
 

This algorithm clearly runs in O(푛푙표푔푛) time due to sorting. 
 

Problem-11 Consider the making change problem in the country of India. The input to this problem is an integer 푀. The output 
should be the minimum number of coins to make 푀 rupees of change. In India, assume the available coins are 1, 5, 10, 20, 25, 50 
rupees. Assume that we have an unlimited number of coins of each type.  
 

For this problem, does the following algorithm produce the optimal solution or not? Take as many coins as possible from the highest 
denominations. So for example, to make change for 234 rupees the greedy algorithm would take four 50 rupee coins, one 25 rupee 
coin, one 5 rupee coin, and four 1 rupee coins. 

 

Solution: The greedy algorithm is not optimal for the problem of making change with the minimum number of coins when the denominations 
are 1, 5, 10, 20, 25, and 50. In order to make 40 rupees, the greedy algorithm would use three coins of 25, 10, and 5 rupees. The optimal 
solution is to use two 20-shilling coins. 
 

Note: For the optimal solution, refer to the 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter. 
 

Problem-12 Let us assume that we are going for a long drive between cities A and B. In preparation for our trip, we have downloaded 
a map that contains the distances in miles between all the petrol stations on our route. Assume that our car’s tanks can hold petrol for 푛 
miles. Assume that the value 푛 is given. Suppose we stop at every point. Does it give the best solution? 
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Solution: Here the algorithm does not produce optimal solution. Obvious Reason: filling at each petrol station does not produce optimal 
solution.  
 

Problem-13 For problem Problem-12, stop if and only if you don’t have enough petrol to make it to the next gas station, and if you 
stop, fill the tank up all the way. Prove or disprove that this algorithm correctly solves the problem.  

 

Solution:  The greedy approach works: We start our trip from 퐴 with a full tank. We check our map to determine the farthest petrol station 
on our route within 푛 miles. We stop at that petrol station, fill up our tank and check our map again to determine the farthest petrol station 
on our route within n miles from this stop. Repeat the process until we get to 퐵. 
 

Note: For code, refer to 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter. 
 

Problem-14 Fractional Knapsack problem: Given items 푡 , 푡 , . . . , 푡   (items we might want to carry in our backpack) with associated 
weights s , s , … , 푠  and benefit values 푣 , 푣 , . . . , 푣 , how can we maximize the total benefit considering that we are subject to an 
absolute weight limit 퐶? 

 

Solution:  
 

Algorithm: 
1) Compute value per size density for each item 푑 = . 

2) Sort each item by its value density. 
3) Take as much as possible of the density item not already in the bag 

 

Time Complexity: O(푛푙표푔푛) for sorting and O(푛) for greedy selections. 
 

Note: The items can be entered into a priority queue and retrieved one by one until either the bag is full or all items have been selected. This 
actually has a better runtime of O(푛 +  푐푙표푔푛) where 푐 is the number of items that actually get selected in the solution. There is a savings in 
runtime if  푐 = O(푛), but otherwise there is no change in the complexity. 
 

Problem-15 Number of railway-platforms: At a railway station, we have a time-table with the trains’ arrivals and departures. We need 
to find the minimum number of platforms so that all the trains can be accommodated as per their schedule. 
Example: The timetable is as given below, the answer is 3. Otherwise, the railway station will not be able to accommodate all the trains. 
 

Rail Arrival Departure 

Rail A 0900 hrs 0930 hrs 

Rail B 0915 hrs 1300 hrs 

Rail C 1030 hrs 1100 hrs 

Rail D 1045 hrs 1145 hrs 
 

Solution: Let’s take the same example as described above. Calculating the number of platforms is done by determining the maximum number 
of trains at the railway station at any time. 
 

First, sort all the arrival(퐴) and departure(퐷) times in an array. Then, save the corresponding arrivals and departures in the array also. After 
sorting, our array will look like this: 
 

0900 0915 0930 1030 1045 1100 1145 1300 

A A D A A D D D 
 

Now modify the array by placing 1 for 퐴 and -1 for 퐷. The new array will look like this: 
 

1 1 -1 1 1 -1 -1 -1 
 

Finally make a cumulative array out of this: 
 

1 2 1 2 3 2 1 0 
 

Our solution will be the maximum value in this array. Here it is 3.  
 

Note: If we have a train arriving and another departing at the same time, then put the departure time first in the sorted array.  
 

Problem-16 Consider a country with very long roads and houses along the road. Assume that the residents of all houses use cell 
phones. We want to place cell phone towers along the road, and each cell phone tower covers a range of 7 kilometers. Create an efficient 
algorithm that allow for the fewest cell phone towers.   

 

Solution:   
 

             7 miles             7 miles 
 
First uncovered house               Base Station              Uncovered houses                      Base Station 
 

The algorithm to locate the least number of cell phone towers: 
1) Start from the beginning of the road 
2) Find the first uncovered house on the road 
3) If there is no such house, terminate this algorithm. Otherwise, go to next step 
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4) Locate a cell phone tower 7 miles away after we find this house along the road 
5) Go to step 2 

 

Problem-17 Preparing Songs Cassette: Suppose we have a set of 푛 songs and want to store these on a tape. In the future, users will 
want to read those songs from the tape. Reading a song from a tape is not like reading from a disk; first we have to fast-forward past all 
the other songs, and that takes a significant amount of time. Let 퐴[1 . . 푛] be an array listing the lengths of each song, specifically, song 푖 
has length 퐴[푖]. If the songs are stored in order from 1 to 푛, then the cost of accessing the 푘  song is:  

퐶(푘) = 퐴[푖] 

The cost reflects the fact that before we read song 푘 we must first scan past all the earlier songs on the tape. If we change the order of 
the songs on the tape, we change the cost of accessing the songs, with the result that some songs become more expensive to read, but 
others become cheaper. Different song orders are likely to result in different expected costs. If we assume that each song is equally likely 
to be accessed, which order should we use if we want the expected cost to be as small as possible? 

 

Solution: The answer is simple. We should store the songs in the order from shortest to longest. Storing the short songs at the beginning 
reduces the forwarding times for the remaining jobs. 
 

Problem-18 Let us consider a set of events at 퐻퐼푇퐸푋 (퐻푦푑푒푟푎푏푎푑 퐶표푛푣푒푛푡푖표푛 퐶푒푛푡푒푟). Assume that there are 푛 events where 
each takes one unit of time. Event 푖 will provide a profit of 푝  (푝  > 0) if started at or before time 푡 , where 푡  is an arbitrary number. If 
an event is not started by 푡  then there is no benefit in scheduling it at all. All events can start as early as time 0. Give the efficient algorithm 
to find a schedule that maximizes the profit. 

 

Solution: This problem can be solved with greedy technique. The setting is that we have 푛 events, each of which takes unit time, and a 
convention center on which we would like to schedule them in as profitable a manner as possible. Each event has a profit associated with it, 
as well as a deadline; if the event is not scheduled by the deadline, then we don’t get the profit.  
 

Because each event takes the same amount of time, we will think of a 푆푐ℎ푒푑푢푙푒 퐸 as consisting of a sequence of event “slots” 0, 2, 3, . . . 
where 퐸(푡) is the event scheduled in slot t. 
 

More formally, the input is a sequence (푡 , 푝 ),( 푡 , 푝 ), (푡 , 푝 ) · · · ,( 푡 , 푝 ) where 푝  is a nonnegative real number representing the 
profit obtainable from event 푖, and 푡  is the deadline for event 푖. Notice that, even if some event deadlines were bigger than 푛, we can schedule 
them in a slot less than 푛 as each event takes only one unit of time. 
 

Algorithm:  
1. Sort the events according to their profits 푝  in the decreasing order.  
2. Now, for each of the events: 

o Schedule event 푖 in the latest possible free slot meeting its deadline. 
o If there is no such slot, do not schedule event 푖. 

 

The sort takes O(푛푙표푔푛) and the scheduling take O(푛) for 푛 events. So the overall running time of the algorithm is O(푛푙표푔푛) time. 
 

Problem-19 Let us consider a customer-care server (say, mobile customer-care) with 푛 customers to be served in the queue. For 
simplicity assume that the service time required by each customer is known in advance and it is  푤  minutes for customer 푖.  So if, for 
example, the customers are served in order of increasing 푖, then the 푖  customer has to wait:  ∑ 푤  푚푖푛푢푡푒푠. The total waiting time 
of all customers can be given as = ∑ ∑ 푤 . What is the best way to serve the customers so that the total waiting time can be reduced? 
 

Solution: This problem can be easily solved using greedy technique. Since our objective is to reduce the total waiting time, what we can do is, 
select the customer whose service time is less. That means, if we process the customers in the increasing order of service time then we can 
reduce the total waiting time. 
 

Time Complexity: O(푛푙표푔푛).  
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18.1 Introduction 
 

In the 퐺푟푒푒푑푦 chapter, we have seen that for many problems the Greedy strategy failed to provide optimal solutions. Among those problems, 
there are some that can be easily solved by using the 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 (D & 퐶) technique.  Divide and Conquer is an important algorithm 
design technique based on recursion.  
 

The 퐷 & 퐶 algorithm works by recursively breaking down a problem into two or more sub problems of the same type, until they become 
simple enough to be solved directly. The solutions to the sub problems are then combined to give a solution to the original problem. 

18.2 What is the Divide and Conquer Strategy? 
 

The D & C strategy solves a problem by: 
 

1) 퐷푖푣푖푑푒: Breaking the problem into subproblems that are themselves smaller instances of the same type of problem. 
2) 퐶표푛푞푢푒푟: Conquer the subproblems by solving them recursively. 
3) 퐶표푚푏푖푛푒: Combine the solutions to the subproblems into the solution for the original given problem. 

18.3 Does Divide and Conquer Always Work? 
 

It’s not possible to solve all the problems with the Divide & Conquer technique. As per the definition of D & C, the recursion solves the 
subproblems which are of the same type. For all problems it is not possible to find the subproblems which are the same size and 퐷 & 퐶 is not 
a choice for all problems. 

18.4 Divide and Conquer Visualization 
 

For better understanding, consider the following visualization. Assume that 푛 is the size of the original problem. As described above, we can 
see that the problem is divided into sub problems with each of size 푛/푏 (for some constant 푏). We solve the sub problems recursively and 
combine their solutions to get the solution for the original problem. 
 

 
 
 
 
 

 
 
 

 
 
 
 
 
 

DivideAndConquer ( P )  { 
     if( small ( P ) )  
          // P is very small so that a solution is obvious 
          return solution ( n ); 
          divide the problem P into k sub problems P1, P2, ..., Pk; 
          return (  
               Combine (  
               DivideAndConquer ( P1 ), 

a problem of size 푛 

a subproblem of size 푛/푏 a subproblem of size 푛/푏 
 

Solution to subproblem 푛/푏 Solution to subproblem 푛/푏 

Combine sub-solutions for solution to 
푛

………….. 

Subproblems 
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               DivideAndConquer ( P2 ), 
               ... 
               DivideAndConquer ( Pk )  
               )  
     ); 
} 

18.5 Understanding Divide and Conquer 
      

For a clear understanding of D & 퐶, let us consider a story. There was an old man who was a rich farmer and had seven sons. He was afraid 
that when he died, his land and his possessions would be divided among his seven sons, and that they would quarrel with one another.  
 

So he gathered them together and showed them seven sticks that he had tied together and told them that anyone who could break the bundle 
would inherit everything. They all tried, but no one could break the bundle. Then the old man untied the bundle and broke the sticks one by 
one. The brothers decided that they should stay together and work together and succeed together. The moral for problem solvers is different. 
If we can't solve the problem, divide it into parts, and solve one part at a time. 
 

In earlier chapters we have already solved many problems based on 퐷 & 퐶 strategy: like Binary Search, Merge Sort, Quick Sort, etc.... Refer 
to those topics to get an idea of how 퐷 & 퐶 works. Below are a few other real-time problems which can easily be solved with 퐷 & 퐶 strategy. 
For all these problems we can find the subproblems which are similar to the original problem.  
 

 Looking for a name in a phone book: We have a phone book with names in alphabetical order. Given a name, how do we find 
whether that name is there in the phone book or not? 

 Breaking a stone into dust: We want to convert a stone into dust (very small stones). 
 Finding the exit in a hotel: We are at the end of a very long hotel lobby with a long series of doors, with one door next to us. We 

are looking for the door that leads to the exit. 
 Finding our car in a parking lot. 

18.6 Advantages of Divide and Conquer 
 

Solving difficult problems: 퐷 & 퐶 is a powerful method for solving difficult problems. As an example, consider the Tower of Hanoi problem. 
This requires breaking the problem into subproblems, solving the trivial cases and combining the subproblems to solve the original problem. 
Dividing the problem into subproblems so that subproblems can be combined again is a major difficulty in designing a new algorithm. For 
many such problems D & C provides a simple solution. 
 

Parallelism: Since 퐷 & 퐶 allows us to solve the subproblems independently, this allows for execution in multi-processor machines, especially 
shared-memory systems where the communication of data between processors does not need to be planned in advance, because different 
subproblems can be executed on different processors. 
 

Memory access: 퐷 & 퐶 algorithms naturally tend to make efficient use of memory caches. This is because once a subproblem is small, all its 
subproblems can be solved within the cache, without accessing the slower main memory.  

18.7 Disadvantages of Divide and Conquer 
 

One disadvantage of the 퐷 & 퐶 approach is that recursion is slow. This is because of the overhead of the repeated subproblem calls. Also, 
the 퐷 & 퐶 approach needs stack for storing the calls (the state at each point in the recursion). Actually this depends upon the implementation 
style. With large enough recursive base cases, the overhead of recursion can become negligible for many problems.  
 

Another problem with 퐷 & 퐶 is that, for some problems, it may be more complicated than an iterative approach. For example, to add 푛 
numbers, a simple loop to add them up in sequence is much easier than a D & C approach that breaks the set of numbers into two halves, 
adds them recursively, and then adds the sums. 

18.8 Master Theorem 
 

As stated above, in the 퐷 & 퐶 method, we solve the sub problems recursively. All problems are generally defined in terms of recursive 
definitions. These recursive problems can easily be solved using Master theorem. For details on Master theorem, refer to the 퐼푛푡푟표푑푢푐푡푖표푛 
푡표 퐴푛푎푙푦푠푖푠 표푓 퐴푙푔표푟푖푡ℎ푚푠 chapter. Just for continuity, let us reconsider the Master theorem. 
 

If the recurrence is of the form 푇(푛)  = 푎푇( )  + Θ(푛 푙표푔 푛), where 푎 ≥ 1, 푏 >  1, 푘 ≥ 0 and 푝 is a real number, then the complexity 
can be directly given as: 
 

1) If 푎 >  푏 , then 푇(푛) = Θ 푛  
2) If 푎 =  푏  

a. If 푝 > −1, then 푇(푛) = Θ 푛 푙표푔 푛  
b. If 푝 =  −1, then 푇(푛) = Θ 푛 푙표푔푙표푔푛  
c. If 푝 < −1, then 푇(푛) = Θ 푛  

3) If 푎 <  푏  
a. If 푝 ≥ 0, then 푇(푛) = Θ(푛 푙표푔 푛) 
b. If 푝 < 0, then 푇(푛) = O(푛 ) 
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18.9 Divide and Conquer Applications 
 

 Binary Search 
 Merge Sort and Quick Sort 
 Median Finding 
 Min and Max Finding 
 Matrix Multiplication 
 Closest Pair problem 

18.10 Divide and Conquer: Problems & Solutions 
 

Problem-1 Let us consider an algorithm 퐴 which solves problems by dividing them into five subproblems of half the size, recursively 
solving each subproblem, and then combining the solutions in linear time. What is the complexity of this algorithm? 

 

Solution: Let us assume that the input size is n and 푇(푛) defines the solution to the given problem. As per the description, the algorithm 
divides the problem into 5 sub problems with each of size . So we need to solve 5T( ) subproblems. After solving these sub problems, the 
given array (linear time) is scanned to combine these solutions. The total recurrence algorithm for this problem can be given as: 푇(푛) =
5푇 +O(푛). Using the Master theorem (of D & C), we get the complexity as O(푛 ) ≈ O(푛 ) ≈ O(푛 ). 
 

Problem-2 Similar to Problem-1, an algorithm 퐵 solves problems of size 푛 by recursively solving two subproblems of size 푛 −  1 
and then combining the solutions in constant time. What is the complexity of this algorithm? 

 

Solution: Let us assume that the input size is n and 푇(푛) defines the solution to the given problem. As per the description of algorithm we 
divide the problem into 2 sub problems with each of size n − 1. So we have to solve 2T(푛 − 1) sub problems. After solving these sub 
problems, the algorithm takes only a constant time to combine these solutions. The total recurrence algorithm for this problem can be given 
as: 
                                                                                   푇(푛) = 2푇(푛 − 1) +O(1) 
Using Master theorem (of 푆푢푏푡푟푎푐푡 푎푛푑 퐶표푛푞푢푒푟), we get the complexity as O 푛 2  = O(2 ). (Refer to 퐼푛푡푟표푑푢푐푡푖표푛 chapter for more 
details).  

 

Problem-3 Again similar to Problem-1, another algorithm 퐶 solves problems of size 푛 by dividing them into nine subproblems of 
size , recursively solving each subproblem, and then combining the solutions in O(푛 ) time. What is the complexity of this algorithm? 

 

Solution: Let us assume that input size is n and 푇(푛) defines the solution to the given problem. As per the description of algorithm we divide 
the problem into 9 sub problems with each of size . So we need to solve 9푇( ) sub problems. After solving the sub problems, the algorithm 

takes quadratic time to combine these solutions. The total recurrence algorithm for this problem can be given as: 푇(푛) = 9푇 + O(푛 ). 

Using 퐷 & 퐶 Master theorem, we get the complexity as O(푛 푙표푔푛). 
 

Problem-4 Write a recurrence and solve it.  
 

       public void function(int n) { 
 if(n > 1) { 
  System.out.println(("*"); 
  function( ); 

  function( ); 
 } 
       } 
 

Solution: Let us assume that input size is 푛 and 푇(푛) defines the solution to the given problem. As per the given code, after printing the 
character and dividing the problem into 2 subproblems with each of size  and solving them. So we need to solve 2T( ) subproblems. After 
solving these subproblems, the algorithm is not doing anything for combining the solutions. The total recurrence algorithm for this problem 
can be given as: 

                                                                                    푇(푛) = 2푇 +O(1) 

Using Master theorem (of D & C), we get the complexity as O 푛푙표푔2
2

≈ O(푛 ) = O(푛). 
  

Problem-5 Given an array, give an algorithm for finding the maximum and minimum. 
 

Solution: Refer to 푆푒푙푒푐푡푖표푛 퐴푙푔표푟푖푡ℎ푚푠 chapter. 
 

Problem-6 Discuss Binary Search and its complexity. 
 

Solution:  Refer to 푆푒푎푟푐ℎ푖푛푔 chapter for discussion on Binary Search. 
 

Analysis: Let us assume that input size is 푛 and 푇(푛) defines the solution to the given problem. The elements are in sorted order. In binary 
search we take the middle element and check whether the element to be searched is equal to that element or not. If it is equal then we return 
that element.  
 

If the element to be searched is greater than the middle element then we consider the right sub-array for finding the element and discard the 
left sub-array. Similarly, if the element to be searched is less than the middle element then we consider the left sub-array for finding the 
element and discard the right sub-array.  



 

Data Structures and Algorithms Made Easy in Java Divide and Conquer Algorithms                      

 

18.10 Divide and Conquer: Problems & Solutions    357 

 
 

 

What this means is, in both the cases we are discarding half of the sub-array and considering the remaining half only. Also, at every iteration 
we are dividing the elements into two equal halves. As per the above discussion every time we divide the problem into 2 sub problems with 
each of size  and solve one T( ) sub problem. The total recurrence algorithm for this problem can be given as: 

                                                                                    푇(푛) = 2푇 +O(1) 
Using Master theorem (of D & C), we get the complexity as O(푙표푔푛). 
 

Problem-7 Consider the modified version of binary search. Let us assume that the array is divided into 3 equal parts (ternary search) 
instead of 2 equal parts. Write the recurrence for this ternary search and find its complexity. 

 

Solution: From the discussion on Problem-5, binary search has the recurrence relation: T(n) = T +O(1). Similar to the Problem-5 

discussion, instead of 2 in the recurrence relation we use "3". That indicates that we are dividing the array into 3 sub-arrays with equal size 
and considering only one of them. So, the recurrence for the ternary search can be given as: 

                                                                                              푇(푛) = 푇 +O(1) 
Using Master theorem (of 퐷 & 퐶), we get the complexity as O(푙표푔 ) ≈ O(푙표푔푛) (we don’t have to worry about the base of 푙표푔 as they are 
constants). 
 

Problem-8 In Problem-5, what if we divide the array into two sets of sizes approximately one-third and two-thirds. 
 

Solution: We now consider a slightly modified version of ternary search in which only one comparison is made, which creates two partitions, 
one of roughly  elements and the other of  . Here the worst case comes when the recursive call is on the larger  element part. So the 
recurrence corresponding to this worst case is:  

                                                                                              푇(푛) = 푇 + O(1) 
 

Using Master theorem (of D & C), we get the complexity as O(푙표푔푛). It is interesting to note that we will get the same results for general 푘-
ary search (as long as 푘 is a fixed constant which does not depend on 푛) as 푛 approaches infinity. 
 

Problem-9 Discuss Merge Sort and its complexity. 
 

Solution: Refer to 푆표푟푡푖푛푔 chapter for discussion on Merge Sort. In Merge Sort, if the number of elements are greater than 1, then divide 
them into two equal subsets, the algorithm is recursively invoked on the subsets, and the returned sorted subsets are merged to provide a 
sorted list of the original set. The recurrence equation of the Merge Sort algorithm is: 

푇(푛) = 2푇
푛
2 + 푂(푛), 푖푓 푛 > 1

0                          , 푖푓푛 = 1
 

 

If we solve this recurrence using D & C Master theorem it gives O(nlogn) complexity. 
 

Problem-10 Discuss Quick Sort and its complexity. 
 

Solution: Refer to 푆표푟푡푖푛푔 chapter for discussion on Quick Sort. For Quick Sort we have different complexities for best case and worst case.  
 

Best Case: In 푄푢푖푐푘 푆표푟푡, if the number of elements is greater than 1 then they are divided into two equal subsets, and the algorithm is 
recursively invoked on the subsets. After solving the sub problems we don’t need to combine them. This is because in 푄푢푖푐푘 푆표푟푡 they are 
already in sorted order. But, we need to scan the complete elements to partition the elements. The recurrence equation of 푄푢푖푐푘 푆표푟푡 best 
case is 

푇(푛) = 2푇
푛
2 + 푂(푛), 푖푓 푛 > 1

0                          , 푖푓푛 = 1
 

 

If we solve this recurrence using Master theorem of D & C gives O(푛푙표푔푛) complexity. 
 

Worst Case: In the worst case, Quick Sort divides the input elements into two sets and one of them contains only one element. That means 
other set has 푛 − 1 elements to be sorted. Let us assume that the input size is 푛 and 푇(푛) defines the solution to the given problem. So we 
need to solve 푇(푛 − 1), 푇(1) subproblems. But to divide the input into two sets Quick Sort needs one scan of the input elements (this takes 
O(푛)).  
 

After solving these sub problems the algorithm takes only a constant time to combine these solutions. The total recurrence algorithm for this 
problem can be given as: 

푇(푛) = 푇(푛 − 1) +O(1) +O(푛). 
 

This is clearly a summation recurrence equation. So, 푇(푛) = ( ) = O(푛 ). 

Note: For the average case analysis, refer to 푆표푟푡푖푛푔 chapter. 
 

Problem-11 Given an infinite array in which the first 푛 cells contain integers in sorted order and the rest of the cells are filled with 
some special symbol (say, $). Assume we do not know the 푛 value. Give an algorithm that takes an integer 퐾 as input and finds a position 
in the array containing 퐾, if such a position exists, in O(푙표푔푛) time.  

 

Solution: Since we need an O(푙표푔푛) algorithm, we should not search for all the elements of the given list (which gives O(푛) complexity). To 
get O(푙표푔푛) complexity one possibility is to use binary search. But in the given scenario we cannot use binary search as we do not know the 
end of the list. Our first problem is to find the end of the list. To do that, we can start at the first element and keep searching with doubled 
index. That means we first search at index 1 then, 2, 4, 8 …  
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       public int FindInInfiniteSeries(int[] A) { 
 int mid, l = r = 1; 
 while( A[r] != ‘$’) { 
  l = r; 
  r = r × 2; 
 } 
 while( (r – l > 1 ) { 
  mid = (r – l)/2 + l;  
  if( A[mid] == ‘$’) r = mid; 
  else      l = mid; 
 } 
       } 
 

It is clear that, once we have identified a possible interval 퐴[푖, . . . ,2푖] in which 퐾 might be, its length is at most 푛 (since we have only 푛 numbers 
in the array 퐴), so searching for 퐾 using binary search takes O(푙표푔푛) time. 
 

Problem-12  Given a sorted array of non-repeated integers 퐴[1. . 푛], check whether there is an index 푖 for which 퐴[푖]  =  푖. Give a 
divide-and-conquer algorithm that runs in time O(푙표푔푛). 

 

Solution: We can use binary search to get the O(푙표푔푛) complexity. 
 

       public int IndexSearcher(int[] A , int l, int r) { 
 int mid = (r – l)/2 + l; 
 if(r-l <= 1) { 
                         if(A[l] == l || A[r] == r) return 1; 
         else  return 0; 
 } 
 if(A[mid] < mid ) 
  return IndexSearcher( A, mid + 1,r); 
 if(A[mid] > mid) 
  return IndexSearcher( A, 1, mid - 1); 
 return mid; 
       } 
 

Recurrence for the above function T(n) = T(n/2) +O(1). Using master theorem we get, T(n) = O(logn). 
 

Problem-13  We are given two sorted lists of size 푛. Give an algorithm for finding the median element in the union of the two lists. 
 

Solution: We use the Merge Sort process. Use 푚푒푟푔푒 procedure of merge sort (refer to 푆표푟푡푖푛푔 chapter). Keep track of the count while 
comparing elements of two arrays. If the count becomes 푛 (since there are 2푛 elements), we have reached the median. Take the average of 
the elements at indexes 푛 − 1 and 푛 in the merged array. 
 

Time Complexity: O(푛). 
 

Problem-14 Can we give the algorithm if the size of the two lists are not the same? 
 

Solution: The solution is similar to the previous problem. Let us assume that the lengths of two lists are 푚 and 푛. In this case we need to stop 
when the counter reaches (푚 + 푛)/2. 
 

Time Complexity: O((푚 + 푛)/2). 
 

Problem-15 Can we improve the time complexity of Problem-13 to O(푙표푔푛)? 
 

Solution: Yes, using the D & C approach. Let us assume that the given two lists are 퐿1 and 퐿2. 
 

Algorithm: 
1. Find the medians of the given sorted input arrays 퐿1[] and 퐿2[]. Assume that those medians are 푚1 and 푚2. 
2. If 푚1 and 푚2 are equal then return 푚1 (or 푚2). 
3. If 푚1 is greater than 푚2, then the final median will be below two sub arrays. 
4. From first element of 퐿1  to 푚1. 
5. From 푚2 to last element of 퐿2. 
6. If 푚2 is greater than 푚1, then median is present in one of the two sub arrays below. 
7. From 푚1 to last element of 퐿1.   
8. From first element of 퐿2 to 푚2. 
9. Repeat the above process until the size of both the sub arrays becomes 2. 
10. If size of the two arrays is 2, then use the formula below to get the median. 
11. Median =  (푚푎푥(퐿1[0], 퐿2[0]) +  푚푖푛(퐿1[1], 퐿2[1])/2 

 

Time Complexity: O(푙표푔푛) since we are considering only half of the input and throwing the remaining half. 
 

Problem-16 Given an input array 퐴. Let us assume that there can be duplicates in the list. Now search for an element in the list in 
such a way that we get the highest index if there are duplicates. 

 

Solution:  Refer to 푆푒푎푟푐ℎ푖푛푔 chapter. 
 

Problem-17 Discuss Strassen's Matrix Multiplication Algorithm using Divide and Conquer. That means, given two 푛 × 푛 matrices, 퐴 
and 퐵, compute the 푛 × 푛 matrix 퐶 = 퐴 × 퐵, where the elements of 퐶 are given by 
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퐶 , = 퐴 , 퐵 ,  

 

Solution: Before Strassen's algorithm, first let us see the basic divide and conquer algorithm. The general approach we follow for solving this 
problem is given below. To determine, 퐶[푖, 푗] we need to multiply the 푖  row of  퐴 with 푗  column of  퐵. 
 

      // Initialize C. 
      for i = 1 to n 
        for j = 1 to n 
          for k = 1 to n 
                C[i, j] += A[i, k] * B[k, j]; 
 

The matrix multiplication problem can be solved with the D & C technique. To implement a D & C algorithm we need to break the given 
problem into several subproblems that are similar to the original one. In this instance we view each of the 푛 × 푛 matrices as a 2 × 2 matrix, 
the elements of which are ×  submatrices. So, the original matrix multiplication, 퐶 = 퐴 × 퐵 can be written as: 
 

퐶 , 퐶 ,
퐶 , 퐶 ,

=
퐴 , 퐴 ,
퐴 , 퐴 ,

×
퐵 , 퐵 ,
퐵 , 퐵 ,

 

where each 퐴 , , 퐵 , , and 퐶 ,  is a ×  matrix.  
From the given definition o f 퐶 , , we get that the result sub matrices can be computed as follows:  

퐶 , = 퐴 , × 퐵 , + 퐴 , × 퐵 ,  
퐶 , = 퐴 , × 퐵 , + 퐴 , × 퐵 ,  
퐶 , = 퐴 , × 퐵 , + 퐴 , × 퐵 ,  
퐶 , = 퐴 , × 퐵 , + 퐴 , × 퐵 ,  

Here the symbols + and × are taken to mean addition and multiplication (respectively) of ×  matrices. In order to compute the original 

푛 × 푛 matrix multiplication we must compute eight ×   matrix products (푑푖푣푖푑푒) followed by four ×   matrix sums (푐표푛푞푢푒푟). Since 

matrix addition is an O(푛 ) operation, the total running time for the multiplication operation is given by the recurrence:  
 

푇(푛) =
O(1)                           , 푓표푟 푛 = 1

8푇
푛
2 + O(푛 )       , 푓표푟 푛 > 1 

Using master theorem, we get 푇(푛) = O(푛 ). 
 

Fortunately, it turns out that one of the eight matrix multiplications is redundant (found by Strassen). Consider the following series of seven 
×  matrices:  

푀 = 퐴 , + 퐴 , × (퐵 , + 퐵 , ) 
푀 = 퐴 , −  퐴 , × (퐵 , + 퐵 , ) 
푀 = 퐴 , −  퐴 , × (퐵 , + 퐵 , ) 
푀 = 퐴 , + 퐴 , × 퐵 ,  
푀 =  퐴 , × (퐵 , − 퐵 , ) 
푀 = 퐴 , × (퐵 , − 퐵 , ) 
푀 = 퐴 + 퐴 , × 퐵 ,  

 

Each equation above has only one multiplication. Ten additions and seven multiplications are required to compute 푀  through 푀 . Given 
푀  through 푀 , we can compute the elements of the product matrix C as follows:  

퐶 , = 푀 + 푀 − 푀 + 푀  
퐶 , = 푀 + 푀  
퐶 , = 푀 + 푀  
퐶 , = 푀 − 푀 + 푀 − 푀  

 

This approach requires seven 
 

×   matrix multiplications and 18  ×    additions. Therefore, the worst-case running time is given by the 
following recurrence:  

푇(푛) =
O(1)                           , 푓표푟 푛 = 1

7푇
푛
2 + O(푛 )       , 푓표푟 푛 = 1 

 

Using master theorem, we get, 푇(푛) = O 푛 = O(푛 . ). 
 

Problem-18 Stock Pricing Problem: Consider the stock price of 퐶푎푟푒푒푟푀표푛푘. 푐표푚 in 푛 consecutive days. That means the input 
consists of an array with stock prices of the company. We know that the stock price will not be the same on all the days. In the input 
stock prices there may be dates where the stock is high when we can sell the current holdings, and there may be days when we can buy 
the stock. Now our problem is to find the day on which we can buy the stock and the day on which we can sell the stock so that we can 
make maximum profit.   

Solution: As given in the problem, let us assume that the input is an array with stock prices [integers]. Let us say the given array is 퐴[1], . . . , 퐴[푛]. 
From this array we have to find two days [one for buy and one for sell] in such a way that we can make maximum profit. Also, another point 
to make is that the buy date should be before sell date. One simple approach is to look at all possible buy and sell. 
 

       public void stockStrategy(int[] A, int buyDateIndex, int sellDateIndex) { 
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 int profit=0; 
 buyDateIndex =0; sellDateIndex =0; 
 for (int i   = 1; i < A.length; i++)  //indicates buy date 
  //indicates sell date 
  for(int j  =  i; j < A.length;  j++) 
   if(A[j] - A[i] > profit)  {  
    profit = A[j] - A[i]; 
    buyDateIndex = i; 
    sellDateIndex = j; 
   } 
       } 
 

The two nested loops takes 푛(푛 +  1)/2 computations, so this takes time (푛2). 
 

Problem-19  For Problem-18, can we improve the time complexity?   

Solution: Yes, by opting for the Divide-and-Conquer (푛푙표푔푛) solution. Divide the input list into two parts and recursively find the solution 
in both the parts. Here, we get three cases: 
 

 푏푢푦퐷푎푡푒퐼푛푑푒푥 and 푠푒푙푙퐷푎푡푒퐼푛푑푒푥 both are in the earlier time period. 
 푏푢푦퐷푎푡푒퐼푛푑푒푥 and 푠푒푙푙퐷푎푡푒퐼푛푑푒푥 both are in the later time period. 
 푏푢푦퐷푎푡푒퐼푛푑푒푥 is in the earlier part and 푠푒푙푙퐷푎푡푒퐼푛푑푒푥 is in the later part of the time period. 

 

The first two cases can be solved with recursion. The third case needs care. This is because 푏푢푦퐷푎푡푒퐼푛푑푒푥 is one side and 푠푒푙푙퐷푎푡푒퐼푛푑푒푥 
is on other side. In this case we need to find the minimum and maximum prices in the two sub-parts and this we can solve in linear-time.  
 

       public void StockStrategy(int[] A, int left, int right) { 
 //Declare the necessary variables; 
 if(left + 1 = right) 
  return (0, left, left); 
 mid   = left + (right - left) / 2; 
 (profitLeft, buyDateIndexLeft, sellDateIndexLeft) =  StockStrategy(A, left, mid);  
 (profitRight, buyDateIndexRight, sellDateIndexRight)  = StockStrategy(A, mid, right);  
 minLeft  = Min(A, left, mid);    
 maxRight  = Max(A, mid, right);    
 profit  = A[maxRight] - A[minLeft];     
 if(profitLeft > max{profitRight, profit})  
  return (profitLeft, buyDateIndexLeft, sellDateIndexLeft); 
 else if(profitRight > max{profitLeft, profit}) 
  return (profitRight, buyDateIndexRight, sellDateIndexRight); 
 else 
  return (profit, minLeft, maxRight); 
       } 
 

Algorithm 푆푡표푐푘푆푡푟푎푡푒푔푦 is used recursively on two problems of half the size of the input, and in addition  (푛) time is spent searching for 
the maximum and minimum prices. So the time complexity is characterized by the recurrence 푇(푛)  =  2푇(푛/2) + (푛) and by the Master 
theorem we get O(nlogn). 
 

Problem-20  We are testing “unbreakable” laptops and our goal is to find out how unbreakable they really are. In particular, we work 
in an 푛-story building and want to find out the lowest floor from which we can drop the laptop without breaking it (call this “the ceiling”). 
Suppose we are given two laptops and want to find the highest ceiling possible. Give an algorithm that minimizes the number of tries we 
need to make 푓(푛) (hopefully, 푓(푛) is sub-linear, as a linear 푓(푛) yields a trivial solution). 

 

Solution: For the given problem, we cannot use binary search as we cannot divide the problem and solve it recursively. Let us take an example 
for understanding the scenario. Let us say 14 is the answer. That means we need 14 drops to find the answer. First we drop from height 14, 
and if it breaks we try all floors from 1 to 13. If it doesn’t break then we are left 13 drops, so we will drop it from 14 +  13 +  1 =  28  
floor. The reason being if it breaks at the 28  floor we can try all the floors from 15 to 27 in 12 drops (total of 14 drops). If it did not break, 
then we are left with 11 drops and we can try to figure out the floor in 14 drops. 
 

From the above example, it can be seen that we first tried with a gap of 14 floors, and then followed by 13 floors, then 12 and so on. So if 
the answer is 푘 then we are trying the intervals at 푘, 푘 − 1, 푘 − 2 … .1. Given that the number of floors is 푛, we have to relate these two. Since 
the maximum floor from which we can try is 푛, the total skips should be less than 푛. This gives: 
 

                                                  푘 + (푘 − 1) + (푘 − 2) + ⋯ + 1 ≤ 푛 

                                                                                            
푘(푘 + 1)

2  ≤ 푛 

                                                                                                       푘     ≤ √푛 
Complexity of this process is O(√푛). 
 

Problem-21 Given 푛 numbers, check if any two are equal. 
 

Solution:  Refer to 푆푒푎푟푐ℎ푖푛푔 chapter. 
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Problem-22 Give an algorithm to find out if an integer is a square? E.g. 16 is, 15 isn't. 
 

Solution: Initially let us say 푖 = 2. Compute the value 푖 × 푖 and see if it is equal to the given number. If it is equal then we are done; otherwise 
increment the 퐢 vlaue. Continue this process until we reach 푖 × 푖 greater than or equal to the given number.  
   

Time Complexity: O(√푛). Space Complexity: O(1).  
 

Problem-23 Nuts and Bolts Problem: Given a set of 푛 nuts of different sizes and 푛 bolts such that there is a one-to-one correspondence 
between the nuts and the bolts, find for each nut its corresponding bolt. Assume that we can only compare nuts to bolts (cannot compare 
nuts to nuts and bolts to bolts). 

 

Solution: Refer to 푆표푟푡푖푛푔 chapter. 
 

Problem-24 Closest-Pair of Points: Given a set of 푛 points, 푆 = {p , p , p , … , p }, where p = (x , y ). Find the pair of points having the 
smallest distance among all pairs (assume that all points are in one dimension. 

 

Solution: Let us assume that we have sorted the points. Since the points are in one dimension, all the points are in a line after we sort them 
(either on 푋-axis or 푌-axis). The complexity of sorting is O(푛푙표푔푛). After sorting we can go through them to find the consecutive points with 
the least difference. So the problem in one dimension is solved in O(푛푙표푔푛) time which is mainly dominated by sorting time. 
 

Time Complexity: O(푛푙표푔푛). 
 

Problem-25 For the Problem-24, how do we solve if the points are in two dimensional space? 
 

Solution: Before going to the algorithm, let us consider the following mathematical equation: 
 

푑푖푠푡푎푛푐푒(푝 , 푝 ) = (푥 − 푥 ) − (푦 − 푦 )  
 

The above equation calculates the distance between two points 푝 = (푥 , 푦 ) and 푝 = (푥 , 푦 ). 
 

Brute Force Solution: 
 Calculate the distances between all the pairs of points. From 푛 points there are n   ways of selecting 2 points. (푛 = O(푛 )). 
 After finding distances for all 푛  possibilities, we select the one which is giving the minimum distance and this takes O(푛 ). 

 

The overall time complexity is O(푛2). 
 

Problem-26 Give O(푛푙표푔푛) solution for 푐푙표푠푒푠푡 푝푎푖푟 problem (Problem-25)? 
 

Solution: To find O(푛푙표푔푛) solution, we can use the D & C technique. Before starting the divide-and-conquer process let us assume that the 
points are sorted by increasing 푥-coordinate. Divide the points into two equal halves based on median of 푥-coordinates. That means the 
problem is divided into that of finding the closest pair in each of the two halves. For simplicity let us consider the following algorithm to 
understand the process. 
 

Algorithm: 
1) Sort the given points in 푆 (given set of points) based on their 푥 −coordinates. Partition 푆 into two subsets, 푆  and 푆 , about the line 

푙 through median of 푆. This step is the 퐷푖푣푖푑푒 part of the 퐷 & 퐶 technique.  
2) Find the closest-pairs in S  and S  and call them 퐿 and 푅 recursively.  
3) Now, steps 4 to 8 form the Combining component of the 퐷 & 퐶 technique.  
4) Let us assume that 훿 =  푚푖푛 (퐿, 푅). 
5) Eliminate points that are farther than 훿 apart from 푙. 
6) Consider the remaining points and sort based on their 푦-coordinates. 
7) Scan the remaining points in the 푦 order and compute the distances of each point to all its neighbors that are distanced no more 

than 2 × 훿 (that's the reason for sorting according to 푦).  
8) If any of these distances is less than 훿 then update 훿. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

x-coordinates of points 

Line 푙 passing through the median point and divides the set into 2 equal parts 
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Combining the results in linear time 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Let 훿 =  푚푖푛(퐿, 푅), where L is the solution to first sub problem and R is the solution to second sub problem. The possible candidates for 
closest-pair, which are across the dividing line, are those which are less than δ distance from the line. So we need only the points which are 
inside the 2 × δ area across the dividing line as shown in the figure.  Now, to check all points within distance δ from the line, consider the 
following figure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From the above diagram we can see that a maximum of 12 points can be placed inside the square with a distance not less than 훿. That means, 
we need to check only the distances which are within 11 positions in the sorted list. This is similar to the one above, but with the difference 
that in the above combining of subproblems, there are no vertical bounds. So we can apply the 12-point box tactic over all the possible boxes 
in the 2 × 훿 area with the dividing line as the middle line. As there can be a maximum of 푛 such boxes in the area, the total time for finding 
the closest pair in the corridor is O(푛).  
 

Analysis: 
 

1) Step-1 and Step-2 take O(푛푙표푔푛) for sorting and recursively finding the minimum. 
2) Step-4 takes O(1). 
3) Step-5 takes O(푛) for scanning and eliminating. 
4) Step-6 takes O(푛푙표푔푛) for sorting. 
5) Step-7 takes O(푛) for scanning. 

 

The total complexity: 푇(푛) = O(푛푙표푔푛) + O(1) + O(푛) + O(푛) + O(푛) ≈ O(푛푙표푔푛). 
 

Problem-27 Maximum Value Contiguous Subsequence: Given a sequence of 푛 numbers 퐴(1) . . . 퐴(푛), give an algorithm for finding 
a contiguous subsequence 퐴(푖) . . . 퐴(푗) for which the sum of elements in the subsequence is maximum. Example: {-2, 11, -4, 13, -5, 2} →20  
and  {1, -3, 4, -2, -1, 6}→7. 

 

Solution: Divide this input into two halves. The maximum contiguous subsequence sum can occur in one of 3 ways: 
• Case 1: It can be completely in the first half 
• Case 2: It can be completely in the second half 
• Case 3: It begins in the first half and ends in the second half 

 

We begin by looking at case 3. To avoid the nested loop that results from considering all 푛/2 starting points and 푛/2 ending points 
independently, replace two nested loops with two consecutive loops. The consecutive loops, each of size 푛/2, combine to require only linear 
work.  Any contiguous subsequence that begins in the first half and ends in the second half must include both the last element of the first half 
and the first element of the second half. What we can do in cases 1 and 2 is apply the same strategy of dividing into more halves. In summary, 
we do the following: 

훿 훿 

x-coordinates of points 

Line 푙 passing through the median point and divides the set into 2 equal parts 

2 × 훿 area 

훿 훿 

훿 훿 

2 훿 2 훿 
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1. Recursively compute the maximum contiguous subsequence that resides entirely in the first half. 
2. Recursively compute the maximum contiguous subsequence that resides entirely in the second half. 
3. Compute, via two consecutive loops, the maximum contiguous subsequence sum that begins in the first half but ends in the second 

half. 
4. Choose the largest of the three sums. 

 

 public int maxSumSubArray(int[] A) { 
  if (A.length == 0)  
                                         return 0; 
  return maxSumSubArray(A, 0, A.length - 1); 
 } 
 public int maxSumSubArray(int[] A, int low, int high) { 
  int leftMidSum = Integer.MIN_VALUE, rightMidSum = Integer.MIN_VALUE, sum = 0; 
  if (low == high) 
                                         return A[low]; 
  int mid = low + (high - low) / 2; 
  int maxLeftSum = maxSumSubArray(A, low, mid); 
  int maxRightSum = maxSumSubArray(A, mid + 1, high); 
                 for (int i = mid; i >= low; i--) {   // across sum 
                                         sum += A[i]; 
                                         leftMidSum = (sum > leftMidSum) ? sum : leftMidSum; 
  } 
  sum = 0;  // reset sum as 0 
  for (int i = mid + 1; i <= high; i++) { 
                                         sum += A[i]; 
                                         rightMidSum = (sum > rightMidSum) ? sum : rightMidSum; 
  } 
  return max3(maxLeftSum, maxRightSum, (leftMidSum + rightMidSum)); 
 } 
  public int max3(int a, int b, int c) { 
  return a > b ? (a > c ? a : c) : (b > c ? b : c); 
 } 
 

The base case cost is 1. The program performs two recursive calls plus the linear work involved in computing the maximum sum for case 3. 
The recurrence relation is: 

푇(1)   =  1                          
푇(푛)  =  2푇(푛/2) +  푛 

 

Using 퐷 & 퐶 Master theorem, we get the time complexity as 푇(푛)  = O(푛푙표푔푛). 
 

Note: For an efficient solution refer to the 퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 chapter. 
 

Problem-25 Given an array of 2푛 integers in the following format 푎1 푎2 푎3 . . . 푎푛 푏1 푏2 푏3 . . . 푏푛. Shuffle the array to 푎1 푏1 푎2 푏2 푎3 푏3 . . . 푎푛 푏푛 
without any extra memory [MA]. 

 

Solution: Let us take an example (for brute force solution refer 푆푒푎푟푐ℎ푖푛푔 chapter) 
 

1. Start with the array: 푎1 푎2 푎3 푎4 푏1 푏2 푏3 푏4 
2. Split the array into two halves: 푎1 푎2 푎3 푎4 ∶  푏1 푏2 푏3 푏4 
3. Exchange elements around the center: exchange 푎3 푎4 with 푏1 푏2 you get: 푎1 푎2 푏1 푏2 푎3 푎4 푏3 푏4 
4. Split 푎1 푎2 푏1 푏2 into 푎1 푎2 ∶  푏1 푏2 then split 푎3 푎4 푏3 푏4 into 푎3 푎4 ∶  푏3 푏4 
5. Exchange elements around the center for each subarray you get: 푎1 푏1 푎2 푏2 and 푎3 푏3 푎4 푏4 

 

Please note that this solution only handles the case when 푛 =  2  where 푖 =  0, 1, 2, 3 etc. In our example 푛 =  2  =  4 which makes it 
easy to recursively split the array into two halves. The basic idea behind swapping elements around the center before calling the recursive 
function is to produce smaller size problems. A solution with linear time complexity may be achieved if the elements are of specific nature 
for example if you can calculate the new position of the element using the value of the element itself. This is nothing but a hashing technique. 
 

       public void ShuffleArray(int A[], int l, int r) { 
 //Array center 
 int c = (l + r)/2, q = 1 + (l + c)/2; 
 if(l == r) //Base case when the array has only one element 
  return; 
 for (int k = 1, i = q; i <= c; i++, k++) {  

        //Swap elements around the center 
         int tmp = A[i];  A[i] = A[c + k];  A[c + k] = tmp; 
 } 
 ShuffleArray(A, l, c);   //Recursively call the function on the left and right 
 ShuffleArray(A, c + 1, r); );  //Recursively call the function on the right 
       } 
 

Time Complexity: O(푛푙표푔푛). 
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Problem-26 To calculate 푘 , give algorithm and discuss its complexity. 
 

Solution: The naive algorithm to compute 푘  is: start with 1 and multiply by 푘 until reaching 푘 . For this approach; there are 푛 − 1 multiplications and each 
takes constant time giving a (푛) algorithm. 
 

But there is a faster way to compute 푘 . For example, 
 

9 = (9 ) = ((9 ) ) = (((9 ) ) ) = (((9 . 9) ) )  
 

Note that taking square of a number needs only one multiplication; this way, to compute 9  we need only 5 multiplications instead of 23. 
 

    public static double exponenial(double x, int n) { 
        if(n == 0) 
            return 1.0; 
        double half = exponenial(x, n / 2); 
        if(n % 2 == 0) 
            return half * half; 
        else if(n > 0) 
            return half * half * x; 
        else return 
            half * half / x; 
    } 
    public static void main(String [] args){ 
 System.out.println(exponenial(2,3)); 
    } 
 

Let T(푛) be the number of multiplications required to compute 푘 . For simplicity, assume 푘 =  2푖 for some 푖 ≥  1. 
 

푇(푛)  =  푇(
푛
2) +  1 

Using master theorem we get T(푛) = O(푙표푔푛). 
 

Problem-27 The Skyline Problem: Given the exact locations and shapes of 푛 rectangular buildings in a 2-dimensional city. There is 
no particular order for these rectangular buildings. Assume that the bottom of all buildings lie on a fixed horizontal line (bottom edges are 
collinear). The input is a list of triples; one per building. A building 퐵  is represented by the triple (푙 , ℎ , 푟 ) where 푙  denote the 푥-position 
of the left edge and 푟  denote the 푥-position of the right edge, and ℎ  denotes the building’s height. Give an algorithm that computes the 
skyline (in 2 dimensions) of these buildings, eliminating hidden lines. In the diagram below there are 8 buildings, represented from left to 
right by the triplets (1, 14, 7), (3, 9, 10), (5, 17, 12), (14, 11, 18), (15, 6, 27), (20, 19, 22), (23, 15, 30) and (26, 14, 29). 

 

The output is a collection of points which describe the path of the skyline. In some versions of the problem this collection of points is 
represented by a sequence of numbers 푝 , 푝 , ..., 푝 , such that the point 푝  represents a horizontal line drawn at height 푝  if 푖 is even, and it 
represents a vertical line drawn at position 푝  if 푖 is odd. In our case the collection of points will be a sequence of 푝 , 푝 , ..., 푝  pairs of (푥 , 
ℎ ) where 푝 (푥 , ℎ ) represents the ℎ  height of the skyline at position 푥 .  
 

In the diagram the skyline is drawn with a thick line around the buildings and it is represented by the sequence of position-height pairs (1, 14), 
(5, 17), (12, 0), (14, 11), (18, 6), (20, 19), (22, 6), (23, 15)  and (30, 0). Also, assume that 푅  of the right most building can be maximum of 
1000. That means, the 퐿  co-ordinate of left building can be minimum of 1 and 푅  of the right most building can be maximum of 1000. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Solution: The most important piece of information is that we know that the left and right coordinates of each and every building are non-
negative integers less than 1000. Now why is this important? Because we can assign a height-value to every distinct 푥  coordinate where 푖 is 
between 0 and 9,999.  
 

Algorithm: 
 Allocate an array for 1000 elements and initialize all of the elements to 0. Let's call this array 푎푢푥퐻푒푖푔ℎ푡푠. 
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 Iterate over all of the buildings and for every 퐵  building iterate on the range of [푙 .. 푟 ) where 푙  is the left, 푟  is the right coordinate 
of the building 퐵 . 

 For every 푥  element of this range check if ℎ >푎푢푥퐻푒푖푔ℎ푡푠[xj], that is if building 퐵  is taller than the current height-value at position 
푥 . If so, replace 푎푢푥퐻푒푖푔ℎ푡푠[푥 ] with ℎ . 

Once we checked all the buildings, the 푎푢푥퐻푒푖푔ℎ푡푠 array stores the heights of the tallest buildings at every position. There is one more thing 
to do: convert the 푎푢푥퐻푒푖푔ℎ푡푠 array to the expected output format, that is to a sequence of position-height pairs. It's also easy: just map each 
and every 푖 index to an (i, 푎푢푥퐻푒푖푔ℎ푡푠[i]) pair.  
 

 public class SkyLineBruteForce { 
    public static void main(String[] args) { 
        int[] auxHeights = new int[1000]; 
        int rightMostBuildingRi = 0; 
        Scanner in = new Scanner(System.in); 
        while (in.hasNext()) { 
            int left = in.nextInt(), h = in.nextInt(), right = in.nextInt(); 
            for (int i = left; i < right; i++) 
                auxHeights[i] = Math.max(h, auxHeights[i]); 
            if(rightMostBuildingRi<right) 
             rightMostBuildingRi=right;  
        } 
        int prev=0, left=-1, right = -1; 
        for (int i = 0; i < rightMostBuildingRi; i++) { 
            if (prev != auxHeights[i]) { 
                if(left > 0) System.out.print(left +" "+ right + " "); 
                prev = auxHeights[i]; 
                left =i; 
                right =prev; 
            } 
        } 
        System.out.println(left +" "+ right ); 
    } 
 }   

Let's have a look at the time complexity of this algorithm. Assume that, 푛 indicates the number of buildings in the input sequence and 푚 
indicates the maximum coordinate (right most building 푟 ). From the above code, it is clear that for every new input building, we are traversing 
from 푙푒푓푡 (푙 ) to 푟푖푔ℎ푡 (푟 ) to update the heights. In the worst case, with 푛 equal-size buildings, each having 푙 =  0 left and 푟 =  푚 −  1 right 
coordinates, that is every building spans over the whole [0. . 푚) interval. Thus the running time of setting the height of every position is 
O(푛 × 푚). The overall time-complexity is O(푛 × 푚), which is a lot larger than O(푛 ) if 푚 >  푛.  
 

Problem-28 Can we improve the solution of the Problem-27? 
 

Solution: It would be a huge speed-up if somehow we could determine the skyline by calculating the height for those coordinates only where 
it matters, wouldn't it? Intuition tells us that if we can insert a building into an 푒푥푖푠푡푖푛푔 푠푘푦푙푖푛푒 then instead of all the coordinates the building 
spans over we only need to check the height at the left and right coordinates of the building plus those coordinates of the skyline the building 
overlaps with and may modify.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Is merging two skylines substantially different from merging a building with a skyline? The answer is, of course, No. This suggests that we use 
divide-and-conquer. Divide the input of 푛 buildings into two equal sets. Compute (recursively) the skyline for each set then merge the two 
skylines. Inserting the buildings one after the other is not the fastest way to solve this problem as we've seen it above. If, however, we first 
merge pairs of buildings into skylines, then we merge pairs of these skylines into bigger skylines (and not two sets of buildings), and then merge 
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pairs of these bigger skylines into even bigger ones, then - since the problem size is halved in every step - after 푙표푔푛 steps we can compute the 
final skyline.  
 

   class Building{ 
        int left, right, h; 
        public Building(int x1, int h1, int x2) { left = x1; h = h1; right = x2; } 
   } 
   class strip{ 
        int left, h; 
        strip(int x1, int h1) { left = x1; h = h1; } 
   } 
   class Skyline{ 
         strip[] strips; 
         public int Count; 
         int StartLoc; 
         public Skyline(int n) {  
            Count = 0; StartLoc = 0; strips = new strip[n];  
         } 
         public void Append(strip str) {  
            strips[StartLoc+Count] = str; Count++;  
         } 
         public strip Head() {  
            return strips[StartLoc];  
         } 
         public strip RemoveHead(){ 
            strip str = strips[StartLoc]; 
            Count--; StartLoc++; 
            return str; 
         } 
         public String ToString(){ 
            String str = ""; 
            for(int i = StartLoc; i < StartLoc+Count; i++){ 
               if (i > StartLoc)  
                  str = str + ","; 
               str = str + strips[i].left + "," + strips[i].h; 
            } 
            return "(" + str + ")"; 
         } 
   } 
   public class SkylinesDivideandConquer { 
       static Skyline GetSkyline(Building[] buildings, int start, int end){  
             if (start == end){ 
    Skyline skl = new Skyline(2); 
    skl.Append(new strip(buildings[start].left, buildings[start].h) ); 
    skl.Append(new strip(buildings[start].right, 0)); 
    return skl; 
 } 
 int mid = (start+end)/2; 
 Skyline sk1 = GetSkyline(buildings, start, mid); 
 Skyline sk2 = GetSkyline(buildings, mid+1, end); 
 return MergeSkylines(sk1, sk2); 
       } 
       static Skyline MergeSkylines(Skyline SK1, Skyline SK2){ 
  Skyline newSkl = new Skyline(SK1.Count + SK2.Count); // Allocate array space 
  int currentHeight1 = 0; int currentHeight2 = 0; 
  while ((SK1.Count > 0) && (SK2.Count > 0)) 
      if (SK1.Head().left < SK2.Head().left){ 
                      int CurX = SK1.Head().left; 
                      currentHeight1 = SK1.Head().h; 
                      int MaxH = currentHeight1; 
                      if (currentHeight2 > MaxH) MaxH = currentHeight2; 
                          newSkl.Append(new strip(CurX, MaxH)); 
                      SK1.RemoveHead(); 
         } 
         else{ 
                         int CurX = SK2.Head().left; 
                         currentHeight2 = SK2.Head().h; 
                         int MaxH = currentHeight1; 
                         if (currentHeight2 > MaxH) MaxH = currentHeight2; 
                             newSkl.Append(new strip(CurX, MaxH)); 
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    SK2.RemoveHead(); 
                   } 
               while (SK1.Count > 0){ 
       strip str = SK1.RemoveHead(); newSkl.Append(str);  
   } 
  while (SK2.Count > 0){ 
       strip str = SK2.RemoveHead(); newSkl.Append(str);  
  } 
 return newSkl; 
         }  
   } 
 

For example, given two skylines A=(푎 , h푎 , 푎 , h푎 , …, 푎 , 0) and B=(푏 , h푏 , 푏 , h푏 , …, 푏 , 0), we merge these lists as the new list: (푐 , 
h푐 , 푐 , h푐 , …, 푐 , 0). Clearly, we merge the list of 푎’s and 푏’s just like in the standard Merge algorithm. But, in addition to that, we have 
to decide on the correct height in between these boundary values. We use two variables 푐푢푟푟푒푛푡퐻푒푖푔ℎ푡1 and 푐푢푟푟푒푛푡퐻푒푖푔ℎ푡2 (note that 
these are the heights prior to encountering the heads of the lists) to store the current height of the first and the second skyline, respectively. 
When comparing the head entries (푐푢푟푟푒푛푡퐻푒푖푔ℎ푡1, 푐푢푟푟푒푛푡퐻푒푖푔ℎ푡2) of the two skylines, we introduce a new strip (and append to the 
output skyline) whose x-coordinate is the minimum of the entries’ x-coordinates and whose height is the maximum of 푐푢푟푟푒푛푡퐻푒푖푔ℎ푡1 and 
푐푢푟푟푒푛푡퐻푒푖푔ℎ푡2. This algorithm has a structure similar to Mergesort. So the overall running time of the divide and conquer approach will 
be O(푛푙표푔푛). 
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19.1 Introduction 
 

In this chapter, we will try to solve few of the problems for which we failed to get the optimal solutions using other techniques (say, 퐺푟푒푒푑푦 
and 퐷푖푣푖푑푒 & 퐶표푛푞푢푒푟 approaches). Dynamic Programming is a simple technique but it can be difficult to master. Being able to tackle 
problems of this type would greatly increase your skill.  
 

Dynamic programming (usually referred to as DP) is a very powerful technique to solve a particular class of problems. It demands very elegant 
formulation of the approach and simple thinking and the coding part is very easy. The idea is very simple, if you have solved a problem with 
the given input, then save the result for future reference, so as to avoid solving the same problem again. Simply, we need to remember the 
past.   
 

One easy way to identify and master DP problems is by solving as many problems as possible. The term DP is not related to coding, but it is 
from literature, and means filling tables. 
 

19.2 What is Dynamic Programming Strategy? 
 

Dynamic programming is typically applied to 표푝푡푖푚푖푧푎푡푖표푛 푝푟표푏푙푒푚푠. In such problems there can be many possible solutions. Each 
solution has a value, and we wish to find a solution with the optimal (minimum or maximum) value. We call such a solution an optimal 
solution to the problem, as opposed to the optimal solution, since there may be several solutions that achieve the optimal value. 
 

The development of a dynamic-programming algorithm can be broken into a sequence of four steps. 
 

1. Characterize the structure of an optimal solution. 
2. Recursively define the value of an optimal solution. 
3. Compute the value of an optimal solution in a bottom-up fashion. 
4. Construct an optimal solution from computed information. 

 

Steps 1-3 form the basis of a dynamic-programming solution to a problem. Step 4 can be omitted if only the value of an optimal solution is 
required. When we do perform step 4, we sometimes maintain additional information during the computation in step 3 to ease the 
construction of an optimal solution.  
 

If the given problem can be broken up into smaller sub-problems and these smaller subproblems are in turn divided into still-smaller ones, 
and in this process, if you observe some over-lapping subproblems, then it's a big hint for DP. Also, the optimal solutions to the subproblems 
contribute to the optimal solution of the given problem. 

 

19.3 Properties of Dynamic Programming Strategy 
 

The two dynamic programming properties which can tell whether it can solve the given problem or not are: 
 

 푂푝푡푖푚푎푙 푠푢푏푠푡푟푢푐푡푢푟푒: An optimal solution to a problem contains optimal solutions to sub problems. 
 푂푣푒푟푙푎푝푝푖푛푔 푠푢푏 푝푟표푏푙푒푚푠: A recursive solution contains a small number of distinct sub problems repeated many times. 

 

19.4 Greedy vs Divide and Conquer vs DP 
 

All algorithmic techniques construct an optimal solution of a subproblem based on optimal solutions of smaller subproblems.  
 

Greedy algorithms are one which finds optimal solution at each and every stage with the hope of finding global optimum at the end. The main 
difference between DP and greedy is that, the choice made by a greedy algorithm may depend on choices made so far but not on future 
choices or all the solutions to the sub problem. It iteratively makes one greedy choice after another, reducing each given problem into a 
smaller one.  
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In other words, a greedy algorithm never reconsiders its choices. This is the main difference from dynamic programming, which is exhaustive 
and is guaranteed to find the solution. After every stage, dynamic programming makes decisions based on all the decisions made in the 
previous stage, and may reconsider the previous stage's algorithmic path to solution. 
 

The main difference between dynamic programming and divide and conquer is that in the case of the latter, sub problems are independent, 
whereas in DP there can be an overlap of sub problems.  
 

19.5 Can DP solve all problems? 
 

Like greedy and divide and conquer techniques, DP cannot solve every problem. There are problems which cannot be solved by any 
algorithmic technique [greedy, divide and conquer and DP].  
 

The difference between DP and straightforward recursion is in memoization of recursive calls. If the sub problems are independent and there 
is no repetition then DP does not help. So, dynamic programming is not a solution for all problems.  
 

19.6 Dynamic Programming Approaches 
 

Dynamic programming is all about ordering computations in a way that we avoid recalculating duplicate work. In dynamic programming, we 
have a main problem, and subproblems (subtrees). The subproblems typically repeat and overlap. The major components of DP are: 
 

 Overlapping subproblems: Solves sub problems recursively. 
 Storage: Store the computed values to avoid recalculating already solved subproblems. 

 

By using extra storage, DP reduces the exponential complexity to polynomial complexity (O(푛 ), O(푛 ), etc.) for many problems. 
 

Basically, there are two approaches for solving DP problems: 
 

 Top-down approach [Memoization] 
 Bottom-up approach [Tabulation] 

 

These approaches were classified based on the way we fill the storage and reuse them. 
 

퐷푦푛푎푚푖푐 푃푟표푔푟푎푚푚푖푛푔 =  푂푣푒푟푙푎푝푝푖푛푔 푠푢푏푝푟표푏푙푒푚푠 + Memoization or 푇푎푏푢푙푎푡푖표푛 
 

19.7 Understanding DP Approaches 
Top-down Approach [Memoization] 
 

In this method, the problem is broken into sub problems; each of these subproblems is solved; and the solutions remembered, in case they 
need to be solved. Also, we save each computed value as the final action of the recursive function, and as the first action we check if pre-
computed value exists.  

Bottom-up Approach [Tabulation] 
 

In this method, we evaluate the function starting with the smallest possible input argument value and then we step through possible values, 
slowly increasing the input argument value. While computing the values we store all computed values in a table (memory). As larger arguments 
are evaluated, pre-computed values for smaller arguments can be used. 

Example: Fibonacci Series 
 

Let us understand how DP works through an example; Fibonacci series.  
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

fib(0) 

fib(5) 

fib(3) fib(4) 

fib(2) fib(1) fib(4) fib(3) 

fib(3) fib(2) fib(2) fib(1) 

fib(1) 

fib(1) fib(0) 

fib(0) fib(2) fib(1) fib(1) 

fib(1) fib(0) 
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In Fibonacci series, the current number is the sum of previous two numbers. The Fibonacci series is defined as follows: 
 

               퐹푖푏(n)  =  0,                                              푓표푟 푛 =  0 
                              =  1,                                              푓표푟 푛 =  1 

                              =  퐹푖푏(n − 1) +  퐹푖푏(n − 2), 푓표푟 푛 >  1 
Calling 푓푖푏(5) produces a call tree that calls the function on the same value many times: 
 

   푓푖푏(5) 
   푓푖푏(4) +  푓푖푏(3) 
   (푓푖푏(3) +  푓푖푏(2)) + (푓푖푏(2) +  푓푖푏(1)) 
   ((푓푖푏(2)  +  푓푖푏(1)) + (푓푖푏(1) +  푓푖푏(0))) + ((푓푖푏(1) +  푓푖푏(0)) +  푓푖푏(1)) 
(((푓푖푏(1) +  푓푖푏(0)) +  푓푖푏(1)) + (푓푖푏(1) +  푓푖푏(0))) + ((푓푖푏(1) +  푓푖푏(0)) +  푓푖푏(1)) 
 

In the above example, 푓푖푏(2) was calculated three times (overlapping of subproblems). If 푛 is big, then many more values of 푓푖푏 (subproblems) 
are recalculated, which leads to an exponential time algorithm. Instead of solving the same subproblems again and again we can store the 
previous calculated values and reduce the complexity. 
 

The recursive implementation can be given as: 
 

     public static int recursive_fibonacci(int n) { 
 if(n == 0) return 0; 
 if(n == 1) return 1; 
 return recursive_fibonacci(n -1) + recursive_fibonacci(n -2); 
     } 
 

Solving the above recurrence gives: 
 

                                                    푇(푛) =  푇(푛 − 1) + 푇(푛 − 2) + 1 ≈ √ ≈ 2 = O(2 ) 

Memoization Solution [Top-down] 
 

푀푒푚표푖푧푎푡푖표푛 works like this: Start with a recursive function and add a table that maps the function’s parameter values to the results 
computed by the function. Then if this function is called twice with the same parameters, we simply look up the answer in the table.  
 

In this method, we preserve the recursive calls and use the values if they are already computed. The implementation for this is given as: 
 

     int[]fib = new int[n + 1]; 
     public int fibonacci( int n ) { 
          if(n == 1) return 1; 
          if(n == 2) return 1; 
          if( fib[n] != 0)  
               return fib[n] ;  
          return fib[n] = fibonacci(n-1) + fibonacci(n -2) ; 
     } 

Tabulation Solution [Bottom-up] 
 

The other approach is bottom-up. Now, we see how DP reduces this problem complexity from exponential to polynomial. This method start 
with lower values of input and keep building the solutions for higher values.  
 

     int[] fib = new int[n + 1]; 
     public static int fibonacci (int n) { 
          if(n == 0 || n == 1)  
                return 1; 
          fib[0] = 1; 
          fib[1] = 1; 
          for (int i = 2; i < n; i++) 

fib[i] = fib[i - 1] + fib[i - 2]; 
          return fib[n - 1]; 
     }     
 

Note: For all problems, it may not be possible to find both top-down and bottom-up programming solutions. 
 

Both versions of the Fibonacci series implementations clearly reduce the problem complexity to O(푛). This is because if a value is already 
computed then we are not calling the subproblems again. Instead, we are directly taking its value from the table. 
 

Time Complexity: O(푛). Space Complexity: O(푛), for table. 

Further Improving 
 

One more observation from the Fibonacci series is: The current value is the sum of the previous two calculations only. This indicates that we 
don’t have to store all the previous values. Instead, if we store just the last two values, we can calculate the current value. The implementation 
for this is given below: 
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     public int fibonacci(int n) { 
 int a = 0, b = 1, sum, i; 
 for (i=0;i < n;i++) { 
  sum = a + b; 
  a = b; 
  b = sum; 
 } 
 return sum; 
     } 
 

Time Complexity: O(푛).  Space Complexity: O(1). 
 

Note: This method may not be applicable (available) for all problems. 

Observations  
 

While solving the problems using DP, try to figure out the following: 
 

 See how the problems are defined in terms of subproblems recursively. 
 See if we can use some table [memoization] to avoid the repeated calculations. 

Example: Factorial of a Number 
 

As another example, consider the factorial problem: 푛! is the product of all integers between 푛 and 1. The definition of recursive factorial 
can be given as: 
 

푛!  =  푛 ∗  (푛 − 1)! 
1!  =  1 
0!  =  1 

 

This definition can easily be converted to implementation. Here the problem is finding the value of 푛!, and the sub-problem is finding the 
value of (푛 − 푙)!. In the recursive case, when 푛 is greater than 1, the function calls itself to find the value of (푛 − 푙)! and multiplies that with 
푛. In the base case, when 푛 is 0 or 1, the function simply returns 1.  
 

     public int fact(int n) { 
 if(n == 1)   // base cases: fact of 0 or 1 is 1 
                  return 1; 
 else if(n == 0)  
                     return 1; 
 // recursive case: multiply n by (n -1) factorial 
 else return n *fact(n -1); 
     } 
      

The recurrence for the above implementation can be given as:  
 

푇(푛) = 푛 × 푇(푛 − 1) ≈O(푛) 
 

Time Complexity: O(푛). Space Complexity: O(푛), recursive calls need a stack of size 푛. 
 

In the above recurrence relation and implementation, for any 푛 value, there are no repetitive calculations (no overlapping of sub problems) 
and the factorial function is not getting any benefits with dynamic programming. Now, let us say we want to compute a series of 푚! for some 
arbitrary value 푚. Using the above algorithm, for each such call we can compute it in O(푚). For example, to find both 푛! and 푚! we can use 
the above approach, wherein the total complexity for finding 푛! and 푚! is O(푚 + 푛). 
 

Time Complexity: O(푛 + 푚). Space Complexity: O(max (푚, 푛)), recursive calls need a stack of size equal to the maximum of 푚 and 푛. 

Improving with Dynamic Programming  
 

Now let us see how DP reduces the complexity. From the above recursive definition it can be seen that 푓푎푐푡(푛) is calculated from 푓푎푐푡(푛 -
1) and 푛 and nothing else. Instead of calling 푓푎푐푡(푛) every time, we can store the previous calculated values in a table and use these values to 
calculate a new value. This implementation can be given as: 
 

     int facto[n]; 
     public int fact(int n) { 
 // base cases: fact of 0 or 1 is 1 
 if(n == 1)  
                      return 1; 
 else if(n == 0) 
                      return 1; 
 //Already calculated case 
 else if(facto[n]!=0) return facto[n]; 
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 // recursive case: multiply n by (n -1) factorial 
 else return facto[n]= n *fact(n -1); 
     } 
 

For simplicity, let us assume that we have already calculated 푛! and want to find  푚!. For finding 푚!, we just need to see the table and use the 
existing entries if they are already computed. If  푚 <  푛 then we do not have to recalculate 푚!. If 푚 >  푛 then we can use 푛! and call the 
factorial on the remaining numbers only.  
 

The above implementation clearly reduces the complexity to O(푚푎푥 (푚, 푛)). This is because if the 푓푎푐푡(n) is already there, then we are not 
recalculating the value again. If we fill these newly computed values, then the subsequent calls further reduce the complexity. 
 

Time Complexity: O(푚푎푥 (푚, 푛)). Space Complexity: O(푚푎푥 (푚, 푛)) for table. 

Bottom-up versus Top-down Programming 
 

With 푡푎푏푢푙푎푡푖표푛 (bottom-up), we start from smallest instance size of the problem, and 푖푡푒푟푎푡푖푣푒푙푦 solve bigger problems using solutions of 
the smaller problems (i.e. by reading from the table), until we reach our starting instance.  
 

With 푚푒푚표푖푧푎푡푖표푛 (top-down) we start right away at original problem instance, and solve it by breaking it down into smaller instances of the 
same problem (푟푒푐푢푟푠푖표푛).  When we have to solve smaller instance, we first check in a look-up table to see if we already solved it. If we did, 
we just read it up and return value without solving it again and branching into recursion. Otherwise, we solve it recursively, and save result into 
table for further use. 
 

In bottom-up approach, the programmer has to select values to calculate and decide the order of calculation. In this case, all subproblems 
that might be needed are solved in advance and then used to build up solutions to larger problems.  
 

In top-down approach, the recursive structure of the original code is preserved, but unnecessary recalculation is avoided. The problem is 
broken into subproblems, these subproblems are solved and the solutions remembered, in case they need to be solved again. 
 

Recursion with memoization is better whenever the state is sparse space (number of different subproblems are less). In other words, if we 
don't actually need to solve all smaller subproblems but only some of them. In such cases the recursive implementation can be much faster. 
Recursion with memoization is also better whenever the state space is irregular, i.e., whenever it is hard to specify an order of evaluation 
iteratively. Recursion with memoization is faster because only subproblems that are necessary in a given problem instance are solved. 
 

Tabulation methods are better whenever the state space is dense and regular. If we need to compute the solutions to all the subproblems 
anyway, we may as well do it without all the function calling overhead. An additional advantage of the iterative approach is that we are often 
able to save memory by forgetting the solutions to subproblems we won't need in the future. For example, if we only need row 푘 of the table 
to compute row 푘 + 1, there is no need to remember row 푘 − 1 anymore. On the flip side, in tabulation method, we solve all subproblems 
in spite of the fact that some subproblems may not be needed for a given problem instance. 

19.8 Examples of DP Algorithms 
 

 Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring, edit 
distance. 

 Algorithms on graphs can be solved efficiently: Bellman-Ford algorithm for finding the shortest distance in a graph, Floyd's All-Pairs 
shortest path algorithm, etc. 

 Chain matrix multiplication 
 Subset Sum 
 0/1 Knapsack 
 Travelling salesman problem, and many more 

19.9 Longest Common Subsequence 
 

Given two strings: string 푋 of length 푚 [푋(1. . 푚)], and string 푌 of length 푛 [푌(1. . 푛)], find the longest common subsequence: the longest 
sequence of characters that appear left-to-right (but not necessarily in a contiguous block) in both strings. For example, if 푋 = "ABCBDAB" 
and 푌 = "BDCABA", the 퐿퐶푆(X, Y) = {"BCBA", "BDAB", "BCAB"}. We can see there are several optimal solutions. 
 

Brute Force Approach: One simple idea is to check every subsequence of 푋[1. . 푚] (푚 is the length of sequence 푋) to see if it is also a 
subsequence of 푌[1. . 푛] (푛 is the length of sequence 푌). Checking takes O(푛) time, and there are 2  subsequences of 푋. The running time 
thus is exponential O(푛. 2 ) and is not good for large sequences. 
 

Recursive Solution: Before going to DP solution, let us form the recursive solution for this and later we can add memoization to reduce the 
complexity. Let's start with some simple observations about the LCS problem. If we have two strings, say "ABCBDAB" and "BDCABA", and 
if we draw lines from the letters in the first string to the corresponding letters in the second, no two lines cross:  
 

A    B      C      B D  A B 
 
       B D  C A   B      A 

 

From the above observation, we can see that the current characters of 푋 and 푌 may or may not match. That means, suppose that the two first 
characters differ. Then it is not possible for both of them to be part of a common subsequence - one or the other (or maybe both) will have 
to be removed. Finally, observe that once we have decided what to do with the first characters of the strings, the remaining sub problem is 
again a 퐿퐶푆 problem, on two shorter strings. Therefore we can solve it recursively. 
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The solution to 퐿퐶푆 should find two sequences in 푋 and 푌 and let us say the starting index of sequence in 푋 is 푖  and the starting index of 
sequence in 푌 is 푗. Also, assume that 푋[푖 … 푚] is a substring of 푋 starting at character 푖 and going until the end of 푋, and that 푌[푗 … 푛] is a 
substring of  푌 starting at character 푗 and going until the end of  푌. 
 

Based on the above discussion, here we get the possibilities as described below: 
 

1) If 푋[푖]  ==  푌[푗] : 1 +  퐿퐶푆(푖 + 1, 푗 + 1) 
2) If 푋[푖]  ≠  푌[푗]: 퐿퐶푆(푖, 푗 + 1) // skipping 푗  character of 푌 
3) If 푋[푖]  ≠  푌[푗]: 퐿퐶푆(푖 + 1, 푗) // skipping 푖  character of 푋 

 

In the first case, if 푋[푖] is equal to 푌[푗], we get a matching pair and can count it towards the total length of the 퐿퐶푆. Otherwise, we need to 
skip either 푖  character of 푋 or 푗  character of 푌 and find the longest common subsequence. Now, 퐿퐶푆(푖, 푗) can be defined as: 
 

퐿퐶푆(푖, 푗) =
 0,                                                                      푖푓 푖 = 푚 표푟 푗 = 푛
푀푎푥{퐿퐶푆(푖, 푗 + 1), 퐿퐶푆(푖 + 1, 푗 )},                푖푓 X[i]  ≠  Y[j] 
 1 +  퐿퐶푆[푖 +  1, 푗 +  1],                                  푖푓 X[i]  ==  Y[j]

 

 

LCS has many applications. In web searching, if we find the smallest number of changes that are needed to change one word into another. A 
푐ℎ푎푛푔푒 here is an insertion, deletion or replacement of a single character. 
 

     //Initial Call: LCSLength(X,Y); 
     public static String LCSLength(String X, String Y){ 
         int m = X.length(); 
         int m = Y.length(); 
         if(m == 0 || n == 0){ 
             return ""; 
         }else if(X.charAt(m-1) == Y.charAt(n-1)){ 
             return LCSLength(X.substring(0,m-1),Y.substring(0,n-1))+ X.charAt(m-1); 
         }else{ 
             String x = LCSLength(a, Y.substring(0,n-1)); 
             String y = LCSLength(X.substring(0,m-1), b); 
             return (x.length() > y.length()) ? x : y; 
         } 
     } 
 

This is a correct solution but it is very time consuming. For example, if the two strings have no matching characters, the last line always gets 
executed which gives (if 푚 == 푛) close to O(2 ). 
 

DP Solution: Adding Memoization: The problem with the recursive solution is that the same subproblems get called many different times. A 
subproblem consists of a call to LCSLength, with the arguments being two suffixes of 푋 and 푌, so there are exactly (푖 + 1)(푗 + 1) possible 
subproblems (a relatively small number). If there are nearly ퟐ퐧 recursive calls, some of these subproblems must be being solved over and 
over. 
 

The DP solution is to check, whenever we want to solve a sub problem, whether we've already done it before. So we look up the solution 
instead of solving it again. Implemented in the most direct way, we just add some code to our recursive solution. To do this, look up the code. 
This can be given as: 
 

     public static String LCSLength(String X, String Y) { 
         int[][] Table = new int[X.length()+1][Y.length()+1]; 
         // row 0 and column 0 are initialized to 0 already 
          for (int i = 0; i < X.length(); i++) 
             for (int j = 0; j < Y.length(); j++) 
                 if (X.charAt(i) == Y.charAt(j)) 
                     Table[i+1][j+1] = Table[i][j] + 1; 
                 else 
                     Table[i+1][j+1] = Math.max(Table[i+1][j], Table[i][j+1]); 
         // read the substring out from the matrix 
         StringBuffer sY = new StringBuffer(); 
         for (int x = X.length(), y = Y.length(); 
              x != 0 && y != 0; ) { 
             if (Table[x][y] == Table[x-1][y]) 
                 x--; 
             else if (Table[x][y] == Table[x][y-1]) 
                 y--; 
             else { 
                 assert X.charAt(x-1) == Y.charAt(y-1); 
                 sY.append(X.charAt(x-1)); 
                 x--; 
                 y--; 
             } 
         } 
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         return sY.reverse().toString(); 
     } 
 

First, take care of the base cases. We have created an 퐿퐶푆 table with one row and one column larger than the lengths of the two strings. Then 
run the iterative DP loops to fill each cell in the table. This is like doing recursion backwards, or bottom up.  
 

      
      
  L[i][j] L[i][j+1]   

  L[i+1][j] L[i+1][j+1]   
      

 

The value of 퐿퐶푆[푖][푗] depends on 3 other values (퐿퐶푆[푖 + 1][푗 + 1], 퐿퐶푆[푖][푗 + 1] and 퐿퐶푆[푖 + 1][푗]), all of which have larger values of 푖 
or 푗. They go through the table in the order of decreasing 푖 and 푗 values. This will guarantee that when we need to fill in the value of 
퐿퐶푆[푖][푗], we already know the values of all the cells on which it depends. 
 

Time Complexity: O(푚푛), since  푖 takes values from 1 to 푚 and and 푗 takes values from 1 to 푛. Space Complexity: O(푚푛). 
 

Note: In the above discussion, we have assumed  퐿퐶푆(푖, 푗) is the length of the 퐿퐶푆 with 푋[푖 … 푚] and 푌[푗 … 푛]. We can solve the problem 
by changing the definition as 퐿퐶푆(푖, 푗) is the length of the 퐿퐶푆 with 푋[1 … 푖] and 푌[1 … 푗]. 
 

Printing the subsequence: The above algorithm can find the length of the longest common subsequence but cannot give the actual longest 
subsequence. To get the sequence, we trace it through the table. Start at cell (0, 0). We know that the value of  퐿퐶푆[0][0] was the maximum 
of 3 values of the neighboring cells. So we simply recompute 퐿퐶푆[0][0] and note which cell gave the maximum value. Then we move to that 
cell (it will be one of (1, 1), (0, 1) or (1, 0)) and repeat this until we hit the boundary of the table. Every time we pass through a cell (푖, 푗) 
where 푋[푖] == 푌[푗], we have a matching pair and print 푋[푖]. At the end, we will have printed the longest common subsequence in O(푚푛) 
time.  
 

An alternative way of getting path is to keep a separate table for each cell. This will tell us which direction we came from when computing the 
value of that cell. At the end, we again start at cell (0, 0) and follow these directions until the opposite corner of the table. 
 

From the above examples, I hope you understood the idea behind DP. Now let us see more problems which can be easily solved using the 
DP technique. 
 

Note: As we have seen above, in DP the main component is recursion. If we know the recurrence then converting that to code is a minimal 
task. For the problems below, we concentrate on getting the recurrence. 

19.10 Dynamic Programming: Problems & Solutions 
 

Problem-1 Convert the following recurrence to code. 
             푇(0) = 푇(1) = 2                                    

푇(푛) = 2 × T(i) × T(i − 1)
n−1

i=1
, for n > 1 

 

Solution: The code for the given recursive formula can be given as: 
 

      public int f(int n) { 
 int sum = 0; 

if(n==0 || n==1)  
         return 2;   //Base Case 

 for(int i=1; i < n;i++)  //Recursive case 
          sum += 2 * f(i) * f(i-1);  
 return sum; 
      } 

 

Problem-2 Can we improve the solution to Problem-1 using memoization of DP? 
 

Solution: Yes. Before finding a solution, let us see how the values are calculated. 
                  푇(0) = 푇(1) = 2 
                  푇(2) = 2 ∗ 푇(1) ∗ 푇(0) 
                  푇(3) = 2 ∗ 푇(1) ∗ 푇(0) + 2 ∗ 푇(2) ∗ 푇(1) 
                  푇(4) = 2 ∗ 푇(1) ∗ 푇(0) + 2 ∗ 푇(2) ∗ 푇(1) + 2 ∗ 푇(3) ∗ 푇(2) 
From the above calculations it is clear that there are lots of repeated calculations with the same input values. Let us use a table for avoiding 
these repeated calculations, and the implementation can be given as:: 
 

      public int f(int n) { 
            T[0] = T[1] = 2; 
            for(int i=2; i <= n; i++) { 
       T[i] = 0; 
 for (int j=1; j < i; j++) 
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       T[i] +=2 * T[j] * T[j-1]; 
            } 
            return T[n]; 
      } 
 

Time Complexity: O(푛 ), two 푓표푟 loops. Space Complexity: O(푛), for table. 
 

Problem-3 Can we further improve the complexity of Problem-2? 
 

Solution:  Yes, since all sub-problem calculations are dependent only on previous calculations, the code can be modified as: 
 

      public int f(int n) { 
            T[0] = T[1] = 2; 
            T[2] = 2 * T[0] * T[1]; 
            for(int i=3; i <= n; i++) 
       T[i]=T[i-1] + 2 * T[i-1] * T[i-2]; 
                  return T[n]; 
      } 
 

Time Complexity: O(푛), since only one 푓표푟 loop. Space Complexity: O(푛). 
 

Problem-4 Maximum Value Contiguous Subsequence: Given an array of 푛 numbers, give an algorithm for finding a contiguous 
subsequence 퐴(푖). . . 퐴(푗) for which the sum of elements is maximum. Example: {-2, 11, -4, 13, -5, 2}→20 and  {1, -3, 4, -2, -1, 6}   →  7 

 

Solution: Goal: If there are no negative numbers, then the solution is just the sum of all elements in the given array. If negative numbers are 
there, then our aim is to maximize the sum [there can be a negative number in the contiguous sum].  
 

One simple and brute force approach is to see all possible sums and select the one which has maximum value. 
 

      public int MaxContigousSum(int[] A) { 
 int maxSum = 0; 
 

 for(int i = 0; i < A.length; i++)    // for each possible start point 
  for(int j = i; j < A.length; j++){     // for each possible end point 
   int currentSum = 0; 
   for(int k = i; k <= j; k++) 
    currentSum += A[k]; 
   if(currentSum > maxSum) 
    maxSum = currentSum; 
  } 
 } 
 return maxSum; 
    } 
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-5 Can we improve the complexity of Problem-4? 
 

Solution: Yes. One important observation is that, if we have already calculated the sum for the subsequence 푖, … , 푗 − 1, then we need only 
one more addition to get the sum for the subsequence 푖, … , 푗. But, the Problem-4 algorithm ignores this information. If we use this fact, we 
can get an improved algorithm with the running time O(n ). 
 

    public int MaxContigousSum(int[] A) { 
 int maxSum = 0; 
 

 for( int i = 0; i < A.length;   i++) { 
  int currentSum = 0; 
  for( int j = i; j < A.length; j++)  { 
   currentSum += a[j]; 
   if(currentSum > maxSum) 
    maxSum = currentSum; 
  }  
 } 
 return maxSum; 
    } 
 

Time Complexity: O(푛 ). Space Complexity: O(1). 
 

Problem-6 Can we solve Problem-4 using Dynamic Programming? 
 

Solution: Yes. For simplicity, let us say, 푀(푖) indicates maximum sum over all windows ending at 푖.  
 

 

 

Given Array, 퐴: recursive formula considers the case of selecting 푖  element 

                                             ….. ? 
퐴[푖] 
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To find maximum sum we have to do one of the following and select maximum among them. 
 

 Either extend the old sum by adding 퐴[푖] 
 or  start new window starting with one element 퐴[푖] 

 

푀(푖) = 푀푎푥 푀(푖 − 1) + 퐴[푖]
0                             

 

Where, 푀(푖 − 1) + 퐴[푖] indicates the case of extending the previous sum by adding 퐴[푖] and 0 indicates the new window starting at 퐴[푖]. 
 

    public int maxSubArray(int[] A) { 
        int maxSum = A[0], sum = 0; 
 

        for(int i = 0; i < A.length; ++i){ 
            sum = Math.max(sum + A[i], A[i]); 
            maxSum = Math.max(maxSum, sum); 
        } 
        return maxSum; 
    } 
 

Time Complexity: O(푛). Space Complexity: O(푛), for table. 
 

Problem-7 Is there any other way of solving Problem-4? 
 

Solution: Yes. We can solve this problem without DP too (without memory). The algorithm is a little tricky. One simple way is to look for all 
positive contiguous segments of the array (푠푢푚퐸푛푑푖푛푔퐻푒푟푒) and keep track of the maximum sum contiguous segment among all positive 
segments (푠푢푚푆표퐹푎푟). Each time we get a positive sum compare it (푠푢푚퐸푛푑푖푛푔퐻푒푟푒) with 푠푢푚푆표퐹푎푟 and update 푠푢푚푆표퐹푎푟 if it is 
greater than 푠푢푚푆표퐹푎푟. Let us consider the following code for the above observation. 
 

    public int MaxContigousSum(int[] A) { 
 int sumSoFar = 0, sumEndingHere = 0; 
 for(int i = 0; i < A.length; i++)  { 
  sumEndingHere = sumEndingHere + A[i]; 
  if(sumEndingHere < 0) { 
   sumEndingHere = 0; 
   continue; 
                         } 
  if(sumSoFar < sumEndingHere) 
   sumSoFar = sumEndingHere; 
 } 
 return sumSoFar; 
    } 
 

Note: The algorithm doesn't work if the input contains all negative numbers. It returns 0 if all numbers are negative. To overcome this, we 
can add an extra check before the actual implementation. The phase will look if all numbers are negative, and if they are it will return maximum 
of them (or smallest in terms of absolute value).  
 

Time Complexity: O(푛), because we are doing only one scan. Space Complexity: O(1), for table. 
 

Problem-8 In Problem-7 solution, we have assumed that 푀(푖) indicates maximum sum over all windows ending at 푖. Can we assume 
푀(푖) indicates maximum sum over all windows starting at 푖 and ending at 푛? 
 

Solution: Yes. For simplicity, let us say, 푀(푖) indicates maximum sum over all windows starting at 푖.  
 
 
 
 
 
To find maximum window we have to do one of the following and select maximum among them. 
 

 Either extend the old sum by adding 퐴[푖] 
 Or  start new window starting with one element A[i] 

 

푀(푖) = 푀푎푥 푀(푖 + 1) + 퐴[푖],            푖푓 푀(푖 + 1) + 퐴[푖] > 0
0                            , 푖푓 푀(푖 + 1) + 퐴[푖] <= 0 

 

Where, 푀(푖 + 1) + 퐴[푖] indicates the case of extending the previous sum by adding 퐴[푖], and 0 indicates the new window starting at 퐴[푖]. 
 

Time Complexity: O(푛). Space Complexity: O(푛), for table. 
 

Note: For O(푛푙표푔푛) solution, refer to the 퐷푖푣푖푑푒 푎푛푑 퐶표푛푞푢푒푟 chapter. 
 

Problem-9 Given a sequence of 푛 numbers 퐴(1) . . . 퐴(푛), give an algorithm for finding a contiguous subsequence 퐴(푖) . . . 퐴(푗) for 
which the sum of elements in the subsequence is maximum. Here the condition is we should not select 푡푤표 contiguous numbers. 
 

Solution: Let us see how DP solves this problem. Assume that 푀(푖) represents the maximum sum from 1 to 푖 numbers without selecting two 
contiguous numbers. While computing 푀(푖), the decision we have to make is, whether to select the 푖  element or not. This gives us two 
possibilities and based on this we can write the recursive formula as: 

Given Array, A: recursive formula considers the case of selecting 푖   element 

                        …..                                             ….. ? 
퐴[푖] 
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푀(푖) =
푀푎푥{퐴[푖] + 푀(푖 − 2), 푀(푖 − 1)}, 푖푓 푖 > 2
퐴[1],                                                     푖푓 푖 = 1
푀푎푥{퐴[1], 퐴[2]},                              푖푓 푖 = 2

 

 
 
 
 
 
 
 

 
 

 

 The first case indicates whether we are selecting the  푖  element or not. If we don’t select the 푖  element then we have to maximize 
the sum using the elements 1 to 푖 − 1. If  푖  element is selected then we should not select 푖 − 1  element and need to maximize 
the sum using 1 to 푖 − 2 elements. 

 In the above representation, the last two cases indicate the base cases. 
 

      public int maxSumWithNoTwoContinuousNumbers(int[] A) { 
 int M[n+1]; 
 M[0]=A[0]; 

M[1]=(A[0]>A[1]?A[0]:A[i]); 
 

for(i=2, i< A.length; i++) 
 M[i]= (M[i-1]>M[i-2]+A[i]? M[i-1]: M[i-2]+A[i]); 

 return M[n-1]; 
      } 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-10 In Problem-9, we assumed that 푀(푖) represents the maximum sum from 1 to 푖 numbers without selecting two contiguous 
numbers. Can we solve the same problem by changing the definition as: 푀(푖) represents the maximum sum from 푖 to 푛 numbers without 
selecting two contiguous numbers? 

 

Solution: Yes. Let us assume that 푀(푖) represents the maximum sum from 푖 to 푛 numbers without selecting two contiguous numbers. 
 
 
 
 
 
As similar to Problem-9 solution, we can write the recursive formula as: 
 

푀(푖) =
푀푎푥{퐴[푖] + 푀(푖 + 2), 푀(푖 + 1)}, 푖푓 푖 > 2
퐴[1],                                                     푖푓 푖 = 1
푀푎푥{퐴[1], 퐴[2]},                              푖푓 푖 = 2

 

 

 The first case indicates whether we are selecting the  푖  element or not. If we don’t select the 푖  element then we have to maximize 
the sum using the elements  푖 + 1 to 푛. If  푖  element is selected then we should not select 푖 + 1  element need to maximize the 
sum using 푖 + 2 to 푛 elements. 

 In the above representation, the last two cases indicate the base cases. 
 

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-11 Given a sequence of 푛 numbers 퐴(1) . . . 퐴(푛), give an algorithm for finding a contiguous subsequence 퐴(푖) . . . 퐴(푗) for 
which the sum of elements in the subsequence is maximum. Here the condition is we should not select 푡ℎ푟푒푒 continuous numbers. 

 

Solution: Input: Array 퐴(1) . . . 퐴(푛) of 푛 numbers.  
 

 

 

Assume that 푀(푖) represents the maximum sum from 1 to 푖 numbers without selecting three contiguous numbers. While computing 푀(푖), 
the decision we have to make is, whether to select 푖  element or not. This gives us the following possibilities: 

푀(푖) = 푀푎푥
퐴[푖] + 퐴[푖 − 1] + 푀(푖 − 3)
퐴[푖] + 푀(푖 − 2)                     
푀(푖 − 1)                                

 

 In the given problem the restriction is not to select three continuous numbers, but we can select two elements continuously and 
skip the third one. That is what the first case says in the above recursive formula. That means we are skipping 퐴[푖 − 2]. 

 The other possibility is, selecting 푖  element and skipping second 푖 − 1  element. This is the second case (skipping 퐴[푖 − 1]). 
 The third term defines the case of not selecting 푖  element and as a result we should solve the problem with 푖 − 1 elements. 

  

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Given Array, A: recursive formula considers the case of selecting 푖   element 

                                             ….. ? 

A[i] 

….. 

A[i-1] A[i-2] 

Given Array, A: recursive formula considers the case of selecting 푖   element 

                                             

A[i+2] A[i+1] A[i] 

? ….. ….. 

Given Array, A: recursive formula considers the case of selecting 푖   element 

                                             ….. ? 

A[i] 

….. 

A[i-1] A[i-2] A[i-3] 

….. 
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Problem-12 In Problem-11, we assumed that 푀(푖) represents the maximum sum from 1 to 푖 numbers without selecting three 
contiguous numbers. Can we solve the same problem by changing the definition as: 푀(푖) represents the maximum sum from 푖 to 푛 
numbers without selecting three contiguous numbers? 

 

Solution: Yes. The reasoning is very much similar. Let us see how DP solves this problem. Assume that 푀(푖) represents the maximum sum 
from 푖 to 푛 numbers without selecting three contiguous numbers.  

 

 
 

While computing 푀(푖), the decision we have to make is, whether to select 푖  element or not. This gives us the following possibilities: 

푀(푖) = 푀푎푥
퐴[푖] + 퐴[푖 + 1] + 푀(푖 + 3)
퐴[푖] + 푀(푖 + 2)                     
푀(푖 + 1)                                

 

 In the given problem the restriction is to not select three continuous numbers, but we can select two elements continuously and 
skip the third one. That is what the first case says in the above recursive formula. That means we are skipping 퐴[푖 + 2]. 

 The other possibility is, selecting 푖  element and skipping second 푖 − 1  element. This is the second case (skipping 퐴[푖 + 1]). 
 And the third case is not selecting 푖  element and as a result we should solve the problem with 푖 + 1 elements. 

  

Time Complexity: O(푛). Space Complexity: O(푛). 
 

Problem-13 Catalan Numbers: How many binary search trees are there with 푛 vertices? 
 

Solution: Binary Search Tree (BST) is a tree where the left subtree elements are less than the root element, and the right subtree elements 
are greater than the root element. This property should be satisfied at every node in the tree. The number of BSTs with 푛 nodes is called 
퐶푎푡푎푙푎푛 푁푢푚푏푒푟 and is denoted by 퐶 . For example, there are 2 BSTs with 2 nodes (2 choices for the root) and 5 BSTs with 3 nodes. 
 

Number of nodes, 푛 Number of Trees 
 
1 

 
 

 
 
2 

 

 
 
3 

 
 
 
 
 

 

 

Let us assume that the nodes of the tree are numbered from 1 to  푛.  Among the nodes, we have to select some node as root, and then divide 
the nodes which are less than root node into left sub tree, and elements greater than root node into right sub tree. Since we have already 
numbered the vertices, let us assume that the root element we selected is 푖  element. 
 

If we select 푖  element as root then we get 푖 − 1 elements on left sub-tree and 푛 − 푖 elements on right sub tree. Since  퐶  is the Catalan 
number for 푛 elements,  퐶  represents the Catalan number for left sub tree elements (푖 − 1 elements) and  퐶  represents the Catalan 
number for right sub tree elements. The two sub trees are independent of each other, so we simply multiply the two numbers. That means, 
the Catalan number for a fixed 푖 value is  퐶 ×  퐶 . 
 

Since there are 푛 nodes, for 푖 we will get 푛 choices. The total Catalan number with 푛 nodes can be given as: 

 퐶 =  퐶 ×  퐶  

For this simple recursive definition, we can write the function as: 
 

      public int CatalanNumber( int n ) { 
 if( n == 0 ) return 1; 
 int count = 0; 
 for( int i = 1; i <= n; i++ ) 
  count += CatalanNumber (i -1) * CatalanNumber (n -i); 
 return count; 
      } 
 

Time Complexity: O(4 ). For proof, refer to 퐼푛푡푟표푑푢푐푡푖표푛 chapter. 

Given Array, A: recursive formula considers the case of selecting 푖   element 

                                             ….. ….. 

A[i+3] 

….. 

A[i+2] A[i+1] A[i] 

? 

1 

2 1 

1 2 

3 

2 

1 

2 

3 1 2 

3 

1 

2 

3 

1 

1 

2 

3 
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Problem-14 Can we improve the time complexity of Problem-13  using DP? 
 

Solution: The recursive call 퐶  depends only on the numbers  퐶  to  퐶  and for any value of 푖, there are a lot of recalculations. We will 
keep a table of previously computed values of 퐶 . If the function 퐶푎푡푎푙푎푛푁푢푚푏푒푟() is called with parameter 퐢, and if it has already been 
computed before, then we can simply avoid recalculating the same subproblem. 
  

      static int[] Table = new int[n + 1]; 
      public int CatalanNumber( int n ) { 
 if( Table[n] ) != 1 )  
  return Table[n]; 
 Table[n] = 0; 
 for( int i = 1; i <= n; i++ ) 
  Table[n] += CatalanNumber( i -1) * CatalanNumber(n -i); 
 return Table[n]; 
      } 
 

The time complexity of this implementation O(푛 ), because to compute 퐶푎푡푎푙푎푛푁푢푚푏푒푟(푛), we need to compute all of the 
퐶푎푡푎푙푎푛푁푢푚푏푒푟(푖) values between 0 and 푛 − 1, and each one will be computed exactly once, in linear time.  
 

In mathematics, Catalan Number can be represented by direct equation as:  
( )!
!( )!

. 
 

Problem-15 Matrix Product Parenthesizations: Given a series of matrices: 퐴  × 퐴  × 퐴  × . . . × 퐴 with their dimensions, what is the 
best way to parenthesize them so that it produces the minimum number of total multiplications. Assume that we are using standard 
matrix and not Strassen’s matrix multiplication algorithm. 

 

Solution: Input:  Sequence of matrices A  × A  × A  × . . . ×  퐴 , where 퐴  is a 푃  × 푃 . The dimensions are given in an array P. 
 

Goal: Parenthesize the given matrices in such a way that it produces the optimal number of multiplications needed to compute A  × A  × A  
× . . . × 퐴 . 
 

We could write a function which tries all possible parenthesizations. Unfortunately, the number of ways of parenthesizing an expression is 
very large. If you have just one or two matrices, then there is only one way to parenthesize. If you have n items, then there are 푛 −  1 places 
where you could break the list with the outermost pair of parentheses, namely just after the first item, just after the second item, etc., and just 
after the (푛 −  1)st item.  
 

When we split just after the ith item, we create two sublists to be parenthesized, one with i items, and the other with n - i items. Then we could 
consider all the ways of parenthesizing these. Since these are independent choices, if there are L ways to parenthesize the left sublist and R 
ways to parenthesize the right sublist, then the total is 퐿 ×  푅. This suggests the following recurrence for P(n), the number of different ways 
of parenthesizing n items: 
 

푃(푛) = 푃(푖) × 푃(푛 − 푖) 
 

The base case would be 푃(1), and obviously, the number of ways to parenthesize the two matrices is 1. 
 

푃(1) = 1 
 

This is related to the Catalan numbers (which in turn is related to the number of different binary trees on n nodes). As said above, applying 

Stirling’s formula, we find that C(n) is O
√

. Since 4  is exponential and 푛 /  is just polynomial, the exponential will dominate, implying 

that function grows very fast. Thus, this will not be practical except for very small n. In summary, brute force is not an option. 
 

Now let us use DP to improve this time complexity. Assume that, 푀[푖, 푗] represents the least number of multiplications needed to multiply 
 퐴  · · · 퐴 .  

푀[푖 , 푗 ]  =  
0                                                                             , 푖푓 푖 = 푗
푀푖푛 푀[푖 , 푘] +  푀[푘 +  1, 푗 ] + 푃 푃 푃 , 푖푓 푖 < 푗  

 

The above recursive formula says that we have to find point 푘 such that it produces the minimum number of multiplications. After computing 
all possible values for 푘, we have to select the 푘 value which gives minimum value. We can use one more table (say, 푆[푖, 푗]) to reconstruct the 
optimal parenthesizations. Compute the 푀[푖, 푗] and 푆[푖, 푗] in a bottom-up fashion. 
 

      /* P is the sizes of the matrices, Matrix i has the dimension P[i-1] x P[i]. 
      M[i,j] is the best cost of multiplying matrices i through j 
      S[i,j] saves the multiplication point and we use this for back tracing */ 
      public void MatrixChainOrder(int[] P) { 

int n = P.length; 
 int M[n][n], S[n][n];  
 

 for (int i = 1; i <= n; i++)  
  M[i][i] = 0;  // Fills in matrix by diagonals 
 

 for (int l=2; l<= n; l++)  {  // l is chain length 
  for (int i=1; i<= n -l+1; i++) { 
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   int j = i+l-1; 
   M[i][j] = MAX_VALUE;  
   // Try all possible division points i..k and k..j 
   for (int k=i; k<=j-1; k++) { 
    int thisCost = M[i][k] + M[k+1][j] + P[i-1]*P[k]*P[j]; 
    if(thisCost < M[i][j]) { 
     M[i][j] = thisCost; 
     S[i][j] = k; 
    } 
   } 
  } 
 } 
      } 
 

How many sub problems are there? In the above formula, 푖 can range from 1 푡표 푛 and 푗 can range from 1 푡표 푛. So there are a total of 푛  
subproblems, and also we are doing 푛 − 1 such operations [since the total number of operations we need for A  × A  × A  × . . . × 퐴  ise 
푛 − 1]. So the time complexity is O(푛 ).  
Space Complexity: O(푛 ). 
 

Problem-16 For the Problem-15, can we use greedy method? 
 

Solution: 퐺푟푒푒푑푦 method is not an optimal way of solving this problem. Let us go through some counter example for this. As we have seen 
already, 푔푟푒푒푑푦 method makes the decision that is good locally and it does not consider the future optimal solutions. In this case, if we use 
퐺푟푒푒푑푦, then we always do the cheapest multiplication first. Sometimes it returns a parenthesization that is not optimal. 
 

Example: Consider A  × A  × A  with dimensions 3 × 100, 100 × 2 and 2 × 2. Based on 푔푟푒푒푑푦 we parenthesize them as:  A  × (A  × A ) 
with 100 · 2 · 2 + 3 · 100 · 2 = 1000 multiplications. But the optimal solution to this problem is: (A  × A ) × A  with 3 · 100 · 2 + 3 · 2 · 2 = 
612 multiplications. ∴ we cannot use 푔푟푒푒푑푦 for solving this problem. 
 

Problem-17 Integer Knapsack Problem [Duplicate Items Permitted]: Given 푛 types of items, where the 푖  item type has an integer 
size 푠  and a value 푣 . We need to fill a knapsack of total capacity 퐶 with items of maximum value. We can add multiple items of the 
same type to the knapsack. 
Note: For Fractional Knapsack problem refer to 퐺푟푒푒푑푦 퐴푙푔표푟푖푡ℎ푚푠 chapter. 

 

Solution: Input: 푛 types of items where 푖  type item has the size 푠  and value 푣 . Also, assume infinite number of items for each item type. 
 

Goal: Fill the knapsack with capacity 퐶 by using 푛 types of items and with maximum value.  
 

One important note is that it’s not compulsory to fill the knapsack completely. That means, filling the knapsack completely [of size 퐶] if we 
get a value V and without filling the knapsack completely [let us say  C − 1] with value U and if V <  U then we consider the second one. In this 
case, we are basically filling the knapsack of size C − 1. If we get the same situation for 퐶 − 1 also, then we try to fill the knapsack with 퐶 − 2 
size and get the maximum value.  
 

Let us say M(j) denotes the maximum value we can pack into a 푗 size knapsack. We can express M(j) recursively in terms of solutions to sub 
problems as follows: 

푀(푗)  = 푚푎푥 푀(푗 − 1), 푚푎푥   푀(푗 − 푠 ) + 푣 ,           푖푓 푗 ≥ 1
0,                                                                                         푖푓 푗 ≤ 0

 
 

For this problem the decision depends on whether we select a particular 푖  item or not for a knapsack of size 푗.   
 If we select 푖  item, then we add its value 푣  to the optimal solution and decrease the size of the knapsack to be solved to 푗 − 푠 .  
 If we do not select the item then check whether we can get a better solution for the knapsack of size 푗 − 1.  

 

The value of 푀(퐶) will contain the value of the optimal solution. We can find the list of items in the optimal solution by maintaining and 
following “back pointers”. 
 

Time Complexity: Finding each 푀(푗) value will require (푛) time, and we need to sequentially compute 퐶 such values. Therefore, total 
running time is (푛퐶).  Space Complexity: (퐶).  
 

Problem-18 0-1 Knapsack Problem: For Problem-17, how do we solve it if the items are not duplicated (not having an infinite number 
of items for each type, and each item is allowed to be used for 0 or 1 time)? 
 

Real-time example: Suppose we are going by flight, and we know that there is a limitation on the luggage weight. Also, the items which 
we are carrying can be of different types (like laptops, etc.). In this case, our objective is to select the items with maximum value. That 
means, we need to tell the customs officer to select the items which have more weight and less value (profit).  

 

Solution: Input is a set of 푛 items with sizes 푠  and values 푣  and a Knapsack of size 퐶 which we need to fill with a subset of items from the 
given set. Let us try to find the recursive formula for this problem using DP. Let 푀(푖, 푗) represent the optimal value we can get for filling up 
a knapsack of size 푗 with items 1 … 푖. The recursive formula can be given as: 
 

푀(푖, 푗) = 푀푎푥 {푀(푖 − 1, 푗), 푀(푖 − 1, 푗 − 푠 ) + 푣 } 
 
 
 
 

푖  item is not used 푖  item is used 
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Time Complexity: O(푛퐶), since there are 푛퐶 subproblems to be solved and each of them takes O(1) to compute. Space Complexity: O(푛퐶), 
where as Integer Knapsack takes only O(퐶). 
 

Now let us consider the following diagram which helps us in reconstructing the optimal solution and also gives further understanding. Size of 
below matrix is 푀. 
 

     
      

      

 푀(푖 − 1, 푗 − 푠 )  푀(푖 − 1, 푗)   

   푀(푖, 푗)   

      
 

Since 푖 takes values from 1 … 푛 and 푗 takes values from 1 … 퐶, there are a total of 푛퐶 subproblems. Now let us see what the above formula 
says: 
 

 푀(푖 − 1, 푗): Indicates the case of not selecting the 푖  item. In this case, since we are not adding any size to the knapsack we have 
to use the same knapsack size for subproblems but excluding the 푖  item. The remaining items are 푖 − 1. 

  푀(푖 − 1, 푗 − 푠 ) + 푣  indicates the case where we have selected the 푖  item. If we add the 푖  item then we have to reduce the 
subproblem knapsack size to  푗 − 푠  and at the same time we need to add the value 퐯퐢 to the optimal solution. The remaining items 
are 푖 − 1.  

 

Now, after finding all 푀(푖, 푗) values, the optimal objective value can be obtained as: 푀푎푥 {푀(푛, 푗)} 
This is because we do not know what amount of capacity gives the best solution. 
 

In order to compute some value 푀(푖, 푗), we take the maximum of 푀(푖 − 1, 푗) and 푀(푖 − 1, 푗 − 푠 ) + 푣 . These two values (푀(푖, 푗) 
and 푀(푖 − 1, 푗 − 푠 )) appear in the previous row and also in some previous columns. So, 푀(푖, 푗) can be computed just by looking at two 
values in the previous row in the table.  
 

Problem-19 Making Change: Given 푛 types of coin denominations of values 푣  <  푣  < . . . <  푣  (integers). Assume 푣 = 1, so that 
we can always make change for any amount of money 퐶. Give an algorithm which makes change for an amount of money 퐶 with as few 
coins as possible. 

 

Solution:  
 
 
 
 
 
 
 
 
 
This problem is identical to the Integer Knapsack problem. In our problem, we have coin denominations, each of value 푣 . We can construct 
an instance of a Knapsack problem for each item that has a size 푠 , which is equal to the value of 푣  coin denomination. In the Knapsack we 
can give the value of every item as −1. 
 

Now it is easy to understand an optimal way to make money 퐶 with the fewest coins is completely equivalent to the optimal way to fill the 
Knapsack of size 퐶. This is because since every value has a value of −1, and the Knapsack algorithm uses as few items as possible which 
correspond to as few coins as possible. 
 

Let us try formulating the recurrence. Let 푀(푗) indicate the minimum number of coins required to make change for the amount of money 
equal to 푗. 

푀(푗) = 푀푖푛 {푀(푗 − 푣 )} + 1 
 

What this says is, if coin denomination 푖 was the last denomination coin added to the solution, then the optimal way to finish the solution with 
that one is to optimally make change for the amount of money j − v  and then add one extra coin of value 푣 . 
 

      static int[] Table = new int[n + 1]; 
      public int MakingChange(int n) { 
 if(n < 0)  
                 return -1; 
 if(n == 0)  
                 return 0; 
 if(Table[n] != -1) 
  return Table[n]; 

j 

+푣  

 i 

Coin Denominations 
 

Value 

Knapsack Items 
 

          Size   푠        Value  -1 

= 
푣  

Optimal way to make change 
for amount of money equal to C 
 

Optimal way to exactly fill a capacity 퐶 Knapsack.
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 int ans = -1; 
 for ( int i = 0 ; i < num_denomination ; ++i ) 
  ans = Min( ans , MakingChange(n - denominations [ i ] ) ) ; 
 return Table[ n ] = ans + 1 ; 
      } 
 

Time Complexity: O(푛퐶). Since we are solving 퐂 sub-problems and each of them requires minimization of  푛 terms. Space Complexity: 
O(푛퐶). 
 

Problem-20 Longest Increasing Subsequence: Given a sequence of 푛 numbers 퐴  . . .퐴 , determine a subsequence (not necessarily 
contiguous) of maximum length in which the values in the subsequence form a strictly increasing sequence. 
 

Solution: Goal: To find a subsequence that is just a subset of elements and does not happen to be contiguous. But the elements in the 
subsequence should form a strictly increasing sequence and at the same time the subsequence should contain as many elements as possible. 
 

For example, if the sequence is (5,6,2,3,4,1,9,9,8,9,5), then (5,6), (3,5), (1,8,9) are all increasing sub-sequences. The longest one of them 
is (2, 3, 4, 8, 9), and we want an algorithm for finding it. 
 

First, let us concentrate on the algorithm for finding the longest subsequence. Later, we can try printing the sequence itself by tracing the table. 
Our first step is finding the recursive formula. First, let us create the base conditions. If there is only one element in the input sequence then 
we don’t have to solve the problem and we just need to return that element. For any sequence we can start with the first element (퐴[1]). Since 
we know the first number in the LIS, let's find the second number (퐴[2]). If 퐴[2] is larger than 퐴[1] then include 퐴[2] also. Otherwise, we 
are done – the LIS is the one element sequence (퐴[1]).  
 

Now, let us generalize the discussion and decide about 푖  element. Let 퐿(푖) represent the optimal subsequence which is starting at position 
퐴[1] and ending at 퐴[푖]. The optimal way to obtain a strictly increasing subsequence ending at position 푖 is to extend some subsequence 
starting at some earlier position 푗. For this the recursive formula can be written as: 
 

퐿(푖) = 푀푎푥   [ ] [ ]{퐿(푗)} + 1 
 

The above recurrence says that we have to select some earlier position 푗 which gives the maximum sequence. The 1 in the recursive formula 
indicates the addition of 푖  element.  
 
 
 
 

Now after finding the maximum sequence for all positions we have to select the one among all positions which gives the maximum sequence 
and it is defined as: 
 

푀푎푥 {퐿(푖)} 
   

      static int[] LISTable = new int[n + 1]; # Where n = A.length 
      public int LongestIncreasingSequence( int[] A ) { 
 int i, j, max = 0; 
 for ( i = 0; i < A.length; i++ )  
  LISTable[i] = 1; 
 

 for ( i = 0; i< A.length; i++ ) { 
  for ( j = 0; j < i; j++ ) {    
                                 if( A[i] > A[j] && LISTable[i] < LISTable[j] + 1 ) 
   LISTable[i] = LISTable[j] + 1;   
  } 
 } 
 

 for ( i = 0; i < A.length; i++)  
  if( max < LISTable[i] ) 
   max = LISTable[i]; 
 return max; 
      } 
 

Time Complexity: O(푛 ), since two 푓표푟 loops. Space Complexity: O(푛), for table. 
 

Problem-21 Longest Increasing Subsequence: In Problem-20, we assumed that 퐿(푖) represents the optimal subsequence which is 
starting at position 퐴[1] and ending at 퐴[푖]. Now, let us change the definition of 퐿(푖) as: 퐿(푖) represents the optimal subsequence which 
is starting at position 퐴[푖] and ending at 퐴[푛]. With this approach can we solve the problem? 

 

Solution: Yes. The logic and reasoning is completely same.  
 
 
 
 
 

Let 퐿(푖) represent the optimal subsequence which is starting at position 퐴[푖] and ending at 퐴[푛]. The optimal way to obtain a strictly increasing 
subsequence starting at position 푖 is going to be to extend some subsequence starting at some later position 푗. For this the recursive formula 
can be written as: 

퐿(푖) = 푀푎푥   [ ] [ ]{퐿(푗)} + 1 
 

  1      …….                         푗         ………..                  푖 

              푖                     푗                     … . .                     푛 
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We have to select some later position 푗 which gives the maximum sequence. The 1 in the recursive formula is the addition of 푖  element. 
After finding the maximum sequence for all positions select the one among all positions which gives the maximum sequence and it is defined 
as: 

푀푎푥 {퐿(푖)} 
 

      static int[] LISTable = new int[n + 1]; # Where n = A.length 
      public int LongestIncreasingSequence( int[] A, int n ) { 
 int i, j, max = 0; 
 for ( i = 0; i < A.length; i++ )  
  LISTable[i] = 1;  
 for(i = A.length – 1; i >= 0; i++) { 
  // try picking a larger second element 
  for( j = i + 1; j < A.length; j++ )  { 
   if( A[i] < A[j] && LISTable [i] < LISTable [j] + 1) 
    LISTable[i] = LISTable[j] + 1;   
  } 
 } 
 for ( i = 0; i < A.length; i++ ) { 
  if( max < LISTable[i] ) 
   max = LISTable[i]; 
 } 
 return max; 
      } 
 

Time Complexity: O(푛 ), since two nested 푓표푟 loops. Space Complexity: O(푛), for table. 
 

Problem-22 Is there an alternative way of solving Problem-21? 
 

Solution:  Yes. The other method is to sort the given sequence and save it into another array and then take out the “Longest Common 
Subsequence” (LCS) of the two arrays. This method has a complexity of O(푛 ). For the LCS problem refer to the 푡ℎ푒표푟푦 푠푒푐푡푖표푛 of this 
chapter. 
  

Problem-23 Box Stacking: Assume that we are given a set of 푛 rectangular 3 − D boxes. The dimensions of 푖  box are height ℎ , 
width 푤  and depth 푑 . Now we want to create a stack of boxes which is as tall as possible, but we can only stack a box on top of another 
box if the dimensions of the 2 −D base of the lower box are each strictly larger than those of the 2 −D base of the higher box. We can 
rotate a box so that any side functions as its base. It is possible to use multiple instances of the same type of box.  

 

Solution: Box stacking problem can be reduced to LIS [Problem-21]. 
 

Input: 푛 boxes where 푖  with height ℎ , width 푤  and depth 푑 . For all 푛 boxes we have to consider all the orientations with respect to rotation. 
That is, if we have, in the original set, a box with dimensions 1 × 2 × 3, then we consider 3 boxes, 

1 × 2 × 3 ⟹
1 × (2 × 3), 푤푖푡ℎ ℎ푒푖푔ℎ푡 1, 푏푎푠푒 2 푎푛푑 푤푖푑푡ℎ 3
2 × (1 × 3), 푤푖푡ℎ ℎ푒푖푔ℎ푡 2, 푏푎푠푒 1 푎푛푑 푤푖푑푡ℎ 3
3 × (1 × 2), 푤푖푡ℎ ℎ푒푖푔ℎ푡 3, 푏푎푠푒 1 푎푛푑 푤푖푑푡ℎ 2

 

 

This simplification allows us to forget about the rotations of the boxes and we just focus on the stacking of 퐧 boxes with each height as ℎ  and 
a base area of (푤 × 푑 ). Also assume that 푤 ≤ 푑 . Now what we do is, make a stack of boxes that is as tall as possible and has maximum 
height. We allow a box 푖 on top of box 푗 only if box 푖 is smaller than box 푗 in both the dimensions. That means, if 푤 < 푤  && 푑 < 푑 . Now 
let us solve this using DP. First select the boxes in the order of decreasing base area. 
 
 
            
 
  
  
 

Now, let us say 퐻(푗) represents the tallest stack of boxes with box 푗 on top. This is very similar to the LIS problem because the stack of 푛 
boxes with ending box 푗 is equal to finding a subsequence with the first 푗 boxes due to the sorting by decreasing base area. The order of the 
boxes on the stack is going to be equal to the order of the sequence.Now we can write 퐻(푗) recursively. In order to form a stack which ends 
on box 푗, we need to extend a previous stack ending at 푖. That means, we need to put 푗 box at the top of the stack [푖 box is the current top of 
the stack]. To put 푗 box at the top of the stack we should satisfy the condition 푤 > 푤 푎푛푑 푑 > 푑  [this ensures that the low level box has 
more base than the boxes above it]. Based on this logic, we can write the recursive formula as: 
 

퐻(푗) = 푀푎푥     {퐻(푖)} + ℎ  
 

Similar to the LIS problem, at the end we have to select the best 푗 over all potential values. This is because we are not sure which box might 
end up on top. 

푀푎푥 {퐻(푗)} 
Time Complexity: O(푛2). 
 

Problem-24 Building Bridges in India: Consider a very long, straight river which moves from north to south. Assume there are 푛 cities 
on both sides of the river: 푛 cities on the left of the river and 푛 cities on the right side of the river. Also, assume that these cities are 

 
1 2 푗 …….. …….. 

Decreasing base area 
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numbered from 1 to 푛 but the order is not known. Now we want to connect as many left-right pairs of cities as possible with bridges such 
that no two bridges cross. When connecting cities, we can only connect city 푖 on the left side to city 푖 on the right side.  

 

Solution:   Goal: Construct as many bridges as possible without any crosses between the cities on the left side of the river and the cities on the 
right side.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To understand better let us consider the diagram below. In the diagram it can be seen that there are 푛 cities on the left side of river and 푛 
cities on the right side of river. Also, note that we are connecting the cities which have the same number [a requirement in the problem]. Our 
goal is to connect the maximum cities on the left side of river to cities on the right side of the river, without any cross edges. Just to make it 
simple, let us sort the cities on one side of the river. 
 

If we observe carefully, since the cities on the left side are already sorted, the problem can be simplified to finding the maximum increasing 
sequence. That means we have to use the LIS solution for finding the maximum increasing sequence on the right side cities of the river. 
 

Time Complexity: O(푛 ), (same as LIS). 
  

Problem-25 Subset Sum: Given a sequence of 푛 positive numbers 퐴  . . .퐴 , give an algorithm which checks whether there exists a 
subset of 퐴 whose sum of all numbers is 푇? 

 

Solution:  This is a variation of the Knapsack problem. As an example, consider the following array: 
 

퐴 =  [3, 2, 4, 19, 3, 7, 13, 10, 6, 11] 
 

Suppose we want to check whether there is any subset whose sum is 17. The answer is yes, because the sum of 4 +  13 =  17 and 
therefore {4, 13} is such a subset. Let us try solving this problem using DP. We will define 푛 ×  푇 matrix, where 푛 is the number of elements 
in our input array and 푇 is the sum we want to check.  
 

Let, 푀[푖, 푗]  =  1 if it is possible to find a subset of the numbers 1 through 푖 that produce sum 푗 and 푀[푖, 푗]  =  0 otherwise.  
 

푀[푖, 푗]  =  푀푎푥(푀[푖 −  1, 푗], 푀[푖 −  1, 푗 −  퐴 ]) 
 

According to the above recursive formula similar to the Knapsack problem, we check if we can get the sum 푗 by not including the element 
푖 in our subset, and we check if we can get the sum 푗 by including 푖 and checking if the sum 푗 −  퐴  exists without the 푖  element. This is 
identical to Knapsack, except that we are storing 0/1’s instead of values. In the below implementation we can use binary OR operation to get 
the maximum among 푀[푖 −  1, 푗] and 푀[푖 −  1, 푗 −  퐴 ]. 
 

      public int SubsetSum( int A[], int n, int  T ) { 
 int i, j, M[n+1][T +1]; 
            M[0][0]=0; 
 
 

            for (i=1; i<= T; i++) 
       M[0][i]= 0; 
 
 

            for (i=1; i<=n; i++) { 
       for (j = 0; j<= T; j++) { 
  M[i][j] = M[i-1][j] || M[i-1][j - A[i]]; 
       } 
            } 
            return M[n][T]; 
      } 
 

How many subproblems are there? In the above formula, 푖 can range from 1 푡표 푛 and 푗 can range from 1 푡표 푇. There are a total of 푛푇 
subproblems and each one takes O(1). So the time complexity is O(푛푇) and this is not polynomial as the running time depends on two 
variables [푛 and 푇], and we can see that they are an exponential function of the other.  Space Complexity: O(푛푇).  
 

Problem-26 Given a set of 푛 integers and the sum of all numbers is at most 퐾. Find the subset of these 푛 elements whose sum is 
exactly half of the total sum of 푛 numbers. 

 

Solution: Assume that the numbers are 퐴  . . .퐴 . Let us use DP to solve this problem. We will create a boolean array 푇 with size equal to 
퐾 + 1. Assume that 푇[푥] is 1 if there exists a subset of given 푛 elements whose sum is 푥. That means, after the algorithm finishes, 푇[퐾] will 
be 1, if and only if there is a subset of the numbers that has sum 퐾. Once we have that value then we just need to return 푇[퐾/2]. If it is 1, 
then there is a subset that adds up to half the total sum. 

 

R
i
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River Left Side Cities River Right Side Cities 

1 

2 

푛 
 

3 

푛 

2 

…. … 
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Initially we set all values of  푇 to 0. Then we set 푇[0] to 1. This is because we can always build 0 by taking an empty set. If we have no numbers 
in 퐴, then we are done! Otherwise, we pick the first number, 퐴[0]. We can either throw it away or take it into our subset. This means that the 
new 푇[] should have 푇[0] and 푇[퐴[0]] set to 1. This creates the base case. We continue by taking the next element of 퐴. 
 

Suppose that we have already taken care of the first i − 1 elements of A. Now we take A[i] and look at our table T[]. After processing i − 1 
elements, the array T has a 1 in every location that corresponds to a sum that we can make from the numbers we have already processed. 
Now we add the new number, A[i]. What should the table look like? First of all, we can simply ignore A[i]. That means, no one should 
disappear from T[] – we can still make all those sums. Now consider some location of T[j] that has a 1 in it. It corresponds to some subset of 
the previous numbers that add up to j. If we add A[i] to that subset, we will get a new subset with total sum j + A[i]. So we should set T[j +
A[i]] to 1 as well. That's all. Based on the above discussion, we can write the algorithm as: 
 

      static int[] T = new int[n + 1]; # Where n = A.length 
      public int SubsetHalfSum( int[]  A, int n ) { 
 int K = 0; 
 for( int i = 0; i < n; i++ )  
  K += A[i]; 
 T[0] = 1; 
 

 for( int i = 1; i <= K; i++ )  // initialize the table 
  T[i] = 0; 
 

 for( int i = 0; i < n; i++ ) {        // process the numbers one by one 
  for( int j = K - A[i]; j >= 0; j--)  { 
   if( T[j] )  
    T[j + A[i]] = 1; 
  } 
 } 
 return T[K / 2]; 
      } 
 

In the above code, 푗 loop moves from right to left. This reduces the double counting problem. That means, if we move from left to right, then 
we may do the repeated calculations.  
 

Time Complexity: O(푛퐾), for the two 푓표푟 loops. Space Complexity: O(퐾), for the boolean table 푇. 
 

Problem-27 Can we improve the performance of Problem-26? 
 

Solution: Yes. In the above code what we are doing is, the inner 푗 loop is starting from 퐾 and moving left. That means, it is unnecessarily 
scanning the whole table every time.  
 

What we actually want is to find all the 1 entries. At the beginning, only the 0th entry is 1. If we keep the location of the rightmost 1 entry in 
a variable, we can always start at that spot and go left instead of starting at the right end of the table.  
 

To take full advantage of this, we can sort 퐴[] first. That way, the rightmost 1 entry will move to the right as slowly as possible. Finally, we 
don't really care about what happens in the right half of the table (after 푇[퐾/2]) because if 푇[푥] is 1, then 푇[퐾푥] must also be 1 eventually – 
it corresponds to the complement of the subset that gave us 푥. The code based on above discussion is given below. 
 

      static int[] T = new int[n + 1]; # Where n = A.length 
      public int SubsetHalfSumEfficient( int[]  A, int n ) { 
 int K = 0; 
 for( int i = 0; i < n; i++ )  
  K += A[i]; 
 

 Sort(A,n)); 
 

 T[0] = 1;          // initialize the table 
 for( int i = 1; i <= sum; i++ )  
  T[i] = 0; 
 int R = 0;        // rightmost 1 entry 
 

 for( int i = 0; i < n; i++) {          // process the numbers one by one 
  for( int j = R; j >= 0; j--) { 
   if( T[j] )  
    T[j + A[i]] = 1; 
   R = min(K / 2, R + C[i] ); 
  } 
 } 
 return T[K / 2]; 
      } 
 

After the improvements, the time complexity is still O(푛퐾), but we have removed some useless steps. 
 

Problem-28 Counting Boolean Parenthesizations: Let us assume that we are given a boolean expression consisting of symbols 
′푡푟푢푒′, ′푓푎푙푠푒′, ′푎푛푑′, ′표푟′, 푎푛푑 ′푥표푟′. Find the number of ways to parenthesize the expression such that it will evaluate to 푡푟푢푒. For 
example, there is only 1 way to parenthesize ′푡푟푢푒 푎푛푑 푓푎푙푠푒 푥표푟 푡푟푢푒′ such that it evaluates to 푡푟푢푒.  
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Solution: Let the number of symbols be n and between symbols there are boolean operators like and, or, xor, etc. For example, if 푛 = 4,
푇 표푟 퐹 푎푛푑 푇 푥표푟 퐹. Our goal is to count the numbers of ways to parenthesize the expression with boolean operators so that it evaluates to 
푡푟푢푒. In the above case, if we use 푇 표푟 ( (퐹 푎푛푑 푇) 푥표푟 퐹) then it evaluates to true. 
 

푇 표푟( (퐹 푎푛푑 푇)푥표푟 퐹) = 푇푟푢푒 
 

Now let us see how DP solves this problem. Let 푇(푖, 푗) represent the number of ways to parenthesize the sub expression with symbols 푖 … 푗 
[symbols means only 푇 and 퐹 and not the operators] with boolean operators so that it evaluates to 푡푟푢푒. Also, 푖 and 푗 take the values from 1 
to 푛. For example, in the above case, 푇(2, 4)  =  0 because there is no way to parenthesize the expression 퐹 푎푛푑 푇 푥표푟 퐹 to make it 푡푟푢푒. 
 

Just for simplicity and similarity, let 퐹(푖, 푗) represent the number of ways to parenthesize the sub expression with symbols 푖 … 푗 with boolean 
operators so that it evaluates to 푓푎푙푠푒. The base cases are 푇(푖, 푖) and 퐹(푖, 푖). Now we are going to compute 푇(푖, 푖 + 1) and 퐹(푖, 푖 + 1) for all 
values of 푖. Similarly, 푇(푖, 푖 + 2) and 퐹(푖, 푖 + 2) for all values of 푖 and so on. Now let’s generalize the solution. 
 

푇(푖, 푗) =
푇(푖, 푘)푇(푘 + 1, 푗),                                                                푓표푟 "푎푛푑"
푇표푡푎푙(푖, 푘)푇표푡푎푙(푘 + 1, 푗) − 퐹(푖, 푘)퐹(푘 + 1, 푗),           푓표푟 "표푟"
푇(푖, 푘)퐹(푘 + 1, 푗) + 퐹(푖, 푘)푇(푘 + 1, 푗),                         푓표푟 "푥표푟"

 

 

Where, 푇표푡푎푙(푖, 푘) = 푇(푖, 푘) + 퐹(푖, 푘). 
 

 

 
 

What this above recursive formula says is, 푇(푖, 푗) indicates the number of ways to parenthesize the expression. Let us assume that we have 
some sub problems which are ending at 푘. Then the total number of ways to parenthesize from 푖 푡표 푗 is the sum of counts of parenthesizing 
from 푖 푡표 푘 and from 푘 + 1 푡표 푗. To parenthesize between 푘 and 푘 + 1 there are three ways: “푎푛푑”, “표푟” and “푥표푟”. 
 

 If we use “푎푛푑” between 푘 and 푘 + 1, then the final expression becomes 푡푟푢푒 only when both are 푡푟푢푒. If both are 푡푟푢푒 then we 
can include them to get the final count.  

 If we use “표푟”, then if at least one of them is 푡푟푢푒, the result becomes 푡푟푢푒. Instead of including all three possibilities for “표푟”, we 
are giving one alternative where we are subtracting the “false” cases from total possibilities.  

 The same is the case with “푥표푟”. The conversation is as in the above two cases. 
 

After finding all the values we have to select the value of 푘, which produces the maximum count, and for 푘 there are 푖 푡표 푗 − 1 possibilities. 
 

How many subproblems are there? In the above formula, 푖 can range from 1 푡표 푛, and 푗 can range from 1 푡표 푛. So there are a total of 푛  
subproblems, and also we are doing summation for all such values. So the time complexity is O(푛 ). 
 

Problem-29 All Pairs Shortest Path Problem: Floyd's Algorithm: Given a weighted directed graph 퐺 = (푉, 퐸), where 푉 =
 {1, 2, . . . , 푛}. Find the shortest path between any pair of nodes in the graph. Assume the weights are represented in the matrix 퐶[푉][푉], 
where 퐶[푖][푗] indicates the weight (or cost) between the nodes 푖 and 푗. Also, 퐶[푖][푗]  =  ∞ or -1 if there is no path from node 푖 to node 
푗. 

 

Solution: Let us try to find the DP solution (Floyd’s algorithm) for this problem. The Floyd’s algorithm for all pairs shortest path problem 
uses matrix 퐴[1. . 푛][1. . 푛] to compute the lengths of the shortest paths. Initially,  
 

퐴[푖, 푗] = 퐶[푖, 푗]  푖푓  푖 ≠  푗 
            = 0          푖푓  푖 =  푗 

 

From the definition, 퐶[푖, 푗]  =  ∞ if there is no path from 푖 to 푗. The algorithm makes 푛 passes over A. Let A , A , . . . , A  be the values of 퐴 
on the 푛 passes, with A  being the initial value.   
 

Just after the k − 1  iteration, A [푖, 푗]  = smallest length of any path from vertex 푖 to vertex 푗 that does not pass through the vertices {푘 +
1, 푘 + 2, … . 푛}. That means, it passes through the vertices possibly through {1, 2, 3, … , 푘 − 1}. 
 

In each iteration, the value 퐴[푖][푗] is updated with minimum of A [푖, 푗] and A [푖, 푘] + A [푘, 푗]. 

퐴[푖, 푗] = min
A [푖, 푗]                          
A [푖, 푘] + A [푘, 푗] 

 
 

The 푘  pass explores whether the vertex 푘 lies on an optimal path from 푖 to 푗, for all 푖, 푗. The same is shown in the diagram below. 
 
 
 
 
 
 
 
 
 
 

      public void Floyd(int[][] C, int[][] A, int n) {  
 int i, j, k; 

1 2 … 푖 … 푘 푘 + 1 … 푗 … 푛 
           

푎푛푑, 표푟, 푥표푟 

A [푘, 푗] 
A [푖, 푘] 

A [푖, 푗] 

k 

j 

i 
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 for(i = 0, i <= n - 1;i + +) 
                  for(j = 0; j <= n - 1, j + +) 
            A[i][j] = C[i][j]; 
 

 for(i = 0;i <= n - 1;i + +) 
            A[i][i] = 0; 
 

 for(k = 0;k <= n - 1;k + +) { 
  for(i = 0;i <= n - 1;i + +) { 
                       for(j = 0;j <= n - 1, j + +) 
    if(A[i][k] + A[k][j] < A[i][j]) 
     A[i][j] = A[i][k] + A[k][j]; 
  } 
 } 
      } 
 

Time Complexity: O(n ). 
 

Problem-30 Optimal Binary Search Trees: Given a set of 푛 (sorted) keys 퐴[1. . 푛], build the best binary search tree for the elements 
of 퐴. Also assume that each element is associated with 푓푟푒푞푢푒푛푐푦 which indicates the number of times that a particular item is searched 
in the binary search trees. That means we need to construct a binary search tree so that the total search time will be reduced. 

 

Solution: Before solving the problem let us understand the problem with an example. Let us assume that the given array is A =
[3, 12, 21, 32, 35]. There are many ways to represent these elements, two of which are listed below. 
 
 
 
 
 
 
 
 
 
 
 

Of the two, which representation is better?  The search time for an element depends on the depth of the node. The average number of 
comparisons for the first tree is: 

1+2+2+3+3

5
= 11

5
 and for the second tree, the average number of comparisons is: =

ퟓ
. Of the two, the 

first tree gives better results. 
 

If frequencies are not given and if we want to search all elements, then the above simple calculation is enough for deciding the best tree. If the 
frequencies are given, then the selection depends on the frequencies of the elements and also the depth of the elements. For simplicity let us 
assume that the given array is 퐴 and the corresponding frequencies are in array 퐹. 퐹[푖] indicates the frequency of 푖  element 퐴[푖]. With this, 
the total search time S(root) of the tree with root can be defined as:  
 

푆(푟표표푡) = (푑푒푝푡ℎ(푟표표푡, 푖) + 1) × 퐹[푖]) 
 

In the above expression, 푑푒푝푡ℎ(푟표표푡, 푖) + 1 indicates the number of comparisons for searching the 푖  element. Since we are trying to create 
a binary search tree, the left subtree elements are less than root element and the right subtree elements are greater than root element. If we 
separate the left subtree time and right subtree time, then the above expression can be written as:  
 

푆(푟표표푡) = (푑푒푝푡ℎ(푟표표푡, 푖) + 1) × 퐹[푖] + 퐹[푖] + (푑푒푝푡ℎ(푟표표푡, 푖) + 1) × 퐹[푖] 
 

Where 푟 indicates the position of the root element in the array. 
 

If we replace the left subtree and right subtree times with their corresponding recursive calls, then the expression becomes: 

푆(푟표표푡) = 푆(푟표표푡 → 푙푒푓푡) + 푆(푟표표푡 → 푟푖푔ℎ푡) + 퐹[푖] 

Binary Search Tree node declaration 
 

Refer to 푇푟푒푒푠 chapter. 
 

Implementation: 
 

      public BinarySearchTreeNode OptimalBST(int[] A, int[] F, int low, int high) { 
 int r, minTime = 0; 
 BinarySearchTreeNode newNode = new BinarySearchTreeNode(); 
 if(newNode == null) { 
       System.out.println("Memory Error"); 
       return; 
                } 
 for (r =0, r <= n-1; r++) { 

12 

3 32 

21 35 

12 

3 21 

35 

32 
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  root.left = OptimalBST(A, F, low, r-1); 
  root.right = OptimalBST(A, F, r+1, high); 
  root.data = A[r]; 
  if(minTime > S(root)) 
   minTime = S(root); 
 } 
 return minTime; 
      } 
 

Problem-31 Optimal Strategy for a Game: Consider a row of 푛 coins of values 푣  ... 푣 , where 푛 is even [since it’s a two player game]. 
We play this game with the opponent. In each turn, a player selects either the first or last coin from the row, removes it from the row 
permanently, and receives the value of the coin. Determine the maximum possible amount of money we can definitely win if we move 
first.  

 

Solution: Let us solve the problem using our DP technique. For each turn either we or our opponent selects the coin only from the ends of 
the row. Let us define the subproblems as: 
 
 
 
 
 
 

푉(푖, 푗): denotes the maximum possible value we can definitely win if it is our turn and the only coins remaining are 푣  ... 푣 . 
 

Base Cases: 푉(푖, 푖), 푉(푖, 푖 + 1) for all values of 푖.  
From these values, we can compute 푉(푖, 푖 + 2), 푉(푖, 푖 + 3) and so on. Now let us define 푉(푖, 푗) for each sub problem as:  
 

푉(푖, 푗) = 푀푎푥 푀푖푛
푉(푖 + 1, 푗 − 1)

푉(푖 + 2, 푗) + 푣 , 푀푖푛
푉(푖, 푗 − 2)

푉(푖 + 1, 푗 − 1) + 푣  
 

In the recursive call we have to focus on i  coin to 푗  coin (푣  . . . 푣 ). Since it is our turn to pick the coin, we have two possibilities: either we 
can pick 푣  or 푣 . The first term indicates the case if we select 푖  coin (푣 ) and the second term indicates the case if we select 푗  coin (푣 ). 
The outer 푀푎푥 indicates that we have to select the coin which gives maximum value. Now let us focus on the terms: 
 

 Selecting 푖  coin: If we select the 푖  coin then the remaining range is from 푖 + 1 푡표 푗. Since we selected the 푖  coin we get the 
value 푣  for that. From the remaining range  푖 + 1 푡표 푗, the opponents can select either 푖 + 1  coin or 푗  coin. But the opponents 
selection should be minimized as much as possible [the 푀푖푛 term]. The same is described in the below figure. 

 
 
 
 
 
 
 

 Selecting the 푗  coin: Here also the argument is the same as above. If we select the 푗  coin, then the remaining range is from i to j −
1. Since we selected the 푗  coin we get the value 푣  for that. From the remaining range i to j − 1, the opponent can select either the 
푖  coin or the 푗 − 1  coin. But the opponent’s selection should be minimized as much as possible [the 푀푖푛 term].  

 
 
 

 
 
 
 

How many subproblems are there? In the above formula, 푖 can range from 1 푡표 푛 and 푗 can range from 1 푡표 푛. There are a total of 푛  
subproblems and each takes O(1) and the total time complexity is O(푛 ). 
 

Problem-32 Tiling: Assume that we use dominoes measuring 2 × 1 to tile an infinite strip of height 2. How many ways can one tile a 
2 × 푛 strip of square cells with 1 × 2 dominoes? 

 

Solution: Notice that we can place tiles either vertically or horizontally. For placing vertical tiles, we need a gap of at least 2 ×  2. For placing 
horizontal tiles, we need a gap of 2 ×  1. In this manner, the problem is reduced to finding the number of ways to partition 푛 using the 
numbers 1 and 2 with order considered relevant [1]. For example: 11 =  1 +  2 +  2 +  1 + 2 +  2 +  1.  
 
 
 
 
 
 

If we have to find such arrangements for 12, we can either place a 1 at the end or we can add 2 in the arrangements possible with 10. Similarly, 
let us say we have 퐹  possible arrangements for n. Then for (푛 + 1), we can either place just 1 at the end 표푟 we can find possible arrangements 
for (푛 − 1) and put a 2 at the end. Going by the above theory: 

1 2 … 푖 … 
  … 푗 … 푛 

푣  푣  
 

… 푣  
 

      …    푣  
 

 푣  
 

Opponent’s selection range: 푖 + 1 푡표 푗 
 

1 2 … 푖 푖 + 1   푗 − 1 푗 … 푛 
푣  푣  

 
… v  

 
푣  

 
… … 푣  

 
푣  

 
 푣  

 

   Opponent’s selection range: 푖 푡표 푗 − 1 
 

1 2 … 푖 푖 + 1   푗 − 1 푗 … 푛 
푣  푣  

 
… 푣  

 
푣  

 
… … 푣  

 
푣  

 
 푣  
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                                                                퐹  =  퐹  + 퐹  
 

Let’s verify the above theory for our original problem:  
 

 In how many ways can we fill a 2 ×  1 strip: 1 → Only one vertical tile. 
 In how many ways can we fill a 2 ×  2 strip: 2 → Either 2 horizontal or 2 vertical tiles. 
 In how many ways can we fill a 2 ×  3 strip: 3 → Either put a vertical tile in the 2 solutions possible for a 2 ×  2 strip, or put 2 

horizontal tiles in the only solution possible for a 2 ×  1 strip. (2 +  1 =  3). 
 Similarly, in how many ways can we fill a 2 ×  푛 strip: Either put a vertical tile in the solutions possible for 2 푋 (푛 − 1) strip or put 

2 horizontal tiles in the solution possible for a 2 × (푛 − 2) strip. (퐹  + 퐹 ). 
 That’s how we verified that our final solution is: 퐹  =  퐹  +  퐹  with 퐹  =  1 and 퐹  =  2. 

 

Problem-33 Edit Distance: Given two strings 퐴 of length 푚 and 퐵 of length 푛, transform 퐴 into 퐵 with a minimum number of 
operations of the following types: delete a character from 퐴, insert a character into 퐴, or change some character in 퐴 into a new character. 
The minimal number of such operations required to transform 퐴 into 퐵 is called the 푒푑푖푡 푑푖푠푡푎푛푐푒 between 퐴 and 퐵.  

 

Solution: Before going to solution, let us consider the possible operations for converting string 퐴 into 퐵. 
 If 푚 >  푛, we need to remove some characters of 퐴 
 If 푚 ==  푛, we may need to convert some characters of 퐴 
 If 푚 <  푛, we need to remove some characters from 퐴 

 

So the operations we need are insertion of a character, replacement of a character and deletion of character and their corresponding cost 
codes are defined below. 
 

Costs of operations: 
Insertion of  a character 푐  
Replacement of a character 푐  
Deletion of character 푐  

 

Now let us concentrate on recursive formulation of the problem. Let, 푇(푖, 푗) represents the minimum cost required to transform first 푖 
characters of 퐴 to first 푗 characters of 퐵. That means, 퐴[1 … 푖] to 퐵[1 … 푗]. 

푇(푖, 푗) = 푚푖푛

⎩
⎨

⎧
푐 + 푇(푖 − 1, 푗)                                       
푇(푖, 푗 − 1) + 푐                                         
푇(푖 − 1, 푗 − 1),           푖푓 퐴[푖] == 퐵[푗]
푇(푖 − 1, 푗 − 1) + 푐       푖푓 퐴[푖] ≠ 퐵[푗]

 

Based on above discussion we have the following cases. 
 If we delete 푖  character from 퐴, then we have to convert remaining 푖 − 1 characters of 퐴 to 푗 characters of 퐵 
 If we insert 푖  character in 퐴, then convert these 푖 characters of 퐴 to 푗 − 1 characters of 퐵 
 If 퐴[푖] == 퐵[푗], then we have to convert remaining 푖 − 1 characters of 퐴 to 푗 − 1 characters of 퐵 
 If 퐴[푖] ≠ 퐵[푗], then we have to replace 푖  character of 퐴 to 푗  character of B and convert remaining 푖 − 1 characters of 퐴 to 푗 − 1 

characters of 퐵 
 

After calculating all the possibilities we have to select the one which gives the lowest cost. 
 

How many subproblems are there? In the above formula, 푖 can range from 1 푡표 푚 and 푗 can range from 1 푡표 푛. This gives 푚푛 subproblems 
and each one take O(1) and the time complexity is O(푚푛). Space Complexity: O(푚푛) where 푚 is number of rows and 푛 is number of 
columns in the given matrix. 
 

    public int editDistance(String A, String B) { 
        int[][] Table = new int[A.length() + 1][B.length() + 1]; 
        // Initialization 
        for(int i = 0; i <= A.length(); i++) 
            Table[i][0] = i; 
        for(int i = 0; i <= B.length(); i++) 
            Table[0][i] = i; 
        for(int i = 1; i <= A.length(); i++){ 
            for(int j = 1; j <= B.length(); j++){ 
                if(A.charAt(i - 1) == B.charAt(j - 1)){ 
                    Table[i][j] = Table[i - 1][j - 1]; 
                }else{ 
                    Table[i][j] = 1 + Math.min(Table[i - 1][j - 1], Math.min(Table[i - 1][j], Table[i][j - 1])); 
                } 
            } 
        } 
        return Table[A.length()][B.length()]; 
    } 
 

Problem-34 Longest Palindrome Subsequence: A sequence is a palindrome if it reads the same whether we read it left to right or right 
to left. For example 퐴, 퐶, 퐺, 퐺, 퐺, 퐺, 퐶, 퐴. Given a sequence of length 푛, devise an algorithm to output the length of the longest palindrome 
subsequence. For example, the string 퐴,퐺,퐶,푇,퐶,퐵,푀,퐴,퐴,퐶,푇,퐺,퐺,퐴,푀 has many palindromes as subsequences, for instance: 
퐴, 퐺, 푇, 퐶, 푀, 퐶, 푇, 퐺, 퐴 has length 9. 
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Solution: Let us use DP to solve this problem. If we look at the sub-string A[i, . . , j] of the string 퐴, then we can find a palindrome sequence of 
length at least 2 if A[i] ==  A[j]. If they are not the same, then we have to find the maximum length palindrome in subsequences A[i + 1, . . . , j] 
and A[i, . . . , j − 1].  
 

Also, every character 퐴[푖] is a palindrome of length 1. Therefore the base cases are given by 퐴[푖, 푖] = 1. Let us define the maximum length 
palindrome for the substring A[i, . . . , j] as L(i, j). 
 

퐿(푖, 푗)  = 퐿(푖 +  1, 푗 −  1) +  2,          푖푓 퐴[푖] ==  퐴[푗]
푀푎푥{퐿(푖 +  1, 푗), 퐿(푖, 푗 − 1)},     표푡ℎ푒푟푤푖푠푒  

                                                                          퐿(푖, 푖) =   1 for all 푖 = 1 푡표 푛 
 

    public int LongestPalindromeSubsequence(int[] A) { 
 int max  = 1, n = A.length, i, k; 
 int [][]L = new int[n][n]; 
 for (i  = 1; i<= n -1; i++) { 
  L[i][i] =1; 
              if(A[i]==A[i+1]) { 
        L[i][i + 1]  = 1; 
        max = 2; 
              } 
              else L[i][i + 1]  = 0; 
 } 
 for (k=3;k<= n;k++) { 
  for (i  = 1;i <= n-k +1; i++) { 
   j =  i + k - 1; 
   if(A[i] == A[j]) { 
    L[i, j] =  2 + L[i + 1][j - 1]; 
    max = k; 
   } 
   else L[i, j]  = max(L[i + 1][j - 1], L[i][j - 1]); 
  } 
 } 
 return max; 
    } 
 

Time Complexity: First 푓표푟 loop takes O(푛) time while the second ‘for’ loop takes O(푛 −  푘) which is also O(푛). Therefore, the total 
running time of the algorithm is given by O(푛 ). 
 

Problem-35 Longest Palindrome Substring: Given a string 퐴, we need to find the longest sub-string of 퐴 such that the reverse of it is 
exactly the same. 

 

Solution: The basic difference between the longest palindrome substring and the longest palindrome subsequence is that, in the case of the 
longest palindrome substring, the output string should be the contiguous characters, which gives the maximum palindrome; and in the case 
of the longest palindrome subsequence, the output is the sequence of characters where the characters might not be contiguous but they should 
be in an increasing sequence with respect to their positions in the given string. 
 

Brute-force solution exhaustively checks all 푛 (푛 +  1) / 2  possible substrings of the given n-length string, tests each one if it's a palindrome, 
and keeps track of the longest one seen so far. This has worst-case complexity O(푛 ), but we can easily do better by realizing that a palindrome 
is centered on either a letter (for odd-length palindromes) or a space between letters (for even-length palindromes). Therefore we can examine 
all 푛 +  1 possible centers and find the longest palindrome for that center, keeping track of the overall longest palindrome. This has worst-
case complexity O(푛 ). 
 

Let us use DP to solve this problem. It is worth noting that there are no more than O(푛 ) substrings in a string of length 푛 (while there are 
exactly 2  subsequences). Therefore, we could scan each substring, check for a palindrome, and update the length of the longest palindrome 
substring discovered so far. Since the palindrome test takes time linear in the length of the substring, this idea takes O(푛3) algorithm. We can 
use DP to improve this. For 1 ≤ 푖 ≤  푗 ≤  푛, define 
 

퐿(푖, 푗)  = 1, 푖푓 퐴[푖] … . 퐴[푗] is a palindrome substring,
0,                                                                   otherwise  

                                                                     퐿[푖, 푖]  =  1 , 
             퐿[푖, 푗] = 퐿[푖, 푖 + 1] , 푖푓 퐴[푖] == 퐴[푖 + 1], 푓표푟 1 ≤ 푖 ≤  푗 ≤  푛 − 1. 

 

Also, for string of length at least 3,  
 

                                   퐿[푖, 푗]  =  (퐿[푖 +  1, 푗 −  1] 푎푛푑 퐴[푖] = 퐴[푗]) . 
 

Note that in order to obtain a well-defined recurrence, we need to explicitly initialize two distinct diagonals of the boolean array 퐿[푖, 푗], since 
the recurrence for entry [푖, 푗] uses the value [푖 −  1, 푗 −  1], which is two diagonals away from [푖, 푗] (that means, for a substring of length 푘, 
we need to know the status of a substring of length 푘 −  2).  
 

      public int LongestPalindromeSubstring(int[] A) { 
 int max  = 1, n = A.length, i, k; 
 int [][]L = new int[n][n]; 
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 for (i  = 1; i<=n-1; i++) { 
  L[i][i] =1; 
              if(A[i]==A[i+1]) { 
        L[i][i + 1]  = 1; 
        max = 2; 
              } 
              else L[i][i + 1]  = 0; 
 } 
 for (k=3;k<=n;k++) { 
  for (i  = 1;i <= n-k +1; i++) { 
   j =  i + k - 1; 
   if(A[i] == A[j] && L[i + 1][j - 1]) { 
    L[i][j] =  1; 
    max = k; 
   } 
   else L[i][j]  = 0; 
  } 
 } 
 return max; 
      } 
 

Time Complexity: First for loop takes O(푛) time while the second for loop takes O(푛 −  푘) which is also O(푛). Therefore the total running 
time of the algorithm is given by O(푛 ). 
 

Problem-36 Given two strings 푆 and 푇, give an algorithm to find the number of times 푆 appears in 푇. It’s not compulsory that all 
characters of S should appear contiguous to 푇. For example, if 푆 =  푎푏 and 푇 =  푎푏푎푑푐푏 then the solution is 4, because 푎푏 is appearing 
4 times in 푎푏푎푑푐푏. 

 

Solution:  Input: Given two strings 푆[1. . 푚] and 푇[1 … 푚].    Goal: Count the number of times that 푆 appears in 푇. 
Assume 퐿(푖, 푗) represents the count of how many times 푖 characters of 푆 are appearing in 푗 characters of 푇. 

퐿(푖, 푗) = 푀푎푥

⎩
⎨

⎧
0,                                                                          푖푓 푗 = 0 
1,                                                                          푖푓 푖 = 0
퐿(푖 − 1, 푗 − 1) +  퐿(푖, 푗 − 1), 푖푓 푆[푖] == 푇[푗]
퐿(푖 − 1, 푗),                                              푖푓 푆[푖] ≠ 푇[푗]

 

If we concentrate on the components of the above recursive formula, 
 

 If 푗 = 0, then since 푇 is empty the count becomes 0. 
 If 푖 =  0, then we can treat empty string 푆 also appearing in 푇 and we can give the count as 1. 
 If S[i] == T[j], it means 푖  character of 푆 and 푗  character of 푇 are the same. In this case we have to check the subproblems with 

푖 − 1 characters of S and 푗 − 1 characters of 푇 and also we have to count the result of 푖 characters of 푆 with 푗 − 1 characters of 푇. 
This is because even all 푖 characters of 푆 might be appearing in 푗 − 1 characters of 푇. 

 If S[i] ≠ T[j], then we have to get the result of subproblem with 푖 − 1 characters of 푆 and 푗 characters of 푇. 
 

After computing all the values, we have to select the one which gives the maximum count. 
 

How many subproblems are there? In the above formula, 푖 can range from 1 푡표 푚 and 푗 can range from 1 푡표 푛. There are a total of 푚푛 
subproblems and each one takes O(1). Time Complexity is O(푚푛). 
Space Complexity: O(푚푛) where 푚 is number of rows and 푛 is number of columns in the given matrix. 
 

Problem-37 Given a matrix with 푛 rows and 푚 columns (푛 ×  푚). In each cell there are a number of apples. We start from the upper-
left corner of the matrix. We can go down or right one cell. Finally, we need to arrive at the bottom-right corner. Find the maximum 
number of apples that we can collect. When we pass through a cell, we collect all the apples left there.  

 

Solution: Let us assume that the given matrix is 퐴[푛][푚]. The first thing that must be observed is that there are at most 2 ways we can come 
to a cell - from the left (if it's not situated on the first column) and from the top (if it's not situated on the most upper row). 
 

       

   

 

  

  S[i][j-1] S[i][j]   

      
 

To find the best solution for that cell, we have to have already found the best solutions for all of the cells from which we can arrive to the 
current cell. From above, a recurrent relation can be easily obtained as: 
 

푆(푖, 푗) = 퐴[푖][푗] +  푀푎푥 푆(푖, 푗 − 1),          푖푓 푗 > 0
푆(푖 − 1, 푗),         푖푓 푖 > 0  

 

S[i-1][j] 
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푆(푖, 푗) must be calculated by going first from left to right in each row and process the rows from top to bottom, or by going first from top to 
bottom in each column and process the columns from left to right.  
 

      public int FindApplesCount(int[][] A) { 
 int[][] S = new int[A.length][ A[0].length]; 
 for(int i = 0;i<n;i++) { 
  for(int j = 0;i<m;j++) { 
   S[i][j] = A[i][j]; 
   if(j>0 && S[i][j] < S[i][j] + S[i][j-1])  
                                                 S[i][j] += S[i][j-1]; 
   if(i>0 && S[i][j] < S[i][j] + S[i-1][j]) 
    S[i][j] +=S[i-1][j]; 
  } 
 } 
 return S[n][m]; 
      } 
 

How many such subproblems are there? In the above formula, 푖 can range from 1 푡표 푛 and 푗 can range from 1 푡표 푚. There are a total of 푛푚 
subproblems and each one takes O(1). Time Complexity is O(푛푚). Space Complexity: O(푛푚), where 푚 is number of rows and 푛 is number 
of columns in the given matrix. 
 

Problem-38 Similar to Problem-37, assume that we can go down, right one cell, or even in a diagonal direction. We need to arrive at 
the bottom-right corner. Give DP solution to find the maximum number of apples we can collect t. 

 

Solution: Yes. The discussion is very similar to Problem-37. Let us assume that the given matrix is A[n][m]. The first thing that must be 
observed is that there are at most 3 ways we can come to a cell - from the left, from the top (if it's not situated on the uppermost row) or from 
the top diagonal. To find the best solution for that cell, we have to have already found the best solutions for all of the cells from which we can 
arrive to the current cell. From above, a recurrent relation can be easily obtained: 
 

푆(푖 , 푗) = 퐴[푖][푗] +  푀푎푥
푆(푖, 푗 − 1),                             푖푓 푗 > 0
푆(푖 − 1, 푗),                             푖푓 푖 > 0
푆(푖 − 1, 푗 − 1), 푖푓 푖 > 0 푎푛푑 푗 > 0

 

 

푆(푖, 푗) must be calculated by going first from left to right in each row and process the rows from top to bottom, or by going first from top to 
bottom in each column and process the columns from left to right.     

      

  

  

  

  S[i][j-1] S[i][j]   

      
 

How many such subproblems are there? In the above formula, 푖 can range from 1 to 푛 and 푗 can range from 1 푡표 푚. There are a total of 푛푚 
subproblems and and each one takes O(1). Time Complexity is O(푛푚). 
Space Complexity: O(푛푚) where 푚 is number of rows and 푛 is number of columns in the given matrix. 
 

Problem-39 Maximum size square sub-matrix with all 1’s: Given a matrix with 0’s and 1’s, give an algorithm for finding the maximum 
size square sub-matrix with all 1s. For example, consider the binary matrix below. 
            0  1  1  0  1 

1  1  0  1  0 
0  1  1  1  0 
1  1  1  1  0 
1  1  1  1  1 
0  0  0  0  0 

    

  The maximum square sub-matrix with all set bits is  
1  1  1 
1  1  1 
1  1  1 

 

Solution: Let us try solving this problem using DP. Let the given binary matrix be 퐵[푚][푚]. The idea of the algorithm is to construct a 
temporary matrix 퐿[ ][ ] in which each entry 퐿[푖][푗] represents size of the square sub-matrix with all 1’푠 including 퐵[푖][푗] and 퐵[푖][푗] is the 
rightmost and bottom-most entry in the sub-matrix. 
 

Algorithm: 
1) Construct a sum matrix 퐿[푚][푛] for the given matrix 퐵[푚][푛]. 

a. Copy first row and first columns as is from 퐵[ ][ ] to 퐿[ ][ ]. 
b. For other entries, use the following expressions to construct L[ ][ ] 
          if(퐵[푖][푗] ) 

     퐿[푖][푗]  =  푚푖푛(퐿[푖][푗 − 1], 퐿[푖 − 1][푗], 퐿[푖 − 1][푗 − 1]) +  1; 
          else 퐿[푖][푗]  =  0; 

S[i-1][j] S[i-1][j-1] 
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2) Find the maximum entry in 퐿[푚][푛]. 
3) Using the value and coordinates of maximum entry in 퐿[푖], print sub-matrix of 퐵[ ][ ]. 

 

      public static int maxSubSquareMatrixWith1s(int[][] A) { 
 final int n = A.length; 
 final int m = A[0].length; 
 // will hold the size of the largest square sub-matrix with all 1s including L[i][j] 
 // where L[i][j] is the rightmost and "bottommost" cell of the sub-matrix. 
 int[][] L = new int[n][m]; 
 for(int i = 0; i < n; i++) { 
  L[i][0] = A[i][0]; 
 } 
 // L[0][:] = A[0][:] 
 for(int j = 0; j < m; j++) { 
  L[0][j] = A[0][j]; 
 } 
 for(int i = 1; i < n; i++) { 
  for(int j = 1; j < m; j++) { 
   if(A[i][j] == 1) { 
    L[i][j] = Math.min(Math.min(L[i][j - 1], L[i - 1][j]), L[i - 1][j - 1]) + 1; 
   } else { 
    L[i][j] = 0; 
   } 
  } 
 } 
 int max = Integer.MIN_VALUE; 
 for(int i = 0; i < n; i++) { 
  for(int j = 0; j < m; j++) { 
   max = Math.max(max, L[i][j]); 
  } 
 } 
 return max; 
      }  
 

How many subproblems are there? In the above formula, 푖 can range from 1 to 푛 and 푗 can range from 1 to 푚. There are a total of 푛푚 
subproblems and each one takes O(1). Time Complexity is O(푛푚). Space Complexity is O(푛푚), where 푛 is number of rows and 푚 is 
number of columns in the given matrix. 
 

Problem-40 Maximum sum sub-matrix: Given an 푛 ×  푛 matrix 푀 of positive and negative integers, give an algorithm to find the sub-
matrix with the largest possible sum. 

 

Solution: Let 퐴푢푥[푟, 푐] represent the sum of rectangular subarray of 푀 with one corner at entry [1, 1] and the other at [푟, 푐]. Since there are 
푛  such possibilities, we can compute them in O(푛 ) time. After computing all possible sums, the sum of any rectangular subarray of 푀 can 
be computed in constant time. This gives an O(푛 ) algorithm: we simply guess the lower-left and the upper-right corner of the rectangular 
subarray and use the 퐴푢푥 table to compute its sum. 
 

Problem-41 Can we improve the complexity of Problem-40? 
 

Solution: We can use the Problem-4 solution with little variation, as we have seen that the maximum sum array of a 1 − D array algorithm 
scans the array one entry at a time and keeps a running total of the entries. At any point, if this total becomes negative, then set it to 0. This 
algorithm is called 퐾푎푑푎푛푒’푠 algorithm. We use this as an auxiliary function to solve a two-dimensional problem in the following way.  
 

     public static void findMaximumSubMatrix(int[][] A){ 
          //computing the vertical prefix sum for columns 
          int[][] M = new int[A.length][A.length]; 
          for (int i = 0; i < A.length; i++) { 
               for (int j = 0; j < A.length; j++) { 
     if (j == 0)  
  M[j][i] = A[j][i]; 
      else  
  M[j][i] = A[j][i] + M[j - 1][i]; 
 } 
      } 
     int maxSoFar = 0, min , subMatrix; 
     //iterate over the possible combinations applying Kadane's Alg. 
     for (int i = 0; i < A.length; i++) { 
 for (int j = i; j < A.length; j++) { 
     min = 0; 
     subMatrix = 0; 
     for (int k = 0; k < A.length; k++) { 
  if (i == 0) { 
      subMatrix += M[j][k]; 
  } else { 
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      subMatrix += M[j][k] - M[i - 1 ][k]; 
  } 
  if(subMatrix < min){ 
      min = subMatrix; 
  } 
  if((subMatrix - min) > maxSoFar){ 
      maxSoFar = subMatrix - min; 
  }                     
                         } 
                    } 
               } 
          System.out.print("Result::"+maxSoFar); 
     } 
     public static void main(String[] args) { 
 int A[][] = {{1, 2, -1, -4, -20}, 
  {-8, -3, 4, 2, 1}, 
  {3, 8, 10, 1, 3}, 
  {-4, -1, 1, 7, -6} 
        }; 
 findMaximumSubMatrix(A); 
     } 
 

Time Complexity: O(푛 ). 
 

Problem-42 Given a number 푛, find the minimum number of squares required to sum a given number 푛. 퐸푥푎푚푝푙푒푠: min[1] = 1 = 
1 , min[2] = 2 = 1  + 1 ,  min[4] = 1 = 2 , min[13] = 2 = 3  + 2 . 

 

Solution: This problem can be reduced to a coin change problem. The denominations are 1 to √푛.  Now, we just need to make change for 
푛 with a minimum number of denominations. 
 

Problem-43 Finding Optimal Number of Jumps To Reach Last Element: Given an array, start from the first element and reach the 
last by jumping. The jump length can be at most the value at the current position in the array. The optimum result is when you reach the 
goal in the minimum number of jumps. Example: Given array A = {2,3,1,1,4}. Possible ways to reach the end (index list) are: 

 0,2,3,4 (jump 2 to index 2, and then jump 1 to index 3 and then jump 1 to index 4) 
 0,1,4 (jump 1 to index 1, and then jump 3 to index 4) 

Since second solution has only 2 jumps it is the optimum result. 
 

Solution: This problem is a classic example of Dynamic Programming. Though we can solve this by brute-force, it would be complex. We 
can use the LIS problem approach for solving this. As soon as we traverse the array, we should find the minimum number of jumps for 
reaching that position (index) and update our result array. Once we reach the end, we have the optimum solution at last index in result array.  
 

    public static Collection<Integer> optimalJumps (int[] A) { 
        int[] jumpLength = new int[A.length]; 
        int[] prevIndex = new int[A.length]; 
        for (int i = 1; i < A.length; i++) { 
            int min = Integer.MAX_VALUE; 
            for (int j = 0; j < i; j++) { 
                int diff  = i - j; // calculate differences in array indexes 
                // if jump is possible && if this the shortest jump from the start  
                if ((A[j] >= diff) && (jumpLength[j] < min)) { 
                        min = jumpLength[j] + 1; 
                        jumpLength[i] = min; 
                        prevIndex[i] = j; 
                    } 
                } 
        } 
        List<Integer> list = new ArrayList<Integer>(); 
        int ctr = A.length - 1; 
        while (ctr > 0) { 
            list.add(ctr); 
            ctr = prevIndex[ctr]; 
        } 
        list.add(0); 
        Collections.reverse(list); 
        return Collections.unmodifiableCollection(list); 
    }  
 

The above code will return optimum number of jumps. To find the jump indexes as well, we can very easily modify the code as per 
requirement.  
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Time Complexity: Since we are running 2 loops here and iterating from 0 to 푖 in every loop, then total time takes will be 1 +  2 +  3 +  4 +
 … +  푛 − 1. So time efficiency O(푛) = O(푛 ∗ (푛 − 1)/2) = O(푛 ).  
Space Complexity: O(푛) space for result array. 
 

Problem-44 Explain what would happen if a dynamic programming algorithm is designed to solve a problem that does not have 
overlapping sub-problems.   

Solution: It will be just a waste of memory, because the answers of sub-problems will never be used again. And the running time will be the 
same as using the Divide & Conquer algorithm. 
 

Problem-45 Christmas is approaching. You’re helping Santa Claus to distribute gifts to children. For ease of delivery, you are asked 
to divide 푛 gifts into two groups such that the weight difference of these two groups is minimized. The weight of each gift is a positive 
integer. Please design an algorithm to find an optimal division minimizing the value difference. The algorithm should find the minimal 
weight difference as well as the groupings in O(푛푆) time, where 푆 is the total weight of these 푛 gifts. Briefly justify the correctness of your 
algorithm.  

 

Solution: This problem can be converted into making one set as close to  as possible. We consider an equivalent problem of making one set 

as close to W=  as possible. Define FD(푖, 푤) to be the minimal gap between the weight of the bag and W when using the first 푖 gifts only. 

WLOG, we can assume the weight of the bag is always less than or equal to W. Then fill the DP table for 0≤i≤ 푛 and 0≤ 푤 ≤W in which 
F(0, 푤) = W for all 푤, and  
 

퐹퐷(푖, 푤) = 푚푖푛{퐹퐷(푖 − 1, 푤 − 푤 )−푤 , 퐹퐷(푖 − 1, 푤)} 푖푓 {퐹퐷(푖 − 1, 푤 − 푤 ) ≥ 푤  
                                             = 퐹퐷(푖 − 1, 푤) otherwise 
 

This takes O(푛푆) time. 퐹퐷(푛, 푊) is the minimum gap. Finally, to reconstruct the answer, we backtrack from (푛, 푊). During backtracking, if 
퐹퐷(푖, 푗) = 퐹퐷(푖 − 1, 푗) then 푖 is not selected in the bag and we move to F(푖 − 1, 푗). Otherwise, 푖 is selected and we move to F(푖 − 1, 푗 − 푤 ). 
 

Problem-46 A circus is designing a tower routine consisting of people standing atop one another's shoulders. For practical and aesthetic 
reasons, each person must be both shorter and lighter than the person below him or her. Given the heights and weights of each person 
in the circus, write a method to compute the largest possible number of people in such a tower. 

 

Solution: It is same as Box stacking and Longest increasing subsequence (LIS) problem.  
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Chapter 

20 
 

 
 

20.1 Introduction 
 

In the previous chapters we have solved problems of different complexities. Some algorithms have lower rates of growth while others have 
higher rates of growth. The problems with lower rates of growth are called 푒푎푠푦 problems (or 푒푎푠푦 푠표푙푣푒푑 푝푟표푏푙푒푚푠) and the problems 
with higher rates of growth are called ℎ푎푟푑 problems (or ℎ푎푟푑 푠표푙푣푒푑 푝푟표푏푙푒푚푠). This classification is done based on the running time (or 
memory) that an algorithm takes for solving the problem. 
 

Time Complexity Name Example Problems 

O(1) Constant Adding an element to the front of a linked list 

 
Easy solved problems 
 

O(푙표푔푛) Logarithmic Finding an element in a binary search tree 

O(푛) Linear Finding an element in an unsorted array 

O(푛푙표푔푛) Linear Logarithmic Merge sort 

O(푛 ) Quadratic Shortest path between two nodes in a graph 

O(푛 ) Cubic Matrix Multiplication 

O(2 ) Exponential The Towers of Hanoi problem 
Hard solved problems 

O(푛!) Factorial Permutations of a string 
 

There are lots of problems for which we do not know the solutions. All the problems we have seen so far are the ones which can be solved 
by computer in deterministic time. Before starting our discussion let us look at the basic terminology we use in this chapter. 

20.2 Polynomial/Exponential Time 
 

Exponential time means, in essence, trying every possibility (for example, backtracking algorithms) and they are very slow in nature. Polynomial 
time means having some clever algorithm to solve a problem, and we don't try every possibility. Mathematically, we can represent these as: 
 

 Polynomial time is O(푛 ), for some 푘.  
 Exponential time is O(푘 ), for some 푘. 

20.3 What is a Decision Problem? 
 

A decision problem is a question with a 푦푒푠/푛표 answer and the answer depends on the values of input. For example, the problem “Given an 
array of 푛 numbers, check whether there are any duplicates or not?” is a decision problem. The answer for this problem can be either 푦푒푠 
or 푛표 depending on the values of the input array. 
 
 
 
 

20.4 Decision Procedure 
 

For a given decision problem let us assume we have given some algorithm for solving it. The process of solving a given decision problem in 
the form of an algorithm is called a 푑푒푐푖푠푖표푛 푝푟표푐푒푑푢푟푒 for that problem.  

20.5 What is a Complexity Class? 
 

In computer science, in order to understand the problems for which solutions are not there, the problems are divided into classes and we call 
them as complexity classes. In complexity theory, a 푐표푚푝푙푒푥푖푡푦 푐푙푎푠푠 is a set of problems with related complexity. It is the branch of theory 
of computation that studies the resources required during computation to solve a given problem.  
 

The most common resources are time (how much time the algorithm takes to solve a problem) and space (how much memory it takes). 
 

Algorithm Input 

Yes 

No 
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20.6 Types of Complexity Classes 
P Class 
 

The complexity class 푃 is the set of decision problems that can be solved by a deterministic machine in polynomial time (푃 stands for 
polynomial time). 푃 problems are a set of problems whose solutions are easy to find. 

NP Class 
 

The complexity class 푁푃 (푁푃 stands for non-deterministic polynomial time) is the set of decision problems that can be solved by a non-
deterministic machine in polynomial time. 푁푃 class problems refer to a set of problems whose solutions are hard to find, but easy to verify.  
 

For better understanding let us consider a college which has 500 students on its roll. Also, assume that there are 100 rooms available for 
students. A selection of 100 students must be paired together in rooms, but the dean of students has a list of pairings of certain students who 
cannot room together for some reason.  
 

The total possible number of pairings is too large. But the solutions (the list of pairings) provided to the dean, are easy to check for errors.  If 
one of the prohibited pairs is on the list, that's an error. In this problem, we can see that checking every possibility is very difficult, but the 
result is easy to validate. 
 

That means, if someone gives us a solution to the problem, we can tell them whether it is right or not in polynomial time. Based on the above 
discussion, for 푁푃 class problems if the answer is 푦푒푠, then there is a proof of this fact, which can be verified in polynomial time. 

Co-NP Class 
 

퐶표 − 푁푃 is the opposite of 푁푃 (complement of 푁푃). If the answer to a problem in 퐶표 − 푁푃 is 푛표, then there is a proof of this fact that can 
be checked in polynomial time.  
 

푃 Solvable in polynomial time  

푁푃 푌푒푠 answers can be checked in polynomial time  
퐶표 − 푁푃 푁표 answers can be checked in polynomial time 

 

Relationship between P, NP and Co-NP 
 

Every decision problem in 푃 is also in 푁푃. If a problem is in 푃, we can verify YES answers in polynomial time. Similarly, any problem in P 
is also in 퐶표 − 푁푃. 
 
 

 
 
 
 
 
 
 
 

One of the important open questions in theoretical computer science is whether or not 푃 = 푁푃. Nobody knows. Intuitively, it should be 
obvious that 푃 ≠  푁푃, but nobody knows how to prove it. 
 

Another open question is whether 푁푃 and 퐶표 − 푁푃 are different. Even if we can verify every YES answer quickly, there’s no reason to think 
that we can also verify NO answers quickly.  
 

It is generally believed that 푁푃 ≠  퐶표 − 푁푃, but again nobody knows how to prove it.  
 

NP-hard Class 
 

It is a class of problems such that every problem in 푁푃 reduces to it. All 푁푃-hard problems are not in 푁푃, so it takes a long time to even 
check them. That means, if someone gives us a solution for 푁푃-hard problem, it takes a long time for us to check whether it is right or not. 
 

A problem 퐾 is 푁푃-hard indicates that if a polynomial-time algorithm (solution) exists for 퐾 then a polynomial-time algorithm for every 
problem is 푁푃. Thus: 
 

퐾 is 푁푃-hard implies that if 퐾 can be solved in polynomial time, then 푃 = 푁푃 
 
 

 
 
 
 
 
 
 

P 

NP Co-NP 

NP-Hard 
NP 
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NP-complete Class 
 

Finally, a problem is 푁푃-complete if it is part of both 푁푃-hard and 푁푃. 푁푃-complete problems are the hardest problems in 푁푃. If anyone 
finds a polynomial-time algorithm for one 푁푃-complete problem, then we can find polynomial-time algorithm for every 푁푃-complete 
problem. This means that we can check an answer fast and every problem in 푁푃 reduces to it.  
 

 
 
 
 
 
 
 

Relationship between P, NP Co-NP, NP-Hard and NP-Complete 
 

From the above discussion, we can write the relationships between different components as shown below (remember, this is just an 
assumption).  
 
 
 
 

 
 
 
 
 
 
 
 

The set of problems that are 푁푃-hard is a strict superset of the problems that are 푁푃-complete. Some problems (like the halting problem) 
are 푁푃-hard, but not in 푁푃. 푁푃-hard problems might be impossible to solve in general. We can tell the difference in difficulty between 푁푃-
hard and 푁푃-complete problems because the class 푁푃 includes everything easier than its "toughest" problems – if a problem is not in 푁푃, it 
is harder than all the problems in 푁푃. 

Does P==NP? 
 

If 푃 =  푁푃, it means that every problem that can be checked quickly can be solved quickly (remember the difference between checking if an 
answer is right and actually solving a problem).  
 

This is a big question (and nobody knows the answer), because right now there are lots of 푁푃-complete problems that can't be solved quickly.  
If 푃 =  푁푃, that means there is a way to solve them fast. Remember that "quickly" means not trial-and-error. It could take a billion years, but 
as long as we didn't use trial and error, it was quick. In future, a computer will be able to change that billion years into a few minutes. 

20.7 Reductions 
 

Before discussing reductions, let us consider the following scenario. Assume that we want to solve problem 푋 but feel it’s very complicated. 
In this case what do we do?  
 

The first thing that comes to mind is, if we have a similar problem to that of 푋 (let us say 푌), then we try to map 푋 to 푌 and use 푌’푠 solution 
to solve 푋 also. This process is called reduction. 
 

 
 
 
 
 
 
 
In order to map problem 푋 to problem 푌, we need some algorithm and that may take linear time or more. Based on this discussion the cost 
of solving problem 푋 can be given as: 
 

퐶표푠푡 표푓 푠표푙푣푖푛푔 푋 =  퐶표푠푡 표푓 푠표푙푣푖푛푔 푌 +  푅푒푑푢푐푡푖표푛 푡푖푚푒 
 

Now, let us consider the other scenario. For solving problem 푋, sometimes we may need to use 푌’푠 algorithm (solution) multiple times. In 
that case, 
 

퐶표푠푡 표푓 푠표푙푣푖푛푔 푋 =  푁푢푚푏푒푟 표푓 푇푖푚푒푠 ∗  퐶표푠푡 표푓 푠표푙푣푖푛푔 푋 +  푅푒푑푢푐푡푖표푛 푡푖푚푒 
 

The main thing in 푁푃-Complete is reducibility. That means, we reduce (or transform) given 푁푃-Complete problems to other known 푁푃-
Complete problem. Since the 푁푃-Complete problems are hard to solve and in order to prove that given 푁푃-Complete problem is hard, we 
take one existing hard problem (which we can prove is hard) and try to map given problem to that and finally we prove that the given problem 
is hard. 
 

Note: It’s not compulsory to reduce the given problem to known hard problem to prove its hardness. Sometimes, we reduce the known hard 
problem to given problem. 

Instance of 
Input (for 푋) 

 
 
 
 
 
 

Algorithm for 푋 
 

 
Algorithm for 푌 Solution to I 

P 

NP 
Co-NP 

NP-Complete 

NP-Hard 

NP 
NP-Complete 

NP-Hard 
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Important NP-Complete Problems (Reductions) 
 

Satisfiability Problem: A boolean formula is in 푐표푛푗푢푛푐푡푖푣푒 푛표푟푚푎푙 푓표푟푚 (CNF) if it is a conjunction (AND) of several clauses, each of 
which is the disjunction (OR) of several literals, each of which is either a variable or its negation. For example:  (푎 ∨   푏 ∨  푐 ∨  푑 ∨  푒)  ∧
 (푏 ∨  ~푐 ∨  ~푑)  ∧  (~푎 ∨  푐 ∨  푑)  ∧  (푎 ∨  ~푏) 
 

A 3-CNF formula is a CNF formula with exactly three literals per clause. The previous example is not a 3-CNF formula, since its first clause 
has five literals and its last clause has only two.  
 

2-SAT Problem: 3-SAT is just SAT restricted to 3-CNF formulas: Given a 3-CNF formula, is there an assignment to the variables so that the 
formula evaluates to TRUE? 
 

2-SAT Problem: 2-SAT is just SAT restricted to 2-CNF formulas: Given a 2-CNF formula, is there an assignment to the variables so that the 
formula evaluates to TRUE? 
 

Circuit-Satisfiability Problem: Given a boolean combinational circuit composed of AND, OR and NOT gates, is it satisfiable?. That means, 
given a boolean circuit consisting of AND, OR and NOT gates properly connected by wires, the Circuit-SAT problem is to decide whether 
there exists an input assignment for which the output is TRUE.  
 

Hamiltonian Path Problem (Ham-Path): Given an undirected graph, is there a path that visits every vertex exactly once? 
 

Hamiltonian Cycle Problem (Ham-Cycle): Given an undirected graph, is there a cycle (where start and end vertices are same) that visits every 
vertex exactly once? 
 

Directed Hamiltonian Cycle Problem (Dir-Ham-Cycle): Given a directed graph, is there a cycle (where start and end vertices are same) that 
visits every vertex exactly once? 
 

Travelling Salesman Problem (TSP): Given a list of cities and their pair-wise distances, the problem is to find the shortest possible tour that 
visits each city exactly once. 
 

Shortest Path Problem (Shortest-Path): Given a directed graph and two vertices s and t, check whether there is a shortest simple path from 푠 
to 푡. 
 

Graph Coloring: A 푘-coloring of a graph is to map one of 푘 ‘colors’ to each vertex, so that every edge has two different colors at its endpoints. 
The graph coloring problem is to find the smallest possible number of colors in a legal coloring. 
 

3-Color problem: Given a graph, is it possible to color the graph with 3 colors in such a way that every edge has two different colors? 
 

Clique (also called complete graph): Given a graph, the 퐶퐿퐼푄푈퐸 problem is to compute the number of nodes in its largest complete subgraph. 
That means, we need to find the maximum subgraph which is also a complete graph. 
 

Independent Set Problem (Ind_Set):  Let 퐺 be an arbitrary graph. An independent set in 퐺 is a subset of the vertices of 퐺 with no edges 
between them. The maximum independent set problem is the size of the largest independent set in a given graph. 
 

Vertex Cover Problem (Vertex-Cover): A vertex cover of a graph is a set of vertices that touches every edge in the graph. The vertex cover 
problem is to find the smallest vertex cover in a given graph. 
 

Subset Sum Problem (Subset-Sum): Given a set 푆 of integers and an integer 푇, determine whether 푆 has a subset whose elements sum to 푇. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Integer Programming: Given integers 푏 , a  find 0/1 variables x  that satisfy a linear system of equations. 
 

a x = 푏   1 ≤ 푖 ≤ 푀 

x ∈ {0,1} 1 ≤ 푗 ≤ 푁 
 

In the figure, arrows indicate the reductions. For example, Ham-Cycle (Hamiltonian Cycle Problem) can be reduced to CNF-SAT. Same is 
the case with any pair of problems. For our discussion, we can ignore the reduction process for each of the problems. There is a theorem 
called 퐶표표푘’푠 푇ℎ푒표푟푒푚 which proves that Circuit satisfiability problem is NP-hard. That means, Circuit satisfiability is a known 푁푃-hard 
problem. 
 

Note: Since the problems below are 푁푃-Complete, they are 푁푃 and 푁푃-hard too. For simplicity we can ignore the proofs for these reductions. 

TSP 

CNF-SAT 

3-CNF-SAT Clique 

3-Color Dir-Ham-Cycle 

Planar-3-Color Ham-Cycle 

Ind-Set Vertex-Cover 

Ham-Path 

Set-Cover 
 

Subset-Sum 

Shortest-Path Schedule Knapsack 

Integer Programming Partition 

NP-hard unless P=NP 
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20.8 Complexity Classes: Problems & Solutions 
 

Problem-1 What is a quick algorithm? 
 

Solution: A quick algorithm (solution) means not trial-and-error solution. It could take a billion years, but as long as we do not use trial and 
error, it is efficient. Future computers will change those billion years to a few minutes. 
 

Problem-2 What is an efficient algorithm? 
 

Solution: An algorithm is said to be efficient if it satisfies the following properties: 
 

 Scale with input size. 
 Don’t care about constants. 
 Asymptotic running time: polynomial time. 

 

Problem-3 Can we solve all problems in polynomial time? 
 

Solution: No. The answer is trivial because we have seen lots of problems which take more than polynomial time.  
 

Problem-4 Are there any problems which are 푁푃-hard? 
 

Solution: By definition, 푁푃-hard implies that it is very hard. That means it is very hard to prove and to verify that it is hard. Cook’s Theorem 
proves that Circuit satisfiability problem is 푁푃-hard. 
 

Problem-5 For 2-SAT problem, which of the following are applicable? 
(a) 푃    (b) 푁푃     (c) 퐶표푁푃 (d) 푁푃-Hard 
(e) 퐶표푁푃-Hard   (f) 푁푃-Complete   (g) 퐶표푁푃-Complete 

 

Solution:  2-SAT is solvable in poly-time. So it is 푃, 푁푃, and 퐶표푁푃. 
 

Problem-6 For 3-SAT problem, which of the following are applicable? 
(a) 푃    (b) 푁푃     (c) 퐶표푁푃 (d) 푁푃-Hard 
(e) 퐶표푁푃-Hard   (f) 푁푃-Complete   (g) 퐶표푁푃-Complete 
 

Solution: 3-SAT is NP-complete. So it is NP, NP-Hard, and NP-complete. 
 

Problem-7 For 2-Clique problem, which of the following are applicable? 
(a) 푃    (b) 푁푃    (c) 퐶표푁푃  (d) 푁푃-Hard 
(e) 퐶표푁푃-Hard   (f) 푁푃-Complete   (g) 퐶표푁푃-Complete 

 

Solution: 2-Clique is solvable in poly-time (check for an edge between all vertex-pairs in O(n ) time). So it is 푃, 푁푃, and 퐶표푁푃. 
 

Problem-8 For 3-Clique problem, which of the following are applicable? 
(a) 푃    (b) 푁푃    (c) 퐶표푁푃  (d) 푁푃-Hard 
(e) 퐶표푁푃-Hard   (f) 푁푃-Complete   (g) 퐶표푁푃-Complete 

 

Solution: 3-Clique is solvable in poly-time (check for a triangle between all vertex-triplets in O(푛 ) time). So it is 푃, 푁푃, and 퐶표푁푃. 
 

Problem-9 Consider the problem of determining. For a given boolean formula, check whether every assignment to the variables 
satisfies it. Which of the following is applicable? 
(a) 푃    (b) 푁푃    (c) 퐶표푁푃  (d) 푁푃-Hard 
(e) CoNP-Hard   (f) 푁푃-Complete   (g) 퐶표푁푃-Complete 

 

Solution: Tautology is the complimentary problem to Satisfiability, which is NP-complete, so Tautology is 퐶표푁푃-complete. So it is 퐶표푁푃, 
퐶표푁푃-hard, and 퐶표푁푃-complete. 
 

Problem-10 Let 푆 be an 푁푃-complete problem and 푄 and 푅 be two other problems not known to be in 푁푃. 푄 is polynomial time 
reducible to 푆 and 푆 is polynomial-time  reducible to 푅. Which one of the following statements is true? 

     (a) 푅 is 푁푃-complete       (b) 푅 is 푁푃-hard      (c) 푄 is 푁푃-complete         (d) 푄 is 푁푃-hard. 
 

Solution:  푅 is 푁푃-hard (b). 
 

Problem-11 Let 퐴 be the problem of finding a Hamiltonian cycle in a graph 퐺 =  (푉, 퐸), with |푉| divisible by 3 and 퐵 the problem 
of determining if Hamiltonian cycle exists in such graphs. Which one of the following is true? 
(a) Both 퐴 and 퐵 are 푁푃-hard                            (b) 퐴 is 푁푃-hard, but 퐵 is not  
(c) 퐴 is 푁푃-hard, but 퐵 is not                             (d) Neither 퐴 nor 퐵 is 푁푃-hard 

 

Solution: Both 퐴 and 퐵 are 푁푃-hard (a). 
 

Problem-12 Let 퐴 be a problem that belongs to the class 푁푃. State which of the following is true?  
(a) There is no polynomial time algorithm for 퐴. 
(b) If 퐴 can be solved deterministically in polynomial time, then 푃 =  푁푃. 
(c) If 퐴 is 푁푃-hard, then it is 푁푃-complete. 
(d) 퐴 may be undecidable. 

 

Solution: If 퐴 is 푁푃-hard, then it is 푁푃-complete (c).  
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Problem-13 Suppose we assume 푉푒푟푡푒푥 − 퐶표푣푒푟 is known to be 푁푃-complete. Based on our reduction, can we say 퐼푛푑푒푝푒푛푑푒푛푡 −
푆푒푡 is 푁푃-complete? 

 

Solution: Yes. This follows from the two conditions necessary to be 푁푃-complete:  
 

 Independent Set is in 푁푃, as stated in the problem. 
 A reduction from a known 푁푃-complete problem. 

 

Problem-14 Suppose 퐼푛푑푒푝푒푛푑푒푛푡 푆푒푡 is known to be 푁푃-complete. Based on our reduction, is 푉푒푟푡푒푥 퐶표푣푒푟 푁푃-complete?  
 

Solution: No. By reduction from Vertex-Cover to Independent-Set, we do not know the difficulty of solving Independent-Set. This is because 
Independent-Set could still be a much harder problem than Vertex-Cover. We have not proved that. 
 

Problem-15 The class of NP is the class of languages that cannot be accepted in polynomial time. Is it true? Explain. 
 

Solution:  
 

 The class of NP is the class of languages that can be 푣푒푟푖푓푖푒푑 in 푝표푙푦푛표푚푖푎푙 푡푖푚푒. 
 The class of P is the class of languages that can be 푑푒푐푖푑푒푑 in 푝표푙푦푛표푚푖푎푙 푡푖푚푒. 
 The class of P is the class of languages that can be 푎푐푐푒푝푡푒푑 in 푝표푙푦푛표푚푖푎푙 푡푖푚푒. 

 

푃 ⊆  푁푃 and “languages in P can be accepted in polynomial time”, the description “languages in NP cannot be accepted in polynomial time” 
is wrong. 

 

The term NP comes from nondeterministic polynomial time and is derived from an alternative characterization by using nondeterministic 
polynomial time Turing machines. It has nothing to do with “cannot be accepted in polynomial time”. 
 

Problem-16 Different encodings would cause different time complexity for the same algorithm. Is it true? 
  

Solution: True. The time complexity of the same algorithm is different between unary encoding and binary encoding. But if the two encodings 
are polynomially related (e.g. base 2 & base 3 encodings), then changing between them will not cause the time complexity to change. 
 

Problem-17 If P = NP, then NPC (NP Complete) ⊆ P. Is it true? 
 

Solution: True. If P = NP, then for any language L ∈ NP C (1) L ∈ NPC (2) L is NP-hard. By the first condition, L ∈ NPC ⊆ NP = P ⇒ 
NPC ⊆ P. 
 

Problem-18 If NPC ⊆ P, then P = NP. Is it true? 
 

Solution: True. All the NP problem can be reduced to arbitrary NPC problem in polynomial time, and NPC problems can be solved in 
polynomial time because NPC ⊆ P. ⇒ NP problem solvable in polynomial time ⇒ NP ⊆ P and trivially P ⊆ NP implies NP = P. 
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21 
 

 
 
 

21.1 Introduction 
 

In this chapter we will cover the topics which are useful for interviews and exams.  

21.2 Hacks on Bitwise Programming 
 

In 퐶 and 퐶 + + we can work with bits effectively. First let us see the definitions of each bit operation and then move onto different techniques 
for solving the problems. Basically, there are six operators that 퐶 and 퐶 + + support for bit manipulation: 
 

Symbol Operation 
& Bitwise AND 
| Bitwise OR 
^ Bitwise Exclusive-OR 

≪ Bitwise left shift 

≫ Bitwise right shift 
~ Bitwise complement 

21.2.1 Bitwise AND 
 

The bitwise AND tests two binary numbers and returns bit values of 1 for positions where both numbers had a one, and bit values of 0 where 
both numbers did not have one: 

 01001011 
& 00010101 
 ---------- 

00000001 

21.2.2 Bitwise OR 
 

The bitwise OR tests two binary numbers and returns bit values of 1 for positions where either bit or both bits are one, the result of 0 only 
happens when both bits are 0: 

 01001011 
| 00010101 
 ---------- 

01011111 

21.2.3 Bitwise Exclusive-OR 
 

The bitwise Exclusive-OR tests two binary numbers and returns bit values of 1 for positions where both bits are different; if they are the same 
then the result is 0: 

 01001011 
^ 00010101 
 ---------- 

01011110 

21.2.4 Bitwise Left Shift 
 

The bitwise left shift moves all bits in the number to the left and fills vacated bit positions with 0. 
 

01001011 
<< 2 

-------- 
00101100 
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21.2.5 Bitwise Right Shift 
 

The bitwise right shift moves all bits in the number to the right. 
 

    01001011 
≫ 2 

-------- 
                        ??010010 

 

Note the use of ? for the fill bits. Where the left shift filled the vacated positions with 0, a right shift will do the same only when the value is 
unsigned. If the value is signed then a right shift will fill the vacated bit positions with the sign bit or 0, whichever one is implementation-
defined. So the best option is to never right shift signed values. 

21.2.6 Bitwise Complement 
 

The bitwise complement inverts the bits in a single binary number. 
 

01001011 
    ~ 

--------- 
10110100 

21.2.7 Checking Whether K-th Bit is Set or Not 
 

Let us assume that the given number is 푛. Then for checking the 퐾  bit we can use the expression: 푛 & (1 ≪ 퐾 − 1). If the expression is 
true then we can say the 퐾  bit is set (that means, set to 1). 
            

퐸푥푎푚푝푙푒: 푛 01001011 퐾 = 4 

  1 ≪ 퐾 − 1 00001000  
  푛 & (1 ≪ 퐾 − 1) 00001000  

21.2.8 Setting K-th Bit  
 

For a given number 푛, to set the 퐾  bit we can use the expression: 푛 | 1 ≪ (퐾 − 1) 
 

퐸푥푎푚푝푙푒: 푛 01001011 퐾 = 3 

 1 ≪ 퐾 − 1 00000100  
 푛 | (1 ≪ 퐾 − 1) 01001111  

21.2.9 Clearing K-th Bit 
 

To clear 퐾  bit of a given number 푛, we can use the expression: 푛 & ~(1 ≪ 퐾 − 1) 
 

퐸푥푎푚푝푙푒: 푛 01001011 퐾 = 4 

 1 ≪ 퐾 − 1 00001000  
 ~(1 ≪ 퐾 − 1) 11110111  
 푛 & ~( 1 ≪ 퐾 − 1) 01000011  

21.2.10 Toggling K-th Bit  
 

For a given number 푛, for toggling the 퐾  bit we can use the expression: 푛 ^(1 ≪ 퐾 − 1) 
               

퐸푥푎푚푝푙푒: 푛   01001011 퐾 = 3 
 1 ≪ 퐾 − 1 00000100  
 푛 ^ (1 ≪ 퐾 − 1) 01001111  

21.2.11 Toggling Rightmost One Bit 
 

For a given number 푛, for toggling rightmost one bit we can use the expression: 푛 & 푛 − 1 
 

퐸푥푎푚푝푙푒: 푛 01001011 
 푛 − 1 01001010 

 푛 & 푛 − 1 01001010 

21.2.12 Isolating Rightmost One Bit 
 

For a given number 푛, for isolating rightmost one bit we can use the expression: 푛 & − 푛 
  

퐸푥푎푚푝푙푒 : 푛 01001011 
 −푛 10110101 

 푛 & − 푛 00000001 
 

Note: For computing –푛, use two’s complement representation. That means, toggle all bits and add 1. 
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21.2.13 Isolating Rightmost Zero Bit 
 

For a given number 푛, for isolating rightmost zero bit we can use the expression: ~푛 & 푛 + 1 
  

퐸푥푎푚푝푙푒: 푛 01001011 
 ~푛 10110100 
 푛 + 1 01001100 
 ~푛 & 푛 + 1 00000100 

21.2.14 Checking Whether Number is Power of 2 or Not 
 

Given number 푛, to check whether the number is in 2  form for not, we can use the expression: 푖푓(푛 & 푛 − 1 == 0) 
 

퐸푥푎푚푝푙푒: 푛 01001011 
 푛 − 1 01001010 

 푛 & 푛 − 1 01001010 
      푖푓(푛 & 푛 − 1 == 0) 0 

21.2.15 Multiplying Number by Power of 2 
 

For a given number 푛, to multiply the number with 2  we can use the expression: 푛 ≪ 퐾  
 

퐸푥푎푚푝푙푒: 푛   00001011 퐾 = 2 
 푛 ≪ 퐾 00101100 

21.2.16 Dividing Number by Power of 2 
 

For a given number 푛, to divide the number with 2  we can use the expression: 푛 ≫ 퐾 
 

퐸푥푎푚푝푙푒: 푛   00001011 퐾 = 2 
 푛 ≫ 퐾 00000010 

21.2.17 Finding Modulo of a Given Number 
 

For a given number 푛, to find the %8 we can use the expression: 푛 & 0푥7. Similarly, to find %32, use the expression: 푛 & 0푥1퐹 
 

Note: Similarly, we can find modulo value of any number. 

21.2.18 Reversing the Binary Number 
 

For a given number 푛, to reverse the bits (reverse (mirror) of binary number) we can use the following code snippet: 
 

long n, nReverse = n;  
int s = sizeof(n);  
for (; n; n >>= 1) {    
     nReverse <<= 1; 
     nReverse |= n & 1; 
     s--; 
} 
nReverse <<= s; 

 

Time Complexity: This requires one iteration per bit and the number of iterations depends on the size of the number. 

21.2.19 Counting Number of One’s in Number 
 

For a given number 푛, to count the number of 1’푠 in its binary representation we can use any of the following methods. 
 

Method1: Process bit by bit 
long n;  
long count=0;  
while(n) { 
     count += n & 1; 
     n >>= 1; 
} 

 

Time Complexity: This approach requires one iteration per bit and the number of iterations depends on system. 
 

Method2: Using modulo approach 
long n;  
long count=0;  
while(n) { 
     if(n%2 ==1)  
          count++; 
     n = n/2;  
} 
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Time Complexity: This requires one iteration per bit and the number of iterations depends on system. 
 

Method3: Using toggling approach: 푛 & 푛 − 1 
long n;  
long count=0;  
while(n) { 
     count++; 
     n &= n - 1;  
} 

 

Time Complexity: The number of iterations depends on the number of 1 bits in the number. 
 

Method4: Using preprocessing idea. In this method, we process the bits in groups. For example if we process them in groups of 4 bits at a 
time, we create a table which indicates the number of one’s for each of those possibilities (as shown below). 
 

0000→0 0100→1 1000→1 1100→2 
0001→1 0101→2 1001→2 1101→3 
0010→1 0110→2 1010→2 1110→3 
0011→2 0111→3 1011→3 1111→4 

 

The following code to count the number of 1s in the number with this approach: 
 

int Table = {0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4}; 
int count = 0; 
for(; n; n >>= 4) 
     count = count + Table[n & 0xF]; 
return count; 

 

Time Complexity: This approach requires one iteration per 4 bits and the number of iterations depends on system. 

21.2.20 Creating Mask for Trailing Zero’s 
 

For a given number 푛, to create a mask for trailing zeros, we can use the expression: (푛 & − 푛) − 1 
 

퐸푥푎푚푝푙푒: 푛 01001011 
−푛 10110101 

푛 & − 푛 00000001 
(푛 & − 푛) − 1 00000000 

 

Note: In the above case we are getting the mask as all zeros because there are no trailing zeros. 

27.2.21 Swap All Odd and Even Bits 
   

퐸푥푎푚푝푙푒: 푛 01001011 
Find even bits of given number (evenN) =  푛 & 0xAA 00001010 
  Find odd bits of given number (oddN) =  푛 & 0x55  01000001 

    evenN >>= 1   00000101 
    oddN <<= 1   10000010 

Final Expression: evenN | oddN 10000111 

21.2.22 Performing Average without Division 
 

Is there a bit-twiddling algorithm to replace 푚푖푑 = (푙표푤 +  ℎ푖푔ℎ) / 2 (used in Binary Search and Merge Sort) with something much faster? 
 

We can use 푚푖푑 = (푙표푤 + ℎ푖푔ℎ) >> 1. Note that using (푙표푤 +  ℎ푖푔ℎ) / 2 for midpoint calculations won't work correctly when integer 
overflow becomes an issue. We can use bit shifting and also overcome a possible overflow issue: 푙표푤 + ((ℎ푖푔ℎ − 푙표푤)/ 2) and the bit shifting 
operation for this is 푙표푤 + ((ℎ푖푔ℎ − 푙표푤) >> 1). 

21.3 Other Programming Questions 
 

Problem-1 Give an algorithm for printing the matrix elements in spiral order. 
 

Solution: Non-recursive solution involves directions right, left, up, down, and dealing their corresponding indices. Once the first row is printed, 
direction changes (from right) to down, the row is discarded by incrementing the upper limit. Once the last column is printed, direction 
changes to left, the column is discarded by decrementing the right hand limit. 
 

     
     
     
     
     

 
 

So, our top-most row is top, bottom-most row is bottom, left-most column is left and right-most column is right. As we keep printing elements 
of the matrix, we will bring them closer to each other. Initially – 
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top = 0 
right = m – 1 
bottom  = n – 1 
left = 0 

 

As per the arrow indication, in our top row, we will print elements from left to right. So the loop to print it will look something like – 
 

for (int i = left; i <= right; ++i) { 
    System.out.print( matrix[top][i] ); 
}   

++top; 
 

As you have noticed, the ++top is to bring it towards the center. Similarly, for printing the right column – 
 

for (int i = top; i <= bottom; ++i) { 
    System.out.print( matrix[i][right] ); 
} 
 

--right; 
 

Similarly, for printing the bottom row – 
 

for (int i = right; i >= left; --i) { 
    System.out.print( matrix[bottom][i] ); 
} 
 

--bottom; 
 

Similarly, for printing the left column – 
 

for (int i = bottom; i >= top; --i) { 
    System.out.print( matrix[i][left] ); 
} 
 

++left; 
 

Now all that’s left is to execute this printing in a proper order. We could have a control variable direction, which denotes the direction. If – 
 

direction == 1, print top row 
direction == 2, print right column 
direction == 3, print bottom row 
direction == 4, print left column 

 

public static void spiralOrder(final int[][] matrix) { 
    if (matrix.length == 0 || matrix[0].length == 0) { 
        return; 
    }   

    int top = 0, bottom = matrix.length - 1, left = 0, right = matrix[0].length - 1; 
    int direction = 1;   

    while (top <= bottom && left <= right) { 
        if (direction == 1) {    // left-right 
            for (int i = left; i <= right; ++i) { 
                System.out.print(matrix[top][i] + " "); 
            } 
 

            ++top; 
            direction = 2; 
        } else if (direction == 2) {     // top-bottom 
            for (int i = top; i <= bottom; ++i) { 
                System.out.print(matrix[i][right] + " "); 
            }   

            --right; 
            direction = 3; 
        } else if (direction == 3) {     // right-left 
            for (int i = right; i >= left; --i) { 
                System.out.print(matrix[bottom][i] + " "); 
            } 
 

            --bottom; 
            direction = 4; 
        } else if (direction == 4) {     // bottom-up 
            for (int i = bottom; i >= top; --i) { 
                System.out.print(matrix[i][left] + " "); 
            } 
 

            ++left; 
            direction = 1; 
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        } 
    } 
} 

 

Time Complexity: O(푚 × 푛). Space Complexity: O(1). 
 

Problem-2 Give an algorithm for shuffling the desk of cards. 
 

Solution: Assume that we want to shuffle an array of 52 cards, from 0 to 51 with no repeats, such as we might want for a deck of cards. First 
fill the array with the values in order, then go through the array and exchange each element with a randomly chosen element in the range from 
itself to the end. It's possible that an element will swap with itself, but there is no problem with that.    

public void Shuffle(int[] cards){ 
        int n = A.length  //assume  n = 52  
        for (int i=0; i<n; i++)  
            cards[i] = i;                                             // filling the array with card number 
        for (int i=0; i < n; i++) { 
           // The random() method returns a random number between 0.0 and 1.0. 
            int r = i + ( Math.random() * (n - i) );   // Random remaining position. 
            int temp = cards[i]; cards[i] = cards[r]; cards[r] = temp; 
        }         
        System.out.println("Shuffled Cards:"); 
        for (int i=0; i<n; i++)  
            System.out.println(cards[i]); 
} 

 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-3 Reversal algorithm for array rotation: Write a function rotate(A[], d, n) that rotates A[] of size 푛 by 푑 elements. For 
example, the array 1, 2, 3, 4, 5, 6, 7 becomes 3, 4, 5, 6, 7, 1, 2 after 2 rotations. 

 

Solution:  Consider the following algorithm. 
 

Algorithm: 
rotate(Array[], d, n) 
reverse(Array[], 1, d) ; 
reverse(Array[], d + 1, n); 
reverse(Array[], l, n); 

 

Let AB be the two parts of the input Arrays where A = Array[0..d-1] and B = Array[d..n-1]. The idea of the algorithm is:         
           Reverse A to get ArB. /* Ar is reverse of A */ 
           Reverse B to get ArBr. /* Br is reverse of B */ 
           Reverse all to get (ArBr) r = BA. 
           For example, if Array[] = [1, 2, 3, 4, 5, 6, 7], d =2 and n = 7 then, A = [1, 2] and B = [3, 4, 5, 6, 7] 
           Reverse A, we get ArB = [2, 1, 3, 4, 5, 6, 7], Reverse B, we get ArBr = [2, 1, 7, 6, 5, 4, 3] 
           Reverse all, we get (ArBr)r = [3, 4, 5, 6, 7, 1, 2] 
 

Implementation: 
       /* Function to left rotate Array[] of size n by d */ 
       void leftRotate(int[] Array, int d, int n) { 
              rvereseArray(Array, 0, d-1); 
              rvereseArray(Array, d, n-1); 
              rvereseArray(Array, 0, n-1); 
       } 
       /*UTILITY FUNCTIONS: function to print an Array */ 
       void printArray(int[] Array){ 
              for(int i = 0; i < A.length; i++) 
                     printf("%d ", Array[i]); 
              printf("%\n "); 
       } 
       /*Function to reverse Array[] from index start to end*/ 
       void rvereseArray(int[] Array, int start, int end) { 
              int i; 
              int temp; 
              while(start < end){ 
                     temp = Array[start]; 
                     Array[start] = Array[end]; 
                     Array[end] = temp; 
                     start++; 
                     end--; 
              } 
       } 
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Problem-4 Suppose you are given an array s[1...푛] and a procedure reverse (s,i,j) which reverses the order of elements in between 
positions i and j (both inclusive). What does the following sequence                  

do, where 1 < k <= n: 
  reverse (s, 1, k); 
  reverse (s, k + 1, n); 
  reverse (s, 1, n); 

 (a) Rotates s left by k positions  (b) Leaves s unchanged  (c) Reverses all elements of s  (d) None of the above 
 

Solution: (b). Effect of the above 3 reversals for any 푘 is equivalent to left rotation of the array of size 푛 by 푘 [refer to Problem-3]. 
 

Problem-5 Given a string that has set of words and spaces, write a program to move the spaces to 푓푟표푛푡 of string, you need to traverse 
the array only once and need to adjust the string in place. 

    퐼푛푝푢푡 = "move these spaces to beginning" 푂푢푡푝푢푡 ="    movethesepacestobeginning" 
 

Solution: Maintain two indices 푖 and 푗; traverse from end to beginning. If the current index contains char, swap chars in index 푖 with index 푗. 
This will move all the spaces to beginning of the array. 
 

       public void mySwap(char[] A, int i, int j){ 
            char temp=A[i]; 
            A[i]=A[j]; 
            A[j]=temp; 
       } 
       public void moveSpacesToBegin(char[] A){ 
            int i= A.length-1; 
            for(int j=i; j>=0; j--){ 
                 if(!isspace(A[j])) 
                      mySwap(A,i--,j); 
            } 
       } 
 

Time Complexity: O(푛) where 푛 is the number of characters in input array. Space Complexity: O(1). 
 

Problem-6 For the Problem-5, can we improve the complexity? 
 

Solution: We can avoid swap operation with a simple counter. But, it does not reduce the overall complexity. 
 

       public void moveSpacesToBegin(char[] A){ 
            int n=A.length-1,count=n; 
            int i=n; 
            for(;i>=0;i--){ 
                 if(A[i]!=' ') 
                      A[count--]=A[i]; 
            } 
            while(count>=0) 
                 A[count--]=' '; 
       } 
 

Time Complexity: O(푛) where 푛 is the number of characters in input array. Space Complexity: O(1). 
  

Problem-7 Given a string that has set of words and spaces, write a program to move the spaces to 푒푛푑 of string, you need to traverse 
the array only once and need to adjust the string in place. 

      퐼푛푝푢푡 = "move these spaces to end" 푂푢푡푝푢푡 ="movethesepacestoend    " 
 

Solution: Traverse the array from left to right. While traversing, maintain a counter for non-space elements in array. For every non-space 
character A[푖], put the element at A[푐표푢푛푡] and increment 푐표푢푛푡. After complete traversal, all non-space elements have already been shifted 
to front end and 푐표푢푛푡 is set as index of first 0. Now, all we need to do is run a loop which fills all elements with spaces from 푐표푢푛푡 till end 
of the array. 
 

       public void moveSpacesToEnd(char[] A){ 
            int count = 0;   // Count of non-space elements 
            int n = A.length-1; 
            for (int i =0;; i <= n; i++) 
                 if (!isspace(A[i])) 
                      A[count++] = A[i];          

            while (count <= n) 
                 A[++count] = ' '; 
       } 
 

Time Complexity: O(푛) where 푛 is number of characters in input array. Space Complexity: O(1). 
 

Problem-8 Moving Zeros to end: Given an array of 푛 integers, move all the zeros of a given array to the end of the array. For example, 
if the given arrays is {1, 9, 8, 4, 0, 0, 2, 7, 0, 6, 0}, it should be changed to {1, 9, 8, 4, 2, 7, 6, 0, 0, 0, 0}. The order of all other elements 
should be same.  
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Solution: Maintain two variables 푖 and 푗; and initialize with 0. For each of the array element 퐴[푖], if 퐴[푖] non-zero element, then replace the 
element 퐴[푗] with element 퐴[푖]. Variable 푖 will always be incremented till  푛 - 1 but we will increment 푗 only when the element pointed by 푖 is 
non-zero.  
 

       public void moveZerosToEnd(int[] A){ 
            int i=0,j=0; 
            while (i <= A.length - 1){   
                if (A[i] != 0){   
                      A[j++] = A[i];  
               } 
               i++; 
            } 
            while (j <= size - 1)    
                  A[j++] = 0; 
       } 

 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-9 For the Problem-8, can we improve the complexity? 
 

Solution: Using simple swap technique we can avoid the unnecessary second 푤ℎ푖푙푒 loop from the above code. 
  

       public void mySwap(int[] A,int i,int j){ 
            int temp=A[i]; 
            A[i]=A[j]; 
            A[j]=temp; 
       } 
       public void moveZerosToEnd(int[] A){ 
            int i, j; 
            for(i=0,j=0; i<A.length; i++)    { 
                 if (A[i] !=0) 
                      mySwap(A,j++,i); 
            } 
       } 
 

Time Complexity: O(푛). Space Complexity: O(1). 
 

Problem-10 Variant of Problem-9 and Problem-10: Given an array containing negative and positive numbers; give an algorithm for 
separating positive and negative numbers in it. Also, maintain the relative order of positive and negative numbers. Input: -5, 3, 2, -1, 4, -
8 Output: -5 -1 -8 3 4 2 

 

Solution: In the moveZerosToEnd function, just replace the condition 퐴[푖] !=0 with 퐴[푖] < 0. 
 

Problem-11 How do you check whether the given has big endian support or little endian support? 
 

Solution: We can use ByteOrder class in Java. 
 

       import java.nio.ByteOrder; 
       public class CheckEndian { 
 public static boolean isBigEndian() { 
    if(ByteOrder.nativeOrder().equals(ByteOrder.BIG_ENDIAN)) 
       return true; 
    return false; 
 } 
 public static boolean isLittleEndian() { 
    if(ByteOrder.nativeOrder().equals(ByteOrder.LITTLE_ENDIAN)) 
       return true; 
    return false; 
 } 
       } 
 

Problem-12 Given a number swap odd and even bits. 
 

Solution: 
 

    int swap(int num){ 
        int mask1 = 0xAAAAAAAA; 
        int mask2 = 0x55555555; 
        return (num << 1 & mask1) | ( num >> 1 & mask2); 
    } 
 

Problem-13 Equilibrium index of an array is an index such that the sum of elements at lower indexes is equal to the sum of 
elements at higher indexes. Given an n length array, find the K which makes A[0]+A[1]+....+A[K-1] = A[K+1]+A[K+2]+...+A[N-1]. 

 

Solution:  
 

       public static int equilibrium(int[] A){ 
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 int sum = 0, leftsum = 0; 
 for(int i = 0;i<A.length;i++){ 
  sum += A[i]; 
 }  
 for(int i = 0; i<A.length;i++){ 
  sum -= A[i]; 
  if(leftsum == sum){ 
   return i; 
  } 
  leftsum += A[i]; 
 } 
 return -1; 
       } 
       public static void main(String[] args) { 
 int[] A = {-7,1,5,2,-4,3,0}; 
 System.out.print(equilibrium(A)); // Would Print 3 
       } 
 

Problem-14 Given a number represented as an array of digits, plus one to the number. 
 

Solution:  
 

       public class AddOneToNumber { 
 public int[] addOneToNumber(int[] digits) { 
  int[] result = new int[digits.length]; 
  int one = 1; 
  for(int i = digits.length-1;i>=0;i--){ 
   result[i] = (digits[i]+one) % 10; 
   one = (digits[i]+one) / 10; 
  } 
  if(one!=0){ 
   int[] more = new int[digits.length+1]; 
   more[0] = one; 
   System.arraycopy(result, 0, more, 1, result.length); 
   result = more; 
  } 
  return result;   
 } 
       } 
 

Problem-15 Count the number of set bits in all numbers from 1 to 푛. 
 

Solution: We can use the technique of section 21.2.19 and iterate through all the numbers from 1 to 푛. 
 

    public int countNumberofSetbitsin1toN(int n) { 
        long i = 0, j, count = 0;  
        for (i = 1; i<=n; i++){ 
            j = i; 
            while(j>0) { 
                count++; 
                j = j & (j - 1);  
            } 
        } 
        return count;   
    } 
 

Time complexity: O(number of set bits in all numbers from 1 to 푛). 
 

Problem-16 Flower bed: Suppose you have a long flowerbed in which some of the plots are planted and some are not. However, 
flowers cannot be planted in adjacent plots - they would compete for water and both would die. Given a flowerbed (represented as an array 
containing 0 and 1, where 0 means empty and 1 means not empty), and a number 푛, return if n new flowers can be planted in it without 
violating the no-adjacent-flowers rule. 

 

 Example 1: Input: flowerbed = [1,0,0,0,1], n = 1    Output: True 
 Example 2: Input: flowerbed = [1,0,0,0,1], n = 2    Output: False 
 

Solution: The solution is very simple. We can find out the extra maximum number of flowers, count, that can be planted for the given 
flowerbed arrangement. To do so, we can traverse over all the elements of the flowerbed and find out those elements which are 0(implying 
an empty position). For every such element, we check if its both adjacent positions are also empty. If so, we can plant a flower at the current 
position without violating the no-adjacent-flowers-rule. For the first and last elements, we need not check the previous and the next adjacent 
positions respectively. 
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If the count obtained is greater than or equal to 푛, the required number of flowers to be planted, we can plant 푛 flowers in the empty spaces, 
otherwise not. 
 

    public boolean canPlaceFlowers(int[] flowerbed, int n) { 
        int i = 0, count = 0; 
        while (i < flowerbed.length) { 
            if (flowerbed[i] == 0 && (i == 0 || flowerbed[i - 1] == 0) && (i == flowerbed.length - 1 || flowerbed[i + 1] == 0)) { 
                flowerbed[i] = 1; 
                count++; 
            } 
            i++; 
        } 
        return count >= n; 
    } 
 

Time complexity: O(푛). A single scan of the flowerbed array of size 푛 is done. Space complexity: O(1). 
 

Problem-17 Given two strings s and t which consist of only lowercase letters. String t is generated by random shuffling string s and then 
add one more letter at a random position. Find the letter that was added in t. 

 

Example Input:  s = "abcd"   t = "abcde"           Output: e 
Explanation: 'e' is the letter that was added. 

 

Solution: Since there is only character difference between the two given strings, we can simply perform the XOR of all the characters from 
both the strings to get the difference. 
 

        public char findTheDifference(String s, String t) { 
 char c = 0; 
 for (int i = 0; i < s.length(); ++i) { 
         c ^= s.charAt(i); 
 } 
 for (int i = 0; i < t.length(); ++i) { 
         c ^= t.charAt(i); 
 } 
 return c; 
        } 
 

Time Complexity: O(푛), where 푛 is the length of arrays.  Space Complexity: O(1). 



 

  
 
 

 

REFERENCES 
 
 

[1] Akash. Programming Interviews. tech-queries.blogspot.com.  
[2] Alfred V.Aho,J. E. (1983). Data Structures and Algorithms. Addison-Wesley. 
[3] Algorithms.Retrieved from cs.princeton.edu/algs4/home 
[4] Anderson., S. E. Bit Twiddling Hacks. Retrieved 2010, from Bit Twiddling Hacks: graphics.stanford.edu 
[5] Bentley, J. AT&T Bell Laboratories. Retrieved from AT&T Bell Laboratories. 
[6] Bondalapati, K. Interview Question Bank. Retrieved 2010, from Interview Question Bank: halcyon.usc.edu/~kiran/msqs.html 
[7] Chen. Algorithms hawaii.edu/~chenx. 
[8] Database, P.Problem Database. Retrieved 2010, from Problem Database: datastructures.net 
[9] Drozdek, A. (1996). Data Structures and Algorithms in C++.  

[10] Ellis Horowitz, S. S. Fundamentals of Data Structures.  
[11] Gilles Brassard, P. B. (1996). Fundamentals of Algorithmics.  
[12] Hunter., J. Introduction to Data Structures and Algorithms. Retrieved 2010, from Introduction to Data Structures and 

Algorithms.  
[13] James F. Korsh, L. J. Data Structures, Algorithms and Program Style Using C.  
[14] John Mongan, N. S. (2002). Programming Interviews Exposed. Wiley-India. . 
[15] Judges. Comments on Problems and Solutions. http://www.informatik.uni-ulm.de/acm/Locals/2003/html/judge.html.  
[16] Kalid. P, NP, and NP-Complete. Retrieved from P, NP, and NP-Complete.: cs.princeton.edu/~kazad 
[17] Knuth., D. E. (1973). Fundamental Algorithms, volume 1 of The Art of Computer Programming. Addison-Wesley. 
[18] Leon, J. S. Computer Algorithms. Retrieved 2010, from Computer Algorithms : math.uic.edu/~leon 
[19] Leon., J. S. Computer Algorithms. math.uic.edu/~leon/cs-mcs401-s08.  
[20] OCF. Algorithms. Retrieved 2010, from Algorithms: ocf.berkeley.edu 
[21] Parlante., N. Binary Trees. Retrieved 2010, from cslibrary.stanford.edu: cslibrary.stanford.edu 
[22] Patil., V. Fundamentals of data structures. Nirali Prakashan. 
[23] Poundstone., W. HOW WOULD YOU MOVE MOUNT FUJI? New York Boston.: Little, Brown and Company.  
[24] Pryor, M. Tech Interview. Retrieved 2010, from Tech Interview: techinterview.org 
[25] Questions, A. C. A Collection of Technical Interview Questions. Retrieved 2010, from A Collection of Technical Interview 

Questions 
[26] S. Dasgupta, C. P. Algorithms cs.berkeley.edu/~vazirani.  
[27] Sedgewick., R. (1988). Algorithms. Addison-Wesley. 
[28] Sells, C. (2010). Interviewing at Microsoft. Retrieved 2010, from Interviewing at Microsoft 
[29] Shene, C.-K. Linked Lists Merge Sort Implementation.  
[30] Sinha, P. Linux Journal. Retrieved 2010, from: linuxjournal.com/article/6828. 
[31] Structures., d. D. www.math-cs.gordon.edu. Retrieved 2010, from www.math-cs.gordon.edu 
[32] T. H. Cormen, C. E. (1997). Introduction to Algorithms. Cambridge: The MIT press. 
[33] Tsiombikas, J. Pointers Explained. nuclear.sdf-eu.org.  
[34] Warren., H. S. (2003). Hackers Delight. Addison-Wesley. 
[35] Weiss., M. A. (1992). Data Structures and Algorithm Analysis in C. 

 

http://www.informatik.uni-ulm.de/acm/Locals/2003/html/judge.html.
http://www.math-cs.gordon.edu.
http://www.math-cs.gordon.edu

		2020-07-09T00:45:19+0000
	Preflight Ticket Signature




